Science.gov

Sample records for agonist dihydrotestosterone dht

  1. 5alpha-dihydrotestosterone (DHT) retards wound closure by inhibiting re-epithelialization.

    PubMed

    Gilliver, S C; Ruckshanthi, J P D; Hardman, M J; Zeef, L A H; Ashcroft, G S

    2009-01-01

    The ongoing search for explanations as to why elderly males heal acute skin wounds more slowly than do their female counterparts (and are more strongly disposed to conditions of chronic ulceration) has identified endogenous oestrogens and androgens as being respectively enhancers and inhibitors of repair. We previously demonstrated that blocking the conversion of testosterone to 5alpha-dihydrotestosterone (DHT) limits its ability to impair healing, suggesting that DHT is a more potent inhibitor of repair than is testosterone. The present study aimed to delineate the central mechanisms by which androgens delay repair. Whilst the contractile properties of neither rat wounds in vivo nor fibroblast-impregnated collagenous discs in vitro appeared to be influenced by androgen manipulations, the global blockade of DHT biosynthesis markedly accelerated re-epithelialization of incisional and excisional wounds and reduced local expression of beta-catenin, a key inhibitor of repair. Moreover, DHT retarded the in vitro migration of epidermal keratinocytes following scratch wounding. By contrast, it failed to influence the migratory and proliferative properties of dermal fibroblasts, suggesting that its primary inhibitory effect is upon re-epithelialization. These novel findings may be of particular significance in the context of chronic ulceration, for which being male is a key risk factor.

  2. Persistence of infertility in GnRH immunized male rats treated with subdermal implants of dihydrotestosterone (DHT).

    PubMed

    Awoniyi, C A; Hurst, B S; Reece, M S; Kim, W K; Schlaff, W D

    1996-10-01

    Male hormonal contraception has been limited to date because two fundamental requirements have not been concurrently satisfied, these are, consistent and dependable azoospermia and infertility coupled with maintenance of libido. The objective of this study was to determine the extent to which implants of potent androgen (DHT) will restore androgenization and spermatogenesis in hypogonadotropic infertile male rats. Twenty-five sexually mature male rats of proven fertility were actively immunized against gonadotropin releasing hormone (GnRH) to induce azoospermia. After azoospermia was achieved, GnRH immunized rats received subdermal DHT-filled Silastic implants of 2, 4, 6, or 8 cm, or empty implants (n=5/group). Five untreated control rats received empty capsules. Eight weeks later, fertility was evaluated, sperm number was obtained from the testis, and weights of androgen-dependent organs were measured. The results indicate that immunoneutralization of GnRH induced complete azoospermia, and subsequent treatment with DHT implants of 2 or 4 cm for 8 wk restored accessory organ weights, but did not restore spermatogenesis or fertility. In addition, DHT implants of 6 to 8 cm partially restored spermatogenesis, but not fertility. We conclude that low-dose DHT supplementation of GnRH-immunized rats may be a suitable alternate therapy able to maintain androgenization in the face of persistent azoospermia in the rat. This may be an effective model for development of a male contraceptive.

  3. Neonatal co-lesion by DSP-4 and 5,7-DHT produces adulthood behavioral sensitization to dopamine D(2) receptor agonists.

    PubMed

    Nowak, Przemysław; Nitka, Dariusz; Kwieciński, Adam; Jośko, Jadwiga; Drab, Jacek; Pojda-Wilczek, Dorota; Kasperski, Jacek; Kostrzewa, Richard M; Brus, Ryszard

    2009-01-01

    To assess the possible modulatory effects of noradrenergic and serotoninergic neurons on dopaminergic neuronal activity, the noradrenergic and serotoninergic neurotoxins DSP-4 N-(2-chlorethyl)-N-ethyl-2-bromobenzylamine (50.0 mg/kg, sc) and 5,7-dihydroxytryptamine (5,7-DHT) (37.5 microg icv, half in each lateral ventricle), respectively, were administered toWistar rats on the first and third days of postnatal ontogeny, and dopamine (DA) agonist-induced behaviors were assessed in adulthood. At eight weeks, using an HPLC/ED technique, DSP-4 treatment was associated with a reduction in NE content of the corpus striatum (> 60%), hippocampus (95%), and frontal cortex (> 85%), while 5,7-DHT was associated with an 80-90% serotonin reduction in the same brain regions. DA content was unaltered in the striatum and the cortex. In the group lesioned with both DSP-4 and 5,7-DHT, quinpirole-induced (DA D(2) agonist) yawning, 7-hydroxy-DPAT-induced (DA D(3) agonist) yawning, and apomorphine-induced (non-selective DA agonist) stereotypies were enhanced. However, SKF 38393-induced (DA D(1) agonist) oral activity was reduced in the DSP-4 + 5,7-DHT group. These findings demonstrate that DA D(2)- and D(3)-agonist-induced behaviors are enhanced while DA D(1)-agonist-induced behaviors are suppressed in adult rats in which brain noradrenergic and serotoninergic innervation of the brain has largely been destroyed. This study indicates that noradrenergic and serotoninergic neurons have a great impact on the development of DA receptor reactivity (sensitivity).

  4. Dihydrotestosterone alters cyclooxygenase-2 levels in human coronary artery smooth muscle cells

    PubMed Central

    Osterlund, Kristen L.; Handa, Robert J.

    2010-01-01

    Both protective and nonprotective effects of androgens on the cardiovascular system have been reported. Our previous studies show that the potent androgen receptor (AR) agonist dihydrotestosterone (DHT) increases levels of the vascular inflammatory mediator cyclooxygenase (COX)-2 in rodent cerebral arteries independent of an inflammatory stimulus. Little is known about the effects of androgens on inflammation in human vascular tissues. Therefore, we tested the hypothesis that DHT alters COX-2 levels in the absence and presence of induced inflammation in primary human coronary artery smooth muscle cells (HCASMC). Furthermore, we tested the ancillary hypothesis that DHT's effects on COX-2 levels are AR-dependent. Cells were treated with DHT (10 nM) or vehicle for 6 h in the presence or absence of LPS or IL-1β. Similar to previous observations in rodent arteries, in HCASMC, DHT alone increased COX-2 levels compared with vehicle. This effect of DHT was attenuated in the presence of the AR antagonist bicalutamide. Conversely, in the presence of LPS or IL-1β, increases in COX-2 were attenuated by cotreatment with DHT. Bicalutamide did not affect this response, suggesting that DHT-induced decreases in COX-2 levels occur independent of AR stimulation. Thus we conclude that DHT differentially influences COX-2 levels under physiological and pathophysiological conditions in HCASMC. This effect of DHT on COX-2 involves AR-dependent and- independent mechanisms, depending on the physiological state of the cell. PMID:20103743

  5. Autoradiographic localization of tritiated dihydrotestosterone in the flank organ of the albino hamster

    SciTech Connect

    Lucky, A.W.; Eisenfeld, A.J.; Visintin, I.

    1985-02-01

    In the hamster flank organ, the growth of hair and growth of sebaceous glands are androgen-dependent functions. Although dihydrotestosterone (DHT) is known to be a potent stimulator of flank organ growth, there is no information about localization of DHT receptor sites in this organ. The purpose of this study was to use steroid autoradiography to localize DHT receptors in the hamster flank organ. Because steroid hormones are functional when translocated to nuclear receptors, nuclear localization by autoradiography defines receptor sites. In order to be able to visualize autoradiographic grains from radiolabeled androgens around hair follicles, albino hamsters were studied to avoid confusion between the grains and pigment granules which are abundant in the more common Golden Syrian hamster. Mature male hamsters castrated 24 hours earlier were given tritium-labeled dihydrotestosterone ( (/sup 3/H)DHT). Using the technique of thaw-mount steroid autoradiography, 4-micron unfixed frozen sections were mounted in the dark onto emulsion-coated glass slides and allowed to develop for 4-6 months. (/sup 3/H)DHT was found to be concentrated over sebocyte nuclei. The label was present peripherally as well as in differentiating sebocytes. There was no nuclear localization of (/sup 3/H)DHT in animals pretreated with excessive quantities of unlabeled DHT. Steroid metabolites of (/sup 3/H) DHT were assessed by thin-layer chromatography in paired tissue samples. Most of the label remained with DHT. Uptake was inhibited in the flank organ of hamsters pretreated with unlabeled DHT.

  6. Inhibin activity in male rat reproductive organs during treatment with dihydrotestosterone

    SciTech Connect

    Gladkova, A.I.

    1986-09-01

    The effect of dihydrotestosterone (DHT) on the inhibin level in the male reproductive system is studied. Hormones were determined in the peripheral blood of the donor rats by radioimmunoassay. Inhibin activity in the male rats is shown. DHT caused a very small increase in inhibin activity in the testis. Further study of relations between androgens and inhibin at peripheral and central levels will facilitate fertility control.

  7. Invalidation of a commercially available human 5α-dihydrotestosterone immunoassay.

    PubMed

    Yarrow, Joshua F; Beck, Darren T; Conover, Christine F; Beggs, Luke A; Goldberger, Bruce A; Borst, Stephen E

    2013-12-11

    Enzyme immunoassays (EIA) are commonly utilized for the evaluation of androgens in biological fluids; however, careful consideration must be given to cross-reactivity with other endogenous sex-steroid hormones. Our purpose was to determine the validity of a commonly-utilized commercially-available dihydrotestosterone (DHT) EIA. Serum samples obtained from older hypogonadal men who participated in a 12-month randomized controlled trial evaluating the effects of testosterone-enanthate (125 mg/week) or vehicle in combination with finasteride (5mg/day) or placebo were assayed for DHT via EIA and using a validated gold-standard LC-MS/MS approach. Additionally, commercially-available (DHT-free) buffer containing graded testosterone doses was evaluated by DHT immunoassay. DHT concentrations measured via EIA were 79% to >1000% higher than values obtained by LC-MS/MS (p<0.05), with the largest differences (415-1128%) occuring in groups receiving finasteride. Both LC-MS/MS and EIA indicated that testosterone-enanthate increased serum DHT to a similar magnitude. In contrast, finasteride-induced reductions in DHT were detected by LC-MS/MS, but not EIA (p<0.05). No significant associations were present for DHT concentrations between measurement techniques. Cross-reactivity of testosterone with the immunoassay ranged from 18% to 99% and DHT concentrations measured by EIA were highly associated with the spiked testosterone concentrations in DHT-free buffer (r=0.885, p<0.001). In conclusion, we provide evidence invalidating a commonly-utilized commercially-available DHT immunoassay because significant cross-reactivity exists between testosterone and the EIA and because the changes in DHT observed via EIA were not associated with a validated gold-standard measurement technique. The cross-reactivity of testosterone is particularly concerning because testsoterone is present in 100-fold greater concentrations than is DHT within the circulation.

  8. Testosterone and dihydrotestosterone inhibit gallbladder motility through multiple signalling pathways.

    PubMed

    Kline, Loren W; Karpinski, Edward

    2008-10-01

    Testosterone (T) has been shown to cause vasodilation in rabbit coronary arteries through a nongenomic pathway. Part of this T-induced relaxation was shown to be mediated by opening voltage dependent K(+) channels. T infusion also reduces peripheral resistance in human males with heart failure. The effects of T or its active metabolite 5-alpha dihydrotestosterone (DHT) are not well studied. This study investigates the effect of T and DHT on contraction in guinea pig gallbladder strips. T or DHT induced a concentration-dependent relaxation of cholecystokinin octapeptide (CCK)-induced tension. Pretreatment of the strips with PKA inhibitor 14-22 amide myristolated had no significant effect on the relaxation induced by either T or DHT. Pretreatment of strips with 2-APB, an inhibitor of IP(3) induced Ca(2+) release, produced a significant (p<0.001) reduction in the T- or DHT-induced relaxation. Bisindolymaleimide IV and chelerythrine Cl(-) when used in combination had no significant effect on the amount of CCK-induced tension, but significantly (p<0.01) decreased the amount of T- or DHT-induced relaxation. The flavone chrysin, an aromatase inhibitor, and genistein, an isoflavone, each produced a significant (p<0.01) reduction in CCK-induced tension. Chrysin significantly (p<0.05) increased T-induced relaxation; however, genistein had no effect on T-induced relaxation. It is concluded that T and DHT inhibits gallbladder motility rapidly by nongenomic actions of the hormones. Multiple pathways that include inhibition of intracellular Ca(2+) release, inhibition of extracellular Ca(2+) entry, and the actions of PKC may mediate this effect.

  9. Microbial transformations of testosterone to 5alpha-dihydrotestosterone by two species of Penicillium: P. chrysogenum and P. crustosum.

    PubMed

    Cabeza, M S; Gutiérrez, E B; García, G A; Avalos, A H; Hernández, M A

    1999-06-01

    Two species of Penicillium--P. chrysogenum and P. crustosum--were cultured in presence of [3H]testosterone as a substrate. Both species were shown to reduce the 4,5-double bond in testosterone to give dihydrotestosterone (DHT). The steroids produced were 5alpha-dihydrotestosterone, DHT, 3alpha-hydroxy-5beta-androstan-17-one, 3alpha-hydroy-5alpha-androstan-17-one, 4-androstene-3,17-dione, and 5alpha-androstane-3,17-dione. These products implicate the presence of the 5alpha-reductase, with maximal activity at pH 6 and 8, in both species of Penicillium. The presence of DHT in the growth medium and not in the mycelium suggests that DHT is excreted into the medium.

  10. Analysis of testosterone and dihydrotestosterone in mouse tissues by liquid chromatography-electrospray tandem mass spectrometry

    PubMed Central

    Weng, Yan; Xie, Fang; Xu, Li; Zagorevski, Dmitri; Spink, David C.; Ding, Xinxin

    2010-01-01

    A novel method was established for simultaneous quantitation of testosterone (T) and dihydrotestosterone (DHT) in murine tissue and serum samples. Endogenous T and DHT, together with the internal standards, 17α-methyl-T and 17α-methyl-DHT, were extracted from tissues, and then derivatized by reaction with 2-hydrazino-4-(trifluoromethyl)-pyrimidine (HTP). Analysis by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) resulted in production spectra of HTP derivatives of both T and DHT that showed analyte-specific fragmentations; the latter fragmentations were characterized by use of high-resolution Orbitrap MS/MS. These specific fragmentations enabled quantitation of T and DHT in the multiple-reaction monitoring (MRM) mode. The method was validated with charcoal-stripped serum as the matrix; the LLOQ was 0.10 ng/ml for T and 0.50 ng/ml for DHT. The method was then used for determination of serum and tissue levels of T and DHT in transgenic mice carrying a hypomorphic NADPH-cytochrome P450 reductase gene (Cpr-low mice). Remarkably, ovarian T levels in Cpr-low mice were found to be 25-fold higher than those in wild-type mice, a finding that at least partly explains the female infertility seen in the Cpr-low mice. In conclusion, our method provides excellent sensitivity and selectivity for determination of endogenous levels of T and DHT in mouse tissues. PMID:20361922

  11. Postnatal administration of dihydrotestosterone to the male rat abolishes sexual dimorphism in the accessory olfactory bulb: a volumetric study.

    PubMed

    Valencia, A; Collado, P; Calés, J M; Segovia, S; Pérez Laso, C; Rodríguez Zafra, M; Guillamón, A

    1992-07-24

    The regulatory action of the non-aromatizable androgen dihydrotestosterone (DHT) on sexual differentiation of the volume of the rat accessory olfactory bulb (AOB) was studied. Postnatal treatment with DHT (180 micrograms/day) carried out daily between days 6 and 20 produced a drastic reduction in overall AOB size and that of its constituent neural layers in genetic males with respect to intact and control males. The volumetric measures found in DHT-treated males did not differ from those shown by the intact females. These results, which indicate a demasculinization and a feminization of the AOB volume in gonadally intact male rats induced by DHT, are discussed in relation to the presumably regulatory role of DHT on neuron populations during the sexual organizational process of the brain.

  12. Dihydrotestosterone modulates endothelial progenitor cell function via RhoA/ROCK pathway

    PubMed Central

    Zhang, Hao; Shi, Liang; Ren, Guo-Qing; Sun, Wen-Wen; Wang, Yi-Bin; Chen, Yi-Kun; Yin, Jiang-Ning; Wan, Bing

    2016-01-01

    Background: Previous findings indicate that testosterone level is negatively correlated with the incidence and mortality of cardiovascular diseases in men. Endothelial progenitor cells (EPCs) play a critical role in endothelial healing and vascular integrity. This study aimed to examine the effects of dihydrotestosterone (DHT), an active metabolite of testosterone, on human EPC function and investigate the underlying mechanism. Methods: EPCs were isolated from peripheral blood of healthy adult males and incubated with a series of concentrations (1, 10, and 100 nmol/L in dimethyl sulfoxide) of DHT for 24 h or with 10 nmol/L DHT for different periods (6, 12, 24, 36, and 48 h). EPC proliferation, migration, and adhesion were determined by MTT assay, modified Boyden chamber assay, and cell counting, respectively. Furthermore, vascular endothelial growth factor (VEGF) production was examined by ELISA, RhoA activity was determined through pull-down assay. The protein level of RhoA was quantified by Western blot analysis. Results: DHT significantly increased the proliferative, migratory, and adhesive abilities of EPCs in a dose- and time-dependent manner and upregulated the levels of VEGF and activated RhoA. However, RhoA inhibitor C3 exoenzyme or ROCK inhibitor Y-27632 significantly inhibited DHT-induced proliferation, migration, and adhesion, as well as VEGF production. Moreover, C3 exoenzyme inhibited the activation of RhoA stimulated by DHT. Conclusions: DHT promotes EPC proliferation, migration, and adhesion activities via RhoA/ROCK pathway. PMID:27830013

  13. The Estradiol-Dihydrotestosterone model of prostate cancer

    PubMed Central

    Friedman, A Edward

    2005-01-01

    Background The exact relationship between hormonal activity and prostate cancer(PCa) has not yet been clearly defined. One of the key hormones associated with PCa is testosterone(T). However, both in vitro and in vivo studies have shown that under some conditions T is capable of either promoting PCa growth or death. This article proposes a theory which resolves this apparent paradox. Model The Estradiol-Dihydrotestosterone(E-D) model introduced in this paper proposes that 17β-estradiol(E2) is essential for initiating the growth of PCa cells through the formation of telomeres. It also proposes that T is responsible for increasing the expression of proteins which cause apoptosis, or programmed cell death, and that 5α-dihydrotestosterone(DHT) is essential for preventing this. In addition, it is known that some T is converted to both E2 and DHT, which means that depending on the conditions, T is capable of either promoting the growth of or the killing of PCa. PMID:15777479

  14. Transcriptional networks associated with 5-alpha-dihydrotestosterone in the fathead minnow (Pimephales promelas) ovary.

    PubMed

    Ornostay, Anna; Marr, Joshua; Loughery, Jennifer R; Martyniuk, Christopher J

    2016-01-01

    Androgens play a significant role in regulating oogenesis in teleost fishes. The androgen dihydrotestosterone (DHT) is a potent non-aromatizable androgen involved in sexual differentiation in mammals; however, its actions are not well understood in teleost fish. To better characterize the physiological role of DHT in the fathead minnow (FHM) ovary on a temporal scale, in vitro assays for 17β-estradiol (E2) production were conducted in parallel with microarray analysis. Ovarian explants were incubated at different concentrations of DHT (10(-6), 10(-7), and 10(-8)M DHT) in three separate experiments conducted at 6, 9, and 12h. DHT treatment resulted in a rapid and consistent increase in E2 production from the ovary at all three time points. Therefore, DHT may act to shift the balance of metabolites in the steroidogenic pathway within the ovary. Major biological themes affected by DHT in the ovary in one or more of the time points included those related to blood (e.g. vasodilation, blood vessel contraction, clotting), lipids (e.g. lipid storage, cholesterol metabolism, lipid degradation) and reproduction (e.g. hormone and steroid metabolism). Gene networks related to immune responses and calcium signaling were also affected by DHT, suggesting that this androgen may play a role in regulating these processes in the ovary. This study detected no change in mRNA levels of steroidogenic enzymes (cyp19a1, star, 11βhsd, 17βhsd, srd5a isoforms), suggesting that the observed increase in E2 production is likely more dependent on the pre-existing gene or protein complement in the ovary rather than the de novo expression of transcripts. This study increases knowledge regarding the roles of DHT and androgens in general in the teleost ovary and identifies molecular signaling pathways that may be associated with increased E2 production.

  15. Prenatal Influence of an Androgen Agonist and Antagonist on the Differentiation of the Ovine Sexually Dimorphic Nucleus in Male and Female Lamb Fetuses

    PubMed Central

    Reddy, Radhika C.; Estill, Charles T.; Scheldrup, Melissa; Meaker, Mary; Stormshak, Fred; Montilla, Hernán J.

    2014-01-01

    The ovine sexually dimorphic nucleus (oSDN) is 2 times larger in rams than in ewes. Sexual differentiation of the oSDN is produced by testosterone exposure during the critical period occurring between gestational day (GD)60 and GD90 (term, 147 d). We tested the hypothesis that testosterone acts through the androgen receptor to control development of the male-typical oSDN. In experiment 1, pregnant ewes received injections of vehicle, androgen receptor antagonist flutamide, or nonaromatizable androgen dihydrotestosterone (DHT) propionate during the critical period. Fetuses were delivered at GD135. Both antagonist and agonist treatments significantly reduced mean oSDN volume in males but had no effects in females. Experiment 2, we analyzed the effect of treatments on the fetal hypothalamic-pituitary-gonadal axis to determine whether compensatory changes in hormone secretion occurred that could explain the effect of DHT. Pregnant ewes were injected with vehicle, flutamide, or DHT propionate from GD60 to GD84, and fetuses were delivered on GD85. Flutamide significantly increased LH and testosterone in males, whereas DHT significantly decreased both hormones. In females, LH was unaffected by flutamide but significantly reduced by DHT exposure. DHT significantly decreased pituitary gonadotropin and hypothalamic kisspeptin mRNA expression in males and females. These results suggest that androgen receptor mediates the effect of testosterone on oSDN masculinization, because this process was blocked by the androgen receptor antagonist flutamide in eugonadal males. In contrast, the reduction of oSDN volume observed after DHT exposure appears to be mediated by a negative feedback mechanism exerted on the hypothalamus to reduce LH and testosterone secretion. The reduced androgen exposure most likely accounted for the decreased oSDN volume. We conclude that, during the critical period, the male reproductive axis in long gestation species, such as sheep, is sufficiently developed

  16. Dihydrotestosterone and estrogen regulation of rat brain androgen-receptor immunoreactivity.

    PubMed

    Lynch, C S; Story, A J

    Androgen-receptor upregulation that occurs with androgenic-anabolic steroid (AAS) administration may be mediated by AAS metabolites, dihydrotestosterone (DHT), and estrogen. Castrated and intact male rats received 14 s.c. daily injections of AAS (2 mg/kg testosterone cypionate, 2 mg/kg nandrolone decanoate, and 1 mg/kg boldenone undecylenate in sesame oil vehicle), DHT (5 mg/kg dihydrotestosterone), EB (5 mg/kg estradiol benzoate), or sesame oil vehicle. Approximately 18-24 h after the fourteenth injection, brain tissues were removed and processed immunocytochemically using the PG-21 androgen-receptor antibody. As reported before, castration eliminated AR-ir (androgen-receptor immunoreactivity) and AAS upregulated AR-ir in the ventromedial hypothalamus (VMHVL), medial amygdala (MePV), and medial preoptic area (MPOM). When compared to AAS, DHT fully upregulated AR-ir in the VM VL and MPOM and partially upregulated AR-ir in the MePV. EB treatment partially upregulated AR-ir in the VMHVL and MePV, but not in the MPOM of castrated rats. Because AR-ir in the MPOM was consistently upregulated by DHT or AAS, and not EB, androgen-receptor availability in this region may be mediated specifically via androgen receptors.

  17. Androgens modify Wnt agonists/antagonists expression balance in dermal papilla cells preventing hair follicle stem cell differentiation in androgenetic alopecia.

    PubMed

    Leirós, Gustavo José; Ceruti, Julieta María; Castellanos, María Lía; Kusinsky, Ana Gabriela; Balañá, María Eugenia

    2017-01-05

    In androgenetic alopecia, androgens impair dermal papilla-induced hair follicle stem cell (HFSC) differentiation inhibiting Wnt signaling. Wnt agonists/antagonists balance was analyzed after dihydrotestosterone (DHT) stimulation in androgen-sensitive dermal papilla cells (DPC) cultured as spheroids or monolayer. In both culture conditions, DHT stimulation downregulated Wnt5a and Wnt10b mRNA while the Wnt antagonist Dkk-1 was upregulated. Notably, tissue architecture of DPC-spheroids lowers Dkk-1 and enhances Wnt agonists' basal expression; probably contributing to DPC inductivity. The role of Wnt agonists/antagonists as mediators of androgen inhibition of DPC-induced HFSC differentiation was evaluated. Inductive DPC-conditioned medium supplemented with DKK-1 impaired HFSC differentiation mimicking androgens' action. This effect was associated with inactivation of Wnt/β-catenin pathway in differentiating HFSC by both DPC-conditioned media. Moreover, addition of WNT10b to DPC-medium conditioned with DHT, overcame androgen inhibition of HFSC differentiation. Our results identify DKK1 and WNT10b as paracrine factors which modulate the HFSC differentiation inhibition involved in androgen-driven balding.

  18. Epigallocatechin Gallate-Mediated Alteration of the MicroRNA Expression Profile in 5α-Dihydrotestosterone-Treated Human Dermal Papilla Cells

    PubMed Central

    Shin, Shanghun; Kim, Karam; Lee, Myung Joo; Lee, Jeongju; Choi, Sungjin; Kim, Kyung-Suk; Ko, Jung-Min; Han, Hyunjoo; Kim, Su Young; Youn, Hae Jeong; Ahn, Kyu Joong; An, In-Sook; An, Sungkwan

    2016-01-01

    Background Dihydrotestosterone (DHT) induces androgenic alopecia by shortening the hair follicle growth phase, resulting in hair loss. We previously demonstrated how changes in the microRNA (miRNA) expression profile influenced DHT-mediated cell death, cell cycle arrest, cell viability, the generation of reactive oxygen species (ROS), and senescence. Protective effects against DHT have not, however, been elucidated at the genome level. Objective We showed that epigallocatechin gallate (EGCG), a major component of green tea, protects DHT-induced cell death by regulating the cellular miRNA expression profile. Methods We used a miRNA microarray to identify miRNA expression levels in human dermal papilla cells (DPCs). We investigated whether the miRNA expression influenced the protective effects of EGCG against DHT-induced cell death, growth arrest, intracellular ROS levels, and senescence. Results EGCG protected against the effects of DHT by altering the miRNA expression profile in human DPCs. In addition, EGCG attenuated DHT-mediated cell death and growth arrest and decreased intracellular ROS levels and senescence. A bioinformatics analysis elucidated the relationship between the altered miRNA expression and EGCG-mediated protective effects against DHT. Conclusion Overall, our results suggest that EGCG ameliorates the negative effects of DHT by altering the miRNA expression profile in human DPCs. PMID:27274631

  19. Transcriptomics profiling and steroid production in mummichog (Fundulus heteroclitus) testes after treatment with 5α-dihydrotestosterone.

    PubMed

    Feswick, A; Ings, J S; Doyle, M A; Bosker, T; Munkittrick, K R; Martyniuk, C J

    2014-07-01

    5α-Dihydrotestosterone (DHT) is a potent androgen in mammals with multiple roles; however the physiological actions of DHT in male fishes are not well known. To address this knowledge gap, male mummichog (Fundulus heteroclitus) were continuously exposed to 0, 5, and 50 μg/L DHT for 21 days. Following exposure, testes were separated for histology, ex vivo incubation to measure steroidogenic capacity, and gene expression analyses (real-time PCR and microarray). DHT significantly decreased ex vivo 11-ketotestosterone (11KT) production in males exposed to 50 μg/L DHT but not 5 μg/L DHT, and DHT exposure did not affect ex vivo testosterone production. Histological examination revealed that the amount of interlobular and connective tissue present in the testes was increased in the 50 μg/L DHT treatment. Despite reductions in the production of 11KT, DHT did not affect the expression of targeted genes in the steroidogenic pathway such as steroidogenic acute regulatory protein (star), P450 side chain cleavage (cyp11a1) and 11β-hydroxysteroid dehydrogenase (hsd11b3). Microarray analysis in the testes of individuals from control and 50 μg/L DHT revealed that males exposed to 50 μg/L DHT showed regulated transcriptional sub-networks that were related to immunity, regulation of blood flow, lipids and xenobiotic clearance, suggesting that DHT may be involved in the physiological regulation of these processes in the fish testes. A second objective of this study was to determine the feasibility of measuring mRNA levels in tissues used for ex vivo steroid production by comparing RNA integrity and transcript levels in testes of both immediately flash frozen tissue and incubated tissue. There was no significant difference in RNA quality between the two time points, indicating RNA integrity can remain intact for at least 18 h in ex vivo assays, thereby providing a viable option for researchers assessing multi-level biological reproductive endpoints when limited tissue is

  20. 5α-Dihydrotestosterone negatively regulates cell proliferation of the periurethral ventral mesenchyme during urethral tube formation in the murine male genital tubercle.

    PubMed

    Suzuki, H; Matsushita, S; Suzuki, K; Yamada, G

    2017-01-01

    Androgen is an essential factor involved in masculinization of external genitalia. Failure of the exposure to 5α-dihydrotestosterone (DHT) causes a hypoplastic penile size and urethral abnormality. The main pathology of hypospadias is defective urethral closure on the ventral side of the penis. Hormone-dependent genes are suggested as the causative factors. However, the detailed mechanisms of DHT functions on urethral tube formation remain unknown. Androgen is both a positive and negative regulator of cell proliferation. The roles of locally converted DHT in cell proliferation at the periurethral mesenchyme have not been elucidated. We revealed the expression pattern of 5α-reductase type 2 mRNA (Srd5a2) and local DHT distribution by direct measurement in this study. We also analyzed periurethral mesenchymal cell proliferation status using systematic three-dimensional (3D) reconstruction analyses. A prominent Srd5a2 expression and localized DHT distribution on the ventral side of the genital tubercle were detected. Cell proliferation was reduced in this mesenchymal region during urethral formation. The current results suggest the presence of the possible negative regulation of cell proliferation by DHT. Moreover, cell proliferation related to urethral tube formation was revealed to be DHT dose dependent. These data are expected to contribute to the understanding of the mode of regulation of cell proliferation related to urethral tube formation by DHT. These findings may also offer insight into the understanding of human hypospadias and related hormone-dependent factors.

  1. Prostate Cancer Cells Differ in Testosterone Accumulation, Dihydrotestosterone Conversion, and Androgen Receptor Signaling Response to Steroid 5α-Reductase Inhibitors

    PubMed Central

    Wu, Yue; Godoy, Alejandro; Azzouni, Faris; Wilton, John H.; Ip, Clement; Mohler, James L.

    2014-01-01

    BACKGROUND Blocking 5α-reductase-mediated testosterone conversion to dihydrotestosterone (DHT) with finasteride or dutasteride is the driving hypothesis behind two prostate cancer prevention trials. Factors affecting intracellular androgen levels and the androgen receptor (AR) signaling axis need to be examined systematically in order to fully understand the outcome of interventions using these drugs. METHODS The expression of three 5α-reductase isozymes, as determined by immunohistochemistry and qRT-PCR, was studied in five human prostate cancer cell lines. Intracellular testosterone and DHT were analyzed using mass spectrometry. A luciferase reporter assay and AR-regulated genes were used to evaluate the modulation of AR activity. RESULTS Prostate cancer cells were capable of accumulating testosterone to a level 15–50 times higher than that in the medium. The profile and expression of 5α-reductase isozymes did not predict the capacity to convert testosterone to DHT. Finasteride and dutasteride were able to depress testosterone uptake in addition to lowering intracellular DHT. The inhibition of AR activity following drug treatment often exceeded the expected response due to reduced availability of DHT. The ability to maintain high intracellular testosterone might compensate for the shortage of DHT. CONCLUSIONS The biological effect of finasteride or dutasteride appears to be complex and may depend on the interplay of several factors, which include testosterone turnover, enzymology of DHT production, ability to use testosterone and DHT interchangeably, and propensity of cells for off-target AR inhibitory effect. PMID:23813697

  2. Rapid increase of spines by dihydrotestosterone and testosterone in hippocampal neurons: Dependence on synaptic androgen receptor and kinase networks.

    PubMed

    Hatanaka, Yusuke; Hojo, Yasushi; Mukai, Hideo; Murakami, Gen; Komatsuzaki, Yoshimasa; Kim, Jonghyuk; Ikeda, Muneki; Hiragushi, Ayako; Kimoto, Tetsuya; Kawato, Suguru

    2015-09-24

    Rapid modulation of hippocampal synaptic plasticity by locally synthesized androgen is important in addition to circulating androgen. Here, we investigated the rapid changes of dendritic spines in response to the elevation of dihydrotestosterone (DHT) and testosterone (T), by using hippocampal slices from adult male rats, in order to clarify whether these signaling processes include synaptic/extranuclear androgen receptor (AR) and activation of kinases. We found that the application of 10nM DHT and 10nM T increased the total density of spines by approximately 1.3-fold within 2h, by imaging Lucifer Yellow-injected CA1 pyramidal neurons. Interestingly, DHT and T increased different head-sized spines. While DHT increased middle- and large-head spines, T increased small-head spines. Androgen-induced spinogenesis was suppressed by individually blocking Erk MAPK, PKA, PKC, p38 MAPK, LIMK or calcineurin. On the other hand, blocking CaMKII did not inhibit spinogenesis. Blocking PI3K altered the spine head diameter distribution, but did not change the total spine density. Blocking mRNA and protein synthesis did not suppress the enhancing effects induced by DHT or T. The enhanced spinogenesis by androgens was blocked by AR antagonist, which AR was localized postsynaptically. Taken together, these results imply that enhanced spinogenesis by DHT and T is mediated by synaptic/extranuclear AR which rapidly drives the kinase networks. This article is part of a Special Issue entitled SI: Brain and Memory.

  3. Identification and quantification of 5α-dihydrotestosterone in the teleost fathead minnow (Pimephales promelas) by gas chromatography-tandem mass spectrometry.

    PubMed

    Margiotta-Casaluci, Luigi; Courant, Frédérique; Antignac, Jean-Philippe; Le Bizec, Bruno; Sumpter, John P

    2013-09-15

    The steroid hormone 5α-dihydrotestosterone (DHT) is one of the most physiologically important androgens in male vertebrates, with the exception of teleost fish, in which it is generally assumed that DHT does not play any major physiological role. However, this assumption is challenged by the fact that all the components involved in DHT biosynthesis and action are present and evolutionary conserved in teleost fish. In fact, testosterone (T) is converted into DHT by two isoforms of the enzyme steroid-5-alpha-reductase (5αR), and both 5αRs gene expression and enzymatic activity have been detected in several tissues of different teleost species, which also have an androgen receptor with high binding affinity to DHT. This body of evidence strongly suggest that DHT is synthesised by teleost fish. We investigated this hypothesis using the cyprinid fathead minnow (Pimephales promelas) as the experimental model. The study of the evolutionary and functional conservation of 5αRs in teleost fish was used to support the experimental approach, based on an ultrasensitive gas chromatography-tandem mass spectrometry (GC-MS/MS) method to identify and measure simultaneously T and DHT in fathead minnow biological fluids and tissues. The analyses were performed using plasma samples collected from both male and female adult fish and samples of testicular tissue collected from sexually mature males. Both T and DHT were identified and quantified in all the samples analysed, and in particular, the high concentrations of DHT quantified in the testes suggested that these organs are a likely site of synthesis of DHT in the teleost fathead minnow, as they are in mammals. These results may represent the basis for future studies aimed at elucidating the physiological role, if any, of DHT in teleost fish.

  4. Backdoor pathway for dihydrotestosterone biosynthesis: implications for normal and abnormal human sex development.

    PubMed

    Fukami, Maki; Homma, Keiko; Hasegawa, Tomonobu; Ogata, Tsutomu

    2013-04-01

    We review the current knowledge about the "backdoor" pathway for the biosynthesis of dihydrotestosterone (DHT). While DHT is produced from cholesterol through the conventional "frontdoor" pathway via testosterone, recent studies have provided compelling evidence for the presence of an alternative "backdoor" pathway to DHT without testosterone intermediacy. This backdoor pathway is known to exist in the tammar wallaby pouch young testis and the immature mouse testis, and has been suggested to be present in the human as well. Indeed, molecular analysis has identified pathologic mutations of genes involved in the backdoor pathway in genetic male patients with undermasculinized external genitalia, and urine steroid profile analysis has argued for the relevance of the activated backdoor pathway to abnormal virilization in genetic females with cytochrome P450 oxidoreductase deficiency and 21-hydroxylase deficiency. It is likely that the backdoor pathway is primarily operating in the fetal testis in a physiological condition to produce a sufficient amount of DHT for male sex development, and that the backdoor pathway is driven with a possible interaction between fetal and permanent adrenals in pathologic conditions with increased 17-hydroxyprogesterone levels. These findings provide novel insights into androgen biosynthesis in both physiological and pathological conditions.

  5. Pattern recognition of estradiol, testosterone and dihydrotestosterone in children's saliva samples using stochastic microsensors

    NASA Astrophysics Data System (ADS)

    Staden, Raluca-Ioana Stefan-Van; Gugoaşă, Livia Alexandra; Calenic, Bogdan; Legler, Juliette

    2014-07-01

    Stochastic microsensors based on diamond paste and three types of electroactive materials (maltodextrin (MD), α-cyclodextrin (α-CD) and 5,10,15,20-tetraphenyl-21H,23H porphyrin (P)) were developed for the assay of estradiol (E2), testosterone (T2) and dihydrotestosterone (DHT) in children's saliva. The main advantage of utilization of such tools is the possibility to identify and quantify all three hormones within minutes in small volumes of childen's saliva. The limits of quantification obtained for DHT, T2, and E2 (1 fmol/L for DHT, 1 pmol/L for T2, and 66 fmol/L for E2) determined using the proposed tools allows the utilization of these new methods with high reliability for the screening of saliva samples from children. This new method proposed for the assay of the three hormones overcomes the limitations (regarding limits of determination) of ELISA method which is the standard method used in clinical laboratories for the assay of DHT, T2, and E2 in saliva samples. The main feature of its utilization for children's saliva is to identify earlier problems related to early puberty and obesity.

  6. Effects of dihydrotestosterone on synaptic plasticity of the hippocampus in mild cognitive impairment male SAMP8 mice

    PubMed Central

    Pan, Wensen; Han, Shuo; Kang, Lin; Li, Sha; Du, Juan; Cui, Huixian

    2016-01-01

    The current study focused on how dihydrotestosterone (DHT) regulates synaptic plasticity in the hippocampus of mild cognitive impairment male senescence-accelerated mouse prone 8 (SAMP8) mice. Five-month-old SAMP8 mice were divided into the control, castrated and castrated-DHT groups, in which the mice were castrated and treated with physiological doses of DHT for a period of 2 months. To determine the regulatory mechanisms of DHT in the cognitive capacity, the effects of DHT on the morphology of the synapse and the expression of synaptic marker proteins in the hippocampus were investigated using immunohistochemistry, qPCR and western blot analysis. The results showed that the expression of cAMP-response element binding protein (CREB), postsynaptic density protein 95 (PSD95), synaptophysin (SYN) and developmentally regulated brain protein (Drebrin) was reduced in the castrated group compared to the control group. However, DHT promoted the expression of CREB, PSD95, SYN and Drebrin in the hippocampus of the castrated-DHT group. Thus, androgen depletion impaired the synaptic plasticity in the hippocampus of SAMP8 and accelerated the development of Alzheimer's disease (AD)-like neuropathology, suggesting that a similar mechanism may underlie the increased risk for AD in men with low testosterone. In addition, DHT regulated synaptic plasticity in the hippocampus of mild cognitive impairment (MCI) SAMP8 mice and delayed the progression of disease to Alzheimer's dementia. In conclusion, androgen-based hormone therapy is a potentially useful strategy for preventing the progression of MCI in aging men. Androgens enhance synaptic markers (SYN, PSD95, and Drebrin), activate CREB, modulate the fundamental biology of synaptic structure, and lead to the structural changes of plasticity in the hippocampus, all of which result in improved cognitive function. PMID:27588067

  7. The effect of androgens on ovarian follicle maturation: Dihydrotestosterone suppress FSH-stimulated granulosa cell proliferation by upregulating PPARγ-dependent PTEN expression.

    PubMed

    Chen, Mei-Jou; Chou, Chia-Hung; Chen, Shee-Uan; Yang, Wei-Shiung; Yang, Yu-Shih; Ho, Hong-Nerng

    2015-12-17

    Intraovarian hyperandrogenism is one of the determining factors of follicular arrest in women with polycystic ovary syndrome (PCOS). Using androgenized rat models, we investigated the effects of androgens on metabolism, as well as on factors involved in follicular arrest and the reduced number of estrus cycles. The dihydrotestosterone (DHT)-treated rats had fewer estrus cycles, higher numbers of large arrested follicles and an increased in body weight gain compared with the dehydroepiandrostenedione (DHEA)- and placebo-treated rats. In cultured rat granulosa cells, DHT suppressed follicle stimulating hormone (FSH)-induced granulosa cell proliferation and increased the accumulation of cells in the G2/M phase. DHT decreased phosphorylated Akt (p-Akt) and cyclin D1 levels through increasing PTEN. DHT-promoted PTEN expression was regulated by peroxisome proliferator-activated receptor gamma (PPARγ) in granulosa cells. Meanwhile, in the large follicles of the DHT-treated rats, the expressions of PPARγ and PTEN were higher, but the expression of p-Akt and proliferating cell nuclear antigen (PCNA) were lower. Conclusively, DHT and DHEA produced differential effects on metabolism in prepubertal female rats like clinical manifestations of women with PCOS. DHT treatment may affect ovarian follicular maturation by altering granulosa cell proliferation through the regulation of enhancing PPARγ dependent PTEN/p-Akt expression in the granulosa cells.

  8. The effect of androgens on ovarian follicle maturation: Dihydrotestosterone suppress FSH-stimulated granulosa cell proliferation by upregulating PPARγ-dependent PTEN expression.

    PubMed Central

    Chen, Mei-Jou; Chou, Chia-Hung; Chen, Shee-Uan; Yang, Wei-Shiung; Yang, Yu-Shih; Ho, Hong-Nerng

    2015-01-01

    Intraovarian hyperandrogenism is one of the determining factors of follicular arrest in women with polycystic ovary syndrome (PCOS). Using androgenized rat models, we investigated the effects of androgens on metabolism, as well as on factors involved in follicular arrest and the reduced number of estrus cycles. The dihydrotestosterone (DHT)-treated rats had fewer estrus cycles, higher numbers of large arrested follicles and an increased in body weight gain compared with the dehydroepiandrostenedione (DHEA)- and placebo-treated rats. In cultured rat granulosa cells, DHT suppressed follicle stimulating hormone (FSH)-induced granulosa cell proliferation and increased the accumulation of cells in the G2/M phase. DHT decreased phosphorylated Akt (p-Akt) and cyclin D1 levels through increasing PTEN. DHT-promoted PTEN expression was regulated by peroxisome proliferator-activated receptor gamma (PPARγ) in granulosa cells. Meanwhile, in the large follicles of the DHT-treated rats, the expressions of PPARγ and PTEN were higher, but the expression of p-Akt and proliferating cell nuclear antigen (PCNA) were lower. Conclusively, DHT and DHEA produced differential effects on metabolism in prepubertal female rats like clinical manifestations of women with PCOS. DHT treatment may affect ovarian follicular maturation by altering granulosa cell proliferation through the regulation of enhancing PPARγ dependent PTEN/p-Akt expression in the granulosa cells. PMID:26674985

  9. Androgen (dihydrotestosterone)-mediated regulation of food intake and obesity in female mice.

    PubMed

    Kanaya, Noriko; Vonderfecht, Steven; Chen, Shiuan

    2013-11-01

    To better understand how elevated androgen levels regulate food intake and obesity in females, we treated ovariectomized female mice with dihydrotestosterone (DHT) (non-aromatazable androgen), measured food intake and body weight, and evaluated physiological changes in liver function, glucose tolerance, and leptin resistance. Ovariectomized mice were treated with DHT or placebo. Mice were then fed a high fat diet under free-feeding or pair-feeding conditions for 3 months. We found that when DHT-treated ovariectomized mice had free access to food (free-feeding), they had increased food intake and higher body weight compared with control animals. These mice also had a significantly greater accumulation of fat in the liver and exhibited increased fasting glucose, impaired glucose tolerance, and resistance to leptin. However, when these mice were placed on a restricted diet and fed the same caloric amounts as controls (pair-feeding), their body weight increased at the same rate as control animals. This suggests that androgen regulates food intake through altered leptin sensitivity, and this increase of food intake could significantly contribute to an obesity phenotype. In summary, we demonstrated a role for androgen in the regulation of food intake and weight gain in females using a mouse model. This model will be useful to further elucidate the role of elevated androgen in females.

  10. Ursolic acid reduces prostate size and dihydrotestosterone level in a rat model of benign prostatic hyperplasia.

    PubMed

    Shin, In-Sik; Lee, Mee-Young; Jung, Da-Young; Seo, Chang-Seob; Ha, Hye-Kyung; Shin, Hyeun-Kyoo

    2012-03-01

    Benign prostatic hyperplasia (BPH) is characterized by hyperplasia of prostatic stromal and epithelial cells, which can lead to lower urinary tract symptoms. The prevalence of BPH increases in an age-dependent manner. We investigated the protective effect of ursolic acid in BPH development using a testosterone-induced BPH rat model. BPH was induced in experimental groups by daily subcutaneous injections of testosterone propionate (TP), for a period of four weeks. Ursolic acid was administrated daily by oral gavage at a dose level of 5mg/kg during the four weeks of TP injections. Animals were sacrificed on the scheduled termination, before prostates were weighed and subjected to histopathological examination. TP and dihydrotestosterone (DHT) levels in the serum and prostate were also measured. BPH-induced animals displayed an increase in prostate weight with increased testosterone and DHT levels in both the serum and prostate. However, ursolic acid treatment resulted in significant reductions in prostate weight and testosterone and DHT levels in both the serum and prostate, compared with BPH-induced animals. Histopathological examination also showed that ursolic acid treatment suppressed TP-induced prostatic hyperplasia. These findings indicate that ursolic acid may effectively inhibit the development of BPH and it may be a useful agent in BPH treatment.

  11. Differential effects of testosterone, dihydrotestosterone and estradiol on carotenoid deposition in an avian sexually selected signal

    PubMed Central

    Dijkstra, Cor; Tagliavini, James; Goerlich, Vivian C.; Groothuis, Ton G. G.

    2010-01-01

    Recent studies have demonstrated that carotenoid-based traits are under the control of testosterone (T) by up-regulation of carotenoid carriers (lipoproteins) and/or tissue-specific uptake of carotenoids. T can be converted to dihydrotestosterone (DHT) and estradiol (E2), and variation in conversion rate may partly explain some contradictory findings in the literature. Moreover, most studies on the effect of T on sexual signals have focused on the male sex only, while in many species females show the same signal, albeit to a lesser extent. We studied the effects of T, DHT, and E2 treatment in male and female diamond doves Geopelia cuneata in which both sexes have an enlarged red eye ring, which is more pronounced in males. We first showed that this periorbital ring contains very high concentration of carotenoids, of which most are lutein esters. Both T and DHT were effective in enhancing hue, UV-chroma and size in both sexes, while E2 was ineffective. However, E2 dramatically increased the concentration of circulating lipoproteins. We conclude that in both sexes both color and size of the secondary sexual trait are androgen dependent. The action of androgens is independent of lipoproteins regulation. Potential mechanisms and their consequences for trade-off are discussed. PMID:20824278

  12. Dihydrotestosterone synthesis pathways from inactive androgen 5α-androstane-3β,17β-diol in prostate cancer cells: Inhibition of intratumoural 3β-hydroxysteroid dehydrogenase activities by abiraterone

    PubMed Central

    Ando, Takashi; Nishiyama, Tsutomu; Takizawa, Itsuhiro; Ishizaki, Fumio; Miyashiro, Yoshimichi; Takeda, Keisuke; Hara, Noboru; Tomita, Yoshihiko

    2016-01-01

    Intratumoural dihydrotestosterone (DHT) synthesis could be an explanation for castration resistance in prostate cancer (PC). By using liquid chromatography-mass spectrometry, we evaluated the intratumoral DHT synthesis from 5α-androstane-3β,17β-diol (3β-diol), which is inactive androgen metabolized from DHT. 3β-diol had biochemical potential to be converted to DHT via three metabolic pathways and could stimulate PC cell growth. Especially, 3β-diol was not only converted back to upstream androgens such as dehydroepiandrosterone (DHEA) or Δ5-androstenediol but also converted directly to DHT which is the main pathway from 3β-diol to DHT. Abiraterone had a significant influence on the metabolism of DHEA, epiandrosterone and 3β-diol, by the inhibition of the intratumoural 3β-hydroxysteroid dehydrogenase (3β-HSD) activities which is one of key catalysts in androgen metabolic pathway. The direct-conversion of 3β-diol to DHT was catalysed by 3β-HSD and abiraterone could inhibit this activity of 3β-HSD. These results suggest that PC had a mechanism of intratumoural androgen metabolism to return inactive androgen to active androgen and intratumoural DHT synthesis from 3β-diol is important as one of the mechanisms of castration resistance in PC. Additionally, the inhibition of intratumoural 3β-HSD activity could be a new approach to castration-resistant prostate cancer treatment. PMID:27561382

  13. Dihydrotestosterone differentially modulates the cortisol response of the hypothalamic-pituitary-adrenal axis in male and female rhesus macaques, and restores circadian secretion of cortisol in females

    PubMed Central

    Toufexis, Donna J.; Wilson, Mark E.

    2011-01-01

    Here we used a within-subject design to evaluate hypothalamic-pituitary-adrenal (HPA) activity following replacement of low and high physiological levels of testosterone (T) to adult, gonadally-suppressed, male rhesus macaques, and replacement with sex-specific low and high physiological doses of dihydrotestosterone (DHT) in the same adult males as well as in adult, gonadally-suppressed, female rhesus macaques. As indexes of HPA axis activation following T and DHT replacement, serum levels of cortisol (CORT) were measured before and following dexamethasone (DEX) inhibition, and corticotrophin-releasing factor (CRF) induced activation. Female monkeys were assessed for differences in response associated with dominant (DOM) and subordinate (SUB) social status. Data show that the high physiological dose of DHT significantly decreased basal CORT in both male and female monkeys irrespective of social status, but reduced CRF-stimulated CORT only in males. SUB female monkeys showed a trend towards increased CRF-stimulated CORT release under high-dose DHT replacement compared to DOM females or males given the same treatment, indicating that androgens likely have no influence on reducing HPA activation under chronic psychosocial stress in females. The normal circadian rhythm of CORT release was absent in placebo-replaced SUB and DOM females and was restored with low-dose DHT replacement. These results indicate that DHT significantly reduces CRF-stimulated CORT release only in male monkeys, and plays a role in maintaining circadian changes in CORT release in female monkeys. PMID:22088823

  14. Exercise differentially affects metabolic functions and white adipose tissue in female letrozole- and dihydrotestosterone-induced mouse models of polycystic ovary syndrome.

    PubMed

    Marcondes, Rodrigo R; Maliqueo, Manuel; Fornes, Romina; Benrick, Anna; Hu, Min; Ivarsson, Niklas; Carlström, Mattias; Cushman, Samuel W; Stenkula, Karin G; Maciel, Gustavo A R; Stener-Victorin, Elisabet

    2017-03-24

    Here we hypothesized that exercise in dihydrotestosterone (DHT) or letrozole (LET)-induced polycystic ovary syndrome mouse models improves impaired insulin and glucose metabolism, adipose tissue morphology, and expression of genes related to adipogenesis, lipid metabolism, Notch pathway and browning in inguinal and mesenteric fat. DHT-exposed mice had increased body weight, increased number of large mesenteric adipocytes. LET-exposed mice displayed increased body weight and fat mass, decreased insulin sensitivity, increased frequency of small adipocytes and increased expression of genes related to lipolysis in mesenteric fat. In both models, exercise decreased fat mass and inguinal and mesenteric adipose tissue expression of Notch pathway genes, and restored altered mesenteric adipocytes morphology. In conclusion, exercise restored mesenteric adipocytes morphology in DHT- and LET-exposed mice, and insulin sensitivity and mesenteric expression of lipolysis-related genes in LET-exposed mice. Benefits could be explained by downregulation of Notch, and modulation of browning and lipolysis pathways in the adipose tissue.

  15. Opposite effects of dihydrotestosterone and estradiol on apoptosis in the anterior pituitary gland from male rats.

    PubMed

    Magri, María Laura; Gottardo, María Florencia; Zárate, Sandra; Eijo, Guadalupe; Ferraris, Jimena; Jaita, Gabriela; Ayala, Mariela Moreno; Candolfi, Marianela; Pisera, Daniel; Seilicovich, Adriana

    2016-03-01

    Hormones locally synthesized in the anterior pituitary gland are involved in regulation of pituitary cell renewal. In the pituitary, testosterone (T) may exert its actions per se or by conversion to dihydrotestosterone (DHT) or 17β-estradiol (E2) by 5α-reductase and aromatase activity, which are expressed in this gland. Previous reports from our laboratory showed that estrogens modulate apoptosis of lactotropes and somatotropes from female rats. Now, we examined the in vitro and in vivo effects of gonadal steroids on apoptosis of anterior pituitary cells from adult male rats. T in vitro did not modify apoptosis in anterior pituitary cells from gonadectomized (GNX) male rats. DHT, a non-aromatizable androgen, exerted direct antiapoptotic action on total anterior pituitary cells and folliculo-stellate cells, but not on lactotropes, somatotropes, or gonadotropes. On the contrary, E2 exerted a rapid apoptotic effect on total cells as well as on lactotropes and somatotropes. Incubation of anterior pituitary cells with T in presence of Finasteride, an inhibitor of 5α-reductase, increased the percentage of TUNEL-positive cells. In vivo administration of DHT to GNX rats reduced apoptosis in the anterior pituitary whereas E2 exerted proapoptotic action and reduced cells in G2/M-phase of the cell cycle. In summary, our results indicate that DHT and E2 have opposite effects on apoptosis in the anterior pituitary gland suggesting that local metabolization of T to these steroids could be involved in pituitary cell turnover in males. Changes in expression and/or activity of 5α-reductase and aromatase may play a role in the development of anterior pituitary tumors.

  16. Changes in testosterone and dihydrotestosterone levels in male rat accessory sex organs, serum, and seminal fluid after castration: establishment of a new highly sensitive simultaneous androgen measurement method.

    PubMed

    Kashiwagi, Bunzo; Shibata, Yasuhiro; Ono, Yoshihiro; Suzuki, Ryota; Honma, Seijiro; Suzuki, Kazuhiro

    2005-01-01

    It is known that abnormal androgen dynamics in the tissues is a cause of androgen-dependent disorders. Investigation of tissue androgen levels could provide a clue to the elucidation of disorders. However, it is difficult to measure a trace amount of androgen in the tissues. We established a highly sensitive simultaneous quantification method of testosterone and dihydrotestosterone (DHT), which play the most important roles in the body among androgenic steroids in trace amounts, and investigated time course changes in testosterone and DHT levels in male accessory sex organs, serum, and seminal fluid after castration in rat models. In addition, changes in the testosterone/DHT ratio of male accessory sex organs and seminal fluid were observed. The simultaneous testosterone and DHT measurement method established by us was validated. Intra-assay variation and interassay precision and accuracy were all within +/-20%, and the quantification limits of testosterone and DHT were both 15.6 pg/g. With the use of this method, the testosterone and DHT levels in the prostate, seminal vesicles, and serum immediately after castration were similar to those previously reported. The testosterone and DHT levels were 350 pg/g and 605 pg/g, respectively; which showed dominance of DHT in seminal fluid, although it was not as marked as that in the male accessory sex organs. Androgens decreased with time after castration in the accessory sex organs, serum, and seminal fluid. In the prostate and seminal vesicles, testosterone and DHT decreased to about 50% and about 2% of the normal levels, respectively, 72 hours after castration. The serum levels were under the quantification limits 6 hours after castration and thereafter. In seminal fluid, the testosterone and DHT levels decreased to 49% and 35% of normal levels, respectively, 72 hours after castration. The testosterone/DHT ratio in the male accessory sex organs was lower in the prostate (0.06) than in the seminal vesicles (0

  17. Effects of model aromatizable (17α-methyltestosterone) and non-aromatizable (5α-dihydrotestosterone) androgens on the adult mummichog (Fundulus heteroclitus) in a short-term reproductive endocrine bioassay.

    PubMed

    Rutherford, Robert; Lister, Andrea; Hewitt, L Mark; MacLatchy, Deborah

    2015-04-01

    Androgens originating from pulp mill processing, sewage treatment facilities and agricultural activities have the potential for discharge into aquatic receiving environments. To assess androgen effects on reproductive endocrine status in fish in estuarine environments, male and female adult northern mummichog (Fundulus heteroclitus macrolepidotus) were exposed to an aromatizable androgen (17α-methyltestosterone; MT) and a non-aromatizable androgen (5α-dihydrotestosterone; DHT) in a short-term reproductive endocrine bioassay. Fish were nominally exposed to 10 μg/L or 100 μg/L DHT, or 0.1 μg/L or 1 μg/L MT for 14 days during gonadal recrudescence. Actual concentrations of androgens, as measured by enzyme immunoassay (EIA), were 10-49% of nominal MT 0.1, 3-6% of nominal MT 1, 5-10% of nominal DHT 10 and 3-25% of nominal DHT 100. Female mummichog were impacted to a greater degree by androgen exposure, with increased plasma testosterone (T) at 100 μg/L DHT, depressed plasma 17β-estradiol (E2) at both DHT concentrations and at 1 μg/L MT, as well as depressed in vitro E2 at both MT concentrations and 100 μg/L DHT. Males had depressed plasma T in the 10 μg/L DHT treatment and depressed in vitro 11-ketotestosterone production for both MT concentrations and 10 μg/L DHT. Ovarian aromatase gene expression was induced in females exposed to 1 μg/L MT. DHT at 100 μg/L increased hepatic vitellogenin-1 (VTG1) expression in males and depressed VTG1 expression in females. The range of responses between sexes and among species provides evidence for modes of actions and potential impacts of androgens in aquatic receiving environments.

  18. Testosterone, androstenedione, and 5alpha-dihydrotestosterone on male sexual behavior and penile spines in the hamster.

    PubMed

    Arteaga-Silva, M; Vigueras-Villaseñor, R M; Retana-Márquez, S; Hernández-González, M; Chihuahua-Serrano, C; Bonilla-Jaime, H; Contreras, J L; Moralí, G

    2008-06-09

    The expression of masculine sexual behavior (MSB) in male hamsters is optimally stimulated by aromatizable androgens like androstenedione (AD) and testosterone (T), while the non-aromatizable androgen, 5alpha-dihydrotestosterone (DHT), exerting potent androgenic peripheral effects, only in high doses maintains MSB after castration. No data exist on the ability of these androgens to restore long intromissions after castration. In this study, AD, T, and DHT were administered to four-week gonadectomized, sexually experienced male hamsters, for three weeks, in doses of 25 microg/day or up to 1000 microg/day to compare their potency in restoring MSB, penile size, and penile spines growth. Plasma levels of these steroids and the metabolites estrone and estradiol, were determined at the end of the treatment period. Gonadectomy completely suppressed MSB and induced a regression of penile spines. AD was more potent than T in restoring MSB, ejaculatory behavior being displayed by most castrated subjects with a lower dose of AD (50 microg/day) than of T (300 microg/day), and long intromissions being shown by all AD-treated castrated hamsters but only by 20% of T-treated ones, when doses of 1000 microg/day were given. DHT did not stimulate any copulatory response. The three androgens, even at the lowest dose, partially stimulated penis and penile epithelium growth, DHT showing the highest potency. Treatment of castrated hamsters with AD (50 microg/day), restored steroid levels to similar values as those of intact animals. These results show that AD and T restored MSB even with a partial stimulation of penile spines growth, AD being more potent than T. In contrast, DHT did not restore MSB in the hamster in spite of its peripheral androgenic potency.

  19. Testosterone alters iron metabolism and stimulates red blood cell production independently of dihydrotestosterone.

    PubMed

    Beggs, Luke A; Yarrow, Joshua F; Conover, Christine F; Meuleman, John R; Beck, Darren T; Morrow, Matthew; Zou, Baiming; Shuster, Jonathan J; Borst, Stephen E

    2014-09-01

    Testosterone (T) stimulates erythropoiesis and regulates iron homeostasis. However, it remains unknown whether the (type II) 5α-reduction of T to dihydrotestosterone (DHT) mediates these androgenic effects, as it does in some other tissues. Our purpose was to determine whether inhibition of type II 5α-reductase (via finasteride) alters red blood cell (RBC) production and serum markers of iron homeostasis subsequent to testosterone-enanthate (TE) administration in older hypogonadal men. Sixty men aged ≥60 yr with serum T <300 ng/dl or bioavailable T <70 ng/dl received treatment with TE (125 mg/wk) vs. vehicle paired with finasteride (5 mg/day) vs. placebo using a 2 × 2 factorial design. Over the course of 12 mo, TE increased RBC count 9%, hematocrit 4%, and hemoglobin 8% while suppressing serum hepcidin 57% (P < 0.001 for all measurements). Most of the aforementioned changes occurred in the first 3 mo of treatment, and finasteride coadministration did not significantly alter any of these effects. TE also reduced serum ferritin 32% (P = 0.002) within 3 mo of treatment initiation without altering iron, transferrin, or transferrin saturation. We conclude that TE stimulates erythropoiesis and alters iron homeostasis independently of the type II 5α-reductase enzyme. These results demonstrate that elevated DHT is not required for androgen-mediated erythropoiesis or for alterations in iron homeostasis that would appear to support iron incorporation into RBCs.

  20. Effect of dihydrotestosterone on gastrointestinal tract of male Alzheimer's disease transgenic mice.

    PubMed

    Karri, Sritulasi; Acosta-Martinez, Veronica; Coimbatore, Gopalakrishnan

    2010-05-01

    The cause of Alzheimer's disease (AD) is still unknown. While research contributions identifying brain as locus of the disease is growing, evidence of severely impaired gastrointestinal (GI) functions with ageing too is accumulating, there is an equal dearth of information on GI tract in AD condition. The aim of this study was to assess the molecular, histological, morphological and microflora alterations of GI tract in male Alzheimer's transgenic mice. The present study also investigates the effect of dihydrotestosterone (DHT) treatment (1 mg/kg) on AD mice. Histoarchitecture data revealed a significant decrease in the villi number, muscular layer thickness, villi length, width, crypt length, enterocyte length and nuclei length. A shift in colon feces microbial community composition was observed by fatty acid methyl ester analysis. Amyloid precursor protein (APP) expression levels in intestine significantly increased in AD mice revealing its toxicity. DHT treatment attenuated the effect caused by AD on GI morphometrics, APP expression and colon micro flora population. These results for the first time reveal the quantitative and qualitative characteristics of GI tract in male Alzheimer's disease transgenic mice.

  1. Effects of testosterone and 5alpha-dihydrotestosterone on luteal lifespan in dairy heifers.

    PubMed

    Silvia, W J; Jacobs, A L; Hayes, S H

    1989-11-01

    Endogenous concentrations of testosterone increase approximately 7 d prior to estrus in cattle and goats. Inhibition of testosterone synthesis results in a delay of luteal regression in both species. The purpose of this experiment was to determine if treatment with testosterone or 5alpha-dihydrotestosterone (DHT), 2 to 6 d prior to the endogenous rise in testosterone, would result in premature luteal regression. Sixteen heifers were randomly assigned to one of three treatment groups: 1) Control (n = 6); 2) testosterone (100 mug, n = 5); or 3) DHT (100 mug, n = 5). Each heifer received a single injection of the appropriate steriod on Day 8, 9, 10, 11 or 12 post estrus. Jugular venous blood samples were collected at frequent intervals for 24 h to quantify testosterone, and then daily for 14 d to quantify progesterone. Concentrations of testosterone increased within 15 min of injection of testosterone, and reached a maximum at 30 min. Concentrations were maintained at > 2 ng/ml throughout the first 24 h after injection. Based on concentrations of progesterone, neither androgen had any effect on the lifespan of the corpus luteum or the level of luteal function.

  2. Molecular docking simulation studies on potent butyrylcholinesterase inhibitors obtained from microbial transformation of dihydrotestosterone

    PubMed Central

    2013-01-01

    Background Biotransformation is an effective technique for the synthesis of libraries of bioactive compounds. Current study on microbial transformation of dihydrotestosterone (DHT) (1) was carried out to produce various functionalized metabolites. Results Microbial transformation of DHT (1) by using two fungal cultures resulted in potent butyrylcholinesterase (BChE) inhibitors. Biotransformation with Macrophomina phaseolina led to the formation of two known products, 5α-androstan-3β,17β-diol (2), and 5β-androstan-3α,17β-diol (3), while biotransformation with Gibberella fujikuroi yielded six known metabolites, 11α,17β-dihydroxyandrost-4-en-3-one (4), androst-1,4-dien-3,17-dione (5), 11α-hydroxyandrost-4-en-3,17-dione (6), 11α-hydroxyandrost-1,4-dien-3,17-dione (7), 12β-hydroxyandrost-1,4-dien-3,17-dione (8), and 16α-hydroxyandrost-1,4-dien-3,17-dione (9). Metabolites 2 and 3 were found to be inactive, while metabolite 4 only weakly inhibited the enzyme. Metabolites 5–7 were identified as significant inhibitors of BChE. Furthermore, predicted results from docking simulation studies were in complete agreement with experimental data. Theoretical results were found to be helpful in explaining the possible mode of action of these newly discovered potent BChE inhibitors. Compounds 8 and 9 were not evaluated for enzyme inhibition activity both in vitro and in silico, due to lack of sufficient quantities. Conclusion Biotransformation of DHT (1) with two fungal cultures produced eight known metabolites. Metabolites 5–7 effectively inhibited the BChE activity. Cholinesterase inhibition is among the key strategies in the management of Alzheimer’s disease (AD). The experimental findings were further validated by in silico inhibition studies and possible modes of action were deduced. PMID:24103815

  3. Failure of isolated rat tibial periosteal cells to 5 alpha reduce testosterone to 5 alpha-dihydrotestosterone

    SciTech Connect

    Turner, R.T.; Bleiberg, B.; Colvard, D.S.; Keeting, P.E.; Evans, G.; Spelsberg, T.C. )

    1990-07-01

    Periosteal cells were isolated from tibiae of adult male rats after collagenase treatment. Northern blot analysis of total cytoplasmic RNA extracted from the isolated periosteal cells was positive for expression of genes encoding the osteoblast marker proteins osteocalcin (BGP) and pre-pro-alpha 2(I) chain of type 1 precollagen. The isolated periosteal cells were incubated with 1 nM (3H)testosterone (({sup 3}H)T) for up to 240 minutes and the reaction products separated by high-performance liquid chromatography. ({sup 3}H)5 alpha-dihydrotestosterone (({sup 3}H)DHT) was not detected in extracts of periosteal cell incubations. In contrast, ({sup 3}H)DHT was produced in a time-dependent manner by cells from seminal vesicles. These results suggest that testosterone 5 alpha-reductase activity is not expressed by osteoblasts in rat tibial periosteum and that the anabolic effects of androgens in this tissue are not mediated by locally produced DHT.

  4. Preventable effect of L-threonate, an ascorbate metabolite, on androgen-driven balding via repression of dihydrotestosterone-induced dickkopf-1 expression in human hair dermal papilla cells.

    PubMed

    Kwack, Mi Hee; Ahn, Ji Sup; Kim, Moon Kyu; Kim, Jung Chul; Sung, Young Kwan

    2010-10-01

    In a previous study, we recently claimed that dihydrotestosterone (DHT)-inducible dickkopf-1 (DKK-1) expression is one of the key factors involved in androgen-potentiated balding. We also demonstrated that L-ascorbic acid 2-phosphate (Asc 2-P) represses DHT-induced DKK-1 expression in cultured dermal papilla cells (DPCs). Here, we investigated whether or not L-threonate could attenuate DHT-induced DKK-1 expression. We observed via RT-PCR analysis and enzyme-linked immunosorbent assay that DHT-induced DKK-1 expression was attenuated in the presence of L-threonate. We also found that DHT-induced activation of DKK-1 promoter activity was significantly repressed by L-threonate. Moreover, a co-culture system featuring outer root sheath (ORS) keratinocytes and DPCs showed that DHT inhibited the growth of ORS cells, which was then significantly reversed by L-threonate. Collectively, these results indicate that L-threonate inhibited DKK-1 expression in DPCs and therefore is a good treatment for the prevention of androgen-driven balding.

  5. Glucuronidation of Dihydrotestosterone and trans-Androsterone by Recombinant UDP-Glucuronosyltransferase (UGT) 1A4: Evidence for Multiple UGT1A4 Aglycone Binding Sites

    PubMed Central

    Zhou, Jin; Tracy, Timothy S.

    2010-01-01

    UDP-glucuronosyltransferase (UGT) 1A4-catalyzed glucuronidation is an important drug elimination pathway. Although atypical kinetic profiles (nonhyperbolic, non-Michaelis-Menten) of UGT1A4-catalyzed glucuronidation have been reported occasionally, systematic kinetic studies to explore the existence of multiple aglycone binding sites in UGT1A4 have not been conducted. To this end, two positional isomers, dihydrotestosterone (DHT) and trans-androsterone (t-AND), were used as probe substrates, and their glucuronidation kinetics with HEK293-expressed UGT1A4 were evaluated both alone and in the presence of a UGT1A4 substrate [tamoxifen (TAM) or lamotrigine (LTG)]. Coincubation with TAM, a high-affinity UGT1A4 substrate, resulted in a concentration-dependent activation/inhibition effect on DHT and t-AND glucuronidation, whereas LTG, a low-affinity UGT1A4 substrate, noncompetitively inhibited both processes. The glucuronidation kinetics of TAM were then evaluated both alone and in the presence of different concentrations of DHT or t-AND. TAM displayed substrate inhibition kinetics, suggesting that TAM may have two binding sites in UGT1A4. However, the substrate inhibition kinetic profile of TAM became more hyperbolic as the DHT or t-AND concentration was increased. Various two-site kinetic models adequately explained the interactions between TAM and DHT or TAM and t-AND. In addition, the effect of TAM on LTG glucuronidation was evaluated. In contrast to the mixed effect of TAM on DHT and t-AND glucuronidation, TAM inhibited LTG glucuronidation. Our results suggest that multiple aglycone binding sites exist within UGT1A4, which may result in atypical kinetics (both homotropic and heterotropic) in a substrate-dependent fashion. PMID:20007295

  6. Glucuronidation of dihydrotestosterone and trans-androsterone by recombinant UDP-glucuronosyltransferase (UGT) 1A4: evidence for multiple UGT1A4 aglycone binding sites.

    PubMed

    Zhou, Jin; Tracy, Timothy S; Remmel, Rory P

    2010-03-01

    UDP-glucuronosyltransferase (UGT) 1A4-catalyzed glucuronidation is an important drug elimination pathway. Although atypical kinetic profiles (nonhyperbolic, non-Michaelis-Menten) of UGT1A4-catalyzed glucuronidation have been reported occasionally, systematic kinetic studies to explore the existence of multiple aglycone binding sites in UGT1A4 have not been conducted. To this end, two positional isomers, dihydrotestosterone (DHT) and trans-androsterone (t-AND), were used as probe substrates, and their glucuronidation kinetics with HEK293-expressed UGT1A4 were evaluated both alone and in the presence of a UGT1A4 substrate [tamoxifen (TAM) or lamotrigine (LTG)]. Coincubation with TAM, a high-affinity UGT1A4 substrate, resulted in a concentration-dependent activation/inhibition effect on DHT and t-AND glucuronidation, whereas LTG, a low-affinity UGT1A4 substrate, noncompetitively inhibited both processes. The glucuronidation kinetics of TAM were then evaluated both alone and in the presence of different concentrations of DHT or t-AND. TAM displayed substrate inhibition kinetics, suggesting that TAM may have two binding sites in UGT1A4. However, the substrate inhibition kinetic profile of TAM became more hyperbolic as the DHT or t-AND concentration was increased. Various two-site kinetic models adequately explained the interactions between TAM and DHT or TAM and t-AND. In addition, the effect of TAM on LTG glucuronidation was evaluated. In contrast to the mixed effect of TAM on DHT and t-AND glucuronidation, TAM inhibited LTG glucuronidation. Our results suggest that multiple aglycone binding sites exist within UGT1A4, which may result in atypical kinetics (both homotropic and heterotropic) in a substrate-dependent fashion.

  7. Effects of dutasteride on lower urinary tract symptoms: a prospective analysis based on changes in testosterone/dihydrotestosterone levels and total prostatic volume reduction.

    PubMed

    Shigehara, Kazuyoshi; Miyagi, Tohru; Nakashima, Takao; Izumi, Koji; Kitagawa, Yasuhide; Mizokami, Atsushi; Koh, Eitetsu; Shimamura, Masayoshi; Namiki, Mikio

    2016-06-01

    This study analyzed the effects of dutasteride on lower urinary tract symptoms based on the association between changes in the total testosterone (TT)/dihydrotestosterone (DHT) levels and total prostate volume (TPV) reduction. Sixty participants diagnosed with benign prostatic hyperplasia were given 0.5 mg of dutasteride daily for 52 weeks. Measures of TT and DHT levels, TPV and uroflowmetry were obtained before and after dutasteride treatment. Forty-three patients demonstrated a TPV reduction of ≥5% (Group 1), whereas the remaining 17 patients demonstrated a TPV reduction of <5% (Group 2). DHT suppression and DHT/TT ratio at baseline were significantly higher in Group 1 than Group 2. International Prostate Symptom Scores (IPSS) and uroflowmetry were significantly improved in both groups. In Group 2, nine patients demonstrated some improvement in IPSS (Group 2A), whereas eight did not (Group 2B). The rate of TT increase and improvement in voiding symptoms were significantly higher in Group 2A than Group 2B. Dutasteride-induced TPV reduction is dependent on individual 5-α reductase inhibitor activity. Some patients demonstrating smaller dutasteride-induced TPV reduction may experience an improvement in voiding symptoms owing to an increased level of testosterone.

  8. Combined inhibition of aromatase activity and dihydrotestosterone supplementation attenuates renal injury in male streptozotocin (STZ)-induced diabetic rats.

    PubMed

    Manigrasso, Michaele B; Sawyer, R Taylor; Hutchens, Zachary M; Flynn, Elizabeth R; Maric-Bilkan, Christine

    2012-05-01

    Our previous studies showed that streptozotocin (STZ)-induced diabetic male rats have increased estradiol and decreased testosterone levels that correlate with renal injury (Xu Q, Wells CC, Garman GH, Asico L, Escano CS, Maric C. Hypertension 51: 1218-1224, 2008). We further showed that either supplementing dihydrotestosterone (DHT) or inhibiting estradiol biosynthesis in these diabetic rats was only partially renoprotective (Manigrasso MB, Sawyer RT, Marbury DC, Flynn ER, Maric C. Am J Physiol Renal Physiol 301: F634-F640, 2011; Xu Q, Prabhu A, Xu S, Manigrassso MB, Maric C. Am J Physiol 297: F307-F315, 2009). The aim of this study was to test the hypothesis that the combined therapy of DHT supplementation and inhibition of estradiol synthesis would afford better renoprotection than either treatment alone. The study was performed in 12-wk-old male nondiabetic (ND), STZ-induced diabetic (D), and STZ-induced diabetic rats that received the combined therapy of 0.75 mg/day of DHT along with 0.15 mg · kg(-1) · day(-1) of an aromatase inhibitor, anastrozole (Dta), for 12 wk. Treatment with the combined therapy resulted in attenuation of albuminuria by 84%, glomerulosclerosis by 55%, and tubulointerstitial fibrosis by 62%. In addition, the combined treatment decreased the density of renal cortical CD68-positive cells by 70% and decreased protein expression of transforming growth factor-β protein expression by 60%, collagen type IV by 65%, TNF-α by 55%, and IL-6 by 60%. We conclude that the combined treatment of DHT and blocking aromatase activity in diabetic male STZ-induced diabetic rats provides superior treatment than either treatment alone in the prevention of diabetic renal disease.

  9. (17α,20E)-17,20-[(1-methoxyethylidene)bis(oxy)]-3-oxo-19-norpregna-4,20-diene-21-carboxylic acid methyl ester (YK11) is a partial agonist of the androgen receptor.

    PubMed

    Kanno, Yuichiro; Hikosaka, Ritsuko; Zhang, Shu-Yun; Inoue, Yoshimi; Nakahama, Takayuki; Kato, Keisuke; Yamaguchi, Akemi; Tominaga, Nobuaki; Kohra, Shinya; Arizono, Koji; Inouye, Yoshio

    2011-01-01

    A novel steroid compound, (17α,20E)-17,20-[(1-methoxyethylidene)bis(oxy)]-3-oxo-19-norpregna-4,20-diene-21-carboxylic acid methyl ester (YK11), was found to be a partial agonist of the androgen receptor (AR) in an androgen responsive element (ARE)-luciferase reporter assay. YK11 accelerates nuclear translocation of AR. Furthermore, YK11 does not induce amino/carboxyl-terminal (N/C) interaction and prevents 5-α-dihydrotestosterone (DHT)-mediated N/C interaction. Thus, YK11 activates AR without causing N/C interaction, which may in turn be responsible for the partially agonistic nature of YK11 observed in the ARE-luciferase reporter system. YK11 acts as a gene-selective agonist of AR in MDA-MB 453 cells. The effect of YK11 on gene expression relative to that of androgen agonist varies depending on the gene context. YK11 activated the reporter gene by inducing the translocation of the AR into the nuclear compartment, where its amino-terminal domain (NTD) functions as a constitutive activator of AR target genes. Our results suggest that YK11 might act as selective androgen receptor modulator (SARM).

  10. Dihydrotestosterone treatment in adolescents with delayed puberty: does it explain insulin resistance of puberty?

    PubMed

    Saad, R J; Keenan, B S; Danadian, K; Lewy, V D; Arslanian, S A

    2001-10-01

    Puberty is characterized by temporary insulin resistance, which subsides with the completion of pubertal development. This insulin resistance is manifested by lower rates of insulin-stimulated glucose metabolism and compensatory hyperinsulinemia in pubertal compared with prepubertal children. Whether or not pubertal insulin resistance is the result of sex steroids or GH or a combination of both has been investigated in our laboratory. Previously, we demonstrated that T treatment in adolescents with delayed puberty was not associated with the deterioration of insulin action. The present investigation evaluated the effects of 4 months of dihydrotestosterone administration (50 mg im every 2 wk) on body composition, glucose, fat, and protein metabolism, and insulin sensitivity. Ten adolescents with delayed puberty were evaluated before and after 4 months of DHT administration. Body composition was assessed by dual energy x-ray absorptiometry. Insulin-stimulated glucose metabolism was measured during a 3-h hyperinsulinemic (40 mU/m(2).min)-euglycemic clamp procedure. Lipolysis and proteolysis were evaluated by stable isotopes of [(2)H(5)]glycerol and [1-(13)C]leucine. After 4 months of dihydrotestosterone treatment, height, weight, and fat free mass increased and percentage of body fat decreased. IGF-I and nocturnal GH levels did not change. There was no significant change in insulin-stimulated glucose metabolism (57.2 +/- 3.9 vs. 58.3 +/- 3.9 micromol/kg.min). Total body proteolysis and lipolysis did not change. In summary, based on the present and past studies, we conclude that during puberty insulin resistance/hyperinsulinemia is not attributable to gonadal sex steroids in boys.

  11. Increased Muscular 5α-Dihydrotestosterone in Response to Resistance Training Relates to Skeletal Muscle Mass and Glucose Metabolism in Type 2 Diabetic Rats

    PubMed Central

    Horii, Naoki; Sato, Koji; Mesaki, Noboru; Iemitsu, Motoyuki

    2016-01-01

    Regular resistance exercise induces skeletal muscle hypertrophy and improvement of glycemic control in type 2 diabetes patients. Administration of dehydroepiandrosterone (DHEA), a sex steroid hormone precursor, increases 5α-dihydrotestosterone (DHT) synthesis and is associated with improvements in fasting blood glucose level and skeletal muscle hypertrophy. Therefore, the aim of this study was to investigate whether increase in muscle DHT levels, induced by chronic resistance exercise, can contribute to skeletal muscle hypertrophy and concomitant improvement of muscular glucose metabolism in type 2 diabetic rats. Male 20-week-old type 2 diabetic rats (OLETF) were randomly divided into 3 groups: sedentary control, resistance training (3 times a week on alternate days for 8 weeks), or resistance training with continuous infusion of a 5α-reductase inhibitor (n = 8 each group). Age-matched, healthy nondiabetic Long-Evans Tokushima Otsuka (LETO) rats (n = 8) were used as controls. The results indicated that OLETF rats showed significant decrease in muscular DHEA, free testosterone, DHT levels, and protein expression of steroidogenic enzymes, with loss of skeletal muscle mass and hyperglycemia, compared to that of LETO rats. However, 8-week resistance training in OLETF rats significantly increased the levels of muscle sex steroid hormones and protein expression of steroidogenic enzymes with a concomitant increase in skeletal muscle mass, improved fasting glucose level, and insulin sensitivity index. Moreover, resistance training accelerated glucose transporter-4 (GLUT-4) translocation and protein kinase B and C-ζ/λ phosphorylation. Administering the 5α-reductase inhibitor in resistance-trained OLETF rats resulted in suppression of the exercise-induced effects on skeletal muscle mass, fasting glucose level, insulin sensitivity index, and GLUT-4 signaling, with a decline in muscular DHT levels. These findings suggest that resistance training-induced elevation of

  12. Isoflavone supplements stimulated the production of serum equol and decreased the serum dihydrotestosterone levels in healthy male volunteers

    PubMed Central

    Tanaka, M; Fujimoto, K; Chihara, Y; Torimoto, K; Yoneda, T; Tanaka, N; Hirayama, A; Miyanaga, N; Akaza, H; Hirao, Y

    2009-01-01

    The aim of this study was to evaluate the effect of supplementing healthy men with soy isoflavones on the serum levels of sex hormones implicated in prostate cancer development. A total of 28 Japanese healthy volunteers (18 equol producers and 10 equol non-producers) between 30 and 59 years of age were given soy isoflavones (60 mg daily) supplements for 3 months, and the changes in their sex hormone levels were investigated at the baseline and after administration. The serum and urine concentrations of daidzein, genistein, and the levels of equol in the fasting blood samples and 24-h stored urine samples were also measured. All 28 volunteers completed the 3-month supplementation with isoflavone. No changes in the serum levels of estradiol and total testosterone were detected after 3-month supplementation. The serum levels of sex hormone-binding globulin significantly increased, and the serum levels of free testosterone and dihydrotestosterone (DHT) decreased significantly after 3-month supplementation. Among the 10 equol non-producers, equol became detectable in the serum of two healthy volunteers after 3-month supplementation. This study revealed that short-term administration of soy isoflavones stimulated the production of serum equol and decreased the serum DHT level in Japanese healthy volunteers. These results suggest the possibility of converting equol non-producers to producers by prolonged and consistent soy isoflavones consumption. PMID:19597532

  13. Autoradiographic localization of /sup 3/H-dihydrotestosterone in the preoptic area, hypothalamus, and amygdala of a male rhesus monkey

    SciTech Connect

    Michael, R.P.; Rees, H.D.

    1982-06-14

    In a preliminary study, autoradiography was used to localize target cells for /sup 3/H-dihydrotestosterone (DHT), a non-aromatizable androgen, in the brain of the rhesus monkey. One castrated male was injected intravenously with 2 mCi of /sup 3/H-DHT (0.42 ..mu..g/kg), and was killed one hour later. Neurons that concentrated radioactivity in their nuclei were located in widespread areas of the brain, which included the medial and suprachiasmatic preoptic nuclei, bed nucleus of the stria terminalis, lateral septal nucleus, anterior hypothalamic area, ventromedial, arcuate, dorsomedial, and paraventricular hypothalamic nuclei, ventral premammillary nucleus, and medial, cortical, basal accessory, and lateral amygdaloid nuclei. These results indicate that the topographic distribution of androgen target neurons is considerably wider than that observed in a study using /sup 3/H-testosterone (T) in the male rhesus monkey. However, further work is needed to elucidate these differences before attempting correlations between behavioral activity and androgen receptors in the brain.

  14. Heterogeneity of rat type I 5 alpha-reductase cDNA: cloning, expression and regulation by pituitary implants and dihydrotestosterone.

    PubMed

    Lopez-Solache, I; Luu-The, V; Séralini, G E; Labrie, F

    1996-03-01

    Primer extension analysis reveals the presence of different forms of mRNA species for rat type I 5 alpha-reductase. Using a 5 alpha-reductase cDNA probe to screen the rat liver lambda gt11 cDNA library, we isolated cDNA clones that have 4 additional amino acids in the NH2-terminal region as compared with the previously reported sequence for rat type I 5 alpha-reductase. These four additional amino acids elongate the rat type I 5 alpha-reductase amino acid sequence to 259 amino acids, the same number as in human type I 5 alpha-reductase, with which it shares 60% identity. Expression of the long and short rat type I 5 alpha-reductase by transfection in human adrenal adenocarcinoma cells, SW-13 cells, indicated that the long cDNA encoded a protein with a higher affinity for the substrate than the short cDNA. To determine the effect of pituitary hormones and dihydrotestosterone (DHT), the mRNA levels in the livers of rats treated with pituitary implants, hypophysectomized, castrated, and castrated coupled with DHT treatment were quantified by dot-blot hybridization assay using rat type I 5 alpha-reductase cDNA as probes. The results demonstrated that rat type I 5 alpha-reductase mRNA is stimulated by pituitary hormones and castration but is decreased by DHT and hypophysectomy.

  15. Dihydrotestosterone differentially modulates the mitogen-activated protein kinase and the phosphoinositide 3-kinase/Akt pathways through the nuclear and novel membrane androgen receptor in C6 cells.

    PubMed

    Gatson, Joshua W; Kaur, Paramjit; Singh, Meharvan

    2006-04-01

    Androgens such as dihydrotestosterone (DHT) are known to exert their effects through the activation of intracellular receptors that regulate the transcription of target genes. Alternatively, nongenomic mechanisms, including the activation of such signaling pathways as the MAPK pathways, have been described. It is unclear, however, whether this latter mechanism of action is mediated by the classical androgen receptor (AR) or some alternative mechanism. In this study, using a glial cell model (C6 cells) that we found to express the AR, we identified that DHT increased the phosphorylation of both ERK and Akt, key effectors of the neuroprotection-associated MAPK and phosphoinositide 3-kinase signaling pathways, respectively, and ERK phosphorylation was blocked by the AR antagonist, flutamide. In contrast, the membrane-impermeable, BSA-conjugated androgen (DHT-BSA) caused a dose-dependent suppression of ERK and Akt phosphorylation, suggesting the existence of a novel membrane-associated AR that mediates this opposite effect on neuroprotective signaling. This is also supported by the observation of DHT-displaceable binding sites on the cell surface of live C6 cells. Collectively, these data support the existence of a novel membrane-associated AR in glial cells and argue for the existence of two, potentially competing, pathways in a given cell or tissue. This mutual antagonism was supported by the ability of DHT-BSA to attenuate DHT-induced ERK phosphorylation. Thus, depending on the predominance of one receptor mechanism over another, the outcome of androgen treatment may be very different and, as such, could help explain existing discrepancies as to whether androgens are protective or damage inducing.

  16. Ginsenoside F2 reduces hair loss by controlling apoptosis through the sterol regulatory element-binding protein cleavage activating protein and transforming growth factor-β pathways in a dihydrotestosterone-induced mouse model.

    PubMed

    Shin, Heon-Sub; Park, Sang-Yong; Hwang, Eun-Son; Lee, Don-Gil; Mavlonov, Gafurjon Turdalievich; Yi, Tae-Hoo

    2014-01-01

    This study was conducted to test whether ginsenoside F2 can reduce hair loss by influencing sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) and the transforming growth factor beta (TGF-β) pathway of apoptosis in dihydrotestosterone (DHT)-treated hair cells and in a DHT-induced hair loss model in mice. Results for ginsenoside F2 were compared with finasteride. DHT inhibits proliferation of hair cells and induces androgenetic alopecia and was shown to activate an apoptosis signal pathway both in vitro and in vivo. The cell-based 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that the proliferation rates of DHT-treated human hair dermal papilla cells (HHDPCs) and HaCaTs increased by 48% in the ginsenoside F2-treated group and by 12% in the finasteride-treated group. Western blot analysis showed that ginsenoside F2 decreased expression of TGF-β2 related factors involved in hair loss. The present study suggested a hair loss related pathway by changing SCAP related apoptosis pathway, which has been known to control cholesterol metabolism. SCAP, sterol regulatory element-binding protein (SREBP) and caspase-12 expression in the ginsenoside F2-treated group were decreased compared to the DHT and finasteride-treated group. C57BL/6 mice were also prepared by injection with DHT and then treated with ginsenoside F2 or finasteride. Hair growth rate, density, thickness measurements and tissue histotological analysis in these groups suggested that ginsenoside F2 suppressed hair cell apoptosis and premature entry to catagen more effectively than finasteride. Our results indicated that ginsenoside F2 decreased the expression of TGF-β2 and SCAP proteins, which have been suggested to be involved in apoptosis and entry into catagen. This study provides evidence those factors in the SCAP pathway could be targets for hair loss prevention drugs.

  17. Dihydrotestosterone treatment rescues the decline in protein synthesis as a result of sarcopenia in isolated mouse skeletal muscle fibres

    PubMed Central

    Wendowski, Oskar; Redshaw, Zoe

    2016-01-01

    Abstract Background Sarcopenia, the progressive decline in skeletal muscle mass and function with age, is a debilitating condition. It leads to inactivity, falls, and loss of independence. Despite this, its cause(s) and the underlying mechanism(s) are still poorly understood. Methods In this study, small skeletal muscle fibre bundles isolated from the extensor digitorum longus (a fast‐twitch muscle) and the soleus (a slow‐twitch muscle) of adult mice of different ages (range 100–900 days old) were used to investigate the effects of ageing and dihydrotestosterone (DHT) treatment on protein synthesis as well as the expression and function of two amino acid transporters; the sodium‐coupled neutral amino acid transporter (SNAT) 2, and the sodium‐independent L‐type amino‐acid transporter (LAT) 2. Results At all ages investigated, protein synthesis was always higher in the slow‐twitch than in the fast‐twitch muscle fibres and decreased with age in both fibre types. However, the decline was greater in the fast‐twitch than in the slow‐twitch fibres and was accompanied by a reduction in the expression of SNAT2 and LAT2 at the protein level. Again, the decrease in the expression of the amino acid transporters was greater in the fast‐twitch than in the slow‐twitch fibres. In contrast, ageing had no effect on SNAT2 and LAT2 expressions at the mRNA level. Treating the muscle fibre bundles with physiological concentrations (~2 nM) of DHT for 1 h completely reversed the effects of ageing on protein synthesis and the expression of SNAT2 and LAT2 protein in both fibre types. Conclusion From the observations that ageing is accompanied by a reduction in protein synthesis and transporter expression and that these effects are reversed by DHT treatment, we conclude that sarcopenia arises from an age‐dependent reduction in protein synthesis caused, in part, by the lack of or by the low bioavailability of the male sex steroid, DHT. PMID:27239418

  18. The effects of model androgen 5α-dihydrotestosterone on mummichog (Fundulus heteroclitus) reproduction under different salinities.

    PubMed

    Glinka, Chelsea O; Frasca, Salvatore; Provatas, Anthony A; Lama, Tanya; DeGuise, Sylvain; Bosker, Thijs

    2015-08-01

    Endocrine disrupting substances (EDSs) have the potential to disturb sensitive hormone pathways, particularly those involved in development and reproduction. Both fresh and estuarine water bodies receive inputs of EDSs from a variety of sources, including sewage effluent, industrial effluent and agricultural runoff. Based on current literature, freshwater species appear to respond to lower levels of EDSs than estuarine or marine species. Therefore, effects elicited by EDSs in freshwater teleosts may not be an accurate representation of how EDSs affect teleosts in estuarine and marine environments. To address this potential difference, a short-term reproductive bioassay was conducted under conditions of low and high salinity using mummichog (Fundulus heteroclitus), a euryhaline species that is native to the east coast of North America. The goals of this study were to determine the response of mummichog when exposed to an androgenic EDS and whether salinity affected the response. A model androgen, 5α-dihydrotestosterone (DHT), was selected for this experiment. Impacts on reproduction were evaluated at multiple biological levels, including physiological (sex steroid levels), organismal (gonad size and gonad morphology), and functional (egg production) endpoints. Under conditions of high salinity, egg production was significantly reduced at all exposure concentrations. Under conditions of low salinity, there were no significant differences based on DHT treatment; however, egg production in all treatment groups including the control were significantly reduced relative to the high salinity control group. Other reproductive endpoints, such as sex steroid production, showed stronger correlation to fecundity in females than males. This study demonstrates that mummichog fecundity is sensitive to androgenic endocrine disruption while also underscoring the importance of how changes in salinity, an environmental variable, can impact reproduction.

  19. A DHT Key-Value Storage System with Carrier Grade Performance

    NASA Astrophysics Data System (ADS)

    Shi, Guangyu; Chen, Jian; Gong, Hao; Fan, Lingyuan; Xue, Haiqiang; Lu, Qingming; Liang, Liang

    The Peer-to-Peer (P2P) technology being widely adopted in today’s both academic research and practical service providing, has many potential advantages and achieves a great success in Information Technology scope. Recently some researchers have proposed that P2P inspired architecture also might be one choice for the telecom network evolution. Most of such works adopted structured P2P (DHT) as the basic solutions, but they seldom discussed how to eliminate the huge gap between the telecom underlay performance requirement and the performance of existed DHT which mainly originated from the Internet applications. This paper presents the design and implementation of SandStone, a DHT based key-value storage system with carrier grade performance, such as good scalability, strong consistency and high reliability, which could be deployed as the cornerstone in such new P2P inspired networking architectures.

  20. Female's DHT controls sex differences in the rat bed nucleus of the accessory olfactory tract.

    PubMed

    Collado, P; Segovia, S; Calés, J M; Pérez Laso, C; Rodriquez Zafra, M; Guillamón, A; Valencia, A

    1992-04-01

    In the present study the regulatory action of the non-aromatic androgen dihydrotestoterone (DHT) on the volume of the sexually dimorphic bed nucleus of the accessory olfactory tract (BAOT) was investigated. Postnatal treatment with DHT (180 micrograms day-1) between days 6 and 20 (D6-D20) induced, in gonadally intact male rats, a drastic reduction in the overall volume to levels typical in control females. Conversely, the postnatal administration of the anti-androgen cyproterone acetate (CA) to the females from D6-D20 produced an increment in the BAOT volume not dissimilar to that found in control males. These findings reveal that sexual organization in this vomeronasal structure is dependent on the presence of DHT in females during postnatal development.

  1. Organization and activation of sexual and agonistic behavior in the leopard gecko, Eublepharis macularius.

    PubMed

    Rhen, T; Crews, D

    2000-04-01

    Gonadal sex is determined by the temperature experienced during incubation in the leopard gecko (Eublepharis macularius). Furthermore, both factors, incubation temperature and gonadal sex, influence adult sexual and agonistic behavior in this species. Yet it is unclear whether such differences in behavior are irreversibly organized during development or are mediated by differences in hormone levels in adulthood. To address this question, we gonadectomized adult females and males generated from a female-biased (30 degrees C) and a male-biased (32.5 degrees C) incubation temperature and treated them with equivalent levels of various sex steroids. We found that 17beta-estradiol (E(2)) activated sexual receptivity in females but not males, suggesting an organized sex difference in behavioral sensitivity to E(2). There were also organized and activated sex differences in attractivity to stimulus males. Although females were more attractive than males when treated with E(2), both sexes were equally unattractive when treated with dihydrotestosterone (DHT) or testosterone (T). Likewise, sex differences in aggressive and submissive behavior were organized and activated. Attacks on stimulus males were activated by T in males but not in females. In contrast, hormones did not influence flight behavior in males but did affect female submissiveness. Overall, males also evoked more attacks by stimulus males than did females. Nevertheless, females and males treated with androgens evoked more attacks than animals of the same sex that were treated with cholesterol or E(2). Incubation temperature had some weak effects on certain behaviors and no effect on others. This suggests that temperature effects in gonadally intact geckos may be due primarily to differences in circulating levels of hormones in adulthood. We conclude that gonadal sex has both organizational and activational effects on various behaviors in the leopard gecko.

  2. EFFECTS OF ENVIRONMENTAL ANTIANDROGENS IN EXPERIMENTAL ANIMALS

    EPA Science Inventory

    In mammals, the androgens testosterone (T) and dihydrotestosterone (DHT) are critical for normal male reproductive development and function. In humans, drugs that act as androgen receptor (AR) agonists and antagonists or inhibit fetal steroidogenesis can cause pseudohermaphrodi...

  3. EFFECTS OF ENVIRONMENTAL ANTIANDROGENS ON REPRODUCTIVE DEVELOPMENT IN EXPERIMENTAL ANIMALS

    EPA Science Inventory

    In mammals, the androgens testosterone (T) and dihydrotestosterone (DHT) are critical for normal male reproductive development and function. In humans, drugs that act as androgen receptor (AR) agonists and antagonists or inhibit fetal steroidogenesis can cause pseudohermaphrodi...

  4. An open label, dose response study to determine the effect of a dietary supplement on dihydrotestosterone, testosterone and estradiol levels in healthy males

    PubMed Central

    Angwafor, Fru; Anderson, Mark L

    2008-01-01

    Background Maintaining endogenous testosterone (T) levels as men age may slow the symptoms of sarcopenia, andropause and decline in physical performance. Drugs inhibiting the enzyme 5α-reductase (5AR) produce increased blood levels of T and decreased levels of dihydrotestosterone (DHT). However, symptoms of gynecomastia have been reported due to the aromatase (AER) enzyme converting excess T to estradiol (ES). The carotenoid astaxanthin (AX) from Haematococcus pluvialis, Saw Palmetto berry lipid extract (SPLE) from Serenoa repens and the precise combination of these dietary supplements, Alphastat® (Mytosterone(™)), have been reported to have inhibitory effects on both 5AR and AER in-vitro. Concomitant regulation of both enzymes in-vivo would cause DHT and ES blood levels to decrease and T levels to increase. The purpose of this clinical study was to determine if patented Alphastat® (Mytosterone(™)) could produce these effects in a dose dependent manner. Methods To investigate this clinically, 42 healthy males ages 37 to 70 years were divided into two groups of twenty-one and dosed with either 800 mg/day or 2000 mg/day of Alphastat® (Mytosterone(™)) for fourteen days. Blood samples were collected on days 0, 3, 7 and 14 and assayed for T, DHT and ES. Body weight and blood pressure data were collected prior to blood collection. One-way, repeated measures analysis of variance (ANOVA-RM) was performed at a significance level of alpha = 0.05 to determine differences from baseline within each group. Two-way analysis of variance (ANOVA-2) was performed after baseline subtraction, at a significance level of alpha = 0.05 to determine differences between dose groups. Results are expressed as means ± SEM. Results ANOVA-RM showed significant within group increases in serum total T and significant decreases in serum DHT from baseline in both dose groups at a significance level of alpha = 0.05. Significant decreases in serum ES are reported for the 2000 mg/day dose

  5. Neonatal 5,7-DHT Lesions Cause Sex-Specific Changes in Mouse Cortical Morphogenesis

    PubMed Central

    Hohmann, Christine F.; Richardson, Celena; Pitts, Ella; Berger-Sweeney, Joanne

    2000-01-01

    Both monoaminergic and cholinergic afferent projections to the neocortex putatively modulate cortical morphogenesis and plasticity. Previously we showed that neonatal,electrolytic lesions: the cholinergic nucleus basalis magnocel!ularis (nBM) projections to the neocortex result in significant decreases-of cortical layer width that correlate with cognitive alterations. Such electrolytic lesions, performed for lack of a selective neurotoxin in mice, may affect mono- aminergic fibers of passage. Here, we investigate the effects of neonatal 5,7 dihydroxytryptamine (5,7-DHT) focal injections into the nBM region on cortical laminar morphology in adult male and female mice. 5,7-DHT lesions on the first postnatal day resulted in significant cortical depletion of both serotonin and norepinephrine that attenuated with age. Generally, cortical layer widths increased in response to the lesion; the effects were layer, region, and sex specific. Previous reports from our laboratories described longterm behavioral alterations after comparable focal, neonatal 5,7-DHT lesions. The studies described here provide an anatomical basis for such behavioral alterations. Our data suggest that monoaminergic and cholinergic projections to the cortex may have opposite effects on the developing cortical neuropil. Jointly, our morphological and behavioral findings may have important implications for a variety of developmental disorders in humans and provide some insights into sex differences in the penetrance of these disorders. PMID:11486483

  6. Dehydroepiandrosterone Derivatives as Potent Antiandrogens with Marginal Agonist Activity

    DTIC Science & Technology

    2010-07-01

    or 9), although these compounds still showed anti-DHT effects (lanes 2 vs. 6, 8, or 10). Figure 4 . The effects of DHEA derivatives on PSA...2009 - 30 JUN 2010 4 . TITLE AND SUBTITLE Dehydroepiandrosterone Derivatives as Potent Antiandrogens 5a. CONTRACT NUMBER with Marginal Agonist...words) We hypothesized that dehydroepiandrosterone ( DHEA ) metabolites or their synthetic derivatives are able to bind to the androgen receptor with

  7. Sexual behaviour of neonatally castrated rats injected during infancy with oestrogen and dihydrotestosterone.

    PubMed

    Booth, J E

    1977-02-01

    Male rats were castrated on the day of birth (day 1) and injected with either testosterone, dihydrotestosterone, a synthetic oestrogen (RU 2858 + dihydrotestosterone, or oil from days 1 to 5. The aromatizable androgen, testosterone, and RU 2858 suppressed both cyclic gonadotrophin secretion, indicated by the absence of corpora lutea from implanted ovarian grafts, and the behavioural response to oestradiol benzoate + progesterone injections in adulthood. The 5alpha-reduced androgen, dihydrotestosterone alone did not affect gonadotrophin secretion or female receptive behaviour, but like testosterone, it increased penis development in response to testosterone propionate, and this was positively correlated with copulatory efficiency, i.e. the ratio of intromission to mount frequencies. Nevertheless, ejaculation only occurred among animals that had received testosterone or RU 2858 + dihydrotestosterone. The results support the concept that during the preinatal period, neural conversion of androgens to oestrogens is important both for the suppression of female gonadotrophin secretion and behaviour patterns as well as for the organization of male behaviour patterns. The 5alpha-reduction of unsaturated C19-steriods to dihydrotestosterone in peripheral tissues is also required to complete the development of the male genital tract.

  8. Effects of 5 alpha-dihydrotestosterone and methandrostenolone in male guinea pigs.

    PubMed

    Kinson, G A; Lubek, B M

    1981-02-01

    Young adult guinea pigs were studied 6 and 9 weeks after silastic capsules containing 5 alpha-hydrotestosterone (5 alpha-DHT) and methandrostenolone (Dianabol) were implanted. DHT was more effective in causing testicular atrophy and was apparently more androgenically potent in sustaining the size of the seminal vesicles. Both steroids led to hypertrophy of the masseter muscle and increase in gastrocnemius protein concentration. Cardiac tissue was sensitive to the effects of these steroids, particularly to the larger amounts of absorbed Dianabol, in terms of increases in DNA concentration and transient loss of tissue sodium, potassium, and calcium. All alterations in muscle composition occurred in the total absence of change in tissue water. Hypernatremia and hyperkalemia was present in steroid-treated animals with significant loss of urinary potassium in DHT-treated guinea pigs. Adrenal atrophy and the lowering of circulating cortisol was further indicative of effects upon adrenocortical function and the regulation of electrolyte balance.

  9. Depression of alcohol dehydrogenase activity in rat hepatocyte culture by dihydrotestosterone.

    PubMed

    Mezey, E; Potter, J J; Diehl, A M

    1986-01-15

    Hepatocytes harvested from castrated rats retained a higher alcohol dehydrogenase (EC 1.1.1.1) activity than hepatocytes harvested from normal rats during 7 days of culture. Dihydrotestosterone (1 microM) decreased the enzyme activity, after 2 and 5 days of culture, in hepatocytes from castrated and control animals respectively. Dihydrotestosterone decreased the enzyme activity to similar values in both groups of hepatocytes by the end of 7 days of culture. Testosterone (1 microM) had no effect on the enzyme activity in normal hepatocytes and only a transitory effect in decreasing the enzyme activity in hepatocytes from castrated animals. The increases in alcohol dehydrogenase activity after castration and their suppression by dihydrotestosterone were associated with parallel changes in the rate of ethanol elimination. Additions of substrates of the malate-aspartate shuttle or dinitrophenol did not modify ethanol elimination. These observations indicate that dihydrotestosterone has a direct suppressant effect on hepatocyte alcohol dehydrogenase and that the enzyme activity is a major determinant of the rate of ethanol elimination.

  10. Effects of D-004, a lipid extract from Cuban royal palm fruit, on inhibiting prostatic hypertrophy induced with testosterone or dihydrotestosterone in a rat model: A randomized, controlled study

    PubMed Central

    Carbajal, Daisy; Arruzazabala, Maria de Lourdes; Rosa, Más; Molina, Vivian; Rodríguez, Eduardo; González, Victor

    2004-01-01

    Background: Benign prostatic hypertrophy is the nonmalignant, uncontrolled growth of prostatic epithelial cells and stroma that, left untreated, may lead to difficult urination and other complications. A common treatment of BPH is lipid extract from saw palmetto fruit, and lipid extract from Cuban Royal palm (a palm of the same family) fruit is being studied for this use. One study found that the latter, D-004, at 100 to 400 mg/kg daily prevented prostatic hypertrophy (PH) induced with testosterone (T) in a rat model. Objectives: This study comprised 2 experiments in a rat model. The first assessed the effects of different doses of D-004 on T-induced PH; the second investigated the effects of D-004 on PH induced with dihydrotestosterone (DHT). Methods: In experiment 1, rats were distributed in 6 groups of 10 rats each. One group received an SC injection of soy oil and oral treatment with Tween 65/water vehicle (negative control). The other 5 groups received an SC injection of T 3 mg/kg daily and oral treatment with vehicle (positive control) or D-004 at 50, 200, 400, or 800 mg/kg daily suspended in vehicle. In experiment 2, rats were distributed in 3 groups of 10 rats each. A negative control group received treatment as in experiment 1. Positive controls received an SC injection of DHT 1.5 mg/kg and vehicle orally. The third group received an SC injection of DHT and oral treatment with D-004 at 800 mg/kg suspended in vehicle. All treatments were given for 14 days. At sacrifice, prostates were removed and weighed. Mean prostatic weights and prostatic/body weight ratios were calculated. Results: In experiment 1, in the groups receiving D-004 at 200, 400, or 800 mg/kg daily, prostatic weight was significantly lower compared with the positive control group (P < 0.05, P < 0.01, and P < 0.001, respectively); this effect was not seen in the group receiving 50 mg/kg daily. In the groups receiving D-004 at 400 and 800 mg/kg daily, prostatic/body weight ratio was

  11. Effects of 5,7-DHT Injection into the Optic Lobe on the Circadian Locomotor Rhythm in the Cricket, Gryllus bimaculatus.

    PubMed

    Germ, M; Tomioka, K

    1998-06-01

    The effect of direct 5,7-dihydroxytryptamine (5,7-DHT) injection into the medulla region of the optic lobe on the locomotor activity was investigated in the adult male cricket, Gryllus bimaculatus. After a 6 hr phase advance of a light-dark cycle, the 5,7-DHT injected animals needed significantly longer time for resynchronization to the new cycle (6.55 +/- 0.62 days) than the control, Ringer's solution injected animals (3.17 +/- 0.15 days; P < 0.001, t-test). Light induced a bout of activity (i.e., masking effect) when light-dark cycle was phase advanced by 6 hr and the duration of the masking effect was significantly longer in 5,7-DHT injected animals. An initial bout of the nocturnal activity was significantly greater in the 5,7-DHT injected animal. Under constant darkness, the freerunning periods of both groups were not significantly different. Under constant light, a significantly higher percentage of 5,7-DHT injected animals showed arrhythmicity compared with the control group. An analysis carried by high-pressure liquid chromatography with electro-chemical detection (HPLC-ECD) revealed that the serotonin content in the optic lobe was significantly reduced to less than 50% in the 5,7-DHT injected animals, even one month after the injection. These results suggest that serotonin plays important roles in the regulation of circadian locomotor rhythms of the cricket mainly by regulating the sensitivity of the photoreceptive system.

  12. Synthesis of 7alpha-(fluoromethyl)dihydrotestosterone and 7alpha-(fluoromethyl)nortestosterone, structurally paired androgens designed to probe the role of sex hormone binding globulin in imaging androgen receptors in prostate tumors by positron emission tomography.

    PubMed

    Parent, Ephraim E; Carlson, Kathryn E; Katzenellenbogen, John A

    2007-07-20

    Although prostate cancer growth is regulated by androgens through the androgen receptor (AR), in vitro assays of AR levels in prostate tumors have limited prognostic value. This might be improved by direct measurement of tumor AR in vivo using positron emission tomography (PET) imaging with fluorine-18-labeled androgens. Most AR PET imaging agents have been designed to limit steroid binding to serum proteins, but there is evidence that binding to sex hormone binding globulin (SHBG) might enhance tumor uptake. To probe the role of SHBG in prostate tumor uptake of PET imaging agents, we have synthesized two fluoro steroids, 7alpha-(fluoromethyl)dihydrotestosterone (7alpha-FM-DHT) and 7alpha-(fluoromethyl)nortestosterone (7alpha-FM-norT), by a route amenable to their labeling with [18F]fluoride ion. Both compounds have high affinity for AR, but 7alpha-FM-norT has much lower affinity for SHBG. Thus, these two fluoro steroids are well matched in terms of their site of fluorine labeling, similarity of structure, and equivalent AR binding affinity-but contrasting SHBG binding-and therefore can be used as agents for evaluating the role of SHBG binding in the target tissue uptake of AR PET imaging agents in humans.

  13. Testosterone decreases reactive astroglia and reactive microglia after brain injury in male rats: role of its metabolites, oestradiol and dihydrotestosterone.

    PubMed

    Barreto, George; Veiga, Sergio; Azcoitia, Iñigo; Garcia-Segura, Luis M; Garcia-Ovejero, Daniel

    2007-05-01

    Previous studies have shown that the neuroprotective hormone, testosterone, administered immediately after neural injury, reduces reactive astrogliosis. In this study we have assessed the effect of early and late therapy with testosterone or its metabolites, oestradiol and dihydrotestosterone, on reactive astroglia and reactive microglia after a stab wound brain injury in orchidectomized Wistar rats. Animals received daily s.c. injections of testosterone, oestradiol or dihydrotestosterone on days 0-2 or on days 5-7 after injury. The number of vimentin immunoreactive astrocytes and the volume fraction of major histocompatibility complex-II (MHC-II) immunoreactive microglia were estimated in the hippocampus in the lateral border of the wound. Both early and delayed administration of testosterone or oestradiol, but not dihydrotestosterone, resulted in a significant decrease in the number of vimentin-immunoreactive astrocytes. The volume fraction of MHC-II immunoreactive microglia was significantly decreased in the animals that received testosterone or oestradiol in both early and delayed treatments and in animals that received early dihydrotestosterone administration. Thus, both early and delayed administration of testosterone reduces reactive astroglia and reactive microglia and these effects may be at least in part mediated by oestradiol, while dihydrotestosterone may mediate part of the early effects of testosterone on reactive microglia. In conclusion, testosterone controls reactive gliosis and its metabolites, oestradiol and dihydrotestosterone, may be involved in this hormonal effect. The regulation of gliosis may be part of the neuroprotective mechanism of testosterone.

  14. Multirate-based fast parallel algorithms for 2-D DHT-based real-valued discrete Gabor transform.

    PubMed

    Tao, Liang; Kwan, Hon Keung

    2012-07-01

    Novel algorithms for the multirate and fast parallel implementation of the 2-D discrete Hartley transform (DHT)-based real-valued discrete Gabor transform (RDGT) and its inverse transform are presented in this paper. A 2-D multirate-based analysis convolver bank is designed for the 2-D RDGT, and a 2-D multirate-based synthesis convolver bank is designed for the 2-D inverse RDGT. The parallel channels in each of the two convolver banks have a unified structure and can apply the 2-D fast DHT algorithm to speed up their computations. The computational complexity of each parallel channel is low and is independent of the Gabor oversampling rate. All the 2-D RDGT coefficients of an image are computed in parallel during the analysis process and can be reconstructed in parallel during the synthesis process. The computational complexity and time of the proposed parallel algorithms are analyzed and compared with those of the existing fastest algorithms for 2-D discrete Gabor transforms. The results indicate that the proposed algorithms are the fastest, which make them attractive for real-time image processing.

  15. Sensitivity of a Tier I screening battery compared to an in utero exposure for detecting the estrogen receptor agonist 17 beta-estradiol.

    PubMed

    O'Connor, J C; Frame, S R; Biegel, L B; Cook, J C; Davis, L G

    1998-08-01

    and follicle stimulating hormone and luteinizing hormone levels. In the male battery, responses to 17 beta-estradiol included decreases in absolute testis and epididymides weights, decreases in relative weights for androgen-dependent tissues (prostate, seminal vesicles, and accessory sex gland unit), hormonal alterations (decreased serum testosterone, dihydrotestosterone, and LH and increased serum prolactin levels), and microscopic alterations of the testis and epididymides. In the YTS for the estrogen receptor, 17 beta-estradiol had an EC50 value of 7.2 x 10(-9) M, while DHT and progesterone had little cross-activation. The androgen and progesterone receptor systems were less selective in that 17 beta-estradiol activated these systems within 3 orders of magnitude of the primary ligand. In the 90-day/one-generation reproduction study, responses to dietary administration of 17 beta-estradiol included alterations in organ weights, developmental landmarks, and hormonal levels. Comparison of the responses obtained with our Tier I battery and an in utero exposure demonstrates that the Tier I screening battery is as sensitive as an in utero exposure for detecting 17 beta-estradiol-induced alterations in hormonal homeostasis.

  16. Hormone replacement with 17β-estradiol plus dihydrotestosterone restores male sexual behavior in rats treated neonatally with clomipramine.

    PubMed

    Limón-Morales, Ofelia; Soria-Fregozo, Cesar; Arteaga-Silva, Marcela; González, Marisela Hernández; Vázquez-Palacios, Gonzalo; Bonilla-Jaime, Herlinda

    2014-11-01

    Male sexual behavior (MSB) in rodents, in both its consummatory and motivational components, is regulated by hormones such as testosterone, 17β-estradiol and 5-α-dihydrotestosterone. In experiments, neonatal treatment with clomipramine (CMI; a serotonin reuptake inhibitor) reproduces some of the signs of depression in adult age, including reduced sexual behavior manifested in a lower percentage of subjects that mount, intromit and ejaculate, although their testosterone levels were not altered. However, the effect of this treatment on estrogen levels and the consequences of hormone substitution using 17β-estradiol and 5-α-dihydrotestosterone on the expression of male sexual behavior are still unknown. Therefore, the objective of the present study was to analyze the effect of neonatal treatment with CMI on plasma testosterone and 17β-estradiol levels, and the role of testosterone, 17β-estradiol and 5-α-dihydrotestosterone in altering the consummatory and motivational components of sexual behavior in male rats. To this end, it analyzed the copulatory parameters and sexual incentive motivation (SIM) of rats treated with CMI under two conditions: basal and post-hormone replacements. Neonatal treatment with CMI did not affect plasma testosterone or 17β-estradiol concentrations, but did decrease both the consummatory component and sexual motivation according to the results of the SIM test. These aspects were recovered after administering 17β-estradiol +5-α-dihydrotestosterone, but not testosterone.

  17. Design and synthesis of new dihydrotestosterone derivative with positive inotropic activity.

    PubMed

    Lauro, Figueroa-Valverde; Francisco, Díaz-Cedillo; Elodia, García-Cervera; Eduardo, Pool-Gómez; Marcela, Rosas-Nexticapa; Lenin, Hau-Heredia; Betty, Sarabia Alcocer

    2015-03-01

    There are several reports which indicate that some steroid derivatives have inotropic activity; nevertheless, the cellular site and mechanism of action of steroid derivatives at cardiovascular level is very confusing. In order, to clarify these phenomena in this study, two dihydrotestosterone derivatives (compounds 5 and 10) were synthesized with the objective of to evaluate its biological activity on left ventricular pressure and characterize their molecular mechanism. In the first stage, the Langendorff technique was used to measure changes on perfusion pressure and coronary resistance in an isolated rat heart model in absence or presence of the steroid derivatives. Additionally, to characterize the molecular mechanism involved in the inotropic activity induced by the compound 5 was evaluated by measuring left ventricular pressure in absence or presence of following compounds; nifedipine, flutamide, indomethacin, prazosin, isoproterenol, propranolol and metoprolol. The results showed that the compound 5 significantly increased the perfusion pressure and coronary resistance in comparison with dihydrotestosterone, compound 10 and the control conditions. Other data indicate that 5 increase left ventricular pressure in a dose-dependent manner (0.001-100 nM); nevertheless, this phenomenon was significantly inhibited only by propranolol or metoprolol at a dose of 1 nM. These data suggest that positive inotropic activity induced by the compound 5 is through β1-adrenergic receptor however, this effect was independent of cAMP levels. This phenomenon is a particularly interesting because the positive inotropic activity induced by this steroid derivative involves a molecular mechanism different in comparison with other positive inotropic drugs.

  18. Hypothalamic Neuroendocrine Functions in Rats with Dihydrotestosterone-Induced Polycystic Ovary Syndrome: Effects of Low-Frequency Electro-Acupuncture

    PubMed Central

    Feng, Yi; Johansson, Julia; Shao, Ruijin; Mannerås, Louise; Fernandez-Rodriguez, Julia; Billig, Håkan; Stener-Victorin, Elisabet

    2009-01-01

    Adult female rats continuously exposed to androgens from prepuberty have reproductive and metabolic features of polycystic ovary syndrome (PCOS). We investigated whether such exposure adversely affects estrous cyclicity and the expression and distribution of gonadotropin-releasing hormone (GnRH), GnRH receptors, and corticotrophin-releasing hormone (CRH) in the hypothalamus and whether the effects are mediated by the androgen receptor (AR). We also assessed the effect of low-frequency electro-acupuncture (EA) on those variables. At 21 days of age, rats were randomly divided into three groups (control, PCOS, and PCOS EA; n = 12/group) and implanted subcutaneously with 90-day continuous-release pellets containing vehicle or 5α-dihydrostestosterone (DHT). From age 70 days, PCOS EA rats received 2-Hz EA (evoking muscle twitches) five times/week for 4–5 weeks. Hypothalamic protein expression was measured by immunohistochemistry and western blot. DHT-treated rats were acyclic, but controls had regular estrous cycles. In PCOS rats, hypothalamic medial preoptic AR protein expression and the number of AR- and GnRH-immunoreactive cells were increased, but CRH was not affected; however, GnRH receptor expression was decreased in both the pituitary and hypothalamus. Low-frequency EA restored estrous cyclicity within 1 week and reduced the elevated hypothalamic GnRH and AR expression levels. EA did not affect GnRH receptor or CRH expression. Interestingly, nuclear AR co-localized with GnRH in the hypothalamus. Thus, rats with DHT-induced PCOS have disrupted estrous cyclicity and an increased number of hypothalamic cells expressing GnRH, most likely mediated by AR activation. Repeated low-frequency EA normalized estrous cyclicity and restored GnRH and AR protein expression. These results may help explain the beneficial neuroendocrine effects of low-frequency EA in women with PCOS. PMID:19680559

  19. Effect of dihydrotestosterone on the expression of mucin 1 and the activity of Wnt signaling in mouse corneal epithelial cells

    PubMed Central

    Qin, Li; Pei, Cheng; Kang, Qian-Yan; Liu, Zhao; Li, Li

    2016-01-01

    AIM To explore the effects of the androgen dihydrotestosterone on the expression of mucin 1 (MUC1) and the activity of Wnt signaling in mouse corneal epithelial cells. METHODS Primary mouse corneal epithelial cells were isolated from the corneas of BALB/c mice. Quantitative real-time polymerase chain reaction, immunofluorescence and Western blot analysis were used to quantify the differential expression of selected genes. The androgen receptor was silenced by transfecting cells with androgen receptor shRNAs. TOP-Flash and FOP-flash reporter plasmids were used to measure β-catenin-driven transcription. RESULTS Dihydrotestosterone treatment increased MUC1 expression and activated the Wnt signaling pathway and led to the translocation of β-catenin and upregulation of the Wnt downstream target gene TATA box binding protein and urokinase plasminogen activator. These effects were prevented by downregulating the androgen receptor. CONCLUSION Androgens may protect against dry eye by regulating the expression of MUC1 which is stimulated by the activation of Wnt signaling via the androgen receptor. An understanding of the mechanisms associated with androgen-mediated protection against dry eye is an important step in developing new therapies for this disease. PMID:27990353

  20. Chemometric and chemoinformatic analyses of anabolic and androgenic activities of testosterone and dihydrotestosterone analogues.

    PubMed

    Alvarez-Ginarte, Yoanna María; Crespo-Otero, Rachel; Marrero-Ponce, Yovani; Noheda-Marin, Pedro; Garcia de la Vega, Jose Manuel; Montero-Cabrera, Luis Alberto; Ruiz García, José Alberto; Caldera-Luzardo, José A; Alvarado, Ysaias J

    2008-06-15

    Predictive quantitative structure-activity relationship (QSAR) models of anabolic and androgenic activities for the testosterone and dihydrotestosterone steroid analogues were obtained by means of multiple linear regression using quantum and physicochemical molecular descriptors (MD) as well as a genetic algorithm for the selection of the best subset of variables. Quantitative models found for describing the anabolic (androgenic) activity are significant from a statistical point of view: R(2) of 0.84 (0.72 and 0.70). A leave-one-out cross-validation procedure revealed that the regression models had a fairly good predictability [q(2) of 0.80 (0.60 and 0.59)]. In addition, other QSAR models were developed to predict anabolic/androgenic (A/A) ratios and the best regression equation explains 68% of the variance for the experimental values of AA ratio and has a rather adequate q(2) of 0.51. External validation, by using test sets, was also used in each experiment in order to evaluate the predictive power of the obtained models. The result shows that these QSARs have quite good predictive abilities (R(2) of 0.90, 0.72 (0.55), and 0.53) for anabolic activity, androgenic activity, and A/A ratios, respectively. Last, a Williams plot was used in order to define the domain of applicability of the models as a squared area within +/-2 band for residuals and a leverage threshold of h=0.16. No apparent outliers were detected and the models can be used with high accuracy in this applicability domain. MDs included in our QSAR models allow the structural interpretation of the biological process, evidencing the main role of the shape of molecules, hydrophobicity, and electronic properties. Attempts were made to include lipophilicity (octanol-water partition coefficient (logP)) and electronic (hardness (eta)) values of the whole molecules in the multivariate relations. It was found from the study that the logP of molecules has positive contribution to the anabolic and androgenic

  1. Reversibility of the inhibitory effect of atrazine and lindane on cytosol 5. alpha. -dihydrotestosterone receptor complex formation in rat prostate

    SciTech Connect

    Simic, B.; Kniewald, Z.; Kniewald, J. ); Davies, J.E. )

    1991-01-01

    Once entering the bloodstream, most toxic substances, including pesticides, can reach organs involved in the reproductive system. They can cross the placenta, as well as the brain barrier, posing various risks to the reproductive processes. The organochlorine insecticide lindane and the s-triazine herbicide atrazine produce changes in hormone-dependent reactions in the rat hypothalamus, anterior pituitary, and prostate. Lindane also causes histological and biochemical alterations in the rat testis. In vivo treatment with atrazine produces a markedly inhibitory influence of 5{alpha}-dihydrotestosterone - receptor complex formation in rat prostate cytosol. Therefore, the aim of this study was to investigate whether such changes in the crucial step in the reproductive process are reversible. A parallel investigation using lindane was also undertaken.

  2. [Melatonin receptor agonist].

    PubMed

    Uchiyama, Makoto

    2015-06-01

    Melatonin is a hormone secreted by the pineal gland and is involved in the regulation of human sleep-wake cycle and circadian rhythms. The melatonin MT1 and MT2 receptors located in the suprachiasmatic nucleus in the hypothalamus play a pivotal role in the sleep-wake regulation. Based on the fact that MT1 receptors are involved in human sleep onset process, melatonin receptor agonists have been developed to treat insomnia. In this article, we first reviewed functions of melatonin receptors with special reference to MT1 and MT2, and properties and clinical application of melatonin receptor agonists as hypnotics.

  3. Melatonin agonists and insomnia.

    PubMed

    Ferguson, Sally A; Rajaratnam, Shantha M W; Dawson, Drew

    2010-02-01

    The ability of melatonin to shift biological rhythms is well known. As a result, melatonin has been used in the treatment of various circadian rhythm sleep disorders, such as advanced and delayed sleep phase disorders, jet lag and shiftwork disorder. The current evidence for melatonin being efficacious in the treatment of primary insomnia is less compelling. The development of agents that are selective for melatonin receptors provides opportunity to further elucidate the actions of melatonin and its receptors and to develop novel treatments for specific types of sleep disorders. The agonists reviewed here - ramelteon, tasimelteon and agomelatine - all appear to be efficacious in the treatment of circadian rhythm sleep disorders and some types of insomnia. However, further studies are required to understand the mechanisms of action, particularly for insomnia. Clinical application of the agonists requires a good understanding of their phase-dependent properties. Long-term effects of melatonin should be evaluated in large-scale, independent randomized controlled trials.

  4. Beta-Adrenergic Agonists

    PubMed Central

    Barisione, Giovanni; Baroffio, Michele; Crimi, Emanuele; Brusasco, Vito

    2010-01-01

    Inhaled β2-adrenoceptor (β2-AR) agonists are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptoms-relievers and, in combination with inhaled corticosteroids, as disease-controllers. In this article, we first review the basic mechanisms by which the β2-adrenergic system contributes to the control of airway smooth muscle tone. Then, we go on describing the structural characteristics of β2-AR and the molecular basis of G-protein-coupled receptor signaling and mechanisms of its desensitization/ dysfunction. In particular, phosphorylation mediated by protein kinase A and β-adrenergic receptor kinase are examined in detail. Finally, we discuss the pivotal role of inhaled β2-AR agonists in the treatment of asthma and the concerns about their safety that have been recently raised. PMID:27713285

  5. Liraglutide Improves Hypertension and Metabolic Perturbation in a Rat Model of Polycystic Ovarian Syndrome

    PubMed Central

    Hoang, Vanessa; Bi, Jiangjiang; Mohankumar, Sheba M.; Vyas, Arpita K.

    2015-01-01

    Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder in women of reproductive age, with a prevalence of 5–8%. Type 2 diabetes and cardiovascular disease (CVD) are its long-term complications. Targeted therapies addressing both these complications together are lacking. Glucagon like peptide-1 (GLP-1) agonists that are used to treat type 2 diabetes mellitus have beneficial effects on the cardiovascular system. Hence we hypothesized that a GLP-1 agonist would improve both cardiovascular and metabolic outcomes in PCOS. To test this hypothesis, we used an established rat model of PCOS. Prepubertal female Sprague Dawley rats were sham-implanted or implanted s.c. with dihydrotestosterone (DHT) pellets (90 day release; 83μg/day). At 12 wks of age, sham implanted rats received saline injections and the DHT treated animals were administered either saline or liraglutide (0.2mg/kg s.c twice daily) for 4 weeks. Subgroups of rats were implanted with telemeters between 12-13 weeks of age to monitor blood pressure. DHT implanted rats had irregular estrus cycles and were significantly heavier than the control females at 12 weeks (mean± SEM 251.9±3.4 vs 216.8±3.4 respectively; p<0.05) and 4 weeks of treatment with liraglutide in DHT treated rats significantly decreased body weight (mean± SEM 294.75 ±3.2 in DHT+ saline vs 276.25±2.7 in DHT+ liraglutide group respectively; p<0.01). Liraglutide treatment in the DHT implanted rats significantly improved glucose excursion during oral glucose tolerance test (area under the curve: DHT+ saline 28674±310 vs 24990± 420 in DHT +liraglutide p <0.01). DHT rats were hypertensive and liraglutide treatment significantly improved mean arterial pressure. These results suggest that GLP-1 treatment could improve DHT–induced metabolic and blood pressure deficits associated with PCOS. PMID:26010091

  6. Metabolism of Androstenone, 17β-Estradiol and Dihydrotestosterone in Primary Cultured Pig Hepatocytes and the Role of 3β-Hydroxysteroid Dehydrogenase in This Process

    PubMed Central

    Chen, Gang; Bai, Ying; Ren, Li; Zhu, Dan; Li, Yanhua; Fang, Meiying; Al-Kateb, Huda; Doran, Olena

    2015-01-01

    Steroids metabolism plays an important role in mammals and contributes to quality of pig meat. The main objective of this study was to identify metabolites of androstenone, 17β-estradiol and dihydrotestosterone using primary cultured pig hepatocytes as a model system. The role of 3β-hydroxysteroid dehydrogenase (3βHSD) in regulation of steroid metabolism was also validated using trilostane, a specific 3βHSD inhibitor. Steroid glucuronide conjugated metabolites were detected by liquid chromatography time of flight mass spectrometry (LC-TOF-MS). 3βHSD enzyme was essential for metabolism of androstenone to 5α-androst-16-en-3β-ol, which then formed androstenone glucuronide conjugate. Metabolism of 17β-estradiol was accompanied by formation of glucuronide-conjugated estrone and glucuronide-conjugated estradiol. The ratio of the two metabolites was around 5∶1. 3βHSD enzyme was not involved in 17β-estradiol metabolism. 5α-Dihydrotestosterone-17β-glucuronide was identified as a dihydrotestosterone metabolite, and this metabolism was related to 3βHSD enzyme activity as demonstrated by inhibition study. PMID:25590624

  7. Virilization of the male pouch young of the tammar wallaby does not appear to be mediated by plasma testosterone or dihydrotestosterone.

    PubMed

    Wilson, J D; George, F W; Shaw, G; Renfree, M B

    1999-08-01

    Virilization of the male urogenital tract of all mammals, including marsupials, is mediated by androgenic hormones secreted by the testes. We have previously demonstrated profound sexual dimorphism in the concentrations of gonadal androgens in pouch young of the tammar wallaby Macropus eugenii during the interval when the urogenital sinus virilizes. To provide insight into the mechanisms by which androgens are transported from the testes to the target tissues, we measured testosterone and dihydrotestosterone in plasma pools from tammar pouch young from the day of birth to Day 150. Plasma testosterone levels were measurable (0.5-2 ng/ml) at all times studied, but there were no differences between males and females. These low concentrations of plasma testosterone appear to be derived from the adrenal glands and not the testes. Plasma dihydrotestosterone levels in plasma pools from these animals were also low and not sexually dimorphic. We conclude that virilization of the male urogenital tract cannot be explained by the usual transport of testosterone or dihydrotestosterone in plasma but may be mediated by the direct delivery of androgens to the urogenital tract via the Wolffian ducts. Alternatively, circulating prohormones may be converted to androgens in target tissues.

  8. Effects of steroids and dioxin (2,3,7,8-TCDD) on the developing wolffian ducts of the tiger salamander (Ambystoma tigrinum).

    PubMed

    Vajda, Alan M; Norris, David O

    2005-03-01

    This study was undertaken to investigate effects of the prototypical dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on steroid-dependent development of the wolffian ducts of an amphibian, the tiger salamander (Ambystoma tigrinum). Larvae with immature gonads and undeveloped mullerian ducts were injected with the steroid hormones estradiol (E2), dihydrotestosterone (DHT), or vehicle alone. Additionally, steroid-treated and vehicle-control larvae were immersed in sub-lethal solutions of technical grade TCDD (0, 0.0003, 0.003, 0.03, 0.3, and 3.0 microg TCDD/L). Both steroid treatments stimulated hypertrophy of the wolffian duct epithelium and an increase in mean epithelial cell size. Only DHT treatment stimulated epithelial cell proliferation. TCDD stimulated wolffian duct hypertrophy through an increase in mean epithelial cell size. TCDD acted as an androgen agonist on wolffian duct epithelial area and epithelial cell size. TCDD had no effect on wolffian duct epithelium among E2-injected animals. Stimulatory effects on cell size were observed at 0.0003 microg/L TCDD in saline-injected animals and at 0.003 microg/L TCDD in DHT-injected animals. Both E2 and DHT stimulated growth of the wolffian ducts early in development. Technical grade TCDD alone mimics E2 and DHT action but exhibits an androgen-agonistic action in the presence of exogenously administered DHT. Implications of possible interactions between TCDD and xenosteroids are discussed.

  9. Repression of activated aryl hydrocarbon receptor-induced transcriptional activation by 5alpha-dihydrotestosterone in human prostate cancer LNCaP and human breast cancer T47D cells.

    PubMed

    Sanada, Noriko; Gotoh, Yuka; Shimazawa, Rumiko; Klinge, Carolyn M; Kizu, Ryoichi

    2009-03-01

    Polycyclic aromatic hydrocarbons (PAHs) and dioxins are ubiquitous environmental pollutants and activate the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor. It has been reported that testosterone represses 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced transcription of the cytochrome P450 (CYP) 1A1 gene in LNCaP cells. In this study, we investigated the mechanism for the repression of 3-methylcholanthrene (3MC)-induced transcription of AhR-regulated genes, CYP1A1, CYP1A2, CYP1B1, and AhR repressor (AhRR), by 5alpha-dihydroteststerone (DHT) in LNCaP and T47D cells, which are androgen receptor (AR)- and AhR-positive. Real-time PCR analysis showed that DHT repressed 3MC-induced mRNA expression of the CYP1 family and AhRR genes. DHT repressed 3MC-induced luciferase activity in an AhR response element-driven luciferase reporter assay in LNCaP and T47D cells. The inhibitory effect of DHT was abolished by knockdown of AR protein with siRNA. The protein levels of AhR and AhR nuclear translocator (Arnt), the AhR-dimerizing partner, were not affected by DHT. Co-immunoprecipitation assay showed that DHT significantly facilitated the complex formation between AR and AhR in 3MC-treated cells. These results suggest that complex formation between activated AR and AhR plays an important role in the suppression of 3MC-induced transcription of CYP1 family genes by DHT.

  10. Phenotypic variation in a family with partial androgen insensitivity syndrome explained by differences in 5alpha dihydrotestosterone availability.

    PubMed

    Boehmer, A L; Brinkmann, A O; Nijman, R M; Verleun-Mooijman, M C; de Ruiter, P; Niermeijer, M F; Drop, S L

    2001-03-01

    variation in this family was caused by 5alpha-reductase 2 deficiency, additional to AIS. This 5alpha-reductase deficiency is due to absence of expression of the 5alpha-reductase iso-enzyme 2 as shown by molecular studies. The distinct phenotypic variation in AIS here is explained by differences in the availability of 5alpha-dihydrotestosterone during embryonic sex differentiation.

  11. Agonist-activated ion channels

    PubMed Central

    Colquhoun, David

    2006-01-01

    This paper looks at ion channels as an example of the pharmacologist's stock in trade, the action of an agonist on a receptor to produce a response. Looked at in this way, ion channels have been helpful because they are still the only system which is simple enough for quantitative investigation of transduction mechanisms. A short history is given of attempts to elucidate what happens between the time when agonist first binds, and the time when the channel opens. PMID:16402101

  12. Genes and proteins of the alternative steroid backdoor pathway for dihydrotestosterone synthesis are expressed in the human ovary and seem enhanced in the polycystic ovary syndrome.

    PubMed

    Marti, Nesa; Galván, José A; Pandey, Amit V; Trippel, Mafalda; Tapia, Coya; Müller, Michel; Perren, Aurel; Flück, Christa E

    2017-02-05

    Recently, dihydrotestosterone biosynthesis through the backdoor pathway has been implicated for the human testis in addition to the classic pathway for testosterone (T) synthesis. In the human ovary, androgen precursors are crucial for estrogen synthesis and hyperandrogenism in pathologies such as the polycystic ovary syndrome is partially due to ovarian overproduction. However, a role for the backdoor pathway is only established for the testis and the adrenal, but not for the human ovary. To investigate whether the backdoor pathway exists in normal and PCOS ovaries, we performed specific gene and protein expression studies on ovarian tissues. We found aldo-keto reductases (AKR1C1-1C4), 5α-reductases (SRD5A1/2) and retinol dehydrogenase (RoDH) expressed in the human ovary, indicating that the ovary might produce dihydrotestosterone via the backdoor pathway. Immunohistochemical studies showed specific localization of these proteins to the theca cells. PCOS ovaries show enhanced expression, what may account for the hyperandrogenism.

  13. High serum dihydrotestosterone examined by ultrasensitive LC-MS/MS as a predictor of benign prostatic hyperplasia or Gleason score 6 cancer in men with prostate-specific antigen levels of 3-10 ng/mL.

    PubMed

    Miyoshi, Y; Uemura, H; Suzuki, K; Shibata, Y; Honma, S; Harada, M; Kubota, Y

    2017-03-01

    There has been no consensus on the role of serum androgen concentrations in prostate cancer detection in men with prostate-specific antigen levels of 3-10 ng/mL. In this study, testosterone and dihydrotestosterone concentrations in blood were examined by a newly developed method using ultrasensitive liquid chromatography with two serially linked mass spectrometers (LC-MS/MS). We investigated the correlation between serum androgen levels and Gleason scores at biopsy. We analyzed data of 157 men with a total prostate-specific antigen range of 3-10 ng/mL who underwent initial systematic prostate needle biopsy for suspected prostate cancer between April 2000 and July 2003. Peripheral blood testosterone and dihydrotestosterone concentrations were determined by LC-MS/MS. Blood levels of testosterone and dihydrotestosterone were compared with pathological findings by multivariate analyses. Median values of prostate-specific antigen and prostate volume measured by ultrasound were 5.7 ng/mL and 31.4 cm(3) , respectively. Benign prostatic hyperplasia was diagnosed in 97 patients (61.8%), and prostate cancer was diagnosed in 60 (38.2%) patients, including 31 (19.7%) patients with a Gleason score of 6 and 29 (18.5%) patients with a Gleason score of 7-10. Median values of testosterone and dihydrotestosterone in blood were 3798.7 and 371.7 pg/mL, respectively. There was a strong correlation between serum testosterone and dihydrotestosterone. In multivariate analysis, age, prostate volume, and serum dihydrotestosterone were significant predictors of benign prostatic hyperplasia or prostate cancer with a Gleason score of 6. The area under the receiver operating characteristics curve for age, prostate volume, and serum dihydrotestosterone were 0.67, 0.67, and 0.67, respectively . We confirmed that high dihydrotestosterone blood levels can predict benign prostatic hyperplasia or prostate cancer with a Gleason score of 6 in men with prostate-specific antigen levels of 3-10 ng/mL.

  14. Luteinizing hormone (LH)-releasing hormone agonist reduces serum adrenal androgen levels in prostate cancer patients: implications for the effect of LH on the adrenal glands.

    PubMed

    Nishii, Masahiro; Nomura, Masashi; Sekine, Yoshitaka; Koike, Hidekazu; Matsui, Hiroshi; Shibata, Yasuhiro; Ito, Kazuto; Oyama, Tetsunari; Suzuki, Kazuhiro

    2012-01-01

    Recently, adrenal androgens have been targeted as key hormones for the development of castration-resistant prostate cancer therapeutics. Although circulating adrenal androgens originate mainly from the adrenal glands, the testes also supply about 10%. Although widely used in androgen deprivation medical castration therapy, the effect of luteinizing hormone-releasing hormone (LH-RH) agonist on adrenal androgens has not been fully studied. In this study, changes in testicular and adrenal androgen levels were measured and compared to adrenocorticotropic hormone levels. To assess the possible role of LH in the adrenal glands, immunohistochemical studies of the LH receptor in normal adrenal glands were performed. Forty-seven patients with localized or locally progressive prostate cancer were treated with LH-RH agonist with radiotherapy. Six months after initiation of treatment, testosterone, dihydrotestosterone, and estradiol levels were decreased by 90%-95%, and dehydroepiandrosterone-sulfate, dehydroepiandrosterone, and androstenedione levels were significantly decreased by 26%-40%. The suppressive effect of LH-RH agonist at 12 months was maintained. Adrenocorticotropic hormone levels showed an increasing trend at 6 months and a significant increase at 12 months. LH receptors were positively stained in the cortex cells of the reticular layer of the adrenal glands. The long-term LH-RH agonist treatment reduced adrenal-originated adrenal androgens. LH receptors in the adrenal cortex cells of the reticular layer might account for the underlying mechanism of reduced adrenal androgens.

  15. Testosterone-mediated increase in 5 alpha-dihydrotestosterone content, nuclear androgen receptor levels, and cell division in an androgen-independent prostate carcinoma of Noble rats.

    PubMed

    Ho, S M; Leav, I; Damassa, D; Kwan, P W; Merk, F B; Seto, H S

    1988-02-01

    An androgen-independent, transplantable prostate carcinoma line (AIT), originally derived from the dorsolateral prostate (DLP) of Noble rat, was implanted into orchiectomized Noble rats and its response to androgen stimulation was studied and compared to that of the regenerating DLP tissue in sexually ablated rats. AIT tumors carried in castrated hosts displayed a high basal level of proliferative activity (mitotic index (MI), 15.0 +/- 0.5) while DLP tissue in untreated castrates exhibited no proliferative activity. Following androgen stimulation by testosterone capsule implantation into host rats, the AIT responded with a marked increase in cell proliferation; MI values doubled to 30.0 +/- 2.9 on Day 5 following androgen stimulation. This androgen-induced increase in MI values was coincident with elevations in nuclear androgen receptor (20-fold increase) and 5 alpha-dihydrotestosterone content (3-fold increase) in the tumor. However, by Day 10 following androgen treatment, indices of cell proliferation in the AIT declined to pre-androgen-stimulated levels (MI, 14.8 +/- 1.9) despite the continued elevations in nuclear androgen receptor and tissue 5 alpha-dihydrotestosterone contents. Parallel changes in MI were also observed in the normal regenerating DLP following androgen stimulation. MI values in this tissue increased from nondetectable levels to 38.1 +/- 4.7 on Day 5 but declined to relatively low levels (4.5 +/- 0.9) by Day 10 following androgen replacement. Taken together these findings led us to conclude that the AIT carried in castrates is capable of responding to testosterone in a manner similar to that observed for androgen-stimulated DLP of sexually ablated rats. Thus, in both the neoplastic and regenerating tissues, the initial response to androgen is characterized by a marked enhancement of cell proliferation which was correlated with an increase in androgen receptor and 5 alpha-dihydrotestosterone content. However, like its tissue of origin, the AIT

  16. Dopamine agonist therapy in hyperprolactinemia.

    PubMed

    Webster, J

    1999-12-01

    Introduction of the dopamine agonist bromocriptine heralded a major advance in the management of hyperprolactinemic disorders. Although its side effects of nausea, dizziness and headache and its short elimination half-life are limiting factors, its efficacy established it as a reference compound against the activity of which several dopamine agonists, like pergolide, lysuride, metergoline, terguride and dihydroergocristine, fell by the wayside. More recently, two new agents, cabergoline and quinagolide, have been introduced and appear to offer considerable advantages over bromocriptine. Cabergoline, an ergoline D2 agonist, has a long plasma half-life that enables once- or twice-weekly administration. Quinagolide, in contrast, is a nonergot D2 agonist with an elimination half-life intermediate between those of bromocriptine and cabergoline, allowing the drug to be administered once daily. Comparative studies indicate that cabergoline is clearly superior to bromocriptine in efficacy (prolactin suppression, restoration of gonadal function) and in tolerability. In similar studies, quinagolide appeared to have similar efficacy and superior tolerability to that of bromocriptine. Results of a small crossover study indicate that cabergoline is better tolerated, with a trend toward activity superior to that of quinagolide. In hyperprolactinemic men and in women not seeking to become pregnant, cabergoline may be regarded as the treatment of choice.

  17. The proliferative effects of 5-androstene-3 beta,17 beta-diol and 5 alpha-dihydrotestosterone on cell cycle analysis and cell proliferation in MCF7, T47D and MDAMB231 breast cancer cell lines.

    PubMed

    Aspinall, S R; Stamp, S; Davison, A; Shenton, B K; Lennard, T W J

    2004-01-01

    Epidemiological studies suggest that precursor steroids are implicated in the aetiology of breast cancer. However, our understanding of the role of precursor steroids in breast cancer is complicated by fact that there are many precursor steroids, which are metabolically inter-related and have divergent proliferative activities on the growth of breast cancer cell lines. In this study the proliferative affects of 5 alpha-dihydrotestosterone and 5-androstene-3 beta,17 beta-diol, which may be considered true metabolites acting at a tissue level, on MCF7, T47D and MDAMB231 breast cancer cell lines have been examined by a flow cytometric technique. DNA cell cycle analysis demonstrates that 5-androstene-3 beta,17 beta-diol stimulates the proliferation of hormone-dependent cell lines at physiological levels by an oestrogen receptor mediated mechanism whereas 5 alpha-dihydrotestosterone does not affect the proliferation of MCF7 and T47D cell lines at physiological levels over short (48 h) incubations. Both 5 alpha-dihydrotestosterone and 5-androstene-3 beta,17 beta-diol stimulate proliferation of hormone-dependent cell lines at pharmacological levels via and interaction with the oestrogen receptor. In long (6-9 days) incubations both 5 alpha-dihydrotestosterone and 5-androstene-3 beta,17 beta-diol inhibit the 17 beta-oestradiol induced proliferation of MCF7 and T47D cell lines, however, 5 alpha-dihydrotestosterone inhibits while 5-androstene-3 beta,17 beta-diol stimulates basal proliferation. These cell line studies suggest a model for the role of precursor steroids in pre- and postmenopausal breast cancer.

  18. Novel diazabicycloalkane delta opioid agonists.

    PubMed

    Loriga, Giovanni; Lazzari, Paolo; Manca, Ilaria; Ruiu, Stefania; Falzoi, Matteo; Murineddu, Gabriele; Bottazzi, Mirko Emilio Heiner; Pinna, Giovanni; Pinna, Gérard Aimè

    2015-09-01

    Here we report the investigation of diazabicycloalkane cores as potential new scaffolds for the development of novel analogues of the previously reported diazatricyclodecane selective delta (δ) opioid agonists, as conformationally constrained homologues of the reference δ agonist (+)-4-[(αR)-α((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80). In particular, we have simplified the diazatricyclodecane motif of δ opioid agonist prototype 1a with bridged bicyclic cores. 3,6-diazabicyclo[3.1.1]heptane, 3,8-diazabicyclo[3.2.1]octane, 3,9-diazabicyclo[3.3.1]nonane, 3,9-diazabicyclo[4.2.1]nonane, and 3,10-diazabicyclo[4.3.1]decane were adopted as core motifs of the novel derivatives. The compounds were synthesized and biologically assayed as racemic (3-5) or diastereoisomeric (6,7) mixtures. All the novel compounds 3-7 showed δ agonism behaviour and remarkable affinity to δ receptors. Amongst the novel derivatives, 3,8-diazabicyclo[3.2.1]octane based compound 4 evidenced improved δ affinity and selectivity relative to SNC80.

  19. Regulation of membrane cholecystokinin-2 receptor by agonists enables classification of partial agonists as biased agonists.

    PubMed

    Magnan, Rémi; Masri, Bernard; Escrieut, Chantal; Foucaud, Magali; Cordelier, Pierre; Fourmy, Daniel

    2011-02-25

    Given the importance of G-protein-coupled receptors as pharmacological targets in medicine, efforts directed at understanding the molecular mechanism by which pharmacological compounds regulate their presence at the cell surface is of paramount importance. In this context, using confocal microscopy and bioluminescence resonance energy transfer, we have investigated internalization and intracellular trafficking of the cholecystokinin-2 receptor (CCK2R) in response to both natural and synthetic ligands with different pharmacological features. We found that CCK and gastrin, which are full agonists on CCK2R-induced inositol phosphate production, rapidly and abundantly stimulate internalization. Internalized CCK2R did not rapidly recycle to plasma membrane but instead was directed to late endosomes/lysosomes. CCK2R endocytosis involves clathrin-coated pits and dynamin and high affinity and prolonged binding of β-arrestin1 or -2. Partial agonists and antagonists on CCK2R-induced inositol phosphate formation and ERK1/2 phosphorylation did not stimulate CCK2R internalization or β-arrestin recruitment to the CCK2R but blocked full agonist-induced internalization and β-arrestin recruitment. The extreme C-terminal region of the CCK2R (and more precisely phosphorylatable residues Ser(437)-Xaa(438)-Thr(439)-Thr(440)-Xaa(441)-Ser(442)-Thr(443)) were critical for β-arrestin recruitment. However, this region and β-arrestins were dispensable for CCK2R internalization. In conclusion, this study allowed us to classify the human CCK2R as a member of class B G-protein-coupled receptors with regard to its endocytosis features and identified biased agonists of the CCK2R. These new important insights will allow us to investigate the role of internalized CCK2R·β-arrestin complexes in cancers expressing this receptor and to develop new diagnosis and therapeutic strategies targeting this receptor.

  20. Kappa Opioid Receptor Agonist and Brain Ischemia

    PubMed Central

    Chunhua, Chen; Chunhua, Xi; Megumi, Sugita; Renyu, Liu

    2014-01-01

    Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury. PMID:25574482

  1. Dopamine receptor agonists, partial agonists and psychostimulant addiction.

    PubMed

    Pulvirenti, L; Koob, G F

    1994-10-01

    Despite the epidemic growth of psychostimulant addiction over the past years, few pharmacological means of intervention are available to date for clinical treatment. This is of importance since the withdrawal syndrome that follows abstinence from drugs such as cocaine and the amphetamines is characterized, among other symptoms, by intense craving for the abused drug, and this is considered a critical factor leading into relapse of drug use. In this article, Luigi Pulvirenti and George Koob focus on the modulatory role shown by drugs acting at the dopamine receptor on the various phases of psychostimulant dependence in preclinical models and in human studies, and suggest that a class of compounds with partial agonist properties at the dopamine receptor may have therapeutic potential.

  2. Beta-agonists and animal welfare

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of beta-agonists in animal feed is a high profile topic within the U.S. as consumers and activist groups continue to question its safety. The only beta-agonist currently available for use in swine is ractopamine hydrochloride (RAC). This is available as Paylean™ (Elanco Animal Health – FDA a...

  3. Small molecule fluoride toxicity agonists.

    PubMed

    Nelson, James W; Plummer, Mark S; Blount, Kenneth F; Ames, Tyler D; Breaker, Ronald R

    2015-04-23

    Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here, we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride.

  4. Small Molecule Fluoride Toxicity Agonists

    PubMed Central

    Nelson1, James W.; Plummer, Mark S.; Blount, Kenneth F.; Ames, Tyler D.; Breaker, Ronald R.

    2015-01-01

    SUMMARY Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch-reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride. PMID:25910244

  5. Low-frequency electro-acupuncture and physical exercise improve metabolic disturbances and modulate gene expression in adipose tissue in rats with dihydrotestosterone-induced polycystic ovary syndrome.

    PubMed

    Mannerås, Louise; Jonsdottir, Ingibjörg H; Holmäng, Agneta; Lönn, Malin; Stener-Victorin, Elisabet

    2008-07-01

    Polycystic ovary syndrome (PCOS) is a complex endocrine and metabolic disorder associated with ovulatory dysfunction, hyperandrogenism, abdominal obesity, and insulin resistance. Pharmacotherapy is often unsatisfactory. This study evaluates the effects of low-frequency electro-acupuncture (EA) and physical exercise on metabolic disturbances and adipose tissue mRNA expression of selected genes in a rat PCOS model characterized by insulin resistance and adiposity. Dihydrotestosterone (inducing PCOS) or vehicle (control) was administrated continuously, beginning before puberty. At age 10 wk, PCOS rats were randomly divided into three groups; PCOS, PCOS EA, and PCOS exercise. PCOS EA rats received 2-Hz EA (evoking muscle twitches) three times/wk during 4-5 wk. PCOS exercise rats had free access to a running wheel for 4-5 wk. EA and exercise improved insulin sensitivity, measured by clamp, in PCOS rats. Exercise also reduced adiposity, visceral adipocyte size, and plasma leptin. EA increased plasma IGF-I. Real-time RT-PCR revealed increased expression of leptin and IL-6 and decreased expression of uncoupling protein 2 in visceral adipose tissue of PCOS rats compared with controls. EA restored the expression of leptin and uncoupling protein 2, whereas exercise normalized adipose tissue leptin and IL-6 expression in PCOS rats. Thus, EA and exercise ameliorate insulin resistance in rats with PCOS. This effect may involve regulation of adipose tissue metabolism and production because EA and exercise each partly restore divergent adipose tissue gene expression associated with insulin resistance, obesity, and inflammation. In contrast to exercise, EA improves insulin sensitivity and modulates adipose tissue gene expression without influencing adipose tissue mass and cellularity.

  6. Investigation of the mechanism of agonist and inverse agonist action at D2 dopamine receptors.

    PubMed

    Roberts, David J; Lin, Hong; Strange, Philip G

    2004-05-01

    This study investigated, for the D2 dopamine receptor, the relation between the ability of agonists and inverse agonists to stabilise different states of the receptor and their relative efficacies. Ki values for agonists were determined in competition versus the binding of the antagonist [3H]spiperone. Competition data were fitted best by a two-binding site model (with the exception of bromocriptine, for which a one-binding site model provided the best fit) and agonist affinities for the higher (Kh) (G protein-coupled) and lower affinity (Kl) (G protein-uncoupled) sites determined. Ki values for agonists were also determined in competition versus the binding of the agonist [3H]N-propylnorapomorphine (NPA) to provide a second estimate of Kh. Maximal agonist effects (Emax) and their potencies (EC50) were determined from concentration-response curves for agonist stimulation of guanosine-5'-O-(3-[32S]thiotriphosphate) ([35S]GTPgammaS) binding. The ability of agonists to stabilise the G protein-coupled state of the receptor (Kl/Kh determined from ligand-binding assays) did not correlate with either of two measures of relative efficacy (relative Emax, Kl/EC50) of agonists determined in [35S]GTPgammaS-binding assays, when the data for all of the compounds tested were analysed. For a subset of compounds, however, there was a relation between Kl/Kh and Emax. Competition-binding data versus [3H]spiperone and [3H]NPA for a range of inverse agonists were fitted best by a one-binding site model. Ki values for the inverse agonists tested were slightly lower in competition versus [3H]NPA compared to [3H]spiperone. These data do not provide support for the idea that inverse agonists act by binding preferentially to the ground state of the receptor.

  7. [Safety of beta-agonists in asthma].

    PubMed

    Oscanoa, Teodoro J

    2014-01-01

    Beta 2 agonist bronchodilators (β2A) are very important part in the pharmacotherapy of bronchial asthma, a disease that progresses in the world in an epidemic way. The β2A are prescribed to millions of people around the world, therefore the safety aspects is of public interest. Short-Acting β2 Agonists (SABAs), such as albuterol inhaler, according to current evidence, confirming its safety when used as a quick-relief or rescue medication. The long-acting β2 agonists (LABAs) The long-acting bronchodilators β2A (Long acting β2 Agonists or LABAs) are used associated with inhaled corticosteroids as controller drugs for asthma exacerbationsaccess, for safety reasons LABAs are not recommended for use as monotherapy.

  8. PPAR Agonists and Cardiovascular Disease in Diabetes

    PubMed Central

    Calkin, Anna C.; Thomas, Merlin C.

    2008-01-01

    Peroxisome proliferators activated receptors (PPARs) are ligand-activated nuclear transcription factors that play important roles in lipid and glucose homeostasis. To the extent that PPAR agonists improve diabetic dyslipidaemia and insulin resistance, these agents have been considered to reduce cardiovascular risk. However, data from murine models suggests that PPAR agonists also have independent anti-atherosclerotic actions, including the suppression of vascular inflammation, oxidative stress, and activation of the renin angiotensin system. Many of these potentially anti-atherosclerotic effects are thought to be mediated by transrepression of nuclear factor-kB, STAT, and activator protein-1 dependent pathways. In recent clinical trials, PPARα agonists have been shown to be effective in the primary prevention of cardiovascular events, while their cardiovascular benefit in patients with established cardiovascular disease remains equivocal. However, the use of PPARγ agonists, and more recently dual PPARα/γ coagonists, has been associated with an excess in cardiovascular events, possibly reflecting unrecognised fluid retention with potent agonists of the PPARγ receptor. Newer pan agonists, which retain their anti-atherosclerotic activity without weight gain, may provide one solution to this problem. However, the complex biologic effects of the PPARs may mean that only vascular targeted agents or pure transrepressors will realise the goal of preventing atherosclerotic vascular disease. PMID:18288280

  9. Long-term studies of dopamine agonists.

    PubMed

    Hubble, Jean P

    2002-02-26

    Dopamine agonists have long been used as adjunctive therapy for the treatment of Parkinson's disease (PD). In more recent years these drugs have also been proved safe and effective as initial therapy in lieu of levodopa in the treatment of PD. Long-term levodopa therapy is associated with motor complications, including fluctuating response patterns and dyskinesia. By initially introducing a dopamine agonist as symptomatic drug therapy, it may be possible to postpone the use of levodopa and delay or prevent the development of motor complications. Recently, four clinical trials have explored this hypothesis by comparing the long-term response and side effects of levodopa with dopamine agonist therapy. The drugs studied have included ropinirole, pramipexole, cabergoline, and pergolide. In each of these projects, the occurrence of motor complications, such as wearing off and dyskinesia, was significantly less in the subjects assigned to initiation of therapy with a dopamine agonist. The addition of levodopa could be postponed by many months or even several years. Therefore, these long-term studies of dopamine agonists support the initiation of a dopamine agonist instead of levodopa in an effort to postpone levodopa-related motor complications. This therapeutic approach may be particularly appropriate in PD patients with a long treatment horizon on the basis of age and general good health. The extension phase of the long-term study comparing pramipexole with levodopa is ongoing, and follow-up information may help to establish the value of this treatment strategy.

  10. The structural basis for agonist and partial agonist action on a β(1)-adrenergic receptor.

    PubMed

    Warne, Tony; Moukhametzianov, Rouslan; Baker, Jillian G; Nehmé, Rony; Edwards, Patricia C; Leslie, Andrew G W; Schertler, Gebhard F X; Tate, Christopher G

    2011-01-13

    β-adrenergic receptors (βARs) are G-protein-coupled receptors (GPCRs) that activate intracellular G proteins upon binding catecholamine agonist ligands such as adrenaline and noradrenaline. Synthetic ligands have been developed that either activate or inhibit βARs for the treatment of asthma, hypertension or cardiac dysfunction. These ligands are classified as either full agonists, partial agonists or antagonists, depending on whether the cellular response is similar to that of the native ligand, reduced or inhibited, respectively. However, the structural basis for these different ligand efficacies is unknown. Here we present four crystal structures of the thermostabilized turkey (Meleagris gallopavo) β(1)-adrenergic receptor (β(1)AR-m23) bound to the full agonists carmoterol and isoprenaline and the partial agonists salbutamol and dobutamine. In each case, agonist binding induces a 1 Å contraction of the catecholamine-binding pocket relative to the antagonist bound receptor. Full agonists can form hydrogen bonds with two conserved serine residues in transmembrane helix 5 (Ser(5.42) and Ser(5.46)), but partial agonists only interact with Ser(5.42) (superscripts refer to Ballesteros-Weinstein numbering). The structures provide an understanding of the pharmacological differences between different ligand classes, illuminating how GPCRs function and providing a solid foundation for the structure-based design of novel ligands with predictable efficacies.

  11. 11-Ketotestosterone and 11-Ketodihydrotestosterone in Castration Resistant Prostate Cancer: Potent Androgens Which Can No Longer Be Ignored

    PubMed Central

    Pretorius, Elzette; Africander, Donita J.; Vlok, Maré; Quanson, Jonathan

    2016-01-01

    Dihydrotestosterone (DHT) is regarded as the most potent natural androgen and is implicated in the development and progression of castration resistant prostate cancer (CRPC). Under castrate conditions, DHT is produced from the metabolism of the adrenal androgen precursors, DHEA and androstenedione. Recent studies have shown that the adrenal steroid 11β-hydroxyandrostenedione (11OHA4) serves as the precursor to the androgens 11-ketotestosterone (11KT) and 11-ketodihydrotestosterone (11KDHT). In this study we comprehensively assess the androgenic activity of 11KT and 11KDHT. This is the first study, to our knowledge, to show that 11KT and 11KDHT, like T and DHT, are potent and efficacious agonists of the human androgen receptor (AR) and induced both the expression of representative AR-regulated genes as well as cellular proliferation in the androgen dependent prostate cancer cell lines, LNCaP and VCaP. Proteomic analysis revealed that 11KDHT regulated the expression of more AR-regulated proteins than DHT in VCaP cells, while in vitro conversion assays showed that 11KT and 11KDHT are metabolized at a significantly lower rate in both LNCaP and VCaP cells when compared to T and DHT, respectively. Our findings show that 11KT and 11KDHT are bona fide androgens capable of inducing androgen-dependant gene expression and cell growth, and that these steroids have the potential to remain active longer than T and DHT due to the decreased rate at which they are metabolised. Collectively, our data demonstrates that 11KT and 11KDHT likely play a vital, but overlooked, role in the development and progression of CRPC. PMID:27442248

  12. Muscimol as an ionotropic GABA receptor agonist.

    PubMed

    Johnston, Graham A R

    2014-10-01

    Muscimol, a psychoactive isoxazole from Amanita muscaria and related mushrooms, has proved to be a remarkably selective agonist at ionotropic receptors for the inhibitory neurotransmitter GABA. This historic overview highlights the discovery and development of muscimol and related compounds as a GABA agonist by Danish and Australian neurochemists. Muscimol is widely used as a ligand to probe GABA receptors and was the lead compound in the development of a range of GABAergic agents including nipecotic acid, tiagabine, 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol, (Gaboxadol(®)) and 4-PIOL.

  13. Bone marker and bone density responses to dopamine agonist therapy in hyperprolactinemic males.

    PubMed

    Di Somma, C; Colao, A; Di Sarno, A; Klain, M; Landi, M L; Facciolli, G; Pivonello, R; Panza, N; Salvatore, M; Lombardi, G

    1998-03-01

    The aim of this prospective study was to evaluate the bone mineral density (BMD) at lumbar spine and femoral neck levels and biochemical parameters of bone turnover in 20 consecutive hyperprolactinemic males before and after an 18-month treatment with different dopamine agonists. Six patients received bromocriptine at a dose of 2.5-10 mg/day; 7 patients received quinagolide at a dose of 0.075-0.3 mg/day; 7 patients received cabergoline at a dose of 0.5-1.5 mg/week. BMD, serum PRL, testosterone, dihydrotestosterone, and osteocalcin (OC), and urinary cross-linked N-telopeptides of type I collagen (Ntx) levels were measured before and every 6 months during treatment. At study entry, BMD values were lower in patients than controls at both lumbar spine (0.82 +/- 0.03 vs. 1.18 +/- 0.01 g/cm2; P < 0.001) and femoral neck (0.85 +/- 0.02 vs. 0.92 +/- 0.02 g/cm2; P < 0.05) levels. Osteopenia or osteoporosis was diagnosed in 16 patients at the lumbar spine and in 6 of them at the femoral neck level. A significant inverse correlation was found between lumbar spine and femoral neck BMD values and both PRL levels and disease duration (P < 0.01). In the 20 patients, serum OC levels were significantly lower (2.1 +/- 0.1 vs. 9.3 +/- 2.4 microg/L; P < 0.01), whereas Ntx levels were significantly higher (157.8 +/- 1.1 vs. 96.4 +/- 7.4 nmol bone collagen equivalent/mmol creatinine; P < 0.001) than control values. A significant inverse correlation was found between serum PRL and OC (P < 0.01), but not Ntx, levels. After 18 months of treatment, serum PRL levels were suppressed, and gonadal function was restored in all 20 patients, as shown by the normalization of serum T (from 2.2 +/- 0.2 to 5.0 +/- 0.2 microg/L) and dihydrotestosterone (0.3 +/- 0.02 vs. 0.5 +/- 0.01 nmol/L) levels, without any significant difference among groups. A progressive significant increase in serum OC levels together with a significant decrease in Ntx levels were observed after 6, 12, and 18 months of treatment

  14. Corepressors of agonist-bound nuclear receptors

    SciTech Connect

    Gurevich, Igor; Aneskievich, Brian J.

    2007-09-15

    Nuclear receptors (NRs) rely on coregulator proteins to modulate transcription of target genes. NR coregulators can be broadly subdivided into coactivators which potentiate transcription and corepressors which silence gene expression. The prevailing view of coregulator action holds that in the absence of agonist the receptor interacts with a corepressor via the corepressor nuclear receptor (CoRNR, 'corner') box motifs within the corepressor. Upon agonist binding, a conformational change in the receptor causes the shedding of corepressor and the binding of a coactivator which interacts with the receptor via NR boxes within the coregulator. This view was challenged with the discovery of RIP140 which acts as a NR corepressor in the presence of agonist and utilizes NR boxes. Since then a number of other corepressors of agonist-bound NRs have been discovered. Among them are LCoR, PRAME, REA, MTA1, NSD1, and COPR1 Although they exhibit a great diversity of structure, mechanism of repression and pathophysiological function, these corepressors frequently have one or more NR boxes and often recruit histone deacetylases to exert their repressive effects. This review highlights these more recently discovered corepressors and addresses their potential functions in transcription regulation, disease pharmacologic responses and xenobiotic metabolism.

  15. Multiple tyrosine metabolites are GPR35 agonists

    PubMed Central

    Deng, Huayun; Hu, Haibei; Fang, Ye

    2012-01-01

    Both kynurenic acid and 2-acyl lysophosphatidic acid have been postulated to be the endogenous agonists of GPR35. However, controversy remains whether alternative endogenous agonists exist. The molecular targets accounted for many nongenomic actions of thyroid hormones are mostly unknown. Here we report the agonist activity of multiple tyrosine metabolites at the GPR35. Tyrosine metabolism intermediates that contain carboxylic acid and/or catechol functional groups were first selected. Whole cell dynamic mass redistribution (DMR) assays enabled by label-free optical biosensor were then used to characterize their agonist activity in native HT-29. Molecular assays including β-arrestin translocation, ERK phosphorylation and receptor internalization confirmed that GPR35 functions as a receptor for 5,6-dihydroxyindole-2-carboxylic acid, 3,3′,5′-triiodothyronine, 3,3′,5-triiodothyronine, gentisate, rosmarinate, and 3-nitrotyrosine. These results suggest that multiple tyrosine metabolites are alternative endogenous ligands of GPR35, and GPR35 may represent a druggable target for treating certain diseases associated with abnormality of tyrosine metabolism. PMID:22523636

  16. Serotonergic agonists behave as partial agonists at the dopamine D2 receptor.

    PubMed

    Rinken, A; Ferré, S; Terasmaa, A; Owman, C; Fuxe, K

    1999-02-25

    RAT dopamine D2short receptors expressed in CHO cells were characterized by activation of [35S]GTPgammaS binding. There were no significant differences between the maximal effects seen in activation of [35S]GTPgammaS binding caused by dopaminergic agonists, but the effects of 5-HT, 8OH-DPAT and 5-methoxytryptamine amounted to 47 +/- 7%, 43 +/- 5% and 70 +/- 7% of the dopamine effect, respectively. The dopaminergic antagonist (+)butaclamol inhibited activations of both types of ligands with equal potency (pA2 = 8.9 +/- 0.1), indicating that only one type of receptor is involved. In competition with [3H]raclopride binding, dopaminergic agonists showed 53 +/- 2% of the binding sites in the GTP-dependent high-affinity state, whereas 5-HT showed only 20 +/- 3%. Taken together, the results indicate that serotonergic agonists behave as typical partial agonists for D2 receptors with potential antiparkinsonian activity.

  17. A FEEDBACK MODEL FOR TESTICULAR-PITUITARY AXIS HORMONE KINETICS AND THEIR EFFECTS ON THE REGULATION OF THE PROSTATE IN ADULT MALE RATS

    EPA Science Inventory

    The testicular-hypothalamic-pituitary axis regulates male reproductive system functions. A model describing the kinetics and dynamics of testosterone (T), dihydrotestosterone (DHT) and luteinizing hormone (LH) was developed based on a model by Barton and Anderson (1997). The mode...

  18. Identification of Anabolic Selective Androgen Receptor Modulators with Reduced Activities in Reproductive Tissues and Sebaceous Glands

    PubMed Central

    Schmidt, Azriel; Harada, Shun-Ichi; Kimmel, Donald B.; Bai, Chang; Chen, Fang; Rutledge, Su Jane; Vogel, Robert L.; Scafonas, Angela; Gentile, Michael A.; Nantermet, Pascale V.; McElwee-Witmer, Sheila; Pennypacker, Brenda; Masarachia, Patricia; Sahoo, Soumya P.; Kim, Yuntae; Meissner, Robert S.; Hartman, George D.; Duggan, Mark E.; Rodan, Gideon A.; Towler, Dwight A.; Ray, William J.

    2009-01-01

    Androgen replacement therapy is a promising strategy for the treatment of frailty; however, androgens pose risks for unwanted effects including virilization and hypertrophy of reproductive organs. Selective Androgen Receptor Modulators (SARMs) retain the anabolic properties of androgens in bone and muscle while having reduced effects in other tissues. We describe two structurally similar 4-aza-steroidal androgen receptor (AR) ligands, Cl-4AS-1, a full agonist, and TFM-4AS-1, which is a SARM. TFM-4AS-1 is a potent AR ligand (IC50, 38 nm) that partially activates an AR-dependent MMTV promoter (55% of maximal response) while antagonizing the N-terminal/C-terminal interaction within AR that is required for full receptor activation. Microarray analyses of MDA-MB-453 cells show that whereas Cl-4AS-1 behaves like 5α-dihydrotestosterone (DHT), TFM-4AS-1 acts as a gene-selective agonist, inducing some genes as effectively as DHT and others to a lesser extent or not at all. This gene-selective agonism manifests as tissue-selectivity: in ovariectomized rats, Cl-4AS-1 mimics DHT while TFM-4AS-1 promotes the accrual of bone and muscle mass while having reduced effects on reproductive organs and sebaceous glands. Moreover, TFM-4AS-1 does not promote prostate growth and antagonizes DHT in seminal vesicles. To confirm that the biochemical properties of TFM-4AS-1 confer tissue selectivity, we identified a structurally unrelated compound, FTBU-1, with partial agonist activity coupled with antagonism of the N-terminal/C-terminal interaction and found that it also behaves as a SARM. TFM-4AS-1 and FTBU-1 represent two new classes of SARMs and will allow for comparative studies aimed at understanding the biophysical and physiological basis of tissue-selective effects of nuclear receptor ligands. PMID:19846549

  19. Agonistic and reproductive interactions in Betta splendens.

    PubMed

    Bronstein, P M

    1984-12-01

    Reproductive and agonistic behaviors in Siamese fighting fish were investigated in eight experiments, and some consequences and determinants of these sequences were isolated. First, fights and the formation of dominance-subordinancy relations were studied. Second, it was determined that large body size as well as males' prior residency in a tank produced an agonistic advantage; the magnitude of this advantage was positively related to the duration of residency. Third, the prior-residency effect in Bettas was determined by males' familiarity with visual and/or tactile cues in their home tanks. Fourth, dominant males had greater access to living space and were more likely to display at a mirror, build nests, and approach females than were subordinates. Finally, it was discovered that chemical cues associated with presumedly inert plastic tank dividers influence Bettas' social behavior.

  20. Agonists block currents through acetylcholine receptor channels.

    PubMed Central

    Sine, S M; Steinbach, J H

    1984-01-01

    We have examined the effects of high concentrations of cholinergic agonists on currents through single acetylcholine receptor (AChR) channels on clonal BC3H1 cells. We find that raised concentrations of acetylcholine (ACh; above 300 microM) or carbamylcholine (Carb; above 1,000 microM) produce a voltage- and concentration-dependent reduction in the mean single-channel current. Raised concentrations of suberyldicholine (Sub; above 3 microM) produce a voltage- and concentration-dependent increase in the number of brief duration low-conductance interruptions of open-channel currents. These observations can be quantitatively described by a model in which agonist molecules enter and transiently occlude the ion-channel of the AChR. PMID:6478036

  1. Ropinirole, a non-ergoline dopamine agonist.

    PubMed

    Jost, Wolfgang H; Angersbach, Dieter

    2005-01-01

    Dopamine agonists have become indispensable in the treatment of Parkinson's disease. In every-day practice, however, the decision to select the best compound for an individual patient is rendered difficult because of the large number of substances available on the market. This review article provides a closer look at the experimental and clinical studies with ropinirole published so far. Ropinirole is a non-ergoline dopamine agonist which has been proven to be effective in both, monotherapy and combination therapy of idiopathic Parkinson's disease. In addition to ameliorating bradykinesia, rigor, and tremor, ropinirole facilitates the daily life and improves depressive moods of patients with Parkinson's disease. The long-term complications of levodopa are avoided, and problems commonly associated with levodopa treatment are reduced. Ropinirole appears to have a neuroprotective effect. In addition to Parkinson's disease, ropinirole has also been used successfully in the treatment of restless legs syndrome.

  2. The identification of orally bioavailable thrombopoietin agonists.

    PubMed

    Munchhof, Michael J; Antipas, Amy S; Blumberg, Laura C; Brissette, William H; Brown, Matthew F; Casavant, Jeffrey M; Doty, Jonathan L; Driscoll, James; Harris, Thomas M; Wolf-Gouveia, Lilli A; Jones, Christopher S; Li, Qifang; Linde, Robert G; Lira, Paul D; Marfat, Anthony; McElroy, Eric; Mitton-Fry, Mark; McCurdy, Sandra P; Reiter, Lawrence A; Ripp, Sharon L; Shavnya, Andrei; Thomasco, Lisa M; Trevena, Kristen A

    2009-03-01

    Recently, we disclosed a series of potent pyrimidine benzamide-based thrombopoietin receptor agonists. Unfortunately, the structural features required for the desired activity conferred physicochemical properties that were not favorable for the development of an oral agent. The physical properties of the series were improved by replacing the aminopyrimidinyl group with a piperidine-4-carboxylic acid moiety. The resulting compounds possessed favorable in vivo pharmacokinetic properties, including good bioavailability.

  3. Signal Use by Octopuses in Agonistic Interactions.

    PubMed

    Scheel, David; Godfrey-Smith, Peter; Lawrence, Matthew

    2016-02-08

    Cephalopods show behavioral parallels to birds and mammals despite considerable evolutionary distance [1, 2]. Many cephalopods produce complex body patterns and visual signals, documented especially in cuttlefish and squid, where they are used both in camouflage and a range of interspecific interactions [1, 3-5]. Octopuses, in contrast, are usually seen as solitary and asocial [6, 7]; their body patterns and color changes have primarily been interpreted as camouflage and anti-predator tactics [8-12], though the familiar view of the solitary octopus faces a growing list of exceptions. Here, we show by field observation that in a shallow-water octopus, Octopus tetricus, a range of visible displays are produced during agonistic interactions, and these displays correlate with the outcome of those interactions. Interactions in which dark body color by an approaching octopus was matched by similar color in the reacting octopus were more likely to escalate to grappling. Darkness in an approaching octopus met by paler color in the reacting octopus accompanied retreat of the paler octopus. Octopuses also displayed on high ground and stood with spread web and elevated mantle, often producing these behaviors in combinations. This study is the first to document the systematic use of signals during agonistic interactions among octopuses. We show prima facie conformity of our results to an influential model of agonistic signaling [13]. These results suggest that interactions have a greater influence on octopus evolution than has been recognized and show the importance of convergent evolution in behavioral traits.

  4. The effect of sex hormones on peroxisome proliferator-activated receptor gamma expression and activity in mature adipocytes.

    PubMed

    Sato, Hiromi; Sugai, Hana; Kurosaki, Hiroshi; Ishikawa, Momoko; Funaki, Asami; Kimura, Yuki; Ueno, Koichi

    2013-01-01

    Peroxisome proliferator-activated receptor (PPAR) γ plays a major role in the regulation of lipid and carbohydrate metabolism. Pioglitazone is a PPARγ agonist that is widely used for the treatment of type 2 diabetes mellitus. However, female patients have been reported to experience stronger efficacy and adverse effects than male patients. This study evaluated the effects of sex hormones on PPARγ expression and activity in adipocytes. Mouse 3T3-L1 preadipocytes were used after being grown into matured adipocytes. The sex hormones 17β-estradiol (E2), testosterone (T), or 5α-androstan-17β-ol-3-one (dihydrotestosterone; DHT) were added to the matured adipocytes and the cells were then maintained for short (24-72 h) or long (1- or 2-weeks) periods. E2 significantly upregulated PPARγ protein expression in a concentration-dependent manner after extended exposure, whereas T and DHT did not have such an effect. When cells were co-treated with pioglitazone and E2, PPARγ protein expression significantly increased in an E2-dependent manner, whereas this expression seemed to be reduced by pioglitazone mono-treatment and co-treatment with DHT at higher concentrations. The secretion levels of adiponectin protein, a major indicator of PPARγ activity, were significantly decreased by DHT, but were not affected by E2. Finally a luciferase assay was performed using a PPAR response element-Luk reporter gene. Transcriptional activity was not changed by any of single sex hormone treatment, but was significantly downregulated by co-treatment with pioglitazone and DHT. Taken together, our results suggest that sex hormones may influence PPARγ expression and function, which may explain the observed sex-specific different effect of pioglitazone.

  5. Discovery of G Protein-Biased EP2 Receptor Agonists

    PubMed Central

    2016-01-01

    To identify G protein-biased and highly subtype-selective EP2 receptor agonists, a series of bicyclic prostaglandin analogues were designed and synthesized. Structural hybridization of EP2/4 dual agonist 5 and prostacyclin analogue 6, followed by simplification of the ω chain enabled us to discover novel EP2 agonists with a unique prostacyclin-like scaffold. Further optimization of the ω chain was performed to improve EP2 agonist activity and subtype selectivity. Phenoxy derivative 18a showed potent agonist activity and excellent subtype selectivity. Furthermore, a series of compounds were identified as G protein-biased EP2 receptor agonists. These are the first examples of biased ligands of prostanoid receptors. PMID:26985320

  6. Sports doping: emerging designer and therapeutic β2-agonists.

    PubMed

    Fragkaki, A G; Georgakopoulos, C; Sterk, S; Nielen, M W F

    2013-10-21

    Beta2-adrenergic agonists, or β2-agonists, are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptom-relievers and, in combination with inhaled corticosteroids, as disease-controllers. The use of β2-agonists is prohibited in sports by the World Anti-Doping Agency (WADA) due to claimed anabolic effects, and also, is prohibited as growth promoters in cattle fattening in the European Union. This paper reviews the last seven-year (2006-2012) literature concerning the development of novel β2-agonists molecules either by modifying the molecule of known β2-agonists or by introducing moieties producing indole-, adamantyl- or phenyl urea derivatives. New emerging β2-agonists molecules for future therapeutic use are also presented, intending to emphasize their potential use for doping purposes or as growth promoters in the near future.

  7. Agonist-receptor-arrestin, an alternative ternary complex with high agonist affinity.

    PubMed

    Gurevich, V V; Pals-Rylaarsdam, R; Benovic, J L; Hosey, M M; Onorato, J J

    1997-11-14

    The rapid decrease of a response to a persistent stimulus, often termed desensitization, is a widespread biological phenomenon. Signal transduction by numerous G protein-coupled receptors appears to be terminated by a strikingly uniform two-step mechanism, most extensively characterized for the beta2-adrenergic receptor (beta2AR), m2 muscarinic cholinergic receptor (m2 mAChR), and rhodopsin. The model predicts that activated receptor is initially phosphorylated and then tightly binds an arrestin protein that effectively blocks further G protein interaction. Here we report that complexes of beta2AR-arrestin and m2 mAChR-arrestin have a higher affinity for agonists (but not antagonists) than do receptors not complexed with arrestin. The percentage of phosphorylated beta2AR in this high affinity state in the presence of full agonists varied with different arrestins and was enhanced by selective mutations in arrestins. The percentage of high affinity sites also was proportional to the intrinsic activity of an agonist, and the coefficient of proportionality varies for different arrestin proteins. Certain mutant arrestins can form these high affinity complexes with unphosphorylated receptors. Mutations that enhance formation of the agonist-receptor-arrestin complexes should provide useful tools for manipulating both the efficiency of signaling and rate and specificity of receptor internalization.

  8. Agonistic behavior in food animals: review of research and techniques.

    PubMed

    McGlone, J J

    1986-04-01

    One type of social behavior--agonistic behavior--is commonly observed among food animals. Agonistic behaviors are those behaviors which cause, threaten to cause or seek to reduce physical damage. Agonistic behavior is comprised of threats, aggression and submission. While any one of these divisions of agonistic behavior may be observed alone, they usually are found, in sequence, from the start to the end of an interaction. Food animals may show interspecific or intraspecific agonistic behaviors. Interspecific agonistic behavior has not been extensively studied but it is agriculturally important because farm workers may become injured or killed by aggressive food animals. Types of intraspecific agonistic behavior are: when animals are brought together, intermale fighting, resource defense, inter-gender fighting and aberrant aggression. Common pitfalls in research on agonistic behavior among food animals include too few replicates to detect a biological difference, the assumptions of the analysis are not met, only aggression and not submission or other agonistic behavior components are measured, incomplete description of the behaviors are reported and a complete, quantitive ethogram did not form the basis for selecting behavioral measures.

  9. Computational modeling toward understanding agonist binding on dopamine 3.

    PubMed

    Zhao, Yaxue; Lu, Xuefeng; Yang, Chao-Yie; Huang, Zhimin; Fu, Wei; Hou, Tingjun; Zhang, Jian

    2010-09-27

    The dopamine 3 (D3) receptor is a promising therapeutic target for the treatment of nervous system disorders, such as Parkinson's disease, and current research interests primarily focus on the discovery/design of potent D3 agonists. Herein, a well-designed computational protocol, which combines pharmacophore identification, homology modeling, molecular docking, and molecular dynamics (MD) simulations, was employed to understand the agonist binding on D3 aiming to provide insights into the development of novel potent D3 agonists. We (1) identified the chemical features required in effective D3 agonists by pharmacophore modeling based upon 18 known diverse D3 agonists; (2) constructed the three-dimensional (3D) structure of D3 based on homology modeling and the pharmacophore hypothesis; (3) identified the binding modes of the agonists to D3 by the correlation between the predicted binding free energies and the experimental values; and (4) investigated the induced fit of D3 upon agonist binding through MD simulations. The pharmacophore models of the D3 agonists and the 3D structure of D3 can be used for either ligand- or receptor-based drug design. Furthermore, the MD simulations further give the insight that the long and flexible EL2 acts as a "door" for agonist binding, and the "ionic lock" at the bottom of TM3 and TM6 is essential to transduce the activation signal.

  10. D-Cycloserine: Agonist turned antagonist.

    PubMed

    Lanthorn, T H

    1994-10-01

    D-Cycloserine can enhance activation of the NMDA receptor complex and could enhance the induction of long-term potentiation (LTP). In animals and humans, D-cycloserine can enhance performance in learning and memory tasks. This enhancing effect can disappear during repeated administration. The enhancing effects are also lost when higher doses are used, and replaced by behavioral and biochemical effects like those produced by NMDA antagonists. It has been reported that NMDA agonists, applied before or after tetanic stimulation, can block the induction of LTP. This may be the result of feedback inhibition of second messenger pathways stimulated by receptor activation. This may explain the antagonist-like effects of glycine partial agonists like D-cycloserine. In clinical trials of D-cycloserine in age-associated memory impairment (AAMI) and Alzheimer's disease, chronic treatment provided few positive effects on learning and memory. This may be due to inhibition of second messenger pathways following chronic stimulation of the receptor complex.

  11. Inverse agonist properties of atypical antipsychotic drugs.

    PubMed

    Akam, Elizabeth; Strange, Philip G

    2004-06-01

    Mechanisms of action of several atypical antipsychotic drugs have been examined at the D(2) dopamine receptor expressed in CHO cells. The drugs tested were found to exhibit inverse agonist activity at the D(2) dopamine receptor based on their effects to potentiate forskolin-stimulated cyclic AMP (cAMP) accumulation. Each of the antipsychotic drugs tested (clozapine, olanzapine, quetiapine and risperidone) increased cAMP accumulation to the same extent. The increase in cAMP was also similar to that seen with typical antipsychotic drugs. Inverse agonism at the D(2) dopamine receptor seems, therefore, to be a property common to all classes of antipsychotic drugs. The effect of sodium ions on the binding of the drugs to the receptor was also assessed. Each of the atypical antipsychotic drugs tested here bound with higher affinity in the absence of sodium ions. Previous studies have shown that some antipsychotic drugs are insensitive to sodium ions and some bind with higher affinity in the presence of sodium ions. Given that all of these antipsychotic drugs are inverse agonists, it may be concluded that this sodium ion sensitivity is unrelated to mechanisms of inverse agonism.

  12. Selective androgen receptor modulator, YK11, regulates myogenic differentiation of C2C12 myoblasts by follistatin expression.

    PubMed

    Kanno, Yuichiro; Ota, Rumi; Someya, Kousuke; Kusakabe, Taichi; Kato, Keisuke; Inouye, Yoshio

    2013-01-01

    The myogenic differentiation of C2C12 myoblast cells is induced by the novel androgen receptor (AR) partial agonist, (17α,20E)-17,20-[(1-methoxyethylidene)bis-(oxy)]-3-oxo-19-norpregna-4,20-diene-21-carboxylic acid methyl ester (YK11), as well as by dihydrotestosterone (DHT). YK11 is a selective androgen receptor modulator (SARM), which activates AR without the N/C interaction. In this study, we further investigated the mechanism by which YK11 induces myogenic differentiation of C2C12 cells. The induction of key myogenic regulatory factors (MRFs), such as myogenic differentiation factor (MyoD), myogenic factor 5 (Myf5) and myogenin, was more significant in the presence of YK11 than in the presence of DHT. YK11 treatment of C2C12 cells, but not DHT, induced the expression of follistatin (Fst), and the YK11-mediated myogenic differentiation was reversed by anti-Fst antibody. These results suggest that the induction of Fst is important for the anabolic effect of YK11.

  13. Fates of endocytosed somatostatin sst2 receptors and associated agonists.

    PubMed Central

    Koenig, J A; Kaur, R; Dodgeon, I; Edwardson, J M; Humphrey, P P

    1998-01-01

    Somatostatin agonists are rapidly and efficiently internalized with the somatostatin sst2 receptor. The fate of internalized agonists and receptors is of critical importance because the rate of ligand recycling back to the cell surface can limit the amount of radioligand accumulated inside the cells, whereas receptor recycling might be of vital importance in providing the cell surface with dephosphorylated, resensitized receptors. Furthermore the accumulation of radioisotope-conjugated somatostatin agonists inside cancer cells resulting from receptor-mediated internalization has been used as a treatment for cancers that overexpress somatostatin receptors. In the present study, radio-iodinated agonists at the sst2 somatostatin receptor were employed to allow quantitative analysis of the fate of endocytosed agonist. After endocytosis, recycling back to the cell surface was the main pathway for both 125I-labelled somatostatin-14 (SRIF-14) and the more stable agonist 125I-labelled cyclo(N-Me-Ala-Tyr-d-Trp-Lys-Abu-Phe) (BIM-23027; Abu stands for aminobutyric acid), accounting for 75-85% of internalized ligand when re-endocytosis of radioligand was prevented. We have shown that there is a dynamic cycling of both somatostatin agonist ligands and receptors between the cell surface and internal compartments both during agonist treatment and after surface-bound agonist has been removed, unless steps are taken to prevent the re-activation of receptors by recycled agonist. Internalization leads to increased degradation of 125I-labelled SRIF-14 but not 125I-labelled BIM-23027. The concentration of recycled agonist accumulating in the extracellular medium was sufficient to re-activate the receptor, as measured both by the inhibition of forskolin-stimulated adenylate cyclase and the recovery of surface receptor number after internalization. PMID:9820803

  14. Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration

    PubMed Central

    Chakrabarti, Mrinmay; Haque, Azizul; Banik, Naren L.; Nagarkatti, Prakash; Nagarkatti, Mitzi; Ray, Swapan K.

    2014-01-01

    Recent results from laboratory investigations and clinical trials indicate important roles for estrogen receptor (ER) agonists in protecting the central nervous system (CNS) from noxious consequences of neuroinflammation and neurodegeneration. Neurodegenerative processes in several CNS disorders including spinal cord injury (SCI), multiple sclerosis (MS), Parkinson's disease (PD), and Alzheimer's disease (AD) are associated with activation of microglia and astrocytes, which drive the resident neuroinflammatory response. During neurodegenerative processes, activated microglia and astrocytes cause deleterious effects on surrounding neurons. The inhibitory activity of ER agonists on microglia activation might be a beneficial therapeutic option for delaying the onset or progression of neurodegenerative injuries and diseases. Recent studies suggest that ER agonists can provide neuroprotection by modulation of cell survival mechanisms, synaptic reorganization, regenerative responses to axonal injury, and neurogenesis process. The anti-inflammatory and neuroprotective actions of ER agonists are mediated mainly via two ERs known as ERα and ERβ. Although some studies have suggested that ER agonists may be deleterious to some neuronal populations, the potential clinical benefits of ER agonists for augmenting cognitive function may triumph over the associated side effects. Also, understanding the modulatory activities of ER agonists on inflammatory pathways will possibly lead to the development of selective anti-inflammatory molecules with neuroprotective roles in different CNS disorders such as SCI, MS, PD, and AD in humans. Future studies should be concentrated on finding the most plausible molecular pathways for enhancing protective functions of ER agonists in treating neuroinflammatory and neurodegenerative injuries and diseases in the CNS. PMID:25245209

  15. TOXICITY OF AHR AGONISTS TO FISH EARLY LIFE STAGES

    EPA Science Inventory

    Fish early life stages are exceptionally sensitive to the lethal toxicity of chemicals that act as arylhydrocarbon receptor (AhR) agonists. Toxicity characterizations based on 2,3,7,8-tetrachlorodibenzo-p-dioxin, generally the most potent AhR agonist, support the toxicity equiva...

  16. Physical Chemistry to the Rescue: Differentiating Nicotinic and Cholinergic Agonists

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    Researches suggest that two agonists can bind to the same binding site of an important transmembrane protein and elicit a biological response through strikingly different binding interactions. Evidence is provided which suggests two possible types of nicotinic acetylcholine receptor agonist binding like acetlycholine (cholinergic) or like nicotine…

  17. Neuroprotection by Alpha 2-Adrenergic Agonists in Cerebral Ischemia

    PubMed Central

    Zhang, Yonghua; Kimelberg, Harold K.

    2005-01-01

    Ischemic brain injury is implicated in the pathophysiology of stroke and brain trauma, which are among the top killers worldwide, and intensive studies have been performed to reduce neural cell death after cerebral ischemia. Alpha 2-adrenergic agonists have been shown to improve the histomorphological and neurological outcome after cerebral ischemic injury when administered during ischemia, and recent studies have provided considerable evidence that alpha 2-adrenergic agonists can protect the brain from ischemia/reperfusion injury. Thus, alpha 2-adrenergic agonists are promising potential drugs in preventing cerebral ischemic injury, but the mechanisms by which alpha 2-adrenergic agonists exert their neuroprotective effect are unclear. Activation of both the alpha 2-adrenergic receptor and imidazoline receptor may be involved. This mini review examines the recent progress in alpha 2-adrenergic agonists - induced neuroprotection and its proposed mechanisms in cerebral ischemic injury. PMID:18369397

  18. Quantifying agonist activity at G protein-coupled receptors.

    PubMed

    Ehlert, Frederick J; Suga, Hinako; Griffin, Michael T

    2011-12-26

    When an agonist activates a population of G protein-coupled receptors (GPCRs), it elicits a signaling pathway that culminates in the response of the cell or tissue. This process can be analyzed at the level of a single receptor, a population of receptors, or a downstream response. Here we describe how to analyze the downstream response to obtain an estimate of the agonist affinity constant for the active state of single receptors. Receptors behave as quantal switches that alternate between active and inactive states (Figure 1). The active state interacts with specific G proteins or other signaling partners. In the absence of ligands, the inactive state predominates. The binding of agonist increases the probability that the receptor will switch into the active state because its affinity constant for the active state (K(b)) is much greater than that for the inactive state (K(a)). The summation of the random outputs of all of the receptors in the population yields a constant level of receptor activation in time. The reciprocal of the concentration of agonist eliciting half-maximal receptor activation is equivalent to the observed affinity constant (K(obs)), and the fraction of agonist-receptor complexes in the active state is defined as efficacy (ε) (Figure 2). Methods for analyzing the downstream responses of GPCRs have been developed that enable the estimation of the K(obs) and relative efficacy of an agonist. In this report, we show how to modify this analysis to estimate the agonist K(b) value relative to that of another agonist. For assays that exhibit constitutive activity, we show how to estimate K(b) in absolute units of M(-1). Our method of analyzing agonist concentration-response curves consists of global nonlinear regression using the operational model. We describe a procedure using the software application, Prism (GraphPad Software, Inc., San Diego, CA). The analysis yields an estimate of the product of K(obs) and a parameter proportional to efficacy (

  19. Agonistic behavior in males and females: effects of an estrogen receptor beta agonist in gonadectomized and gonadally intact mice

    PubMed Central

    Allen, Amy E. Clipperton; Cragg, Cheryl L.; Wood, Alexis J.; Pfaff, Donald W.; Choleris, Elena

    2010-01-01

    Summary Affiliative and agonistic social interactions are mediated by gonadal hormones. Research with estrogen receptor alpha (ERα) or beta (ERβ) knockout (KO) mice show that long-term inactivation of ERα decreases, while inactivation of ERβ increases, male aggression. Opposite effects were found in female αERKO and βERKO mice. The role of acute activation of ERα or ERβ in the agonistic responses of adult non-KO mice is unknown. We report here the effects of the ERβ selective agonist WAY-200070 on agonistic and social behavior in gonadally intact and gonadectomized (gonadex) male and female CD-1 mice towards a gonadex, same-sex intruder. All 15 min resident-intruder tests were videotaped for comprehensive behavioral analysis. Separate analyses assessed: 1) effects of WAY-200070 on each sex and gonadal condition; 2) differences between sexes, and between gonadally intact and gonadex mice, in untreated animals. Results show that in gonadally intact male and female mice WAY-200070 increased agonistic behaviors such as pushing down and aggressive grooming, while leaving attacks unaffected. In untreated mice, males attacked more than females, and gonadex animals showed less agonistic behavior than same-sex, gonadally intact mice. Overall, our detailed behavioral analysis suggested that in gonadally intact male and female mice, ERβ mediates patterns of agonistic behavior that are not directly involved in attacks. This suggests that specific aspects of aggressive behavior are acutely mediated by ERβ in adult mice. Our results also showed that, in resident-intruder tests, female mice spend as much time in intrasexual agonistic interactions as males, but use agonistic behaviors that involve extremely low levels of direct attacks. This non-attack aggression in females is increased by acute activation of ERβ. Thus, acute activation of ERβ similarly mediates agonistic behavior in adult male and female CD-1 mice. PMID:20129736

  20. The cardiovascular effects of peroxisome proliferator-activated receptor agonists.

    PubMed

    Friedland, Sayuri N; Leong, Aaron; Filion, Kristian B; Genest, Jacques; Lega, Iliana C; Mottillo, Salvatore; Poirier, Paul; Reoch, Jennifer; Eisenberg, Mark J

    2012-02-01

    Although peroxisome proliferator-activated receptor agonists are prescribed to improve cardiovascular risk factors, their cardiovascular safety is controversial. We therefore reviewed the literature to identify landmark randomized controlled trials evaluating the effect of peroxisome proliferator-activated receptor gamma agonists (pioglitazone and rosiglitazone), alpha agonists (fenofibrate and gemfibrozil), and pan agonists (bezafibrate, muraglitazar, ragaglitazar, tesaglitazar, and aleglitazar) on cardiovascular outcomes. Pioglitazone may modestly reduce cardiovascular events but also may increase the risk of bladder cancer. Rosiglitazone increases the risk of myocardial infarction and has been withdrawn in European and restricted in the United States. Fibrates improve cardiovascular outcomes only in select subgroups: fenofibrate in diabetic patients with metabolic syndrome, gemfibrozil in patients with dyslipidemia, and bezafibrate in patients with diabetes or metabolic syndrome. The cardiovascular safety of the new pan agonist aleglitazar, currently in phase II trials, remains to be determined. The heterogenous effects of peroxisome proliferator-activated receptor agonists to date highlight the importance of postmarketing surveillance. The critical question of why peroxisome proliferator-activated receptor agonists seem to improve cardiovascular risk factors without significantly improving cardiovascular outcomes requires further investigation.

  1. Synthetic RORγ agonists regulate multiple pathways to enhance antitumor immunity

    PubMed Central

    Hu, Xiao; Liu, Xikui; Moisan, Jacques; Wang, Yahong; Lesch, Charles A.; Spooner, Chauncey; Morgan, Rodney W.; Zawidzka, Elizabeth M.; Mertz, David; Bousley, Dick; Majchrzak, Kinga; Kryczek, Ilona; Taylor, Clarke; Van Huis, Chad; Skalitzky, Don; Hurd, Alexander; Aicher, Thomas D.; Toogood, Peter L.; Glick, Gary D.; Paulos, Chrystal M.; Zou, Weiping; Carter, Laura L.

    2016-01-01

    ABSTRACT RORγt is the key transcription factor controlling the development and function of CD4+ Th17 and CD8+ Tc17 cells. Across a range of human tumors, about 15% of the CD4+ T cell fraction in tumor-infiltrating lymphocytes are RORγ+ cells. To evaluate the role of RORγ in antitumor immunity, we have identified synthetic, small molecule agonists that selectively activate RORγ to a greater extent than the endogenous agonist desmosterol. These RORγ agonists enhance effector function of Type 17 cells by increasing the production of cytokines/chemokines such as IL-17A and GM-CSF, augmenting expression of co-stimulatory receptors like CD137, CD226, and improving survival and cytotoxic activity. RORγ agonists also attenuate immunosuppressive mechanisms by curtailing Treg formation, diminishing CD39 and CD73 expression, and decreasing levels of co-inhibitory receptors including PD-1 and TIGIT on tumor-reactive lymphocytes. The effects of RORγ agonists were not observed in RORγ−/− T cells, underscoring the selective on-target activity of the compounds. In vitro treatment of tumor-specific T cells with RORγ agonists, followed by adoptive transfer to tumor-bearing mice is highly effective at controlling tumor growth while improving T cell survival and maintaining enhanced IL-17A and reduced PD-1 in vivo. The in vitro effects of RORγ agonists translate into single agent, immune system-dependent, antitumor efficacy when compounds are administered orally in syngeneic tumor models. RORγ agonists integrate multiple antitumor mechanisms into a single therapeutic that both increases immune activation and decreases immune suppression resulting in robust inhibition of tumor growth. Thus, RORγ agonists represent a novel immunotherapy approach for cancer. PMID:28123897

  2. [Histrelin acetate--the first once yearly LHRH agonist].

    PubMed

    Altarac, Silvio

    2011-01-01

    Long-acting synthetic luteinising hormone-releasing hormone agonists have become the mainstay for androgen-deprivation therapy, because they avoid the physical and psychological discomfort associated with orchidectomy and lack the potential cardiotoxicity associated with estrogens such as diethylstilbestrol. Currently available luteinising hormone-releasing hormone agonist analogues include leuprolide, goserelin, triptorelin, degarelix and buserelin were administered as either intramuscular or subcutaneous depot injections on a 1, 2, 3 or 6 months basis. Histrelin acetate is the first long-acting luteinising hormone-releasing hormone agonist available as a once-yearly subcutaneous implant.

  3. Toll-like receptor agonists in cancer therapy

    PubMed Central

    Adams, Sylvia

    2010-01-01

    Toll-like receptors (TLRs) are pattern-recognition receptors related to the Drosophila Toll protein. TLR activation alerts the immune system to microbial products and initiates innate and adaptive immune responses. The naturally powerful immunostimulatory property of TLR agonists can be exploited for active immunotherapy against cancer. Antitumor activity has been demonstrated in several cancers, and TLR agonists are now undergoing extensive clinical investigation. This review discusses recent advances in the field and highlights potential opportunities for the clinical development of TLR agonists as single agent immunomodulators, vaccine adjuvants and in combination with conventional cancer therapies. PMID:20563267

  4. Selective androgen receptor modulator activity of a steroidal antiandrogen TSAA-291 and its cofactor recruitment profile.

    PubMed

    Hikichi, Yukiko; Yamaoka, Masuo; Kusaka, Masami; Hara, Takahito

    2015-10-15

    Selective androgen receptor modulators (SARMs) specifically bind to the androgen receptor and exert agonistic or antagonistic effects on target organs. In this study, we investigated the SARM activity of TSAA-291, previously known as a steroidal antiandrogen, in mice because TSAA-291 was found to possess partial androgen receptor agonist activity in reporter assays. In addition, to clarify the mechanism underlying its tissue selectivity, we performed comprehensive cofactor recruitment analysis of androgen receptor using TSAA-291 and dihydrotestosterone (DHT), an endogenous androgen. The androgen receptor agonistic activity of TSAA-291 was more obvious in reporter assays using skeletal muscle cells than in those using prostate cells. In castrated mice, TSAA-291 increased the weight of the levator ani muscle without increasing the weight of the prostate and seminal vesicle. Comprehensive cofactor recruitment analysis via mammalian two-hybrid methods revealed that among a total of 112 cofactors, 12 cofactors including the protein inhibitor of activated STAT 1 (PIAS1) were differently recruited to androgen receptor in the presence of TSAA-291 and DHT. Prostate displayed higher PIAS1 expression than skeletal muscle. Forced expression of the PIAS1 augmented the transcriptional activity of the androgen receptor, and silencing of PIAS1 by siRNAs suppressed the secretion of prostate-specific antigen, an androgen responsive marker. Our results demonstrate that TSAA-291 has SARM activity and suggest that TSAA-291 may induce different conformational changes of the androgen receptor and recruitment profiles of cofactors such as PIAS1, compared with DHT, to exert tissue-specific activity.

  5. Characterization of a novel bivalent morphinan possessing kappa agonist and micro agonist/antagonist properties.

    PubMed

    Mathews, Jennifer L; Peng, Xuemei; Xiong, Wennan; Zhang, Ao; Negus, S Stevens; Neumeyer, John L; Bidlack, Jean M

    2005-11-01

    Previous research has shown that compounds with mixed kappa and mu activity may have utility for the treatment of cocaine abuse and dependence. The present study characterizes the pharmacological profile of a bivalent morphinan that was shown to be a kappa opioid receptor agonist and a mu opioid receptor agonist/antagonist. MCL-145 [bis(N-cyclobutylmethylmorphinan) fumarate] is related to the morphinan cyclorphan and its N-cyclobutylmethyl derivative MCL-101 [3-hydroxy-N-cyclobutylmethyl morphinan S-(+)-mandelate]. MCL-145 consists of two morphinans connected by a spacer at the 3-hydroxy position. This compound had K(i) values of 0.078 and 0.20 nM for the kappa and mu opioid receptors, respectively, using radioligand binding assays as shown by Neumeyer et al. in 2003. In the guanosine 5'-O -(3-[(35) S]thiotriphosphate) binding assay, MCL-145 produced an E(max) value of 80% for the kappa opioid receptor and 42% for the mu opioid receptor. The EC(50) values obtained for this compound were 4.3 and 3.1 nM for the kappa and mu opioid receptors, respectively. In vivo MCL-145 produced a full dose-response curve in the 55 degrees C warm water tail-flick test and was equipotent to morphine. The agonist properties of MCL-145 were antagonized by the mu-selective antagonist beta-funaltrexamine and the kappa-selective antagonist nor-binaltorphimine. MCL-145 also acted as a mu antagonist, as measured by the inhibition of morphine-induced antinociception.

  6. Feed-forward inhibition of androgen receptor activity by glucocorticoid action in human adipocytes.

    PubMed

    Hartig, Sean M; He, Bin; Newberg, Justin Y; Ochsner, Scott A; Loose, David S; Lanz, Rainer B; McKenna, Neil J; Buehrer, Benjamin M; McGuire, Sean E; Marcelli, Marco; Mancini, Michael A

    2012-09-21

    We compared transcriptomes of terminally differentiated mouse 3T3-L1 and human adipocytes to identify cell-specific differences. Gene expression and high content analysis (HCA) data identified the androgen receptor (AR) as both expressed and functional, exclusively during early human adipocyte differentiation. The AR agonist dihydrotestosterone (DHT) inhibited human adipocyte maturation by downregulation of adipocyte marker genes, but not in 3T3-L1. It is interesting that AR induction corresponded with dexamethasone activation of the glucocorticoid receptor (GR); however, when exposed to the differentiation cocktail required for adipocyte maturation, AR adopted an antagonist conformation and was transcriptionally repressed. To further explore effectors within the cocktail, we applied an image-based support vector machine (SVM) classification scheme to show that adipocyte differentiation components inhibit AR action. The results demonstrate human adipocyte differentiation, via GR activation, upregulates AR but also inhibits AR transcriptional activity.

  7. Octopaminergic agonists for the cockroach neuronal octopamine receptor.

    PubMed

    Hirashima, Akinori; Morimoto, Masako; Kuwano, Eiichi; Eto, Morifusa

    2003-01-01

    The compounds 1-(2,6-diethylphenyl)imidazolidine-2-thione and 2-(2,6-diethylphenyl)imidazolidine showed the almost same activity as octopamine in stimulating adenylate cyclase of cockroach thoracic nervous system among 70 octopamine agonists, suggesting that only these compounds are full octopamine agonists and other compounds are partial octopamine agonists. The quantitative structure-activity relationship of a set of 22 octopamine agonists against receptor 2 in cockroach nervous tissue, was analyzed using receptor surface modeling. Three-dimensional energetics descriptors were calculated from receptor surface model/ligand interaction and these three-dimensional descriptors were used in quantitative structure-activity relationship analysis. A receptor surface model was generated using some subset of the most active structures and the results provided useful information in the characterization and differentiation of octopaminergic receptor.

  8. (R)-(-)-10-methyl-11-hydroxyaporphine: a highly selective serotonergic agonist.

    PubMed

    Cannon, J G; Mohan, P; Bojarski, J; Long, J P; Bhatnagar, R K; Leonard, P A; Flynn, J R; Chatterjee, T K

    1988-02-01

    Prior work in these laboratories identified (+/-)-5-hydroxy-6-methyl-2- (di-n-propylamino)tetralin as a dopaminergic agonist prodrug. The ortho methyl hydroxy aromatic substitution pattern in this molecule has now been incorporated into the aporphine ring system to give a congener of the dopaminergic agonist apomorphine in which the position 10 OH group has been replaced by methyl. Preparation of the target compound involved acid-catalyzed rearrangement of the 3-(1-phenyltetrazolyl) ether of morphine and subsequent molecular modification of the product, the 10-(1-phenyltetrazolyl) ether of (R)-(-)-apomorphine. Surprisingly, the target compound elicited no responses in any assays for effects at dopamine receptors, but rather it displayed pharmacological properties consistent with its being a serotonergic agonist with a high degree of selectivity for 5-HT1A receptors similar to the serotonergic agonist 8-hydroxy-2-(di-n-propylamino)tetralin.

  9. Partial agonist therapy in schizophrenia: relevance to diminished criminal responsibility.

    PubMed

    Gavaudan, Gilles; Magalon, David; Cohen, Julien; Lançon, Christophe; Léonetti, Georges; Pélissier-Alicot, Anne-Laure

    2010-11-01

    Pathological gambling (PG), classified in the DSM-IV among impulse control disorders, is defined as inappropriate, persistent gaming for money with serious personal, family, and social consequences. Offenses are frequently committed to obtain money for gambling. Pathological gambling, a planned and structured behavioral disorder, has often been described as a complication of dopamine agonist treatment in patients with Parkinson's disease. It has never been described in patients with schizophrenia receiving dopamine agonists. We present two patients with schizophrenia, previously treated with antipsychotic drugs without any suggestion of PG, who a short time after starting aripiprazole, a dopamine partial agonist, developed PG and criminal behavior, which totally resolved when aripiprazole was discontinued. Based on recent advances in research on PG and adverse drug reactions to dopamine agonists in Parkinson's disease, we postulate a link between aripiprazole and PG in both our patients with schizophrenia and raise the question of criminal responsibility.

  10. Agonist Replacement for Stimulant Dependence: A Review of Clinical Research

    PubMed Central

    Stoops, William W.; Rush, Craig R.

    2013-01-01

    Stimulant use disorders are an unrelenting public health concern worldwide. Agonist replacement therapy is among the most effective strategies for managing substance use disorders including nicotine and opioid dependence. The present paper reviewed clinical data from human laboratory self-administration studies and clinical trials to determine whether agonist replacement therapy is a viable strategy for managing cocaine and/or amphetamine use disorders. The extant literature suggests that agonist replacement therapy may be effective for managing stimulant use disorders, however, the clinical selection of an agonist replacement medication likely needs to be based on the pharmacological mechanism of the medication and the stimulant abused by patients. Specifically, dopamine releasers appear most effective for reducing cocaine use whereas dopamine reuptake inhibitors appear most effective for reducing amphetamine use. PMID:23574440

  11. Selecting agonists from single cells infected with combinatorial antibody libraries.

    PubMed

    Zhang, Hongkai; Yea, Kyungmoo; Xie, Jia; Ruiz, Diana; Wilson, Ian A; Lerner, Richard A

    2013-05-23

    We describe a system for direct selection of antibodies that are receptor agonists. Combinatorial antibody libraries in lentiviruses are used to infect eukaryotic cells that contain a fluorescent reporter system coupled to the receptor for which receptor agonist antibodies are sought. In this embodiment of the method, very large numbers of candidate antibodies expressing lentivirus and eukaryotic reporter cells are packaged together in a format where each is capable of replication, thereby forging a direct link between genotype and phenotype. Following infection, cells that fluoresce are sorted and the integrated genes encoding the agonist antibodies recovered. We validated the system by illustrating its ability to generate rapidly potent antibody agonists that are complete thrombopoietin phenocopies. The system should be generalizable to any pathway where its activation can be linked to production of a selectable phenotype.

  12. Agonist pharmacology of two Drosophila GABA receptor splice variants.

    PubMed Central

    Hosie, A. M.; Sattelle, D. B.

    1996-01-01

    1. The Drosophila melanogaster gamma-aminobutyric acid (GABA) receptor subunits, RDLac and DRC 17-1-2, form functional homo-oligomeric receptors when heterologously expressed in Xenopus laevis oocytes. The subunits differ in only 17 amino acids, principally in regions of the N-terminal domain which determine agonist pharmacology in vertebrate ionotropic neurotransmitter receptors. A range of conformationally restricted GABA analogues were tested on the two homo-oligomers and their agonists pharmacology compared with that of insect and vertebrate iontropic GABA receptors. 2. The actions of GABA, isoguvacine and isonipecotic acid on RDLac and DRC 17-1-2 homo-oligomers were compared, by use of two-electrode voltage-clamp. All three compounds were full agonists of both receptors, but were 4-6 fold less potent agonists of DRC 17-1-2 homo-oligomers than of RDLac. However, the relative potencies of these agonists on each receptor were very similar. 3. A more complete agonist profile was established for RDLac homo-oligomers. The most potent agonists of these receptors were GABA, muscimol and trans-aminocrotonic acid (TACA), which were approximately equipotent. RDLac homo-oligomers were fully activated by a range of GABA analogues, with the order of potency: GABA > ZAPA ((Z)-3-[(aminoiminomethyl)thio]prop-2-enoic acid) > isoguvacine > imidazole-4-acetic acid > or = isonipecotic acid > or = cis-aminocrotonic acid (CACA) > beta-alanine. 3-Aminopropane sulphonic acid (3-APS), a partial agonist of RDLac homo-oligomers, was the weakest agonist tested and 100 fold less potent than GABA. 4. SR95531, an antagonist of vertebrate GABAA receptors, competitively inhibited the GABA responses of RDLac homo-oligomers, which have previously been found to insensitive to bicuculline. However, its potency (IC50 500 microM) was much reduced when compared to GABAA receptors. 5. The agonist pharmacology of Drosophila RDLac homo-oligomers exhibits aspects of the characteristic pharmacology of

  13. Beta2-agonists and exercise-induced asthma.

    PubMed

    Anderson, Sandra D; Caillaud, Corinne; Brannan, John D

    2006-01-01

    Beta2-agonists taken immediately before exercise provide significant protection against exercise- induced asthma (EIA) in most patients. However, when they are taken daily, there are some negative aspects regarding severity, control, and recovery from EIA. First, there is a significant minority (15-20%) of asthmatics whose EIA is not prevented by beta2-agonists, even when inhaled corticosteroids are used concomitantly. Second, with daily use, there is a decline in duration of the protective effect of long-acting beta2-agonists. Third, if breakthrough EIA occurs, recovery of lung function is slower in response to a beta2-agonist, and additional doses are often required to achieve pre-exercise values. If a person who takes a beta2-agonist daily experiences problems with exercise, then the physician should consider changing the treatment regimen to achieve better control of EIA. These problems likely result from desensitization of the beta2-receptor on the mast cell, which enhances mediator release, and on the bronchial smooth muscle, which enhances the bronchoconstrictor response and delays recovery from EIA. These effects are reversed within 72 h after cessation of a beta2-agonists. The important clinical question is: Are we actually compromising the beneficial effects of beta2-agonists on the prevention and recovery from EIA by prescribing them daily? Patients with EIA need to ensure that their doses of inhaled corticosteroid or other anti-inflammatory therapy are optimized so that, if necessary, a beta2-agonist can be used intermittently as prophylactic medication with greater confidence in the outcome.

  14. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-09-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs.

  15. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs.

  16. Identification of M-CSF agonists and antagonists

    DOEpatents

    Pandit, Jayvardhan; Jancarik, Jarmila; Kim, Sung-Hou; Koths, Kirston; Halenbeck, Robert; Fear, Anna Lisa; Taylor, Eric; Yamamoto, Ralph; Bohm, Andrew

    2000-02-15

    The present invention is directed to methods for crystallizing macrophage colony stimulating factor. The present invention is also directed to methods for designing and producing M-CSF agonists and antagonists using information derived from the crystallographic structure of M-CSF. The invention is also directed to methods for screening M-CSF agonists and antagonists. In addition, the present invention is directed to an isolated, purified, soluble and functional M-CSF receptor.

  17. Opioid receptor agonists reduce brain edema in stroke.

    PubMed

    Yang, Li; Wang, Hezhen; Shah, Kaushik; Karamyan, Vardan T; Abbruscato, Thomas J

    2011-04-06

    Cerebral edema is a leading cause of mortality in stroke patients. The purpose of this study was to assess a non-selective opioid receptor agonist, biphalin, in decreasing reducing brain edema formation using both in vitro and in vivo models of stroke. For the in situ model of ischemia, hippocampal slices were exposed to oxygen glucose deprivation (OGD) conditions and we observed that hippocampal water content was increased, compared to normoxia. Treatment with the mu agonist, Tyr-D-Ala', N-CH, -Phe4, Glyol-Enkephalin (DAMGO), delta opioid agonists, D-pen(2), D-phe(5) enkephalin (DPDPE), and kappa agonist, U50 488, all significantly decreased brain slice water gain. Interestingly, the non-selective agonist, biphalin, exhibited a statistically significant (P<0.01) greater effect in decreasing water content in OGD-exposed hippocampal slices, compared with mu, delta, and kappa selective opioid agonists. Moreover, biphalin exhibited anti-edematous effects in a dose responsive manner. The non-selective opioid antagonist, naloxone, returned the water content nearly back to original OGD values for all opioid agonist treatments, supporting that these effects were mediated by an opioid receptor pathway. Furthermore, biphalin significantly decreased edema (53%) and infarct (48%) ratios, and neuronal recovery from stroke, compared with the vehicle-treated groups in a 12h permanent middle cerebral artery occlusion (MCAO) model of focal ischemia. Biphalin also significantly decreased the cell volume increase in primary neuronal cells exposed to OGD condition. These data suggest that opioid receptor activation may provide neuroprotection during stroke and further investigations are needed in the development of novel opioid agonist as efficacious treatments for brain ischemia.

  18. Behavioural effects of selective tachykinin agonists in midbrain dopamine regions.

    PubMed

    Stoessl, A J; Szczutkowski, E; Glenn, B; Watson, I

    1991-11-29

    The effects of selective NK-1, NK-2 and NK-3 tachykinin agonists in midbrain dopamine cell containing regions were investigated in the rat. The NK-3 agonist senktide induced locomotion, rearing and sniffing following infusion into the substantia nigra pars compacta, and to a lesser extent in the ventral tegmental area. These behavioural responses were not seen following infusion of the selective NK-1 agonist [Sar9,Met (O2)11]SP or the NK-2 agonist [N1e10]NKA4-10. In contrast, grooming was induced only by the NK-1 agonist administered into the substantia nigra. Yawning, chewing mouth movements and wet dog shakes were all seen following infusion of senktide into the ventral tegmental area. These findings suggest that (i) dopamine-mediated behavioural responses seen following tachykinin administration into the midbrain are dependent upon stimulation of NK-3 tachykinin receptors, (ii) tachykinin-induced grooming is mediated by stimulation of NK-1 receptors and (iii) some of the previously described 5-HT mediated behaviours seen following administration of NK-3 tachykinin agonists are probably generated by stimulation of 5-HT cell bodies in the ventral tegmental area.

  19. Histamine H3-receptor inverse agonists as novel antipsychotics.

    PubMed

    Ito, Chihiro

    2009-06-01

    Schizophrenia (SZ) that is resistant to treatment with dopamine (DA) D2 antagonists may involve changes other than those in the dopaminergic system. Recently, histamine (HA), which regulates arousal and cognitive functions, has been suggested to act as a neurotransmitter in the central nervous system. Four HA receptors-H1, H2, H3, and H4-have been identified. Our recent basic and clinical studies revealed that brain HA improved the symptoms of SZ. The H3 receptor is primarily localized in the central nervous system, and it acts not only as a presynaptic autoreceptor that modulates the HA release but also as a presynaptic heteroreceptor that regulates the release of other neurotransmitters such as monoamines and amino acids. H3-receptor inverse agonists have been considered to improve cognitive functions. Many atypical antipsychotics are H3-receptor antagonists. Imidazole-containing H3-receptor inverse agonists inhibit not only cytochrome P450 but also hERG potassium channels (encoded by the human ether-a-go-go-related gene). Several imidazole H3-receptor inverse agonists also have high affinity for H4 receptors, which are expressed at high levels in mast cells and leukocytes. Clozapine is an H4-receptor agonist; this agonist activity may be related to the serious side effect of agranulocytosis caused by clozapine. Therefore, selective non-imidazole H3-receptor inverse agonists can be considered as novel antipsychotics that may improve refractory SZ.

  20. Concept and Viability of Androgen Annihilation for Advanced Prostate Cancer

    PubMed Central

    Mohler, James L.

    2014-01-01

    There remains no standard of care for patients with a rising prostate-specific antigen (PSA) after radical prostatectomy or radiation therapy but who have no radiographic metastases, even though this is the second largest group of prostate cancer (CaP) patients in the United States. Androgen deprivation therapy (ADT) may cure some men with advanced CaP based on single institution series and a randomized clinical trial of immediate versus delayed ADT for men found to have pelvic lymph node metastasis at the time of radical prostatectomy. ADT may be more effective when initiated for minimal disease burden, which can be detected using PSA after radical prostatectomy or radiation therapy, and if more complete disruption of the androgen axis using newer agents decreases the chance that androgen-sensitive cells survive to adapt to a low androgen environment. Androgens may be “annihilated” sing simultaneously a luteinizing hormone releasing hormone (LHRH) antagonist or agonist to inhibit testicular production of testosterone, a cytochrome P45017A1 (CYP17A1) inhibitor to diminish metabolism of testosterone via the adrenal pathway and dihydrotestosterone (DHT) via the backdoor pathway, a 5α-reductase inhibitor to diminish testosterone reduction to DHT and backdoor metabolism of progesterone substrates to DHT, and a newer anti-androgen to compete better with DHT for the androgen receptor ligand-binding domain. Early initiation of androgen annihilation for induction as part of planned intermittent ADT should be safe, may reduce tumor burden below a threshold that allows eradication by the immune system, and may cure many men who have failed definitive local therapy. PMID:24771515

  1. Identification of Determinants Required for Agonistic and Inverse Agonistic Ligand Properties at the ADP Receptor P2Y12

    PubMed Central

    Schmidt, Philipp; Ritscher, Lars; Dong, Elizabeth N.; Hermsdorf, Thomas; Cöster, Maxi; Wittkopf, Doreen; Meiler, Jens

    2013-01-01

    The ADP receptor P2Y12 belongs to the superfamily of G protein–coupled receptors (GPCRs), and its activation triggers platelet aggregation. Therefore, potent antagonists, such as clopidogrel, are of high clinical relevance in prophylaxis and treatment of thromboembolic events. P2Y12 displays an elevated basal activity in vitro, and as such, inverse agonists may be therapeutically beneficial compared with antagonists. Only a few inverse agonists of P2Y12 have been described. To expand this limited chemical space and improve understanding of structural determinants of inverse agonist-receptor interaction, this study screened a purine compound library for lead structures using wild-type (WT) human P2Y12 and 28 constitutively active mutants. Results showed that ATP and ATP derivatives are agonists at P2Y12. The potency at P2Y12 was 2-(methylthio)-ADP > 2-(methylthio)-ATP > ADP > ATP. Determinants required for agonistic ligand activity were identified. Molecular docking studies revealed a binding pocket for the ATP derivatives that is bordered by transmembrane helices 3, 5, 6, and 7 in human P2Y12, with Y105, E188, R256, Y259, and K280 playing a particularly important role in ligand interaction. N-Methyl-anthraniloyl modification at the 3′-OH of the 2′-deoxyribose leads to ligands (mant-deoxy-ATP [dATP], mant-deoxy-ADP) with inverse agonist activity. Inverse agonist activity of mant-dATP was found at the WT human P2Y12 and half of the constitutive active P2Y12 mutants. This study showed that, in addition to ADP and ATP, other ATP derivatives are not only ligands of P2Y12 but also agonists. Modification of the ribose within ATP can result in inverse activity of ATP-derived ligands. PMID:23093496

  2. Dihydrocodeine/Agonists for Alcohol Dependents

    PubMed Central

    Ulmer, Albrecht; Müller, Markus; Frietsch, Bernhard

    2012-01-01

    Objective: Alcohol addiction too often remains insufficiently treated. It shows the same profile as severe chronic diseases, but no comparable, effective basic treatment has been established up to now. Especially patients with repeated relapses, despite all therapeutic approaches, and patients who are not able to attain an essential abstinence to alcohol, need a basic medication. It seems necessary to acknowledge that parts of them need any agonistic substance, for years, possibly lifelong. For >14 years, we have prescribed such substances with own addictive character for these patients. Methods: We present a documented best possible practice, no designed study. Since 1997, we prescribed Dihydrocodeine (DHC) to 102 heavily alcohol addicted patients, later, also Buprenorphine, Clomethiazole (>6 weeks), Baclofen, and in one case Amphetamine, each on individual indication. This paper focuses on the data with DHC, especially. The Clomethiazole-data has been submitted to a German journal. The number of treatments with the other substances is still low. Results: The 102 patients with the DHC treatment had 1367 medically assisted detoxifications and specialized therapies before! The 4 years-retention rate was 26.4%, including 2.8% successfully terminated treatments. In our 12-steps scale on clinical impression, we noticed a significant improvement from mean 3.7 to 8.4 after 2 years. The demand for medically assisted detoxifications in the 2 years remaining patients was reduced by 65.5%. Mean GGT improved from 206.6 U/l at baseline to 66.8 U/l after 2 years. Experiences with the other substances are similar but different in details. Conclusion: Similar to the Italian studies with GHB and Baclofen, we present a new approach, not only with new substances, but also with a new setting and much more trusting attitude. We observe a huge improvement, reaching an almost optimal, stable, long term status in around 1/4 of the patients already. Many further

  3. Anti-nociception mediated by a κ opioid receptor agonist is blocked by a δ receptor agonist

    PubMed Central

    Taylor, A M W; Roberts, K W; Pradhan, A A; Akbari, H A; Walwyn, W; Lutfy, K; Carroll, F I; Cahill, C M; Evans, C J

    2015-01-01

    BACKGROUND AND PURPOSE The opioid receptor family comprises four structurally homologous but functionally distinct sub-groups, the μ (MOP), δ (DOP), κ (KOP) and nociceptin (NOP) receptors. As most opioid agonists are selective but not specific, a broad spectrum of behaviours due to activation of different opioid receptors is expected. In this study, we examine whether other opioid receptor systems influenced KOP-mediated antinociception. EXPERIMENTAL APPROACH We used a tail withdrawal assay in C57Bl/6 mice to assay the antinociceptive effect of systemically administered opioid agonists with varying selectivity at KOP receptors. Pharmacological and genetic approaches were used to analyse the interactions of the other opioid receptors in modulating KOP-mediated antinociception. KEY RESULTS Etorphine, a potent agonist at all four opioid receptors, was not anti-nociceptive in MOP knockout (KO) mice, although etorphine is an efficacious KOP receptor agonist and specific KOP receptor agonists remain analgesic in MOP KO mice. As KOP receptor agonists are aversive, we considered KOP-mediated antinociception might be a form of stress-induced analgesia that is blocked by the anxiolytic effects of DOP receptor agonists. In support of this hypothesis, pretreatment with the DOP antagonist, naltrindole (10 mg·kg−1), unmasked etorphine (3 mg·kg−1) antinociception in MOP KO mice. Further, in wild-type mice, KOP-mediated antinociception by systemic U50,488H (10 mg·kg−1) was blocked by pretreatment with the DOP agonist SNC80 (5 mg·kg−1) and diazepam (1 mg·kg−1). CONCLUSIONS AND IMPLICATIONS Systemic DOP receptor agonists blocked systemic KOP antinociception, and these results identify DOP receptor agonists as potential agents for reversing stress-driven addictive and depressive behaviours mediated through KOP receptor activation. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles

  4. GABA receptor agonists: pharmacological spectrum and therapeutic actions.

    PubMed

    Bartholini, G

    1985-01-01

    From the data discussed in this review it appears that GABA receptor agonists exhibit a variety of actions in the central nervous system, some of which are therapeutically useful (Table V). GABA receptor agonists, by changing the firing rate of the corresponding neurons accelerate noradrenaline turnover without changes in postsynaptic receptor density and diminish serotonin liberation with an up-regulation of 5HT2 receptors. These effects differ from those of tricyclic antidepressants which primarily block monoamine re-uptake and cause down-regulation of beta-adrenergic and 5HT2 receptors. The GABA receptor agonist progabide has been shown to exert an antidepressant action which is indistinguishable from that of imipramine in patients with major affective disorders. The fact that: (a) GABA receptor agonists and tricyclic antidepressants affect noradrenergic and serotonergic transmission differently; and (b) tricyclic antidepressants alter GABA-related parameters challenges the classical monoamine hypothesis of depression and suggests that GABA-mediated mechanisms play a role in mood disorders. Decreases in cellular excitability produced by GABAergic stimulation leads to control of seizures in practically all animal models of epilepsy. GABA receptor agonists have a wide spectrum as they antagonize not only seizures which are dependent on decreased GABA synaptic activity but also convulsant states which are apparently independent of alterations in GABA-mediated events. These results in animals are confirmed in a wide range of human epileptic syndromes. GABA receptor agonists decrease dopamine turnover in the basal ganglia and antagonize neuroleptic-induced increase in dopamine release. On repeated treatment, progabide prevents or reverses the neuroleptic-induced up-regulation of dopamine receptors in the rat striatum and antagonizes the concomitant supersensitivity to dopaminomimetics. Behaviorally, GABA receptor agonists diminish the stereotypies induced by

  5. Benzodiazepine agonist and inverse agonist actions on GABAA receptor-operated chloride channels. II. Chronic effects of ethanol

    SciTech Connect

    Buck, K.J.; Harris, R.A. )

    1990-05-01

    Mice were made tolerant to and dependent on ethanol by administration of a liquid diet. Gamma-aminobutyric acid (GABA) receptor-dependent uptake of 36Cl- by mouse cortical microsacs was used to study the actions of benzodiazepine (BZ) agonists and inverse agonists. Chronic exposure to ethanol attenuated the ability of a BZ agonist, flunitrazepam, to augment muscimol-stimulated uptake of 36Cl- and enhanced the actions of BZ inverse agonists, Ro15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo(1,4)-benzodiazepine - 3-carboxylate) and DMCM (methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate), to inhibit GABAA receptor-operated chloride channels. Augmentation of chloride flux by pentobarbital was not reduced by chronic ethanol exposure. Attenuation of flunitrazepam efficacy was transient and returned to control levels within 6 to 24 hr after withdrawal from ethanol, but increased sensitivity to Ro15-4513 was observed as long as 8 days after withdrawal. Chronic exposure to ethanol did not alter (3H)SR 95531 (2-(3'-carbethoxy-2'propyl)-3-amino-6-p-methoxyphenylpyridazinium bromide) binding to low-affinity GABAA receptors or muscimol stimulation of chloride flux; and did not alter (3H)Ro15-4513 or (3H)flunitrazepam binding to central BZ receptors or allosteric modulation of this binding by muscimol (i.e., muscimol-shift). These results suggest that chronic exposure to ethanol reduces coupling between BZ agonist sites and the chloride channel, and may be responsible for the development of cross-tolerance between ethanol and BZ agonists. In contrast, coupling between BZ inverse agonist sites and the chloride channel is increased.

  6. Intracerebroventricular administration of kappa-agonists induces convulsions in mice.

    PubMed

    Bansinath, M; Ramabadran, K; Turndorf, H; Shukla, V K

    1991-07-01

    Intracerebroventricular (ICV) administration of kappa-agonists (PD 117302, U-50488H and U-69593) induced convulsions in a dose-related manner in mice. The dose at which 50% of animals convulsed (CD50) was in nmol ranges for all opioids. Among the opioids used, PD 117302 was the most potent convulsant. ICV administration of either vehicle alone or U-53445E, a non-kappa-opioid (+) enantiomer of U-50488H did not induce convulsions. The convulsive response of kappa-agonists was differentially susceptible for antagonism by naloxone and/or MR 2266. Collectively, these findings support the view that convulsions induced by kappa-agonists in mice involve stereospecific opioid receptor mechanisms. Furthermore, the convulsant effect of kappa-agonists could not be modified by pretreatment with MK-801, ketamine, muscimol or baclofen. It is concluded that kappa-opioid but not NMDA or GABA receptor mechanisms are involved in convulsions induced by kappa-agonists. These results are the first experimental evidence implicating stereospecific kappa-receptor mechanisms in opioid-induced convulsions in mice.

  7. Modification of opiate agonist binding by pertussis toxin

    SciTech Connect

    Abood, M.E.; Lee, N.M.; Loh, H.H.

    1986-03-05

    Opiate agonist binding is decreased by GTP, suggesting the possible involvement of GTP binding proteins in regulation of opiate receptor binding. This possibility was addressed by asking whether pertussis toxin treatment, which results in ADP-ribosylation and modification of G proteins, would alter opiate agonist binding. The striatum was chosen for the initial brain area to be studied, since regulation of opiate action in this area had been shown to be modified by pertussis toxin. Treatment of striatal membranes with pertussis toxin results in up to a 55% decrease in /sup 3/(H)-DADLE binding as compared with membranes treated identically without toxin. This corresponds to a near complete ADP-ribosylation of both G proteins in the striatal membrane. The decrease in agonist binding appears to be due to an altered affinity of the receptor for agonist as opposed to a decrease in the number of sites. This effect of pertussis toxin on opiate agonist binding demonstrates the actual involvement of G proteins in regulation of opiate receptor binding.

  8. Novel nonsecosteroidal VDR agonists with phenyl-pyrrolyl pentane skeleton.

    PubMed

    Shen, Wei; Xue, Jingwei; Zhao, Zekai; Zhang, Can

    2013-11-01

    In order to find the vitamin D receptor (VDR) ligand whose VDR agonistic activity is separated from the calcemic activity sufficiently, novel nonsecosteroidal analogs with phenyl-pyrrolyl pentane skeleton were synthesized and evaluated for the VDR binding affinity, antiproliferative activity in vitro and serum calcium raising ability in vivo (tacalcitol used as control). Among them, several compounds showed varying degrees of VDR agonistic and growth inhibition activities of the tested cell lines. The most effective compound 2g (EC₅₀: 1.06 nM) exhibited stronger VDR agonistic activity than tacalcitol (EC₅₀: 7.05 nM), inhibited the proliferations of HaCaT and MCF-7 cells with IC₅₀ of 2.06 μM and 0.307 μM (tacalcitol: 2.07 μM and 0.057 μM) and showed no significant effect on serum calcium.

  9. Compulsive eating and weight gain related to dopamine agonist use.

    PubMed

    Nirenberg, Melissa J; Waters, Cheryl

    2006-04-01

    Dopamine agonists have been implicated in causing compulsive behaviors in patients with Parkinson's disease (PD). These have included gambling, hypersexuality, hobbyism, and other repetitive, purposeless behaviors ("punding"). In this report, we describe 7 patients in whom compulsive eating developed in the context of pramipexole use. All of the affected patients had significant, undesired weight gain; 4 had other comorbid compulsive behaviors. In the 5 patients who lowered the dose of pramipexole or discontinued dopamine agonist treatment, the behavior remitted and no further weight gain occurred. Physicians should be aware that compulsive eating resulting in significant weight gain may occur in PD as a side-effect of dopamine agonist medications such as pramipexole. Given the known risks of the associated weight gain and obesity, further investigation is warranted.

  10. Captive female gorilla agonistic relationships with clumped defendable food resources.

    PubMed

    Scott, Jennifer; Lockard, Joan S

    2006-07-01

    Minimal feeding competition among female mountain gorillas (Gorilla gorilla beringei) has resulted in egalitarian social relationships with poorly defined agonistic dominance hierarchies. Thus, gorillas are generally viewed as non-competitive egalitarian folivores that have had little need to develop effective competitive strategies to access food resources. However, this generalization is inconsistent with more recent research indicating that most gorillas are frugivorous, feeding on patchily distributed food resources. The current study at Howletts Wild Animal Park, Kent, England, explores the effects of clumped and defendable foods on female gorilla agonistic relationships among three groups of western lowland gorillas (G. g. gorilla), conditions that are predicted to lead to well-differentiated agonistic dominance hierarchies among female primates. The Howletts gorillas foraged all day on low-energy/-nutrient, high-fiber foods widely distributed around their enclosure by the keepers. However, they also had periodic access to high-energy foods (e.g., nuts, raisins, strawberries, etc.) that the keepers would spread in a clumped and defendable patch. Frequencies of agonistic and submissive behaviors between females and proximity data were gathered. High-status females were found to monopolize the food patch and kept the low-status females at bay with cough-grunt threat vocalizations or by chasing them away. Agonistic interactions were initiated mostly by females of high status; these were directed towards females of low status and were generally not reciprocal. In addition, females of low status engaged in submissive behaviors the most often, which they directed primarily at females of high status, especially in response to aggression by the latter. Agonistic interactions between high- and low-status females had decided outcomes more often than not, with low-status females the losers. Competition over highly desirable foods distributed in defendable clumps at

  11. Switching cannabinoid response from CB(2) agonists to FAAH inhibitors.

    PubMed

    Tourteau, Aurélien; Leleu-Chavain, Natascha; Body-Malapel, Mathilde; Andrzejak, Virginie; Barczyk, Amélie; Djouina, Madjid; Rigo, Benoit; Desreumaux, Pierre; Chavatte, Philippe; Millet, Régis

    2014-03-01

    A series of 3-carboxamido-5-aryl-isoxazoles designed as CB2 agonists were evaluated as FAAH inhibitors. The pharmacological results led to identify structure-activity relationships enabling to switch cannabinoid response from CB2 agonists to FAAH inhibitors. Two compounds were selected for their FAAH and/or CB2 activity, and evaluated in a colitis model for their anti-inflammatory activity. Results showed that compounds 10 and 11 inhibit the development of DSS-induced acute colitis in mice and then, are interesting leads to explore new drug candidates for IBD.

  12. Partial agonistic action of endomorphins in the mouse spinal cord.

    PubMed

    Mizoguchi, H; Wu, H E; Narita, M

    2001-09-07

    The partial agonistic properties of endogenous mu-opioid peptides endomorphin-1 and endomorphin-2 for G-protein activation were determined in the mouse spinal cord, monitoring the increases in guanosine-5'-o-(3-[35S]thio)triphosphate binding. The G-protein activation induced by endogenous opioid peptide beta-endorphin in the spinal cord was significantly, but partially, attenuated by co-incubation with endomorphin-1 or endomorphin-2. The data indicates that endomorphin-1 and endomorphin-2 are endogenous partial agonists for mu-opioid receptor in the mouse spinal cord.

  13. Synthesis and activity of small molecule GPR40 agonists.

    PubMed

    Garrido, Dulce M; Corbett, David F; Dwornik, Kate A; Goetz, Aaron S; Littleton, Thomas R; McKeown, Steve C; Mills, Wendy Y; Smalley, Terrence L; Briscoe, Celia P; Peat, Andrew J

    2006-04-01

    The first report on the identification and structure-activity relationships of a novel series of GPR40 agonists based on a 3-(4-{[N-alkyl]amino}phenyl)propanoic acid template is described. Structural modifications to the original screening hit yielded compounds with a 100-fold increase in potency at the human GPR40 receptor and pEC(50)s in the low nanomolar range. The carboxylic acid moiety is not critical for activity but typically elicits an agonistic response higher than those observed with carboxamide replacements. These compounds may prove useful in unraveling the therapeutic potential of this receptor for the treatment of Type 2 diabetes.

  14. Pyrrolo- and pyridomorphinans: non-selective opioid antagonists and delta opioid agonists/mu opioid partial agonists.

    PubMed

    Kumar, V; Clark, M J; Traynor, J R; Lewis, J W; Husbands, S M

    2014-08-01

    Opioid ligands have found use in a number of therapeutic areas, including for the treatment of pain and opiate addiction (using agonists) and alcohol addiction (using antagonists such as naltrexone and nalmefene). The reaction of imines, derived from the opioid ligands oxymorphone and naltrexone, with Michael acceptors leads to pyridomorphinans with structures similar to known pyrrolo- and indolomorphinans. One of the synthesized compounds, 5e, derived from oxymorphone had substantial agonist activity at delta opioid receptors but not at mu and/or kappa opioid receptors and in that sense profiled as a selective delta opioid receptor agonist. The pyridomorphinans derived from naltrexone and naloxone were all found to be non-selective potent antagonists and as such could have utility as treatments for alcohol abuse.

  15. The Agonistic Approach: Reframing Resistance in Qualitative Research

    ERIC Educational Resources Information Center

    Vitus, Kathrine

    2008-01-01

    The agonistic approach--aimed at embracing opposing perspectives as part of a qualitative research process and acknowledging that process as fundamentally political--sheds light on both the construction of and the resistance to research identities. This approach involves reflexively embedding interview situations into the ethnographic context as a…

  16. Once-weekly glucagon-like peptide 1 receptor agonists.

    PubMed

    Kalra, Sanjay; Gupta, Yashdeep

    2015-07-01

    The once-weekly glucagon-like peptide 1 receptor agonists (QW GLP1RA) represent a major advancement in diabetes pharmaco-therapeutics. This review describes the basic, clinical, and comparative pharmacology of this novel class of drugs. It highlights the clinical placement and posology of these drugs.

  17. Use of ß-adrenergic agonists in hybrid catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ractopamine hydrochloride (RH) is a potent ß-adrenergic agonist that has been used in some species of fish to improve growth performance and dress out characteristics. While this metabolic modifier has been shown to have positive effects on growth of fish, little research has focused on the mechani...

  18. Dopamine agonists in prevention of ovarian hyperstimulation syndrome.

    PubMed

    Kasum, Miro; Vrčić, Hrvoje; Stanić, Patrik; Ježek, Davor; Orešković, Slavko; Beketić-Orešković, Lidija; Pekez, Marijeta

    2014-01-01

    The aim of this review is to analyze the efficacy of different dopamine agonists in the prevention of ovarian hyperstimulation syndrome (OHSS). Cabergoline, quinagolide and bromocriptine are the most common dopamine agonists used. There are wide clinical variations among the trials in the starting time (from the day of human chorionic gonadotrophin (hCG) to the day following oocyte retrieval); the duration of the treatment (4-21 days), the dose of cabergoline (0.5 mg or 0.25 mg orally) and in the regimens used. At present, the best known effective regimen is 0.5 mg of cabergoline for 8 days or rectal bromocriptine at a daily dose of 2.5 mg for 16 days. Dopamine agonists have shown significant evidences of their efficacy in the prevention of moderate and early-onset OHSS (9.41%), compared with a placebo (21.45%), which cannot be confirmed for the treatment of late OHSS. It would be advisable to start with the treatment on the day of hCG injection or preferably a few hours earlier. The use of dopamine agonists should be indicated in patients at high risk of OHSS, as well as in patients with a history of previous OHSS even without evident signs of the syndrome.

  19. [Alpha 2-adrenoceptor agonists for the treatment of chronic pain].

    PubMed

    Kulka, P J

    1996-04-25

    The antinociceptive effect of alpha(2)-adrenoceptor agonists is mediated by activation of descending inhibiting noradrenergic systems, which modulates 'wide-dynamic-range' neurones. Furthermore, they inhibit the liberation of substance P and endorphines and activate serotoninergic neurones. Despite this variety of antinociceptive actions, there is still little experience with alpha(2)-adrenoceptor agonists as therapeutic agents for use in chronic pain syndromes. Studies in animals and patients have shown that the transdermal, epidural and intravenous administration of the alpha(2)-adrenoceptor agonist clonidine reduces pain intensity in neuropathic pain syndromes for periods varying from some hours up to 1 month. Patients suffering from lancinating or sharp pain respond best to this therapy. Topically applied clonidine (200-300 microg) relieves hyperalgesia in sympathetically maintained pain. Epidural administration of 300 microg clonidine dissolved in 5 ml NaCl 0.9 % has also been shown to be effective. In patients suffering from cancer pain tolerant to opioids, pain control has proved possible again with combinations of opioids and clonidine. In isolated cases clonidine has been administered epidurally at a dose of 1500 microg/day for almost 5 months without evidence for any histotoxic property of clonidine. Side effects often observed during administration of alpha(2)-adrenoceptor agonists are dry mouth, sedation, hypotension and bradycardia. Therapeutic interventions are usually not required.

  20. Role of nicotine receptor partial agonists in tobacco cessation

    PubMed Central

    Maity, Nivedita; Chand, Prabhat; Murthy, Pratima

    2014-01-01

    One in three adults in India uses tobacco, a highly addictive substance in one or other form. In addition to prevention of tobacco use, offering evidence-based cessation services to dependent tobacco users constitutes an important approach in addressing this serious public health problem. A combination of behavioral methods and pharmacotherapy has shown the most optimal results in tobacco dependence treatment. Among currently available pharmacological agents, drugs that preferentially act on the α4 β2-nicotinic acetyl choline receptor like varenicline and cytisine appear to have relatively better cessation outcomes. These drugs are in general well tolerated and have minimal drug interactions. The odds of quitting tobacco use are at the very least doubled with the use of partial agonists compared with placebo and the outcomes are also superior when compared to nicotine replacement therapy and bupropion. The poor availability of partial agonists and specifically the cost of varenicline, as well as the lack of safety data for cytisine has limited their use world over, particularly in developing countries. Evidence for the benefit of partial agonists is more robust for smoking rather than smokeless forms of tobacco. Although more studies are needed to demonstrate their effectiveness in different populations of tobacco users, present literature supports the use of partial agonists in addition to behavioral methods for optimal outcome in tobacco dependence. PMID:24574554

  1. Dopamine receptor agonists for protection and repair in Parkinson's disease.

    PubMed

    Ferrari-Toninelli, Giulia; Bonini, Sara A; Cenini, Giovanna; Maccarinelli, Giuseppina; Grilli, Mariagrazia; Uberti, Daniela; Memo, Maurizio

    2008-01-01

    Dopamine agonists have been usually used as adjunctive therapy for the cure of Parkinson's disease. It is generally believed that treatment with these drugs is symptomatic rather than curative and it does not stop or delay the progression of neuronal degeneration. However, several dopamine agonists of the D2-receptor family have recently been shown to possess neuroprotective properties in different in vitro and in vivo experimental Parkinson's disease models. Here we summarize some recent molecular evidences underlining the wide pharmacological spectrum of dopamine agonists currently used for treating Parkinson's disease patients. In particular, the mechanism of action of different dopamine agonists does not always appear to be restricted to the stimulation of selective dopamine receptor subtypes since at least some of these drugs are endowed with antioxidant, antiapoptotic or neurotrophic properties. These neuroprotective activities are molecule-specific and may contribute to the clinical efficacy of these drugs for the treatment of chronic and progressive neurodegenerative diseases in which oxidative injury and/or protein misfolding and aggregation exert a primary role.

  2. Amylin and Amylin Agonists for Treating Psychiatric Diseases and Disorders

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods and compositions for treating psychiatric diseases and disorders are disclosed. The methods provided generally involve the administration of an amylin or an amylin agonist to a subject in order to treat psychiatric diseases and disorders, and conditions associated with psychiatric diseases a...

  3. Melatonin receptor agonists: new options for insomnia and depression treatment.

    PubMed

    Spadoni, Gilberto; Bedini, Annalida; Rivara, Silvia; Mor, Marco

    2011-12-01

    The circadian nature of melatonin (MLT) secretion, coupled with the localization of MLT receptors to the suprachiasmatic nucleus, has led to numerous studies of the role of MLT in modulation of the sleep-wake cycle and circadian rhythms in humans. Although much more needs to be understood about the various functions exerted by MLT and its mechanisms of action, three therapeutic agents (ramelteon, prolonged-release MLT, and agomelatine) are already in use, and MLT receptor agonists are now appearing as new promising treatment options for sleep and circadian-rhythm related disorders. In this review, emphasis has been placed on medicinal chemistry strategies leading to MLT receptor agonists, and on the evidence supporting therapeutic efficacy of compounds undergoing clinical evaluation. A wide range of clinical trials demonstrated that ramelteon, prolonged-release MLT and tasimelteon have sleep-promoting effects, providing an important treatment option for insomnia and transient insomnia, even if the improvements of sleep maintenance appear moderate. Well-documented effects of agomelatine suggest that this MLT agonist offers an attractive alternative for the treatment of depression, combining efficacy with a favorable side effect profile. Despite a large number of high affinity nonselective MLT receptor agonists, only limited data on MT₁ or MT₂ subtype-selective compounds are available up to now. Administration of the MT₂-selective agonist IIK7 to rats has proved to decrease NREM sleep onset latency, suggesting that MT₂ receptor subtype is involved in the acute sleep-promoting action of MLT; rigorous clinical studies are needed to demonstrate this hypothesis. Further clinical candidates based on selective activation of MT₁ or MT₂ receptors are expected in coming years.

  4. Identification of raloxifene as a novel CB2 inverse agonist.

    PubMed

    Kumar, Pritesh; Song, Zhao-Hui

    2013-05-24

    The purpose of the current study was to apply a high throughput assay to systematically screen a library of food and drug administration (FDA)-approved drugs as potential ligands for the cannabinoid receptor 2 (CB2). A cell-based, homogenous time resolved fluorescence (HTRF) method for measuring changes in intracellular cAMP levels was validated and found to be suitable for testing ligands that may act on CB2. Among the 640 FDA-approved drugs screened, raloxifene, a drug used to treat/prevent post-menopausal osteoporosis, was identified for the first time to be a novel CB2 inverse agonist. Our results demonstrated that by acting on CB2, raloxifene enhances forskolin-stimulated cAMP accumulation in a concentration-dependant manner. Furthermore, our data showed that raloxifene competes concentration-dependently for specific [(3)H]CP-55,940 binding to CB2. In addition, raloxifene pretreatment caused a rightward shift of the concentration-response curves of the cannabinoid agonists CP-55,940, HU-210, and WIN55,212-2. Raloxifene antagonism is most likely competitive in nature, as these rightward shifts were parallel and were not associated with any changes in the efficacy of cannabinoid agonists on CB2. Our discovery that raloxfiene is an inverse agonist for CB2 suggests that it might be possible to repurpose this FDA-approved drug for novel therapeutic indications for which CB2 is a target. Furthermore, identifying raloxifene as a CB2 inverse agonist also provides important novel mechanisms of actions to explain the known therapeutic effects of raloxifene.

  5. Sex differences and the role of aromatization in the control of sexually dimorphic behavior and morphology in gray short-tailed opossums (Monodelphis domestica).

    PubMed

    Fadem, B H; Corbett, A

    1993-09-01

    Sex differences in the activating effects of an aromatizable (testosterone, T) and a nonaromatizable (dihydrotestosterone, DHT) androgen on sexually dimorphic scent marking and aggressive behavior were examined in gonadectomized gray short-tailed opossums. When compared with males, females showed less chest, head, flank, and hip marking and more fighting behavior in tests with stimulus females and threat behavior in tests with stimulus males following receipt of subcutaneous T, DHT, or blank (B) implants. Testosterone but not DHT activated hip and head marking while both T and DHT activated flank marking. In tests with stimulus females, only males showed clicking vocalizations and T but not DHT or B stimulated clicking. Animals that received T had significantly larger suprasternal scent glands than those that received DHT or B. The significance of these findings is discussed with respect to the development of sex differences in behavior in eutherian mammals.

  6. Synthesis and SAR of potent LXR agonists containing an indole pharmacophore

    SciTech Connect

    Washburn, David G.; Hoang, Tram H.; Campobasso, Nino; Smallwood, Angela; Parks, Derek J.; Webb, Christine L.; Frank, Kelly A.; Nord, Melanie; Duraiswami, Chaya; Evans, Christopher; Jaye, Michael; Thompson, Scott K.

    2009-03-27

    A novel series of 1H-indol-1-yl tertiary amine LXR agonists has been designed. Compounds from this series were potent agonists with good rat pharmacokinetic parameters. In addition, the crystal structure of an LXR agonist bound to LXR{alpha} will be disclosed.

  7. Effects of an intrathecally administered benzodiazepine receptor agonist, antagonist and inverse agonist on morphine-induced inhibition of a spinal nociceptive reflex.

    PubMed Central

    Moreau, J. L.; Pieri, L.

    1988-01-01

    1. The effects of an intrathecally administered benzodiazepine receptor (BZR) agonist (midazolam, up to 50 micrograms), antagonist (flumazenil, Ro 15-1788, 5 micrograms) and inverse agonist (Ro 19-4603, 15 micrograms) on nociception and on morphine-induced antinociception were studied in rats. 2. By themselves, none of these compounds significantly altered pain threshold. 3. The BZR agonist midazolam enhanced the morphine-induced antinociceptive effect whereas the antagonist flumazenil did not alter it. In contrast, the BZR inverse agonist Ro 19-4603 decreased the morphine-induced antinociceptive effect. 4. Naloxone (1 mg kg-1 i.p.) completely reversed all these effects. 5. These results demonstrate that BZR agonists and inverse agonists are able to affect, by allosteric up- or down-modulation of gamma-aminobutyric acidA (GABAA)-receptors, the transmission of nociceptive information at the spinal cord level, when this transmission is depressed by mu-opioid receptor activation. PMID:2898960

  8. Androgen receptor functions as a negative transcriptional regulator of DEPTOR, mTOR inhibitor.

    PubMed

    Kanno, Yuichiro; Zhao, Shuai; Yamashita, Naoya; Yanai, Kazuyuki; Nemoto, Kiyomitsu; Inouye, Yoshio

    2015-12-01

    It has been noticed that crosstalk between androgen receptor (AR) and mammalian target of rapamycin (mTOR) signaling pathways plays a crucial role in the proliferation of prostate cancer cells. To clarify this mechanism, we focused on DEPTOR, a naturally occurring inhibitor of mTOR. The treatment of a human AR-positive prostate cancer cell line, LNCaP, with the AR-agonist dihydrotestosterone (DHT) repressed DEPTOR mRNA expression in a time-dependent manner. This repression was abrogated by treatment with the AR-antagonist bicalutamide. Knockdown of DEPTOR mRNA by siRNA resulted in the increased phosphorylation of 70 kDa ribosomal protein S6 kinase 1 (S6K), a substrate of mTORC1, accompanied by the elevated expression of cyclin D1, a positive regulator of cell proliferation. Furthermore, the ChIP assay demonstrated that AR could bind to AR-responsible element-like region within the 4th intron of the DEPTOR gene. The amount of acetylated histone H3 (Lys9, Lys14) was reduced by the DHT treatment in this region. Taken together, these results propose that AR-dependent prostate cancer cell proliferation requires decreased DEPTOR transcription directly controlled by AR.

  9. Influence of androgens on plasma concentrations of growth hormone in growing castrated and intact chickens.

    PubMed

    Fennell, M J; Johnson, A L; Scanes, C G

    1990-03-01

    Castrated chicks implanted with testosterone or 5 alpha-dihydrotestosterone (5 alpha-DHT) had circulating concentrations of the respective androgen similar to or less than in sham-operated chicks. In castrated chicks, 5 alpha-DHT or 19-nortestosterone (19-NorT) inhibited growth as indicated by body weight, while testosterone and 5 beta-dihydrotestosterone (5 beta-DHT) were without effect. In intact male or female chicks, growth was inhibited by either testosterone or 5 alpha-DHT but was unaffected by 5 beta-DHT or estradiol-17 beta. Plasma concentrations of luteinizing hormone (LH) were reduced in castrated chicks receiving implants of either testosterone or 19-NorT. Only the highest dose of 5 alpha-DHT depressed the circulating concentration of LH; lower doses of 5 alpha-DHT being without effect. During the first 6 weeks of growth, plasma concentrations of GH were unaffected by most steroid treatments (5 alpha-DHT, 5 beta-DHT, low doses of testosterone, estradiol-17 beta) in castrated or in intact male or in female chicks. Similarly, 19-NorT did not affect plasma concentrations of GH in castrated chicks. The high dose of testosterone, however, depressed plasma concentrations of GH in castrated chicks between 2 and 6 weeks of age. Between 8 and 12 weeks of age, all steroids tested, except 5 alpha-DHT, were without effect on plasma concentrations of GH. Plasma concentrations of GH were increased in 5 alpha-DHT-treated chickens. This effect was observed irrespective of dose of 5 alpha-DHT or whether the androgen was administered to castrated or to intact male or to female chicks.

  10. A Potent and Site-Selective Agonist of TRPA1.

    PubMed

    Takaya, Junichiro; Mio, Kazuhiro; Shiraishi, Takuya; Kurokawa, Tatsuki; Otsuka, Shinya; Mori, Yasuo; Uesugi, Motonari

    2015-12-23

    TRPA1 is a member of the transient receptor potential (TRP) cation channel family that is expressed primarily on sensory neurons. This chemosensor is activated through covalent modification of multiple cysteine residues with a wide range of reactive compounds including allyl isothiocyanate (AITC), a spicy component of wasabi. The present study reports on potent and selective agonists of TRPA1, discovered through screening 1657 electrophilic molecules. In an effort to validate the mode of action of hit molecules, we noted a new TRPA1-selective agonist, JT010 (molecule 1), which opens the TRPA1 channel by covalently and site-selectively binding to Cys621 (EC50 = 0.65 nM). The results suggest that a single modification of Cys621 is sufficient to open the TRPA1 channel. The TRPA1-selective probe described herein might be useful for further mechanistic studies of TRPA1 activation.

  11. Agonist-antagonist combinations in opioid dependence: a translational approach

    PubMed Central

    Mannelli, P.

    2011-01-01

    Summary The potential therapeutic benefits of co-administering opiate agonist and antagonist agents remain largely to be investigated. This paper focuses on the mechanisms of very low doses of naltrexone that help modulate the effects of methadone withdrawal and review pharmacological properties of the buprenorphine/naltrexone combination that support its clinical investigation. The bench-to-bedside development of the very low dose naltrexone treatment can serve as a translational paradigm to investigate and treat drug addiction. Further research on putative mechanisms elicited by the use of opioid agonist-antagonist combinations may lead to effective pharmacological alternatives to the gold standard methadone treatment, also useful for the management of the abuse of non opioid drugs and alcohol. PMID:22448305

  12. β2-Adrenoceptor agonists in the regulation of mitochondrial biogenesis.

    PubMed

    Peterson, Yuri K; Cameron, Robert B; Wills, Lauren P; Trager, Richard E; Lindsey, Chris C; Beeson, Craig C; Schnellmann, Rick G

    2013-10-01

    The stimulation of mitochondrial biogenesis (MB) via cell surface G-protein coupled receptors is a promising strategy for cell repair and regeneration. Here we report the specificity and chemical rationale of a panel of β2-adrenoceptor agonists with regards to MB. Using primary cultures of renal cells, a diverse panel of β2-adrenoceptor agonists elicited three distinct phenotypes: full MB, partial MB, and non-MB. Full MB compounds had efficacy in the low nanomolar range and represent two chemical scaffolds containing three distinct chemical clusters. Interestingly, the MB phenotype did not correlate with reported receptor affinity or chemical similarity. Chemical clusters were then subjected to pharmacophore modeling creating two models with unique and distinct features, consisting of five conserved amongst full MB compounds were identified. The two discrete pharmacophore models were coalesced into a consensus pharmacophore with four unique features elucidating the spatial and chemical characteristics required to stimulate MB.

  13. Integrating costimulatory agonists to optimize immune-based cancer therapies.

    PubMed

    Pardee, Angela D; Wesa, Amy K; Storkus, Walter J

    2009-03-01

    While immunotherapy for cancer has become increasingly popular, clinical benefits for such approaches remain limited. This is likely due to tumor-associated immune suppression, particularly in the advanced-disease setting. Thus, a major goal of novel immunotherapeutic design has become the coordinate reversal of existing immune dysfunction and promotion of specific tumoricidal T-cell function. Costimulatory members of the TNF-receptor family are important regulators of T-cell-mediated immunity. Notably, agonist ligation of these receptors restores potent antitumor immunity in the tumor-bearing host. Current Phase I/II evaluation of TNF-receptor agonists as single-modality therapies will illuminate their safety, mechanism(s) of action, and best use in prospective combinational immunotherapy approaches capable of yielding superior benefits to cancer patients.

  14. Integrating costimulatory agonists to optimize immune-based cancer therapies

    PubMed Central

    Pardee, Angela D; Wesa, Amy K

    2009-01-01

    While immunotherapy for cancer has become increasingly popular, clinical benefits for such approaches remain limited. This is likely due to tumor-associated immune suppression, particularly in the advanced-disease setting. Thus, a major goal of novel immunotherapeutic design has become the coordinate reversal of existing immune dysfunction and promotion of specific tumoricidal T-cell function. Costimulatory members of the TNF-receptor family are important regulators of T-cell-mediated immunity. Notably, agonist ligation of these receptors restores potent antitumor immunity in the tumor-bearing host. Current Phase I/II evaluation of TNF-receptor agonists as single-modality therapies will illuminate their safety, mechanism(s) of action, and best use in prospective combinational immunotherapy approaches capable of yielding superior benefits to cancer patients. PMID:20046961

  15. Dopamine agonists and the suppression of impulsive motor actions in Parkinson disease.

    PubMed

    Wylie, Scott A; Claassen, Daniel O; Huizenga, Hilde M; Schewel, Kerilyn D; Ridderinkhof, K Richard; Bashore, Theodore R; van den Wildenberg, Wery P M

    2012-08-01

    The suppression of spontaneous motor impulses is an essential facet of cognitive control that is linked to frontal-BG circuitry. BG dysfunction caused by Parkinson disease (PD) disrupts the proficiency of action suppression, but how pharmacotherapy for PD impacts impulsive motor control is poorly understood. Dopamine agonists improve motor symptoms of PD but can also provoke impulsive-compulsive behaviors (ICB). We investigated whether dopamine agonist medication has a beneficial or detrimental effect on impulsive action control in 38 PD patients, half of whom had current ICB. Participants performed the Simon conflict task, which measures susceptibility to acting on spontaneous action impulses as well as the proficiency of suppressing these impulses. Compared with an off-agonist state, patients on their agonists were no more susceptible to reacting impulsively but were less proficient at suppressing the interference from the activation of impulsive actions. Importantly, agonist effects depended on baseline performance in the off-agonist state; more proficient suppressors off agonist experienced a reduction in suppression on agonist, whereas less-proficient suppressors off agonist showed improved suppression on agonist. Patients with active ICB were actually less susceptible to making fast, impulsive response errors than patients without ICB, suggesting that behavioral problems in this subset of patients may be less related to impulsivity in motor control. Our findings provide further evidence that dopamine agonist medication impacts specific cognitive control processes and that the direction of its effects depends on individual differences in performance off medication.

  16. Improving the developability profile of pyrrolidine progesterone receptor partial agonists

    SciTech Connect

    Kallander, Lara S.; Washburn, David G.; Hoang, Tram H.; Frazee, James S.; Stoy, Patrick; Johnson, Latisha; Lu, Qing; Hammond, Marlys; Barton, Linda S.; Patterson, Jaclyn R.; Azzarano, Leonard M.; Nagilla, Rakesh; Madauss, Kevin P.; Williams, Shawn P.; Stewart, Eugene L.; Duraiswami, Chaya; Grygielko, Eugene T.; Xu, Xiaoping; Laping, Nicholas J.; Bray, Jeffrey D.; Thompson, Scott K.

    2010-09-17

    The previously reported pyrrolidine class of progesterone receptor partial agonists demonstrated excellent potency but suffered from serious liabilities including hERG blockade and high volume of distribution in the rat. The basic pyrrolidine amine was intentionally converted to a sulfonamide, carbamate, or amide to address these liabilities. The evaluation of the degree of partial agonism for these non-basic pyrrolidine derivatives and demonstration of their efficacy in an in vivo model of endometriosis is disclosed herein.

  17. Newspapers and newspaper ink contain agonists for the ah receptor.

    PubMed

    Bohonowych, Jessica E S; Zhao, Bin; Timme-Laragy, Alicia; Jung, Dawoon; Di Giulio, Richard T; Denison, Michael S

    2008-04-01

    Ligand-dependent activation of the aryl hydrocarbon receptor (AhR) pathway leads to a diverse array of biological and toxicological effects. The best-studied ligands for the AhR include polycyclic and halogenated aromatic hydrocarbons, the most potent of which is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, as new AhR ligands are identified and characterized, their structural and physiochemical diversity continues to expand. Our identification of AhR agonists in crude extracts from diverse materials raises questions as to the magnitude and extent of human exposure to AhR ligands through normal daily activities. We have found that solvent extracts of newspapers from countries around the world stimulate the AhR signaling pathway. AhR agonist activity was observed for dimethyl sulfoxide (DMSO), ethanol, and water extracts of printed newspaper, unprinted virgin paper, and black printing ink, where activation of luciferase reporter gene expression was transient, suggesting that the AhR active chemical(s) was metabolically labile. DMSO and ethanol extracts also stimulated AhR transformation and DNA binding, and also competed with [(3)H]TCDD for binding to the AhR. In addition, DMSO extracts of printed newspaper induced cytochrome P450 1A associated 7-ethoxyresorufin-O-deethylase activity in zebrafish embryos in vivo. Although the responsible bioactive chemical(s) remain to be identified, our results demonstrate that newspapers and printing ink contain relatively potent metabolically labile agonists of the AhR. Given the large amount of recycling and reprocessing of newspapers throughout the world, release of these easily extractable AhR agonists into the environment should be examined and their potential effects on aquatic organisms assessed.

  18. Newspapers and Newspaper Ink Contain Agonists for the Ah Receptor

    PubMed Central

    Bohonowych, Jessica E. S.; Zhao, Bin; Timme-Laragy, Alicia; Jung, Dawoon; Di Giulio, Richard T.; Denison, Michael S.

    2010-01-01

    Ligand-dependent activation of the aryl hydrocarbon receptor (AhR) pathway leads to a diverse array of biological and toxicological effects. The best-studied ligands for the AhR include polycyclic and halogenated aromatic hydrocarbons, the most potent of which is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, as new AhR ligands are identified and characterized, their structural and physiochemical diversity continues to expand. Our identification of AhR agonists in crude extracts from diverse materials raises questions as to the magnitude and extent of human exposure to AhR ligands through normal daily activities. We have found that solvent extracts of newspapers from countries around the world stimulate the AhR signaling pathway. AhR agonist activity was observed for dimethyl sulfoxide (DMSO), ethanol, and water extracts of printed newspaper, unprinted virgin paper, and black printing ink, where activation of luciferase reporter gene expression was transient, suggesting that the AhR active chemical(s) was metabolically labile. DMSO and ethanol extracts also stimulated AhR transformation and DNA binding, and also competed with [3H]TCDD for binding to the AhR. In addition, DMSO extracts of printed newspaper induced cytochrome P450 1A associated 7-ethoxyresorufin-O-deethylase activity in zebrafish embryos in vivo. Although the responsible bioactive chemical(s) remain to be identified, our results demonstrate that newspapers and printing ink contain relatively potent metabolically labile agonists of the AhR. Given the large amount of recycling and reprocessing of newspapers throughout the world, release of these easily extractable AhR agonists into the environment should be examined and their potential effects on aquatic organisms assessed. PMID:18203687

  19. Antipsychotic Induced Symptomatic Hyperprolactinemia: Are Dopamine Agonists Safe?

    PubMed

    Lertxundi, Unax; Domingo-Echaburu, Saioa; Peral, Javier; García, Montserrat

    2011-09-15

    Published literature shows that dopamine agonists can reverse antipsychotic-induced hyperprolactinemia without worsening psychotic symptoms in the majority of schizophrenic patients. However, psychiatrists have been reluctant to use drugs with dopaminergic properties for fear of exacerbating psychiatric symptoms. There are reported cases of psychosis worsening published for both cabergoline and bromocriptine. Cabergoline has proven to be more effective and safe when used to treat hyperprolactinemia, but whether cabergoline is also safer than bromocriptine in antipsychotic induced hyperprolactinemia remains unproven.

  20. Antipsychotic Induced Symptomatic Hyperprolactinemia: Are Dopamine Agonists Safe?

    PubMed Central

    Lertxundi, Unax; Domingo-Echaburu, Saioa; Peral, Javier; García, Montserrat

    2011-01-01

    Published literature shows that dopamine agonists can reverse antipsychotic-induced hyperprolactinemia without worsening psychotic symptoms in the majority of schizophrenic patients. However, psychiatrists have been reluctant to use drugs with dopaminergic properties for fear of exacerbating psychiatric symptoms. There are reported cases of psychosis worsening published for both cabergoline and bromocriptine. Cabergoline has proven to be more effective and safe when used to treat hyperprolactinemia, but whether cabergoline is also safer than bromocriptine in antipsychotic induced hyperprolactinemia remains unproven. PMID:27738363

  1. Angiotensin receptor agonistic autoantibodies and hypertension: preeclampsia and beyond.

    PubMed

    Xia, Yang; Kellems, Rodney E

    2013-06-21

    Hypertensive disorders are life-threatening diseases with high morbidity and mortality, affecting billions of individuals worldwide. A multitude of underlying conditions may contribute to hypertension, thus the need for a plethora of treatment options to identify the approach that best meets the needs of individual patients. A growing body of evidence indicates that (1) autoantibodies that bind to and activate the major angiotensin II type I (AT₁) receptor exist in the circulation of patients with hypertensive disorders, (2) these autoantibodies contribute to disease pathophysiology, (3) antibody titers correlate to the severity of the disease, and (4) efforts to block or remove these pathogenic autoantibodies have therapeutic potential. These autoantibodies, termed AT₁ agonistic autoantibodies have been extensively characterized in preeclampsia, a life-threatening hypertensive condition of pregnancy. As reviewed here, these autoantibodies cause symptoms of preeclampsia when injected into pregnant mice. Somewhat surprisingly, these auto antibodies also appear in 3 animal models of preeclampsia. However, the occurrence of AT₁ agonistic autoantibodies is not restricted to pregnancy. These autoantibodies are prevalent among kidney transplant recipients who develop severe transplant rejection and malignant hypertension during the first week after transplantation. AT₁ agonistic autoantibodies are also highly abundant among a group of patients with essential hypertension that are refractory to standard therapy. More recently these autoantibodies have been seen in patients with the autoimmune disease, systemic sclerosis. These 3 examples extend the clinical impact of AT₁ agonistic autoantibodies beyond pregnancy. Research reviewed here raises the intriguing possibility that preeclampsia and other hypertensive conditions are autoimmune diseases characterized by the presence of pathogenic autoantibodies that activate the major angiotensin receptor, AT₁. These

  2. Glucagon-like peptide-1 receptors agonists (GLP1 RA).

    PubMed

    Kalra, Sanjay

    2013-10-01

    The glucagon-like peptide-1 receptors agonists (GLP1RA) are a relatively new class of drugs, used for management of type 2 diabetes. This review studies the characteristics of these drugs, focusing upon their mechanism of action, intra-class differences, and utility in clinical practice. It compares them with other incretin based therapies, the dipeptidyl peptidase-IV inhibitors, and predicts future developments in the use of these molecules, while highlighting the robust indications for the use of these drugs.

  3. Gonadotropin-releasing hormone agonist-induced pituitary apoplexy

    PubMed Central

    Keane, Fergus; Navin, Patrick; Brett, Francesca; Dennedy, Michael C

    2016-01-01

    Summary Pituitary apoplexy represents an uncommon endocrine emergency with potentially life-threatening consequences. Drug-induced pituitary apoplexy is a rare but important consideration when evaluating patients with this presentation. We describe an unusual case of a patient with a known pituitary macroadenoma presenting with acute-onset third nerve palsy and headache secondary to tumour enlargement and apoplexy. This followed gonadotropin-releasing hormone (GNRH) agonist therapy used to treat metastatic prostate carcinoma. Following acute management, the patient underwent transphenoidal debulking of his pituitary gland with resolution of his third nerve palsy. Subsequent retrospective data interpretation revealed that this had been a secretory gonadotropinoma and GNRH agonist therapy resulted in raised gonadotropins and testosterone. Hence, further management of his prostate carcinoma required GNRH antagonist therapy and external beam radiotherapy. This case demonstrates an uncommon complication of GNRH agonist therapy in the setting of a pituitary macroadenoma. It also highlights the importance of careful, serial data interpretation in patients with pituitary adenomas. Finally, this case presents a unique insight into the challenges of managing a hormonal-dependent prostate cancer in a patient with a secretory pituitary tumour. Learning points While non-functioning gonadotropinomas represent the most common form of pituitary macroadenoma, functioning gonadotropinomas are exceedingly rare. Acute tumour enlargement, with potential pituitary apoplexy, is a rare but important adverse effect arising from GNRH agonist therapy in the presence of both functioning and non-functioning pituitary gonadotropinomas. GNRH antagonist therapy represents an alternative treatment option for patients with hormonal therapy-requiring prostate cancer, who also have diagnosed with a pituitary gonadotropinoma. PMID:27284452

  4. Thermodynamic analysis of antagonist and agonist interactions with dopamine receptors.

    PubMed

    Duarte, E P; Oliveira, C R; Carvalho, A P

    1988-03-01

    The binding of [3H]spiperone to dopamine D-2 receptors and its inhibition by antagonists and agonists were examined in microsomes derived from the sheep caudate nucleus, at temperatures between 37 and 1 degree C, and the thermodynamic parameters of the binding were evaluated. The affinity of the receptor for the antagonists, spiperone and (+)-butaclamol, decreased as the incubation temperature decreased; the affinity for haloperidol did not further decrease at temperatures below 15 degrees C. The binding of the antagonists was associated with very large increases in entropy, as expected for hydrophobic interactions. The enthalpy and entropy changes associated with haloperidol binding were dependent on temperature, in contrast to those associated with spiperone and (+)-butaclamol. The magnitude of the entropy increase associated with the specific binding of the antagonists did not correlate with the degree of lipophilicity of these drugs. The data suggest that, in addition to hydrophobic forces, other forces are also involved in the antagonist-dopamine receptor interactions, and that a conformational change of the receptor could occur when the antagonist binds. Agonist binding data are consistent with a two-state model of the receptor, a high-affinity state (RH) and a low-affinity state (RL). The affinity of dopamine binding to the RH decreased with decreasing temperatures below 20 degrees C, whereas the affinity for the RL increased at low temperatures. In contrast, the affinity of apomorphine for both states of receptor decreased as the temperature decreased from 30 to 8 degrees C. A clear distinction between the energetics of high-affinity and low-affinity agonist binding was observed. The formation of the high-affinity complex was associated with larger increases in enthalpy and entropy than the interaction with the low-affinity state was. The results suggest that the interaction of the receptor with the G-proteins, induced or stabilized by the binding of

  5. Neuroprotective effects mediated by dopamine receptor agonists against malonate-induced lesion in the rat striatum.

    PubMed

    Fancellu, R; Armentero, M-T; Nappi, G; Blandini, F

    2003-10-01

    In rats, intrastriatal injection of malonate, a reversible inhibitor of the mitochondrial enzyme succinate dehydrogenase, induces a lesion similar to that observed following focal ischemia or in Huntington's disease. In this study we used the malonate model to explore the neuroprotective potential of dopamine agonists. Rats were injected intraperitoneally with increasing concentrations of D1, D2, or mixed D1/D2 dopamine agonists prior to intrastriatal injection of malonate. Administration of increasing doses of the D2-specific agonist quinpirole resulted in increased protection against malonate toxicity. Conversely, the D1-specific agonist SKF-38393, as well as the mixed D1/D2 agonist apomorphine, conferred higher neuroprotection at lower than at higher drug concentrations. Our data suggest that malonate- induced striatal toxicity can be attenuated by systemic administration of dopamine agonists, with D1 and D2 agonists showing different profiles of efficacy.

  6. Agonistic sounds signal male quality in the Lusitanian toadfish.

    PubMed

    Amorim, M Clara P; Conti, Carlotta; Modesto, Teresa; Gonçalves, Amparo; Fonseca, Paulo J

    2015-10-01

    Acoustic communication during agonistic behaviour is widespread in fishes. Yet, compared to other taxa, little is known on the information content of fish agonistic calls and their effect on territorial defence. Lusitanian toadfish males (Halobatrachus didactylus) are highly territorial during the breeding season and use sounds (boatwhistles, BW) to defend nests from intruders. BW present most energy in either the fundamental frequency, set by the contraction rate of the sonic muscles attached to the swimbladder, or in the harmonics, which are multiples of the fundamental frequency. Here we investigated if temporal and spectral features of BW produced during territorial defence reflect aspects of male quality that may be important in resolving disputes. We found that higher mean pulse period (i.e. lower fundamental frequency) reflected higher levels of 11-ketotestosterone (11KT), the main teleost androgen which, in turn, was significantly related with male condition (relative body mass and glycogen content). BW dominant harmonic mean and variability decreased with sonic muscle lipid content. We found no association between BW duration and male quality. Taken together, these results suggest that the spectral content of fish agonistic sounds may signal male features that are key in fight outcome.

  7. Emerging strategies for exploiting cannabinoid receptor agonists as medicines.

    PubMed

    Pertwee, Roger G

    2009-02-01

    Medicines that activate cannabinoid CB(1) and CB(2) receptor are already in the clinic. These are Cesamet (nabilone), Marinol (dronabinol; Delta(9)-tetrahydrocannabinol) and Sativex (Delta(9)-tetrahydrocannabinol with cannabidiol). The first two of these medicines can be prescribed to reduce chemotherapy-induced nausea and vomiting. Marinol can also be prescribed to stimulate appetite, while Sativex is prescribed for the symptomatic relief of neuropathic pain in adults with multiple sclerosis and as an adjunctive analgesic treatment for adult patients with advanced cancer. One challenge now is to identify additional therapeutic targets for cannabinoid receptor agonists, and a number of potential clinical applications for such agonists are mentioned in this review. A second challenge is to develop strategies that will improve the efficacy and/or the benefit-to-risk ratio of a cannabinoid receptor agonist. This review focuses on five strategies that have the potential to meet either or both of these objectives. These are strategies that involve: (i) targeting cannabinoid receptors located outside the blood-brain barrier; (ii) targeting cannabinoid receptors expressed by a particular tissue; (iii) targeting up-regulated cannabinoid receptors; (iv) targeting cannabinoid CB(2) receptors; or (v) 'multi-targeting'. Preclinical data that justify additional research directed at evaluating the clinical importance of each of these strategies are also discussed.

  8. Contact- and agonist-regulated microvesiculation of human platelets.

    PubMed

    Zhang, Yanjun; Liu, Xiao; Liu, Li; Zaske, Ana-Maria; Zhou, Zhou; Fu, Yuanyuan; Yang, Xi; Conyers, Jodie L; Li, Min; Dong, Jing-fei; Zhang, Jianning

    2013-08-01

    After exposure to an agonist, platelets are activated and become aggregated. They also shed membrane microparticles that participate in the pathogenesis of thrombosis, hyper-coagulation and inflammation. However, microvesiculation can potentially disrupt the integrity of platelet aggregation by shedding the membrane receptors and phosphatidylserine critical for forming and stabilising a platelet clot. We tested the hypothesis that adhesion and microvesiculation are functions of different subsets of platelets at the time of haemostasis by real-time monitoring of agonist-induced morphological changes and microvesiculation of human platelets.We identified two types of platelets that are adherent to fibrinogen: a high density bubble shape (HDBS) and low-density spread shape (LDSS). Adenosine diphosphate (ADP) predominantly induced HDBS platelets to vesiculate, whereas LDSS platelets were highly resistant to such vesiculation. Thrombin-receptor activating peptide (TRAP) stabilised platelets against microvesiculation by promoting a rapid HDBS-to-LDSS morphological transition. These activities of ADP and TRAP were reversed for platelets in suspension, independent of an engagement integrin αIIbβ3. As the result of membrane contact, LDSS platelets inhibited the microvesiculation of HDBS platelets in response to ADP. Aspirin and clopidogrel inhibited ADP-induced microvesiculation through different mechanisms. These results suggest that platelet aggregation and microvesiculation occur in different subsets of platelets and are differently regulated by agonists, platelet-platelets and platelet-fibrinogen interactions.

  9. Pharmacophore-driven identification of PPARγ agonists from natural sources

    NASA Astrophysics Data System (ADS)

    Petersen, Rasmus K.; Christensen, Kathrine B.; Assimopoulou, Andreana N.; Fretté, Xavier; Papageorgiou, Vassilios P.; Kristiansen, Karsten; Kouskoumvekaki, Irene

    2011-02-01

    In a search for more effective and safe anti-diabetic compounds, we developed a pharmacophore model based on partial agonists of PPARγ. The model was used for the virtual screening of the Chinese Natural Product Database (CNPD), a library of plant-derived natural products primarily used in folk medicine. From the resulting hits, we selected methyl oleanonate, a compound found, among others, in Pistacia lentiscus var. Chia oleoresin (Chios mastic gum). The acid of methyl oleanonate, oleanonic acid, was identified as a PPARγ agonist through bioassay-guided chromatographic fractionations of Chios mastic gum fractions, whereas some other sub-fractions exhibited also biological activity towards PPARγ. The results from the present work are two-fold: on the one hand we demonstrate that the pharmacophore model we developed is able to select novel ligand scaffolds that act as PPARγ agonists; while at the same time it manifests that natural products are highly relevant for use in virtual screening-based drug discovery.

  10. Emerging strategies for exploiting cannabinoid receptor agonists as medicines

    PubMed Central

    Pertwee, Roger G

    2009-01-01

    Medicines that activate cannabinoid CB1 and CB2 receptor are already in the clinic. These are Cesamet® (nabilone), Marinol® (dronabinol; Δ9-tetrahydrocannabinol) and Sativex® (Δ9-tetrahydrocannabinol with cannabidiol). The first two of these medicines can be prescribed to reduce chemotherapy-induced nausea and vomiting. Marinol® can also be prescribed to stimulate appetite, while Sativex® is prescribed for the symptomatic relief of neuropathic pain in adults with multiple sclerosis and as an adjunctive analgesic treatment for adult patients with advanced cancer. One challenge now is to identify additional therapeutic targets for cannabinoid receptor agonists, and a number of potential clinical applications for such agonists are mentioned in this review. A second challenge is to develop strategies that will improve the efficacy and/or the benefit-to-risk ratio of a cannabinoid receptor agonist. This review focuses on five strategies that have the potential to meet either or both of these objectives. These are strategies that involve: (i) targeting cannabinoid receptors located outside the blood-brain barrier; (ii) targeting cannabinoid receptors expressed by a particular tissue; (iii) targeting up-regulated cannabinoid receptors; (iv) targeting cannabinoid CB2 receptors; or (v) ‘multi-targeting’. Preclinical data that justify additional research directed at evaluating the clinical importance of each of these strategies are also discussed. PMID:19226257

  11. LHRH Agonists for the Treatment of Prostate Cancer: 2012

    PubMed Central

    Lepor, Herbert; Shore, Neal D

    2012-01-01

    The most recent guidelines on prostate cancer screening from the American Urological Association (2009), the National Comprehensive Cancer Network (2011), and the European Association of Urology (2011), as well as treatment and advances in disease monitoring, have increased the androgen deprivation therapy (ADT) population and the duration of ADT usage as the first-line treatment for metastatic prostate cancer. According to the European Association of Urology, gonadotropin-releasing hormone (GnRH) agonists have become the leading therapeutic option for ADT because they avoid the physical and psychological discomforts associated with orchiectomy. However, GnRH agonists display several shortcomings, including testosterone (T) surge (“clinical flare”) and microsurges. T surge delays the intended serologic endpoint of T suppression and may exacerbate clinical symptoms. Furthermore, ADT manifests an adverse-event spectrum that can impact quality of life with its attendant well-documented morbidities. Strategies to improve ADT tolerability include a holistic management approach, improved diet and exercise, and more specific monitoring to detect and prevent T depletion toxicities. Intermittent ADT, which allows hormonal recovery between treatment periods, has become increasingly utilized as a methodology for improving quality of life while not diminishing chronic ADT efficacy, and may also provide healthcare cost savings. This review assesses the present and potential future role of GnRH agonists in prostate cancer and explores strategies to minimize the adverse-event profile for patients receiving ADT. PMID:23172994

  12. Covalent agonists for studying G protein-coupled receptor activation

    PubMed Central

    Weichert, Dietmar; Kruse, Andrew C.; Manglik, Aashish; Hiller, Christine; Zhang, Cheng; Hübner, Harald; Kobilka, Brian K.; Gmeiner, Peter

    2014-01-01

    Structural studies on G protein-coupled receptors (GPCRs) provide important insights into the architecture and function of these important drug targets. However, the crystallization of GPCRs in active states is particularly challenging, requiring the formation of stable and conformationally homogeneous ligand-receptor complexes. Native hormones, neurotransmitters, and synthetic agonists that bind with low affinity are ineffective at stabilizing an active state for crystallogenesis. To promote structural studies on the pharmacologically highly relevant class of aminergic GPCRs, we here present the development of covalently binding molecular tools activating Gs-, Gi-, and Gq-coupled receptors. The covalent agonists are derived from the monoamine neurotransmitters noradrenaline, dopamine, serotonin, and histamine, and they were accessed using a general and versatile synthetic strategy. We demonstrate that the tool compounds presented herein display an efficient covalent binding mode and that the respective covalent ligand-receptor complexes activate G proteins comparable to the natural neurotransmitters. A crystal structure of the β2-adrenoreceptor in complex with a covalent noradrenaline analog and a conformationally selective antibody (nanobody) verified that these agonists can be used to facilitate crystallogenesis. PMID:25006259

  13. PPARgamma agonists as therapeutics for the treatment of Alzheimer's disease.

    PubMed

    Landreth, Gary; Jiang, Qingguang; Mandrekar, Shweta; Heneka, Michael

    2008-07-01

    Alzheimer's disease (AD) is characterized by the deposition of beta-amyloid within the brain parenchyma and is accompanied by the impairment of neuronal metabolism and function, leading to extensive neuronal loss. The disease involves the perturbation of synaptic function, energy, and lipid metabolism. The development of amyloid plaques results in the induction of a microglial-mediated inflammatory response. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-activated transcription factor whose biological actions are to regulate glucose and lipid metabolism and suppress inflammatory gene expression. Thus, agonists of this receptor represent an attractive therapeutic target for AD. There is now an extensive body of evidence that has demonstrated the efficacy of PPARgamma agonists in ameliorating disease-related pathology and improved learning and memory in animal models of AD. Recent clinical trials of the PPARgamma agonist rosiglitazone have shown significant improvement in memory and cognition in AD patients. Thus, PPARgamma represents an important new therapeutic target in treating AD.

  14. Molecular impact of juvenile hormone agonists on neonatal Daphnia magna.

    PubMed

    Toyota, Kenji; Kato, Yasuhiko; Miyakawa, Hitoshi; Yatsu, Ryohei; Mizutani, Takeshi; Ogino, Yukiko; Miyagawa, Shinichi; Watanabe, Hajime; Nishide, Hiroyo; Uchiyama, Ikuo; Tatarazako, Norihisa; Iguchi, Taisen

    2014-05-01

    Daphnia magna has been used extensively to evaluate organism- and population-level responses to pollutants in acute toxicity and reproductive toxicity tests. We have previously reported that exposure to juvenile hormone (JH) agonists results in a reduction of reproductive function and production of male offspring in a cyclic parthenogenesis, D. magna. Recent advances in molecular techniques have provided tools to understand better the responses to pollutants in aquatic organisms, including D. magna. DNA microarray was used to evaluate gene expression profiles of neonatal daphnids exposed to JH agonists: methoprene (125, 250 and 500 ppb), fenoxycarb (0.5, 1 and 2 ppb) and epofenonane (50, 100 and 200 ppb). Exposure to these JH analogs resulted in chemical-specific patterns of gene expression. The heat map analyses based on hierarchical clustering revealed a similar pattern between treatments with a high dose of methoprene and with epofenonane. In contrast, treatment with low to middle doses of methoprene resulted in similar profiles to fenoxycarb treatments. Hemoglobin and JH epoxide hydrolase genes were clustered as JH-responsive genes. These data suggest that fenoxycarb has high activity as a JH agonist, methoprene shows high toxicity and epofenonane works through a different mechanism compared with other JH analogs, agreeing with data of previously reported toxicity tests. In conclusion, D. magna DNA microarray is useful for the classification of JH analogs and identification of JH-responsive genes.

  15. Suppression of atherosclerosis by synthetic REV-ERB agonist

    SciTech Connect

    Sitaula, Sadichha; Billon, Cyrielle; Kamenecka, Theodore M.; Solt, Laura A.; Burris, Thomas P.

    2015-05-08

    The nuclear receptors for heme, REV-ERBα and REV-ERBβ, play important roles in the regulation of metabolism and inflammation. Recently it was demonstrated that reduced REV-ERBα expression in hematopoetic cells in LDL receptor null mice led to increased atherosclerosis. We sought to determine if synthetic REV-ERB agonists that we have developed might have the ability to suppress atherosclerosis in this model. A previously characterized synthetic REV-ERB agonist, SR9009, was used to determine if activation of REV-ERB activity would affect atherosclerosis in LDL receptor deficient mice. Atherosclerotic plaque size was significantly reduced (p < 0.05) in mice administered SR9009 (100 mg/kg) for seven weeks compared to control mice (n = 10 per group). SR9009 treatment of bone marrow-derived mouse macrophages (BMDM) reduced the polarization of BMDMs to proinflammatory M1 macrophage while increasing the polarization of BMDMs to anti-inflammatory M2 macrophages. Our results suggest that pharmacological targeting of REV-ERBs may be a viable therapeutic option for treatment of atherosclerosis. - Highlights: • Synthetic REV-ERB agonist treatment reduced atherosclerosis in a mouse model. • Pharmacological activation of REV-ERB decreased M1 macrophage polarization. • Pharmacological activation of REV-ERB increased M2 macrophage polarization.

  16. TLR agonists: our best frenemy in cancer immunotherapy

    PubMed Central

    Kaczanowska, Sabina; Joseph, Ann Mary; Davila, Eduardo

    2013-01-01

    Various TLR agonists are currently under investigation in clinical trials for their ability to orchestrate antitumor immunity. The antitumor responses are largely attributed to their aptitude to stimulate APCs such as DCs which in turn, activate tumor-specific T cell responses. However, there is a potential for TLR signaling to occur on cells other than professional APCs that could negate antitumor responses or even worse, promote tumor growth. The impetus for this review is twofold. First, there is accumulating data demonstrating that the engagement of TLRs on different T cell subsets and different cancer types could promote tumor growth or conversely, contribute to antitumor responses. Second, the efficacy of TLR agonists as monotherapies to treat cancer patients has been limited. In this review, we discuss how TLR signaling within different T cell subsets and cancer cells can potentially impact the generation of antitumor responses. Based on evidence from preclinical models and clinical trials, we draw attention to several criteria that we believe must be considered when selecting TLR agonists for developing effective immunotherapeutic strategies against cancer. PMID:23475577

  17. LHRH Agonists for the Treatment of Prostate Cancer: 2012.

    PubMed

    Lepor, Herbert; Shore, Neal D

    2012-01-01

    The most recent guidelines on prostate cancer screening from the American Urological Association (2009), the National Comprehensive Cancer Network (2011), and the European Association of Urology (2011), as well as treatment and advances in disease monitoring, have increased the androgen deprivation therapy (ADT) population and the duration of ADT usage as the first-line treatment for metastatic prostate cancer. According to the European Association of Urology, gonadotropin-releasing hormone (GnRH) agonists have become the leading therapeutic option for ADT because they avoid the physical and psychological discomforts associated with orchiectomy. However, GnRH agonists display several shortcomings, including testosterone (T) surge ("clinical flare") and microsurges. T surge delays the intended serologic endpoint of T suppression and may exacerbate clinical symptoms. Furthermore, ADT manifests an adverse-event spectrum that can impact quality of life with its attendant well-documented morbidities. Strategies to improve ADT tolerability include a holistic management approach, improved diet and exercise, and more specific monitoring to detect and prevent T depletion toxicities. Intermittent ADT, which allows hormonal recovery between treatment periods, has become increasingly utilized as a methodology for improving quality of life while not diminishing chronic ADT efficacy, and may also provide healthcare cost savings. This review assesses the present and potential future role of GnRH agonists in prostate cancer and explores strategies to minimize the adverse-event profile for patients receiving ADT.

  18. Pregnane X receptor agonists impair postprandial glucose tolerance.

    PubMed

    Rysä, J; Buler, M; Savolainen, M J; Ruskoaho, H; Hakkola, J; Hukkanen, J

    2013-06-01

    We conducted a randomized, open, placebo-controlled crossover trial to investigate the effects of the pregnane X receptor (PXR) agonist rifampin on an oral glucose tolerance test (OGTT) in 12 healthy volunteers. The subjects were administered 600 mg rifampin or placebo once daily for 7 days, and OGTT was performed on the eighth day. The mean incremental glucose and insulin areas under the plasma concentration-time curves (AUC(incr)) increased by 192% (P = 0.008) and 45% (P = 0.031), respectively. The fasting glucose, insulin, and C-peptide, and the homeostasis model assessment for insulin resistance, were not affected. The glucose AUC(incr) during OGTT was significantly increased in rats after 4-day treatment with pregnenolone 16α-carbonitrile (PCN), an agonist of the rat PXR. The hepatic level of glucose transporter 2 (Glut2) mRNA was downregulated by PCN. In conclusion, both human and rat PXR agonists elicited postprandial hyperglycemia, suggesting a detrimental role of PXR activation on glucose tolerance.

  19. Beta2-Agonist Doping Control and Optical Isomer Challenges.

    PubMed

    Jacobson, Glenn A; Fawcett, J Paul

    2016-12-01

    The World Anti-Doping Agency (WADA) currently allows therapeutic use of the beta2-agonists salbutamol, formoterol and salmeterol when delivered via inhalation despite some evidence suggesting these anti-asthma drugs may be performance enhancing. Beta2-agonists are usually administered as 50:50 racemic mixtures of two enantiomers (non-superimposable mirror images), one of which demonstrates significant beta2-adrenoceptor-mediated bronchodilation while the other appears to have little or no pharmacological activity. For salbutamol and formoterol, urine thresholds have been adopted to limit supratherapeutic dosing and to discriminate between inhaled (permitted) and oral (prohibited) use. However, chiral switches have led to the availability of enantiopure (active enantiomer only) preparations of salbutamol and formoterol, which effectively doubles their urine thresholds and provides a means for athletes to take supratherapeutic doses for doping purposes. Given the availability of these enantiopure beta2-agonists, the analysis of these drugs using enantioselective assays should now become routine. For salmeterol, there is currently only a therapeutic dose threshold and adoption of a urinary threshold should be a high priority for doping control.

  20. Novel Small Molecule Antagonists of the Interaction of the Androgen Receptor and Transcriptional Co-regulators

    DTIC Science & Technology

    2009-01-01

    proteins or cross-talk pathways that are necessary for ligand- induced conformation change. A clear implication of our work, and that of others (23...dihydrotestosterone (DHT), and assembly of coregulatory proteins (CoR). The blockage of the interaction between DHT- liganded AR and CoR by small molecules has...subclass of nuclear receptor family (NRs) that are intracellular transcriptional factors.2, 3 In the cytoplasm, inactive AR dissociates from heat

  1. The β2-adrenoceptor agonist formoterol stimulates mitochondrial biogenesis.

    PubMed

    Wills, Lauren P; Trager, Richard E; Beeson, Gyda C; Lindsey, Christopher C; Peterson, Yuri K; Beeson, Craig C; Schnellmann, Rick G

    2012-07-01

    Mitochondrial dysfunction is a common mediator of disease and organ injury. Although recent studies show that inducing mitochondrial biogenesis (MB) stimulates cell repair and regeneration, only a limited number of chemicals are known to induce MB. To examine the impact of the β-adrenoceptor (β-AR) signaling pathway on MB, primary renal proximal tubule cells (RPTC) and adult feline cardiomyocytes were exposed for 24 h to multiple β-AR agonists: isoproterenol (nonselective β-AR agonist), (±)-(R*,R*)-[4-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]phenoxy] acetic acid sodium hydrate (BRL 37344) (selective β(3)-AR agonist), and formoterol (selective β(2)-AR agonist). The Seahorse Biosciences (North Billerica, MA) extracellular flux analyzer was used to quantify carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP)-uncoupled oxygen consumption rate (OCR), a marker of maximal electron transport chain activity. Isoproterenol and BRL 37244 did not alter mitochondrial respiration at any of the concentrations examined. Formoterol exposure resulted in increases in both FCCP-uncoupled OCR and mitochondrial DNA (mtDNA) copy number. The effect of formoterol on OCR in RPTC was inhibited by the β-AR antagonist propranolol and the β(2)-AR inverse agonist 3-(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]butan-2-ol hydrochloride (ICI-118,551). Mice exposed to formoterol for 24 or 72 h exhibited increases in kidney and heart mtDNA copy number, peroxisome proliferator-activated receptor γ coactivator 1α, and multiple genes involved in the mitochondrial electron transport chain (F0 subunit 6 of transmembrane F-type ATP synthase, NADH dehydrogenase subunit 1, NADH dehydrogenase subunit 6, and NADH dehydrogenase [ubiquinone] 1β subcomplex subunit 8). Cheminformatic modeling, virtual chemical library screening, and experimental validation identified nisoxetine from the Sigma Library of Pharmacologically Active Compounds and two compounds from the ChemBridge DIVERSet

  2. Different skeletal effects of the peroxisome proliferator activated receptor (PPAR)α agonist fenofibrate and the PPARγ agonist pioglitazone

    PubMed Central

    Syversen, Unni; Stunes, Astrid K; Gustafsson, Björn I; Obrant, Karl J; Nordsletten, Lars; Berge, Rolf; Thommesen, Liv; Reseland, Janne E

    2009-01-01

    Background All the peroxisome proliferator activated receptors (PPARs) are found to be expressed in bone cells. The PPARγ agonist rosiglitazone has been shown to decrease bone mass in mice and thiazolidinediones (TZDs) have recently been found to increase bone loss and fracture risk in humans treated for type 2 diabetes mellitus. The aim of the study was to examine the effect of the PPARα agonist fenofibrate (FENO) and the PPARγ agonist pioglitazone (PIO) on bone in intact female rats. Methods Rats were given methylcellulose (vehicle), fenofibrate or pioglitazone (35 mg/kg body weight/day) by gavage for 4 months. BMC, BMD, and body composition were measured by DXA. Histomorphometry and biomechanical testing of excised femurs were performed. Effects of the compounds on bone cells were studied. Results The FENO group had higher femoral BMD and smaller medullary area at the distal femur; while trabecular bone volume was similar to controls. Whole body BMD, BMC, and trabecular bone volume were lower, while medullary area was increased in PIO rats compared to controls. Ultimate bending moment and energy absorption of the femoral shafts were reduced in the PIO group, while similar to controls in the FENO group. Plasma osteocalcin was higher in the FENO group than in the other groups. FENO stimulated proliferation and differentiation of, and OPG release from, the preosteoblast cell line MC3T3-E1. Conclusion We show opposite skeletal effects of PPARα and γ agonists in intact female rats. FENO resulted in significantly higher femoral BMD and lower medullary area, while PIO induced bone loss and impairment of the mechanical strength. This represents a novel effect of PPARα activation. PMID:19331671

  3. Superagonist, Full Agonist, Partial Agonist, and Antagonist Actions of Arylguanidines at 5-Hydroxytryptamine-3 (5-HT3) Subunit A Receptors.

    PubMed

    Alix, Katie; Khatri, Shailesh; Mosier, Philip D; Casterlow, Samantha; Yan, Dong; Nyce, Heather L; White, Michael M; Schulte, Marvin K; Dukat, Małgorzata

    2016-11-16

    Introduction of minor variations to the substitution pattern of arylguanidine 5-hydroxytryptamine-3 (5-HT3) receptor ligands resulted in a broad spectrum of functionally-active ligands from antagonist to superagonist. For example, (i) introduction of an additional Cl-substituent(s) to our lead full agonist N-(3-chlorophenyl)guanidine (mCPG, 2; efficacy % = 106) yielded superagonists 7-9 (efficacy % = 186, 139, and 129, respectively), (ii) a positional isomer of 2, p-Cl analog 11, displayed partial agonist actions (efficacy % = 12), and (iii) replacing the halogen atom at the meta or para position with an electron donating OCH3 group or a stronger electron withdrawing (i.e., CF3) group resulted in antagonists 13-16. We posit based on combined mutagenesis, crystallographic, and computational analyses that for the 5-HT3 receptor, the arylguanidines that are better able to simultaneously engage the primary and complementary subunits, thus keeping them in close proximity, have greater agonist character while those that are deficient in this ability are antagonists.

  4. Virtual screening of CB(2) receptor agonists from bayesian network and high-throughput docking: structural insights into agonist-modulated GPCR features.

    PubMed

    Renault, Nicolas; Laurent, Xavier; Farce, Amaury; El Bakali, Jamal; Mansouri, Roxane; Gervois, Philippe; Millet, Régis; Desreumaux, Pierre; Furman, Christophe; Chavatte, Philippe

    2013-04-01

    The relevance of CB(2)-mediated therapeutics is well established in the treatment of pain, neurodegenerative and gastrointestinal tract disorders. Recent works such as the crystallization of class-A G-protein-coupled receptors in a range of active states and the identification of specific anchoring sites for CB(2) agonists challenged us to design a reliable agonist-bound homology model of CB(2) receptor. Docking-scoring enrichment tests of a high-throughput virtual screening of 140 compounds led to 13 hits within the micromolar affinity range. Most of these hits behaved as CB(2) agonists, among which two novel full agonists emerged. Although the main challenge was a high-throughput docking run targeting an agonist-bound state of a CB(2) model, a prior 2D ligand-based Bayesian network was computed to enrich the input commercial library for 3D screening. The exclusive discovery of agonists illustrates the reliability of this agonist-bound state model for the identification of polar and aromatic amino acids as new agonist-modulated CB(2) features to be integrated in the wide activation pathway of G-protein-coupled receptors.

  5. The PPAR{gamma} ligand ciglitazone regulates androgen receptor activation differently in androgen-dependent versus androgen-independent human prostate cancer cells

    SciTech Connect

    Moss, Patrice E.; Lyles, Besstina E.; Stewart, LaMonica V.

    2010-12-10

    The androgen receptor (AR) regulates growth and progression of androgen-dependent as well as androgen-independent prostate cancer cells. Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonists have been reported to reduce AR activation in androgen-dependent LNCaP prostate cancer cells. To determine whether PPAR{gamma} ligands are equally effective at inhibiting AR activity in androgen-independent prostate cancer, we examined the effect of the PPAR{gamma} ligands ciglitazone and rosiglitazone on C4-2 cells, an androgen- independent derivative of the LNCaP cell line. Luciferase-based reporter assays and Western blot analysis demonstrated that PPAR{gamma} ligand reduced dihydrotestosterone (DHT)-induced increases in AR activity in LNCaP cells. However, in C4-2 cells, these compounds increased DHT-induced AR driven luciferase activity. In addition, ciglitazone did not significantly alter DHT-mediated increases in prostate specific antigen (PSA) protein or mRNA levels within C4-2 cells. siRNA-based experiments demonstrated that the ciglitazone-induced regulation of AR activity observed in C4-2 cells was dependent on the presence of PPAR{gamma}. Furthermore, overexpression of the AR corepressor cyclin D1 inhibited the ability of ciglitazone to induce AR luciferase activity in C4-2 cells. Thus, our data suggest that both PPAR{gamma} and cyclin D1 levels influence the ability of ciglitazone to differentially regulate AR signaling in androgen-independent C4-2 prostate cancer cells.

  6. Development of approaches to induce puberty in cultured female sablefish (Anoplopoma fimbria).

    PubMed

    Guzmán, José M; Luckenbach, J Adam; da Silva, Denis A M; Ylitalo, Gina M; Swanson, Penny

    2015-09-15

    Efforts to establish sustainable and efficient aquaculture production of sablefish (Anoplopoma fimbria) have been constrained by delayed puberty in cultured females. This study integrates a series of experiments aimed at gaining an understanding of the reproductive physiology of puberty in female sablefish. We detected transcripts for the dopamine D2 receptor (drd2) in brain, pituitary and ovary of sablefish, and prepubertal females exhibited significantly elevated brain and pituitary drd2 expression relative to wild maturing females. Treatments with sustained-release cholesterol pellets containing testosterone (T) and the dopamine D2 receptor antagonist, metoclopramide (Met), stimulated expression of pituitary luteinizing hormone beta subunit (lhb) and follicle-stimulating hormone beta subunit (fshb), respectively, in prepubertal females, whereas a combination of T and gonadotropin-releasing hormone agonist (GnRHa) had a strong synergistic effect on lhb expression (2000-fold higher than control). Although T induced a significant increase in the maximum ovarian follicle volume, none of the treatments tested stimulated onset of vitellogenesis. Using liquid chromatography/tandem mass spectrometry, we demonstrated that Met stimulated production of T by previtellogenic ovarian follicles in vitro, whereas gonadotropin preparations enhanced 17α-hydroxyprogesterone, androstenedione (A4), T and 17β-estradiol (E2) production. Treatment with T increased production of A4, 11β-hydroxyandrostenedione, 11β-hydroxytestosterone, E2, 11-ketotestosterone, and 5α-dihydrotestosterone (DHT). Interestingly, in the presence of high doses of T the previtellogenic ovary preferentially produced A4 and DHT over any other metabolite. Our data suggest the existence of dopamine inhibition of the reproductive axis in female sablefish. Treatments with Met and T elevated gonadotropin mRNAs in prepubertal females but failed to stimulate the transition into vitellogenic growth, suggesting a

  7. Estrogen-Induced Maldevelopment of the Penis Involves Down-Regulation of Myosin Heavy Chain 11 (MYH11) Expression, a Biomarker for Smooth Muscle Cell Differentiation1

    PubMed Central

    Okumu, L.A.; Bruinton, Sequoia; Braden, Tim D.; Simon, Liz; Goyal, Hari O.

    2012-01-01

    ABSTRACT Cavernous smooth muscle cells are essential components in penile erection. In this study, we investigated effects of estrogen exposure on biomarkers for smooth muscle cell differentiation in the penis. Neonatal rats received diethylstilbestrol (DES), with or without the estrogen receptor (ESR) antagonist ICI 182,780 (ICI) or the androgen receptor (AR) agonist dihydrotestosterone (DHT), from Postnatal Days 1 to 6. Tissues were collected at 7, 10, or 21 days of age. The smooth muscle cell biomarker MYH11 was studied in depth because microarray data showed it was significantly down-regulated, along with other biomarkers, in DES treatment. Quantitative real time-PCR and Western blot analyses showed 50%–80% reduction (P ≤ 0.05) in Myh11 expression in DES-treated rats compared to that in controls; and ICI and DHT coadministration mitigated the decrease. Temporally, from 7 to 21 days of age, Myh11 expression was onefold increased (P ≥ 0.05) in DES-treated rats versus threefold increased (P ≤ 0.001) in controls, implying the long-lasting inhibitory effect of DES on smooth muscle cell differentiation. Immunohistochemical localization of smooth muscle alpha actin, another biomarker for smooth muscle cell differentiation, showed fewer cavernous smooth muscle cells in DES-treated animals than in controls. Additionally, DES treatment significantly up-regulated Esr1 mRNA expression and suppressed the neonatal testosterone surge by 90%, which was mitigated by ICI coadministration but not by DHT coadministration. Collectively, results provided evidence that DES treatment in neonatal rats inhibited cavernous smooth muscle cell differentiation, as shown by down-regulation of MYH11 expression at the mRNA and protein levels and by reduced immunohistochemical staining of smooth muscle alpha actin. Both the ESR and the AR pathways probably mediate this effect. PMID:22976277

  8. Antihypertensive effects of androgens in conscious, spontaneously hypertensive rats.

    PubMed

    Perusquía, Mercedes; Herrera, Nieves; Ferrer, Mercedes; Stallone, John N

    2017-03-01

    Androgens are vasoactive steroids that induce acute vasodilation in a number of isolated vascular beds from different species, but the effects of these hormones on systemic blood pressure (BP) have been studied little. Although it has been reported that androgens exert systemic hypotensive effects through peripheral vasodilation in normotensive rats, there have not been any reports of systemic hypotensive effects of androgens in animals with hypertension. This study was designed to evaluate the acute effects of testosterone (TES) and its 5-reduced metabolites on systemic BP in hypertensive rats and to test the hypothesis that hypotestosteronemia may be involved in the pathogenesis of hypertension. Chronic, indwelling catheters were implanted in carotid artery and jugular vein of 18-21-week-old male spontaneously hypertensive rats (SHR) and normotensive-control Wistar-Kyoto (WKY) rats, for BP recording and drug administration, respectively. Bolus injections of TES, 5α- or 5β-dihydrotestosterone (5α- and 5β-DHT), were administrated cumulatively to conscious rats at doses of 0.1-100μmolkg(-1)min(-1). 5β-DHT was also administrated during the pressor effect of Bay K 8644, an L-type voltage-operated Ca(2+) channel (L-VOCC) agonist. In separate experiments, BP of orchidectomized normotensive male WKY and Wistar rats, with or without androgen-replacement therapy, was evaluated weekly for 10 weeks by tail-cuff plethysmography. TES and its metabolites reduced BP in a dose-dependent manner, while heart rate was reduced with some androgens at the highest doses. The hypotensive effects of androgens were markedly greater in SHR, with a rank order potency of: 5β-DHT>TES>5α-DHT. 5β-DHT, the most potent antihypertensive androgen, abolished the pressor response to Bay K 8644 in SHR. TES deprivation by orchidectomy increased BP in normotensive WKY and Wistar rats, but this hypertension was prevented by TES replacement therapy. BP responses to androgens are androgen structure

  9. A comparative study of the androgenic properties of progesterone and the progestins, medroxyprogesterone acetate (MPA) and norethisterone acetate (NET-A).

    PubMed

    Africander, Donita J; Storbeck, Karl-Heinz; Hapgood, Janet P

    2014-09-01

    The importance of investigating the molecular mechanism of action of medroxyprogesterone acetate (MPA) and norethisterone acetate (NET-A), two clinically important progestins used in hormone therapy (HT), has been highlighted by clinical evidence showing that MPA and norethisterone (NET) increase the risk of the development of breast cancer in HRT users, and that MPA may increase susceptibility to- and transmission of HIV-1. The aim of this study was to compare the molecular mechanisms of action of MPA, NET-A and progesterone (Prog) via the androgen receptor (AR) in a cell line model that can minimize confounding factors such as the presence of other steroid receptors. This study is the first to determine accurate apparent Ki values for Prog, MPA and NET-A toward the human AR in COS-1 cells. The results reveal that these ligands have a similar binding affinity for the AR to that of the natural androgen 5α-dihydrotestosterone (DHT) (Ki's for DHT, Prog, MPA and NET-A are 29.4, 36.6, 19.4 and 21.9 nM, respectively). Moreover, in both transactivation and transrepression transcriptional assays we demonstrate that, unlike Prog, MPA and NET-A are efficacious AR agonists, with activities comparable to DHT. One of the most novel findings of our study is that NET-A, like DHT, induces the ligand-dependent interaction between the NH2- and COOH-terminal domains (N/C-interaction) of the AR independent of promoter-context, while MPA does not induce the N/C interaction on a classical ARE and does so only weakly on an AR-selective ARE. This suggests that MPA and NET-A may exert differential promoter-specific actions via the AR in vivo. Consistent with this, molecular modeling suggests that MPA and NET-A induce subtle differences in the structure of the AR ligand binding domain. Taken together, the results from this study suggest that unlike Prog, both MPA and NET-A used in hormonal therapy are likely to compete with DHT and exert significant and promoter-specific off

  10. PPARgamma agonist pioglitazone does not enhance performance in mice.

    PubMed

    Sanchis-Gomar, Fabian; Pareja-Galeano, Helios; Martinez-Bello, Vladimir E

    2014-09-01

    Peroxisome-proliferator-activated receptor (PPAR) delta and adenosine monophosphate (AMP)-activated protein kinases (AMPKs) regulate the metabolic and contractile characteristics of myofibres. PPAR proteins are nuclear receptors that function as transcription factors and regulate the expression of multiple genes. AMPK has been described as a master metabolic regulator which also controls gene expression through the direct phosphorylation of some nuclear proteins. Since it was discovered that both PPARdelta agonists (GW1516) and AMPK activators (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, known as AICAR) are very effective performance-enhancing substances in sedentary mice, the World Anti-doping Agency (WADA) included AICAR and GW1516 in the prohibited list of substances as metabolic modulators in the class 'Hormone and metabolic modulators'. Thiazolidinediones are PPARgamma agonists that can induce similar biological effects to those of PPARdelta and PPARdelta-AMPK agonists. Thus in this study, the effects of pioglitazone on mitochondrial biogenesis and performance were evaluated. Blood glucose levels and the protein expression of the intermediates involved in the mitochondrial biogenesis pathway and the citrate synthase activity were determined in both gastrocnemius and soleus muscles. Maximal aerobic velocity (MAV), endurance capacity, and grip strength before and after the training period were also determined. The MAV endurance capacity and grip strength of trained animals significantly increased. We found that the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and the nuclear respiratory factor-1 (NRF-1) protein content and citrate synthase activity significantly increased in the soleus muscle of trained animals. No effect of treatment was found. Therefore in our study, pioglitazone administration did not affect mitochondrial biogenesis signaling pathway.

  11. Comparative endpoint sensitivity of in vitro estrogen agonist assays.

    PubMed

    Dreier, David A; Connors, Kristin A; Brooks, Bryan W

    2015-07-01

    Environmental and human health implications of endocrine disrupting chemicals (EDCs), particularly xenoestrogens, have received extensive study. In vitro assays are increasingly employed as diagnostic tools to comparatively evaluate chemicals, whole effluent toxicity and surface water quality, and to identify causative EDCs during toxicity identification evaluations. Recently, the U.S. Environmental Protection Agency (USEPA) initiated ToxCast under the Tox21 program to generate novel bioactivity data through high throughput screening. This information is useful for prioritizing chemicals requiring additional hazard information, including endocrine active chemicals. Though multiple in vitro and in vivo techniques have been developed to assess estrogen agonist activity, the relative endpoint sensitivity of these approaches and agreement of their conclusions remain unclear during environmental diagnostic applications. Probabilistic hazard assessment (PHA) approaches, including chemical toxicity distributions (CTD), are useful for understanding the relative sensitivity of endpoints associated with in vitro and in vivo toxicity assays by predicting the likelihood of chemicals eliciting undesirable outcomes at or above environmentally relevant concentrations. In the present study, PHAs were employed to examine the comparative endpoint sensitivity of 16 in vitro assays for estrogen agonist activity using a diverse group of compounds from the USEPA ToxCast dataset. Reporter gene assays were generally observed to possess greater endpoint sensitivity than other assay types, and the Tox21 ERa LUC BG1 Agonist assay was identified as the most sensitive in vitro endpoint for detecting an estrogenic response. When the sensitivity of this most sensitive ToxCast in vitro endpoint was compared to the human MCF-7 cell proliferation assay, a common in vitro model for biomedical and environmental monitoring applications, the ERa LUC BG1 assay was several orders of magnitude less

  12. Biased signaling by peptide agonists of protease activated receptor 2.

    PubMed

    Jiang, Yuhong; Yau, Mei-Kwan; Kok, W Mei; Lim, Junxian; Wu, Kai-Chen; Liu, Ligong; Hill, Timothy A; Suen, Jacky Y; Fairlie, David P

    2017-02-07

    Protease activated receptor 2 (PAR2) is associated with metabolism, obesity, inflammatory, respiratory and gastrointestinal disorders, pain, cancer and other diseases. The extracellular N-terminus of PAR2 is a common target for multiple proteases, which cleave it at different sites to generate different N-termini that activate different PAR2-mediated intracellular signaling pathways. There are no synthetic PAR2 ligands that reproduce the same signaling profiles and potencies as proteases. Structure-activity relationships here for 26 compounds spanned a signaling bias over 3 log units, culminating in three small ligands as biased agonist tools for interrogating PAR2 functions. DF253 (2f-LAAAAI-NH2) triggered PAR2-mediated calcium release (EC50 2 μM) but not ERK1/2 phosphorylation (EC50 > 100 μM) in CHO cells transfected with hPAR2. AY77 (Isox-Cha-Chg-NH2) was a more potent calcium-biased agonist (EC50 40 nM, Ca2+; EC50 2 μM, ERK1/2), while its analogue AY254 (Isox-Cha-Chg-A-R-NH2) was an ERK-biased agonist (EC50 2 nM, ERK1/2; EC50 80 nM, Ca2+). Signaling bias led to different functional responses in human colorectal carcinoma cells (HT29). AY254, but not AY77 or DF253, attenuated cytokine-induced caspase 3/8 activation, promoted scratch-wound healing and induced IL-8 secretion, all via PAR2-ERK1/2 signaling. Different ligand components were responsible for different PAR2 signaling and functions, clues that can potentially lead to drugs that modulate different pathway-selective cellular and physiological responses.

  13. Melatonin and Melatonin Agonists as Adjunctive Treatments in Bipolar Disorders.

    PubMed

    Geoffroy, Pierre Alexis; Etain, Bruno; Franchi, Jean-Arthur Micoulaud; Bellivier, Frank; Ritter, Philipp

    2015-01-01

    Bipolar disorders (BD) present with abnormalities of circadian rhythmicity and sleep homeostasis, even during phases of remission. These abnormalities are linked to the underlying neurobiology of genetic susceptibility to BD. Melatonin is a pineal gland secreted neurohormone that induces circadian-related and sleep-related responses. Exogenous melatonin has demonstrated efficacy in treating primary insomnia, delayed sleep phase disorder, improving sleep parameters and overall sleep quality, and some psychiatric disorders like autistic spectrum disorders. In order to evaluate the efficacy of melatonin among patients with BD, this comprehensive review emphasizes the abnormal melatonin function in BD, the rationale of melatonin action in BD, the available data about the exogenous administration of melatonin, and melatonin agonists (ramelteon and tasimelteon), and recommendations of use in patients with BD. There is a scientific rationale to propose melatonin-agonists as an adjunctive treatment of mood stabilizers in treating sleep disorders in BD and thus to possibly prevent relapses when administered during remission phases. We emphasized the need to treat insomnia, sleep delayed latencies and sleep abnormalities in BD that are prodromal markers of an emerging mood episode and possible targets to prevent future relapses. An additional interesting adjunctive therapeutic effect might be on preventing metabolic syndrome, particularly in patients treated with antipsychotics. Finally, melatonin is well tolerated and has little dependence potential in contrast to most available sleep medications. Further studies are expected to be able to produce stronger evidence-based therapeutic guidelines to confirm and delineate the routine use of melatonin-agonists in the treatment of BD.

  14. INSIGHT AGONISTES: A READING OF SOPHOCLES'S OEDIPUS THE KING.

    PubMed

    Mahon, Eugene J

    2015-07-01

    In this reading of Sophocles's Oedipus the King, the author suggests that insight can be thought of as the main protagonist of the tragedy. He personifies this depiction of insight, calling it Insight Agonistes, as if it were the sole conflicted character on the stage, albeit masquerading at times as several other characters, including gods, sphinxes, and oracles. This psychoanalytic reading of the text lends itself to an analogy between psychoanalytic process and Sophocles's tragic hero. The author views insight as always transgressing against, always at war with a conservative, societal, or intrapsychic chorus of structured elements. A clinical vignette is presented to illustrate this view of insight.

  15. Dehydroepiandrosterone Derivatives as Potent Antiandrogens with Marginal Agonist Activity

    DTIC Science & Technology

    2013-07-01

    DATES COVERED 01 July 2012 – 30 June 2013 4 . TITLE AND SUBTITLE Dehydroepiandrosterone Derivatives as Potent Antiandrogens with Marginal Agonist...Page Introduction…………………………………………………………….………..….. 1 Body………………………………………………………………………………….. 1- 4 Key Research...In addition, we previously found that androstenediol (Adiol), a physiological metabolite from dehydroepiandrosterone ( DHEA ) and a precursor of

  16. Clenbuterol, a beta(2)-agonist, retards atrophy in denervated muscles

    NASA Technical Reports Server (NTRS)

    Zeman, Richard J.; Ludemann, Robert; Etlinger, Joseph D.

    1987-01-01

    The effects of a beta(2) agonist, clenbuterol, on the protein content as well as on the contractile strength and the muscle fiber cross-sectional area of various denervated muscles from rats were investigated. It was found that denervated soleus, anterior tibialis, and gastrocnemius muscles, but not the extensor digitorum longus, of rats treated for 2-3 weeks with clenbuterol contained 95-110 percent more protein than denervated controls. The twofold difference in the protein content of denervated solei was paralleled by similar changes in contractile strength and muscle fiber cross-sectional area.

  17. Is there a justification for classifying GLP-1 receptor agonists as basal and prandial?

    PubMed

    Miñambres, Inka; Pérez, Antonio

    2017-01-01

    Several GLP-1 receptor agonists are currently available for treatment of type 2 diabetic patients. Based on their pharmacokinetic/pharmacodynamic profile, these drugs are classified as short-acting GLP-1 receptor agonists (exenatide and lixisenatide) or long-acting GLP-1 receptor agonists (exenatide-LAR, liraglutide, albiglutide, and dulaglutide). In clinical practice, they are also classified as basal or prandial GLP-1 receptor agonists to differentiate between patients who would benefit more from one or another based on characteristics such as previous treatment and the predominance of fasting or postprandial hyperglycemia. In the present article we examine available data on the pharmacokinetic characteristics of the various GLP-1 agonists and compare their effects with respect to the main parameters used to evaluate glycemic control. The article also analyzes whether the differences between the different GLP-1 agonists justify their classification as basal or prandial.

  18. Antidepressant-like Effects of δ Opioid Receptor Agonists in Animal Models

    PubMed Central

    Saitoh, Akiyoshi; Yamada, Mitsuhiko

    2012-01-01

    Recently, δ opioid receptor agonists have been proposed to be attractive targets for the development of novel antidepressants. Several studies revealed that single treatment of δ opioid receptor agonists produce antidepressant-like effects in the forced swimming test, which is one of the most popular animal models for screening antidepressants. In addition, subchronic treatment with δ opioid receptor agonists has been shown to completely attenuate the hyperemotional responses found in olfactory bulbectomized rats. This animal model exhibits hyperemotional behavior that may mimic the anxiety, aggression, and irritability found in depressed patients, suggesting that δ opioid receptor agonists could be effective in the treatment of these symptoms in depression. On the other hand, prototype δ opioid receptor agonists produce convulsive effects, which limit their therapeutic potential and clinical development. In this review, we presented the current knowledge regarding the antidepressant-like effects of δ opioid receptor agonists, which include some recently developed drugs lacking convulsive effects. PMID:23449756

  19. Contamination with retinoic acid receptor agonists in two rivers in the Kinki region of Japan.

    PubMed

    Inoue, Daisuke; Nakama, Koki; Sawada, Kazuko; Watanabe, Taro; Takagi, Mai; Sei, Kazunari; Yang, Min; Hirotsuji, Junji; Hu, Jianying; Nishikawa, Jun-ichi; Nakanishi, Tsuyoshi; Ike, Michihiko

    2010-04-01

    This study was conducted to investigate the agonistic activity against human retinoic acid receptor (RAR) alpha in the Lake Biwa-Yodo River and the Ina River in the Kinki region of Japan. To accomplish this, a yeast two-hybrid assay was used to elucidate the spatial and temporal variations and potential sources of RARalpha agonist contamination in the river basins. RARalpha agonistic activity was commonly detected in the surface water samples collected along two rivers at different periods, with maximum all-trans retinoic acid (atRA) equivalents of 47.6 ng-atRA/L and 23.5 ng-atRA/L being observed in Lake Biwa-Yodo River and Ina River, respectively. The results indicated that RARalpha agonists are always present and widespread in the rivers. Comparative investigation of RARalpha and estrogen receptor alpha agonistic activities at 20 stations along each river revealed that the spatial variation pattern of RARalpha agonist contamination was entirely different from that of the estrogenic compound contamination. This suggests that the effluent from municipal wastewater treatment plants, a primary source of estrogenic compounds, seemed not to be the cause of RARalpha agonist contamination in the rivers. Fractionation using high performance liquid chromatography (HPLC) directed by the bioassay found two bioactive fractions from river water samples, suggesting the presence of at least two RARalpha agonists in the rivers. Although a trial conducted to identify RARalpha agonists in the major bioactive fraction was not completed as part of this study, comparison of retention times in HPLC analysis and quantification with liquid chromatography-mass spectrometry analysis revealed that the major causative contaminants responsible for the RARalpha agonistic activity were not RAs (natural RAR ligands) and 4-oxo-RAs, while 4-oxo-RAs were identified as the major RAR agonists in sewage in Beijing, China. These findings suggest that there are unknown RARalpha agonists with high

  20. β‐Arrestin 2 dependence of δ opioid receptor agonists is correlated with alcohol intake

    PubMed Central

    Chiang, T; Sansuk, K

    2016-01-01

    Background and Purpose δ Opioid receptor agonists are being developed as potential treatments for depression and alcohol use disorders. This is particularly interesting as depression is frequently co‐morbid with alcohol use disorders. Yet we have previously shown that δ receptor agonists range widely in their ability to modulate alcohol intake; certain δ receptor agonists actually increase alcohol consumption in mice. We propose that variations in β‐arrestin 2 recruitment contribute to the differential behavioural profile of δ receptor agonists. Experimental Approach We used three diarylmethylpiperazine‐based non‐peptidic δ receptor selective agonists (SNC80, SNC162 and ARM390) and three structurally diverse δ receptor agonists (TAN‐67, KNT127 and NIH11082). We tested these agonists in cAMP and β‐arrestin 2 recruitment assays and a behavioural assay of alcohol intake in male C57BL/6 mice. We used β‐arrestin 2 knockout mice and a model of depression‐like behaviour to further study the role of β‐arrestin 2 in δ receptor pharmacology. Key Results All six tested δ receptor agonists were full agonists in the cAMP assay but displayed distinct β‐arrestin 2 recruitment efficacy. The efficacy of δ receptor agonists to recruit β‐arrestin 2 positively correlated with their ability to increase alcohol intake (P < 0.01). The effects of the very efficacious recruiter SNC80 on alcohol intake, alcohol place preference and depression‐like behaviour were β‐arrestin 2‐dependent. Conclusions and Implications Our finding that δ receptor agonists that strongly recruit β‐arrestin 2 can increase alcohol intake carries important ramifications for drug development of δ receptor agonists for treatment of alcohol use disorders and depressive disorders. © 2015 The British Pharmacological Society PMID:26507558

  1. Electrophysiological perspectives on the therapeutic use of nicotinic acetylcholine receptor partial agonists.

    PubMed

    Papke, Roger L; Trocmé-Thibierge, Caryn; Guendisch, Daniela; Al Rubaiy, Shehd Abdullah Abbas; Bloom, Stephen A

    2011-05-01

    Partial agonist therapies rely variously on two hypotheses: the partial agonists have their effects through chronic low-level receptor activation or the partial agonists work by decreasing the effects of endogenous or exogenous full agonists. The relative significance of these activities probably depends on whether acute or chronic effects are considered. We studied nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus laevis oocytes to test a model for the acute interactions between acetylcholine (ACh) and weak partial agonists. Data were best-fit to a basic competition model that included an additional factor for noncompetitive inhibition. Partial agonist effects were compared with the nAChR antagonist bupropion in prolonged bath application experiments that were designed to mimic prolonged drug exposure typical of therapeutic drug delivery. A primary effect of prolonged application of nicotine was to decrease the response of all nAChR subtypes to acute applications of ACh. In addition, nicotine, cytisine, and varenicline produced detectable steady-state activation of α4β2* [(α4)(2)(β2)(3), (α4)(3)(β2)(2), and (α4)(2)(β2)(2)α5)] receptor subtypes that was not seen with other test compounds. Partial agonists produced no detectable steady-state activation of α7 nAChR, but seemed to show small potentiation of ACh-evoked responses; however, "run-up" of α7 ACh responses was also sometimes observed under control conditions. Potential off-target effects of the partial agonists therefore included the modulation of α7 responses by α4β2 partial agonists and decreases in α4β2* responses by α7-selective agonists. These data indicate the dual effects expected for α4β2* partial agonists and provide models and insights for utility of partial agonists in therapeutic development.

  2. In vitro and in vivo efficacy of a potent opioid receptor agonist, biphalin, compared to subtype-selective opioid receptor agonists for stroke treatment.

    PubMed

    Yang, Li; Islam, Mohammad R; Karamyan, Vardan T; Abbruscato, Thomas J

    2015-06-03

    To meet the challenge of identification of new treatments for stroke, this study was designed to evaluate a potent, nonselective opioid receptor (OR) agonist, biphalin, in comparison to subtype selective OR agonists, as a potential neuroprotective drug candidate using in vitro and in vivo models of ischemic stroke. Our in vitro approach included mouse primary neuronal cells that were challenged with glutamate and hypoxic/aglycemic (H/A) conditions. We observed that 10nM biphalin, exerted a statistically significant neuroprotective effect after glutamate challenge, compared to all selective opioid agonists, according to lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Moreover, 10nM biphalin provided superior neuroprotection after H/A-reoxygenation compared to selective opioid agonists in all cases. Our in vitro investigations were supported by in vivo studies which indicate that the nonselective opioid agonist, biphalin, achieves enhanced neuroprotective potency compared to any of the selective opioid agonists, evidenced by reduced edema and infarct ratios. Reduction of edema and infarction was accompanied by neurological improvement of the animals in two independent behavioral tests. Collectively these data strongly suggest that concurrent agonist stimulation of mu, kappa and delta ORs with biphalin is neuroprotective and superior to neuroprotection by activation of any single OR subtype.

  3. In vitro and in vivo efficacy of a potent opioid receptor agonist, biphalin, compared to subtype-selective opioid receptor agonists for stroke treatment

    PubMed Central

    Yang, Li; Islam, Mohammad R; Karamyan, Vardan T.; Abbruscato, Thomas J.

    2015-01-01

    To meet the challenge of identification of new treatments for stroke, this study was designed to evaluate a potent, nonselective opioid receptor (OR) agonist, biphalin, in comparison to subtype selective OR agonists, as a potential neuroprotective drug candidate using in vitro and in vivo models of ischemic stroke. Our in vitro approach included mouse primary neuronal cells that were challenged with glutamate and hypoxic/aglycemic (H/A) conditions. We observed that 10 nM biphalin, exerted a statistically significant neuroprotective effect after glutamate challenge, compared to all selective opioid agonists, according to lactate dehydrogenase (LDH) and 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays. Moreover, 10 nM biphalin provided superior neuroprotection after H/A-reoxygenation compared to selective opioid agonists in all cases. Our in vitro investigations were supported by in vivo studies which indicate that the nonselective opioid agonist, biphalin, achieves enhanced neuroprotective potency compared to any of the selective opioid agonists, evidenced by reduced edema and infarct ratios. Reduction of edema and infarction was accompanied by neurological improvement of the animals in two independent behavioral tests. Collectively these data strongly suggest that concurrent agonist stimulation of mu, kappa and delta ORs with biphalin is neuroprotective and superior to neuroprotection by activation of any single OR subtype. PMID:25801116

  4. Benzodiazepine agonist and inverse agonist actions on GABAA receptor-operated chloride channels. I. Acute effects of ethanol

    SciTech Connect

    Buck, K.J.; Harris, R.A. )

    1990-05-01

    Acute exposure to ethanol was found to enhance the ability of a benzodiazepine (BZ) inverse agonist, methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM), to reduce muscimol-activated 36Cl- uptake by membranes isolated from mouse cerebral cortex. Pretreatment in vivo with a hypnotic dose of ethanol (but not a subhypnotic dose), or exposure to a corresponding concentration in vitro, was effective. This increase in sensitivity of gamma-aminobutyric acid receptor-operated chloride channels to the actions of DMCM was due to an increase in both the potency and efficacy of DMCM. Sensitization to DMCM was reversible and was not observed 24 hr after a single injection of ethanol. Pretreatment with ethanol (10, 50 and 100 mM) in vitro produced sensitization to DMCM in a concentration-dependent manner, similar to that produced by in vivo exposure; this increase in sensitivity did not develop if the membranes were pretreated with ethanol at 0 degrees C. Similarly, in vitro exposure to pentobarbital (200 microM) or flunitrazepam (1 microM) enhanced the actions of the inverse agonist Ro15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo(1,5a)(1,4)BZ-3- carboxylate). Acute ethanol exposure did not alter low-affinity gamma-aminobutyric acidA receptor binding or muscimol action, or the ability of a BZ agonist, flunitrazepam, to augment muscimol-activated chloride flux. Ethanol exposure did not alter (3H)flumazenil (Ro15-1788) binding to central BZ receptors, its displacement by DMCM or allosteric modulation of DMCM binding by muscimol (muscimol-shift).

  5. Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy.

    PubMed

    Iribarren, Kristina; Bloy, Norma; Buqué, Aitziber; Cremer, Isabelle; Eggermont, Alexander; Fridman, Wolf Hervé; Fucikova, Jitka; Galon, Jérôme; Špíšek, Radek; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2016-03-01

    Accumulating preclinical evidence indicates that Toll-like receptor (TLR) agonists efficiently boost tumor-targeting immune responses (re)initiated by most, if not all, paradigms of anticancer immunotherapy. Moreover, TLR agonists have been successfully employed to ameliorate the efficacy of various chemotherapeutics and targeted anticancer agents, at least in rodent tumor models. So far, only three TLR agonists have been approved by regulatory agencies for use in cancer patients. Moreover, over the past decade, the interest of scientists and clinicians in these immunostimulatory agents has been fluctuating. Here, we summarize recent advances in the preclinical and clinical development of TLR agonists for cancer therapy.

  6. Analysis of agonist dissociation constants as assessed by functional antagonism in guinea pig left atria

    SciTech Connect

    Molenaar, P.; Malta, E.

    1986-04-01

    In electrically driven guinea pig left atria, positive inotropic responses to (-)-isoprenaline and the selective beta 1-adrenoceptor agonist RO363 were obtained in the absence and in the presence of the functional antagonists adenosine, carbachol, gallopamil, nifedipine, and Ro 03-7894. Each of the functional antagonists reduced the maximum response to both agonists and produced nonparallel rightward shifts in the cumulative concentration effect curves. For both agonists, dissociation constants (KA) were calculated using the equation described by Furchgott (1966) for irreversible antagonism. For RO363, which is a partial agonist with high agonist activity, the equations outlined for functional interaction by Mackay (1981) were also employed to calculate KA values. The KA values obtained by each method were compared with the dissociation constants (KD) for the two agonists determined from their ability to displace the radioligand (-)-(/sup 125/I)iodocyanopindolol from beta 1-adrenoceptors in guinea pig left atrial membrane preparations. The estimates of KA varied substantially from KD values. The KD values were taken as more accurate estimates of the true values for the dissociation constants because a high degree of correlation exists between pKD and pD2 values for a number of other beta-adrenoceptor agonists that behave as partial agonists and between pKD and pKB values for a number of beta-adrenoceptor antagonists. Thus, it appears that there are serious limitations in the current theory for using functional antagonism as a means of obtaining agonist dissociation constants.

  7. The pharmacology of epanolol (ICI 141292)--a new beta 1-selective adrenoceptor partial agonist.

    PubMed

    Bilski, A J; Hadfield, S E; Wale, J L

    1988-08-01

    The clinical benefit of beta-adrenoceptor partial agonists is still debated. To clarify the situation, epanolol, ICI 141,292 [N-[-2-(3-o-cyanophenoxy-2-hydroxypropylamino)ethyl]-4- hydroxyphenylactamide], has been developed to assess the role of modest beta-adrenoceptor partial agonist activity in humans. Animal studies have shown that epanolol is a potent beta-adrenoceptor partial agonist with a greater affinity for beta 1- than beta 2-adrenoceptors. In vitro, the PA2 values obtained for espanolol at atrial and tracheal beta-adrenoceptors were 8.42 and 6.33, respectively (isoproterenol as agonist), giving a selectivity ratio of 123. The potency was studied in vivo in the dog, where it was also shown that as an antagonist at the cardiac beta 1-adrenoceptor, it was 18 and 40 times more potent than atenolol and practolol, respectively. Espanolol has less partial agonist activity in the rat than pindolol, but more than practolol. In this species, it is also a classical partial agonist, exhibiting agonist activity at all beta-adrenoceptor blocking doses. This is in contrast to pindolol, which caused predominantly beta-adrenoceptor blockade at low doses and partial agonist activity at higher doses. These differences were confirmed in haemodynamic studies in the dog. In contrast to many other partial agonists, the partition coefficient, log P, of epanolol in octanol and water is low (0.92).

  8. Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy

    PubMed Central

    Iribarren, Kristina; Bloy, Norma; Buqué, Aitziber; Cremer, Isabelle; Eggermont, Alexander; Fridman, Wolf Hervé; Fucikova, Jitka; Galon, Jérôme; Špíšek, Radek; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2016-01-01

    ABSTRACT Accumulating preclinical evidence indicates that Toll-like receptor (TLR) agonists efficiently boost tumor-targeting immune responses (re)initiated by most, if not all, paradigms of anticancer immunotherapy. Moreover, TLR agonists have been successfully employed to ameliorate the efficacy of various chemotherapeutics and targeted anticancer agents, at least in rodent tumor models. So far, only three TLR agonists have been approved by regulatory agencies for use in cancer patients. Moreover, over the past decade, the interest of scientists and clinicians in these immunostimulatory agents has been fluctuating. Here, we summarize recent advances in the preclinical and clinical development of TLR agonists for cancer therapy. PMID:27141345

  9. Agonist signalling properties of radiotracers used for imaging of dopamine D2/3 receptors

    PubMed Central

    2014-01-01

    Background Dopamine D2/3 receptor (D2/3R) agonist radiopharmaceuticals are considered superior to antagonists to detect dopamine release, e.g. induced by amphetamines. Agonists bind preferentially to the high-affinity state of the dopamine D2R, which has been proposed as the reason why agonists are more sensitive to detect dopamine release than antagonist radiopharmaceuticals, but this theory has been challenged. Interestingly, not all agonists similarly activate the classic cyclic adenosine mono phosphate (cAMP) and the ?-arrestin-2 pathway, some stimulate preferentially one of these pathways; a phenomenon called biased agonism. Because these pathways can be affected separately by pathologies or drugs (including dopamine releasers), it is important to know how agonist radiotracers act on these pathways. Therefore, we characterized the intracellular signalling of the well-known D2/3R agonist radiopharmaceuticals NPA and PHNO and of several novel D2/3R agonists. Methods cAMP accumulation and ?-arrestin-2 recruitment were measured on cells expressing human D2R. Results All tested agonists showed (almost) full agonism in both pathways. Conclusions The tested D2/3R agonist radiopharmaceuticals did not exhibit biased agonism in vitro. Consequently, it is likely that drugs (including psychostimulants like amphetamines) and/or pathologies that influence the cAMP and/or the ?-arrestin-2 pathway may influence the binding of these radiopharmaceuticals. PMID:25977878

  10. Melatonin and melatonin agonist for delirium in the elderly patients.

    PubMed

    Chakraborti, Dwaipayan; Tampi, Deena J; Tampi, Rajesh R

    2015-03-01

    The objective of this review is to summarize the available data on the use of melatonin and melatonin agonist for the prevention and management of delirium in the elderly patients from randomized controlled trials (RCTs). A systematic search of 5 major databases PubMed, MEDLINE, PsychINFO, Embase, and Cochrane Library was conducted. This search yielded a total of 2 RCTs for melatonin. One study compared melatonin to midazolam, clonidine, and control groups for the prevention and management of delirium in individuals who were pre- and posthip post-hip arthroplasty. The other study compared melatonin to placebo for the prevention of delirium in older adults admitted to an inpatient internal medicine service. Data from these 2 studies indicate that melatonin may have some benefit in the prevention and management of delirium in older adults. However, there is no evidence that melatonin reduces the severity of delirium or has any effect on behaviors or functions in these individuals. Melatonin was well tolerated in these 2 studies. The search for a melatonin agonist for delirium in the elderly patients yielded 1 study of ramelteon. In this study, ramelteon was found to be beneficial in preventing delirium in medically ill individuals when compared to placebo. Ramelteon was well tolerated in this study.

  11. GLP-1 receptor agonist-induced polyarthritis: a case report.

    PubMed

    Ambrosio, Maria Luisa; Monami, Matteo; Sati, Lavinia; Marchionni, Niccolò; Di Bari, Mauro; Mannucci, Edoardo

    2014-08-01

    Occasional cases of bilateral, symmetrical, seronegative polyarthritis have been reported in patients treated with dipeptidyl peptidase-4 inhibitors (Crickx et al. in Rheumatol Int, 2013). We report here a similar case observed during treatment with a GLP-1 receptor agonist. A 42-year-old man with type 2 diabetes treated with metformin 1,500 mg/day and liraglutide 1.8 mg/day. After 6 months from the beginning of treatment, the patient complained of bilateral arthralgia (hands, feet, ankles, knees, and hips). Erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and leukocytes were increased. Rheumatoid factor, anticyclic citrullinated protein antibody, antinuclear antibodies, anti-Borrelia, and burgdorferi antibodies were all negative, and myoglobin and calcitonin were normal. Liraglutide was withdrawn, and the symptoms completely disappeared within 1 week, with normalization of ESR, CRP, fibrinogen, and leukocytes. Previously described cases of polyarthritis associated with DPP4 inhibitors had been attributed to a direct effect of the drugs on inflammatory cells expressing the enzyme. The present case, occurred during treatment with a GLP-1 receptor agonists, suggests a possibly different mechanism, mediated by GLP-1 receptor stimulation, which deserved further investigation.

  12. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity

    PubMed Central

    Galle-Treger, Lauriane; Suzuki, Yuzo; Patel, Nisheel; Sankaranarayanan, Ishwarya; Aron, Jennifer L.; Maazi, Hadi; Chen, Lin; Akbari, Omid

    2016-01-01

    Allergic asthma is a complex and chronic inflammatory disorder that is associated with airway hyperreactivity (AHR) and driven by Th2 cytokine secretion. Type 2 innate lymphoid cells (ILC2s) produce large amounts of Th2 cytokines and contribute to the development of AHR. Here, we show that ILC2s express the α7-nicotinic acetylcholine receptor (α7nAChR), which is thought to have an anti-inflammatory role in several inflammatory diseases. We show that engagement of a specific agonist with α7nAChR on ILC2s reduces ILC2 effector function and represses ILC2-dependent AHR, while decreasing expression of ILC2 key transcription factor GATA-3 and critical inflammatory modulator NF-κB, and reducing phosphorylation of upstream kinase IKKα/β. Additionally, the specific α7nAChR agonist reduces cytokine production and AHR in a humanized ILC2 mouse model. Collectively, our data suggest that α7nAChR expressed by ILC2s is a potential therapeutic target for the treatment of ILC2-mediated asthma. PMID:27752043

  13. Agonist-stimulated alveolar macrophages: apoptosis and phospholipid signaling.

    PubMed

    Lütjohann, J; Spiess, A N; Gercken, G

    1998-08-01

    Bovine alveolar macrophages (BAM) were labeled with [3H]-choline or [3H]-ethanolamine and exposed to quartz dust, metal oxide-coated silica particles, Escherichia coli-derived lipopolysaccharide (LPS) or tumor promotor 12-O-tetradecanoyl phorbol 13-acetate (PMA). The activation of phospholipases A2, C and D (PLA2, PLC and PLD) acting on phosphatidylcholine and phosphatidylethanolamine was determined by high performance liquid chromatography (HPLC) separation and liquid scintillation counting of water- and lipid-soluble phospholipid metabolites. Exposure of BAM to quartz dust, metal oxide-coated silica particles, and LPS led to a transient PLD activation while treatment with PMA caused a prolonged rise in PLD activity. LPS and quartz dust induced a short-term increase of PLC cleavage products. All agonists caused a transient activation of PLA2. To induce apoptosis, BAM were stimulated with C8-ceramide, calcium-ionophore 23187, or gliotoxin. Apoptosis was investigated by qualitative and quantitative methods like flow cytometry, propidium iodide/Hoechst 33258 double staining, Cell Death Detection ELISA, and electrophoretical detection of DNA fragmentation. All three agonists led to apoptosis of BAM in a time- and concentration-dependent manner. After stimulation with gliotoxin an increase in ceramide and a drastic decrease in sphingosine-1-phosphate levels were observed, suggesting an involvement of these sphingolipids in gliotoxin-mediated apoptosis.

  14. The evolution of histamine H₃ antagonists/inverse agonists.

    PubMed

    Lebois, Evan P; Jones, Carrie K; Lindsley, Craig W

    2011-01-01

    This article describes our efforts along with recent advances in the development, biological evaluation and clinical proof of concept of small molecule histamine H₃ antagonists/inverse agonists. The H3 receptor is a presynaptic autoreceptor within the Class A GPCR family, but also functions as a heteroreceptor modulating levels of neurotransmitters such as dopamine, acetylcholine, norepinephrine, serotonin, GABA and glutamate. Thus, H₃R has garnered a great deal of interest from the pharmaceutical industry for the possible treatment of obesity, epilepsy, sleep/wake, schizophrenia, Alzheimer's disease, neuropathic pain and ADHD. Within the two main classes of H₃ ligands, both imidazole and non-imidazole derived, have shown sufficient potency and specificity which culminated with efficacy in preclinical models for various CNS disorders. Importantly, conserved elements have been identified within the small molecule H₃ ligand scaffolds that resulted in a highly predictive pharmacophore model. Understanding of the pharmacophore model has allowed several groups to dial H₃R activity into scaffolds designed for other CNS targets, and engender directed polypharmacology. Moreover, Abbott, GSK, Pfizer and several others have reported positive Phase I and/or Phase II data with structurally diverse H₃R antagonists/inverse agonists.

  15. Trial Watch: Toll-like receptor agonists in oncological indications.

    PubMed

    Aranda, Fernando; Vacchelli, Erika; Obrist, Florine; Eggermont, Alexander; Galon, Jérôme; Sautès-Fridman, Catherine; Cremer, Isabelle; Henrik Ter Meulen, Jan; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    Toll-like receptors (TLRs) are an evolutionarily conserved group of enzymatically inactive, single membrane-spanning proteins that recognize a wide panel of exogenous and endogenous danger signals. Besides constituting a crucial component of the innate immune response to bacterial and viral pathogens, TLRs appear to play a major role in anticancer immunosurveillance. In line with this notion, several natural and synthetic TLR ligands have been intensively investigated for their ability to boost tumor-targeting immune responses elicited by a variety of immunotherapeutic and chemotherapeutic interventions. Three of these agents are currently approved by the US Food and Drug Administration (FDA) or equivalent regulatory agencies for use in cancer patients: the so-called bacillus Calmette-Guérin, monophosphoryl lipid A, and imiquimod. However, the number of clinical trials testing the therapeutic potential of both FDA-approved and experimental TLR agonists in cancer patients is stably decreasing, suggesting that drug developers and oncologists are refocusing their interest on alternative immunostimulatory agents. Here, we summarize recent findings on the use of TLR agonists in cancer patients and discuss how the clinical evaluation of FDA-approved and experimental TLR ligands has evolved since the publication of our first Trial Watch dealing with this topic.

  16. Mood Disorders, Circadian Rhythms, Melatonin and Melatonin Agonists

    PubMed Central

    Quera Salva, M.A.; Hartley, S.

    2012-01-01

    Recent advances in the understanding of circadian rhythms have led to an interest in the treatment of major depressive disorder with chronobiotic agents. Many tissues have autonomous circadian rhythms, which are orchestrated by the master clock, situated in the suprachiasmatic nucleus (SNC). Melatonin (N-acetyl-5-hydroxytryptamine) is secreted from the pineal gland during darkness. Melatonin acts mainly on MT1 and MT2 receptors, which are present in the SNC, regulating physiological and neuroendocrine functions, including circadian entrainment, referred to as the chronobiotic effet. Circadian rhythms has been shown to be either misaligned or phase shifted or decreased in amplitude in both acute episodes and relapse of major depressive disorder (MDD) and bipolar disorder. Manipulation of circadian rhythms either using physical treatments (such as high intensity light) or behavioral therapy has shown promise in improving symptoms. Pharmacotherapy using melatonin and pure melatonin receptor agonists, while improving sleep, has not been shown to improve symptoms of depression. A novel antidepressant, agomelatine, combines 5HT2c antagonist and melatonin agonist action, and has shown promise in both acute treatment of MDD and in preventing relapse. PMID:23650464

  17. Long-Acting Beta Agonists Enhance Allergic Airway Disease

    PubMed Central

    Knight, John M.; Mak, Garbo; Shaw, Joanne; Porter, Paul; McDermott, Catherine; Roberts, Luz; You, Ran; Yuan, Xiaoyi; Millien, Valentine O.; Qian, Yuping; Song, Li-Zhen; Frazier, Vincent; Kim, Choel; Kim, Jeong Joo; Bond, Richard A.; Milner, Joshua D.; Zhang, Yuan; Mandal, Pijus K.; Luong, Amber; Kheradmand, Farrah

    2015-01-01

    Asthma is one of the most common of medical illnesses and is treated in part by drugs that activate the beta-2-adrenoceptor (β2-AR) to dilate obstructed airways. Such drugs include long acting beta agonists (LABAs) that are paradoxically linked to excess asthma-related mortality. Here we show that LABAs such as salmeterol and structurally related β2-AR drugs such as formoterol and carvedilol, but not short-acting agonists (SABAs) such as albuterol, promote exaggerated asthma-like allergic airway disease and enhanced airway constriction in mice. We demonstrate that salmeterol aberrantly promotes activation of the allergic disease-related transcription factor signal transducer and activator of transcription 6 (STAT6) in multiple mouse and human cells. A novel inhibitor of STAT6, PM-242H, inhibited initiation of allergic disease induced by airway fungal challenge, reversed established allergic airway disease in mice, and blocked salmeterol-dependent enhanced allergic airway disease. Thus, structurally related β2-AR ligands aberrantly activate STAT6 and promote allergic airway disease. This untoward pharmacological property likely explains adverse outcomes observed with LABAs, which may be overcome by agents that antagonize STAT6. PMID:26605551

  18. Long-Acting Beta Agonists Enhance Allergic Airway Disease.

    PubMed

    Knight, John M; Mak, Garbo; Shaw, Joanne; Porter, Paul; McDermott, Catherine; Roberts, Luz; You, Ran; Yuan, Xiaoyi; Millien, Valentine O; Qian, Yuping; Song, Li-Zhen; Frazier, Vincent; Kim, Choel; Kim, Jeong Joo; Bond, Richard A; Milner, Joshua D; Zhang, Yuan; Mandal, Pijus K; Luong, Amber; Kheradmand, Farrah; McMurray, John S; Corry, David B

    2015-01-01

    Asthma is one of the most common of medical illnesses and is treated in part by drugs that activate the beta-2-adrenoceptor (β2-AR) to dilate obstructed airways. Such drugs include long acting beta agonists (LABAs) that are paradoxically linked to excess asthma-related mortality. Here we show that LABAs such as salmeterol and structurally related β2-AR drugs such as formoterol and carvedilol, but not short-acting agonists (SABAs) such as albuterol, promote exaggerated asthma-like allergic airway disease and enhanced airway constriction in mice. We demonstrate that salmeterol aberrantly promotes activation of the allergic disease-related transcription factor signal transducer and activator of transcription 6 (STAT6) in multiple mouse and human cells. A novel inhibitor of STAT6, PM-242H, inhibited initiation of allergic disease induced by airway fungal challenge, reversed established allergic airway disease in mice, and blocked salmeterol-dependent enhanced allergic airway disease. Thus, structurally related β2-AR ligands aberrantly activate STAT6 and promote allergic airway disease. This untoward pharmacological property likely explains adverse outcomes observed with LABAs, which may be overcome by agents that antagonize STAT6.

  19. Pharmacology and toxicology of Cannabis derivatives and endocannabinoid agonists.

    PubMed

    Gerra, Gilberto; Zaimovic, Amir; Gerra, Maria L; Ciccocioppo, Roberto; Cippitelli, Andrea; Serpelloni, Giovanni; Somaini, Lorenzo

    2010-01-01

    For centuries Cannabis sativa and cannabis extracts have been used in natural medicine. Delta(9)-tetrahydrocannabinol (THC) is the main active ingredient of Cannabis. THC seems to be responsible for most of the pharmacological and therapeutic actions of cannabis. In a few countries THC extracts (i.e. Sativex) or THC derivatives such as nabilone, and dronabinol are used in the clinic for the treatment of several pathological conditions like chemotherapy-induced nausea and vomiting, multiple sclerosis and glaucoma. On the other hand the severe side effects and the high abuse liability of these agents represent a serious limitation in their medical use. In addition, diversion in the use of these active ingredients for recreational purpose is a concern. Over recent years, alternative approaches using synthetic cannabinoid receptor agonists or agents acting as activators of the endocannabinoid systems are under scrutiny with the hope to develop more effective and safer clinical applications. Likely, in the near future few of these new molecules will be available for clinical use. The present article review recent study and patents with focus on the cannabinoid system as a target for the treatment of central nervous system disorders with emphasis on agonists.

  20. How does agonistic behaviour differ in albino and pigmented fish?

    PubMed Central

    Horký, Pavel; Wackermannová, Marie

    2016-01-01

    In addition to hypopigmentation of the skin and red iris colouration, albino animals also display distinct physiological and behavioural alterations. However, information on the social interactions of albino animals is rare and has mostly been limited to specially bred strains of albino rodents and animals from unique environments in caves. Differentiating between the effects of albinism and domestication on behaviour in rodents can be difficult, and social behaviour in cave fish changes according to species-specific adaptations to conditions of permanent darkness. The agonistic behaviours of albino offspring of pigmented parents have yet to be described. In this study, we observed agonistic behaviour in albino and pigmented juvenile Silurus glanis catfish. We found that the total number of aggressive interactions was lower in albinos than in pigmented catfish. The distance between conspecifics was also analysed, and albinos showed a tendency towards greater separation from their same-coloured conspecifics compared with pigmented catfish. These results demonstrate that albinism can be associated with lower aggressiveness and with reduced shoaling behaviour preference, as demonstrated by a tendency towards greater separation of albinos from conspecifics. PMID:27114883

  1. Coupling between agonist and chloride ionophore sites of the GABA(A) receptor: agonist/antagonist efficacy of 4-PIOL.

    PubMed

    Rabe, H; Picard, R; Uusi-Oukari, M; Hevers, W; Lüddens, H; Korpi, E R

    2000-12-15

    Eight gamma-aminobutyric acid (GABA) mimetics were tested on their ability to differentiate native GABA(A) receptor subtypes present in various rat brain regions. In rat brain cryostat sections, little regional variations by the agonistic actions of muscimol, thiomuscimol, 4,5,6,7-tetrahydroisoazolo(5,4-c)pyridin-3-ol, piperidine-4-sulphonic acid, taurine and beta-alanine on [35S]t-butylbicyclophosphorothionate ([35S]TBPS) binding to GABA(A) receptor channels were found. They were very similar to those found for GABA itself and indicated no direct correlation with single subunit distributions for any of these compounds. Only the low-efficacy GABA mimetic 5-(4-piperidyl)isoxazol-3-ol (4-PIOL) acted like a weak partial agonist or antagonist depending on the brain area. As the cerebellar granule cell layer was relatively insensitive to both modes of action, we tested 4-PIOL in recombinant alpha1beta2gamma2 (widespread major subtype) and alpha6beta2gamma2 (cerebellar granule cell restricted) receptors where it had different effects on GABA-modulated [35S]TBPS binding and on electrophysiological responses. 4-PIOL may thus serve as a potential lead for receptor subtype selective compounds.

  2. Discriminative stimulus properties of indorenate, a serotonin agonist.

    PubMed Central

    Velázquez-Martínez, D N; López Cabrera, M; Sánchez, H; Ramírez, J I; Hong, E

    1999-01-01

    OBJECTIVE: To determine whether indorenate, a serotonin-receptor agonist, can exert discriminative control over operant responses, to establish the temporal course of discriminative control and to compare its stimulus properties to a (5-HT)IA receptor agonist. [3H]-8-hydroxy-2-(di-N-propylamino) tetralin (8-OH-DPAT). DESIGN: Prospective animal study. ANIMALS: Ten male Wistar rats. INTERVENTIONS: Rats were trained to press either of 2 levers for sucrose solution according to a fixed ratio schedule, which was gradually increased. Rats were given injections of either indorenate or saline solution during discrimination training. Once they had achieved an 83% accuracy rate, rats underwent generalization tests after having received a different dose of indorenate, the training dose of indorenate at various intervals before the test, various doses of 8-OH-DPT, or NAN-190 administered before indorenate or 8-OH-DPAT. OUTCOME MEASURES: Distribution of responses between the 2 levers before the first reinforcer of the session, response rate for all the responses in the session, and a discrimination index that expressed the drug-appropriate responses as a proportion of the total responses. RESULTS: Indorenate administration resulted in discriminative control over operant responses, maintained at fixed ratio 10, at a dose of 10.0 mg/kg (but not 3.0 mg/kg). When the interval between the administration of indorenate and the start of the session was varied, the time course of its cue properties followed that of its described effects on 5-HT turnover. In generalization tests, the discrimination index was a function of the dose of indorenate employed; moreover, administration of 8-OH-DPAT (from 0.1 to 1.0 mg/kg) fully mimicked the stimulus properties of indorenate in a dose-dependent way. The (5-HT)IA antagonist NAN-190 prevented the stimulus generalization from indorenate to 8-OH-DPAT. Also, NAN-190 antagonized the stimulus control of indorenate when administered 45 minutes before

  3. New Small Molecule Agonists to the Thyrotropin Receptor

    PubMed Central

    Ali, M. Rejwan; Ma, Risheng; David, Martine; Morshed, Syed A.; Ohlmeyer, Michael; Felsenfeld, Dan P.; Lau, Zerlina; Mezei, Mihaly; Davies, Terry F.

    2015-01-01

    Background Novel small molecular ligands (SMLs) to the thyrotropin receptor (TSHR) have potential as improved molecular probes and as therapeutic agents for the treatment of thyroid dysfunction and thyroid cancer. Methods To identify novel SMLs to the TSHR, we developed a transcription-based luciferase-cAMP high-throughput screening system and we screened 48,224 compounds from a 100K library in duplicate. Results We obtained 62 hits using the cut-off criteria of the mean±three standard deviations above the baseline. Twenty molecules with the greatest activity were rescreened against the parent CHO-luciferase cell for nonspecific activation, and we selected two molecules (MS437 and MS438) with the highest potency for further study. These lead molecules demonstrated no detectible cross-reactivity with homologous receptors when tested against luteinizing hormone (LH)/human chorionic gonadotropin receptor and follicle stimulating hormone receptor–expressing cells. Molecule MS437 had a TSHR-stimulating potency with an EC50 of 13×10−8 M, and molecule MS438 had an EC50 of 5.3×10−8 M. The ability of these small molecule agonists to bind to the transmembrane domain of the receptor and initiate signal transduction was suggested by their activation of a chimeric receptor consisting of an LHR ectodomain and a TSHR transmembrane. Molecular modeling demonstrated that these molecules bound to residues S505 and E506 for MS438 and T501 for MS437 in the intrahelical region of transmembrane helix 3. We also examined the G protein activating ability of these molecules using CHO cells co-expressing TSHRs transfected with luciferase reporter vectors in order to measure Gsα, Gβγ, Gαq, and Gα12 activation quantitatively. The MS437 and MS438 molecules showed potent activation of Gsα, Gαq, and Gα12 similar to TSH, but neither the small molecule agonists nor TSH showed activation of the Gβγ pathway. The small molecules MS437 and MS438 also showed upregulation of

  4. Analysis of full and partial agonists binding to beta2-adrenergic receptor suggests a role of transmembrane helix V in agonist-specific conformational changes.

    PubMed

    Katritch, Vsevolod; Reynolds, Kimberly A; Cherezov, Vadim; Hanson, Michael A; Roth, Christopher B; Yeager, Mark; Abagyan, Ruben

    2009-01-01

    The 2.4 A crystal structure of the beta(2)-adrenergic receptor (beta(2)AR) in complex with the high-affinity inverse agonist (-)-carazolol provides a detailed structural framework for the analysis of ligand recognition by adrenergic receptors. Insights into agonist binding and the corresponding conformational changes triggering G-protein coupled receptor (GPCR) activation mechanism are of special interest. Here we show that while the carazolol pocket captured in the beta(2)AR crystal structure accommodates (-)-isoproterenol and other agonists without steric clashes, a finite movement of the flexible extracellular part of TM-V helix (TM-Ve) obtained by receptor optimization in the presence of docked ligand can further improve the calculated binding affinities for agonist compounds. Tilting of TM-Ve towards the receptor axis provides a more complete description of polar receptor-ligand interactions for full and partial agonists, by enabling optimal engagement of agonists with two experimentally identified anchor sites, formed by Asp113/Asn312 and Ser203/Ser204/Ser207 side chains. Further, receptor models incorporating a flexible TM-V backbone allow reliable prediction of binding affinities for a set of diverse ligands, suggesting potential utility of this approach to design of effective and subtype-specific agonists for adrenergic receptors. Systematic differences in capacity of partial, full and inverse agonists to induce TM-V helix tilt in the beta(2)AR model suggest potential role of TM-V as a conformational "rheostat" involved in the whole spectrum of beta(2)AR responses to small molecule signals.

  5. Impact of efficacy at the μ-opioid receptor on antinociceptive effects of combinations of μ-opioid receptor agonists and cannabinoid receptor agonists.

    PubMed

    Maguire, David R; France, Charles P

    2014-11-01

    Cannabinoid receptor agonists, such as Δ(9)-tetrahydrocannabinol (Δ(9)-THC), enhance the antinociceptive effects of μ-opioid receptor agonists, which suggests that combining cannabinoids with opioids would improve pain treatment. Combinations with lower efficacy agonists might be preferred and could avoid adverse effects associated with large doses; however, it is unclear whether interactions between opioids and cannabinoids vary across drugs with different efficacy. The antinociceptive effects of μ-opioid receptor agonists alone and in combination with cannabinoid receptor agonists were studied in rhesus monkeys (n = 4) using a warm water tail withdrawal procedure. Etorphine, fentanyl, morphine, buprenorphine, nalbuphine, Δ(9)-THC, and CP 55,940 (2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl) cyclohexyl]-5-(2-methyloctan-2-yl)phenol) each increased tail withdrawal latency. Pretreatment with doses of Δ(9)-THC (1.0 mg/kg) or CP 55,940 (0.032 mg/kg) that were ineffective alone shifted the fentanyl dose-effect curve leftward 20.6- and 52.9-fold, respectively, and the etorphine dose-effect curve leftward 12.4- and 19.6-fold, respectively. Δ(9)-THC and CP 55,940 shifted the morphine dose-effect curve leftward only 3.4- and 7.9-fold, respectively, and the buprenorphine curve only 5.4- and 4.1-fold, respectively. Neither Δ(9)-THC nor CP 55,940 significantly altered the effects of nalbuphine. Cannabinoid receptor agonists increase the antinociceptive potency of higher efficacy opioid receptor agonists more than lower efficacy agonists; however, because much smaller doses of each drug can be administered in combinations while achieving adequate pain relief and that other (e.g., abuse-related) effects of opioids do not appear to be enhanced by cannabinoids, these results provide additional support for combining opioids with cannabinoids to treat pain.

  6. Sensitivity of GBM cells to cAMP agonist-mediated apoptosis correlates with CD44 expression and agonist resistance with MAPK signaling

    PubMed Central

    Daniel, Paul M; Filiz, Gulay; Mantamadiotis, Theo

    2016-01-01

    In some cell types, activation of the second messenger cAMP leads to increased expression of proapoptotic Bim and subsequent cell death. We demonstrate that suppression of the cAMP pathway is a common event across many cancers and that pharmacological activation of cAMP in glioblastoma (GBM) cells leads to enhanced BIM expression and apoptosis in specific GBM cell types. We identified the MAPK signaling axis as the determinant of cAMP agonist sensitivity in GBM cells, with high MAPK activity corresponding to cAMP resistance and low activity corresponding to sensitization to cAMP-induced apoptosis. Sensitive cells were efficiently killed by cAMP agonists alone, while targeting both the cAMP and MAPK pathways in resistant GBM cells resulted in efficient apoptosis. We also show that CD44 is differentially expressed in cAMP agonist-sensitive and -resistant cells. We thus propose that CD44 may be a useful biomarker for distinguishing tumors that may be sensitive to cAMP agonists alone or cAMP agonists in combination with other pathway inhibitors. This suggests that using existing chemotherapeutic compounds in combination with existing FDA-approved cAMP agonists may fast track trials toward improved therapies for difficult-to-treat cancers, such as GBM. PMID:27906173

  7. Modulation of [3H]diazepam binding in rat cortical membranes by GABAA agonists.

    PubMed

    Wong, E H; Iversen, L L

    1985-04-01

    GABAA receptor agonists modulate [3H]diazepam binding in rat cortical membranes with different efficacies. At 23 degrees C, the relative potencies for enhancement of [3H]diazepam binding by agonists parallel their potencies in inhibiting [3H]gamma-aminobutyric acid [( 3H]GABA) binding. The agonist concentrations needed for enhancement of [3H]diazepam binding are up to 35 times higher than for [3H]GABA binding and correspond closely to the concentrations required for displacement of [3H]bicuculline methochloride (BMC) binding. The maximum enhancement of [3H]diazepam varied among agonists: muscimol = GABA greater than isoguvacine greater than 3-aminopropane sulphonic acid (3APS) = imidazoleacetic acid (IAA) greater than 4,5,6,7-tetrahydroisoxazolo (4,5,6)-pyridin-3-ol (THIP) = taurine greater than piperidine 4-sulphonic acid (P4S). At 37 degrees C, the potencies of agonists remained unchanged, but isoguvacine, 3 APS, and THIP acquired efficacies similar to GABA, whereas IAA, taurine, and P4S maintained their partial agonist profiles. At both temperatures the agonist-induced enhancement of [3H]diazepam binding was reversible by bicuculline methobromide and by the steroid GABA antagonist RU 5135. These results stress the importance of studying receptor-receptor interaction under near-physiological conditions and offer an in vitro assay that may predict the agonist status of putative GABA receptor ligands.

  8. Use-dependent inhibition of P2X3 receptors by nanomolar agonist.

    PubMed

    Pratt, Emily B; Brink, Thaddeus S; Bergson, Pamela; Voigt, Mark M; Cook, Sean P

    2005-08-10

    P2X3 receptors desensitize within 100 ms of channel activation, yet recovery from desensitization requires several minutes. The molecular basis for this slow rate of recovery is unknown. We designed experiments to test the hypothesis that this slow recovery is attributable to the high affinity (< 1 nM) of desensitized P2X3 receptors for agonist. We found that agonist binding to the desensitized state provided a mechanism for potent inhibition of P2X3 current. Sustained applications of 0.5 nM ATP inhibited > 50% of current to repetitive applications of P2X3 agonist. Inhibition occurred at 1000-fold lower agonist concentrations than required for channel activation and showed strong use dependence. No inhibition occurred without previous activation and desensitization. Our data are consistent with a model whereby inhibition of P2X3 by nanomolar [agonist] occurs by the rebinding of agonist to desensitized channels before recovery from desensitization. For several ATP analogs, the concentration required to inhibit P2X3 current inversely correlated with the rate of recovery from desensitization. This indicates that the affinity of the desensitized state and recovery rate primarily depend on the rate of agonist unbinding. Consistent with this hypothesis, unbinding of [32P]ATP from desensitized P2X3 receptors mirrored the rate of recovery from desensitization. As expected, disruption of agonist binding by site-directed mutagenesis increased the IC50 for inhibition and increased the rate of recovery.

  9. Yawning and locomotor behavior induced by dopamine receptor agonists in mice and rats.

    PubMed

    Li, Su-Min; Collins, Gregory T; Paul, Noel M; Grundt, Peter; Newman, Amy H; Xu, Ming; Grandy, David K; Woods, James H; Katz, Jonathan L

    2010-05-01

    Dopaminergic (DA) agonist-induced yawning in rats seems to be mediated by DA D3 receptors, and low doses of several DA agonists decrease locomotor activity, an effect attributed to presynaptic D2 receptors. Effects of several DA agonists on yawning and locomotor activity were examined in rats and mice. Yawning was reliably produced in rats, and by the cholinergic agonist, physostigmine, in both the species. However, DA agonists were ineffective in producing yawning in Swiss-Webster or DA D2R and DA D3R knockout or wild-type mice. The drugs significantly decreased locomotor activity in rats at one or two low doses, with activity returning to control levels at higher doses. In mice, the drugs decreased locomotion across a 1000-10 000-fold range of doses, with activity at control levels (U-91356A) or above control levels [(+/-)-7-hydroxy-2-dipropylaminotetralin HBr, quinpirole] at the highest doses. Low doses of agonists decreased locomotion in all mice except the DA D2R knockout mice, but were not antagonized by DA D2R or D3R antagonists (L-741 626, BP 897, or PG01037). Yawning does not provide a selective in-vivo indicator of DA D3R agonist activity in mice. Decreases in mouse locomotor activity by the DA agonists seem to be mediated by D2 DA receptors.

  10. Prolonging Survival of Corneal Transplantation by Selective Sphingosine-1-Phosphate Receptor 1 Agonist

    PubMed Central

    Gao, Min; Liu, Yong; Xiao, Yang; Han, Gencheng; Jia, Liang; Wang, Liqiang; Lei, Tian; Huang, Yifei

    2014-01-01

    Corneal transplantation is the most used therapy for eye disorders. Although the cornea is somewhat an immune privileged organ, immune rejection is still the major problem that reduces the success rate. Therefore, effective chemical drugs that regulate immunoreactions are needed to improve the outcome of corneal transplantations. Here, a sphingosine-1-phosphate receptor 1 (S1P1) selective agonist was systematically evaluated in mouse allogeneic corneal transplantation and compared with the commonly used immunosuppressive agents. Compared with CsA and the non-selective sphingosine 1-phosphate (S1P) receptor agonist FTY720, the S1P1 selective agonist can prolong the survival corneal transplantation for more than 30 days with a low immune response. More importantly, the optimal dose of the S1P1 selective agonist was much less than non-selective S1P receptor agonist FTY720, which would reduce the dose-dependent toxicity in drug application. Then we analyzed the mechanisms of the selected S1P1 selective agonist on the immunosuppression. The results shown that the S1P1 selective agonist could regulate the distribution of the immune cells with less CD4+ T cells and enhanced Treg cells in the allograft, moreover the expression of anti-inflammatory cytokines TGF-β1 and IL-10 unregulated which can reduce the immunoreactions. These findings suggest that S1P1 selective agonist may be a more appropriate immunosuppressive compound to effectively prolong mouse allogeneic corneal grafts survival. PMID:25216235

  11. Bitter Taste Receptor Agonists Mitigate Features of Allergic Asthma in Mice

    PubMed Central

    Sharma, Pawan; Yi, Roslyn; Nayak, Ajay P.; Wang, Nadan; Tang, Francesca; Knight, Morgan J.; Pan, Shi; Oliver, Brian; Deshpande, Deepak A.

    2017-01-01

    Asthma is characterized by airway inflammation, mucus secretion, remodeling and hyperresponsiveness (AHR). Recent research has established the bronchodilatory effect of bitter taste receptor (TAS2R) agonists in various models. Comprehensive pre-clinical studies aimed at establishing effectiveness of TAS2R agonists in disease models are lacking. Here we aimed to determine the effect of TAS2R agonists on features of asthma. Further, we elucidated a mechanism by which TAS2R agonists mitigate features of asthma. Asthma was induced in mice using intranasal house dust mite or aerosol ova-albumin challenge, and chloroquine or quinine were tested in both prophylactic and treatment models. Allergen challenge resulted in airway inflammation as evidenced by increased immune cells infiltration and release of cytokines and chemokines in the lungs, which were significantly attenuated in TAS2R agonists treated mice. TAS2R agonists attenuated features of airway remodeling including smooth muscle mass, extracellular matrix deposition and pro-fibrotic signaling, and also prevented mucus accumulation and development of AHR in mice. Mechanistic studies using human neutrophils demonstrated that inhibition of immune cell chemotaxis is a key mechanism by which TAS2R agonists blocked allergic airway inflammation and exerted anti-asthma effects. Our comprehensive studies establish the effectiveness of TAS2R agonists in mitigating multiple features of allergic asthma.

  12. Marketed New Drug Delivery Systems for Opioid Agonists/Antagonists Administration: A Rapid Overview

    PubMed Central

    Soltani, Hoda; Pardakhty, Abbas

    2016-01-01

    Novel drug delivery systems for controlled-release of opioid agonists as a long time painkillers or opioid antagonists for opium, heroin, and alcohol addiction are under development or in clinical use today. In this article, the field of “new drug delivery systems” is momentarily reviewed from the viewpoint of the marketed opioid agonists/antagonists dosage forms today. PMID:27882209

  13. Identification of diarylsulfonamides as agonists of the free fatty acid receptor 4 (FFA4/GPR120).

    PubMed

    Sparks, Steven M; Chen, Grace; Collins, Jon L; Danger, Dana; Dock, Steven T; Jayawickreme, Channa; Jenkinson, Stephen; Laudeman, Christopher; Leesnitzer, M Anthony; Liang, Xi; Maloney, Patrick; McCoy, David C; Moncol, David; Rash, Vincent; Rimele, Thomas; Vulimiri, Padmaja; Way, James M; Ross, Sean

    2014-07-15

    The exploration of a diarylsulfonamide series of free fatty acid receptor 4 (FFA4/GPR120) agonists is described. This work led to the identification of selective FFA4 agonist 8 (GSK137647A) and selective FFA4 antagonist 39. The in vitro profile of compounds 8 and 39 is presented herein.

  14. The dopamine D1 receptor agonist SKF-82958 effectively increases eye blinking count in common marmosets.

    PubMed

    Kotani, Manato; Kiyoshi, Akihiko; Murai, Takeshi; Nakako, Tomokazu; Matsumoto, Kenji; Matsumoto, Atsushi; Ikejiri, Masaru; Ogi, Yuji; Ikeda, Kazuhito

    2016-03-01

    Eye blinking is a spontaneous behavior observed in all mammals, and has been used as a well-established clinical indicator for dopamine production in neuropsychiatric disorders, including Parkinson's disease and Tourette syndrome [1,2]. Pharmacological studies in humans and non-human primates have shown that dopamine agonists/antagonists increase/decrease eye blinking rate. Common marmosets (Callithrix jacchus) have recently attracted a great deal of attention as suitable experimental animals in the psychoneurological field due to their more developed prefrontal cortex than rodents, easy handling compare to other non-human primates, and requirement for small amounts of test drugs. In this study, we evaluated the effects of dopamine D1-4 receptors agonists on eye blinking in common marmosets. Our results show that the dopamine D1 receptor agonist SKF-82958 and the non-selective dopamine receptor agonist apomorphine significantly increased common marmosets eye blinking count, whereas the dopamine D2 agonist (+)-PHNO and the dopamine D3 receptor agonist (+)-PD-128907 produced somnolence in common marmosets resulting in a decrease in eye blinking count. The dopamine D4 receptor agonists PD-168077 and A-41297 had no effect on common marmosets' eye blinking count. Finally, the dopamine D1 receptor antagonist SCH 39166 completely blocked apomorphine-induced increase in eye blinking count. These results indicate that eye blinking in common marmosets may be a useful tool for in vivo screening of novel dopamine D1 receptor agonists as antipsychotics.

  15. Dopamine receptor agonists mediate neuroprotection in malonate-induced striatal lesion in the rat.

    PubMed

    Armentero, Marie-Thérèse; Fancellu, Roberto; Nappi, Giuseppe; Blandini, Fabio

    2002-12-01

    Mitochondrial bioenergetic defects are involved in neurological disorders associated with neuronal damage in the striatum, such as Huntington's disease and cerebral ischemia. The striatal release of neurotransmitters, in particular dopamine, may contribute to the development of the neuronal damage. Recent studies have shown that dopamine agonists may exert neuroprotective effects via multiple mechanisms, including modulation of dopamine release from nigrostriatal dopaminergic terminals. In rats, intrastriatal injection of malonate, a reversible inhibitor of the mitochondrial enzyme succinate dehydrogenase, induces a lesion similar to that observed following focal ischemia or in Huntington's disease. In this study, we used the malonate model to explore the neuroprotective potential of dopamine agonists. Sprague-Dawley rats were injected systemically with increasing concentrations of D(1), D(2), or mixed D(1)/D(2) dopamine agonists prior to malonate intrastriatal insult. Administration of increasing doses of the D(2)-specific agonist quinpirole resulted in increased protection against malonate toxicity. Conversely, the D(1)-specific agonist SKF-38393, as well as the mixed D(1)/D(2) agonist apomorphine, conferred higher neuroprotection at lower than at higher concentrations. Our data suggest that malonate-induced striatal toxicity can be attenuated by systemic administration of dopamine agonists, with D(1) and D(2) agonists showing different profiles of efficacy.

  16. Marketed New Drug Delivery Systems for Opioid Agonists/Antagonists Administration: A Rapid Overview.

    PubMed

    Soltani, Hoda; Pardakhty, Abbas

    2016-04-01

    Novel drug delivery systems for controlled-release of opioid agonists as a long time painkillers or opioid antagonists for opium, heroin, and alcohol addiction are under development or in clinical use today. In this article, the field of "new drug delivery systems" is momentarily reviewed from the viewpoint of the marketed opioid agonists/antagonists dosage forms today.

  17. The GLP-1 agonist, liraglutide, as a pharmacotherapy for obesity

    PubMed Central

    Crane, James; McGowan, Barbara

    2015-01-01

    There is a global obesity epidemic that will continue to be a financial burden on healthcare systems around the world. Tackling obesity through diet and exercise should always be the first intervention, but this has not proved to be effective for a large number of patients. Pharmacotherapeutic options have been limited and many previously available drugs have been withdrawn due to safety concerns. Currently, only bariatric surgery has the capability to induce both substantial and durable weight loss. This article briefly reviews the history of pharmacotherapy for obesity before focusing on the clinical trial evidence for the use of the GLP-1 agonist liraglutide as a weight loss agent and comparing its efficacy with other emerging drug therapies for obesity. PMID:26977279

  18. TSH and Thyrotropic Agonists: Key Actors in Thyroid Homeostasis

    PubMed Central

    Dietrich, Johannes W.; Landgrafe, Gabi; Fotiadou, Elisavet H.

    2012-01-01

    This paper provides the reader with an overview of our current knowledge of hypothalamic-pituitary-thyroid feedback from a cybernetic standpoint. Over the past decades we have gained a plethora of information from biochemical, clinical, and epidemiological investigation, especially on the role of TSH and other thyrotropic agonists as critical components of this complex relationship. Integrating these data into a systems perspective delivers new insights into static and dynamic behaviour of thyroid homeostasis. Explicit usage of this information with mathematical methods promises to deliver a better understanding of thyrotropic feedback control and new options for personalised diagnosis of thyroid dysfunction and targeted therapy, also by permitting a new perspective on the conundrum of the TSH reference range. PMID:23365787

  19. [Safety and tolerability of GLP-1 receptor agonists].

    PubMed

    Soldevila, Berta; Puig-Domingo, Manel

    2014-01-01

    Glucagon-like peptide-1 receptor agonists (GLP-1ra) are a new group of drugs with a glucose-lowering action due to their incretin effect. The GLP-1 receptor is expressed in various human tissues, which could be related to the pleiotropic effects of human GLP-1, as well as to the adverse effects described in patients treated with GLP-1ra. The risk of hypoglycaemia is low, which is one of the main considerations in the safety of this family of compounds and is also important to patients with diabetes. The most frequent adverse effect is nausea, which usually occurs at the start of treatment and is transient in 20-60% of affected patients. This article also reviews the information available on antibody formation, the potential effect on the thyroid gland, and the controversial association between this group of drugs with pancreatitis and cancer.

  20. [Safety and tolerability of GLP-1 receptor agonists].

    PubMed

    Soldevila, Berta; Puig-Domingo, Manel

    2014-09-01

    Glucagon-like peptide-1 receptor agonists (GLP-1ra) are a new group of drugs with a glucose-lowering action due to their incretin effect. The GLP-1 receptor is expressed in various human tissues, which could be related to the pleiotropic effects of human GLP-1, as well as to the adverse effects described in patients treated with GLP-1ra. The risk of hypoglycaemia is low, which is one of the main considerations in the safety of this family of compounds and is also important to patients with diabetes. The most frequent adverse effect is nausea, which usually occurs at the start of treatment and is transient in 20-60% of affected patients. This article also reviews the information available on antibody formation, the potential effect on the thyroid gland, and the controversial association between this group of drugs with pancreatitis and cancer.

  1. Locomotion induced by ventral tegmental microinjections of a nicotinic agonist.

    PubMed

    Museo, E; Wise, R A

    1990-03-01

    Bilateral microinjections of the nicotinic agonist cytisine (0.1, 1 or 10 nanomoles per side) into the ventral tegmental area increased locomotor activity. This increase in locomotion was antagonized by mecamylamine (2 mg/kg, IP), a nicotinic antagonist that readily crosses the blood-brain barrier, and by pimozide (0.3 mg/kg, IP), a central dopaminergic antagonist. Hexamethonium (2 mg/kg, IP), a nicotinic antagonist that, unlike mecamylamine, does not cross the blood-brain barrier, had no effect; this suggests that mecamylamine's attenuation of cytisine-induced locomotor activity resulted from a blockade of central and not peripheral nicotinic receptors. The data support the notion that nicotinic and dopaminergic substrates interact at the level of the VTA to produce increases in locomotor activity.

  2. Basal Insulin Use With GLP-1 Receptor Agonists.

    PubMed

    Anderson, Sarah L; Trujillo, Jennifer M

    2016-08-01

    IN BRIEF The combination of basal insulin and a glucagon-like peptide 1 receptor agonist is becoming increasingly common and offers several potential benefits to patients with type 2 diabetes. Clinical studies have demonstrated improved glycemic control and low risks of hypoglycemia and weight gain with the combination, which provides a safe and effective alternative to basal-bolus insulin with less treatment burden. Fixed-ratio combination products that administer both agents in a single injection are in the pipeline and will offer additional options for clinicians and patients. This review focuses on the rationale for, clinical evidence on, and implications of using this combination of therapies in the treatment of type 2 diabetes.

  3. Could dopamine agonists aid in drug development for anorexia nervosa?

    PubMed

    Frank, Guido K W

    2014-01-01

    Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage-years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight, and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological, and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction, and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction, and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways.

  4. Interaction of a radiolabeled agonist with cardiac muscarinic cholinergic receptors

    SciTech Connect

    Harden, T.K.; Meeker, R.B.; Martin, M.W.

    1983-12-01

    The interaction of a radiolabeled muscarinic cholinergic receptor agonist, (methyl-/sup 3/H)oxotremorine acetate ((/sup 3/H)OXO), with a washed membrane preparation derived from rat heart, has been studied. In binding assays at 4 degrees C, the rate constants for association and dissociation of (/sup 3/H)OXO were 2 X 10(7) M-1 min-1 and 5 X 10(-3) min-1, respectively, Saturation binding isotherms indicated that binding was to a single population of sites with a Kd of approximately 300 pM. The density of (/sup 3/H)OXO binding sites (90-100 fmol/mg of protein) was approximately 75% of that determined for the radiolabeled receptor antagonist (/sup 3/H)quinuclidinyl benzilate. Both muscarinic receptor agonists and antagonists inhibited the binding of (/sup 3/H)OXO with high affinity and Hill slopes of approximately one. Guanine nucleotides completely inhibited the binding of (/sup 3/H)OXO. This effect was on the maximum binding (Bmax) of (/sup 3/H)OXO with no change occurring in the Kd; the order of potency for five nucleotides was guanosine 5'-O-(3-thio-triphosphate) greater than 5'-guanylylimidodiphosphate greater than GTP greater than or equal to guanosine/diphosphate greater than GMP. The (/sup 3/H)OXO-induced interaction of muscarinic receptors with a guanine nucleotide binding protein was stable to solubilization. That is, membrane receptors that were prelabeled with (/sup 3/H)OXO could be solubilized with digitonin, and the addition of guanine nucleotides to the soluble, (/sup 3/H)OXO-labeled complex resulted in dissociation of (/sup 3/H)OXO from the receptor. Pretreatment of membranes with relatively low concentrations of N-ethylmaleimide inhibited (/sup 3/H)OXO binding by 85% with no change in the Kd of (/sup 3/H)OXO, and with no effect on (/sup 3/H)quinuclidinyl benzilate binding.

  5. Differential opioid agonist regulation of the mouse mu opioid receptor.

    PubMed

    Blake, A D; Bot, G; Freeman, J C; Reisine, T

    1997-01-10

    Mu opioid receptors mediate the analgesia induced by morphine. Prolonged use of morphine causes tolerance development and dependence. To investigate the molecular basis of tolerance and dependence, the cloned mouse mu opioid receptor with an amino-terminal epitope tag was stably expressed in human embryonic kidney (HEK) 293 cells, and the effects of prolonged opioid agonist treatment on receptor regulation were examined. In HEK 293 cells the expressed mu receptor showed high affinity, specific, saturable binding of radioligands and a pertussis toxin-sensitive inhibition of adenylyl cyclase. Pretreatment (1 h, 3 h, or overnight) of cells with 1 microM morphine or [D-Ala2MePhe4,Gly(ol)5]enkephalin (DAMGO) resulted in no apparent receptor desensitization, as assessed by opioid inhibition of forskolin-stimulated cAMP levels. In contrast, the morphine and DAMGO pretreatments (3 h) resulted in a 3-4-fold compensatory increase in forskolin-stimulated cAMP accumulation. The opioid agonists methadone and buprenorphine are used in the treatment of addiction because of a markedly lower abuse potential. Pretreatment of mu receptor-expressing HEK 293 cells with methadone or buprenorphine abolished the ability of opioids to inhibit adenylyl cyclase. No compensatory increase in forskolin-stimulated cAMP accumulation was found with methadone or buprenorphine; these opioids blocked the compensatory effects observed with morphine and DAMGO. Taken together, these results indicate that methadone and buprenorphine interact differently with the mouse mu receptor than either morphine or DAMGO. The ability of methadone and buprenorphine to desensitize the mu receptor and block the compensatory rise in forskolin-stimulated cAMP accumulation may be an underlying mechanism by which these agents are effective in the treatment of morphine addiction.

  6. Kappa Agonists as a Novel Therapy for Menopausal Hot Flashes

    PubMed Central

    Oakley, Amy E.; Steiner, Robert A.; Chavkin, Charles; Clifton, Donald K.; Ferrara, Laura K.; Reed, Susan D.

    2015-01-01

    Objective Postmenopausal hot flash etiology is poorly understood, making it difficult to develop and target ideal therapies. A network of hypothalamic estrogen-sensitive neurons producing Kisspeptin, Neurokinin B, and Dynorphin (KNDy neurons), located adjacent to the thermoregulatory center, regulate pulsatile secretion of GnRH and LH. Dynorphin may inhibit this system by binding kappa opioid receptors within the vicinity of KNDy neurons. We hypothesize that hot flashes are reduced by KNDy neuron manipulation. Methods A double-blind, cross-over, placebo-controlled pilot study evaluated the effect of a kappa agonist (KA).Hot flash frequency was the primary outcome. Twelve healthy postmenopausal women with moderate-severe hot flashes, ages 48-60 years, were randomized. Eight women with sufficient baseline hot flashes for statistical analysis completed all 3 interventions: placebo, standard Pentazocine/Naloxone (50/0.5 mg) or low-dose Pentazocine/Naloxone (25/0.25 mg). In an inpatient research setting, each participant received the 3 interventions, in randomized order, on 3 separate days. On each day, an intravenous catheter was inserted for luteinizing hormone (LH) blood sampling, and skin conductance and Holter monitors were placed. Subjective hot flash frequency and severity were recorded. Results Mean hot flash frequency 2-7 hours following therapy initiation was lower than that for placebo (KA standard-dose: 4.75 ± 0.67; KA low-dose: 4.50 ± 0.57; and placebo: 5.94 ± 0.78 hot flashes/5 hours; p =0.025). Hot flash intensity did not vary between interventions. LH pulsatility mirrored objective hot flashes in some, but not all women. Conclusions This pilot suggests that kappa agonists may affect menopausal vasomotor symptoms. PMID:25988798

  7. Agonistic and antagonistic estrogens in licorice root (Glycyrrhiza glabra).

    PubMed

    Simons, Rudy; Vincken, Jean-Paul; Mol, Loes A M; The, Susan A M; Bovee, Toine F H; Luijendijk, Teus J C; Verbruggen, Marian A; Gruppen, Harry

    2011-07-01

    The roots of licorice (Glycyrrhiza glabra) are a rich source of flavonoids, in particular, prenylated flavonoids, such as the isoflavan glabridin and the isoflavene glabrene. Fractionation of an ethyl acetate extract from licorice root by centrifugal partitioning chromatography yielded 51 fractions, which were characterized by liquid chromatography-mass spectrometry and screened for activity in yeast estrogen bioassays. One third of the fractions displayed estrogenic activity towards either one or both estrogen receptors (ERs; ERα and ERβ). Glabrene-rich fractions displayed an estrogenic response, predominantly to the ERα. Surprisingly, glabridin did not exert agonistic activity to both ER subtypes. Several fractions displayed higher responses than the maximum response obtained with the reference compound, the natural hormone 17β-estradiol (E(2)). The estrogenic activities of all fractions, including this so-called superinduction, were clearly ER-mediated, as the estrogenic response was inhibited by 20-60% by known ER antagonists, and no activity was found in yeast cells that did not express the ERα or ERβ subtype. Prolonged exposure of the yeast to the estrogenic fractions that showed superinduction did, contrary to E(2), not result in a decrease of the fluorescent response. Therefore, the superinduction was most likely the result of stabilization of the ER, yeast-enhanced green fluorescent protein, or a combination of both. Most fractions displaying superinduction were rich in flavonoids with single prenylation. Glabridin displayed ERα-selective antagonism, similar to the ERα-selective antagonist RU 58668. Whereas glabridin was able to reduce the estrogenic response of E(2) by approximately 80% at 6 × 10(-6) M, glabrene-rich fractions only exhibited agonistic responses, preferentially on ERα.

  8. Recent advances in the development of farnesoid X receptor agonists

    PubMed Central

    Carey, Elizabeth J.; Lindor, Keith D.

    2015-01-01

    Farnesoid X receptors (FXRs) are nuclear hormone receptors expressed in high amounts in body tissues that participate in bilirubin metabolism including the liver, intestines, and kidneys. Bile acids (BAs) are the natural ligands of the FXRs. FXRs regulate the expression of the gene encoding for cholesterol 7 alpha-hydroxylase, which is the rate-limiting enzyme in BA synthesis. In addition, FXRs play a critical role in carbohydrate and lipid metabolism and regulation of insulin sensitivity. FXRs also modulate live growth and regeneration during liver injury. Preclinical studies have shown that FXR activation protects against cholestasis-induced liver injury. Moreover, FXR activation protects against fatty liver injury in animal models of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH), and improved hyperlipidemia, glucose intolerance, and insulin sensitivity. Obeticholic acid (OCA), a 6α-ethyl derivative of the natural human BA chenodeoxycholic acid (CDCA) is the first-in-class selective FXR agonist that is ~100-fold more potent than CDCA. Preliminary human clinical trials have shown that OCA is safe and effective. In a phase II clinical trial, administration of OCA was well-tolerated, increased insulin sensitivity and reduced markers of liver inflammation and fibrosis in patients with type II diabetes mellitus and NAFLD. In two clinical trials of OCA in patients with primary biliary cirrhosis (PBC), a progressive cholestatic liver disease, OCA significantly reduced serum alkaline phosphatase (ALP) levels, an important disease marker that correlates well with clinical outcomes of patients with PBC. Together, these studies suggest that FXR agonists could potentially be used as therapeutic tools in patients suffering from nonalcoholic fatty and cholestatic liver diseases. Larger and Longer-term studies are currently ongoing. PMID:25705637

  9. Cardiovascular selectivity of adenosine receptor agonists in anaesthetized dogs.

    PubMed Central

    Gerencer, R. Z.; Finegan, B. A.; Clanachan, A. S.

    1992-01-01

    1. In order to determine the relevance of adenosine (Ado) receptor classification obtained from in vitro methods to the cardiovascular actions of Ado agonists in vivo, the cardiovascular effects of adenosine 5'-monophosphate (AMP), N6-cyclohexyladenosine (CHA, 400 fold A1-selective), 5'-N-ethyl-carboxamidoadenosine (NECA, A1 approximately A2) and 2-phenylaminoadenosine (PAA, 5 fold A2-selective) were compared in open-chest, fentanyl-pentobarbitone anaesthetized dogs. 2. Graded doses of CHA (10 to 1000 micrograms kg-1), NECA (0.5 to 100 micrograms kg-1) or PAA (0.1 to 20 micrograms kg-1) were administered intravenously and changes in haemodynamics and myocardial contractility were assessed 10 min following each dose. The effects of graded infusions of AMP (200 to 1000 micrograms kg-1 min-1) were also evaluated. 3. AMP and each of the Ado analogues (NECA > PAA > CHA) increased the systemic vascular conductance index (SVCI) in a dose-dependent manner and reduced mean arterial pressure (MAP). At doses causing similar increases in SVCI, these agonists caused (i) similar reflex increases in heart rate (HR) and cardiac index (CI) and decreases in AV conduction interval (AVi) and (ii) similar increases in coronary vascular conductance (CVC). 4. After cardiac autonomic blockade with atropine (0.2 mg kg-1) and propranolol (1 mg kg-1), AMP, CHA and PAA still increased SVCI and CVC and decreased MAP. CHA and PAA had no marked effects on HR, CI or AVi. As in the absence of cardiac autonomic blockade, equieffective vasodilator doses of CHA and PAA had identical effects on CVC, CI and AVi.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1467827

  10. GITR agonist enhances vaccination responses in lung cancer.

    PubMed

    Zhu, Li X; Davoodi, Michael; Srivastava, Minu K; Kachroo, Puja; Lee, Jay M; St John, Maie; Harris-White, Marni; Huang, Min; Strieter, Robert M; Dubinett, Steven; Sharma, Sherven

    2015-04-01

    An immune tolerant tumor microenvironment promotes immune evasion of lung cancer. Agents that antagonize immune tolerance will thus aid the fight against this devastating disease. Members of the tumor necrosis factor receptor (TNFR) family modulate the magnitude, duration and phenotype of immune responsiveness to antigens. Among these, GITR expressed on immune cells functions as a key regulator in inflammatory and immune responses. Here, we evaluate the GITR agonistic antibody (DTA-1) as a mono-therapy and in combination with therapeutic vaccination in murine lung cancer models. We found that DTA-1 treatment of tumor-bearing mice increased: (i) the frequency and activation of intratumoral natural killer (NK) cells and T lymphocytes, (ii) the antigen presenting cell (APC) activity in the tumor, and (iii) systemic T-cell specific tumor cell cytolysis. DTA-1 treatment enhanced tumor cell apoptosis as quantified by cleaved caspase-3 staining in the tumors. DTA-1 treatment increased expression of IFNγ, TNFα and IL-12 but reduced IL-10 levels in tumors. Furthermore, increased anti-angiogenic chemokines corresponding with decreased pro-angiogenic chemokine levels correlated with reduced expression of the endothelial cell marker Meca 32 in the tumors of DTA-1 treated mice. In accordance, there was reduced tumor growth (8-fold by weight) in the DTA-1 treatment group. NK cell depletion markedly inhibited the antitumor response elicited by DTA-1. DTA-1 combined with therapeutic vaccination caused tumor rejection in 38% of mice and a 20-fold reduction in tumor burden in the remaining mice relative to control. Mice that rejected tumors following therapy developed immunological memory against subsequent re-challenge. Our data demonstrates GITR agonist antibody activated NK cell and T lymphocyte activity, and enhanced therapeutic vaccination responses against lung cancer.

  11. Influence of beta-adrenoceptor agonists and antagonists on baclofen-induced memory impairment in mice.

    PubMed

    Zarrindast, M R; Haidari, H; Jafari, M R; Djahanguiri, B

    2004-07-01

    Post-training administration of different doses of baclofen (a GABAB agonist) has been shown to impair memory retention, in a step-down passive avoidance test in mice. We have studied the effects of beta-adrenergic agonists and antagonists on baclofen-induced memory impairment in mice. Dobutamine (a beta 1-agonist) or salbutamol (a beta 2-agonist) reversed the memory impairment induced by baclofen without exhibiting intrinsic actions on memory when administered alone. The administration of atenolol (a beta 1-antagonist) or propranolol (a beta-antagonist) produced a memory impairment. When co-administered with baclofen, both atenolol and propranolol exacerbated the memory impairment induced by the GABAB agonist. It is concluded that beta-adrenergic mechanisms may be involved in the modulation of memory via GABAB receptors.

  12. Rate constants of agonist binding to muscarinic receptors in rat brain medulla. Evaluation by competition kinetics

    SciTech Connect

    Schreiber, G.; Henis, Y.I.; Sokolovsky, M.

    1985-07-25

    The method of competition kinetics, which measures the binding kinetics of an unlabeled ligand through its effect on the binding kinetics of a labeled ligand, was employed to investigate the kinetics of muscarinic agonist binding to rat brain medulla pons homogenates. The agonists studied were acetylcholine, carbamylcholine, and oxotremorine, with N-methyl-4-(TH)piperidyl benzilate employed as the radiolabeled ligand. Our results suggested that the binding of muscarinic agonists to the high affinity sites is characterized by dissociation rate constants higher by 2 orders of magnitude than those of antagonists, with rather similar association rate constants. Our findings also suggest that isomerization of the muscarinic receptors following ligand binding is significant in the case of antagonists, but not of agonists. Moreover, it is demonstrated that in the medulla pons preparation, agonist-induced interconversion between high and low affinity bindings sites does not occur to an appreciable extent.

  13. Effects of sex steroids on indices of protein turnover in rainbow trout (Oncorhynchus mykiss) white muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of 17-estradiol (E2), testosterone, and 5a-dihydrotestosterone (DHT) on protein turnover and proteolytic gene expression were determined in rainbow trout (Oncorhynchus mykiss) primary myocytes and white muscle tissue. E2 reduced rates of protein synthesis and increased rates of protein degr...

  14. Effects of sex steroids on expression of genes regulating growth-related mechanisms in rainbow trout (Oncorhynchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of a single injection of 17-estradiol (E2), testosterone (T), or 5a-dihydrotestosterone (DHT) on expression of genes central to the growth hormone (GH)/insulin-like growth factor (IGF) axis, muscle-regulatory factors, TGF-beta superfamily signaling cascade, and estrogen receptors were determ...

  15. DEVELOPMENT OF TWO ANDROGEN RECEPTOR ASSAYS USING ADENOVIRAL TRANSDUCTION OF MMTV-LUC REPORTER AND/OR HAR FOR ENDOCRINE SCREENING

    EPA Science Inventory

    Abstract
    The discovery of xenobiotics which interfere with androgen activity has highlighted the need to assess chemicals for their ability to modulate dihydrotestosterone (DHT)-receptor binding. Previous test systems have used cells transfected with plasmid containing a rep...

  16. Combining a GLP-1 receptor agonist and basal insulin: study evidence and practical considerations.

    PubMed

    Carris, Nicholas W; Taylor, James R; Gums, John G

    2014-12-01

    Most patients with diabetes mellitus require multiple medications to achieve glycemic goals. Considering this and the increasing incidence of type 2 diabetes worldwide, the need for effective combination therapy is pressing. Basal insulin and glucagon-like peptide 1 (GLP-1) receptor agonists are frequently used to treat type 2 diabetes. Though both classes of medication are exclusively injectable, which may cause initial hesitation from providers, evidence for their combined use is substantial. This review summarizes the theoretical benefit, supporting evidence, and implementation of a combined basal insulin-GLP-1 receptor agonist regimen. Basal insulin added to a GLP-1 receptor agonist reduces hemoglobin A1c (HbA1c) without weight gain or significantly increased hypoglycemia. A GLP-1 receptor agonist added to basal insulin reduces HbA1c and body weight. Compared with the addition of meal-time insulin to basal insulin, a GLP-1 receptor agonist produces similar or greater reduction in HbA1c, weight loss instead of weight gain, and less hypoglycemia. Gastrointestinal adverse events are common with GLP-1 receptor agonists, especially during initiation and titration. However, combination with basal insulin is not expected to augment expected adverse events that come with using a GLP-1 receptor agonist. Basal insulin can be added to a GLP-1 receptor agonist with a slow titration to target goal fasting plasma glucose. In patients starting a GLP-1 receptor agonist, the dose of basal insulin should be decreased by 20 % in patients with an HbA1c ≤8 %. The evidence from 15 randomized prospective studies supports the combined use of a GLP-1 receptor agonist with basal insulin in a broad range of patients with uncontrolled type 2 diabetes.

  17. Withdrawal of GnRH agonist decreases oestradiol and VEGF concentrations in high responders.

    PubMed

    Ding, Li-Jun; Wang, Bin; Shen, Xiao-Yue; Yan, Gui-Jun; Zhang, Ning-Yuan; Hu, Ya-Li; Sun, Hai-Xiang

    2013-08-01

    This study evaluated whether the withdrawal of a gonadotrophin-releasing hormone (GnRH) agonist before triggering ovulation reduces the incidence of ovarian hyperstimulation syndrome (OHSS) in high-risk infertility patients who were treated with gonadotrophins. GnRH agonist was withdrawn for 2 or 3 days when dominant follicles were ≥14 mm in diameter, according to the GnRH agonist long protocol. Non-withdrawal of GnRH agonist was used as control. The serum concentration of oestradiol on the ovulation trigger day was significantly decreased in the GnRH agonist withdrawal group compared with the control group (5750.78 ± 2344.77 pg/ml versus 8076.43 ± 1981.67 pg/ml); however, the number of retrieved oocytes and the fertilization rate were similar between the groups. In addition, the concentrations of vascular endothelial growth factor in plasma on day of human chorionic gonadotrophin administration and follicular fluid on the oocyte retrieval day were decreased following GnRH agonist withdrawal. In fresh embryo transfer cycles, rates of clinical pregnancy, implantation and OHSS were not different between the groups. When GnRH agonist withdrawal was followed by total embryos cryopreserved, the rate of OHSS was decreased compared with the control group (0% versus 8.70%). Clinical pregnancy rates in cryopreserved embryo transfer cycles were comparable between the two groups.

  18. The glycine transport inhibitor sarcosine is an NMDA receptor co-agonist that differs from glycine

    PubMed Central

    Zhang, Hai Xia; Hyrc, Krzysztof; Thio, Liu Lin

    2009-01-01

    Sarcosine is an amino acid involved in one-carbon metabolism and a promising therapy for schizophrenia because it enhances NMDA receptor (NMDAR) function by inhibiting glycine uptake. The structural similarity between sarcosine and glycine led us to hypothesize that sarcosine is also an agonist like glycine. We examined this possibility using whole-cell recordings from cultured embryonic mouse hippocampal neurons. We found that sarcosine is an NMDAR co-agonist at the glycine binding site. However, sarcosine differed from glycine because less NMDAR desensitization occurred with sarcosine than with glycine as the co-agonist. This finding led us to examine whether the physiological effects of NMDAR activation with these two co-agonists are the same. The difference in desensitization probably accounts for rises in intracellular Ca2+, as assessed by the fluorescent indicator fura-FF, being larger when NMDAR activation occurred with sarcosine than with glycine. In addition, Ca2+-activated K+ currents following NMDAR activation were larger with sarcosine than with glycine. Compared to glycine, NMDAR-mediated autaptic currents decayed faster with sarcosine suggesting that NMDAR deactivation also differs with these two co-agonists. Despite these differences, NMDAR-dependent neuronal death as assessed by propidium iodide was similar with both co-agonists. The same was true for neuronal bursting. Thus, sarcosine may enhance NMDAR function by more than one mechanism and may have different effects from other NMDAR co-agonists. PMID:19433577

  19. Biased agonists of the kappa opioid receptor suppress pain and itch without causing sedation or dysphoria

    PubMed Central

    Brust, Tarsis F.; Morgenweck, Jenny; Kim, Susy A.; Rose, Jamie H.; Locke, Jason L.; Schmid, Cullen L.; Zhou, Lei; Stahl, Edward L.; Cameron, Michael D.; Scarry, Sarah M.; Aubé, Jeffrey; Jones, Sara R.; Martin, Thomas J.; Bohn, Laura M.

    2016-01-01

    Agonists targeting the kappa opioid receptor (KOR) have been promising therapeutic candidates because of their efficacy for treating intractable itch and relieving pain. Unlike typical opioid narcotics, KOR agonists do not produce euphoria or lead to respiratory suppression or overdose. However, they do produce dysphoria and sedation, side effects that have precluded their clinical development as therapeutics. KOR signaling can be fine-tuned to preferentially activate certain pathways over others, such that agonists can bias signaling so that the receptor signals through G proteins rather than other effectors such as βarrestin2. We evaluated a newly developed G protein signaling–biased KOR agonist in preclinical models of pain, pruritis, sedation, dopamine regulation, and dysphoria. We found that triazole 1.1 retained the antinociceptive and antipruritic efficacies of a conventional KOR agonist, yet it did not induce sedation or reductions in dopamine release in mice, nor did it produce dysphoria as determined by intracranial self-stimulation in rats. These data demonstrated that biased agonists may be used to segregate physiological responses downstream of the receptor. Moreover, the findings suggest that biased KOR agonists may present a means to treat pain and intractable itch without the side effects of dysphoria and sedation and with reduced abuse potential. PMID:27899527

  20. Cannabinoid discrimination and antagonism by CB(1) neutral and inverse agonist antagonists.

    PubMed

    Kangas, Brian D; Delatte, Marcus S; Vemuri, V Kiran; Thakur, Ganesh A; Nikas, Spyridon P; Subramanian, Kumara V; Shukla, Vidyanand G; Makriyannis, Alexandros; Bergman, Jack

    2013-03-01

    Cannabinoid receptor 1 (CB(1)) inverse agonists (e.g., rimonabant) have been reported to produce adverse effects including nausea, emesis, and anhedonia that limit their clinical applications. Recent laboratory studies suggest that the effects of CB(1) neutral antagonists differ from those of such inverse agonists, raising the possibility of improved clinical utility. However, little is known regarding the antagonist properties of neutral antagonists. In the present studies, the CB(1) inverse agonist SR141716A (rimonabant) and the CB(1) neutral antagonist AM4113 were compared for their ability to modify CB(1) receptor-mediated discriminative stimulus effects in nonhuman primates trained to discriminate the novel CB(1) full agonist AM4054. Results indicate that AM4054 serves as an effective CB(1) discriminative stimulus, with an onset and time course of action comparable with that of the CB(1) agonist Δ(9)-tetrahydrocannabinol, and that the inverse agonist rimonabant and the neutral antagonist AM4113 produce dose-related rightward shifts in the AM4054 dose-effect curve, indicating that both drugs surmountably antagonize the discriminative stimulus effects of AM4054. Schild analyses further show that rimonabant and AM4113 produce highly similar antagonist effects, as evident in comparable pA(2) values (6.9). Taken together with previous studies, the present data suggest that the improved safety profile suggested for CB(1) neutral antagonists over inverse agonists is not accompanied by a loss of antagonist action at CB(1) receptors.

  1. Evaluation of the anti-inflammatory effects of β-adrenoceptor agonists on human lung macrophages.

    PubMed

    Gill, Sharonjit K; Marriott, Helen M; Suvarna, S Kim; Peachell, Peter T

    2016-12-15

    The principal mechanism by which bronchodilator β-adrenoceptor agonists act is to relax airways smooth muscle although they may also be anti-inflammatory. However, the extent of anti-inflammatory activity and the cell types affected by these agonists are uncertain. The purpose of this study was to evaluate whether β-adrenoceptor agonists prevent pro-inflammatory cytokine generation from activated human lung macrophages. Macrophages were isolated and purified from human lung. The cells were pre-treated with both short-acting (isoprenaline, salbutamol, terbutaline) and long-acting (formoterol, salmeterol, indacaterol) β-agonists before activation with lipopolysaccharide (LPS) to induce cytokine (TNFα, IL-6, IL-8 and IL-10) generation. The experiments showed that short-acting β-agonists were poor inhibitors of cytokine generation. Of the long-acting β-agonists studied, formoterol was also a weak inhibitor of cytokine generation whereas only indacaterol and salmeterol showed moderate inhibitory activity. Further experiments using the β2-adrenoceptor antagonist ICI-118,551 suggested that the effects of indacaterol were likely to be mediated by β2-adrenoceptors whereas those of salmeterol were not. These findings were corroborated by functional desensitization studies in which the inhibitory effects of indacaterol appeared to be receptor-mediated whereas those of salmeterol were not. Taken together, the data indicate that the anti-inflammatory effects of β-adrenoceptor agonists on human lung macrophages are modest.

  2. Ascorbic acid enables reversible dopamine receptor /sup 3/H-agonist binding

    SciTech Connect

    Leff, S.; Sibley, D.R.; Hamblin, M.; Creese, I.

    1981-11-16

    The effects of ascorbic acid on dopaminergic /sup 3/H-agonist receptor binding were studied in membrane homogenates of bovine anterior pituitary and caudate, and rat striatum. In all tissues virtually no stereospecific binding (defined using 1uM (+)butaclamol) of the /sup 3/H-agonists N-propylnorapomorphine (NPA), apomorphine, or dopamine could be demonstrated in the absence of ascorbic acid. Although levels of total /sup 3/H-agonist binding were three to five times greater in the absence than in the presence of 0.1% ascorbic acid, the increased binding was entirely non-stereospecific. Greater amounts of dopamine-inhibitable /sup 3/H-NPA binding could be demonstrated in the absence of 0.1% ascorbic acid, but this measure of ''specific binding'' was demonstrated not to represent dopamine receptor binding since several other catecholamines and catechol were equipotent with dopamine and more potent than the dopamine agonist (+/-)amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) in inhibiting this binding. High levels of dopamine-displaceable /sup 3/H-agonist binding were detected in fresh and boiled homogenates of cerebellum, an area of brain which receives no dopaminergic innervation, further demonstrating the non-specific nature of /sup 3/H-agonist binding in the absence of ascorbic acid. These studies emphasize that under typical assay conditions ascorbic acid is required in order to demonstrate reversible and specific /sup 3/H-agonist binding to dopamine receptors.

  3. Estradiol and testosterone regulate arginine-vasopressin expression in SH-SY5Y human female neuroblastoma cells through estrogen receptors-α and -β.

    PubMed

    Grassi, Daniela; Bellini, Maria Jose; Acaz-Fonseca, Estefania; Panzica, Giancarlo; Garcia-Segura, Luis M

    2013-06-01

    The expression of arginine-vasopressin (AVP) is regulated by estradiol and testosterone (T) in different neuronal populations by mechanisms that are not yet fully understood. Estrogen receptors (ERs) have been shown to participate in the regulation of AVP neurons by estradiol. In addition, there is evidence of the participation of ERβ in the regulation of AVP expression exerted by T via its metabolite 5α-dihydrotestosterone (5α-DHT) and its further conversion in the androgen metabolite and ERβ ligand 3β-diol. In this study we have explored the role of ERs in the regulation exerted by estradiol and T on AVP expression, using the human neuroblastoma cell line SH-SY5Y. Estradiol treatment increased AVP mRNA levels in SH-SY5Y cells in comparison with cells treated with vehicle. The stimulatory effect of estradiol on AVP expression was imitated by the ERα agonist 4,4',4',-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol and blocked by the ER antagonist, ICI 182,780, and the ERα antagonist 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1hpyrazoledihydrochloride. In contrast, the ERβ agonist 2,3-bis(4-hydroxyphenyl)-propionitrile reduced AVP expression, whereas the ERβ antagonist 4-[2-phenyl-5,7-bis(trifluoromethyl) pyrazolo[1,5-a]pyrimidin-3-yl]phenol enhanced the action of estradiol on AVP expression. T increased AVP expression in SH-SY5Y cells by a mechanism that was dependent on aromatase but not on 5α-reductase activity. The T effect was not affected by blocking the androgen receptor, was not imitated by the T metabolite 5α-DHT, and was blocked by the ERα antagonist 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1hpyrazoledihydrochloride. In contrast, 5α-DHT had a similar effect as the ERβ agonists 2,3-bis(4-hydroxyphenyl)-propionitrile and 3β-diol, reducing AVP expression. These findings suggest that estradiol and T regulate AVP expression in SH-SY5Y cells through ERs, exerting a stimulatory action via ERα and

  4. Inhibition by TRPA1 agonists of compound action potentials in the frog sciatic nerve

    SciTech Connect

    Matsushita, Akitomo; Ohtsubo, Sena; Fujita, Tsugumi; Kumamoto, Eiichi

    2013-04-26

    Highlights: •TRPA1 agonists inhibited compound action potentials in frog sciatic nerves. •This inhibition was not mediated by TRPA1 channels. •This efficacy was comparable to those of lidocaine and cocaine. •We found for the first time an ability of TRPA1 agonists to inhibit nerve conduction. -- Abstract: Although TRPV1 and TRPM8 agonists (vanilloid capsaicin and menthol, respectively) at high concentrations inhibit action potential conduction, it remains to be unknown whether TRPA1 agonists have a similar action. The present study examined the actions of TRPA1 agonists, cinnamaldehyde (CA) and allyl isothiocyanate (AITC), which differ in chemical structure from each other, on compound action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. CA and AITC concentration-dependently reduced the peak amplitude of the CAP with the IC{sub 50} values of 1.2 and 1.5 mM, respectively; these activities were resistant to a non-selective TRP antagonist ruthenium red or a selective TRPA1 antagonist HC-030031. The CA and AITC actions were distinct in property; the latter but not former action was delayed in onset and partially reversible, and CA but not AITC increased thresholds to elicit CAPs. A CAP inhibition was seen by hydroxy-α-sanshool (by 60% at 0.05 mM), which activates both TRPA1 and TRPV1 channels, a non-vanilloid TRPV1 agonist piperine (by 20% at 0.07 mM) and tetrahydrolavandulol (where the six-membered ring of menthol is opened; IC{sub 50} = 0.38 mM). It is suggested that TRPA1 agonists as well as TRPV1 and TRPM8 agonists have an ability to inhibit nerve conduction without TRP activation, although their agonists are quite different in chemical structure from each other.

  5. Potency and characterization of estrogen-receptor agonists in United Kingdom estuarine sediments.

    PubMed

    Thomas, Kevin V; Balaam, Jan; Hurst, Mark; Nedyalkova, Zoya; Mekenyan, Ovanes

    2004-02-01

    The activity of estrogen-receptor (ER) agonists in sediments collected from the United Kingdom (UK) estuaries was assessed using the in vitro recombinant yeast estrogen screen (YES assay). The YES assay was successfully used to determine the in vitro ER agonist potency of pore waters and solvent extracts of sediments collected from UK estuaries. Estrogen-receptor agonists were detected in 66% of the pore water samples and in 91% of the sediment solvent extracts tested. The pore waters tested had ER agonist potencies from less than 2 to 68 ng 17beta-estradiol (E2) L(-1), whereas sediment extracts had potencies from less than 0.2 to 13 microg E2 kg(-1). A toxicity identification evaluation approach using bioassay-directed fractionation was used in an attempt to identify the ER agonists in extracts of sediments collected from the Tyne and Tees estuaries (UK). Gas chromatography-mass spectrometry was used to provide lists of compounds in the fractions obtained that were evaluated for known ER agonist activity using published data and an ER quantitative structure-activity relationship model. Toxicity identification evaluation characterization failed to identify any ER agonists in pore water extracts; however, three compounds in sediment solvent extracts were identified as ER agonists. Nonylphenol, cinnarizine, and cholesta-4,6-dien-3-one were identified in the sample collected from the Tyne estuary. Important ER agonist substances that contaminate marine sediments remain unidentified. The present study as well as previous work on effluents point toward the involvement of natural products in the estrogenic burdens of marine sediments. Further work is required to establish the relative contribution of natural products and anthropogenic chemicals to current environmental impacts in the context of the Oslo and Paris Commission strategy to eliminate hazardous substances by 2020.

  6. CB(1) receptor allosteric modulators display both agonist and signaling pathway specificity.

    PubMed

    Baillie, Gemma L; Horswill, James G; Anavi-Goffer, Sharon; Reggio, Patricia H; Bolognini, Daniele; Abood, Mary E; McAllister, Sean; Strange, Phillip G; Stephens, Gary J; Pertwee, Roger G; Ross, Ruth A

    2013-02-01

    We have previously identified allosteric modulators of the cannabinoid CB(1) receptor (Org 27569, PSNCBAM-1) that display a contradictory pharmacological profile: increasing the specific binding of the CB(1) receptor agonist [(3)H]CP55940 but producing a decrease in CB(1) receptor agonist efficacy. Here we investigated the effect one or both compounds in a broad range of signaling endpoints linked to CB(1) receptor activation. We assessed the effect of these compounds on CB(1) receptor agonist-induced [(35)S]GTPγS binding, inhibition, and stimulation of forskolin-stimulated cAMP production, phosphorylation of extracellular signal-regulated kinases (ERK), and β-arrestin recruitment. We also investigated the effect of these allosteric modulators on CB(1) agonist binding kinetics. Both compounds display ligand dependence, being significantly more potent as modulators of CP55940 signaling as compared with WIN55212 and having little effect on [(3)H]WIN55212 binding. Org 27569 displays biased antagonism whereby it inhibits: agonist-induced guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding, simulation (Gα(s)-mediated), and inhibition (Gα(i)-mediated) of cAMP production and β-arrestin recruitment. In contrast, it acts as an enhancer of agonist-induced ERK phosphorylation. Alone, the compound can act also as an allosteric agonist, increasing cAMP production and ERK phosphorylation. We find that in both saturation and kinetic-binding experiments, the Org 27569 and PSNCBAM-1 appeared to influence only orthosteric ligand maximum occupancy rather than affinity. The data indicate that the allosteric modulators share a common mechanism whereby they increase available high-affinity CB(1) agonist binding sites. The receptor conformation stabilized by the allosterics appears to induce signaling and also selectively traffics orthosteric agonist signaling via the ERK phosphorylation pathway.

  7. The most effective influence of 17-(3-ethoxypropyl) substituent on the binding affinity and the agonistic activity in KNT-127 derivatives, δ opioid receptor agonists.

    PubMed

    Nemoto, Toru; Ida, Yoshihiro; Iihara, Yusuke; Nakajima, Ryo; Hirayama, Shigeto; Iwai, Takashi; Fujii, Hideaki; Nagase, Hiroshi

    2013-12-15

    We investigated the structure-activity relationship of KNT-127 (opioid δ agonist) derivatives with various 17-substituents which are different in length and size. The 17-substituent in KNT-127 derivatives exerted a great influence on the affinity and agonistic activity for the δ receptor. While the compounds with electron-donating 17-substituents showed higher affinities for the δ receptor than those with electron-withdrawing groups, KNT-127 derivatives with 17-fluoroalkyl groups (the high electron-withdrawing groups) showed high selectivities for the δ receptor among evaluated compounds. In addition, the basicity of nitrogen as well as the structure of the 17-N substituent such as the length and configuration at an asymmetric carbon atom contributed to agonist properties for the δ receptor. Thus, the analog with a 17-(3-ethoxypropyl) group showed the best selectively and potent agonistic activity for the δ receptor among KNT-127 derivatives. These findings should be useful for designing novel δ selective agonists.

  8. Differential behavioral effect of the TRPM8/TRPA1 channel agonist icilin (AG-3-5).

    PubMed

    Rawls, Scott M; Gomez, Teresa; Ding, Zhe; Raffa, Robert B

    2007-12-01

    Molecular identification of two new transient receptor potential (TRP) channels, TRPM8 and TRPA1, has prompted an intense interest in their functional roles. We report that an acute exposure to the TRPM8/TRPA1 agonist icilin (0.01-100 microM), but not TRPV1 agonist capsaicin (10 microM), causes an atypical dose-related increase in planarian motility. This is the first demonstration of a TRPM8/TRPA1 channel subtype agonist-induced differential pharmacological effect in invertebrates and provides a novel sensitive, quantifiable end-point for studying TRP channel pharmacology.

  9. GABAB receptor agonist baclofen improves methamphetamine-induced cognitive deficit in mice.

    PubMed

    Arai, Sawako; Takuma, Kazuhiro; Mizoguchi, Hiroyuki; Ibi, Daisuke; Nagai, Taku; Kamei, Hiroyuki; Kim, Hyoung-Chun; Yamada, Kiyofumi

    2009-01-05

    In this study, we investigated the effects of GABA(A) and GABA(B) receptor agonists on the methamphetamine-induced impairment of recognition memory in mice. Repeated treatment with methamphetamine at a dose of 1 mg/kg for 7 days induced an impairment of recognition memory. Baclofen, a GABA(B) receptor agonist, ameliorated the repeated methamphetamine-induced cognitive impairment, although gaboxadol, a GABA(A) receptor agonist, had no significant effect. GABA(B) receptors may constitute a putative new target in treating cognitive deficits in patients suffering from schizophrenia, as well as methamphetamine psychosis.

  10. Agonist-Specific Recruitment of Arrestin Isoforms Differentially Modify Delta Opioid Receptor Function

    PubMed Central

    Perroy, Julie; Walwyn, Wendy M.; Smith, Monique L.; Vicente-Sanchez, Ana; Segura, Laura; Bana, Alia; Kieffer, Brigitte L.; Evans, Christopher J.

    2016-01-01

    Ligand-specific recruitment of arrestins facilitates functional selectivity of G-protein-coupled receptor signaling. Here, we describe agonist-selective recruitment of different arrestin isoforms to the delta opioid receptor in mice. A high-internalizing delta opioid receptor agonist (SNC80) preferentially recruited arrestin 2 and, in arrestin 2 knock-outs (KOs), we observed a significant increase in the potency of SNC80 to inhibit mechanical hyperalgesia and decreased acute tolerance. In contrast, the low-internalizing delta agonists (ARM390, JNJ20788560) preferentially recruited arrestin 3 with unaltered behavioral effects in arrestin 2 KOs. Surprisingly, arrestin 3 KO revealed an acute tolerance to these low-internalizing agonists, an effect never observed in wild-type animals. Furthermore, we examined delta opioid receptor–Ca2+ channel coupling in dorsal root ganglia desensitized by ARM390 and the rate of resensitization was correspondingly decreased in arrestin 3 KOs. Live-cell imaging in HEK293 cells revealed that delta opioid receptors are in pre-engaged complexes with arrestin 3 at the cell membrane and that ARM390 strengthens this membrane interaction. The disruption of these complexes in arrestin 3 KOs likely accounts for the altered responses to low-internalizing agonists. Together, our results show agonist-selective recruitment of arrestin isoforms and reveal a novel endogenous role of arrestin 3 as a facilitator of resensitization and an inhibitor of tolerance mechanisms. SIGNIFICANCE STATEMENT Agonists that bind to the same receptor can produce highly distinct signaling events and arrestins are a major mediator of this ligand bias. Here, we demonstrate that delta opioid receptor agonists differentially recruit arrestin isoforms. We found that the high-internalizing agonist SNC80 preferentially recruits arrestin 2 and knock-out (KO) of this protein results in increased efficacy of SNC80. In contrast, low-internalizing agonists (ARM390 and JNJ20788560

  11. Agonist actions of neonicotinoids on nicotinic acetylcholine receptors expressed by cockroach neurons.

    PubMed

    Tan, Jianguo; Galligan, James J; Hollingworth, Robert M

    2007-07-01

    The agonist actions of seven commercial neonicotinoid insecticides and nicotine were studied on nicotinic acetylcholine receptors (nAChRs) expressed by neurons isolated from the three thoracic ganglia of the American cockroach, Periplaneta americana. Single electrode voltage clamp recording was used to measure agonist-induced inward currents. Acetylcholine, nicotine and all neonicotinoids tested, except thiamethoxam, caused inward currents which were blocked reversibly by methyllycaconitine, a nAChR antagonist. Based on maximum inward currents, neonicotinoids could be divided into two subgroups: (1) those with a heterocyclic ring in their electronegative pharmacophore moiety (i.e. nicotine, imidacloprid and thiacloprid) were relatively weak partial agonists causing only 20-25% of the maximum ACh current and (2) open chain compounds (i.e. acetamiprid, dinotefuran, nitenpyram, and clothiandin) which were much more effective agonists producing 60-100% of the maximum ACh current. These compounds also elicited different symptoms of poisoning in American cockroaches with excitatory responses evident for the low efficacy agonists but depressive and paralytic responses predominating for the most efficacious agonists. No correlation was observed between agonist affinity and efficacy on these nAChRs. Thiamethoxam, even at 100 microM, failed to cause an inward current and showed no competitive interaction with other neonicotinoids on nAChRs, indicating that it is not a direct-acting agonist or antagonist. Despite the probable presence of multiple subtypes of nAChRs on cockroach neurons, competition studies between neonicotinoids did not reveal evidence that separate binding sites exist for the tested compounds. The size of inward currents induced by co-application of neonicotinoid pairs at equal concentration (100 microM) were predominantly determined by the one with higher binding affinity as indicated by EC(50) values, rather than by the one with higher binding efficacy as

  12. PPAR Agonists for the Prevention and Treatment of Lung Cancer

    PubMed Central

    Banno, Asoka

    2017-01-01

    Lung cancer is the most common and most fatal of all malignancies worldwide. Furthermore, with more than half of all lung cancer patients presenting with distant metastases at the time of initial diagnosis, the overall prognosis for the disease is poor. There is thus a desperate need for new prevention and treatment strategies. Recently, a family of nuclear hormone receptors, the peroxisome proliferator-activated receptors (PPARs), has attracted significant attention for its role in various malignancies including lung cancer. Three PPARs, PPARα, PPARβ/δ, and PPARγ, display distinct biological activities and varied influences on lung cancer biology. PPARα activation generally inhibits tumorigenesis through its antiangiogenic and anti-inflammatory effects. Activated PPARγ is also antitumorigenic and antimetastatic, regulating several functions of cancer cells and controlling the tumor microenvironment. Unlike PPARα and PPARγ, whether PPARβ/δ activation is anti- or protumorigenic or even inconsequential currently remains an open question that requires additional investigation. This review of current literature emphasizes the multifaceted effects of PPAR agonists in lung cancer and discusses how they may be applied as novel therapeutic strategies for the disease. PMID:28316613

  13. Mechanical stress activates NMDA receptors in the absence of agonists.

    PubMed

    Maneshi, Mohammad Mehdi; Maki, Bruce; Gnanasambandam, Radhakrishnan; Belin, Sophie; Popescu, Gabriela K; Sachs, Frederick; Hua, Susan Z

    2017-01-03

    While studying the physiological response of primary rat astrocytes to fluid shear stress in a model of traumatic brain injury (TBI), we found that shear stress induced Ca(2+) entry. The influx was inhibited by MK-801, a specific pore blocker of N-Methyl-D-aspartic acid receptor (NMDAR) channels, and this occurred in the absence of agonists. Other NMDA open channel blockers ketamine and memantine showed a similar effect. The competitive glutamate antagonists AP5 and GluN2B-selective inhibitor ifenprodil reduced NMDA-activated currents, but had no effect on the mechanically induced Ca(2+) influx. Extracellular Mg(2+) at 2 mM did not significantly affect the shear induced Ca(2+) influx, but at 10 mM it produced significant inhibition. Patch clamp experiments showed mechanical activation of NMDAR and inhibition by MK-801. The mechanical sensitivity of NMDARs may play a role in the normal physiology of fluid flow in the glymphatic system and it has obvious relevance to TBI.

  14. Basic understanding of gonadotropin-releasing hormone-agonist triggering.

    PubMed

    Casper, Robert F

    2015-04-01

    A single bolus of human chorionic gonadotropin (hCG) at midcycle has been the gold standard for triggering final oocyte maturation and ovulation in assisted reproductive technology cycles. More recently, gonadotropin-releasing hormone (GnRH)-agonist (GnRH-a) triggering has been introduced. The GnRH-a trigger may allow a more physiologic surge of both luteinizing hormone (LH) and follicle-stimulating hormone, although whether the combined surge will result in improved oocyte and embryo quality remains to be seen. However, the short duration of the LH surge with the GnRH-a trigger (approximately 34 hours) has been shown to be beneficial for preventing ovarian hyperstimulation syndrome in GnRH antagonist in vitro fertilization (IVF) cycles when compared with the prolonged elevation of hCG (≥6 days) after exposure to an hCG bolus. This review discusses the physiologic basis for the use of a GnRH-a trigger in IVF cycles.

  15. Mechanical stress activates NMDA receptors in the absence of agonists

    PubMed Central

    Maneshi, Mohammad Mehdi; Maki, Bruce; Gnanasambandam, Radhakrishnan; Belin, Sophie; Popescu, Gabriela K.; Sachs, Frederick; Hua, Susan Z.

    2017-01-01

    While studying the physiological response of primary rat astrocytes to fluid shear stress in a model of traumatic brain injury (TBI), we found that shear stress induced Ca2+ entry. The influx was inhibited by MK-801, a specific pore blocker of N-Methyl-D-aspartic acid receptor (NMDAR) channels, and this occurred in the absence of agonists. Other NMDA open channel blockers ketamine and memantine showed a similar effect. The competitive glutamate antagonists AP5 and GluN2B-selective inhibitor ifenprodil reduced NMDA-activated currents, but had no effect on the mechanically induced Ca2+ influx. Extracellular Mg2+ at 2 mM did not significantly affect the shear induced Ca2+ influx, but at 10 mM it produced significant inhibition. Patch clamp experiments showed mechanical activation of NMDAR and inhibition by MK-801. The mechanical sensitivity of NMDARs may play a role in the normal physiology of fluid flow in the glymphatic system and it has obvious relevance to TBI. PMID:28045032

  16. Can the sigma-1 receptor agonist fluvoxamine prevent schizophrenia?

    PubMed

    Hashimoto, Kenji

    2009-12-01

    In the past decade there has been increasing interest in the potential benefit of early pharmacological intervention in schizophrenia. Patients with schizophrenia show nonpsychotic and nonspecific prodromal symptoms (e.g., depression and cognitive deficits) for several years preceding the onset of frank psychosis. Several studies have demonstrated that medication with atypical antipsychotic drugs in people with prodromal symptoms may reduce the risk of subsequent transition to schizophrenia. Furthermore, a naturalistic treatment study in young people with prodromal symptoms demonstrated that medication with antidepressants could prevent the development of psychosis. Although the sample in this study was small, the results were striking. Some antidepressants, including selective serotonin reuptake inhibitors (SSRIs), had high to moderate affinities at the endoplasmic reticulum protein sigma-1 receptors, which are implicated in neuroprotection and neuronal plasticity. Among all antidepressants, fluvoxamine was the most potent sigma-1 receptor agonist. Since the effects of fluroxaming were antagonized by the selective sigma-1 receptor antagonist NE-100. Based on the role of sigma-1 receptors in the pathophysiology of cognition and depression, the author would like to propose a hypothesis that SSRIs (e.g., fluvoxamine) with sigma-1 receptor agonism may reduce the risk of subsequent transition to schizophrenia.

  17. Thromboxane agonist (U46619) potentiates norepinephrine efflux from adrenergic nerves

    SciTech Connect

    Trachte, G.J.

    1986-05-01

    The effect of the synthetic thromboxane/prostaglandin (PG) H2 agonist U46619 on the electrically stimulated rabbit isolated vas deferens was examined to test for thromboxane influences on adrenergic nerves. U46619 effects on force generation, (/sup 3/H) norepinephrine release and norepinephrine-induced contractions were assessed to determine the mechanism of action. U46619 maximally enhanced adrenergic force generation 135 +/- 24% at a concentration of 100 nM. U46619 potentiated maximal contractile effects of exogenously administered norepinephrine 16 +/- 4% and augmented (/sup 3/H)norepinephrine release from electrically stimulated preparations 142 +/- 44%. A competitive thromboxane/PGH2 receptor antagonist, SQ29548, significantly shifted the concentration-response curve for U46619 to the right in a concentration-dependent manner and blocked U46619-induced tritium release. Thus, U46619 appears to potentiate neurotransmitter release by interacting with thromboxane/PGH2 receptors. Because SQ29548 did not prevent the potentiation of norepinephrine contractions by U46619, the postjunctional effect may be independent of thromboxane/PGH2 receptors. We interpret these results to be indicative of both pre- and postjunctional sites of action of U46619. The physiological importance of these thromboxane effects is unknown currently.

  18. [Treatment of hyperprolactinemic anovulation with the dopamin-agonist quinagolide].

    PubMed

    Koloszár, S; Keresztúri, A; Kovács, L

    2000-07-16

    Quinagolide has a strong dopaminerg activity, suppresses prolactin secretion and restores gonadal function in women with hyperprolactinemic anovulation. The aim of our study was to investigate the effectiveness of quinagolide in the treatment of 16 hyperprolactinemic patients. The clinical diagnosis was functional hyperprolactinemia in 13 patients, microprolactinoma in 2 and empty sella syndrome in 1. The drug was administered orally and initially daily dose was 0.025 mg for the first three days, 0.050 mg for the next three days and 0.075 mg for the following 6 months. The serum prolactin level was measured monthly before pregnancy, three monthly during the pregnancy and six weeks after delivery. Serum prolactin levels decreased in most of the patients during the first month and only in one case remained in the pathological range after six months quinagolide++ treatment. Prolactin secretion changed (mean and range) from 3120 (780-5790) mU/l to 370 (84-1076) mU/l. Out of 16 hyperprolactinemic patients nine women were infertile. During quinagolide treatment 5 pregnancies occurred. In conclusion, our results show that quinagolide has a good efficacy on regulation of prolactin secretion and it is a well tolerated dopamin-agonist drug.

  19. Object-horning in goitered gazelle: agonistic or marking behaviour?

    PubMed

    Blank, David; Yang, Weikang

    2014-03-01

    We studied object-horning behaviour in goitered gazelles in the natural, arid environment of Kazakhstan over a 6-year period. We found that object-horning was used by adult males mostly as a threat display during territorial conflicts. Therefore object-horning was observed most frequently in territorial single males during the rut in November-December. Object-horning, though, also had a marking effect, with the males' use of this behaviour leaving visible traces that advertized the location of preorbital and urination-defecation scent marks. Therefore, this pattern also was observed linked with preorbital marking and urination-defecation marking behaviours, especially during the rut. Goitered gazelle males chose the most abundant and eatable shrubs for object horning. In contrast to other gazelle species, object-horning in goitered gazelle was observed much more frequently and at the same rate as preorbital and urination-defecation scent markings. This, then, proved a more vigorous and aggressive level of rutting behaviour of the goitered gazelle compared to tropical gazelles, and most likely connected to the short rutting period in the studied species. We concluded, therefore, that object-horning was a manifold phenomenon that played a very important role in goitered gazelle agonistic displays, but without loosing the marking intention of this behaviour.

  20. Neurotensin agonist attenuates nicotine potentiation to cocaine sensitization.

    PubMed

    Fredrickson, Paul; Boules, Mona; Stennett, Bethany; Richelson, Elliott

    2014-03-01

    Tobacco usage typically precedes illicit drug use in adolescent and young adult populations. Several animal studies suggest nicotine increases the risk for subsequent cocaine abuse, and may be a negative prognostic factor for treatment of cocaine addiction; i.e., a "gateway drug". Neurotensin (NT) is a 13-amino acid neuropeptide that modulates dopamine, acetylcholine, glutamate, and GABA neurotransmission in brain reward pathways. NT69L, a NT(8-13) analog, blocks behavioral sensitization (an animal model for psychostimulant addiction) to nicotine, and nicotine self-administration in rats. The present study tested the effect of NT69L on the potentiating effects of nicotine on cocaine-induced locomotor sensitization. Male Wistar rats were injected daily for seven days with nicotine or saline (control) followed by four daily injections of cocaine. NT69L was administered 30 min prior to the last cocaine injection. Behavior was recorded with the use of activity chambers. Subchronic administration of nicotine enhanced cocaine-induced behavioral sensitization in Wistar rats, consistent with an hypothesized gateway effect. These behavioral effects of cocaine were attenuated by pretreatment with NT69L. The effect of the neurotensin agonist on cocaine sensitization in the nicotine treated group indicated a possible therapeutic effect for cocaine addiction, even in the presence of enhanced behavioral sensitization induced by nicotine.

  1. Publicity and reports of behavioral addictions associated with dopamine agonists

    PubMed Central

    Gendreau, Katherine E.; Potenza, Marc N.

    2016-01-01

    Background The development of behavioral addictions (BAs) in association with dopamine agonists (DAs, commonly used to treat Parkinson’s disease) has been reported. A recent report presented data that these associations are evident in the US Food and Drug Administration’s (FDA) Adverse Event Reporting System (FAERS), a database containing information on adverse drug event and medication error reports submitted to the FDA. However, given that vulnerability to publicity-stimulated reporting is a potential limitation of spontaneous reporting systems like the FAERS, the potential impact of publicity on reporting in this case remains unclear. Method and aims To investigate the potential impact of publicity on FAERS reporting of BAs in association with DAs (BAs w/DAs) as presented by Moore, Glenmullen, and Mattison (2014), news stories covering a BA/DA association were identified and compared with BA w/DA and other reporting data in the FAERS. Results Fluctuations in the growth of BA w/DA reporting to the FAERS between 2003 and 2012 appear to coincide with multiple periods of intensive media coverage of a BA/DA association, a pattern that is not evident in other reporting data in the FAERS. Discussion/Conclusions Publicity may stimulate reporting of adverse events and premature dismissal of the potential influence of publicity on reporting may lead to mistaking an increased risk of an adverse event being reported for an increased risk of an adverse event occurring. PMID:26690325

  2. Juvenile hormone agonists affect the occurrence of male Daphnia.

    PubMed

    Tatarazako, Norihisa; Oda, Shigeto; Watanabe, Hajime; Morita, Masatoshi; Iguchi, Taisen

    2003-12-01

    The water flea Daphnia magna reproduces primarily by cyclic parthenogenesis. Environmental stimuli that signal a change to adverse conditions induce the organisms to switch from parthenogenesis to gamogenetic reproduction. During the gamogenetic period, they produce male daphnids and dormant resting eggs, which can survive prolonged periods of environmental adversity. However, little is known about the mechanisms associated with the switch from parthenogenesis to gamogenetic reproduction. We investigated the effects of several juvenoids on sex determination in Daphnia. Females less than 24 h old were exposed to various concentrations of the test substance and were observed for 21 days. It was found that they can trigger the appearance of male daphnids: the percentage of males in the population increases to a level greater than what occurs under ordinary environmental conditions. We found that methylfarnesoate, juvenile hormone III, methoprene, and the phenoxyphenoxy derivatives pyriproxyfen and fenoxycarb (both insecticides) reduced the production of offspring and produced sex ratios dominated by male daphnids. Pyriproxyfen and fenoxycarb showed striking effects at low concentrations. Exposure to either of these chemicals at a concentration of 330 ngl(-1) caused adult females to produce almost all male neonates. Methylfarnesoate, juvenile hormone III, and methoprene showed an effect in inducing male production at higher concentrations (3.7 x 10(3), 3.3 x 10(5), and 1.3 x 10(5) ngl(-1), respectively). Our findings suggest that juvenile hormone agonists, including some insecticides, affect the chemical signaling responsible for inducing the production of male offspring.

  3. Therapeutic applications of TRAIL receptor agonists in cancer and beyond

    PubMed Central

    Amarante-Mendes, Gustavo P.; Griffith, Thomas S.

    2016-01-01

    TRAIL/Apo-2L is a member of the TNF superfamily first described as an apoptosis-inducing cytokine in 1995. Similar to TNF and Fas ligand, TRAIL induces apoptosis in caspase-dependent manner following TRAIL death receptor trimerization. Because tumor cells were shown to be particularly sensitive to this cytokine while normal cells/tissues proved to be resistant along with being able to synthesize and release TRAIL, it was rapidly appreciated that TRAIL likely served as one of our major physiologic weapons against cancer. In line with this, a number of research laboratories and pharmaceutical companies have attempted to exploit the ability of TRAIL to kill cancer cells by developing recombinant forms of TRAIL or TRAIL receptor agonists (e.g., receptor-specific mAb) for therapeutic purposes. In this review article we will describe the biochemical pathways used by TRAIL to induce different cell death programs. We will also summarize the clinical trials related to this pathway and discuss possible novel uses of TRAIL-related therapies. In recent years, the physiological importance of TRAIL has expanded beyond being a tumoricidal molecule to one critical for a number of clinical settings — ranging from infectious disease and autoimmunity to cardiovascular anomalies. We will also highlight some of these conditions where modulation of the TRAIL/TRAIL receptor system may be targeted in the future. PMID:26343199

  4. Intracellular calcium strongly potentiates agonist-activated TRPC5 channels

    PubMed Central

    Blair, Nathaniel T.; Kaczmarek, J. Stefan

    2009-01-01

    TRPC5 is a calcium (Ca2+)-permeable nonselective cation channel expressed in several brain regions, including the hippocampus, cerebellum, and amygdala. Although TRPC5 is activated by receptors coupled to phospholipase C, the precise signaling pathway and modulatory signals remain poorly defined. We find that during continuous agonist activation, heterologously expressed TRPC5 currents are potentiated in a voltage-dependent manner (∼5-fold at positive potentials and ∼25-fold at negative potentials). The reversal potential, doubly rectifying current–voltage relation, and permeability to large cations such as N-methyl-d-glucamine remain unchanged during this potentiation. The TRPC5 current potentiation depends on extracellular Ca2+: replacement by Ba2+ or Mg2+ abolishes it, whereas the addition of 10 mM Ca2+ accelerates it. The site of action for Ca2+ is intracellular, as simultaneous fura-2 imaging and patch clamp recordings indicate that potentiation is triggered at ∼1 µM [Ca2+]. This potentiation is prevented when intracellular Ca2+ is tightly buffered, but it is promoted when recording with internal solutions containing elevated [Ca2+]. In cell-attached and excised inside-out single-channel recordings, increases in internal [Ca2+] led to an ∼10–20-fold increase in channel open probability, whereas single-channel conductance was unchanged. Ca2+-dependent potentiation should result in TRPC5 channel activation preferentially during periods of repetitive firing or coincident neurotransmitter receptor activation. PMID:19398778

  5. Dehydroepiandrosterone Derivatives as Potent Antiandrogens with Marginal Agonist Activity

    DTIC Science & Technology

    2012-07-01

    July 2011 - 30 June 2012 4 . TITLE AND SUBTITLE Dehydroepiandrosterone Derivatives as Potent Antiandrogens with Marginal Agonist Activity 5a...Introduction…………………………………………………………….………..….. 1 Body………………………………………………………………………………….. 1 Key Research Accomplishments………………………………………….…….. 4 ...Reportable Outcomes……………………………………………………………… 4 Conclusion…………………………………………………………………………… 8 References……………………………………………………………………………. 9

  6. Agonist photoaffinity label for the. beta. -adrenergic receptor

    SciTech Connect

    Resek, J.F.; Ruoho, A.E.

    1987-05-01

    An iodinated photosensitive derivative of norepinephrine, N-(p-azido-m-iodophenethylamidoisobutyryl)norepinephrine (NAIN), has been synthesized and characterized. Carrier-free radioiodinated NAIN ((/sup 125/I)-NAIN) was used at 1-2 x 10/sup -9/ M to photoaffinity label the ..beta..-adrenergic receptor in guinea pig lung membranes. SDS-PAGE analysis of (-)-alprenolol (10/sup -5/M) protectable (/sup 125/I)-NAIN labeling showed the same molecular weight polypeptide (65 kDa) that was specifically derivatized with the antagonist photolabel, (/sup 125/I)-IABP. Specific labeling of the ..beta..-adrenergic receptor with (/sup 125/I)-NAIN was dependent on the presence of MgCl/sub 2/ and the absence of guanyl nucleotide. GTP..gamma..S (10/sup -4/ M) abolished specific receptor labeling by (/sup 125/I)-NAIN. N-ethylmaleimide (2 mm) in the presence of (/sup 125/I)-NAIN protected against the guanyl nucleotide effect. These data are consistent with photolabeling by (/sup 125/I)-NAIN while the agonist, receptor, and GTP binding protein are in a high affinity complex.

  7. Agonist Derived Molecular Probes for A2A Adenosine Receptors

    PubMed Central

    Jacobson, Kenneth A.; Pannell, Lewis K.; Ji, Xiao-duo; Jarvis, Michael F.; Williams, Michael; Hutchison, Alan J.; Barrington, William W.; Stiles, Gary L.

    2011-01-01

    The adenosine agonist 2-(4-(2-carboxyethyl)phenylethylamino)-5′-N-ethylcarboxamidoadenosine (CGS21680) was recently reported to be selective for the A2A adenosine receptor subtype, which mediates its hypotensive action. To investigate structurelactivity relationships at a distal site, CGS21680 was derivatized using a functionalized congener approach. The carboxylic group of CGS21680 has been esterified to form a methyl ester, which was then treated with ethylenediamine to produce an amine congener. The amine congener was an intermediate for acylation reactions, in which the reactive acyl species contained a reported group, or the precursor for such. For radioiodination, derivatives of p-hydroxyphenylpropionic, 2-thiophenylacetic, and p-aminophenylacetic acids were prepared. The latter derivative (PAPA-APEC) was iodinated electrophilically using [125I]iodide resulting in a radioligand which was used for studies of competition of binding to striatal A, adenosine receptors in bovine brain. A biotin conjugate and an aryl sulfonate were at least 350-fold selective for A, receptors. For spectroscopic detection, a derivative of the stable free radical tetramethyl-1-piperidinyloxy (TEMPO) was prepared. For irreversible inhibition of receptors, meta- and para-phenylenediisothiocyanate groups were incorporated in the analogs. We have demonstrated that binding at A2A receptors is relatively insensitive to distal structural changes at the 2-position, and we report high affinity molecular probes for receptor characterization by radioactive, spectroscopic and affinity labelling methodology. PMID:2561548

  8. Ingestion of TRP channel agonists attenuates exercise-induced muscle cramps.

    PubMed

    Craighead, Daniel H; Shank, Sean W; Gottschall, Jinger S; Passe, Dennis H; Murray, Bob; Alexander, Lacy M; Kenney, W Larry

    2017-02-13

    Exercise associated muscle cramping (EAMC) is a poorly understood problem that is neuromuscular in origin. Ingestion of transient receptor potential (TRP) channel agonists has been efficacious in attenuating electrically-induced muscle cramps.

  9. Alpha 2-adrenoceptor agonists potentiate responses mediated by alpha 1-adrenoceptors in the cat nictitating membrane.

    PubMed Central

    Shepperson, N. B.

    1984-01-01

    Alpha 1 but not alpha 2-adrenoceptors mediate contractions of the cat nictitating membrane. The contractions of this tissue evoked by alpha 1-adrenoceptor agonists, but not those evoked by angiotensin II, are potentiated by pre-dosing with alpha 2-adrenoceptor agonists. This potentiation is reversed by the alpha 2-adrenoceptor antagonist, WY 26392. Pressor responses evoked by alpha 1-adrenoceptor agonists or angiotensin II were not affected by alpha 2-adrenoceptor agonists. Contractions of the nictitating membrane evoked by noradrenaline were reduced by pretreatment with WY 26392. These results suggest that in some tissues the role of alpha 2-adrenoceptors may be to modulate responses to alpha 1-adrenoceptors, rather than to evoke a discrete response themselves. PMID:6148985

  10. Discovery of novel acetanilide derivatives as potent and selective beta3-adrenergic receptor agonists.

    PubMed

    Maruyama, Tatsuya; Onda, Kenichi; Hayakawa, Masahiko; Matsui, Tetsuo; Takasu, Toshiyuki; Ohta, Mitsuaki

    2009-06-01

    In the search for potent and selective human beta3-adrenergic receptor (AR) agonists as potential drugs for the treatment of obesity and noninsulin-dependent (type II) diabetes, a novel series of acetanilide-based analogues were prepared and their biological activities were evaluated at the human beta3-, beta2-, and beta1-ARs. Among these compounds, 2-pyridylacetanilide (2f), pyrimidin-2-ylacetanilide (2u), and pyrazin-2-ylacetanilide (2v) derivatives exhibited potent agonistic activity at the beta3-AR with functional selectivity over the beta1- and beta2-ARs. In particular, compound 2u was found to be the most potent and selective beta3-AR agonist with an EC(50) value of 0.11 microM and no agonistic activity for either the beta1- or beta2-AR. In addition, 2f, 2u, and 2v showed significant hypoglycemic activity in a rodent diabetic model.

  11. Dopaminergic agonists: possible neurorescue drugs endowed with independent and synergistic multisites of action.

    PubMed

    Uberti, Daniela; Bianchi, Irene; Olivari, Luca; Ferrari-Toninelli, Giulia; Bonini, Sara A; Memo, Maurizio

    2007-10-01

    Dopaminergic agonists have been usually used as adjunctive therapy for the cure of Parkinson's disease (PD). It is generally believed that treatment with these drugs is symptomatic rather then curative and does not stop or delay the progression of neuronal degeneration. However, several DA agonists of the DA D2-receptor family (including D2, D3 and D4-subtypes) have recently been shown to possess neuroprotective properties in different in vitro and in vivo experimental PD models. Here we summarize some recent data from our and other groups underlining the wide pharmacological spectrum of DA agonists currently used for treating PD patients. In particular, the mechanism of action of different DA agonists does not appear to be restricted to the stimulation of selective DA receptor subtypes being these drugs endowed with intrinsic, independent, and peculiar antioxidant effects. This activity may represent an additional pharmacological property contributing to their clinical efficacy in PD.

  12. Novel selective glucocorticoid receptor agonists (SEGRAs) with a covalent warhead for long-lasting inhibition.

    PubMed

    Ryabtsova, Oksana; Joossens, Jurgen; Van Der Veken, Pieter; Vanden Berghe, Wim; Augustyns, Koen; De Winter, Hans

    2016-10-15

    The synthesis and in vitro properties of six analogues of the selective glucocorticoid receptor (GR) agonist GSK866, bearing a warhead for covalent linkage to the glucocorticoid receptor, is described.

  13. Discovery and Characterization of Biased Allosteric Agonists of the Chemokine Receptor CXCR3.

    PubMed

    Milanos, Lampros; Brox, Regine; Frank, Theresa; Poklukar, Gašper; Palmisano, Ralf; Waibel, Reiner; Einsiedel, Jürgen; Dürr, Maximilian; Ivanović-Burmazović, Ivana; Larsen, Olav; Hjortø, Gertrud Malene; Rosenkilde, Mette Marie; Tschammer, Nuska

    2016-03-10

    In this work we report a design, synthesis, and detailed functional characterization of unique strongly biased allosteric agonists of CXCR3 that contain tetrahydroisoquinoline carboxamide cores. Compound 11 (FAUC1036) is the first strongly biased allosteric agonist of CXCR3 that selectively induces weak chemotaxis and leads to receptor internalization and the β-arrestin 2 recruitment with potency comparable to that of the chemokine CXCL11 without any activation of G proteins. A subtle structural change (addition of a methoxy group, 14 (FAUC1104)) led to a contrasting biased allosteric partial agonist that activated solely G proteins, induced chemotaxis, but failed to induce receptor internalization or β-arrestin 2 recruitment. Concomitant structure-activity relationship studies indicated very steep structure-activity relationships, which steer the ligand bias between the β-arrestin 2 and G protein pathway. Overall, the information presented provides a powerful platform for further development and rational design of strongly biased allosteric agonists of CXCR3.

  14. Potent achiral agonists of the ghrelin (growth hormone secretagogue) receptor. Part I: Lead identification.

    PubMed

    Heightman, Tom D; Scott, Jackie S; Longley, Mark; Bordas, Vincent; Dean, David K; Elliott, Richard; Hutley, Gail; Witherington, Jason; Abberley, Lee; Passingham, Barry; Berlanga, Manuela; de Los Frailes, Maite; Wise, Alan; Powney, Ben; Muir, Alison; McKay, Fiona; Butler, Sharon; Winborn, Kim; Gardner, Christopher; Darton, Jill; Campbell, Colin; Sanger, Gareth

    2007-12-01

    High throughput screening combined with efficient datamining and parallel synthesis led to the discovery of a novel series of indolines showing potent in vitro ghrelin receptor agonist activity and acceleration of gastric emptying in rats.

  15. Selection of multiple agonist antibodies from intracellular combinatorial libraries reveals that cellular receptors are functionally pleiotropic.

    PubMed

    Yea, Kyungmoo; Xie, Jia; Zhang, Hongkai; Zhang, Wei; Lerner, Richard A

    2015-06-01

    The main purpose of this perspective is to build on the unexpected outcomes of previous laboratory experiments using antibody agonists to raise questions concerning how activation of a given receptor can be involved in inducing differentiation of cells along different pathways some of which may even derive from different lineages. While not yet answered, the question illustrates how the advent of agonists not present in nature may give a different dimension to the important problem of signal transduction. Thus, if one studies a natural agonist-receptor system one can learn details about its signal transduction pathway. However, if one has a set of orthogonal agonists, one may learn about the yet undiscovered potential of the system that, in the end, may necessitate refinements to the currently used models. Thus, we wonder why receptors conventionally linked to a given pathway induce a different pattern of differentiation when agonized in another way.

  16. Changing Patterns of Alpha Agonist Medication Use in Children and Adolescents 2009–2011

    PubMed Central

    Mayne, Stephanie L.; Song, Lihai; Steffes, Jennifer; Liu, Weiwei; McCarn, Banita; Margolis, Benyamin; Grimes, Alan; Gotlieb, Edward; Localio, Russell; Ross, Michelle E.; Grundmeier, Robert W.; Wasserman, Richard; Leslie, Laurel K.

    2015-01-01

    Abstract Objectives: The purpose of this study was to describe rates and patterns of long- and short-acting alpha agonist use for behavioral problems in a primary care population following Food and Drug Administration (FDA) approval of the long-acting alpha agonists guanfacine and clonidine. Methods: Children and adolescents 4–18 years of age, who received an alpha agonist prescription between 2009 and 2011, were identified from a sample of 45 United States primary care practices in two electronic health record-based research networks. Alpha agonist receipt was identified using National Drug Codes and medication names. The proportion of subjects receiving long- and short-acting prescriptions in each year was calculated and examined with respect to reported mental health diagnoses, and whether indications for use were on-label, had evidence from clinical trials, or had no trial evidence. Results: In a cohort of 282,875 subjects, 27,671 (10%) received any psychotropic medication and only 4,227 subjects (1.5%) received at least one prescription for an alpha agonist, most commonly a short-acting formulation (83%). Only 20% of alpha agonist use was on-label (use of long-acting formulations for attention-deficit/hyperactivity disorder [ADHD]). Most subjects (68%) received alpha agonists for indications with evidence of efficacy from clinical trials but no FDA approval, primarily short-acting formulations for ADHD and autism; 12% received alpha agonists for diagnoses lacking randomized clinical trial evidence in children, including sleep disorders and anxiety, or for which there was no documented mental health diagnosis. Rates of long-acting alpha agonist use increased more than 20-fold from 0.2% to 4%, whereas rates of short-acting alpha agonist use grew only slightly between 2009 and 2011 from 10.6% to 11.3%. Conclusions: Alpha agonist use was uncommon in this population, and most subjects received short-acting forms for conditions that were off-label, but with

  17. SAR of psilocybin analogs: discovery of a selective 5-HT 2C agonist.

    PubMed

    Sard, Howard; Kumaran, Govindaraj; Morency, Cynthia; Roth, Bryan L; Toth, Beth Ann; He, Ping; Shuster, Louis

    2005-10-15

    An SAR study of psilocybin and psilocin derivatives reveals that 1-methylpsilocin is a selective agonist at the h5-HT(2C) receptor. The corresponding phosphate derivative, 1-methylpsilocybin, shows efficacy in an animal model for obsessive-compulsive disorder, as does 4-fluoro-N,N-dimethyltryptamine. These results suggest a new area for development of novel 5-HT(2C) agonists with applications for drug discovery.

  18. Differential agonist sensitivity of glycine receptor alpha2 subunit splice variants.

    PubMed

    Miller, Paul S; Harvey, Robert J; Smart, Trevor G

    2004-09-01

    1. The glycine receptor (GlyR) alpha2A and alpha2B splice variants differ by a dual, adjacent amino acid substitution from alpha2A(V58,T59) to alpha2B(I58,A59) in the N-terminal extracellular domain. 2. Comparing the effects of the GlyR agonists, glycine, beta-alanine and taurine, on the GlyR alpha2 isoforms, revealed a significant increase in potency for all three agonists at the alpha2B variant. 3. The sensitivities of the splice variants to the competitive antagonist, strychnine, and to the biphasic modulator Zn(2+), were comparable. In contrast, the allosteric inhibitor picrotoxin was more potent on GlyR alpha2A compared to GlyR alpha2B receptors. 4. Coexpression of alpha2A or alpha2B subunits with the GlyR beta subunit revealed that the higher agonist potencies observed with the alpha2B homomer were retained for the alpha2Bbeta heteromer. 5. The identical sensitivity to strychnine combined with a reduction in the maximum current induced by the partial agonist taurine at the GlyR alpha2A homomer, suggested that the changed sensitivity to agonists is in accordance with a modulation of agonist efficacy rather than agonist affinity. 6. An effect on agonist efficacy was also supported by using a structural model of the GlyR, localising the region of splice variation to the proposed docking region between GlyR loop 2 and the TM2-3 loop, an area associated with channel activation. 7. The existence of a spasmodic mouse phenotype linked to a GlyR alpha1(A52S) mutation, the equivalent position to the source of the alpha2 splice variation, raises the possibility that the GlyR alpha2 splice variants may be responsible for distinct roles in neuronal function.

  19. Discovery of a novel series of potent S1P1 agonists.

    PubMed

    Crosignani, Stefano; Bombrun, Agnes; Covini, David; Maio, Maurizio; Marin, Delphine; Quattropani, Anna; Swinnen, Dominique; Simpson, Don; Sauer, Wolfgang; Françon, Bernard; Martin, Thierry; Cambet, Yves; Nichols, Anthony; Martinou, Isabelle; Burgat-Charvillon, Fabienne; Rivron, Delphine; Donini, Cristina; Schott, Olivier; Eligert, Valerie; Novo-Perez, Laurence; Vitte, Pierre-Alain; Arrighi, Jean-François

    2010-03-01

    The discovery of a novel series of S1P1 agonists is described. Starting from a micromolar HTS positive, iterative optimization gave rise to several single-digit nanomolar S1P1 agonists. The compounds were able to induce internalization of the S1P1 receptor, and a selected compound was shown to be able to induce lymphopenia in mice after oral dosing.

  20. Systematic review: cardiovascular safety profile of 5-HT4 agonists developed for gastrointestinal disorders

    PubMed Central

    Tack, J; Camilleri, M; Chang, L; Chey, W D; Galligan, J J; Lacy, B E; Müller-Lissner, S; Quigley, E M M; Schuurkes, J; Maeyer, J H; Stanghellini, V

    2012-01-01

    Summary Background The nonselective 5-HT4 receptor agonists, cisapride and tegaserod have been associated with cardiovascular adverse events (AEs). Aim To perform a systematic review of the safety profile, particularly cardiovascular, of 5-HT4 agonists developed for gastrointestinal disorders, and a nonsystematic summary of their pharmacology and clinical efficacy. Methods Articles reporting data on cisapride, clebopride, prucalopride, mosapride, renzapride, tegaserod, TD-5108 (velusetrag) and ATI-7505 (naronapride) were identified through a systematic search of the Cochrane Library, Medline, Embase and Toxfile. Abstracts from UEGW 2006–2008 and DDW 2008–2010 were searched for these drug names, and pharmaceutical companies approached to provide unpublished data. Results Retrieved articles on pharmacokinetics, human pharmacodynamics and clinical data with these 5-HT4 agonists, are reviewed and summarised nonsystematically. Articles relating to cardiac safety and tolerability of these agents, including any relevant case reports, are reported systematically. Two nonselective 5-HT4 agonists had reports of cardiovascular AEs: cisapride (QT prolongation) and tegaserod (ischaemia). Interactions with, respectively, the hERG cardiac potassium channel and 5-HT1 receptor subtypes have been suggested to account for these effects. No cardiovascular safety concerns were reported for the newer, selective 5-HT4 agonists prucalopride, velusetrag, naronapride, or for nonselective 5-HT4 agonists with no hERG or 5-HT1 affinity (renzapride, clebopride, mosapride). Conclusions 5-HT4 agonists for GI disorders differ in chemical structure and selectivity for 5-HT4 receptors. Selectivity for 5-HT4 over non-5-HT4 receptors may influence the agent's safety and overall risk–benefit profile. Based on available evidence, highly selective 5-HT4 agonists may offer improved safety to treat patients with impaired GI motility. PMID:22356640

  1. The discovery of biaryl carboxamides as novel small molecule agonists of the motilin receptor.

    PubMed

    Westaway, Susan M; Brown, Samantha L; Conway, Elizabeth; Heightman, Tom D; Johnson, Christopher N; Lapsley, Kate; Macdonald, Gregor J; MacPherson, David T; Mitchell, Darren J; Myatt, James W; Seal, Jon T; Stanway, Steven J; Stemp, Geoffrey; Thompson, Mervyn; Celestini, Paolo; Colombo, Andrea; Consonni, Alessandra; Gagliardi, Stefania; Riccaboni, Mauro; Ronzoni, Silvano; Briggs, Michael A; Matthews, Kim L; Stevens, Alexander J; Bolton, Victoria J; Boyfield, Izzy; Jarvie, Emma M; Stratton, Sharon C; Sanger, Gareth J

    2008-12-15

    Optimisation of urea (5), identified from high throughput screening and subsequent array chemistry, has resulted in the identification of pyridine carboxamide (33) which is a potent motilin receptor agonist possessing favourable physicochemical and ADME profiles. Compound (33) has demonstrated prokinetic-like activity both in vitro and in vivo in the rabbit and therefore represents a promising novel small molecule motilin receptor agonist for further evaluation as a gastroprokinetic agent.

  2. [Dopamin agonist treatment and fibrotic heart valve disease in hyperprolactinaemia patients].

    PubMed

    Steffensen, Charlotte; Mægbæk, Merete Lund; Laurberg, Peter; Andersen, Marianne; Kistorp, Caroline; Nørrelund, Helene; Dal, Jakob; Jørgensen, Jens Otto Lunde

    2014-01-06

    Treatment with dopamin agonists, particularly cabergoline, is the primary and preferred therapy for prolactinomas and symptomatic hyperprolactinaemia due to its effectiveness and tolerability. However, an association has been demonstrated between fibrotic heart valve disease and high-dose dopamin agonist use in patients with Parkinson's disease in several echocardiographic studies. Such observations have prompted a number of studies of valvular function in cabergoline-treated hyperprolactinaemia patients. These studies have failed to show an increased prevalence of clinically significant valvular regurgitation.

  3. Retinoic Acid Receptor β2 Agonists Restore Glycemic Control In Diabetes and Reduce Steatosis

    PubMed Central

    Trasino, Steven E.; Tang, Xiao-Han; Jessurun, Jose; Gudas, Lorraine J.

    2016-01-01

    Aims Retinoids (vitamin A (retinol), and structurally related molecules) possess metabolic modulating properties, prompting new interest in their role in the treatment of diabetes and fatty liver disease, but little is known about the effects of specific retinoic acid receptor (RAR) agonists in these diseases. Materials and Methods Synthetic agonists for retinoic acid receptor RARβ2 were administered to wild type (wt) mice in a model of high fat diet (HFD)-induced type 2 diabetes (T2D) and to ob/ob and db/db mice (genetic models of obesity-associated T2D). Results We demonstrate that administration of synthetic agonists for the retinoic acid receptor RARβ2 to either wild type (wt) mice in a model of high fat diet (HFD)-induced type 2 diabetes (T2D) or to ob/ob and db/db mice (genetic models of obesity-associated T2D) reduces hyperglycemia, peripheral insulin resistance, and body weight. Furthermore, RARβ2 agonists dramatically reduce steatosis, lipid peroxidation, and oxidative stress in the liver, pancreas, and kidneys of obese, diabetic mice. RARβ2 agonists also lower levels of mRNAs involved in lipogenesis, such as SREBP1 and FASN (fatty acid synthase), and increase mRNAs that mediate mitochondrial fatty acid β-oxidation, such as CPT1α, in these organs. RARβ2 agonists lower triglyceride levels in these organs, and in muscle. Conclusions Collectively, our data show that orally active, rapidly acting, high affinity pharmacological agonists for RARβ2 improve the diabetic phenotype while reducing lipid levels in key insulin target tissues. We suggest that RARβ2 agonists should be useful drugs for T2D therapy and for treatment of hepatic steatosis. PMID:26462866

  4. Rapid kinetics of 2-adrenergic agonist binding and inhibition of adenylate cyclase

    SciTech Connect

    Thomsen, W.; Neubig, R.R.

    1987-05-01

    Activation of 2-adrenergic receptors in human platelets results in inhibition of adenylate cyclase (AC). To elucidate the relation between agonist binding and response, the authors have used a novel rapid-mix quench method to compare the kinetics of binding and response. At functionally effective concentrations, the time course of binding of the full 2-agonist, (TH)UK14,304 (UK), to purified platelet membranes was faster than could be measured manually. Using the rapid-mix quench method, agonist binding was quantitated for times for 0.3 to 60 seconds. UK binding exhibited biexponential kinetics. The rate constant of the fast binding component increases linearly with agonist concentration from 1 to 100 nM with a second order rate constant and 7 x 10WM s (at 25C). The slow rate constant was nearly independent of agonist concentration. The half times of the fast and slow components of binding for 100 nM UK are 1.5 seconds and approximately 2 minutes respectively. The rate and magnitude of the fast binding was unaffected by 10 M GTP whereas the magnitude of the slow phase was markedly reduced. Inhibition of forskolin stimulated AC by 100 M epinephrine occurs with a lag of 5-10 seconds in the presence of 10 M GTP. At lower GTP concentrations, this lag is prolonged. The observation that the fast component of agonist binding precedes inhibition even at agonist concentrations 20-fold lower than the EC40 for responses indicates that the rate limiting step in inhibition of AC is distal to the binding of agonist.

  5. Rational design of orally-active, pyrrolidine-based progesterone receptor partial agonists

    SciTech Connect

    Thompson, Scott K.; Washburn, David G.; Frazee, James S.; Madauss, Kevin P.; Hoang, Tram H.; Lapinski, Leahann; Grygielko, Eugene T.; Glace, Lindsay E.; Trizna, Walter; Williams, Shawn P.; Duraiswami, Chaya; Bray, Jeffrey D.; Laping, Nicholas J.

    2010-09-03

    Using the X-ray crystal structure of an amide-based progesterone receptor (PR) partial agonist bound to the PR ligand binding domain, a novel PR partial agonist class containing a pyrrolidine ring was designed. Members of this class of N-alkylpyrrolidines demonstrate potent and highly selective partial agonism of the progesterone receptor, and one of these analogs was shown to be efficacious upon oral dosing in the OVX rat model of estrogen opposition.

  6. Effects of dopamine D1 receptor full agonists in rats trained to discriminate SKF 38393.

    PubMed

    Gleason, S D; Witkin, J M

    2004-02-01

    Although the dopaminergic pharmacology of the D1 receptor full agonists, dinapsoline, dihydrexidine and the prodrug ABT-431 have been studied, no information is available on the ability of these agonists to substitute for the D1 agonist SKF 38393 in rats trained to discriminate this compound from vehicle. The present study was designed to characterize the potential D1 discriminative stimulus effects of these compounds. The selective dopamine D1-receptor agonists dihydrexidine [(+/-)-trans-10,11-dihydroxy-5,6,6a,7,8,12b-hexahydrobenzo[a] phenanthridine hydrochloride], ABT-431 [(-)-trans-9,10-diacetyloxy-2-propyl-4,5,5a,6,7,11b-hexahydro-3-thia-5-azacyclopent-1-ena[c]phenanthrene hydrochloride], the diacetyl prodrug derivative of A-86929, and dinapsoline [9-dihydroxy-2,3,7,11b-tetrahydro-1H-naph[1,2,3-de]isoquinoline] were studied in rats trained to discriminate racemic SKF 38393 [(+/-)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol], a selective D1 receptor partial agonist from vehicle. All of the agonists substituted fully for the discriminative stimulus effects of SKF 38393. The rank order of potency for substitution was ABT-431 > dinapsoline > dihydrexidine > SKF 38393. The D1 receptor antagonist, SCH 23390, blocked the discriminative stimulus effects of SKF 38393. The D3/D2-receptor agonist PD 128,907 [S(+)-(4aR,10bR)-3,4,4a,10b-tetrahydro-4-propyl-2H,5H-[1]-benzopyrano[4,3-b]-1,4-oxazin-9-ol] did not substitute up to doses that produced profound rate-suppressant effects. Thus, consistent with their D1 receptor pharmacology, the full D1-receptor agonists substituted completely for the discriminative stimulus of SKF 38393.

  7. Discovery and dimeric approach of novel Natriuretic Peptide Receptor A (NPR-A) agonists.

    PubMed

    Iwaki, Takehiko; Oyama, Yoshiaki; Tomoo, Toshiyuki; Tanaka, Taisaku; Okamura, Yoshihiko; Sugiyama, Masako; Yamaki, Akira; Furuya, Mayumi

    2017-03-15

    Novel agonists of the Natriuretic Peptide Receptor A (NPR-A) were obtained through random screening and subsequent structural modification of triazine derivatives. The key structural feature to improve in vitro activity was the dimerization of triazine monomer derivatives. The non peptide derivative 7c and 13a showed highly potent NPR-A agonistic activity in vitro and diuretic activity in vivo. These results implied that non-peptidic small molecules open the possibility of new therapy for congestive heart failure.

  8. 5-HT(2C) agonists as therapeutics for the treatment of schizophrenia.

    PubMed

    Rosenzweig-Lipson, Sharon; Comery, Thomas A; Marquis, Karen L; Gross, Jonathan; Dunlop, John

    2012-01-01

    The 5-HT(2C) receptor is a highly complex, highly regulated receptor which is widely distributed throughout the brain. The 5-HT(2C) receptor couples to multiple signal transduction pathways leading to engagement of a number of intracellular signaling molecules. Moreover, there are multiple allelic variants of the 5-HT(2C) receptor and the receptor is subject to RNA editing in the coding regions. The complexity of this receptor is further emphasized by the studies suggesting the utility of either agonists or antagonists in the treatment of schizophrenia. While several 5-HT(2C) agonists have demonstrated clinical efficacy in obesity (lorcaserin, PRX-000933), the focus of this review is on the therapeutic potential of 5-HT(2C) agonists in schizophrenia. To this end, the preclinical profile of 5-HT(2C) agonists from a neurochemical, electrophysiological, and a behavioral perspective is indicative of antipsychotic-like efficacy without extrapyramidal symptoms or weight gain. Recently, the selective 5-HT(2C) agonist vabicaserin demonstrated clinical efficacy in a Phase II trial in schizophrenia patients without weight gain and with low EPS liability. These data are highly encouraging and suggest that 5-HT(2C) agonists are potential therapeutics for the treatment of psychiatric disorders.

  9. Identification of Ecdysone Hormone Receptor Agonists as a Therapeutic Approach for Treating Filarial Infections

    PubMed Central

    Mhashilkar, Amruta S.; Vankayala, Sai L.; Liu, Canhui; Kearns, Fiona; Mehrotra, Priyanka; Tzertzinis, George; Palli, Subba R.; Woodcock, H. Lee; Unnasch, Thomas R.

    2016-01-01

    Background A homologue of the ecdysone receptor has previously been identified in human filarial parasites. As the ecdysone receptor is not found in vertebrates, it and the regulatory pathways it controls represent attractive potential chemotherapeutic targets. Methodology/ Principal Findings Administration of 20-hydroxyecdysone to gerbils infected with B. malayi infective larvae disrupted their development to adult stage parasites. A stable mammalian cell line was created incorporating the B. malayi ecdysone receptor ligand-binding domain, its heterodimer partner and a secreted luciferase reporter in HEK293 cells. This was employed to screen a series of ecdysone agonist, identifying seven agonists active at sub-micromolar concentrations. A B. malayi ecdysone receptor ligand-binding domain was developed and used to study the ligand-receptor interactions of these agonists. An excellent correlation between the virtual screening results and the screening assay was observed. Based on both of these approaches, steroidal ecdysone agonists and the diacylhydrazine family of compounds were identified as a fruitful source of potential receptor agonists. In further confirmation of the modeling and screening results, Ponasterone A and Muristerone A, two compounds predicted to be strong ecdysone agonists stimulated expulsion of microfilaria and immature stages from adult parasites. Conclusions The studies validate the potential of the B. malayi ecdysone receptor as a drug target and provide a means to rapidly evaluate compounds for development of a new class of drugs against the human filarial parasites. PMID:27300294

  10. Beta-adrenergic agonist therapy accelerates the resolution of hydrostatic pulmonary edema in sheep and rats.

    PubMed

    Frank, J A; Wang, Y; Osorio, O; Matthay, M A

    2000-10-01

    To determine whether beta-adrenergic agonist therapy increases alveolar liquid clearance during the resolution phase of hydrostatic pulmonary edema, we studied alveolar and lung liquid clearance in two animal models of hydrostatic pulmonary edema. Hydrostatic pulmonary edema was induced in sheep by acutely elevating left atrial pressure to 25 cmH(2)O and instilling 6 ml/kg body wt isotonic 5% albumin (prepared from bovine albumin) in normal saline into the distal air spaces of each lung. After 1 h, sheep were treated with a nebulized beta-agonist (salmeterol) or nebulized saline (controls), and left atrial pressure was then returned to normal. beta-Agonist therapy resulted in a 60% increase in alveolar liquid clearance over 3 h (P < 0.001). Because the rate of alveolar fluid clearance in rats is closer to human rates, we studied beta-agonist therapy in rats, with hydrostatic pulmonary edema induced by volume overload (40% body wt infusion of Ringer lactate). beta-Agonist therapy resulted in a significant decrease in excess lung water (P < 0.01) and significant improvement in arterial blood gases by 2 h (P < 0.03). These preclinical experimental studies support the need for controlled clinical trials to determine whether beta-adrenergic agonist therapy would be of value in accelerating the resolution of hydrostatic pulmonary edema in patients.

  11. Effects of cannabinoid and vanilloid receptor agonists and their interaction on learning and memory in rats.

    PubMed

    Shiri, Mariam; Komaki, Alireza; Oryan, Shahrbanoo; Taheri, Masoumeh; Komaki, Hamidreza; Etaee, Farshid

    2017-04-01

    Despite previous findings on the effects of cannabinoid and vanilloid systems on learning and memory, the effects of the combined stimulation of these 2 systems on learning and memory have not been studied. Therefore, in this study, we tested the interactive effects of cannabinoid and vanilloid systems on learning and memory in rats by using passive avoidance learning (PAL) tests. Forty male Wistar rats were divided into the following 4 groups: (1) control (DMSO+saline), (2) WIN55,212-2, (3) capsaicin, and (4) WIN55,212-2 + capsaicin. On test day, capsaicin, a vanilloid receptor type 1 (TRPV1) agonist, or WIN55,212-2, a cannabinoid receptor (CB1/CB2) agonist, or both substances were injected intraperitoneally. Compared to the control group, the group treated with capsaicin (TRPV1 agonist) had better scores in the PAL acquisition and retention test, whereas treatment with WIN55,212-2 (CB1/CB2 agonist) decreased the test scores. Capsaicin partly reduced the effects of WIN55,212-2 on PAL and memory. We conclude that the acute administration of a TRPV1 agonist improves the rats' cognitive performance in PAL tasks and that a vanilloid-related mechanism may underlie the agonistic effect of WIN55,212-2 on learning and memory.

  12. TRPA1 agonist activity of probenecid desensitizes channel responses: consequences for screening.

    PubMed

    McClenaghan, Conor; Zeng, Fanning; Verkuyl, Jan Martin

    2012-12-01

    The transient receptor potential channel subtype A member 1 (TRPA1) is a nonselective cation channel widely viewed as having therapeutic potential, particularly for pain-related indications. Realization of this potential will require potent, selective modulators; however, currently the pharmacology of TRPA1 is poorly defined. As TRPA1 is calcium permeable, calcium indicators offer a simple assay format for high-throughput screening. In this report, we show that probenecid, a uricosuric agent used experimentally in screening to increase loading of calcium-sensitive dyes, activates TRPA1. Prolonged probenecid incubation during the dye-loading process reduces agonist potency upon subsequent challenge. When Chinese Hamster Ovary (CHO)-hTRPA1 or STC-1 cells, which endogenously express TRPA1, were dye loaded in the presence of 2 mM probenecid TRPA1, agonists appeared less potent; EC(50) for allyl isothiocyante agonists in CHO-hTRPA1 was increased from 1.5±0.19 to 7.32±1.20 μM (P<0.01). No significant effect on antagonist potency was observed when using the agonist EC(80) concentration determined under the appropriate dye-loading conditions. We suggest an alternative protocol for calcium imaging using another blocker of anion transport, sulfinpyrazone. This blocker significantly augments indicator dye loading and the screening window, but is not a TRPA1 agonist and has no effect on agonist potency.

  13. Analysis of the agonist activity of fenoldopam (SKF 82526) at the vascular 5-HT2 receptor.

    PubMed Central

    Christie, M. I.; Harper, D.; Smith, G. W.

    1992-01-01

    1. The 5-HT2 receptor agonist activity of fenoldopam (SKF 82526) was characterized in the rabbit isolated aorta preparation. 2. Fenoldopam was an agonist at the vascular 5-HT2 receptor with lower affinity and efficacy than the naturally occurring agonist 5-hydroxytryptamine (5-HT). Fenoldopam had an affinity (pKA) of 5.84 +/- 0.04 and efficacy (tau) of 0.57 +/- 0.04, whereas 5-HT had a pKA of 6.65 +/- 0.12 and tau of 2.66 +/- 0.41. 3. The constrictor effects of fenoldopam and 5-HT were competitively antagonized by the 5-HT2 antagonist, ketanserin, with pKB values of 8.81 +/- 0.11 and 8.83 +/- 0.10 respectively. 4. Prior incubation with fenoldopam produced a concentration-related rightward shift of a subsequent 5-HT concentration-response curve. This inhibition was specific for 5-HT since constrictor responses to angiotensin II were unaffected. 5. This study indicates that the D1 receptor agonist, fenoldopam, acts as an agonist at the vascular 5-HT2 receptor, but with an affinity and efficacy less than that of the naturally occurring agonist, 5-HT. PMID:1361397

  14. A Systematic Approach to Identify Biased Agonists of the Apelin Receptor through High-Throughput Screening.

    PubMed

    McAnally, Danielle; Siddiquee, Khandaker; Sharir, Haleli; Qi, Feng; Phatak, Sharangdhar; Li, Jian-Liang; Berg, Eric; Fishman, Jordan; Smith, Layton

    2017-03-01

    Biased agonists are defined by their ability to selectively activate distinct signaling pathways of a receptor, and they hold enormous promise for the development of novel drugs that specifically elicit only the desired therapeutic response and avoid potential adverse effects. Unfortunately, most high-throughput screening (HTS) assays are designed to detect signaling of G protein-coupled receptors (GPCRs) downstream of either G protein or β-arrestin-mediated signaling but not both. A comprehensive drug discovery program seeking biased agonists must employ assays that report on the activity of each compound at multiple discrete pathways, particularly for HTS campaigns. Here, we report a systematic approach to the identification of biased agonists of human apelin receptor (APJ). We synthesized 448 modified versions of apelin and screened them against a cascade of cell-based assays, including intracellular cAMP and β-arrestin recruitment to APJ, simultaneously. The screen yielded potent and highly selective APJ agonists. Representative hits displaying preferential signaling via either G-protein or β-arrestin were subjected to a battery of confirmation assays. These biased agonists will be useful as tools to probe the function and pharmacology of APJ and provide proof of concept of our systematic approach to the discovery of biased ligands. This approach is likely universally applicable to the search for biased agonists of GPCRs.

  15. Substrate specificity of the agonist-stimulated release of polyunsaturated fatty acids from vascular endothelial cells

    SciTech Connect

    Rosenthal, M.D.; Garcia, M.C.; Sprecher, H. )

    1989-11-01

    Stimulation of vascular endothelial cells with agonists such as histamine and thrombin results in release of arachidonic acid from membrane lipids and subsequent eicosanoid synthesis. As shown previously, the agonist-stimulated deacylation is specific for arachidonate, eicosapentaenoate, and 5,8,11-eicosatrienoate. This study has utilized radiolabeled fatty acids differing in chain length and position of double bonds to further elucidate the fatty acyl specificity of agonist-stimulated deacylation. Replicate wells of confluent human umbilical vein endothelial cells were incubated with 14C-labeled fatty acids and then challenged with histamine, thrombin, or the calcium ionophore A23187. Comparison of the results obtained with isomeric eicosatetraenoic fatty acids with initial double bonds at carbons 4, 5, or 6 indicated that the deacylation induced by all three agonists exhibited marked specificity for the cis-5 double bond. Lack of stringent chain length specificity was indicated by agonist-stimulated release of 5,8,11,14- tetraenoic fatty acids with 18, 19, 20, and 21 carbons. Release of 5,8,14-(14C)eicosatrienoate was two-to threefold that of 5,11,14-(14C)eicosatrienoate, thus indicating that the cis-8 double bond may also contribute to the stringent recognition by the agonist-sensitive phospholipase. The present study has also demonstrated that histamine, thrombin, and A23187 do not stimulate release of docosahexaenoate from endothelial cells.

  16. Dopa-testotoxicosis: disruptive hypersexuality in hypogonadal men with prolactinomas treated with dopamine agonists.

    PubMed

    De Sousa, Sunita M C; Chapman, Ian M; Falhammar, Henrik; Torpy, David J

    2017-02-01

    Dopamine agonists are the first line of therapy for prolactinomas, with high rates of biochemical control and tumour shrinkage. Toxicity is considered to be low and manageable by switching of agents and dose reduction. Dopamine agonist-induced impulse control disorders are well described in the neurology setting, but further data are required regarding this toxicity in prolactinoma patients. We performed a multicenter retrospective cohort study of eight men with prolactinomas and associated central hypogonadism. The eight men had no prior history of psychiatric disease, but each developed disruptive hypersexuality whilst on dopamine agonist therapy at various doses. Cabergoline, bromocriptine and quinagolide were all implicated. Hypersexuality had manifold consequences, including relationship discord, financial loss, reduced work performance, and illicit activity. We hypothesise that this phenomenon is due to synergy between reward pathway stimulation by dopamine agonists, together with rapid restoration of the eugonadal state after prolonged hypogonadism. We refer here to this distinct drug toxicity as 'dopa-testotoxicosis'. Given the profound impact in these patients and their families, cessation of dopamine agonists should be considered in men who develop hypersexuality, and pituitary surgery may be required to facilitate this. Awareness of this distinct impulse control disorder should enable further research into the prevalence, natural history and management of dopa-testotoxicosis. The condition is likely under-reported due to the highly personal nature of the symptoms and we suggest a simple written questionnaire to screen for hypersexuality and other behavioural symptoms within the first six months of dopamine agonist treatment.

  17. Alpha/sub 1/ receptor coupling events initiated by methoxy-substituted tolazoline partial agonists

    SciTech Connect

    Wick, P.; Keung, A.; Deth, R.

    1986-03-01

    A series of mono- and dimethyoxy substituted tolazoline derivatives, known to be partial agonists at the alpha/sub 1/ receptor, were compared with the ..cap alpha../sub 1/ selective full agonist phenylephrine (PE) on isolated strips of rabbit aorta Agonist activity was evaluated in contraction, /sup 45/Ca influx, /sup 45/Ca efflux, and /sup 32/P-Phospholipid labelling studies. Maximum contractile responses for the 2-, 3-, and 3, 5- methoxy substituted tolazoline derivatives (10/sup -5/M) were 53.8, 67.6 and 99.7% of the PE (10/sup -5/M) response respectively. These same partial agonists caused a stimulation of /sup 45/Ca influx to the extent of 64, 86, and 95% of the PE response respectively. In /sup 45/Ca efflux studies, (a measure of the intracellular Ca/sup +2/ release) the tolazolines caused: 30%, 63%, and 78% of the PE stimulated level. /sup 32/P-Phosphatidic acid (PA) labelling was measured as an index of PI turnover after ..cap alpha../sub 1/ receptor stimulation. Compared to PE, the 2-, 3-, and 3,5- methoxy substituted tolazoline derivatives caused 22, 46, and 72% PA labelling. The above values are all in reasonable accord with the rank order or agonist activity shown in maximum contractile responses. The results of this investigation suggest that partial agonists stimulate ..cap alpha.. receptor coupling events at a level which is quantitatively comparable to their potencies in causing contraction of arterial smooth muscle.

  18. The therapeutic potential of nociceptin/orphanin FQ receptor agonists as analgesics without abuse liability.

    PubMed

    Lin, Ann P; Ko, Mei-Chuan

    2013-02-20

    Although mu opioid (MOP) receptor agonists are the most commonly used analgesics for the treatment of moderate to severe pain in the clinic, the side effects of MOP agonists such as abuse liability limit their value as a medication. Research to identify novel analgesics without adverse effects is pivotal to advance the health care of humans. The nociceptin/orphanin FQ peptide (NOP) receptor, the fourth opioid receptor subtype, mediates distinctive actions in nonhuman primates which suggests the possibility that activity at this receptor may result in strong analgesia in the absence of virtually all of the side effects associated with MOP agonists. The present review highlights the recent progress of pharmacological studies of NOP-related ligands in primates. Selective NOP agonists, either peptidic or nonpeptidic, produce full analgesia in various assays in primates, when delivered systemically or intrathecally. Yet small molecule NOP agonists do not serve as reinforcers, indicating a lack of abuse liability. Given that NOP agonists have low abuse liability and that coactivation of NOP and MOP receptors produces synergistic antinociception, it is worth developing bifunctional NOP/MOP ligands. The outcomes of these studies and recent developments provide new perspectives to establish a translational bridge for understanding the biobehavioral functions of NOP receptors in primates and for facilitating the development of NOP-related ligands as a new generation of analgesics without abuse liability in humans.

  19. The Good, the Bad, and the Ugly: Agonistic Behaviour in Juvenile Crocodilians

    PubMed Central

    Brien, Matthew L.; Lang, Jeffrey W.; Webb, Grahame J.; Stevenson, Colin; Christian, Keith A.

    2013-01-01

    We examined agonistic behaviour in seven species of hatchling and juvenile crocodilians held in small groups (N = 4) under similar laboratory conditions. Agonistic interactions occurred in all seven species, typically involved two individuals, were short in duration (5–15 seconds), and occurred between 1600–2200 h in open water. The nature and extent of agonistic interactions, the behaviours displayed, and the level of conspecific tolerance varied among species. Discrete postures, non-contact and contact movements are described. Three of these were species-specific: push downs by C. johnstoni; inflated tail sweeping by C. novaeguineae; and, side head striking combined with tail wagging by C. porosus. The two long-snouted species (C. johnstoni and G. gangeticus) avoided contact involving the head and often raised the head up out of the way during agonistic interactions. Several behaviours not associated with aggression are also described, including snout rubbing, raising the head up high while at rest, and the use of vocalizations. The two most aggressive species (C. porosus, C. novaeguineae) appeared to form dominance hierarchies, whereas the less aggressive species did not. Interspecific differences in agonistic behaviour may reflect evolutionary divergence associated with morphology, ecology, general life history and responses to interspecific conflict in areas where multiple species have co-existed. Understanding species-specific traits in agonistic behaviour and social tolerance has implications for the controlled raising of different species of hatchlings for conservation, management or production purposes. PMID:24349018

  20. Fluorescence characteristics of hydrophobic partial agonist probes of the cholecystokinin receptor.

    PubMed

    Harikumar, Kaleeckal G; Pinon, Delia I; Miller, Laurence J

    2006-04-01

    Fluorescence spectroscopic studies are powerful tools for the evaluation of receptor structure and the dynamic changes associated with receptor activation. Here, we have developed two chemically distinct fluorescent probes of the cholecystokinin (CCK) receptor by attaching acrylodan or a nitrobenzoxadiazole moiety to the amino terminus of a partial agonist CCK analogue. These two probes were able to bind to the CCK receptor specifically and with high affinity, and were able to elicit only submaximal intracellular calcium responses typical of partial agonists. The fluorescence characteristics of these probes were compared with those previously reported for structurally-related full agonist and antagonist probes. Like the previous probes, the partial agonist probes exhibited longer fluorescence lifetimes and increased anisotropy when bound to the receptor than when free in solution. The receptor-bound probes were not easily quenched by potassium iodide, suggesting that the fluorophores were protected from the extracellular aqueous milieu. The fluorescence characteristics of the partial agonist probes were quite similar to those of the analogous full agonist probes and quite distinct from the analogous antagonist probes. These data suggest that the partially activated conformational state of this receptor is more closely related to its fully active state than to its inactive state.

  1. Comparative Review of Approved Melatonin Agonists for the Treatment of Circadian Rhythm Sleep-Wake Disorders.

    PubMed

    Williams, Wilbur P Trey; McLin, Dewey E; Dressman, Marlene A; Neubauer, David N

    2016-09-01

    Circadian rhythm sleep-wake disorders (CRSWDs) are characterized by persistent or recurrent patterns of sleep disturbance related primarily to alterations of the circadian rhythm system or the misalignment between the endogenous circadian rhythm and exogenous factors that affect the timing or duration of sleep. These disorders collectively represent a significant unmet medical need, with a total prevalence in the millions, a substantial negative impact on quality of life, and a lack of studied treatments for most of these disorders. Activation of the endogenous melatonin receptors appears to play an important role in setting the circadian clock in the suprachiasmatic nucleus of the hypothalamus. Therefore, melatonin agonists, which may be able to shift and/or stabilize the circadian phase, have been identified as potential therapeutic candidates for the treatment of CRSWDs. Currently, only one melatonin receptor agonist, tasimelteon, is approved for the treatment of a CRSWD: non-24-hour sleep-wake disorder (or non-24). However, three additional commercially available melatonin receptor agonists-agomelatine, prolonged-release melatonin, and ramelteon-have been investigated for potential use for treatment of CRSWDs. Data indicate that these melatonin receptor agonists have distinct pharmacologic profiles that may help clarify their clinical use in CRSWDs. We review the pharmacokinetic and pharmacodynamic properties of these melatonin agonists and summarize their efficacy profiles when used for the treatment of CRSWDs. Further studies are needed to determine the therapeutic potential of these melatonin agonists for most CRSWDs.

  2. β-Adrenoreceptor agonists in the management of pain associated with renal colic: a systematic review

    PubMed Central

    Johnson, Graham David; Fakis, Apostolos; Surtees, Jane; Lennon, Robert Iain

    2016-01-01

    Objectives To determine whether β-adrenoreceptor agonists are effective analgesics for patients with renal colic through a systematic review of the literature. Setting Adult emergency departments or acute assessment units. Participants Human participants with proven or suspected renal colic. Interventions β-adrenoreceptor agonists. Outcome measures Primary: level of pain at 30 min following administration of the β-agonist. Secondary: level of pain at various time points following β-agonist administration; length of hospital stay; analgesic requirement; stone presence, size and position; degree of hydronephrosis. Results 256 records were screened and 4 identified for full-text review. No articles met the inclusion criteria. Conclusions and implications There is no evidence to support or refute the proposed use of β-agonists for analgesia in patients with renal colic. Given the biological plausibility and existing literature base, clinical trials investigating the use of β-adrenoreceptor agonists in the acute setting for treatment of the pain associated with renal colic are recommended. Trial registration number CRD42015016266. PMID:27324714

  3. Equol an isoflavonoid: potential for improved prostate health, in vitro and in vivo evidence

    PubMed Central

    2011-01-01

    Background To determine: in vitro binding affinity of equol for 5alpha-dihydrotestosterone (5alpha-DHT), in vitro effects of equol treatment in human prostate cancer (LNCap) cells, and in vivo effects of equol on rat prostate weight and circulating levels of sex steroid hormones. Methods First, in vitro equol binding affinity for 5alpha-DHT was determined using 14C5alpha-DHT combined with cold 5alpha-DHT (3.0 nM in all samples). These steroids were incubated with increasing concentrations of equol (0-2,000 nM) and analyzed by Sephadex LH-20 column chromatography. 14C5alpha-DHT peak/profiles were determined by scintillation counting of column fractions. Using the 14C5alpha-DHT peak (0 nM equol) as a reference standard, a binding curve was generated by quantifying shifts in the 14C5alpha-DHT peaks as equol concentrations increased. Second, equol's in vitro effects on LNCap cells were determined by culturing cells (48 hours) in the presence of increasing concentrations of dimethyl sulfoxide (DMSO) (vehicle-control), 5alpha-DHT, equol or 5alpha-DHT+equol. Following culture, prostate specific antigen (PSA) levels were quantified via ELISA. Finally, the in vivo effects of equol were tested in sixteen male Long-Evans rats fed a low isoflavone diet. From 190-215 days, animals received 0.1cc s.c. injections of either DMSO-control vehicle (n = 8) or 1.0 mg/kg (body weight) of equol (in DMSO) (n = 8). At 215 days, body and prostate weights were recorded, trunk blood was collected and serum assayed for luteinizing hormone (LH), 5alpha-DHT, testosterone and 17beta-estradiol levels. Results Maximum and half maximal equol binding to 5alpha-DHT occurred at approximately 100 nM and 4.8 nM respectively. LNCap cells cultured in the presence of 5alpha-DHT significantly increased PSA levels. However, in the presence of 5alpha-DHT+equol, equol blocked the significant increases in PSA levels from LNCap cells. In vivo equol treatment significantly decreased rat prostate weights and serum

  4. Radiolabelled D2 agonists as prolactinoma imaging agents

    SciTech Connect

    Otto, C.A.

    1989-08-01

    During the past year, further studies on mAChR were conducted. These studies included verification of the difference in pituitary distribution based on ligand charge. The pituitary localization of TRB. A neutral mAChR ligand, was verified. The lack of QNB blockade of TRB uptake was tested by blockage with scopolamine, another mAChR antagonist and by testing the effect in a different strain of rat. Neither scopolamine or change of rat strain had any effect. We concluded that TRB uptake in pituitary is not a receptor-mediated process. Further studies were conducted with an additional quaternized mAChR ligand: MQNB. Pituitary localization of MQNB, like MTRB, could be blocked by pretreatment with QNB. We have tentatively concluded that permanent charge on a mAChR antagonist changes the mechanism of uptake in the pituitary. Time course studies and the effects of DES on myocardial uptake are reported. A brief report on preliminary results of evaluation of quaternized mAChR ligands in the heart is included. In a limited series of such ligands, we have observed a single binding site and a difference in B{sub max} values: QNB competition studies yield larger B{sub max} values than studies with {sup 3}H-NMS. Progress in the synthesis of D{sub 2} agonists includes solving a synthetic problem and preparation of the cold'' analogue of N-0437 using procedures applicable to eventual synthesis with {sup 11}C-CH{sub 3}I. 2 refs., 5 figs., 1 tab.

  5. Metabolic mapping of A3 adenosine receptor agonist MRS5980

    PubMed Central

    Fang, Zhong-Ze; Tosh, Dilip K.; Tanaka, Naoki; Wang, Haina; Krausz, Kristopher W.; O'Connor, Robert; Jacobson, Kenneth A.; Gonzalez, Frank J.

    2015-01-01

    (1S,2R,3S,4R,5S)-4-(2-((5-Chlorothiophen-2-yl)ethynyl)-6-(methylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo[3.1.0]hexane-1-carboxamide (MRS5980) is an A3AR selective agonist containing multiple receptor affinity- and selectivity-enhancing modifications and a therapeutic candidate drug for many inflammatory diseases. Metabolism-related poor pharmacokinetic behavior and toxicities are a major reason of drug R&D failure. Metabolomics with UPLC-MS was employed to profile the metabolism of MRS5980 and MRS5980-induced disruption of endogenous compounds. Recombinant drug-metabolizing enzymes screening experiment were used to determine the enzymes involved in MRS5980 metabolism. Analysis of lipid metabolism-related genes was performed to investigate the reason for MRS5980-induced lipid metabolic disorders. Unsupervised principal components analysis separated the control and MRS5980 treatment group in feces, urine, and liver samples, but not in bile and serum. The major ions mainly contributing to the separation for feces and urine were oxidized MRS5980, glutathione (GSH) conjugates and cysteine conjugate (degradation product of the GSH conjugates) of MRS5980. The major ions contributing to the group separation of liver samples were phosphatidylcholines. In vitro incubation experiments showed the major involvement of CYP3A enzymes in the oxidative metabolism of MRS5980 and direct GSH reactivity of MRS5980. The electrophilic attack by MRS5980 is a minor pathway and did not alter GSH levels in liver or liver histology, and thus may be of minor clinical consequence. Gene expression analysis further showed decreased expression of PC biosynthetic genes choline kinase a and b, which further accelerated conversion of lysophosphatidylcholine to phosphatidylcholines through increasing the expression of lysophosphatidylcholine acyltransferase 3. These data will be useful to guide rational design of drugs targeting A3AR, considering efficacy, metabolic elimination, and

  6. Metabolic mapping of A3 adenosine receptor agonist MRS5980.

    PubMed

    Fang, Zhong-Ze; Tosh, Dilip K; Tanaka, Naoki; Wang, Haina; Krausz, Kristopher W; O'Connor, Robert; Jacobson, Kenneth A; Gonzalez, Frank J

    2015-09-15

    (1S,2R,3S,4R,5S)-4-(2-((5-Chlorothiophen-2-yl)ethynyl)-6-(methylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo[3.1.0]hexane-1-carboxamide (MRS5980) is an A3AR selective agonist containing multiple receptor affinity- and selectivity-enhancing modifications and a therapeutic candidate drug for many inflammatory diseases. Metabolism-related poor pharmacokinetic behavior and toxicities are a major reason for drug R&D failure. Metabolomics with UPLC-MS was employed to profile the metabolism of MRS5980 and MRS5980-induced disruption of endogenous compounds. Recombinant drug-metabolizing enzymes screening experiment were used to determine the enzymes involved in MRS5980 metabolism. Analysis of lipid metabolism-related genes was performed to investigate the reason for MRS5980-induced lipid metabolic disorders. Unsupervised principal components analysis separated the control and MRS5980 treatment groups in feces, urine, and liver samples, but not in bile and serum. The major ions mainly contributing to the separation of feces and urine were oxidized MRS5980, glutathione (GSH) conjugates and cysteine conjugate (degradation product of the GSH conjugates) of MRS5980. The major ions contributing to the group separation of liver samples were phosphatidylcholines. In vitro incubation experiments showed the involvement of CYP3A enzymes in the oxidative metabolism of MRS5980 and direct GSH reactivity of MRS5980. The electrophilic attack by MRS5980 is a minor pathway and did not alter GSH levels in liver or liver histology, and thus may be of minor clinical consequence. Gene expression analysis further showed decreased expression of PC biosynthetic genes choline kinase a and b, which further accelerated conversion of lysophosphatidylcholine to phosphatidylcholines through increasing the expression of lysophosphatidylcholine acyltransferase 3. These data will be useful to guide rational design of drugs targeting A3AR, considering efficacy, metabolic elimination, and

  7. Pharmacological reactivity of resistance vessels in a rat PCOS model - vascular effects of parallel vitamin D₃ treatment.

    PubMed

    Sara, Levente; Nadasy, Gyorgy L; Antal, Peter; Monori-Kiss, Anna; Szekeres, Maria; Masszi, Gabriella; Monos, Emil; Varbiro, Szabolcs

    2012-12-01

    The aim of this study was to clarify the effects of dihydrotestosterone (DHT)-induced polycystic ovary syndrome (PCOS) on pharmacological reactivity of a resistance vessel in a rat model and the possible modulatory role of 1,25-(OH)₂-cholecalciferol (vitamin D₃). The PCOS model was induced in adolescent female Wistar rats by a 10-week DHT treatment. Norepinephrine induced contractility and acetylcholine relaxation were tested in arterioles by pressure arteriography in control as well as DHT- and DHT plus vitamin D₃-treated (DHT+D3) animals. Decreased vasoconstriction and dilatation were detected after DHT treatment. Concomitant vitamin D₃ treatment increased the contractile response and resulted in more relaxed vessels. Endothelial dilation tested with acetylcholine was lower after DHT treatment, this effect was not depend on vitamin D₃ supplementation. In conclusion, hyperandrogenic state resulted in reduced endothelium- and smooth muscle-dependent vasorelaxation and constriction with a complete loss of nitric oxide (NO)-dependent relaxation compared with controls. These alterations caused by chronic DHT treatment were partially reversed by concomitant vitamin D₃ administration.

  8. Efficacy of various natural and synthetic androgens to induce ductal branching morphogenesis in the developing anterior rat prostate.

    PubMed

    Foster, B A; Cunha, G R

    1999-01-01

    The studies presented herein quantitated ductal branching morphogenesis in the anterior prostate (AP) of the newborn rat. Four parameters were measured: epithelial area, epithelial perimeter, node number, and form factor. Nine natural and synthetic androgens were tested for their effectiveness in inducing postnatal prostatic development using 808 newborn rat APs in 68 dose-response experiments. Based on these studies it was shown that testosterone (T) was slightly more effective than dihydrotestosterone (DHT) in supporting ductal branching morphogenesis in the developing rat AP. Furthermore, the activity of T could not be accounted for simply by conversion of T to DHT. Synthetic androgens, 7alpha-methyl-19-nortestosterone and methyltrienolone (R1881), which cannot be 5alpha-reduced to DHT, also induced extensive ductal branching and elicited responses less than those to T and not statistically different from those to DHT. This suggests that although DHT is sufficient for prostatic development, it is not necessary for postnatal ductal branching morphogenesis and growth of the prostate. 5Alpha-androstan-3alpha,17beta-diol was particularly potent in inducing ductal branching, eliciting a response greater than or comparable to those of T and DHT. Androsterone, androstanedione, 5alpha-androstan-3beta,17beta-diol and 5beta-androstan-3alpha,17beta-diol induced ductal branching, but to a lesser extent than either T or DHT. These studies challenge the assumption that DHT is essential for prostatic development, specifically during ductal branching morphogenesis of the neonatal rat prostate.

  9. The pharmacologic basis for clinical differences among GLP-1 receptor agonists and DPP-4 inhibitors.

    PubMed

    Morales, Javier

    2011-11-01

    The incretin system plays an important role in glucose homeostasis, largely through the actions of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). Unlike GIP, the actions of GLP-1 are preserved in patients with type 2 diabetes mellitus, which has led to the development of injectable GLP-1 receptor (GLP-1R) agonists and oral dipeptidyl peptidase-4 (DPP-4) inhibitors. GLP-1R agonists-which can be dosed to pharmacologic levels-act directly upon the GLP-1R. In contrast, DPP-4 inhibitors work indirectly by inhibiting the enzymatic inactivation of native GLP-1, resulting in a modest increase in endogenous GLP-1 levels. GLP-1R agonists generally lower the fasting and postprandial glucose levels more than DPP-4 inhibitors, resulting in a greater mean reduction in glycated hemoglobin level with GLP-1R agonists (0.4%-1.7%) compared with DPP-4 inhibitors (0.4%-1.0%). GLP-1R agonists also promote satiety and reduce total caloric intake, generally resulting in a mean weight loss of 1 to 4 kg over several months in most patients, whereas DPP-4 inhbitors are weight-neutral overall. GLP-1R agonists and DPP-4 inhibitors are generally safe and well tolerated. The glucose-dependent manner of stimulation of insulin release and inhibition of glucagon secretion by both GLP-1R agonists and DPP-4 inhibitors contribute to the low incidence of hypoglycemia. Although transient nausea occurs in 26% to 28% of patients treated with GLP-1R agonists but not DPP-4 inhibitors, this can be reduced by using a dose-escalation strategy. Other adverse events (AEs) associated with GLP-1R agonists include diarrhea, headache, and dizziness. The main AEs associated with DPP-4 inhibitors include upper respiratory tract infection, nasopharyngitis, and headache. Overall, compared with other therapies for type 2 diabetes mellitus with similar efficacy, incretin-based agents have low risk of hypoglycemia and weight gain. However, GLP-1R agonists demonstrate greater

  10. Selective VIP Receptor Agonists Facilitate Immune Transformation for Dopaminergic Neuroprotection in MPTP-Intoxicated Mice

    PubMed Central

    Olson, Katherine E.; Kosloski-Bilek, Lisa M.; Anderson, Kristi M.; Diggs, Breha J.; Clark, Barbara E.; Gledhill, John M.; Shandler, Scott J.; Mosley, R. Lee

    2015-01-01

    Vasoactive intestinal peptide (VIP) mediates a broad range of biological responses by activating two related receptors, VIP receptor 1 and 2 (VIPR1 and VIPR2). Although the use of native VIP facilitates neuroprotection, clinical application of the hormone is limited due to VIP's rapid metabolism and inability to distinguish between VIPR1 and VIPR2 receptors. In addition, activation of both receptors by therapeutics may increase adverse secondary toxicities. Therefore, we developed metabolically stable and receptor-selective agonists for VIPR1 and VIPR2 to improve pharmacokinetic and pharmacodynamic therapeutic end points. Selective agonists were investigated for their abilities to protect mice against MPTP-induced neurodegeneration used to model Parkinson's disease (PD). Survival of tyrosine hydroxylase neurons in the substantia nigra was determined by stereological tests after MPTP intoxication in mice pretreated with either VIPR1 or VIPR2 agonist or after adoptive transfer of splenic cell populations from agonist-treated mice administered to MPTP-intoxicated animals. Treatment with VIPR2 agonist or splenocytes from agonist-treated mice resulted in increased neuronal sparing. Immunohistochemical tests showed that agonist-treated mice displayed reductions in microglial responses, with the most pronounced effects in VIPR2 agonist-treated, MPTP-intoxicated mice. In parallel studies, we observed reductions in proinflammatory cytokine release that included IL-17A, IL-6, and IFN-γ and increases in GM-CSF transcripts in CD4+ T cells recovered from VIPR2 agonist-treated animals. Moreover, a phenotypic shift of effector to regulatory T cells was observed. These results support the use of VIPR2-selective agonists as neuroprotective agents for PD treatment. SIGNIFICANCE STATEMENT Vasoactive intestinal peptide receptor 2 can elicit immune transformation in a model of Parkinson's disease (PD). Such immunomodulatory capabilities can lead to neuroprotection by attenuating

  11. Nonlinear analysis of partial dopamine agonist effects on cAMP in C6 glioma cells.

    PubMed

    Avalos, M; Mak, C; Randall, P K; Trzeciakowski, J P; Abell, C; Kwan, S W; Wilcox, R E

    2001-01-01

    Most drugs have some efficacy so that improved methods to determine the relative intrinsic efficacy of partial agonists should be of benefit to preclinical and clinical investigators. We examined the effects of partial D(1) or partial D(2) dopamine agonists using a partial agonist interaction model. The dependent variable was the modulation of the dopamine-receptor-mediated cAMP response in C6 glioma cells selectively and stably expressing either D(1) or D(2) recombinant dopamine receptors. The dissociation constant (K(B)) and relative intrinsic efficacy (E(r)) for each partial agonist were calculated using a partial agonist interaction null model in which the effects of fixed concentrations of each partial agonist on the dopamine dose-response curve were evaluated. This model is an extension of the competitive antagonist null model to drugs with efficacy and assumes only that the log-dose--response curve is monotonic. Generally, the partial agonist interaction model fit the data, as well as fits of the independent logistic curves. Furthermore, the partial agonist K(B) values could be shared across partial agonist concentrations without worsening the model fit (by increasing the residual variance). K(B) values were also similar to drug affinities reported in the literature. The model was validated in three ways. First, we assumed a common tissue stimulus parameter (beta) and calculated the E(r) values. This provided a qualitative check on the interaction model results. Second, we calculated new relative efficacy values, E(r)(beta), using the beta estimate. Third, we calculated relative efficacy using relative maxima times midpoint shift ratios (J. Theor. Biol. 198 (1999) 347.). All three methods indicated that the present model yielded reasonable estimates of affinity and relative efficacy for the set of compounds studied. Our results provide a quick and convenient method of quantification of partial agonist efficacy. Special applications and limitations of the

  12. Synthesis and opioid receptor affinity of morphinan and benzomorphan derivatives: mixed kappa agonists and mu agonists/antagonists as potential pharmacotherapeutics for cocaine dependence.

    PubMed

    Neumeyer, J L; Bidlack, J M; Zong, R; Bakthavachalam, V; Gao, P; Cohen, D J; Negus, S S; Mello, N K

    2000-01-13

    This report concerns the synthesis and preliminary pharmacological evaluation of a novel series of kappa agonists related to the morphinan (-)-cyclorphan (3a) and the benzomorphan (-)-cyclazocine (2) as potential agents for the pharmacotherapy of cocaine abuse. Recent evidence suggests that agonists acting at kappa opioid receptors may modulate the activity of dopaminergic neurons and alter the neurochemical and behavioral effects of cocaine. We describe the synthesis and chemical characterization of a series of morphinans 3a-c, structural analogues of cyclorphan [(-)-3-hydroxy-N-cyclopropylmethylmorphinan S(+)-mandelate, 3a], the 10-ketomorphinans 4a,b, and the 8-ketobenzomorphan 1b. Binding experiments demonstrated that the cyclobutyl analogue 3b [(-)-3-hydroxy-N-cyclobutylmethylmorphinan S(+)-mandelate, 3b, MCL-101] of cyclorphan (3a) had a high affinity for mu, delta, and kappa opioid receptors in guinea pig brain membranes. Both 3a,b were approximately 2-fold more selective for the kappa receptor than for the mu receptor. However 3b (the cyclobutyl analogue) was 18-fold more selective for the kappa receptor in comparison to the delta receptor, while cyclorphan (3a) had only 4-fold greater affinity for the kappa receptor in comparison to the delta receptor. These findings were confirmed in the antinociceptive tests (tail-flick and acetic acid writhing) in mice, which demonstrated that cyclorphan (3a) produced antinociception that was mediated by the delta receptor while 3b did not produce agonist or antagonist effects at the delta receptor. Both 3a,b had comparable kappa agonist properties. 3a,b had opposing effects at the mu receptor: 3b was a mu agonist whereas 3a was a mu antagonist.

  13. Detection of glucocorticoid receptor agonists in effluents from sewage treatment plants in Japan.

    PubMed

    Suzuki, Go; Sato, Kentaro; Isobe, Tomohiko; Takigami, Hidetaka; Brouwer, Abraham; Nakayama, Kei

    2015-09-15

    Glucocorticoids (GCs) are widely used as anti-inflammatory drugs. Our previous study demonstrated that several GCs such as cortisol and dexamethasone (Dex) were frequently detected in effluents collected from Japanese sewage treatment plants (STPs) in 2012. In this study, we used the GC-Responsive Chemical-Activated LUciferase gene eXpression (GR-CALUX) assay to elucidate GC receptor (GR) agonistic activities of ten pure synthetic GCs and selected STP effluents in Japan for assessment of the risks associated with the presence of GR agonists. The tested GCs demonstrated dose-dependent agonistic effects in the GR-CALUX assay and their EC50 values were calculated for estimation of relative potencies (REPs) compared to Dex. The GR agonistic potency was in the rank of: clobetasol propionate > clobetasone butyrate > betamethasone 17-valerate > difluprednate > betamethasone 17,21-dipropionate > Dex > betamethasone > 6α-methylprednisolone > prednisolone > cortisol. The GR agonistic activity in STP effluents as measured in Dex-equivalent (Dex-EQ) activities ranged from < 3.0-78 ng L(-1) (median: 29 ng L(-1), n = 50). To evaluate the contribution of the target GCs, theoretical Dex-EQs were calculated by multiplying the concentrations of each GC by its respective REP. Our calculation of Dex-EQ contribution for individual GR agonists indicated that the well-known GCs cortisol and Dex should not be given priority for subsequent in vivo testing, monitoring and removal experiments, but rather the highly potent synthetic GCs clobetasol propionate and betamethasone 17-valerate (REP = 28 and 3.1) as well as other unidentified compounds are important GR agonists in STP effluents in Japan.

  14. PPAR agonists regulate brain gene expression: relationship to their effects on ethanol consumption.

    PubMed

    Ferguson, Laura B; Most, Dana; Blednov, Yuri A; Harris, R Adron

    2014-11-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. Although prescribed for dyslipidemia and type-II diabetes, PPAR agonists also possess anti-addictive characteristics. PPAR agonists decrease ethanol consumption and reduce withdrawal severity and susceptibility to stress-induced relapse in rodents. However, the cellular and molecular mechanisms facilitating these properties have yet to be investigated. We tested three PPAR agonists in a continuous access two-bottle choice (2BC) drinking paradigm and found that tesaglitazar (PPARα/γ; 1.5 mg/kg) and fenofibrate (PPARα; 150 mg/kg) decreased ethanol consumption in male C57BL/6J mice while bezafibrate (PPARα/γ/β; 75 mg/kg) did not. We hypothesized that changes in brain gene expression following fenofibrate and tesaglitazar treatment lead to reduced ethanol drinking. We studied unbiased genomic profiles in areas of the brain known to be important for ethanol dependence, the prefrontal cortex (PFC) and amygdala, and also profiled gene expression in liver. Genomic profiles from the non-effective bezafibrate treatment were used to filter out genes not associated with ethanol consumption. Because PPAR agonists are anti-inflammatory, they would be expected to target microglia and astrocytes. Surprisingly, PPAR agonists produced a strong neuronal signature in mouse brain, and fenofibrate and tesaglitazar (but not bezafibrate) targeted a subset of GABAergic interneurons in the amygdala. Weighted gene co-expression network analysis (WGCNA) revealed co-expression of treatment-significant genes. Functional annotation of these gene networks suggested that PPAR agonists might act via neuropeptide and dopaminergic signaling pathways in the amygdala. Our results reveal gene targets through which PPAR agonists can affect alcohol consumption behavior.

  15. Desensitization of functional µ-opioid receptors increases agonist off-rate.

    PubMed

    Williams, John T

    2014-07-01

    Desensitization of µ-opioid receptors (MORs) develops over 5-15 minutes after the application of some, but not all, opioid agonists and lasts for tens of minutes after agonist removal. The decrease in function is receptor selective (homologous) and could result from 1) a reduction in receptor number or 2) a decrease in receptor coupling. The present investigation used photolysis of two caged opioid ligands to examine the kinetics of MOR-induced potassium conductance before and after MOR desensitization. Photolysis of a caged antagonist, carboxynitroveratryl-naloxone (caged naloxone), blocked the current induced by a series of agonists, and the time constant of decline was significantly decreased after desensitization. The increase in the rate of current decay was not observed after partial blockade of receptors with the irreversible antagonist, β-chlornaltrexamine (β-CNA). The time constant of current decay after desensitization was never more rapid than 1 second, suggesting an increased agonist off-rate rather than an increase in the rate of channel closure downstream of the receptor. The rate of G protein-coupled K(+) channel (GIRK) current activation was examined using photolysis of a caged agonist, carboxynitrobenzyl-tyrosine-[Leu(5)]-enkephalin. After acute desensitization or partial irreversible block of MORs with β-CNA, there was an increase in the time it took to reach a peak current. The decrease in the rate of agonist-induced GIRK conductance was receptor selective and dependent on receptor number. The results indicate that opioid receptor desensitization reduced the number of functional receptor and that the remaining active receptors have a reduced agonist affinity.

  16. Inhibition by TRPA1 agonists of compound action potentials in the frog sciatic nerve.

    PubMed

    Matsushita, Akitomo; Ohtsubo, Sena; Fujita, Tsugumi; Kumamoto, Eiichi

    2013-04-26

    Although TRPV1 and TRPM8 agonists (vanilloid capsaicin and menthol, respectively) at high concentrations inhibit action potential conduction, it remains to be unknown whether TRPA1 agonists have a similar action. The present study examined the actions of TRPA1 agonists, cinnamaldehyde (CA) and allyl isothiocyanate (AITC), which differ in chemical structure from each other, on compound action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. CA and AITC concentration-dependently reduced the peak amplitude of the CAP with the IC50 values of 1.2 and 1.5mM, respectively; these activities were resistant to a non-selective TRP antagonist ruthenium red or a selective TRPA1 antagonist HC-030031. The CA and AITC actions were distinct in property; the latter but not former action was delayed in onset and partially reversible, and CA but not AITC increased thresholds to elicit CAPs. A CAP inhibition was seen by hydroxy-α-sanshool (by 60% at 0.05 mM), which activates both TRPA1 and TRPV1 channels, a non-vanilloid TRPV1 agonist piperine (by 20% at 0.07 mM) and tetrahydrolavandulol (where the six-membered ring of menthol is opened; IC50=0.38 mM). It is suggested that TRPA1 agonists as well as TRPV1 and TRPM8 agonists have an ability to inhibit nerve conduction without TRP activation, although their agonists are quite different in chemical structure from each other.

  17. Self-administration of cocaine induces dopamine-independent self-administration of sigma agonists.

    PubMed

    Hiranita, Takato; Mereu, Maddalena; Soto, Paul L; Tanda, Gianluigi; Katz, Jonathan L

    2013-03-01

    Sigma(1) receptors (σ(1)Rs) are intracellularly mobile chaperone proteins implicated in several disease processes, as well as psychiatric disorders and substance abuse. Here we report that although selective σ(1)R agonists (PRE-084, (+)-pentazocine) lacked reinforcing effects in drug-naive rats, over the course of 28 experimental sessions, which was more than sufficient for acquisition of cocaine self-administration, responding was not maintained by either σ(1)R agonist. In contrast, after subjects self-administered cocaine σ(1)R agonists were readily self-administered. The induced reinforcing effects were long lasting; a response for which subjects had no history of reinforcement was newly conditioned with both σ(1)R agonists, extinguished when injections were discontinued, and reconditioned when σ(1)R agonists again followed responses. Experience with food reinforcement was ineffective as an inducer of σ(1)R agonist reinforcement. Although a variety of dopamine receptor antagonists blocked cocaine self-administration, consistent with its dopaminergic mechanism, PRE-084 self-administration was entirely insensitive to these drugs. Conversely, the σR antagonist, BD1063, blocked PRE-084 self-administration but was inactive against cocaine. In microdialysis studies i.v. PRE-084 did not significantly stimulate dopamine at doses that were self-administered in rats either with or without a cocaine self-administration experience. The results indicate that cocaine experience induces reinforcing effects of previously inactive σ(1)R agonists, and that the mechanism underlying these reinforcing effects is dopamine independent. It is further suggested that induced σ(1)R mechanisms may have an essential role in treatment-resistant stimulant abuse, suggesting new approaches for the development of effective medications for stimulant abuse.

  18. A molecular characterization of the agonist binding site of a nematode cys-loop GABA receptor

    PubMed Central

    Kaji, Mark D; Kwaka, Ariel; Callanan, Micah K; Nusrat, Humza; Desaulniers, Jean-Paul; Forrester, Sean G

    2015-01-01

    Background and Purpose Cys-loop GABA receptors represent important targets for human chemotherapeutics and insecticides and are potential targets for novel anthelmintics (nematicides). However, compared with insect and mammalian receptors, little is known regarding the pharmacological characteristics of nematode Cys-loop GABA receptors. Here we have investigated the agonist binding site of the Cys-loop GABA receptor UNC-49 (Hco-UNC-49) from the parasitic nematode Haemonchus contortus. Experimental Approach We used two-electrode voltage-clamp electrophysiology to measure channel activation by classical GABA receptor agonists on Hco-UNC-49 expressed in Xenopus laevis oocytes, along with site-directed mutagenesis and in silico homology modelling. Key Results The sulphonated molecules P4S and taurine had no effect on Hco-UNC-49. Other classical Cys-loop GABAA receptor agonists tested on the Hco-UNC-49B/C heteromeric channel had a rank order efficacy of GABA > trans-4-aminocrotonic acid > isoguvacine > imidazole-4-acetic acid (IMA) > (R)-(−)-4-amino-3-hydroxybutyric acid [R(−)-GABOB] > (S)-(+)-4-amino-3-hydroxybutyric acid [S(+)-GABOB] > guanidinoacetic acid > isonipecotic acid > 5-aminovaleric acid (DAVA) (partial agonist) > β-alanine (partial agonist). In silico ligand docking revealed some variation in binding between agonists. Mutagenesis of a key serine residue in binding loop C to threonine had minimal effects on GABA and IMA but significantly increased the maximal response to DAVA and decreased twofold the EC50 for R(−)- and S(+)-GABOB. Conclusions and Implications The pharmacological profile of Hco-UNC-49 differed from that of vertebrate Cys-loop GABA receptors and insect resistance to dieldrin receptors, suggesting differences in the agonist binding pocket. These findings could be exploited to develop new drugs that specifically target GABA receptors of parasitic nematodes. PMID:25850584

  19. Agonistic onset during development differentiates wild house mouse males (Mus domesticus)

    NASA Astrophysics Data System (ADS)

    Krackow, Sven

    2005-02-01

    Wild house mouse populations have been suggested to locally adapt to varying dispersal regimes by expressing divergent aggressivity phenotypes. This conjecture implies, first, genetic polymorphism for dispersive strategies which is supported by the finding of heritable variation for male dispersal tendency in feral house mice. Secondly, aggressivity is assumed to translate into dispersal rates. This speculation is reinforced by experimental evidence showing that non-agonistic males display lower dispersal propensity than same-aged males that have established agonistic dominance. However, the actual ontogenetic behavioural pattern and its variability among populations remain unknown. Hence, in this study the timing of agonistic onset is quantified within laboratory-reared fraternal pairs, and compared between descendants from two different feral populations. Males from the two populations (G and Z) differed strongly in agonistic development, as Z fraternal pairs had a 50% risk of agonistic onset before 23.5±2.7 days of age, while this took 57.3±5.4 days in males from population G. This difference coincided with significant genetic differentiation between the males of the two populations as determined by 11 polymorphic microsatellite markers. Furthermore, in population G, males from agonistic and amicable fraternal pairs exhibited significant genetic differentiation. These results corroborate the supposition of genetic variability for dispersive strategies in house mice, and identify the ontogenetic timing of agonistic phenotype development as the potential basis for genetic differentiation. This opens a unique opportunity to study the genetic determination of a complex mammalian behavioural syndrome in a life history context, using a simple laboratory paradigm.

  20. β2-Adrenoceptor agonists as novel, safe and potentially effective therapies for Amyotrophic lateral sclerosis (ALS).

    PubMed

    Bartus, Raymond T; Bétourné, Alexandre; Basile, Anthony; Peterson, Bethany L; Glass, Jonathan; Boulis, Nicholas M

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a chronic and progressive neuromuscular disease for which no cure exists and better treatment options are desperately needed. We hypothesize that currently approved β2-adrenoceptor agonists may effectively treat the symptoms and possibly slow the progression of ALS. Although β2-agonists are primarily used to treat asthma, pharmacologic data from animal models of neuromuscular diseases suggest that these agents may have pharmacologic effects of benefit in treating ALS. These include inhibiting protein degradation, stimulating protein synthesis, inducing neurotrophic factor synthesis and release, positively modulating microglial and systemic immune function, maintaining the structural and functional integrity of motor endplates, and improving energy metabolism. Moreover, stimulation of β2-adrenoceptors can activate a range of downstream signaling events in many different cell types that could account for the diverse array of effects of these agents. The evidence supporting the possible therapeutic benefits of β2-agonists is briefly reviewed, followed by a more detailed review of clinical trials testing the efficacy of β-agonists in a variety of human neuromuscular maladies. The weight of evidence of the potential benefits from treating these diseases supports the hypothesis that β2-agonists may be efficacious in ALS. Finally, ways to monitor and manage the side effects that may arise with chronic administration of β2-agonists are evaluated. In sum, effective, safe and orally-active β2-agonists may provide a novel and convenient means to reduce the symptoms of ALS and possibly delay disease progression, affording a unique opportunity to repurpose these approved drugs for treating ALS, and rapidly transforming the management of this serious, unmet medical need.

  1. Occurrence of aryl hydrocarbon receptor agonists and genotoxic compounds in the river systems in Southern Taiwan.

    PubMed

    Chou, Pei-Hsin; Liu, Tong-Cun; Ko, Fung-Chi; Liao, Mong-Wei; Yeh, Hsiao-Mei; Yang, Tse-Han; Wu, Chun-Ting; Chen, Chien-Hsun; Tsai, Tsung-Ya

    2014-07-01

    Water and sediment samples from river systems located in Southern Taiwan were investigated for the presence of aryl hydrocarbon receptor (AhR) agonists and genotoxicants by a combination of recombinant cell assays and gas chromatography-mass spectrometry analysis. AhR agonist activity and genotoxic response were frequently detected in samples collected during different seasons. In particular, dry-season water and sediment samples from Erren River showed strong AhR agonist activity (201-1423 ng L(-1) and 1374-5631 ng g(-1) β-naphthoflavone equivalents) and high genotoxic potential. Although no significant correlation was found between AhR agonist activity and genotoxicity, potential genotoxicants in sample extracts were suggested to be causative agents for yeast growth inhibition in the AhR-responsive reporter gene assay. After high performance liquid chromatography fractionation, AhR agonist candidates were detected in several fractions of Erren River water and sediment extracts, while possible genotoxicants were only found in water extracts. In addition, polycyclic aromatic hydrocarbons, the typical contaminants showing high AhR binding affinity, were only minor contributors to the AhR agonist activity detected in Erren River sediment extracts. Our findings displayed the usefulness of bioassays in evaluating the extent of environmental contamination, which may be helpful in reducing the chances of false-negative results obtained from chemical analysis of conventional contaminants. Further research will be undertaken to identify major candidates for xenobiotic AhR agonists and genotoxicants to better protect the aquatic environments in Taiwan.

  2. Luteinizing hormone-releasing hormone agonists in premenopausal hormone receptor-positive breast cancer.

    PubMed

    Tan, Sing-Huang; Wolff, Antonio C

    2007-02-01

    Ovarian function suppression for the treatment of premenopausal breast cancer was first used in the late 19th century. Traditionally, ovarian function suppression had been accomplished irreversibly via irradiation or surgery, but analogues of the luteinizing hormone-releasing hormone (LH-RH) have emerged as reliable and reversible agents for this purpose, especially the LH-RH agonists. Luteinizing hormone-releasing hormone antagonists are in earlier stages of development in breast cancer and are not currently in clinical use. Luteinizing hormonereleasing hormone agonists act by pituitary desensitization and receptor downregulation, thereby suppressing gonadotrophin release. Limited information is available comparing the efficacies of the depot preparations of various agonists, but pharmacodynamic studies have shown comparable suppressive capabilities on estradiol and luteinizing hormone. At present, only monthly goserelin is Food and Drug Administration-approved for the treatment of estrogen receptor-positive, premenopausal metastatic breast cancer in the United States. Luteinizing hormone-releasing hormone agonists have proven to be as effective as surgical oophorectomy in premenopausal advanced breast cancer. They offer similar outcomes compared with tamoxifen, but the endocrine combination appears to be more effective than LH-RH agonists alone. In the adjuvant setting, LH-RH agonists versus no therapy reduce the annual odds of recurrence and death in women aged>50 years with estrogen receptor-positive tumors. Luteinizing hormone-releasing hormone agonists alone or in combination with tamoxifen have shown disease-free survival rates similar to chemotherapy with CMF (cyclophosphamide/methotrexate/5-fluorouracil). Outcomes of chemotherapy with or without LH-RH agonists are comparable, though a few trials favor the combination in young premenopausal women (aged<40 years). Adjuvant LH-RH agonists with or without tamoxifen might be as efficacious as tamoxifen alone

  3. Transcriptome analysis of endometrial tissues following GnRH agonist treatment in a mouse adenomyosis model

    PubMed Central

    Guo, Song; Lu, Xiaowei; Gu, Ruihuan; Zhang, Di; Sun, Yijuan; Feng, Yun

    2017-01-01

    Purpose Adenomyosis is a common, benign gynecological condition of the female reproductive tract characterized by heavy menstrual bleeding and dysmenorrhea. Gonadotropin-releasing hormone (GnRH) agonists are one of the medications used in adenomyosis treatment; however, their underlying mechanisms are poorly understood. Moreover, it is difficult to obtain endometrial samples from women undergoing such treatment. To overcome this, we generated an adenomyosis mouse model, which we treated with an GnRH agonist to determine its effect on pregnancy outcomes. We also analyzed endometrial gene expression following GnRH agonist treatment to determine the mechanisms that may affect pregnancy outcome in individuals with adenomyosis. Methods Neonatal female mice were divided into a control group, an untreated adenomyosis group, and an adenomyosis group treated with a GnRH agonist (n=6 each). The pregnancy outcome was observed and compared among the groups. Then, three randomly chosen transcriptomes from endometrial tissues from day 4 of pregnancy were analyzed between the adenomyosis group and the GnRH agonist treatment group by RNA sequencing and quantitative reverse transcription polymerase chain reaction (PCR). Results The litter size was significantly smaller in the adenomyosis group than in the control group (7±0.28 vs 11±0.26; P<0.05). However, the average live litter size was increased (10±0.28 vs 7±0.28; P<0.05) after GnRH agonist treatment. Three hundred and fifty-nine genes were differentially expressed in the GnRH agonist-treated group compared with the untreated group (218 were downregulated and 141 were upregulated). Differentially expressed genes were related to diverse biological processes, including estrogen metabolism, cell cycle, and metabolite biosynthesis. Conclusion GnRH agonist treatment appears to improve the pregnancy outcome of adenomyosis in a mouse model. Besides pituitary down-regulation, other possible mechanisms such as the regulation of cell

  4. A new highly specific and robust yeast androgen bioassay for the detection of agonists and antagonists.

    PubMed

    Bovee, Toine F H; Helsdingen, Richard J R; Hamers, Astrid R M; van Duursen, Majorie B M; Nielen, Michel W F; Hoogenboom, Ron L A P

    2007-11-01

    Public concern about the presence of natural and anthropogenic compounds which affect human health by modulating normal endocrine functions is continuously growing. Fast and simple high-throughput screening methods for the detection of hormone activities are thus indispensable. During the last two decades, a panel of different in vitro assays has been developed, mainly for compounds with an estrogenic mode of action. Here we describe the development of an androgen transcription activation assay that is easy to use in routine screening. Recombinant yeast cells were constructed that express the human androgen receptor and yeast enhanced green fluorescent protein (yEGFP), the latter in response to androgens. Compared with other reporters, the yEGFP reporter protein is very convenient because it is directly measurable in intact living cells, i.e., cell wall disruption and the addition of a substrate are not needed. When yeast was exposed to 17beta-testosterone, the concentration where half-maximal activation is reached (EC(50)) was 50 nM. The relative androgenic potencies, defined as the ratio between the EC(50) of 17beta-testosterone and the EC(50) of the compound, of 5alpha-dihydrotestosterone, methyltrienolone, and 17beta-boldenone are 2.3, 1.4, and 0.15 respectively. The results presented in this paper demonstrate that this new yeast androgen bioassay is fast, sensitive, and very specific and also suited to detect compounds that have an antiandrogenic mode of action.

  5. A new highly specific and robust yeast androgen bioassay for the detection of agonists and antagonists

    PubMed Central

    Helsdingen, Richard J. R.; Hamers, Astrid R. M.; van Duursen, Majorie B. M.; Nielen, Michel W. F.; Hoogenboom, Ron L. A. P.

    2007-01-01

    Public concern about the presence of natural and anthropogenic compounds which affect human health by modulating normal endocrine functions is continuously growing. Fast and simple high-throughput screening methods for the detection of hormone activities are thus indispensable. During the last two decades, a panel of different in vitro assays has been developed, mainly for compounds with an estrogenic mode of action. Here we describe the development of an androgen transcription activation assay that is easy to use in routine screening. Recombinant yeast cells were constructed that express the human androgen receptor and yeast enhanced green fluorescent protein (yEGFP), the latter in response to androgens. Compared with other reporters, the yEGFP reporter protein is very convenient because it is directly measurable in intact living cells, i.e., cell wall disruption and the addition of a substrate are not needed. When yeast was exposed to 17β-testosterone, the concentration where half-maximal activation is reached (EC50) was 50 nM. The relative androgenic potencies, defined as the ratio between the EC50 of 17β-testosterone and the EC50 of the compound, of 5α-dihydrotestosterone, methyltrienolone, and 17β-boldenone are 2.3, 1.4, and 0.15 respectively. The results presented in this paper demonstrate that this new yeast androgen bioassay is fast, sensitive, and very specific and also suited to detect compounds that have an antiandrogenic mode of action. PMID:17849102

  6. In silico screening for agonists and blockers of the β2 adrenergic receptor: implications of inactive and activated state structures

    PubMed Central

    Costanzi, Stefano; Vilar, Santiago

    2011-01-01

    Ten crystal structures of the β2 adrenergic receptor (β2AR) have been published, reflecting different signaling states. Here, through controlled docking experiments, we examined the implications of using inactive or activated structures on the in silico screening for agonists and blockers of the receptor. Specifically, we targeted the crystal structures solved in complex with carazolol (2RH1), the neutral antagonist alprenalol (3NYA), the irreversible agonist FAUC50 (3PDS) and the full agonist BI-167017 (3P0G). Our results indicate that activated structures favor agonists over blockers while inactive structures favor blockers over agonists. This tendency is more marked for activated than for inactive structures. Additionally, agonists tend to receive more favorable docking scores when docked at activated rather than inactive structures, while blockers do the opposite. Hence, the difference between the docking scores attained with an activated and an inactive structure is an excellent means for the classification of ligands into agonists and blockers, as we determined through receiver operating characteristic (ROC) curves and linear discriminant analysis (LDA). With respect to virtual screening, all structures prioritized well agonists and blockers over non-binders. However, inactive structures worked better for blockers and activated structures worked better for agonists. Notably, the combination of individual docking experiments through receptor ensemble docking (RED) resulted in an excellent performance in the retrieval of both agonists and blockers. Finally, we demonstrated that the induced fit docking of agonists is a viable way of modifying an inactive crystal structure and bias it towards the in silico recognition of agonists rather than blockers. PMID:22170280

  7. The Discovery of Novel Selective D1 Dopaminergic Agonists: A-68930, A-77636, A-86929, and ABT-413

    PubMed Central

    Martin, Yvonne Connolly

    2011-01-01

    The novel selective D1 dopaminergic full agonists A-68930, A-77636 were discovered by the synthesis of molecules to probe the bioactive conformation of the partial agonist SKF-38393, by the use of this information to add D1 affinity and selectivity to a screening hit, and by traditional medicinal chemistry exploration of structure-activity relationships. The subsequent design of A-86929 and ABT-413 capitalized on these results, recently disclosed agonists, and traditional medicinal chemistry. PMID:25954518

  8. Identification of dual PPARα/γ agonists and their effects on lipid metabolism.

    PubMed

    Gao, Quanqing; Hanh, Jacky; Váradi, Linda; Cairns, Rose; Sjöström, Helena; Liao, Vivian W Y; Wood, Peta; Balaban, Seher; Ong, Jennifer Ai; Lin, Hsuan-Yu Jennifer; Lai, Felcia; Hoy, Andrew J; Grewal, Thomas; Groundwater, Paul W; Hibbs, David E

    2015-12-15

    The three peroxisome proliferator-activated receptor (PPAR) isoforms; PPARα, PPARγ and PPARδ, play central roles in lipid metabolism and glucose homeostasis. Dual PPARα/γ agonists, which stimulate both PPARα and PPARγ isoforms to similar extents, are gaining popularity as it is believed that they are able to ameliorate the unwanted side effects of selective PPARα and PPARγ agonists; and may also be used to treat dyslipidemia and type 2 diabetes mellitus simultaneously. In this study, virtual screening of natural product libraries, using both structure-based and ligand-based drug discovery approaches, identified ten potential dual PPARα/γ agonist lead compounds (9-13 and 16-20). In vitro assays confirmed these compounds to show no statistically significant toxicity to cells, with the exception of compound 12 which inhibited cell growth to 74.5%±3.5 and 54.1%±3.7 at 50μM and 100μM, respectively. In support of their potential as dual PPARα/γ agonists, all ten compounds upregulated the expression of cholesterol transporters ABCA1 and ABCG1 in THP-1 macrophages, with indoline derivative 16 producing the greatest elevation (2.3-fold; 3.3-fold, respectively). Furthermore, comparable to the activity of established PPARα and PPARγ agonists, compound 16 stimulated triacylglycerol accumulation during 3T3-L1 adipocyte differentiation as well as fatty acid β-oxidation in HuH7 hepatocytes.

  9. Evaluation of the interaction of mu and kappa opioid agonists on locomotor behavior in the horse.

    PubMed Central

    Mama, K R; Pascoe, P J; Steffey, E P

    1993-01-01

    This study was designed to determine the interactive effects of mu and kappa opioid agonists on locomotor behavior in the horse. Three doses of a mu agonist, fentanyl (5, 10, 20 micrograms/kg) and a kappa agonist U50,488H (30, 60, 120 micrograms/kg) were administered in a random order to six horses. Locomotor activity was measured using a two minute footstep count. Each dose of U50,488H was then combined with 20 micrograms/kg of fentanyl to determine the interactive effects of the drugs on locomotor activity. A significant increase in locomotor activity was seen with 20 micrograms/kg of fentanyl and all the drug combinations. The combination of U50,488H with fentanyl resulted in an earlier onset of locomotor activity. At the highest doses of the combination (U50,488H 120 micrograms/kg, fentanyl 20 micrograms/kg), the duration of locomotor activity was significantly increased when compared to the other doses. We conclude that locomotor activity is maintained or enhanced in horses when a receptor specific kappa agonist is combined with a mu receptor agonist. PMID:8490803

  10. Receptors and Channels Targeted by Synthetic Cannabinoid Receptor Agonists and Antagonists

    PubMed Central

    Pertwee, R.G.

    2010-01-01

    It is widely accepted that non-endogenous compounds that target CB1 and/or CB2 receptors possess therapeutic potential for the clinical management of an ever growing number of disorders. Just a few of these disorders are already treated with Δ9-tetrahydrocannabinol or nabilone, both CB1/CB2 receptor agonists, and there is now considerable interest in expanding the clinical applications of such agonists and also in exploiting CB2-selective agonists, peripherally restricted CB1/CB2 receptor agonists and CB1/CB2 antagonists and inverse agonists as medicines. Already, numerous cannabinoid receptor ligands have been developed and their interactions with CB1 and CB2 receptors well characterized. This review describes what is currently known about the ability of such compounds to bind to, activate, inhibit or block non-CB1, non-CB2 G protein-coupled receptors such as GPR55, transmitter gated channels, ion channels and nuclear receptors in an orthosteric or allosteric manner. It begins with a brief description of how each of these ligands interacts with CB1 and/or CB2 receptors. PMID:20166927

  11. Pharmacological Profiles of Alpha 2 Adrenergic Receptor Agonists Identified Using Genetically Altered Mice and Isobolographic Analysis

    PubMed Central

    Fairbanks, Carolyn A.; Stone, Laura S.; Wilcox, George L.

    2009-01-01

    Endogenous, descending noradrenergic fibers convey powerful analgesic control over spinal afferent circuitry mediating the rostrad transmission of pain signals. These fibers target alpha 2 adrenergic receptors (α2ARs) on both primary afferent terminals and secondary neurons, and their activation mediates substantial inhibitory control over this transmission, rivaling that of opioid receptors which share similar a similar pattern of distribution. The terminals of primary afferent nociceptive neurons and secondary spinal dorsal horn neurons express α2AAR and α2CAR subtypes, respectively. Spinal delivery of these agents serves to reduce their side effects, which are mediated largely at supraspinal sites, by concentrating the drugs at the spinal level. Targeting these spinal α2ARs with one of five selective therapeutic agonists, clonidine, dexmedetomidine, brimonidine, ST91 and moxonidine, produces significant antinociception that can work in concert with opioid agonists to yield synergistic antinociception. Application of several genetically altered mouse lines had facilitated identification of the primary receptor subtypes that likely mediate the antinociceptive effects of these agents. This review provides first an anatomical description of the localization of the three subtypes in the central nervous system, second a detailed account of the pharmacological history of each of these six primary agonists, and finally a comprehensive report of the specific interactions of other GPCR agonists with each of the six principal α2AR agonists featured. PMID:19393691

  12. GABAergic involvement in motor effects of an adenosine A(2A) receptor agonist in mice.

    PubMed

    Khisti, R T; Chopde, C T; Abraham, E

    2000-04-03

    Adenosine A(2A) agonists are known to induce catalepsy and inhibit dopamine mediated motor hyperactivity. An antagonistic interaction between adenosine A(2A) and dopamine D(2) receptors is known to regulate GABA-mediated neurotransmission in striatopallidal neurons. Stimulation of adenosine A(2A) and dopamine D(2) receptors has been shown to increase and inhibit GABA release respectively in pallidal GABAergic neurons. However, the role of GABAergic neurotransmission in the motor effects of adenosine A(2A) receptors is not yet known. Therefore in the present study the effect of GABAergic agents on adenosine A(2A) receptor agonist (NECA- or CGS 21680) induced catalepsy and inhibition of amphetamine elicited motor hyperactivity was examined. Pretreatment with GABA, the GABA(A) agonist muscimol or the GABA(B) agonist baclofen potentiated whereas the GABA(A) antagonist bicuculline attenuated NECA- or CGS 21680-induced catalepsy. However, the GABA(B) antagonists phaclophen and delta-aminovaleric acid had no effect. Administration of NECA or CGS 21680 not only reduced spontaneous locomotor activity but also antagonized amphetamine elicited motor hyperactivity. These effects of NECA and CGS 21680 were potentiated by GABA or muscimol and antagonized by bicuculline. These findings provide behavioral evidence for the role of GABA in the motor effects of adenosine A(2A) receptor agonists. Activation of adenosine A(2A) receptors increases GABA release which could reduce dopaminergic tone and induce catalepsy or inhibit amphetamine mediated motor hyperactivity.

  13. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors

    PubMed Central

    Koshimizu, Taka-aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-01-01

    Reducing Na+ in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na+-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na+ sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na+ increased cell surface [3H]AVP binding and decreased receptor internalization. Substitution of Na+ by Cs+ or NH4+ inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na+ over Cs+. Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations. PMID:27138239

  14. Modulation Effect of Peroxisome Proliferator-Activated Receptor Agonists on Lipid Droplet Proteins in Liver

    PubMed Central

    Zhu, Yun-Xia; Zhang, Ming-Liang; Zhong, Yuan; Wang, Chen; Jia, Wei-Ping

    2016-01-01

    Peroxisome proliferator-activated receptor (PPAR) agonists are used for treating hyperglycemia and type 2 diabetes. However, the mechanism of action of these agonists is still under investigation. The lipid droplet-associated proteins FSP27/CIDEC and LSDP5, regulated directly by PPARγ and PPARα, are associated with hepatic steatosis and insulin sensitivity. Here, we evaluated the expression levels of FSP27/CIDEC and LSDP5 and the regulation of these proteins by consumption of a high-fat diet (HFD) or administration of PPAR agonists. Mice with diet-induced obesity were treated with the PPARγ or PPARα agonist, pioglitazone or fenofibrate, respectively. Liver tissues from db/db diabetic mice and human were also collected. Interestingly, FSP27/CIEDC was expressed in mouse and human livers and was upregulated in obese C57BL/6J mice. Fenofibrate treatment decreased hepatic triglyceride (TG) content and FSP27/CIDEC protein expression in mice fed an HFD diet. In mice, LSDP5 was not detected, even in the context of insulin resistance or treatment with PPAR agonists. However, LSDP5 was highly expressed in humans, with elevated expression observed in the fatty liver. We concluded that fenofibrate greatly decreased hepatic TG content and FSP27/CIDEC protein expression in mice fed an HFD, suggesting a potential regulatory role for fenofibrate in the amelioration of hepatic steatosis. PMID:26770990

  15. Computational Prediction and Biochemical Analyses of New Inverse Agonists for the CB1 Receptor

    PubMed Central

    2015-01-01

    Human cannabinoid type 1 (CB1) G-protein coupled receptor is a potential therapeutic target for obesity. The previously predicted and experimentally validated ensemble of ligand-free conformations of CB1 [Scott, C. E. et al. Protein Sci.2013, 22, 101−11323184890; Ahn, K. H. et al. Proteins2013, 81, 1304–131723408552] are used here to predict the binding sites for known CB1-selective inverse agonists including rimonabant and its seven known derivatives. This binding pocket, which differs significantly from previously published models, is used to identify 16 novel compounds expected to be CB1 inverse agonists by exploiting potential new interactions. We show experimentally that two of these compounds exhibit inverse agonist properties including inhibition of basal and agonist-induced G-protein coupling activity, as well as an enhanced level of CB1 cell surface localization. This demonstrates the utility of using the predicted binding sites for an ensemble of CB1 receptor structures for designing new CB1 inverse agonists. PMID:26633590

  16. Evolution of the Bifunctional Lead μ Agonist / δ Antagonist Containing the Dmt-Tic Opioid Pharmacophore.

    PubMed

    Balboni, Gianfranco; Salvadori, Severo; Trapella, Claudio; Knapp, Brian I; Bidlack, Jean M; Lazarus, Lawrence H; Peng, Xuemei; Neumeyer, John L

    2010-02-17

    Based on a renewed importance recently attributed to bi- or multifunctional opioids, we report the synthesis and pharmacological evaluation of some analogues derived from our lead μ agonist / δ antagonist, H-Dmt-Tic-Gly-NH-Bzl. Our previous studies focused on the importance of the C-teminal benzyl function in the induction of such bifunctional activity. The introduction of some substituents in the para position of the phenyl ring (-Cl, -CH(3), partially -NO(2), inactive -NH(2)) was found to give a more potent μ agonist / antagonist effect associated with a relatively unmodified δ antagonist activity (pA(2) = 8.28-9.02). Increasing the steric hindrance of the benzyl group (using diphenylmethyl and tetrahydroisoquinoline functionalities) substantially maintained the μ agonist and δ antagonist activities of the lead compound. Finally and quite unexpectedly D-Tic2, considered as a wrong opioid message now; inserted into the reference compound in lieu of L-Tic, provided a μ agonist / δ agonist better than our reference ligand (H-Dmt-Tic-Gly-NH-Ph) and was endowed with the same pharmacological profile.

  17. Agonist and antagonist protect sulfhydrals in the binding site of the D-1 dopamine receptor

    SciTech Connect

    Sidhu, A.; Kebabian, J.W.; Fishman, P.H.

    1986-05-01

    An iodinated compound (/sup 125/I)-SCH 23982 (8-iodo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7-ol) has been characterized as a specific, high affinity (Kd = 0.7 nM) ligand for the D-1 dopamine receptor. The ligand binding site of the D-1 receptor in rat striatum was inactivated by N-ethylmaleimide (NEM) in a time and concentration dependent manner. The inactivation was rapid and irreversible with a 70% net loss of binding sites. Scatchard analysis of binding to NEM-treated tissue showed a decrease both in receptor number and in radioligand affinity. The remaining receptors retained their selectivity for stereoisomers of both agonist and antagonist. Receptor occupancy by either a D-1 specific agonist or antagonist protected in a dose dependent manner the binding sites from inactivation by NEM; the agonist was more effective than the antagonist. The agonist high affinity site, however, was abolished in the absence or presence of protective compound, presumably because of inactivation of the GTP-binding component of adenylate cyclase. In this regard, there was a total loss of agonist- and forskolin-stimulated adenylate cyclase activity after NEM treatment. The authors conclude that the D-1 dopamine receptor contains NEM-sensitive sulfhydral group(s) at or near the vicinity of the ligand binding site.

  18. The atypical dopamine D1 receptor agonist SKF 83959 induces striatal Fos expression in rats.

    PubMed

    Wirtshafter, David; Osborn, Catherine V

    2005-12-28

    The effects of dopamine D1 receptor agonists are often presumed to result from an activation of adenylyl cyclase, but dopamine D1 receptors may also be linked to other signal transduction cascades and the relative importance of these various pathways is currently unclear. SKF 83959 is an agonist at dopamine D1 receptors linked to phospholipase C, but has been reported to be an antagonist at receptors linked to adenylyl cyclase. The current report demonstrates that SKF 83959 induces pronounced, nonpatchy, expression of the immediate-early gene product Fos in the striatum of intact rats which can be converted to a patchy pattern by pretreatment with the dopamine D2-like receptor agonist quinpirole. In rats with unilateral 6-hydroxydopamine lesions SKF 83959 induces strong behavioral rotation and a greatly potentiated Fos response. All of the responses to SKF 83959, in both intact and dopamine-depleted animals, can be blocked by pretreatment with the dopamine D1 receptor antagonist SCH-23390. In intact subjects, SKF 83959 induced Fos expression less potently than the standard dopamine D1 receptor agonist SKF 82958, but the two drugs were approximately equipotent in deinnervated animals. These results demonstrate for the first time that possession of full efficacy at dopamine D1 receptors linked to adenylyl cyclase is not a necessary requirement for the induction of striatal Fos expression in intact animals and suggest that alternative signal transduction pathways may play a role in dopamine agonist induced Fos expression, especially in dopamine-depleted subjects.

  19. 2-Dialkynyl derivatives of (N)-methanocarba nucleosides: 'Clickable' A(3) adenosine receptor-selective agonists.

    PubMed

    Tosh, Dilip K; Chinn, Moshe; Yoo, Lena S; Kang, Dong Wook; Luecke, Hans; Gao, Zhan-Guo; Jacobson, Kenneth A

    2010-01-15

    We modified a series of (N)-methanocarba nucleoside 5'-uronamides to contain dialkyne groups on an extended adenine C2 substituent, as synthetic intermediates leading to potent and selective A(3) adenosine receptor (AR) agonists. The proximal alkyne was intended to promote receptor recognition, and the distal alkyne reacted with azides to form triazole derivatives (click cycloaddition). Click chemistry was utilized to couple an octadiynyl A(3)AR agonist to azido-containing fluorescent, chemically reactive, biotinylated, and other moieties with retention of selective binding to the A(3)AR. A bifunctional thiol-reactive crosslinking reagent was introduced. The most potent and selective novel compound was a 1-adamantyl derivative (K(i) 6.5nM), although some of the click products had K(i) values in the range of 200-400nM. Other potent, selective derivatives (K(i) at A(3)AR innM) were intended as possible receptor affinity labels: 3-nitro-4-fluorophenyl (10.6), alpha-bromophenacyl (9.6), thiol-reactive isothiazolone (102), and arylisothiocyanate (37.5) derivatives. The maximal functional effects in inhibition of forskolin-stimulated cAMP were measured, indicating that this class of click adducts varied from partial to full A(3)AR agonist compared to other widely used agonists. Thus, this strategy provides a general chemical approach to linking potent and selective A(3)AR agonists to reporter groups of diverse structure and to carrier moieties.

  20. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors.

    PubMed

    Koshimizu, Taka-Aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-05-03

    Reducing Na(+) in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na(+)-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na(+) sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na(+) increased cell surface [(3)H]AVP binding and decreased receptor internalization. Substitution of Na(+) by Cs(+) or NH4(+) inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na(+) over Cs(+). Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations.

  1. Reconstitution of high-affinity opioid agonist binding in brain membranes

    SciTech Connect

    Remmers, A.E.; Medzihradsky, F. )

    1991-03-15

    In synaptosomal membranes from rat brain cortex, the {mu} selective agonist ({sup 3}H)dihydromorphine in the absence of sodium, and the nonselective antagonist ({sup 3}H)naltrexone in the presence of sodium, bound to two populations of opioid receptor sites with K{sub d} values of 0.69 and 8.7 nM for dihydromorphine, and 0.34 and 5.5 nM for naltrexone. The addition of 5 {mu}M guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)) strongly reduced high-affinity agonist but not antagonist binding. Exposure of the membranes to high pH reduced the number of GTP({gamma}-{sup 35}S) binding sites by 90% and low K{sub m}, opioid-sensitive GTPase activity by 95%. In these membranes, high-affinity agonist binding was abolished and modulation of residual binding by GTP({gamma}S) was diminished. Alkali treatment of the glioma cell membranes prior to fusion inhibited most of the low K{sub m} GTPase activity and prevented the reconstitution of agonist binding. The results show that high-affinity opioid agonist binding reflects the ligand-occupied receptor - guanine nucleotide binding protein complex.

  2. Alcohol Screening among Opioid Agonist Patients in a Primary Care Clinic and an Opioid Treatment Program.

    PubMed

    Klimas, Jan; Muench, John; Wiest, Katharina; Croff, Raina; Rieckman, Traci; McCarty, Dennis

    2015-01-01

    Problem alcohol use is associated with adverse health and economic outcomes, especially among people in opioid agonist treatment. Screening, brief intervention, and referral to treatment (SBIRT) are effective in reducing alcohol use; however, issues involved in SBIRT implementation among opioid agonist patients are unknown. To assess identification and treatment of alcohol use disorders, we reviewed clinical records of opioid agonist patients screened for an alcohol use disorder in a primary care clinic (n = 208) and in an opioid treatment program (n = 204) over a two-year period. In the primary care clinic, 193 (93%) buprenorphine patients completed an annual alcohol screening and six (3%) had elevated AUDIT scores. In the opioid treatment program, an alcohol abuse or dependence diagnosis was recorded for 54 (27%) methadone patients. Practitioner focus groups were completed in the primary care (n = 4 physicians) and the opioid treatment program (n = 11 counselors) to assess experience with and attitudes towards screening opioid agonist patients for alcohol use disorders. Focus groups suggested that organizational, structural, provider, patient, and community variables hindered or fostered alcohol screening. Alcohol screening is feasible among opioid agonist patients. Effective implementation, however, requires physician training and systematic changes in workflow.

  3. Functional selectivity of dopamine D1 receptor agonists in regulating the fate of internalized receptors *

    PubMed Central

    Ryman-Rasmussen, Jessica P.; Griffith, Adam; Oloff, Scott; Vaidehi, Nagarajan; Brown, Justin T.; Goddard, William A.; Mailman, Richard B.

    2007-01-01

    Recently, we demonstrated that D1 agonists can cause functionally selective effects when the endpoints of receptor internalization and adenylate cyclase activation are compared. The present study was designed to probe the phenomenon of functional selectivity at the D1 receptor further by testing the hypothesis that structurally dissimilar agonists with efficacies at these endpoints that equal or exceed those of dopamine would differ in ability to influence receptor fate after internalization, a functional endpoint largely unexplored for the D1 receptor. We selected two novel agonists of therapeutic interest that meet these criteria (the isochroman A-77636, and the isoquinoline dinapsoline), and compared the fates of the D1 receptor after internalization in response to these two compounds with that of dopamine. We found that dopamine caused the receptor to be rapidly recycled to the cell surface within 1 h of removal. Conversely, A-77636 caused the receptor to be retained intracellularly up to 48 h after agonist removal. Most surprisingly, the D1 receptor recovered to the cell surface 48 h after removal of dinapsoline. Taken together, these data indicate that these agonists target the D1 receptor to different intracellular trafficking pathways, demonstrating that the phenomenon of functional selectivity at the D1 receptor is operative for cellular events that are temporally downstream of immediate receptor activation. We hypothesize that these differential effects result from interactions of the synthetic ligands with aspects of the D1 receptor that are distal from the ligand binding domain. PMID:17067639

  4. GLP-1 Receptor Agonists: Nonglycemic Clinical Effects in Weight Loss and Beyond

    PubMed Central

    Ryan, Donna; Acosta, Andres

    2015-01-01

    Obective Glucagon-like peptide-1 (GLP-1) receptor agonists are indicated for treatment of type 2 diabetes since they mimic the actions of native GLP-1 on pancreatic islet cells, stimulating insulin release, while inhibiting glucagon release, in a glucose-dependent manner. The observation of weight loss has led to exploration of their potential as antiobesity agents, with liraglutide 3.0 mg day−1 approved for weight management in the US on December 23, 2014, and in the EU on March 23, 2015. This review examines the potential nonglycemic effects of GLP-1 receptor agonists. Methods A literature search was conducted to identify preclinical and clinical evidence on nonglycemic effects of GLP-1 receptor agonists. Results GLP-1 receptors are distributed widely in a number of tissues in humans, and their effects are not limited to the well-recognized effects on glycemia. Nonglycemic effects include weight loss, which is perhaps the most widely recognized nonglycemic effect. In addition, effects on the cardiovascular, neurologic, and renal systems and on taste perception may occur independently of weight loss. Conclusions GLP-1 receptor agonists may provide other nonglycemic clinical effects besides weight loss. Understanding these effects is important for prescribers in using GLP-1 receptor agonists for diabetic patients, but also if approved for chronic weight management. PMID:25959380

  5. Structure-Activity Relationship and Signaling of New Chimeric CXCR4 Agonists.

    PubMed

    Mona, Christine E; Besserer-Offroy, Élie; Cabana, Jérôme; Lefrançois, Marilou; Boulais, Philip E; Lefebvre, Marie-Reine; Leduc, Richard; Lavigne, Pierre; Heveker, Nikolaus; Marsault, Éric; Escher, Emanuel

    2016-08-25

    The CXCR4 receptor binds with meaningful affinities only CXCL12 and synthetic antagonists/inverse agonists. We recently described high affinity synthetic agonists for this chemokine receptor, obtained by grafting the CXCL12 N-terminus onto the inverse agonist T140. While those chimeric molecules behave as agonists for CXCR4, their binding and activation mode are unknown. The present SAR of those CXCL12-oligopeptide grafts reveals the key determinants involved in CXCR4 activation. Position 3 (Val) controls affinity, whereas position 7 (Tyr) acts as an efficacy switch. Chimeric molecules bearing aromatic residues in position 3 possess high binding affinities for CXCR4 and are Gαi full agonists with robust chemotactic properties. Fine-tuning of electron-poor aromatic rings in position 7 enhances receptor activation. To rationalize these results, a homology model of a receptor-ligand complex was built using the published crystal structures of CXCR4. Molecular dynamics simulations reveal further details accounting for the observed SAR for this series.

  6. Prostate formation in a marsupial is mediated by the testicular androgen 5 alpha-androstane-3 alpha,17 beta-diol.

    PubMed

    Shaw, G; Renfree, M B; Leihy, M W; Shackleton, C H; Roitman, E; Wilson, J D

    2000-10-24

    Development of the male urogenital tract in mammals is mediated by testicular androgens. It has been tacitly assumed that testosterone acts through its intracellular metabolite dihydrotestosterone (DHT) to mediate this process, but levels of these androgens are not sexually dimorphic in plasma at the time of prostate development. Here we show that the 3 alpha-reduced derivative of DHT, 5 alpha-androstane-3 alpha,17 beta-diol (5 alpha-adiol), is formed in testes of tammar wallaby pouch young and is higher in male than in female plasma in this species during early sexual differentiation. Administration of 5 alpha-adiol caused formation of prostatic buds in female wallaby pouch young, and in tissue minces of urogenital sinus and urogenital tubercle radioactive 5 alpha-adiol was converted to DHT, suggesting that circulating 5 alpha-adiol acts through DHT in target tissues. We conclude that circulating 5 alpha-adiol is a key hormone in male development.

  7. Sphingosine kinase-1 mediates androgen-induced osteoblast cell growth

    SciTech Connect

    Martin, Claire; Lafosse, Jean-Michel; Malavaud, Bernard; Cuvillier, Olivier

    2010-01-01

    Herein we report that the lipid kinase sphingosine kinase-1 (SphK1) is instrumental in mediating androgen-induced cell proliferation in osteoblasts. Dihydrotestosterone (DHT) triggered cell growth in steroid-deprived MC3T3 cells, which was associated with a rapid stimulation of SphK1 and activation of both Akt and ERK signaling pathways. This mechanism relied on functional androgen receptor/PI3K/Akt nongenotropic signaling as pharmacological antagonists could block SphK1 stimulation by DHT and its consequences. Finally, SphK1 inhibition not only abrogated DHT-induced ERK activation but also blocked cell proliferation, while ERK inhibition had no impact, suggesting that SphK1 was critical for DHT signaling yet independently of the ERK.

  8. Effects of gonadal sex and incubation temperature on the ontogeny of gonadal steroid concentrations and secondary sex structures in leopard geckos, Eublepharis macularius.

    PubMed

    Rhen, Turk; Sakata, Jon T; Crews, David

    2005-07-01

    Incubation temperature during embryonic development determines gonadal sex in the leopard gecko (Eublepharis macularius). Incubation temperature and gonadal sex jointly influence the display of sexual and agonistic behavior in adult leopard geckos. These differences in adult behavior are organized prior to sexual maturity, and it is plausible that post-natal hormones influence neural and behavioral differentiation. Here we assessed incubation temperature and sex effects on sex steroid levels in leopard geckos at 2, 10, and 25 weeks of age and monitored the development of male secondary sex structures. Males had significantly higher androgen concentrations at all time points, whereas females had significantly higher 17beta-estradiol (E2) concentrations only at 10 and 25 weeks. Within males, age but not incubation temperature affected steroid levels and morphological development. Male androgen levels increased modestly by 10 and dramatically by 25 weeks of age, whereas E2 levels remained unchanged over this period. Most males had signs of hemipenes at 10 weeks of age, and all males had hemipenes and open preanal pores by 25 weeks of age. In females, age and incubation temperature affected E2 and dihydrotestosterone (DHT) but not T concentrations. Controlling for age, females from 34 degrees C have higher DHT and lower E2 levels than females from 30 degrees C. Further, E2 concentrations increased significantly from 2 to 10 weeks, after which E2 levels remained steady. Together, these results indicate that sexually dimorphic levels of steroids play a major role in the development of leopard gecko behavior and morphology. Furthermore, these data suggest that the organizational effects of incubation temperature on adult female phenotype could be, in part, mediated by incubation temperature effects on steroid hormone levels during juvenile development.

  9. MMTV-PyMT and Derived Met-1 Mouse Mammary Tumor Cells as Models for Studying the Role of the Androgen Receptor in Triple-Negative Breast Cancer Progression.

    PubMed

    Christenson, Jessica L; Butterfield, Kiel T; Spoelstra, Nicole S; Norris, John D; Josan, Jatinder S; Pollock, Julie A; McDonnell, Donald P; Katzenellenbogen, Benita S; Katzenellenbogen, John A; Richer, Jennifer K

    2017-04-01

    Triple-negative breast cancer (TNBC) has a faster rate of metastasis compared to other breast cancer subtypes, and no effective targeted therapies are currently FDA-approved. Recent data indicate that the androgen receptor (AR) promotes tumor survival and may serve as a potential therapeutic target in TNBC. Studies of AR in disease progression and the systemic effects of anti-androgens have been hindered by the lack of an AR-positive (AR+) immunocompetent preclinical model. In this study, we identified the transgenic MMTV-PyMT (mouse mammary tumor virus-polyoma middle tumor-antigen) mouse mammary gland carcinoma model of breast cancer and Met-1 cells derived from this model as tools to study the role of AR in breast cancer progression. AR protein expression was examined in late-stage primary tumors and lung metastases from MMTV-PyMT mice as well as in Met-1 cells by immunohistochemistry (IHC). Sensitivity of Met-1 cells to the AR agonist dihydrotestosterone (DHT) and anti-androgen therapy was examined using cell viability, migration/invasion, and anchorage-independent growth assays. Late-stage primary tumors and lung metastases from MMTV-PyMT mice and Met-1 cells expressed abundant nuclear AR protein, while negative for estrogen and progesterone receptors. Met-1 sensitivity to DHT and AR antagonists demonstrated a reliance on AR for survival, and AR antagonists inhibited invasion and anchorage-independent growth. These data suggest that the MMTV-PyMT model and Met-1 cells may serve as valuable tools for mechanistic studies of the role of AR in disease progression and how anti-androgens affect the tumor microenvironment.

  10. The Androgen Receptor Regulates PPARγ Expression and Activity in Human Prostate Cancer Cells

    PubMed Central

    Olokpa, Emuejevoke; Bolden, Adrienne

    2016-01-01

    The peroxisome proliferator activated receptor gamma (PPARγ) is a ligand‐activated transcription factor that regulates growth and differentiation within normal prostate and prostate cancers. However the factors that control PPARγ within the prostate cancers have not been characterized. The goal of this study was to examine whether the androgen receptor (AR) regulates PPARγ expression and function within human prostate cancer cells. qRT‐PCR and Western blot analyses revealed nanomolar concentrations of the AR agonist dihydrotestosterone (DHT) decrease PPARγ mRNA and protein within the castration‐resistant, AR‐positive C4‐2 and VCaP human prostate cancer cell lines. The AR antagonists bicalutamide and enzalutamide blocked the ability of DHT to reduce PPARγ levels. In addition, siRNA mediated knockdown of AR increased PPARγ protein levels and ligand‐induced PPARγ transcriptional activity within the C4‐2 cell line. Furthermore, proteasome inhibitors that interfere with AR function increased the level of basal PPARγ and prevented the DHT‐mediated suppression of PPARγ. These data suggest that AR normally functions to suppress PPARγ expression within AR‐positive prostate cancer cells. To determine whether increases in AR protein would influence PPARγ expression and activity, we used lipofectamine‐based transfections to overexpress AR within the AR‐null PC‐3 cells. The addition of AR to PC‐3 cells did not significantly alter PPARγ protein levels. However, the ability of the PPARγ ligand rosiglitazone to induce activation of a PPARγ‐driven luciferase reporter and induce expression of FABP4 was suppressed in AR‐positive PC‐3 cells. Together, these data indicate AR serves as a key modulator of PPARγ expression and function within prostate tumors. J. Cell. Physiol. 231: 2664–2672, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:26945682

  11. 3D-pharmacophore identification for kappa-opioid agonists using ligand-based drug-design techniques.

    PubMed

    Yamaotsu, Noriyuki; Hirono, Shuichi

    2011-01-01

    A selective kappa-opioid receptor (KOR) agonist might act as a powerful analgesic without the side effects of micro-opioid receptor-selective drugs such as morphine. The eight classes of known KOR agonists have different chemical structures, making it difficult to construct a pharmacophore model that takes them all into account. Here, we summarize previous efforts to identify the pharmacophore for kappa-opioid agonists and propose a new three-dimensional pharmacophore model that encompasses the kappa-activities of all classes. This utilizes conformational sampling of agonists by high-temperature molecular dynamics and pharmacophore extraction through a series of molecular superpositions.

  12. Comparison of the discriminative-stimulus effects of SKF 38393 with those of other dopamine receptor agonists.

    PubMed

    Desai, R I; Terry, P; Katz, J L

    2003-05-01

    The dopamine D(1)-like receptor agonists have traditionally been defined molecularly by their efficacy in stimulating adenylyl cyclase. However, evidence correlating the effectiveness of these drugs in behavioral assays and their effectiveness biochemically has not been forthcoming. The present study compared the discriminative-stimulus effects of the D(1)-like partial agonist SKF 38393 with several other D(1)-like agonists, an indirect agonist, cocaine, and a D(2)-like agonist, quinpirole. Rats were trained under a fixed-ratio 30-response schedule to discriminate SKF 38393 (5.6 mg/kg) from vehicle. Under this schedule, 30 consecutive responses on one of two keys were reinforced with food presentation after a pre-session injection of 5.6 mg/kg SKF 38393, and 30 consecutive responses on the alternative key were reinforced after saline injection. When daily performances were stable, substitution patterns for several compounds were assessed during test sessions in which 30 consecutive responses on either key were reinforced. Quinpirole and cocaine each produced saline-appropriate responding. In contrast, the D(1)-like agonists, SKF 75670 and SKF 77434, fully substituted for SKF 38393. Curiously, SKF 82958, which is considered a full agonist based on adenylyl cyclase assays, was less effective in substituting for SKF 38393 (maximum drug-appropriate responding 66%) than was the partial agonist SKF 75670. The present results suggest that second messenger effects other than stimulation of adenylyl cyclase may play an important role in the behavioral effects of dopamine D(1)-like agonists.

  13. 3D-Pharmacophore Identification for κ-Opioid Agonists Using Ligand-Based Drug-Design Techniques

    NASA Astrophysics Data System (ADS)

    Yamaotsu, Noriyuki; Hirono, Shuichi

    A selective κ-opioid receptor (KOR) agonist might act as a powerful analgesic without the side effects of μ-opioid receptor-selective drugs such as morphine. The eight classes of known KOR agonists have different chemical structures, making it difficult to construct a pharmacophore model that takes them all into account. Here, we summarize previous efforts to identify the pharmacophore for κ-opioid agonists and propose a new three-dimensional pharmacophore model that encompasses the κ-activities of all classes. This utilizes conformational sampling of agonists by high-temperature molecular dynamics and pharmacophore extraction through a series of molecular superpositions.

  14. Cannabinoid receptor interacting protein suppresses agonist-driven CB1 receptor internalization and regulates receptor replenishment in an agonist-biased manner.

    PubMed

    Blume, Lawrence C; Leone-Kabler, Sandra; Luessen, Deborah J; Marrs, Glen S; Lyons, Erica; Bass, Caroline E; Chen, Rong; Selley, Dana E; Howlett, Allyn C

    2016-11-01

    Cannabinoid receptor interacting protein 1a (CRIP1a) is a CB1 receptor (CB1 R) distal C-terminus-associated protein that modulates CB1 R signaling via G proteins, and CB1 R down-regulation but not desensitization (Blume et al. [2015] Cell Signal., 27, 716-726; Smith et al. [2015] Mol. Pharmacol., 87, 747-765). In this study, we determined the involvement of CRIP1a in CB1 R plasma membrane trafficking. To follow the effects of agonists and antagonists on cell surface CB1 Rs, we utilized the genetically homogeneous cloned neuronal cell line N18TG2, which endogenously expresses both CB1 R and CRIP1a, and exhibits a well-characterized endocannabinoid signaling system. We developed stable CRIP1a-over-expressing and CRIP1a-siRNA-silenced knockdown clones to investigate gene dose effects of CRIP1a on CB1 R plasma membrane expression. Results indicate that CP55940 or WIN55212-2 (10 nM, 5 min) reduced cell surface CB1 R by a dynamin- and clathrin-dependent process, and this was attenuated by CRIP1a over-expression. CP55940-mediated cell surface CB1 R loss was followed by a cycloheximide-sensitive recovery of surface receptors (30-120 min), suggesting the requirement for new protein synthesis. In contrast, WIN55212-2-mediated cell surface CB1 Rs recovered only in CRIP1a knockdown cells. Changes in CRIP1a expression levels did not affect a transient rimonabant (10 nM)-mediated increase in cell surface CB1 Rs, which is postulated to be as a result of rimonabant effects on 'non-agonist-driven' internalization. These studies demonstrate a novel role for CRIP1a in agonist-driven CB1 R cell surface regulation postulated to occur by two mechanisms: 1) attenuating internalization that is agonist-mediated, but not that in the absence of exogenous agonists, and 2) biased agonist-dependent trafficking of de novo synthesized receptor to the cell surface.

  15. Testosterone and Dihydrotestosterone Differentially Improve Cognition in Aged Female Mice

    ERIC Educational Resources Information Center

    Benice, Ted S.; Raber, Jacob

    2009-01-01

    Compared with age-matched male mice, female mice experience a more severe age-related cognitive decline (ACD). Since androgens are less abundant in aged female mice compared with aged male mice, androgen supplementation may enhance cognition in aged female mice. To test this, we assessed behavioral performance on a variety of tasks in 22- to…

  16. beta2 adrenergic agonists in acute lung injury? The heart of the matter.

    PubMed

    Lee, Jae W

    2009-01-01

    Despite extensive research into its pathophysiology, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) remains a devastating syndrome with mortality approaching 40%. Pharmacologic therapies that reduce the severity of lung injury in vivo and in vitro have not yet been translated to effective clinical treatment options, and innovative therapies are needed. Recently, the use of beta2 adrenergic agonists as potential therapy has gained considerable interest due to their ability to increase the resolution of pulmonary edema. However, the results of clinical trials of beta agonist therapy for ALI/ARDS have been conflicting in terms of benefit. In the previous issue of Critical Care, Briot and colleagues present evidence that may help clarify the inconsistent results. The authors demonstrate that, in oleic acid lung injury in dogs, the inotropic effect of beta agonists may recruit damaged pulmonary capillaries, leading to increased lung endothelial permeability.

  17. Discovery of DS-1558: A Potent and Orally Bioavailable GPR40 Agonist

    PubMed Central

    2015-01-01

    GPR40 is a G protein-coupled receptor that is predominantly expressed in pancreatic β-cells. GPR40 agonists stimulate insulin secretion in the presence of high glucose concentration. On the basis of this mechanism, GPR40 agonists are possible novel insulin secretagogues with reduced or no risk of hypoglycemia. The improvement of in vitro activity and metabolic stability of compound 1 led to the discovery of 13, (3S)-3-ethoxy-3-(4-{[(1R)-4-(trifluoromethyl)-2,3-dihydro-1H-inden-1-yl]oxy}phenyl)propanoic acid, as a potent and orally available GPR40 agonist. Compound 13 (DS-1558) was found to have potent glucose lowering effects during an oral glucose tolerance test in ZDF rats. PMID:25815144

  18. Nicotinamide is an endogenous agonist for a C. elegans TRPV OSM-9 and OCR-4 channel

    PubMed Central

    Upadhyay, Awani; Pisupati, Aditya; Jegla, Timothy; Crook, Matt; Mickolajczyk, Keith J.; Shorey, Matthew; Rohan, Laura E.; Billings, Katherine A.; Rolls, Melissa M.; Hancock, William O.; Hanna-Rose, Wendy

    2016-01-01

    TRPV ion channels are directly activated by sensory stimuli and participate in thermo-, mechano- and chemo-sensation. They are also hypothesized to respond to endogenous agonists that would modulate sensory responses. Here, we show that the nicotinamide (NAM) form of vitamin B3 is an agonist of a Caenorhabditis elegans TRPV channel. Using heterologous expression in Xenopus oocytes, we demonstrate that NAM is a soluble agonist for a channel consisting of the well-studied OSM-9 TRPV subunit and relatively uncharacterized OCR-4 TRPV subunit as well as the orthologous Drosophila Nan-Iav TRPV channel, and we examine stoichiometry of subunit assembly. Finally, we show that behaviours mediated by these C. elegans and Drosophila channels are responsive to NAM, suggesting conservation of activity of this soluble endogenous metabolite on TRPV activity. Our results in combination with the role of NAM in NAD+ metabolism suggest an intriguing link between metabolic regulation and TRPV channel activity. PMID:27731314

  19. Cyclic AMP agonist inhibition increases at low levels of histamine release from human basophils

    SciTech Connect

    Tung, R.S.; Lichtenstein, L.M.

    1981-09-01

    The relationship between the intensity of the signal for antigen-induced immunoglobulin E-mediated histamine release from human basophils and the concentration of agonist needed to inhibit release has been determined. The agonists, prostaglandin E1, dimaprit, fenoterol, isobutylmethylxanthine and dibutyryl cyclic AMP, all act by increasing the cyclic AMP level. Each agonist was 10- to 1000-fold more potent (relative ID50) at low levels of histamine release (5-10% of total histamine) than at high levels (50-80%). Thus, the inhibitory potential of a drug is a function of the concentration of antigen used to initiate the response. Our results are now more in accord with the inhibitory profile of these drugs in human lung tissue. It is suggested that in vivo release is likely to be low and that this is the level at which to evaluate drugs in vitro.

  20. Optimisation of in silico derived 2-aminobenzimidazole hits as unprecedented selective kappa opioid receptor agonists.

    PubMed

    Sasmal, Pradip K; Krishna, C Vamsee; Adabala, S Sudheerkumar; Roshaiah, M; Rawoof, Khaji Abdul; Thadi, Emima; Sukumar, K Pavan; Cheera, Srisailam; Abbineni, Chandrasekhar; Rao, K V L Narasimha; Prasanthi, A; Nijhawan, Kamal; Jaleel, Mahaboobi; Iyer, Lakshmi Ramachandran; Chaitanya, T Krishna; Tiwari, Nirbhay Kumar; Krishna, N Lavanya; Potluri, Vijay; Khanna, Ish; Frimurer, Thomas M; Lückmann, Michael; Rist, Øystein; Elster, Lisbeth; Högberg, Thomas

    2015-02-15

    Kappa opioid receptor (KOR) is an important mediator of pain signaling and it is targeted for the treatment of various pains. Pharmacophore based mining of databases led to the identification of 2-aminobenzimidazole derivative as KOR agonists with selectivity over the other opioid receptors DOR and MOR. A short SAR exploration with the objective of identifying more polar and hence less brain penetrant agonists is described herewith. Modeling studies of the recently published structures of KOR, DOR and MOR are used to explain the receptor selectivity. The synthesis, biological evaluation and SAR of novel benzimidazole derivatives as KOR agonists are described. The in vivo proof of principle for anti-nociceptive effect with a lead compound from this series is exemplified.

  1. Synthesis of quinolinomorphinan-4-ol derivatives as δ opioid receptor agonists.

    PubMed

    Ida, Yoshihiro; Nemoto, Toru; Hirayama, Shigeto; Fujii, Hideaki; Osa, Yumiko; Imai, Masayuki; Nakamura, Takashi; Kanemasa, Toshiyuki; Kato, Akira; Nagase, Hiroshi

    2012-01-15

    The previously reported morphinan derivative SN-28 showed high selectivity and agonist activity for the δ opioid receptor. In the course of examining the structure-activity relationship of SN-28 derivatives, the derivatives with the 4-hydroxy group (SN-24, 26, 27) showed higher selectivities for the δ receptor over the μ receptor than the corresponding SN-28 derivatives with the 3-hydroxy group (SN-11, 23, 28). Derivatives with the 4-hydroxy group showed potent agonist activities for the δ receptor in the [(35)S]GTPγS binding assay. Although the 17-cyclopropylmethyl derivative (SN-11) with a 3-hydroxy group showed the lowest selectivity for the δ receptor among the morphinan derivatives, the agonist activity toward the δ receptor was the most potent for candidates with the 3-hydroxy group.

  2. Nitric oxide donor beta2-agonists: furoxan derivatives containing the fenoterol moiety and related furazans.

    PubMed

    Buonsanti, M Federica; Bertinaria, Massimo; Stilo, Antonella Di; Cena, Clara; Fruttero, Roberta; Gasco, Alberto

    2007-10-04

    The structure of fenoterol, a beta2-adrenoceptor agonist used in therapy, has been joined with furoxan NO-donor moieties to give new NO-donor beta2-agonists. The furazan analogues, devoid of the property to release NO, were also synthesized for comparison. All the compounds retained beta2-agonistic activity at micromolar or submicromolar concentration when tested on guinea pig tracheal rings precontracted with carbachol. Among the furoxan derivatives, the NO contribution to trachea relaxation was evident with product 15b at micromolar concentrations. All the new NO-donor hybrids were able to dilate rat aortic strips precontracted with phenylephrine. Both furoxan and furazan derivatives displayed antioxidant activity greater than that of fenoterol.

  3. New 1,4-dihydropyridines endowed with NO-donor and calcium channel agonist properties.

    PubMed

    Visentin, Sonja; Rolando, Barbara; Di Stilo, Antonella; Fruttero, Roberta; Novara, Monica; Carbone, Emilio; Roussel, Christian; Vanthuyne, Nicolas; Gasco, Alberto

    2004-05-06

    A new series of calcium channel agonists structurally related to Bay K8644, containing NO donor furoxans and the related furazans unable to release NO, is described. The racemic mixtures were studied for their action on L-type Ca(2+) channels expressed in cultured rat insulinoma RINm5F cells. All the products proved to be potent calcium channel agonists. All the racemic mixtures, with the only exception of the carbamoyl derivatives 9, 12 endowed with scanty solubility, were separated by chiral chromatography into the corresponding enantiomers; the (+) enantiomers were found to be potent agonists while the (-) ones were feeble antagonists. The racemic mixtures were also assessed for their positive inotropic activity on electrically stimulated rat papillary muscle and for their ability to increase Ca(2+) entry into the vascular smooth muscle of rat aorta strips. The cyanofuroxan 8 proved to be an interesting product with dual Ca(2+)-dependent positive inotropic and NO-dependent vasodilating activity.

  4. Nicotinamide is an endogenous agonist for a C. elegans TRPV OSM-9 and OCR-4 channel.

    PubMed

    Upadhyay, Awani; Pisupati, Aditya; Jegla, Timothy; Crook, Matt; Mickolajczyk, Keith J; Shorey, Matthew; Rohan, Laura E; Billings, Katherine A; Rolls, Melissa M; Hancock, William O; Hanna-Rose, Wendy

    2016-10-12

    TRPV ion channels are directly activated by sensory stimuli and participate in thermo-, mechano- and chemo-sensation. They are also hypothesized to respond to endogenous agonists that would modulate sensory responses. Here, we show that the nicotinamide (NAM) form of vitamin B3 is an agonist of a Caenorhabditis elegans TRPV channel. Using heterologous expression in Xenopus oocytes, we demonstrate that NAM is a soluble agonist for a channel consisting of the well-studied OSM-9 TRPV subunit and relatively uncharacterized OCR-4 TRPV subunit as well as the orthologous Drosophila Nan-Iav TRPV channel, and we examine stoichiometry of subunit assembly. Finally, we show that behaviours mediated by these C. elegans and Drosophila channels are responsive to NAM, suggesting conservation of activity of this soluble endogenous metabolite on TRPV activity. Our results in combination with the role of NAM in NAD+ metabolism suggest an intriguing link between metabolic regulation and TRPV channel activity.

  5. [Protective effect of adenosine receptor agonists in a model of spinal cord injury in rats].

    PubMed

    Sufianova, G Z; Usov, L A; Sufianov, A A; Perelomov, Iu P; Raevskaia, L Iu; Shapkin, A G

    2002-01-01

    Possibilities of the neuroprotector therapy using adenosine and cyclopentyladenosine (CPA), an adenosine receptor agonist, were studied on a model of spinal cord injury by compression in rats (most closely reproducing the analogous clinical pathological process in humans). The model was induced by slow, graded compression of the spinal cord at the thoracic level. Adenosine and CPA were introduced 60 min before injury by subcutaneous injections in a dose of 300 and 2.5 micrograms/kg, respectively. The protective effect was judged by comparing the neurological, electromyographic, and histopathological changes in animals with the model injury and in the control group (adenosine and CPA background). The A1-agonist CPA injections produced a pronounced, statistically significant neuroprotector effect on the given spinal cord injury model in rats. The neuroprotective effect of adenosine was significant but not as strong. It is concluded that it is expedient to use A-agonists in clinics.

  6. PPAR{alpha} agonists up-regulate organic cation transporters in rat liver cells

    SciTech Connect

    Luci, Sebastian; Geissler, Stefanie; Koenig, Bettina; Koch, Alexander; Stangl, Gabriele I.; Hirche, Frank; Eder, Klaus . E-mail: klaus.eder@landw.uni-halle.de

    2006-11-24

    It has been shown that clofibrate treatment increases the carnitine concentration in the liver of rats. However, the molecular mechanism is still unknown. In this study, we observed for the first time that treatment of rats with the peroxisome proliferator activated receptor (PPAR)-{alpha} agonist clofibrate increases hepatic mRNA concentrations of organic cation transporters (OCTNs)-1 and -2 which act as transporters of carnitine into the cell. In rat hepatoma (Fao) cells, treatment with WY-14,643 also increased the mRNA concentration of OCTN-2. mRNA concentrations of enzymes involved in carnitine biosynthesis were not altered by treatment with the PPAR{alpha} agonists in livers of rats and in Fao cells. We conclude that PPAR{alpha} agonists increase carnitine concentrations in livers of rats and cells by an increased uptake of carnitine into the cell but not by an increased carnitine biosynthesis.

  7. 2-Thiazolylethylamine, a selective histamine H1 agonist, decreases seizure susceptibility in mice.

    PubMed

    Yokoyama, H; Onodera, K; Iinuma, K; Watanabe, T

    1994-03-01

    The effects of intracerebroventricular (ICV) administration of histamine and its selective agonists on electrically and pentylenetetrazole-induced convulsions in mice were studied. The ICV administration of histamine decreased seizure susceptibility on electrically and pentylenetetrazole-induced convulsions significantly and dose-dependently. The inhibitory effects of histamine were well antagonized by centrally acting histamine H1 antagonists such as pyrilamine (or mepyramine) and ketotifen, but not by a peripherally acting histamine H1 antagonist, astemizole, or a centrally acting H2 antagonist, zolantidine. The ICV administration of 2-thiazolylethylamine, a selective histamine H1 agonist, also decreased seizure susceptibility, which could be antagonized by centrally acting histamine H1 antagonists, whereas dimaprit, a selective histamine H2 agonist, did not affect seizure susceptibility. These findings strengthened the idea that the central histaminergic neuron system plays an inhibitory role in convulsions.

  8. A uniform molecular model of δ opioid agonist and antagonist pharmacophore conformations

    NASA Astrophysics Data System (ADS)

    Brandt, Wolfgang

    1998-11-01

    On the basis of a model of the pharmacophore conformations of agonist of the δ-opioid receptor the corresponding δ-antagonist conformations were determined by means of force field calculations. The results explain the unusual behavior of several cyclic β-casomorphin analogues on the molecular level. Thus, for instance, the model helps to understand why Tyr-c[D-Orn-2-Nal-D-Pro-Gly] is a mixed μ-agonist and δ-antagonist. Furthermore, the model is consistent with low energy conformations of other δ-antagonists such as Tyr-Tic-Phe, Tyr-Tic-Phe-Phe, naltrindole and BNTX. The occupation of a special spatial area by bulky groups close to the protonated N-terminus of opioid peptides is assumed to be highly critical for the switch from agonist to antagonist behavior.

  9. Metabotropic glutamate receptor agonists potentiate a slow afterdepolarization in CNS neurons

    NASA Technical Reports Server (NTRS)

    Zheng, F.; Gallagher, J. P.

    1992-01-01

    We have previously reported that, in the rat dorsolateral septal nucleus (DLSN), metabotropic glutamate receptor (met-GluR) agonists evoked a slow depolarization accompanied by an increase in membrane conductance and burst firing. We have speculated that the burst firing elicited by met-GluR agonists may be due to activation or enhancement of a non-specific cation current, which exists in some DLSN neurons. Now we report that a slow afterdepolarization (sADP) mediated by a non-specific cation current was potentiated by both 1S,3R-ACPD and quisqualate. In addition, met-GluR agonists unmask a sADP in DLSN neurons which did not show a sADP under control conditions. Our data suggest that a non-specific cation current can be potentiated by activation of the met-GluR.

  10. Discovery of novel indazole derivatives as dual angiotensin II antagonists and partial PPARγ agonists.

    PubMed

    Lamotte, Yann; Faucher, Nicolas; Sançon, Julien; Pineau, Olivier; Sautet, Stéphane; Fouchet, Marie-Hélène; Beneton, Véronique; Tousaint, Jean-Jacques; Saintillan, Yannick; Ancellin, Nicolas; Nicodeme, Edwige; Grillot, Didier; Martres, Paul

    2014-02-15

    Identification of indazole derivatives acting as dual angiotensin II type 1 (AT1) receptor antagonists and partial peroxisome proliferator-activated receptor-γ (PPARγ) agonists is described. Starting from Telmisartan, we previously described that indole derivatives were very potent partial PPARγ agonists with loss of AT1 receptor antagonist activity. Design, synthesis and evaluation of new central scaffolds led us to the discovery of pyrrazolopyridine then indazole derivatives provided novel series possessing the desired dual activity. Among the new compounds, 38 was identified as a potent AT1 receptor antagonist (IC50=0.006 μM) and partial PPARγ agonist (EC50=0.25 μM, 40% max) with good oral bioavailability in rat. The dual pharmacology of compound 38 was demonstrated in two preclinical models of hypertension (SHR) and insulin resistance (Zucker fa/fa rat).

  11. Inhibitory effects of peroxisome proliferator-activated receptor γ agonists on collagen IV production in podocytes.

    PubMed

    Li, Yanjiao; Shen, Yachen; Li, Min; Su, Dongming; Xu, Weifeng; Liang, Xiubin; Li, Rongshan

    2015-07-01

    Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists have beneficial effects on the kidney diseases through preventing microalbuminuria and glomerulosclerosis. However, the mechanisms underlying these effects remain to be fully understood. In this study, we investigate the effects of PPAR-γ agonist, rosiglitazone (Rosi) and pioglitazone (Pio), on collagen IV production in mouse podocytes. The endogenous expression of PPAR-γ was found in the primary podocytes and can be upregulated by Rosi and Pio, respectively, detected by RT-PCR and Western blot. PPAR-γ agonist markedly blunted the increasing of collagen IV expression and extraction in podocytes induced by TGF-β. In contrast, adding PPAR-γ antagonist, GW9662, to podocytes largely prevented the inhibition of collagen IV expression from Pio treatment. Our data also showed that phosphorylation of Smad2/3 enhanced by TGF-β in a time-dependent manner was significantly attenuated by adding Pio. The promoter region of collagen IV gene contains one putative consensus sequence of Smad-binding element (SBE) by promoter analysis, Rosi and Pio significantly ameliorated TGF-β-induced SBE4-luciferase activity. In conclusion, PPAR-γ activation by its agonist, Rosi or Pio, in vitro directly inhibits collagen IV expression and synthesis in primary mouse podocytes. The suppression of collagen IV production was related to the inhibition of TGF-β-driven phosphorylation of Smad2/3 and decreased response activity of SBEs of collagen IV in PPAR-γ agonist-treated mouse podocytes. This represents a novel mechanistic support regarding PPAR-γ agonists as podocyte protective agents.

  12. Identification of an extracellular segment of the oxytocin receptor providing agonist-specific binding epitopes.

    PubMed

    Hawtin, S R; Howard, H C; Wheatley, M

    2001-03-01

    The effects of the peptide hormone oxytocin are mediated by oxytocin receptors (OTRs) expressed by the target tissue. The OTR is a member of the large family of G-protein-coupled receptors. Defining differences between the interaction of agonists and antagonists with the OTR at the molecular level is of fundamental importance, and is addressed in this study. Using truncated and chimaeric receptor constructs, we establish that a small 12-residue segment in the distal portion of the N-terminus of the human OTR provides important epitopes which are required for agonist binding. In contrast, this segment does not contribute to the binding site for antagonists, whether peptide or non-peptide. It does, however, have a role in agonist-induced OTR signalling. Oxytocin is also an agonist at the vasopressin V(1a) receptor (V(1a)R). A chimaeric receptor (V(1a)R(N)-OTR) was engineered in which the N-terminus of the OTR was substituted by the corresponding, but unrelated, sequence from the N-terminus of the V(1a)R. We show that the V(1a)R N-terminus present in V(1a)R(N)-OTR fully restored both agonist binding and intracellular signalling to a dysfunctional truncated OTR construct. The N-terminal segment does not, however, contribute to receptor-selective agonism between the OTR and the V(1a)R. Our data establish a key role for the distal N-terminus of the OTR in providing agonist-specific binding epitopes.

  13. Adenosine-A1 receptor agonist induced hyperalgesic priming type II.

    PubMed

    Araldi, Dioneia; Ferrari, Luiz F; Levine, Jon D

    2016-03-01

    We have recently shown that repeated exposure of the peripheral terminal of the primary afferent nociceptor to the mu-opioid receptor (MOR) agonist DAMGO ([D-Ala, N-Me-Phe, Gly-ol]-enkephalin acetate salt) induces a model of transition to chronic pain that we have termed type II hyperalgesic priming. Similar to type I hyperalgesic priming, there is a markedly prolonged response to subsequent administration of proalgesic cytokines, prototypically prostaglandin E2 (PGE2). However, type II hyperalgesic priming differs from type I in being rapidly induced, protein kinase A (PKA), rather than PKCε dependent, not reversed by a protein translation inhibitor, occurring in female as well as in male rats, and isolectin B4-negative neuron dependent. We report that, as with the repeated injection of a MOR agonist, the repeated administration of an agonist at the A1-adenosine receptor, also a Gi-protein coupled receptor, N-cyclopentyladenosine (CPA), also produces priming similar to DAMGO-induced type II hyperalgesic priming. In this study, we demonstrate that priming induced by repeated exposure to this A1-adenosine receptor agonist shares the same mechanisms, as MOR-agonist induced priming. However, the prolongation of PGE2 hyperalgesia induced by repeated administration of CPA depends on G-protein αi subunit activation, differently from DAMGO-induced type II priming, in which it depends on the β/γ subunit. These data implicate a novel form of Gi-protein signaling pathway in the type II hyperalgesic priming induced by repeated administration of an agonist at A1-adenosine receptor to the peripheral terminal of the nociceptor.

  14. Adenosine-A1 Receptor Agonist Induced Hyperalgesic Priming Type II

    PubMed Central

    Araldi, Dioneia; Ferrari, Luiz F.; Levine, Jon D.

    2016-01-01

    We have recently shown that repeated exposure of the peripheral terminal of the primary afferent nociceptor to the mu-opioid receptor (MOR) agonist DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin acetate salt) induces a model of the transition to chronic pain that we have termed Type II hyperalgesic priming. Similar to Type I hyperalgesic priming, there is a markedly prolonged response to subsequent administration of proalgesic cytokines, prototypically prostaglandin E2 (PGE2). However, Type II hyperalgesic priming differs from Type I in being rapidly induced, protein kinase A (PKA), rather than PKCε dependent, not reversed by a protein translation inhibitor, occurring in female as well as in male rats, and isolectin B4-negative neuron dependent. We report that as with the repeated injection of a MOR agonist, the repeated administration of an agonist at the A1-adenosine receptor, also a Gi-protein coupled receptor, N6-Cyclopentyladenosine (CPA), also produces priming similar to DAMGO-induced Type II hyperalgesic priming. In this study we demonstrate that priming induced by repeated exposure to this A1-adenosine receptor agonist shares the same mechanisms as MOR-agonist induced priming. However, the prolongation of PGE2 hyperalgesia induced by repeated administration of CPA depends on G-protein αi subunit activation, differently from DAMGO-induced Type II priming, in which it depends on the β/γ subunit. These data implicate a novel form of Gi-protein signaling pathway in the Type II hyperalgesic priming induced by repeated administration of an agonist at A1-adenosine receptor to the peripheral terminal of the nociceptor. PMID:26588695

  15. Potentiation of cytotoxic chemotherapy by growth hormone-releasing hormone agonists

    PubMed Central

    Jaszberenyi, Miklos; Rick, Ferenc G.; Popovics, Petra; Block, Norman L.; Zarandi, Marta; Cai, Ren-Zhi; Vidaurre, Irving; Szalontay, Luca; Jayakumar, Arumugam R.; Schally, Andrew V.

    2014-01-01

    The dismal prognosis of malignant brain tumors drives the development of new treatment modalities. In view of the multiple activities of growth hormone-releasing hormone (GHRH), we hypothesized that pretreatment with a GHRH agonist, JI-34, might increase the susceptibility of U-87 MG glioblastoma multiforme (GBM) cells to subsequent treatment with the cytotoxic drug, doxorubicin (DOX). This concept was corroborated by our findings, in vivo, showing that the combination of the GHRH agonist, JI-34, and DOX inhibited the growth of GBM tumors, transplanted into nude mice, more than DOX alone. In vitro, the pretreatment of GBM cells with JI-34 potentiated inhibitory effects of DOX on cell proliferation, diminished cell size and viability, and promoted apoptotic processes, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide proliferation assay, ApoLive-Glo multiplex assay, and cell volumetric assay. Proteomic studies further revealed that the pretreatment with GHRH agonist evoked differentiation decreasing the expression of the neuroectodermal stem cell antigen, nestin, and up-regulating the glial maturation marker, GFAP. The GHRH agonist also reduced the release of humoral regulators of glial growth, such as FGF basic and TGFβ. Proteomic and gene-expression (RT-PCR) studies confirmed the strong proapoptotic activity (increase in p53, decrease in v-myc and Bcl-2) and anti-invasive potential (decrease in integrin α3) of the combination of GHRH agonist and DOX. These findings indicate that the GHRH agonists can potentiate the anticancer activity of the traditional chemotherapeutic drug, DOX, by multiple mechanisms including the induction of differentiation of cancer cells. PMID:24379381

  16. Diabetogenic effect of a series of tricyclic delta opioid agonists structurally related to cyproheptadine.

    PubMed

    Codd, Ellen E; Baker, Judith; Brandt, Michael R; Bryant, Stewart; Cai, Chaozhong; Carson, John R; Chevalier, Kristen M; Colburn, Raymond W; Coogan, Timothy P; Dax, Scott L; Decorte, Bart; Kemmerer, Michael; Legrand, Edmund K; Lenhard, James M; Leone, Angelique M; Lin, Ling; Mabus, John R; McDonnell, Mark E; McMillian, Michael K; McNally, James J; Stone, Dennis J; Wang, Charles Y; Zhang, Sui-Po; Flores, Christopher M

    2010-10-01

    The unexpected observation of a hyperglycemic effect of some tricycle-based delta opioid receptor (DOR) agonists led to a series of studies to better understand the finding. Single administration of two novel tricyclic DOR agonists dose dependently elevated rat plasma glucose levels; 4-week toxicology studies confirmed the hyperglycemic finding and further revealed pancreatic β-cell hypertrophy, including vacuole formation, as well as bone dysplasia and Harderian gland degeneration with regeneration. Similar diabetogenic effects were observed in dog. A review of the literature on the antiserotonergic and antihistaminergic drug cyproheptadine (CPH) and its metabolites revealed shared structural features as well as similar hyperglycemic effects to the present series of DOR agonists. To further evaluate these effects, we established an assay measuring insulin levels in the rat pancreatic β-cell-derived RINm5F cell line, extensively used to study CPH and its metabolites. Like CPH, the initial DOR agonists studied reduced RINm5F cell insulin levels in a concentration-dependent manner. Importantly, compound DOR potency did not correlate with the insulin-reducing potency. Furthermore, the RINm5F cell insulin results correlated with the diabetogenic effect of the compounds in a 5-day mouse study. The RINm5F cell insulin assay enabled the identification of aryl-aryl-amine DOR agonists that lacked an insulin-reducing effect and did not elevate blood glucose in repeated dosing studies conducted over a suprapharmacologic dose range. Thus, not only did the RINm5F cell assay open a path for the further discovery of DOR agonists lacking diabetogenic potential but also it established a reliable, economical, and high-throughput screen for such potential, regardless of chemotype or target pharmacology. The present findings also suggest a mechanistic link between the toxicity observed here and that underlying Wolcott-Rallison Syndrome.

  17. Flow-injection chemiluminescence method to detect a β2 adrenergic agonist.

    PubMed

    Zhang, Guangbin; Tang, Yuhai; Shang, Jian; Wang, Zhongcheng; Yu, Hua; Du, Wei; Fu, Qiang

    2015-02-01

    A new method for the detection of β2 adrenergic agonists was developed based on the chemiluminescence (CL) reaction of β2 adrenergic agonist with potassium ferricyanide-luminol CL. The effect of β2 adrenergic agonists including isoprenaline hydrochloride, salbutamol sulfate, terbutaline sulfate and ractopamine on the CL intensity of potassium ferricyanide-luminol was discovered. Detection of the β2 adrenergic agonist was carried out in a flow system. Using uniform design experimentation, the influence factors of CL were optimized. The optimal experimental conditions were 1 mmol/L of potassium ferricyanide, 10 µmol/L of luminol, 1.2 mmol/L of sodium hydroxide, a flow speed of 2.6 mL/min and a distance of 1.2 cm from 'Y2 ' to the flow cell. The linear ranges and limit of detection were 10-100 and 5 ng/mL for isoprenaline hydrochloride, 20-100 and 5 ng/mL for salbutamol sulfate, 8-200 and 1 ng/mL for terbutaline sulfate, 20-100 and 4 ng/mL for ractopamine, respectively. The proposed method allowed 200 injections/h with excellent repeatability and precision. It was successfully applied to the determination of three β2 adrenergic agonists in commercial pharmaceutical formulations with recoveries in the range of 96.8-98.5%. The possible CL reaction mechanism of potassium ferricyanide-luminol-β2 adrenergic agonist was discussed from the UV/vis spectra.

  18. Pungency of TRPV1 agonists is directly correlated with kinetics of receptor activation and lipophilicity.

    PubMed

    Ursu, Daniel; Knopp, Kelly; Beattie, Ruth E; Liu, Bin; Sher, Emanuele

    2010-09-01

    TRPV1 (transient receptor potential vanilloid 1) is a ligand-gated ion channel expressed predominantly in nociceptive primary afferents that plays a key role in pain processing. In vivo activation of TRPV1 receptors by natural agonists like capsaicin is associated with a sharp and burning pain, frequently described as pungency. To elucidate the mechanisms underlying pungency we investigated a series of TRPV1 agonists that included both pungent and non-pungent compounds covering a large range of potencies. Pungency of capsaicin, piperine, arvanil, olvanil, RTX (resiniferatoxin) and SDZ-249665 was evaluated in vivo, by determining the increase in the number of eye wipes caused by direct instillation of agonist solutions into the eye. Agonist-induced calcium fluxes were recorded using the FLIPR technique in a recombinant, TRPV1-expressing cell line. Current-clamp recordings were performed in rat DRG (dorsal root ganglia) neurons in order to assess the consequences of TRPV1 activation on neuronal excitability. Using the eye wipe assay the following rank of pungency was obtained: capsaicin>piperine>RTX>arvanil>olvanil>SDZ-249665. We found a strong correlation between kinetics of calcium flux, pungency and lipophilicity of TRPV1 agonists. Current-clamp recordings confirmed that the rate of receptor activation translates in the ability of agonists to generate action potentials in sensory neurons. We have demonstrated that the lipophilicity of the compounds is directly related to the kinetics of TRPV1 activation and that the latter influences their ability to trigger action potentials in sensory neurons and, ultimately, pungency.

  19. Development of CINPA1 analogs as novel and potent inverse agonists of constitutive androstane receptor.

    PubMed

    Lin, Wenwei; Yang, Lei; Chai, Sergio C; Lu, Yan; Chen, Taosheng

    2016-01-27

    Constitutive androstane receptor (CAR, NR1I3) and pregnane X receptor (PXR, NR1I2) are master regulators of endobiotic and xenobiotic metabolism and disposition. Because CAR is constitutively active in certain cellular contexts, inhibiting CAR might reduce drug-induced hepatotoxicity and resensitize drug-resistant cancer cells to chemotherapeutic drugs. We recently reported a novel CAR inhibitor/inverse agonist CINPA1 (11). Here, we have obtained or designed 54 analogs of CINPA1 and used a time-resolved fluorescence resonance energy transfer (TR-FRET) assay to evaluate their CAR inhibition potency. Many of the 54 analogs showed CAR inverse agonistic activities higher than those of CINPA1, which has an IC50 value of 687 nM. Among them, 72 has an IC50 value of 11.7 nM, which is about 59-fold more potent than CINPA1 and over 10-fold more potent than clotrimazole (an IC50 value of 126.9 nM), the most potent CAR inverse agonist in a biochemical assay previously reported by others. Docking studies provide a molecular explanation of the structure-activity relationship (SAR) observed experimentally. To our knowledge, this effort is the first chemistry endeavor in designing and identifying potent CAR inverse agonists based on a novel chemical scaffold, leading to 72 as the most potent CAR inverse agonist so far. The 54 chemicals presented are novel and unique tools for characterizing CAR's function, and the SAR information gained from these 54 analogs could guide future efforts to develop improved CAR inverse agonists.

  20. The dopamine D(1) receptor agonist SKF-82958 serves as a discriminative stimulus in the rat.

    PubMed

    Haile, C N; Carey, G; Varty, G B; Coffin, V L

    2000-01-28

    We examined the discriminative stimulus effects of the high-efficacy dopamine D(1) receptor agonist (+/-)6-chloro-7, 8-dihydroxy-3-ally1-phenyl-2,3,4,5-tetrahydro-1H-3benzazepine++ + hydrobromide (SKF-82958) in rats trained to discriminate SKF-82958 (0.03 mg/kg) from vehicle in a two-lever food-reinforced drug discrimination task. SKF-82958 produced dose-related increases in responding to the SKF-82958 appropriate lever with full substitution occurring at the training dose. Pretreatment with the dopamine D(1)/D(5) receptor antagonist (-)-trans-6,7,7a,8,9, 13b-hexahydro-3-chloro-2hydroxy-N-methyl-5H-benzo-[d]naphtho -¿2, 1-b¿azepine (SCH-39166) (0.01 mg/kg) attenuated the discriminative stimulus effects of SKF-82958. Pretreatment with the dopamine D(2) receptor antagonist raclopride (0.03 mg/kg) had no effect. The high-efficacy dopamine D(1) receptor agonist R(+)6chloro-7, 8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (SKF-81297) fully substituted for SKF-82958, whereas the low-efficacy dopamine D(1) receptor agonist (+/-)1-phenyl-2,3,4, 5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride (SKF-38393) produced only partial substitution. The dopamine D(2) receptor agonist trans-(+/-)-4,4a,5,6,7,8,8a, 9-octahydro-5-propyl-1H-propyl-1H-pyrazolo[3,4-g]quinoline dihydrochloride (quinpirole) and the indirect dopamine agonist cocaine did not substitute fully for the SKF-82958 discriminative stimulus cue. These results demonstrate that the high-efficacy dopamine D(1) receptor agonist SKF-82958 can serve as an effective discriminative stimulus in the rat, and that these effects are mediated by a dopamine D(1)-like receptor mechanism.

  1. STING Agonists Induce an Innate Antiviral Immune Response against Hepatitis B Virus

    PubMed Central

    Guo, Fang; Zhao, Xuesen; Wang, Jianghua; Liu, Fei; Xu, Chunxiao; Wei, Lai; Jiang, Jian-Dong; Block, Timothy M.; Guo, Ju-Tao

    2014-01-01

    Chronicity of hepatitis B virus (HBV) infection is due to the failure of a host to mount a sufficient immune response to clear the virus. The aim of this study was to identify small-molecular agonists of the pattern recognition receptor (PRR)-mediated innate immune response to control HBV infection. To achieve this goal, a coupled mouse macrophage and hepatocyte culture system mimicking the intrahepatic environment was established and used to screen small-molecular compounds that activate macrophages to produce cytokines, which in turn suppress HBV replication in a hepatocyte-derived stable cell line supporting HBV replication in a tetracycline-inducible manner. An agonist of the mouse stimulator of interferon (IFN) genes (STING), 5,6-dimethylxanthenone-4-acetic acid (DMXAA), was found to induce a robust cytokine response in macrophages that efficiently suppressed HBV replication in mouse hepatocytes by reducing the amount of cytoplasmic viral nucleocapsids. Profiling of cytokines induced by DMXAA and agonists of representative Toll-like receptors (TLRs) in mouse macrophages revealed that, unlike TLR agonists that induced a predominant inflammatory cytokine/chemokine response, the STING agonist induced a cytokine response dominated by type I IFNs. Moreover, as demonstrated in an HBV hydrodynamic mouse model, intraperitoneal administration of DMXAA significantly induced the expression of IFN-stimulated genes and reduced HBV DNA replication intermediates in the livers of mice. This study thus proves the concept that activation of the STING pathway induces an antiviral cytokine response against HBV and that the development of small-molecular human STING agonists as immunotherapeutic agents for treatment of chronic hepatitis B is warranted. PMID:25512416

  2. Crystal Structures of the Nuclear Receptor, Liver Receptor Homolog 1, Bound to Synthetic Agonists.

    PubMed

    Mays, Suzanne G; Okafor, C Denise; Whitby, Richard J; Goswami, Devrishi; Stec, Józef; Flynn, Autumn R; Dugan, Michael C; Jui, Nathan T; Griffin, Patrick R; Ortlund, Eric A

    2016-12-02

    Liver receptor homolog 1 (NR5A2, LRH-1) is an orphan nuclear hormone receptor that regulates diverse biological processes, including metabolism, proliferation, and the resolution of endoplasmic reticulum stress. Although preclinical and cellular studies demonstrate that LRH-1 has great potential as a therapeutic target for metabolic diseases and cancer, development of LRH-1 modulators has been difficult. Recently, systematic modifications to one of the few known chemical scaffolds capable of activating LRH-1 failed to improve efficacy substantially. Moreover, mechanisms through which LRH-1 is activated by synthetic ligands are entirely unknown. Here, we use x-ray crystallography and other structural methods to explore conformational changes and receptor-ligand interactions associated with LRH-1 activation by a set of related agonists. Unlike phospholipid LRH-1 ligands, these agonists bind deep in the pocket and do not interact with residues near the mouth nor do they expand the pocket like phospholipids. Unexpectedly, two closely related agonists with similar efficacies (GSK8470 and RJW100) exhibit completely different binding modes. The dramatic repositioning is influenced by a differential ability to establish stable face-to-face π-π-stacking with the LRH-1 residue His-390, as well as by a novel polar interaction mediated by the RJW100 hydroxyl group. The differing binding modes result in distinct mechanisms of action for the two agonists. Finally, we identify a network of conserved water molecules near the ligand-binding site that are important for activation by both agonists. This work reveals a previously unappreciated complexity associated with LRH-1 agonist development and offers insights into rational design strategies.

  3. Molecular determinants of agonist selectivity in glutamate-gated chloride channels which likely explain the agonist selectivity of the vertebrate glycine and GABAA-ρ receptors.

    PubMed

    Blarre, Thomas; Bertrand, Hugues-Olivier; Acher, Francine C; Kehoe, JacSue

    2014-01-01

    Orthologous Cys-loop glutamate-gated chloride channels (GluClR's) have been cloned and described electrophysiologically and pharmacologically in arthropods and nematodes (both members of the invertebrate ecdysozoan superphylum). Recently, GluClR's from Aplysia californica (a mollusc from the lophotrochozoan superphylum) have been cloned and similarly studied. In spite of sharing a common function, the ecdysozoan and lophotrochozoan receptors have been shown by phylogenetic analyses to have evolved independently. The recent crystallization of the GluClR from C. elegans revealed the binding pocket of the nematode receptor. An alignment of the protein sequences of the nematode and molluscan GluClRs showed that the Aplysia receptor does not contain all of the residues defining the binding mode of the ecdysozoan receptor. That the two receptors have slightly different binding modes is not surprising since earlier electrophysiological and pharmacological experiments had suggested that they were differentially responsive to certain agonists. Knowledge of the structure of the C. elegans GluClR has permitted us to generate a homology model of the binding pocket of the Aplysia receptor. We have analyzed the differences between the two binding modes and evaluated the relative significance of their non-common residues. We have compared the GluClRs electrophysiologically and pharmacologically and we have used site-directed mutagenesis on both receptor types to test predictions made from the model. Finally, we propose an explanation derived from the model for why the nematode receptors are gated only by glutamate, whereas the molluscan receptors can also be activated by β-alanine, GABA and taurine. Like the Aplysia receptor, the vertebrate glycine and GABAA-ρ receptors also respond to these other agonists. An alignment of the sequences of the molluscan and vertebrate receptors shows that the reasons we have given for the ability of the other agonists to activate the Aplysia

  4. Comparison of the in vitro efficacy of mu, delta, kappa and ORL1 receptor agonists and non-selective opioid agonists in dog brain membranes.

    PubMed

    Lester, Patrick A; Traynor, John R

    2006-02-16

    Morphine and related opioid agonists are frequently used in dogs for their analgesic properties, their sedative effects and as adjuncts to anesthesia. Such compounds may be effective through a combined action at mu-, delta- and kappa-opioid receptors. In this work, the in vitro relative agonist efficacy of ligands selective for mu (DAMGO)-, delta (SNC80)- and kappa (U69593)-opioid receptors as well as the opioid receptor-like receptor ORL(1) (orphaninFQ/nociceptin) which may mediate nociceptive or antinociceptive actions was determined using the [35S]GTPgammaS binding assay in membrane homogenates from the frontal cortex, thalamus and spinal cord of beagle dogs. In addition, other analgesics commonly used in the dog were investigated. For the receptor-selective compounds, maximum stimulation of [35S]GTPgammaS binding decreased in the order kappa > ORL1 > delta > mu in cortical homogenates, compared with mu > ORL1 > kappa > delta in thalamic and spinal cord homogenates. For other opioids examined, efficacy decreased in the order etorphine > morphine > fentanyl = oxymorphine > butorphanol = oxycodone = nalbuphine. There was no significant difference in the potency of compounds to stimulate [35S]GTPgammaS binding between cortex and thalamus, with the exception of etorphine. Buprenorphine, the partial mu-opioid receptor agonist and kappa-, delta-opioid receptor antagonist, which does have analgesic efficacy in the dog, showed no agonism in any tissue but was an effective mu-opioid receptor > ORL1 receptor antagonist. The results show that the ability of agonists to stimulate [35S]GTPgammaS binding relates to the receptor distribution of opioid and ORL1 receptors in the dog.

  5. Effect of Light and Melatonin and Other Melatonin Receptor Agonists on Human Circadian Physiology.

    PubMed

    Emens, Jonathan S; Burgess, Helen J

    2015-12-01

    Circadian (body clock) timing has a profound influence on mental health, physical health, and health behaviors. This review focuses on how light, melatonin, and other melatonin receptor agonist drugs can be used to shift circadian timing in patients with misaligned circadian rhythms. A brief overview of the human circadian system is provided, followed by a discussion of patient characteristics and safety considerations that can influence the treatment of choice. The important features of light treatment, light avoidance, exogenous melatonin, and other melatonin receptor agonists are reviewed, along with some of the practical aspects of light and melatonin treatment.

  6. The CRTH2 agonist Pyl A prevents lipopolysaccharide-induced fetal death but induces preterm labour

    PubMed Central

    Sykes, Lynne; Herbert, Bronwen R; MacIntyre, David A; Hunte, Emma; Ponnampalam, Sathana; Johnson, Mark R; Teoh, Tiong G; Bennett, Phillip R

    2013-01-01

    We have previously demonstrated that the anti-inflammatory prostaglandin 15-deoxy-Δ 12,14-prostaglandin J2 (15dPGJ2) delays inflammation-induced preterm labour in the mouse and improves pup survival through the inhibition of nuclear factor-κB (NF-κB) by a mechanism yet to be elucidated. 15dPGJ2 is an agonist of the second prostaglandin D2 receptor, chemoattractant receptor homologous to the T helper 2 cell (CRTH2). In human T helper cells CRTH2 agonists induce the production of the anti-inflammatory interleukins IL-10 and IL-4. We hypothesized that CRTH2 is involved in the protective effect of 15dPGJ2 in inflammation-induced preterm labour in the murine model. We therefore studied the effects of a specific small molecule CRTH2 agonist on preterm labour and pup survival. An intrauterine injection of lipopolysaccharide (LPS) was administered to CD1 mice at embryonic day 16, ± CRTH2 agonist/vehicle controls. Mice were killed at 4.5 hr to assess fetal wellbeing and to harvest myometrium and pup brain for analysis of NF-κB, and T helper type 1/2 interleukins. To examine the effects of the CRTH2 agonist on LPS-induced preterm labour, mice were allowed to labour spontaneously. Direct effects of the CRTH2 agonist on uterine contractility were examined ex vivo on contracting myometrial strips. The CRTH2 agonist increased fetal survival from 20 to 100% in LPS-treated mice, and inhibited circular muscle contractility ex vivo. However, it augmented LPS-induced labour and significantly increased myometrial NF-κB, IL-1β, KC-GRO, interferon-γ and tumour necrosis factor-α. This suggests that the action of 15dPGJ2 is not via CRTH2 and therefore small molecule CRTH2 agonists are not likely to be beneficial for the prevention of inflammation-induced preterm labour. PMID:23374103

  7. Design of Potent and Orally Active GPR119 Agonists for the Treatment of Type II Diabetes

    PubMed Central

    2015-01-01

    We report herein the design and synthesis of a series of potent and selective GPR119 agonists. Our objective was to develop a GPR119 agonist with properties that were suitable for fixed-dose combination with a DPP4 inhibitor. Starting from a phenoxy analogue (1), medicinal chemistry efforts directed toward reducing half-life and increasing solubility led to the synthesis of a series of benzyloxy analogues. Compound 28 was chosen for further profiling because of its favorable physicochemical properties and excellent GPR119 potency across species. This compound exhibited a clean off-target profile in counterscreens and good in vivo efficacy in mouse oGTT. PMID:26288697

  8. Effect of an α2 agonist (mivazerol) on limiting myocardial ischaemia in stable angina

    PubMed Central

    Fox, K; Dargie, H; de Bono, D P; Oliver, M; Wulfert, E; Kharkevitch, T

    1999-01-01

    A specific α2 agonist, mivazerol, known to be effective in reducing myocardial ischaemia when given intravenously immediately before an exercise tolerance test, produced a significant increase in exercise duration and time to the onset of angina when given orally over a two week period to 25 patients with stable angina. A non-significant trend to reduction in electrocardiographic signs of ischaemia was also noted. The clinical relevance of this improvement now needs to be tested in larger numbers.


Keywords: α2 agonist; sympathetic activity; myocardial ischaemia; stable angina; exercise tolerance test PMID:10455094

  9. Optimization of alpha-acylaminoketone ecdysone agonists for control of gene expression.

    PubMed

    Tice, Colin M; Hormann, Robert E; Thompson, Christine S; Friz, Jennifer L; Cavanaugh, Caitlin K; Saggers, Jessica A

    2003-06-02

    Fifteen new alpha-acylaminoketones were prepared by four different routes in an initial effort to optimize the potency of these compounds as ecdysone agonists. The compounds were assayed in mammalian cells expressing the ecdysone receptors from Bombyx mori (BmEcR) and Choristoneura fumiferana (CfEcR) for their ability to cause expression of a reporter gene downstream of an ecdysone response element. A new alpha-acylaminoketone was identified which had activity equal to that of the standard dibenzoylhydrazine ecdysone agonist GS()-E in the assay based on CfEcR.

  10. Potent complement C3a receptor agonists derived from oxazole amino acids: Structure-activity relationships.

    PubMed

    Singh, Ranee; Reed, Anthony N; Chu, Peifei; Scully, Conor C G; Yau, Mei-Kwan; Suen, Jacky Y; Durek, Thomas; Reid, Robert C; Fairlie, David P

    2015-12-01

    Potent ligands for the human complement C3a receptor (C3aR) were developed from the almost inactive tripeptide Leu-Ala-Arg corresponding to the three C-terminal residues of the endogenous peptide agonist C3a. The analogous Leu-Ser-Arg was modified by condensing the serine side chain with the leucine carbonyl with elimination of water to form leucine-oxazole-arginine. Subsequent elaboration with a variety of N-terminal amide capping groups produced agonists as potent as human C3a itself in stimulating Ca(2+) release from human macrophages. Structure-activity relationships are discussed.

  11. Beta 2-adrenergic agonist as adjunct therapy to levodopa in Parkinson's disease.

    PubMed

    Alexander, G M; Schwartzman, R J; Nukes, T A; Grothusen, J R; Hooker, M D

    1994-08-01

    We studied the effect of the beta 2-adrenergic agonist albuterol on Parkinson's disease (PD) patients receiving chronic levodopa treatment. The albuterol-treated patients demonstrated reduced parkinsonian symptoms and an increased ability to tap their index finger between two points 20 cm apart, and were able to perform a "walk test" in 70% of their control time. Three patients currently on chronic albuterol therapy still show amelioration of their parkinsonian symptoms, and two have reduced their daily levodopa dose. This study suggests that beta 2-adrenergic agonists as adjunct therapy to levodopa may be beneficial in PD.

  12. Effect of Light and Melatonin and other Melatonin Receptor Agonists on Human Circadian Physiology

    PubMed Central

    Emens, Jonathan S.

    2015-01-01

    Synopsis Circadian (body clock) timing has a profound influence on mental health, physical health, and health behaviors. This review focuses on how light, melatonin and other melatonin receptor agonist drugs can be used to shift circadian timing in patients with misaligned circadian rhythms. A brief overview of the human circadian system is provided, followed by a discussion of patient characteristics and safety considerations that can influence the treatment of choice. The important features of light treatment, light avoidance, exogenous melatonin and other melatonin receptor agonists are reviewed, along with some of the practical aspects of light and melatonin treatment. PMID:26568121

  13. Dopamine Agonist Increases Risk Taking but Blunts Reward-Related Brain Activity

    PubMed Central

    Riba, Jordi; Krämer, Ulrike M.; Heldmann, Marcus; Richter, Sylvia; Münte, Thomas F.

    2008-01-01

    The use of D2/D3 dopaminergic agonists in Parkinson's disease (PD) may lead to pathological gambling. In a placebo-controlled double-blind study in healthy volunteers, we observed riskier choices in a lottery task after administration of the D3 receptor-preferring agonist pramipexole thus mimicking risk-taking behavior in PD. Moreover, we demonstrate decreased activation in the rostral basal ganglia and midbrain, key structures of the reward system, following unexpected high gains and therefore propose that pathological gambling in PD results from the need to seek higher rewards to overcome the blunted response in this system. PMID:18575579

  14. Chemical communication in scarab beetles: reciprocal behavioral agonist-antagonist activities of chiral pheromones.

    PubMed Central

    Leal, W S

    1996-01-01

    A novel mechanism of reciprocal behavioral agonist-antagonist activities of enantiomeric pheromones plays a pivotal role in overcoming the signal-to-noise problem derived from the use of a single-constituent pheromone system in scarab beetles. Female Anomala osakana produce (S, Z)-5-(+)-(1-decenyl)oxacyclopentan-2-one, which is highly attractive to males; the response is completely inhibited even by 5% of its antipode. These two enantiomers have reverse roles in the Popillia japonica sex pheromone system. Chiral GC-electroantennographic detector experiments suggest that A. osakana and P. japonica have both R and S receptors that are responsible for behavioral agonist and antagonist responses. PMID:8901541

  15. The role of inhaled long-acting beta-2 agonists in the management of asthma.

    PubMed Central

    Kelly, H. William; Harkins, Michelle S.; Boushey, Homer

    2006-01-01

    The role of inhaled beta-2 agonists in the management of asthma has changed significantly over the last several years. This review outlines the most recent understanding of the pathophysiology of asthma and the studies that define the roles that both short- and long-acting beta-2 agonists play in therapy for this disease. A concentration on the clinical pharmacology and genetic implications for clinical use of this class of drugs in accordance with the national and international guidelines are described. PMID:16532973

  16. To kill a tumor cell: the potential of proapoptotic receptor agonists

    PubMed Central

    Ashkenazi, Avi; Herbst, Roy S.

    2008-01-01

    Disturbances in mechanisms that direct abnormal cells to undergo apoptosis frequently and critically contribute to tumorigenesis, yielding a logical target for potential therapeutic intervention. There is currently heightened interest in the extrinsic apoptosis pathway, with several proapoptotic receptor agonists (PARAs) in development. The PARAs include the ligand recombinant human Apo2L/TRAIL and agonistic mAbs. Mechanistic and preclinical data with Apo2L/TRAIL indicate exciting opportunities for synergy with conventional therapies and for combining PARAs with other molecularly targeted agents. Novel molecular biomarkers may help identify those patients most likely to benefit from PARA therapy. PMID:18523647

  17. The characterization of a novel rigid nicotine analog with alpha7-selective nAChR agonist activity and modulation of agonist properties by boron inclusion.

    PubMed

    Papke, Roger L; Zheng, Guangrong; Horenstein, Nicole A; Dwoskin, Linda P; Crooks, Peter A

    2005-09-01

    The alpha7 nAChR subtype is of particular interest as a potential therapeutic target since it has been implicated as a mediator of both cognitive and neuroprotective activity. The rigid nicotine analog ACME and the N-cyanoborane conjugate ACME-B are selective partial agonists of rat alpha7 receptors expressed in Xenopus oocytes, with no significant activation of either alpha3beta4 or alpha4beta2 receptors. ACME-B is both more potent and efficacious than ACME. The efficacies of ACME-B and ACME are approximately 26% and 10% of the efficacy of ACh, respectively. Similar N-conjugation of S(-)nicotine with cyanoborane decreased efficacy for alpha3beta4 and alpha4beta2 receptors, as well as for alpha7 nAChR. Structural comparison of ACME with the benzylidene anabaseines, another class of previously identified alpha7-selective agonists, suggests that they share a similar structural motif that may be applicable to other alpha7-selective agonists.

  18. Biperiden enhances L-DOPA methyl ester and dopamine D(l) receptor agonist SKF-82958 but antagonizes D(2)/D(3) receptor agonist rotigotine antihemiparkinsonian actions.

    PubMed

    Domino, Edward F; Ni, Lisong

    2008-12-03

    The effects of biperiden (0, 100, and 320 microg/kg), a selective muscarinic M(1)/M(4) receptor cholinergic antagonist, were studied alone and in combination with those of L-DOPA methyl ester (16.7 mg/kg), a selective dopamine D(1) receptor agonist SKF-82958 (74.8 microg/kg), or a selective D(2)/D(3) receptor agonist rotigotine (32 microg/kg) on circling behavior in MPTP induced hemiparkinsonian monkeys. The doses selected were given i.m. in approximately equieffective doses to produce contraversive circling. Biperiden alone with 5% dextrose vehicle produced a slight increase in contraversive circling in a dose related manner. When combined with L-DOPA methyl ester, it enhanced contraversive circling and decreased ipsiversive circling. When biperiden was combined with SKF-82958, contraversive circling also was enhanced and ipsiversive circling decreased. Exactly the opposite was observed with the combination of biperiden and rotigotine. The results indicate a dramatic difference in effects of a prototypic muscarinic M(1)/M(4) receptor cholinergic antagonist in combination with prototypic full dopamine D(1) or D(2)/D(3) receptor agonists. Biperiden interactions with L-DOPA methyl ester were more predominantly D(l) than D(2)/D(3) receptor-like in this animal model of hemiparkinsonism.

  19. [Effects of agonists and antagonists of benzodiazepine, GABA and NMDA receptors, on caffeine-induced seizures in mice].

    PubMed

    Inano, S

    1992-08-01

    In mice, tonic convulsive seizure induced by intravenous administration of caffeine (adenosine A1, A2 receptors antagonist) was significantly potentiated by any one of L-PIA (adenosine A1 receptor agonist), NECA (adenosine A2 receptor agonist) and 2-ClAd (adenosine A1, A2 receptors agonist). The caffeine-induced seizure was unaffected by diazepam (benzodiazepine receptor agonist), but was inhibited by Ro 15-1788 (antagonist or partial agonist). beta-DMCM (antagonist or inverse agonist) increased the seizure. Muscimol (GABA-a receptor agonist), baclofen (GABA-b receptor agonist) and AOAA (GABA transaminase inhibitor) did not show significant effect on caffeine-induced convulsion. Bicuculline (GABA-a receptor antagonist) and picrotoxin (chloride channel blocker) significantly potentiated the convulsion at the doses which did not induce it. Caffeine-induced convulsion was potentiated by NMDA with its non-convulsive dose. CPP (competitive NMDA receptor antagonist) and MK-801 (non-competitive NMDA receptor antagonist) significantly inhibited the seizures. These results suggest that caffeine-induced seizure is not caused by blockade of adenosine receptors. Caffeine may act to beta-carboline sensitive benzodiazepine receptor (Type 1) which has no linkage with GABA-a receptor. Furthermore, it is implied that caffeine plays some role at NMDA receptor calcium ion channel complex.

  20. The Use of Anchored Agonists of Phagocytic Receptors for Cancer Immunotherapy: B16-F10 Murine Melanoma Model

    PubMed Central

    Janotová, Tereza; Jalovecká, Marie; Auerová, Marie; Švecová, Ivana; Bruzlová, Pavlína; Maierová, Veronika; Kumžáková, Zuzana; Čunátová, Štěpánka; Vlčková, Zuzana; Caisová, Veronika; Rozsypalová, Petra; Lukáčová, Katarína; Vácová, Nikol; Wachtlová, Markéta; Salát, Jiří; Lieskovská, Jaroslava; Kopecký, Jan; Ženka, Jan

    2014-01-01

    The application of the phagocytic receptor agonists in cancer immunotherapy was studied. Agonists (laminarin, molecules with terminal mannose, N-Formyl-methioninyl-leucyl-phenylalanine) were firmly anchored to the tumor cell surface. When particular agonists of phagocytic receptors were used together with LPS (Toll-like receptor agonist), high synergy causing tumour shrinkage and a temporary or permanent disappearance was observed. Methods of anchoring phagocytic receptor agonists (charge interactions, anchoring based on hydrophobic chains, covalent bonds) and various regimes of phagocytic agonist/LPS mixture applications were tested to achieve maximum therapeutic effect. Combinations of mannan/LPS and f-MLF/LPS (hydrophobic anchors) in appropriate (pulse) regimes resulted in an 80% and 60% recovery for mice, respectively. We propose that substantial synergy between agonists of phagocytic and Toll-like receptors (TLR) is based on two events. The TLR ligand induces early and massive inflammatory infiltration of tumors. The effect of this cell infiltrate is directed towards tumor cells, bearing agonists of phagocytic receptors on their surface. The result of these processes was effective killing of tumor cells. This novel approach represents exploitation of innate immunity mechanisms for treating cancer. PMID:24454822

  1. Chronic β2 adrenergic agonist, but not exercise, improves glucose handling in older type 2 diabetic mice.

    PubMed

    Elayan, Hamzeh; Milic, Milos; Sun, Ping; Gharaibeh, Munir; Ziegler, Michael G

    2012-07-01

    Insulin resistant type 2 diabetes mellitus in the obese elderly has become a worldwide epidemic. While exercise can prevent the onset of diabetes in young subjects its role in older diabetic people is less clear. Exercise stimulates the release of the β(2)-agonist epinephrine more in the young. Although epinephrine and β(2)-agonist drugs cause acute insulin resistance, their chronic effect on insulin sensitivity is unclear. We fed C57BL/6 mice a high fat diet to induce diabetes. These overweight animals became very insulin resistant. Exhaustive treadmill exercise 5 days a week for 8 weeks had no effect on their diabetes, nor did the β(2)-blocking drug ICI 118551. In contrast, exercise combined with the β(2)-agonist salbutamol (albuterol) had a beneficial effect on both glucose tolerance and insulin sensitivity after 4 and 8 weeks of exercise. The effect was durable and persisted 5 weeks after exercise and β(2)-agonist had stopped. To test whether β(2)-agonist alone was effective, the animals that had received β(2)-blockade were then given β(2)-agonist. Their response to a glucose challenge improved but their response to insulin was not significantly altered. The β(2)-agonists are commonly used to treat asthma and asthmatics have an increased incidence of obesity and type 2 diabetes. Although β(2)-agonists cause acute hyperglycemia, chronic treatment improves insulin sensitivity, probably by improving muscle glucose uptake.

  2. Design driven HtL: The discovery and synthesis of new high efficacy β₂-agonists.

    PubMed

    Stocks, Michael J; Alcaraz, Lilian; Bailey, Andrew; Bonnert, Roger; Cadogan, Elaine; Christie, Jadeen; Connolly, Stephen; Cook, Anthony; Fisher, Adrian; Flaherty, Alice; Hill, Stephen; Humphries, Alexander; Ingall, Anthony; Jordan, Stephen; Lawson, Mandy; Mullen, Alex; Nicholls, David; Paine, Stuart; Pairaudeau, Garry; St-Gallay, Stephen; Young, Alan

    2011-07-01

    The design and synthesis of a new series of high efficacy β(2)-agonists devoid of the key benzylic alcohol present in previously described highly efficacious β(2)-agonists is reported. A hypothesis for the unprecedented level of efficacy is proposed based on considerations of β(2)-adrenoceptor crystal structure, other biophysical data and modeling studies.

  3. The first X-ray crystal structure of the glucocorticoid receptor bound to a non-steroidal agonist

    SciTech Connect

    Madauss, Kevin P.; Bledsoe, Randy K.; Mclay, Iain; Stewart, Eugene L.; Uings, Iain J.; Weingarten, Gordon; Williams, Shawn P.

    2009-07-23

    The amino-pyrazole 2,6-dichloro-N-ethyl benzamide 1 is a selective GR agonist with dexamethasone-like in vitro potency. Its X-ray crystal structure in the GR LBD (Glucocorticoid ligand-binding domain) is described and compared to other reported structures of steroidal GR agonists in the GR LBD (3E7C).

  4. Heterocyclic acetamide and benzamide derivatives as potent and selective beta3-adrenergic receptor agonists with improved rodent pharmacokinetic profiles.

    PubMed

    Goble, Stephen D; Wang, Liping; Howell, K Lulu; Bansal, Alka; Berger, Richard; Brockunier, Linda; DiSalvo, Jerry; Feighner, Scott; Harper, Bart; He, Jiafang; Hurley, Amanda; Hreniuk, Donna; Parmee, Emma; Robbins, Michael; Salituro, Gino; Sanfiz, Anthony; Streckfuss, Eric; Watkins, Eloisa; Weber, Ann E; Struthers, Mary; Edmondson, Scott D

    2010-03-15

    A series of amide derived beta(3)-adrenergic receptor (AR) agonists is described. The discovery and optimization of several series of compounds derived from 1, is used to lay the SAR foundation for second generation beta(3)-AR agonists for the treatment of overactive bladder.

  5. Effect of beta-ADrenergic Agonist on Cyclic AMP Synthesis in Chicken Skeletal Muscle Cells in Culture

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Because it seems logical that these agonists exert their action on muscle through stimulation of cAMP synthesis, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate cAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of cAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of cAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax levels were approximately 15-fold weaker than isoproterenol in stimulating the rate of cAMP synthesis. In addition, the EC50 values for isoproterenol, cimaterol, clenbuterol, epinephrine, and albuterol were 360 nM, 630 nM, 900 nM, 2,470 nM, and 3,650 nM, respectively. Finally, dose response curves show that the concentrations of cimaterol and clenbuterol in culture media at concentrations known to cause significant muscle hypertrophy in animals had no detectable effect on stimulation of CAMP accumulation in chicken skeletal muscle cells.

  6. MUC-1 Tumor Antigen Agonist Epitopes for Enhancing T-cell Responses to Human Tumors | NCI Technology Transfer Center | TTC

    Cancer.gov

    Scientists at NIH have identified 7 new agonist epitopes of the MUC-1 tumor associated antigen. Compared to their native epitope counterparts, peptides reflecting these agonist epitopes have been shown to enhance the generation of human tumor cells, which in turn have a greater ability to kill human tumor cells endogenously expressing the native MUC-1 epitope.

  7. Steroid Androgen Exposure during Development Has No Effect on Reproductive Physiology of Biomphalaria glabrata.

    PubMed

    Kaur, Satwant; Baynes, Alice; Lockyer, Anne E; Routledge, Edwin J; Jones, Catherine S; Noble, Leslie R; Jobling, Susan

    2016-01-01

    Gastropod mollusks have been proposed as alternative models for male reproductive toxicity testing, due to similarities in their reproductive anatomy compared to mammals, together with evidence that endocrine disrupting chemicals can cause effects in some mollusks analogous to those seen in mammals. To test this hypothesis, we used the freshwater pulmonate snail, Biomphalaria glabrata, for which various genetic tools and a draft genome have recently become available, to investigate the effects of two steroid androgens on the development of mollusk secondary sexual organs. Here we present the results of exposures to two potent androgens, the vertebrate steroid; 5α-dihydrotestosterone (DHT) and the pharmaceutical anabolic steroid; 17α-methyltestosterone (MT), under continuous flow-through conditions throughout embryonic development and up to sexual maturity. Secondary sexual gland morphology, histopathology and differential gene expression analysis were used to determine whether steroid androgens stimulated or inhibited organ development. No significant differences between tissues from control and exposed snails were identified, suggesting that these androgens elicited no biologically detectable response normally associated with exposure to androgens in vertebrate model systems. Identifying no effect of androgens in this mollusk is significant, not only in the context of the suitability of mollusks as alternative model organisms for testing vertebrate androgen receptor agonists but also, if applicable to other similar mollusks, in terms of the likely impacts of androgens and anti-androgenic pollutants present in the aquatic environment.

  8. Steroid Androgen Exposure during Development Has No Effect on Reproductive Physiology of Biomphalaria glabrata

    PubMed Central

    Lockyer, Anne E.; Routledge, Edwin J.; Jones, Catherine S.; Noble, Leslie R.; Jobling, Susan

    2016-01-01

    Gastropod mollusks have been proposed as alternative models for male reproductive toxicity testing, due to similarities in their reproductive anatomy compared to mammals, together with evidence that endocrine disrupting chemicals can cause effects in some mollusks analogous to those seen in mammals. To test this hypothesis, we used the freshwater pulmonate snail, Biomphalaria glabrata, for which various genetic tools and a draft genome have recently become available, to investigate the effects of two steroid androgens on the development of mollusk secondary sexual organs. Here we present the results of exposures to two potent androgens, the vertebrate steroid; 5α-dihydrotestosterone (DHT) and the pharmaceutical anabolic steroid; 17α-methyltestosterone (MT), under continuous flow-through conditions throughout embryonic development and up to sexual maturity. Secondary sexual gland morphology, histopathology and differential gene expression analysis were used to determine whether steroid androgens stimulated or inhibited organ development. No significant differences between tissues from control and exposed snails were identified, suggesting that these androgens elicited no biologically detectable response normally associated with exposure to androgens in vertebrate model systems. Identifying no effect of androgens in this mollusk is significant, not only in the context of the suitability of mollusks as alternative model organisms for testing vertebrate androgen receptor agonists but also, if applicable to other similar mollusks, in terms of the likely impacts of androgens and anti-androgenic pollutants present in the aquatic environment. PMID:27448327

  9. β2 Agonists Enhance the Efficacy of Simultaneous Enzyme Replacement Therapy in Murine Pompe Disease

    PubMed Central

    Koeberl, Dwight D.; Li, Songtao; Dai, Jian; Thurberg, Beth L.; Bali, Deeksha; Kishnani, Priya S.

    2011-01-01

    Enzyme replacement therapy (ERT) with recombinant human acid α-glucosidase (rhGAA) has improved clinical outcomes in patients with Pompe disease; however, the response of skeletal muscle and the central nervous system to ERT has been attenuated. The poor response of skeletal muscle to ERT has been attributed to the low abundance of the cation-independent mannose-6-phosphate receptor (CI-MPR), which mediates receptor-mediated uptake of rhGAA. Hence the ability of adjunctive therapy with β2-agonists to increase CI-MPR expression in skeletal muscle was evaluated during ERT in murine Pompe disease with regard to reversal of neuromuscular involvement. Mice with Pompe disease were treated with weekly rhGAA injections (20 mg/kg) and a selective β2-agonist, either albuterol (30 mg/l in drinking water) or low-dose clenbuterol (6 mg/l in drinking water). Biochemical correction was enhanced by β2-agonist treatment in both muscle and the cerebellum, indicating that adjunctive therapy could enhance efficacy from ERT in Pompe disease with regard to neuromuscular involvement. Intriguingly, clenbuterol slightly reduced muscle glycogen content independent of CI-MPR expression, as demonstrated in CI-MPR knockout/GAA knockout mice that were otherwise resistant to ERT. Thus, adjunctive therapy with β2 agonists might improve the efficacy of ERT in Pompe disease and possibly other lysosomal storage disorders through enhancing receptor-mediated uptake of recombinant lysosomal enzymes. PMID:22154081

  10. β2 Agonists enhance the efficacy of simultaneous enzyme replacement therapy in murine Pompe disease.

    PubMed

    Koeberl, Dwight D; Li, Songtao; Dai, Jian; Thurberg, Beth L; Bali, Deeksha; Kishnani, Priya S

    2012-02-01

    Enzyme replacement therapy (ERT) with recombinant human acid α-glucosidase (rhGAA) has improved clinical outcomes in patients with Pompe disease; however, the response of skeletal muscle and the central nervous system to ERT has been attenuated. The poor response of skeletal muscle to ERT has been attributed to the low abundance of the cation-independent mannose-6-phosphate receptor (CI-MPR), which mediates receptor-mediated uptake of rhGAA. Hence the ability of adjunctive therapy with β2-agonists to increase CI-MPR expression in skeletal muscle was evaluated during ERT in murine Pompe disease with regard to reversal of neuromuscular involvement. Mice with Pompe disease were treated with weekly rhGAA injections (20 mg/kg) and a selective β2-agonist, either albuterol (30 mg/l in drinking water) or low-dose clenbuterol (6 mg/l in drinking water). Biochemical correction was enhanced by β2-agonist treatment in both muscle and the cerebellum, indicating that adjunctive therapy could enhance efficacy from ERT in Pompe disease with regard to neuromuscular involvement. Intriguingly, clenbuterol slightly reduced muscle glycogen content independent of CI-MPR expression, as demonstrated in CI-MPR knockout/GAA knockout mice that were otherwise resistant to ERT. Thus, adjunctive therapy with β2 agonists might improve the efficacy of ERT in Pompe disease and possibly other lysosomal storage disorders through enhancing receptor-mediated uptake of recombinant lysosomal enzymes.

  11. Differences in acute anorectic effects of long-acting GLP-1 receptor agonists in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-acting glucagon-like peptide-1 receptor (GLP-1R) agonists have both glucose- and weight-lowering effects. The brain is poised to mediate both of these actions since GLP-1Rs are present in key areas known to control weight and glucose. Although some research has been performed on the effects of ...

  12. A Novel Method for Screening Adenosine Receptor Specific Agonists for Use in Adenosine Drug Develop