Science.gov

Sample records for agonist-induced receptor activation

  1. Agonist induced constitutive receptor activation as a novel regulatory mechanism. Mu receptor regulation.

    PubMed

    Sadée, W; Wang, Z

    1995-01-01

    We propose the hypothesis that certain G protein coupled receptors can become constitutively activated during agonist stimulation so that the receptor remains active even after the agonist is removed. This new paradigm of receptor regulation may account for some long term effects of neurotransmitters and hormones. We have tested the hypothesis that constitutive mu receptor activation represents a crucial step driving narcotic tolerance and dependence. Our results indeed support the conversion of mu to a constitutively active state, mu*, observed in neuroblastoma SK-N-SH and SH-SY5Y tissue culture, in U293 cells transfected with the mu receptor gene, and in vivo. Constitutive mu activation may result from receptor phosphorylation to yield mu*, and further, in vivo studies indicate that formation of mu* could account for narcotic tolerance and dependence.

  2. Agonist-induced desensitization of dopamine D1 receptor-stimulated adenylyl cyclase activity is temporally and biochemically separated from D1 receptor internalization.

    PubMed Central

    Ng, G Y; Trogadis, J; Stevens, J; Bouvier, M; O'Dowd, B F; George, S R

    1995-01-01

    The regulation of the dopamine D1 receptor was investigated by using c-myc epitope-tagged D1 receptors expressed in Sf9 (fall armyworm ovary) cells. Treatment of D1 receptors with 10 microM dopamine for 15 min led to a loss of the dopamine-detected high-affinity state of the receptor accompanying a 40% reduction in the ability of the receptor to mediate maximal dopamine stimulation of adenylyl cyclase activity. After 60 min of agonist exposure, 45 min after the occurrence of desensitization, 28% of the cell surface receptors were internalized into an intracellular light vesicular membrane fraction as determined by radioligand binding and supported by photoaffinity labeling, immunocytochemical staining, and immunoblot analysis. Pretreatment of cells with concanavalin A or sucrose completely blocked agonist-induced D1 receptor internalization without preventing agonist-induced desensitization, indicating a biochemical separation of these processes. Collectively, these findings indicate that the desensitization of D1 receptor-coupled adenylyl cyclase activity and D1 receptor internalization are temporarily and biochemically distinct mechanisms regulating D1 receptor function following agonist activation. Images Fig. 2 Fig. 3 PMID:7479745

  3. Peroxisome proliferator-activated receptor {alpha} agonist-induced down-regulation of hepatic glucocorticoid receptor expression in SD rats

    SciTech Connect

    Chen Xiang; Li Ming; Sun Weiping; Bi Yan; Cai Mengyin; Liang Hua; Yu Qiuqiong; He Xiaoying; Weng Jianping

    2008-04-18

    It was reported that glucocorticoid production was inhibited by fenofibrate through suppression of type-1 11{beta}-hydroxysteroid dehydrogenase gene expression in liver. The inhibition might be a negative-feedback regulation of glucocorticoid receptor (GR) activity by peroxisome proliferator-activated receptor alpha (PPAR{alpha}), which is quickly induced by glucocorticoid in the liver. However, it is not clear if GR expression is changed by fenofibrate-induced PPAR{alpha} activation. In this study, we tested this possibility in the liver of Sprague-Dawley rats. GR expression was reduced by fenofibrate in a time- and does-dependent manner. The inhibition was observed in liver, but not in fat and muscle. The corticosterone level in the blood was increased significantly by fenofibrate. These effects of fenofibrate were abolished by PPAR{alpha} inhibitor MK886, suggesting that fenofibrate activated through PPAR{alpha}. In conclusion, inhibition of GR expression may represent a new molecular mechanism for the negative feedback regulation of GR activity by PPAR{alpha}.

  4. Truncation of the cytoplasmic tail of the lutropin/choriogonadotropin receptor prevents agonist-induced uncoupling.

    PubMed

    Sánchez-Yagüe, J; Rodríguez, M C; Segaloff, D L; Ascoli, M

    1992-04-15

    An agonist-induced change in the functional properties of a constant number of receptors seems to be a ubiquitous phenomenon involved in the regulation of cell surface receptors. Although the mechanisms responsible for this phenomenon (called uncoupling or desensitization) have been studied in detail using beta 2-adrenergic receptors it is unclear if the models derived from these studies are applicable to other members of the family of G protein-coupled receptors. Since it has been shown previously that truncation of the C-terminal cytoplasmic tail of the beta 2-adrenergic receptor results in a delay in the onset of agonist-induced uncoupling (Bouvier, M., Hausdorff, W.P., De Blasi, A., O'Dowd, B.F., Kobilka, B.K., Caron , M.G., and Lefkowitz, R.J. (1988) Nature 333, 370-373), we now present experiments designed to test the effects of a similar truncation of the lutropin/choriogonadotropin (LH/CG) receptor on its functional properties. The results presented herein show that (i) clonal lines of human embryonic kidney cells stably transfected with cDNAs encoding for the wild-type (rLHR-wt) or a mutant receptor truncated at amino acid residue 631 (rLHR-t631) express functional LH/CG receptors as judged by their ability to bind hCG and to respond to it with increased cAMP accumulation; (ii) a preincubation of the cells expressing rLHR-wt with hCG leads to a reduction in the ability of hCG to activate adenylylcyclase; and (iii) this reduction is severely blunted in cells expressing rLHR-t631. These results demonstrate that the C-terminal cytoplasmic tail of the LH/CG receptor is necessary for agonist-induced uncoupling.

  5. Non-NMDA and NMDA receptor agonists induced excitation and their differential effect in activation of superior salivatory nucleus neurons in anaesthetized rats.

    PubMed

    Ishizuka, Ken'Ichi; Oskutyte, Diana; Satoh, Yoshihide; Murakami, Toshiki

    2008-02-29

    We investigated the effects of the ionophoretic application of ionotropic non-NMDA receptor agonist (AMPA) and NMDA receptor agonist (NMDA) on extracellularly recorded and antidromically identified superior salivatory nucleus (SSN) neurons. A great majority (93%) of SSN neurons was induced to fire by ionophoretic application of AMPA, and they were classified into high firing rate (more than 6 spikes/s), and low firing rate (less than 3 spikes/s) neurons. No clear differences were found between high firing rate and low firing rate neurons according their fibre type and histological locations. Of the SSN neurons that excited by AMPA, 22% (4/18) and 50% (5/9) of the neurons also were induced to fire following ionophoretic application of the NMDA receptor agonist NMDA in different concentrations, 20 mM and 100 mM, respectively. In neurons that induced firing by AMPA and by NMDA, AMPA-evoked firings were induced by the lower intensities of applied current and had higher mean firing rates than NMDA-evoked firing. Neurons that were induced firing by AMPA and by NMDA had B fibre and C fibre axons as well as those that induced firing only by AMPA. Neurons that were fired only by AMPA were found in whole SSN area, whereas neurons that were induced firing by AMPA and by NMDA were mainly found in intermediate SSN area. In conclusion, activation of ionotoropic non-NMDA receptor has a greater excitatory effect on the SSN neurons than that of ionotropic of NMDA receptor. Our data support the view that non-NMDA receptor plays a major role, whereas NMDA receptor plays a minor role, in the activation of SSN neurons.

  6. Agonist-induced activation of histamine H3 receptor signals to extracellular signal-regulated kinases 1 and 2 through PKC-, PLD-, and EGFR-dependent mechanisms.

    PubMed

    Lai, Xiangru; Ye, Lingyan; Liao, Yuan; Jin, Lili; Ma, Qiang; Lu, Bing; Sun, Yi; Shi, Ying; Zhou, Naiming

    2016-04-01

    The histamine H3 receptor (H3R), abundantly expressed in the central and the peripheral nervous system, has been recognized as a promising target for the treatment of various important CNS diseases including narcolepsy, Alzheimer's disease, and attention deficit hyperactivity disorder. The H3R acts via Gi/o -proteins to inhibit adenylate cyclase activity and modulate MAPK activity. However, the underlying molecular mechanisms for H3R mediation of the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) remain to be elucidated. In this study, using HEK293 cells stably expressing human H3R and mouse primary cortical neurons endogenously expressing mouse H3R, we found that the H3R-mediated activation of ERK1/2 was significantly blocked by both the pertussis toxin and the MEK1/2 inhibitor U0126. Upon stimulation by H3R agonist histamine or imetit, H3R was shown to rapidly induce ERK1/2 phosphorylation via PLC/PKC-, PLDs-, and epidermal growth factor receptor (EGFR) transactivation-dependent pathways. Furthermore, it was also indicated that while the βγ-subunits play a key role in H3R-activated ERK1/2 phosphorylation, β-arrestins were not required for ERK1/2 activation. In addition, when the cultured mouse cortical neurons were exposed to oxygen and glucose deprivation conditions (OGD), imetit exhibited neuroprotective properties through the H3R. Treatment of cells with the inhibitor UO126 abolished these protective effects. This suggests a possible neuroprotective role of the H3R-mediated ERK1/2 pathway under hypoxia conditions. These observations may provide new insights into the pharmacological effects and the physiological functions modulated by the H3R-mediated activation of ERK1/2. Histamine H3 receptors are abundantly expressed in the brain and play important roles in various CNS physiological functions. However, the underlying mechanisms for H3R-induced activation of extracellular signal-regulated kinase (ERK)1/2 remain largely unknown. Here

  7. Agonist-induced activation of histamine H3 receptor signals to extracellular signal-regulated kinases 1 and 2 through PKC-, PLD-, and EGFR-dependent mechanisms.

    PubMed

    Lai, Xiangru; Ye, Lingyan; Liao, Yuan; Jin, Lili; Ma, Qiang; Lu, Bing; Sun, Yi; Shi, Ying; Zhou, Naiming

    2016-04-01

    The histamine H3 receptor (H3R), abundantly expressed in the central and the peripheral nervous system, has been recognized as a promising target for the treatment of various important CNS diseases including narcolepsy, Alzheimer's disease, and attention deficit hyperactivity disorder. The H3R acts via Gi/o -proteins to inhibit adenylate cyclase activity and modulate MAPK activity. However, the underlying molecular mechanisms for H3R mediation of the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) remain to be elucidated. In this study, using HEK293 cells stably expressing human H3R and mouse primary cortical neurons endogenously expressing mouse H3R, we found that the H3R-mediated activation of ERK1/2 was significantly blocked by both the pertussis toxin and the MEK1/2 inhibitor U0126. Upon stimulation by H3R agonist histamine or imetit, H3R was shown to rapidly induce ERK1/2 phosphorylation via PLC/PKC-, PLDs-, and epidermal growth factor receptor (EGFR) transactivation-dependent pathways. Furthermore, it was also indicated that while the βγ-subunits play a key role in H3R-activated ERK1/2 phosphorylation, β-arrestins were not required for ERK1/2 activation. In addition, when the cultured mouse cortical neurons were exposed to oxygen and glucose deprivation conditions (OGD), imetit exhibited neuroprotective properties through the H3R. Treatment of cells with the inhibitor UO126 abolished these protective effects. This suggests a possible neuroprotective role of the H3R-mediated ERK1/2 pathway under hypoxia conditions. These observations may provide new insights into the pharmacological effects and the physiological functions modulated by the H3R-mediated activation of ERK1/2. Histamine H3 receptors are abundantly expressed in the brain and play important roles in various CNS physiological functions. However, the underlying mechanisms for H3R-induced activation of extracellular signal-regulated kinase (ERK)1/2 remain largely unknown. Here

  8. A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation

    PubMed Central

    Wang, Jian-Da; Cao, Yu-Lan; Li, Qian; Yang, Ya-Ping; Jin, Mengmeng; Chen, Dong; Wang, Fen; Wang, Guang-Hui; Qin, Zheng-Hong; Hu, Li-Fang; Liu, Chun-Feng

    2015-01-01

    Autophagy dysfunction is implicated in the pathogenesis of Parkinson disease (PD). BECN1/Beclin 1 acts as a critical regulator of autophagy and other cellular processes; yet, little is known about the function and regulation of BECN1 in PD. In this study, we report that dopamine D2 and D3 receptor (DRD2 and DRD3) activation by pramipexole and quinpirole could enhance BECN1 transcription and promote autophagy activation in several cell lines, including PC12, MES23.5 and differentiated SH-SY5Y cells, and also in tyrosine hydroxylase positive primary midbrain neurons. Moreover, we identified a novel FOS (FBJ murine osteosarcoma viral oncogene homolog) binding sequence (5′-TGCCTCA-3′) in the rat and human Becn1/BECN1 promoter and uncovered an essential role of FOS binding in the enhancement of Becn1 transcription in PC12 cells in response to the dopamine agonist(s). In addition, we demonstrated a critical role of intracellular Ca2+ elevation, followed by the enhanced phosphorylation of CAMK4 (calcium/calmodulin-dependent protein kinase IV) and CREB (cAMP responsive element binding protein) in the increases of FOS expression and autophagy activity. More importantly, pramipexole treatment ameliorated the SNCA/α-synuclein accumulation in rotenone-treated PC12 cells that overexpress wild-type or A53T mutant SNCA by promoting autophagy flux. This effect was also demonstrated in the substantia nigra and the striatum of SNCAA53T transgenic mice. The inhibition of SNCA accumulation by pramipexole was attenuated by cotreatment with the DRD2 and DRD3 antagonists and Becn1 siRNAs. Thus, our findings suggest that DRD2 and DRD3 agonist(s) may induce autophagy activation via a BECN1-dependent pathway and have the potential to reduce SNCA accumulation in PD. PMID:26649942

  9. Peripheral endothelin B receptor agonist-induced antinociception involves endogenous opioids in mice.

    PubMed

    Quang, Phuong N; Schmidt, Brian L

    2010-05-01

    Endothelin-1 (ET-1) produced by various cancers is known to be responsible for inducing pain. While ET-1 binding to ETAR on peripheral nerves clearly mediates nociception, effects from binding to ETBR are less clear. The present study assessed the effects of ETBR activation and the role of endogenous opioid analgesia in carcinoma pain using an orthotopic cancer pain mouse model. mRNA expression analysis showed that ET-1 was nearly doubled while ETBR was significantly down-regulated in a human oral SCC cell line compared to normal oral keratinocytes (NOK). Squamous cell carcinoma (SCC) cell culture treated with an ETBR agonist (10(-4)M, 10(-5)M, and 10(-6) M BQ-3020) significantly increased the production of beta-endorphin without any effects on leu-enkephalin or dynorphin. Cancer inoculated in the hind paw of athymic mice with SCC induced significant pain, as indicated by reduction of paw withdrawal thresholds in response to mechanical stimulation, compared to sham-injected and NOK-injected groups. Intratumor administration of 3mg/kg BQ-3020 attenuated cancer pain by approximately 50% up to 3h post-injection compared to PBS-vehicle and contralateral injection, while intratumor ETBR antagonist BQ-788 treatment (100 and 300microg/kg and 3mg/kg) had no effects. Local naloxone methiodide (500microg/kg) or selective mu-opioid receptor antagonist (CTOP, 500microg/kg) injection reversed ETBR agonist-induced antinociception in cancer animals. We propose that these results demonstrate that peripheral ETBR agonism attenuates carcinoma pain by modulating beta-endorphins released from the SCC to act on peripheral opioid receptors found in the cancer microenvironment.

  10. Agonist-induced activation of rat mesenteric resistance vessels: comparison between noradrenaline and vasopressin

    SciTech Connect

    Cauvin, C.; Weir, S.W.; Wallnoefer, A.R.; Rueegg, U.P.

    1988-01-01

    The effects of noradrenaline (NA, 10(-5) M) and (arginine8)vasopressin (AVP, 10(-7) M) on tension in Ca2+-free medium and on membrane potential, and the inhibition of NA- and AVP-induced contractions by isradipine, have been compared in mesenteric resistance vessels (MRVs) from Wistar-Kyoto (WKY) rats. The release of intracellular Ca2+ by AVP contributed significantly less to its tension development than does that by NA. Nonetheless, the concentration-response curves for inhibition by isradipine of NA- and AVP-induced tonic tension were nearly identical. Similarly, these two agonists produced the same degree of membrane depolarization. In addition, both agonists were able to stimulate large contractions in vessels previously depolarized by 80 mM K+. AVP also stimulated /sup 45/Ca influx into rat cultured aortic smooth muscle cells. In contrast to the stimulation of /sup 45/Ca influx by KCl depolarization, the agonist-stimulated /sup 45/Ca influx was insensitive to inhibition by organic Ca2+ antagonists. It is concluded that Ca2+ entry through receptor-operated Ca2+-permeable channels (ROCs) may contribute to agonist-induced activation of rat aortic and MRV smooth muscle.

  11. Agonist-induced platelet procoagulant activity requires shear and a Rac1-dependent signaling mechanism

    PubMed Central

    Delaney, Michael Keegan; Liu, Junling; Kim, Kyungho; Shen, Bo; Stojanovic-Terpo, Aleksandra; Zheng, Yi; Cho, Jaehyung

    2014-01-01

    Activated platelets facilitate blood coagulation by exposing phosphatidylserine (PS) and releasing microvesicles (MVs). However, the potent physiological agonists thrombin and collagen poorly induce PS exposure when a single agonist is used. To obtain a greater procoagulant response, thrombin is commonly used in combination with glycoprotein VI agonists. However, even under these conditions, only a percentage of platelets express procoagulant activity. To date, it remains unclear why platelets poorly expose PS even when stimulated with multiple agonists and what the signaling pathways are of soluble agonist-induced platelet procoagulant activity. Here we show that physiological levels of shear present in blood significantly enhance agonist-induced platelet PS exposure and MV release, enabling low doses of a single agonist to induce full-scale platelet procoagulant activity. PS exposed on the platelet surface was immediately released as MVs, revealing a tight coupling between the 2 processes under shear. Using platelet-specific Rac1−/− mice, we discovered that Rac1 plays a common role in mediating the low-dose agonist-induced procoagulant response independent of platelet aggregation, secretion, and the apoptosis pathway. Platelet-specific Rac1 function was not only important for coagulation in vitro but also for fibrin accumulation in vivo following laser-induced arteriolar injury. PMID:25079357

  12. Agonist-induced activation releases peroxisome proliferator-activated receptor beta/delta from its inhibition by palmitate-induced nuclear factor-kappaB in skeletal muscle cells.

    PubMed

    Jové, Mireia; Laguna, Juan C; Vázquez-Carrera, Manuel

    2005-05-01

    The mechanisms by which elevated levels of free fatty acids cause insulin resistance are not well understood, but there is a strong correlation between insulin resistance and intramyocellular lipid accumulation in skeletal muscle. In addition, accumulating evidence suggests a link between inflammation and type 2 diabetes. The aim of this work was to study whether the exposure of skeletal muscle cells to palmitate affected peroxisome proliferator-activated receptor (PPAR) beta/delta activity. Here, we report that exposure of C2C12 skeletal muscle cells to 0.75 mM palmitate reduced (74%, P<0.01) the mRNA levels of the PPARbeta/delta-target gene pyruvatedehydrogenase kinase 4 (PDK-4), which is involved in fatty acid utilization. This reduction was not observed in the presence of the PPARbeta/delta agonist L-165041. This drug prevented palmitate-induced nuclear factor (NF)-kappaB activation. Increased NF-kappaB activity after palmitate exposure was associated with enhanced protein-protein interaction between PPARbeta/delta and p65. Interestingly, treatment with the PPARbeta/delta agonist L-165041 completely abolished this interaction. These results indicate that palmitate may reduce fatty acid utilization in skeletal muscle cells by reducing PPARbeta/delta signaling through increased NF-kappaB activity.

  13. Proteolytic cleavage of the urokinase receptor substitutes for the agonist-induced chemotactic effect.

    PubMed Central

    Resnati, M; Guttinger, M; Valcamonica, S; Sidenius, N; Blasi, F; Fazioli, F

    1996-01-01

    Physiological concentrations of urokinase plasminogen activator (uPA) stimulated a chemotactic response in human monocytic THP-1 through binding to the urokinase receptor (uPAR). The effect did not require the protease moiety of uPA, as stimulation was achieved also with the N-terminal fragment (ATF), while the 33 kDa low molecular weight uPA was ineffective. Co-immunoprecipitation experiments showed association of uPAR with intracellular kinase(s), as demonstrated by in vitro kinase assays. Use of specific antibodies identified p56/p59hck as a kinase associated with uPAR in THP-1 cell extracts. Upon addition of ATF, p56/p59hck activity was stimulated within 2 min and returned to normal after 30 min. Since uPAR lacks an intracellular domain capable of interacting with intracellular kinase, activation of p56/p59hck must require a transmembrane adaptor. Evidence for this was strongly supported by the finding that a soluble form of uPAR (suPAR) was capable of inducing chemotaxis not only in THP-1 cells but also in cells lacking endogenous uPAR (IC50, 5 pM). However, activity of suPAR require chymotrypsin cleavage between the N-terminal domain D1 and D2 + D3. Chymotrypsin-cleaved suPAR also induced activation of p56/p59hck in THP-1 cells, with a time course comparable with ATF. Our data show that uPA-induced signal transduction takes place via uPAR, involves activation of intracellular tyrosine kinase(s) and requires an as yet undefined adaptor capable of connecting the extracellular ligand binding uPAR to intracellular transducer(s). Images PMID:8612581

  14. Neurokinin B- and specific tachykinin NK3 receptor agonists-induced airway hyperresponsiveness in the guinea-pig

    PubMed Central

    Daoui, Samira; Naline, Emmanuel; Lagente, Vincent; Emonds-Alt, Xavier; Advenier, Charles

    2000-01-01

    The aim of this study was to determine whether neurokinin B (NKB) or specific agonists of tachykinin NK3 receptors, [MePhe7]NKB and senktide, were able to induce airway hyperresponsiveness in guinea-pigs. The effects of these compounds were compared to those of substance P (SP), neurokinin A (NKA) and the preferential tachykinin NK1 ([Sar9, Met(02)11]SP) or NK2 ([βAla8]NKA (4-10)) receptor agonists.In guinea-pigs pretreated with phosphoramidon (10−4 M aerosol for 10 min) and salbutamol (8.7×10−3 M for 10 min), all tachykinins administrated by aerosol (3×10−7 to 10−4 M) induced airway hyperresponsiveness 24 h later, displayed by an exaggerated response to the bronchoconstrictor effect of acetylcholine (i.v.). The rank order of potency was: [βAla8]NKA (4-10)>NKA=NKB=senktide=[MePhe7]NKB=[Sar9,Met(02)11]SP>SP.Airway hyperresponsiveness induced by [MePhe7]NKB was prevented by the tachykinin NK3 (SR 142801) and NK2 (SR 48968) receptor antagonists.Bronchoconstriction induced by tachykinins administered by aerosol was also determined. SP, NKA, NKB and the tachykinin NK1 and NK2 receptor agonist induced bronchoconstriction. The rank order of potency was: NKA=[βAla8]NKA (4-10)>NKB=SP=[Sar9,Met(02)11]SP. Under similar conditions, and for concentrations which induce airway hyperresponsiveness, senktide and [MePhe7]NKB failed to induce bronchoconstriction.It is concluded that tachykinin NK3-receptor stimulation can induce airway hyperresponsiveness and that this effect is not related to the ability of tachykinins to induce bronchoconstriction. PMID:10780997

  15. Novel role of cortactin in G protein-coupled receptor agonist-induced nuclear export and degradation of p21Cip1

    PubMed Central

    Janjanam, Jagadeesh; Rao, Gadiparthi N.

    2016-01-01

    Monocyte chemotactic protein 1 (MCP1) stimulates phosphorylation of cortactin on Y421 and Y446 residues in a time-dependent manner and phosphorylation at Y446 but not Y421 residue is required for MCP1-induced CDK-interacting protein 1 (p21Cip1) nuclear export and degradation in facilitating human aortic smooth muscle cell (HASMC) proliferation. In addition, MCP1-induced cortactin tyrosine phosphorylation, p21Cip1 degradation and HASMC proliferation are dependent on Fyn activation. Upstream to Fyn, MCP1 stimulated C-C chemokine receptor type 2 (CCR2) and Gi/o and inhibition of either one of these molecules using their specific antagonists or inhibitors attenuated MCP1-induced cortactin tyrosine phosphorylation, p21Cip1 degradation and HASMC proliferation. Cortactin phosphorylation at Y446 residue is also required for another G protein-coupled receptor (GPCR) agonist, thrombin-induced p21Cip1 nuclear export and its degradation in promoting HASMC proliferation. Quite interestingly, the receptor tyrosine kinase (RTK) agonist, platelet-derived growth factor-BB (PDGF-BB)-induced p21Cip1 degradation and HASMC proliferation do not require cortactin tyrosine phosphorylation. Together, these findings demonstrate that tyrosine phosphorylation of cortactin at Y446 residue is selective for only GPCR but not RTK agonist-induced nuclear export and proteolytic degradation of p21Cip1 in HASMC proliferation. PMID:27363897

  16. TGF-β-activated Kinase 1 (Tak1) Mediates Agonist-induced Smad Activation and Linker Region Phosphorylation in Embryonic Craniofacial Neural Crest-derived Cells*

    PubMed Central

    Yumoto, Kenji; Thomas, Penny S.; Lane, Jamie; Matsuzaki, Kouichi; Inagaki, Maiko; Ninomiya-Tsuji, Jun; Scott, Gregory J.; Ray, Manas K.; Ishii, Mamoru; Maxson, Robert; Mishina, Yuji; Kaartinen, Vesa

    2013-01-01

    Although the importance of TGF-β superfamily signaling in craniofacial growth and patterning is well established, the precise details of its signaling mechanisms are still poorly understood. This is in part because of the concentration of studies on the role of the Smad-dependent (so-called “canonical”) signaling pathways relative to the Smad-independent ones in many biological processes. Here, we have addressed the role of TGF-β-activated kinase 1 (Tak1, Map3k7), one of the key mediators of Smad-independent (noncanonical) TGF-β superfamily signaling in craniofacial development, by deleting Tak1 specifically in the neural crest lineage. Tak1-deficient mutants display a round skull, hypoplastic maxilla and mandible, and cleft palate resulting from a failure of palatal shelves to appropriately elevate and fuse. Our studies show that in neural crest-derived craniofacial ecto-mesenchymal cells, Tak1 is not only required for TGF-β- and bone morphogenetic protein-induced p38 Mapk activation but also plays a role in agonist-induced C-terminal and linker region phosphorylation of the receptor-mediated R-Smads. Specifically, we demonstrate that the agonist-induced linker region phosphorylation of Smad2 at Thr-220, which has been shown to be critical for full transcriptional activity of Smad2, is dependent on Tak1 activity and that in palatal mesenchymal cells TGFβRI and Tak1 kinases mediate both overlapping and distinct TGF-β2-induced transcriptional responses. To summarize, our results suggest that in neural crest-derived ecto-mesenchymal cells, Tak1 provides a critical point of intersection in a complex dialogue between the canonical and noncanonical arms of TGF-β superfamily signaling required for normal craniofacial development. PMID:23546880

  17. Cannabinoid receptor subtype 2 (CB2R) agonist, GW405833 reduces agonist-induced Ca(2+) oscillations in mouse pancreatic acinar cells.

    PubMed

    Huang, Zebing; Wang, Haiyan; Wang, Jingke; Zhao, Mengqin; Sun, Nana; Sun, Fangfang; Shen, Jianxin; Zhang, Haiying; Xia, Kunkun; Chen, Dejie; Gao, Ming; Hammer, Ronald P; Liu, Qingrong; Xi, Zhengxiong; Fan, Xuegong; Wu, Jie

    2016-01-01

    Emerging evidence demonstrates that the blockade of intracellular Ca(2+) signals may protect pancreatic acinar cells against Ca(2+) overload, intracellular protease activation, and necrosis. The activation of cannabinoid receptor subtype 2 (CB2R) prevents acinar cell pathogenesis in animal models of acute pancreatitis. However, whether CB2Rs modulate intracellular Ca(2+) signals in pancreatic acinar cells is largely unknown. We evaluated the roles of CB2R agonist, GW405833 (GW) in agonist-induced Ca(2+) oscillations in pancreatic acinar cells using multiple experimental approaches with acute dissociated pancreatic acinar cells prepared from wild type, CB1R-knockout (KO), and CB2R-KO mice. Immunohistochemical labeling revealed that CB2R protein was expressed in mouse pancreatic acinar cells. Electrophysiological experiments showed that activation of CB2Rs by GW reduced acetylcholine (ACh)-, but not cholecystokinin (CCK)-induced Ca(2+) oscillations in a concentration-dependent manner; this inhibition was prevented by a selective CB2R antagonist, AM630, or was absent in CB2R-KO but not CB1R-KO mice. In addition, GW eliminated L-arginine-induced enhancement of Ca(2+) oscillations, pancreatic amylase, and pulmonary myeloperoxidase. Collectively, we provide novel evidence that activation of CB2Rs eliminates ACh-induced Ca(2+) oscillations and L-arginine-induced enhancement of Ca(2+) signaling in mouse pancreatic acinar cells, which suggests a potential cellular mechanism of CB2R-mediated protection in acute pancreatitis. PMID:27432473

  18. Cannabinoid receptor subtype 2 (CB2R) agonist, GW405833 reduces agonist-induced Ca2+ oscillations in mouse pancreatic acinar cells

    PubMed Central

    Huang, Zebing; Wang, Haiyan; Wang, Jingke; Zhao, Mengqin; Sun, Nana; Sun, Fangfang; Shen, Jianxin; Zhang, Haiying; Xia, Kunkun; Chen, Dejie; Gao, Ming; Hammer, Ronald P.; Liu, Qingrong; Xi, Zhengxiong; Fan, Xuegong; Wu, Jie

    2016-01-01

    Emerging evidence demonstrates that the blockade of intracellular Ca2+ signals may protect pancreatic acinar cells against Ca2+ overload, intracellular protease activation, and necrosis. The activation of cannabinoid receptor subtype 2 (CB2R) prevents acinar cell pathogenesis in animal models of acute pancreatitis. However, whether CB2Rs modulate intracellular Ca2+ signals in pancreatic acinar cells is largely unknown. We evaluated the roles of CB2R agonist, GW405833 (GW) in agonist-induced Ca2+ oscillations in pancreatic acinar cells using multiple experimental approaches with acute dissociated pancreatic acinar cells prepared from wild type, CB1R-knockout (KO), and CB2R-KO mice. Immunohistochemical labeling revealed that CB2R protein was expressed in mouse pancreatic acinar cells. Electrophysiological experiments showed that activation of CB2Rs by GW reduced acetylcholine (ACh)-, but not cholecystokinin (CCK)-induced Ca2+ oscillations in a concentration-dependent manner; this inhibition was prevented by a selective CB2R antagonist, AM630, or was absent in CB2R-KO but not CB1R-KO mice. In addition, GW eliminated L-arginine-induced enhancement of Ca2+ oscillations, pancreatic amylase, and pulmonary myeloperoxidase. Collectively, we provide novel evidence that activation of CB2Rs eliminates ACh-induced Ca2+ oscillations and L-arginine-induced enhancement of Ca2+ signaling in mouse pancreatic acinar cells, which suggests a potential cellular mechanism of CB2R-mediated protection in acute pancreatitis. PMID:27432473

  19. Parabrachial Nucleus Contributions to Glucagon-Like Peptide-1 Receptor Agonist-Induced Hypophagia

    PubMed Central

    Swick, Jennifer C; Alhadeff, Amber L; Grill, Harvey J; Urrea, Paula; Lee, Stephanie M; Roh, Hyunsun; Baird, John-Paul

    2015-01-01

    Exendin-4 (Ex4), a glucagon-like peptide-1 receptor (GLP-1R) agonist approved to treat type 2 diabetes mellitus, is well known to induce hypophagia in human and animal models. We evaluated the contributions of the hindbrain parabrachial nucleus (PBN) to systemic Ex4-induced hypophagia, as the PBN receives gustatory and visceral afferent relays and descending input from several brain nuclei associated with feeding. Rats with ibotenic-acid lesions targeted to the lateral PBN (PBNx) and sham controls received Ex4 (1 μg/kg) before 24 h home cage chow or 90 min 0.3 M sucrose access tests, and licking microstructure was analyzed to identify components of feeding behavior affected by Ex4. PBN lesion efficacy was confirmed using conditioned taste aversion (CTA) tests. As expected, sham control but not PBNx rats developed a CTA. In sham-lesioned rats, Ex4 reduced chow intake within 4 h of injection and sucrose intake within 90 min. PBNx rats did not show reduced chow or sucrose intake after Ex4 treatment, indicating that the PBN is necessary for Ex4 effects under the conditions tested. In sham-treated rats, Ex4 affected licking microstructure measures associated with hedonic taste evaluation, appetitive behavior, oromotor coordination, and inhibitory postingestive feedback. Licking microstructure responses in PBNx rats after Ex4 treatment were similar to sham-treated rats with the exception of inhibitory postingestive feedback measures. Together, the results suggest that the PBN critically contributes to the hypophagic effects of systemically delivered GLP-1R agonists by enhancing visceral feedback. PMID:25703200

  20. mGlu2/3 agonist-induced hyperthermia: an in vivo assay for detection of mGlu2/3 receptor antagonism and its relation to antidepressant-like efficacy in mice.

    PubMed

    Gleason, S D; Li, X; Smith, I A; Ephlin, J D; Wang, X-S; Heinz, B A; Carter, J H; Baez, M; Yu, J; Bender, D M; Witkin, J M

    2013-08-01

    An assay to detect the on-target effects of mGlu2/3 receptor antagonists in vivo would be valuable in guiding dosing regimens for the exploration of biological effects of potential therapeutic import. Multiple approaches involving blockade of mGlu2/3 receptor agoinist-driven behavioral effects in mice and rats were investigated. Most of these methods failed to provide a useful method of detection of antagonists in vivo (e.g., locomotor activity). In contrast, the mGlu2/3 receptor agonist LY379268 produced dose-dependent increases in body temperature of mice. The hyperthermic effects of LY379268 was abolished in mGlu2 and in mGlu2/3 receptor null mice but not in mGlu3 null mice. Hyperthermia was not produced by an mGlu8 receptor agonist. Agonist-induced hyperthermia was prevented in a dose-dependent manner by structurally-distinct mGlu2/3 receptor antagonists. The blockade was stereo-specific. Moreover, this biological readout was responsive to both orthosteric and to negative allosteric modulators of mGlu2/3 receptors. Antagonism of agonist-induced hyperthermia predicted antidepressant-like efficacy in the mouse forced swim test. As with the hyperthermic response, the antidepressant-like effects of mGlu2/3 receptor antagonists were shown to be due to mGlu2 and not to mGlu3 or mGlu8 receptors through the use of receptor knock-out mice. The ability to rapidly assess on-target activity of mGlu2/3 receptor antagonists enables determination of parameters for setting efficacy doses in vivo. In turn, efficacy-related data in the preclinical laboratory can help to set expectations of therapeutic potential and dosing in humans. PMID:23574174

  1. Agonist-induced functional desensitization of the mu-opioid receptor is mediated by loss of membrane receptors rather than uncoupling from G protein.

    PubMed

    Pak, Y; Kouvelas, A; Scheideler, M A; Rasmussen, J; O'Dowd, B F; George, S R

    1996-11-01

    The effects of acute exposure of the opioid peptide [D-Ala2,N-MePhe4, Gly-ol5]enkephalin (DAMGO) on the mu-opioid receptor were examined in Chinese hamster ovary (CHO) K-1 and baby hamster kidney stable transfectants. In the CHO cell line, acute 1-hr treatment with DAMGO decreased the density of receptors without affecting the affinity or proportion of agonist-detected sites and attenuated the ability of the agonist to inhibit forskolin-stimulated cAMP accumulation. In contrast, similar 1-hr treatment of baby hamster kidney cells did not affect receptor density or agonist ability to inhibit cAMP accumulation, but longer duration of agonist exposure resulted in a reduction in membrane receptor, identical to the CHO cells. These results suggested that for the mu-opioid receptor, alteration in receptor density was the major determinant for the observed agonist-induced desensitization. Consistent with this notion, the ratio of the DAMGO concentration yielding half-maximal occupation of the mu receptor to that yielding half-maximal functional response was < 1. This suggests the necessity for a high mu receptor occupancy rate for maximal functional response, so that any loss of cell surface opioid-binding sites was a critical determinant in reducing the maximal response. This hypothesis was further supported by the observation that irreversible inactivation of fixed proportions of opioid-binding sites with beta-chlorn-altrexamine demonstrated that there were few spare receptors, which is in contrast to what has been reported for other G protein-coupled receptors, including the delta-opioid receptor. Taken together, these data suggest that the opioid agonist DAMGO has a high affinity for the mu receptor but must occupy > 70% of the available receptors to generate the maximal second messenger-linked response.

  2. Agonists-induced platelet activation varies considerably in healthy male individuals: studies by flow cytometry.

    PubMed

    Panzer, Simon; Höcker, Lisa; Koren, Daniela

    2006-02-01

    Flow cytometric evaluation of platelet function extends our understanding of platelets' role in various clinical conditions associated with either bleeding disorders, thrombosis, or monitoring of antiplatelet therapy. The use of suboptimal concentrations of various agonists may allow assessing the "activatability" of platelets. We determined platelet responsiveness to thrombin-receptor-activating peptide-6, arachidonic acid, adenosine 5c-diphosphate (ADP), epinephrine, collagen, and ristocetin at suboptimal concentrations by determination of P-selectin expression and binding of PAC-1 in 26 healthy male individuals. The response varied considerably from one individual to the next. However, within individuals, responses to all agonists except collagen correlated strongly (p<0.05), suggesting a global variability of platelet responses. Moreover, P-selectin expression and PAC-1 binding were strongly correlated (p<0.05). Interestingly, with epinephrine, PAC-1 positive events outnumbered P-selectin positive events, while this was not seen with the other agonists. Thus, epinephrine may specifically affect the conformational switch mechanism and receptor clustering. Our data indicate that the in vitro response to suboptimal concentrations of agonists varies, but individuals with selective platelet defects may still be identified based on data obtained with the various agonists. PMID:16283308

  3. Identification of a Ser/Thr cluster in the C-terminal domain of the human prostaglandin receptor EP4 that is essential for agonist-induced beta-arrestin1 recruitment but differs from the apparent principal phosphorylation site.

    PubMed Central

    Neuschäfer-Rube, Frank; Hermosilla, Ricardo; Rehwald, Mathias; Rönnstrand, Lars; Schülein, Ralf; Wernstedt, Christer; Püschel, Gerhard Paul

    2004-01-01

    hEP4-R (human prostaglandin E2 receptor, subtype EP4) is a G(s)-linked heterotrimeric GPCR (G-protein-coupled receptor). It undergoes agonist-induced desensitization and internalization that depend on the presence of its C-terminal domain. Desensitization and internalization of GPCRs are often linked to agonist-induced beta-arrestin complex formation, which is stabilized by phosphorylation. Subsequently beta-arrestin uncouples the receptor from its G-protein and links it to the endocytotic machinery. The C-terminal domain of hEP4-R contains 38 Ser/Thr residues that represent potential phosphorylation sites. The present study aimed to analyse the relevance of these Ser/Thr residues for agonist-induced phosphorylation, interaction with beta-arrestin and internalization. In response to agonist treatment, hEP4-R was phosphorylated. By analysis of proteolytic phosphopeptides of the wild-type receptor and mutants in which groups of Ser/Thr residues had been replaced by Ala, the principal phosphorylation site was mapped to a Ser/Thr-containing region comprising residues 370-382, the presence of which was necessary and sufficient to obtain full agonist-induced phosphorylation. A cluster of Ser/Thr residues (Ser-389-Ser-390-Thr-391-Ser-392) distal to this site, but not the principal phosphorylation site, was essential to allow agonist-induced recruitment of beta-arrestin1. However, phosphorylation greatly enhanced the stability of the beta-arrestin1-receptor complexes. For maximal agonist-induced internalization, phosphorylation of the principal phosphorylation site was not required, but both beta-arrestin1 recruitment and the presence of Ser/Thr residues in the distal half of the C-terminal domain were necessary. PMID:14709160

  4. Atrial natriuretic peptide attenuates agonist-induced pulmonary edema in mice with targeted disruption of the gene for natriuretic peptide receptor-A

    PubMed Central

    Tsai, Shu-Whei; Green, Sabrina; Grinnell, Katie L.; Machan, Jason T.; Harrington, Elizabeth O.

    2013-01-01

    Atrial natriuretic peptide (ANP) inhibits agonist-induced pulmonary edema formation, but the signaling pathway responsible is not well defined. To investigate the role of the particulate guanylate cyclase-linked receptor, natriuretic peptide receptor-A (NPR-A), we measured acute lung injury responses in intact mice and pulmonary microvascular endothelial cells (PMVEC) with normal and disrupted expression of NPR-A. NPR-A wild-type (NPR-A+/+), heterozygous (NPR-A+/−), and knockout (NPR-A−/−) mice were anesthetized and treated with thrombin receptor agonist peptide (TRAP) or lipopolysaccharide (LPS). Lung injury was assessed by lung wet-to-dry (W/D) weight and by protein and cell concentration of bronchoalveolar lavage (BAL) fluid. No difference in pulmonary edema formation was seen between NPR-A genotypes under baseline conditions. TRAP and LPS increased lung W/D weight and BAL fluid cell counts more in NPR-A−/− mice than in NPR-A+/− or NPR-A+/+ mice, but no genotype-related differences were seen in TRAP-induced increases in bloodless lung W/D weight or LPS-induced increases in BAL protein concentration. Pretreatment with ANP infusion completely blocked TRAP-induced increases in lung W/D weight and blunted LPS-induced increases in BAL cell counts and protein concentration in both NPR-A−/− and NPR-A+/+ mice. Thrombin decreased transmembrane electrical resistance in monolayers of PMVECs in vitro, and this effect was attenuated by ANP in PMVECs isolated from both genotypes. Administration of the NPR-C-specific ligand, cANF, also blocked TRAP-induced increases in lung W/D weight and LPS-induced increases in BAL cell count and protein concentration in NPR-A+/+ and NPR-A−/− mice. We conclude that ANP is capable of attenuating agonist-induced lung edema in the absence of NPR-A. The protective effect of ANP on agonist-induced lung injury and pulmonary barrier function may be mediated by NPR-C. PMID:23195629

  5. Plasma membrane cholesterol level and agonist-induced internalization of δ-opioid receptors; colocalization study with intracellular membrane markers of Rab family.

    PubMed

    Brejchova, Jana; Vosahlikova, Miroslava; Roubalova, Lenka; Parenti, Marco; Mauri, Mario; Chernyavskiy, Oleksandr; Svoboda, Petr

    2016-08-01

    Decrease of cholesterol level in plasma membrane of living HEK293 cells transiently expressing FLAG-δ-OR by β-cyclodextrin (β-CDX) resulted in a slight internalization of δ-OR. Massive internalization of δ-OR induced by specific agonist DADLE was diminished in cholesterol-depleted cells. These results suggest that agonist-induced internalization of δ-OR, which has been traditionally attributed exclusively to clathrin-mediated pathway, proceeds at least partially via membrane domains. Identification of internalized pools of FLAG-δ-OR by colocalization studies with proteins of Rab family indicated the decreased presence of receptors in early endosomes (Rab5), late endosomes and lysosomes (Rab7) and fast recycling vesicles (Rab4). Slow type of recycling (Rab11) was unchanged by cholesterol depletion. As expected, agonist-induced internalization of oxytocin receptors was totally suppressed in β-CDX-treated cells. Determination of average fluorescence lifetime of TMA-DPH, the polar derivative of hydrophobic membrane probe diphenylhexatriene, in live cells by FLIM indicated a significant alteration of the overall PM structure which may be interpreted as an increased "water-accessible space" within PM area. Data obtained by studies of HEK293 cells transiently expressing FLAG-δ-OR by "antibody feeding" method were extended by analysis of the effect of cholesterol depletion on distribution of FLAG-δ-OR in sucrose density gradients prepared from HEK293 cells stably expressing FLAG-δ-OR. Major part of FLAG-δ-OR was co-localized with plasma membrane marker Na,K-ATPase and β-CDX treatment resulted in shift of PM fragments containing both FLAG-δ-OR and Na,K-ATPase to higher density. Thus, the decrease in content of the major lipid constituent of PM resulted in increased density of resulting PM fragments.

  6. Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule

    PubMed Central

    Vyklicky, Vojtech; Krausova, Barbora; Cerny, Jiri; Balik, Ales; Zapotocky, Martin; Novotny, Marian; Lichnerova, Katarina; Smejkalova, Tereza; Kaniakova, Martina; Korinek, Miloslav; Petrovic, Milos; Kacer, Petr; Horak, Martin; Chodounska, Hana; Vyklicky, Ladislav

    2015-01-01

    N-methyl-D-aspartate receptors (NMDARs) mediate synaptic plasticity, and their dysfunction is implicated in multiple brain disorders. NMDARs can be allosterically modulated by numerous compounds, including endogenous neurosteroid pregnanolone sulfate. Here, we identify the molecular basis of the use-dependent and voltage-independent inhibitory effect of neurosteroids on NMDAR responses. The site of action is located at the extracellular vestibule of the receptor’s ion channel pore and is accessible after receptor activation. Mutations in the extracellular vestibule in the SYTANLAAF motif disrupt the inhibitory effect of negatively charged steroids. In contrast, positively charged steroids inhibit mutated NMDAR responses in a voltage-dependent manner. These results, in combination with molecular modeling, characterize structure details of the open configuration of the NMDAR channel. Our results provide a unique opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with dysfunction of the glutamate system. PMID:26086919

  7. Increase in caveolae and caveolin-1 expression modulates agonist-induced contraction and store- and receptor-operated Ca(2+) entry in pulmonary arteries of pulmonary hypertensive rats.

    PubMed

    Jiao, Hai-Xia; Mu, Yun-Ping; Gui, Long-Xin; Yan, Fu-Rong; Lin, Da-Cen; Sham, James S K; Lin, Mo-Jun

    2016-09-01

    Caveolin-1 (Cav-1) is a major component protein associated with caveolae in the plasma membrane and has been identified as a regulator of store-operated Ca(2+) entry (SOCE) and receptor-operated Ca(2+) entry (ROCE). However, the contributions of caveolae/Cav-1 of pulmonary arterial smooth muscle cells (PASMCs) to the altered Ca(2+) signaling pathways in pulmonary arteries (PAs) during pulmonary hypertension (PH) have not been fully characterized. The present study quantified caveolae number and Cav-1 expression, and determined the effects of caveolae disruption on ET-1, cyclopiazonic acid (CPA) and 1-Oleoyl-2-acetyl-glycerol (OAG)-induced contraction in PAs and Ca(2+) influx in PASMCs of chronic hypoxia (CH)- and monocrotaline (MCT)-induced PH rats. We found that the number of caveolae, and the Cav-1 mRNA and protein levels were increased significantly in PASMCs in both PH models. Disruption of caveolae by cholesterol depletion with methyl-β-cyclodextrin (MβCD) significantly inhibited the contractile response to ET-1, CPA and OAG in PAs of control rats. ET-1, SOCE and ROCE-mediated contractile responses were enhanced, and their susceptibility to MβCD suppression was potentiated in the two PH models. MβCD-induced inhibition was reversed by cholesterol repletion. Introduction of Cav-1 scaffolding domain peptide to mimic Cav-1 upregulation caused significant increase in CPA- and OAG-induced Ca(2+) entry in PASMCs of control, CH and MCT-treated groups. Our results suggest that the increase in caveolae and Cav-1 expression in PH contributes to the enhanced agonist-induced contraction of PA via modulation of SOCE and ROCE; and targeting caveolae/Cav-1 in PASMCs may provide a novel therapeutic strategy for the treatment of PH. PMID:27311393

  8. GABAB1 receptor subunit isoforms exert a differential influence on baseline but not GABAB receptor agonist-induced changes in mice.

    PubMed

    Jacobson, Laura H; Bettler, Bernhard; Kaupmann, Klemens; Cryan, John F

    2006-12-01

    GABA(B) receptor agonists produce hypothermia and motor incoordination. Two GABA(B(1)) receptor subunit isoforms exist, but because of lack of specific molecular or pharmacological tools, the relevance of these isoforms in controlling basal body temperature, locomotor activity, or in vivo responses to GABA(B) receptor agonists has been unknown. Here, we used mice deficient in the GABA(B(1a)) and GABA(B(1b)) subunit isoforms to examine the influence of these isoforms on both baseline motor behavior and body temperature and on the motor-incoordinating and hypothermic responses to the GABA(B) receptor agonists l-baclofen and gamma-hydroxybutyrate (GHB). GABA(B(1b))(-/-) mice were hyperactive in a novel environment and showed slower habituation than either GABA(B(1a))(-/-) or wild-type mice. GABA(B(1b))(-/-) mice were hyperactive throughout the circadian dark phase. Hypothermia in response to l-baclofen (6 and 12 mg/kg) or GHB (1 g/kg), baclofen-induced ataxia as determined on the fixed-speed Rotarod, and GHB-induced hypolocomotion were significantly, but for the most part similarly, attenuated in both GABA(B(1a))(-/-) and GABA(B(1b))(-/-) mice. We conclude that l-baclofen and GHB are nonselective for either GABA(B(1)) receptor isoform in terms of in vivo responses. However, GABA(B(1)) receptor isoforms have distinct and different roles in mediating locomotor behavioral responses to a novel environment. Therefore, GABA(B(1a)) and GABA(B(1b)) isoforms are functionally relevant molecular variants of the GABA(B(1)) receptor subunit, which are differentially involved in specific neurophysiological processes and behaviors.

  9. Yokukansan Increases 5-HT1A Receptors in the Prefrontal Cortex and Enhances 5-HT1A Receptor Agonist-Induced Behavioral Responses in Socially Isolated Mice

    PubMed Central

    Ueki, Toshiyuki; Mizoguchi, Kazushige; Yamaguchi, Takuji; Nishi, Akinori; Ikarashi, Yasushi; Hattori, Tomohisa; Kase, Yoshio

    2015-01-01

    The traditional Japanese medicine yokukansan has an anxiolytic effect, which occurs after repeated administration. In this study, to investigate the underlying mechanisms, we examined the effects of repeated yokukansan administration on serotonin 1A (5-HT1A) receptor density and affinity and its expression at both mRNA and protein levels in the prefrontal cortex (PFC) of socially isolated mice. Moreover, we examined the effects of yokukansan on a 5-HT1A receptor-mediated behavioral response. Male mice were subjected to social isolation stress for 6 weeks and simultaneously treated with yokukansan. Thereafter, the density and affinity of 5-HT1A receptors were analyzed by a receptor-binding assay. Levels of 5-HT1A receptor protein and mRNA were also measured. Furthermore, (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT; a 5-HT1A receptor agonist) was injected intraperitoneally, and rearing behavior was examined. Social isolation stress alone did not affect 5-HT1A receptor density or affinity. However, yokukansan significantly increased receptor density and decreased affinity concomitant with unchanged protein and mRNA levels. Yokukansan also enhanced the 8-OH-DPAT-induced decrease in rearing behavior. These results suggest that yokukansan increases 5-HT1A receptors in the PFC of socially isolated mice and enhances their function, which might underlie its anxiolytic effects. PMID:26681968

  10. Evidence for the participation of peripheral α5 subunit-containing GABAA receptors in GABAA agonists-induced nociception in rats.

    PubMed

    Bravo-Hernández, Mariana; Feria-Morales, Luis Alberto; Torres-López, Jorge Elías; Cervantes-Durán, Claudia; Delgado-Lezama, Rodolfo; Granados-Soto, Vinicio; Rocha-González, Héctor Isaac

    2014-07-01

    The activation of GABAA receptor by γ-amino butyric acid (GABA) in primary afferent fibers produces depolarization. In normal conditions this depolarization causes a reduction in the release of neurotransmitters. Therefore, this depolarization remains inhibitory. However, previous studies have suggested that in inflammatory pain, GABA shifts its signaling from inhibition to excitation by an increased GABA-induced depolarization. The contribution of peripheral α5 subunit-containing GABAA receptors to the inflammatory pain is unknown. The purpose of this study was to investigate the possible pronociceptive role of peripheral α5 subunit-containing GABAA receptors in the formalin test. Formalin (0.5%) injection into the dorsum of the right hind paw produced flinching behavior in rats. Ipsilateral local peripheral pre-treatment (-10min) with exogenous GABA (0.003-0.03µg/paw) or common GABAA receptor agonists muscimol (0.003-0.03µg/paw), diazepam (0.017-0.056µg/paw) or phenobarbital (1-100µg/paw) significantly increased 0.5% formalin-induced nociceptive behavior. The pronociceptive effects of GABA (0.03µg/paw), muscimol (0.03µg/paw), diazepam (0.056µg/paw) and phenobarbital (100µg/paw) were prevented by either the GABAA receptor antagonist bicuculline (0.01-0.1µg/paw) or selective α5 subunit-containing GABAA receptor inverse agonist L-655,708 (0.017-0.17µg/paw). The α5 subunit-containing GABAA receptor protein was expressed in dorsal root ganglion (DRG) and dorsal spinal cord of naïve rats. The formalin injection did not modify α5 subunit-containing GABAA receptor expression. Overall, these results suggest that peripheral α5 subunit-containing GABAA receptors play a pronociceptive role in the rat formalin test. PMID:24726872

  11. A pH-sensitive fluor, CypHer 5, used to monitor agonist-induced G protein-coupled receptor internalization in live cells.

    PubMed

    Adie, E J; Kalinka, S; Smith, L; Francis, M J; Marenghi, A; Cooper, M E; Briggs, M; Michael, N P; Milligan, G; Game, S

    2002-11-01

    G protein-coupled receptors (GPCRs) are the largest family of proteins involved in transmembrane signal transduction and are actively studied because of their suitability as therapeutic small-molecule drug targets. Agonist activation of GPCRs almost invariably results in the receptor being desensitized. One of the key events in receptor desensitization is the sequestration of the receptor from the cell surface into acidic intracellular endosomes. Therefore, a convenient, generic, and noninvasive monitor of this process is desirable. A novel, pH-sensitive, red-excited fluorescent dye, CypHer 5, was synthesized. This dye is non-fluorescent at neutral pH and is fluorescent at acidic pH. Anti-epitope antibodies labeled with this dye were internalized in an agonist concentration- and time-dependent manner, following binding on live cells to a range of GPCRs that had been modified to incorporate the epitope tags in their extracellular N-terminal domain. This resulted in a large signal increase over background. When protonated, the red fluorescence of CypHer 5 provides a generic reagent suitable for monitoring the internalization of GPCRs into acidic vesicles. This approach should be amenable to the study of many other classes of cell surface receptors that also internalize following stimulation.

  12. Using Bioluminescence Resonance Energy Transfer (BRET) to Characterize Agonist-Induced Arrestin Recruitment to Modified and Unmodified G Protein-Coupled Receptors.

    PubMed

    Donthamsetti, Prashant; Quejada, Jose Rafael; Javitch, Jonathan A; Gurevich, Vsevolod V; Lambert, Nevin A

    2015-09-01

    G protein-coupled receptors (GPCRs) represent ∼25% of current drug targets. Ligand binding to these receptors activates G proteins and arrestins, which are involved in differential signaling pathways. Because functionally selective or biased ligands activate one of these two pathways, they may be superior medications for certain diseases states. The identification of such ligands requires robust drug screening assays for both G protein and arrestin activity. This unit describes protocols for two bioluminescence resonance energy transfer (BRET)-based assays used to monitor arrestin recruitment to GPCRs. One assay requires modification of GPCRs by fusion to a BRET donor or acceptor moiety, whereas the other can detect arrestin recruitment to unmodified GPCRs.

  13. Using bioluminescent resonance energy transfer (BRET) to characterize agonist-induced arrestin recruitment to modified and unmodified G protein-coupled receptors (GPCRs)

    PubMed Central

    Donthamsetti, Prashant; Quejada, Jose Rafael; Javitch, Jonathan A.; Gurevich, Vsevolod V.; Lambert, Nevin A.

    2015-01-01

    G protein-coupled receptors (GPCRs) represent ~25% of current drug targets. Ligand binding to these receptors activates G proteins and arrestins, which are involved in differential signaling pathways. Functionally selective or biased ligands activate one of these two pathways and may be superior medications for certain diseases states. The identification of these ligands requires robust drug screening assays for both G protein and arrestin activity. Here we describe in detail the technical aspects of two bioluminescence resonance energy (BRET)-based assays that can be used to monitor arrestin recruitment to GPCRs. One assay requires modification of GPCRs by fusion to a BRET donor or acceptor moiety, whereas the other can detect recruitment of arrestin to unmodified GPCRs. PMID:26331887

  14. The two subtype 1 somatostatin receptors of rainbow trout, Tsst1A and Tsst1B, possess both distinct and overlapping ligand binding and agonist-induced regulation features.

    PubMed

    Gong, Jun-Yang; Kittilson, Jeffrey D; Slagter, Barton J; Sheridan, Mark A

    2004-07-01

    In the present study, two isoforms of somatostatin receptor subtype one, previously obtained from the brain of rainbow trout, Tsst1A and Tsst1B, were stably transfected in the Chinese hamster ovary cell line (CHO-K1) and their binding properties were characterized. High affinity binding of somatostatin by expressed receptors was saturable and ligand selective. Both Tsst1A and Tsst1B preferentially bound peptides derived from preprosomatostatin I (PPSS I; e.g., SS-14-I) over those derived from PPSS II (containing Tyr7, Gly10-SS-14-I at their C-terminus; e.g., SS-25-II). The rank order of ligand affinities for Tsst1A was SS-28-I>SS-14-I>SS-26-I?SS-28-II>SS-14-II>SS-25-II. The rank order for Tsst1B was SS-14-I>SS-28-I>SS-26-1?SS-28-II>SS-25-II>SS-14-II. Agonist-induced regulation of Tsst1A and Tsst1B was also investigated. After 30 min of SS-14-I exposure, both Tsst1A and Tsst1B underwent rapid internalization; ca. 60% of membrane Tsst1A was internalized and only about 40% of membrane Tsst1B was internalized. Prolonged agonist exposure (up to 48 h) induced up-regulation of membrane-expressed Tsst1A, but had no effect on Tsst1B. These results indicate that Tsst1s display both distinct and overlapping ligand binding and agonist-induced regulation features. Such features may form the basis of ligand-selection and have important consequences on target organ responsiveness. PMID:15253878

  15. Receptor-Selective Agonists Induce Emesis and Fos Expression in the Brain and Enteric Nervous System of the Least Shrew (Cryptotis parva)

    PubMed Central

    Ray, Andrew P.; Chebolu, Seetha; Darmani, Nissar A.

    2009-01-01

    Research on the mechanisms of emesis has implicated multiple neurotransmitters via both central (dorsal vagal complex) and peripheral (enteric neurons and enterochromaffin cells) anatomical substrates. Taking advantage of advances in receptor-specific agonists, and utilizing Fos expression as a functional activity marker, this study demonstrates a strong, but incomplete, overlap in anatomical substrates for a variety of emetogens. We used cisplatin and specific agonists to 5-HT3 serotonergic, D2/D3 dopaminergic, and NK1 tachykininergic receptors to induce vomiting in the least shrew (Cryptotis parva), and quantified the resulting Fos expression. The least shrew is a small mammal whose responses to emetic challenges are very similar to its human counterparts. In all cases, the enteric nervous system, nucleus of the solitary tract, and dorsal motor nucleus of the vagus demonstrated significantly increased Fos immunoreactivity (Fos-IR). However, Fos-IR induction was notably absent from the area postrema following the dopaminergic and NK1 receptor-specific agents. Two brain nuclei not usually discussed regarding emesis, the dorsal raphe nucleus and paraventricular thalamic nucleus, also demonstrated increased emesis-related Fos-IR. Taken together, these data suggest the dorsal vagal complex is part of a common pathway for a variety of distinct emetogens, but there are central emetic substrates, both medullary and diencephalic, that can be accessed without directly stimulating the area postrema. PMID:19699757

  16. The role of D1 and D2 receptors in dopamine agonist-induced modulation of affective defense behavior in the cat.

    PubMed

    Sweidan, S; Edinger, H; Siegel, A

    1990-07-01

    The role of D1 and D2 dopamine (DA) receptor subtypes in mediating DAergic modulation of affective defense behavior in the cat has been investigated in the present study. Feline affective defense, characterized mainly by autonomic arousal, ear retraction, hissing and paw striking, was elicited by electrical stimulation of the ventromedial hypothalamus. Following the establishment of a stable threshold current for eliciting the hissing response of the behavior, the effect of systemic (IP) administration of various DAergic agonists and antagonists on the hissing threshold was determined. The injection of the nonselective DA agonist apomorphine (1.0, 0.3 and 0.1 mg/kg) facilitated hissing in a dose-related manner. This effect was mimicked by the D-2 selective agonist LY 171555 (0.1, 0.03 and 0.01 mg/kg) but not by the D1-selective agonist SKF 38393 (1.0, 5.0 and 10.0 mg/kg), and was blocked by the nonselective and the D2-selective antagonists haloperidol (0.1 and 0.5 mg/kg) and spiperone (0.2 mg/kg), respectively. The D1-selective antagonist SCH 23390 blocked apomorphine-induced facilitation only at a high dose (0.5 mg/kg). In addition, the injection of haloperidol (1.0 mg/kg), spiperone (0.2 mg/kg) or SCH 23390 (0.1 mg/kg) alone inhibited the behavior. It was therefore concluded that DAergic facilitation of affective defense behavior is mainly mediated by the D2 receptors, but that activation of the D1 receptors may play a "permissive" role. The interaction between the D1 and D2 receptors in mediating this facilitation and the behavioral specificity of the effect are discussed. PMID:1974065

  17. DCG-IV but not other group-II metabotropic receptor agonists induces microglial BDNF mRNA expression in the rat striatum. Correlation with neuronal injury.

    PubMed

    Venero, J L; Santiago, M; Tomás-Camardiel, M; Matarredona, E R; Cano, J; Machado, A

    2002-01-01

    We have previously described a neuroprotective action of (2S,2'R,3'R)-2-(2'3'-dicarboxycyclopropyl)glycine (DCG-IV), an agonist for group-II metabotropic receptors, on dopaminergic nerve terminals against the degeneration induced by 1-methyl-4-phenylpyridinium (MPP+). This effect was accompanied by an up-regulation of brain-derived neurotrophic factor (BDNF) mRNA expression in the rat striatum. We have now analyzed the phenotypic nature of the BDNF mRNA-expressing cells in response to intrastriatal injection of DCG-IV. Dual in situ hybridization and immunohistochemistry revealed that microglial cells but not astrocytes were responsible for this induction. Subsequent analysis demonstrated that this effect was accompanied by striking loss of striatal glutamic acid decarboxylase (GAD) mRNA and massive appearance of internucleosomal DNA fragmentation, a hallmark of apoptosis. A dose-response study demonstrated that doses of DCG-IV as low as 5 nmol was very toxic in terms GAD mRNA and apoptosis. 0.5 nmol of DCG-IV did not induce toxicity at all in terms of GAD mRNA and apoptosis. Activation of group-II metabotropic receptors in striatum with N-Acetyl-Asp-Glu (NAAG; a mGlu3 agonist) and (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (a mGlu2 and mGlu3 agonist) did not induce neither loss of GAD mRNA nor appearance of apoptosis (doses up to 20 nmol). In additional experiments, NAAG, in contrast to DCG-IV, failed to protect the striatal dopaminergic system against the degeneration induced by MPP+ as studied by microdialysis. Finally, we studied the mechanism by which DCG-IV is highly toxic. For that, selective antagonists of either metabotropic--(R,S)-alpha-methyl-4-carboxyphenylglycine and LY 341495--or ionotropic (N-methyl-D-aspartate, NMDA)--DL-2-amino-5-phosphonovaleric acid (AP-5) glutamate receptors --were co-administered with DCG-IV. Only AP-5 highly protected the striatum against the degeneration induced by DCG-IV. Since DCG-IV also activates the NMDA receptor at

  18. 86Rb+ Efflux Mediated by α4β2*-Nicotinic Acetylcholine Receptors with High and Low Sensitivity to Stimulation by Acetylcholine Display Similar Agonist-Induced Desensitization

    PubMed Central

    Marks, Michael J.; Meinerz, Natalie M.; Brown, Robert W. B.; Collins, Allan C.

    2010-01-01

    The nicotinic acetylcholine receptors (nAChR) assembled from α4 and β2 subunits are the most densely expressed subtype in the brain. Concentration-effect curves for agonist activation of α4β2*-nAChR are biphasic. This biphasic agonist sensitivity is ascribed to differences in subunit stoichiometry. The studies described here evaluated desensitization elicited by low concentrations of epibatidine, nicotine, cytisine or methylcarbachol of brain α4β2-nAChR function measured with acetylcholine stimulated 86Rb+ efflux from mouse thalamic synaptosomes. Each agonist elicited concentration-dependent desensitization. The agonists differed in potency. However, IC50 values for each agonist for desensitization of 86Rb+ efflux both with high (EC50≈3 μM) and low (EC50≈ 150 μM) acetylcholine sensitivity were not significantly different. Concentrations required to elicit desensitization were higher that their respective KD values for receptor binding. Even though the two components of α4β2*-nAChR mediated 86Rb+ efflux from mouse brain differ markedly in EC50 values for agonist activation, they are equally sensitive to desensitization by exposure to low agonist concentrations. Mice were also chronically treated with nicotine by continuous infusion of 0, 0.5 or 4.0 mg/kg/hr and desensitization induced by nicotine was evaluated. Consistent with previous results, chronic nicotine treatment increased the density of epibatidine binding sites. Acute exposure to nicotine also elicited concentration-dependent desensitization of both high sensitivity and low sensitivity acetylcholine-stimulated 86Rb+ efflux from cortical and thalamic synaptosomes. Although chronic nicotine treatment reduced maximal 86Rb+ efflux from thalamus, IC50 values in both brain regions were unaffected by chronic nicotine treatment. PMID:20599770

  19. GLYX-13, a NMDA receptor glycine-site functional partial agonist, induces antidepressant-like effects without ketamine-like side effects.

    PubMed

    Burgdorf, Jeffrey; Zhang, Xiao-lei; Nicholson, Katherine L; Balster, Robert L; Leander, J David; Stanton, Patric K; Gross, Amanda L; Kroes, Roger A; Moskal, Joseph R

    2013-04-01

    Recent human clinical studies with the NMDA receptor (NMDAR) antagonist ketamine have revealed profound and long-lasting antidepressant effects with rapid onset in several clinical trials, but antidepressant effects were preceded by dissociative side effects. Here we show that GLYX-13, a novel NMDAR glycine-site functional partial agonist, produces an antidepressant-like effect in the Porsolt, novelty induced hypophagia, and learned helplessness tests in rats without exhibiting substance abuse-related, gating, and sedative side effects of ketamine in the drug discrimination, conditioned place preference, pre-pulse inhibition and open-field tests. Like ketamine, the GLYX-13-induced antidepressant-like effects required AMPA/kainate receptor activation, as evidenced by the ability of NBQX to abolish the antidepressant-like effect. Both GLYX-13 and ketamine persistently (24 h) enhanced the induction of long-term potentiation of synaptic transmission and the magnitude of NMDAR-NR2B conductance at rat Schaffer collateral-CA1 synapses in vitro. Cell surface biotinylation studies showed that both GLYX-13 and ketamine led to increases in both NR2B and GluR1 protein levels, as measured by Western analysis, whereas no changes were seen in mRNA expression (microarray and qRT-PCR). GLYX-13, unlike ketamine, produced its antidepressant-like effect when injected directly into the medial prefrontal cortex (MPFC). These results suggest that GLYX-13 produces an antidepressant-like effect without the side effects seen with ketamine at least in part by directly modulating NR2B-containing NMDARs in the MPFC. Furthermore, the enhancement of 'metaplasticity' by both GLYX-13 and ketamine may help explain the long-lasting antidepressant effects of these NMDAR modulators. GLYX-13 is currently in a Phase II clinical development program for treatment-resistant depression. PMID:23303054

  20. Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure.

    PubMed

    Watanabe, Mitsuhiro; Horai, Yasushi; Houten, Sander M; Morimoto, Kohkichi; Sugizaki, Taichi; Arita, Eri; Mataki, Chikage; Sato, Hiroyuki; Tanigawara, Yusuke; Schoonjans, Kristina; Itoh, Hiroshi; Auwerx, Johan

    2011-07-29

    We evaluated the metabolic impact of farnesoid X receptor (FXR) activation by administering a synthetic FXR agonist (GW4064) to mice in which obesity was induced by a high fat diet. Administration of GW4064 accentuated body weight gain and glucose intolerance induced by the high fat diet and led to a pronounced worsening of the changes in liver and adipose tissue. Mechanistically, treatment with GW4064 decreased bile acid (BA) biosynthesis, BA pool size, and energy expenditure, whereas reconstitution of the BA pool in these GW4064-treated animals by BA administration dose-dependently reverted the metabolic abnormalities. Our data therefore suggest that activation of FXR with synthetic agonists is not useful for long term management of the metabolic syndrome, as it reduces the BA pool size and subsequently decreases energy expenditure, translating as weight gain and insulin resistance. In contrast, expansion of the BA pool size, which can be achieved by BA administration, could be an interesting strategy to manage the metabolic syndrome.

  1. Preferential involvement of mitochondria in Toll-like receptor 3 agonist-induced neuroblastoma cell apoptosis, but not in inhibition of cell growth.

    PubMed

    Chuang, Jiin-Haur; Lin, Tsu-Kung; Tai, Ming-Hong; Liou, Chia-Wei; Huang, Sheng-Teng; Wu, Chia-Ling; Lin, Hung-Yi; Wang, Pei-Wen

    2012-04-01

    Double-stranded RNA (dsRNA) can mediate its therapeutic effect through Toll-like receptor 3 (TLR3) expressed on tumor cells including neuroblastoma. We used synthetic dsRNA polyinosinic-polycytidylic acid [Poly(I:C)] as a TLR3 agonist to treat TLR3-expressing SK-N-AS neuroblatoma (NB) cells. We found up-regulation of endoplasmic reticulum (ER) stress proteins glucose-regulated protein 78 and inositol-requiring enzyme 1. Bafilomycin A1, an inhibitor of ER function, effectively blocked poly(I:C)-induced activation of caspase-8, -9, and -3, MnSOD and glutathione peroxidase 1 and reduced poly(I:C)-induced SK-N-AS apoptosis. Pan caspase inhibitor and inhibitor of caspase-9, but not of caspase-8, inhibited poly(I:C)-induced activated caspase-3 expression. Rho zero (ρ(0))-SK-N-AS cells were resistant to poly(I:C)-induced mitochondrial reactive oxygen species production and apoptosis, but not to inhibition of cell growth, as compared to parent SK-N-AS cells. Taking together, these findings suggest that mitochondria are preferentially involved in poly(I:C)-induced NB cell apoptosis, but not in inhibition of cell growth. A crosstalk between mitochondria and ER is implicated.

  2. Rapid agonist-induced loss of sup 125 I-. beta. -endorphin opioid receptor sites in NG108-15, but not SK-N-SH neuroblastoma cells

    SciTech Connect

    Cone, R.I.; Lameh, J.; Sadee, W. )

    1991-01-01

    The authors have measured {mu} and {delta} opioid receptor sites on intact SK-N-SH and NG108-15 neuroblastoma cells, respectively, in culture. Use of {sup 125}I-{beta}-endorphin ({beta}E) as a tracer, together with {beta}E(6-31) to block high-affinity non-opioid binding in both cell lines, permitted the measurement of cell surface {mu} and {delta} opioid receptor sites. Labeling was at {delta} sites in NG108-15 cells and predominantly at {mu} sites in SK-N-SH cells. Pretreatment with the {mu} and {delta} agonist, DADLE, caused a rapid loss of cell surface {delta} receptor sites in NG108-15 cells, but failed to reduce significantly {mu} receptor density in SK-N-SH cells.

  3. Administration of caffeine inhibited adenosine receptor agonist-induced decreases in motor performance, thermoregulation, and brain neurotransmitter release in exercising rats.

    PubMed

    Zheng, Xinyan; Hasegawa, Hiroshi

    2016-01-01

    We examined the effects of an adenosine receptor agonist on caffeine-induced changes in thermoregulation, neurotransmitter release in the preoptic area and anterior hypothalamus, and endurance exercise performance in rats. One hour before the start of exercise, rats were intraperitoneally injected with either saline alone (SAL), 10 mg kg(-1) caffeine and saline (CAF), a non-selective adenosine receptor agonist (5'-N-ethylcarboxamidoadenosine [NECA]: 0.5 mg kg(-1)) and saline (NECA), or the combination of caffeine and NECA (CAF+NECA). Rats ran until fatigue on the treadmill with a 5% grade at a speed of 18 m min(-1) at 23 °C. Compared to the SAL group, the run time to fatigue (RTTF) was significantly increased by 52% following caffeine administration and significantly decreased by 65% following NECA injection (SAL: 91 ± 14.1 min; CAF: 137 ± 25.8 min; NECA: 31 ± 13.7 min; CAF+NECA: 85 ± 11.8 min; p<0.05). NECA decreased the core body temperature (Tcore), oxygen consumption, which is an index of heat production, tail skin temperature, which is an index of heat loss, and extracellular dopamine (DA) release at rest and during exercise. Furthermore, caffeine injection inhibited the NECA-induced decreases in the RTTF, Tcore, heat production, heat loss, and extracellular DA release. Neither caffeine nor NECA affected extracellular noradrenaline or serotonin release. These results support the findings of previous studies showing improved endurance performance and overrides in body limitations after caffeine administration, and imply that the ergogenic effects of caffeine may be associated with the adenosine receptor blockade-induced increases in brain DA release.

  4. Administration of caffeine inhibited adenosine receptor agonist-induced decreases in motor performance, thermoregulation, and brain neurotransmitter release in exercising rats.

    PubMed

    Zheng, Xinyan; Hasegawa, Hiroshi

    2016-01-01

    We examined the effects of an adenosine receptor agonist on caffeine-induced changes in thermoregulation, neurotransmitter release in the preoptic area and anterior hypothalamus, and endurance exercise performance in rats. One hour before the start of exercise, rats were intraperitoneally injected with either saline alone (SAL), 10 mg kg(-1) caffeine and saline (CAF), a non-selective adenosine receptor agonist (5'-N-ethylcarboxamidoadenosine [NECA]: 0.5 mg kg(-1)) and saline (NECA), or the combination of caffeine and NECA (CAF+NECA). Rats ran until fatigue on the treadmill with a 5% grade at a speed of 18 m min(-1) at 23 °C. Compared to the SAL group, the run time to fatigue (RTTF) was significantly increased by 52% following caffeine administration and significantly decreased by 65% following NECA injection (SAL: 91 ± 14.1 min; CAF: 137 ± 25.8 min; NECA: 31 ± 13.7 min; CAF+NECA: 85 ± 11.8 min; p<0.05). NECA decreased the core body temperature (Tcore), oxygen consumption, which is an index of heat production, tail skin temperature, which is an index of heat loss, and extracellular dopamine (DA) release at rest and during exercise. Furthermore, caffeine injection inhibited the NECA-induced decreases in the RTTF, Tcore, heat production, heat loss, and extracellular DA release. Neither caffeine nor NECA affected extracellular noradrenaline or serotonin release. These results support the findings of previous studies showing improved endurance performance and overrides in body limitations after caffeine administration, and imply that the ergogenic effects of caffeine may be associated with the adenosine receptor blockade-induced increases in brain DA release. PMID:26604076

  5. Effects of oxytocin on serotonin 1B agonist-induced autism-like behavior in mice.

    PubMed

    Lawson, Sarah K; Gray, Andrew C; Woehrle, Nancy S

    2016-11-01

    Social impairments in autism remain poorly understood and without approved pharmacotherapies. Novel animals models are needed to elucidate mechanisms and evaluate novel treatments for the social deficits in autism. Recently, serotonin 1B receptor (5-HT1B) agonist challenge in mice was shown to induce autism-like behaviors including perseveration, reduced prepulse inhibition, and delayed alternation deficits. However, the effects of 5-HT1B agonists on autism-related social behaviors in mice remain unknown. Here, we examine the effects of 5-HT1B agonist challenge on sociability and preference for social novelty in mice. We also examine the effects of 5-HT1B agonist treatment on average rearing duration, a putative rodent measure of non-selective attention. Non-selective attention is an associated feature of autism that is also not well understood. We show that 5-HT1B receptor activation reduces sociability, preference for social novelty, and rearing in mice. In addition, we examine the ability of oxytocin, an off-label treatment for the social impairments in autism, to reverse 5-HT1B agonist-induced social and attention deficits in mice. We show that oxytocin restores social novelty preference in mice treated with a 5-HT1B agonist. We also show that oxytocin attenuates 5-HT1B agonist-induced sociability and rearing deficits in mice. Our results suggest that 5-HT1B agonist challenge provides a useful pharmacological mouse model for aspects of autism, and implicate 5-HT1B in autism social and attention deficits. Moreover, our findings suggest that oxytocin may treat the social deficits in autism through a mechanism involving 5-HT1B.

  6. Intrinsic relative activities of κ opioid agonists in activating Gα proteins and internalizing receptor: Differences between human and mouse receptors.

    PubMed

    DiMattio, Kelly M; Ehlert, Frederick J; Liu-Chen, Lee-Yuan

    2015-08-15

    Several investigators recently identified biased κ opioid receptor (KOP receptor) agonists. However, no comprehensive study of the functional selectivity of available KOP receptor agonists at the human and mouse KOP receptors (hKOP receptor and mKOP receptor, respectively) has been published. Here we examined the ability of over 20 KOP receptor agonists to activate G proteins and to internalize the receptor. Clonal neuro-2a mouse neuroblastoma (N2a) cells stably transfected with the hKOP receptor or mKOP receptor were used. We employed agonist-induced [(35)S]GTPγS binding and KOP receptor internalization as measures of activation of G protein and β-arrestin pathways, respectively. The method of Ehlert and colleagues was used to quantify intrinsic relative activities at G protein activation (RAi-G) and receptor internalization (RAi-I) and the degree of functional selectivity between the two [Log RAi-G - logRAi-I, RAi-G/RAi-I and bias factor]. The parameter, RAi, represents a relative estimate of agonist affinity for the active receptor state that elicits a given response. The endogenous ligand dynorphin A (1-17) was designated as the balanced ligand with a bias factor of 1. Interestingly, we found that there were species differences in functional selectivity. The most striking differences were for 12-epi-salvinorin A, U69,593, and ICI-199,441. 12-Epi-salvinorin A was highly internalization-biased at the mKOP receptor, but apparently G protein-biased at hKOP receptor. U69,593 was much more internalization-biased at mKOP receptor than hKOP receptor. ICI199,441 showed internalization-biased at the mKOP receptor and G protein-biased at the hKOP receptor. Possible mechanisms for the observed species differences are discussed.

  7. Intrinsic Relative Activities of Opioid Agonists in Activating Gα proteins and Internalizing Receptor: Differences between Human and Mouse Receptors

    PubMed Central

    DiMattio, Kelly M.; Ehlert, Frederick J.; Liu-Chen, Lee-Yuan

    2015-01-01

    Several investigators recently identified biased opioid receptor (KOP receptor) agonists. However, no comprehensive study of the functional selectivity of available KOP receptor agonists at the human and mouse KOP receptors (hKOP receptor and mKOP receptor, respectively) has been published. Here we examined the ability of over 20 KOP receptor agonists to activate G proteins and to internalize the receptor. Clonal neuro-2a mouse neuroblastoma (N2a) cells stably transfected with the hKOP receptor or mKOP receptor were used. We employed agonist-induced [35S]GTPγS binding and KOP receptor internalization as measures of activation of G protein and β-arrestin pathways, respectively. The method of Ehlert and colleagues was used to quantify intrinsic relative activities at G protein activation (RAi−G) and receptor internalization (RAi−I) and the degree of functional selectivity between the two [Log RAi−G − Log RAi−I, RAi−G/RAi−I and bias factor]. The parameter, RAi, represents a relative estimate of agonist affinity for the active receptor state that elicits a given response. The endogenous ligand dynorphin A (1–17) was designated as the balanced ligand with a bias factor of 1. Interestingly, we found that there were species differences in functional selectivity. The most striking differences were for 12-epi-salvinorin A, U69,593, and ICI-199,441. 12-Epi-salvinorin A was highly internalization-biased at the mKOP receptor, but apparently G protein-biased at hKOP receptor. U69,593 was much more internalization-biased at mKOP receptor than hKOP receptor. ICI199,441 showed internalization-biased at the mKOP receptor and G protein-biased at the hKOP receptor. Possible mechanisms for the observed species differences are discussed. PMID:26057692

  8. Stabilizing effects of G protein on the active conformation of adenosine A1 receptor differ depending on G protein type.

    PubMed

    Tateyama, Michihiro; Kubo, Yoshihiro

    2016-10-01

    G protein coupled receptors (GPCRs) trigger various cellular and physiological responses upon the ligand binding. The ligand binding induces conformational change in GPCRs which allows G protein to interact with the receptor. The interaction of G protein also affects the active conformation of GPCRs. In this study, we have investigated the effects of Gαi1, Gαo and chimeric Gαqi5 on the active conformation of the adenosine A1 receptor, as each Gα showed difference in the interaction with adenosine A1 receptor. The conformational changes in the adenosine A1 receptor were detected as the agonist-induced decreases in efficiency of Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) fused at the two intracellular domains of the adenosine A1 receptor. Amplitudes of the agonist-induced FRET decreases were subtle when the FP-tagged adenosine A1 receptor was expressed alone, whereas they were significantly enhanced when co-expressed with Gαi1Gβ1Gγ22 (Gi1) or Gαqi5Gβ1Gγ22 (Gqi5) but not with GαοGβ1Gγ22 (Go). The enhancement of the agonist-induced FRET decrease in the presence of Gqi5 was significantly larger than that of Gi1. Furthermore, the FRET recovery upon the agonist removal in the presence of Gqi5 was significantly slower than that of Gi1. From these results it was revealed that the agonist-bound active conformation of adenosine A1 receptor is unstable without the binding of G protein and that the stabilizing effects of G protein differ depending on the types of G protein.

  9. Endothelium-Independent Effect of Fisetin on the Agonist-Induced Regulation of Vascular Contractility

    PubMed Central

    Je, Hyun Dong; Sohn, Uy Dong; La, Hyen-Oh

    2016-01-01

    Fisetin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of fisetin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Fisetin significantly relaxed fluoride-, thromboxane A2- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, fisetin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of fisetin on agonist-induced vascular contraction regardless of endothelial function. PMID:26759702

  10. The Inhibitory Effect of Shikonin on the Agonist-Induced Regulation of Vascular Contractility

    PubMed Central

    Je, Hyun Dong; Kim, Hyeong-Dong; La, Hyen-Oh

    2015-01-01

    Shikonin, a natural flavonoid found in the roots of Lithospermum erythrorhizon, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of shikonin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Shikonin significantly relaxed fluoride-, thromboxane A2- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, shikonin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and the inhibition of MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of shikonin on agonist-induced vascular contraction regardless of endothelial function. PMID:25995821

  11. Endothelium-Independent Effect of Fisetin on the Agonist-Induced Regulation of Vascular Contractility.

    PubMed

    Je, Hyun Dong; Sohn, Uy Dong; La, Hyen-Oh

    2016-01-01

    Fisetin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of fisetin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Fisetin significantly relaxed fluoride-, thromboxane A2- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, fisetin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of fisetin on agonist-induced vascular contraction regardless of endothelial function.

  12. G-protein Receptor Kinase 5 Regulates the Cannabinoid Receptor 2-induced Up-regulation of Serotonin 2A Receptors*

    PubMed Central

    Franklin, Jade M.; Carrasco, Gonzalo A.

    2013-01-01

    We have recently reported that cannabinoid agonists can up-regulate and enhance the activity of serotonin 2A (5-HT2A) receptors in the prefrontal cortex (PFCx). Increased expression and activity of cortical 5-HT2A receptors has been associated with neuropsychiatric disorders, such as anxiety and schizophrenia. Here we report that repeated CP55940 exposure selectively up-regulates GRK5 proteins in rat PFCx and in a neuronal cell culture model. We sought to examine the mechanism underlying the regulation of GRK5 and to identify the role of GRK5 in the cannabinoid agonist-induced up-regulation and enhanced activity of 5-HT2A receptors. Interestingly, we found that cannabinoid agonist-induced up-regulation of GRK5 involves CB2 receptors, β-arrestin 2, and ERK1/2 signaling because treatment with CB2 shRNA lentiviral particles, β-arrestin 2 shRNA lentiviral particles, or ERK1/2 inhibitor prevented the cannabinoid agonist-induced up-regulation of GRK5. Most importantly, we found that GRK5 shRNA lentiviral particle treatment prevented the cannabinoid agonist-induced up-regulation and enhanced 5-HT2A receptor-mediated calcium release. Repeated cannabinoid exposure was also associated with enhanced phosphorylation of CB2 receptors and increased interaction between β-arrestin 2 and ERK1/2. These latter phenomena were also significantly inhibited by GRK5 shRNA lentiviral treatment. Our results suggest that sustained activation of CB2 receptors, which up-regulates 5-HT2A receptor signaling, enhances GRK5 expression; the phosphorylation of CB2 receptors; and the β-arrestin 2/ERK interactions. These data could provide a rationale for some of the adverse effects associated with repeated cannabinoid agonist exposure. PMID:23592773

  13. Unexpected antipsychotic-like activity with the muscarinic receptor ligand (5R,6R)6-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane .

    PubMed

    Bymaster, F P; Shannon, H E; Rasmussen, K; Delapp, N W; Mitch, C H; Ward, J S; Calligaro, D O; Ludvigsen, T S; Sheardown, M J; Olesen, P H; Swedberg, M D; Sauerberg, P; Fink-Jensen, A

    1998-09-01

    (5R,6R)6-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3 .2.1]octane (PTAC) is a potent muscarinic receptor ligand with high affinity for central muscarinic receptors and no or substantially less affinity for a large number of other receptors or binding sites including dopamine receptors. The ligand exhibits partial agonist effects at muscarinic M2 and M4 receptors and antagonist effects at muscarinic M1, M3 and M5 receptors. PTAC inhibited conditioned avoidance responding, dopamine receptor agonist-induced behavior and D-amphetamine-induced FOS protein M5 expression in the nucleus accumbens without inducing catalepsy, tremor or salivation at pharmacologically relevant doses. The effect of PTAC on conditioned avoidance responding and dopamine receptor agonist-induced behavior was antagonized by the acetylcholine receptor antagonist scopolamine. The compound selectively inhibited dopamine cell firing (acute administration) as well as the number of spontaneously active dopamine cells (chronic administration) in the limbic ventral tegmental area (A10) relative to the non-limbic substantia nigra, pars compacta (A9). The results demonstrate that PTAC exhibits functional dopamine receptor antagonism despite its lack of affinity for the dopamine receptors and indicate that muscarinic receptor partial agonists may be an important new approach in the medical treatment of schizophrenia.

  14. Co-administration of α-GalCer analog and TLR4 agonist induces robust CD8+ T-cell responses to PyCS protein and WT-1 antigen and activates memory-like effector NKT cells

    PubMed Central

    Coelho-dos-Reis, Jordana G.; Huang, Jing; Tsao, Tiffany; Pereira, Felipe V.; Funakoshi, Ryota; Nakajima, Hiroko; Sugiyama, Haruo; Tsuji, Moriya

    2016-01-01

    In the present study, the combined adjuvant effect of 7DW8-5, a potent α-GalCer-analog, and monophosphoryl lipid A (MPLA), a TLR4 agonist, on the induction of vaccine-induced CD8+ T-cell responses and protective immunity was evaluated. Mice were immunized with peptides corresponding to the CD8+ T-cell epitopes of a malaria antigen, a circumsporozoite protein of Plasmodium yoelii, and a tumor antigen, a Wilms Tumor antigen-1 (WT-1), together with 7DW8-5 and MPLA, as an adjuvant. These immunization regimens were able to induce higher levels of CD8+ T-cell responses and, ultimately, enhanced levels of protection against malaria and tumor challenges compared to the levels induced by immunization with peptides mixed with 7DW8-5 or MPLA alone. Co-administration of 7DW8-5 and MPLA induces activation of memory-like effector natural killer T (NKT) cells, i.e. CD44+CD62L−NKT cells. Our study indicates that 7DW8-5 greatly enhances important synergistic pathways associated to memory immune responses when co-administered with MPLA, thus rendering this combination of adjuvants a novel vaccine adjuvant formulation. PMID:27132023

  15. Co-administration of α-GalCer analog and TLR4 agonist induces robust CD8(+) T-cell responses to PyCS protein and WT-1 antigen and activates memory-like effector NKT cells.

    PubMed

    Coelho-Dos-Reis, Jordana G; Huang, Jing; Tsao, Tiffany; Pereira, Felipe V; Funakoshi, Ryota; Nakajima, Hiroko; Sugiyama, Haruo; Tsuji, Moriya

    2016-07-01

    In the present study, the combined adjuvant effect of 7DW8-5, a potent α-GalCer-analog, and monophosphoryl lipid A (MPLA), a TLR4 agonist, on the induction of vaccine-induced CD8(+) T-cell responses and protective immunity was evaluated. Mice were immunized with peptides corresponding to the CD8(+) T-cell epitopes of a malaria antigen, a circumsporozoite protein of Plasmodium yoelii, and a tumor antigen, a Wilms Tumor antigen-1 (WT-1), together with 7DW8-5 and MPLA, as an adjuvant. These immunization regimens were able to induce higher levels of CD8(+) T-cell responses and, ultimately, enhanced levels of protection against malaria and tumor challenges compared to the levels induced by immunization with peptides mixed with 7DW8-5 or MPLA alone. Co-administration of 7DW8-5 and MPLA induces activation of memory-like effector natural killer T (NKT) cells, i.e. CD44(+)CD62L(-)NKT cells. Our study indicates that 7DW8-5 greatly enhances important synergistic pathways associated to memory immune responses when co-administered with MPLA, thus rendering this combination of adjuvants a novel vaccine adjuvant formulation. PMID:27132023

  16. Alpha-tocopherol inhibits agonist-induced monocytic cell adhesion to cultured human endothelial cells.

    PubMed Central

    Faruqi, R; de la Motte, C; DiCorleto, P E

    1994-01-01

    Antioxidants have been proposed to be anti-atherosclerotic agents; however, the mechanisms underlying their beneficial effects are poorly understood. We have examined the effect of alpha-tocopherol (alpha-tcp) on one cellular event in atherosclerotic plaque development, monocyte adhesion to stimulated endothelial cells (ECs). Human umbilical vein ECs were pretreated with alpha-tcp before stimulation with known agonists of monocyte adhesion: IL-1 (10 ng/ml), LPS (10 ng/ml), thrombin (30 U/ml), or PMA (10 nM). Agonist-induced monocytic cell adhesion, but not basal adhesion, was inhibited in a time- and concentration-dependent manner by alpha-tcp. The IC50 of alpha-tcp on an IL-1-induced response was 45 microM. The inhibition correlated with a decrease in steady state levels of E-selectin mRNA and cell surface expression of E-selectin which is consistent with the ability of a monoclonal antibody to E-selectin to inhibit monocytic cell adhesion in this system. Probucol (50 microM) and N-acetylcysteine (20 mM) also inhibited agonist-induced monocytic cell adhesion; whereas, several other antioxidants had no significant effect. Protein kinase C (PKC) does not appear to play a role in the alpha-tcp effect since no suppression of phosphorylation of PKC substrates was observed. Activation of the transcription factor NF-kappa B is reported to be necessary but not sufficient for E-selectin expression in EC. Electrophoretic mobility shift assays failed to show an alpha-tcp-induced decrease in activation of this transcription factor after cytokine stimulation. It has been hypothesized that alpha-tcp acts as an anti-atherosclerotic molecule by inhibiting generation of oxidized LDL--a putative triggering molecule in the atherosclerotic process. Our results point to a novel alternative mechanism of action of alpha-tcp. Images PMID:7518838

  17. G Protein-coupled Receptor Kinase-mediated Phosphorylation Regulates Post-endocytic Trafficking of the D2 Dopamine Receptor*S⃞

    PubMed Central

    Namkung, Yoon; Dipace, Concetta; Javitch, Jonathan A.; Sibley, David R.

    2009-01-01

    We investigated the role of G protein-coupled receptor kinase (GRK)-mediated phosphorylation in agonist-induced desensitization, arrestin association, endocytosis, and intracellular trafficking of the D2 dopamine receptor (DAR). Agonist activation of D2 DARs results in rapid and sustained receptor phosphorylation that is solely mediated by GRKs. A survey of GRKs revealed that only GRK2 or GRK3 promotes D2 DAR phosphorylation. Mutational analyses resulted in the identification of eight serine/threonine residues within the third cytoplasmic loop of the receptor that are phosphorylated by GRK2/3. Simultaneous mutation of these eight residues results in a receptor construct, GRK(-), that is completely devoid of agonist-promoted GRK-mediated receptor phosphorylation. We found that both wild-type (WT) and GRK(-) receptors underwent a similar degree of agonist-induced desensitization as assessed using [35S]GTPγS binding assays. Similarly, both receptor constructs internalized to the same extent in response to agonist treatment. Furthermore, using bioluminescence resonance energy transfer assays to directly assess receptor association with arrestin3, we found no differences between the WT and GRK(-) receptors. Thus, phosphorylation is not required for arrestin-receptor association or agonist-induced desensitization or internalization. In contrast, when we examined recycling of the D2 DARs to the cell surface, subsequent to agonist-induced endocytosis, the GRK(-) construct exhibited less recycling in comparison with the WT receptor. This impairment appears to be due to a greater propensity of the GRK(-) receptors to down-regulate once internalized. In contrast, if the receptor is highly phosphorylated, then receptor recycling is promoted. These results reveal a novel role for GRK-mediated phosphorylation in regulating the post-endocytic trafficking of a G protein-coupled receptor. PMID:19332542

  18. PDGF-induced receptor phosphorylation and phosphoinositide hydrolysis are unaffected by protein kinase C activation in mouse swiss 3T3 and human skin fibroblasts

    SciTech Connect

    Sturani, E.; Vicentini, L.M.; Zippel, R.; Toschi, L.; Pandiella-Alonso, A.; Comoglio, P.M.; Meldolesi, J.

    1986-05-29

    Short (1-10 min) pretreatment of intact cells with activators of protein kinase C (e.g. phorbol-12 myristate, 13-acetate, PMA) affects the activity of a variety of surface receptors (for growth factors, hormones and neurotransmitters), with inhibition of transmembrane signal generation. In two types of fibroblasts it is demonstrated that the PDGF receptor is unaffected by PMA. Exposure to PMA at concentrations up to 100 nM for 10 min failed to inhibit either one of the agonist-induced, receptor-coupled responses of PDGF: the autophosphorylation of receptor molecules at tyrosine residues, and the hydrolysis of membrane polyphosphoinositides. In contrast, the EGF receptor autophosphorylation (in A 431 cells) and the bombesin-induced phosphoinositide hydrolysis were readily inhibited by PMA.

  19. Spinal 5-HT7 receptor activation induces long-lasting phrenic motor facilitation

    PubMed Central

    Hoffman, M S; Mitchell, G S

    2011-01-01

    Abstract Acute intermittent hypoxia elicits a form of serotonin-dependent respiratory plasticity known as phrenic long term facilitation (pLTF). Episodic spinal serotonin-2 (5-HT2) receptor activation on or near phrenic motor neurons is necessary for pLTF. A hallmark of pLTF is the requirement for serotonin-dependent synthesis of brain-derived neurotrophic factor (BDNF), and activation of its high affinity receptor, TrkB. Activation of spinal Gs protein-coupled adenosine 2A receptors (GsPCRs) elicits a unique form of long-lasting phrenic motor facilitation (PMF), but via unique mechanisms (BDNF independent TrkB trans-activation). We hypothesized that other GsPCRs elicit PMF, specifically serotonin-7 (5-HT7) receptors, which are expressed in phrenic motor neurons. Cervical spinal (C4) injections of a selective 5-HT7 receptor agonist, AS-19 (10 μm, 5 μl; 3 × 5 min), in anaesthetized, vagotomized and ventilated male Sprague–Dawley rats elicited long-lasting PMF (>120 min), an effect prevented by pretreatment with a 5-HT7 receptor antagonist (SB 269970; 5 mm, 7 μl). GsPCR activation ‘trans-activates’ TrkB by increasing synthesis of an immature TrkB isoform. Spinal injection of a TrkB inhibitor (k252a) and siRNAs that prevent TrkB (but not BDNF) mRNA translation both blocked 5-HT7 agonist-induced PMF, confirming a requirement for TrkB synthesis and activity. k252a affected late PMF (≥90 min) only. Spinal inhibition of the PI3K/AKT pathway blocked 5-HT7 agonist-induced PMF, whereas MEK/ERK inhibition delayed, but did not block, PMF. An understanding of signalling mechanisms giving rise to PMF may guide development of novel therapeutic strategies to treat ventilatory control disorders associated with respiratory insufficiency, such as spinal injury and motor neuron disease. PMID:21242254

  20. Agonist-induced ADP-ribosylation of a cytosolic protein in human platelets

    SciTech Connect

    Bruene, B.; Molina Y Vedia, L.; Lapetina, E.G. )

    1990-05-01

    {alpha}-Thrombin and phorbol 12,13-dibutyrate stimulated the mono(ADP-ribosyl)ation of a 42-kDa cytosolic protein of human platelets. This effect was mediated by protein kinase C activation and was inhibited by protein kinase C inhibitor staurosporine. It also was prevented by prostacyclin, which is known to inhibit the phospholipase C-induced formation of 1,2-diacylglycerol, which is one of the endogenous activators of protein kinase C. On sodium dodecyl sulfate/polyacrylamide gel electrophoresis, the 42-kDa protein that is ADP-ribosylated by {alpha}-thrombin was clearly distinct from the {alpha} subunits of membrane-bound inhibitory and stimulatory guanine nucleotide-binding regulatory proteins, respectively G{sub i{alpha}} and G{sub s{alpha}}; the 47-kDa protein that is phosphorylated by protein kinase C in platelets; and the 39-kDa protein that has been shown to be endogenously ADP-ribosylated by agents that release nitric oxide. This information shows that agonist-induced activation of protein kinase leads to the ADP-ribosylation of a specific protein. This covalent modification might have a functional role in platelet activation.

  1. Early maternal deprivation and neonatal single administration with a cannabinoid agonist induce long-term sex-dependent psychoimmunoendocrine effects in adolescent rats.

    PubMed

    Llorente, Ricardo; Arranz, Lorena; Marco, Eva-María; Moreno, Enrique; Puerto, Marta; Guaza, Carmen; De la Fuente, Mónica; Viveros, Maria-Paz

    2007-07-01

    Maternal deprivation [24h on postnatal day 9] might represent an animal model of schizophrenia and behavioural and neurochemical alterations observed in adulthood may be mediated by hippocampal impairments induced by abnormally increased glucocorticoids due to neonatal stress. We aimed to provide new data for psychoimmunoendocrine characterization of this animal model by evaluating its effects in adolescent rats of both genders. In previous studies we found that cannabinoid compounds counteracted the enhanced impulsivity of maternally deprived animals and that the cannabinoid receptor agonist WIN 55,212-2 showed neuroprotective properties in neonatal rats. So, we hypothesised that this compound could counteract at least some of the detrimental effects that we expected to find in maternally deprived animals. Accordingly, the drug was administered immediately after the maternal deprivation period. Maternally deprived males showed significantly decreased motor activity in the holeboard and the plus-maze. The cannabinoid agonist induced, exclusively in males, a significant anxiogenic-like effect, which was reversed by maternal deprivation. In the forced swimming test, both treatments independently induced depressive-like responses. Maternal deprivation reduced immunological function whereas the drug exerted tissue-dependent effects on the immune parameters analysed. Maternally deprived females showed reduced corticosterone levels whereas the cannabinoid agonist increased hormone concentration in all groups. In general, the results show detrimental effects of both treatments as well as intriguing interactions, notably in relation to emotional behaviour and certain immunological responses.

  2. Agonist-induced redistribution of calponin in contractile vascular smooth muscle cells.

    PubMed

    Parker, C A; Takahashi, K; Tao, T; Morgan, K G

    1994-11-01

    Calponin is a thin filament-associated protein that has been implicated in playing an auxiliary regulatory role in smooth muscle contraction. We have used immunofluorescence and digital imaging microscopy to determine the cellular distribution of calponin in single cells freshly isolated from the ferret portal vein. In resting cells calponin is distributed throughout the cytosol, associated with filamentous structures, and is excluded from the nuclear area of the cell. The ratio of surface cortex-associated calponin to cytosol-associated calponin (R) was found to be 0.639 +/- 0.021. Upon depolarization of the cell with physiological saline solution containing 96 mM K+, the distribution of calponin did not change from that of a resting cell (R = 0.678 +/- 0.025, P = 0.369). Upon stimulation with an agonist (10 microM phenylephrine) that is known to activate protein kinase C (PKC) in these cells, the cellular distribution of calponin changed from primarily cytosolic to primarily surface cortex associated (R = 1.24 +/- 0.085, P < 0.001). This agonist-induced redistribution of calponin was partially inhibited by the PKC inhibitor calphostin, overlapped in time with PKC translocation, and preceded contraction of these cells. These results suggest that the physiological function of calponin may be to mediate agonist-activated contraction via a PKC-dependent pathway. PMID:7526695

  3. Receptor-G Protein Interaction Studied by Bioluminescence Resonance Energy Transfer: Lessons from Protease-Activated Receptor 1

    PubMed Central

    Ayoub, Mohammed Akli; Al-Senaidy, Abdulrahman; Pin, Jean-Philippe

    2012-01-01

    Since its development, the bioluminescence resonance energy transfer (BRET) approach has been extensively applied to study G protein-coupled receptors (GPCRs) in real-time and in live cells. One of the major aspects of GPCRs investigated in considerable details is their physical coupling to the heterotrimeric G proteins. As a result, new concepts have emerged, but few questions are still a matter of debate illustrating the complexity of GPCR-G protein interactions and coupling. Here, we summarized the recent advances on our understanding of GPCR-G protein coupling based on BRET approaches and supported by other FRET-based studies. We essentially focused on our recent studies in which we addressed the concept of preassembly vs. the agonist-dependent interaction between the protease-activated receptor 1 (PAR1) and its cognate G proteins. We discussed the concept of agonist-induced conformational changes within the preassembled PAR1-G protein complexes as well as the critical question how the multiple coupling of PAR1 with two different G proteins, Gαi1 and Gα12, but also β-arrestin 1, can be regulated. PMID:22737145

  4. Dopamine D2 receptor-mediated Akt/PKB signalling: initiation by the D2S receptor and role in quinpirole-induced behavioural activation.

    PubMed

    Chen, Han-Ting; Ruan, Nan-Yu; Chen, Jin-Chung; Lin, Tzu-Yung

    2012-09-24

    The short and long isoforms of the dopamine D2 receptor (D2S and D2L respectively) are highly expressed in the striatum. Functional D2 receptors activate an intracellular signalling pathway that includes a cAMP-independent route involving Akt/GSK3 (glycogen synthase kinase 3). To investigate the Akt/GSK3 response to the seldom-studied D2S receptor, we established a rat D2S receptor-expressing cell line [HEK (human embryonic kidney)-293/rD2S]. We found that in HEK-293/rD2S cells, the D2/D3 agonists bromocriptine and quinpirole significantly induced Akt and GSK3 phosphorylation, as well as ERK1/2 (extracellular-signal-regulated kinase 1/2) activation. The D2S receptor-induced Akt signals were profoundly inhibited by the internalization blockers monodansyl cadaverine and concanavalin A. Activation of the D2S receptor in HEK-293/rD2S cells appeared to trigger Akt/phospho-Akt translocation to the cell membrane. In addition to our cell culture experiments, we studied D2 receptor-dependent Akt in vivo by systemic administration of the D2/D3 agonist quinpirole. The results show that quinpirole evoked Akt-Ser473 phosphorylation in the ventral striatum. Furthermore, intra-accumbens administration of wortmannin, a PI3K (phosphoinositide 3-kinase) inhibitor, significantly suppressed the quinpirole-evoked behavioural activation. Overall, we demonstrate that activation of the dopamine D2S receptor stimulates Akt/GSK3 signalling. In addition, in vivo Akt activity in the ventral striatum appears to play an important role in systemic D2/D3 agonist-induced behavioural activation.

  5. Dopamine D2 receptor-mediated Akt/PKB signalling: initiation by the D2S receptor and role in quinpirole-induced behavioural activation

    PubMed Central

    Chen, Han-Ting; Ruan, Nan-Yu; Chen, Jin-Chung; Lin, Tzu-Yung

    2012-01-01

    The short and long isoforms of the dopamine D2 receptor (D2S and D2L respectively) are highly expressed in the striatum. Functional D2 receptors activate an intracellular signalling pathway that includes a cAMP-independent route involving Akt/GSK3 (glycogen synthase kinase 3). To investigate the Akt/GSK3 response to the seldom-studied D2S receptor, we established a rat D2S receptor-expressing cell line [HEK (human embryonic kidney)-293/rD2S]. We found that in HEK-293/rD2S cells, the D2/D3 agonists bromocriptine and quinpirole significantly induced Akt and GSK3 phosphorylation, as well as ERK1/2 (extracellular-signal-regulated kinase 1/2) activation. The D2S receptor-induced Akt signals were profoundly inhibited by the internalization blockers monodansyl cadaverine and concanavalin A. Activation of the D2S receptor in HEK-293/rD2S cells appeared to trigger Akt/phospho-Akt translocation to the cell membrane. In addition to our cell culture experiments, we studied D2 receptor-dependent Akt in vivo by systemic administration of the D2/D3 agonist quinpirole. The results show that quinpirole evoked Akt-Ser473 phosphorylation in the ventral striatum. Furthermore, intra-accumbens administration of wortmannin, a PI3K (phosphoinositide 3-kinase) inhibitor, significantly suppressed the quinpirole-evoked behavioural activation. Overall, we demonstrate that activation of the dopamine D2S receptor stimulates Akt/GSK3 signalling. In addition, in vivo Akt activity in the ventral striatum appears to play an important role in systemic D2/D3 agonist-induced behavioural activation. PMID:22909302

  6. Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma

    PubMed Central

    Friesen, Claudia; Hormann, Inis; Roscher, Mareike; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf; Debatin, Klaus-Michael; Miltner, Erich

    2014-01-01

    Glioblastoma are the most frequent and malignant human brain tumors, having a very poor prognosis. The enhanced radio- and chemoresistance of glioblastoma and the glioblastoma stem cells might be the main reason why conventional therapies fail. The second messenger cyclic AMP (cAMP) controls cell proliferation, differentiation, and apoptosis. Downregulation of cAMP sensitizes tumor cells for anti-cancer treatment. Opioid receptor agonists triggering opioid receptors can activate inhibitory Gi proteins, which, in turn, block adenylyl cyclase activity reducing cAMP. In this study, we show that downregulation of cAMP by opioid receptor activation improves the effectiveness of anti-cancer drugs in treatment of glioblastoma. The µ-opioid receptor agonist D,L-methadone sensitizes glioblastoma as well as the untreatable glioblastoma stem cells for doxorubicin-induced apoptosis and activation of apoptosis pathways by reversing deficient caspase activation and deficient downregulation of XIAP and Bcl-xL, playing critical roles in glioblastomas’ resistance. Blocking opioid receptors using the opioid receptor antagonist naloxone or increasing intracellular cAMP by 3-isobutyl-1-methylxanthine (IBMX) strongly reduced opioid receptor agonist-induced sensitization for doxorubicin. In addition, the opioid receptor agonist D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux, whereas doxorubicin increased opioid receptor expression in glioblastomas. Furthermore, opioid receptor activation using D,L-methadone inhibited tumor growth significantly in vivo. Our findings suggest that opioid receptor activation triggering downregulation of cAMP is a promising strategy to inhibit tumor growth and to improve the effectiveness of anti-cancer drugs in treatment of glioblastoma and in killing glioblastoma stem cells. PMID:24626197

  7. The Inhibitory Effect of Apigenin on the Agonist-Induced Regulation of Vascular Contractility via Calcium Desensitization-Related Pathways

    PubMed Central

    Je, Hyun Dong; Kim, Hyeong-Dong; La, Hyen-Oh

    2014-01-01

    Apigenin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of apigenin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Apigenin significantly relaxed fluoride-, thromboxane A2 mimetic- or phorbol ester-induced vascular contraction, which suggests that apigenin could be an anti-hypertensive that reduces agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, apigenin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels, which suggests the mechanism involving the inhibition of Rho-kinase and MEK activity and the subsequent phosphorylation of MYPT1 and ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of apigenin on agonist-induced vascular contraction regardless of endothelial function. PMID:24753814

  8. Free fatty acids and protein kinase C activation induce GPR120 (free fatty acid receptor 4) phosphorylation.

    PubMed

    Sánchez-Reyes, Omar B; Romero-Ávila, M Teresa; Castillo-Badillo, Jean A; Takei, Yoshinori; Hirasawa, Akira; Tsujimoto, Gozoh; Villalobos-Molina, Rafael; García-Sáinz, J Adolfo

    2014-01-15

    GPR120, free fatty acid receptor 4, is a recently deorphanized G protein-coupled receptor that seems to play cardinal roles in the regulation of metabolism and in the pathophysiology of inflammatory and metabolic disorders. In the present work a GPR120-Venus fusion protein was expressed in HEK293 Flp-In T-REx cells and its function (increase in intracellular calcium) and phosphorylation were studied. It was observed that the fusion protein migrated in sodium dodecyl sulfate-polyacrylamide gels as a band with a mass of ≈70-75kDa, although other bands of higher apparent weight (>130kDa) were also detected. Cell stimulation with docosahexaenoic acid or α-linolenic acid induced concentration-dependent increases in intracellular calcium and GPR120 phosphorylation. Activation of protein kinase C with phorbol esters also induced a marked receptor phosphorylation but did not alter the ability of 1µM docosahexaenoic acid to increase the intracellular calcium concentration. Phorbol ester-induced GPR120 phosphorylation, but not that induced with docosahexaenoic acid, was blocked by protein kinase C inhibitors (bis-indolyl-maleimide I and Gö 6976) suggesting that conventional kinase isoforms mediate this action. The absence of effect of protein kinase C inhibitors on agonist-induced GPR120 phosphorylation indicates that this kinase does not play a major role in agonist-induced receptor phosphorylation. Docosahexaenoic acid action was associated with marked GPR120 internalization whereas that induced with phorbol esters was smaller at early times. PMID:24239485

  9. X-ray structures of AMPA receptor-cone snail toxin complexes illuminate activation mechanism.

    PubMed

    Chen, Lei; Dürr, Katharina L; Gouaux, Eric

    2014-08-29

    AMPA-sensitive glutamate receptors are crucial to the structural and dynamic properties of the brain, to the development and function of the central nervous system, and to the treatment of neurological conditions from depression to cognitive impairment. However, the molecular principles underlying AMPA receptor activation have remained elusive. We determined multiple x-ray crystal structures of the GluA2 AMPA receptor in complex with a Conus striatus cone snail toxin, a positive allosteric modulator, and orthosteric agonists, at 3.8 to 4.1 angstrom resolution. We show how the toxin acts like a straightjacket on the ligand-binding domain (LBD) "gating ring," restraining the domains via both intra- and interdimer cross-links such that agonist-induced closure of the LBD "clamshells" is transduced into an irislike expansion of the gating ring. By structural analysis of activation-enhancing mutants, we show how the expansion of the LBD gating ring results in pulling forces on the M3 helices that, in turn, are coupled to ion channel gating. PMID:25103405

  10. Serotonin 2A and 2B receptor-induced phrenic motor facilitation: differential requirement for spinal NADPH oxidase activity

    PubMed Central

    MacFarlane, P.M.; Vinit, S.; Mitchell, G.S.

    2011-01-01

    Acute intermittent hypoxia (AIH) facilitates phrenic motor output by a mechanism that requires spinal serotonin (type 2) receptor activation, NADPH oxidase activity and formation of reactive oxygen species (ROS). Episodic spinal serotonin (5-HT) receptor activation alone, without changes in oxygenation, is sufficient to elicit NADPH oxidase-dependent phrenic motor facilitation (pMF). Here we investigated: 1) whether serotonin 2A and/or 2B (5-HT2a/b) receptors are expressed in identified phrenic motor neurons, and 2) which receptor subtype is capable of eliciting NADPH-oxidase-dependent pMF. In anesthetized, artificially ventilated adult rats, episodic C4 intrathecal injections (3 × 6µl injections, 5 min intervals) of a 5-HT2a (DOI) or 5-HT2b (BW723C86) receptor agonist elicited progressive and sustained increases in integrated phrenic nerve burst amplitude (i.e. pMF), an effect lasting at least 90 minutes post-injection for both receptor subtypes. 5-HT2a and 5-HT2b receptor agonist-induced pMF were both blocked by selective antagonists (ketanserin and SB206553, respectively), but not by antagonists to the other receptor subtype. Single injections of either agonist failed to elicit pMF, demonstrating a need for episodic receptor activation. Phrenic motor neurons retrogradely labeled with cholera toxin B fragment expressed both 5-HT2a and 5-HT2b receptors. Pre-treatment with NADPH oxidase inhibitors (apocynin and DPI) blocked 5-HT2b, but not 5-HT2a-induced pMF. Thus, multiple spinal type 2 serotonin receptors elicit pMF, but they act via distinct mechanisms that differ in their requirement for NADPH oxidase activity. PMID:21223996

  11. Protease-activated Receptor-4 Signaling and Trafficking Is Regulated by the Clathrin Adaptor Protein Complex-2 Independent of β-Arrestins.

    PubMed

    Smith, Thomas H; Coronel, Luisa J; Li, Julia G; Dores, Michael R; Nieman, Marvin T; Trejo, JoAnn

    2016-08-26

    Protease-activated receptor-4 (PAR4) is a G protein-coupled receptor (GPCR) for thrombin and is proteolytically activated, similar to the prototypical PAR1. Due to the irreversible activation of PAR1, receptor trafficking is intimately linked to signal regulation. However, unlike PAR1, the mechanisms that control PAR4 trafficking are not known. Here, we sought to define the mechanisms that control PAR4 trafficking and signaling. In HeLa cells depleted of clathrin by siRNA, activated PAR4 failed to internalize. Consistent with clathrin-mediated endocytosis, expression of a dynamin dominant-negative K44A mutant also blocked activated PAR4 internalization. However, unlike most GPCRs, PAR4 internalization occurred independently of β-arrestins and the receptor's C-tail domain. Rather, we discovered a highly conserved tyrosine-based motif in the third intracellular loop of PAR4 and found that the clathrin adaptor protein complex-2 (AP-2) is important for internalization. Depletion of AP-2 inhibited PAR4 internalization induced by agonist. In addition, mutation of the critical residues of the tyrosine-based motif disrupted agonist-induced PAR4 internalization. Using Dami megakaryocytic cells, we confirmed that AP-2 is required for agonist-induced internalization of endogenous PAR4. Moreover, inhibition of activated PAR4 internalization enhanced ERK1/2 signaling, whereas Akt signaling was markedly diminished. These findings indicate that activated PAR4 internalization requires AP-2 and a tyrosine-based motif and occurs independent of β-arrestins, unlike most classical GPCRs. Moreover, these findings are the first to show that internalization of activated PAR4 is linked to proper ERK1/2 and Akt activation. PMID:27402844

  12. 4-Hydroxynonenal, an aldehydic product of lipid peroxidation, impairs signal transduction associated with muscarinic acetylcholine and metabotropic glutamate receptors: possible action on G alpha(q/11).

    PubMed

    Blanc, E M; Kelly, J F; Mark, R J; Waeg, G; Mattson, M P

    1997-08-01

    Considerable data indicate that oxidative stress and membrane lipid peroxidation contribute to neuronal degeneration in an array of age-related neurodegenerative disorders. In contrast, the impact of subtoxic levels of membrane lipid peroxidation on neuronal function is largely unknown. We now report that 4-hydroxynonenal (HNE), an aldehydic product of lipid peroxidation, disrupts coupling of muscarinic cholinergic receptors and metabotropic glutamate receptors to phospholipase C-linked GTP-binding proteins in cultured rat cerebrocortical neurons. At subtoxic concentrations, HNE markedly inhibited GTPase activity, inositol phosphate release, and elevation of intracellular calcium levels induced by carbachol (muscarinic agonist) and (RS)-3,5-dihydroxyphenyl glycine (metabotropic glutamate receptor agonist). Maximal impairment of agonist-induced responses occurred within 30 min of exposure to HNE. Other aldehydes, including malondialdehyde, had little effect on agonist-induced responses. Antioxidants that suppress lipid peroxidation did not prevent impairment of agonist-induced responses by HNE, whereas glutathione, which is known to bind and detoxify HNE, did prevent impairment of agonist-induced responses. HNE itself did not induce oxidative stress. Immunoprecipitation-western blot analysis using an antibody to HNE-protein conjugates showed that HNE can bind to G alpha(q/11). HNE also significantly suppressed inositol phosphate release induced by aluminum fluoride. Collectively, our data suggest that HNE plays a role in altering receptor-G protein coupling in neurons under conditions of oxidative stress that may occur both normally, and before cell degeneration and death in pathological settings. PMID:9231714

  13. Letter: Iatrogenic lipomatosis: a rare manifestation of treatment with a peroxisome proliferator-activated receptor gamma agonist.

    PubMed

    Femia, Alisa; Klein, Peter A

    2010-04-15

    Lipomas are common benign neoplasms of adipose tissue. Lipomatosis, the progressive appearance of multiple lipomas, is most often associated with specific congenital, familial, or idiopathic syndromes. In one reported case, the development of multiple lipomas occurred as a result of treatment with rosiglitazone, a peroxisome proliferator-activated receptor (PPAR) gamma agonist. We report a second case of lipomatosis occurring as a result of treatment with a PPAR gamma agonist. This case occurred in a 77-year-old woman who developed multiple lipomas two years after beginning treatment with pioglitazone, a PPAR gamma agonist. Histopathologic examination confirmed these lesions to be lipomas. Within four weeks of discontinuation of pioglitazone, regression of the lipomas began. We describe a case of PPAR agonist-induced lipoma formation, review relevant literature, and provide a molecular mechanism for this side effect.

  14. β2-Adrenergic receptor agonists activate CFTR in intestinal organoids and subjects with cystic fibrosis.

    PubMed

    Vijftigschild, Lodewijk A W; Berkers, Gitte; Dekkers, Johanna F; Zomer-van Ommen, Domenique D; Matthes, Elizabeth; Kruisselbrink, Evelien; Vonk, Annelotte; Hensen, Chantal E; Heida-Michel, Sabine; Geerdink, Margot; Janssens, Hettie M; van de Graaf, Eduard A; Bronsveld, Inez; de Winter-de Groot, Karin M; Majoor, Christof J; Heijerman, Harry G M; de Jonge, Hugo R; Hanrahan, John W; van der Ent, Cornelis K; Beekman, Jeffrey M

    2016-09-01

    We hypothesized that people with cystic fibrosis (CF) who express CFTR (cystic fibrosis transmembrane conductance regulator) gene mutations associated with residual function may benefit from G-protein coupled receptor (GPCR)-targeting drugs that can activate and enhance CFTR function.We used intestinal organoids to screen a GPCR-modulating compound library and identified β2-adrenergic receptor agonists as the most potent inducers of CFTR function.β2-Agonist-induced organoid swelling correlated with the CFTR genotype, and could be induced in homozygous CFTR-F508del organoids and highly differentiated primary CF airway epithelial cells after rescue of CFTR trafficking by small molecules. The in vivo response to treatment with an oral or inhaled β2-agonist (salbutamol) in CF patients with residual CFTR function was evaluated in a pilot study. 10 subjects with a R117H or A455E mutation were included and showed changes in the nasal potential difference measurement after treatment with oral salbutamol, including a significant improvement of the baseline potential difference of the nasal mucosa (+6.35 mV, p<0.05), suggesting that this treatment might be effective in vivo Furthermore, plasma that was collected after oral salbutamol treatment induced CFTR activation when administered ex vivo to organoids.This proof-of-concept study suggests that organoids can be used to identify drugs that activate CFTR function in vivo and to select route of administration. PMID:27471203

  15. Comparison of the involvement protein kinase C in agonist-induced contractions in mouse aorta and corpus cavernosum

    PubMed Central

    Jin, Liming; Teixeira, Cleber E; Webb, R. Clinton; Leite, Romulo

    2008-01-01

    Protein kinase C (PKC) is involved in the regulation of vascular smooth muscle contraction. However, the role of PKC in erectile function is poorly understood. This study investigated whether PKC mediates agonist-induced contractions in mouse penile tissue (corpora cavernosa). We also compared the effects of PKC activators and inhibitors on contractile responses in mouse corpus cavernosum with those in mouse aorta. Aortic rings and corpus cavernosal strips from C57BL/6J mice was isolated, mounted in the organ bath for isometric tension recording. Our data showed that a PKCα/β selective inhibitor, Gö6976 (10 µM), inhibited phenylephrine and 9,11-dideoxy-11α,9α-epoxymethanoprostaglandin F2α (U46619, a thromboxane mimetic)-induced contractions in mouse aorta, reducing the maximum contraction from 123 ± 2% of KCl-induced maximum contraction to 7 ± 2% and 13 ± 1%, respectively. A non-selective PKC inhibitor, chelerythrine (30 µM), also significantly reduced phenylephrine-and U46619-induced maximum contractions in mouse aorta. However, Gö6976 and chelerythrine had no significant effects on phenylephrine-and U46619-induced contractions in corpus cavernosum. Furthermore, a PKC activator, phorbol-12,13-dibutyrate (0.1 µM), significantly increased contractions in aorta (208 ± 14% of KCl-induced maximum contraction) but failed to cause contractions in corpus cavernosum at 1 and 10 µM. Western blot analysis data suggested that protein expression of PKC was similar in aorta and corpus cavernosum. Taken together, our data indicate that PKC does not have a significant role in agonist-induced contractions in mouse corpus cavernosum, whereas it mediates the contractile response to agonists in the aorta. PMID:18614166

  16. Identification of Anabolic Selective Androgen Receptor Modulators with Reduced Activities in Reproductive Tissues and Sebaceous Glands

    PubMed Central

    Schmidt, Azriel; Harada, Shun-Ichi; Kimmel, Donald B.; Bai, Chang; Chen, Fang; Rutledge, Su Jane; Vogel, Robert L.; Scafonas, Angela; Gentile, Michael A.; Nantermet, Pascale V.; McElwee-Witmer, Sheila; Pennypacker, Brenda; Masarachia, Patricia; Sahoo, Soumya P.; Kim, Yuntae; Meissner, Robert S.; Hartman, George D.; Duggan, Mark E.; Rodan, Gideon A.; Towler, Dwight A.; Ray, William J.

    2009-01-01

    Androgen replacement therapy is a promising strategy for the treatment of frailty; however, androgens pose risks for unwanted effects including virilization and hypertrophy of reproductive organs. Selective Androgen Receptor Modulators (SARMs) retain the anabolic properties of androgens in bone and muscle while having reduced effects in other tissues. We describe two structurally similar 4-aza-steroidal androgen receptor (AR) ligands, Cl-4AS-1, a full agonist, and TFM-4AS-1, which is a SARM. TFM-4AS-1 is a potent AR ligand (IC50, 38 nm) that partially activates an AR-dependent MMTV promoter (55% of maximal response) while antagonizing the N-terminal/C-terminal interaction within AR that is required for full receptor activation. Microarray analyses of MDA-MB-453 cells show that whereas Cl-4AS-1 behaves like 5α-dihydrotestosterone (DHT), TFM-4AS-1 acts as a gene-selective agonist, inducing some genes as effectively as DHT and others to a lesser extent or not at all. This gene-selective agonism manifests as tissue-selectivity: in ovariectomized rats, Cl-4AS-1 mimics DHT while TFM-4AS-1 promotes the accrual of bone and muscle mass while having reduced effects on reproductive organs and sebaceous glands. Moreover, TFM-4AS-1 does not promote prostate growth and antagonizes DHT in seminal vesicles. To confirm that the biochemical properties of TFM-4AS-1 confer tissue selectivity, we identified a structurally unrelated compound, FTBU-1, with partial agonist activity coupled with antagonism of the N-terminal/C-terminal interaction and found that it also behaves as a SARM. TFM-4AS-1 and FTBU-1 represent two new classes of SARMs and will allow for comparative studies aimed at understanding the biophysical and physiological basis of tissue-selective effects of nuclear receptor ligands. PMID:19846549

  17. Identification of anabolic selective androgen receptor modulators with reduced activities in reproductive tissues and sebaceous glands.

    PubMed

    Schmidt, Azriel; Harada, Shun-Ichi; Kimmel, Donald B; Bai, Chang; Chen, Fang; Rutledge, Su Jane; Vogel, Robert L; Scafonas, Angela; Gentile, Michael A; Nantermet, Pascale V; McElwee-Witmer, Sheila; Pennypacker, Brenda; Masarachia, Patricia; Sahoo, Soumya P; Kim, Yuntae; Meissner, Robert S; Hartman, George D; Duggan, Mark E; Rodan, Gideon A; Towler, Dwight A; Ray, William J

    2009-12-25

    Androgen replacement therapy is a promising strategy for the treatment of frailty; however, androgens pose risks for unwanted effects including virilization and hypertrophy of reproductive organs. Selective Androgen Receptor Modulators (SARMs) retain the anabolic properties of androgens in bone and muscle while having reduced effects in other tissues. We describe two structurally similar 4-aza-steroidal androgen receptor (AR) ligands, Cl-4AS-1, a full agonist, and TFM-4AS-1, which is a SARM. TFM-4AS-1 is a potent AR ligand (IC(50), 38 nm) that partially activates an AR-dependent MMTV promoter (55% of maximal response) while antagonizing the N-terminal/C-terminal interaction within AR that is required for full receptor activation. Microarray analyses of MDA-MB-453 cells show that whereas Cl-4AS-1 behaves like 5alpha-dihydrotestosterone (DHT), TFM-4AS-1 acts as a gene-selective agonist, inducing some genes as effectively as DHT and others to a lesser extent or not at all. This gene-selective agonism manifests as tissue-selectivity: in ovariectomized rats, Cl-4AS-1 mimics DHT while TFM-4AS-1 promotes the accrual of bone and muscle mass while having reduced effects on reproductive organs and sebaceous glands. Moreover, TFM-4AS-1 does not promote prostate growth and antagonizes DHT in seminal vesicles. To confirm that the biochemical properties of TFM-4AS-1 confer tissue selectivity, we identified a structurally unrelated compound, FTBU-1, with partial agonist activity coupled with antagonism of the N-terminal/C-terminal interaction and found that it also behaves as a SARM. TFM-4AS-1 and FTBU-1 represent two new classes of SARMs and will allow for comparative studies aimed at understanding the biophysical and physiological basis of tissue-selective effects of nuclear receptor ligands.

  18. Structure-activity relationships of vanilloid receptor agonists for arteriolar TRPV1

    PubMed Central

    Czikora, Á; Lizanecz, E; Bakó, P; Rutkai, I; Ruzsnavszky, F; Magyar, J; Pórszász, R; Kark, T; Facskó, A; Papp, Z; Édes, I; Tóth, A

    2012-01-01

    BACKGROUND AND PURPOSE The transient receptor potential vanilloid 1 (TRPV1) plays a role in the activation of sensory neurons by various painful stimuli and is a therapeutic target. However, functional TRPV1 that affect microvascular diameter are also expressed in peripheral arteries and we attempted to characterize this receptor. EXPERIMENTAL APPROACH Sensory TRPV1 activation was measured in rats by use of an eye wiping assay. Arteriolar TRPV1-mediated smooth muscle specific responses (arteriolar diameter, changes in intracellular Ca2+) were determined in isolated, pressurized skeletal muscle arterioles obtained from the rat and wild-type or TRPV1−/− mice and in canine isolated smooth muscle cells. The vascular pharmacology of the TRPV1 agonists (potency, efficacy, kinetics of action and receptor desensitization) was determined in rat isolated skeletal muscle arteries. KEY RESULTS Capsaicin evoked a constrictor response in isolated arteries similar to that mediated by noradrenaline, this was absent in arteries from TRPV1 knockout mice and competitively inhibited by TRPV1 antagonist AMG9810. Capsaicin increased intracellular Ca2+ in the arteriolar wall and in isolated smooth muscle cells. The TRPV1 agonists evoked similar vascular constrictions (MSK-195 and JYL-79) or were without effect (resiniferatoxin and JYL-273), although all increased the number of responses (sensory activation) in the eye wiping assay. Maximal doses of all agonists induced complete desensitization (tachyphylaxis) of arteriolar TRPV1 (with the exception of capsaicin). Responses to the partial agonist JYL-1511 suggested 10% TRPV1 activation is sufficient to evoke vascular tachyphylaxis without sensory activation. CONCLUSIONS AND IMPLICATIONS Arteriolar TRPV1 have different pharmacological properties from those located on sensory neurons in the rat. PMID:21883148

  19. Agonist-Activated Bombyx Corazonin Receptor Is Internalized via an Arrestin-Dependent and Clathrin-Independent Pathway.

    PubMed

    Yang, Jingwen; Shen, Zhangfei; Jiang, Xue; Yang, Huipeng; Huang, Haishan; Jin, Lili; Chen, Yajie; Shi, Liangen; Zhou, Naiming

    2016-07-19

    Agonist-induced internalization plays a key role in the tight regulation of the extent and duration of G protein-coupled receptor signaling. Previously, we have shown that the Bombyx corazonin receptor (BmCrzR) activates both Gαq- and Gαs-dependent signaling cascades. However, the molecular mechanisms involved in the regulation of the internalization and desensitization of BmCrzR remain to be elucidated. Here, vectors for expressing BmCrzR fused with enhanced green fluorescent protein (EGFP) at the C-terminal end were used to further characterize BmCrzR internalization. We found that the BmCrzR heterologously expressed in HEK-293 and BmN cells was rapidly internalized from the plasma membrane into the cytoplasm in a concentration- and time-dependent manner via a β-arrestin (Kurtz)-dependent and clathrin-independent pathway in response to agonist challenge. While most of the internalized receptors were recycled to the cell surface via early endosomes, some others were transported to lysosomes for degradation. Assays using RNA interference revealed that both GRK2 and GRK5 were essentially involved in the regulation of BmCrzR phosphorylation and internalization. Further investigations indicated that the identified cluster of Ser/Thr residues ((411)TSS(413)) was responsible for GRK-mediated phosphorylation and internalization. This is the first detailed investigation of the internalization and trafficking of Bombyx corazonin receptors. PMID:27348044

  20. Mechanism for the activation of glutamate receptors

    Cancer.gov

    Scientists at the NIH have used a technique called cryo-electron microscopy to determine a molecular mechanism for the activation and desensitization of ionotropic glutamate receptors, a prominent class of neurotransmitter receptors in the brain and spina

  1. Activation mechanism of AMPA receptors illuminated by complexes with cone snail toxin, allosteric potentiator and orthosteric agonists

    PubMed Central

    Chen, Lei; Dürr, Katharina L.; Gouaux, Eric

    2014-01-01

    AMPA-sensitive glutamate receptors are crucial to the structural and dynamical properties of the brain, to the development and function of the central nervous system and to the treatment of neurological conditions from depression to cognitive impairment. However, the molecular principles underlying AMPA receptor activation have remained elusive. Here we determine multiple x-ray crystal structures of the GluA2 AMPA receptor in complex with a Conus striatus cone snail toxin, a positive allosteric modulator and orthosteric agonists at 3.8 – 4.1 Å resolution. We show how the toxin acts like a ‘straight jacket’ on the ligand-binding domain (LBD) “gating ring”, restraining the domains via both intra and interdimer cross links such that agonist-induced closure of the LBD “clamshells” is transduced into an iris-like expansion of the gating ring. By structural analysis of activation-enhancing mutants, we show how the expansion of the LBD gating ring results in ‘pulling’ forces on the M3 helices that, in turn, are coupled to ion channel gating. PMID:25103405

  2. The influence of allosteric modulators and transmembrane mutations on desensitisation and activation of α7 nicotinic acetylcholine receptors

    PubMed Central

    Chatzidaki, Anna; D'Oyley, Jarryl M.; Gill-Thind, JasKiran K.; Sheppard, Tom D.; Millar, Neil S.

    2015-01-01

    Acetylcholine activates nicotinic acetylcholine receptors (nAChRs) by binding at an extracellular orthosteric site. Previous studies have described several positive allosteric modulators (PAMs) that are selective for homomeric α7 nAChRs. These include type I PAMs, which exert little or no effect on the rate of receptor desensitisation, and type II PAMs, which cause a dramatic loss of agonist-induced desensitisation. Here we report evidence that transmembrane mutations in α7 nAChRs have diverse effects on receptor activation and desensitisation by allosteric ligands. It has been reported previously that the L247T mutation, located toward the middle of the second transmembrane domain (at the 9′ position), confers reduced levels of desensitisation. In contrast, the M260L mutation, located higher up in the TM2 domain (at the 22′ position), does not show any difference in desensitisation compared to wild-type receptors. We have found that in receptors containing the L247T mutation, both type I PAMs and type II PAMs are converted into non-desensitising agonists. In contrast, in receptors containing the M260L mutation, this effect is seen only with type II PAMs. These findings, indicating that the M260L mutation has a selective effect on type II PAMs, have been confirmed both with previously described PAMs and also with a series of novel α7-selective PAMs. The novel PAMs examined in this study have close chemical similarity but diverse pharmacological properties. For example, they include compounds displaying effects on receptor desensitisation that are typical of classical type I and type II PAMs but, in addition, they include compounds with intermediate properties. PMID:25998276

  3. SEIZURE ACTIVITY INVOLVED IN THE UP-REGULATION OF BDNF mRNA EXPRESSION BY ACTIVATION OF CENTRAL MU OPIOID RECEPTORS

    PubMed Central

    ZHANG, H. N.; KO, M. C.

    2009-01-01

    Chemical-induced seizures up-regulated brain-derived neurotrophic factor (BDNF) mRNA expression. Intracerebroventricular (i.c.v.) administration of endogenous opioids preferentially activating μ opioid receptor (MOR) could also increase BDNF mRNA expression. The aim of this study was to determine to what extent i.c.v. administration of synthetic MOR-selective agonists in rats can modulate both seizure activity and up-regulation of BDNF mRNA expression. Effects and potencies of i.c.v. administration of morphine and [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO), were directly investigated by scoring behavioral seizures and measuring BDNF mRNA expression. In addition, effects of the opioid receptor antagonist naloxone and antiepileptic drugs, diazepam, phenobarbital, and valproate, on i.c.v. MOR agonist-induced behavioral seizures and up-regulation of BDNF mRNA expression were determined. A single i.c.v. administration of morphine (10–100 μg) or DAMGO (0.15–1.5 μg) dose-dependently elicited behavioral seizures and increased BDNF mRNA expression in the widespread brain regions. However, subcutaneous administration of MOR agonists neither produced behavioral seizures nor increased BDNF mRNA expression. Pretreatment with naloxone 1 mg/kg significantly reduced behavioral seizure scores and the up-regulation of BDNF mRNA expression elicited by i.c.v. morphine or DAMGO. Similarly, diazepam 10 mg/kg and phenobarbital 40 mg/kg significantly blocked i.c.v. MOR agonist-induced actions. Pretreatment with valproate 300 mg/kg only attenuated behavioral seizures, but it did not affect morphine-induced increase of BDNF mRNA expression. This study provides supporting evidence that seizure activity plays an important role in the up-regulation of BDNF mRNA expression elicited by central MOR activation and that decreased inhibitory action of GABAergic system through the modulation on GABA receptor synaptic function by central MOR activation is involved in its regulation of BDNF m

  4. Signal transduction activated by cannabinoid receptors.

    PubMed

    Díaz-Laviada, Inés; Ruiz-Llorente, Lidia

    2005-07-01

    Since the discovery that cannabinoids exert biological actions through binding to specific receptors, signal mechanisms triggered by these receptors have been focus of extensive study. This review summarizes the current knowledge of the signalling events produced by cannabinoids from membrane receptors to downstream regulators. Two types of cannabinoid receptors have been identified to date: CB(1) and CB(2) both belonging to the heptahelichoidal receptor family but with different tissue distribution and signalling mechanisms. Coupling to inhibitory guanine nucleotide-binding protein and thus inhibition of adenylyl cyclase has been observed in both receptors but other signal transduction pathways that are regulated or not by these G proteins are differently activated upon ligand-receptor binding including ion channels, sphingomyelin hydrolysis, ceramide generation, phospholipases activation and downstream targets as MAP kinase cascade, PI3K, FAK or NOS regulation. Cannabinoids may also act independently of CB(1)or CB(2) receptors. The existence of new unidentified putative cannabinoid receptors has been claimed by many investigators. Endocannabinoids activate vanilloid TRPV1 receptors that may mediate some of the cannabinoid effects. Other actions of cannabinoids can occur through non-receptor-mediated mechanisms.

  5. Luteinizing hormone/chorionic gonadotrophin receptor overexpressed in granulosa cells from polycystic ovary syndrome ovaries is functionally active.

    PubMed

    Kanamarlapudi, Venkateswarlu; Gordon, Uma D; López Bernal, Andrés

    2016-06-01

    Polycystic ovarian syndrome (PCOS) is associated with anovulatory infertility. Luteinizing hormone/chorionic gonadotrophin receptor (LHCGR), which is critical for ovulation, has been suggested to be expressed prematurely in the ovarian follicles of women with PCOS. This study aimed to analyse the expression and activity of LHCGR in ovarian granulosa cells from PCOS patients and the involvement of ARF6 small GTPase in LHCGR internalization. Granulosa cells (GC) isolated from follicular fluid collected during oocyte retrieval from normal women (n = 19) and women with PCOS (n = 17) were used to study differences in LHCGR protein expression and activity between normal and PCOS patients. LHCGR expression is up-regulated in GC from PCOS women. LHCGR in PCOS GC is functionally active, as shown by increased cAMP production upon human gonadotrophin (HCG)-stimulation. Moreover, ARF6 is highly expressed in GC from PCOS patients and HCG-stimulation increases the concentrations of active ARF6. The inhibition of ARF6 activation attenuates HCG-induced LHCGR internalization in both normal and PCOS GC, indicating that there are no alterations in LHCGR internalisation in GC from PCOS. In conclusion, the expression and activation of LHCGR and ARF6 are up-regulated in GC from PCOS women but the mechanism of agonist-induced LHCGR internalization is unaltered. PMID:27061682

  6. Characterization of Thrombin-Bound Dabigatran Effects on Protease-Activated Receptor-1 Expression and Signaling In Vitro

    PubMed Central

    Chen, Buxin; Soto, Antonio G.; Coronel, Luisa J.; Goss, Ashley; van Ryn, Joanne

    2015-01-01

    Thrombin, the key effector protease of the coagulation cascade, drives fibrin deposition and activates human platelets through protease-activated receptor-1 (PAR1). These processes are critical to the progression of thrombotic diseases. Thrombin is the main target of anticoagulant therapy, and major efforts have led to the discovery of new oral direct inhibitors of thrombin. Dabigatran is the first oral anticoagulant licensed for the prevention of thromboembolisms associated with orthopedic surgery and stroke prevention in atrial fibrillation. Dabigatran is a direct thrombin inhibitor that effectively blocks thrombin’s catalytic activity but does not preclude thrombin’s exosites and binding to fibrinogen. Thus, we hypothesized that catalytically inactive thrombin retains the capacity to bind to PAR1 through exosite-I and may modulate its function independent of receptor cleavage and activation. Here, we report that dabigatran at clinically relevant concentrations is an effective and acute inhibitor of thrombin-induced PAR1 cleavage, activation, internalization, and β-arrestin recruitment in vitro. Interestingly, prolonged exposure to catalytic inactive thrombin incubated with dabigatran at 20-fold higher therapeutic concentration resulted in increased PAR1 cell-surface expression, which correlated with higher detectable levels of ubiquitinated receptor. These findings are consistent with ubiquitin function as a negative regulator of PAR1 constitutive internalization. Increased PAR1 expression also enhanced agonist-induced phosphoinositide hydrolysis and endothelial barrier permeability. Thus, catalytically inactive thrombin appears to modulate PAR1 function in vitro by stabilizing receptor cell-surface expression; but given the high clearance rate of thrombin, the high concentration of dabigatran required to achieve this effect the in vivo physiologic relevance is unknown. PMID:25934730

  7. Delta opioid receptor analgesia: recent contributions from pharmacology and molecular approaches

    PubMed Central

    Gavériaux-Ruff, Claire; Kieffer, Brigitte Lina

    2012-01-01

    Delta opioid receptors represent a promising target for the development of novel analgesics. A number of tools have been developed recently that have significantly improved our knowledge of delta receptor function in pain control. These include several novel delta agonists with potent analgesic properties, as well as genetic mouse models with targeted mutations in the delta opioid receptor gene. Also, recent findings have further documented the regulation of delta receptor function at cellular level, which impacts on the pain-reducing activity of the receptor. These regulatory mechanisms occur at transcriptional and post-translational levels, along agonist-induced receptor activation, signaling and trafficking, or in interaction with other receptors and neuromodulatory systems. All these tools for in vivo research, as well as proposed mechanisms at molecular level, have tremendously increased our understanding of delta receptor physiology, and contribute to designing innovative strategies for the treatment of chronic pain and other diseases such as mood disorders. PMID:21836459

  8. Discovery of LAS101057: A Potent, Selective, and Orally Efficacious A2B Adenosine Receptor Antagonist

    PubMed Central

    2010-01-01

    The structure−activity relationships for a series of pyrazine-based A2B adenosine receptor antagonists are described. From this work, LAS101057 (17), a potent, selective, and orally efficacious A2B receptor antagonist, was identified as a clinical development candidate. LAS101057 inhibits agonist-induced IL-6 production in human fibroblasts and is active in an ovalbumin (OVA)-sensitized mouse model after oral administration, reducing airway hyperresponsiveness to methacholine, Th2 cytokine production, and OVA-specific IgE levels. PMID:24900298

  9. Using Nuclear Receptor Activity to Stratify Hepatocarcinogens

    PubMed Central

    Shah, Imran; Houck, Keith; Judson, Richard S.; Kavlock, Robert J.; Martin, Matthew T.; Reif, David M.; Wambaugh, John; Dix, David J.

    2011-01-01

    Background Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that control a range of cellular processes. Persistent stimulation of some NR is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. Here we report on a systematic analysis of new in vitro human NR activity data on 309 environmental chemicals in relationship to their liver cancer-related chronic outcomes in rodents. Results The effects of 309 environmental chemicals on human constitutive androstane receptors (CAR/NR1I3), pregnane X receptor (PXR/NR1I2), aryl hydrocarbon receptor (AhR), peroxisome proliferator-activated receptors (PPAR/NR1C), liver X receptors (LXR/NR1H), retinoic X receptors (RXR/NR2B) and steroid receptors (SR/NR3) were determined using in vitro data. Hepatic histopathology, observed in rodents after two years of chronic treatment for 171 of the 309 chemicals, was summarized by a cancer lesion progression grade. Chemicals that caused proliferative liver lesions in both rat and mouse were generally more active for the human receptors, relative to the compounds that only affected one rodent species, and these changes were significant for PPAR (p0.001), PXR (p0.01) and CAR (p0.05). Though most chemicals exhibited receptor promiscuity, multivariate analysis clustered them into relatively few NR activity combinations. The human NR activity pattern of chemicals weakly associated with the severity of rodent liver cancer lesion progression (p0.05). Conclusions The rodent carcinogens had higher in vitro potency for human NR relative to non-carcinogens. Structurally diverse chemicals with similar NR promiscuity patterns weakly associated with the severity of rodent liver cancer progression. While these results do not prove the role of NR activation in human liver cancer, they do have implications for nuclear receptor chemical biology and provide insights into putative toxicity pathways. More importantly, these findings suggest the

  10. Inhibition of Rho-associated kinase blocks agonist-induced Ca2+ sensitization of myosin phosphorylation and force in guinea-pig ileum

    PubMed Central

    Swärd, Karl; Dreja, Karl; Susnjar, Marija; Hellstrand, Per; Hartshorne, David J; Walsh, Michael P

    2000-01-01

    Ca2+ sensitization of smooth muscle contraction involves the small GTPase RhoA, inhibition of myosin light chain phosphatase (MLCP) and enhanced myosin regulatory light chain (LC20) phosphorylation. A potential effector of RhoA is Rho-associated kinase (ROK).The role of ROK in Ca2+ sensitization was investigated in guinea-pig ileum.Contraction of permeabilized muscle strips induced by GTPγS at pCa 6.5 was inhibited by the kinase inhibitors Y-27632, HA1077 and H-7 with IC50 values that correlated with the known Ki values for inhibition of ROK. GTPγS also increased LC20 phosphorylation and this was prevented by HA1077. Contraction and LC20 phosphorylation elicited at pCa 5.75 were, however, unaffected by HA1077.Pre-treatment of intact tissue strips with HA1077 abolished the tonic component of carbachol-induced contraction and the sustained elevation of LC20 phosphorylation, but had no effect on the transient or sustained increase in [Ca2+]i induced by carbachol.LC20 phosphorylation and contraction dynamics suggest that the ROK-mediated increase in LC20 phosphorylation is due to MLCP inhibition, not myosin light chain kinase activation.In the absence of Ca2+, GTPγS stimulated 35S incorporation from [35S]ATPγS into the myosin targeting subunit of MLCP (MYPT). The enhanced thiophosphorylation was inhibited by HA1077. No thiophosphorylation of LC20 was detected.These results indicate that ROK mediates agonist-induced increases in myosin phosphorylation and force by inhibiting MLCP activity through phosphorylation of MYPT. Under Ca2+-free conditions, ROK does not appear to phosphorylate LC20in situ, in contrast to its ability to phosphorylate myosin in vitro. In particular, ROK activation is essential for the tonic phase of agonist-induced contraction. PMID:10618150

  11. Beryllium competitively inhibits brain myo-inositol monophosphatase, but unlike lithium does not enhance agonist-induced inositol phosphate accumulation.

    PubMed Central

    Faraci, W S; Zorn, S H; Bakker, A V; Jackson, E; Pratt, K

    1993-01-01

    Despite limiting side-effects, lithium is the drug of choice for the treatment of bipolar depression. Its action may be due, in part, to its ability to dampen phosphatidylinositol turnover by inhibiting myo-inositol monophosphatase. Beryllium has been identified as a potent inhibitor of partially purified myo-inositol monophosphatase isolated from rat brain (Ki = 150 nM), bovine brain (Ki = 35 nM), and from the human neuroblastoma cell line SK-N-SH (Ki = 85 nM). It is over three orders of magnitude more potent than LiCl (Ki = 0.5-1.2 mM). Kinetic analysis reveals that beryllium is a competitive inhibitor of myo-inositol monophosphatase, in contrast with lithium which is an uncompetitive inhibitor. Inhibition of exogenous [3H]inositol phosphate hydrolysis by beryllium (IC50 = 250-300 nM) was observed to the same maximal extent as that seen with lithium in permeabilized SK-N-SH cells, reflecting inhibition of cellular myo-inositol monophosphatase. However, in contrast with that observed with lithium, agonist-induced accumulation of inositol phosphate was not observed with beryllium in permeabilized and non-permeabilized SK-N-SH cells and in rat brain slices. Similar results were obtained in permeabilized SK-N-SH cells when GTP-gamma-S was used as an alternative stimulator of inositol phosphate accumulation. The disparity in the actions of beryllium and lithium suggest that either (1) selective inhibition of myo-inositol monophosphatase does not completely explain the action of lithium on the phosphatidylinositol cycle, or (2) that uncompetitive inhibition of myo-inositol monophosphatase is a necessary requirement to observe functional lithium mimetic activity. PMID:8387266

  12. Activated Müller Cells Involved in ATP-Induced Upregulation of P2X7 Receptor Expression and Retinal Ganglion Cell Death

    PubMed Central

    Xue, Ying; Xie, Yuting; Xue, Bo; Guan, Huaijin

    2016-01-01

    P2X7 receptor (P2X7R), an ATP-gated ion channel, plays an important role in glaucomatous retinal ganglion cell (RGC) apoptotic death, in which activated retinal Müller glial cells may be involved by releasing ATP. In the present study, we investigated whether and how activated Müller cells may induce changes in P2X7R expression in RGCs by using immunohistochemistry and Western blot techniques. Intravitreal injection of DHPG, a group I metabotropic glutamate receptor (mGluR I) agonist, induced upregulation of GFAP expression, suggestive of Müller cell activation (gliosis), as we previously reported. Accompanying Müller cell activation, P2X7R protein expression was upregulated, especially in the cells of ganglion cell layer (GCL), which was reversed by coinjection of brilliant blue G (BBG), a P2X7R blocker. In addition, intravitreal injection of ATP also induced upregulation of P2X7R protein expression. Similar results were observed in cultured retinal neurons by ATP treatment. Moreover, both DHPG and ATP intravitreal injection induced a reduction in the number of fluorogold retrogradely labeled RGCs, and the DHPG effect was partially rescued by coinjection of BBG. All these results suggest that activated Müller cells may release ATP and, in turn, induce upregulation of P2X7R expression in the cells of GCL, thus contributing to RGC death. PMID:27738636

  13. Activation of Neuropeptide FF Receptors by Kisspeptin Receptor Ligands.

    PubMed

    Oishi, Shinya; Misu, Ryosuke; Tomita, Kenji; Setsuda, Shohei; Masuda, Ryo; Ohno, Hiroaki; Naniwa, Yousuke; Ieda, Nahoko; Inoue, Naoko; Ohkura, Satoshi; Uenoyama, Yoshihisa; Tsukamura, Hiroko; Maeda, Kei-Ichiro; Hirasawa, Akira; Tsujimoto, Gozoh; Fujii, Nobutaka

    2011-01-13

    Kisspeptin is a member of the RFamide neuropeptide family that is implicated in gonadotropin secretion. Because kisspeptin-GPR54 signaling is implicated in the neuroendocrine regulation of reproduction, GPR54 ligands represent promising therapeutic agents against endocrine secretion disorders. In the present study, the selectivity profiles of GPR54 agonist peptides were investigated for several GPCRs, including RFamide receptors. Kisspeptin-10 exhibited potent binding and activation of neuropeptide FF receptors (NPFFR1 and NPFFR2). In contrast, short peptide agonists bound with much lower affinity to NPFFRs while showing relatively high selectivity toward GPR54. The possible localization of secondary kisspeptin targets was also demonstrated by variation in the levels of GnRH release from the median eminence and the type of GPR54 agonists used. Negligible affinity of the reported NPFFR ligands to GPR54 was observed and indicates the unidirectional cross-reactivity between both ligands.

  14. Mechanism of FGF receptor dimerization and activation

    PubMed Central

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise. PMID:26725515

  15. H11-H12 loop retinoic acid receptor mutants exhibit distinct trans-activating and trans-repressing activities in the presence of natural or synthetic retinoids.

    PubMed

    Lefebvre, B; Mouchon, A; Formstecher, P; Lefebvre, P

    1998-06-30

    Retinoids, such as the naturally occurring all-trans-retinoic acid (atRA) and synthetic ligand CD367 modulate ligand-dependent transcription through retinoic acid receptors (RARs). Retinoid binding to RAR is believed to trigger structural transitions in the ligand-binding domain (LBD), leading to helix H1 and helix H12 repositioning and coactivator recruitment and corepressor release. Here, we carried out a detailed mutagenesis analysis of the H11-H12 loop (designated the L box) to study its contribution to hRARalpha activation process. Point mutations that reduced transactivation by atRA also reduced atRA-induced transrepression of AP1 transcription, correlating ligand-induced activation and repression. However, a correlation was not observed with these mutations when tested with another ligand CD367, a synthetic agonist with binding properties identical to those of atRA. Transcription was strongly inhibited in the presence of CD367 for some mutants, thus leading to an inverse agonist activity of this ligand. None of these mutations significantly altered binding affinity for either ligand, indicating that altered transcription was not caused by altered ligand binding by these mutations. Although simple correlations with transcriptional activities were not found, these mutations were also characterized by altered ligand-induced structural transitions, which were distinct for the atRA-hRARalpha or CD367-hRARalpha complexes. These results indicate that amino acids in the L box are involved in specifying trans-repressive and trans-activating properties of the hRARalpha, and support the notion that different agonists induce distinct conformations in the LBD of the receptor.

  16. Selective activation of α7 nicotinic acetylcholine receptor (nAChRα7) inhibits muscular degeneration in mdx dystrophic mice.

    PubMed

    Leite, Paulo Emílio Correa; Gandía, Luís; de Pascual, Ricardo; Nanclares, Carmen; Colmena, Inés; Santos, Wilson C; Lagrota-Candido, Jussara; Quirico-Santos, Thereza

    2014-07-21

    Amount evidence indicates that α7 nicotinic acetylcholine receptor (nAChRα7) activation reduces production of inflammatory mediators. This work aimed to verify the influence of endogenous nAChRα7 activation on the regulation of full-blown muscular inflammation in mdx mouse with Duchenne muscular dystrophy. We used mdx mice with 3 weeks-old at the height myonecrosis, and C57 nAChRα7(+/+) wild-type and nAChRα7(-/-) knockout mice with muscular injury induced with 60µL 0.5% bupivacaine (bp) in the gastrocnemius muscle. Pharmacological treatment included selective nAChRα7 agonist PNU282987 (0.3mg/kg and 1.0mg/kg) and the antagonist methyllycaconitine (MLA at 1.0mg/kg) injected intraperitoneally for 7 days. Selective nAChRα7 activation of mdx mice with PNU282987 reduced circulating levels of lactate dehydrogenase (LDH, a marker of cell death by necrosis) and the area of perivascular inflammatory infiltrate, and production of inflammatory mediators TNFα and metalloprotease MMP-9 activity. Conversely, PNU282987 treatment increased MMP-2 activity, an indication of muscular tissue remodeling associated with regeneration, in both mdx mice and WTα7 mice with bp-induced muscular lesion. Treatment with PNU282987 had no effect on α7KO, and MLA abolished the nAChRα7 agonist-induced anti-inflammatory effect in both mdx and WT. In conclusion, nAChRα7 activation inhibits muscular inflammation and activates tissue remodeling by increasing muscular regeneration. These effects were not accompanied with fibrosis and/or deposition of non-functional collagen. The nAChRα7 activation may be considered as a potential target for pharmacological strategies to reduce inflammation and activate mechanisms of muscular regeneration. PMID:24833065

  17. Coagulation, Protease Activated Receptors and Viral Myocarditis

    PubMed Central

    Antoniak, Silvio; Mackman, Nigel

    2013-01-01

    The coagulation protease cascade plays an essential role in hemostasis. In addition, a clot contributes to host defense by limiting the spread of pathogens. Coagulation proteases induce intracellular signaling by cleavage of cell surface receptors called protease-activated receptors (PARs). These receptors allow cells to sense changes in the extracellular environment, such as infection. Viruses activate the coagulation cascade by inducing tissue factor expression and by disrupting the endothelium. Virus infection of the heart can cause myocarditis, cardiac remodeling and heart failure. Recent studies using a mouse model have shown that tissue factor, thrombin and PAR-1 signaling all positively regulate the innate immune during viral myocarditis. In contrast, PAR-2 signaling was found to inhibit interferon-β expression and the innate immune response. These observations suggest that anticoagulants may impair the innate immune response to viral infection and that inhibition of PAR-2 may be a new target to reduce viral myocarditis.. PMID:24203054

  18. Modulators of androgen and estrogen receptor activity.

    PubMed

    Clarke, Bart L; Khosla, Sundeep

    2010-01-01

    This review focuses on significant recent findings regarding modulators of androgen and estrogen receptor activity. Selective androgen receptor modulators (SARMs) interact with androgen receptors (ARs), and selective estrogen receptor modulators (SERMs) interact with estrogen receptors (ERs), with variable tissue selectivity. SERMs, which interact with both ERб and ERв in a tissue-specific manner to produce diverse outcomes in multiple tissues, continue to generate significant interest for clinical application. Development of SARMs for clinical application has been slower to date because of potential adverse effects, but these diverse compounds continue to be investigated for use in disorders in which modulation of the AR is important. SARMs have been investigated mostly at the basic and preclinical level to date, with few human clinical trials published. These compounds have been evaluated mostly for application in different stages of prostate cancer to date, but they hold promise for multiple other applications. Publication of the large STAR and RUTH clinical trials demonstrated that the SERMs tamoxifen and raloxifene have interesting similarities and differences in tissues that contain ERs. Lasofoxifene, bazedoxifene, and arzoxifene are newer SERMs that have been demonstrated in clinical trials to more potently increase bone mineral density and lower serum cholesterol values than tamoxifen or raloxifene. Both SARMs and SERMs hold great promise for therapeutic use in multiple disorders in which tissue-specific effects are mediated by their respective receptors.

  19. Using Nuclear Receptor Activity to Stratify Hepatocarcinogens

    EPA Science Inventory

    Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that control a range of cellular processes. Persistent stimulation of some NR is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. Here we report on a systematic an...

  20. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor

    PubMed Central

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick

    2016-01-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)–forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally. PMID:26994072

  1. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor.

    PubMed

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick; Negishi, Masahiko

    2016-05-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)-forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally.

  2. Role of G Protein–Coupled Receptor Kinases 2 and 3 in μ-Opioid Receptor Desensitization and Internalization

    PubMed Central

    Lowe, Janet D.; Sanderson, Helen S.; Cooke, Alexandra E.; Ostovar, Mehrnoosh; Tsisanova, Elena; Withey, Sarah L.; Chavkin, Charles; Husbands, Stephen M.; Kelly, Eamonn; Henderson, Graeme

    2015-01-01

    There is ongoing debate about the role of G protein–coupled receptor kinases (GRKs) in agonist-induced desensitization of the μ-opioid receptor (MOPr) in brain neurons. In the present paper, we have used a novel membrane-permeable, small-molecule inhibitor of GRK2 and GRK3, Takeda compound 101 (Cmpd101; 3-[[[4-methyl-5-(4-pyridyl)-4H-1,2,4-triazole-3-yl] methyl] amino]-N-[2-(trifuoromethyl) benzyl] benzamidehydrochloride), to study the involvement of GRK2/3 in acute agonist-induced MOPr desensitization. We observed that Cmpd101 inhibits the desensitization of the G protein–activated inwardly-rectifying potassium current evoked by receptor-saturating concentrations of methionine-enkephalin (Met-Enk), [d-Ala2, N-MePhe4, Gly-ol5]-enkephalin (DAMGO), endomorphin-2, and morphine in rat and mouse locus coeruleus (LC) neurons. In LC neurons from GRK3 knockout mice, Met-Enk–induced desensitization was unaffected, implying a role for GRK2 in MOPr desensitization. Quantitative analysis of the loss of functional MOPrs following acute agonist exposure revealed that Cmpd101 only partially reversed MOPr desensitization. Inhibition of extracellular signal–regulated kinase 1/2, protein kinase C, c-Jun N-terminal kinase, or GRK5 did not inhibit the Cmpd101-insensitive component of desensitization. In HEK 293 cells, Cmpd101 produced almost complete inhibition of DAMGO-induced MOPr phosphorylation at Ser375, arrestin translocation, and MOPr internalization. Our data demonstrate a role for GRK2 (and potentially also GRK3) in agonist-induced MOPr desensitization in the LC, but leave open the possibility that another, as yet unidentified, mechanism of desensitization also exists. PMID:26013542

  3. Insulin receptor activation in solitary fibrous tumours.

    PubMed

    Li, Y; Chang, Q; Rubin, B P; Fletcher, C D M; Morgan, T W; Mentzer, S J; Sugarbaker, D J; Fletcher, J A; Xiao, S

    2007-04-01

    Solitary fibrous tumours (SFTs) are known to overexpress insulin-like growth factor 2 (IGF-2). The down-stream oncogenic pathways of IGF-2, however, are not clear. Here we report uniform activation of the insulin receptor (IR) pathway in SFTs, which are mesenchymal tumours frequently associated with hypoglycaemia. Whereas the IR and its downstream signalling pathways were constitutively activated in SFTs, insulin-like growth factor 1 receptor (IGF-1R) was not expressed in these tumours. We also find that SFT cells secrete IGF-2 and proliferate in serum-free medium, consistent with an IGF-2/IR autocrine loop. The aetiological relevance of IGF-2 is supported by expression of IR-A, the IR isoform with high affinity for IGF-2, in all SFTs. Our studies suggest that IR activation plays an oncogenic role in SFTs.

  4. In silico analysis of the binding of agonists and blockers to the β2-adrenergic receptor

    PubMed Central

    Vilar, Santiago; Karpiak, Joel; Berk, Barkin; Costanzi, Stefano

    2011-01-01

    Activation of G protein-coupled receptors (GPCRs) is a complex phenomenon. Here, we applied Induced Fit docking (IFD) in tandem with linear discriminant analysis (LDA) to generate hypotheses on the conformational changes induced to the β2-adrenergic receptor by agonist binding, preliminary to the sequence of events that characterize activation of the receptor. This analysis, corroborated by a follow-up molecular dynamics study, suggested that agonists induce subtle movements to the fifth transmembrane domain (TM5) of the receptor. Furthermore, molecular dynamics also highlighted a correlation between movements of TM5 and the second extracellular loop (EL2), suggesting that freedom of motion of EL2 is required for the agonist-induced TM5 displacement. Importantly, we also showed that the IFD/LDA procedure can be used as a computational means to distinguish agonists from blockers on the basis of the differential conformational changes induced to the receptor. In particular, the two most predictive models obtained are based on the RMSD induced to Ser207 and on the counterclockwise rotation induced to TM5. PMID:21334234

  5. Biased Signaling of Protease-Activated Receptors

    PubMed Central

    Zhao, Peishen; Metcalf, Matthew; Bunnett, Nigel W.

    2014-01-01

    In addition to their role in protein degradation and digestion, proteases can also function as hormone-like signaling molecules that regulate vital patho-physiological processes, including inflammation, hemostasis, pain, and repair mechanisms. Certain proteases can signal to cells by cleaving protease-activated receptors (PARs), a family of four G protein-coupled receptors. PARs are expressed by almost all cell types, control important physiological and disease-relevant processes, and are an emerging therapeutic target for major diseases. Most information about PAR activation and function derives from studies of a few proteases, for example thrombin in the case of PAR1, PAR3, and PAR4, and trypsin in the case of PAR2 and PAR4. These proteases cleave PARs at established sites with the extracellular N-terminal domains, and expose tethered ligands that stabilize conformations of the cleaved receptors that activate the canonical pathways of G protein- and/or β-arrestin-dependent signaling. However, a growing number of proteases have been identified that cleave PARs at divergent sites to activate distinct patterns of receptor signaling and trafficking. The capacity of these proteases to trigger distinct signaling pathways is referred to as biased signaling, and can lead to unique patho-physiological outcomes. Given that a different repertoire of proteases are activated in various patho-physiological conditions that may activate PARs by different mechanisms, signaling bias may account for the divergent actions of proteases and PARs. Moreover, therapies that target disease-relevant biased signaling pathways may be more effective and selective approaches for the treatment of protease- and PAR-driven diseases. Thus, rather than mediating the actions of a few proteases, PARs may integrate the biological actions of a wide spectrum of proteases in different patho-physiological conditions. PMID:24860547

  6. Equivalent Activities of Repulsive Axon Guidance Receptors

    PubMed Central

    Long, Hong; Yoshikawa, Shingo

    2016-01-01

    Receptors on the growth cone at the leading edge of elongating axons play critical guidance roles by recognizing cues via their extracellular domains and transducing signals via their intracellular domains, resulting in changes in direction of growth. An important concept to have emerged in the axon guidance field is the importance of repulsion as a major guidance mechanism. Given the number and variety of different repulsive receptors, it is generally thought that there are likely to be qualitative differences in the signals they transduce. However, the nature of these possible differences is unknown. By creating chimeras using the extracellular and intracellular domains of three different Drosophila repulsive receptors, Unc5, Roundabout (Robo), and Derailed (Drl) and expressing them in defined cells within the embryonic nervous system, we examined the responses elicited by their intracellular domains systematically. Surprisingly, we found no qualitative differences in growth cone response or axon growth, suggesting that, despite their highly diverged sequences, each intracellular domain elicits repulsion via a common pathway. In terms of the signaling pathway(s) used by the repulsive receptors, mutations in the guanine nucleotide exchange factor Trio strongly enhance the repulsive activity of all three intracellular domains, suggesting that repulsion by Unc5, Robo, and Drl, and perhaps repulsion in general, involves Trio activity. SIGNIFICANCE STATEMENT A prevailing concept that has emerged in the axon guidance field is the importance of repulsion as a guidance mechanism for steering axons to their appropriate targets. Given the number and variety of different repulsive receptors, it is generally thought that there are differences in the signals that they transduce. However, this has never been tested directly. We have used the advanced genetics of Drosophila to compare directly the outputs of different repulsive receptors. Surprisingly, we found no qualitative

  7. Trafficking properties of the D5 dopamine receptor.

    PubMed

    Thompson, Dawn; Whistler, Jennifer L

    2011-05-01

    Dopamine receptors are important for diverse biological functions and are important pharmacological targets in human medicine. Signal transduction from the dopamine receptors is controlled at many levels, including by the process of receptor trafficking. Little is known regarding the endocytic and postendocytic trafficking properties of the D5 dopamine receptor. Here, we show that endocytosis of the D5 receptor can be achieved both homologously, through direct receptor activation by agonist, and also heterologously, due to independent activation of protein kinase C (PKC). In contrast, the D1 receptor is endocytosed only in response to agonist but not PKC activation. We have identified the residue in the third intracellular loop of the D5 receptor that is both necessary for PKC-mediated endocytosis of the D5 receptor and sufficient to induce PKC-mediated endocytosis when introduced to the D1 receptor. In addition, we show that endocytosis of D5 through both pathways is dependent on clathrin and dynamin but that only agonist-induced endocytosis engages β-arrestin 2. Together, these data show that the D5 receptor shows a trafficking profile distinct from that of any of the other dopamine receptors.

  8. Agonist-induced restoration of hippocampal neurogenesis and cognitive improvement in a model of cholinergic denervation

    PubMed Central

    Van Kampen, Jackalina M.; Eckman, Christopher B.

    2012-01-01

    Loss of basal forebrain cholinergic innervation of the hippocampus and severe neuronal loss within the hippocampal CA1 region are early hallmarks of Alzheimer’s disease, and are strongly correlated with cognitive status. Various therapeutic approaches involve attempts to enhance neurotransmission or to provide some level of neuroprotection for remaining cells. An alternative approach may involve the generation of new cells to replace those lost in AD. Indeed, a simple shift in the balance between cell generation and cell loss may slow disease progression and possibly even reverse existing cognitive deficits. One potential neurogenic regulator might be acetylcholine, itself, which has been shown to play a critical role in hippocampal development. Here, we report the effects of various cholinergic compounds on indices of hippocampal neurogenesis, demonstrating a significant induction following pharmacological activation of muscarinic M1 receptors, located on hippocampal progenitors in the adult brain. This is the first report that a small-molecule agonist may induce neurogenesis in the hippocampal CA1 region. Furthermore, such treatment reversed deficits in markers of neurogenesis and spatial working memory triggered by cholinergic denervation in a rodent model. This study suggests the use of small molecule, receptor agonists may represent a novel means to trigger the restoration of specific neuronal populations lost to a variety of neurodegenerative disorders, such as Parkinson’s, Alzheimer’s, Huntington’s and Amyotrophic Lateral Sclerosis. PMID:20026137

  9. Engineered G protein coupled receptors reveal independent regulation of internalization, desensitization and acute signaling

    PubMed Central

    Scearce-Levie, Kimberly; Lieberman, Michael D; Elliott, Heather H; Conklin, Bruce R

    2005-01-01

    Background The physiological regulation of G protein-coupled receptors, through desensitization and internalization, modulates the length of the receptor signal and may influence the development of tolerance and dependence in response to chronic drug treatment. To explore the importance of receptor regulation, we engineered a series of Gi-coupled receptors that differ in signal length, degree of agonist-induced internalization, and ability to induce adenylyl cyclase superactivation. All of these receptors, based on the kappa opioid receptor, were modified to be receptors activated solely by synthetic ligands (RASSLs). This modification allows us to compare receptors that have the same ligands and effectors, but differ only in desensitization and internalization. Results Removal of phosphorylation sites in the C-terminus of the RASSL resulted in a mutant that was resistant to internalization and less prone to desensitization. Replacement of the C-terminus of the RASSL with the corresponding portion of the mu opioid receptor eliminated the induction of AC superactivation, without disrupting agonist-induced desensitization or internalization. Surprisingly, removal of phosphorylation sites from this chimera resulted in a receptor that is constitutively internalized, even in the absence of agonist. However, the receptor still signals and desensitizes in response to agonist, indicating normal G-protein coupling and partial membrane expression. Conclusions These studies reveal that internalization, desensitization and adenylyl cyclase superactivation, all processes that decrease chronic Gi-receptor signals, are independently regulated. Furthermore, specific mutations can radically alter superactivation or internalization without affecting the efficacy of acute Gi signaling. These mutant RASSLs will be useful for further elucidating the temporal dynamics of the signaling of G protein-coupled receptors in vitro and in vivo. PMID:15707483

  10. Peroxisome proliferator-activated receptors and angiogenesis.

    PubMed

    Biscetti, F; Straface, G; Pitocco, D; Zaccardi, F; Ghirlanda, G; Flex, A

    2009-12-01

    The peroxisome proliferator-activated receptors (PPARs) are a group of three nuclear receptor isoforms, PPARalpha, PPARgamma and PPARdelta, encoded by different genes, and they form a subfamily of the nuclear receptor superfamily. The clinical interest in PPARs originates with fibrates and thiazolidinediones, which, respectively, act on PPARalpha and PPARgamma and are used to ameliorate hyperlipidaemia and hyperglycaemia in subjects with type 2 diabetes mellitus (T2DM). PPARs play a central role in these patients due to their ability to regulate the expression of numerous genes involved in glycaemic control, lipid metabolism, vascular tone and inflammation. Abnormal angiogenesis is implicated in several of the long-term complications of diabetes mellitus, characterized by vasculopathy associated with aberrant growth of new blood vessels. This pathological process plays a crucial role in diabetic retinopathy, nephropathy and neuropathy, impaired wound healing and impaired coronary collateral vessel development. In recent years, there has been increasing appreciation of the fact that PPARs might be involved in the molecular mechanisms that regulate angiogenesis through the action of growth factors and cytokines that stimulate migration, proliferation and survival of endothelial cells. During the last few years direct comparative analyses have been performed, using selective PPARs agonists, to clarify the angiogenic properties of the different members of the PPAR family. Lately, the findings provide new information to order to understand the biological, clinical and therapeutic effects of PPARs, and the role of these nuclear receptors in angiogenesis, with potentially important implications for the management of subjects affected by T2DM. PMID:19628379

  11. Proteinase-activated receptors (PARs) – focus on receptor-receptor-interactions and their physiological and pathophysiological impact

    PubMed Central

    2013-01-01

    Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors (GPCRs) with four members, PAR1, PAR2, PAR3 and PAR4, playing critical functions in hemostasis, thrombosis, embryonic development, wound healing, inflammation and cancer progression. PARs are characterized by a unique activation mechanism involving receptor cleavage by different proteinases at specific sites within the extracellular amino-terminus and the exposure of amino-terminal “tethered ligand“ domains that bind to and activate the cleaved receptors. After activation, the PAR family members are able to stimulate complex intracellular signalling networks via classical G protein-mediated pathways and beta-arrestin signalling. In addition, different receptor crosstalk mechanisms critically contribute to a high diversity of PAR signal transduction and receptor-trafficking processes that result in multiple physiological effects. In this review, we summarize current information about PAR-initiated physical and functional receptor interactions and their physiological and pathological roles. We focus especially on PAR homo- and heterodimerization, transactivation of receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), communication with other GPCRs, toll-like receptors and NOD-like receptors, ion channel receptors, and on PAR association with cargo receptors. In addition, we discuss the suitability of these receptor interaction mechanisms as targets for modulating PAR signalling in disease. PMID:24215724

  12. Substance P and the neurokinin-1 receptor regulate electroencephalogram non-rapid eye movement sleep slow-wave activity locally

    PubMed Central

    Zielinski, Mark R.; Karpova, Svetlana A.; Yang, Xiaomei; Gerashchenko, Dmitry

    2014-01-01

    The neuropeptide substance P is an excitatory neurotransmitter produced by various cells including neurons and microglia that is involved in regulating inflammation and cerebral blood flow—functions that affect sleep and slow-wave activity (SWA). Substance P is the major ligand for the neurokinin-1 receptor (NK-1R), which is found throughout the brain including the cortex. The NK-1R is found on sleep-active cortical neurons expressing neuronal nitric oxide synthase whose activity is associated with SWA. We determined the effects of local cortical administration of a NK-1R agonist (substance P-fragment 1, 7) and a NK-1R antagonist (CP96345) on sleep and SWA in mice. The NK-1R agonist significantly enhanced SWA for several hours when applied locally to the cortex of the ipsilateral hemisphere as the electroencephalogram (EEG) electrode but not after application to the contralateral hemisphere when compared to saline vehicle control injections. In addition, a significant compensatory reduction in SWA was found after the NK-1R agonist-induced enhancements in SWA. Conversely, injections of the NK-1R antagonist into the cortex of the ipsilateral hemisphere of the EEG electrode attenuated SWA compared to vehicle injections but this effect was not found after injections of the NK-1R antagonist into contralateral hemisphere as the EEG electrode. Non-rapid eye movement sleep and rapid eye movement sleep duration responses after NK-1R agonist and antagonist injections were not significantly different from the responses to the vehicle. Our findings indicate that the substance P and the NK-1R are involved in regulating SWA locally. PMID:25301750

  13. RGS2 modulates the activity and internalization of dopamine D2 receptors in neuroblastoma N2A cells.

    PubMed

    Luessen, Deborah J; Hinshaw, Tyler P; Sun, Haiguo; Howlett, Allyn C; Marrs, Glen; McCool, Brian A; Chen, Rong

    2016-11-01

    Dysregulated expression and function of dopamine D2 receptors (D2Rs) are implicated in drug addiction, Parkinson's disease and schizophrenia. In the current study, we examined whether D2Rs are modulated by regulator of G protein signaling 2 (RGS2), a member of the RGS family that regulates G protein signaling via acceleration of GTPase activity. Using neuroblastoma 2a (N2A) cells, we found that RGS2 was immunoprecipitated by aluminum fluoride-activated Gαi2 proteins. RGS2 siRNA knockdown enhanced membrane [(35)S] GTPγS binding to activated Gαi/o proteins, augmented inhibition of cAMP accumulation and increased ERK phosphorylation in the presence of a D2/D3R agonist quinpirole when compared to scrambled siRNA treatment. These data suggest that RGS2 is a negative modulator of D2R-mediated Gαi/o signaling. Moreover, RGS2 knockdown slightly increased constitutive D2R internalization and markedly abolished quinpirole-induced D2R internalization assessed by immunocytochemistry. RGS2 knockdown did not compromise agonist-induced β-arrestin membrane recruitment; however, it prevents β-arrestin dissociation from the membrane after prolonged quinpirole treatment during which time β-arrestin moved away from the membrane in control cells. Additionally, confocal microscopy analysis of β-arrestin post-endocytic fate revealed that quinpirole treatment caused β-arrestin to translocate to the early and the recycling endosome in a time-dependent manner in control cells whereas translocation of β-arrestin to these endosomes did not occur in RGS2 knockdown cells. The impaired β-arrestin translocation likely contributed to the abolishment of quinpirole-stimulated D2R internalization in RGS2 knockdown cells. Thus, RGS2 is integral for β-arrestin-mediated D2R internalization. The current study revealed a novel regulation of D2R signaling and internalization by RGS2 proteins.

  14. Heteromers of μ-δ opioid receptors: new pharmacology and novel therapeutic possibilities

    PubMed Central

    Fujita, Wakako; Gomes, Ivone; Devi, Lakshmi A

    2015-01-01

    Several studies suggest that heteromerization between μ (MOP) and δ (DOP) opioid receptors modulates the signalling properties of the individual receptors. For example, whereas activation of MOP receptors by an agonist induces G protein-mediated signalling, the same agonist induces β-arrestin-mediated signalling in the context of the MOP-DOP receptor heteromer. Moreover, heteromer-mediated signalling is allosterically modulated by a combination of MOP and DOP receptor ligands. This has implications in analgesia given that morphine-induced antinociception can be potentiated by DOP receptor ligands. Recently reagents selectively targeting the MOP-DOP receptor heteromer such as bivalent ligands, antibodies or membrane permeable peptides have been generated; these reagents are enabling studies to elucidate the contribution of endogenously expressed heteromers to analgesia as well as to the development of side-effects associated with chronic opioid use. Recent advances in drug screening technology have led to the identification of a MOP-DOP receptor heteromer-biased agonist that activates both G protein-mediated and β-arrestin-mediated signalling. Moreover, this heteromer-biased agonist exhibits potent antinociceptive activity but with reduced side-effects, suggesting that ligands targeting the MOP-DOP receptor heteromer form a basis for the development of novel therapeutics for the treatment of pain. In this review, we summarize findings regarding the biological and functional characteristics of the MOP-DOP receptor heteromer and the in vitro and in vivo properties of heteromer-selective ligands. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24571499

  15. Role of proteinase-activated receptor-2 in anti-bacterial and immunomodulatory effects of interferon-γ on human neutrophils and monocytes.

    PubMed

    Shpacovitch, Victoria M; Feld, Micha; Holzinger, Dirk; Kido, Makiko; Hollenberg, Morley D; Levi-Schaffer, Francesca; Vergnolle, Nathalie; Ludwig, Stephan; Roth, Johannes; Luger, Thomas; Steinhoff, Martin

    2011-07-01

    Recent studies show that proteinase-activated receptor-2 (PAR(2)) contributes to the development of inflammatory responses. However, investigations into the precise role of PAR(2) activation in the anti-microbial defence of human leucocytes are just beginning. We therefore evaluated the contribution of PAR(2) to the anti-microbial response of isolated human innate immune cells. We found that PAR(2) agonist, acting alone, enhances phagocytosis of Staphylococcus aureus and killing of Escherichia coli by human leucocytes, and that the magnitude of the effect is similar to that of interferon-γ (IFN-γ). However, co-application of PAR(2) -cAP and IFN-γ did not enhance the phagocytic and bacteria-killing activity of leucocytes beyond that triggered by either agonist alone. On the other hand, IFN-γ enhances PAR(2) agonist-induced monocyte chemoattractant protein 1 (MCP-1) secretion by human neutrophils and monocytes. Furthermore, phosphoinositide-3 kinase and janus kinase molecules are involved in the synergistic effect of PAR(2) agonist and IFN-γ on MCP-1 secretion. Our findings suggest a potentially protective role of PAR(2) agonists in the anti-microbial defence established by human monocytes and neutrophils.

  16. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project

    PubMed Central

    Mansouri, Kamel; Abdelaziz, Ahmed; Rybacka, Aleksandra; Roncaglioni, Alessandra; Tropsha, Alexander; Varnek, Alexandre; Zakharov, Alexey; Worth, Andrew; Richard, Ann M.; Grulke, Christopher M.; Trisciuzzi, Daniela; Fourches, Denis; Horvath, Dragos; Benfenati, Emilio; Muratov, Eugene; Wedebye, Eva Bay; Grisoni, Francesca; Mangiatordi, Giuseppe F.; Incisivo, Giuseppina M.; Hong, Huixiao; Ng, Hui W.; Tetko, Igor V.; Balabin, Ilya; Kancherla, Jayaram; Shen, Jie; Burton, Julien; Nicklaus, Marc; Cassotti, Matteo; Nikolov, Nikolai G.; Nicolotti, Orazio; Andersson, Patrik L.; Zang, Qingda; Politi, Regina; Beger, Richard D.; Todeschini, Roberto; Huang, Ruili; Farag, Sherif; Rosenberg, Sine A.; Slavov, Svetoslav; Hu, Xin; Judson, Richard S.

    2016-01-01

    Background: Humans are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Most of these chemicals have never been tested for their ability to interact with the estrogen receptor (ER). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program. Objectives: We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) and demonstrate the efficacy of using predictive computational models trained on high-throughput screening data to evaluate thousands of chemicals for ER-related activity and prioritize them for further testing. Methods: CERAPP combined multiple models developed in collaboration with 17 groups in the United States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure–activity relationship models and docking approaches were employed, mostly using a common training set of 1,677 chemical structures provided by the U.S. EPA, to build a total of 40 categorical and 8 continuous models for binding, agonist, and antagonist ER activity. All predictions were evaluated on a set of 7,522 chemicals curated from the literature. To overcome the limitations of single models, a consensus was built by weighting models on scores based on their evaluated accuracies. Results: Individual model scores ranged from 0.69 to 0.85, showing high prediction reliabilities. Out of the 32,464 chemicals, the consensus model predicted 4,001 chemicals (12.3%) as high priority actives and 6,742 potential actives (20.8%) to be considered for further testing. Conclusion: This project demonstrated the possibility to screen large libraries of chemicals using a consensus of different in silico approaches. This concept will be applied in future projects related to other

  17. How IGF-1 activates its receptor

    PubMed Central

    Kavran, Jennifer M; McCabe, Jacqueline M; Byrne, Patrick O; Connacher, Mary Katherine; Wang, Zhihong; Ramek, Alexander; Sarabipour, Sarvenaz; Shan, Yibing; Shaw, David E; Hristova, Kalina; Cole, Philip A; Leahy, Daniel J

    2014-01-01

    The type I insulin-like growth factor receptor (IGF1R) is involved in growth and survival of normal and neoplastic cells. A ligand-dependent conformational change is thought to regulate IGF1R activity, but the nature of this change is unclear. We point out an underappreciated dimer in the crystal structure of the related Insulin Receptor (IR) with Insulin bound that allows direct comparison with unliganded IR and suggests a mechanism by which ligand regulates IR/IGF1R activity. We test this mechanism in a series of biochemical and biophysical assays and find the IGF1R ectodomain maintains an autoinhibited state in which the TMs are held apart. Ligand binding releases this constraint, allowing TM association and unleashing an intrinsic propensity of the intracellular regions to autophosphorylate. Enzymatic studies of full-length and kinase-containing fragments show phosphorylated IGF1R is fully active independent of ligand and the extracellular-TM regions. The key step triggered by ligand binding is thus autophosphorylation. DOI: http://dx.doi.org/10.7554/eLife.03772.001 PMID:25255214

  18. Spongian diterpenoids inhibit androgen receptor activity

    PubMed Central

    Yang, Yu Chi; Meimetis, Labros G; Tien, Amy H; Mawji, Nasrin R; Carr, Gavin; Wang, Jun; Andersen, Raymond J; Sadar, Marianne D

    2013-01-01

    Androgen receptor (AR) is a ligand-activated transcription factor and a validated drug target for all stages of prostate cancer. Antiandrogens compete with physiological ligands for AR ligand-binding domain (LBD). High-throughput screening of a marine natural product library for small molecules that inhibit AR transcriptional activity yielded the furanoditerpenoid spongia-13(16),-14-dien-19-oic acid, designated terpene 1 (T1). Characterization of T1 and the structurally related semi-synthetic analogues (T2 and T3) revealed that these diterpenoids have antiandrogen properties that include inhibition of both androgen-dependent proliferation and AR transcriptional activity by a mechanism that involved competing with androgen for AR LBD and blocking essential N/C interactions required for androgen-induced AR transcriptional activity. Structure activity relationship analyses revealed some chemical features of T1 that are associated with activity and yielded T3 as the most potent analogue. In vivo, T3 significantly reduced the weight of seminal vesicles, which are an androgen-dependent tissue, thereby confirming T3’s on-target activity. The ability to create analogues of diterpenoids that have varying antiandrogen activity represents a novel class of chemical compounds for the analysis of AR ligand-binding properties and therapeutic development. PMID:23443807

  19. nAChR agonist-induced cognition enhancement: integration of cognitive and neuronal mechanisms.

    PubMed

    Sarter, Martin; Parikh, Vinay; Howe, William M

    2009-10-01

    The identification and characterization of drugs for the treatment of cognitive disorders has been hampered by the absence of comprehensive hypotheses. Such hypotheses consist of (a) a precisely defined cognitive operation that fundamentally underlies a range of cognitive abilities and capacities and, if impaired, contributes to the manifestation of diverse cognitive symptoms; (b) defined neuronal mechanisms proposed to mediate the cognitive operation of interest; (c) evidence indicating that the putative cognition enhancer facilitates these neuronal mechanisms; (d) and evidence indicating that the cognition enhancer facilitates cognitive performance by modulating these underlying neuronal mechanisms. The evidence on the neuronal and attentional effects of nAChR agonists, specifically agonists selective for alpha4beta2* nAChRs, has begun to support such a hypothesis. nAChR agonists facilitate the detection of signals by augmenting the transient increases in prefrontal cholinergic activity that are necessary for a signal to gain control over behavior in attentional contexts. The prefrontal microcircuitry mediating these effects include alpha4beta2* nAChRs situated on the terminals of thalamic inputs and the glutamatergic stimulation of cholinergic terminals via ionotropic glutamate receptors. Collectively, this evidence forms the basis for hypothesis-guided development and characterization of cognition enhancers.

  20. Estrogen receptor beta growth-inhibitory effects are repressed through activation of MAPK and PI3K signalling in mammary epithelial and breast cancer cells.

    PubMed

    Cotrim, C Z; Fabris, V; Doria, M L; Lindberg, K; Gustafsson, J-Å; Amado, F; Lanari, C; Helguero, L A

    2013-05-01

    Two thirds of breast cancers express estrogen receptors (ER). ER alpha (ERα) mediates breast cancer cell proliferation, and expression of ERα is the standard choice to indicate adjuvant endocrine therapy. ERbeta (ERβ) inhibits growth in vitro; its effects in vivo have been incompletely investigated and its role in breast cancer and potential as alternative target in endocrine therapy needs further study. In this work, mammary epithelial (EpH4 and HC11) and breast cancer (MC4-L2) cells with endogenous ERα and ERβ expression and T47-D human breast cancer cells with recombinant ERβ (T47-DERβ) were used to explore effects exerted in vitro and in vivo by the ERβ agonists 2,3-bis (4-hydroxy-phenyl)-propionitrile (DPN) and 7-bromo-2-(4-hydroxyphenyl)-1,3-benzoxazol-5-ol (WAY). In vivo, ERβ agonists induced mammary gland hyperplasia and MC4-L2 tumour growth to a similar extent as the ERα agonist 4,4',4''-(4-propyl-(1H)-pyrazole-1,3,5-triyl) trisphenol (PPT) or 17β-estradiol (E2) and correlated with higher number of mitotic and lower number of apoptotic features. In vitro, in MC4-L2, EpH4 or HC11 cells incubated under basal conditions, ERβ agonists induced apoptosis measured as upregulation of p53 and apoptosis-inducible factor protein levels and increased caspase 3 activity, whereas PPT and E2 stimulated proliferation. However, when extracellular signal-regulated kinase 1 and 2 (ERK ½) were activated by co-incubation with basement membrane extract or epidermal growth factor, induction of apoptosis by ERβ agonists was repressed and DPN induced proliferation in a similar way as E2 or PPT. In a context of active ERK ½, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/RAC-alpha serine/threonine-protein kinase (AKT) signalling was necessary to allow proliferation stimulated by ER agonists. Inhibition of MEK ½ with UO126 completely restored ERβ growth-inhibitory effects, whereas inhibition of PI3K by LY294002 inhibited ERβ-induced proliferation. These

  1. Signaling pathways engaged by NK cell receptors: double concerto for activating receptors, inhibitory receptors and NK cells.

    PubMed

    Tomasello, E; Bléry, M; Vély, F; Vivier, E

    2000-04-01

    Despite the absence of antigen-specific receptors at their surface, NK cells can selectively eliminate virus-infected cells, tumor cells and allogenic cells. A dynamic and precisely coordinated balance between activating and inhibitory receptors governs NK cell activation programs. Multiple activating and inhibitory NK cell surface molecules have been described, a group of them acting as receptors for MHC class I molecules. In spite of their heterogeneity, activating NK cell receptors present remarkable structural and functional homologies with T cell- and B cell-antigen receptors. Inhibitory NK cell receptors operate at early stages of activating cascades by recruiting protein tyrosine phosphatases via intra- cytoplasmic motifs (ITIM), a strategy which is widely conserved in hematopoietic and non-hematopoietic cells.

  2. Palmitoylation of protease-activated receptor-1 regulates adaptor protein complex-2 and -3 interaction with tyrosine-based motifs and endocytic sorting.

    PubMed

    Canto, Isabel; Trejo, JoAnn

    2013-05-31

    Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor for the coagulant protease thrombin. Thrombin binds to and cleaves the N terminus of PAR1, generating a new N terminus that functions as a tethered ligand that cannot diffuse away. In addition to rapid desensitization, PAR1 trafficking is critical for the regulation of cellular responses. PAR1 displays constitutive and agonist-induced internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), which binds to a distal tyrosine-based motif localized within the C-terminal tail (C-tail) domain. Once internalized, PAR1 is sorted from endosomes to lysosomes via AP-3 interaction with a second C-tail tyrosine motif proximal to the transmembrane domain. However, the regulatory processes that control adaptor protein recognition of PAR1 C-tail tyrosine-based motifs are not known. Here, we report that palmitoylation of PAR1 is critical for regulating proper utilization of tyrosine-based motifs and endocytic sorting. We show that PAR1 is basally palmitoylated at highly conserved C-tail cysteines. A palmitoylation-deficient PAR1 mutant is competent to signal and exhibits a marked increase in constitutive internalization and lysosomal degradation compared with wild type receptor. Intriguingly, enhanced constitutive internalization of PAR1 is mediated by AP-2 and requires the proximal tyrosine-based motif rather than the distal tyrosine motif used by wild type receptor. Moreover, palmitoylation-deficient PAR1 displays increased degradation that is mediated by AP-3. These findings suggest that palmitoylation of PAR1 regulates appropriate utilization of tyrosine-based motifs by adaptor proteins and endocytic trafficking, processes that are critical for maintaining appropriate expression of PAR1 at the cell surface. PMID:23580642

  3. Palmitoylation of protease-activated receptor-1 regulates adaptor protein complex-2 and -3 interaction with tyrosine-based motifs and endocytic sorting.

    PubMed

    Canto, Isabel; Trejo, JoAnn

    2013-05-31

    Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor for the coagulant protease thrombin. Thrombin binds to and cleaves the N terminus of PAR1, generating a new N terminus that functions as a tethered ligand that cannot diffuse away. In addition to rapid desensitization, PAR1 trafficking is critical for the regulation of cellular responses. PAR1 displays constitutive and agonist-induced internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), which binds to a distal tyrosine-based motif localized within the C-terminal tail (C-tail) domain. Once internalized, PAR1 is sorted from endosomes to lysosomes via AP-3 interaction with a second C-tail tyrosine motif proximal to the transmembrane domain. However, the regulatory processes that control adaptor protein recognition of PAR1 C-tail tyrosine-based motifs are not known. Here, we report that palmitoylation of PAR1 is critical for regulating proper utilization of tyrosine-based motifs and endocytic sorting. We show that PAR1 is basally palmitoylated at highly conserved C-tail cysteines. A palmitoylation-deficient PAR1 mutant is competent to signal and exhibits a marked increase in constitutive internalization and lysosomal degradation compared with wild type receptor. Intriguingly, enhanced constitutive internalization of PAR1 is mediated by AP-2 and requires the proximal tyrosine-based motif rather than the distal tyrosine motif used by wild type receptor. Moreover, palmitoylation-deficient PAR1 displays increased degradation that is mediated by AP-3. These findings suggest that palmitoylation of PAR1 regulates appropriate utilization of tyrosine-based motifs by adaptor proteins and endocytic trafficking, processes that are critical for maintaining appropriate expression of PAR1 at the cell surface.

  4. The peptide hemopressin acts through CB1 cannabinoid receptors to reduce food intake in rats and mice.

    PubMed

    Dodd, Garron T; Mancini, Giacomo; Lutz, Beat; Luckman, Simon M

    2010-05-26

    Hemopressin is a short, nine amino acid peptide (H-Pro-Val-Asn-Phe-Lys-Leu-Leu-Ser-His-OH) isolated from rat brain that behaves as an inverse agonist at the cannabinoid receptor CB(1), and is shown here to inhibit agonist-induced receptor internalization in a heterologous cell model. Since this peptide occurs naturally in the rodent brain, we determined its effect on appetite, an established central target of cannabinoid signaling. Hemopressin dose-dependently decreases night-time food intake in normal male rats and mice, as well as in obese ob/ob male mice, when administered centrally or systemically, without causing any obvious adverse side effects. The normal, behavioral satiety sequence is maintained in male mice fasted overnight, though refeeding is attenuated. The anorectic effect is absent in CB(1) receptor null mutant male mice, and hemopressin can block CB(1) agonist-induced hyperphagia in male rats, providing strong evidence for antagonism of the CB(1) receptor in vivo. We speculate that hemopressin may act as an endogenous functional antagonist at CB(1) receptors and modulate the activity of appetite pathways in the brain.

  5. Principles of antibody-mediated TNF receptor activation

    PubMed Central

    Wajant, H

    2015-01-01

    From the beginning of research on receptors of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF), agonistic antibodies have been used to stimulate TNFRSF receptors in vitro and in vivo. Indeed, CD95, one of the first cloned TNFRSF receptors, was solely identified as the target of cell death-inducing antibodies. Early on, it became evident from in vitro studies that valency and Fcγ receptor (FcγR) binding of antibodies targeting TNFRSF receptors can be of crucial relevance for agonistic activity. TNFRSF receptor-specific antibodies of the IgM subclass and secondary cross-linked or aggregation prone dimeric antibodies typically display superior agonistic activity compared with dimeric antibodies. Likewise, anchoring of antibodies to cell surface-expressed FcγRs potentiate their ability to trigger TNFRSF receptor signaling. However, only recently has the relevance of oligomerization and FcγR binding for the in vivo activity of antibody-induced TNFRSF receptor activation been straightforwardly demonstrated in vivo. This review discusses the crucial role of oligomerization and/or FcγR binding for antibody-mediated TNFRSF receptor stimulation in light of current models of TNFRSF receptor activation and especially the overwhelming relevance of these issues for the rational development of therapeutic TNFRSF receptor-targeting antibodies. PMID:26292758

  6. P2Y1 receptor activation elicits its partition out of membrane rafts and its rapid internalization from human blood vessels: implications for receptor signaling.

    PubMed

    Norambuena, Andrés; Poblete, M Inés; Donoso, M Verónica; Espinoza, C Sofía; González, Alfonso; Huidobro-Toro, J Pablo

    2008-12-01

    The nucleotide P2Y(1) receptor (P2Y(1)R) is expressed in both the endothelial and vascular smooth muscle cells; however, its plasma membrane microregionalization and internalization in human tissues remain unknown. We report on the role of membrane rafts in P2Y(1)R signaling by using sodium carbonate or OptiPrep sucrose density gradients, Western blot analysis, reduction of tissue cholesterol content, and vasomotor assays of endothelium-denuded human chorionic arteries. In tissue extracts prepared either in sodium carbonate or OptiPrep, approximately 20 to 30% of the total P2Y(1)R mass consistently partitioned into raft fractions and correlated with vasomotor activity. Vessel treatment with methyl beta-cyclodextrin reduced the raft partitioning of the P2Y(1)R and obliterated the P2Y(1)R-mediated contractions but not the vasomotor responses elicited by either serotonin or KCl. Perfusion of chorionic artery segments with 100 nM 2-methylthio ADP or 10 nM [[(1R,2R,3S,4R,5S)-4-[6-amino-2-(methylthio)-9H-purin-9-yl] 2,3dihydroxybicyclo[3.1.0]hex-1-yl]methyl] diphosphoric acid mono ester trisodium salt (MRS 2365), a selective P2Y(1)R agonist, not only displaced within 4 min the P2Y(1)R localization out of membrane rafts but also induced its subsequent internalization. 2'-Deoxy-N(6)-methyladenosine 3',5'-bisphosphate tetrasodium salt (MRS 2179), a specific P2Y(1)R antagonist, did not cause a similar displacement but blocked the agonist-induced exit from rafts. Neither adenosine nor uridine triphosphate displaced the P2Y(1)R from the membrane raft, further evidencing the pharmacodynamics of the receptor-ligand interaction. Vascular reactivity assays showed fading of the ligand-induced vasoconstrictions, a finding that correlated with the P2Y(1)R exit from raft domains and internalization. These results demonstrate in intact human vascular smooth muscle the association of the P2Y(1)R to membrane rafts, highlighting the role of this microdomain in P2Y(1)R signaling.

  7. Alterations in detergent solubility of heterotrimeric G proteins after chronic activation of G(i/o)-coupled receptors: changes in detergent solubility are in correlation with onset of adenylyl cyclase superactivation.

    PubMed

    Bayewitch, M L; Nevo, I; Avidor-Reiss, T; Levy, R; Simonds, W F; Vogel, Z

    2000-04-01

    Prolonged G(i/o) protein-coupled receptor activation has been shown to lead to receptor internalization and receptor desensitization. In addition, it is well established that although acute activation of these receptors leads to inhibition of adenylyl cyclase (AC), long-term activation results in increased AC activity (especially evident on removal of the inhibitory agonist), a phenomenon defined as AC superactivation or sensitization. Herein, we show that chronic exposure to agonists of G(i)-coupled receptors also leads to a decrease in cholate detergent solubility of G protein subunits, and that antagonist treatment after such chronic agonist exposure leads to a time-dependent reversal of the cholate insolubility. With Chinese hamster ovary and COS cells transfected with several G(i/o)-coupled receptors (i.e., mu- and kappa-opioid, and m(4)-muscarinic), we observed that although no overall change occurred in total content of G(alphai)- and beta(1)-subunits, chronic agonist treatment led to a marked reduction in the ability of 1% cholate to solubilize G(betagamma) as well as G(alphai). This solubility shift is exclusively observed with G(alphai), and was not seen with G(alphas). The disappearance and reappearance of G(alphai) and G(betagamma) subunits from and to the detergent-soluble fractions occur with similar time courses as observed for the onset and disappearance of AC superactivation. Lastly, pertussis toxin, which blocks acute and chronic agonist-induced AC inhibition and superactivation, also blocks the shift in detergent solubility. These results suggest a correlation between the solubility shift of the heterotrimeric G(i) protein and the generation of AC superactivation.

  8. Identification of Gene Markers for Activation of the Nuclear Receptor Pregnane X Receptor

    EPA Science Inventory

    Many environmentally-relevant chemicals and drugs activate the nuclear receptor pregnane X receptor (PXR). Activation of PXR in the mouse liver can lead to increases in liver weight in part through increased hepatocyte replication similar to chemicals that activate other nuclear ...

  9. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer

    SciTech Connect

    Brown, Richard J.; Adams, Julian J.; Pelekanos, Rebecca A.; Wan, Yu; McKinstry, William J.; Palethorpe, Kathryn; Seeber, Ruth M.; Monks, Thea A.; Eidne, Karin A.; Parker, Michael W.; Waters, Michael J.

    2010-07-13

    Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.

  10. Synergistic Activation of Dopamine D1 and TrkB Receptors Mediate Gain Control of Synaptic Plasticity in the Basolateral Amygdala

    PubMed Central

    Li, Chenchen; Dabrowska, Joanna; Hazra, Rimi; Rainnie, Donald G.

    2011-01-01

    Fear memory formation is thought to require dopamine, brain-derived neurotrophic factor (BDNF) and zinc release in the basolateral amygdala (BLA), as well as the induction of long term potentiation (LTP) in BLA principal neurons. However, no study to date has shown any relationship between these processes in the BLA. Here, we have used in vitro whole-cell patch clamp recording from BLA principal neurons to investigate how dopamine, BDNF, and zinc release may interact to modulate the LTP induction in the BLA. LTP was induced by either theta burst stimulation (TBS) protocol or spaced 5 times high frequency stimulation (5xHFS). Significantly, both TBS and 5xHFS induced LTP was fully blocked by the dopamine D1 receptor antagonist, SCH23390. LTP induction was also blocked by the BDNF scavenger, TrkB-FC, the zinc chelator, DETC, as well as by an inhibitor of matrix metalloproteinases (MMPs), gallardin. Conversely, prior application of the dopamine reuptake inhibitor, GBR12783, or the D1 receptor agonist, SKF39393, induced robust and stable LTP in response to a sub-threshold HFS protocol (2xHFS), which does not normally induce LTP. Similarly, prior activation of TrkB receptors with either a TrkB receptor agonist, or BDNF, also reduced the threshold for LTP-induction, an effect that was blocked by the MEK inhibitor, but not by zinc chelation. Intriguingly, the TrkB receptor agonist-induced reduction of LTP threshold was fully blocked by prior application of SCH23390, and the reduction of LTP threshold induced by GBR12783 was blocked by prior application of TrkB-FC. Together, our results suggest a cellular mechanism whereby the threshold for LTP induction in BLA principal neurons is critically dependent on the level of dopamine in the extracellular milieu and the synergistic activation of postsynaptic D1 and TrkB receptors. Moreover, activation of TrkB receptors appears to be dependent on concurrent release of zinc and activation of MMPs. PMID:22022509

  11. Discovery of 3-arylpropionic acids as potent agonists of sphingosine-1-phosphate receptor-1 (S1P1) with high selectivity against all other known S1P receptor subtypes.

    PubMed

    Yan, Lin; Huo, Pei; Doherty, George; Toth, Lesile; Hale, Jeffrey J; Mills, Sander G; Hajdu, Richard; Keohane, Carol A; Rosenbach, Mark J; Milligan, James A; Shei, Gan-Ju; Chrebet, Gary; Bergstrom, James; Card, Deborah; Quackenbush, Elizabeth; Wickham, Alexandra; Mandala, Suzanne M

    2006-07-15

    A series of 3-arylpropionic acids were synthesized as S1P1 receptor agonists. Structure-activity relationship studies on the pendant phenyl ring revealed several structural features offering selectivity of S1P1 binding against S1P2-5. These highly selective S1P1 agonists induced peripheral blood lymphocyte lowering in mice and one of them was found to be efficacious in a rat skin transplantation model, supporting that S1P1 agonism is primarily responsible for the immunosuppressive efficacy observed in preclinical animal models.

  12. Modulation of Glucagon Receptor Pharmacology by Receptor Activity-modifying Protein-2 (RAMP2)*

    PubMed Central

    Weston, Cathryn; Lu, Jing; Li, Naichang; Barkan, Kerry; Richards, Gareth O.; Roberts, David J.; Skerry, Timothy M.; Poyner, David; Pardamwar, Meenakshi; Reynolds, Christopher A.; Dowell, Simon J.; Willars, Gary B.; Ladds, Graham

    2015-01-01

    The glucagon and glucagon-like peptide-1 (GLP-1) receptors play important, opposing roles in regulating blood glucose levels. Consequently, these receptors have been identified as targets for novel diabetes treatments. However, drugs acting at the GLP-1 receptor, although having clinical efficacy, have been associated with severe adverse side-effects, and targeting of the glucagon receptor has yet to be successful. Here we use a combination of yeast reporter assays and mammalian systems to provide a more complete understanding of glucagon receptor signaling, considering the effect of multiple ligands, association with the receptor-interacting protein receptor activity-modifying protein-2 (RAMP2), and the role of individual G protein α-subunits. We demonstrate that RAMP2 alters both ligand selectivity and G protein preference of the glucagon receptor. Importantly, we also uncover novel cross-reactivity of therapeutically used GLP-1 receptor ligands at the glucagon receptor that is abolished by RAMP2 interaction. This study reveals the glucagon receptor as a previously unidentified target for GLP-1 receptor agonists and highlights a role for RAMP2 in regulating its pharmacology. Such previously unrecognized functions of RAMPs highlight the need to consider all receptor-interacting proteins in future drug development. PMID:26198634

  13. Receptor Activity-modifying Proteins 2 and 3 Generate Adrenomedullin Receptor Subtypes with Distinct Molecular Properties*

    PubMed Central

    Watkins, Harriet A.; Chakravarthy, Madhuri; Abhayawardana, Rekhati S.; Gingell, Joseph J.; Garelja, Michael; Pardamwar, Meenakshi; McElhinney, James M. W. R.; Lathbridge, Alex; Constantine, Arran; Harris, Paul W. R.; Yuen, Tsz-Ying; Brimble, Margaret A.; Barwell, James; Poyner, David R.; Woolley, Michael J.; Conner, Alex C.; Pioszak, Augen A.; Reynolds, Christopher A.

    2016-01-01

    Adrenomedullin (AM) is a peptide hormone with numerous effects in the vascular systems. AM signals through the AM1 and AM2 receptors formed by the obligate heterodimerization of a G protein-coupled receptor, the calcitonin receptor-like receptor (CLR), and receptor activity-modifying proteins 2 and 3 (RAMP2 and RAMP3), respectively. These different CLR-RAMP interactions yield discrete receptor pharmacology and physiological effects. The effective design of therapeutics that target the individual AM receptors is dependent on understanding the molecular details of the effects of RAMPs on CLR. To understand the role of RAMP2 and -3 on the activation and conformation of the CLR subunit of AM receptors, we mutated 68 individual amino acids in the juxtamembrane region of CLR, a key region for activation of AM receptors, and determined the effects on cAMP signaling. Sixteen CLR mutations had differential effects between the AM1 and AM2 receptors. Accompanying this, independent molecular modeling of the full-length AM-bound AM1 and AM2 receptors predicted differences in the binding pocket and differences in the electrostatic potential of the two AM receptors. Druggability analysis indicated unique features that could be used to develop selective small molecule ligands for each receptor. The interaction of RAMP2 or RAMP3 with CLR induces conformational variation in the juxtamembrane region, yielding distinct binding pockets, probably via an allosteric mechanism. These subtype-specific differences have implications for the design of therapeutics aimed at specific AM receptors and for understanding the mechanisms by which accessory proteins affect G protein-coupled receptor function. PMID:27013657

  14. A widely used retinoic acid receptor antagonist induces peroxisome proliferator-activated receptor-gamma activity.

    PubMed

    Schupp, Michael; Curtin, Joshua C; Kim, Roy J; Billin, Andrew N; Lazar, Mitchell A

    2007-05-01

    Nuclear receptors (NRs) are transcription factors whose activity is regulated by the binding of small lipophilic ligands, including hormones, vitamins, and metabolites. Pharmacological NR ligands serve as important therapeutic agents; for example, all-trans retinoic acid, an activating ligand for retinoic acid receptor alpha (RARalpha), is used to treat leukemia. Another RARalpha ligand, (E)-S,S-dioxide-4-(2-(7-(heptyloxy)-3,4-dihydro-4,4-dimethyl-2H-1-benzothiopyran-6-yl)-1-propenyl)-benzoic acid (Ro 41-5253), is a potent antagonist that has been a useful and purportedly specific probe of RARalpha function. Here, we report that Ro 41-5253 also activates the peroxisome proliferator-activated receptor gamma (PPARgamma), a master regulator of adipocyte differentiation and target of widely prescribed antidiabetic thiazolidinediones (TZDs). Ro 41-5253 enhanced differentiation of mouse and human preadipocytes and activated PPARgamma target genes in mature adipocytes. Like the TZDs, Ro 41-5253 also down-regulated PPARgamma protein expression in adipocytes. In addition, Ro 41-5253 activated the PPARgamma-ligand binding domain in transiently transfected HEK293T cells. These effects were not prevented by a potent RARalpha agonist or by depleting cells of RARalpha, indicating that PPARgamma activation was not related to RARalpha antagonism. Indeed, Ro 41-5253 was able to compete with TZD ligands for binding to PPARgamma, suggesting that Ro 41-5253 directly affects PPAR activity. These results vividly demonstrate that pharmacological NR ligands may have "off-target" effects on other NRs. Ro 41-5253 is a PPARgamma agonist as well as an RARalpha antagonist whose pleiotropic effects on NRs may signify a unique spectrum of biological responses.

  15. Thymol, a dietary monoterpene phenol abrogates mitochondrial dysfunction in β-adrenergic agonist induced myocardial infarcted rats by inhibiting oxidative stress.

    PubMed

    Nagoor Meeran, M F; Jagadeesh, G S; Selvaraj, P

    2016-01-25

    Mitochondrial dysfunction has been suggested to be one of the important pathological events in isoproterenol (ISO), a synthetic catecholamine and β-adrenergic agonist induced myocardial infarction (MI). In this context, we have evaluated the impact of thymol against ISO induced oxidative stress and calcium uniporter malfunction involved in the pathology of mitochondrial dysfunction in rats. Male albino Wistar rats were pre and co-treated with thymol (7.5 mg/kg body weight) daily for 7 days. Isoproterenol (100 mg/kg body weight) was subcutaneously injected into rats on 6th and 7th day to induce MI. To explore the extent of cardiac mitochondrial damage, the activities/levels of cardiac marker enzymes, mitochondrial lipid peroxidation products, antioxidants, lipids, calcium, adenosine triphosphate and multi marker enzymes were evaluated. Isoproterenol induced myocardial infarcted rats showed a significant increase in the activities of cardiac diagnostic markers, heart mitochondrial lipid peroxidation, lipids, calcium, and a significant decrease in the activities/levels of heart mitochondrial superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, isocitrate, malate, α-ketoglutarate and NADH-dehydrogenases, cytochrome-C-oxidase, and adenosine triphosphate. Thymol pre and co-treatment showed near normalized effects on all the biochemical parameters studied. Transmission electron microscopic findings and mitochondrial swelling studies confirmed our biochemical findings. The in vitro study also revealed the potent free-radical scavenging activity of thymol. Thus, thymol attenuates the involvement of ISO against oxidative stress and calcium uniporter malfunction associated with mitochondrial dysfunction in rats. PMID:26721194

  16. Mineralocorticoid receptor activation in obesity hypertension.

    PubMed

    Nagase, Miki; Fujita, Toshiro

    2009-08-01

    Obesity hypertension and metabolic syndrome have become major public health concerns. Nowadays, aldosterone is recognized as an important mediator of cardiovascular and renal damage. In the kidney, aldosterone injures glomerular visceral epithelial cells (podocytes), the final filtration barrier to plasma macromolecules, leading to proteinuria and glomerulosclerosis. Mineralocorticoid receptor (MR) antagonists effectively ameliorate proteinuria in patients or in animal models of hypertension, diabetes mellitus and chronic kidney disease (CKD), as well as in patients who experience 'aldosterone breakthrough.' Recently, clinical and experimental studies have shown that plasma aldosterone concentration is associated with obesity hypertension and metabolic syndrome. We showed that spontaneously hypertensive rats (SHR)/cp, an experimental model of obesity hypertension and metabolic syndrome, are prone to glomerular podocyte injury, proteinuria and left ventricular diastolic dysfunction, especially when the animals are fed a high-salt diet. Inappropriate activation of the aldosterone/MR system underlies the renal and cardiac injuries. Adipocyte-derived aldosterone-releasing factors (ARFs), although still unidentified, may account for aldosterone excess and the resultant target organ complication in SHR/cp. On the other hand, recent studies have shown that MR activation triggers target organ disease even in normal or low aldosterone states. We identified a small GTP (guanosine triphosphate)-binding protein, Rac1, as a novel activator of MR, and showed that this ligand-independent MR activation by Rac1 contributes to the nephropathy of several CKD models. We expect that ARFs and Rac1 can be novel therapeutic targets for metabolic syndrome and CKD. Future large-scale clinical trials are awaited to prove the efficacy of MR blockade in patients with obesity hypertension and metabolic syndrome.

  17. RELAXIN ACTIVATES PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR GAMMA

    PubMed Central

    Singh, Sudhir; Bennett, Robert G

    2009-01-01

    SUMMARY Relaxin is a polypeptide hormone that triggers multiple signaling pathways through its receptor RXFP1. Many of relaxin’s functions, including vascular and antifibrotic effects, are similar to those induced by activation of PPARγ. In this study, we tested the hypothesis that relaxin signaling through RXFP1 would activate PPARγ activity. In cells overexpressing RXFP1 (HEK-RXFP1), relaxin increased transcriptional activity through a PPAR response element (PPRE) in a concentration-dependent manner. In cells lacking RXFP1, relaxin had no effect. Relaxin increased both the baseline activity and the response to the PPARγ agonists rosiglitazone and 15d-PGJ2, but not to agonists of PPARα or PPARδ. In HEK-RXFP1 cells infected with adenovirus expressing PPARγ, relaxin increased transcriptional activity through PPRE, and this effect was blocked with an adenovirus expressing a dominant-negative PPARγ. Knockdown of PPARγ using siRNA resulted in a decrease in the response to both relaxin and rosiglitazone. Both relaxin and rosiglitazone increased expression of the PPARγ target genes CD36 and LXRα in HEK-RXFP1 and in THP-1 cells naturally expressing RXFP1. Relaxin did not increase PPARγ mRNA or protein levels. Treatment of cells with GW9662, an inhibitor of PPARγ ligand binding, effectively blocked rosiglitazone-induced PPARγ activation, but had no effect on relaxin activation of PPARγ. These results suggest that relaxin activates PPARγ activity, and increases the overall response in the presence PPARγ agonists. This activation is dependent on the presence of RXFP1. Furthermore, relaxin activates PPARγ via a ligand-independent mechanism. These studies represent the first report that relaxin can activate the transcriptional activity of PPARγ. PMID:19712722

  18. Specific Activation of A3, A2A and A1 Adenosine Receptors in CD73-Knockout Mice Affects B16F10 Melanoma Growth, Neovascularization, Angiogenesis and Macrophage Infiltration

    PubMed Central

    Koszałka, Patrycja; Gołuńska, Monika; Urban, Aleksandra; Stasiłojć, Grzegorz; Stanisławowski, Marcin; Majewski, Marceli; Składanowski, Andrzej C.; Bigda, Jacek

    2016-01-01

    CD73 (ecto-5'-nucleotidase), a cell surface enzyme hydrolyzing AMP to adenosine, was lately demonstrated to play a direct role in tumor progression including regulation of tumor vascularization. It was also shown to stimulate tumor macrophage infiltration. Interstitial adenosine, accumulating in solid tumors due to CD73 enzymatic activity, is recognized as a main mediator regulating the production of pro- and anti-angiogenic factors, but the engagement of specific adenosine receptors in tumor progression in vivo is still poorly researched. We have analyzed the role of high affinity adenosine receptors A1, A2A, and A3 in B16F10 melanoma progression using specific agonists (CCPA, CGS-21680 and IB-MECA, respectively). We limited endogenous extracellular adenosine background using CD73 knockout mice treated with CD73 chemical inhibitor, AOPCP (adenosine α,β-methylene 5’-diphosphate). Activation of any adenosine receptor significantly inhibited B16F10 melanoma growth but only at its early stage. At 14th day of growth, the decrease in tumor neovascularization and MAPK pathway activation induced by CD73 depletion was reversed by all agonists. Activation of A1AR primarily increased angiogenic activation measured by expression of VEGF-R2 on tumor blood vessels. However, mainly A3AR activation increased both the microvessel density and expression of pro-angiogenic factors. All agonists induced significant increase in macrophage tumor infiltration, with IB-MECA being most effective. This effect was accompanied by substantial changes in cytokines regulating macrophage polarization between pro-inflammatory and pro-angiogenic phenotype. Our results demonstrate an evidence that each of the analyzed receptors has a specific role in the stimulation of tumor angiogenesis and confirm significantly more multifaceted role of adenosine in its regulation than was already observed. They also reveal previously unexplored consequences to extracellular adenosine signaling depletion in

  19. Cell death sensitization of leukemia cells by opioid receptor activation

    PubMed Central

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich

    2013-01-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472

  20. Neuropeptide Y receptor mediates activation of ERK1/2 via transactivation of the IGF receptor.

    PubMed

    Lecat, Sandra; Belemnaba, Lazare; Galzi, Jean-Luc; Bucher, Bernard

    2015-07-01

    Neuropeptide Y binds to G-protein coupled receptors whose action results in inhibition of adenylyl cyclase activity. Using HEK293 cells stably expressing the native neuropeptide Y Y1 receptors, we found that the NPY agonist elicits a transient phosphorylation of the extracellular signal-regulated kinases (ERK1/2). We first show that ERK1/2 activation following Y1 receptor stimulation is dependent on heterotrimeric Gi/o since it is completely inhibited by pre-treatment with pertussis toxin. In addition, ERK1/2 activation is internalization-independent since mutant Y1 receptors unable to recruit β-arrestins, can still activate ERK signaling to the same extent as wild-type receptors. We next show that this activation of the MAPK pathway is inhibited by the MEK inhibitor U0126, is not dependent on calcium signaling at the Y1 receptor (no effect upon inhibition of phospholipase C, protein kinase C or protein kinase D) but instead dependent on Gβ/γ and associated signaling pathways that activate PI3-kinase. Although inhibition of the epidermal-growth factor receptor tyrosine kinase did not influence NPY-induced ERK1/2 activation, we show that the inhibition of insulin growth factor receptor IGFR by AG1024 completely blocks activation of ERK1/2 by the Y1 receptor. This Gβ/γ-PI3K-AG1024-sensitive pathway does not involve activation of IGFR through the release of a soluble ligand by metalloproteinases since it is not affected by the metalloproteinase inhibitor marimastat. Finally, we found that a similar pathway, sensitive to wortmannin-AG1024 but insensitive to marimastat, is implicated in activation of ERK signaling in HEK293 cells by endogenously expressed GPCRs coupled to Gq-protein (muscarinic M3 receptors) or coupled to Gs-protein (endothelin ETB receptors). Our analysis is the first to show that β-arrestin recruitment to the NPY Y1 receptor is not necessary for MAPK activation by this receptor but that transactivation of the IGFR receptor is required.

  1. Intracellular Signaling by Hydrolysis of Phospholipids and Activation of Protein Kinase C

    NASA Astrophysics Data System (ADS)

    Nishizuka, Yasutomi

    1992-10-01

    Hydrolysis of inositol phospholipids by phospholipase C is initiated by either receptor stimulation or opening of Ca2+ channels. This was once thought to be the sole mechanism to produce the diacylglycerol that links extracellular signals to intracellular events through activation of protein kinase C. It is becoming clear that agonist-induced hydrolysis of other membrane phospholipids, particularly choline phospholipids, by phospholipase D and phospholipase A_2 may also take part in cell signaling. The products of hydrolysis of these phospholipids may enhance and prolong the activation of protein kinase C. Such prolonged activation of protein kinase C is essential for long-term cellular responses such as cell proliferation and differentiation.

  2. The growth hormone receptor: mechanism of activation and clinical implications.

    PubMed

    Brooks, Andrew J; Waters, Michael J

    2010-09-01

    Growth hormone is widely used clinically to promote growth and anabolism and for other purposes. Its actions are mediated via the growth hormone receptor, both directly by tyrosine kinase activation and indirectly by induction of insulin-like growth factor 1 (IGF-1). Insensitivity to growth hormone (Laron syndrome) can result from mutations in the growth hormone receptor and can be treated with IGF-1. This treatment is, however, not fully effective owing to the loss of the direct actions of growth hormone and altered availability of exogenous IGF-1. Excessive activation of the growth hormone receptor by circulating growth hormone results in gigantism and acromegaly, whereas cell transformation and cancer can occur in response to autocrine activation of the receptor. Advances in understanding the mechanism of receptor activation have led to a model in which the growth hormone receptor exists as a constitutive dimer. Binding of the hormone realigns the subunits by rotation and closer apposition, resulting in juxtaposition of the catalytic domains of the associated tyrosine-protein kinase JAK2 below the cell membrane. This change results in activation of JAK2 by transphosphorylation, then phosphorylation of receptor tyrosines in the cytoplasmic domain, which enables binding of adaptor proteins, as well as direct phosphorylation of target proteins. This model is discussed in the light of salient information from closely related class 1 cytokine receptors, such as the erythropoietin, prolactin and thrombopoietin receptors. PMID:20664532

  3. The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor

    SciTech Connect

    Zhou, X. Edward; Suino-Powell, Kelly M.; Xu, Yong; Chan, Cee-Wah; Tanabe, Osamu; Kruse, Schoen W.; Reynolds, Ross; Engel, James Douglas; Xu, H. Eric

    2015-11-30

    Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.

  4. Analysis of Chemokine Receptor Trafficking by Site-Specific Biotinylation.

    PubMed

    Liebick, Marcel; Schläger, Christian; Oppermann, Martin

    2016-01-01

    Chemokine receptors undergo internalization and desensitization in response to ligand activation. Internalized receptors are either preferentially directed towards recycling pathways (e.g. CCR5) or sorted for proteasomal degradation (e.g. CXCR4). Here we describe a method for the analysis of receptor internalization and recycling based on specific Bir A-mediated biotinylation of an acceptor peptide coupled to the receptor, which allows a more detailed analysis of receptor trafficking compared to classical antibody-based detection methods. Studies on constitutive internalization of the chemokine receptors CXCR4 (12.1% ± 0.99% receptor internalization/h) and CCR5 (13.7% ± 0.68%/h) reveals modulation of these processes by inverse (TAK779; 10.9% ± 0.95%/h) or partial agonists (Met-CCL5; 15.6% ± 0.5%/h). These results suggest an actively driven internalization process. We also demonstrate the advantages of specific biotinylation compared to classical antibody detection during agonist-induced receptor internalization, which may be used for immunofluorescence analysis as well. Site-specific biotinylation may be applicable to studies on trafficking of transmembrane proteins, in general.

  5. Analysis of Chemokine Receptor Trafficking by Site-Specific Biotinylation

    PubMed Central

    Liebick, Marcel; Schläger, Christian; Oppermann, Martin

    2016-01-01

    Chemokine receptors undergo internalization and desensitization in response to ligand activation. Internalized receptors are either preferentially directed towards recycling pathways (e.g. CCR5) or sorted for proteasomal degradation (e.g. CXCR4). Here we describe a method for the analysis of receptor internalization and recycling based on specific Bir A-mediated biotinylation of an acceptor peptide coupled to the receptor, which allows a more detailed analysis of receptor trafficking compared to classical antibody-based detection methods. Studies on constitutive internalization of the chemokine receptors CXCR4 (12.1% ± 0.99% receptor internalization/h) and CCR5 (13.7% ± 0.68%/h) reveals modulation of these processes by inverse (TAK779; 10.9% ± 0.95%/h) or partial agonists (Met-CCL5; 15.6% ± 0.5%/h). These results suggest an actively driven internalization process. We also demonstrate the advantages of specific biotinylation compared to classical antibody detection during agonist-induced receptor internalization, which may be used for immunofluorescence analysis as well. Site-specific biotinylation may be applicable to studies on trafficking of transmembrane proteins, in general. PMID:27310579

  6. Statins and PPAR{alpha} agonists induce myotoxicity in differentiated rat skeletal muscle cultures but do not exhibit synergy with co-treatment

    SciTech Connect

    Johnson, Timothy E. . E-mail: Timothy_Johnson@merck.com; Zhang, Xiaohua; Shi, Shu; Umbenhauer, Diane R.

    2005-11-01

    Statins and fibrates (weak PPAR{alpha} agonists) are prescribed for the treatment of lipid disorders. Both drugs cause myopathy, but with a low incidence, 0.1-0.5%. However, combined statin and fibrate therapy can enhance myopathy risk. We tested the myotoxic potential of PPAR subtype selective agonists alone and in combination with statins in a differentiated rat myotube model. A pharmacologically potent experimental PPAR{alpha} agonist, Compound A, induced myotoxicity as assessed by TUNEL staining at a minimum concentration of 1 nM, while other weaker PPAR{alpha} compounds, for example, WY-14643, Gemfibrozil and Bezafibrate increased the percentage of TUNEL-positive nuclei at micromolar concentrations. In contrast, the PPAR{gamma} agonist Rosiglitazone caused little or no cell death at up to 10 {mu}M and the PPAR{delta} ligand GW-501516 exhibited comparatively less myotoxicity than that seen with Compound A. An experimental statin (Compound B) and Atorvastatin also increased the percentage of TUNEL-positive nuclei and co-treatment with WY-14643, Gemfibrozil or Bezafibrate had less than a full additive effect on statin-induced cell killing. The mechanism of PPAR{alpha} agonist-induced cell death was different from that of statins. Unlike statins, Compound A and WY-14643 did not activate caspase 3/7. In addition, mevalonate and geranylgeraniol reversed the toxicity caused by statins, but did not prevent the cell killing induced by WY-14643. Furthermore, unlike statins, Compound A did not inhibit the isoprenylation of rab4 or rap1a. Interestingly, Compound A and Compound B had differential effects on ATP levels. Taken together, these observations support the hypothesis that in rat myotube cultures, PPAR{alpha} agonism mediates in part the toxicity response to PPAR{alpha} compounds. Furthermore, PPAR{alpha} agonists and statins cause myotoxicity through distinct and independent pathways.

  7. Transient receptor potential ankyrin 1 activation enhances hapten sensitization in a T-helper type 2-driven fluorescein isothiocyanate-induced contact hypersensitivity mouse model

    SciTech Connect

    Shiba, Takahiro; Tamai, Takuma; Sahara, Yurina; Kurohane, Kohta; Watanabe, Tatsuo; Imai, Yasuyuki

    2012-11-01

    Some chemicals contribute to the development of allergies by increasing the immunogenicity of other allergens. We have demonstrated that several phthalate esters, including dibutyl phthalate (DBP), enhance skin sensitization to fluorescein isothiocyanate (FITC) in a mouse contact hypersensitivity model, in which the T-helper type 2 (Th2) response is essential. On the other hand, some phthalate esters were found to activate transient receptor potential ankyrin 1 (TRPA1) cation channels on sensory neurons. We then found a positive correlation between the enhancing effects of several types of phthalate esters on skin sensitization to FITC and their ability to activate TRPA1. Here we examined the involvement of TRPA1 in sensitization to FITC by using TRPA1 agonists other than phthalate esters. During skin sensitization to FITC, the TRPA1 agonists (menthol, carvacrol, cinnamaldehyde and DBP) augmented the ear-swelling response as well as trafficking of FITC-presenting dendritic cells to draining lymph nodes. We confirmed that these TRPA1 agonists induced calcium influx into TRPA1-expressing Chinese hamster ovary (CHO) cells. We also found that TRPA1 antagonist HC-030031 inhibited DBP-induced calcium influx into TRPA1-expressing CHO cells. After pretreatment with this antagonist upon skin sensitization to FITC, the enhancing effect of DBP on sensitization was suppressed. These results suggest that TRPA1 activation will become a useful marker to find chemicals that facilitate sensitization in combination with other immunogenic haptens. -- Highlights: ► Role of TRPA1 activation was revealed in a mouse model of skin sensitization to FITC. ► TRPA1 agonists enhanced skin sensitization as well as dendritic cell trafficking. ► Dibutyl phthalate (DBP) has been shown to enhance skin sensitization to FITC. ► TRPA1 activation by DBP was inhibited by a selective antagonist, HC-030031. ► HC-030031 inhibited the enhancing effect of DBP on skin sensitization to FITC.

  8. Conserved structure and adjacent location of the thrombin receptor and protease-activated receptor 2 genes define a protease-activated receptor gene cluster.

    PubMed Central

    Kahn, M.; Ishii, K.; Kuo, W. L.; Piper, M.; Connolly, A.; Shi, Y. P.; Wu, R.; Lin, C. C.; Coughlin, S. R.

    1996-01-01

    BACKGROUND: Thrombin is a serine protease that elicits a variety of cellular responses. Molecular cloning of a thrombin receptor revealed a G protein-coupled receptor that is activated by a novel proteolytic mechanism. Recently, a second protease-activated receptor was discovered and dubbed PAR2. PAR2 is highly related to the thrombin receptor by sequence and, like the thrombin receptor, is activated by cleavage of its amino terminal exodomain. Also like the thrombin receptor, PAR2 can be activated by the hexapeptide corresponding to its tethered ligand sequence independent of receptor cleavage. Thus, functionally, the thrombin receptor and PAR2 constitute a fledgling receptor family that shares a novel proteolytic activation mechanism. To further explore the relatedness of the two known protease-activated receptors and to examine the possibility that a protease-activated gene cluster might exist, we have compared the structure and chromosomal locations of the thrombin receptor and PAR2 genes. MATERIALS AND METHODS: The genomic structures of the two protease-activated receptor genes were determined by analysis of lambda phage, P1 bacteriophage, and bacterial artificial chromosome (BAC) genomic clones. Chromosomal location was determined with fluorescent in situ hybridization (FISH) on metaphase chromosomes, and the relative distance separating the two genes was evaluated both by means of two-color FISH and analysis of YACs and BACs containing both genes. RESULTS: Analysis of genomic clones revealed that the two protease-activated receptor genes share a two-exon genomic structure in which the first exon encodes 5'-untranslated sequence and signal peptide, and the second exon encodes the mature receptor protein and 3'-untranslated sequence. The two receptor genes also share a common locus with the two human genes located at 5q13 and the two mouse genes at 13D2, a syntenic region of the mouse genome. These techniques also suggest that the physical distance separating

  9. Urine acidification has no effect on peroxisome proliferator-activated receptor (PPAR) signaling or epidermal growth factor (EGF) expression in rat urinary bladder urothelium

    SciTech Connect

    Achanzar, William E. Moyer, Carolyn F.; Marthaler, Laura T.; Gullo, Russell; Chen, Shen-Jue; French, Michele H.; Watson, Linda M.; Rhodes, James W.; Kozlosky, John C.; White, Melvin R.; Foster, William R.; Burgun, James J.; Car, Bruce D.; Cosma, Gregory N.; Dominick, Mark A.

    2007-09-15

    We previously reported prevention of urolithiasis and associated rat urinary bladder tumors by urine acidification (via diet acidification) in male rats treated with the dual peroxisome proliferator-activated receptor (PPAR){alpha}/{gamma} agonist muraglitazar. Because urine acidification could potentially alter PPAR signaling and/or cellular proliferation in urothelium, we evaluated urothelial cell PPAR{alpha}, PPAR{delta}, PPAR{gamma}, and epidermal growth factor receptor (EGFR) expression, PPAR signaling, and urothelial cell proliferation in rats fed either a normal or an acidified diet for 5, 18, or 33 days. A subset of rats in the 18-day study also received 63 mg/kg of the PPAR{gamma} agonist pioglitazone daily for the final 3 days to directly assess the effects of diet acidification on responsiveness to PPAR{gamma} agonism. Urothelial cell PPAR{alpha} and {gamma} expression and signaling were evaluated in the 18- and 33-day studies by immunohistochemical assessment of PPAR protein (33-day study only) and quantitative real-time polymerase chain reaction (qRT-PCR) measurement of PPAR-regulated gene expression. In the 5-day study, EGFR expression and phosphorylation status were evaluated by immunohistochemical staining and egfr and akt2 mRNA levels were assessed by qRT-PCR. Diet acidification did not alter PPAR{alpha}, {delta}, or {gamma} mRNA or protein expression, PPAR{alpha}- or {gamma}-regulated gene expression, total or phosphorylated EGFR protein, egfr or akt2 gene expression, or proliferation in urothelium. Moreover, diet acidification had no effect on pioglitazone-induced changes in urothelial PPAR{gamma}-regulated gene expression. These results support the contention that urine acidification does not prevent PPAR{gamma} agonist-induced bladder tumors by altering PPAR{alpha}, {gamma}, or EGFR expression or PPAR signaling in rat bladder urothelium.

  10. Prothymosin alpha selectively enhances estrogen receptor transcriptional activity by interacting with a repressor of estrogen receptor activity.

    PubMed

    Martini, P G; Delage-Mourroux, R; Kraichely, D M; Katzenellenbogen, B S

    2000-09-01

    We find that prothymosin alpha (PTalpha) selectively enhances transcriptional activation by the estrogen receptor (ER) but not transcriptional activity of other nuclear hormone receptors. This selectivity for ER is explained by PTalpha interaction not with ER, but with a 37-kDa protein denoted REA, for repressor of estrogen receptor activity, a protein that we have previously shown binds to ER, blocking coactivator binding to ER. We isolated PTalpha, known to be a chromatin-remodeling protein associated with cell proliferation, using REA as bait in a yeast two-hybrid screen with a cDNA library from MCF-7 human breast cancer cells. PTalpha increases the magnitude of ERalpha transcriptional activity three- to fourfold. It shows lesser enhancement of ERbeta transcriptional activity and has no influence on the transcriptional activity of other nuclear hormone receptors (progesterone receptor, glucocorticoid receptor, thyroid hormone receptor, or retinoic acid receptor) or on the basal activity of ERs. In contrast, the steroid receptor coactivator SRC-1 increases transcriptional activity of all of these receptors. Cotransfection of PTalpha or SRC-1 with increasing amounts of REA, as well as competitive glutathione S-transferase pulldown and mammalian two-hybrid studies, show that REA competes with PTalpha (or SRC-1) for regulation of ER transcriptional activity and suppresses the ER stimulation by PTalpha or SRC-1, indicating that REA can function as an anticoactivator in cells. Our data support a model in which PTalpha, which does not interact with ER, selectively enhances the transcriptional activity of the ER but not that of other nuclear receptors by recruiting the repressive REA protein away from ER, thereby allowing effective coactivation of ER with SRC-1 or other coregulators. The ability of PTalpha to directly interact in vitro and in vivo with REA, a selective coregulator of the ER, thereby enabling the interaction of ER with coactivators, appears to explain

  11. Cell Surface Epidermal Growth Factor Receptors Increase Src and c-Cbl Activity and Receptor Ubiquitylation*

    PubMed Central

    Parks, Eileen E.; Ceresa, Brian P.

    2014-01-01

    There is an established role for the endocytic pathway in regulation of epidermal growth factor receptor (EGFR) signaling to downstream effectors. However, because ligand-mediated EGFR endocytosis utilizes multiple “moving parts,” dissecting the spatial versus temporal contributions has been challenging. Blocking all endocytic trafficking can have unintended effects on other receptors as well as give rise to compensatory mechanisms, both of which impact interpretation of EGFR signaling. To overcome these limitations, we used epidermal growth factor (EGF) conjugated to polystyrene beads (EGF beads). EGF beads simultaneously activate the EGFR while blocking its endocytosis and allow analysis of EGFR signaling from the plasma membrane. Human telomerase immortalized corneal epithelial (hTCEpi) cells were used to model normal epithelial cell biology. In hTCEpi cells, both cell surface and intracellular EGFRs exhibited dose-dependent increases in effector activity after 15 min of ligand stimulation, but only the serine phosphorylation of signal transducer and activator of transcription 3 (STAT3) was statistically significant when accounting for receptor phosphorylation. However, over time with physiological levels of receptor phosphorylation, cell surface receptors produced either enhanced or sustained mitogen-activated protein kinase kinase (MEK), Casitas B-lineage lymphoma (c-Cbl), and the pro-oncogene Src activity. These increases in effector communication by cell surface receptors resulted in an increase in EGFR ubiquitylation with sustained ligand incubation. Together, these data indicate that spatial regulation of EGFR signaling may be an important regulatory mechanism in receptor down-regulation. PMID:25074934

  12. Activating Receptor Signals Drive Receptor Diversity in Developing Natural Killer Cells

    PubMed Central

    Freund, Jacquelyn; May, Rebecca M.; Li, Hongchuan; McCullen, Matthew; Zhang, Bin; Lenvik, Todd; Cichocki, Frank; Anderson, Stephen K.; Kambayashi, Taku

    2016-01-01

    It has recently been appreciated that NK cells exhibit many features reminiscent of adaptive immune cells. Considerable heterogeneity exists with respect to the ligand specificity of individual NK cells and as such, a subset of NK cells can respond, expand, and differentiate into memory-like cells in a ligand-specific manner. MHC I-binding inhibitory receptors, including those belonging to the Ly49 and KIR families, are expressed in a variegated manner, which creates ligand-specific diversity within the NK cell pool. However, how NK cells determine which inhibitory receptors to express on their cell surface during a narrow window of development is largely unknown. In this manuscript, we demonstrate that signals from activating receptors are critical for induction of Ly49 and KIR receptors during NK cell development; activating receptor-derived signals increased the probability of the Ly49 bidirectional Pro1 promoter to transcribe in the forward versus the reverse direction, leading to stable expression of Ly49 receptors in mature NK cells. Our data support a model where the balance of activating and inhibitory receptor signaling in NK cells selects for the induction of appropriate inhibitory receptors during development, which NK cells use to create a diverse pool of ligand-specific NK cells. PMID:27500644

  13. Activating Receptor Signals Drive Receptor Diversity in Developing Natural Killer Cells.

    PubMed

    Freund, Jacquelyn; May, Rebecca M; Yang, Enjun; Li, Hongchuan; McCullen, Matthew; Zhang, Bin; Lenvik, Todd; Cichocki, Frank; Anderson, Stephen K; Kambayashi, Taku

    2016-08-01

    It has recently been appreciated that NK cells exhibit many features reminiscent of adaptive immune cells. Considerable heterogeneity exists with respect to the ligand specificity of individual NK cells and as such, a subset of NK cells can respond, expand, and differentiate into memory-like cells in a ligand-specific manner. MHC I-binding inhibitory receptors, including those belonging to the Ly49 and KIR families, are expressed in a variegated manner, which creates ligand-specific diversity within the NK cell pool. However, how NK cells determine which inhibitory receptors to express on their cell surface during a narrow window of development is largely unknown. In this manuscript, we demonstrate that signals from activating receptors are critical for induction of Ly49 and KIR receptors during NK cell development; activating receptor-derived signals increased the probability of the Ly49 bidirectional Pro1 promoter to transcribe in the forward versus the reverse direction, leading to stable expression of Ly49 receptors in mature NK cells. Our data support a model where the balance of activating and inhibitory receptor signaling in NK cells selects for the induction of appropriate inhibitory receptors during development, which NK cells use to create a diverse pool of ligand-specific NK cells.

  14. Biological activity of a polypeptide modulator of TRPV1 receptor.

    PubMed

    Dyachenko, I A; Andreev, Ya A; Logashina, Yu A; Murashev, A N; Grishin, E V

    2015-11-01

    This paper presents data on the activity of a new APHC2 polypeptide modulator of TRPV1 receptors, which was isolated from the sea anemone Heteractis crispa. It has been shown that APHC2 has an analgesic activity, does not impair normal motor activity, and does not change body temperature of experimental animals, which has a great practical value for design of potent analgesics of a new generation. Further study of the characteristics of binding of the polypeptide to the TRPV1 receptor may show approaches to the development of other antagonists of this receptor that do not influence the body temperature. PMID:26725234

  15. The activation of the nicotinic acetylcholine receptor by the transmitter.

    PubMed

    Taylor, D B; Spivak, C E

    1985-02-01

    Experimental evidence has been published from isolated guinea pig muscle in vitro, and from direct ligand binding to receptors from T. californica, indicating that two agonist ions react with the nicotinic receptor by exchanging for one magnesium ion. It is the basis of the ion exchange receptor pair model, in which two acetylcholine ions exchange for one magnesium ion in contact with and between a pair of negatively charged receptor groups about 4 A apart. In the resting state the electrostatic attraction between the negatively charged receptor groups and the Mg2+ ion exerts a binding force. This binding force is opposed by the quantum mechanical repulsions of the electron clouds of the charged groups and ions in contact, together with the mutual repulsion of the pair of receptor oxyanions. When the Mg2+ ion is replaced by two acetylcholine ions the quaternary heads of the latter are positioned so that they form two mutually repelling ACh+ receptor group dipoles. As the Mg2+ ion leaves, its rehydration energy contributes to the sum of the electron cloud repulsions and the ACh+ receptor group dipole repulsions, causing the receptor groups to be forced apart activating the receptor macromolecule. The subsequent decrease in ACh+ concentration results in the reestablishment of the resting state. The coulombic electrostatic energy, the Born repulsion energy, the London attraction energy and the oxyanion ACh+ dipole repulsion energies have been calculated and shown to be consistent with the model. The displacement of the Mg2+ by two ACh+ ions makes several hundred kcals of energy available for receptor group separation and receptor activation.

  16. Characterization of peroxisome proliferator-activiated receptor alpha (PPARalpha)-independent effects of PPARalpha activators in the rodent liver: Di(2-ethylehexyl) phthalate activates the constitutive activated receptor

    EPA Science Inventory

    Peroxisome proliferator chemicals (PPC) are thought to mediate their effects in rodents on hepatocyte growth and liver cancer through the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha). Recent studies indicate that the plasticizer di-2-ethylhexyl ph...

  17. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    PubMed Central

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  18. Tie2 and Eph Receptor Tyrosine Kinase Activation and Signaling

    PubMed Central

    Barton, William A.; Dalton, Annamarie C.; Seegar, Tom C.M.; Himanen, Juha P.

    2014-01-01

    The Eph and Tie cell surface receptors mediate a variety of signaling events during development and in the adult organism. As other receptor tyrosine kinases, they are activated on binding of extracellular ligands and their catalytic activity is tightly regulated on multiple levels. The Eph and Tie receptors display some unique characteristics, including the requirement of ligand-induced receptor clustering for efficient signaling. Interestingly, both Ephs and Ties can mediate different, even opposite, biological effects depending on the specific ligand eliciting the response and on the cellular context. Here we discuss the structural features of these receptors, their interactions with various ligands, as well as functional implications for downstream signaling initiation. The Eph/ephrin structures are already well reviewed and we only provide a brief overview on the initial binding events. We go into more detail discussing the Tie-angiopoietin structures and recognition. PMID:24478383

  19. Selective activation of the trace amine-associated receptor 1 decreases cocaine's reinforcing efficacy and prevents cocaine-induced changes in brain reward thresholds.

    PubMed

    Pei, Yue; Mortas, Patrick; Hoener, Marius C; Canales, Juan J

    2015-12-01

    The newly discovered trace amine-associated receptor 1 (TAAR1) has emerged as a promising target for medication development in stimulant addiction due to its ability to regulate dopamine (DA) function and modulate stimulants' effects. Recent findings indicate that TAAR1 activation blocks some of the abuse-related physiological and behavioral effects of cocaine. However, findings from existing self-administration studies are inconclusive due to the very limited range of cocaine unit doses tested. Here, in order to shed light on the influence of TAAR1 on cocaine's reward and reinforcement, we studied the effects of partial and full activation of TAAR1on (1) the dose-response curve for cocaine self-administration and (2) cocaine-induced changes in intracranial self-stimulation (ICSS). In the first experiment, we examined the effects of the selective full and partial TAAR1 agonists, RO5256390 and RO5203648, on self-administration of five unit-injection doses of cocaine (0.03, 0.1, 0.2, 0.45, and 1mg/kg/infusion). Both agonists induced dose-dependent downward shifts in the cocaine dose-response curve, indicating that both partial and full TAAR1 activation decrease cocaine, reinforcing efficacy. In the second experiment, RO5256390 and the partial agonist, RO5263397, dose-dependently prevented cocaine-induced lowering of ICSS thresholds. Taken together, these data demonstrated that TAAR1 stimulation effectively suppresses the rewarding and reinforcing effects of cocaine in self-administration and ICSS models, supporting the candidacy of TAAR1 as a drug discovery target for cocaine addiction.

  20. Selective activation of the trace amine-associated receptor 1 decreases cocaine's reinforcing efficacy and prevents cocaine-induced changes in brain reward thresholds.

    PubMed

    Pei, Yue; Mortas, Patrick; Hoener, Marius C; Canales, Juan J

    2015-12-01

    The newly discovered trace amine-associated receptor 1 (TAAR1) has emerged as a promising target for medication development in stimulant addiction due to its ability to regulate dopamine (DA) function and modulate stimulants' effects. Recent findings indicate that TAAR1 activation blocks some of the abuse-related physiological and behavioral effects of cocaine. However, findings from existing self-administration studies are inconclusive due to the very limited range of cocaine unit doses tested. Here, in order to shed light on the influence of TAAR1 on cocaine's reward and reinforcement, we studied the effects of partial and full activation of TAAR1on (1) the dose-response curve for cocaine self-administration and (2) cocaine-induced changes in intracranial self-stimulation (ICSS). In the first experiment, we examined the effects of the selective full and partial TAAR1 agonists, RO5256390 and RO5203648, on self-administration of five unit-injection doses of cocaine (0.03, 0.1, 0.2, 0.45, and 1mg/kg/infusion). Both agonists induced dose-dependent downward shifts in the cocaine dose-response curve, indicating that both partial and full TAAR1 activation decrease cocaine, reinforcing efficacy. In the second experiment, RO5256390 and the partial agonist, RO5263397, dose-dependently prevented cocaine-induced lowering of ICSS thresholds. Taken together, these data demonstrated that TAAR1 stimulation effectively suppresses the rewarding and reinforcing effects of cocaine in self-administration and ICSS models, supporting the candidacy of TAAR1 as a drug discovery target for cocaine addiction. PMID:26048337

  1. Evidence for a requirement of agonist-induced diacylglycerol production during tonic contraction of rat aorta

    SciTech Connect

    Not Available

    1986-03-01

    A possible role for protein kinase C during the tonic phase of arterial contraction was examined in rat aorta by observing the effects of the phorbol ester, 12-0-tetradecanoylphorbol-13-acetate (TPA), on angiotensin II (AII)-induced responses. The ability of AII and phenylephrine (PE) to induce diacylglycerol (DAG) production was monitored as agonist-stimulated /sup 32/P-labelling of phosphatidic acid (PA). AII (5 x 10/sup -7/M) causes only a transient contractile response, while PE (10/sup -5/M) causes a sustained tonic contraction. /sup 32/P-labelling studies showed that AII caused an initial increase of PA synthesis equal to PE, however, AII failed to sustain this increase at 5 and 10 min while PE was able to do so, indicating the failure of AII to provide DAG to sustain protein kinase C activation. Activation of protein kinase C with TPA prior to and during AII exposure converted the normally transient contraction to a more sustained, tonic pattern. These results suggest that the inability of AII to maintain tension, unlike PE, is due to its inability to produce DAG continuously and activate protein kinase C.

  2. A comparison of the behavioural effects of 5-HT2A and 5-HT2C receptor agonists in the pigeon.

    PubMed

    Wolff, M C; Leander, J D

    2000-08-01

    Activity at the 5-HT2A receptor versus that of the 5-HT2C receptor was studied in three behavioural paradigms. In pigeons trained to discriminate 0.32 mg/kg of 1-(2,5-diemethoxy-4-iodophenyl)-2-aminopropane (DOI) (a mixed 5-HT2A/C receptor agonist) from vehicle, quipazine (0.1-1 mg/kg) and m-chlorophenylpiperazine (mCPP) (1-3 mg/kg) substituted for DOI in a dose-related manner, and this generalization was blocked by MDL100907 (0.0001-0.01 mg/kg), a selective 5-HT2A receptor antagonist. RO60-0175 (a relatively selective 5-HT2C agonist) induced partial substitution at 3 mg/kg that was antagonized by both MDL100907 and by 3 mg/kg of SB242084, a relatively selective 5-HT2C antagonist. MK212 (a mixed 5-HT2C/A agonist) induced partial substitution that was antagonized by SB242084, but not by MDL100907. On a progressive ratio 5 operant schedule (PR5) for food reinforcement, DOI, quipazine, mCPP, MK212 and R060-0175 decreased the break point; mCPP, DOI, MK212 and quipazine also induced vomiting. Although MDL100907 antagonized both the reductions of break point and vomiting, SB242084 only partially attenuated the decrease in break point observed with MK212 and DOI, and was unable to eliminate vomiting. Thus pharmacological activity at the 5-HT2A receptor can be behaviourally distinguished from pharmacological activity at the 5-HT2C receptor in the pigeon. Furthermore, the decrease in the break point of a PR5 schedule induced by 5-HT2C receptor agonists may be related to decreased appetite, whereas that induced by 5-HT2A receptor agonists may be due to unrelated factors, such as emesis. PMID:11103887

  3. Activation of muscarinic acetylcholine receptors via their allosteric binding sites.

    PubMed Central

    Jakubík, J; Bacáková, L; Lisá, V; el-Fakahany, E E; Tucek, S

    1996-01-01

    Ligands that bind to the allosteric-binding sites on muscarinic acetylcholine receptors alter the conformation of the classical-binding sites of these receptors and either diminish or increase their affinity for muscarinic agonists and classical antagonists. It is not known whether the resulting conformational change also affects the interaction between the receptors and the G proteins. We have now found that the muscarinic receptor allosteric modulators alcuronium, gallamine, and strychnine (acting in the absence of an agonist) alter the synthesis of cAMP in Chinese hamster ovary (CHO) cells expressing the M2 or the M4 subtype of muscarinic receptors in the same direction as the agonist carbachol. In addition, most of their effects on the production of inositol phosphates in CHO cells expressing the M1 or the M3 muscarinic receptor subtypes are also similar to (although much weaker than) those of carbachol. The agonist-like effects of the allosteric modulators are not observed in CHO cells that have not been transfected with the gene for any of the subtypes of muscarinic receptors. The effects of alcuronium on the formation of cAMP and inositol phosphates are not prevented by the classical muscarinic antagonist quinuclidinyl benzilate. These observations demonstrate for the first time that the G protein-mediated functional responses of muscarinic receptors can be evoked not only from their classical, but also from their allosteric, binding sites. This represents a new mechanism of receptor activation. PMID:8710935

  4. Receptor activity-modifying proteins; multifunctional G protein-coupled receptor accessory proteins.

    PubMed

    Hay, Debbie L; Walker, Christopher S; Gingell, Joseph J; Ladds, Graham; Reynolds, Christopher A; Poyner, David R

    2016-04-15

    Receptor activity-modifying proteins (RAMPs) are single pass membrane proteins initially identified by their ability to determine the pharmacology of the calcitonin receptor-like receptor (CLR), a family B G protein-coupled receptor (GPCR). It is now known that RAMPs can interact with a much wider range of GPCRs. This review considers recent developments on the structure of the complexes formed between the extracellular domains (ECDs) of CLR and RAMP1 or RAMP2 as these provide insights as to how the RAMPs direct ligand binding. The range of RAMP interactions is also considered; RAMPs can interact with numerous family B GPCRs as well as examples of family A and family C GPCRs. They influence receptor expression at the cell surface, trafficking, ligand binding and G protein coupling. The GPCR-RAMP interface offers opportunities for drug targeting, illustrated by examples of drugs developed for migraine. PMID:27068971

  5. Activation of G protein by opioid receptors: role of receptor number and G-protein concentration.

    PubMed

    Remmers, A E; Clark, M J; Alt, A; Medzihradsky, F; Woods, J H; Traynor, J R

    2000-05-19

    The collision-coupling model for receptor-G-protein interaction predicts that the rate of G-protein activation is dependent on receptor density, but not G-protein levels. C6 cells expressing mu- or delta-opioid receptors, or SH-SY5Y cells, were treated with beta-funaltrexamine (mu) or naltrindole-5'-isothiocyanate (delta) to decrease receptor number. The time course of full or partial agonist-stimulated ¿35SGTPgammaS binding did not vary in C6 cell membranes containing <1-25 pmol/mg mu-opioid receptor, or 1. 4-4.3 pmol/mg delta-opioid receptor, or in SHSY5Y cells containing 0. 16-0.39 pmol/mg receptor. The association of ¿35SGTPgammaS binding was faster in membranes from C6mu cells than from C6delta cells. A 10-fold reduction in functional G-protein, following pertussis toxin treatment, lowered the maximal level of ¿35SGTPgammaS binding but not the association rate. These data indicate a compartmentalization of opioid receptors and G protein at the cell membrane. PMID:10822058

  6. Retinoic Acid-mediated Nuclear Receptor Activation and Hepatocyte Proliferation

    PubMed Central

    Bushue, Nathan; Wan, Yu-Jui Yvonne

    2016-01-01

    Due to their well-known differentiation and apoptosis-inducing abilities, retinoic acid (RA) and its analogs have strong anti-cancer efficacy in human cancers. However, in vivo RA is a liver mitogen. While speculation has persisted that RA-mediated signaling is likely involved in hepatocyte proliferation during liver regeneration, direct evidence is still required. Findings in support of this proposition include observations that a release of retinyl palmitate (the precursor of RA) occurs in liver stellate cells following liver injury. Nevertheless, the biological action of this released vitamin A is virtually unknown. More likely is that the released vitamin A is converted to RA, the biological form, and then bound to a specific receptor (retinoid x receptor; RXRα), which is most abundantly expressed in the liver. Considering the mitogenic effects of RA, the RA-activated RXRα would likely then influence hepatocyte proliferation and liver tissue repair. At present, the mechanism by which RA stimulates hepatocyte proliferation is largely unknown. This review summarizes the activation of nuclear receptors (peroxisome proliferator activated receptor-α, pregnane x receptor, constitutive androstane receptor, and farnesoid x receptor) in an RXRα dependent manner to induce hepatocyte proliferation, providing a link between RA and its proliferative role.

  7. An activation switch in the rhodopsin family of G protein-coupled receptors: the thyrotropin receptor.

    PubMed

    Urizar, Eneko; Claeysen, Sylvie; Deupí, Xavier; Govaerts, Cedric; Costagliola, Sabine; Vassart, Gilbert; Pardo, Leonardo

    2005-04-29

    We aimed at understanding molecular events involved in the activation of a member of the G protein-coupled receptor family, the thyrotropin receptor. We have focused on the transmembrane region and in particular on a network of polar interactions between highly conserved residues. Using molecular dynamics simulations and site-directed mutagenesis techniques we have identified residue Asn-7.49, of the NPxxY motif of TM 7, as a molecular switch in the mechanism of thyrotropin receptor (TSHr) activation. Asn-7.49 appears to adopt two different conformations in the inactive and active states. These two states are characterized by specific interactions between this Asn and polar residues in the transmembrane domain. The inactive gauche+ conformation is maintained by interactions with residues Thr-6.43 and Asp-6.44. Mutation of these residues into Ala increases the constitutive activity of the receptor by factors of approximately 14 and approximately 10 relative to wild type TSHr, respectively. Upon receptor activation Asn-7.49 adopts the trans conformation to interact with Asp-2.50 and a putatively charged residue that remains to be identified. In addition, the conserved Leu-2.46 of the (N/S)LxxxD motif also plays a significant role in restraining the receptor in the inactive state because the L2.46A mutation increases constitutive activity by a factor of approximately 13 relative to wild type TSHr. As residues Leu-2.46, Asp-2.50, and Asn-7.49 are strongly conserved, this molecular mechanism of TSHr activation can be extended to other members of the rhodopsin-like family of G protein-coupled receptors.

  8. Regulation of bradykinin receptor gene expression in human lung fibroblasts.

    PubMed

    Phagoo, S B; Yaqoob, M; Herrera-Martinez, E; McIntyre, P; Jones, C; Burgess, G M

    2000-06-01

    In WI-38 human fibroblasts, interleukin-1 beta and tumour necrosis factor-alpha (TNF-alpha) increased bradykinin B(1) receptor mRNA, which peaked between 2 and 4 h, remaining elevated for 20 h. Binding of the bradykinin B(1) receptor selective ligand [3H]des-Arg(10)-kallidin, also increased, peaking at 4 h and remaining elevated for 20 h. The B(max) value for [3H]des-Arg(10)-kallidin rose from 280+/-102 fmol/mg (n=3) to 701+/-147 fmol/mg (n=3), but the K(D) value remained unaltered (control, 1.04+/-0.33 nM (n=3); interleukin-1 beta, 0.88+/-0.41 nM (n=3)). The interleukin-1 beta-induced [3H]des-Arg(10)-kallidin binding sites were functional receptors, as bradykinin B(1) receptor agonist-induced responses increased in treated cells. Bradykinin B(2) receptor mRNA and [3H]bradykinin binding were upregulated by interleukin-1 beta, but not TNF-alpha. The effect of interleukin-1 beta on bradykinin B(2) receptors was smaller than for bradykinin B(1) receptors. Cycloheximide prevented interleukin-1 beta-mediated increases in B(1) and B(2) binding, but not mRNA suggesting that de novo synthesis of a transcriptional activator was unnecessary.

  9. Clinically used selective oestrogen receptor modulators increase LDL receptor activity in primary human lymphocytes

    PubMed Central

    Cerrato, F; Fernández-Suárez, M E; Alonso, R; Alonso, M; Vázquez, C; Pastor, O; Mata, P; Lasunción, M A; Gómez-Coronado, D

    2015-01-01

    Background and Purpose Treatment with selective oestrogen receptor modulators (SERMs) reduces low-density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen, raloxifene and toremifene and their combinations with lovastatin on LDL receptor activity in lymphocytes from normolipidaemic and familial hypercholesterolaemic (FH) subjects, and human HepG2 hepatocytes and MOLT-4 lymphoblasts. Experimental Approach Lymphocytes were isolated from peripheral blood, treated with different compounds, and 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanine perchlorate (DiI)-labelled LDL uptake was analysed by flow cytometry. Key Results Tamoxifen, toremifene and raloxifene, in this order, stimulated DiI-LDL uptake by lymphocytes by inhibiting LDL-derived cholesterol trafficking and subsequent down-regulation of LDL receptor expression. Differently to what occurred in HepG2 and MOLT-4 cells, only tamoxifen consistently displayed a potentiating effect with lovastatin in primary lymphocytes. The SERM-mediated increase in LDL receptor activity was not altered by the anti-oestrogen ICI 182 780 nor was it reproduced by 17β-oestradiol. However, the tamoxifen-active metabolite endoxifen was equally effective as tamoxifen. The SERMs produced similar effects on LDL receptor activity in heterozygous FH lymphocytes as in normal lymphocytes, although none of them had a potentiating effect with lovastatin in heterozygous FH lymphocytes. The SERMs had no effect in homozygous FH lymphocytes. Conclusions and Implications Clinically used SERMs up-regulate LDL receptors in primary human lymphocytes. There is a mild enhancement between SERMs and lovastatin of lymphocyte LDLR activity, the potentiation being greater in HepG2 and MOLT-4 cells. The effect of SERMs is independent of oestrogen receptors but is preserved in the tamoxifen-active metabolite endoxifen. This mechanism may contribute to the cholesterol-lowering action of SERMs. PMID:25395200

  10. Transcriptional activation of nuclear estrogen receptor and progesterone receptor and its regulation.

    PubMed

    Xin, Qi-Liang; Qiu, Jing-Tao; Cui, Sheng; Xia, Guo-Liang; Wang, Hai-Bin

    2016-08-25

    Estrogen receptor (ER) and progesterone receptor (PR) are two important members of steroid receptors family, an evolutionarily conserved family of transcription factors. Upon binding to their ligands, ER and PR enter cell nucleus to interact with specific DNA element in the context of chromatin to initiate the transcription of diverse target genes, which largely depends on the timely recruitment of a wide range of cofactors. Moreover, the interactions between steroid hormones and their respective receptors also trigger post-translational modifications on these receptors to fine-tune their transcriptional activities. Besides the well-known phosphorylation modifications on tyrosine and serine/threonine residues, recent studies have identified several other covalent modifications, such as ubiquitylation and sumoylation. These post-translational modifications of steroid receptors affect its stability, subcellular localization, and/or cofactor recruitment; eventually influence the duration and extent of transcriptional activation. This review is to focus on the recent research progress on the transcriptional activation of nuclear ER and PR as well as their physiological functions in early pregnancy, which may help us to better understand related female reproductive diseases. PMID:27546504

  11. Peroxisome proliferator-activated receptor-γ agonist inhibits collagen synthesis in human keloid fibroblasts by suppression of early growth response-1 expression through upregulation of miR-543 expression

    PubMed Central

    Zhu, Hua-Yu; Bai, Wen-Dong; Wang, Hong-Tao; Xie, Song-Tao; Tao, Ke; Su, Lin-Lin; Liu, Jia-Qi; Yang, Xue-Kang; Li, Jun; Wang, Yun-Chuan; He, Ting; Han, Jun-Tao; Hu, Da-Hai

    2016-01-01

    A keloid is a benign skin tumor formed by an overgrowth of granulation tissue in affected patients. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists were reported to be able to regulate extracellular matrix production in human dermal fibroblasts. This study explored the underlying molecular mechanism of PPAR-γ agonist troglitazone treatment for fibroblasts obtained from keloid patients. The data revealed that troglitazone treatment of keloid fibroblasts (KFs) downregulated the expression of early growth response-1 (Egr1) and collagen-1 (Col1). Level of Egr1 were closely associated with KF-induced fibrosis. The miRNA profiling data revealed that miR-543 was transcriptionally activated after troglitazone treatment. Bioinformatic analysis and experimental data showed that miR-543 was able to target Egr1. ELISA data confirmed that Col1 protein in the supernatant were modulated by the feedback regulatory axis of PPAR-γ agonist-induced miR-543 to inhibit Egr1 expression, whereas PPAR-γ antagonist treatment abolished such effect on Col1 suppression in KFs. This study demonstrated that the PPAR-γ agonist-mediated miR-543 and Egr1 signaling plays an important role in the suppression of collagen synthesis in KFs. Future in vivo studies are needed to confirm these in vitro data. PMID:27429849

  12. Peroxisome proliferator-activated receptor-γ agonist inhibits collagen synthesis in human keloid fibroblasts by suppression of early growth response-1 expression through upregulation of miR-543 expression.

    PubMed

    Zhu, Hua-Yu; Bai, Wen-Dong; Wang, Hong-Tao; Xie, Song-Tao; Tao, Ke; Su, Lin-Lin; Liu, Jia-Qi; Yang, Xue-Kang; Li, Jun; Wang, Yun-Chuan; He, Ting; Han, Jun-Tao; Hu, Da-Hai

    2016-01-01

    A keloid is a benign skin tumor formed by an overgrowth of granulation tissue in affected patients. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists were reported to be able to regulate extracellular matrix production in human dermal fibroblasts. This study explored the underlying molecular mechanism of PPAR-γ agonist troglitazone treatment for fibroblasts obtained from keloid patients. The data revealed that troglitazone treatment of keloid fibroblasts (KFs) downregulated the expression of early growth response-1 (Egr1) and collagen-1 (Col1). Level of Egr1 were closely associated with KF-induced fibrosis. The miRNA profiling data revealed that miR-543 was transcriptionally activated after troglitazone treatment. Bioinformatic analysis and experimental data showed that miR-543 was able to target Egr1. ELISA data confirmed that Col1 protein in the supernatant were modulated by the feedback regulatory axis of PPAR-γ agonist-induced miR-543 to inhibit Egr1 expression, whereas PPAR-γ antagonist treatment abolished such effect on Col1 suppression in KFs. This study demonstrated that the PPAR-γ agonist-mediated miR-543 and Egr1 signaling plays an important role in the suppression of collagen synthesis in KFs. Future in vivo studies are needed to confirm these in vitro data. PMID:27429849

  13. Immunohistochemical quantitation of oestrogen receptors and proliferative activity in oestrogen receptor positive breast cancer.

    PubMed Central

    Jensen, V; Ladekarl, M

    1995-01-01

    AIM--To evaluate the effect of the duration of formalin fixation and of tumour heterogeneity on quantitative estimates of oestrogen receptor content (oestrogen receptor index) and proliferative activity (MIB-1 index) in breast cancer. METHODS--Two monoclonal antibodies, MIB-1 and oestrogen receptor, were applied to formalin fixed, paraffin wax embedded tissue from 25 prospectively collected oestrogen receptor positive breast carcinomas, using a microwave antigen retrieval method. Tumour tissue was allocated systematically to different periods of fixation to ensure minimal intraspecimen variation. The percentages of MIB-1 positive and oestrogen receptor positive nuclei were estimated in fields of vision sampled systematically from the entire specimen and from the whole tumour area of one "representative" cross-section. RESULTS--No correlation was found between the oestrogen receptor and MIB-1 indices and the duration of formalin fixation. The estimated MIB-1 and oestrogen receptor indices in tissue sampled systematically from the entire tumour were closely correlated with estimates obtained in a "representative" section. The intra- and interobserver correlation of the MIB-1 index was good, although a slight systematical error at the second assessment of the intraobserver study was noted. CONCLUSION--Quantitative estimates of oestrogen receptor content and proliferative activity are not significantly influenced by the period of fixation in formalin, varying from less than four hours to more than 48 hours. The MIB-1 and the oestrogen receptor indices obtained in a "representative" section do not deviate significantly from average indices determined in tissue samples from the entire tumour. Finally, the estimation of MIB-1 index is reproducible, justifying its routine use. PMID:7629289

  14. Identification of COUP-TFII Orphan Nuclear Receptor as a Retinoic Acid-Activated Receptor

    SciTech Connect

    Kruse, Schoen W; Suino-Powell, Kelly; Zhou, X Edward; Kretschman, Jennifer E; Reynolds, Ross; Vonrhein, Clemens; Xu, Yong; Wang, Liliang; Tsai, Sophia Y; Tsai, Ming-Jer; Xu, H Eric

    2010-01-12

    The chicken ovalbumin upstream promoter-transcription factors (COUP-TFI and II) make up the most conserved subfamily of nuclear receptors that play key roles in angiogenesis, neuronal development, organogenesis, cell fate determination, and metabolic homeostasis. Although the biological functions of COUP-TFs have been studied extensively, little is known of their structural features or aspects of ligand regulation. Here we report the ligand-free 1.48 {angstrom} crystal structure of the human COUP-TFII ligand-binding domain. The structure reveals an autorepressed conformation of the receptor, where helix {alpha}10 is bent into the ligand-binding pocket and the activation function-2 helix is folded into the cofactor binding site, thus preventing the recruitment of coactivators. In contrast, in multiple cell lines, COUP-TFII exhibits constitutive transcriptional activity, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, and ligand binding, substantially reduce the COUP-TFII transcriptional activity. Importantly, retinoid acids are able to promote COUP-TFII to recruit coactivators and activate a COUP-TF reporter construct. Although the concentration needed is higher than the physiological levels of retinoic acids, these findings demonstrate that COUP-TFII is a ligand-regulated nuclear receptor, in which ligands activate the receptor by releasing it from the autorepressed conformation.

  15. Insulin and rabbit anti-insulin receptor antibodies stimulate additively the intrinsic receptor kinase activity.

    PubMed Central

    Ponzio, G; Dolais-Kitabgi, J; Louvard, D; Gautier, N; Rossi, B

    1987-01-01

    This paper describes the properties of rabbit polyclonal antibodies directed against purified human insulin receptor which strongly stimulate the intrinsic tyrosine kinase activity. The stimulatory effect of the antibodies on the kinase activity was obtained on the insulin receptor autophosphorylation as well as on the kinase activity towards a synthetic substrate. This stimulation is additive to that induced by insulin. Moreover, rabbit antibodies do not impair insulin binding. These data strongly suggest that antibodies and insulin act through separate pathways. This conclusion is reinforced by the differences observed on the phosphopeptide maps of the receptor's beta subunit whose phosphorylation was performed either in the presence of insulin or rabbit antibodies. Interestingly, these polyclonal antibodies can also induce an activation of the receptor autophosphorylation by interacting only with extracellular determinants. The anti-insulin receptor antibodies mimic insulin in their stimulatory effect on amino acid (AIB) uptake, but they have a different effect to that found on the kinase activity; the simultaneous addition of the antiserum and insulin failed to stimulate this amino acid transport over the level induced by a saturating concentration of hormone. Images Fig. 1. Fig. 3. Fig. 4. Fig. 6. Fig. 7. PMID:3034584

  16. Monitoring leptin activity using the chicken leptin receptor.

    PubMed

    Hen, Gideon; Yosefi, Sera; Ronin, Ana; Einat, Paz; Rosenblum, Charles I; Denver, Robert J; Friedman-Einat, Miriam

    2008-05-01

    We report on the construction of a leptin bioassay based on the activation of chicken leptin receptor in cultured cells. A human embryonic kidney (HEK)-293 cell line, stably transfected with the full-length cDNA of chicken leptin receptor together with a STAT3-responsive reporter gene specifically responded to recombinant human and Xenopus leptins. The observed higher sensitivity of chicken leptin receptor to the former is in agreement with the degree of sequence similarity among these species (about 60 and 38% identical amino acids between humans and chickens, and between humans and Xenopus respectively). The specific activation of signal transduction through the chicken leptin receptor, shown here for the first time, suggests that the transition of Gln269 (implicated in the Gln-to-Pro Zucker fatty mutation in rats) to Glu in chickens does not impair its activity. Analysis of leptin-like activity in human serum samples of obese and lean subjects coincided well with leptin levels determined by RIA. Serum samples of pre- and post partum cows showed a tight correlation with the degree of adiposity. However, specific activation of the chicken leptin receptor in this assay was not observed with serum samples from broiler or layer chickens (representing fat and lean phenotypes respectively) or with those from turkey. Similar leptin receptor activation profiles were observed with cells transfected with human leptin receptor. Further work is needed to determine whether the lack of leptin-like activity in the chicken serum samples is due to a lack of leptin in this species or simply to a serum level of leptin that is below the detection threshold.

  17. Monitoring leptin activity using the chicken leptin receptor.

    PubMed

    Hen, Gideon; Yosefi, Sera; Ronin, Ana; Einat, Paz; Rosenblum, Charles I; Denver, Robert J; Friedman-Einat, Miriam

    2008-05-01

    We report on the construction of a leptin bioassay based on the activation of chicken leptin receptor in cultured cells. A human embryonic kidney (HEK)-293 cell line, stably transfected with the full-length cDNA of chicken leptin receptor together with a STAT3-responsive reporter gene specifically responded to recombinant human and Xenopus leptins. The observed higher sensitivity of chicken leptin receptor to the former is in agreement with the degree of sequence similarity among these species (about 60 and 38% identical amino acids between humans and chickens, and between humans and Xenopus respectively). The specific activation of signal transduction through the chicken leptin receptor, shown here for the first time, suggests that the transition of Gln269 (implicated in the Gln-to-Pro Zucker fatty mutation in rats) to Glu in chickens does not impair its activity. Analysis of leptin-like activity in human serum samples of obese and lean subjects coincided well with leptin levels determined by RIA. Serum samples of pre- and post partum cows showed a tight correlation with the degree of adiposity. However, specific activation of the chicken leptin receptor in this assay was not observed with serum samples from broiler or layer chickens (representing fat and lean phenotypes respectively) or with those from turkey. Similar leptin receptor activation profiles were observed with cells transfected with human leptin receptor. Further work is needed to determine whether the lack of leptin-like activity in the chicken serum samples is due to a lack of leptin in this species or simply to a serum level of leptin that is below the detection threshold. PMID:18434362

  18. Estrogen, nitric oxide, and hypertension differentially modulate agonist-induced contractile responses in female transgenic (mRen2)27 hypertensive rats.

    PubMed

    Brosnihan, K Bridget; Li, Ping; Figueroa, Jorge P; Ganten, Detlev; Ferrario, Carlos M

    2008-05-01

    Clinical trials revealed that estrogen may result in cardiovascular risk in patients with coronary heart disease, despite earlier studies demonstrating that estrogen provided cardiovascular protection. It is possible that the preexisting condition of hypertension and the ability of estrogen to activate the renin-angiotensin system could confound its beneficial effects. Our hypothesis is that the attenuation of estrogen to agonist-induced vasoconstrictor responses through the activation of nitric oxide (NO) synthase (NOS) is impaired by hypertension. We investigated the effects of 17beta-estradiol (E(2)) replacement in normotensive Sprague-Dawley (SD) and (mRen2)27 hypertensive transgenic (TG) rats on contractile responses to three vasoconstrictors, angiotensin II (ANG II), serotonin (5-HT), and phenylephrine (PE), and on the modulatory role of vascular NO to these responses. The aorta was isolated from ovariectomized SD and TG rats treated chronically with 5 mg E(2) or placebo (P). The isometric tension of the aortic rings was measured in organ chambers, and endothelial NOS (eNOS) in the rat aorta was detected using Western blot analysis. E(2) treatment increased eNOS expression in the SD and TG aorta and reduced ANG II- and 5-HT- but not PE-induced contractions in SD and TG rats. The inhibition of NOS with N(omega)-nitro-L-arginine methyl ester enhanced ANG II-, 5-HT-, and PE-induced contractions in P-treated and ANG II and PE responses in E(2)-treated SD and TG rats. Only the responses to 5-HT were augmented in hypertensive rats. In conclusion, this study shows that the preexisting condition of hypertension augmented the vascular responsiveness of 5-HT, whereas the attenuation of estrogen by ANG II and 5-HT vascular responses was not impaired by hypertension. The adrenergic agonist was unresponsive to estrogen treatment. The contribution of NO as a factor contributing to the relative refractoriness of the vascular responses is dependent on the nature of the

  19. Stimulus-response coupling in monocytes infected with Leishmania. Attenuation of calcium transients is related to defective agonist-induced accumulation of inositol phosphates.

    PubMed

    Olivier, M; Baimbridge, K G; Reiner, N E

    1992-02-15

    Mononuclear phagocytes infected with Leishmania have been shown to have defective responses to extracellular stimuli. To investigate the potential relationship of these findings to alterations in calcium-dependent signaling pathways, the regulation of [Ca2+]i concentrations was examined in human peripheral blood monocytes infected with amastigotes of Leishmania donovani. Measurements of [Ca2+]i in fura-2-loaded monocytes were made at the single cell level by microfluorimetry. In normal monocytes, resting [Ca2+]i was 56 +/- 2 nM (mean +/- SEM). In contrast, in monocytes infected with Leishmania there was an approximately twofold increase in basal [Ca2+]i (122 +/- 5 nM, p less than 0.01 vs control). Treatment of cells with pertussis toxin before infection did not abrogate infection-induced increases in basal [Ca2+]i, suggesting that this effect was not mediated via the activation of a G protein coupled to phospholipase C. However, elevated resting [Ca2+]i did correlate with increased rates of 45Ca2+ uptake by infected monocytes. As expected, in response to treatment with 10(-7) M FMLP, control monocytes showed rapid net increases in [Ca2+]i of 303 +/- 19 nM. In contrast, net transients of [Ca2+]i in infected monocytes in response to FMLP were attenuated to only 137 +/- 9 nM (p less than 0.01 vs control). This result was not related to excess buffering of [Ca2+]i in infected cells as both control and infected monocytes showed equivalent transients of [Ca2+]i in response to the calcium ionophore A23187. Rather, inhibition of agonist-induced calcium release in infected cells appeared related to defective generation of second messenger because compared to control cells labeled with myo-[2-3H]inositol, little accumulation of inositol 1,4,5-trisphosphate was detected in infected monocytes. Attenuation of inositol phosphate accumulation and calcium release in response to chemotactic peptide correlated with decreased FMLP-induced superoxide and hydrogen peroxide production

  20. Flavonoids as dietary regulators of nuclear receptor activity

    PubMed Central

    Avior, Yishai; Bomze, David; Ramon, Ory

    2013-01-01

    Metabolic diseases such as obesity, type II diabetes, and dyslipidemia are a rising cause of mortality worldwide. The progression of many metabolic diseases is fundamentally regulated on the transcriptional level by a family of ligand-activated transcription factors, called nuclear receptors, which detect and respond to metabolic changes. Their role in maintaining metabolic homeostasis makes nuclear receptors an important pharmaceutical and dietary target. This review will present the growing evidence that flavonoids, natural secondary plant metabolites, are important regulators of nuclear receptor activity. Structural similarities between flavonoids and cholesterol derivatives combined with the promiscuous nature of most nuclear receptors provide a wealth of possibilities for pharmaceutical and dietary modulation of metabolism. While the challenges of bringing flavonoid-derived therapeutics to the market are significant, we consider this rapidly growing field to be an essential aspect of the functional food initiative and an important mine for pharmaceutical compounds. PMID:23598551

  1. Extended Synaptotagmin Interaction with the Fibroblast Growth Factor Receptor Depends on Receptor Conformation, Not Catalytic Activity.

    PubMed

    Tremblay, Michel G; Herdman, Chelsea; Guillou, François; Mishra, Prakash K; Baril, Joëlle; Bellenfant, Sabrina; Moss, Tom

    2015-06-26

    We previously demonstrated that ESyt2 interacts specifically with the activated FGF receptor and is required for a rapid phase of receptor internalization and for functional signaling via the ERK pathway in early Xenopus embryos. ESyt2 is one of the three-member family of Extended Synaptotagmins that were recently shown to be implicated in the formation of endoplasmic reticulum (ER)-plasma membrane (PM) junctions and in the Ca(2+) dependent regulation of these junctions. Here we show that ESyt2 is directed to the ER by its putative transmembrane domain, that the ESyts hetero- and homodimerize, and that ESyt2 homodimerization in vivo requires a TM adjacent sequence but not the SMP domain. ESyt2 and ESyt3, but not ESyt1, selectively interact in vivo with activated FGFR1. In the case of ESyt2, this interaction requires a short TM adjacent sequence and is independent of receptor autophosphorylation, but dependent on receptor conformation. The data show that ESyt2 recognizes a site in the upper kinase lobe of FGFR1 that is revealed by displacement of the kinase domain activation loop during receptor activation.

  2. Allosteric Activation of a G Protein-coupled Receptor with Cell-penetrating Receptor Mimetics*

    PubMed Central

    Zhang, Ping; Leger, Andrew J.; Baleja, James D.; Rana, Rajashree; Corlin, Tiffany; Nguyen, Nga; Koukos, Georgios; Bohm, Andrew; Covic, Lidija; Kuliopulos, Athan

    2015-01-01

    G protein-coupled receptors (GPCRs) are remarkably versatile signaling systems that are activated by a large number of different agonists on the outside of the cell. However, the inside surface of the receptors that couple to G proteins has not yet been effectively modulated for activity or treatment of diseases. Pepducins are cell-penetrating lipopeptides that have enabled chemical and physical access to the intracellular face of GPCRs. The structure of a third intracellular (i3) loop agonist, pepducin, based on protease-activated receptor-1 (PAR1) was solved by NMR and found to closely resemble the i3 loop structure predicted for the intact receptor in the on-state. Mechanistic studies revealed that the pepducin directly interacts with the intracellular H8 helix region of PAR1 and allosterically activates the receptor through the adjacent (D/N)PXXYYY motif through a dimer-like mechanism. The i3 pepducin enhances PAR1/Gα subunit interactions and induces a conformational change in fluorescently labeled PAR1 in a very similar manner to that induced by thrombin. As pepducins can potentially be made to target any GPCR, these data provide insight into the identification of allosteric modulators to this major drug target class. PMID:25934391

  3. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist inhibits collagen synthesis in human hypertrophic scar fibroblasts by targeting Smad3 via miR-145

    SciTech Connect

    Zhu, Hua-Yu; Li, Chao; Zheng, Zhao; Zhou, Qin; Guan, Hao; Su, Lin-Lin; Han, Jun-Tao; Zhu, Xiong-Xiang; Wang, Shu-yue; Li, Jun Hu, Da-Hai

    2015-03-27

    The transcription factor peroxisome proliferator-activated receptor-γ (PPAR-γ) functions to regulate cell differentiation and lipid metabolism. Recently, its agonist has been documented to regulate extracellular matrix production in human dermal fibroblasts. This study explored the underlying molecular mechanisms and gene interactions in hypertrophic scar fibroblasts (HSFBs) in vitro. HSFBs were cultured and treated with or without PPAR-γ agonist or antagonist for gene expression. Bioinformatical analysis predicted that miR-145 could target Smad3 expression. Luciferase assay was used to confirm such an interaction. The data showed that PPAR-γ agonist troglitazone suppressed expression of Smad3 and Col1 in HSFBs. PPAR-γ agonist induced miR-145 at the gene transcriptional level, which in turn inhibited Smad3 expression and Col1 level in HSFBs. Furthermore, ELISA data showed that Col1 level in HSFBs was controlled by a feedback regulation mechanism involved in PPAR-γ agonist and antagonist-regulated expression of miR-145 and Smad3 in HSFBs. These findings indicate that PPAR-γ-miR-145-Smad3 axis plays a role in regulation of collagen synthesis in HSFBs. - Highlights: • PPAR-γ agonist inhibits collagen synthesis in HSFBs. • Smad3 and type I collagen expression are decreased by PPAR-γ agonist. • miR-145 expression is increased by PPAR-γ agonist in HSFBs. • Increased miR-145 inhibits collagen synthesis by targeting Smad3. • miR-145 regulates collagen synthesis.

  4. Y27632, a Rho-activated kinase inhibitor, normalizes dysregulation in alpha1-adrenergic receptor-induced contraction of Lyon hypertensive rat artery smooth muscle

    PubMed Central

    Freitas, Maria Regina; Eto, Masumi; Kirkbride, Jason A; Schott, Christa; Sassard, Jean; Stoclet, Jean-Claude

    2010-01-01

    RhoA-activated kinase (ROK) is involved in disorders of smooth muscle contraction found in hypertension model animals and patients. We examined whether the α1-adrenergic receptor agonist-induced ROK signal is perturbed in resistance small mesentery artery (SMA) of Lyon genetically hypertensive (LH) rats, using a ROK antagonist, Y27632. Smooth muscle strips of SMA and aorta were isolated from LH and Lyon normotensive (LN) rats. After Ca2+-depletion and pre-treatment with phenylephrine (PE), smooth muscle contraction was induced by serial additions of CaCl2. In LH SMA Ca2+ permeated cells to a lesser extent as compared to LN SMA, while CaCl2-induced contraction of LH SMA was greater than that of LN SMA, indicating a higher ratio of force to Ca2+ in LH SMA contraction (Ca2+ sensitization). No hyper-contraction was observed in LH aorta tissues. Treatment of LH SMA with Y27632 restored both Ca2+ permeability and Ca2+-force relationship to levels seen for LN SMA. In response to PE stimulation, phosphorylation of CPI-17, a phosphorylation-dependent myosin phosphatase inhibitor protein, and MYPT1 at Thr853, the inhibitory phosphorylation site of the myosin phosphatase regulatory subunit, was increased in LN SMA, but remained unchanged in LH SMA. These results suggest that the disorder in ROK-dependent Ca2+ permeability and Ca2+-force relationship is responsible for LH SMA hyper-contraction. Unlike other hypertensive models, the ROK-induced hyper-contractility of LH SMA is independent of MYPT1 and CPI-17 phosphorylation, which suggests that ROK-mediated inhibition of myosin phosphatase does not affect SMA hyper-contractility in LH SMA cells. PMID:19298234

  5. Dopamine agonist-induced penile erection and yawning: a comparative study in outbred Roman high- and low-avoidance rats.

    PubMed

    Sanna, Fabrizio; Corda, Maria Giuseppa; Melis, Maria Rosaria; Piludu, Maria Antonietta; Löber, Stefan; Hübner, Harald; Gmeiner, Peter; Argiolas, Antonio; Giorgi, Osvaldo

    2013-08-01

    The effects on penile erection and yawning of subcutaneous (SC) injections of the mixed dopamine D1/D2-like agonist apomorphine (0.02-0.2 mg/kg) were studied in outbred Roman high- (RHA) and low-avoidance (RLA) male rats, two lines selectively bred for their respectively rapid versus poor acquisition of the active avoidance response in the shuttle-box, and compared with the effects observed in male Sprague-Dawley (SD) rats. Apomorphine dose-response curves were bell-shaped in all rat lines/strains. Notably, more penile erections and yawns were recorded mainly in the ascending part of these curves (e.g., apomorphine 0.02-0.08 mg/kg) in both RLA and RHA rats compared to SD rats, with RLA rats showing the higher response (especially for yawning) with respect to RHA rats. Similar results were found with PD-168,077 (0.02-0.2 mg/kg SC), a D4 receptor agonist, which induced penile erection but not yawning. In all rat lines/strains, apomorphine responses were markedly reduced by the D2 antagonist L-741,626, but not by the D3 antagonist, SB277011A, whereas the D4 antagonists L-745,870 and FAUC213 elicited a partial, yet statistically significant, inhibitory effect. In contrast, the pro-erectile effect of PD-168,077 was completely abolished by L-745,870 and FAUC213, as expected. The present study confirms and extends previously reported differences in dopamine transmission between RLA and RHA rats and between the SD strain and the Roman lines. Moreover, it confirms previous studies supporting the view that dopamine receptors of the D2 subtype play a predominant role in the pro-yawning and pro-erectile effect of apomorphine, and that the selective stimulation of D4 receptors induces penile erection.

  6. Increased desensitization of dopamine D₂ receptor-mediated response in the ventral tegmental area in the absence of adenosine A(2A) receptors.

    PubMed

    Al-Hasani, R; Foster, J D; Metaxas, A; Ledent, C; Hourani, S M O; Kitchen, I; Chen, Y

    2011-09-01

    G-protein coupled receptors interact to provide additional regulatory mechanisms for neurotransmitter signaling. Adenosine A(2A) receptors are expressed at a high density in striatal neurons, where they closely interact with dopamine D₂ receptors and modulate effects of dopamine and responses to psychostimulants. A(2A) receptors are expressed at much lower densities in other forebrain neurons but play a more prominent yet opposing role to striatal receptors in response to psychostimulants in mice. It is, therefore, possible that A(2A) receptors expressed at low levels elsewhere in the brain may also regulate neurotransmitter systems and modulate neuronal functions. Dopamine D₂ receptors play an important role in autoinhibition of neuronal firing in dopamine neurons of the ventral tegmental area (VTA) and dopamine release in other brain areas. Here, we examined the effect of A(2A) receptor deletion on D₂ receptor-mediated inhibition of neuronal firing in dopamine neurons in the VTA. Spontaneous activity of dopamine neurons was recorded in midbrain slices, and concentration-dependent effects of the dopamine D₂ receptor agonist, quinpirole, was compared between wild-type and A(2A) knockout mice. The potency of quinpirole applied in single concentrations and the expression of D₂ receptors were not altered in the VTA of the knockout mice. However, quinpirole applied in stepwise escalating concentrations caused significantly reduced maximal inhibition in A(2A) knockout mice, indicating an enhanced agonist-induced desensitization of D₂ receptors in the absence of A(2A) receptors. The A(2A) receptor agonist, CGS21680, did not exert any effect on dopamine neuron firing or response to quinpirole, revealing a novel non-pharmacological interaction between adenosine A(2A) receptors and dopaminergic neurotransmission in midbrain dopamine neurons. Altered D₂ receptor desensitization may result in changes in dopamine neuron firing rate and pattern and dopamine

  7. Redefining the concept of protease-activated receptors: cathepsin S evokes itch via activation of Mrgprs

    PubMed Central

    Reddy, Vemuri B.; Sun, Shuohao; Azimi, Ehsan; Elmariah, Sarina B.; Dong, Xinzhong; Lerner, Ethan A.

    2015-01-01

    Sensory neurons expressing Mas-related G protein coupled receptors (Mrgprs) mediate histamine-independent itch. We show that the cysteine protease cathepsin S activates MrgprC11 and evokes receptor-dependent scratching in mice. In contrast to its activation of conventional protease-activated receptors, cathepsin S mediated activation of MrgprC11 did not involve the generation of a tethered ligand. We demonstrate further that different cysteine proteases selectively activate specific mouse and human Mrgpr family members. This expansion of our understanding by which proteases interact with GPCRs redefines the concept of what constitutes a protease-activated receptor. The findings also implicate proteases as ligands to members of this orphan receptor family while providing new insights into how cysteine proteases contribute to itch. PMID:26216096

  8. Steroid signaling activation and intracellular localization of sex steroid receptors.

    PubMed

    Giraldi, Tiziana; Giovannelli, Pia; Di Donato, Marzia; Castoria, Gabriella; Migliaccio, Antimo; Auricchio, Ferdinando

    2010-12-01

    In addition to stimulating gene transcription, sex steroids trigger rapid, non-genomic responses in the extra-nuclear compartment of target cells. These events take place within seconds or minutes after hormone administration and do not require transcriptional activity of sex steroid receptors. Depending on cell systems, activation of extra-nuclear signaling pathways by sex steroids fosters cell cycle progression, prevents apoptosis, leads to epigenetic modifications and increases cell migration through cytoskeleton changes. These findings have raised the question of intracellular localization of sex steroid receptors mediating these responses. During the past years, increasing evidence has shown that classical sex steroid receptors localized in the extra-nuclear compartment or close to membranes of target cells induce these events. The emerging picture is that a process of bidirectional control between signaling activation and sex steroid receptor localization regulates the outcome of hormonal responses in target cells. This mechanism ensures cell cycle progression in estradiol-treated breast cancer cells, and its derangement might occur in progression of human proliferative diseases. These findings will be reviewed here together with unexpected examples of the relationship between sex steroid receptor localization, signaling activation and biological responses in target cells. We apologize to scientists whose reports are not mentioned or extensively discussed owing to space limitations.

  9. Glycine Potentiates AMPA Receptor Function through Metabotropic Activation of GluN2A-Containing NMDA Receptors

    PubMed Central

    Li, Li-Jun; Hu, Rong; Lujan, Brendan; Chen, Juan; Zhang, Jian-Jian; Nakano, Yasuko; Cui, Tian-Yuan; Liao, Ming-Xia; Chen, Jin-Cao; Man, Heng-Ye; Feng, Hua; Wan, Qi

    2016-01-01

    NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs), but not GluN2B-containing NMDA receptors (GluN2BRs), to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation. PMID:27807405

  10. Overexpression and activation of epidermal growth factor receptor in hemangioblastomas

    PubMed Central

    Chen, Gregory J.; Karajannis, Matthias A.; Newcomb, Elizabeth W.

    2010-01-01

    Hemangioblastomas frequently develop in patients with von Hippel-Lindau (VHL) disease, an autosomal dominant genetic disorder. The tumors are characterized by a dense network of blood capillaries, often in association with cysts. Although activation of receptor tyrosine kinase (RTK) signaling, including epidermal growth factor receptor (EGFR) has been implicated in the development of malignant brain tumors such as high-grade gliomas, little is known about the role of RTK signaling in hemangioblastomas. To address this issue, we examined hemangioblastoma tumor specimens using receptor tyrosine kinase (RTK) activation profiling and immunohistochemistry. Six human hemangioblastomas were analyzed with a phospho-RTK antibody array, revealing EGFR phosphorylation in all tumors. EGFR expression was confirmed by immunohistochemistry in all tumors analyzed and downstream effector pathway activation was demonstrated by positive staining for phospho-AKT. Our findings suggest that, in primary hemangioblastomas, RTK upregulation and signaling predominantly involves EGFR, providing an attractive molecular target for therapeutic intervention. PMID:20730556

  11. Interfering with mineralocorticoid receptor activation: the past, present, and future

    PubMed Central

    2014-01-01

    Aldosterone is a potent mineralocorticoid produced by the adrenal gland. Aldosterone binds to and activates the mineralocorticoid receptor (MR) in a plethora of tissues, but the cardiovascular actions of aldosterone are of primary interest clinically. Although MR antagonists were developed as antihypertensive agents, they are now considered to be important therapeutic options for patients with heart failure. Specifically, blocking only the MR has proven to be a difficult task because of its similarity to other steroid receptors, including the androgen and progesterone receptors. This lack of specificity caused the use of the first-generation mineralocorticoid receptor antagonists to be fraught with difficulty because of the side effects produced by drug administration. However, in recent years, several advances have been made that could potentially increase the clinical use of agents that inhibit the actions of aldosterone. These will be discussed here along with some examples of the beneficial effects of these new therapeutic agents. PMID:25165560

  12. Histamine 3 receptor activation reduces the expression of neuronal angiotensin II type 1 receptors in the heart.

    PubMed

    Hashikawa-Hobara, Narumi; Chan, Noel Yan-Ki; Levi, Roberto

    2012-01-01

    In severe myocardial ischemia, histamine 3 (H₃) receptor activation affords cardioprotection by preventing excessive norepinephrine release and arrhythmias; pivotal to this action is the inhibition of neuronal Na⁺/H⁺ exchanger (NHE). Conversely, angiotensin II, formed locally by mast cell-derived renin, stimulates NHE via angiotensin II type 1 (AT₁) receptors, facilitating norepinephrine release and arrhythmias. Thus, ischemic dysfunction may depend on a balance between the NHE-modulating effects of H₃ receptors and AT₁ receptors. The purpose of this investigation was therefore to elucidate the H₃/AT₁ receptor interaction in myocardial ischemia/reperfusion. We found that H₃ receptor blockade with clobenpropit increased norepinephrine overflow and arrhythmias in Langendorff-perfused guinea pig hearts subjected to ischemia/reperfusion. This coincided with increased neuronal AT₁ receptor expression. NHE inhibition with cariporide prevented both increases in norepinephrine release and AT₁ receptor expression. Moreover, norepinephrine release and AT₁ receptor expression were increased by the nitric oxide (NO) synthase inhibitor N(G)-methyl-L-arginine and the protein kinase C activator phorbol myristate acetate. H₃ receptor activation in differentiated sympathetic neuron-like PC12 cells permanently transfected with H₃ receptor cDNA caused a decrease in protein kinase C activity and AT₁ receptor protein abundance. Collectively, our findings suggest that neuronal H₃ receptor activation inhibits NHE by diminishing protein kinase C activity. Reduced NHE activity sequentially causes intracellular acidification, increased NO synthesis, and diminished AT₁ receptor expression. Thus, H₃ receptor-mediated NHE inhibition in ischemia/reperfusion not only opposes the angiotensin II-induced stimulation of NHE in cardiac sympathetic neurons, but also down-regulates AT₁ receptor expression. Cardioprotection ultimately results from the combined

  13. Histamine 3 Receptor Activation Reduces the Expression of Neuronal Angiotensin II Type 1 Receptors in the Heart

    PubMed Central

    Hashikawa-Hobara, Narumi; Chan, Noel Yan-Ki

    2012-01-01

    In severe myocardial ischemia, histamine 3 (H3) receptor activation affords cardioprotection by preventing excessive norepinephrine release and arrhythmias; pivotal to this action is the inhibition of neuronal Na+/H+ exchanger (NHE). Conversely, angiotensin II, formed locally by mast cell-derived renin, stimulates NHE via angiotensin II type 1 (AT1) receptors, facilitating norepinephrine release and arrhythmias. Thus, ischemic dysfunction may depend on a balance between the NHE-modulating effects of H3 receptors and AT1 receptors. The purpose of this investigation was therefore to elucidate the H3/AT1 receptor interaction in myocardial ischemia/reperfusion. We found that H3 receptor blockade with clobenpropit increased norepinephrine overflow and arrhythmias in Langendorff-perfused guinea pig hearts subjected to ischemia/reperfusion. This coincided with increased neuronal AT1 receptor expression. NHE inhibition with cariporide prevented both increases in norepinephrine release and AT1 receptor expression. Moreover, norepinephrine release and AT1 receptor expression were increased by the nitric oxide (NO) synthase inhibitor NG-methyl-l-arginine and the protein kinase C activator phorbol myristate acetate. H3 receptor activation in differentiated sympathetic neuron-like PC12 cells permanently transfected with H3 receptor cDNA caused a decrease in protein kinase C activity and AT1 receptor protein abundance. Collectively, our findings suggest that neuronal H3 receptor activation inhibits NHE by diminishing protein kinase C activity. Reduced NHE activity sequentially causes intracellular acidification, increased NO synthesis, and diminished AT1 receptor expression. Thus, H3 receptor-mediated NHE inhibition in ischemia/reperfusion not only opposes the angiotensin II-induced stimulation of NHE in cardiac sympathetic neurons, but also down-regulates AT1 receptor expression. Cardioprotection ultimately results from the combined attenuation of angiotensin II and

  14. Regulation of Proteome Maintenance Gene Expression by Activators of Peroxisome Proliferator-Activated Receptor a (PPARa)

    EPA Science Inventory

    The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARa) is activated by a large number of xenobiotic and hypolipidemic compounds called peroxisome proliferator chemicals (PPC). One agonist of PPARa (WY-14,643) regulates responses in the mouse liver to chemic...

  15. Antihistaminic activity of Clitoria ternatea L. roots.

    PubMed

    Taur, Dnyaneshwar J; Patil, Ravindra Y

    2010-12-01

    Clonidine, a α2 adrenoreceptor agonist induces dose dependent catalepsy in mice, which was inhibited by histamine H1 receptor antagonists but not by H2 receptor antagonist. Clonidine releases histamine from mast cells which is responsible for different asthmatic conditions. Clitoria ternatea L. (Family: Fabaceae) is a perimial twing herb. The roots have anti-inflammatory properties and are useful in severe bronchitis, asthma. In present study ethanol extract of Clitoria ternatea root (ECTR) at doses 100, 125 and 150 mg/kg i.p were evaluated for antihistaminic activity using clonidine and haloperidol induced catalepsy in mice. Finding of investigation showed that chlorpheniramine maleate (CPM) and ECTR inhibit clonidine induced catalepsy significantly P < 0.001 when compare to control group, while CPM and ECTR fail to inhibit haloperidol induced catalepsy. Present study concludes that ECTR possesses antihistaminic activity. PMID:24826001

  16. Antihistaminic activity of Clitoria ternatea L. roots

    PubMed Central

    Taur, Dnyaneshwar J; Patil, Ravindra Y

    2010-01-01

    Clonidine, a α2 adrenoreceptor agonist induces dose dependent catalepsy in mice, which was inhibited by histamine H1 receptor antagonists but not by H2 receptor antagonist. Clonidine releases histamine from mast cells which is responsible for different asthmatic conditions. Clitoria ternatea L. (Family: Fabaceae) is a perimial twing herb. The roots have anti-inflammatory properties and are useful in severe bronchitis, asthma. In present study ethanol extract of Clitoria ternatea root (ECTR) at doses 100, 125 and 150 mg/kg i.p were evaluated for antihistaminic activity using clonidine and haloperidol induced catalepsy in mice. Finding of investigation showed that chlorpheniramine maleate (CPM) and ECTR inhibit clonidine induced catalepsy significantly P < 0.001 when compare to control group, while CPM and ECTR fail to inhibit haloperidol induced catalepsy. Present study concludes that ECTR possesses antihistaminic activity PMID:24826001

  17. The cytoplasmic tails of protease-activated receptor-1 and substance P receptor specify sorting to lysosomes versus recycling.

    PubMed

    Trejo, J; Coughlin, S R

    1999-01-22

    The G protein-coupled receptor (GPCR) for thrombin, protease-activated receptor-1 (PAR1), is activated when thrombin cleaves its amino-terminal exodomain. The irreversibility of this proteolytic mechanism raises the question of how desensitization and resensitization are accomplished for thrombin signaling. PAR1 is phosphorylated, uncoupled from signaling, and internalized after activation like classic GPCRs. However, unlike classic GPCRs, which internalize and recycle, activated PAR1 is sorted to lysosomes. To identify the signals that specify the distinct sorting of PAR1, we constructed chimeras between PAR1 and the substance P receptor. Wild-type substance P receptor internalized and recycled after activation; PAR1 bearing the cytoplasmic tail of the substance P receptor (P/S) behaved similarly. By contrast, wild-type PAR1 and a substance P receptor bearing the cytoplasmic tail of PAR1 (S/P) sorted to lysosomes after activation. Consistent with these observations, PAR1 and the S/P chimera were effectively down-regulated by their respective agonists as assessed by both receptor protein levels and signaling. Substance P receptor and the P/S chimera showed little down-regulation. These data suggest that the cytoplasmic tails of PAR1 and substance P receptor specify their distinct intracellular sorting patterns after activation and internalization. Moreover, by altering the trafficking fates of PAR1 and substance P receptor, one can dictate the efficiency with which a cell maintains responsiveness to PAR1 or substance P receptor agonists over time.

  18. Mechanisms of Activation of Receptor Tyrosine Kinases: Monomers or Dimers

    PubMed Central

    Maruyama, Ichiro N.

    2014-01-01

    Receptor tyrosine kinases (RTKs) play essential roles in cellular processes, including metabolism, cell-cycle control, survival, proliferation, motility and differentiation. RTKs are all synthesized as single-pass transmembrane proteins and bind polypeptide ligands, mainly growth factors. It has long been thought that all RTKs, except for the insulin receptor (IR) family, are activated by ligand-induced dimerization of the receptors. An increasing number of diverse studies, however, indicate that RTKs, previously thought to exist as monomers, are present as pre-formed, yet inactive, dimers prior to ligand binding. The non-covalently associated dimeric structures are reminiscent of those of the IR family, which has a disulfide-linked dimeric structure. Furthermore, recent progress in structural studies has provided insight into the underpinnings of conformational changes during the activation of RTKs. In this review, I discuss two mutually exclusive models for the mechanisms of activation of the epidermal growth factor receptor, the neurotrophin receptor and IR families, based on these new insights. PMID:24758840

  19. Modulation of Receptor Phosphorylation Contributes to Activation of Peroxisome Proliferator Activated Receptor α by Dehydroepiandrosterone and Other Peroxisome Proliferators

    PubMed Central

    Tamasi, Viola; Miller, Kristy K. Michael; Ripp, Sharon L.; Vila, Ermin; Geoghagen, Thomas E.; Prough, Russell A.

    2008-01-01

    Dehydroepiandrosterone (DHEA), a C19 human adrenal steroid, activates peroxisome proliferator-activated receptor α (PPARα) in vivo but does not ligand-activate PPARα in transient transfection experiments. We demonstrate that DHEA regulates PPARα action by altering both the levels and phosphorylation status of the receptor. Human hepatoma cells (HepG2) were transiently transfected with the expression plasmid encoding PPARα and a plasmid containing two copies of fatty acyl coenzyme oxidase (FACO) peroxisome-proliferator activated receptor responsive element consensus oligonucleotide in a luciferase reporter gene. Nafenopin treatment increased reporter gene activity in this system, whereas DHEA treatment did not. Okadaic acid significantly decreased nafenopin-induced reporter activity in a concentration-dependent manner. Okadaic acid treatment of primary rat hepatocytes decreased both DHEA- and nafenopin-induced FACO activity in primary rat hepatocytes. DHEA induced both PPARα mRNA and protein levels, as well as PP2A message in primary rat hepatocytes. Western blot analysis showed that the serines at positions 12 and 21 were rapidly dephosphorylated upon treatment with DHEA and nafenopin. Results using specific protein phosphatase inhibitors suggested that protein phosphatase 2A (PP2A) is responsible for DHEA action, and protein phosphatase 1 might be involved in nafenopin induction. Mutation of serines at position 6, 12, and 21 to an uncharged alanine residue significantly increased transcriptional activity, whereas mutation to negative charged aspartate residues (mimicking receptor phosphorylation) decreased transcriptional activity. DHEA action involves induction of PPARα mRNA and protein levels as well as increased PPARα transcriptional activity through decreasing receptor phosphorylation at serines in the AF1 region. PMID:18079279

  20. Liver X Receptor and Peroxisome Proliferator-Activated Receptor Agonist from Cornus alternifolia

    PubMed Central

    He, Yang-Qing; Ma, Guo-Yi; Peng, Jiang-nan; Ma, Zhan-Ying; Hamann, Mark T.

    2012-01-01

    Background Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptors superfamily and are transcription factors activated by specific ligands. Liver X receptors (LXR) belong to the nuclear hormone receptors and have been shown to play an important role in cholesterol homeostasis. From the previous screening of several medicinal plants for potential partial PPARγ agonists, the extracts of Cornus alternifolia were found to exhibit promising bioactivity. In this paper, we report the isolation and structural elucidation of four new compounds and their potential as ligands for PPAR. Methods The new compounds were extracted from the leaves of Cornus alternifolia and fractionated by high-performance liquid chromatography. Their structures were elucidated on the basis of spectroscopic evidence and analysis of their hydrolysis products. Results Three new iridoid glycosides including an iridolactone, alternosides A-C (1–3), a new megastigmane glycoside, cornalternoside (4) and 10 known compounds, were obtained from the leaves of Cornus alternifolia. Kaempferol-3-O-β-glucopyranoside (5) exhibited potent agonistic activities for PPARα, PPARγ and LXR with EC50 values of 0.62, 3.0 and 1.8 μ M, respectively. Conclusions We isolated four new and ten known compounds from Cornus alternifolia, and one known compound showed agonistic activities for PPARα, PPARγ and LXR. General significance Compound 1 is the first example of a naturally occurring iridoid glycoside containing a β-glucopyranoside moiety at C-6. PMID:22353334

  1. Immunomodulatory effects of endogenous and synthetic peptides activating opioid receptors.

    PubMed

    Pomorska, Dorota K; Gach, Katarzyna; Janecka, Anna

    2014-01-01

    The main role of endogenous opioid peptides is the modulation of pain. Opioid peptides exert their analgesic activity by binding to the opioid receptors distributed widely in the central nervous system (CNS). However, opioid receptors are also found on tissues and organs outside the CNS, including the cells of the immune system, indicating that opioids are capable of exerting additional effects in periphery. Morphine, which is a gold standard in the treatment of chronic pain, is well-known for its immunosuppressive effects. Much less is known about the immunomodulatory effects exerted by endogenous (enkephalins, endorphins, dynorphins and endomorphins) and synthetic peptides activating opioid receptors. In this review we tried to summarize opioid peptide-mediated modulation of immune cell functions which can be stimulatory as well as inhibitory. PMID:25553430

  2. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation.

    PubMed

    Macho, Alberto P; Schwessinger, Benjamin; Ntoukakis, Vardis; Brutus, Alexandre; Segonzac, Cécile; Roy, Sonali; Kadota, Yasuhiro; Oh, Man-Ho; Sklenar, Jan; Derbyshire, Paul; Lozano-Durán, Rosa; Malinovsky, Frederikke Gro; Monaghan, Jacqueline; Menke, Frank L; Huber, Steven C; He, Sheng Yang; Zipfel, Cyril

    2014-03-28

    Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell's surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR (EFR), which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and prevents subsequent immune responses. Thus, host and pathogen compete to take control of PRR tyrosine phosphorylation used to initiate antibacterial immunity.

  3. Structural basis for selective activation of ABA receptors

    SciTech Connect

    Peterson, Francis C.; Burgie, E. Sethe; Park, Sang-Youl; Jensen, Davin R.; Weiner, Joshua J.; Bingman, Craig A.; Chang, Chia-En A.; Cutler, Sean R.; Phillips, Jr., George N.; Volkman, Brian F.

    2010-11-01

    Changing environmental conditions and lessening fresh water supplies have sparked intense interest in understanding and manipulating abscisic acid (ABA) signaling, which controls adaptive responses to drought and other abiotic stressors. We recently discovered a selective ABA agonist, pyrabactin, and used it to discover its primary target PYR1, the founding member of the PYR/PYL family of soluble ABA receptors. To understand pyrabactin's selectivity, we have taken a combined structural, chemical and genetic approach. We show that subtle differences between receptor binding pockets control ligand orientation between productive and nonproductive modes. Nonproductive binding occurs without gate closure and prevents receptor activation. Observations in solution show that these orientations are in rapid equilibrium that can be shifted by mutations to control maximal agonist activity. Our results provide a robust framework for the design of new agonists and reveal a new mechanism for agonist selectivity.

  4. Novel positive allosteric modulators of GABAA receptors with anesthetic activity

    PubMed Central

    Maldifassi, Maria C.; Baur, Roland; Pierce, David; Nourmahnad, Anahita; Forman, Stuart A.; Sigel, Erwin

    2016-01-01

    GABAA receptors are the main inhibitory neurotransmitter receptors in the brain and are targets for numerous clinically important drugs such as benzodiazepines, anxiolytics and anesthetics. We previously identified novel ligands of the classical benzodiazepine binding pocket in α1β2γ2 GABAA receptors using an experiment-guided virtual screening (EGVS) method. This screen also identified novel ligands for intramembrane low affinity diazepam site(s). In the current study we have further characterized compounds 31 and 132 identified with EGVS as well as 4-O-methylhonokiol. We investigated the site of action of these compounds in α1β2γ2 GABAA receptors expressed in Xenopus laevis oocytes using voltage-clamp electrophysiology combined with a benzodiazepine site antagonist and transmembrane domain mutations. All three compounds act mainly through the two β+/α− subunit transmembrane interfaces of the GABAA receptors. We then used concatenated receptors to dissect the involvement of individual β+/α− interfaces. We further demonstrated that these compounds have anesthetic activity in a small aquatic animal model, Xenopus laevis tadpoles. The newly identified compounds may serve as scaffolds for the development of novel anesthetics. PMID:27198062

  5. Structure of the agonist-bound neurotensin receptor.

    PubMed

    White, Jim F; Noinaj, Nicholas; Shibata, Yoko; Love, James; Kloss, Brian; Xu, Feng; Gvozdenovic-Jeremic, Jelena; Shah, Priyanka; Shiloach, Joseph; Tate, Christopher G; Grisshammer, Reinhard

    2012-10-25

    Neurotensin (NTS) is a 13-amino-acid peptide that functions as both a neurotransmitter and a hormone through the activation of the neurotensin receptor NTSR1, a G-protein-coupled receptor (GPCR). In the brain, NTS modulates the activity of dopaminergic systems, opioid-independent analgesia, and the inhibition of food intake; in the gut, NTS regulates a range of digestive processes. Here we present the structure at 2.8 Å resolution of Rattus norvegicus NTSR1 in an active-like state, bound to NTS(8-13), the carboxy-terminal portion of NTS responsible for agonist-induced activation of the receptor. The peptide agonist binds to NTSR1 in an extended conformation nearly perpendicular to the membrane plane, with the C terminus oriented towards the receptor core. Our findings provide, to our knowledge, the first insight into the binding mode of a peptide agonist to a GPCR and may support the development of non-peptide ligands that could be useful in the treatment of neurological disorders, cancer and obesity.

  6. Cofactoring and Dimerization of Proteinase-Activated Receptors

    PubMed Central

    Lin, Huilan; Liu, Allen P.; Smith, Thomas H.

    2013-01-01

    Proteinase-activated receptors (PARs) are G protein–coupled receptors that transmit cellular responses to extracellular proteases and have important functions in vascular physiology, development, inflammation, and cancer progression. The established paradigm for PAR activation involves proteolytic cleavage of the extracellular N terminus, which reveals a new N terminus that functions as a tethered ligand by binding intramolecularly to the receptor to trigger transmembrane signaling. Most cells express more than one PAR, which can influence the mode of PAR activation and signaling. Clear examples include murine PAR3 cofactoring of PAR4 and transactivation of PAR2 by PAR1. Thrombin binds to and cleaves murine PAR3, which facilitates PAR4 cleavage and activation. This process is essential for thrombin signaling and platelet activation, since murine PAR3 cannot signal alone. Although PAR1 and PAR4 are both competent to signal, PAR1 is able to act as a cofactor for PAR4, facilitating more rapid cleavage and activation by thrombin. PAR1 can also facilitate PAR2 activation through a different mechanism. Cleavage of the PAR1 N terminus by thrombin generates a tethered ligand domain that can bind intermolecularly to PAR2 to activate signaling. Thus, PARs can regulate each other’s activity by localizing thrombin when in complex with PAR3 and PAR4 or by cleaved PAR1, providing its tethered ligand domain for PAR2 activation. The ability of PARs to cofactor or transactivate other PARs would necessitate that the two receptors be in close proximity, likely in the form of a heterodimer. Here, we discuss the cofactoring and dimerization of PARs and the functional consequences on signaling. PMID:24064459

  7. Peroxisome proliferator-activated receptors in the cardiovascular system

    PubMed Central

    Bishop-Bailey, David

    2000-01-01

    Peroxisome proliferator-activated receptor (PPAR)s are a family of three nuclear hormone receptors, PPARα, -δ, and -γ, which are members of the steriod receptor superfamily. The first member of the family (PPARα) was originally discovered as the mediator by which a number of xenobiotic drugs cause peroxisome proliferation in the liver. Defined functions for all these receptors, until recently, mainly concerned their ability to regulate energy balance, with PPARα being involved in β-oxidation pathways, and PPARγ in the differentiation of adipocytes. Little is known about the functions of PPARδ, though it is the most ubiquitously expressed. Since their discovery, PPARs have been shown to be expressed in monocytes/macrophages, the heart, vascular smooth muscle cells, endothelial cells, and in atherosclerotic lesions. Furthermore, PPARs can be activated by a vast number of compounds including synthetic drugs, of the clofibrate, and anti-diabetic thiazoldinedione classes, polyunsaturated fatty acids, and a number of eicosanoids, including prostaglandins, lipoxygenase products, and oxidized low density lipoprotein. This review will aim to introduce the field of PPAR nuclear hormone receptors, and discuss the discovery and actions of PPARs in the cardiovascular system, as well as the source of potential ligands. PMID:10696077

  8. Nuclear Receptor Activity and Liver Cancer Lesion Progression

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that control diverse cellular processes. Chronic stimulation of some NRs is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. We explored this question using human CAR, PXR, PPARα,...

  9. The cardiovascular effects of peroxisome proliferator-activated receptor agonists.

    PubMed

    Friedland, Sayuri N; Leong, Aaron; Filion, Kristian B; Genest, Jacques; Lega, Iliana C; Mottillo, Salvatore; Poirier, Paul; Reoch, Jennifer; Eisenberg, Mark J

    2012-02-01

    Although peroxisome proliferator-activated receptor agonists are prescribed to improve cardiovascular risk factors, their cardiovascular safety is controversial. We therefore reviewed the literature to identify landmark randomized controlled trials evaluating the effect of peroxisome proliferator-activated receptor gamma agonists (pioglitazone and rosiglitazone), alpha agonists (fenofibrate and gemfibrozil), and pan agonists (bezafibrate, muraglitazar, ragaglitazar, tesaglitazar, and aleglitazar) on cardiovascular outcomes. Pioglitazone may modestly reduce cardiovascular events but also may increase the risk of bladder cancer. Rosiglitazone increases the risk of myocardial infarction and has been withdrawn in European and restricted in the United States. Fibrates improve cardiovascular outcomes only in select subgroups: fenofibrate in diabetic patients with metabolic syndrome, gemfibrozil in patients with dyslipidemia, and bezafibrate in patients with diabetes or metabolic syndrome. The cardiovascular safety of the new pan agonist aleglitazar, currently in phase II trials, remains to be determined. The heterogenous effects of peroxisome proliferator-activated receptor agonists to date highlight the importance of postmarketing surveillance. The critical question of why peroxisome proliferator-activated receptor agonists seem to improve cardiovascular risk factors without significantly improving cardiovascular outcomes requires further investigation. PMID:22269613

  10. Protease-activated-receptor-2 affects protease-activated-receptor-1-driven breast cancer.

    PubMed

    Jaber, Mohammad; Maoz, Miriam; Kancharla, Arun; Agranovich, Daniel; Peretz, Tamar; Grisaru-Granovsky, Sorina; Uziely, Beatrice; Bar-Shavit, Rachel

    2014-07-01

    Mammalian protease-activated-receptor-1 and -2 (PAR1 and PAR2) are activated by proteases found in the flexible microenvironment of a tumor and play a central role in breast cancer. We propose in the present study that PAR1 and PAR2 act together as a functional unit during malignant and physiological invasion processes. This notion is supported by assessing pro-tumor functions in the presence of short hairpin; shRNA knocked-down hPar2 or by the use of a truncated PAR2 devoid of the entire cytoplasmic tail. Silencing of hPar2 by shRNA-attenuated thrombin induced PAR1 signaling as recapitulated by inhibiting the assembly of Etk/Bmx or Akt onto PAR1-C-tail, by thrombin-instigated colony formation and invasion. Strikingly, shRNA-hPar2 also inhibited the TFLLRN selective PAR1 pro-tumor functions. In addition, while evaluating the physiological invasion process of placenta extravillous trophoblast (EVT) organ culture, we observed inhibition of both thrombin or the selective PAR1 ligand; TFLLRNPNDK induced EVT invasion by shRNA-hPar2 but not by scrambled shRNA-hPar2. In parallel, when a truncated PAR2 was utilized in a xenograft mouse model, it inhibited PAR1-PAR2-driven tumor growth in vivo. Similarly, it also attenuated the interaction of Etk/Bmx with the PAR1-C-tail in vitro and decreased markedly selective PAR1-induced Matrigel invasion. Confocal images demonstrated co-localization of PAR1 and PAR2 in HEK293T cells over-expressing YFP-hPar2 and HA-hPar1. Co-immuno-precipitation analyses revealed PAR1-PAR2 complex formation but no PAR1-CXCR4 complex was formed. Taken together, our observations show that PAR1 and PAR2 act as a functional unit in tumor development and placenta-uterus interactions. This conclusion may have significant consequences on future breast cancer therapeutic modalities and improved late pregnancy outcome. PMID:24177339

  11. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    SciTech Connect

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  12. Lysophosphatidylserine analogues differentially activate three LysoPS receptors.

    PubMed

    Uwamizu, Akiharu; Inoue, Asuka; Suzuki, Kensuke; Okudaira, Michiyo; Shuto, Akira; Shinjo, Yuji; Ishiguro, Jun; Makide, Kumiko; Ikubo, Masaya; Nakamura, Sho; Jung, Sejin; Sayama, Misa; Otani, Yuko; Ohwada, Tomohiko; Aoki, Junken

    2015-03-01

    Lysophosphatidylserine (1-oleoyl-2 R-lysophosphatidylserine, LysoPS) has been shown to have lipid mediator-like actions such as stimulation of mast cell degranulation and suppression of T lymphocyte proliferation, although the mechanisms of LysoPS actions have been elusive. Recently, three G protein-coupled receptors (LPS1/GPR34, LPS2/P2Y10 and LPS3/GPR174) were found to react specifically with LysoPS, raising the possibility that LysoPS serves as a lipid mediator that exerts its role through these receptors. Previously, we chemically synthesized a number of LysoPS analogues and evaluated them as agonists for mast-cell degranulation. Here, we used a transforming growth factor-α (TGFα) shedding assay to see if these LysoPS analogues activated the three LysoPS receptors. Modification of the serine moiety significantly reduced the ability of the analogues to activate the three LysoPS receptors, whereas modification of other parts resulted in loss of activity in receptor-specific manner. We found that introduction of methyl group to serine moiety (1-oleoyl-lysophosphatidylallothreonine) and removal of sn-2 hydroxyl group (1-oleoyl-2-deoxy-LysoPS) resulted in reduction of reactivity with LPS1 and LPS3, respectively. Accordingly, we synthesized a LysoPS analogue with the two modifications (1-oleoyl-2-deoxy-lysophosphatidylallothreonine) and found it to be an LPS2-selective agonist. These pharmacological tools will definitely help to identify the biological roles of these LysoPS receptors. PMID:25320102

  13. The Search for Endogenous Activators of the Aryl Hydrocarbon Receptor

    PubMed Central

    Nguyen, Linh P.; Bradfield, Christopher A.

    2008-01-01

    In its simplest aspect, this review is an attempt to describe the major ligand classes of the aryl hydrocarbon receptor (AHR). A grander objective is to provide models that may help define the physiological activator or “endogenous ligand” of the AHR. We begin by presenting evidence that supports a developmental function for the AHR. This is followed by proposing mechanisms by which an endogenous ligand and consequent AHR activation might be important during normal physiology and development. With this background, we then present a survey of the known xenobiotic, endogenous, dietary and “un-conventional” activators of the AHR. When possible, this includes information about their induction potency, receptor binding affinity and potential for exposure. Because of the essential function of the AHR in embryonic development, we discuss the candidacy of each of these compounds as physiologically important activators. PMID:18076143

  14. Receptor antagonism/agonism can be uncoupled from pharmacoperone activity.

    PubMed

    Janovick, Jo Ann; Spicer, Timothy P; Smith, Emery; Bannister, Thomas D; Kenakin, Terry; Scampavia, Louis; Conn, P Michael

    2016-10-15

    Pharmacoperones rescue misrouted mutants of the vasopressin receptor type 2 (V2R) and enable them to traffic to the correct biological locus where they function. Previously, a library of nearly 645,000 structures was interrogated with a high throughput screen; pharmacoperones were identified for V2R mutants with a view toward correcting the underlying mutational defects in nephrogenic diabetes insipidus. In the present study, an orthologous assay was used to evaluate hits from the earlier study. We found no consistent relation between antagonism or agonism and pharmacoperone activity. Active pharmacoperones were identified which had minimal antagonistic activity. This increases the therapeutic reach of these drugs, since virtually all pharmacoperone drugs reported to date were selected from peptidomimetic antagonists. Such mixed-activity drugs have a complex pharmacology limiting their therapeutic utility and requiring their removal prior to stimulation of the receptor with agonist. PMID:27389877

  15. Mechanisms of NOD-like receptor-associated inflammasome activation.

    PubMed

    Wen, Haitao; Miao, Edward A; Ting, Jenny P-Y

    2013-09-19

    A major function of a subfamily of NLR (nucleotide-binding domain, leucine-rich repeat containing, or NOD-like receptor) proteins is in inflammasome activation, which has been implicated in a multitude of disease models and human diseases. This work will highlight key progress in understanding the mechanisms that activate the best-studied NLRs (NLRP3, NLRC4, NAIP, and NLRP1) and in uncovering inflammasome NLRs. PMID:24054327

  16. Rapid internalization and recycling of the human neuropeptide Y Y(1) receptor.

    PubMed

    Gicquiaux, Hervé; Lecat, Sandra; Gaire, Mireille; Dieterlen, Alain; Mély, Yves; Takeda, Kenneth; Bucher, Bernard; Galzi, Jean-Luc

    2002-02-22

    Desensitization of G protein-coupled receptors (GPCRs) involves receptor phosphorylation and reduction in the number of receptors at the cell surface. The neuropeptide Y (NPY) Y(1) receptor undergoes fast desensitization. We examined agonist-induced signaling and internalization using NPY Y(1) receptors fused to green fluorescent protein (EGFP). When expressed in HEK293 cells, EGFP-hNPY Y(1) receptors were localized at the plasma membrane, desensitized rapidly as assessed using calcium responses, and had similar properties compared to hNPY Y(1) receptors. Upon agonist challenge, the EGFP signal decreased rapidly (t(1/2) = 107 +/- 3 s) followed by a slow recovery. This decrease was blocked by BIBP3226, a Y(1) receptor antagonist, or by pertussis toxin, in agreement with Y(1) receptor activation. Internalization of EGFP-hNPY Y(1) receptors to acidic endosomal compartments likely accounts for the decrease in the EGFP signal, being absent after pretreatment with monensin. Concanavalin A and hypertonic sucrose, which inhibit clathrin-mediated endocytosis, blocked the decrease in fluorescence. After agonist, intracellular EGFP signals were punctate and co-localized with transferrin-Texas Red, a marker of clathrin-associated internalization and recycling, but not with LysoTracker Red, a lysosomal pathway marker, supporting receptor trafficking to recycling endosomes rather than the late endosomal/lysosomal pathway. Pulse-chase experiments revealed no receptor degradation after internalization. The slow recovery of fluorescence was unaffected by cycloheximide or actinomycin D, indicating that de novo synthesis of receptors was not limiting. Use of a multicompartment model to fit our fluorescence data allows simultaneous determination of internalization and recycling rate constants. We propose that rapid internalization of receptors via the clathrin-coated pits recycling pathway may largely account for the rapid desensitization of NPY Y(1) receptors. PMID:11741903

  17. A transgenic zebrafish model for monitoring glucocorticoid receptor activity.

    PubMed

    Krug, R G; Poshusta, T L; Skuster, K J; Berg, M R; Gardner, S L; Clark, K J

    2014-06-01

    Gene regulation resulting from glucocorticoid receptor and glucocorticoid response element interactions is a hallmark feature of stress response signaling. Imbalanced glucocorticoid production and glucocorticoid receptor activity have been linked to socioeconomically crippling neuropsychiatric disorders, and accordingly there is a need to develop in vivo models to help understand disease progression and management. Therefore, we developed the transgenic SR4G zebrafish reporter line with six glucocorticoid response elements used to promote expression of a short half-life green fluorescent protein following glucocorticoid receptor activation. Herein, we document the ability of this reporter line to respond to both chronic and acute exogenous glucocorticoid treatment. The green fluorescent protein expression in response to transgene activation was high in a variety of tissues including the brain, and provided single-cell resolution in the effected regions. The specificity of these responses is demonstrated using the partial agonist mifepristone and mutation of the glucocorticoid receptor. Importantly, the reporter line also modeled the temporal dynamics of endogenous stress response signaling, including the increased production of the glucocorticoid cortisol following hyperosmotic stress and the fluctuations of basal cortisol concentrations with the circadian rhythm. Taken together, these results characterize our newly developed reporter line for elucidating environmental or genetic modifiers of stress response signaling, which may provide insights to the neuronal mechanisms underlying neuropsychiatric disorders such as major depressive disorder.

  18. Structural insights into µ-opioid receptor activation.

    PubMed

    Huang, Weijiao; Manglik, Aashish; Venkatakrishnan, A J; Laeremans, Toon; Feinberg, Evan N; Sanborn, Adrian L; Kato, Hideaki E; Livingston, Kathryn E; Thorsen, Thor S; Kling, Ralf C; Granier, Sébastien; Gmeiner, Peter; Husbands, Stephen M; Traynor, John R; Weis, William I; Steyaert, Jan; Dror, Ron O; Kobilka, Brian K

    2015-08-20

    Activation of the μ-opioid receptor (μOR) is responsible for the efficacy of the most effective analgesics. To shed light on the structural basis for μOR activation, here we report a 2.1 Å X-ray crystal structure of the murine μOR bound to the morphinan agonist BU72 and a G protein mimetic camelid antibody fragment. The BU72-stabilized changes in the μOR binding pocket are subtle and differ from those observed for agonist-bound structures of the β2-adrenergic receptor (β2AR) and the M2 muscarinic receptor. Comparison with active β2AR reveals a common rearrangement in the packing of three conserved amino acids in the core of the μOR, and molecular dynamics simulations illustrate how the ligand-binding pocket is conformationally linked to this conserved triad. Additionally, an extensive polar network between the ligand-binding pocket and the cytoplasmic domains appears to play a similar role in signal propagation for all three G-protein-coupled receptors. PMID:26245379

  19. Orvinols with Mixed Kappa/Mu Opioid Receptor Agonist Activity

    PubMed Central

    2013-01-01

    Dual-acting kappa opioid receptor (KOR) agonist and mu opioid receptor (MOR) partial agonist ligands have been put forward as potential treatment agents for cocaine and other psychostimulant abuse. Members of the orvinol series of ligands are known for their high binding affinity to both KOR and MOR, but efficacy at the individual receptors has not been thoroughly evaluated. In this study, it is shown that a predictive model for efficacy at KOR can be derived, with efficacy being controlled by the length of the group attached to C20 and by the introduction of branching into the side chain. In vivo evaluation of two ligands with the desired in vitro profile confirms both display KOR, and to a lesser extent MOR, activity in an analgesic assay suggesting that, in this series, in vitro measures of efficacy using the [35S]GTPγS assay are predictive of the in vivo profile. PMID:23438330

  20. Orvinols with mixed kappa/mu opioid receptor agonist activity.

    PubMed

    Greedy, Benjamin M; Bradbury, Faye; Thomas, Mark P; Grivas, Konstantinos; Cami-Kobeci, Gerta; Archambeau, Ashley; Bosse, Kelly; Clark, Mary J; Aceto, Mario; Lewis, John W; Traynor, John R; Husbands, Stephen M

    2013-04-25

    Dual-acting kappa opioid receptor (KOR) agonist and mu opioid receptor (MOR) partial agonist ligands have been put forward as potential treatment agents for cocaine and other psychostimulant abuse. Members of the orvinol series of ligands are known for their high binding affinity to both KOR and MOR, but efficacy at the individual receptors has not been thoroughly evaluated. In this study, it is shown that a predictive model for efficacy at KOR can be derived, with efficacy being controlled by the length of the group attached to C20 and by the introduction of branching into the side chain. In vivo evaluation of two ligands with the desired in vitro profile confirms both display KOR, and to a lesser extent MOR, activity in an analgesic assay suggesting that, in this series, in vitro measures of efficacy using the [(35)S]GTPγS assay are predictive of the in vivo profile.

  1. Interaction of receptor-activity-modifying protein1 with tubulin.

    PubMed

    Kunz, Thomas H; Mueller-Steiner, Sarah; Schwerdtfeger, Kerstin; Kleinert, Peter; Troxler, Heinz; Kelm, Jens M; Ittner, Lars M; Fischer, Jan A; Born, Walter

    2007-08-01

    Receptor-activity-modifying protein (RAMP) 1 is an accessory protein of the G protein-coupled calcitonin receptor-like receptor (CLR). The CLR/RAMP1 heterodimer defines a receptor for the potent vasodilatory calcitonin gene-related peptide. A wider tissue distribution of RAMP1, as compared to that of the CLR, is consistent with additional biological functions. Here, glutathione S-transferase (GST) pull-down, coimmunoprecipitation and yeast two-hybrid experiments identified beta-tubulin as a novel RAMP1-interacting protein. GST pull-down experiments indicated interactions between the N- and C-terminal domains of RAMP1 and beta-tubulin. Yeast two-hybrid experiments confirmed the interaction between the N-terminal region of RAMP1 and beta-tubulin. Interestingly, alpha-tubulin was co-extracted with beta-tubulin in pull-down experiments and immunoprecipitation of RAMP1 coprecipitated alpha- and beta-tubulin. Confocal microscopy indicated colocalization of RAMP1 and tubulin predominantly in axon-like processes of neuronal differentiated human SH-SY5Y neuroblastoma cells. In conclusion, the findings point to biological roles of RAMP1 beyond its established interaction with G protein-coupled receptors. PMID:17493758

  2. CINPA1 Is an Inhibitor of Constitutive Androstane Receptor That Does Not Activate Pregnane X Receptor

    PubMed Central

    Cherian, Milu T; Lin, Wenwei; Wu, Jing

    2015-01-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug resistance. CAR inhibitors, in combination with existing chemotherapeutics, could therefore be used to attenuate multidrug resistance in cancers. Interestingly, all previously reported CAR inverse-agonists are also activators of PXR, rendering them mechanistically counterproductive in tissues where both these xenobiotic receptors are present and active. We used a directed high-throughput screening approach, followed by subsequent mechanistic studies, to identify novel, potent, and specific small-molecule CAR inhibitors that do not activate PXR. We describe here one such inhibitor, CINPA1 (CAR inhibitor not PXR activator 1), capable of reducing CAR-mediated transcription with an IC50 of ∼70 nM. CINPA1 1) is a specific xenobiotic receptor inhibitor and has no cytotoxic effects up to 30 µM; 2) inhibits CAR-mediated gene expression in primary human hepatocytes, where CAR is endogenously expressed; 3) does not alter the protein levels or subcellular localization of CAR; 4) increases corepressor and reduces coactivator interaction with the CAR ligand-binding domain in mammalian two-hybrid assays; and 5) disrupts CAR binding to the promoter regions of target genes in chromatin immunoprecipitation assays. CINPA1 could be used as a novel molecular tool for understanding CAR function. PMID:25762023

  3. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    PubMed

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand. PMID:25916672

  4. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    PubMed

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand.

  5. Solubilization of a functionally active platelet-activating factor receptor from rabbit platelets.

    PubMed Central

    Rogers, J E; Duronio, V; Wong, S I; McNeil, M; Salari, H

    1991-01-01

    Binding of platelet-activating factor (PAF) to a specific high-affinity membrane receptor has been demonstrated in numerous cell types, but very little is known about the molecular nature of this receptor. The receptor from rabbit platelets was solubilized using CHAPS, digitonin, octyl glucoside, Nonidet P-40 or sodium cholate, either with pre-bound [3H]PAF or in the absence of ligand. We have been able to demonstrate for the first time that the receptor solubilized with CHAPS, in the absence of ligand, could retain its binding activity. It migrated as a high molecular mass complex (greater than 350 kDa) on a Bio-Gel A-0.5 m gel filtration column. Binding to solubilized receptor rapidly reached an equilibrium at room temperature, but was much slower at 0 degrees C. Scatchard plots were used to calculate the number (approx. 100 per cell) and the affinity (Kd 2.5 +/- 1.4 nM) of the solubilized receptors. These values were comparable with those obtained from whole-cell binding experiments. Competition by PAF antagonists also verified that the assay was measuring PAF receptor binding activity. The presence of a protein in the receptor complex was demonstrated by heat and trypsin inactivation of binding activity. Trypsin had no effect on binding of PAF to whole cells, but was able to decrease binding activity in solubilized receptor preparations. Attempts to demonstrate the involvement of a glycoprotein by use of various lectin columns proved unsuccessful. The latter results are consistent with findings suggesting that the binding site of the PAF receptor may not be exposed at the cell surface. PMID:1654881

  6. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity.

    PubMed

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-12-15

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser(696) and Ser(698) in the JM (juxtamembrane) region and probably Ser(886) and/or Ser(893) in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser(717) in the JM, and at Ser(733), Thr(752), Ser(783), Ser(864), Ser(911), Ser(958) and Thr(998) in the kinase domain. The LC-ESI-MS/MS spectra provided support that up to three sites (Thr(890), Ser(893) and Thr(894)) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr(890), Ser(893), Thr(894) and Thr(899), differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response.

  7. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity

    PubMed Central

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-01-01

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser696 and Ser698 in the JM (juxtamembrane) region and probably Ser886 and/or Ser893 in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser717 in the JM, and at Ser733, Thr752, Ser783, Ser864, Ser911, Ser958 and Thr998 in the kinase domain. The LC–ESI–MS/MS spectra provided support that up to three sites (Thr890, Ser893 and Thr894) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr890, Ser893, Thr894 and Thr899, differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response. PMID:26472115

  8. In vitro and in vivo comparison of two non-peptide tachykinin NK3 receptor antagonists: Improvements in efficacy achieved through enhanced brain penetration or altered pharmacological characteristics.

    PubMed

    Dawson, Lee A; Langmead, Christopher J; Dada, Adeshola; Watson, Jeannette M; Wu, Zining; de la Flor, Raúl; Jones, Gareth A; Cluderay, Jane E; Southam, Eric; Murkitt, Graham S; Hill, Mark D; Jones, Declan N C; Davies, Ceri H; Hagan, Jim J; Smith, Paul W

    2010-02-10

    Clinical evaluation of tachykinin NK(3) receptor antagonists has provided support for the therapeutic utility of this target in schizophrenia. However, these studies have not been entirely conclusive, possibly because of the pharmacokinetic limitations of these molecules. In the search for tachykinin NK(3) receptor antagonists with improved properties, we have discovered GSK172981 and GSK256471. Both compounds demonstrated high affinity for recombinant human (pK(i) values 7.7 and 8.9, respectively) and native guinea pig (pK(i) values 7.8 and 8.4, respectively) tachykinin NK(3) receptors. In vitro functional evaluations revealed GSK172981 to be a competitive antagonist (pA(2)=7.2) at cloned human tachykinin NK(3) receptor whereas GSK256471 diminished the neurokinin B-induced E(max) response, indicative of non-surmountable antagonist pharmacology (pA(2)=9.2). GSK172981 also exhibited a competitive profile in antagonizing neurokinin B-stimulated neuronal activity recorded from the guinea pig medial habenula slices (apparent pK(B)=8.1), whilst GSK256471 abolished the agonist-induced response. Central nervous system penetration by GSK172981 and GSK256471 was indicated by dose-dependent ex vivo tachykinin NK(3) receptor occupancy in medial prefrontal cortex (ED(50) values of 0.8 and 0.9 mg/kg, i.p., respectively) and the dose-dependent attenuation of agonist-induced "wet dog shake" behaviours in guinea pigs. Finally, in vivo microdialysis studies demonstrated that acute GSK172981 (30 mg/kg, i.p.) and GSK256471 (1mg/kg, i.p.) attenuated haloperidol-induced increases in extracellular dopamine in the guinea pig nucleus accumbens. Taken together, these in vitro and in vivo characterisations of the tachykinin NK(3) receptor antagonists GSK172981 and GSK256471 support their potential utility in the treatment of schizophrenia.

  9. Functional selectivity of muscarinic receptor antagonists for inhibition of M3-mediated phosphoinositide responses in guinea pig urinary bladder and submandibular salivary gland.

    PubMed

    Nelson, Carl P; Gupta, Paul; Napier, Carolyn M; Nahorski, Stefan R; Challiss, R A John

    2004-09-01

    Binding and functional affinities of the muscarinic acetylcholine (mACh) receptor antagonists darifenacin, tolterodine, oxybutynin, and atropine were assessed in Chinese hamster ovary (CHO) cells expressing the human recombinant M2 (CHO-m2) or M3 (CHO-m3) receptors, and in guinea pig bladder and submandibular gland. In [N-methyl-3H]scopolamine methyl chloride binding studies in CHO cells, darifenacin displayed selectivity (14.8-fold) for the M3 versus M2 mACh receptor subtype. Oxybutynin was nonselective, whereas atropine and tolterodine were weakly M2-selective (5.1- and 6.6-fold, respectively). Antagonist functional affinity estimates were determined by the inhibition of agonist-induced [3H]inositol phosphate accumulation in CHO-m3 cells and antagonism of the agonist-induced inhibition of forskolin-stimulated cyclic AMP accumulation in CHO-m2 cells. Darifenacin was the most M3-selective antagonist (32.4-fold), whereas oxybutynin, atropine, and tolterodine exhibited lesser selectivity. Functional affinity estimates in guinea pig urinary bladder and submandibular salivary gland using indices of phosphoinositide turnover revealed that oxybutynin, darifenacin, and tolterodine each displayed selectivity for the response in the bladder, relative to that seen in the submandibular gland (9.3-, 7.9-, and 7.4-fold, respectively). In contrast, atropine displayed a similar affinity in both tissues. These data demonstrate that in bladder, compared with submandibular gland from a single species, the mACh receptor antagonists darifenacin, tolterodine, and oxybutynin display selectivity to inhibit agonist-mediated phosphoinositide responses. It is proposed that both responses are mediated via M3 mACh receptor activation and that differential functional affinities displayed by some, but not all, antagonists are indicative of the influence of cell background upon the pharmacology of the M3 mACh receptor. PMID:15140916

  10. Allosteric receptor activation by the plant peptide hormone phytosulfokine.

    PubMed

    Wang, Jizong; Li, Hongju; Han, Zhifu; Zhang, Heqiao; Wang, Tong; Lin, Guangzhong; Chang, Junbiao; Yang, Weicai; Chai, Jijie

    2015-09-10

    Phytosulfokine (PSK) is a disulfated pentapeptide that has a ubiquitous role in plant growth and development. PSK is perceived by its receptor PSKR, a leucine-rich repeat receptor kinase (LRR-RK). The mechanisms underlying the recognition of PSK, the activation of PSKR and the identity of the components downstream of the initial binding remain elusive. Here we report the crystal structures of the extracellular LRR domain of PSKR in free, PSK- and co-receptor-bound forms. The structures reveal that PSK interacts mainly with a β-strand from the island domain of PSKR, forming an anti-β-sheet. The two sulfate moieties of PSK interact directly with PSKR, sensitizing PSKR recognition of PSK. Supported by biochemical, structural and genetic evidence, PSK binding enhances PSKR heterodimerization with the somatic embryogenesis receptor-like kinases (SERKs). However, PSK is not directly involved in PSKR-SERK interaction but stabilizes PSKR island domain for recruitment of a SERK. Our data reveal the structural basis for PSKR recognition of PSK and allosteric activation of PSKR by PSK, opening up new avenues for the design of PSKR-specific small molecules.

  11. The Molecular Mechanism of P2Y1 Receptor Activation

    PubMed Central

    Chan, H. C. Stephen; Vogel, Horst; Filipek, Slawomir

    2016-01-01

    Human purinergic G protein-coupled receptor P2Y1 (P2Y1R) is activated by adenosine 5’-diphosphate (ADP) to induce platelet activation and thereby serves as an important antithrombotic drug target. Crystal structures of P2Y1R revealed that one ligand (MRS2500) binds to the extracellular vestibule of this GPCR, whereas another (BPTU) occupies the surface between transmembrane (TM) helices TM2 and TM3. We introduced a total of 20 µs all-atom long-timescale molecular dynamic (MD) simulations to inquire why two molecules in completely different locations both serve as antagonists while ADP activates the receptor. Our results indicate that BPTU acts as an antagonist by stabilizing extracellular helix bundles leading to an increase of the lipid order, whereas MRS2500 blocks signaling by occupying the ligand binding site. Both antagonists stabilize an ionic lock within the receptor. However, binding of ADP breaks this ionic lock, forming a continuous water channel that leads to P2Y1R activation. PMID:27460867

  12. Bisphenol A and Its Analogues Activate Human Pregnane X Receptor

    PubMed Central

    Sui, Yipeng; Ai, Ni; Park, Se-Hyung; Rios-Pilier, Jennifer; Perkins, Jordan T.; Welsh, William J.

    2012-01-01

    Background: Bisphenol A (BPA) is a base chemical used extensively in many consumer products. BPA and its analogues are present in environmental and human samples. Many endocrine-disrupting chemicals, including BPA, have been shown to activate the pregnane X receptor (PXR), a nuclear receptor that functions as a master regulator of xenobiotic metabolism. However, the detailed mechanism by which these chemicals activate PXR remains unknown. Objective: We investigated the mechanism by which BPA interacts with and activates PXR and examined selected BPA analogues to determine whether they bind to and activate PXR. Methods: Cell-based reporter assays, in silico ligand–PXR docking studies, and site-directed mutagenesis were combined to study the interaction between BPA and PXR. We also investigated the influence of BPA and its analogues on the regulation of PXR target genes in human LS180 cells. Results: We found that BPA and several of its analogues are potent agonists for human PXR (hPXR) but do not affect mouse PXR activity. We identified key residues within hPXR’s ligand-binding pocket that constitute points of interaction with BPA. We also deduced the structural requirements of BPA analogues that activate hPXR. BPA and its analogues can also induce PXR target gene expression in human LS180 cells. Conclusions: The present study advances our understanding of the mechanism by which BPA interacts with and activates human PXR. Activation of PXR by BPA may explain some of the adverse effects of BPA in humans. PMID:22214767

  13. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    SciTech Connect

    Raufman, Jean-Pierre; Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. Black-Right-Pointing-Pointer Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. Black-Right-Pointing-Pointer Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre

  14. An integrative framework of the skin receptors activation: mechanoreceptors activity patterns versus "labeled lines".

    PubMed

    Zeveke, Alexander V; Efes, Ekaterina D; Polevaya, Sofia A

    2013-03-01

    The paper presents a review of electrophysiological data which indicate the integrative mechanisms of information coded in the human and animal peripheral skin receptors. The activity of the skin sensory receptors was examined by applying various natural stimuli. It was revealed that numerous identical receptors respond to various stimuli (mechanical, temperature, and pain ones), but the spike patterns of these receptors were found to be specific for each stimulus. The description of characteristic structures of spike patterns in the cutaneous nerve fibers in response to five major modalities, namely: "touch", "pain", "vibration/breath", "cold", and "heat", is being presented. The recordings of the cutaneous physical state revealed a correlation between the patterns of spatiotemporal skin deformation and the receptors activity. A rheological state of the skin can be changed either in response to external temperature variation or by the sympathetic pilomotor activation. These results indicate that the skin sensory receptors activity may be considered as an integrative process. It depends not only on the receptors themselves, but also on the changes in the surrounding tissue and on the adaptive influence of the central nervous system. A new framework for the sensory channel system related to the skin is proposed on the basis of experimental results.

  15. An allosteric role for receptor activity-modifying proteins in defining GPCR pharmacology

    PubMed Central

    J Gingell, Joseph; Simms, John; Barwell, James; Poyner, David R; Watkins, Harriet A; Pioszak, Augen A; Sexton, Patrick M; Hay, Debbie L

    2016-01-01

    G protein-coupled receptors are allosteric proteins that control transmission of external signals to regulate cellular response. Although agonist binding promotes canonical G protein signalling transmitted through conformational changes, G protein-coupled receptors also interact with other proteins. These include other G protein-coupled receptors, other receptors and channels, regulatory proteins and receptor-modifying proteins, notably receptor activity-modifying proteins (RAMPs). RAMPs have at least 11 G protein-coupled receptor partners, including many class B G protein-coupled receptors. Prototypic is the calcitonin receptor, with altered ligand specificity when co-expressed with RAMPs. To gain molecular insight into the consequences of this protein–protein interaction, we combined molecular modelling with mutagenesis of the calcitonin receptor extracellular domain, assessed in ligand binding and functional assays. Although some calcitonin receptor residues are universally important for peptide interactions (calcitonin, amylin and calcitonin gene-related peptide) in calcitonin receptor alone or with receptor activity-modifying protein, others have RAMP-dependent effects, whereby mutations decreased amylin/calcitonin gene-related peptide potency substantially only when RAMP was present. Remarkably, the key residues were completely conserved between calcitonin receptor and AMY receptors, and between subtypes of AMY receptor that have different ligand preferences. Mutations at the interface between calcitonin receptor and RAMP affected ligand pharmacology in a RAMP-dependent manner, suggesting that RAMP may allosterically influence the calcitonin receptor conformation. Supporting this, molecular dynamics simulations suggested that the calcitonin receptor extracellular N-terminal domain is more flexible in the presence of receptor activity-modifying protein 1. Thus, RAMPs may act in an allosteric manner to generate a spectrum of unique calcitonin receptor

  16. Human peroxisome proliferator-activated receptor mRNA and protein expression during development

    EPA Science Inventory

    The peroxisome proliferator-activated receptors (PPAR) are nuclear hormone receptors that regulate lipid and glucose homeostasis and are important in reproduction and development. PPARs are targets ofpharmaceuticals and are also activated by environmental contaminants, including ...

  17. Mechanism of A2 adenosine receptor activation. I. Blockade of A2 adenosine receptors by photoaffinity labeling

    SciTech Connect

    Lohse, M.J.; Klotz, K.N.; Schwabe, U.

    1991-04-01

    It has previously been shown that covalent incorporation of the photoreactive adenosine derivative (R)-2-azido-N6-p-hydroxy-phenylisopropyladenosine ((R)-AHPIA) into the A1 adenosine receptor of intact fat cells leads to a persistent activation of this receptor, resulting in a reduction of cellular cAMP levels. In contrast, covalent incorporation of (R)-AHPIA into human platelet membranes, which contain only stimulatory A2 adenosine receptors, reduces adenylate cyclase stimulation via these receptors. This effect of (R)-AHPIA is specific for the A2 receptor and can be prevented by the adenosine receptor antagonist theophylline. Binding studies indicate that up to 90% of A2 receptors can be blocked by photoincorporation of (R)-AHPIA. However, the remaining 10-20% of A2 receptors are sufficient to mediate an adenylate cyclase stimulation of up to 50% of the control value. Similarly, the activation via these 10-20% of receptors occurs with a half-life that is only 2 times longer than that in control membranes. This indicates the presence of a receptor reserve, with respect to both the extent and the rate of adenylate cyclase stimulation. These observations require a modification of the models of receptor-adenylate cyclase coupling.

  18. Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels.

    PubMed

    Diaz-Franulic, Ignacio; Poblete, Horacio; Miño-Galaz, Germán; González, Carlos; Latorre, Ramón

    2016-07-01

    The molecular sensors that mediate temperature changes in living organisms are a large family of proteins known as thermosensitive transient receptor potential (TRP) ion channels. These membrane proteins are polymodal receptors that can be activated by cold or hot temperatures, depending on the channel subtype, voltage, and ligands. The stimuli sensors are allosterically coupled to a pore domain, increasing the probability of finding the channel in its ion conductive conformation. In this review we first discuss the allosteric coupling between the temperature and voltage sensor modules and the pore domain, and then discuss the thermodynamic foundations of thermo-TRP channel activation. We provide a structural overview of the molecular determinants of temperature sensing. We also posit an anisotropic thermal diffusion model that may explain the large temperature sensitivity of TRP channels. Additionally, we examine the effect of several ligands on TRP channel function and the evidence regarding their mechanisms of action. PMID:27297398

  19. Monocyte Signal Transduction Receptors in Active and Latent Tuberculosis

    PubMed Central

    Druszczynska, Magdalena; Wlodarczyk, Marcin; Janiszewska-Drobinska, Beata; Kielnierowski, Grzegorz; Zawadzka, Joanna; Kowalewicz-Kulbat, Magdalena; Fol, Marek; Szpakowski, Piotr; Rudnicka, Karolina; Chmiela, Magdalena; Rudnicka, Wieslawa

    2013-01-01

    The mechanisms that promote either resistance or susceptibility to TB disease remain insufficiently understood. Our aim was to compare the expression of cell signaling transduction receptors, CD14, TLR2, CD206, and β2 integrin LFA-1 on monocytes from patients with active TB or nonmycobacterial lung disease and healthy individuals with M.tb latency and uninfected controls to explain the background of the differences between clinical and subclinical forms of M.tb infection. A simultaneous increase in the expression of the membrane bound mCD14 receptor and LFA-1 integrin in patients with active TB may be considered a prodrome of breaking immune control by M.tb bacilli in subjects with the latent TB and absence of clinical symptoms. PMID:23401703

  20. Sphingosine-1-phosphate receptor 1 reporter mice reveal receptor activation sites in vivo

    PubMed Central

    Kono, Mari; Tucker, Ana E.; Tran, Jennifer; Bergner, Jennifer B.; Turner, Ewa M.; Proia, Richard L.

    2014-01-01

    Activation of the GPCR sphingosine-1-phosphate receptor 1 (S1P1) by sphingosine-1-phosphate (S1P) regulates key physiological processes. S1P1 activation also has been implicated in pathologic processes, including autoimmunity and inflammation; however, the in vivo sites of S1P1 activation under normal and disease conditions are unclear. Here, we describe the development of a mouse model that allows in vivo evaluation of S1P1 activation. These mice, known as S1P1 GFP signaling mice, produce a S1P1 fusion protein containing a transcription factor linked by a protease cleavage site at the C terminus as well as a β-arrestin/protease fusion protein. Activated S1P1 recruits the β-arrestin/protease, resulting in the release of the transcription factor, which stimulates the expression of a GFP reporter gene. Under normal conditions, S1P1 was activated in endothelial cells of lymphoid tissues and in cells in the marginal zone of the spleen, while administration of an S1P1 agonist promoted S1P1 activation in endothelial cells and hepatocytes. In S1P1 GFP signaling mice, LPS-mediated systemic inflammation activated S1P1 in endothelial cells and hepatocytes via hematopoietically derived S1P. These data demonstrate that S1P1 GFP signaling mice can be used to evaluate S1P1 activation and S1P1-active compounds in vivo. Furthermore, this strategy could be potentially applied to any GPCR to identify sites of receptor activation during normal physiology and disease. PMID:24667638

  1. Models for the activation pathway of epidermal growth factor receptor protein-tyrosine kinase

    SciTech Connect

    Campion, S.R.; Niyogi, S.K. )

    1991-03-15

    Activation of the epidermal growth factor (EGF) receptor's intrinsic protein-tyrosine kinase activity, which occurs upon formation of the receptor-ligand complex, is the critical regulatory event affecting the subsequent EGF-dependent cellular responses leading to DNA synthesis and cell proliferation. The molecular mechanism by which EGF-dependent activation of receptor kinase activity takes place is not clearly understood. In this study, the growth factor-dependent activation of the EGF receptor tyrosine kinase was examined in vitro using detergent-solubilized, partially purified GEF receptors from A5431 human epidermoid carcinoma cells. Evaluation of the cooperativity observed in the EGF-dependent activation of soluble receptor tyrosine kinase would suggest a mechanism requiring the binding of the EGF peptide to both ligand binding sites on a receptor dimer to induce full receptor kinase activity. Equations describing potential cooperative kinase activation pathways have been examined. The theoretical system which best simulates the allosteric regulation observed in the experimental kinase activation data is that describing multiple essential activation. In addition, studies using mutant analogs of the EGF peptide ligand appear to confirm the requirement for an essential conformational change in the receptor-ligand complex to activate the receptor kinase activity. Several mutant growth factor analogues are able to occupy the ligand binding sites on the receptor without inducing the fully active receptor conformation.

  2. Activation of signalling by the activin receptor complex.

    PubMed Central

    Attisano, L; Wrana, J L; Montalvo, E; Massagué, J

    1996-01-01

    Activin exerts its effects by simultaneously binding to two types of p rotein serine/threonine kinase receptors, each type existing in various isoforms. Using the ActR-IB and ActR-IIB receptor isoforms, we have investigated the mechanism of activin receptor activation. ActR-IIB are phosphoproteins with demonstrable affinity for each other. However, activin addition strongly promotes an interaction between these two proteins. Activin binds directly to ActR-IIB, and this complex associates with ActR-IB, which does not bind ligand on its own. In the resulting complex, ActR-IB becomes hyperphosphorylated, and this requires the kinase activity of ActR-IIB. Mutation of conserved serines and threonines in the GS domain, a region just upstream of the kinase domain in ActR-IB, abrogates both phosphorylation and signal propagation, suggesting that this domain contains phosphorylation sites required for signalling. ActR-IB activation can be mimicked by mutation of Thr-206 to aspartic acid, which yields a construct, ActR-IB(T206D), that signals in the absence of ligand. Furthermore, the signalling activity of this mutant construct is undisturbed by overexpression of a dominant negative kinase-defective ActR-IIB construct, indicating that ActR-IB(T206D) can signal independently of ActR-IIB. The evidence suggests that ActR-IIB acts as a primary activin receptor and ActR-IB acts as a downstream transducer of activin signals. PMID:8622651

  3. Structural insights into μ-opioid receptor activation

    PubMed Central

    Huang, Weijiao; Manglik, Aashish; Venkatakrishnan, A. J.; Laeremans, Toon; Feinberg, Evan N.; Sanborn, Adrian L.; Kato, Hideaki E.; Livingston, Kathryn E.; Thorsen, Thor S.; Kling, Ralf; Granier, Sébastien; Gmeiner, Peter; Husbands, Stephen M.; Traynor, John R.; Weis, William I.; Steyaert, Jan; Dror, Ron O.; Kobilka, Brian K.

    2015-01-01

    Summary Activation of the μ-opioid receptor (μOR) is responsible for the efficacy of the most effective analgesics. To understand the structural basis for μOR activation, we obtained a 2.1 Å X-ray crystal structure of the μOR bound to the morphinan agonist BU72 and stabilized by a G protein-mimetic camelid-antibody fragment. The BU72-stabilized changes in the μOR binding pocket are subtle and differ from those observed for agonist-bound structures of the β2 adrenergic receptor (β2AR) and the M2 muscarinic receptor (M2R). Comparison with active β2AR reveals a common rearrangement in the packing of three conserved amino acids in the core of the μOR, and molecular dynamics simulations illustrate how the ligand-binding pocket is conformationally linked to this conserved triad. Additionally, an extensive polar network between the ligand-binding pocket and the cytoplasmic domains appears to play a similar role in signal propagation for all three GPCRs. PMID:26245379

  4. Pharmacological activation of lysophosphatidic acid receptors regulates erythropoiesis

    PubMed Central

    Lin, Kuan-Hung; Ho, Ya-Hsuan; Chiang, Jui-Chung; Li, Meng-Wei; Lin, Shi-Hung; Chen, Wei-Min; Chiang, Chi-Ling; Lin, Yu-Nung; Yang, Ya-Jan; Chen, Chiung-Nien; Lu, Jenher; Huang, Chang-Jen; Tigyi, Gabor; Yao, Chao-Ling; Lee, Hsinyu

    2016-01-01

    Lysophosphatidic acid (LPA), a growth factor-like phospholipid, regulates numerous physiological functions, including cell proliferation and differentiation. In a previous study, we have demonstrated that LPA activates erythropoiesis by activating the LPA 3 receptor subtype (LPA3) under erythropoietin (EPO) induction. In the present study, we applied a pharmacological approach to further elucidate the functions of LPA receptors during red blood cell (RBC) differentiation. In K562 human erythroleukemia cells, knockdown of LPA2 enhanced erythropoiesis, whereas knockdown of LPA3 inhibited RBC differentiation. In CD34+ human hematopoietic stem cells (hHSC) and K526 cells, the LPA3 agonist 1-oleoyl-2-methyl-sn-glycero-3-phosphothionate (2S-OMPT) promoted erythropoiesis, whereas the LPA2 agonist dodecyl monophosphate (DMP) and the nonlipid specific agonist GRI977143 (GRI) suppressed this process. In zebrafish embryos, hemoglobin expression was significantly increased by 2S-OMPT treatment but was inhibited by GRI. Furthermore, GRI treatment decreased, whereas 2S-OMPT treatment increased RBC counts and amount of hemoglobin level in adult BALB/c mice. These results indicate that LPA2 and LPA3 play opposing roles during RBC differentiation. The pharmacological activation of LPA receptor subtypes represent a novel strategies for augmenting or inhibiting erythropoiesis. PMID:27244685

  5. Androgen receptor antagonists (antiandrogens): structure-activity relationships.

    PubMed

    Singh, S M; Gauthier, S; Labrie, F

    2000-02-01

    Prostate cancer, acne, seborrhea, hirsutism, and androgenic alopecia are well recognized to depend upon an excess or increased sensitivity to androgens or to be at least sensitive to androgens. It thus seems logical to use antiandrogens as therapeutic agents to prevent androgens from binding to the androgen receptor. The two predominant naturally occurring androgens are testosterone (T) and dihydrotestosterone (DHT). DHT is the more potent androgen in vivo and in vitro. All androgen-responsive genes are activated by androgen receptor (AR) bound to either T or DHT and it is believed that AR is more transcriptionally active when bound to DHT than T. The two classes of antiandrogens, presently available, are the steroidal derivatives, all of which possess mixed agonistic and antagonistic activities, and the pure non-steroidal antiandrogens of the class of flutamide and its derivatives. The intrinsic androgenic, estrogenic and glucocorticoid activities of steroidal derivatives have limited their use in the treatment of prostate cancer. The non-steroidal flutamide and its derivatives display pure antiandrogenic activity, without exerting agonistic or any other hormonal activity. Flutamide (89) and its derivatives, Casodex (108) and Anandron (114), are highly effective in the treatment of prostate cancer. The combination of flutamide and Anandron with castration has shown prolongation of life in prostate cancer. Furthermore, combined androgen blockade in association with radical prostatectomy or radiotherapy are very effective in the treatment of localized prostate cancer. Such an approach certainly raises the hope of a further improvement in prostate cancer therapy. However, all antiandrogens, developed so-far display moderate affinity for the androgen receptor, and thus moderate efficacy in vitro and in vivo. There is thus a need for next-generation antiandrogens, which could display an equal or even higher affinity for AR compared to the natural androgens, and at the

  6. GRK2 Constitutively Governs Peripheral Delta Opioid Receptor Activity.

    PubMed

    Brackley, Allison Doyle; Gomez, Ruben; Akopian, Armen N; Henry, Michael A; Jeske, Nathaniel A

    2016-09-01

    Opioids remain the standard for analgesic care; however, adverse effects of systemic treatments contraindicate long-term administration. While most clinical opioids target mu opioid receptors (MOR), those that target the delta class (DOR) also demonstrate analgesic efficacy. Furthermore, peripherally restrictive opioids represent an attractive direction for analgesia. However, opioid receptors including DOR are analgesically incompetent in the absence of inflammation. Here, we report that G protein-coupled receptor kinase 2 (GRK2) naively associates with plasma membrane DOR in peripheral sensory neurons to inhibit analgesic agonist efficacy. This interaction prevents optimal Gβ subunit association with the receptor, thereby reducing DOR activity. Importantly, bradykinin stimulates GRK2 movement away from DOR and onto Raf kinase inhibitory protein (RKIP). protein kinase C (PKC)-dependent RKIP phosphorylation induces GRK2 sequestration, restoring DOR functionality in sensory neurons. Together, these results expand the known function of GRK2, identifying a non-internalizing role to maintain peripheral DOR in an analgesically incompetent state. PMID:27568556

  7. Ultrastructural and biochemical analysis of fibrinogen receptors on activated thrombocytes

    SciTech Connect

    O'Toole, E.T.

    1989-01-01

    The present studies have been concerned with the role of fibrinogen and its receptor, GP IIb/IIIa, during the activation and early aggregation of pigeon thrombocytes. Thrombocytes were surface labeled with {sup 125}I then separated on SDS-PAGE. Analysis by gel autoradiography revealed major bands at MW 145 kd and 98 kd, which corresponded to human GPIIb and GPIIIa. Immunologic similarity of the pigeon and human receptor components was established by dot blot analysis using polyclonal antibodies directed against human GPIIb and GPIIIa. Pigeon fibrinogen, isolated by plasma precipitation with PEG-1000 and purified over Sepharose 4B, was used to study receptor-ligand interaction. Separation of pigeon fibrinogen on SDS-PAGE resulted in three peptides having apparent MW of 62kd, 55kd, and 47kd which are comparable to human fibrinogen. Further similarity of human and pigeon fibrinogen was verified by immonodiffusion against an antibody specific for the human protein. The role of fibrinogen and its receptor in thrombocyte function was established by turbidimetric aggregation using thrombin as an agonist under conditions requiring Ca++ and fibrinogen.

  8. Liver X Receptor β and Peroxisome Proliferator-Activated Receptor δ regulate cholesterol transport in cholangiocytes

    PubMed Central

    Xia, Xuefeng; Jung, Dongju; Webb, Paul; Zhang, Aijun; Zhang, Bin; Li, Lifei; Ayers, Stephen D.; Gabbi, Chiara; Ueno, Yoshiyuki; Gustafsson, Jan-Åke; Alpini, Gianfranco; Moore, David D.; LeSage, Gene D.

    2012-01-01

    Nuclear receptors (NRs) play crucial roles in regulation of hepatic cholesterol synthesis, metabolism and conversion to bile acids, but their actions in cholangiocytes have not been examined. In this study, we investigated the roles of NRs in cholangiocyte physiology and cholesterol metabolism and flux. We examined the expression of NRs and other genes involved in cholesterol homeostasis in freshly isolated and cultured rodent cholangiocytes and found that these cells express a specific subset of NRs which includes Liver X Receptor β (LXRβ) and Peroxisome Proliferator-Activated Receptor δ (PPARδ). Activation of LXRβ and/or PPARδ in cholangiocytes induces ATP-binding cassette cholesterol transporter A1 (ABCA1) and increases cholesterol export at the basolateral compartment in polarized cultured cholangiocytes. In addition, PPARδ induces Niemann Pick C1 Like L1 (NPC1L1), which imports cholesterol into cholangiocytes and is expressed on the apical cholangiocyte membrane, via specific interaction with a PPRE within the NPC1L1 promoter. Based on these studies, we propose that (i) LXRβ and PPARδ coordinate NPC1L1/ABCA1 dependent vectorial cholesterol flux from bile through cholangiocytes and (ii) manipulation of these processes may influence bile composition with important applications in cholestatic liver disease and gallstone disease, serious health concerns for humans. PMID:22729460

  9. Leukotriene D4 receptor-mediated hydrolysis of phosphoinositide and mobilization of calcium in sheep tracheal smooth muscle cells

    SciTech Connect

    Mong, S.; Miller, J.; Wu, H.L.; Crooke, S.T.

    1988-02-01

    A sheep tracheal smooth muscle primary culture cell system was developed to characterize leukotriene D4 (LTD4) receptor-mediated biochemical and pharmacological effects. (/sup 3/H)LTD4 binding to the enriched plasma membrane receptor was specific, stereoselective and saturable. LTE4 and high affinity receptor antagonists bound to the receptors with a rank-order potency that was expected from previous smooth muscle contraction studies. In the (/sup 3/H)myoinositol labeled cells, LTD4 and LTE4 induced phosphoinositide hydrolysis. The biosynthesis of (/sup 3/H)inositol-trisphosphate was rapid and the induction of biosynthesis of (/sup 3/H)inositol-monophosphate by LTs was stereoselective and specific and was inhibited specifically by a receptor antagonist, SKF 104353. In the fura-2 loaded smooth muscle cells, LTD4 and LTE4 induced transient intracellular Ca++ mobilization. The fura-2/Ca++ transient was stereoselective and specific and was inhibited by receptor antagonist, SKF 104353. These results suggest that the cultured sheep tracheal smooth muscle cells have plasma membrane receptors for LTD4. These receptors were coupled to a phospholipase C that, when activated by agonists, induced hydrolysis of inositol containing phospholipids. The hydrolysis products, e.g. diacylglycerol and inositol-trisphosphate, may serve as intracellular messengers that trigger or contribute to the contractile effect in sheep tracheal smooth muscle.

  10. Inhibition of Estrogen Receptor-DNA Binding by the "Pure" Antiestrogen ICI 164,384 Appears to be Mediated by Impaired Receptor Dimerization

    NASA Astrophysics Data System (ADS)

    Fawell, Stephen E.; White, Roger; Hoare, Susan; Sydenham, Mark; Page, Martin; Parker, Malcolm G.

    1990-09-01

    Many estrogen-antagonist and -agonist ligands have been synthesized, some of which have proved clinically important in the treatment of hormone-dependent breast tumors and endocrine disorders. Here we show that the "pure" antiestrogen ICI 164,384 inhibits mouse estrogen receptor-DNA binding in vitro. The effects of this steroid on DNA binding can be overcome by addition of an anti-receptor antibody whose epitope lies N-terminal to the receptor DNA-binding domain. Since this antibody is also capable of restoring DNA-binding activity to receptor mutants that either lack the dimerization domain or bear deleterious mutations within it, we propose that ICI 164,384 reduces DNA binding by interfering with receptor dimerization. In contrast, when complexed with the antagonist/partial agonist tamoxifen, the estrogen receptor is capable of binding to DNA in vitro, but tamoxifen does not promote the agonist-induced conformational change obtained with estradiol. The implications of these data are discussed in relation to the in vivo properties of these drugs.

  11. Propofol Restores Transient Receptor Potential Vanilloid Receptor Subtype-1 Sensitivity via Activation of Transient Receptor Potential Ankyrin Receptor Subtype-1 in Sensory Neurons

    PubMed Central

    Zhang, Hongyu; Wickley, Peter J.; Sinha, Sayantani; Bratz, Ian N.; Damron, Derek S.

    2011-01-01

    Background Crosstalk between peripheral nociceptors belonging to the transient receptor potential vanilloid receptor subtype-1 (TRPV1) and ankyrin subtype-1 (TRPA1) family has recently been demonstrated. Moreover, the intravenous anesthetic propofol has been shown to directly activate TRPA1 receptors, and indirectly restore sensitivity of TRPV1 receptors in dorsal root ganglion (DRG) sensory neurons. Our objective was to determine the extent to which TRPA1 activation is involved in mediating the propofol-induced restoration of TRPV1 sensitivity. Methods Mouse DRG neurons were isolated by enzymatic dissociation and grown for 24 h. F-11 cells were transfected with complementary DNA for both TRPV1 and TRPA1 or TRPV1 only. Intracellular Ca2+ concentration was measured in individual cells via fluorescence microscopy. Following TRPV1 de-sensitization with capsaicin (100 nM), cells were treated with propofol (1, 5 and 10 μM) alone, propofol in the presence of the TRPA1 antagonist, HC-030031 (0.5 μM) or the TRPA1 agonist, Allyl isothiocyanate (AITC, 100 μM) and capsaicin was then reapplied. Results In DRG neurons that contain both TRPV1 and TRPA1, propofol and AITC restored TRPV1 sensitivity. However, in DRG neurons containing only TRPV1 receptors, exposure to propofol or AITC following de-sensitization did not restore capsaicin-induced TRPV1 sensitivity. Similarly, in F-11 cells transfected with both TRPV1 and TRPA1, propofol and AITC restored TRPV1 sensitivity. However, in F-11 cells transfected with TRPV1 only, neither propofol nor AITC were capable of restoring TRPV1 sensitivity. Conclusions These data demonstrate that propofol restores TRPV1 sensitivity in primary DRG neurons and in cultured F-11 cells transfected with both the TRPV1 and TRPA1 receptors via a TRPA1-dependent process. Propofol’s effects on sensory neurons may be clinically important and contribute to peripheral sensitization to nociceptive stimuli in traumatized tissue. PMID:21364461

  12. Cell death is induced by ciglitazone, a peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonist, independently of PPAR{gamma} in human glioma cells

    SciTech Connect

    Lee, Myoung Woo; Kim, Dae Seong; Kim, Hye Ryung; Kim, Hye Jin; Yang, Jin Mo; Ryu, Somi; Noh, Yoo Hun; Lee, Soo Hyun; Son, Meong Hi; Jung, Hye Lim; Yoo, Keon Hee; Koo, Hong Hoe; Sung, Ki Woong

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Greater than 30 {mu}M ciglitazone induces cell death in glioma cells. Black-Right-Pointing-Pointer Cell death by ciglitazone is independent of PPAR{gamma} in glioma cells. Black-Right-Pointing-Pointer CGZ induces cell death by the loss of MMP via decreased Akt. -- Abstract: Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) regulates multiple signaling pathways, and its agonists induce apoptosis in various cancer cells. However, their role in cell death is unclear. In this study, the relationship between ciglitazone (CGZ) and PPAR{gamma} in CGZ-induced cell death was examined. At concentrations of greater than 30 {mu}M, CGZ, a synthetic PPAR{gamma} agonist, activated caspase-3 and induced apoptosis in T98G cells. Treatment of T98G cells with less than 30 {mu}M CGZ effectively induced cell death after pretreatment with 30 {mu}M of the PPAR{gamma} antagonist GW9662, although GW9662 alone did not induce cell death. This cell death was also observed when cells were co-treated with CGZ and GW9662, but was not observed when cells were treated with CGZ prior to GW9662. In cells in which PPAR{gamma} was down-regulated cells by siRNA, lower concentrations of CGZ (<30 {mu}M) were sufficient to induce cell death, although higher concentrations of CGZ ( Greater-Than-Or-Slanted-Equal-To 30 {mu}M) were required to induce cell death in control T98G cells, indicating that CGZ effectively induces cell death in T98G cells independently of PPAR{gamma}. Treatment with GW9662 followed by CGZ resulted in a down-regulation of Akt activity and the loss of mitochondrial membrane potential (MMP), which was accompanied by a decrease in Bcl-2 expression and an increase in Bid cleavage. These data suggest that CGZ is capable of inducing apoptotic cell death independently of PPAR{gamma} in glioma cells, by down-regulating Akt activity and inducing MMP collapse.

  13. Differential effect of meclizine on the activity of human pregnane X receptor and constitutive androstane receptor.

    PubMed

    Lau, Aik Jiang; Yang, Guixiang; Rajaraman, Ganesh; Baucom, Christie C; Chang, Thomas K H

    2011-03-01

    Conflicting data exist as to whether meclizine is an activator of human pregnane X receptor (hPXR). Therefore, we conducted a detailed, systematic investigation to determine whether meclizine affects hPXR activity by performing a cell-based reporter gene assay, a time-resolved fluorescence resonance energy transfer competitive ligand-binding assay, a mammalian two-hybrid assay to assess coactivator recruitment, and a hPXR target gene expression assay. In pregnane X receptor (PXR)-transfected HepG2 cells, meclizine activated hPXR to a greater extent than rat PXR. It bound to hPXR ligand-binding domain and recruited steroid receptor coactivator-1 to the receptor. Consistent with its hPXR agonism, meclizine increased hPXR target gene expression (CYP3A4) in human hepatocytes. However, it did not increase but decreased testosterone 6β-hydroxylation, suggesting inhibition of CYP3A catalytic activity. Meclizine has also been reported to be an inverse agonist and antagonist of human constitutive androstane receptor (hCAR). Therefore, given that certain tissues (e.g., liver) express both hPXR and hCAR and that various genes are cross-regulated by them, we quantified the expression of a hCAR- and hPXR-regulated gene (CYP2B6) in cultured human hepatocytes treated with meclizine. This drug did not decrease constitutive CYP2B6 mRNA expression or attenuate hCAR agonist-mediated increase in CYP2B6 mRNA and CYP2B6-catalyzed bupropion hydroxylation levels. These observations reflect hPXR agonism and the lack of hCAR inverse agonism and antagonism by meclizine, which were assessed by a hCAR reporter gene assay and mammalian two-hybrid assay. In conclusion, meclizine is a hPXR agonist, and it does not act as a hCAR inverse agonist or antagonist in cultured human hepatocytes. PMID:21131266

  14. Bioluminescence imaging of estrogen receptor activity during breast cancer progression.

    PubMed

    Vantaggiato, Cristina; Dell'Omo, Giulia; Ramachandran, Balaji; Manni, Isabella; Radaelli, Enrico; Scanziani, Eugenio; Piaggio, Giulia; Maggi, Adriana; Ciana, Paolo

    2016-01-01

    Estrogen receptors (ER) are known to play an important regulatory role in mammary gland development as well as in its neoplastic transformation. Although several studies highlighted the contribution of ER signaling in the breast transformation, little is known about the dynamics of ER state of activity during carcinogenesis due to the lack of appropriate models for measuring the extent of receptor signaling in time, in the same animal. To this aim, we have developed a reporter mouse model for the non-invasive in vivo imaging of ER activity: the ERE-Luc reporter mouse. ERE-Luc is a transgenic mouse generated with a firefly luciferase (Luc) reporter gene driven by a minimal promoter containing an estrogen responsive element (ERE). This model allows to measure receptor signaling in longitudinal studies by bioluminescence imaging (BLI). Here, we have induced sporadic mammary cancers by treating systemically ERE-Luc reporter mice with DMBA (9,10-dimethyl 1,2-benzanthracene) and measured receptor signaling by in vivo imaging in individual animals from early stage until a clinically palpable tumor appeared in the mouse breast. We showed that DMBA administration induces an increase of bioluminescence in the whole abdominal area 6 h after treatment, the signal rapidly disappears. Several weeks later, strong bioluminescence is observed in the area corresponding to the mammary glands. In vivo and ex vivo imaging analysis demonstrated that this bioluminescent signal is localized in the breast area undergoing neoplastic transformation. We conclude that this non-invasive assay is a novel relevant tool to identify the activation of the ER signaling prior the morphological detection of the neoplastic transformation. PMID:27069764

  15. Bioluminescence imaging of estrogen receptor activity during breast cancer progression.

    PubMed

    Vantaggiato, Cristina; Dell'Omo, Giulia; Ramachandran, Balaji; Manni, Isabella; Radaelli, Enrico; Scanziani, Eugenio; Piaggio, Giulia; Maggi, Adriana; Ciana, Paolo

    2016-01-01

    Estrogen receptors (ER) are known to play an important regulatory role in mammary gland development as well as in its neoplastic transformation. Although several studies highlighted the contribution of ER signaling in the breast transformation, little is known about the dynamics of ER state of activity during carcinogenesis due to the lack of appropriate models for measuring the extent of receptor signaling in time, in the same animal. To this aim, we have developed a reporter mouse model for the non-invasive in vivo imaging of ER activity: the ERE-Luc reporter mouse. ERE-Luc is a transgenic mouse generated with a firefly luciferase (Luc) reporter gene driven by a minimal promoter containing an estrogen responsive element (ERE). This model allows to measure receptor signaling in longitudinal studies by bioluminescence imaging (BLI). Here, we have induced sporadic mammary cancers by treating systemically ERE-Luc reporter mice with DMBA (9,10-dimethyl 1,2-benzanthracene) and measured receptor signaling by in vivo imaging in individual animals from early stage until a clinically palpable tumor appeared in the mouse breast. We showed that DMBA administration induces an increase of bioluminescence in the whole abdominal area 6 h after treatment, the signal rapidly disappears. Several weeks later, strong bioluminescence is observed in the area corresponding to the mammary glands. In vivo and ex vivo imaging analysis demonstrated that this bioluminescent signal is localized in the breast area undergoing neoplastic transformation. We conclude that this non-invasive assay is a novel relevant tool to identify the activation of the ER signaling prior the morphological detection of the neoplastic transformation.

  16. Proteinase-activated receptors (PARs) as targets for antiplatelet therapy.

    PubMed

    Cunningham, Margaret; McIntosh, Kathryn; Bushell, Trevor; Sloan, Graeme; Plevin, Robin

    2016-04-15

    Since the identification of the proteinase-activated receptor (PAR) family as mediators of serine protease activity in the 1990s, there has been tremendous progress in the elucidation of their pathophysiological roles. The development of drugs that target PARs has been the focus of many laboratories for the potential treatment of thrombosis, cancer and other inflammatory diseases. Understanding the mechanisms of PAR activation and G protein signalling pathways evoked in response to the growing list of endogenous proteases has yielded great insight into receptor regulation at the molecular level. This has led to the development of new selective modulators of PAR activity, particularly PAR1. The mixed success of targeting PARs has been best exemplified in the context of inhibiting PAR1 as a new antiplatelet therapy. The development of the competitive PAR1 antagonist, vorapaxar (Zontivity), has clearly shown the value in targeting PAR1 in acute coronary syndrome (ACS); however the severity of associated bleeding with this drug has limited its use in the clinic. Due to the efficacy of thrombin acting via PAR1, strategies to selectively inhibit specific PAR1-mediated G protein signalling pathways or to target the second thrombin platelet receptor, PAR4, are being devised. The rationale behind these alternative approaches is to bias downstream thrombin activity via PARs to allow for inhibition of pro-thrombotic pathways but maintain other pathways that may preserve haemostatic balance and improve bleeding profiles for widespread clinical use. This review summarizes the structural determinants that regulate PARs and the modulators of PAR activity developed to date.

  17. Pharmacology of the Adenosine A3 Receptor in the Vasculature and Essential Hypertension

    PubMed Central

    Ho, Ming-Fen; Low, Leanne M.; Rose’Meyer, Roselyn B.

    2016-01-01

    Background Essential hypertension is considered to be a multifactorial disorder and its aetiology has yet to be clearly identified. As the adenosine receptors have a significant role in mediating vasodilation, alterations in their structures or signalling pathways may be involved in the development of hypertension. This study aimed to measure the expression of adenosine A3 receptors in a range of cardiovascular tissues and determine whether they could be altered with essential hypertension, and to functionally test responses to adenosine A3 receptor agonists in coronary blood vessels using the isolated perfused heart preparation. Methods mRNA samples from cardiovascular tissues and a range of blood vessels were collected from 10 week old male spontaneously hypertensive rats and age-gender matched Wistar rats (n = 8). The Langendorff heart perfusion preparation was used to characterise adenosine A3 receptor mediated coronary vasodilation in the rat heart. Results Adenosine A3 receptor agonists induced coronary vasodilation. The expression of adenosine A3 receptors in cardiovascular tissues was altered in a tissue-specific pattern. Specifically, down-regulation of adenosine A3 receptor expression occurred in hypertensive hearts, which might be associated with attenuated vasodilator responses observed in coronary vessels to adenosine A3 receptor agonists. Conclusions This study demonstrated alterations in the expression of adenosine A3 receptors occurred in a tissue specific mode, and reduced adenosine A3 receptor mediated coronary vasodilation in hearts from spontaneously hypertensive rats. Our findings with regard to changes in the adenosine A3 receptor in hypertensive hearts suggest that adenosine A3 receptor might play a role in the physiopathology of essential hypertension and potentially open the way to pharmacologic manipulation of vasomotor activity by the use of adenosine A3 receptor agonists. PMID:26907173

  18. Liver X Receptors Regulate the Transcriptional Activity of the Glucocorticoid Receptor: Implications for the Carbohydrate Metabolism

    PubMed Central

    Nader, Nancy; Ng, Sinnie Sin Man; Wang, Yonghong; Abel, Brent S.; Chrousos, George P.; Kino, Tomoshige

    2012-01-01

    GLUCOCORTICOIDS are steroid hormones that strongly influence intermediary carbohydrate metabolism by increasing the transcription rate of glucose-6-phosphatase (G6Pase), a key enzyme of gluconeogenesis, and suppress the immune system through the glucocorticoid receptor (GR). The liver X receptors (LXRs), on the other hand, bind to cholesterol metabolites, heterodimerize with the retinoid X receptor (RXR), and regulate the cholesterol turnover, the hepatic glucose metabolism by decreasing the expression of G6Pase, and repress a set of inflammatory genes in immune cells. Since the actions of these receptors overlap with each other, we evaluated the crosstalk between the GR- and LXR-mediated signaling systems. Transient transfection-based reporter assays and gene silencing methods using siRNAs for LXRs showed that overexpression/ligand (GW3965) activation of LXRs/RXRs repressed GR-stimulated transactivation of certain glucocorticoid response element (GRE)-driven promoters in a gene-specific fashion. Activation of LXRs by GW3965 attenuated dexamethasone-stimulated elevation of circulating glucose in rats. It also suppressed dexamethasone-induced mRNA expression of hepatic glucose-6-phosphatase (G6Pase) in rats, mice and human hepatoma HepG2 cells, whereas endogenous, unliganded LXRs were required for dexamethasone-induced mRNA expression of phosphoenolpyruvate carboxylase. In microarray transcriptomic analysis of rat liver, GW3965 differentially regulated glucocorticoid-induced transcriptional activity of about 15% of endogenous glucocorticoid-responsive genes. To examine the mechanism through which activated LXRs attenuated GR transcriptional activity, we examined LXRα/RXRα binding to GREs. Endogenous LXRα/RXRα bound GREs and inhibited GR binding to these DNA sequences both in in vitro and in vivo chromatin immunoprecipitation assays, while their recombinant proteins did so on classic or G6Pase GREs in gel mobility shift assays. We propose that administration of

  19. Type-1 cannabinoid receptor activity during Alzheimer's disease progression.

    PubMed

    Manuel, Iván; González de San Román, Estíbaliz; Giralt, M Teresa; Ferrer, Isidro; Rodríguez-Puertas, Rafael

    2014-01-01

    The activity of CB1 cannabinoid receptors was studied in postmortem brain samples of Alzheimer's disease (AD) patients during clinical deterioration. CB1 activity was higher at earlier AD stages in limited hippocampal areas and internal layers of frontal cortex, but a decrease was observed at the advanced stages. The pattern of modification appears to indicate initial hyperactivity of the endocannabinoid system in brain areas that lack classical histopathological markers at earlier stages of AD, indicating an attempt to compensate for the initial synaptic impairment, which is then surpassed by disease progression. These results suggest that initial CB1 stimulation might have therapeutic relevance.

  20. Static and dynamic activity of warm receptors in Boa constrictor.

    PubMed

    Hensel, H

    1975-01-01

    Afferent impulses from multi- and single-fiber preparations of the trigeminal nerve in Boa constrictor were recorded during exactly controlled thermal stimulation of the receptive field in the labial region. At constant temperatures in the range between 18 and 37 degrees C, multi-fiber preparations showed a continuous discharge with a maximum around 30 degrees C. Dynamic warming caused a high increase of the discharge, whereas dynamic cooling led to a complete inhibition. No cold-sensitive fivers have been found. Mechanical stimulation elicited large spikes from specific mechanoreceptors. Single-fiber preparations from labial warm receptors did not respond to mechanical stimulation. Their discharge was always regular at constant temperatures. The average frequency of a warm receptor population was zero at about 18 degrees C, reached a maximum of 13 sec-1 at 30 degrees C and fell again to zero at 37 degrees C. In addition, a few warm receptors increased their static discharge with temperature up to 36 degrees C, the highest frequency being 38 sec-1. Stepwise warming by delta T = + 5 degrees C caused a marked overshoot in frequency, after which the discharge usually fell to a minimum and then rose again to a new static level. Stepwise cooling by delta T = MINUS 5 DEGREES C led to a transient inhibition of activity followed by an increase until the new static level was reached. In the first group of warm receptors the height of the dynamic overshoot varied with the adapting temperature, the largest average overshoot of 160 sec-1 occurring at an adapting temperature of 30 degrees C. These receptors have their static maximum as well as their highest dynamic sensitivity in the temperature range of the natural tropical habitat of Boidae.

  1. Cleavage and activation of a Toll-like receptor by microbial proteases

    PubMed Central

    de Zoete, Marcel R.; Bouwman, Lieneke I.; Keestra, A. Marijke; van Putten, Jos P. M.

    2011-01-01

    Toll-like receptors (TLRs) are innate receptors that show high conservation throughout the animal kingdom. Most TLRs can be clustered into phylogenetic groups that respond to similar types of ligands. One exception is avian TLR15. This receptor does not categorize into one of the existing groups of TLRs and its ligand is still unknown. Here we report that TLR15 is a sensor for secreted virulence-associated fungal and bacterial proteases. Activation of TLR15 involves proteolytic cleavage of the receptor ectodomain and stimulation of NF-κB–dependent gene transcription. Receptor activation can be mimicked by the expression of a truncated TLR15 of which the entire ectodomain is removed, suggesting that receptor cleavage alleviates receptor inhibition by the leucine-rich repeat domain. Our results indicate TLR15 as a unique type of innate immune receptor that combines TLR characteristics with an activation mechanism typical for the evolutionary distinct protease-activated receptors. PMID:21383168

  2. Cleavage and activation of a Toll-like receptor by microbial proteases.

    PubMed

    de Zoete, Marcel R; Bouwman, Lieneke I; Keestra, A Marijke; van Putten, Jos P M

    2011-03-22

    Toll-like receptors (TLRs) are innate receptors that show high conservation throughout the animal kingdom. Most TLRs can be clustered into phylogenetic groups that respond to similar types of ligands. One exception is avian TLR15. This receptor does not categorize into one of the existing groups of TLRs and its ligand is still unknown. Here we report that TLR15 is a sensor for secreted virulence-associated fungal and bacterial proteases. Activation of TLR15 involves proteolytic cleavage of the receptor ectodomain and stimulation of NF-κB-dependent gene transcription. Receptor activation can be mimicked by the expression of a truncated TLR15 of which the entire ectodomain is removed, suggesting that receptor cleavage alleviates receptor inhibition by the leucine-rich repeat domain. Our results indicate TLR15 as a unique type of innate immune receptor that combines TLR characteristics with an activation mechanism typical for the evolutionary distinct protease-activated receptors. PMID:21383168

  3. Allergens and Activation of the Toll-Like Receptor Response.

    PubMed

    Monie, Tom P; Bryant, Clare E

    2016-01-01

    Pattern recognition receptors (PRRs) provide a crucial function in the detection of exogenous and endogenous danger signals. The Toll-like receptors (TLRs) were the first family of PRRs to be discovered and have been extensively studied since. Whilst TLRs remain the best characterized family of PRRs there is still much to be learnt about their mode of activation and the mechanisms of signal transduction they employ. Much of our understanding of these processes has been gathered through the use of cell based signaling assays utilizing specific gene-reporters or cytokine secretion based readouts. More recently it has become apparent that the repertoire of ligands recognized by these receptors may be wider than originally assumed and that their activation may be sensitized, or at least modulated by the presence of common household allergens such as the cat dander protein Fel d 1, or the house dust mite allergen Der p 2. In this chapter we provide an overview of the cell culture and stimulation processes required to study TLR signaling in HEK293 based assays and in bone marrow-derived macrophages. PMID:26803639

  4. Evaluation of agonist selectivity for the NMDA receptor ion channel in bilayer lipid membranes based on integrated single-channel currents.

    PubMed

    Hirano, A; Sugawara, M; Umezawa, Y; Uchino, S; Nakajima-Iijima, S

    2000-06-01

    A new method for evaluating chemical selectivity of agonists to activate the N-methyl-D-aspartate (NMDA) receptor was presented by using typical agonists NMDA, L-glutamate and (2S, 3R, 4S)-2-(carboxycyclopropyl)glycine (L-CCG-IV) and the mouse epsilon1/zeta1 NMDA receptor incorporated in bilayer lipid membranes (BLMs) as an illustrative example. The method was based on the magnitude of an agonist-induced integrated single-channel current corresponding to the number of total ions passed through the open channel. The very magnitudes of the integrated single-channel currents were compared with the different BLMs as a new measure of agonist selectivity. The epsilon1/zeta1 NMDA receptor was partially purified from Chinese hamster ovary (CHO) cells expressing the epsilon1/zeta1 NMDA receptor and incorporated in BLMs formed by the tip-dip method. The agonist-induced integrated single-channel currents were obtained at 50 microM agonist concentration, where the integrated current for NMDA was shown to reach its saturated value. The obtained integrated currents were found to be (4.5 +/- 0.55) x 10(-13) C/s for NMDA, (5.8 +/- 0.72) x 10(-13) C/s for L-glutamate and (6.6 +/- 0.61) x 10(-13) C/s for L-CCG-IV, respectively. These results suggest that the agonist selectivity in terms of the total ion flux through the single epsilon1/zeta1 NMDA receptor is in the order of L-CCG-IV approximately = L-glutamate > NMDA.

  5. Smoke carcinogens cause bone loss through the aryl hydrocarbon receptor and induction of CYP1 enzymes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Smoking is a major risk factor for osteoporosis and fracture. Here, we show that smoke toxins and environmental chemicals such as benzo[a]pyrene (BaP), 2,3,7,8-tetrachlorodibenzo-pdioxin (TCDD), and 3-methyl cholanthrene, which are well known aryl hydrocarbon receptor (AHR) agonists, induce osteocla...

  6. Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors.

    PubMed

    Shytle, R Douglas; Mori, Takashi; Townsend, Kirk; Vendrame, Martina; Sun, Nan; Zeng, Jin; Ehrhart, Jared; Silver, Archie A; Sanberg, Paul R; Tan, Jun

    2004-04-01

    Almost all degenerative diseases of the CNS are associated with chronic inflammation. A central step in this process is the activation of brain mononuclear phagocyte cells, called microglia. While it is recognized that healthy neurons and astrocytes regulate the magnitude of microglia-mediated innate immune responses and limit excessive CNS inflammation, the endogenous signals governing this process are not fully understood. In the peripheral nervous system, recent studies suggest that an endogenous 'cholinergic anti-inflammatory pathway' regulates systemic inflammatory responses via alpha 7 nicotinic acetylcholinergic receptors (nAChR) found on blood-borne macrophages. These data led us to investigate whether a similar cholinergic pathway exists in the brain that could regulate microglial activation. Here we report for the first time that cultured microglial cells express alpha 7 nAChR subunit as determined by RT-PCR, western blot, immunofluorescent, and immunohistochemistry analyses. Acetylcholine and nicotine pre-treatment inhibit lipopolysaccharide (LPS)-induced TNF-alpha release in murine-derived microglial cells, an effect attenuated by alpha 7 selective nicotinic antagonist, alpha-bungarotoxin. Furthermore, this inhibition appears to be mediated by a reduction in phosphorylation of p44/42 and p38 mitogen-activated protein kinase (MAPK). Though preliminary, our findings suggest the existence of a brain cholinergic pathway that regulates microglial activation through alpha 7 nicotinic receptors. Negative regulation of microglia activation may also represent additional mechanism underlying nicotine's reported neuroprotective properties.

  7. Identification of intracellular receptor proteins for activated protein kinase C.

    PubMed Central

    Mochly-Rosen, D; Khaner, H; Lopez, J

    1991-01-01

    Protein kinase C (PKC) translocates from the cytosol to the particulate fraction on activation. This activation-induced translocation of PKC is thought to reflect PKC binding to the membrane lipids. However, immunological and biochemical data suggest that PKC may bind to proteins in the cytoskeletal elements in the particulate fraction and in the nuclei. Here we describe evidence for the presence of intracellular receptor proteins that bind activated PKC. Several proteins from the detergent-insoluble material of the particulate fraction bound PKC in the presence of phosphatidylserine and calcium; binding was further increased with the addition of diacylglycerol. Binding of PKC to two of these proteins was concentration-dependent, saturable, and specific, suggesting that these binding proteins are receptors for activated C-kinase, termed here "RACKs." PKC binds to RACKs via a site on PKC distinct from the substrate binding site. We suggest that binding to RACKs may play a role in activation-induced translocation of PKC. Images PMID:1850844

  8. The prostaglandin EP1 receptor potentiates kainate receptor activation via a protein kinase C pathway and exacerbates status epilepticus

    PubMed Central

    Rojas, Asheebo; Gueorguieva, Paoula; Lelutiu, Nadia; Quan, Yi; Shaw, Renee; Dingledine, Raymond

    2014-01-01

    Prostaglandin E2 (PGE2) regulates membrane excitability, synaptic transmission, plasticity, and neuronal survival. The consequences of PGE2 release following seizures has been the subject of much study. Here we demonstrate that the prostaglandin E2 receptor 1 (EP1, or Ptger1) modulates native kainate receptors, a family of ionotropic glutamate receptors widely expressed throughout the central nervous system. Global ablation of the EP1 gene in mice (EP1-KO) had no effect on seizure threshold after kainate injection but reduced the likelihood to enter status epilepticus. EP1-KO mice that did experience typical status epilepticus had reduced hippocampal neurodegeneration and a blunted inflammatory response. Further studies with native prostanoid and kainate receptors in cultured cortical neurons, as well as with recombinant prostanoid and kainate receptors expressed in Xenopus oocytes, demonstrated that EP1 receptor activation potentiates heteromeric but not homomeric kainate receptors via a second messenger cascade involving phospholipase C, calcium and protein kinase C. Three critical GluK5 C-terminal serines underlie the potentiation of the GluK2/GluK5 receptor by EP1 activation. Taken together, these results indicate that EP1 receptor activation during seizures, through a protein kinase C pathway, increases the probability of kainic acid induced status epilepticus, and independently promotes hippocampal neurodegeneration and a broad inflammatory response. PMID:24952362

  9. Detection of Neu1 Sialidase Activity in Regulating TOLL-like Receptor Activation

    PubMed Central

    Abdulkhalek, Samar

    2010-01-01

    Mammalian Toll-like receptors (TLRs) are a family of receptors that recognize pathogen-associated molecular patterns. Not only are TLRs crucial sensors of microbial (e.g., viruses, bacteria and parasite) infections, they also play an important role in the pathophysiology of infectious diseases, inflammatory diseases, and possibly in autoimmune diseases. Thus, the intensity and duration of TLR responses against infectious diseases must be tightly controlled. It follows that understanding the structural integrity of sensor receptors, their ligand interactions and signaling components is essential for subsequent immunological protection. It would also provide important opportunities for disease modification through sensor manipulation. Although the signaling pathways of TLR sensors are well characterized, the parameters controlling interactions between the sensors and their ligands still remain poorly defined. We have recently identified a novel mechanism of TLR activation by its natural ligand, which has not been previously observed 1,2. It suggests that ligand-induced TLR activation is tightly controlled by Neu1 sialidase activation. We have also reported that Neu1 tightly regulates neurotrophin receptors like TrkA and TrkB 3, which involve Neu1 and matrix metalloproteinase-9 (MMP-9) cross-talk in complex with the receptors 4. The sialidase assay has been initially use to find a novel ligand, thymoquinone, in the activation of Neu4 sialidase on the cell surface of macrophages, dendritic cells and fibroblast cells via GPCR Gαi proteins and MMP-9 5. For TLR receptors, our data indicate that Neu1 sialidase is already in complex with TLR-2, -3 and -4 receptors, and is induced upon ligand binding to either receptor. Activated Neu1 sialidase hydrolyzes sialyl α-2,3-linked β-galactosyl residues distant from ligand binding to remove steric hinderance to TLR-4 dimerization, MyD88/TLR4 complex recruitment, NFkB activation and pro-inflammatory cell responses. In a

  10. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium

    EPA Science Inventory

    The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents inc...

  11. The atypical antipsychotics clozapine and olanzapine promote down-regulation and display functional selectivity at human 5-HT7 receptors

    PubMed Central

    Andressen, K W; Manfra, O; Brevik, C H; Ulsund, A H; Vanhoenacker, P; Levy, F O; Krobert, K A

    2015-01-01

    Background and Purpose Classically, ligands of GPCRs have been classified primarily upon their affinity and efficacy to activate a signal transduction pathway. Recent reports indicate that the efficacy of a particular ligand can vary depending on the receptor-mediated response measured (e.g. activating G proteins, other downstream responses, internalization). Previously, we reported that inverse agonists induce both homo- and heterologous desensitization, similar to agonist stimulation, at the Gs-coupled 5-HT7 receptor. The primary objective of this study was to determine whether different inverse agonists at the 5-HT7 receptor also induce internalization and/or degradation of 5-HT7 receptors. Experimental Approach HEK293 cells expressing 5-HT7(a, b or d) receptors were pre-incubated with 5-HT, clozapine, olanzapine, mesulergine or SB269970 and their effects upon receptor density, AC activity, internalization, recruitment of β-arrestins and lysosomal trafficking were measured. Key Results The agonist 5-HT and three out of four inverse agonists tested increased internalization independently of β-arrestin recruitment. Among these, only the atypical antipsychotics clozapine and olanzapine promoted lysosomal sorting and reduced 5-HT7 receptor density (∼60% reduction within 24 h). Inhibition of lysosomal degradation with chloroquine blocked the clozapine- and olanzapine-induced down-regulation of 5-HT7 receptors. Incubation with SB269970 decreased both 5-HT7(b) constitutive internalization and receptor density but increased 5-HT7(d) receptor density, indicating differential ligand regulation among the 5-HT7 splice variants. Conclusions and Implications Taken together, we found that various ligands differentially activate regulatory processes governing receptor internalization and degradation in addition to signal transduction. Thus, these data extend our understanding of functional selectivity at the 5-HT7 receptor. PMID:25884989

  12. Phagocytic receptors activate and immune inhibitory receptor SIRPα inhibits phagocytosis through paxillin and cofilin.

    PubMed

    Gitik, Miri; Kleinhaus, Rachel; Hadas, Smadar; Reichert, Fanny; Rotshenker, Shlomo

    2014-01-01

    The innate immune function of phagocytosis of apoptotic cells, tissue debris, pathogens, and cancer cells is essential for homeostasis, tissue repair, fighting infection, and combating malignancy. Phagocytosis is carried out in the central nervous system (CNS) by resident microglia and in both CNS and peripheral nervous system by recruited macrophages. While phagocytosis proceeds, bystander healthy cells protect themselves by sending a "do not eat me" message to phagocytes as CD47 on their surface ligates immune inhibitory receptor SIRPα on the surface of phagocytes and SIRPα then produces the signaling which inhibits phagocytosis. This helpful mechanism becomes harmful when tissue debris and unhealthy cells inhibit their own phagocytosis by employing the same mechanism. However, the inhibitory signaling that SIRPα produces has not been fully revealed. We focus here on how SIRPα inhibits the phagocytosis of the tissue debris "degenerated myelin" which hinders repair in axonal injury and neurodegenerative diseases. We tested whether SIRPα inhibits phagocytosis by regulating cytoskeleton function through paxillin and cofilin since (a) the cytoskeleton generates the mechanical forces that drive phagocytosis and (b) both paxillin and cofilin control cytoskeleton function. Paxillin and cofilin were transiently activated in microglia as phagocytosis was activated. In contrast, paxillin and cofilin were continuously activated and phagocytosis augmented in microglia in which SIRPα expression was knocked-down by SIRPα-shRNA. Further, levels of phagocytosis, paxillin activation, and cofilin activation positively correlated with one another. Taken together, these observations suggest a novel mechanism whereby paxillin and cofilin are targeted to control phagocytosis by both the activating signaling that phagocytic receptors produce by promoting the activation of paxillin and cofilin and the inhibiting signaling that immune inhibitory SIRPα produces by promoting the

  13. FATTY ACIDS MODULATE TOLL-LIKE RECEPTOR 4 ACTIVATION THROUGH REGULATION OF RECEPTOR DIMERIZATION AND RECRUITMENT INTO LIPID RAFTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The saturated fatty acids acylated on Lipid A of lipopolysaccharide (LPS) or bacterial lipoproteins play critical roles in ligand recognition and receptor activation for Toll-like Receptor 4 (TLR4) and TLR2. The results from our previous studies (J Biol Chem 2003, 2004) demonstrated that saturated ...

  14. Helix 11 dynamics is critical for constitutive androstane receptor activity.

    PubMed

    Wright, Edward; Busby, Scott A; Wisecarver, Sarah; Vincent, Jeremy; Griffin, Patrick R; Fernandez, Elias J

    2011-01-12

    The constitutive androstane receptor (CAR) transactivation can occur in the absence of exogenous ligand and this activity is enhanced by agonists TCPOBOP and meclizine. We use biophysical and cell-based assays to show that increased activity of CAR(TCPOBOP) relative to CAR(meclizine) corresponds to a higher affinity of CAR(TCPOBOP) for the steroid receptor coactivator-1. Additionally, steady-state fluorescence spectra suggest conformational differences between CAR(TCPOBOP):RXR and CAR(meclizine):RXR. Hydrogen/deuterium exchange (HDX) data indicate that the CAR activation function 2 (AF-2) is more stable in CAR(TCPOBOP):RXR and CAR(meclizine):RXR than in CAR:RXR. HDX kinetics also show significant differences between CAR(TCPOBOP):RXR and CAR(meclizine):RXR. Unlike CAR(meclizine):RXR, CAR(TCPOBOP):RXR shows a higher overall stabilization that extends into RXR. We identify residues 339-345 in CAR as an allosteric regulatory site with a greater magnitude reduction in exchange kinetics in CAR(TCPOBOP):RXR than CAR(meclizine):RXR. Accordingly, assays with mutations on CAR at leucine-340 and leucine-343 confirm this region as an important determinant of CAR activity. PMID:21220114

  15. The Pharmacochaperone Activity of Quinine on Bitter Taste Receptors

    PubMed Central

    Upadhyaya, Jasbir D.; Chakraborty, Raja; Shaik, Feroz A.; Jaggupilli, Appalaraju; Bhullar, Rajinder P.; Chelikani, Prashen

    2016-01-01

    Bitter taste is one of the five basic taste sensations which is mediated by 25 bitter taste receptors (T2Rs) in humans. The mechanism of bitter taste signal transduction is not yet elucidated. The cellular processes underlying T2R desensitization including receptor internalization, trafficking and degradation are yet to be studied. Here, using a combination of molecular and pharmacological techniques we show that T2R4 is not internalized upon agonist treatment. Pretreatment with bitter agonist quinine led to a reduction in subsequent quinine-mediated calcium responses to 35 ± 5% compared to the control untreated cells. Interestingly, treatment with different bitter agonists did not cause internalization of T2R4. Instead, quinine treatment led to a 2-fold increase in T2R4 cell surface expression which was sensitive to Brefeldin A, suggesting a novel pharmacochaperone activity of quinine. This phenomenon of chaperone activity of quinine was also observed for T2R7, T2R10, T2R39 and T2R46. Our results suggest that the observed action of quinine for these T2Rs is independent of its agonist activity. This study provides novel insights into the pharmacochaperone activity of quinine and possible mechanism of T2R desensitization, which is of fundamental importance in understanding the mechanism of bitter taste signal transduction. PMID:27223611

  16. The Pharmacochaperone Activity of Quinine on Bitter Taste Receptors.

    PubMed

    Upadhyaya, Jasbir D; Chakraborty, Raja; Shaik, Feroz A; Jaggupilli, Appalaraju; Bhullar, Rajinder P; Chelikani, Prashen

    2016-01-01

    Bitter taste is one of the five basic taste sensations which is mediated by 25 bitter taste receptors (T2Rs) in humans. The mechanism of bitter taste signal transduction is not yet elucidated. The cellular processes underlying T2R desensitization including receptor internalization, trafficking and degradation are yet to be studied. Here, using a combination of molecular and pharmacological techniques we show that T2R4 is not internalized upon agonist treatment. Pretreatment with bitter agonist quinine led to a reduction in subsequent quinine-mediated calcium responses to 35 ± 5% compared to the control untreated cells. Interestingly, treatment with different bitter agonists did not cause internalization of T2R4. Instead, quinine treatment led to a 2-fold increase in T2R4 cell surface expression which was sensitive to Brefeldin A, suggesting a novel pharmacochaperone activity of quinine. This phenomenon of chaperone activity of quinine was also observed for T2R7, T2R10, T2R39 and T2R46. Our results suggest that the observed action of quinine for these T2Rs is independent of its agonist activity. This study provides novel insights into the pharmacochaperone activity of quinine and possible mechanism of T2R desensitization, which is of fundamental importance in understanding the mechanism of bitter taste signal transduction. PMID:27223611

  17. Regulation of carbohydrate metabolism by the farnesoid X receptor.

    PubMed

    Stayrook, Keith R; Bramlett, Kelli S; Savkur, Rajesh S; Ficorilli, James; Cook, Todd; Christe, Michael E; Michael, Laura F; Burris, Thomas P

    2005-03-01

    The farnesoid X receptor (FXR; NR1H4) is a nuclear hormone receptor that functions as the bile acid receptor. In addition to the critical role FXR plays in bile acid metabolism and transport, it regulates a variety of genes important in lipoprotein metabolism. We demonstrate that FXR also plays a role in carbohydrate metabolism via regulation of phosphoenolpyruvate carboxykinase (PEPCK) gene expression. Treatment of either H4IIE or MH1C1 rat hepatoma cell lines as well as primary rat or human hepatocytes with FXR agonists led to stimulation of PEPCK mRNA expression to levels comparable to those obtained with glucocorticoid receptor agonists. We examined the physiological significance of FXR agonist-induced enhancement of PEPCK expression in primary rat hepatocytes. In addition to inducing PEPCK expression in primary hepatocytes, FXR agonists stimulated glucose output to levels comparable to those observed with a glucocorticoid receptor agonist. Consistent with these observations, treatment of C57BL6 mice with GW4064 significantly increased hepatic PEPCK expression. Activation of FXR initiated a cascade involving induction of peroxisome proliferator-activated receptor alpha and TRB3 expression that is consistent with stimulation of PEPCK gene expression via interference with a pathway that may involve Akt-dependent phosphorylation of Forkhead/winged helix transcription factor (FOXO1). The FXR-peroxisome proliferator-activated receptor alpha-TRB3 pathway was conserved in rat hepatoma cell lines, mice, as well as primary human hepatocytes. Thus, in addition to its role in the regulation of lipid metabolism, FXR regulates carbohydrate metabolism.

  18. Phosphorylation of the human leukemia inhibitory factor (LIF) receptor by mitogen-activated protein kinase and the regulation of LIF receptor function by heterologous receptor activation.

    PubMed Central

    Schiemann, W P; Graves, L M; Baumann, H; Morella, K K; Gearing, D P; Nielsen, M D; Krebs, E G; Nathanson, N M

    1995-01-01

    We used a bacterially expressed fusion protein containing the entire cytoplasmic domain of the human leukemia inhibitory factor (LIF) receptor to study its phosphorylation in response to LIF stimulation. The dose- and time-dependent relationships for phosphorylation of this construct in extracts of LIF-stimulated 3T3-L1 cells were superimposable with those for the stimulation of mitogen-activated protein kinase (MAPK). Indeed, phosphorylation of the cytoplasmic domain of the low-affinity LIF receptor alpha-subunit (LIFR) in Mono Q-fractionated, LIF-stimulated 3T3-L1 extracts occurred only in those fractions containing activated MAPK; Ser-1044 served as the major phosphorylation site in the human LIFR for MAPK both in agonist-stimulated 3T3-L1 lysates and by recombinant extracellular signal-regulated kinase 2 in vitro. Expression in rat H-35 hepatoma cells of LIFR or chimeric granulocyte-colony-stimulating factor receptor (G-CSFR)-LIFR mutants lacking Ser-1044 failed to affect cytokine-stimulated expression of a reporter gene under the control of the beta-fibrinogen gene promoter but eliminated the insulin-induced attenuation of cytokine-stimulated gene expression. Thus, our results identify the human LIFR as a substrate for MAPK and suggest a mechanism of heterologous receptor regulation of LIFR signaling occurring at Ser-1044. Images Fig. 2 Fig. 4 PMID:7777512

  19. Mutations in the 'DRY' motif of the CB1 cannabinoid receptor result in biased receptor variants.

    PubMed

    Gyombolai, Pál; Tóth, András D; Tímár, Dániel; Turu, Gábor; Hunyady, László

    2015-02-01

    The role of the highly conserved 'DRY' motif in the signaling of the CB1 cannabinoid receptor (CB1R) was investigated by inducing single-, double-, and triple-alanine mutations into this site of the receptor. We found that the CB1R-R3.50A mutant displays a partial decrease in its ability to activate heterotrimeric Go proteins (∼80% of WT CB1R (CB1R-WT)). Moreover, this mutant showed an enhanced basal β-arrestin2 (β-arr2) recruitment. More strikingly, the double-mutant CB1R-D3.49A/R3.50A was biased toward β-arrs, as it gained a robustly increased β-arr1 and β-arr2 recruitment ability compared with the WT receptor, while its G-protein activation was decreased. In contrast, the double-mutant CB1R-R3.50A/Y3.51A proved to be G-protein-biased, as it was practically unable to recruit β-arrs in response to agonist stimulus, while still activating G-proteins, although at a reduced level (∼70% of CB1R-WT). Agonist-induced ERK1/2 activation of the CB1R mutants showed a good correlation with their β-arr recruitment ability but not with their G-protein activation or inhibition of cAMP accumulation. Our results suggest that G-protein activation and β-arr binding of the CB1R are mediated by distinct receptor conformations, and the conserved 'DRY' motif plays different roles in the stabilization of these conformations, thus mediating both G-protein- and β-arr-mediated functions of CB1R.

  20. The involvement of ATP-sensitive potassium channels in β2-adrenoceptor agonist-induced vasodilatation on rat diaphragmatic microcirculation

    PubMed Central

    Chang, Han-Yu

    1997-01-01

    The effects of glibenclamide (GLB), a blocker of ATP-sensitive potassium (KATP) channels, on diaphragmatic microcirculation in male Sprague-Dawley rats were assessed under basal conditions and after β2-adrenoceptor-agonist stimulation. In addition, forskolin was used to bypass β-adrenoceptors and GTP-binding proteins (G-protein) to explore the possible mechanism of GLB effects. For comparison, the relationships between KATP channel activity and cyclic GMP-mediated vasodilator responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were also assessed. Male Sprague-Dawley rats were anaesthetized with urethane and mechanically ventilated. The left hemi-diaphragm of each rat was prepared and microvascular blood flow (QLDF) was recorded with laser-Doppler flowmetry during continuous superfusion with bicarbonate-buffered, prewarmed Ringer solution. The drugs were topically applied to the surface of the hemi-diaphragm. Salbutamol (0.32–32 μM), terbutaline (0.32 μM–0.32 μM) and forskolin (0.32–10 μM) each elicited a concentration-dependent increase in QLDF. Baseline microvascular blood flow was unaffected by a 30 min suffusion of 1 μM GLB (295±51 mV vs 325±62 mV, P=0.738). The vasodilator response elicited by salbutamol (0.32 μM, 1 μM and 3.2 μM), was significantly attenuated by a 30 min superfusion with 1 μM GLB; this salbutamol-induced vasodilatation was mediated via an interaction with β-adrenoceptor receptors, as in other experiments it was greatly inhibited by 30-min superfusion with propranolol (10 μM). Similarly, following 30-min superfusion with GLB (1 μM), the terbutaline (1 μM, 3.2 μM and 10 μM)-induced vasodilator response was almost abolished and the vasodilator responses induced by incremental concentrations of forskolin (0.32 μM, 1 μM and 3.2 μM) were also significantly attenuated. Cromakalim (1.5 μM, 3 μM and 3.2 μM) produced an increase of QLDF in a dose-dependent manner

  1. Local receptors as novel regulators for peripheral clock expression

    PubMed Central

    Wu, Changhao; Sui, Guiping; Archer, Simon N.; Sassone-Corsi, Paolo; Aitken, Karen; Bagli, Darius; Chen, Ying

    2014-01-01

    Mammalian circadian control is determined by a central clock in the brain suprachiasmatic nucleus (SCN) and synchronized peripheral clocks in other tissues. Increasing evidence suggests that SCN-independent regulation of peripheral clocks also occurs. We examined how activation of excitatory receptors influences the clock protein PERIOD 2 (PER2) in a contractile organ, the urinary bladder. PERIOD2::LUCIFERASE-knock-in mice were used to report real-time PER2 circadian dynamics in the bladder tissue. Rhythmic PER2 activities occurred in the bladder wall with a cycle of ∼24 h and peak at ∼12 h. Activation of the muscarinic and purinergic receptors by agonists shifted the peak to an earlier time (7.2±2.0 and 7.2±0.9 h, respectively). PER2 expression was also sensitive to mechanical stimulation. Aging significantly dampened PER2 expression and its response to the agonists. Finally, muscarinic agonist-induced smooth muscle contraction also exhibited circadian rhythm. These data identified novel regulators, endogenous receptors, in determining local clock activity, in addition to mediating the central control. Furthermore, the local clock appears to reciprocally align receptor activity to circadian rhythm for muscle contraction. The interaction between receptors and peripheral clock represents an important mechanism for maintaining physiological functions and its dysregulation may contribute to age-related organ disorders.—Wu, C., Sui, G., Archer, S. N., Sassone-Corsi, P., Aitken, K., Bagli, D., Chen, Y. Local receptors as novel regulators for peripheral clock expression. PMID:25145629

  2. Novel mechanisms for activated protein C cytoprotective activities involving noncanonical activation of protease-activated receptor 3.

    PubMed

    Burnier, Laurent; Mosnier, Laurent O

    2013-08-01

    The direct cytoprotective activities of activated protein C (APC) on cells convey therapeutic, relevant, beneficial effects in injury and disease models in vivo and require the endothelial protein C receptor (EPCR) and protease activated receptor 1 (PAR1). Thrombin also activates PAR1, but its effects on cells contrast APC's cytoprotective effects. To gain insights into mechanisms for these contrasting cellular effects, protease activated receptor 3 (PAR3) activation by APC and thrombin was studied. APC cleaved PAR3 on transfected and endothelial cells in the presence of EPCR. Remarkably, APC cleaved a synthetic PAR3 N-terminal peptide at Arg41, whereas thrombin cleaved at Lys38. On cells, APC failed to cleave R41Q-PAR3, whereas K38Q-PAR3 was still cleaved by APC but not by thrombin. PAR3 tethered-ligand peptides beginning at amino acid 42, but not those beginning at amino acid 39, conveyed endothelial barrier-protective effects. In vivo, the APC-derived PAR3 tethered-ligand peptide, but not the thrombin-derived PAR3 peptide, blunted vascular endothelial growth factor (VEGF)-induced vascular permeability. These data indicate that PAR3 cleavage by APC at Arg41 can initiate distinctive APC-like cytoprotective effects. These novel insights help explain the differentiation of APC's cytoprotective versus thrombin's proinflammatory effects on cells and suggest a unique contributory role for PAR3 in the complex mechanisms underlying APC cytoprotective effects. PMID:23788139

  3. Substitution of the cysteine 438 residue in the cytoplasmic tail of the glucagon-like peptide-1 receptor alters signal transduction activity.

    PubMed

    Vázquez, Patricia; Roncero, Isabel; Blázquez, Enrique; Alvarez, Elvira

    2005-04-01

    Several G-protein-coupled receptors contain cysteine residues in the C-terminal tail that may modulate receptor function. In this work we analysed the substitution of Cys438 by alanine in the glucagon-like peptide-1 (GLP-1) receptor (GLPR), which led to a threefold decrease in cAMP production, although endocytosis and cellular redistribution of GLP-1 receptor agonist-induced processes were unaffected. Additionally, cysteine residues in the C-terminal tail of several G-protein-coupled receptors were found to act as substrates for palmitoylation, which might modify the access of protein kinases to this region. His-tagged GLP-1 receptors incorporated 3H-palmitate. Nevertheless, substitution of Cys438 prevented the incorporation of palmitate. Accordingly, we also investigated the effect of substitution of the consensus sequence by protein kinase C (PKC) Ser431/432 in both wild-type and Ala438 GLP-1 receptors. Substitution of Ser431/432 by alanine did not modify the ability of wild-type receptors to stimulate adenylate cyclase or endocytosis and recycling processes. By contrast, the substitution of Ser431/432 by alanine in the receptor containing Ala438 increased the ability to stimulate adenylate cyclase. All types of receptors were mainly internalised through coated pits. Thus, cysteine 438 in the cytoplasmic tail of the GLP-1 receptor would regulate its interaction with G-proteins and the stimulation of adenylyl cyclase. Palmitoylation of this residue might control the access of PKC to Ser431/432.

  4. Isolating and characterizing three alternatively spliced mu opioid receptor variants: mMOR-1A, mMOR-1O and mMOR-1P

    PubMed Central

    Xu, Jin; Xu, Mingming; Bolan, Elizabeth; Gilbert, Annie-Kim; Pasternak, Gavril W.; Pan, Ying-Xian

    2014-01-01

    Extensive alternative pre-mRNA splicing of the mu opioid receptor gene, OPRM1, has demonstrated an array of splice variants in mouse, rat and human. Three classes of splice variants have been identified: full length 7 transmembrane (TM) domain variants with C-terminal splicing, truncated 6TM variants and single TM variants. The current studies isolates and characterizes an additional three full length C-terminal splice variants generated from the mouse OPRM1 gene: mMOR-1A, mMOR-1O and mMOR-1P. Using RT-qPCR, we demonstrated differential expression of these variants' mRNAs among selected brain regions, supporting region-specific alternative splicing. When expressed in Chinese Hamster Ovary cells, all the variants displayed high mu binding affinity and selectivity with subtle differences in the affinities toward some agonists. [35S]γGTP binding assays revealed marked differences in agonist-induced G protein activation in both potency and efficacy among the variants. Together with the previous studies of mu agonist-induced phosphorylation and internalization in several carboxyl terminal splice variants, the current studies further suggest the existence of biased signaling of various agonists within each individual variant and/or among different variants. PMID:24375714

  5. Up-regulation of 5-HT2B receptor density and receptor-mediated glycogenolysis in mouse astrocytes by long-term fluoxetine administration.

    PubMed

    Kong, Ebenezer K C; Peng, Liang; Chen, Ye; Yu, Albert C H; Hertz, Leif

    2002-02-01

    The effects were studied of short-term (1 week) versus long-term (2-3 weeks) fluoxetine treatment of primary cultures of mouse astrocytes, differentiated by treatment with dibutyryl cyclic AMP. From previous experiments it is known that acute treatment with fluoxetine stimulates glycogenolysis and increases free cytosolic Ca2+ concentration ([Ca2+]i]) in these cultures, whereas short-term (one week) treatment with 10 microM down-regulates the effects on glycogen and [Ca2+]i, when fluoxetine administration is renewed (or when serotonin is administered). Moreover, antagonist studies have shown that these responses are evoked by activation of a 5-HT2, receptor that is different from the 5-HT2A receptor and therefore at that time tentatively were interpreted as being exerted on 5-HT2C receptors. In the present study the cultures were found by RT-PCR to express mRNA for 5-HT2A and 5-HT2B receptors, but not for the 5-HT2C receptor, identifying the 5-HT2 receptor activated by fluoxetine as the 5-HT2B receptor, the most recently cloned 5-Ht2 receptor and a 5-HT receptor known to be more abundant in human, than in rodent, brain. Both short-term and long-term treatment with fluoxetine increased the specific binding of [3H]mesulergine, a ligand for alL three 5-HT2 receptors. Long-term treatment with fluoxetine caused an agonist-induced up-regulation of the glycogenolytic response to renewed administration of fluoxetine, whereas short-term treatment abolished the fluoxetine-induced hydrolysis of glycogen. Thus, during a treatment period similar to that required for fluoxetine's clinical response to occur, 5-HT2B-mediated effects are initially down-regulated and subsequently up-regulated. PMID:11930908

  6. Senktide-induced gerbil foot tapping behaviour is blocked by selective tachykinin NK1 and NK3 receptor antagonists.

    PubMed

    Sundqvist, Monika; Kristensson, Elin; Adolfsson, Rebecka; Leffler, Agnes; Ahlstedt, Ingela; Engberg, Susanna; Drmota, Tomas; Sigfridsson, Kalle; Jussila, Rainer; de Verdier, Jennie; Novén, Anna; Johansson, Anders; Påhlman, Ingrid; von Mentzer, Bengt; Lindström, Erik

    2007-12-22

    Intracerebroventricular (i.c.v.) administration of tachykinin NK(1) receptor agonists induces tapping of the hind legs in gerbils, so-called gerbil foot tapping, which is thought to reflect a fear-related response. The aim of the present study was to examine how ligands selective for NK(1), NK(2) and NK(3) receptors affect the gerbil foot tap response. Agonists selective for NK receptor subtypes were administered i.c.v. and the gerbil foot tap response was monitored. The effect of systemically administered antagonists was also studied. The interaction of ligands with gerbil NK(1) receptors was evaluated using autoradiography on gerbil brain slices with [(3)H]-Sar,Met(O(2))-substance P or [(3)H]GR205171 as radioligand. The effects of ligands on NK(1) and NK(3) receptor-mediated increases in intracellular calcium in vitro were studied in Chinese hamster ovary cells expressing the cloned gerbil receptors. The selective NK(1) receptor agonist ASMSP and the selective NK(3) receptor agonist senktide induced dose-dependent increases in gerbil foot tapping with similar potency. The maximal effect of senktide was approximately 40% of the maximal response evoked by ASMSP. The effects of ASMSP and senktide were blocked by administration of the selective NK(1) receptor antagonist CP99,994 (10 micromol/kg s.c.). The effects of senktide, but not ASMSP, were blocked by administration of the selective NK(3) receptor antagonist SB223412 (50 micromol/kg i.p.). Senktide did not displace NK(1) receptor radioligand binding and was >1000-fold less potent than ASMSP at activating gerbil NK(1) receptors. The selective NK(3) receptor agonist senktide evokes fear-related gerbil foot tapping, an effect which probably involves indirect enhancement of NK(1) receptor signalling.

  7. Does the kappa opioid receptor system contribute to pain aversion?

    PubMed Central

    Cahill, Catherine M.; Taylor, Anna M. W.; Cook, Christopher; Ong, Edmund; Morón, Jose A.; Evans, Christopher J.

    2014-01-01

    The kappa opioid receptor (KOR) and the endogenous peptide-ligand dynorphin have received significant attention due the involvement in mediating a variety of behavioral and neurophysiological responses, including opposing the rewarding properties of drugs of abuse including opioids. Accumulating evidence indicates this system is involved in regulating states of motivation and emotion. Acute activation of the KOR produces an increase in motivational behavior to escape a threat, however, KOR activation associated with chronic stress leads to the expression of symptoms indicative of mood disorders. It is well accepted that KOR can produce analgesia and is engaged in chronic pain states including neuropathic pain. Spinal studies have revealed KOR-induced analgesia in reversing pain hypersensitivities associated with peripheral nerve injury. While systemic administration of KOR agonists attenuates nociceptive sensory transmission, this effect appears to be a stress-induced effect as anxiolytic agents, including delta opioid receptor agonists, mitigate KOR agonist-induced analgesia. Additionally, while the role of KOR and dynorphin in driving the dysphoric and aversive components of stress and drug withdrawal has been well characterized, how this system mediates the negative emotional states associated with chronic pain is relatively unexplored. This review provides evidence that dynorphin and the KOR system contribute to the negative affective component of pain and that this receptor system likely contributes to the high comorbidity of mood disorders associated with chronic neuropathic pain. PMID:25452729

  8. Activation of family C G-protein-coupled receptors by the tripeptide glutathione.

    PubMed

    Wang, Minghua; Yao, Yi; Kuang, Donghui; Hampson, David R

    2006-03-31

    The Family C G-protein-coupled receptors include the metabotropic glutamate receptors, the gamma-aminobutyric acid, type B (GABAB) receptor, the calcium-sensing receptor (CaSR), which participates in the regulation of calcium homeostasis in the body, and a diverse group of sensory receptors that encompass the amino acid-activated fish 5.24 chemosensory receptor, the mammalian T1R taste receptors, and the V2R pheromone receptors. A common feature of Family C receptors is the presence of an amino acid binding site. In this study, a preliminary in silico analysis of the size and shape of the amino acid binding pocket in selected Family C receptors suggested that some members of this family could accommodate larger ligands such as peptides. Subsequent screening and docking experiments identified GSH as a potential ligand or co-ligand at the fish 5.24 receptor and the rat CaSR. These in silico predictions were confirmed using an [3H]GSH radioligand binding assay and a fluorescence-based functional assay performed on wild-type and chimeric receptors. Glutathione was shown to act as an orthosteric agonist at the 5.24 receptor and as a potent enhancer of calcium-induced activation of the CaSR. Within the mammalian receptors, this effect was specific to the CaSR because GSH neither directly activated nor potentiated other Family C receptors including GPRC6A (the putative mammalian homolog of the fish 5.24 receptor), the metabotropic glutamate receptors, or the GABAB receptor. Our findings reveal a potential new role for GSH and suggest that this peptide may act as an endogenous modulator of the CaSR in the parathyroid gland where this receptor is known to control the release of parathyroid hormone, and in other tissues such as the brain and gastrointestinal tract where the role of the calcium receptor appears to subserve other, as yet unknown, physiological functions. PMID:16455645

  9. Molecular details of the activation of the μ opioid receptor.

    PubMed

    Shim, Jihyun; Coop, Andrew; MacKerell, Alexander D

    2013-07-01

    Molecular details of μ opioid receptor activations were obtained using molecular dynamics simulations of the receptor in the presence of three agonists, three antagonists, and a partial agonist and on the constitutively active T279K mutant. Agonists have a higher probability of direct interactions of their basic nitrogen (N) with Asp147 as compared with antagonists, indicating that direct ligand-Asp147 interactions modulate activation. Medium-size substituents on the basic N of antagonists lead to steric interactions that perturb N-Asp147 interactions, while additional favorable interactions occur with larger basic N substituents, such as in N-phenethylnormorphine, restoring N-Asp147 interactions, leading to agonism. With the orvinols, the increased size of the C19 substituent in buprenorphine over diprenorphine leads to increased interactions with residues adjacent to Asp147, partially overcoming the presence of the cyclopropyl N substituent, such that buprenorphine is a partial agonist. Results also indicate different conformational properties of the intracellular regions of the transmembrane helices in agonists versus antagonists. PMID:23758404

  10. Peroxisome proliferator-activated receptor {alpha}-independent peroxisome proliferation

    SciTech Connect

    Zhang Xiuguo; Tanaka, Naoki . E-mail: naopi@hsp.md.shinshu-u.ac.jp; Nakajima, Takero; Kamijo, Yuji; Gonzalez, Frank J.; Aoyama, Toshifumi

    2006-08-11

    Hepatic peroxisome proliferation, increases in the numerical and volume density of peroxisomes, is believed to be closely related to peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) activation; however, it remains unknown whether peroxisome proliferation depends absolutely on this activation. To verify occurrence of PPAR{alpha}-independent peroxisome proliferation, fenofibrate treatment was used, which was expected to significantly enhance PPAR{alpha} dependence in the assay system. Surprisingly, a novel type of PPAR{alpha}-independent peroxisome proliferation and enlargement was uncovered in PPAR{alpha}-null mice. The increased expression of dynamin-like protein 1, but not peroxisome biogenesis factor 11{alpha}, might be associated with the PPAR{alpha}-independent peroxisome proliferation at least in part.

  11. Kainate receptor activation induces glycine receptor endocytosis through PKC deSUMOylation.

    PubMed

    Sun, Hao; Lu, Li; Zuo, Yong; Wang, Yan; Jiao, Yingfu; Zeng, Wei-Zheng; Huang, Chao; Zhu, Michael X; Zamponi, Gerald W; Zhou, Tong; Xu, Tian-Le; Cheng, Jinke; Li, Yong

    2014-01-01

    Surface expression and regulated endocytosis of glycine receptors (GlyRs) play a critical function in balancing neuronal excitability. SUMOylation (SUMO modification) is of critical importance for maintaining neuronal function in the central nervous system. Here we show that activation of kainate receptors (KARs) causes GlyR endocytosis in a calcium- and protein kinase C (PKC)-dependent manner, leading to reduced GlyR-mediated synaptic activity in cultured spinal cord neurons and the superficial dorsal horn of rat spinal cord slices. This effect requires SUMO1/sentrin-specific peptidase 1 (SENP1)-mediated deSUMOylation of PKC, indicating that the crosstalk between KARs and GlyRs relies on the SUMOylation status of PKC. SENP1-mediated deSUMOylation of PKC is involved in the kainate-induced GlyR endocytosis and thus plays an important role in the anti-homeostatic regulation between excitatory and inhibitory ligand-gated ion channels. Altogether, we have identified a SUMOylation-dependent regulatory pathway for GlyR endocytosis, which may have important physiological implications for proper neuronal excitability. PMID:25236484

  12. A new mechanism for growth hormone receptor activation of JAK2, and implications for related cytokine receptors

    PubMed Central

    Waters, Michael J; Brooks, Andrew J; Chhabra, Yash

    2014-01-01

    The growth hormone receptor was the first cytokine receptor to be cloned and crystallized, and provides a valuable exemplar for activation of its cognate kinase, JAK2. We review progress in understanding its activation mechanism, in particular the molecular movements made by this constitutively dimerized receptor in response to ligand binding, and how these lead to a separation of JAK-binding Box1 motifs. Such a separation leads to removal of the pseudokinase inhibitory domain from the kinase domain of a partner JAK2 bound to the receptor, and vice versa, leading to apposition of the kinase domains and transactivation. This may be a general mechanism for class I cytokine receptor action. PMID:25101218

  13. Artificial masculinization in tilapia involves androgen receptor activation.

    PubMed

    Golan, Matan; Levavi-Sivan, Berta

    2014-10-01

    Estrogens have a pivotal role in natural female sexual differentiation of tilapia while lack of steroids results in testicular development. Despite the fact that androgens do not participate in natural sex differentiation, synthetic androgens, mainly 17-α-methyltestosterone (MT) are effective in the production of all-male fish in aquaculture. The sex inversion potency of synthetic androgens may arise from their androgenic activity or else as inhibitors of aromatase activity. The current study is an attempt to differentiate between the two alleged activities in order to evaluate their contribution to the sex inversion process and aid the search for novel sex inversion agents. In the present study, MT inhibited aromatase activity, when applied in vitro as did the non-aromatizable androgen dihydrotestosterone (DHT). In comparison, exposure to fadrozole, a specific aromatase inhibitor, was considerably more effective. Androgenic activity of MT was evaluated by exposure of Sciaenochromis fryeri fry to the substance and testing for the appearance of blue color. Flutamide, an androgen antagonist, administered concomitantly with MT, reduced the appearance of the blue color and the sex inversion potency of MT in a dose-dependent manner. In tilapia, administration of MT, fadrozole or DHT resulted in efficient sex inversion while flutamide reduced the sex inversion potency of all three compounds. In the case of MT and DHT the decrease in sex inversion efficiency caused by flutamide is most likely due to the direct blocking of the androgen binding to its cognate receptor. The negative effect of flutamide on the efficiency of the fadrozole treatment may indicate that the masculinizing activity of fadrozole may be attributed to excess, un-aromatized, androgens accumulated in the differentiating gonad. The present study shows that when androgen receptors are blocked, there is a reduction in the efficiency of sex inversion treatments. Our results suggest that in contrast to

  14. Yawning and locomotor behavior induced by dopamine receptor agonists in mice and rats.

    PubMed

    Li, Su-Min; Collins, Gregory T; Paul, Noel M; Grundt, Peter; Newman, Amy H; Xu, Ming; Grandy, David K; Woods, James H; Katz, Jonathan L

    2010-05-01

    Dopaminergic (DA) agonist-induced yawning in rats seems to be mediated by DA D3 receptors, and low doses of several DA agonists decrease locomotor activity, an effect attributed to presynaptic D2 receptors. Effects of several DA agonists on yawning and locomotor activity were examined in rats and mice. Yawning was reliably produced in rats, and by the cholinergic agonist, physostigmine, in both the species. However, DA agonists were ineffective in producing yawning in Swiss-Webster or DA D2R and DA D3R knockout or wild-type mice. The drugs significantly decreased locomotor activity in rats at one or two low doses, with activity returning to control levels at higher doses. In mice, the drugs decreased locomotion across a 1000-10 000-fold range of doses, with activity at control levels (U-91356A) or above control levels [(+/-)-7-hydroxy-2-dipropylaminotetralin HBr, quinpirole] at the highest doses. Low doses of agonists decreased locomotion in all mice except the DA D2R knockout mice, but were not antagonized by DA D2R or D3R antagonists (L-741 626, BP 897, or PG01037). Yawning does not provide a selective in-vivo indicator of DA D3R agonist activity in mice. Decreases in mouse locomotor activity by the DA agonists seem to be mediated by D2 DA receptors.

  15. The Role of Hippocampal NMDA Receptors in Long-Term Emotional Responses following Muscarinic Receptor Activation.

    PubMed

    Hoeller, Alexandre A; Costa, Ana Paula R; Bicca, Maíra A; Matheus, Filipe C; Lach, Gilliard; Spiga, Francesca; Lightman, Stafford L; Walz, Roger; Collingridge, Graham L; Bortolotto, Zuner A; de Lima, Thereza C M

    2016-01-01

    Extensive evidence indicates the influence of the cholinergic system on emotional processing. Previous findings provided new insights into the underlying mechanisms of long-term anxiety, showing that rats injected with a single systemic dose of pilocarpine--a muscarinic receptor (mAChR) agonist--displayed persistent anxiogenic-like responses when evaluated in different behavioral tests and time-points (24 h up to 3 months later). Herein, we investigated whether the pilocarpine-induced long-term anxiogenesis modulates the HPA axis function and the putative involvement of NMDA receptors (NMDARs) following mAChRs activation. Accordingly, adult male Wistar rats presented anxiogenic-like behavior in the elevated plus-maze (EPM) after 24 h or 1 month of pilocarpine injection (150 mg/kg, i.p.). In these animals, mAChR activation disrupted HPA axis function inducing a long-term increase of corticosterone release associated with a reduced expression of hippocampal GRs, as well as consistently decreased NMDAR subunits expression. Furthermore, in another group of rats injected with memantine--an NMDARs antagonist (4 mg/kg, i.p.)--prior to pilocarpine, we found inhibition of anxiogenic-like behaviors in the EPM but no further alterations in the pilocarpine-induced NMDARs downregulation. Our data provide evidence that behavioral anxiogenesis induced by mAChR activation effectively yields short- and long-term alterations in hippocampal NMDARs expression associated with impairment of hippocampal inhibitory regulation of HPA axis activity. This is a novel mechanism associated with anxiety-like responses in rats, which comprise a putative target to future translational studies. PMID:26795565

  16. The Role of Hippocampal NMDA Receptors in Long-Term Emotional Responses following Muscarinic Receptor Activation.

    PubMed

    Hoeller, Alexandre A; Costa, Ana Paula R; Bicca, Maíra A; Matheus, Filipe C; Lach, Gilliard; Spiga, Francesca; Lightman, Stafford L; Walz, Roger; Collingridge, Graham L; Bortolotto, Zuner A; de Lima, Thereza C M

    2016-01-01

    Extensive evidence indicates the influence of the cholinergic system on emotional processing. Previous findings provided new insights into the underlying mechanisms of long-term anxiety, showing that rats injected with a single systemic dose of pilocarpine--a muscarinic receptor (mAChR) agonist--displayed persistent anxiogenic-like responses when evaluated in different behavioral tests and time-points (24 h up to 3 months later). Herein, we investigated whether the pilocarpine-induced long-term anxiogenesis modulates the HPA axis function and the putative involvement of NMDA receptors (NMDARs) following mAChRs activation. Accordingly, adult male Wistar rats presented anxiogenic-like behavior in the elevated plus-maze (EPM) after 24 h or 1 month of pilocarpine injection (150 mg/kg, i.p.). In these animals, mAChR activation disrupted HPA axis function inducing a long-term increase of corticosterone release associated with a reduced expression of hippocampal GRs, as well as consistently decreased NMDAR subunits expression. Furthermore, in another group of rats injected with memantine--an NMDARs antagonist (4 mg/kg, i.p.)--prior to pilocarpine, we found inhibition of anxiogenic-like behaviors in the EPM but no further alterations in the pilocarpine-induced NMDARs downregulation. Our data provide evidence that behavioral anxiogenesis induced by mAChR activation effectively yields short- and long-term alterations in hippocampal NMDARs expression associated with impairment of hippocampal inhibitory regulation of HPA axis activity. This is a novel mechanism associated with anxiety-like responses in rats, which comprise a putative target to future translational studies.

  17. The glucagon-like peptide 1 receptor agonist enhances intrinsic peroxisome proliferator-activated receptor γ activity in endothelial cells

    SciTech Connect

    Onuma, Hirohisa; Inukai, Kouichi Kitahara, Atsuko; Moriya, Rie; Nishida, Susumu; Tanaka, Toshiaki; Katsuta, Hidenori; Takahashi, Kazuto; Sumitani, Yoshikazu; Hosaka, Toshio; Ishida, Hitoshi

    2014-08-22

    Highlights: • PPARγ activation was involved in the GLP-1-mediated anti-inflammatory action. • Exendin-4 enhanced endogenous PPARγ transcriptional activity in HUVECs. • H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement. • The anti-inflammatory effects of GLP-1 may be explained by PPARγ activation. - Abstract: Recent studies have suggested glucagon-like peptide-1 (GLP-1) signaling to exert anti-inflammatory effects on endothelial cells, although the precise underlying mechanism remains to be elucidated. In the present study, we investigated whether PPARγ activation is involved in the GLP-1-mediated anti-inflammatory action on endothelial cells. When we treated HUVEC cells with 0.2 ng/ml exendin-4, a GLP-1 receptor agonist, endogenous PPARγ transcriptional activity was significantly elevated, by approximately 20%, as compared with control cells. The maximum PPARγ activity enhancing effect of exendin-4 was observed 12 h after the initiation of incubation with exendin-4. As H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement, the signaling downstream from GLP-1 cross-talk must have been involved in PPARγ activation. In conclusion, our results suggest that GLP-1 has the potential to induce PPARγ activity, partially explaining the anti-inflammatory effects of GLP-1 on endothelial cells. Cross-talk between GLP-1 signaling and PPARγ activation would have major impacts on treatments for patients at high risk for cardiovascular disease.

  18. Evidence for the presence of a protease-activated receptor distinct from the thrombin receptor in human keratinocytes.

    PubMed Central

    Santulli, R J; Derian, C K; Darrow, A L; Tomko, K A; Eckardt, A J; Seiberg, M; Scarborough, R M; Andrade-Gordon, P

    1995-01-01

    Thrombin receptor activation was explored in human epidermal keratinocytes and human dermal fibroblasts, cells that are actively involved in skin tissue repair. The effects of thrombin, trypsin, and the receptor agonist peptides SFLLRN and TFRIFD were assessed in inositolphospholipid hydrolysis and calcium mobilization studies. Thrombin and SFLLRN stimulated fibroblasts in both assays to a similar extent, whereas TFRIFD was less potent. Trypsin demonstrated weak efficacy in these assays in comparison with thrombin. Results in fibroblasts were consistent with human platelet thrombin receptor activation. Keratinocytes, however, exhibited a distinct profile, with trypsin being a far better activator of inositolphospholipid hydrolysis and calcium mobilization than thrombin. Furthermore, SFLLRN was more efficacious than thrombin, whereas no response was observed with TFRIFD. Since our data indicated that keratinocytes possess a trypsin-sensitive receptor, we addressed the possibility that these cells express the human homologue of the newly described murine protease-activated receptor, PAR-2 [Nystedt, S., Emilsson, K., Wahlestedt, C. & Sundelin, J. (1994) Proc. Natl. Acad. Sci. USA 91, 9208-9212]. PAR-2 is activated by nanomolar concentrations of trypsin and possesses the tethered ligand sequence SLIGRL. SLIGRL was found to be equipotent with SFLLRN in activating keratinocyte inositolphospholipid hydrolysis and calcium mobilization. Desensitization studies indicated that SFLLRN, SLIGRL, and trypsin activate a common receptor, PAR-2. Northern blot analyses detected a transcript of PAR-2 in total RNA from keratinocytes but not fibroblasts. Levels of thrombin receptor message were equivalent in the two cell types. Our results indicate that human keratinocytes possess PAR-2, suggesting a potential role for this receptor in tissue repair and/or skin-related disorders. Images Fig. 6 PMID:7568091

  19. Spontaneous olfactory receptor neuron activity determines follower cell response properties

    PubMed Central

    Joseph, Joby; Dunn, Felice A.; Stopfer, Mark

    2012-01-01

    Noisy or spontaneous activity is common in neural systems and poses a challenge to detecting and discriminating signals. Here we use the locust to answer fundamental questions about noise in the olfactory system: Where does spontaneous activity originate? How is this activity propagated or reduced throughout multiple stages of neural processing? What mechanisms favor the detection of signals despite the presence of spontaneous activity? We found that spontaneous activity long observed in the secondary projection neurons (PNs) originates almost entirely from the primary olfactory receptor neurons (ORNs) rather than from spontaneous circuit interactions in the antennal lobe, and that spontaneous activity in ORNs tonically depolarizes the resting membrane potentials of their target PNs and local neurons (LNs), and indirectly tonically depolarizes tertiary Kenyon cells (KCs). However, because these neurons have different response thresholds, in the absence of odor stimulation, ORNs and PNs display a high spontaneous firing rate but KCs are nearly silent. Finally, we used a simulation of the olfactory network to show that discrimination of signal and noise in the KCs is best when threshold levels are set so that baseline activity in PNs persists. Our results show how the olfactory system benefits from making a signal detection decision after a point of maximal information convergence, e.g., after KCs pool inputs from many PNs. PMID:22357872

  20. Preclinical pharmacology and pharmacokinetics of AZD3783, a selective 5-hydroxytryptamine 1B receptor antagonist.

    PubMed

    Zhang, Minli; Zhou, Diansong; Wang, Yi; Maier, Donna L; Widzowski, Daniel V; Sobotka-Briner, Cynthia D; Brockel, Becky J; Potts, William M; Shenvi, Ashok B; Bernstein, Peter R; Pierson, M Edward

    2011-11-01

    The preclinical pharmacology and pharmacokinetic properties of (2R)-6-methoxy-8-(4-methylpiperazin-1-yl)-N-(4-morpholin-4-ylphenyl)chromane-2-carboxamide (AZD3783), a potent 5-hydroxytryptamine 1B (5-HT(1B)) receptor antagonist, were characterized as part of translational pharmacokinetic/pharmacodynamic hypothesis testing in human clinical trials. The affinity of AZD3783 to the 5-HT(1B) receptor was measured in vitro by using membrane preparations containing recombinant human or guinea pig 5-HT(1B) receptors and in native guinea pig brain tissue. In vivo antagonist potency of AZD3783 for the 5HT(1B) receptor was investigated by measuring the blockade of 5-HT(1B) agonist-induced guinea pig hypothermia. The anxiolytic-like potency was assessed using the suppression of separation-induced vocalization in guinea pig pups. The affinity of AZD3783 for human and guinea pig 5-HT(1B) receptor (K(i), 12.5 and 11.1 nM, respectively) was similar to unbound plasma EC(50) values for guinea pig receptor occupancy (11 nM) and reduction of agonist-induced hypothermia (18 nM) in guinea pig. Active doses of AZD3783 in the hypothermia assay were similar to doses that reduced separation-induced vocalization in guinea pig pups. AZD3783 demonstrated favorable pharmacokinetic properties. The predicted pharmacokinetic parameters (total plasma clearance, 6.5 ml/min/kg; steady-state volume of distribution, 6.4 l/kg) were within 2-fold of the values observed in healthy male volunteers after a single 20-mg oral dose. This investigation presents a direct link between AZD3783 in vitro affinity and in vivo receptor occupancy to preclinical disease model efficacy. Together with predicted human pharmacokinetic properties, we have provided a model for the quantitative translational pharmacology of AZD3783 that increases confidence in the optimal human receptor occupancy required for antidepressant and anxiolytic effects in patients.

  1. Regulation of GABAA Receptor Dynamics by Interaction with Purinergic P2X2 Receptors*

    PubMed Central

    Shrivastava, Amulya Nidhi; Triller, Antoine; Sieghart, Werner; Sarto-Jackson, Isabella

    2011-01-01

    γ-Aminobutyric acid type A receptors (GABAARs) in the spinal cord are evolving as an important target for drug development against pain. Purinergic P2X2 receptors (P2X2Rs) are also expressed in spinal cord neurons and are known to cross-talk with GABAARs. Here, we investigated a possible “dynamic” interaction between GABAARs and P2X2Rs using co-immunoprecipitation and fluorescence resonance energy transfer (FRET) studies in human embryonic kidney (HEK) 293 cells along with co-localization and single particle tracking studies in spinal cord neurons. Our results suggest that a significant proportion of P2X2Rs forms a transient complex with GABAARs inside the cell, thus stabilizing these receptors and using them for co-trafficking to the cell surface, where P2X2Rs and GABAARs are primarily located extra-synaptically. Furthermore, agonist-induced activation of P2X2Rs results in a Ca2+-dependent as well as an apparently Ca2+-independent increase in the mobility and an enhanced degradation of GABAARs, whereas P2X2Rs are stabilized and form larger clusters. Antagonist-induced blocking of P2XRs results in co-stabilization of this receptor complex at the cell surface. These results suggest a novel mechanism where association of P2X2Rs and GABAARs could be used for specific targeting to neuronal membranes, thus providing an extrasynaptic receptor reserve that could regulate the excitability of neurons. We further conclude that blocking the excitatory activity of excessively released ATP under diseased state by P2XR antagonists could simultaneously enhance synaptic inhibition mediated by GABAARs. PMID:21343285

  2. The First Structure–Activity Relationship Studies for Designer Receptors Exclusively Activated by Designer Drugs

    PubMed Central

    2016-01-01

    Over the past decade, two independent technologies have emerged and been widely adopted by the neuroscience community for remotely controlling neuronal activity: optogenetics which utilize engineered channelrhodopsin and other opsins, and chemogenetics which utilize engineered G protein-coupled receptors (Designer Receptors Exclusively Activated by Designer Drugs (DREADDs)) and other orthologous ligand–receptor pairs. Using directed molecular evolution, two types of DREADDs derived from human muscarinic acetylcholine receptors have been developed: hM3Dq which activates neuronal firing, and hM4Di which inhibits neuronal firing. Importantly, these DREADDs were not activated by the native ligand acetylcholine (ACh), but selectively activated by clozapine N-oxide (CNO), a pharmacologically inert ligand. CNO has been used extensively in rodent models to activate DREADDs, and although CNO is not subject to significant metabolic transformation in mice, a small fraction of CNO is apparently metabolized to clozapine in humans and guinea pigs, lessening the translational potential of DREADDs. To effectively translate the DREADD technology, the next generation of DREADD agonists are needed and a thorough understanding of structure–activity relationships (SARs) of DREADDs is required for developing such ligands. We therefore conducted the first SAR studies of hM3Dq. We explored multiple regions of the scaffold represented by CNO, identified interesting SAR trends, and discovered several compounds that are very potent hM3Dq agonists but do not activate the native human M3 receptor (hM3). We also discovered that the approved drug perlapine is a novel hM3Dq agonist with >10 000-fold selectivity for hM3Dq over hM3. PMID:25587888

  3. Visualization of distinct patterns of subcellular redistribution of the thyrotropin-releasing hormone receptor-1 and gqalpha /G11alpha induced by agonist stimulation.

    PubMed Central

    Drmota, T; Novotny, J; Gould, G W; Svoboda, P; Milligan, G

    1999-01-01

    The rat thyrotropin-releasing hormone receptor-1 (TRHR-1) was modified by the addition of green fluorescent protein (GFP) and expressed stably in HEK293 cells. Extensive overlap of plasma membrane distribution of autofluorescent TRHR-1-GFP with that of the phosphoinositidase C-linked G-proteins Gqalpha/G11alpha, identified by indirect immunofluorescence, was monitored concurrently. Addition of thyrotropin-releasing hormone resulted in rapid separation of TRHR-1-GFP and Gqalpha/G11alpha signals as the receptor was internalized. This situation persisted for more than an hour. At longer time periods a fraction of the cellular Gqalpha/G11alpha was also internalized, although much of the Gqalpha/G11alpha immunoreactivity remained associated with the plasma membrane. Parallel experiments, in which the cellular distribution of TRHR-1-GFP and Gqalpha/G11alpha immunoreactivity were monitored in sucrose-gradient fractions following cell disruption, also demonstrated a rapid, agonist-induced movement of TRHR-1-GFP away from the plasma membrane to low-density vesicular fractions. At later time points, a fraction of the cellular Gqalpha/G11alpha immunoreactivity was also redistributed to overlapping, but non-identical, low-density-vesicle-containing fractions. Pretreatment of the cells with cytochalasin D or nocodazole prevented agonist-induced redistribution of G-protein but not TRHR-1-GFP, further indicating resolution of the mechanics of these two processes. The combination of a GFP-modified receptor and immunostaining of the G-proteins activated by that receptor allows, for the first time, concurrent analysis of the varying dynamics and bases of internalization and redistribution of two elements of the same signal-transduction cascade. PMID:10333499

  4. In vitro neuronal network activity in NMDA receptor encephalitis

    PubMed Central

    2013-01-01

    Background Anti-NMDA-encephalitis is caused by antibodies against the N-methyl-D-aspartate receptor (NMDAR) and characterized by a severe encephalopathy with psychosis, epileptic seizures and autonomic disturbances. It predominantly occurs in young women and is associated in 59% with an ovarian teratoma. Results We describe effects of cerebrospinal fluid (CSF) from an anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis patient on in vitro neuronal network activity (ivNNA). In vitro NNA of dissociated primary rat cortical populations was recorded by the microelectrode array (MEA) system. The 23-year old patient was severely affected but showed an excellent recovery following multimodal immunomodulatory therapy and removal of an ovarian teratoma. Patient CSF (pCSF) taken during the initial weeks after disease onset suppressed global spike- and burst rates of ivNNA in contrast to pCSF sampled after clinical recovery and decrease of NMDAR antibody titers. The synchrony of pCSF-affected ivNNA remained unaltered during the course of the disease. Conclusion Patient CSF directly suppresses global activity of neuronal networks recorded by the MEA system. In contrast, pCSF did not regulate the synchrony of ivNNA suggesting that NMDAR antibodies selectively regulate distinct parameters of ivNNA while sparing their functional connectivity. Thus, assessing ivNNA could represent a new technique to evaluate functional consequences of autoimmune encephalitis-related CSF changes. PMID:23379293

  5. Evolution of the protease-activated receptor family in vertebrates

    PubMed Central

    JIN, MIN; YANG, HAI-WEI; TAO, AI-LIN; WEI, JI-FU

    2016-01-01

    Belonging to the G protein-coupled receptor (GPcr) family, the protease-activated receptors (Pars) consist of 4 members, PAR1-4. PARs mediate the activation of cells via thrombin, serine and other proteases. Such protease-triggered signaling events are thought to be critical for hemostasis, thrombosis and other normal pathological processes. In the present study, we examined the evolution of PARs by analyzing phylogenetic trees, chromosome location, selective pressure and functional divergence based on the 169 functional gene alignment sequences from 57 vertebrate gene sequences. We found that the 4 PARs originated from 4 invertebrate ancestors by phylogenetic trees analysis. The selective pressure results revealed that only PAR1 appeared by positive selection during its evolution, while the other PAR members did not. In addition, we noticed that although these PARs evolved separately, the results of functional divergence indicated that their evolutional rates were similar and their functions did not significantly diverge. The findings of our study provide valuable insight into the evolutionary history of the vertebrate PAR family. PMID:26820116

  6. Antitussive activity of Withania somnifera and opioid receptors.

    PubMed

    Nosálová, Gabriela; Sivová, Veronika; Ray, Bimalendu; Fraňová, Soňa; Ondrejka, Igor; Flešková, Dana

    2015-01-01

    Arabinogalactan is a polysaccharide isolated from the roots of the medicinal plant Withania somnifera L. It contains 65% arabinose and 18% galactose. The aim of the present study was to evaluate the antitussive activity of arabinogalactan in conscious, healthy adult guinea pigs and the role of the opioid pathway in the antitussive action. A polysaccharide extract was given orally in a dose of 50 mg/kg. Cough was induced by an aerosol of citric acid in a concentration 0.3 mol/L, generated by a jet nebulizer into a plethysmographic chamber. The intensity of cough response was defined as the number of cough efforts counted during a 3-min exposure to the aerosol. The major finding was that arabinogalactan clearly suppressed the cough reflex; the suppression was comparable with that of codeine that was taken as a reference drug. The involvement of the opioid system was tested with the use of a blood-brain barrier penetrable, naloxone hydrochloride, and non-penetrable, naloxone methiodide, to distinguish between the central and peripheral mu-opioid receptor pathways. Both opioid antagonists acted to reverse the arabinogalactan-induced cough suppression; the reversion was total over time with the latter antagonist. We failed to confirm the presence of a bronchodilating effect of the polysaccharide, which could be involved in its antitussive action. We conclude that the polysaccharide arabinogalactan from Withania somnifera has a distinct antitussive activity consisting of cough suppression and that this action involves the mu-opioid receptor pathways.

  7. ERK5 activation by Gq-coupled muscarinic receptors is independent of receptor internalization and β-arrestin recruitment.

    PubMed

    Sánchez-Fernández, Guzmán; Cabezudo, Sofía; García-Hoz, Carlota; Tobin, Andrew B; Mayor, Federico; Ribas, Catalina

    2013-01-01

    G-protein-coupled receptors (GPCRs) are known to activate both G protein- and β-arrestin-dependent signalling cascades. The initiation of mitogen-activated protein kinase (MAPK) pathways is a key downstream event in the control of cellular functions including proliferation, differentiation, migration and apoptosis. Both G proteins and β-arrestins have been reported to mediate context-specific activation of ERK1/2, p38 and JNK MAPKs. Recently, the activation of ERK5 MAPK by Gq-coupled receptors has been described to involve a direct interaction between Gαq and two novel effectors, PKCζ and MEK5. However, the possible contribution of β-arrestin towards this pathway has not yet been addressed. In the present work we sought to investigate the role of receptor internalization processes and β-arrestin recruitment in the activation of ERK5 by Gq-coupled GPCRs. Our results show that ERK5 activation is independent of M1 or M3 muscarinic receptor internalization. Furthermore, we demonstrate that phosphorylation-deficient muscarinic M1 and M3 receptors are still able to fully activate the ERK5 pathway, despite their reported inability to recruit β-arrestins. Indeed, the overexpression of Gαq, but not that of β-arrestin1 or β-arrestin2, was found to potently enhance ERK5 activation by GPCRs, whereas silencing of β-arrestin2 expression did not affect the activation of this pathway. Finally, we show that a β-arrestin-biased mutant form of angiotensin II (SII; Sar1-Ile4-Ile8 AngII) failed to promote ERK5 phosphorylation in primary cardiac fibroblasts, as compared to the natural ligand. Overall, this study shows that the activation of ERK5 MAPK by model Gq-coupled GPCRs does not depend on receptor internalization, β-arrestin recruitment or receptor phosphorylation but rather is dependent on Gαq-signalling.

  8. Mode of action framework analysis for receptor-mediated toxicity: the Peroxisome Proliferator-Activated Receptor alpha (PPARα) as a case study

    EPA Science Inventory

    Therapeutic hypolipidemic agents and industrial chemicals that cause peroxisome proliferation and induce liver tumors in rodents activate the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARα). Research has elucidated the cellular and molecular events by w...

  9. Vasopeptidase-activated latent ligands of the histamine receptor-1.

    PubMed

    Gera, Lajos; Roy, Caroline; Charest-Morin, Xavier; Marceau, François

    2013-11-01

    Whether peptidases present in vascular cells can activate prodrugs active on vascular cells has been tested with 2 potential latent ligands of the histamine H1 receptor (H1R). First, a peptide consisting of the antihistamine cetirizine (CTZ) condensed at the N-terminus of ε-aminocaproyl-bradykinin (εACA-BK) was evaluated for an antihistamine activity that could be revealed by degradation of the peptide part of the molecule. CTZ-εACA-BK had a submicromolar affinity for the BK B2 receptor (B2R; IC50 of 590 nM, [(3)H]BK binding competition), but a non-negligible affinity for the human H1 receptor (H1R; IC50 of 11 μM for [(3)H]pyrilamine binding). In the human isolated umbilical vein, a system where both endogenous B2R and H1R mediate strong contractions, CTZ-εACA-BK exerted mild antagonist effects on histamine-induced contraction that were not modified by omapatrilat or by a B2R antagonist that prevents endocytosis of the BK conjugate. Cells expressing recombinant ACE or B2R incubated with CTZ-εACA-BK did not release a competitor of [(3)H]pyrilamine binding to H1Rs. Thus, there is no evidence that CTZ-εACA-BK can release free cetirizine in biological environments. The second prodrug was a blocked agonist, L-alanyl-histamine, potentially activated by aminopeptidase N (APN). This compound did not compete for [(3)H]pyrilamine binding to H1Rs. The human umbilical vein contractility assay responded to L-alanyl-histamine (EC50 54.7 μM), but the APN inhibitor amastatin massively (17-fold) reduced its apparent potency. Amastatin did not influence the potency of histamine as a contractile agent. One of the 2 tested latent H1R ligands, L-alanyl-histamine, supported the feasibility of pro-drug activation by vascular ectopeptidases.

  10. Engineered epidermal growth factor mutants with faster binding on-rates correlate with enhanced receptor activation

    PubMed Central

    Lahti, Jennifer L.; Lui, Bertrand H.; Beck, Stayce E.; Lee, Stephen S.; Ly, Daphne P.; Longaker, Michael T.; Yang, George P.; Cochran, Jennifer R.

    2011-01-01

    Receptor tyrosine kinases (RTKs) regulate critical cell signaling pathways, yet the properties of their cognate ligands that influence receptor activation are not fully understood. There is great interest in parsing these complex ligand-receptor relationships using engineered proteins with altered binding properties. Here we focus on the interaction between two engineered epidermal growth factor (EGF) mutants and the EGF receptor (EGFR), a model member of the RTK superfamily. We found that EGF mutants with faster kinetic on-rates stimulate increased EGFR activation compared to wild-type EGF. These findings support previous predictions that faster association rates correlate with enhanced receptor activity. PMID:21439278

  11. The WSXWS motif in cytokine receptors is a molecular switch involved in receptor activation: insight from structures of the prolactin receptor.

    PubMed

    Dagil, Robert; Knudsen, Maiken J; Olsen, Johan G; O'Shea, Charlotte; Franzmann, Magnus; Goffin, Vincent; Teilum, Kaare; Breinholt, Jens; Kragelund, Birthe B

    2012-02-01

    The prolactin receptor (PRLR) is activated by binding of prolactin in a 2:1 complex, but the activation mechanism is poorly understood. PRLR has a conserved WSXWS motif generic to cytokine class I receptors. We have determined the nuclear magnetic resonance solution structure of the membrane proximal domain of the human PRLR and find that the tryptophans of the motif adopt a T-stack conformation in the unbound state. By contrast, in the hormone bound state, a Trp/Arg-ladder is formed. The conformational change is hormone-dependent and influences the receptor-receptor dimerization site 3. In the constitutively active, breast cancer-related receptor mutant PRLR(I146L), we observed a stabilization of the dimeric state and a change in the dynamics of the motif. Here we demonstrate a structural link between the WSXWS motif, hormone binding, and receptor dimerization and propose it as a general mechanism for class 1 receptor activation.

  12. Regulation of platelet activating factor receptor coupled phosphoinositide-specific phospholipase C activity

    SciTech Connect

    Morrison, W.J.

    1988-01-01

    The major objectives of this study were two-fold. The first was to establish whether binding of platelet activating factor (PAF) to its receptor was integral to the stimulation of polyphosphoinositide-specific phospholipase C (PLC) in rabbit platelets. The second was to determine regulatory features of this receptor-coupled mechanism. ({sup 3}H)PAF binding demonstrated two binding sites, a high affinity site with a inhibitory constant (Ki) of 2.65 nM and a low affinity site with a Ki of 0.80 {mu}M. PAF receptor coupled activation of phosphoinositide-specific PLC was studied in platelets which were made refractory, by short term pretreatments, to either PAF or thrombin. Saponin-permeabilized rabbit platelets continue to regulate the mechanism(s) coupling PAF receptors to PLC stimulation. However, TRP{gamma}S and GDP{beta}S, which affect guanine nucleotide regulatory protein functions, were unable to modulate the PLC activity to any appreciable extent as compared to PAF. The possible involvement of protein kinase C (PKC) activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets pretreated with staurosporine followed by pretreatments with PAF or phorbol 12-myristate 13-acetate (PMA).

  13. A restricted population of CB1 cannabinoid receptors with neuroprotective activity

    PubMed Central

    Chiarlone, Anna; Bellocchio, Luigi; Blázquez, Cristina; Resel, Eva; Soria-Gómez, Edgar; Cannich, Astrid; Ferrero, José J.; Sagredo, Onintza; Benito, Cristina; Romero, Julián; Sánchez-Prieto, José; Lutz, Beat; Fernández-Ruiz, Javier; Galve-Roperh, Ismael; Guzmán, Manuel

    2014-01-01

    The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. Of note, CB1 receptors are expressed at the synapses of two opposing (i.e., GABAergic/inhibitory and glutamatergic/excitatory) neuronal populations, so the activation of one and/or another receptor population may conceivably evoke different effects. Despite the widely reported neuroprotective activity of the CB1 receptor in animal models, the precise pathophysiological relevance of those two CB1 receptor pools in neurodegenerative processes is unknown. Here, we first induced excitotoxic damage in the mouse brain by (i) administering quinolinic acid to conditional mutant animals lacking CB1 receptors selectively in GABAergic or glutamatergic neurons, and (ii) manipulating corticostriatal glutamatergic projections remotely with a designer receptor exclusively activated by designer drug pharmacogenetic approach. We next examined the alterations that occur in the R6/2 mouse, a well-established model of Huntington disease, upon (i) fully knocking out CB1 receptors, and (ii) deleting CB1 receptors selectively in corticostriatal glutamatergic or striatal GABAergic neurons. The data unequivocally identify the restricted population of CB1 receptors located on glutamatergic terminals as an indispensable player in the neuroprotective activity of (endo)cannabinoids, therefore suggesting that this precise receptor pool constitutes a promising target for neuroprotective therapeutic strategies. PMID:24843137

  14. Polycystin-2 activation by inositol 1,4,5-trisphosphate-induced Ca2+ release requires its direct association with the inositol 1,4,5-trisphosphate receptor in a signaling microdomain.

    PubMed

    Sammels, Eva; Devogelaere, Benoit; Mekahli, Djalila; Bultynck, Geert; Missiaen, Ludwig; Parys, Jan B; Cai, Yiqiang; Somlo, Stefan; De Smedt, Humbert

    2010-06-11

    Autosomal dominant polycystic kidney disease is characterized by the loss-of-function of a signaling complex involving polycystin-1 and polycystin-2 (TRPP2, an ion channel of the TRP superfamily), resulting in a disturbance in intracellular Ca(2+) signaling. Here, we identified the molecular determinants of the interaction between TRPP2 and the inositol 1,4,5-trisphosphate receptor (IP(3)R), an intracellular Ca(2+) channel in the endoplasmic reticulum. Glutathione S-transferase pulldown experiments combined with mutational analysis led to the identification of an acidic cluster in the C-terminal cytoplasmic tail of TRPP2 and a cluster of positively charged residues in the N-terminal ligand-binding domain of the IP(3)R as directly responsible for the interaction. To investigate the functional relevance of TRPP2 in the endoplasmic reticulum, we re-introduced the protein in TRPP2(-/-) mouse renal epithelial cells using an adenoviral expression system. The presence of TRPP2 resulted in an increased agonist-induced intracellular Ca(2+) release in intact cells and IP(3)-induced Ca(2+) release in permeabilized cells. Using pathological mutants of TRPP2, R740X and D509V, and competing peptides, we demonstrated that TRPP2 amplified the Ca(2+) signal by a local Ca(2+)-induced Ca(2+)-release mechanism, which only occurred in the presence of the TRPP2-IP(3)R interaction, and not via altered IP(3)R channel activity. Moreover, our results indicate that this interaction was instrumental in the formation of Ca(2+) microdomains necessary for initiating Ca(2+)-induced Ca(2+) release. The data strongly suggest that defects in this mechanism may account for the altered Ca(2+) signaling associated with pathological TRPP2 mutations and therefore contribute to the development of autosomal dominant polycystic kidney disease.

  15. Polycystin-2 Activation by Inositol 1,4,5-Trisphosphate-induced Ca2+ Release Requires Its Direct Association with the Inositol 1,4,5-Trisphosphate Receptor in a Signaling Microdomain*

    PubMed Central

    Sammels, Eva; Devogelaere, Benoit; Mekahli, Djalila; Bultynck, Geert; Missiaen, Ludwig; Parys, Jan B.; Cai, Yiqiang; Somlo, Stefan; De Smedt, Humbert

    2010-01-01

    Autosomal dominant polycystic kidney disease is characterized by the loss-of-function of a signaling complex involving polycystin-1 and polycystin-2 (TRPP2, an ion channel of the TRP superfamily), resulting in a disturbance in intracellular Ca2+ signaling. Here, we identified the molecular determinants of the interaction between TRPP2 and the inositol 1,4,5-trisphosphate receptor (IP3R), an intracellular Ca2+ channel in the endoplasmic reticulum. Glutathione S-transferase pulldown experiments combined with mutational analysis led to the identification of an acidic cluster in the C-terminal cytoplasmic tail of TRPP2 and a cluster of positively charged residues in the N-terminal ligand-binding domain of the IP3R as directly responsible for the interaction. To investigate the functional relevance of TRPP2 in the endoplasmic reticulum, we re-introduced the protein in TRPP2−/− mouse renal epithelial cells using an adenoviral expression system. The presence of TRPP2 resulted in an increased agonist-induced intracellular Ca2+ release in intact cells and IP3-induced Ca2+ release in permeabilized cells. Using pathological mutants of TRPP2, R740X and D509V, and competing peptides, we demonstrated that TRPP2 amplified the Ca2+ signal by a local Ca2+-induced Ca2+-release mechanism, which only occurred in the presence of the TRPP2-IP3R interaction, and not via altered IP3R channel activity. Moreover, our results indicate that this interaction was instrumental in the formation of Ca2+ microdomains necessary for initiating Ca2+-induced Ca2+ release. The data strongly suggest that defects in this mechanism may account for the altered Ca2+ signaling associated with pathological TRPP2 mutations and therefore contribute to the development of autosomal dominant polycystic kidney disease. PMID:20375013

  16. Activation and Regulation of Purinergic P2X Receptor Channels

    PubMed Central

    Coddou, Claudio; Yan, Zonghe; Obsil, Tomas; Huidobro-Toro, J. Pablo

    2011-01-01

    Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions. PMID:21737531

  17. Amyloid-β Pathology and APOE Genotype Modulate Retinoid X Receptor Agonist Activity in Vivo*

    PubMed Central

    Tai, Leon M.; Koster, Kevin P.; Luo, Jia; Lee, Sue H.; Wang, Yue-ting; Collins, Nicole C.; Ben Aissa, Manel; Thatcher, Gregory R. J.; LaDu, Mary Jo

    2014-01-01

    Previous data demonstrate that bexarotene (Bex), retinoid X receptor (RXR) agonist, reduces soluble and insoluble amyloid-β (Aβ) in Alzheimer disease (AD)-transgenic mice either by increasing the levels of mouse apolipoprotein E (apoE) or increasing ABCA1/ABCG1-induced apoE lipoprotein association/lipidation. However, although the mechanism of action of RXR agonists remains unclear, a major concern for their use is human (h)-APOE4, the greatest AD genetic risk factor. If APOE4 imparts a toxic gain-of-function, then increasing apoE4 may increase soluble Aβ, likely the proximal AD neurotoxin. If the APOE4 loss-of-function is lipidation of apoE4, then induction of ABCA1/ABCG1 may be beneficial. In novel EFAD-Tg mice (overexpressing h-Aβ42 with h-APOE), levels of soluble Aβ (Aβ42 and oligomeric Aβ) are highest in E4FAD hippocampus (HP) > E3FAD-HP > E4FAD cortex (CX) > E3FAD-CX, whereas levels of lipoprotein-associated/lipidated apoE have the opposite pattern (6 months). In E4FAD-HP, short-term RXR agonist treatment (Bex or LG100268; 5.75–6 months) increased ABCA1, apoE4 lipoprotein-association/lipidation, and apoE4/Aβ complex, decreased soluble Aβ, and increased PSD95. In addition, hydrogel delivery, which mimics low sustained release, was equally effective as gavage for Bex and LG100268. RXR agonists induced no beneficial effects in the E4FAD-HP in a prevention protocol (5–6 months) and actually increased soluble Aβ levels in E3FAD-CX and E4FAD-CX with the short-term protocol, possibly the result of systemic hepatomegaly. Thus, RXR agonists address the loss-of-function associated with APOE4 and exacerbated by Aβ pathology, i.e. low levels of apoE4 lipoprotein association/lipidation. Further studies are vital to address whether RXR agonists are an APOE4-specific AD therapeutic and the systemic side effects that limit translational application. PMID:25217640

  18. Activation of toll like receptor 4 attenuates GABA synthesis and postsynaptic GABA receptor activities in the spinal dorsal horn via releasing interleukin-1 beta.

    PubMed

    Yan, Xisheng; Jiang, Enshe; Weng, Han-Rong

    2015-01-09

    Toll like receptor 4 (TLR4) is an innate immune pattern recognition receptor, expressed predominantly on microglia in the CNS. Activation of spinal TLR4 plays a critical role in the genesis of pathological pain induced by nerve injury, bone cancer, and tissue inflammation. Currently, it remains unknown how synaptic activities in the spinal dorsal horn are regulated by TLR4 receptors. Through recording GABAergic currents in neurons and glial glutamate transporter currents in astrocytes in rodent spinal slices, we determined whether and how TLR4 modulates GABAergic synaptic activities in the superficial spinal dorsal horn. We found that activation of TLR4 by lipopolysaccharide (LPS) reduces GABAergic synaptic activities through both presynaptic and postsynaptic mechanisms. Specifically, LPS causes the release of IL-1β from microglia. IL-1β in turn suppresses GABA receptor activities at the postsynaptic site through activating protein kinase C (PKC) in neurons. GABA synthesis at the presynaptic site is reduced upon activation of TLR4. Glial glutamate transporter activities are suppressed by IL-1β and PKC activation induced by LPS. The suppression of glial glutamate transporter activities leads to a deficiency of glutamine supply, which results in an attenuation of the glutamate-glutamine cycle-dependent GABA synthesis. These findings shed light on understanding synaptic plasticity induced by activation of TLR4 under neuroinflammation and identify GABA receptors, glial glutamate transporters, IL-1β and PKC as therapeutic targets to abrogate abnormal neuronal activities following activation of TLR4 in pathological pain conditions.

  19. Nongenomic effects of mineralocorticoid receptor activation in the cardiovascular system.

    PubMed

    Mihailidou, Anastasia S; Funder, John W

    2005-01-01

    Fifteen years ago Wehling and colleagues showed unequivocal rapid effects of aldosterone, neither mimicked by cortisol nor blocked by spironolactone, and postulated that these nongenomic effects are mediated via a membrane receptor distinct from the classical mineralocorticoid receptor (MR). Several recent studies have challenged this view. Alzamora et al. showed 11beta-hydroxysteroid denydrogenase 1 and 2 (11betaHSD1, 11betaHSD2) expression in human vascular smooth muscle cells, and that aldosterone rapidly raises intracellular pH via sodium-hydrogen exchange; cortisol is without effect and spironolactone does not block the aldosterone response. When, however, 11betaHSD activity is blocked by carbenoxolone, cortisol shows agonist effects indistinguishable from aldosterone; in addition, the effect of both aldosterone and cortisol is blocked by the open E-ring, water soluble MR antagonist RU28318. In rabbit cardiomyocytes, aldosterone increases intracellular [Na+] by activating Na+/K+/2Cl- cotransport, with secondary effects on Na+/K+ pump activity. Pump current rises approximately 10-fold within 15', is unaffected by actinomycin D or the MR antagonist canrenone, and not elevated by cortisol. Pump current is, however, completely blocked by the open E-ring, water soluble MR antagonist K+ canrenoate and stoichometrically by cortisol. PKCepsilon agonist peptides (but not PKCalpha, PKCdelta or scrambled PKCepsilon peptides) mimic the effect of aldosterone, and PKCepsilon antagonist peptides block the effect. Very recently, cortisol has been shown to mimic the effect of aldosterone when cardiomyocyte redox state is altered by the installation of oxidized glutathione (GSSG) via the pipet, paralleling the effect of carbenoxolone on vascular smooth cells and suggesting possible pathophysiologic roles for an always glucocorticoid occupied MR. PMID:15862816

  20. Modulation of Toll-Like Receptor Activity by Leukocyte Ig-Like Receptors and Their Effects during Bacterial Infection

    PubMed Central

    Pilsbury, Louise E.; Allen, Rachel L.; Vordermeier, Martin

    2010-01-01

    Toll-like receptors (TLRs) are a potent trigger for inflammatory immune responses. Without tight regulation their activation could lead to pathology, so it is imperative to extend our understanding of the regulatory mechanisms that govern TLR expression and function. One family of immunoregulatory proteins which can provide a balancing effect on TLR activity are the Leukocyte Ig-like receptors (LILRs), which act as innate immune receptors for self-proteins. Here we describe the LILR family, their inhibitory effect on TLR activity in cells of the monocytic lineage, their signalling pathway, and their antimicrobial effects during bacterial infection. Agents have already been identified which enhances or inhibits LILR activity raising the future possibility that modulation of LILR function could be used as a means to modulate TLR activity. PMID:20634939

  1. P2Y2 receptor activation regulates the expression of acetylcholinesterase and acetylcholine receptor genes at vertebrate neuromuscular junctions.

    PubMed

    Tung, Edmund K K; Choi, Roy C Y; Siow, Nina L; Jiang, Joy X S; Ling, Karen K Y; Simon, Joseph; Barnard, Eric A; Tsim, Karl W K

    2004-10-01

    At the vertebrate neuromuscular junction (nmj), ATP is known to be coreleased with acetylcholine from the synaptic vesicles. We have previously shown that the P2Y1 receptor is localized at the nmj. Here, we extend the findings to show that another nucleotide receptor, P2Y2, is also localized there and with P2Y1 jointly mediates trophic responses to ATP. The P2Y2 receptor mRNA in rat muscle increased during development and peaked in adulthood. The P2Y2 receptor protein was shown to become restricted to the nmjs during embryonic development, in chick and in rat. In both rat and chick myotubes, P2Y1 and P2Y2 are expressed, increasing with differentiation, but P2Y4 is absent. The P2Y2 agonist UTP stimulated there inositol trisphosphate production and phosphorylation of extracellular signal-regulated kinases, in a dose-dependent manner. These UTP-induced responses were insensitive to the P2Y1-specific antagonist MRS 2179 (2'-deoxy-N6-methyl adenosine 3',5'-diphosphate diammonium salt). In differentiated myotubes, P2Y2 activation induced expression of acetylcholinesterase (AChE) protein (but not control alpha-tubulin). This was shown to arise from AChE promoter activation, mediated by activation of the transcription factor Elk-1. Two Elk-1-responsive elements, located in intron-1 of the AChE promoter, were found by mutation to act in this gene activation initiated at the P2Y2 receptor and also in that initiated at the P2Y1 receptor. Furthermore, the promoters of different acetylcholine receptor subunits were also stimulated by application of UTP to myotubes. These results indicate that ATP regulates postsynaptic gene expressions via a common pathway triggered by the activation of P2Y1 and P2Y2 receptors at the nmjs. PMID:15258260

  2. The glucagon-like peptide 1 (GLP-1) receptor agonist exendin-4 reduces cocaine self-administration in mice.

    PubMed

    Sørensen, Gunnar; Reddy, India A; Weikop, Pia; Graham, Devon L; Stanwood, Gregg D; Wortwein, Gitta; Galli, Aurelio; Fink-Jensen, Anders

    2015-10-01

    Glucagon-like peptide 1 (GLP-1) analogues are used for the treatment of type 2 diabetes. The ability of the GLP-1 system to decrease food intake in rodents has been well described and parallels results from clinical trials. GLP-1 receptors are expressed in the brain, including within the ventral tegmental area (VTA) and the nucleus accumbens (NAc). Dopaminergic neurons in the VTA project to the NAc, and these neurons play a pivotal role in the rewarding effects of drugs of abuse. Based on the anatomical distribution of GLP-1 receptors in the brain and the well-established effects of GLP-1 on food reward, we decided to investigate the effect of the GLP-1 analogue exendin-4 on cocaine- and dopamine D1-receptor agonist-induced hyperlocomotion, on acute and chronic cocaine self-administration, on cocaine-induced striatal dopamine release in mice and on cocaine-induced c-fos activation. Here, we report that GLP-1 receptor stimulation reduces acute and chronic cocaine self-administration and attenuates cocaine-induced hyperlocomotion. In addition, we show that peripheral administration of exendin-4 reduces cocaine-induced elevation of striatal dopamine levels and striatal c-fos expression implicating central GLP-1 receptors in these responses. The present results demonstrate that the GLP-1 system modulates cocaine's effects on behavior and dopamine homeostasis, indicating that the GLP-1 receptor may be a novel target for the pharmacological treatment of drug addiction.

  3. Developmental stability of taurine's activation on glycine receptors in cultured neurons of rat auditory cortex.

    PubMed

    Tang, Zheng-Quan; Lu, Yun-Gang; Chen, Lin

    2008-01-01

    Taurine is an endogenous amino acid that can activate glycine and/or gamma-aminobutyric acid type A (GABA(A)) receptors in the central nervous system. During natural development, taurine's receptor target undergoes a shift from glycine receptors to GABA(A) receptors in cortical neurons. Here, we demonstrate that taurine's receptor target in cortical neurons remains stable during in vitro development. With whole-cell patch-clamp recordings, we found that taurine always activated glycine receptors, rather than GABA(A) receptors, in neurons of rat auditory cortex cultured for 5-22 days. Our results suggest that the functional sensitivity of glycine and GABA(A) receptors to taurine is critically regulated by their developmental environments.

  4. Rapid Remodeling of Invadosomes by Gi-coupled Receptors: DISSECTING THE ROLE OF Rho GTPases.

    PubMed

    Kedziora, Katarzyna M; Leyton-Puig, Daniela; Argenzio, Elisabetta; Boumeester, Anja J; van Butselaar, Bram; Yin, Taofei; Wu, Yi I; van Leeuwen, Frank N; Innocenti, Metello; Jalink, Kees; Moolenaar, Wouter H

    2016-02-26

    Invadosomes are actin-rich membrane protrusions that degrade the extracellular matrix to drive tumor cell invasion. Key players in invadosome formation are c-Src and Rho family GTPases. Invadosomes can reassemble into circular rosette-like superstructures, but the underlying signaling mechanisms remain obscure. Here we show that Src-induced invadosomes in human melanoma cells (A375M and MDA-MB-435) undergo rapid remodeling into dynamic extracellular matrix-degrading rosettes by distinct G protein-coupled receptor agonists, notably lysophosphatidic acid (LPA; acting through the LPA1 receptor) and endothelin. Agonist-induced rosette formation is blocked by pertussis toxin, dependent on PI3K activity and accompanied by localized production of phosphatidylinositol 3,4,5-trisphosphate, whereas MAPK and Ca(2+) signaling are dispensable. Using FRET-based biosensors, we show that LPA and endothelin transiently activate Cdc42 through Gi, concurrent with a biphasic decrease in Rac activity and differential effects on RhoA. Cdc42 activity is essential for rosette formation, whereas G12/13-mediated RhoA-ROCK signaling suppresses the remodeling process. Our results reveal a Gi-mediated Cdc42 signaling axis by which G protein-coupled receptors trigger invadosome remodeling, the degree of which is dictated by the Cdc42-RhoA activity balance. PMID:26740622

  5. Activation of endplate nicotinic acetylcholine receptors by agonists.

    PubMed

    Auerbach, Anthony

    2015-10-15

    The interaction of a small molecule made in one cell with a large receptor made in another is the signature event of cell signaling. Understanding the structure and energy changes associated with agonist activation is important for engineering drugs, receptors and synapses. The nicotinic acetylcholine receptor (AChR) is a ∼300kD ion channel that binds the neurotransmitter acetylcholine (ACh) and other cholinergic agonists to elicit electrical responses in the central and peripheral nervous systems. This mini-review is in two sections. First, general concepts of skeletal muscle AChR operation are discussed in terms of energy landscapes for conformational change. Second, adult vs. fetal AChRs are compared with regard to interaction energies between ACh and agonist-site side chains, measured by single-channel electrophysiology and molecular dynamics simulations. The five aromatic residues that form the core of each agonist binding site can be divided into two working groups, a triad (led by αY190) that behaves similarly at all sites and a coupled pair (led by γW55) that has a large influence on affinity only in fetal AChRs. Each endplate AChR has 5 homologous subunits, two of α(1) and one each of β, δ, and either γ (fetal) or ϵ (adult). These nicotinic AChRs have only 2 functional agonist binding sites located in the extracellular domain, at αδ and either αγ or αϵ subunit interfaces. The receptor undergoes a reversible, global isomerization between structures called C and O. The C shape does not conduct ions and has a relatively low affinity for ACh, whereas O conducts cations and has a higher affinity. When both agonist sites are empty (filled only with water) the probability of taking on the O conformation (PO) is low, <10(-6). When ACh molecules occupy the agonist sites the C→O opening rate constant and C↔O gating equilibrium constant increase dramatically. Following a pulse of ACh at the nerve-muscle synapse, the endplate current rises rapidly

  6. The Structure of the GM-CSF Receptor Complex Reveals a Distinct Mode of Cytokine Receptor Activation

    SciTech Connect

    Hansen, Guido; Hercus, Timothy R.; McClure, Barbara J.; Stomski, Frank C.; Dottore, Mara; Powell, Jason; Ramshaw, Hayley; Woodcock, Joanna M.; Xu, Yibin; Guthridge, Mark; McKinstry, William J.; Lopez, Angel F.; Parker, Michael W.

    2008-08-11

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that controls the production and function of blood cells, is deregulated in clinical conditions such as rheumatoid arthritis and leukemia, yet offers therapeutic value for other diseases. Its receptors are heterodimers consisting of a ligand-specific {alpha} subunit and a {beta}c subunit that is shared with the interleukin (IL)-3 and IL-5 receptors. How signaling is initiated remains an enigma. We report here the crystal structure of the human GM-CSF/GM-CSF receptor ternary complex and its assembly into an unexpected dodecamer or higher-order complex. Importantly, mutagenesis of the GM-CSF receptor at the dodecamer interface and functional studies reveal that dodecamer formation is required for receptor activation and signaling. This unusual form of receptor assembly likely applies also to IL-3 and IL-5 receptors, providing a structural basis for understanding their mechanism of activation and for the development of therapeutics.

  7. Substance P receptor desensitization requires receptor activation but not phospholipase C

    SciTech Connect

    Sugiya, Hiroshi; Putney, J.W. Jr. )

    1988-08-01

    Previous studies have shown that exposure of parotid acinar cells to substance P at 37{degree}C results in activation of phospholipase C, formation of ({sup 3}H)inositol 1,4,5-trisphosphate (IP{sub 3}), and persistent desensitization of the substance P response. In cells treated with antimycin in medium containing glucose, ATP was decreased to {approximately}20% of control values, IP{sub 3} formation was completely inhibited, but desensitization was unaffected. When cells were treated with antimycin in the absence of glucose, cellular ATP was decreased to {approximately}5% of control values, and both IP{sub 3} formation and desensitization were blocked. A series of substance P-related peptides increased the formation of ({sup 3}H)IP{sub 3} and induced desensitization of the substance P response with a similar rank order of potencies. The substance P antagonist, (D-Pro{sup 2}, D-Try{sup 7,9})-substance P, inhibited substance P-induced IP{sub 3} formation and desensitization but did not induce desensitization. These results suggest that the desensitization of substance P-induced IP{sub 3} formation requires agonist activation of a P-type substance P receptor, and that one or more cellular ATP-dependent processes are required for this reaction. However, activation of phospholipase C and the generation of inositol phosphates does not seem to be a prerequisite for desensitization.

  8. Allosteric equilibrium model explains steady-state coupling of beta-adrenergic receptors to adenylate cyclase in turkey erythrocyte membranes.

    PubMed

    Ugur, O; Onaran, H O

    1997-05-01

    We used a simple experimental approach to clarify some contradictory predictions of the collision coupling and equilibrium models (e.g. ternary complex, two-state ternary complex or quinternary complex), which describe G-protein-mediated beta-adrenergic receptor signalling in essentially different manners. Analysis of the steady-state coupling of beta-adrenoceptors to adenylate cyclase in turkey erythrocyte membranes showed that: (1) in the absence of an agonist, Gpp(NH)p (a hydrolysis-resistant analogue of GTP) can activate adenylate cyclase very slowly; (2) this activity reaches a steady state in approx. 5 h, the extent of activity depending on the concentration of the nucleotide; (3) isoprenaline-activated steady-state adenylate cyclase can be inactivated by propranolol (a competitive antagonist that relaxes the receptor activation), in the presence of Gpp(NH)p (which provides a virtual absence of GTPase) and millimolar concentrations of Mg2+ (the rate of this inactivation is relatively fast); (4) increasing the concentration of Gpp(NH)p can saturate the steady-state activity of adenylate cyclase. The saturated enzyme activity was lower than that induced by isoprenaline under the same conditions. This additional agonist-induced activation was reversible. In the light of these results, we conclude that agonist can also activate the guanine nucleotide-saturated system in the absence of GTPase by a mechanism other than guanine nucleotide exchange. We explain these phenomena in the framework of a quinternary complex model as an agonist-induced and receptor-mediated dissociation of guanine nucleotide-saturated residual heterotrimer, the equilibrium concentration of which is not necessarily zero. These results, which suggest a continuous interaction between receptor and G-protein, can hardly be accommodated by the collision coupling model that was originally suggested for the present experimental system and then applied to many other G-protein systems. Therefore we

  9. Allosteric equilibrium model explains steady-state coupling of beta-adrenergic receptors to adenylate cyclase in turkey erythrocyte membranes.

    PubMed Central

    Ugur, O; Onaran, H O

    1997-01-01

    We used a simple experimental approach to clarify some contradictory predictions of the collision coupling and equilibrium models (e.g. ternary complex, two-state ternary complex or quinternary complex), which describe G-protein-mediated beta-adrenergic receptor signalling in essentially different manners. Analysis of the steady-state coupling of beta-adrenoceptors to adenylate cyclase in turkey erythrocyte membranes showed that: (1) in the absence of an agonist, Gpp(NH)p (a hydrolysis-resistant analogue of GTP) can activate adenylate cyclase very slowly; (2) this activity reaches a steady state in approx. 5 h, the extent of activity depending on the concentration of the nucleotide; (3) isoprenaline-activated steady-state adenylate cyclase can be inactivated by propranolol (a competitive antagonist that relaxes the receptor activation), in the presence of Gpp(NH)p (which provides a virtual absence of GTPase) and millimolar concentrations of Mg2+ (the rate of this inactivation is relatively fast); (4) increasing the concentration of Gpp(NH)p can saturate the steady-state activity of adenylate cyclase. The saturated enzyme activity was lower than that induced by isoprenaline under the same conditions. This additional agonist-induced activation was reversible. In the light of these results, we conclude that agonist can also activate the guanine nucleotide-saturated system in the absence of GTPase by a mechanism other than guanine nucleotide exchange. We explain these phenomena in the framework of a quinternary complex model as an agonist-induced and receptor-mediated dissociation of guanine nucleotide-saturated residual heterotrimer, the equilibrium concentration of which is not necessarily zero. These results, which suggest a continuous interaction between receptor and G-protein, can hardly be accommodated by the collision coupling model that was originally suggested for the present experimental system and then applied to many other G-protein systems. Therefore we

  10. Shadows across mu-Star? Constitutively active mu-opioid receptors revisited.

    PubMed

    Connor, Mark

    2009-04-01

    Constitutively active mu-opioid receptors (mu* receptors) are reported to be formed following prolonged agonist treatment of cells or whole animals. mu* receptors signal in the absence of activating ligand and a blockade of mu* activation of G-proteins by naloxone and naltrexone has been suggested to underlie the profound withdrawal syndrome precipitated by these antagonists in vivo. In this issue of the Journal, Divin et al. examined whether treatment of C6 glioma cells with mu-opioid receptor agonists produced constitutively active mu-opioid receptors or other commonly reported adaptations to prolonged agonist treatment. Adenylyl cyclase superactivation was readily apparent following agonist treatment but there was no evidence of the formation of constitutively active mu-opioid receptors. This result challenges the notion that prolonged agonist exposure inevitably produces mu* receptors, and is consistent with many studies of adaptations in neurons produced by chronic agonist treatment. The investigators provide no explanation of their failure to see mu* receptors in C6 cells, but this is perhaps understandable because the molecular nature of mu* receptors remains elusive, and the precise mechanisms that lead to their formation are unknown. Without knowing exactly what mu* receptors are, how they are formed and how they signal, understanding their role in cellular adaptations to prolonged opioid treatment will remain impossible. Studies such as this should refocus attention on establishing the molecular mechanisms that underlie that phenomenon of mu* receptors. PMID:19368530

  11. Peroxisome Proliferator-Activated Receptors in Female Reproduction and Fertility.

    PubMed

    Vitti, Maurizio; Di Emidio, Giovanna; Di Carlo, Michela; Carta, Gaspare; Antonosante, Andrea; Artini, Paolo Giovanni; Cimini, Annamaria; Tatone, Carla; Benedetti, Elisabetta

    2016-01-01

    Reproductive functions may be altered by the exposure to a multitude of endogenous and exogenous agents, drug or environmental pollutants, which are known to affect gene transcription through the peroxisome proliferator-activated receptors (PPARs) activation. PPARs act as ligand activated transcription factors and regulate metabolic processes such as lipid and glucose metabolism, energy homeostasis, inflammation, and cell proliferation and differentiation. All PPARs isotypes are expressed along the hypothalamic-pituitary-gonadal axis and are strictly involved in reproductive functions. Since female fertility and energy metabolism are tightly interconnected, the research on female infertility points towards the exploration of potential PPARs activating/antagonizing compounds, mainly belonging to the class of thiazolidinediones (TZDs) and fibrates, as useful agents for the maintenance of metabolic homeostasis in women with ovarian dysfunctions. In the present review, we discuss the recent evidence about PPARs expression in the hypothalamic-pituitary-gonadal axis and their involvement in female reproduction. Finally, the therapeutic potential of their manipulation through several drugs is also discussed. PMID:27559343

  12. Negative Modulation of Androgen Receptor Transcriptional Activity by Daxx

    PubMed Central

    Lin, Ding-Yen; Fang, Hsin-I; Ma, Ai-Hong; Huang, Yen-Sung; Pu, Yeong-Shiau; Jenster, Guido; Kung, Hsing-Jien; Shih, Hsiu-Ming

    2004-01-01

    The transcriptional activity of the androgen receptor (AR) modulated by positive or negative regulators plays a critical role in controlling the growth and survival of prostate cancer cells. Although numerous positive regulators have been identified, negative regulators of AR are less well understood. We report here that Daxx functions as a negative AR coregulator through direct protein-protein interactions. Overexpression of Daxx suppressed AR-mediated promoter activity in COS-1 and LNCaP cells and AR-mediated prostate-specific antigen expression in LNCaP cells. Conversely, downregulation of endogenous Daxx expression by RNA interference enhances androgen-induced prostate-specific antigen expression in LNCaP cells. In vitro and in vivo interaction studies revealed that Daxx binds to both the amino-terminal and the DNA-binding domain of the AR. Daxx proteins interfere with the AR DNA-binding activity both in vitro and in vivo. Moreover, sumoylation of AR at its amino-terminal domain is involved in Daxx interaction and trans-repression. Together, these findings not only provide a novel role of Daxx in controlling AR transactivation activity but also uncover the mechanism underlying sumoylation-dependent transcriptional repression of the AR. PMID:15572661

  13. Peroxisome Proliferator-Activated Receptors in Female Reproduction and Fertility.

    PubMed

    Vitti, Maurizio; Di Emidio, Giovanna; Di Carlo, Michela; Carta, Gaspare; Antonosante, Andrea; Artini, Paolo Giovanni; Cimini, Annamaria; Tatone, Carla; Benedetti, Elisabetta

    2016-01-01

    Reproductive functions may be altered by the exposure to a multitude of endogenous and exogenous agents, drug or environmental pollutants, which are known to affect gene transcription through the peroxisome proliferator-activated receptors (PPARs) activation. PPARs act as ligand activated transcription factors and regulate metabolic processes such as lipid and glucose metabolism, energy homeostasis, inflammation, and cell proliferation and differentiation. All PPARs isotypes are expressed along the hypothalamic-pituitary-gonadal axis and are strictly involved in reproductive functions. Since female fertility and energy metabolism are tightly interconnected, the research on female infertility points towards the exploration of potential PPARs activating/antagonizing compounds, mainly belonging to the class of thiazolidinediones (TZDs) and fibrates, as useful agents for the maintenance of metabolic homeostasis in women with ovarian dysfunctions. In the present review, we discuss the recent evidence about PPARs expression in the hypothalamic-pituitary-gonadal axis and their involvement in female reproduction. Finally, the therapeutic potential of their manipulation through several drugs is also discussed.

  14. Utilizing Chimeric Antigen Receptors to Direct Natural Killer Cell Activity

    PubMed Central

    Hermanson, David L.; Kaufman, Dan S.

    2015-01-01

    Natural killer (NK) cells represent an attractive lymphocyte population for cancer immunotherapy due to their ability to lyse tumor targets without prior sensitization and without need for human leukocyte antigens-matching. Chimeric antigen receptors (CARs) are able to enhance lymphocyte targeting and activation toward diverse malignancies. CARs consist of an external recognition domain (typically a small chain variable fragment) directed at a specific tumor antigen that is linked with one or more intracellular signaling domains that mediate lymphocyte activation. Most CAR studies have focused on their expression in T cells. However, use of CARs in NK cells is starting to gain traction because they provide a method to redirect these cells more specifically to target refractory cancers. CAR-mediated anti-tumor activity has been demonstrated using NK cell lines, as well as NK cells isolated from peripheral blood, and NK cells produced from human pluripotent stem cells. This review will outline the CAR constructs that have been reported in NK cells with a focus on comparing the use of different signaling domains in combination with other co-activating domains. PMID:25972867

  15. RSUME Enhances Glucocorticoid Receptor SUMOylation and Transcriptional Activity

    PubMed Central

    Druker, Jimena; Liberman, Ana C.; Antunica-Noguerol, María; Gerez, Juan; Paez-Pereda, Marcelo; Rein, Theo; Iñiguez-Lluhí, Jorge A.; Holsboer, Florian

    2013-01-01

    Glucocorticoid receptor (GR) activity is modulated by posttranslational modifications, including phosphorylation, ubiquitination, and SUMOylation. The GR has three SUMOylation sites: lysine 297 (K297) and K313 in the N-terminal domain (NTD) and K721 within the ligand-binding domain. SUMOylation of the NTD sites mediates the negative effect of the synergy control motifs of GR on promoters with closely spaced GR binding sites. There is scarce evidence on the role of SUMO conjugation to K721 and its impact on GR transcriptional activity. We have previously shown that RSUME (RWD-containing SUMOylation enhancer) increases protein SUMOylation. We now demonstrate that RSUME interacts with the GR and increases its SUMOylation. RSUME regulates GR transcriptional activity and the expression of its endogenous target genes, FKBP51 and S100P. RSUME uncovers a positive role for the third SUMOylation site, K721, on GR-mediated transcription, demonstrating that GR SUMOylation acts positively in the presence of a SUMOylation enhancer. Both mutation of K721 and small interfering RNA-mediated RSUME knockdown diminish GRIP1 coactivator activity. RSUME, whose expression is induced under stress conditions, is a key factor in heat shock-induced GR SUMOylation. These results show that inhibitory and stimulatory SUMO sites are present in the GR and at higher SUMOylation levels the stimulatory one becomes dominant. PMID:23508108

  16. Peroxisome Proliferator-Activated Receptors in Female Reproduction and Fertility

    PubMed Central

    Carta, Gaspare; Artini, Paolo Giovanni

    2016-01-01

    Reproductive functions may be altered by the exposure to a multitude of endogenous and exogenous agents, drug or environmental pollutants, which are known to affect gene transcription through the peroxisome proliferator-activated receptors (PPARs) activation. PPARs act as ligand activated transcription factors and regulate metabolic processes such as lipid and glucose metabolism, energy homeostasis, inflammation, and cell proliferation and differentiation. All PPARs isotypes are expressed along the hypothalamic-pituitary-gonadal axis and are strictly involved in reproductive functions. Since female fertility and energy metabolism are tightly interconnected, the research on female infertility points towards the exploration of potential PPARs activating/antagonizing compounds, mainly belonging to the class of thiazolidinediones (TZDs) and fibrates, as useful agents for the maintenance of metabolic homeostasis in women with ovarian dysfunctions. In the present review, we discuss the recent evidence about PPARs expression in the hypothalamic-pituitary-gonadal axis and their involvement in female reproduction. Finally, the therapeutic potential of their manipulation through several drugs is also discussed. PMID:27559343

  17. Visualization of Estrogen Receptor Transcriptional Activation in Zebrafish

    PubMed Central

    Halpern, Marnie E.

    2011-01-01

    Estrogens regulate a diverse range of physiological processes and affect multiple tissues. Estrogen receptors (ERs) regulate transcription by binding to DNA at conserved estrogen response elements, and such elements have been used to report ER activity in cultured cells and in transgenic mice. We generated stable, transgenic zebrafish containing five consecutive elements upstream of a c-fos minimal promoter and green fluorescent protein (GFP) to visualize and quantify transcriptional activation in live larvae. Transgenic larvae show robust, dose-dependent estrogen-dependent fluorescent labeling in the liver, consistent with er gene expression, whereas ER antagonists inhibit GFP expression. The nonestrogenic steroids dexamethasone and progesterone fail to activate GFP, confirming ER selectivity. Natural and synthetic estrogens activated the transgene with varying potency, and two chemicals, genistein and bisphenol A, preferentially induce GFP expression in the heart. In adult fish, fluorescence was observed in estrogenic tissues such as the liver, ovary, pituitary gland, and brain. Individual estrogen-responsive neurons and their projections were visualized in the adult brain, and GFP-positive neurons increased in number after 17β-estradiol exposure. The transgenic estrogen-responsive zebrafish allow ER signaling to be monitored visually and serve as in vivo sentinels for detection of estrogenic compounds. PMID:21540282

  18. High-affinity benzodiazepine receptor ligands among benzodiazepines and betacarbolines with different intrinsic activity

    SciTech Connect

    Yliniemelae, A.; Gynther, J. ); Konschin, H.; Tylli, H. ); Rouvinen, J. )

    1989-01-01

    Structural and electrostatic features of diazepam, flumazenil, and methyl betacarboline-3-carboxylate (BCCM) have been investigated using the molecular superimposition method. These high-affinity benzodiazepine (BZ) receptor ligands are structurally unrelated and they have different intrinsic activity. These ligands are superimposed in such a way that common structural and electrostatic features essential for the high receptor binding affinity overlap. In addition to this binding pharmacophore, there are roughly three separate binding zones in the BZ receptor, one for each class of ligands. The intrinsic activity of BZ receptor ligands depends on the molecular structures and the way the ligand approaches the receptor.

  19. Activation of EphA receptors mediates the recruitment of the adaptor protein Slap, contributing to the downregulation of N-methyl-D-aspartate receptors.

    PubMed

    Semerdjieva, Sophia; Abdul-Razak, Hayder H; Salim, Sharifah S; Yáñez-Muñoz, Rafael J; Chen, Philip E; Tarabykin, Victor; Alifragis, Pavlos

    2013-04-01

    Regulation of the activity of N-methyl-d-aspartate receptors (NMDARs) at glutamatergic synapses is essential for certain forms of synaptic plasticity underlying learning and memory and is also associated with neurotoxicity and neurodegenerative diseases. In this report, we investigate the role of Src-like adaptor protein (Slap) in NMDA receptor signaling. We present data showing that in dissociated neuronal cultures, activation of ephrin (Eph) receptors by chimeric preclustered eph-Fc ligands leads to recruitment of Slap and NMDA receptors at the sites of Eph receptor activation. Interestingly, our data suggest that prolonged activation of EphA receptors is as efficient in recruiting Slap and NMDA receptors as prolonged activation of EphB receptors. Using established heterologous systems, we examined whether Slap is an integral part of NMDA receptor signaling. Our results showed that Slap does not alter baseline activity of NMDA receptors and does not affect Src-dependent potentiation of NMDA receptor currents in Xenopus oocytes. We also demonstrate that Slap reduces excitotoxic cell death triggered by activation of NMDARs in HEK293 cells. Finally, we present evidence showing reduced levels of NMDA receptors in the presence of Slap occurring in an activity-dependent manner, suggesting that Slap is part of a mechanism that homeostatically modulates the levels of NMDA receptors.

  20. Ryanodine receptor dysfunction and triggered activity in the heart.

    PubMed

    Katra, Rodolphe P; Oya, Toshiyuki; Hoeker, Gregory S; Laurita, Kenneth R

    2007-05-01

    Arrhythmogenesis has been increasingly linked to cardiac ryanodine receptor (RyR) dysfunction. However, the mechanistic relationship between abnormal RyR function and arrhythmogenesis in the heart is not clear. We hypothesize that, under abnormal RyR conditions, triggered activity will be caused by spontaneous calcium release (SCR) events that depend on transmural heterogeneities of calcium handling. We performed high-resolution optical mapping of intracellular calcium and transmembrane potential in the canine left ventricular wedge preparation (n = 28). Rapid pacing was used to initiate triggered activity under normal and abnormal RyR conditions induced by FKBP12.6 dissociation and beta-adrenergic stimulation (20-150 microM rapamycin, 0.2 microM isoproterenol). Under abnormal RyR conditions, almost all preparations experienced SCRs and triggered activity, in contrast to control, rapamycin, or isoproterenol conditions alone. Furthermore, under abnormal RyR conditions, complex arrhythmias (monomorphic and polymorphic tachycardia) were commonly observed. After washout of rapamycin and isoproterenol, no triggered activity was observed. Surprisingly, triggered activity and SCRs occurred preferentially near the epicardium but not the endocardium (P < 0.01). Interestingly, the occurrence of triggered activity and SCR events could not be explained by cytoplasmic calcium levels, but rather by fast calcium reuptake kinetics. These data suggest that, under abnormal RyR conditions, triggered activity is caused by multiple SCR events that depend on the faster calcium reuptake kinetics near the epicardium. Furthermore, multiple regions of SCR may be a mechanism for multifocal arrhythmias associated with RyR dysfunction. PMID:17189349

  1. Reengineering the collision coupling and diffusion mode of the A2A-adenosine receptor: palmitoylation in helix 8 relieves confinement.

    PubMed

    Keuerleber, Simon; Thurner, Patrick; Gruber, Christian W; Zezula, Jürgen; Freissmuth, Michael

    2012-12-01

    The A(2A)-adenosine receptor undergoes restricted collision coupling with its cognate G protein G(s) and lacks a palmitoylation site at the end of helix 8 in its intracellular C terminus. We explored the hypothesis that there was a causal link between the absence of a palmitoyl moiety and restricted collision coupling by introducing a palmitoylation site. The resulting mutant A(2A)-R309C receptor underwent palmitoylation as verified by both mass spectrometry and metabolic labeling. In contrast to the wild type A(2A) receptor, the concentration-response curve for agonist-induced cAMP accumulation was shifted to the left with increasing expression levels of A(2A)-R309C receptor, an observation consistent with collision coupling. Single particle tracking of quantum dot-labeled receptors confirmed that wild type and mutant A(2A) receptor differed in diffusivity and diffusion mode; agonist activation resulted in a decline in mean square displacement of both receptors, but the drop was substantially more pronounced for the wild type receptor. In addition, in the agonist-bound state, the wild type receptor was frequently subject to confinement events (estimated radius 110 nm). These were rarely seen with the palmitoylated A(2A)-R309C receptor, the preferred diffusion mode of which was a random walk in both the basal and the agonist-activated state. Taken together, the observations link restricted collision coupling to diffusion limits imposed by the absence of a palmitoyl moiety in the C terminus of the A(2A) receptor. The experiments allowed for visualizing local confinement of an agonist-activated G protein-coupled receptor in an area consistent with the dimensions of a lipid raft. PMID:23071116

  2. Activation of transmembrane cell‐surface receptors via a common mechanism? The “rotation model”

    PubMed Central

    2015-01-01

    It has long been thought that transmembrane cell‐surface receptors, such as receptor tyrosine kinases and cytokine receptors, among others, are activated by ligand binding through ligand‐induced dimerization of the receptors. However, there is growing evidence that prior to ligand binding, various transmembrane receptors have a preformed, yet inactive, dimeric structure on the cell surface. Various studies also demonstrate that during transmembrane signaling, ligand binding to the extracellular domain of receptor dimers induces a rotation of transmembrane domains, followed by rearrangement and/or activation of intracellular domains. The paper here describes transmembrane cell‐surface receptors that are known or proposed to exist in dimeric form prior to ligand binding, and discusses how these preformed dimers are activated by ligand binding. PMID:26241732

  3. Activation of serotonin receptors promotes microglial injury-induced motility but attenuates phagocytic activity.

    PubMed

    Krabbe, Grietje; Matyash, Vitali; Pannasch, Ulrike; Mamer, Lauren; Boddeke, Hendrikus W G M; Kettenmann, Helmut

    2012-03-01

    Microglia, the brain immune cell, express several neurotransmitter receptors which modulate microglial functions. In this project we studied the impact of serotonin receptor activation on distinct microglial properties as serotonin deficiency not only has been linked to a number of psychiatric disease like depression and anxiety but may also permeate from the periphery through blood-brain barrier openings seen in neurodegenerative disease. First, we tested the impact of serotonin on the microglial response to an insult caused by a laser lesion in the cortex of acute slices from Cx3Cr1-GFP-/+ mice. In the presence of serotonin the microglial processes moved more rapidly towards the laser lesion which is considered to be a chemotactic response to ATP. Similarly, the chemotactic response of cultured microglia to ATP was also enhanced by serotonin. Quantification of phagocytic activity by determining the uptake of microspheres showed that the amoeboid microglia in slices from early postnatal animals or microglia in culture respond to serotonin application with a decreased phagocytic activity whereas we could not detect any significant change in ramified microglia in situ. The presence of microglial serotonin receptors was confirmed by patch-clamp experiments in culture and amoeboid microglia and by qPCR analysis of RNA isolated from primary cultured and acutely isolated adult microglia. These data suggest that microglia express functional serotonin receptors linked to distinct microglial properties. PMID:22198120

  4. Thrombin-Mediated Direct Activation of Proteinase-Activated Receptor-2: Another Target for Thrombin Signaling.

    PubMed

    Mihara, Koichiro; Ramachandran, Rithwik; Saifeddine, Mahmoud; Hansen, Kristina K; Renaux, Bernard; Polley, Danny; Gibson, Stacy; Vanderboor, Christina; Hollenberg, Morley D

    2016-05-01

    Thrombin is known to signal to cells by cleaving/activating a G-protein-coupled family of proteinase-activated receptors (PARs). The signaling mechanism involves the proteolytic unmasking of an N-terminal receptor sequence that acts as a tethered receptor-activating ligand. To date, the recognized targets of thrombin cleavage and activation for signaling are PAR1 and PAR4, in which thrombin cleaves at a conserved target arginine to reveal a tethered ligand. PAR2, which like PAR1 is also cleaved at an N-terminal arginine to unmask its tethered ligand, is generally regarded as a target for trypsin but not for thrombin signaling. We now show that thrombin, at concentrations that can be achieved at sites of acute injury or in a tumor microenvironment, can directly activate PAR2 vasorelaxation and signaling, stimulating calcium and mitogen-activated protein kinase responses along with triggeringβ-arrestin recruitment. Thus, PAR2 can be added alongside PAR1 and PAR4 to the targets, whereby thrombin can affect tissue function.

  5. Hypersensitivity Induced by Activation of Spinal Cord PAR2 Receptors Is Partially Mediated by TRPV1 Receptors

    PubMed Central

    Mrozkova, Petra; Spicarova, Diana; Palecek, Jiri

    2016-01-01

    Protease-activated receptors 2 (PAR2) and transient receptor potential vanilloid 1 (TRPV1) receptors in the peripheral nerve endings are implicated in the development of increased sensitivity to mechanical and thermal stimuli, especially during inflammatory states. Both PAR2 and TRPV1 receptors are co-expressed in nociceptive dorsal root ganglion (DRG) neurons on their peripheral endings and also on presynaptic endings in the spinal cord dorsal horn. However, the modulation of nociceptive synaptic transmission in the superficial dorsal horn after activation of PAR2 and their functional coupling with TRPV1 is not clear. To investigate the role of spinal PAR2 activation on nociceptive modulation, intrathecal drug application was used in behavioural experiments and patch-clamp recordings of spontaneous, miniature and dorsal root stimulation-evoked excitatory postsynaptic currents (sEPSCs, mEPSCs, eEPSCs) were performed on superficial dorsal horn neurons in acute rat spinal cord slices. Intrathecal application of PAR2 activating peptide SLIGKV-NH2 induced thermal hyperalgesia, which was prevented by pretreatment with TRPV1 antagonist SB 366791 and was reduced by protein kinases inhibitor staurosporine. Patch-clamp experiments revealed robust decrease of mEPSC frequency (62.8 ± 4.9%), increase of sEPSC frequency (127.0 ± 5.9%) and eEPSC amplitude (126.9 ± 12.0%) in dorsal horn neurons after acute SLIGKV-NH2 application. All these EPSC changes, induced by PAR2 activation, were prevented by SB 366791 and staurosporine pretreatment. Our results demonstrate an important role of spinal PAR2 receptors in modulation of nociceptive transmission in the spinal cord dorsal horn at least partially mediated by activation of presynaptic TRPV1 receptors. The functional coupling between the PAR2 and TRPV1 receptors on the central branches of DRG neurons may be important especially during different pathological states when it may enhance pain perception. PMID:27755539

  6. Angiotensin II AT1 receptor constitutive activation: from molecular mechanisms to pathophysiology.

    PubMed

    Petrel, Christophe; Clauser, Eric

    2009-04-29

    Mutations activating the angiotensin II AT(1) receptor are important to identify and characterize because they give access to the activation mechanisms of this G protein coupled receptor and help to characterize the signaling pathways and the potential pathophysiology of this receptor. The different constitutively activated mutations of the AT(1) receptor are mostly localized in transmembrane domains (TM) and their characterization demonstrated that release of intramolecular constraints and movements among these TM are a necessary step for receptor activation. These mutations constitutively activate Gq linked signaling pathways, receptor internalization and maybe the G protein-independent signaling pathways. Expression of such mutations in mice is linked to hypertension and cardiovascular diseases, but such natural mutations have not been identified in human pathology. PMID:19061936

  7. Receptor number and caveolar co-localization determine receptor coupling efficiency to adenylyl cyclase.

    PubMed

    Ostrom, R S; Gregorian, C; Drenan, R M; Xiang, Y; Regan, J W; Insel, P A

    2001-11-01

    Recent evidence suggests that many signaling molecules localize in microdomains of the plasma membrane, particularly caveolae. In this study, overexpression of adenylyl cyclase was used as a functional probe of G protein-coupled receptor (GPCR) compartmentation. We found that three endogenous receptors in neonatal rat cardiomyocytes couple with different levels of efficiency to the activation of adenylyl cyclase type 6 (AC6), which localizes to caveolin-rich membrane fractions. Overexpression of AC6 enhanced the maximal cAMP response to beta(1)-adrenergic receptor (beta(1)AR)-selective activation 3.7-fold, to beta(2)AR-selective activation only 1.6-fold and to prostaglandin E(2) (PGE(2)) not at all. Therefore, the rank order of efficacy in coupling to AC6 is beta(1)AR > beta(2)AR > prostaglandin E(2) receptor (EP(2)R). beta(2)AR coupling efficiency was greater when we overexpressed the receptor or blocked its desensitization by expressing betaARKct, an inhibitor of G protein-coupled receptor kinase activation, but was not significantly greater when cells were treated with pertussis toxin. Assessment of receptor and AC expression indicated co-localization of AC5/6, beta(1)AR, and beta(2)AR, but not EP(2)R, in caveolin-rich membranes and caveolin-3 immunoprecipitates, likely explaining the observed activation of AC6 by betaAR subtypes but lack thereof by PGE(2). When cardiomyocytes were stimulated with a betaAR agonist, beta(2)AR were no longer found in caveolin-3 immunoprecipitates; an effect that was blocked by expression of betaARKct. Thus, agonist-induced translocation of beta(2)AR out of caveolae causes a sequestration of receptor from effector and likely contributes to the lower efficacy of beta(2)AR coupling to AC6 as compared with beta(1)AR, which do not similarly translocate. Therefore, spatial co-localization is a key determinant of efficiency of coupling by particular extracellular signals to activation of GPCR-linked effectors. PMID:11533056

  8. Receptor number and caveolar co-localization determine receptor coupling efficiency to adenylyl cyclase.

    PubMed

    Ostrom, R S; Gregorian, C; Drenan, R M; Xiang, Y; Regan, J W; Insel, P A

    2001-11-01

    Recent evidence suggests that many signaling molecules localize in microdomains of the plasma membrane, particularly caveolae. In this study, overexpression of adenylyl cyclase was used as a functional probe of G protein-coupled receptor (GPCR) compartmentation. We found that three endogenous receptors in neonatal rat cardiomyocytes couple with different levels of efficiency to the activation of adenylyl cyclase type 6 (AC6), which localizes to caveolin-rich membrane fractions. Overexpression of AC6 enhanced the maximal cAMP response to beta(1)-adrenergic receptor (beta(1)AR)-selective activation 3.7-fold, to beta(2)AR-selective activation only 1.6-fold and to prostaglandin E(2) (PGE(2)) not at all. Therefore, the rank order of efficacy in coupling to AC6 is beta(1)AR > beta(2)AR > prostaglandin E(2) receptor (EP(2)R). beta(2)AR coupling efficiency was greater when we overexpressed the receptor or blocked its desensitization by expressing betaARKct, an inhibitor of G protein-coupled receptor kinase activation, but was not significantly greater when cells were treated with pertussis toxin. Assessment of receptor and AC expression indicated co-localization of AC5/6, beta(1)AR, and beta(2)AR, but not EP(2)R, in caveolin-rich membranes and caveolin-3 immunoprecipitates, likely explaining the observed activation of AC6 by betaAR subtypes but lack thereof by PGE(2). When cardiomyocytes were stimulated with a betaAR agonist, beta(2)AR were no longer found in caveolin-3 immunoprecipitates; an effect that was blocked by expression of betaARKct. Thus, agonist-induced translocation of beta(2)AR out of caveolae causes a sequestration of receptor from effector and likely contributes to the lower efficacy of beta(2)AR coupling to AC6 as compared with beta(1)AR, which do not similarly translocate. Therefore, spatial co-localization is a key determinant of efficiency of coupling by particular extracellular signals to activation of GPCR-linked effectors.

  9. Contribution of regional brain melanocortin receptor subtypes to elevated activity energy expenditure in lean, active rats.

    PubMed

    Shukla, C; Koch, L G; Britton, S L; Cai, M; Hruby, V J; Bednarek, M; Novak, C M

    2015-12-01

    Physical activity and non-exercise activity thermogenesis (NEAT) are crucial factors accounting for individual differences in body weight, interacting with genetic predisposition. In the brain, a number of neuroendocrine intermediates regulate food intake and energy expenditure (EE); this includes the brain melanocortin (MC) system, consisting of MC peptides as well as their receptors (MCR). MC3R and MC4R have emerged as critical modulators of EE and food intake. To determine how variance in MC signaling may underlie individual differences in physical activity levels, we examined behavioral response to MC receptor agonists and antagonists in rats that show high and low levels of physical activity and NEAT, that is, high- and low-capacity runners (HCR, LCR), developed by artificial selection for differential intrinsic aerobic running capacity. Focusing on the hypothalamus, we identified brain region-specific elevations in expression of MCR 3, 4, and also MC5R, in the highly active, lean HCR relative to the less active and obesity-prone LCR. Further, the differences in activity and associated EE as a result of MCR activation or suppression using specific agonists and antagonists were similarly region-specific and directly corresponded to the differential MCR expression patterns. The agonists and antagonists investigated here did not significantly impact food intake at the doses used, suggesting that the differential pattern of receptor expression may by more meaningful to physical activity than to other aspects of energy balance regulation. Thus, MCR-mediated physical activity may be a key neural mechanism in distinguishing the lean phenotype and a target for enhancing physical activity and NEAT.

  10. Sustained Receptor Stimulation Leads to Sequestration of Recycling Endosomes in a Classical Protein Kinase C- and Phospholipase D-dependent Manner*

    PubMed Central

    Idkowiak-Baldys, Jolanta; Baldys, Aleksander; Raymond, John R.; Hannun, Yusuf A.

    2009-01-01

    Considerable insight has been garnered on initial mechanisms of endocytosis of plasma membrane proteins and their subsequent trafficking through the endosomal compartment. It is also well established that ligand stimulation of many plasma membrane receptors leads to their internalization. However, stimulus-induced regulation of endosomal trafficking has not received much attention. In previous studies, we showed that sustained stimulation of protein kinase C (PKC) with phorbol esters led to sequestration of recycling endosomes in a juxtanuclear region. In this study, we investigated whether G-protein-coupled receptors that activate PKC exerted effects on endosomal trafficking. Stimulation of cells with serotonin (5-hydroxytryptamine (5-HT)) led to sequestration of the 5-HT receptor (5-HT2AR) into a Rab11-positive juxtanuclear compartment. This sequestration coincided with translocation of PKC as shown by confocal microscopy. Mechanistically the observed sequestration of 5-HT2AR was shown to require continuous PKC activity because it was inhibited by pretreatment with classical PKC inhibitor Gö6976 and could be reversed by posttreatment with this inhibitor. In addition, classical PKC autophosphorylation was necessary for receptor sequestration. Moreover inhibition of phospholipase D (PLD) activity and inhibition of PLD1 and PLD2 using dominant negative constructs also prevented this process. Functionally this sequestration did not affect receptor desensitization or resensitization as measured by intracellular calcium increase. However, the PKC- and PLD-dependent sequestration of receptors resulted in co-sequestration of other plasma membrane proteins and receptors as shown for epidermal growth factor receptor and protease activated receptor-1. This led to heterologous desensitization of those receptors and diverted their cellular fate by protecting them from agonist-induced degradation. Taken together, these results demonstrate a novel role for sustained receptor

  11. Activation of transient receptor potential ankyrin 1 by eugenol.

    PubMed

    Chung, G; Im, S T; Kim, Y H; Jung, S J; Rhyu, M-R; Oh, S B

    2014-03-01

    Eugenol is a bioactive plant extract used as an analgesic agent in dentistry. The structural similarity of eugenol to cinnamaldehyde, an active ligand for transient receptor potential ankyrin 1 (TRPA1), suggests that eugenol might produce its effect via TRPA1, in addition to TRPV1 as we reported previously. In this study, we investigated the effect of eugenol on TRPA1, by fura-2-based calcium imaging and patch clamp recording in trigeminal ganglion neurons and in a heterologous expression system. As the result, eugenol induced robust calcium responses in rat trigeminal ganglion neurons that responded to a specific TRPA1 agonist, allyl isothiocyanate (AITC), and not to capsaicin. Capsazepine, a TRPV1 antagonist failed to inhibit eugenol-induced calcium responses in AITC-responding neurons. In addition, eugenol response was observed in trigeminal ganglion neurons from TRPV1 knockout mice and human embryonic kidney 293 cell lines that express human TRPA1, which was inhibited by TRPA1-specific antagonist HC-030031. Eugenol-evoked TRPA1 single channel activity and eugenol-induced TRPA1 currents were dose-dependent with EC50 of 261.5μM. In summary, these results demonstrate that the activation of TRPA1 might account for another molecular mechanism underlying the pharmacological action of eugenol.

  12. Odorant receptor-mediated sperm activation in disease vector mosquitoes

    PubMed Central

    Pitts, R. Jason; Liu, Chao; Zhou, Xiaofan; Malpartida, Juan C.; Zwiebel, Laurence J.

    2014-01-01

    Insects, such as the malaria vector mosquito, Anopheles gambiae, depend upon chemoreceptors to respond to volatiles emitted from a range of environmental sources, most notably blood meal hosts and oviposition sites. A subset of peripheral signaling pathways involved in these insect chemosensory-dependent behaviors requires the activity of heteromeric odorant receptor (OR) ion channel complexes and ligands for numerous A. gambiae ORs (AgOrs) have been identified. Although AgOrs are expressed in nonhead appendages, studies characterizing potential AgOr function in nonolfactory tissues have not been conducted. In the present study, we explore the possibility that AgOrs mediate responses of spermatozoa to endogenous signaling molecules in A. gambiae. In addition to finding AgOr transcript expression in testes, we show that the OR coreceptor, AgOrco, is localized to the flagella of A. gambiae spermatozoa where Orco-specific agonists, antagonists, and other odorant ligands robustly activate flagella beating in an Orco-dependent process. We also demonstrate Orco expression and Orco-mediated activation of spermatozoa in the yellow fever mosquito, Aedes aegypti. Moreover, we find Orco localization in testes across distinct insect taxa and posit that OR-mediated responses in spermatozoa may represent a general characteristic of insect reproduction and an example of convergent evolution. PMID:24550284

  13. Activated Scavenger Receptor A Promotes Glial Internalization of Aβ

    PubMed Central

    Zhou, Wei-wei; Wang, Shao-wei; Xu, Peng-xin; Yu, Xiao-lin; Liu, Rui-tian

    2014-01-01

    Beta-amyloid (Aβ) aggregates have a pivotal role in pathological processing of Alzheimer’s disease (AD). The clearance of Aβ monomer or aggregates is a causal strategy for AD treatment. Microglia and astrocytes are the main macrophages that exert critical neuroprotective roles in the brain. They may effectively clear the toxic accumulation of Aβ at the initial stage of AD, however, their functions are attenuated because of glial overactivation. In this study, we first showed that heptapeptide XD4 activates the class A scavenger receptor (SR-A) on the glia by increasing the binding of Aβ to SR-A, thereby promoting glial phagocytosis of Aβ oligomer in microglia and astrocytes and triggering intracellular mitogen-activated protein kinase (MAPK) signaling cascades. Moreover, XD4 enhances the internalization of Aβ monomers to microglia and astrocytes through macropinocytosis or SR-A-mediated phagocytosis. Furthermore, XD4 significantly inhibits Aβ oligomer-induced cytotoxicity to glial cells and decreases the production of proinflammatory cytokines, such as TNF-α and IL-1β, in vitro and in vivo. Our findings may provide a novel strategy for AD treatment by activating SR-A. PMID:24718459

  14. The interplay between plasma membrane and endoplasmic reticulum Ca(2+)ATPases in agonist-induced temporal Ca(2+) dynamics.

    PubMed

    Cicek, Figen Amber; Ozgur, Ekin Ozge; Ozgur, Erol; Ugur, Mehmet

    2014-12-01

    A change in the intracellular free Ca(2+) concentration ([Ca(2+)]i) functions as a transmitter for signal transduction and shows a broad temporal pattern. Even genetically homogeneous cell types show different Ca(2+) response patterns under permanent agonist stimulation. In Ca(2+) signaling, the dynamics of the Ca(2+) release from the Ca(2+) channels during continuous agonist stimulation and the simultaneous effect of the pumps are unclear. In this study, the dynamic interaction of the Ca(2+) ATPases in the plasma membrane (PMCA) and the endoplasmic reticulum membrane (SERCA) during continuous ACh stimulation is monitored using Fluo-3 and Fura-2 loaded HEK 293 cells. We characterize Ca(2+) release patterns at the sub-maximal and maximal stimulation doses in the absence of extracellular Ca(2+). We analyze the responses regarding their types, oscillation frequency and response times. La(3+) (PMCA blocker) do not change the frequency and time courses in sub-maximal ACh treatment, while with the maximal stimulation oscillation frequency increase as oscillations superimpose on robust release, and response time of [Ca(2+)]i is elongated. A similar effect of La(3+) is observed in quantal Ca(2+) release phenomenon. In the presence of CPA, a SERCA blocker, oscillations are completely abolished, but response time does not change. We also observe that during continuous receptor stimulation, Ca(2+) release do not cease. These data may suggest that Ca(2+) release continues during agonist stimulation, but SERCA and PMCA form a new steady state and return [Ca(2+)]i to its physiological concentration. PMID:25331516

  15. Characterization of the intrinsic activity for a novel class of cannabinoid receptor ligands: Indole quinuclidine analogs.

    PubMed

    Franks, Lirit N; Ford, Benjamin M; Madadi, Nikhil R; Penthala, Narsimha R; Crooks, Peter A; Prather, Paul L

    2014-08-15

    Our laboratory recently reported that a group of novel indole quinuclidine analogs bind with nanomolar affinity to cannabinoid type-1 and type-2 receptors. This study characterized the intrinsic activity of these compounds by determining whether they exhibit agonist, antagonist, or inverse agonist activity at cannabinoid type-1 and/or type-2 receptors. Cannabinoid receptors activate Gi/Go-proteins that then proceed to inhibit activity of the downstream intracellular effector adenylyl cyclase. Therefore, intrinsic activity was quantified by measuring the ability of compounds to modulate levels of intracellular cAMP in intact cells. Concerning cannabinoid type-1 receptors endogenously expressed in Neuro2A cells, a single analog exhibited agonist activity, while eight acted as neutral antagonists and two possessed inverse agonist activity. For cannabinoid type-2 receptors stably expressed in CHO cells, all but two analogs acted as agonists; these two exceptions exhibited inverse agonist activity. Confirming specificity at cannabinoid type-1 receptors, modulation of adenylyl cyclase activity by all proposed agonists and inverse agonists was blocked by co-incubation with the neutral cannabinoid type-1 antagonist O-2050. All proposed cannabinoid type-1 receptor antagonists attenuated adenylyl cyclase modulation by cannabinoid agonist CP-55,940. Specificity at cannabinoid type-2 receptors was confirmed by failure of all compounds to modulate adenylyl cyclase activity in CHO cells devoid of cannabinoid type-2 receptors. Further characterization of select analogs demonstrated concentration-dependent modulation of adenylyl cyclase activity with potencies similar to their respective affinities for cannabinoid receptors. Therefore, indole quinuclidines are a novel structural class of compounds exhibiting high affinity and a range of intrinsic activity at cannabinoid type-1 and type-2 receptors.

  16. Characterization of the intrinsic activity for a novel class of cannabinoid receptor ligands: Indole Quinuclidine analogues

    PubMed Central

    Franks, Lirit N.; Ford, Benjamin M.; Madadi, Nikhil R.; Penthala, Narsimha R.; Crooks, Peter A.; Prather, Paul L.

    2014-01-01

    Our laboratory recently reported that a group of novel indole quinuclidine analogues bind with nanomolar affinity to cannabinoid type-1 and type-2 receptors. This study characterized the intrinsic activity of these compounds by determining whether they exhibit agonist, antagonist, or inverse agonist activity at cannabinoid type-1 and/or type-2 receptors. Cannabinoid receptors activate Gi/Go-proteins that then proceed to inhibit activity of the downstream intracellular effector adenylyl cyclase. Therefore, intrinsic activity was quantified by measuring the ability of compounds to modulate levels of intracellular cAMP in intact cells. Concerning cannabinoid type-1 receptors endogenously expressed in Neuro2A cells, a single analogue exhibited agonist activity, while eight acted as neutral antagonists and two possessed inverse agonist activity. For cannabinoid type-2 receptors stably expressed in CHO cells, all but two analogues acted as agonists; these two exceptions exhibited inverse agonist activity. Confirming specificity at cannabinoid type-1 receptors, modulation of adenylyl cyclase activity by all proposed agonists and inverse agonists was blocked by co-incubation with the neutral cannabinoid type-1 antagonist O-2050. All proposed cannabinoid type-1 receptor antagonists attenuated adenylyl cyclase modulation by cannabinoid agonist CP-55,940. Specificity at cannabinoid type-2 receptors was confirmed by failure of all compounds to modulate adenylyl cyclase activity in CHO cells devoid of cannabinoid type-2 receptors. Further characterization of select analogues demonstrated concentration-dependent modulation of adenylyl cyclase activity with potencies similar to their respective affinities for cannabinoid receptors. Therefore, indole quinuclidines are a novel structural class of compounds exhibiting high affinity and a range of intrinsic activity at cannabinoid type-1 and type-2 receptors. PMID:24858620

  17. Switching of chemoattractant receptors programs development and morphogenesis in Dictyostelium: receptor subtypes activate common responses at different agonist concentrations.

    PubMed

    Kim, J Y; Borleis, J A; Devreotes, P N

    1998-05-01

    One of the common functional features among G-protein coupled receptors is the occurrence of multiple subtypes involved in similar signal transduction events. The cAMP chemoattractant receptor family of Dictyostelium discoideum is composed of four receptors (cAR1-cAR4), which are expressed sequentially throughout the developmental transition from a unicellular to a multicellular organism. The receptors differ in affinity for cAMP and in the sequences of their C-terminal domains. In this study, we constitutively expressed cAR1, cAR2, and cAR3 as well as a series of chimeric and mutant receptors and assessed the capacity of each to mediate chemotaxis, activation of adenylyl cyclase and actin polymerization, and rescue the developmental defect of car1-/car3- cells. We found that various receptors and mutants sense different concentration ranges of cAMP but all can mediate identical responses during the aggregation stage of development. The responses displayed very similar kinetics, suggesting no major differences in regulatory properties attributable to the C-terminal domains. We speculate that switching of receptor subtypes during development enables the organism to respond to the changing concentrations of the chemoattractant and thereby program morphogenesis appropriately. PMID:9578623

  18. GabaB receptors activation in the NTS blocks the glycemic responses induced by carotid body receptor stimulation.

    PubMed

    Lemus, Mónica; Montero, Sergio; Cadenas, José Luis; Lara, José Jesús; Tejeda-Chávez, Héctor Rafael; Alvarez-Buylla, Ramón; de Alvarez-Buylla, Elena Roces

    2008-08-18

    The carotid body receptors participate in glucose regulation sensing glucose levels in blood entering the cephalic circulation. The carotid body receptors information, is initially processed within the nucleus tractus solitarius (NTS) and elicits changes in circulating glucose and brain glucose uptake. Previous work has shown that gamma-aminobutyric acid (GABA) in NTS modulates respiratory reflexes, but the role of GABA within NTS in glucose regulation remains unknown. Here we show that GABA(B) receptor agonist (baclofen) or antagonists (phaclofen and CGP55845A) locally injected into NTS modified arterial glucose levels and brain glucose retention. Control injections outside NTS did not elicit these responses. In contrast, GABA(A) agonist and antagonist (muscimol or bicuculline) produced no significant changes in blood glucose levels. When these GABAergic drugs were applied before carotid body receptors stimulation, again, only GABA(B) agonist or antagonist significantly affected glycemic responses; baclofen microinjection significantly reduced the hyperglycemic response and brain glucose retention observed after carotid body receptors stimulation, while phaclofen produced the opposite effect, increasing significantly hyperglycemia and brain glucose retention. These results indicate that activation of GABA(B), but not GABA(A), receptors in the NTS modulates the glycemic responses after anoxic stimulation of the carotid body receptors, and suggest the presence of a tonic inhibitory mechanism in the NTS to avoid hyperglycemia.

  19. SENESCENCE-ASSOCIATED DECLINE IN HEPATIC PEROXISOMAL ENZYME ACTIVITIES CORRESPONDS WITH DIMINISHED LEVELS OF RETINOID X RECEPTOR ALPHA, BUT NOT PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR ALPHA1

    EPA Science Inventory

    Abstract

    Aging is associated with alterations in hepatic peroxisomal metabolism and susceptibility to hepatocarcinogenecity produced by agonists of peroxisome proliferator-activated receptor alpha (PPARa). Mechanisms involved in these effects are not well understood. Howev...

  20. Differential effects of exercise on brain opioid receptor binding and activation in rats.

    PubMed

    Arida, Ricardo Mario; Gomes da Silva, Sérgio; de Almeida, Alexandre Aparecido; Cavalheiro, Esper Abrão; Zavala-Tecuapetla, Cecilia; Brand, Serge; Rocha, Luisa

    2015-01-01

    Physical exercise stimulates the release of endogenous opioid peptides supposed to be responsible for changes in mood, anxiety, and performance. Exercise alters sensitivity to these effects that modify the efficacy at the opioid receptor. Although there is evidence that relates exercise to neuropeptide expression in the brain, the effects of exercise on opioid receptor binding and signal transduction mechanisms downstream of these receptors have not been explored. Here, we characterized the binding and G protein activation of mu opioid receptor, kappa opioid receptor or delta opioid receptor in several brain regions following acute (7 days) and chronic (30 days) exercise. As regards short- (acute) or long-term effects (chronic) of exercise, overall, higher opioid receptor binding was observed in acute-exercise animals and the opposite was found in the chronic-exercise animals. The binding of [(35) S]GTPγS under basal conditions (absence of agonists) was elevated in sensorimotor cortex and hippocampus, an effect more evident after chronic exercise. Divergence of findings was observed for mu opioid receptor, kappa opioid receptor, and delta opioid receptor receptor activation in our study. Our results support existing evidence of opioid receptor binding and G protein activation occurring differentially in brain regions in response to diverse exercise stimuli. We characterized the binding and G protein activation of mu, kappa, and delta opioid receptors in several brain regions following acute (7 days) and chronic (30 days) exercise. Higher opioid receptor binding was observed in the acute exercise animal group and opposite findings in the chronic exercise group. Higher G protein activation under basal conditions was noted in rats submitted to chronic exercise, as visible in the depicted pseudo-color autoradiograms. PMID:25330347

  1. Multitargeting of selected prostanoid receptors provides agents with enhanced anti-inflammatory activity in macrophages.

    PubMed

    Wang, Jenny W; Woodward, David F; Martos, Jose L; Cornell, Clive L; Carling, Robert W; Kingsley, Philip J; Marnett, Lawrence J

    2016-01-01

    A polypharmacologic approach to prostanoid based anti-inflammatory therapeutics was undertaken in order to exploit both the anti- and proinflammatory properties attributed to the various prostanoid receptors. Multitargeting of selected prostanoid receptors yielded a prototype compound, compound 1 (AGN 211377), that antagonizes prostaglandin D2 receptors (DPs) DP1 (49) and DP2 (558), prostaglandin E2 receptors (EPs) EP1 (266) and EP4 (117), prostaglandin F2α receptor (FP) (61), and thromboxane A2 receptor (TP) (11) while sparing EP2, EP3, and prostaglandin I2 receptors (IPs); Kb values (in nanomoles) are given in parentheses. Compound 1 evoked a pronounced inhibition of cytokine/chemokine secretion from lipopolysaccharide or TNF-α stimulated primary human macrophages. These cytokine/chemokines included cluster of designation 40 receptor (CD40), epithelial-derived neutrophil-activating protein 78 (ENA-78), granulocyte colony stimulating factor (G-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), IL-8, IL-18, monocyte chemotactic protein-1 (CCL2) (MCP-1), tissue plasminogen activator inhibitor (PAI-1), and regulated on activation, normal T cell expressed and secreted (RANTES). In contrast, the inhibitory effects of most antagonists selective for a single receptor were modest or absent, and selective EP2 receptor blockade increased cytokine release in some instances. Compound 1 also showed clear superiority to the cyclooxygenase inhibitors diclofenac and rofecoxib. These findings reveal that blockade of multiple prostanoid receptors, with absent antagonism of EP2 and IP, may provide more effective anti-inflammatory activity than global suppression of prostanoid synthesis or highly selective prostanoid receptor blockade. These investigations demonstrate the first working example of prostanoid receptor polypharmacology for potentially safer and more effective anti-inflammatory therapeutics by blocking multiple proinflammatory receptors while sparing

  2. Differential effects of exercise on brain opioid receptor binding and activation in rats.

    PubMed

    Arida, Ricardo Mario; Gomes da Silva, Sérgio; de Almeida, Alexandre Aparecido; Cavalheiro, Esper Abrão; Zavala-Tecuapetla, Cecilia; Brand, Serge; Rocha, Luisa

    2015-01-01

    Physical exercise stimulates the release of endogenous opioid peptides supposed to be responsible for changes in mood, anxiety, and performance. Exercise alters sensitivity to these effects that modify the efficacy at the opioid receptor. Although there is evidence that relates exercise to neuropeptide expression in the brain, the effects of exercise on opioid receptor binding and signal transduction mechanisms downstream of these receptors have not been explored. Here, we characterized the binding and G protein activation of mu opioid receptor, kappa opioid receptor or delta opioid receptor in several brain regions following acute (7 days) and chronic (30 days) exercise. As regards short- (acute) or long-term effects (chronic) of exercise, overall, higher opioid receptor binding was observed in acute-exercise animals and the opposite was found in the chronic-exercise animals. The binding of [(35) S]GTPγS under basal conditions (absence of agonists) was elevated in sensorimotor cortex and hippocampus, an effect more evident after chronic exercise. Divergence of findings was observed for mu opioid receptor, kappa opioid receptor, and delta opioid receptor receptor activation in our study. Our results support existing evidence of opioid receptor binding and G protein activation occurring differentially in brain regions in response to diverse exercise stimuli. We characterized the binding and G protein activation of mu, kappa, and delta opioid receptors in several brain regions following acute (7 days) and chronic (30 days) exercise. Higher opioid receptor binding was observed in the acute exercise animal group and opposite findings in the chronic exercise group. Higher G protein activation under basal conditions was noted in rats submitted to chronic exercise, as visible in the depicted pseudo-color autoradiograms.

  3. Activation of in vitro matured pig oocytes using activators of inositol triphosphate or ryanodine receptors.

    PubMed

    Petr, J; Urbánková, D; Tománek, M; Rozinek, J; Jílek, F

    2002-04-15

    In our study, we observed the activation of in vitro matured pig oocytes and their subsequent parthenogenetic cleavage after stimulation of ryanodine receptors (RyR) using ryanodine (Ry), caffeine or cyclic adenosine diphosphate ribose (cADPri) or after stimulation of inositol triphosphate receptors (IP(3)R) using D-myo-inositol 1,4,5-triphosphate (IP(3)). Heparin, a potent blocker of IP(3)R, prevented the activation of porcine oocytes using IP(3), but blockers of RyR (ruthenium red or procaine) prevented activation after stimulation by RyR and stimulation by IP(3)R using IP(3). The drugs were injected into oocytes matured to the stage of metaphase II and activation was determined by assessment of pronuclear formation. The activity of H1 kinase was determined and our results demonstrated a significant drop in H1 activity in the activated oocytes. The cleavage of parthenogenetic embryos progresses to more advanced stages after stimulation by IP(3)R than after stimulation by RyR. Our results could indicate that, in pig oocytes, the calcium released from IP(3)-sensitive stores triggers the calcium release from ryanodine-sensitive intracellular stores, which is necessary for oocyte activation. The calmodulin inhibitors ophiobolin A and W7 reduce the activation of oocytes induced by stimulation of RyR or IP(3)R.

  4. Activation of synaptic and extrasynaptic glycine receptors by taurine in preoptic hypothalamic neurons.

    PubMed

    Bhattarai, Janardhan Prasad; Park, Soo Joung; Chun, Sang Woo; Cho, Dong Hyu; Han, Seong Kyu

    2015-11-01

    Taurine is an essential amino-sulfonic acid having a fundamental function in the brain, participating in both cell volume regulation and neurotransmission. Using a whole cell voltage patch clamp technique, the taurine-activated neurotransmitter receptors in the preoptic hypothalamic area (PHA) neurons were investigated. In the first set of experiments, different concentrations of taurine were applied on PHA neurons. Taurine-induced responses were concentration-dependent. Taurine-induced currents were action potential-independent and sensitive to strychnine, suggesting the involvement of glycine receptors. In addition, taurine activated not only α-homomeric, but also αβ-heteromeric glycine receptors in PHA neurons. Interestingly, a low concentration of taurine (0.5mM) activated glycine receptors, whereas a higher concentration (3mM) activated both glycine and gamma-aminobutyric acid A (GABAA) receptors in PHA neurons. These results suggest that PHA neurons are influenced by taurine and respond via glycine and GABAA receptors.

  5. Alpha1a-Adrenoceptor Genetic Variant Triggers Vascular Smooth Muscle Cell Hyperproliferation and Agonist Induced Hypertrophy via EGFR Transactivation Pathway.

    PubMed

    Gradinaru, Irina; Babaeva, Ekaterina; Schwinn, Debra A; Oganesian, Anush

    2015-01-01

    α1a Adrenergic receptors (α1aARs) are the predominant AR subtype in human vascular smooth muscle cells (SMCs). α1aARs in resistance vessels are crucial in the control of blood pressure, yet the impact of naturally occurring human α1aAR genetic variants in cardiovascular disorders remains poorly understood. To this end, we present novel findings demonstrating that 3D cultures of vascular SMCs expressing human α1aAR-247R (247R) genetic variant demonstrate significantly increased SMC contractility compared with cells expressing the α1aAR-WT (WT) receptor. Stable expression of 247R genetic variant also triggers MMP/EGFR-transactivation dependent serum- and agonist-independent (constitutive) hyperproliferation and agonist-dependent hypertrophy of SMCs. Agonist stimulation reduces contractility Using pathway-specific inhibitors we determined that the observed hyperproliferation of 247R-expressing cells is triggered via β-arrestin1/Src/MMP-2/EGFR/ERK-dependent mechanism. MMP-2-specific siRNA inhibited 247R-triggered hyperproliferation indicating MMP-2 involvement in 247R-triggered hyperproliferation in SMCs. β-arrestin1-specific shRNA also inhibited 247R-triggered hyperproliferation but did not affect hypertrophy in 247R-expressing SMCs, indicating that agonist-dependent hypertrophy is independent of β-arrestin1. Our data reveal that in different cardiovascular cells the same human receptor genetic variant can activate alternative modulators of the same signaling pathway. Thus, our findings in SMCs demonstrate that depending on the type of cells expressing the same receptor (or receptor variant), different target-specific inhibitors could be used to modulate aberrant hyperproliferative or hypertrophic pathways in order to restore normal phenotype.

  6. Role of Receptors in Bacillus thuringiensis Crystal Toxin Activity

    PubMed Central

    Pigott, Craig R.; Ellar, David J.

    2007-01-01

    Bacillus thuringiensis produces crystalline protein inclusions with insecticidal or nematocidal properties. These crystal (Cry) proteins determine a particular strain's toxicity profile. Transgenic crops expressing one or more recombinant Cry toxins have become agriculturally important. Individual Cry toxins are usually toxic to only a few species within an order, and receptors on midgut epithelial cells have been shown to be critical determinants of Cry specificity. The best characterized of these receptors have been identified for lepidopterans, and two major receptor classes have emerged: the aminopeptidase N (APN) receptors and the cadherin-like receptors. Currently, 38 different APNs have been reported for 12 different lepidopterans. Each APN belongs to one of five groups that have unique structural features and Cry-binding properties. While 17 different APNs have been reported to bind to Cry toxins, only 2 have been shown to mediate toxin susceptibly in vivo. In contrast, several cadherin-like proteins bind to Cry toxins and confer toxin susceptibility in vitro, and disruption of the cadherin gene has been associated with toxin resistance. Nonetheless, only a small subset of the lepidopteran-specific Cry toxins has been shown to interact with cadherin-like proteins. This review analyzes the interactions between Cry toxins and their receptors, focusing on the identification and validation of receptors, the molecular basis for receptor recognition, the role of the receptor in resistant insects, and proposed models to explain the sequence of events at the cell surface by which receptor binding leads to cell death. PMID:17554045

  7. Role of receptors in Bacillus thuringiensis crystal toxin activity.

    PubMed

    Pigott, Craig R; Ellar, David J

    2007-06-01

    Bacillus thuringiensis produces crystalline protein inclusions with insecticidal or nematocidal properties. These crystal (Cry) proteins determine a particular strain's toxicity profile. Transgenic crops expressing one or more recombinant Cry toxins have become agriculturally important. Individual Cry toxins are usually toxic to only a few species within an order, and receptors on midgut epithelial cells have been shown to be critical determinants of Cry specificity. The best characterized of these receptors have been identified for lepidopterans, and two major receptor classes have emerged: the aminopeptidase N (APN) receptors and the cadherin-like receptors. Currently, 38 different APNs have been reported for 12 different lepidopterans. Each APN belongs to one of five groups that have unique structural features and Cry-binding properties. While 17 different APNs have been reported to bind to Cry toxins, only 2 have been shown to mediate toxin susceptibly in vivo. In contrast, several cadherin-like proteins bind to Cry toxins and confer toxin susceptibility in vitro, and disruption of the cadherin gene has been associated with toxin resistance. Nonetheless, only a small subset of the lepidopteran-specific Cry toxins has been shown to interact with cadherin-like proteins. This review analyzes the interactions between Cry toxins and their receptors, focusing on the identification and validation of receptors, the molecular basis for receptor recognition, the role of the receptor in resistant insects, and proposed models to explain the sequence of events at the cell surface by which receptor binding leads to cell death. PMID:17554045

  8. Activation of extrasynaptic NMDA receptors induces a PKC-dependent switch in AMPA receptor subtypes in mouse cerebellar stellate cells.

    PubMed

    Sun, Lu; June Liu, Siqiong

    2007-09-01

    The repetitive activation of synaptic glutamate receptors can induce a lasting change in the number or subunit composition of synaptic AMPA receptors (AMPARs). However, NMDA receptors that are present extrasynaptically can also be activated by a burst of presynaptic activity, and thus may be involved in the induction of synaptic plasticity. Here we show that the physiological-like activation of extrasynaptic NMDARs induces a lasting change in the synaptic current, by changing the subunit composition of AMPARs at the parallel fibre-to-cerebellar stellate cell synapse. This extrasynaptic NMDAR-induced switch in synaptic AMPARs from GluR2-lacking (Ca(2+)-permeable) to GluR2-containing (Ca(2+)-impermeable) receptors requires the activation of protein kinase C (PKC). These results indicate that the activation of extrasynaptic NMDARs by glutamate spillover is an important mechanism that detects the pattern of afferent activity and subsequently exerts a remote regulation of AMPAR subtypes at the synapse via a PKC-dependent pathway.

  9. Chronic activation of 5-HT4 receptors or blockade of 5-HT6 receptors improve memory performances.

    PubMed

    Quiedeville, Anne; Boulouard, Michel; Hamidouche, Katia; Da Silva Costa-Aze, Virginie; Nee, Gerald; Rochais, Christophe; Dallemagne, Patrick; Fabis, Frédéric; Freret, Thomas; Bouet, Valentine

    2015-10-15

    5-HT4 and 5-HT6 serotonergic receptors are located in brain structures involved in memory processes. Neurochemical and behavioural studies have demonstrated that acute activation of 5-HT4 receptors (5-HT4R) or blockade of 5-HT6 receptors (5-HT6R) improves memory. To evaluate the potential of these two receptors as targets in the treatment of memory disorders encountered in several situations (ageing, Alzheimer's disease, schizophrenia, etc.), it is necessary to assess whether their beneficial effects occur after chronic administration, and if such treatment induces adverse effects. The goal of this study was to assess the effects of chronic 5-HT4R or 5-HT6R modulation on recognition memory, and to observe the possible manifestation of side effects (modification of weight gain, locomotor activity or exploratory behaviour, etc.). Mice were treated for 14 days with a 5-HT4R partial agonist (RS-67333) or a 5-HT6R antagonist (SB-271046) at increasing doses. Memory performances, locomotor activity, and exploration were assessed. Both chronic 5-HT4R activation and 5-HT6R blockade extended memory traces in an object recognition test, and were not associated with any adverse effects in the parameters assessed. Chronic modulation of one or both of these receptors thus seems promising as a potential strategy for the treatment memory deficits.

  10. PPAR-pan activation induces hepatic oxidative stress and lipidomic remodelling.

    PubMed

    Ament, Zsuzsanna; West, James A; Stanley, Elizabeth; Ashmore, Tom; Roberts, Lee D; Wright, Jayne; Nicholls, Andrew W; Griffin, Julian L

    2016-06-01

    The peroxisome proliferator-activated receptors (PPARs) are ligand activated nuclear receptors that regulate cellular homoeostasis and metabolism. PPARs control the expression of genes involved in fatty-acid and lipid metabolism. Despite evidence showing beneficial effects of their activation in the treatment of metabolic diseases, particularly dyslipidaemias and type 2 diabetes, PPAR agonists have also been associated with a variety of side effects and adverse pathological changes. Agonists have been developed that simultaneously activate the three PPAR receptors (PPARα, γ and δ) in the hope that the beneficial effects can be harnessed while avoiding some of the negative side effects. In this study, the hepatic effects of a discontinued PPAR-pan agonist (a triple agonist of PPAR-α, -γ, and -δ), was investigated after dietary treatment of male Sprague-Dawley (SD) rats. The agonist induced liver enlargement in conjunction with metabolomic and lipidomic remodelling. Increased concentrations of several metabolites related to processes of oxidation, such as oxo-methionine, methyl-cytosine and adenosyl-methionine indicated increased stress and immune status. These changes are reflected in lipidomic changes, and increased energy demands as determined by free fatty acid (decreased 18:3 n-3, 20:5 n-3 and increased ratios of n-6/n-3 fatty acids) triacylglycerol, phospholipid (decreased and increased bulk changes respectively) and eicosanoid content (increases in PGB2 and 15-deoxy PGJ2). We conclude that the investigated PPAR agonist, GW625019, induces liver enlargement, accompanied by lipidomic remodelling, oxidative stress and increases in several pro-inflammatory eicosanoids. This suggests that such pathways should be monitored in the drug development process and also outline how PPAR agonists induce liver proliferation. PMID:26654758

  11. Investigating real-time activation of adenosine receptors by bioluminescence resonance energy transfer technique

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Yang, Hongqin; Zheng, Liqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2013-02-01

    Adenosine receptors play important roles in many physiological and pathological processes, for example regulating myocardial oxygen consumption and the release of neurotransmitters. The activations of adenosine receptors have been studied by some kinds of techniques, such as western blot, immunohistochemistry, etc. However, these techniques cannot reveal the dynamical response of adenosine receptors under stimulation. In this paper, bioluminescence resonance energy transfer technique was introduced to study the real-time activation of adenosine receptors by monitoring the dynamics of cyclic adenosine monophosphate (cAMP) level. The results showed that there were significant differences between adenosine receptors on real-time responses under stimulation. Moreover, the dynamics of cAMP level demonstrated that competition between adenosine receptors existed. Taken together, our study indicates that monitoring the dynamics of cAMP level using bioluminescence resonance energy transfer technique could be one potential approach to investigate the mechanism of competitions between adenosine receptors.

  12. The role of ECL2 in CGRP receptor activation: a combined modelling and experimental approach

    PubMed Central

    Woolley, Michael. J.; Watkins, Harriet A.; Taddese, Bruck; Karakullukcu, Z. Gamze; Barwell, James; Smith, Kevin J.; Hay, Debbie L.; Poyner, David R.; Reynolds, Christopher A.; Conner, Alex C.

    2013-01-01

    The calcitonin gene-related peptide (CGRP) receptor is a complex of a calcitonin receptor-like receptor (CLR), which is a family B G-protein-coupled receptor (GPCR) and receptor activity modifying protein 1. The role of the second extracellular loop (ECL2) of CLR in binding CGRP and coupling to Gs was investigated using a combination of mutagenesis and modelling. An alanine scan of residues 271–294 of CLR showed that the ability of CGRP to produce cAMP was impaired by point mutations at 13 residues; most of these also impaired the response to adrenomedullin (AM). These data were used to select probable ECL2-modelled conformations that are involved in agonist binding, allowing the identification of the likely contacts between the peptide and receptor. The implications of the most likely structures for receptor activation are discussed. PMID:24047872

  13. Cannabinoid receptor activation shifts temporally engendered patterns of dopamine release.

    PubMed

    Oleson, Erik B; Cachope, Roger; Fitoussi, Aurelie; Tsutsui, Kimberly; Wu, Sharon; Gallegos, Jacqueline A; Cheer, Joseph F

    2014-05-01

    The ability to discern temporally pertinent environmental events is essential for the generation of adaptive behavior in conventional tasks, and our overall survival. Cannabinoids are thought to disrupt temporally controlled behaviors by interfering with dedicated brain timing networks. Cannabinoids also increase dopamine release within the mesolimbic system, a neural pathway generally implicated in timing behavior. Timing can be assessed using fixed-interval (FI) schedules, which reinforce behavior on the basis of time. To date, it remains unknown how cannabinoids modulate dopamine release when responding under FI conditions, and for that matter, how subsecond dopamine release is related to time in these tasks. In the present study, we hypothesized that cannabinoids would accelerate timing behavior in an FI task while concurrently augmenting a temporally relevant pattern of dopamine release. To assess this possibility, we measured subsecond dopamine concentrations in the nucleus accumbens while mice responded for food under the influence of the cannabinoid agonist WIN 55,212-2 in an FI task. Our data reveal that accumbal dopamine concentrations decrease proportionally to interval duration--suggesting that dopamine encodes time in FI tasks. We further demonstrate that WIN 55,212-2 dose-dependently increases dopamine release and accelerates a temporal behavioral response pattern in a CB1 receptor-dependent manner--suggesting that cannabinoid receptor activation modifies timing behavior, in part, by augmenting time-engendered patterns of dopamine release. Additional investigation uncovered a specific role for endogenous cannabinoid tone in timing behavior, as elevations in 2-arachidonoylglycerol, but not anandamide, significantly accelerated the temporal response pattern in a manner akin to WIN 55,212-2. PMID:24345819

  14. Adipocyte insulin receptor activity maintains adipose tissue mass and lifespan.

    PubMed

    Friesen, Max; Hudak, Carolyn S; Warren, Curtis R; Xia, Fang; Cowan, Chad A

    2016-08-01

    Type 2 diabetes follows a well-defined progressive pathogenesis, beginning with insulin resistance in metabolic tissues such as the adipose. Intracellular signaling downstream of insulin receptor activation regulates critical metabolic functions of adipose tissue, including glucose uptake, lipogenesis, lipolysis and adipokine secretion. Previous studies have used the aP2 promoter to drive Cre recombinase expression in adipose tissue. Insulin receptor (IR) knockout mice created using this aP2-Cre strategy (FIRKO mice) were protected from obesity and glucose intolerance. Later studies demonstrated the promiscuity of the aP2 promoter, casting doubts upon the tissue specificity of aP2-Cre models. It is our goal to use the increased precision of the Adipoq promoter to investigate adipocyte-specific IR function. Towards this end we generated an adipocyte-specific IR knockout (AIRKO) mouse using an Adipoq-driven Cre recombinase. Here we report AIRKO mice are less insulin sensitive throughout life, and less glucose tolerant than wild-type (WT) littermates at the age of 16 weeks. In contrast to WT littermates, the insulin sensitivity of AIRKO mice is unaffected by age or dietary regimen. At any age, AIRKO mice are comparably insulin resistant to old or obese WT mice and have a significantly reduced lifespan. Similar results were obtained when these phenotypes were re-examined in FIRKO mice. We also found that the AIRKO mouse is protected from high-fat diet-induced weight gain, corresponding with a 90% reduction in tissue weight of major adipose depots compared to WT littermates. Adipose tissue mass reduction is accompanied by hepatomegaly and increased hepatic steatosis. These data indicate that adipocyte IR function is crucial to systemic energy metabolism and has profound effects on adiposity, hepatic homeostasis and lifespan. PMID:27246738

  15. Identification of PECAM-1 association with sphingosine kinase 1 and its regulation by agonist-induced phosphorylation.

    PubMed

    Fukuda, Yu; Aoyama, Yuki; Wada, Atsushi; Igarashi, Yasuyuki

    2004-02-27

    Sphingosine 1-phosphate (S1P) is a bioactive lipid mediator generated from sphingosine by sphingosine kinase (SPHK). S1P acts both extracellularly and intracellularly as a signaling molecule, although its intracellular targets are still undefined. Intracellular level of S1P is under strict regulatory control of SPHK regulation, S1P degradation, and S1P dephosphorylation. Therefore, clarifying the mechanisms regulating SPHK activity may help us understand when and where S1P is generated. In this study, we performed yeast two-hybrid screening to search for SPHK1a-binding molecules that may be involved in the regulation of the kinase localization or activity. Platelet endothelial cell adhesion molecule-1 (PECAM-1) was identified as a protein potentially associating with SPHK1a. Their association was confirmed by co-immunoprecipitation analysis using HEK293 cells overexpressing PECAM-1 and SPHK1a. Moreover, the kinase activity appeared to be reduced in stable PECAM-1-expressing cells. PECAM-1 is expressed on the cell surface of vascular cells, and several stimuli are known to induce phosphorylation of its tyrosine residues. We found that such phosphorylation attenuated its association with SPHK1a. This association/dissociation of SPHK with PECAM-1, regulated by the phosphorylated state of the membrane protein, may be involved in the control of localized kinase activity in certain cell types. PMID:14984734

  16. Analysis of the Heat Shock Response in Mouse Liver Reveals Transcriptional Dependence on the Nuclear Receptor Peroxisome Proliferator-Activated Receptor alpha (PPARα)

    EPA Science Inventory

    BACKGROUND: The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha) regulates responses to chemical or physical stress in part by altering expression of genes involved in proteome maintenance. Many of these genes are also transcriptionally regulated by h...

  17. Assays to measure the activation of membrane tyrosine kinase receptors: focus on cellular methods.

    PubMed

    Minor, Lisa K

    2003-09-01

    Many methods have been explored as means to measure the activation and inhibition of tyrosine kinase receptors, in vitro using the isolated kinase domain, and in living cells. Kinase activity has been measured in enzyme assays using a peptide substrate, but with different detection systems. These include the radioactive FlashPlate assay, the fluorescent resonance energy transfer (FRET) assay, the dissociation-enhance lanthanide fluorescence immunoassay (DELFIA) and other formats. These methods have successfully identified inhibitors of receptor activity. Cell-based assays have recently emerged to measure receptor activation and inhibition. When membrane tyrosine kinase receptors become activated, they increase their state of phosphorylation. This phosphorylation may lead to an increase in tyrosine kinase-specific activity. Methods have been developed that take advantage of these properties. These include measuring the ligand-stimulated total tyrosine phosphorylation of the receptor using a DELFIA or an ELISA assay, measuring ligand-stimulated enzyme activation of the receptor by quantifying enzyme activity, and dimerization of the activated receptor using bioluminescence resonance energy transfer (BRET). Although cell-based assays are still in their infancy, these techniques may prove a valuable addition to the receptor screening strategy.

  18. E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity

    SciTech Connect

    Vlasak, R.; Luytjes, W.; Leider, J.; Spaan, W.; Palese, P.

    1988-12-01

    In addition to members of the Orthomyxoviridae and Paramyxoviridae, several coronaviruses have been shown to possess receptor-destroying activities. Purified bovine coronavirus (BCV) preparations have an esterase activity which inactivates O-acetylsialic acid-containing receptors on erythrocytes. Diisopropyl fluorophosphate (DFP) completely inhibits this receptor-destroying activity of BCV, suggesting that the viral enzyme is a serine esterase. Treatment of purified BCV with (/sup 3/H)DFP and subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the proteins revealed that the esterase/receptor-destroying activity of BCV is associated with the E3 protein was specifically phosphorylated. This finding suggests that the esterase/receptor-destroying activity of BCV is associated with the E3 protein. Furthermore, treatment of BCV with DFP dramatically reduced its infectivity in a plaque assay. It is assumed that the esterase activity of BCV is required in an early step of virus replication, possible during virus entry or uncoating.

  19. CB2 receptor activation ameliorates the proinflammatory activity in acute lung injury induced by paraquat.

    PubMed

    Liu, Zhenning; Wang, Yu; Zhao, Hongyu; Zheng, Qiang; Xiao, Li; Zhao, Min

    2014-01-01

    Paraquat, a widely used herbicide, is well known to exhibit oxidative stress and lung injury. In the present study, we investigated the possible underlying mechanisms of cannabinoid receptor-2 (CB2) activation to ameliorate the proinflammatory activity induced by PQ in rats. JWH133, a CB2 agonist, was administered by intraperitoneal injection 1 h prior to PQ exposure. After PQ exposure for 4, 8, 24, and 72 h, the bronchoalveolar lavage fluid was collected to determine levels of TNF-α and IL-1β, and the arterial blood samples were collected for detection of PaO2 level. At 72 h after PQ exposure, lung tissues were collected to determine the lung wet-to-dry weight ratios, myeloperoxidase activity, lung histopathology, the protein expression level of CB2, MAPKs (ERK1/2, p38MAPK, and JNK1/2), and NF-κBp65. After rats were pretreated with JWH133, PQ-induced lung edema and lung histopathological changes were significantly attenuated. PQ-induced TNF-α and IL-1β secretion in BALF, increases of PaO2 in arterial blood, and MPO levels in the lung tissue were significantly reduced. JWH133 could efficiently activate CB2, while inhibiting MAPKs and NF-κB activation. The results suggested that activating CB2 receptor exerted protective activity against PQ-induced ALI, and it potentially contributed to the suppression of the activation of MAPKs and NF-κB pathways. PMID:24963491

  20. The Wnt receptor Frizzled-4 modulates ADAM13 metalloprotease activity

    PubMed Central

    Abbruzzese, Genevieve; Gorny, Anne-Kathrin; Kaufmann, Lilian T.; Cousin, Hélène; Kleino, Iivari; Steinbeisser, Herbert; Alfandari, Dominique

    2015-01-01

    ABSTRACT Cranial neural crest (CNC) cells are a transient population of stem cells that originate at the border of the neural plate and the epidermis, and migrate ventrally to contribute to most of the facial structures including bones, cartilage, muscles and ganglia. ADAM13 is a cell surface metalloprotease that is essential for CNC cell migration. Here, we show in Xenopus laevis embryos that the Wnt receptor Fz4 binds to the cysteine-rich domain of ADAM13 and negatively regulates its proteolytic activity in vivo. Gain of Fz4 function inhibits CNC cell migration and can be rescued by gain of ADAM13 function. Loss of Fz4 function also inhibits CNC cell migration and induces a reduction of mature ADAM13, together with an increase in the ADAM13 cytoplasmic fragment that is known to translocate into the nucleus to regulate gene expression. We propose that Fz4 associates with ADAM13 during its transport to the plasma membrane to regulate its proteolytic activity. PMID:25616895

  1. Peroxisome proliferator-activated receptors, metabolic syndrome and cardiovascular disease.

    PubMed

    Azhar, Salman

    2010-09-01

    Metabolic syndrome (MetS) is a constellation of risk factors including insulin resistance, central obesity, dyslipidemia and hypertension that markedly increase the risk of Type 2 diabetes (T2DM) and cardiovascular disease (CVD). The peroxisome proliferators-activated receptor (PPAR) isotypes, PPARα, PPARδ/ß and PPARγ are ligand-activated nuclear transcription factors, which modulate the expression of an array of genes that play a central role in regulating glucose, lipid and cholesterol metabolism, where imbalance can lead to obesity, T2DM and CVD. They are also drug targets, and currently, PPARα (fibrates) and PPARγ (thiazolodinediones) agonists are in clinical use for treating dyslipidemia and T2DM, respectively. These metabolic characteristics of the PPARs, coupled with their involvement in metabolic diseases, mean extensive efforts are underway worldwide to develop new and efficacious PPAR-based therapies for the treatment of additional maladies associated with the MetS. This article presents an overview of the functional characteristics of three PPAR isotypes, discusses recent advances in our understanding of the diverse biological actions of PPARs, particularly in the vascular system, and summarizes the developmental status of new single, dual, pan (multiple) and partial PPAR agonists for the clinical management of key components of MetS, T2DM and CVD. It also summarizes the clinical outcomes from various clinical trials aimed at evaluating the atheroprotective actions of currently used fibrates and thiazolodinediones. PMID:20932114

  2. Endothelial Cells Promote Pigmentation through Endothelin Receptor B Activation.

    PubMed

    Regazzetti, Claire; De Donatis, Gian Marco; Ghorbel, Houda Hammami; Cardot-Leccia, Nathalie; Ambrosetti, Damien; Bahadoran, Philippe; Chignon-Sicard, Bérengère; Lacour, Jean-Philippe; Ballotti, Robert; Mahns, Andre; Passeron, Thierry

    2015-12-01

    Findings of increased vascularization in melasma lesions and hyperpigmentation in acquired bilateral telangiectatic macules suggested a link between pigmentation and vascularization. Using high-magnification digital epiluminescence dermatoscopy, laser confocal microscopy, and histological examination, we showed that benign vascular lesions of the skin have restricted but significant hyperpigmentation compared with the surrounding skin. We then studied the role of microvascular endothelial cells in regulating skin pigmentation using an in vitro co-culture model using endothelial cells and melanocytes. These experiments showed that endothelin 1 released by microvascular endothelial cells induces increased melanogenesis signaling, characterized by microphthalmia-associated transcription factor phosphorylation, and increased tyrosinase and dopachrome tautomerase levels. Immunostaining for endothelin 1 in vascular lesions confirmed the increased expression on the basal layer of the epidermis above small vessels compared with perilesional skin. Endothelin acts through the activation of endothelin receptor B and the mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK)1/2, and p38, to induce melanogenesis. Finally, culturing of reconstructed skin with microvascular endothelial cells led to increased skin pigmentation that could be prevented by inhibiting EDNRB. Taken together these results demonstrated the role of underlying microvascularization in skin pigmentation, a finding that could open new fields of research for regulating physiological pigmentation and for treating pigmentation disorders such as melasma.

  3. PPAR Agonist-Induced Reduction of Mcp1 in Atherosclerotic Plaques of Obese, Insulin-Resistant Mice Depends on Adiponectin-Induced Irak3 Expression

    PubMed Central

    Arnould, Thierry; Tsatsanis, Christos; Holvoet, Paul

    2013-01-01

    Synthetic peroxisome proliferator-activated receptor (PPAR) agonists are used to treat dyslipidemia and insulin resistance. In this study, we examined molecular mechanisms that explain differential effects of a PPARα agonist (fenofibrate) and a PPARγ agonist (rosiglitazone) on macrophages during obesity-induced atherogenesis. Twelve-week-old mice with combined leptin and LDL-receptor deficiency (DKO) were treated with fenofibrate, rosiglitazone or placebo for 12 weeks. Only rosiglitazone improved adipocyte function, restored insulin sensitivity, and inhibited atherosclerosis by decreasing lipid-loaded macrophages. In addition, it increased interleukin-1 receptor-associated kinase-3 (Irak3) and decreased monocyte chemoattractant protein-1 (Mcp1) expressions, indicative of a switch from M1 to M2 macrophages. The differences between fenofibrate and rosiglitazone were independent of Pparγ expression. In bone marrow-derived macrophages (BMDM), we identified the rosiglitazone-associated increase in adiponectin as cause of the increase in Irak3. Interestingly, the deletion of Irak3 in BMDM (IRAK3−/− BMDM) resulted in activation of the canonical NFκB signaling pathway and increased Mcp1 protein secretion. Rosiglitazone could not decrease the elevated Mcp1 secretion in IRAK3−/− BMDM directly and fenofibrate even increased the secretion, possibly due to increased mitochondrial reactive oxygen species production. Furthermore, aortic extracts of high-fat insulin-resistant LDL-receptor deficient mice, with lower adiponectin and Irak3 and higher Mcp1, showed accelerated atherosclerosis. In aggregate, our results emphasize an interaction between PPAR agonist-mediated increase in adiponectin and macrophage-associated Irak3 in the protection against atherosclerosis by PPAR agonists. PMID:23620818

  4. Molecular Vibration-Activity Relationship in the Agonism of Adenosine Receptors

    PubMed Central

    Chee, Hyun Keun

    2013-01-01

    The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands. PMID:24465242

  5. Characterization of Peroxisome Proliferator-Activated Receptor a (PPARa) -Independent Effects of PPARa Activators in the Rodent Liver: Di-(2-ethylhexyl) phthalate Also Activates the Constitutive Activated Receptor

    EPA Science Inventory

    Peroxisome proliferator chemicals (PPC) are thought to mediate their effects in rodents on hepatocyte growth and liver cancer through the nuclear receptor peroxisome proliferatoractivated receptor alpha (PPARa). Recent studies indicate that one such PPC, the plasticizer di2- et...

  6. Inhalation of a Short-Acting β2-Adrenoreceptor Agonist Induces a Hypercoagulable State in Healthy Subjects

    PubMed Central

    Ali-Saleh, Mais; Sarig, Galit; Ablin, Jacob N.; Brenner, Benjamin; Jacob, Giris

    2016-01-01

    Background Catecholamine infusion elicits an increase in clotting factors and this increase has been attributed to stimulation of β2-adrenorecptors (β2AR). Accordingly, we tested the hypothesis that inhalation of a short-acting selective β2AR agonist can induce a procoagulant state in healthy individuals. Methods We recruited 23 healthy volunteers (nine females; mean age: 26±0.8 years; body mass index: 24.7±0.5 kg/m2) and randomly allocated them into two groups, the β2AR arm (seventeen subjects) and the saline arm (six subjects). Hemodynamics, plasma norepinephrine concentration, and procoagulant, anticoagulant, and fibrinolytic profiles of each participant were determined using specific assays before and after inhalation of either 2 mL nebulized normal saline or a mixture of 1 mL saline and 1 mL of salbutamol (5 mg salbutamol sulfate), a selective β2AR agonist, which were delivered by a nebulizer over ten minutes. Results Saline inhalation had no effect on the procoagulant, anticoagulant and fibrinolytic profiles of the six healthy volunteer in the study's saline arm. Salbutamol inhalation caused (a) a significant increase in the activity or levels of the procoagulant factors; FVIII increased by 11±3% (p = 0.04), von Willebrand factor increased by 7±1% (p = 0.03), and (b) a significant decrease in the activated partial prothrombin time from 27.4±0.4 seconds to 25.5 ±0.5 seconds (p<0.001) in the 17 volunteers in the study's β2AR arm. D-dimer and prothrombin fragments F1+2 were elevated by 200 ±90% and 505.0 ±300.0%, respectively. In addition, the activity of the anticoagulant protein C pathway (demonstrated by the protein C Global assay) decreased from 1.0±0.08 to 0.82±0.06 (p<0.001). Although plasma levels of tissue plasminogen activator decreased, all other indices of the fibrinolytic system did not change following salbutamol inhalation. Conclusion We found that a single inhalation of salbutamol, a short-acting β2AR agonist, activates the

  7. Activated Protein C Enhances Human Keratinocyte Barrier Integrity via Sequential Activation of Epidermal Growth Factor Receptor and Tie2*

    PubMed Central

    Xue, Meilang; Chow, Shu-Oi; Dervish, Suat; Chan, Yee-Ka Agnes; Julovi, Sohel M.; Jackson, Christopher J.

    2011-01-01

    Keratinocytes play a critical role in maintaining epidermal barrier function. Activated protein C (APC), a natural anticoagulant with anti-inflammatory and endothelial barrier protective properties, significantly increased the barrier impedance of keratinocyte monolayers, measured by electric cell substrate impedance sensing and FITC-dextran flux. In response to APC, Tie2, a tyrosine kinase receptor, was rapidly activated within 30 min, and relocated to cell-cell contacts. APC also increased junction proteins zona occludens, claudin-1 and VE-cadherin. Inhibition of Tie2 by its peptide inhibitor or small interfering RNA abolished the barrier protective effect of APC. Interestingly, APC did not activate Tie2 through its major ligand, angiopoietin-1, but instead acted by binding to endothelial protein C receptor, cleaving protease-activated receptor-1 and transactivating EGF receptor. Furthermore, when activation of Akt, but not ERK, was inhibited, the barrier protective effect of APC on keratinocytes was abolished. Thus, APC activates Tie2, via a mechanism requiring, in sequential order, the receptors, endothelial protein C receptor, protease-activated receptor-1, and EGF receptor, which selectively enhances the PI3K/Akt signaling to enhance junctional complexes and reduce keratinocyte permeability. PMID:21173154

  8. The hippocampal NMDA receptors may be involved in acquisition, but not expression of ACPA-induced place preference.

    PubMed

    Nasehi, Mohammad; Sharaf-Dolgari, Elmira; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2015-12-01

    Numerous studies have investigated the functional interactions between the endocannabinoid and glutamate systems in the hippocampus. The present study was made to test whether N-methyl-D-aspartate (NMDA) receptors of the CA1 region of the dorsal hippocampus (CA1) are implicated in ACPA (a selective cannabinoid CB1 receptor agonist)-induced place preference. Using a 3-day schedule of conditioning, it was found that intraperitoneal (i.p.) administration of ACPA (0.02mg/kg) caused a significant conditioned place preference (CPP) in male albino NMRI mice. Intra-CA1 microinjection of the NMDA or D-[1]-2-amino-7-Phosphonoheptanoic acid (D-AP7, NMDA receptor antagonist), failed to induce CPP or CPA (condition place aversion), while NMDA (0.5μg/mouse) potentiated the ACPA (0.01mg/kg)-induced CPP; and D-AP7 (a specific NMDA receptor antagonist; 0.5 and 1μg/mouse) reversed the ACPA (0.02mg/kg)-induced CPP. Moreover, microinjection of different doses of glutamatergic agents on the testing day did not alter the expression of ACPA-induced place preference. None of the treatments, with the exception of ACPA (0.04mg/kg), had an effect on locomotor activity. In conclusion, these observations provide evidence that glutamate NMDA receptors of the CA1 may be involved in the potentiation of ACPA rewarding properties in the acquisition, but not expression, of CPP in mice.

  9. Transactivation Assays to Assess Canine and Rodent Pregnane X Receptor (PXR) and Constitutive Androstane Receptor (CAR) Activation

    PubMed Central

    Pinne, Marija; Ponce, Elsa; Raucy, Judy L.

    2016-01-01

    The pregnane X receptor (PXR/SXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3) are nuclear receptors (NRs) involved in the regulation of many genes including cytochrome P450 enzymes (CYPs) and transporters important in metabolism and uptake of both endogenous substrates and xenobiotics. Activation of these receptors can lead to adverse drug effects as well as drug-drug interactions. Depending on which nuclear receptor is activated will determine which adverse effect could occur, making identification important. Screening for NR activation by New Molecular Entities (NMEs) using cell-based transactivation assays is the singular high throughput method currently available for identifying the activation of a particular NR. Moreover, screening for species-specific NR activation can minimize the use of animals in drug development and toxicology studies. With this in mind, we have developed in vitro transactivation assays to identify compounds that activate canine and rat PXR and CAR3. We found differences in specificity for canine and rat PXR, with the best activator for canine PXR being 10 μM SR12813 (60.1 ± 3.1-fold) and for rat PXR, 10 μM dexamethasone (60.9 ± 8.4 fold). Of the 19 test agents examined, 10 and 9 significantly activated rat and canine PXR at varying degrees, respectively. In contrast, 5 compounds exhibited statistically significant activation of rat CAR3 and 4 activated the canine receptor. For canine CAR3, 50 μM artemisinin proved to be the best activator (7.3 ± 1.8 and 10.5 ± 2.2 fold) while clotrimazole (10 μM) was the primary activator of the rat variant (13.7 ± 0.8 and 26.9 ± 1.3 fold). Results from these studies demonstrated that cell-based transactivation assays can detect species-specific activators and revealed that PXR was activated by at least twice as many compounds as was CAR3, suggesting that there are many more agonists for PXR than CAR. PMID:27732639

  10. Direct Demonstration of Separate Receptors for Growth and Metabolic Activities of Insulin and Multiplication-stimulating Activity (an Insulinlike Growth Factor) Using Antibodies to the Insulin Receptor

    PubMed Central

    King, George L.; Kahn, C. Ronald; Rechler, Matthew M.; Nissley, S. Peter

    1980-01-01

    Insulin and such insulinlike growth factors as multiplication stimulating activity (MSA) are related polypeptides that have common biological activities. Both insulin and MSA produce acute metabolic responses (stimulation of glucose oxidation in isolated fat cells) as well as growth effects (stimulation of [3H]thymidine incorporation into DNA in cultured fibroblasts). In addition, most cells have separate receptors for insulin and insulinlike growth factors, and both peptides have weaker affinity for each other's specific receptors than for their own. To determine, therefore, whether these effects are mediated by receptors for insulin, insulinlike growth factors, or both, we have selectively blocked insulin receptors with a specific antagonist, namely Fab fragments derived from naturally occurring antibodies to the insulin receptor. In rat adipocytes, 10 μg/ml of antireceptor Fab inhibited insulin binding by 90%, whereas it inhibited MSA binding <5%. The anti-insulin receptor Fab is without intrinsic biological activity, but acts as a competitive inhibitor of insulin receptors. Blockade of insulin receptors with Fab fragments produced a 30-fold rightward shift in the dose response for stimulation of glucose oxidation by both insulin and MSA. The dose-response curves for stimulation of oxidation by vitamin K5 and spermine, agents that stimulate glucose oxidation through noninsulin receptor pathways, were not affected by the blockade of insulin receptors with Fab antibody fragments. These data suggest that this acute metabolic effect of both insulin and MSA is mediated via the insulin receptor. In cultured human fibroblasts, 10 μg/ml of Fab inhibited insulin binding by 90% and MSA binding by 15%. In fibroblasts, however, blockade of the insulin receptor did not alter the dose response for stimulation of thymidine incorporation into DNA by either insulin or MSA. Furthermore, intact antireceptor antibody immunoglobulin (Ig)G, which produces multiple other insulinlike

  11. Activation of p38 Mitogen-Activated Protein Kinase Promotes Epidermal Growth Factor Receptor Internalization

    PubMed Central

    Vergarajauregui, Silvia; Miguel, Anitza San; Puertollano, Rosa

    2006-01-01

    Endocytic trafficking plays an important role in the regulation of the epidermal growth factor receptor (EGFR). To address if cellular kinases regulate EGFR internalization, we used anisomycin, a potent activator of kinase cascades in mammalian cells, especially the stress-activated mitogen-activated protein (MAP) kinase subtypes. Here, we report that activation of p38 MAP kinase by anisomycin is sufficient to induce internalization of EGFR. Anisomycin and EGF employ different mechanisms to promote EGFR endocytosis as anisomycin-induced internalization does not require tyrosine kinase activity or ubiquitination of the receptor. In addition, anisomycin treatment did not result in delivery and degradation of EGFR at lysosomes. Incubation with a specific inhibitor of p38, or depletion of endogenous p38 by small interfering RNAs, abolished anisomycin-induced internalization of EGFR while having no effect on transferrin endocytosis, indicating that the effect of p38 activation on EGFR endocytosis is specific. Interestingly, inhibition of p38 activation also abolished endocytosis of EGFR induced by UV radiation. Our results reveal a novel role for p38 in the regulation of EGFR endocytosis and suggest that stimulation of EGFR internalization by p38 might represent a general mechanism to prevent generation of proliferative or anti-apoptotic signals under stress conditions. PMID:16683917

  12. Pleiotropic Activities of Vitamin D Receptors - Adequate Activation for Multiple Health Outcomes.

    PubMed

    Ryan, Jackson W; Anderson, Paul H; Morris, Howard A

    2015-05-01

    The vitamin D receptor (VDR), a nuclear transcription factor, elicits physiological regulation of gene transcription following binding of its ligand, 1,25-dihydroxyvitamin D. The major biological activities of vitamin D contribute to regulation of plasma calcium and phosphate homeostasis and bone remodeling, although recent evidence suggests that vitamin D, like other steroid hormone receptors, can regulate a diverse range of biological activities across many tissues. Such properties raise the notion that vitamin D deficiency may not only be detrimental to bone and muscular health, but also a risk factor for a number of adverse health outcomes including increased risk of cardiovascular disease, inflammation, immune system disorders and cancer. Advances in transcriptional research provide data not only on ligand-dependent activities of the VDR, but other activities of vitamin D extending to rapid modulation of intra-cellular signaling pathways as well as apparent ligand-independent interactions between the VDR and other transcriptionally active proteins. In this review, we detail the chief molecular activities of the VDR in regulating gene transcription, intracellular signaling and actions of VDR via binding to transcriptional regulating proteins. The breadth of biological activities attributed to vitamin D informs clinical biochemists and health care professionals on the implications of vitamin D deficiency for health. PMID:26224895

  13. TRPM4 impacts on Ca2+ signals during agonist-induced insulin secretion in pancreatic beta-cells.

    PubMed

    Marigo, V; Courville, K; Hsu, W H; Feng, J M; Cheng, H

    2009-02-27

    TRPM4 is a Ca(2+)-activated non-selective cation (CAN) channel that functions in cell depolarization, which is important for Ca(2+) influx and insulin secretion in pancreatic beta-cells. We investigated TRPM4 expression and function in the beta-cell lines HIT-T15 (hamster), RINm5F (rat), beta-TC3 (mouse), MIN-6 (mouse) and the alpha-cell line INR1G9 (hamster). By RT-PCR, we identified TRPM4 transcripts in alpha- and beta-cells. Patch-clamp recordings with increasing Ca(2+) concentrations resulted in a dose-dependent activation of TRPM4 with the greatest depolarizing currents recorded from hamster-derived cells. Further, Ca(2+) imaging experiments revealed that inhibition of TRPM4 by a dominant-negative effect significantly decreased the magnitude of the Ca(2+) signals generated by agonist stimulation compared to control cells. The decrease in the [Ca(2+)](i) resulted in reduced insulin secretion. Our data suggest that depolarizing currents generated by TRPM4 are an important component in the control of intracellular Ca(2+) signals necessary for insulin secretion and perhaps glucagon from alpha-cells.

  14. NMDA receptor activation regulates sociability by its effect on mTOR signaling activity.

    PubMed

    Burket, Jessica A; Benson, Andrew D; Tang, Amy H; Deutsch, Stephen I

    2015-07-01

    Tuberous Sclerosis Complex is one example of a syndromic form of autism spectrum disorder associated with disinhibited activity of mTORC1 in neurons (e.g., cerebellar Purkinje cells). mTORC1 is a complex protein possessing serine/threonine kinase activity and a key downstream molecule in a signaling cascade beginning at the cell surface with the transduction of neurotransmitters (e.g., glutamate and acetylcholine) and nerve growth factors (e.g., Brain-Derived Neurotrophic Factor). Interestingly, the severity of the intellectual disability in Tuberous Sclerosis Complex may relate more to this metabolic disturbance (i.e., overactivity of mTOR signaling) than the density of cortical tubers. Several recent reports showed that rapamycin, an inhibitor of mTORC1, improved sociability and other symptoms in mouse models of Tuberous Sclerosis Complex and autism spectrum disorder, consistent with mTORC1 overactivity playing an important pathogenic role. NMDA receptor activation may also dampen mTORC1 activity by at least two possible mechanisms: regulating intraneuronal accumulation of arginine and the phosphorylation status of a specific extracellular signal regulating kinase (i.e., ERK1/2), both of which are "drivers" of mTORC1 activity. Conceivably, the prosocial effects of targeting the NMDA receptor with agonists in mouse models of autism spectrum disorders result from their ability to dampen mTORC1 activity in neurons. Strategies for dampening mTORC1 overactivity by NMDA receptor activation may be preferred to its direct inhibition in chronic neurodevelopmental disorders, such as autism spectrum disorders.

  15. α(1D)-Adrenergic receptors constitutive activity and reduced expression at the plasma membrane.

    PubMed

    García-Sáinz, J Adolfo; Romero-Ávila, M Teresa; Medina, Luz Del Carmen

    2010-01-01

    Adrenergic receptors are a heterogeneous family of the G protein-coupled receptors that mediate the actions of adrenaline and noradrenaline. Adrenergic receptors comprise three subfamilies (α(1), α(2), and β, with three members each) and the α(1D)-adrenergic receptor is one of the members of the α(1) subfamily with some interesting traits. The α(1D)-adrenergic receptor is difficult to express, seems predominantly located intracellularly, and exhibits constitutive activity. In this chapter, we will describe in detail the conditions and procedures used to determine changes in intracellular free calcium concentration which has been instrumental to define the constitutive activity of these receptors. Taking advantage of the fact that truncation of the first 79 amino acids of α(1D)-adrenergic receptors markedly increased their membrane expression, we were able to show that constitutive activity is present in receptors truncated at the amino and carboxyl termini, which indicates that such domains are dispensable for this action. Constitutive activity could be observed in cells expressing either the rat or human α(1D)-adrenergic receptor orthologs. Such constitutive activity has been observed in native rat arteries and we will discuss the possible functional implications that it might have in the regulation of blood pressure.

  16. Modulation of receptors and adenylate cyclase activity during sucrose feeding, food deprivation, and cold exposure

    SciTech Connect

    Scarpace, P.J.; Baresi, L.A.; Morley, J.E. Univ. of California, Los Angeles )

    1987-12-01

    Thermogenesis in brown adipose tissue (BAT) serves as a regulator of body temperature and weight maintenance. Thermogenesis can be stimulated by catecholamine activation of adenylate cyclase through the {beta}-adrenergic receptor. To investigate the effects of sucrose feeding, food deprivation, and cold exposure on the {beta}-adrenergic pathway, adenylate cyclase activity and {beta}-adrenergic receptors were assessed in rat BAT after 2 wk of sucrose feeding, 2 days of food deprivation, or 2 days of cold exposure. {beta}-Adrenergic receptors were identified in BAT using ({sup 125}I)iodocyanopindolol. Binding sites had the characteristics of mixed {beta}{sub 1}- and {beta}{sub 2}-type adrenergic receptors at a ratio of 60/40. After sucrose feeding or cold exposure, there was the expected increase in BAT mitochondrial mass as measured by total cytochrome-c oxidase activity but a decrease in {beta}-adrenergic receptor density due to a loss of the {beta}{sub 1}-adrenergic subtype. This BAT {beta}-adrenergic receptor downregulation was tissue specific, since myocardial {beta}-adrenergic receptors were unchanged with either sucrose feeding or cold exposure. Forskolin-stimulated adenylate cyclase activity increased in BAT after sucrose feeding or cold exposure but not after food deprivation. These data suggest that in BAT, sucrose feeding or cold exposure result in downregulation of {beta}-adrenergic receptors and that isoproterenol-stimulated adenylate cyclase activity was limited by receptor availability.

  17. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perception of pathogen-associated molecular patterns (PAMPs) by surface-localised pattern-recognition receptors (PRRs) is a key component of plant innate immunity. Most known plant PRRs are receptor kinases and initiation of PAMP-triggered immunity (PTI) signalling requires phosphorylation of the PR...

  18. Human macrophage activation. Modulation of mannosyl, fucosyl receptor activity in vitro by lymphokines, gamma and alpha interferons, and dexamethasone.

    PubMed Central

    Mokoena, T; Gordon, S

    1985-01-01

    We describe a sensitive assay to measure immune activation of human macrophages in cell culture. Freshly isolated blood monocytes from normal subjects lack the ability to endocytose and degrade mannosyl-terminated glycoconjugates via specific receptors, but acquired this activity after cultivation in autologous serum for approximately 3 d. Addition of specific antigen, purified protein derivative, or T cell mitogens to mononuclear cells prevented the appearance of macrophage mannosyl receptor activity and lymphokine, gamma-, and alpha-interferons selectively down-regulated receptor activity in monocyte-macrophage targets. The effects of antigen challenge and gamma-interferon on mannosyl receptors can be prevented by 10(-8) M dexamethasone. Dexamethasone also inhibited release of another macrophage activation marker, plasminogen activator, which was increased by both gamma- and alpha-interferons. These studies show that activation of human macrophages is regulated by opposing actions of lymphokines and glucocorticoids. PMID:2579101

  19. Estrogen Receptor β Activation Rapidly Modulates Male Sexual Motivation through the Transactivation of Metabotropic Glutamate Receptor 1a.

    PubMed

    Seredynski, Aurore L; Balthazart, Jacques; Ball, Gregory F; Cornil, Charlotte A

    2015-09-23

    In addition to the transcriptional activity of their liganded nuclear receptors, estrogens, such as estradiol (E2), modulate cell functions, and consequently physiology and behavior, within minutes through membrane-initiated events. The membrane-associated receptors (mERs) underlying the acute effects of estrogens on behavior have mostly been documented in females where active estrogens are thought to be of ovarian origin. We determined here, by acute intracerebroventricular injections of specific agonists and antagonists, the type(s) of mERs that modulate rapid effects of brain-derived estrogens on sexual motivation in male Japanese quail. Brain aromatase blockade acutely inhibited sexual motivation. Diarylpropionitrile (DPN), an estrogen receptor β (ERβ)-specific agonist, and to a lesser extent 17α-estradiol, possibly acting through ER-X, prevented this effect. In contrast, drugs targeting ERα (PPT and MPP), GPR30 (G1 and G15), and the Gq-mER (STX) did not affect sexual motivation. The mGluR1a antagonist LY367385 significantly inhibited sexual motivation but mGluR2/3 and mGluR5 antagonists were ineffective. LY367385 also blocked the behavioral restoration induced by E2 or DPN, providing functional evidence that ERβ interacts with metabotropic glutamate receptor 1a (mGluR1a) signaling to acutely regulate male sexual motivation. Together these results show that ERβ plays a key role in sexual behavior regulation and the recently uncovered cooperation between mERs and mGluRs is functional in males where it mediates the acute effects of estrogens produced centrally in response to social stimuli. The presence of an ER-mGluR interaction in birds suggests that this mechanism emerged relatively early in vertebrate history and is well conserved. Significance statement: The membrane-associated receptors underlying the acute effects of estrogens on behavior have mostly been documented in females, where active estrogens are thought to be of ovarian origin. Using acute

  20. The Role of Alpha-2 Adrenergic Receptors in Anti-ulcer Activity.

    PubMed

    Suleyman, Halis

    2012-04-01

    Although peptic ulcer disease has long been recognized, the proposed mechanisms of its etiopathogenesis change every year. This review shows that gastric ulcers have a significant relationship with alpha-2 adrenergic receptors. The aggravating factors of gastric ulcer formation have been reported to act by blocking alpha-2 adrenergic receptors, whereas drugs possessing anti-ulcer activity have been shown to ensure gastric protection by stimulating the alpha-2 adrenergic receptors. The data derived from the literature indicate the likelihood that any drug or substance selectively stimulating the alpha-2 adrenergic receptors may possess anti-ulcer activity.

  1. Nicotine Activation of α4* Receptors: Sufficient for Reward, Tolerance, and Sensitization

    NASA Astrophysics Data System (ADS)

    Tapper, Andrew R.; McKinney, Sheri L.; Nashmi, Raad; Schwarz, Johannes; Deshpande, Purnima; Labarca, Cesar; Whiteaker, Paul; Marks, Michael J.; Collins, Allan C.; Lester, Henry A.

    2004-11-01

    The identity of nicotinic receptor subtypes sufficient to elicit both the acute and chronic effects of nicotine dependence is unknown. We engineered mutant mice with α4 nicotinic subunits containing a single point mutation, Leu9' --> Ala9' in the pore-forming M2 domain, rendering α4* receptors hypersensitive to nicotine. Selective activation of α4* nicotinic acetylcholine receptors with low doses of agonist recapitulates nicotine effects thought to be important in dependence, including reinforcement in response to acute nicotine administration, as well as tolerance and sensitization elicited by chronic nicotine administration. These data indicate that activation of α4* receptors is sufficient for nicotine-induced reward, tolerance, and sensitization.

  2. Down-regulation of phospholipase C-beta1 following chronic muscarinic receptor activation.

    PubMed

    Sorensen, S D; Linseman, D A; Fisher, S K

    1998-04-01

    To determine whether prolonged activation of a phospholipase C-coupled receptor can lead to a down-regulation of its effector enzyme, SH-SY5Y neuroblastoma cells were incubated for 24 h with the muscarinic receptor agonist, oxotremorine-M. Under these conditions, significant reductions (46-53%) in muscarinic cholinergic receptor density, G(alphaq/11) and phospholipase C-beta1 (but not the beta3-or gamma1 isoforms) were observed. These results suggest that a selective down-regulation of phospholipase C-beta1 may play a role in adaptation to chronic muscarinic receptor activation. PMID:9617763

  3. Selective glucocorticoid receptor-activating adjuvant therapy in cancer treatments

    PubMed Central

    Sundahl, Nora; Clarisse, Dorien; Bracke, Marc; Offner, Fritz; Berghe, Wim Vanden; Beck, Ilse M.

    2016-01-01

    Although adverse effects and glucocorticoid resistance cripple their chronic use, glucocorticoids form the mainstay therapy for acute and chronic inflammatory disorders, and play an important role in treatment protocols of both lymphoid malignancies and as adjuvant to stimulate therapy tolerability in various solid tumors. Glucocorticoid binding to their designate glucocorticoid receptor (GR), sets off a plethora of cell-specific events including therapeutically desirable effects, such as cell death, as well as undesirable effects, including chemotherapy resistance, systemic side effects and glucocorticoid resistance. In this context, selective GR agonists and modulators (SEGRAMs) with a more restricted GR activity profile have been developed, holding promise for further clinical development in anti-inflammatory and potentially in cancer therapies. Thus far, the research into the prospective benefits of selective GR modulators in cancer therapy limped behind. Our review discusses how selective GR agonists and modulators could improve the therapy regimens for lymphoid malignancies, prostate or breast cancer. We summarize our current knowledge and look forward to where the field should move to in the future. Altogether, our review clarifies novel therapeutic perspectives in cancer modulation via selective GR targeting. PMID:27713909

  4. Fracture healing in protease-activated receptor-2 deficient mice.

    PubMed

    O'Neill, Kevin R; Stutz, Christopher M; Mignemi, Nicholas A; Cole, Heather; Murry, Matthew R; Nyman, Jeffry S; Hamm, Heidi; Schoenecker, Jonathan G

    2012-08-01

    Protease-activated receptor-2 (PAR-2) provides an important link between extracellular proteases and the cellular initiation of inflammatory responses. The effect of PAR-2 on fracture healing is unknown. This study investigates the in vivo effect of PAR-2 deletion on fracture healing by assessing differences between wild-type (PAR-2(+/+)) and knock-out (PAR-2(-/-)) mice. Unilateral mid-shaft femur fractures were created in 34 PAR-2(+/+) and 28 PAR-2(-/-) mice after intramedullary fixation. Histologic assessments were made at 1, 2, and 4 weeks post-fracture (wpf), and radiographic (plain radiographs, micro-computed tomography (µCT)) and biomechanical (torsion testing) assessments were made at 7 and 10 wpf. Both the fractured and un-fractured contralateral femur specimens were evaluated. Polar moment of inertia (pMOI), tissue mineral density (TMD), bone volume fraction (BV/TV) were determined from µCT images, and callus diameter was determined from plain radiographs. Statistically significant differences in callus morphology as assessed by µCT were found between PAR-2(-/-) and PAR-2(+/+) mice at both 7 and 10 wpf. However, no significant histologic, plain radiographic, or biomechanical differences were found between the genotypes. The loss of PAR-2 was found to alter callus morphology as assessed by µCT but was not found to otherwise effect fracture healing in young mice.

  5. Is receptor oligomerization causally linked to activation of the EGF receptor kinase?

    NASA Technical Reports Server (NTRS)

    Rintoul, D. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Transduction of a signal from an extracellular peptide hormone to produce an intracellular response is often mediated by a cell surface receptor, which is usually a glycoprotein. The secondary intracellular signal(s) generated after hormone binding to the receptor have been intensively studied. The nature of the primary signal generated by ligand binding to the receptor is understood less well in most cases. The particular case of the epidermal growth factor (EGF) receptor is analyzed, and evidence for or against two dissimilar models of primary signal transduction is reviewed. Evidence for the most widely accepted current model is found to be unconvincing. Evidence for the other model is substantial but indirect; a direct test of this model remains to be done.

  6. Peptide fragments of the dihydropyridine receptor can modulate cardiac ryanodine receptor channel activity and sarcoplasmic reticulum Ca2+ release.

    PubMed Central

    Dulhunty, Angela F; Curtis, Suzanne M; Cengia, Louise; Sakowska, Magdalena; Casarotto, Marco G

    2004-01-01

    We show that peptide fragments of the dihydropyridine receptor II-III loop alter cardiac RyR (ryanodine receptor) channel activity in a cytoplasmic Ca2+-dependent manner. The peptides were AC (Thr-793-Ala-812 of the cardiac dihydropyridine receptor), AS (Thr-671-Leu-690 of the skeletal dihydropyridine receptor), and a modified AS peptide [AS(D-R18)], with an extended helical structure. The peptides added to the cytoplasmic side of channels in lipid bilayers at > or = 10 nM activated channels when the cytoplasmic [Ca2+] was 100 nM, but either inhibited or did not affect channel activity when the cytoplasmic [Ca2+] was 10 or 100 microM. Both activation and inhibition were independent of bilayer potential. Activation by AS, but not by AC or AS(D-R18), was reduced at peptide concentrations >1 mM in a voltage-dependent manner (at +40 mV). In control experiments, channels were not activated by the scrambled AS sequence (ASS) or skeletal II-III loop peptide (NB). Resting Ca2+ release from cardiac sarcoplasmic reticulum was not altered by peptide AC, but Ca2+-induced Ca2+ release was depressed. Resting and Ca2+-induced Ca2+ release were enhanced by both the native and modified AS peptides. NMR revealed (i) that the structure of peptide AS(D-R18) is not influenced by [Ca2+] and (ii) that peptide AC adopts a helical structure, particularly in the region containing positively charged residues. This is the first report of specific functional interactions between dihydropyridine receptor A region peptides and cardiac RyR ion channels in lipid bilayers. PMID:14678014

  7. IP receptor-dependent activation of PPAR{gamma} by stable prostacyclin analogues

    SciTech Connect

    Falcetti, Emilia; Flavell, David M.; Staels, Bart; Tinker, Andrew; Haworth, Sheila G.; Clapp, Lucie H. . E-mail: l.clapp@ucl.ac.uk

    2007-09-07

    Stable prostacyclin analogues can signal through cell surface IP receptors or by ligand binding to nuclear peroxisome proliferator-activated receptors (PPARs). So far these agents have been reported to activate PPAR{alpha} and PPAR{delta} but not PPAR{gamma}. Given PPAR{gamma} agonists and prostacyclin analogues both inhibit cell proliferation, we postulated that the IP receptor might elicit PPAR{gamma} activation. Using a dual luciferase reporter gene assay in HEK-293 cells stably expressing the IP receptor or empty vector, we found that prostacyclin analogues only activated PPAR{gamma} in the presence of the IP receptor. Moreover, the novel IP receptor antagonist, RO1138452, but not inhibitors of the cyclic AMP pathway, prevented activation. Likewise, the anti-proliferative effects of treprostinil observed in IP receptor expressing cells, were partially inhibited by the PPAR{gamma} antagonist, GW9662. We conclude that PPAR{gamma} is activated through the IP receptor via a cyclic AMP-independent mechanism and contributes to the anti-growth effects of prostacyclin analogues.

  8. Functional Analysis of Free Fatty Acid Receptor GPR120 in Human Eosinophils: Implications in Metabolic Homeostasis

    PubMed Central

    Konno, Yasunori; Ueki, Shigeharu; Takeda, Masahide; Kobayashi, Yoshiki; Tamaki, Mami; Moritoki, Yuki; Oyamada, Hajime; Itoga, Masamichi; Kayaba, Hiroyuki; Omokawa, Ayumi; Hirokawa, Makoto

    2015-01-01

    Recent evidence has shown that eosinophils play an important role in metabolic homeostasis through Th2 cytokine production. GPR120 (FFA4) is a G protein-coupled receptor (GPCR) for long-chain fatty acids that functions as a regulator of physiological energy metabolism. In the present study, we aimed to investigate whether human eosinophils express GPR120 and, if present, whether it possesses a functional capacity on eosinophils. Eosinophils isolated from peripheral venous blood expressed GPR120 at both the mRNA and protein levels. Stimulation with a synthetic GPR120 agonist, GW9508, induced rapid down-regulation of cell surface expression of GPR120, suggesting ligand-dependent receptor internalization. Although GPR120 activation did not induce eosinophil chemotactic response and degranulation, we found that GW9508 inhibited eosinophil spontaneous apoptosis and Fas receptor expression. The anti-apoptotic effect was attenuated by phosphoinositide 3-kinase (PI3K) inhibitors and was associated with inhibition of caspase-3 activity. Eosinophil response investigated using ELISpot assay indicated that stimulation with a GPR120 agonist induced IL-4 secretion. These findings demonstrate the novel functional properties of fatty acid sensor GPR120 on human eosinophils and indicate the previously unrecognized link between nutrient metabolism and the immune system. PMID:25790291

  9. Receptor activity modifying protein-3 mediates the protumorigenic activity of lysyl oxidase-like protein-2.

    PubMed

    Brekhman, Vera; Lugassie, Jennie; Zaffryar-Eilot, Shelly; Sabo, Edmond; Kessler, Ofra; Smith, Victoria; Golding, Hana; Neufeld, Gera

    2011-01-01

    Lysyl oxidase-like protein-2 (LOXL2) induces epithelial to mesenchymal transition and promotes invasiveness. To understand the mechanisms involved, we examined the effect of LOXL2 overexpression in MCF-7 cells on gene expression. We found that LOXL2 up-regulated the expression of receptor activity modifying protein-3 (RAMP3). Expression of RAMP3 in MDA-MB-231 cells in which LOXL2 expression was inhibited restored vimentin expression, invasiveness, and tumor development. Inhibition of RAMP3 expression in MDA-MB-231 cells mimicked the effects produced by inhibition of LOXL2 expression and was accompanied by inhibition of p38 phosphorylation. LOXL2 overexpression in these cells did not restore invasiveness, suggesting that RAMP3 functions downstream to LOXL2. LOXL2 and RAMP3 are strongly coexpressed in human colon, breast, and gastric carcinomas but not in normal colon or gastric epithelial cells. RAMP3 associates with several G-protein-coupled receptors forming receptors for peptides, such as adrenomedullin and amylin. We hypothesized that RAMP3 could function as a transducer of autocrine signals induced by such peptides. However, the proinvasive effects of RAMP3 could not be abrogated following inhibition of the expression or activity of these peptides. Our experiments suggest that the protumorigenic effects of LOXL2 are partially mediated by RAMP3 and that RAMP3 inhibitors may function as antitumorigenic agents. -

  10. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor.

    PubMed Central

    Cavaillès, V; Dauvois, S; L'Horset, F; Lopez, G; Hoare, S; Kushner, P J; Parker, M G

    1995-01-01

    A conserved region in the hormone-dependent activation domain AF2 of nuclear receptors plays an important role in transcriptional activation. We have characterized a novel nuclear protein, RIP140, that specifically interacts in vitro with this domain of the estrogen receptor. This interaction was increased by estrogen, but not by anti-estrogens and the in vitro binding capacity of mutant receptors correlates with their ability to stimulate transcription. RIP140 also interacts with estrogen receptor in intact cells and modulates its transcriptional activity in the presence of estrogen, but not the anti-estrogen 4-hydroxytamoxifen. In view of its widespread expression in mammalian cells, RIP140 may interact with other members of the superfamily of nuclear receptors and thereby act as a potential co-activator of hormone-regulated gene transcription. Images PMID:7641693

  11. Quantitative structure-activity relationships of selective antagonists of glucagon receptor using QuaSAR descriptors.

    PubMed

    Manoj Kumar, Palanivelu; Karthikeyan, Chandrabose; Hari Narayana Moorthy, Narayana Subbiah; Trivedi, Piyush

    2006-11-01

    In the present paper, quantitative structure activity relationship (QSAR) approach was applied to understand the affinity and selectivity of a novel series of triaryl imidazole derivatives towards glucagon receptor. Statistically significant and highly predictive QSARs were derived for glucagon receptor inhibition by triaryl imidazoles using QuaSAR descriptors of molecular operating environment (MOE) employing computer-assisted multiple regression procedure. The generated QSAR models revealed that factors related to hydrophobicity, molecular shape and geometry predominantly influences glucagon receptor binding affinity of the triaryl imidazoles indicating the relevance of shape specific steric interactions between the molecule and the receptor. Further, QSAR models formulated for selective inhibition of glucagon receptor over p38 mitogen activated protein (MAP) kinase of the compounds in the series highlights that the same structural features, which influence the glucagon receptor affinity, also contribute to their selective inhibition.

  12. Activation of NTS A2a adenosine receptors differentially resets baroreflex control of renal vs. adrenal sympathetic nerve activity.

    PubMed

    Ichinose, Tomoko K; O'Leary, Donal S; Scislo, Tadeusz J

    2009-04-01

    The role of nucleus of solitary tract (NTS) A(2a) adenosine receptors in baroreflex mechanisms is controversial. Stimulation of these receptors releases glutamate within the NTS and elicits baroreflex-like decreases in mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), whereas inhibition of these receptors attenuates HR baroreflex responses. In contrast, stimulation of NTS A(2a) adenosine receptors increases preganglionic adrenal sympathetic nerve activity (pre-ASNA), and the depressor and sympathoinhibitory responses are not markedly affected by sinoaortic denervation and blockade of NTS glutamatergic transmission. To elucidate the role of NTS A(2a) adenosine receptors in baroreflex function, we compared full baroreflex stimulus-response curves for HR, RSNA, and pre-ASNA (intravenous nitroprusside/phenylephrine) before and after bilateral NTS microinjections of selective adenosine A(2a) receptor agonist (CGS-21680; 2.0, 20 pmol/50 nl), selective A(2a) receptor antagonist (ZM-241385; 40 pmol/100 nl), and nonselective A(1) + A(2a) receptor antagonist (8-SPT; 1 nmol/100 nl) in urethane/alpha-chloralose anesthetized rats. Activation of A(2a) receptors decreased the range, upper plateau, and gain of baroreflex-response curves for RSNA, whereas these parameters all increased for pre-ASNA, consistent with direct effects of the agonist on regional sympathetic activity. However, no resetting of baroreflex-response curves along the MAP axis occurred despite the marked decreases in baseline MAP. The antagonists had no marked effects on baseline variables or baroreflex-response functions. We conclude that the activation of NTS A(2a) adenosine receptors differentially alters baroreflex control of HR, RSNA, and pre-ASNA mostly via non-baroreflex mechanism(s), and these receptors have virtually no tonic action on baroreflex control of these sympathetic outputs.

  13. A common mechanism underlies stretch activation and receptor activation of TRPC6 channels

    PubMed Central

    Spassova, Maria A.; Hewavitharana, Thamara; Xu, Wen; Soboloff, Jonathan; Gill, Donald L.

    2006-01-01

    The TRP family of ion channels transduce an extensive range of chemical and physical signals. TRPC6 is a receptor-activated nonselective cation channel expressed widely in vascular smooth muscle and other cell types. We report here that TRPC6 is also a sensor of mechanically and osmotically induced membrane stretch. Pressure-induced activation of TRPC6 was independent of phospholipase C. The stretch responses were blocked by the tarantula peptide, GsMTx-4, known to specifically inhibit mechanosensitive channels by modifying the external lipid-channel boundary. The GsMTx-4 peptide also blocked the activation of TRPC6 channels by either receptor-induced PLC activation or by direct application of diacylglycerol. The effects of the peptide on both stretch- and diacylglycerol-mediated TRPC6 activation indicate that the mechanical and chemical lipid sensing by the channel has a common molecular mechanism that may involve lateral-lipid tension. The mechanosensing properties of TRPC6 channels highly expressed in smooth muscle cells are likely to play a key role in regulating myogenic tone in vascular tissue. PMID:17056714

  14. Quantitative impedimetric NPY-receptor activation monitoring and signal pathway profiling in living cells.

    PubMed

    te Kamp, Verena; Lindner, Ricco; Jahnke, Heinz-Georg; Krinke, Dana; Kostelnik, Katja B; Beck-Sickinger, Annette G; Robitzki, Andrea A

    2015-05-15

    Label-free and non-invasive monitoring of receptor activation and identification of the involved signal pathways in living cells is an ongoing analytic challenge and a great opportunity for biosensoric systems. In this context, we developed an impedance spectroscopy-based system for the activation monitoring of NPY-receptors in living cells. Using an optimized interdigital electrode array for sensitive detection of cellular alterations, we were able for the first time to quantitatively detect the NPY-receptor activation directly without a secondary or enhancer reaction like cAMP-stimulation by forskolin. More strikingly, we could show that the impedimetric based NPY-receptor activation monitoring is not restricted to the Y1-receptor but also possible for the Y2- and Y5-receptor. Furthermore, we could monitor the NPY-receptor activation in different cell lines that natively express NPY-receptors and proof the specificity of the observed impedimetric effect by agonist/antagonist studies in recombinant NPY-receptor expressing cell lines. To clarify the nature of the observed impedimetric effect we performed an equivalent circuit analysis as well as analyzed the role of cell morphology and receptor internalization. Finally, an antagonist based extensive molecular signal pathway analysis revealed small alterations of the actin cytoskeleton as well as the inhibition of at least L-type calcium channels as major reasons for the observed NPY-induced impedance increase. Taken together, our novel impedance spectroscopy based NPY-receptor activation monitoring system offers the opportunity to identify signal pathways as well as for novel versatile agonist/antagonist screening systems for identification of novel therapeutics in the field of obesity and cancer.

  15. Comparative study on transcriptional activity of 17 parabens mediated by estrogen receptor α and β and androgen receptor.

    PubMed

    Watanabe, Yoko; Kojima, Hiroyuki; Takeuchi, Shinji; Uramaru, Naoto; Ohta, Shigeru; Kitamura, Shigeyuki

    2013-07-01

    The structure-activity relationships of parabens which are widely used as preservatives for transcriptional activities mediated by human estrogen receptor α (hERα), hERβ and androgen receptor (hAR) were investigated. Fourteen of 17 parabens exhibited hERα and/or hERβ agonistic activity at concentrations of ≤ 1 × 10(-5)M, whereas none of the 17 parabens showed AR agonistic or antagonistic activity. Among 12 parabens with linear alkyl chains ranging in length from C₁ to C₁₂, heptylparaben (C₇) and pentylparaben (C₅) showed the most potent ERα and ERβ agonistic activity in the order of 10(-7)M and 10(-8)M, respectively, and the activities decreased in a stepwise manner as the alkyl chain was shortened to C₁ or lengthened to C₁₂. Most parabens showing estrogenic activity exhibited ERβ-agonistic activity at lower concentrations than those inducing ERα-agonistic activity. The estrogenic activity of butylparaben was markedly decreased by incubation with rat liver microsomes, and the decrease of activity was blocked by a carboxylesterase inhibitor. These results indicate that parabens are selective agonists for ERβ over ERα; their interactions with ERα/β are dependent on the size and bulkiness of the alkyl groups; and they are metabolized by carboxylesterases, leading to attenuation of their estrogenic activity.

  16. Correlations between the activities of DNA polymerase alpha and the glucocorticoid receptor.

    PubMed Central

    Schmidt, T J; Bollum, F J; Litwack, G

    1982-01-01

    Specific inhibitors and anti-DNA polymerase alpha IgG have been utilized to probe for similarities between cytoplasmic rat hepatic glucocorticoid receptors and DNA polymerase alpha [DNA nucleotidyltransferase (DNA-directed), EC 2.7.7.7]. Rifamycin AF/013, an inhibitor of RNA and DNA polymerase activities, significantly inhibited the binding of activated [6,7-3H]-triamcinolone acetonide (TA) receptor complexes to DNA-cellulose. beta-Lapachone, an inhibitor of DNA polymerase alpha and reverse transcriptase activities, inhibited the specific binding of [6,7-3H]TA when preincubated with unbound receptors. Aphidicolin, another DNA polymerase alpha inhibitor, failed to inhibit any of the glucocorticoid-receptor functions tested. Two specific anti-DNA polymerase alpha IgGs interfered with glucocorticoid receptor functions as measured by their ability to inhibit the binding of [6,7-3H]TA to unbound receptors (85% maximal inhibition) and, to a lesser extent, to inhibit the binding of activated [6,7-3H]TA receptor complexes to DNA-cellulose (50% maximal inhibition). The anti-DNA polymerase alpha IgG and beta-lapachone failed to affect the binding of tritiated estradiol, progesterone, or 5 alpha-dihydrotestosterone to their receptors in appropriate rat target tissues or the binding of [1,2-3H]hydrocortisone to serum transcortin. The most obvious interpretation of these data is that cytoplasmic glucocorticoid receptors and DNA polymerase alpha share antigenic determinants. An alternative interpretation is that the polyclonal anti-DNA polymerase alpha antibody contains IgG molecules raised against calf thymus cytoplasmic activated glucocorticoid-receptor complexes that copurified with DNA polymerase alpha used as the antigen. Taken collectively, however, the antibody and inhibitor data suggest a relationship between DNA polymerase alpha and the glucocorticoid receptor. PMID:6812051

  17. Effects of primary metabolites of organophosphate flame retardants on transcriptional activity via human nuclear receptors.

    PubMed

    Kojima, Hiroyuki; Takeuchi, Shinji; Van den Eede, Nele; Covaci, Adrian

    2016-03-14

    Organophosphate flame retardants (OPFRs) have been used in a wide variety of applications and detected in several environmental matrices, including indoor air and dust. Continuous human exposure to these chemicals is of growing concern. In this study, the agonistic and/or antagonistic activities of 12 primary OPFR-metabolites against ten human nuclear receptors were examined using cell-based transcriptional assays, and compared to those of their parent compounds. As a result, 3-hydroxylphenyl diphenyl phosphate and 4-hydroxylphenyl diphenyl phosphate showed more potent estrogen receptor α (ERα) and ERβ agonistic activity than did their parent, triphenyl phosphate (TPHP). In addition, these hydroxylated TPHP-metabolites also showed ERβ antagonistic activity at higher concentrations and exhibited pregnane X receptor (PXR) agonistic activity as well as androgen receptor (AR) and glucocorticoid receptor (GR) antagonistic activities at similar levels to those of TPHP. Bis(2-butoxyethyl) 3'-hydroxy-2-butoxyethyl phosphate and 2-hydroxyethyl bis(2-butoxyethyl) phosphate act as PXR agonists at similar levels to their parent, tris(2-butoxyethyl) phosphate. On the other hand, seven diester OPFR-metabolites and 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate did not show any receptor activity. Taken together, these results suggest that hydroxylated TPHP-metabolites show increased estrogenicity compared to the parent compound, whereas the diester OPFR-metabolites may have limited nuclear receptor activity compared to their parent triester OPFRs.

  18. The activation of protease-activated receptor 1 mediates proliferation and invasion of nasopharyngeal carcinoma cells.

    PubMed

    Zhu, Qingyao; Luo, Jianchao; Wang, Tao; Ren, Jinghua; Hu, Kai; Wu, Gang

    2012-07-01

    Protease-activated receptor 1 (PAR-1) is a G-coupled membrane protein, which is involved in physiological and malignant invasion processes. It is activated by serine proteases such as thrombin through a unique form or by specific synthetic peptides. In this study, we determined the expression of PAR-1 in five nasopharyngeal carcinoma (NPC) cell lines with different characteristics of invasiveness and metastasis, and found that the levels of PAR-1 expression were higher in invasive or metastatic cell lines than those in low invasive or metastatic ones. Of the five NPC cell lines, CNE1-LMP1 cells had the highest expression levels of PAR-1, which was mainly distributed at the membrane and in the cytoplasm of tumor cells. Further study showed that the thrombin receptor synthetic activating peptide SFLLRN could stimulate the growth of CNE1-LMP1 cells in a dose-dependent manner. However, thrombin itself had a dual effect on the proliferation of NPC cells. Concentrations of thrombin in the range of 0.1-0.5 U/ml promoted cell growth, but concentrations higher than 0.5 U/ml impaired cell growth. Moreover, thrombin and SFLLRN also enhanced the invasive capabilities of CNE1-LMP1 cells in vitro, and this was partly due to enhancing the activities of MMP-2 and MMP-9. Our findings suggest that PAR-1 may contribute to the growth and invasive potential of NPC cells. PMID:22562397

  19. Plasmin Activation of Glial Cells through Protease-Activated Receptor 1.

    PubMed

    Greenidge, André R; Hall, Kiana R; Hambleton, Ian R; Thomas, Richelle; Monroe, Dougald M; Landis, R Clive

    2013-01-01

    The objective of this study was to determine whether plasmin could induce morphological changes in human glial cells via PAR1. Human glioblastoma A172 cells were cultured in the presence of plasmin or the PAR1 specific activating hexapeptide, SFLLRN. Cells were monitored by flow cytometry to detect proteolytic activation of PAR1 receptor. Morphological changes were recorded by photomicroscopy and apoptosis was measured by annexinV staining. Plasmin cleaved the PAR1 receptor on glial cells at 5 minutes (P = 0.02). After 30 minutes, cellular processes had begun to retract from the basal substratum and by 4 hours glial cells had become detached. Similar results were obtained by generating plasmin de novo from plasminogen. Morphological transformation was blocked by plasmin inhibitors aprotinin or epsilon-aminocaproic acid (P = 0.03). Cell viability was unimpaired during early morphological changes, but by 24 hours following plasmin treatment 22% of glial cells were apoptotic. PAR1 activating peptide SFLLRN (but not inactive isomer FSLLRN) promoted analogous glial cell detachment (P = 0.03), proving the role for PAR1 in this process. This study has identified a plasmin/PAR1 axis of glial cell activation, linked to changes in glial cell morophology. This adds to our understanding of pathophysiological disease mechanisms of plasmin and the plasminogen system in neuroinjury. PMID:23431500

  20. Characterization of Inhibitors of Glucocorticoid Receptor Nuclear Translocation: A Model of Cytoplasmic Dynein-Mediated Cargo Transport

    PubMed Central

    Daghestani, Hikmat N.; Zhu, Guangyu; Shinde, Sunita N.; Brodsky, Jeffrey L.

    2012-01-01

    Abstract Agonist-induced glucocorticoid receptor [GR] transport from the cytoplasm to the nucleus was used as a model to identify dynein-mediated cargo transport inhibitors. Cell-based screening of the library of pharmacologically active compound (LOPAC)-1280 collection identified several small molecules that stalled the agonist-induced transport of GR-green fluorescent protein (GFP) in a concentration-dependent manner. Fluorescent images of microtubule organization, nuclear DNA staining, expression of GR-GFP, and its subcellular distribution were inspected and quantified by image analysis to evaluate the impact of compounds on cell morphology, toxicity, and GR transport. Given the complexity of the multi-protein complex involved in dynein-mediated cargo transport and the variety of potential mechanisms for interruption of that process, we therefore developed and validated a panel of biochemical assays to investigate some of the more likely intracellular target(s) of the GR transport inhibitors. Although the apomorphine enantiomers exhibited the most potency toward the ATPase activities of cytoplasmic dynein, myosin, and the heat-shock proteins (HSPs), their apparent lack of specificity made them unattractive for further study in our quest. Other molecules appeared to be nonspecific inhibitors that targeted reactive cysteines of proteins. Ideally, specific retrograde transport inhibitors would either target dynein itself or one of the other important proteins associated with the transport process. Although the hits from the cell-based screen of the LOPAC-1280 collection did not exhibit this desired profile, this screening platform provided a promising phenotypic system for the discovery of dynein/HSP modulators. PMID:21919741

  1. Activation of Melatonin Receptors Reduces Relapse-Like Alcohol Consumption.

    PubMed

    Vengeliene, Valentina; Noori, Hamid R; Spanagel, Rainer

    2015-12-01

    Melatonin is an endogenous synchronizer of biological rhythms and a modulator of physiological functions and behaviors of all mammals. Reduced levels of melatonin and a delay of its nocturnal peak concentration have been found in alcohol-dependent patients and rats. Here we investigated whether the melatonergic system is a novel target to treat alcohol addiction. Male Wistar rats were subjected to long-term voluntary alcohol consumption with repeated abstinence phases. Circadian drinking rhythmicity and patterns were registered with high temporal resolution by a drinkometer system and analyzed by Fourier analysis. We examined potential antirelapse effect of the novel antidepressant drug agomelatine. Given that agomelatine is a potent MT1 and MT2 receptor agonist and a 5-HT2C antagonist we also tested the effects of melatonin itself and the 5-HT2C antagonist SB242084. All drugs reduced relapse-like drinking. Agomelatine and melatonin administered at the end of the light phase led to very similar changes on all measures of the post-abstinence drinking behavior, suggesting that effects of agomelatine on relapse-like behavior are mostly driven by its melatonergic activity. Both drugs caused a clear phase advance in the diurnal drinking pattern when compared with the control vehicle-treated group and a reduced frequency of approaches to alcohol bottles. Melatonin given at the onset of the light phase had no effect on the circadian phase and very small effects on alcohol consumption. We conclude that targeting the melatonergic system in alcohol-dependent individuals can induce a circadian phase advance, which may restore normal sleep architecture and reduce relapse behavior.

  2. Activation of Melatonin Receptors Reduces Relapse-Like Alcohol Consumption.

    PubMed

    Vengeliene, Valentina; Noori, Hamid R; Spanagel, Rainer

    2015-12-01

    Melatonin is an endogenous synchronizer of biological rhythms and a modulator of physiological functions and behaviors of all mammals. Reduced levels of melatonin and a delay of its nocturnal peak concentration have been found in alcohol-dependent patients and rats. Here we investigated whether the melatonergic system is a novel target to treat alcohol addiction. Male Wistar rats were subjected to long-term voluntary alcohol consumption with repeated abstinence phases. Circadian drinking rhythmicity and patterns were registered with high temporal resolution by a drinkometer system and analyzed by Fourier analysis. We examined potential antirelapse effect of the novel antidepressant drug agomelatine. Given that agomelatine is a potent MT1 and MT2 receptor agonist and a 5-HT2C antagonist we also tested the effects of melatonin itself and the 5-HT2C antagonist SB242084. All drugs reduced relapse-like drinking. Agomelatine and melatonin administered at the end of the light phase led to very similar changes on all measures of the post-abstinence drinking behavior, suggesting that effects of agomelatine on relapse-like behavior are mostly driven by its melatonergic activity. Both drugs caused a clear phase advance in the diurnal drinking pattern when compared with the control vehicle-treated group and a reduced frequency of approaches to alcohol bottles. Melatonin given at the onset of the light phase had no effect on the circadian phase and very small effects on alcohol consumption. We conclude that targeting the melatonergic system in alcohol-dependent individuals can induce a circadian phase advance, which may restore normal sleep architecture and reduce relapse behavior. PMID:25994077

  3. Cost-effectiveness of continuous erythropoietin receptor activator in anemia

    PubMed Central

    Schmid, Holger

    2014-01-01

    Background Erythropoiesis-stimulating agents (ESAs) are the mainstay of anemia therapy. Continuous erythropoietin receptor activator (CERA) is a highly effective, long-acting ESA developed for once-monthly dosing. A multitude of clinical studies has evaluated the safety and efficiency of this treatment option for patients with renal anemia. In times of permanent financial pressure on health care systems, the cost-effectiveness of CERA should be of particular importance for payers and clinicians. Objective To critically analyze, from the nephrologists’ point of view, the published literature focusing on the cost-effectiveness of CERA for anemia treatment. Methods The detailed literature search covered electronic databases including MEDLINE, PubMed, and Embase, as well as international conference abstract databases. Results Peer-reviewed literature analyzing the definite cost-effectiveness of CERA is scarce, and most of the available data originate from conference abstracts. Identified data are restricted to the treatment of anemia due to chronic kidney disease. Although the majority of studies suggest a considerable cost advantage for CERA, the published literature cannot easily be compared. While time and motion studies clearly indicate that a switch to CERA could minimize health care staff time in dialysis units, the results of studies comparing direct costs are more ambivalent, potentially reflecting the differences between health care systems and variability between centers. Conclusion Analyzed data are predominantly insufficient; they miss clear evidence and have to thus be interpreted with great caution. In this day and age of financial restraints, results from well-designed, head-to-head studies with clearly defined endpoints have to prove whether CERA therapy can achieve cost savings without compromising anemia management. PMID:25050070

  4. Halogen bonding-enhanced electrochemical halide anion sensing by redox-active ferrocene receptors.

    PubMed

    Lim, Jason Y C; Cunningham, Matthew J; Davis, Jason J; Beer, Paul D

    2015-10-01

    The first examples of halogen bonding redox-active ferrocene receptors and their anion electrochemical sensing properties are reported. Halogen bonding was found to significantly amplify the magnitude of the receptor's metallocene redox-couple's voltammetric responses for halide sensing compared to their hydrogen bonding analogues in both acetonitrile and aqueous-acetonitrile solvent media.

  5. G-1-activated membrane estrogen receptors mediate increased contractility of the human myometrium.

    PubMed

    Maiti, K; Paul, J W; Read, M; Chan, E C; Riley, S C; Nahar, P; Smith, R

    2011-06-01

    Estrogens are key mediators of increased uterine contractility at labor. We sought to determine whether membrane-associated estrogen receptors, such as the recently described seven-transmembrane r