Science.gov

Sample records for agonist-induced receptor internalization

  1. Proteasome involvement in agonist-induced down-regulation of mu and delta opioid receptors.

    PubMed

    Chaturvedi, K; Bandari, P; Chinen, N; Howells, R D

    2001-04-13

    This study investigated the mechanism of agonist-induced opioid receptor down-regulation. Incubation of HEK 293 cells expressing FLAG-tagged delta and mu receptors with agonists caused a time-dependent decrease in opioid receptor levels assayed by immunoblotting. Pulse-chase experiments using [(35)S]methionine metabolic labeling indicated that the turnover rate of delta receptors was accelerated 5-fold following agonist stimulation. Inactivation of functional G(i) and G(o) proteins by pertussis toxin-attenuated down-regulation of the mu opioid receptor, while down-regulation of the delta opioid receptor was unaffected. Pretreatment of cells with inhibitors of lysosomal proteases, calpain, and caspases had little effect on mu and delta opioid receptor down-regulation. In marked contrast, pretreatment with proteasome inhibitors attenuated agonist-induced mu and delta receptor down-regulation. In addition, incubation of cells with proteasome inhibitors in the absence of agonists increased steady-state mu and delta opioid receptor levels. Immunoprecipitation of mu and delta opioid receptors followed by immunoblotting with ubiquitin antibodies suggested that preincubation with proteasome inhibitors promoted accumulation of polyubiquitinated receptors. These data provide evidence that the ubiquitin/proteasome pathway plays a role in agonist-induced down-regulation and basal turnover of opioid receptors. PMID:11152677

  2. Agonist-induced changes in RalA activities allows the prediction of the endocytosis of G protein-coupled receptors.

    PubMed

    Zheng, Mei; Zhang, Xiaohan; Guo, Shuohan; Zhang, Xiaowei; Min, Chengchun; Cheon, Seung Hoon; Oak, Min-Ho; Kim, Young Ran; Kim, Kyeong-Man

    2016-01-01

    GTP binding proteins are classified into two families: heterotrimeric large G proteins which are composed of three subunits, and one subunit of small G proteins. Roles of small G proteins in the intracellular trafficking of G protein-coupled receptors (GPCRs) were studied. Among various small G proteins tested, GTP-bound form (G23V) of RalA inhibited the internalization of dopamine D2 receptor independently of the previously reported downstream effectors of RalA, such as Ral-binding protein 1 and PLD. With high affinity for GRK2, active RalA inhibited the GPCR endocytosis by sequestering the GRK2 from receptors. When it was tested for several GPCRs including an endogenous GPCR, lysophosphatidic acid receptor 1, agonist-induced conversion of GTP-bound to GDP-bound RalA, which presumably releases the sequestered GRK2, was observed selectively with the GPCRs which have tendency to undergo endocytosis. Conversion of RalA from active to inactive state occurred by translocation of RGL, a guanine nucleotide exchange factor, from the plasma membrane to cytosol as a complex with Gβγ. These results suggest that agonist-induced Gβγ-mediated conversion of RalA from the GTP-bound form to the GDP-bound form could be a mechanism to facilitate agonist-induced internalization of GPCRs. PMID:26477566

  3. Imaging endogenous opioid peptide release with [11C]carfentanil and [3H]diprenorphine: influence of agonist-induced internalization

    PubMed Central

    Quelch, Darren R; Katsouri, Loukia; Nutt, David J; Parker, Christine A; Tyacke, Robin J

    2014-01-01

    Understanding the cellular processes underpinning the changes in binding observed during positron emission tomography neurotransmitter release studies may aid translation of these methodologies to other neurotransmitter systems. We compared the sensitivities of opioid receptor radioligands, carfentanil, and diprenorphine, to amphetamine-induced endogenous opioid peptide (EOP) release and methadone administration in the rat. We also investigated whether agonist-induced internalization was involved in reductions in observed binding using subcellular fractionation and confocal microscopy. After radioligand administration, significant reductions in [11C]carfentanil, but not [3H]diprenorphine, uptake were observed after methadone and amphetamine pretreatment. Subcellular fractionation and in vitro radioligand binding studies showed that amphetamine pretreatment only decreased total [11C]carfentanil binding. In vitro saturation binding studies conducted in buffers representative of the internalization pathway suggested that μ-receptors are significantly less able to bind the radioligands in endosomal compared with extracellular compartments. Finally, a significant increase in μ-receptor-early endosome co-localization in the hypothalamus was observed after amphetamine and methadone treatment using double-labeling confocal microscopy, with no changes in δ- or κ-receptor co-localization. These data indicate carfentanil may be superior to diprenorphine when imaging EOP release in vivo, and that alterations in the ability to bind internalized receptors may be a predictor of ligand sensitivity to endogenous neurotransmitter release. PMID:25005876

  4. Neurokinin B- and specific tachykinin NK3 receptor agonists-induced airway hyperresponsiveness in the guinea-pig

    PubMed Central

    Daoui, Samira; Naline, Emmanuel; Lagente, Vincent; Emonds-Alt, Xavier; Advenier, Charles

    2000-01-01

    The aim of this study was to determine whether neurokinin B (NKB) or specific agonists of tachykinin NK3 receptors, [MePhe7]NKB and senktide, were able to induce airway hyperresponsiveness in guinea-pigs. The effects of these compounds were compared to those of substance P (SP), neurokinin A (NKA) and the preferential tachykinin NK1 ([Sar9, Met(02)11]SP) or NK2 ([βAla8]NKA (4-10)) receptor agonists.In guinea-pigs pretreated with phosphoramidon (10−4 M aerosol for 10 min) and salbutamol (8.7×10−3 M for 10 min), all tachykinins administrated by aerosol (3×10−7 to 10−4 M) induced airway hyperresponsiveness 24 h later, displayed by an exaggerated response to the bronchoconstrictor effect of acetylcholine (i.v.). The rank order of potency was: [βAla8]NKA (4-10)>NKA=NKB=senktide=[MePhe7]NKB=[Sar9,Met(02)11]SP>SP.Airway hyperresponsiveness induced by [MePhe7]NKB was prevented by the tachykinin NK3 (SR 142801) and NK2 (SR 48968) receptor antagonists.Bronchoconstriction induced by tachykinins administered by aerosol was also determined. SP, NKA, NKB and the tachykinin NK1 and NK2 receptor agonist induced bronchoconstriction. The rank order of potency was: NKA=[βAla8]NKA (4-10)>NKB=SP=[Sar9,Met(02)11]SP. Under similar conditions, and for concentrations which induce airway hyperresponsiveness, senktide and [MePhe7]NKB failed to induce bronchoconstriction.It is concluded that tachykinin NK3-receptor stimulation can induce airway hyperresponsiveness and that this effect is not related to the ability of tachykinins to induce bronchoconstriction. PMID:10780997

  5. Troglitazone, the peroxisome proliferator-activated receptor-gamma agonist, induces antiproliferation and redifferentiation in human thyroid cancer cell lines.

    PubMed

    Park, Jin-Woo; Zarnegar, Rasa; Kanauchi, Hajime; Wong, Mariwil G; Hyun, William C; Ginzinger, David G; Lobo, Margaret; Cotter, Philip; Duh, Quan-Yang; Clark, Orlo H

    2005-03-01

    Troglitazone is a potent agonist for the peroxisome proliferator-activated receptor-gamma (PPARgamma) that is a ligand-activated transcription factor regulating cell differentiation and growth. PPARgamma may play a role in thyroid carcinogenesis since PAX8-PPARgamma1 chromosomal translocations are commonly found in follicular thyroid cancers. We investigated the antiproliferative and redifferentiation effects of troglitazone in 6 human thyroid cancer cell lines: TPC-1 (papillary), FTC-133, FTC-236, FTC-238 (follicular), XTC-1 (Hürthle cell), and ARO82-1 (anaplastic) cell lines. PPARgamma was expressed variably in these cell lines. FTC-236 and FTC-238 had a rearranged chromosome at 3p25, possibly implicating the involvement of the PPARgamma encoding gene whereas the other cell lines did not. Troglitazone significantly inhibited cell growth by cell cycle arrest and apoptotic cell death. PPARgamma overexpression did not appear to be a prerequisite for a response to treatment with troglitazone. Troglitazone also downregulated surface expression of CD97, a novel dedifferentiation marker, in FTC-133 cells and upregulated sodium iodide symporter (NIS) mRNA in TPC-1 and FTC-133 cells. Our investigations document that human thyroid cancer cell lines commonly express PPARgamma, but chromosomal translocations involving PPARgamma are uncommon. Troglitazone, a PPARgamma agonist, induced antiproliferation and redifferentiation in thyroid cancer cell lines. PPARgamma agonists may therefore be effective therapeutic agents for the treatment of patients with thyroid cancer that fails to respond to traditional treatments. PMID:15785241

  6. Influence of idazoxan on the dopamine D2 receptor agonist-induced behavioural effects in rats.

    PubMed

    Ferrari, F; Giuliani, D

    1993-11-30

    The behavioural effects in rats of the dopamine D2 receptor agonists, lisuride, B-HT 920 and SND 919, were variously influenced by pre-treatment with the selective alpha 2-adrenoceptor antagonist, idazoxan (2 mg/kg), depending on the nature of the effect in question and the doses of agonist employed. The influence of idazoxan on drug-induced stretching-yawning, penile erection, sedation, stereotyped behaviour, aggressiveness and mounting is described and tentatively interpreted in neurochemical terms, account being taken of the activity of respective alpha 2-adrenoceptor antagonist and dopamine receptor agonists used, at alpha 2-adrenoceptors and at different dopamine D2 receptor subtypes, pre- and postsynaptically located. PMID:7907024

  7. Dopamine D3 receptor-preferring agonists induce neurotrophic effects on mesencephalic dopamine neurons.

    PubMed

    Du, Fang; Li, Rui; Huang, Yuangui; Li, Xuping; Le, Weidong

    2005-11-01

    Anti-parkinsonian agents, pramipexole (PPX) and ropinirole (ROP), have been reported to possess neuroprotective properties, both in vitro and in vivo. The mechanisms underlying neuroprotection afforded by the D3-preferring receptor agonists remain poorly understood. The present study demonstrates that incubation of primary mesencephalic cultures with PPX and ROP or the conditioned medium from PPX- or ROP-treated primary cultures induced a marked increase in the number of dopamine (DA) neurons in the cultures. Similar effects can be observed after incubating with the conditioned medium derived from PPX- and ROP-treated substantia nigra astroglia. Meanwhile, PPX and ROP can protect the primary cells from insult of 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). Furthermore, the neurotrophic effects of PPX and ROP on mesencephalic dopamine neurons could be significantly blocked by D3 receptor antagonist, but not by D2 receptor antagonist. Moreover, we found that the levels of glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) in the conditioned medium of mesencephalic cultures treated with PPX and ROP were significantly increased. Blocking GDNF and BDNF with the neutralizing antibodies, the neurotrophic effects of PPX and ROP were greatly diminished. These results suggest that D3 dopamine receptor-preferring agonists, PPX and ROP, exert neurotrophic effects on cultured DA neurons by modulating the production of endogenous GDNF and BDNF, which may participate in their neuroprotection. PMID:16307585

  8. Tachykinin NK(3) receptor agonists induced microvascular leakage hypersensitivity in the guinea-pig airways.

    PubMed

    Daoui, S; Ahnaou, A; Naline, E; Emonds-Alt, X; Lagente, V; Advenier, C

    2001-12-21

    Microvascular leakage hypersensitivity is a main component of neurogenic inflammation and of tachykinin effects. The aim of this study was to examine the ability of neurokinin B and of the tachykinin NK(3) receptor agonists, [MePhe(7)]neurokinin B or senktide, to potentiate when given by aerosol the microvascular leakage induced by histamine in guinea-pig airways and to compare their effects to those of tachykinin NK(1) (substance P, [Sar(9),Met(O(2))(11)]substance P) or tachykinin NK(2) (neurokinin A, [betaAla(8)]neurokinin A (4-10)) receptor agonists. Guinea-pigs were pretreated successively for 10 min with aerolized salbutamol and phosphoramidon; 15 min later, they were exposed for 30 min to an aerosolized solution of tachykinin receptor agonists; 24 h later, the animals were anaesthetized and vascular permeability was quantified by extravasation of Evans blue dye. Neurokinin B, [MePhe(7)]neurokinin B and senktide (3 x 10(-6)-3 x 10(-5)M) induced a potentiation of the effects of histamine on the vascular permeability in the trachea and main bronchi. Compared to other tachykinin NK(1) and NK(2) receptor agonists, the order of potency was: senktide>neurokinin B=[Sar(9),Met(O(2))(11)]substance P=[betaAla(8)]neurokinin A (4-10)=[MePhe(7)]neurokinin B>neurokinin A>substance P. The potentiation by [MePhe(7)]neurokinin B of histamine-induced microvascular leakage was abolished by the tachykinin NK(1) receptor antagonist SR140333 ([(S)1-(2-[3-(3,4-dichlorophenyl)-1-(3-iso-propoxyphenylacetyl)piperidin-3-yl]etyl)-4-phenyl-1-azoniabicyclo[2.2.2]octane, chloride]) or the tachykinin NK(3) receptor antagonists SR 142801 ([(R)-(N)-(1-(3-(l-benzoyl-3-(3,4-dichlorophenyl)piperidin-3-yl) propyl)-4-phenylpiperidin-4-yl)-N-methylacetamide]) and SB 223412 ([(S)-(-)-N-(alpha-ethylbenzyl)-3-hydroxy-2-phenylquinoline-4-carboxamide]). In conclusion, these results suggest that tachykinin NK(3) receptors might be involved in the potentiation of histamine-induced increase in microvascular

  9. Role of extracellular domain dimerization in agonist-induced activation of natriuretic peptide receptor A.

    PubMed

    Parat, Marie; McNicoll, Normand; Wilkes, Brian; Fournier, Alain; De Léan, André

    2008-02-01

    Natriuretic peptide receptor (NPR) A is composed of an extracellular domain (ECD) with a ligand binding site, a single transmembrane region, a kinase homology domain, and a guanylyl cyclase domain. The natural agonists atrial and brain natriuretic peptides (ANP, BNP) bind and activate NPRA, leading to cyclic GMP production, which is responsible for their role in cardiovascular homeostasis. Previous studies suggested that stabilization of a dimeric form of NPRA by agonist is essential for receptor activation. However, ligand specificity and sequential steps of this dimerization process have not been investigated. We used radioligand binding, fluorescence resonance energy transfer homoquenching, and molecular modeling to characterize the interaction of human NPRA-ECD with ANP, BNP, the superagonist (Arg(10),Leu(12),Ser(17),Leu(18))-rANP-(1-28), the minimized analog mini-ANP and the antagonist (Arg(6),beta-cyclohexyl-Ala(8),d-Tic(16),Arg(17),Cys(18))-rANP-(6-18)-amide (A71915). ANP binds to preformed ECD dimers and spontaneous dimerization is the rate-limiting step of the ligand binding process. All the studied peptides, including A71915 antagonist, induce a dose-dependent fluorescence homoquenching, specific to dimerization, with potencies highly correlated with their binding affinities. A71915 induced more quenching than other peptides, suggesting stabilization by the antagonist of ECD dimer in a distinct inactive conformation. In summary, these results indicate that the ligand-induced dimerization process of NPRA is different from that for cytokine receptor model. Agonists or antagonists bind to preformed dimeric ECD, leading to dimer stabilization in an active or inactive conformation, respectively. Furthermore, the highly sensitive fluorescence assay designed to assess dimerization could serve as a powerful tool for further detailing the kinetic steps involved in natriuretic peptide receptor binding and activation. PMID:17965196

  10. The protease-activated receptor-2 agonist induces gastric mucus secretion and mucosal cytoprotection

    PubMed Central

    Kawabata, Atsufumi; Kinoshita, Mitsuhiro; Nishikawa, Hiroyuki; Kuroda, Ryotaro; Nishida, Minoru; Araki, Hiromasa; Arizono, Naoki; Oda, Yasuo; Kakehi, Kazuaki

    2001-01-01

    Protease-activated receptor-2 (PAR-2), a receptor activated by trypsin/tryptase, modulates smooth muscle tone and exocrine secretion in the salivary glands and pancreas. Given that PAR-2 is expressed throughout the gastrointestinal tract, we investigated effects of PAR-2 agonists on mucus secretion and gastric mucosal injury in the rat. PAR-2–activating peptides triggered secretion of mucus in the stomach, but not in the duodenum. This mucus secretion was abolished by pretreatment with capsaicin, which stimulates and ablates specific sensory neurons, but it was resistant to cyclo-oxygenase inhibition. In contrast, capsaicin treatment failed to block PAR-2–mediated secretion from the salivary glands. Intravenous calcitonin gene–related peptide (CGRP) and neurokinin A markedly elicited gastric mucus secretion, as did substance P to a lesser extent. Specific antagonists of the CGRP1 and NK2, but not the NK1, receptors inhibited PAR-2–mediated mucus secretion. Pretreatment with the PAR-2 agonist strongly prevented gastric injury caused by HCl-ethanol or indomethacin. Thus, PAR-2 activation triggers the cytoprotective secretion of gastric mucus by stimulating the release of CGRP and tachykinins from sensory neurons. In contrast, the PAR-2–mediated salivary exocrine secretion appears to be independent of capsaicin-sensitive sensory neurons. PMID:11390426

  11. Estradiol receptors agonists induced effects in rat intestinal microcirculation during sepsis.

    PubMed

    Sharawy, Nivin; Ribback, Silvia; Al-Banna, Nadia; Lehmann, Christian; Kern, Hartmut; Wendt, Michael; Cerny, Vladimir; Dombrowski, Frank; Pavlovic, Dragan

    2013-01-01

    The steroid hormone estradiol is suggested to play a protective role in intestinal injury during systemic inflammation (sepsis). Our aim was to determine the effects of specific estradiol receptor (ER-α and ER-ß) agonists on the intestinal microcirculation during experimental sepsis. Male and sham ovariectomized female rats were subjected to sham colon ascendens stent peritonitis (CASP), and they were compared to male and ovariectomized female rats underwent CASP and either estradiol receptor α (ER-α) agonist propyl pyrazole triol (PPT), estradiol receptor ß (ER-ß) agonist diarylpropiolnitrile (DPN), or vehicle treatment. Intravital microscopy was performed, which is sufficiently sensitive to measure changes in the functional capillary density (FCD) as well as the major steps in leukocyte recruitment (rolling and adhesion). The leukocyte extravasations were also quantified by using histological paraffin sections of formalin fixed intestine. We found that either DPN (ER-β) or PPT (ER-α) significantly reduced (P<0.05) sepsis-induced leukocyte-endothelial interaction (rolling, adherent leukocytes and neutrophil extravasations) and improved the intestinal muscular FCD. [PPT: Female; Leukocyte rolling (n/min): V(3) 3.7±0.7 vs 0.8±0.2, Leukocyte adhesion(n/mm(2)): V(3) 131.3±22.6 vs 57.2±13.5, Neutrophil extravasations (n/10000 μm(2)): 3.1±0.7 vs 6 ±1. Male; Leukocyte adhesion (n/mm(2)): V(1) 154.8±19.2 vs 81.3±11.2, V(3) 115.5±23.1 vs 37.8±12]. [DPN: Female; neutrophil extravasations (n/10000 μm(2)) 3.8±0.6 vs 6 ±1. Male; Leukocyte adhesion (n/mm(2)) V(1) 154.8±19.2 vs 70±10.5, V(3) 115.5±23.1 vs 52.8±9.6].Those results suggest that the observed effects of estradiol receptors on different phases of leukocytes recruitment with the improvement of the functional capillary density could partially explain the previous demonstrated salutary effects of estradiol on the intestinal microcirculation during sepsis. The observed activity of this class of

  12. Parabrachial Nucleus Contributions to Glucagon-Like Peptide-1 Receptor Agonist-Induced Hypophagia

    PubMed Central

    Swick, Jennifer C; Alhadeff, Amber L; Grill, Harvey J; Urrea, Paula; Lee, Stephanie M; Roh, Hyunsun; Baird, John-Paul

    2015-01-01

    Exendin-4 (Ex4), a glucagon-like peptide-1 receptor (GLP-1R) agonist approved to treat type 2 diabetes mellitus, is well known to induce hypophagia in human and animal models. We evaluated the contributions of the hindbrain parabrachial nucleus (PBN) to systemic Ex4-induced hypophagia, as the PBN receives gustatory and visceral afferent relays and descending input from several brain nuclei associated with feeding. Rats with ibotenic-acid lesions targeted to the lateral PBN (PBNx) and sham controls received Ex4 (1 μg/kg) before 24 h home cage chow or 90 min 0.3 M sucrose access tests, and licking microstructure was analyzed to identify components of feeding behavior affected by Ex4. PBN lesion efficacy was confirmed using conditioned taste aversion (CTA) tests. As expected, sham control but not PBNx rats developed a CTA. In sham-lesioned rats, Ex4 reduced chow intake within 4 h of injection and sucrose intake within 90 min. PBNx rats did not show reduced chow or sucrose intake after Ex4 treatment, indicating that the PBN is necessary for Ex4 effects under the conditions tested. In sham-treated rats, Ex4 affected licking microstructure measures associated with hedonic taste evaluation, appetitive behavior, oromotor coordination, and inhibitory postingestive feedback. Licking microstructure responses in PBNx rats after Ex4 treatment were similar to sham-treated rats with the exception of inhibitory postingestive feedback measures. Together, the results suggest that the PBN critically contributes to the hypophagic effects of systemically delivered GLP-1R agonists by enhancing visceral feedback. PMID:25703200

  13. Proteolytic cleavage of the urokinase receptor substitutes for the agonist-induced chemotactic effect.

    PubMed Central

    Resnati, M; Guttinger, M; Valcamonica, S; Sidenius, N; Blasi, F; Fazioli, F

    1996-01-01

    Physiological concentrations of urokinase plasminogen activator (uPA) stimulated a chemotactic response in human monocytic THP-1 through binding to the urokinase receptor (uPAR). The effect did not require the protease moiety of uPA, as stimulation was achieved also with the N-terminal fragment (ATF), while the 33 kDa low molecular weight uPA was ineffective. Co-immunoprecipitation experiments showed association of uPAR with intracellular kinase(s), as demonstrated by in vitro kinase assays. Use of specific antibodies identified p56/p59hck as a kinase associated with uPAR in THP-1 cell extracts. Upon addition of ATF, p56/p59hck activity was stimulated within 2 min and returned to normal after 30 min. Since uPAR lacks an intracellular domain capable of interacting with intracellular kinase, activation of p56/p59hck must require a transmembrane adaptor. Evidence for this was strongly supported by the finding that a soluble form of uPAR (suPAR) was capable of inducing chemotaxis not only in THP-1 cells but also in cells lacking endogenous uPAR (IC50, 5 pM). However, activity of suPAR require chymotrypsin cleavage between the N-terminal domain D1 and D2 + D3. Chymotrypsin-cleaved suPAR also induced activation of p56/p59hck in THP-1 cells, with a time course comparable with ATF. Our data show that uPA-induced signal transduction takes place via uPAR, involves activation of intracellular tyrosine kinase(s) and requires an as yet undefined adaptor capable of connecting the extracellular ligand binding uPAR to intracellular transducer(s). Images PMID:8612581

  14. Parabrachial Nucleus Contributions to Glucagon-Like Peptide-1 Receptor Agonist-Induced Hypophagia.

    PubMed

    Swick, Jennifer C; Alhadeff, Amber L; Grill, Harvey J; Urrea, Paula; Lee, Stephanie M; Roh, Hyunsun; Baird, John-Paul

    2015-07-01

    Exendin-4 (Ex4), a glucagon-like peptide-1 receptor (GLP-1R) agonist approved to treat type 2 diabetes mellitus, is well known to induce hypophagia in human and animal models. We evaluated the contributions of the hindbrain parabrachial nucleus (PBN) to systemic Ex4-induced hypophagia, as the PBN receives gustatory and visceral afferent relays and descending input from several brain nuclei associated with feeding. Rats with ibotenic-acid lesions targeted to the lateral PBN (PBNx) and sham controls received Ex4 (1 μg/kg) before 24 h home cage chow or 90 min 0.3 M sucrose access tests, and licking microstructure was analyzed to identify components of feeding behavior affected by Ex4. PBN lesion efficacy was confirmed using conditioned taste aversion (CTA) tests. As expected, sham control but not PBNx rats developed a CTA. In sham-lesioned rats, Ex4 reduced chow intake within 4 h of injection and sucrose intake within 90 min. PBNx rats did not show reduced chow or sucrose intake after Ex4 treatment, indicating that the PBN is necessary for Ex4 effects under the conditions tested. In sham-treated rats, Ex4 affected licking microstructure measures associated with hedonic taste evaluation, appetitive behavior, oromotor coordination, and inhibitory postingestive feedback. Licking microstructure responses in PBNx rats after Ex4 treatment were similar to sham-treated rats with the exception of inhibitory postingestive feedback measures. Together, the results suggest that the PBN critically contributes to the hypophagic effects of systemically delivered GLP-1R agonists by enhancing visceral feedback. PMID:25703200

  15. Peroxisome proliferator-activated receptor {alpha} agonist-induced down-regulation of hepatic glucocorticoid receptor expression in SD rats

    SciTech Connect

    Chen Xiang; Li Ming; Sun Weiping; Bi Yan; Cai Mengyin; Liang Hua; Yu Qiuqiong; He Xiaoying; Weng Jianping

    2008-04-18

    It was reported that glucocorticoid production was inhibited by fenofibrate through suppression of type-1 11{beta}-hydroxysteroid dehydrogenase gene expression in liver. The inhibition might be a negative-feedback regulation of glucocorticoid receptor (GR) activity by peroxisome proliferator-activated receptor alpha (PPAR{alpha}), which is quickly induced by glucocorticoid in the liver. However, it is not clear if GR expression is changed by fenofibrate-induced PPAR{alpha} activation. In this study, we tested this possibility in the liver of Sprague-Dawley rats. GR expression was reduced by fenofibrate in a time- and does-dependent manner. The inhibition was observed in liver, but not in fat and muscle. The corticosterone level in the blood was increased significantly by fenofibrate. These effects of fenofibrate were abolished by PPAR{alpha} inhibitor MK886, suggesting that fenofibrate activated through PPAR{alpha}. In conclusion, inhibition of GR expression may represent a new molecular mechanism for the negative feedback regulation of GR activity by PPAR{alpha}.

  16. Atrial natriuretic peptide attenuates agonist-induced pulmonary edema in mice with targeted disruption of the gene for natriuretic peptide receptor-A

    PubMed Central

    Tsai, Shu-Whei; Green, Sabrina; Grinnell, Katie L.; Machan, Jason T.; Harrington, Elizabeth O.

    2013-01-01

    Atrial natriuretic peptide (ANP) inhibits agonist-induced pulmonary edema formation, but the signaling pathway responsible is not well defined. To investigate the role of the particulate guanylate cyclase-linked receptor, natriuretic peptide receptor-A (NPR-A), we measured acute lung injury responses in intact mice and pulmonary microvascular endothelial cells (PMVEC) with normal and disrupted expression of NPR-A. NPR-A wild-type (NPR-A+/+), heterozygous (NPR-A+/−), and knockout (NPR-A−/−) mice were anesthetized and treated with thrombin receptor agonist peptide (TRAP) or lipopolysaccharide (LPS). Lung injury was assessed by lung wet-to-dry (W/D) weight and by protein and cell concentration of bronchoalveolar lavage (BAL) fluid. No difference in pulmonary edema formation was seen between NPR-A genotypes under baseline conditions. TRAP and LPS increased lung W/D weight and BAL fluid cell counts more in NPR-A−/− mice than in NPR-A+/− or NPR-A+/+ mice, but no genotype-related differences were seen in TRAP-induced increases in bloodless lung W/D weight or LPS-induced increases in BAL protein concentration. Pretreatment with ANP infusion completely blocked TRAP-induced increases in lung W/D weight and blunted LPS-induced increases in BAL cell counts and protein concentration in both NPR-A−/− and NPR-A+/+ mice. Thrombin decreased transmembrane electrical resistance in monolayers of PMVECs in vitro, and this effect was attenuated by ANP in PMVECs isolated from both genotypes. Administration of the NPR-C-specific ligand, cANF, also blocked TRAP-induced increases in lung W/D weight and LPS-induced increases in BAL cell count and protein concentration in NPR-A+/+ and NPR-A−/− mice. We conclude that ANP is capable of attenuating agonist-induced lung edema in the absence of NPR-A. The protective effect of ANP on agonist-induced lung injury and pulmonary barrier function may be mediated by NPR-C. PMID:23195629

  17. Atrial natriuretic peptide attenuates agonist-induced pulmonary edema in mice with targeted disruption of the gene for natriuretic peptide receptor-A.

    PubMed

    Klinger, James R; Tsai, Shu-Whei; Green, Sabrina; Grinnell, Katie L; Machan, Jason T; Harrington, Elizabeth O

    2013-02-01

    Atrial natriuretic peptide (ANP) inhibits agonist-induced pulmonary edema formation, but the signaling pathway responsible is not well defined. To investigate the role of the particulate guanylate cyclase-linked receptor, natriuretic peptide receptor-A (NPR-A), we measured acute lung injury responses in intact mice and pulmonary microvascular endothelial cells (PMVEC) with normal and disrupted expression of NPR-A. NPR-A wild-type (NPR-A+/+), heterozygous (NPR-A+/-), and knockout (NPR-A-/-) mice were anesthetized and treated with thrombin receptor agonist peptide (TRAP) or lipopolysaccharide (LPS). Lung injury was assessed by lung wet-to-dry (W/D) weight and by protein and cell concentration of bronchoalveolar lavage (BAL) fluid. No difference in pulmonary edema formation was seen between NPR-A genotypes under baseline conditions. TRAP and LPS increased lung W/D weight and BAL fluid cell counts more in NPR-A-/- mice than in NPR-A+/- or NPR-A+/+ mice, but no genotype-related differences were seen in TRAP-induced increases in bloodless lung W/D weight or LPS-induced increases in BAL protein concentration. Pretreatment with ANP infusion completely blocked TRAP-induced increases in lung W/D weight and blunted LPS-induced increases in BAL cell counts and protein concentration in both NPR-A-/- and NPR-A+/+ mice. Thrombin decreased transmembrane electrical resistance in monolayers of PMVECs in vitro, and this effect was attenuated by ANP in PMVECs isolated from both genotypes. Administration of the NPR-C-specific ligand, cANF, also blocked TRAP-induced increases in lung W/D weight and LPS-induced increases in BAL cell count and protein concentration in NPR-A+/+ and NPR-A-/- mice. We conclude that ANP is capable of attenuating agonist-induced lung edema in the absence of NPR-A. The protective effect of ANP on agonist-induced lung injury and pulmonary barrier function may be mediated by NPR-C. PMID:23195629

  18. A Naturally Occurring GIP Receptor Variant Undergoes Enhanced Agonist-Induced Desensitization, Which Impairs GIP Control of Adipose Insulin Sensitivity

    PubMed Central

    Mohammad, Sameer; Patel, Rajesh T.; Bruno, Joanne; Panhwar, Muhammad Siyab; Wen, Jennifer

    2014-01-01

    Glucose-dependent insulinotropic polypeptide (GIP), an incretin hormone secreted from gastrointestinal K cells in response to food intake, has an important role in the control of whole-body metabolism. GIP signals through activation of the GIP receptor (GIPR), a G-protein-coupled receptor (GPCR). Dysregulation of this pathway has been implicated in the development of metabolic disease. Here we demonstrate that GIPR is constitutively trafficked between the plasma membrane and intracellular compartments of both GIP-stimulated and unstimulated adipocytes. GIP induces a downregulation of plasma membrane GIPR by slowing GIPR recycling without affecting internalization kinetics. This transient reduction in the expression of GIPR in the plasma membrane correlates with desensitization to the effects of GIP. A naturally occurring variant of GIPR (E354Q) associated with an increased incidence of insulin resistance, type 2 diabetes, and cardiovascular disease in humans responds to GIP stimulation with an exaggerated downregulation from the plasma membrane and a delayed recovery of GIP sensitivity following cessation of GIP stimulation. This perturbation in the desensitization-resensitization cycle of the GIPR variant, revealed in studies of cultured adipocytes, may contribute to the link of the E354Q variant to metabolic disease. PMID:25047836

  19. Novel role of cortactin in G protein-coupled receptor agonist-induced nuclear export and degradation of p21Cip1.

    PubMed

    Janjanam, Jagadeesh; Rao, Gadiparthi N

    2016-01-01

    Monocyte chemotactic protein 1 (MCP1) stimulates phosphorylation of cortactin on Y421 and Y446 residues in a time-dependent manner and phosphorylation at Y446 but not Y421 residue is required for MCP1-induced CDK-interacting protein 1 (p21Cip1) nuclear export and degradation in facilitating human aortic smooth muscle cell (HASMC) proliferation. In addition, MCP1-induced cortactin tyrosine phosphorylation, p21Cip1 degradation and HASMC proliferation are dependent on Fyn activation. Upstream to Fyn, MCP1 stimulated C-C chemokine receptor type 2 (CCR2) and Gi/o and inhibition of either one of these molecules using their specific antagonists or inhibitors attenuated MCP1-induced cortactin tyrosine phosphorylation, p21Cip1 degradation and HASMC proliferation. Cortactin phosphorylation at Y446 residue is also required for another G protein-coupled receptor (GPCR) agonist, thrombin-induced p21Cip1 nuclear export and its degradation in promoting HASMC proliferation. Quite interestingly, the receptor tyrosine kinase (RTK) agonist, platelet-derived growth factor-BB (PDGF-BB)-induced p21Cip1 degradation and HASMC proliferation do not require cortactin tyrosine phosphorylation. Together, these findings demonstrate that tyrosine phosphorylation of cortactin at Y446 residue is selective for only GPCR but not RTK agonist-induced nuclear export and proteolytic degradation of p21Cip1 in HASMC proliferation. PMID:27363897

  20. Novel role of cortactin in G protein-coupled receptor agonist-induced nuclear export and degradation of p21Cip1

    PubMed Central

    Janjanam, Jagadeesh; Rao, Gadiparthi N.

    2016-01-01

    Monocyte chemotactic protein 1 (MCP1) stimulates phosphorylation of cortactin on Y421 and Y446 residues in a time-dependent manner and phosphorylation at Y446 but not Y421 residue is required for MCP1-induced CDK-interacting protein 1 (p21Cip1) nuclear export and degradation in facilitating human aortic smooth muscle cell (HASMC) proliferation. In addition, MCP1-induced cortactin tyrosine phosphorylation, p21Cip1 degradation and HASMC proliferation are dependent on Fyn activation. Upstream to Fyn, MCP1 stimulated C-C chemokine receptor type 2 (CCR2) and Gi/o and inhibition of either one of these molecules using their specific antagonists or inhibitors attenuated MCP1-induced cortactin tyrosine phosphorylation, p21Cip1 degradation and HASMC proliferation. Cortactin phosphorylation at Y446 residue is also required for another G protein-coupled receptor (GPCR) agonist, thrombin-induced p21Cip1 nuclear export and its degradation in promoting HASMC proliferation. Quite interestingly, the receptor tyrosine kinase (RTK) agonist, platelet-derived growth factor-BB (PDGF-BB)-induced p21Cip1 degradation and HASMC proliferation do not require cortactin tyrosine phosphorylation. Together, these findings demonstrate that tyrosine phosphorylation of cortactin at Y446 residue is selective for only GPCR but not RTK agonist-induced nuclear export and proteolytic degradation of p21Cip1 in HASMC proliferation. PMID:27363897

  1. Cannabinoid receptor subtype 2 (CB2R) agonist, GW405833 reduces agonist-induced Ca2+ oscillations in mouse pancreatic acinar cells

    PubMed Central

    Huang, Zebing; Wang, Haiyan; Wang, Jingke; Zhao, Mengqin; Sun, Nana; Sun, Fangfang; Shen, Jianxin; Zhang, Haiying; Xia, Kunkun; Chen, Dejie; Gao, Ming; Hammer, Ronald P.; Liu, Qingrong; Xi, Zhengxiong; Fan, Xuegong; Wu, Jie

    2016-01-01

    Emerging evidence demonstrates that the blockade of intracellular Ca2+ signals may protect pancreatic acinar cells against Ca2+ overload, intracellular protease activation, and necrosis. The activation of cannabinoid receptor subtype 2 (CB2R) prevents acinar cell pathogenesis in animal models of acute pancreatitis. However, whether CB2Rs modulate intracellular Ca2+ signals in pancreatic acinar cells is largely unknown. We evaluated the roles of CB2R agonist, GW405833 (GW) in agonist-induced Ca2+ oscillations in pancreatic acinar cells using multiple experimental approaches with acute dissociated pancreatic acinar cells prepared from wild type, CB1R-knockout (KO), and CB2R-KO mice. Immunohistochemical labeling revealed that CB2R protein was expressed in mouse pancreatic acinar cells. Electrophysiological experiments showed that activation of CB2Rs by GW reduced acetylcholine (ACh)-, but not cholecystokinin (CCK)-induced Ca2+ oscillations in a concentration-dependent manner; this inhibition was prevented by a selective CB2R antagonist, AM630, or was absent in CB2R-KO but not CB1R-KO mice. In addition, GW eliminated L-arginine-induced enhancement of Ca2+ oscillations, pancreatic amylase, and pulmonary myeloperoxidase. Collectively, we provide novel evidence that activation of CB2Rs eliminates ACh-induced Ca2+ oscillations and L-arginine-induced enhancement of Ca2+ signaling in mouse pancreatic acinar cells, which suggests a potential cellular mechanism of CB2R-mediated protection in acute pancreatitis. PMID:27432473

  2. Cannabinoid receptor subtype 2 (CB2R) agonist, GW405833 reduces agonist-induced Ca(2+) oscillations in mouse pancreatic acinar cells.

    PubMed

    Huang, Zebing; Wang, Haiyan; Wang, Jingke; Zhao, Mengqin; Sun, Nana; Sun, Fangfang; Shen, Jianxin; Zhang, Haiying; Xia, Kunkun; Chen, Dejie; Gao, Ming; Hammer, Ronald P; Liu, Qingrong; Xi, Zhengxiong; Fan, Xuegong; Wu, Jie

    2016-01-01

    Emerging evidence demonstrates that the blockade of intracellular Ca(2+) signals may protect pancreatic acinar cells against Ca(2+) overload, intracellular protease activation, and necrosis. The activation of cannabinoid receptor subtype 2 (CB2R) prevents acinar cell pathogenesis in animal models of acute pancreatitis. However, whether CB2Rs modulate intracellular Ca(2+) signals in pancreatic acinar cells is largely unknown. We evaluated the roles of CB2R agonist, GW405833 (GW) in agonist-induced Ca(2+) oscillations in pancreatic acinar cells using multiple experimental approaches with acute dissociated pancreatic acinar cells prepared from wild type, CB1R-knockout (KO), and CB2R-KO mice. Immunohistochemical labeling revealed that CB2R protein was expressed in mouse pancreatic acinar cells. Electrophysiological experiments showed that activation of CB2Rs by GW reduced acetylcholine (ACh)-, but not cholecystokinin (CCK)-induced Ca(2+) oscillations in a concentration-dependent manner; this inhibition was prevented by a selective CB2R antagonist, AM630, or was absent in CB2R-KO but not CB1R-KO mice. In addition, GW eliminated L-arginine-induced enhancement of Ca(2+) oscillations, pancreatic amylase, and pulmonary myeloperoxidase. Collectively, we provide novel evidence that activation of CB2Rs eliminates ACh-induced Ca(2+) oscillations and L-arginine-induced enhancement of Ca(2+) signaling in mouse pancreatic acinar cells, which suggests a potential cellular mechanism of CB2R-mediated protection in acute pancreatitis. PMID:27432473

  3. Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule.

    PubMed

    Vyklicky, Vojtech; Krausova, Barbora; Cerny, Jiri; Balik, Ales; Zapotocky, Martin; Novotny, Marian; Lichnerova, Katarina; Smejkalova, Tereza; Kaniakova, Martina; Korinek, Miloslav; Petrovic, Milos; Kacer, Petr; Horak, Martin; Chodounska, Hana; Vyklicky, Ladislav

    2015-01-01

    N-methyl-D-aspartate receptors (NMDARs) mediate synaptic plasticity, and their dysfunction is implicated in multiple brain disorders. NMDARs can be allosterically modulated by numerous compounds, including endogenous neurosteroid pregnanolone sulfate. Here, we identify the molecular basis of the use-dependent and voltage-independent inhibitory effect of neurosteroids on NMDAR responses. The site of action is located at the extracellular vestibule of the receptor's ion channel pore and is accessible after receptor activation. Mutations in the extracellular vestibule in the SYTANLAAF motif disrupt the inhibitory effect of negatively charged steroids. In contrast, positively charged steroids inhibit mutated NMDAR responses in a voltage-dependent manner. These results, in combination with molecular modeling, characterize structure details of the open configuration of the NMDAR channel. Our results provide a unique opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with dysfunction of the glutamate system. PMID:26086919

  4. Agonist-induced desensitization of histamine H1 receptor-mediated inositol phospholipid hydrolysis in human umbilical vein endothelial cells.

    PubMed Central

    McCreath, G; Hall, I P; Hill, S J

    1994-01-01

    1. The regulation of histamine-induced [3H]-inositol phosphate formation was studied in human cultured umbilical vein endothelial cells (HUVEC). 2. Histamine (EC50 4.8 microM) produced a 12.7 fold increase in [3H]-inositol phosphate formation over basal levels. Prior exposure to 0.1 mM histamine (2 h) produced a 78% reduction in the response to subsequent histamine (0.1 mM) challenge. The IC50 for this histamine-induced desensitization was 0.9 microM. 3. The inositol phosphate response to histamine (0.1 mM) was inhibited by phorbol dibutyrate (IC50 40 nM; maximal reduction 64%). This effect was antagonized by both staurosporine (100 nM) and Ro 31-8220 (10 microM). However, the histamine-induced desensitization of the H1-receptor-mediated inositol phosphate response was insensitive to the protein kinase inhibitors, staurosporine, Ro 31-8220, K252a and KN62. 4. Prior exposure to sodium nitroprusside (100 microM), forskolin (10 microM) or dibutyryl cyclic AMP (1 mM) had no effect upon histamine-induced [3H]-inositol phosphate formation. 5. NaF (20 mM) and thrombin (EC50 0.4 u ml-1) also induced inositol phosphate formation in HUVEC. Histamine pretreatment (0.1 mM, 10-120 min) failed to modify the inositol phosphate response to a subsequent NaF or thrombin challenge. 6. We conclude that the desensitization of histamine H1-receptor-mediated [3H]-inositol phosphate formation occurs at the level of the receptor and involves a mechanism independent of activation of protein kinase A, G, or C, or calcium calmodulin-dependent protein kinase II. PMID:7858873

  5. CRM 1-Mediated Degradation and Agonist-Induced Down-Regulation of β-Adrenergic Receptor mRNAs

    PubMed Central

    Bai, Ying; Lu, Huafei; Machida, Curtis A.

    2006-01-01

    SUMMARY The β1-adrenergic receptor (β1-AR) mRNAs are post-transcriptionally regulated at the level of mRNA stability and undergo accelerated agonist-mediated degradation via interaction of its 3' untranslated region (UTR) with RNA binding proteins, including the HuR nuclear protein. In a previous report [Kirigiti et al. (2001). Mol. Pharmacol. 60:1308-1324), we examined the agonist-mediated down-regulation of the rat β1-AR mRNAs, endogenously expressed in the rat C6 cell line and ectopically expressed in transfectant hamster DDT1MF2 and rat L6 cells. In this report, we determined that isoproterenol treatment of neonatal rat cortical neurons, an important cell type expressing β1-ARs in the brain, results in significant decreases in β1-AR mRNA stability, while treatment with leptomycin B, an inhibitor of the nuclear export receptor CRM 1, results in significant increases in β1-AR mRNA stability and nuclear retention. UV-crosslinking/immunoprecipitation and glycerol gradient fractionation analyses indicate that the β1-AR 3' UTR recognize complexes composed of HuR and multiple proteins, including CRM 1. Cell-permeable peptides containing the leucine-rich nuclear export signal (NES) were used as inhibitors of CRM 1-mediated nuclear export. When DDT1MF2 transfectants were treated with isoproterenol and peptide inhibitors, only the co-addition of the NES inhibitor reversed the isoproterenol-induced reduction of β1-AR mRNA levels. Our results suggest that CRM 1-dependent NES-mediated mechanisms influence the degradation and agonist-mediated down-regulation of the β1-AR mRNAs. PMID:16997396

  6. Increase in caveolae and caveolin-1 expression modulates agonist-induced contraction and store- and receptor-operated Ca(2+) entry in pulmonary arteries of pulmonary hypertensive rats.

    PubMed

    Jiao, Hai-Xia; Mu, Yun-Ping; Gui, Long-Xin; Yan, Fu-Rong; Lin, Da-Cen; Sham, James S K; Lin, Mo-Jun

    2016-09-01

    Caveolin-1 (Cav-1) is a major component protein associated with caveolae in the plasma membrane and has been identified as a regulator of store-operated Ca(2+) entry (SOCE) and receptor-operated Ca(2+) entry (ROCE). However, the contributions of caveolae/Cav-1 of pulmonary arterial smooth muscle cells (PASMCs) to the altered Ca(2+) signaling pathways in pulmonary arteries (PAs) during pulmonary hypertension (PH) have not been fully characterized. The present study quantified caveolae number and Cav-1 expression, and determined the effects of caveolae disruption on ET-1, cyclopiazonic acid (CPA) and 1-Oleoyl-2-acetyl-glycerol (OAG)-induced contraction in PAs and Ca(2+) influx in PASMCs of chronic hypoxia (CH)- and monocrotaline (MCT)-induced PH rats. We found that the number of caveolae, and the Cav-1 mRNA and protein levels were increased significantly in PASMCs in both PH models. Disruption of caveolae by cholesterol depletion with methyl-β-cyclodextrin (MβCD) significantly inhibited the contractile response to ET-1, CPA and OAG in PAs of control rats. ET-1, SOCE and ROCE-mediated contractile responses were enhanced, and their susceptibility to MβCD suppression was potentiated in the two PH models. MβCD-induced inhibition was reversed by cholesterol repletion. Introduction of Cav-1 scaffolding domain peptide to mimic Cav-1 upregulation caused significant increase in CPA- and OAG-induced Ca(2+) entry in PASMCs of control, CH and MCT-treated groups. Our results suggest that the increase in caveolae and Cav-1 expression in PH contributes to the enhanced agonist-induced contraction of PA via modulation of SOCE and ROCE; and targeting caveolae/Cav-1 in PASMCs may provide a novel therapeutic strategy for the treatment of PH. PMID:27311393

  7. Yokukansan Increases 5-HT1A Receptors in the Prefrontal Cortex and Enhances 5-HT1A Receptor Agonist-Induced Behavioral Responses in Socially Isolated Mice

    PubMed Central

    Ueki, Toshiyuki; Mizoguchi, Kazushige; Yamaguchi, Takuji; Nishi, Akinori; Ikarashi, Yasushi; Hattori, Tomohisa; Kase, Yoshio

    2015-01-01

    The traditional Japanese medicine yokukansan has an anxiolytic effect, which occurs after repeated administration. In this study, to investigate the underlying mechanisms, we examined the effects of repeated yokukansan administration on serotonin 1A (5-HT1A) receptor density and affinity and its expression at both mRNA and protein levels in the prefrontal cortex (PFC) of socially isolated mice. Moreover, we examined the effects of yokukansan on a 5-HT1A receptor-mediated behavioral response. Male mice were subjected to social isolation stress for 6 weeks and simultaneously treated with yokukansan. Thereafter, the density and affinity of 5-HT1A receptors were analyzed by a receptor-binding assay. Levels of 5-HT1A receptor protein and mRNA were also measured. Furthermore, (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT; a 5-HT1A receptor agonist) was injected intraperitoneally, and rearing behavior was examined. Social isolation stress alone did not affect 5-HT1A receptor density or affinity. However, yokukansan significantly increased receptor density and decreased affinity concomitant with unchanged protein and mRNA levels. Yokukansan also enhanced the 8-OH-DPAT-induced decrease in rearing behavior. These results suggest that yokukansan increases 5-HT1A receptors in the PFC of socially isolated mice and enhances their function, which might underlie its anxiolytic effects. PMID:26681968

  8. Dopamine D2-like receptor agonists induce penile erection in male rats: differential role of D2, D3 and D4 receptors in the paraventricular nucleus of the hypothalamus.

    PubMed

    Sanna, Fabrizio; Succu, Salvatora; Hübner, Harald; Gmeiner, Peter; Argiolas, Antonio; Melis, Maria Rosaria

    2011-11-20

    Pramipexole, a dopamine D3/D2 receptor agonist, induces penile erection when administered subcutaneously (s.c.) or into the paraventricular nucleus of the hypothalamus of male rats, like apomorphine, a mixed D1/D2 receptor agonist, and PD 168,077, a D4 receptor agonist. A U-inverted dose-response curve was found with pramipexole and apomorphine, but not with PD 168,077 (0.025-0.5mg/kg s.c.). Pramipexole effect was abolished by L-741,626, a D2 receptor antagonist (2.5 and 5mg/kg s.c.) and raclopride, a D2/D3 receptor antagonist (0.025 and 0.1mg/kg s.c.), but not by SB277011A (2.5 and 10mg/kg s.c.) or FAUC 365 (1 and 2mg/kg s.c.), two D3 receptor antagonists, or L-745,870 (1 and 5mg/kg i.p.), a D4 receptor antagonist. Similar results were found with apomorphine (0.08mg/kg s.c.), although its effect was also partially reduced by L-745,870. In contrast, PD 168,077 effect was abolished by L-745,870, but not L-741,626, SB277011A, FAUC 365 or raclopride. Similar results were found when dopamine agonists (5-200ng/rat) and antagonists (1-5μg/rat) were injected into the paraventricular nucleus. However, no U-inverted dose-response curve was found with any of the three dopamine agonists injected into this nucleus. As pramipexole- and apomorphine-induced penile erection was reduced mainly by D2, but not D3 or D4 antagonists, D2 receptors are those that mediate the pro-erectile effect of these dopamine agonists. Although the selective stimulation of paraventricular D4 receptors induces penile erection, D4 receptors seem to play only a modest role in the pro-erectile effect of the above dopamine agonists. PMID:21784104

  9. Differential effects of LY235959, a competitive antagonist of the NMDA receptor on kappa-opioid receptor agonist induced responses in mice and rats.

    PubMed

    Bhargava, H N; Thorat, S N

    1997-02-01

    The effects of the competitive antagonist of the N-methyl-D-aspartate (NMDA) receptor, LY235959, were determined on the analgesic and hypothermic effects as well as on the development of tolerance to these effects of U-50,488H, a kappa-opioid receptor agonist in mice and rats. In the mouse, a single injection of LY235959 given 10 min prior to U-50,488H did not modify the analgesic action of the latter. Similarly, chronic administration of LY235959 twice a day for 4 days did not modify U-50,488H-induced analgesia in mice. Repeated pretreatment of mice with LY235959 dose-dependently attenuated the development of tolerance to the analgesic actions of U-50,488H. In the rat, LY235959 by itself produced a significant analgesia and prior treatment of rats with LY235959 enhanced the analgesic action of U-50,488H. Similar effects were seen with the hypothermic action. Pretreatment of rats with LY235959 attenuated the development of tolerance to the analgesic but not to the hypothermic action of U-50,488H. These results provide evidence that LY235959 produces differential actions on nociception and thermic responses by itself and when given acutely with U-50,488H in mice and rats. However, when the animals are pretreated with LY235959, similar inhibitory effects are observed on the development of tolerance to the analgesic action of U-50,488H in both the species. These studies demonstrate an involvement of the NMDA receptor in the development of kappa-opioid tolerance and suggest that the biochemical consequences of an opioid's interaction with the opioid receptor are not the only factors that contribute to the acute and chronic actions of opioid analgesic drugs. PMID:9045999

  10. Impact of D2 Receptor Internalization on Binding Affinity of Neuroimaging Radiotracers

    PubMed Central

    Guo, Ningning; Guo, Wen; Kralikova, Michaela; Jiang, Man; Schieren, Ira; Narendran, Raj; Slifstein, Mark; Abi-Dargham, Anissa; Laruelle, Marc; Javitch, Jonathan A; Rayport, Stephen

    2010-01-01

    Synaptic dopamine (DA) levels seem to affect the in vivo binding of many D2 receptor radioligands. Thus, release of endogenous DA induced by the administration of amphetamine decreases ligand binding, whereas DA depletion increases binding. This is generally thought to be due to competition between endogenous DA and the radioligands for D2 receptors. However, the temporal discrepancy between amphetamine-induced increases in DA as measured by microdialysis, which last on the order of 2 h, and the prolonged decrease in ligand binding, which lasts up to a day, has suggested that agonist-induced D2 receptor internalization may contribute to the sustained decrease in D2 receptor-binding potential seen following a DA surge. To test this hypothesis, we developed an in vitro system showing robust agonist-induced D2 receptor internalization following treatment with the agonist quinpirole. Human embryonic kidney 293 (HEK293) cells were stably co-transfected with human D2 receptor, G-protein-coupled receptor kinase 2 and arrestin 3. Agonist-induced D2 receptor internalization was demonstrated by fluorescence microscopy, flow cytometry, and radioligand competition binding. The binding of seven D2 antagonists and four agonists to the surface and internalized receptors was measured in intact cells. All the imaging ligands bound with high affinity to both surface and internalized D2 receptors. Affinity of most of the ligands to internalized receptors was modestly lower, indicating that internalization would reduce the binding potential measured in imaging studies carried out with these ligands. However, between-ligand differences in the magnitude of the internalization-associated affinity shift only partly accounted for the data obtained in neuroimaging experiments, suggesting the involvement of mechanisms beyond competition and internalization. PMID:19956086

  11. Identification of specific sites in the third intracellular loop and carboxyl terminus of the Bombyx mori PBAN receptor crucial for ligand-induced internalization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sex pheromone production in most moths is mediated by the pheromone biosynthesis activating neuropeptide receptor (PBANR). Similar to other rhodopsin-like G protein-coupled receptors, the silkmoth Bombyx mori PBANR (BmPBANR) undergoes agonist-induced internalization. Despite interest in developing...

  12. Rapid agonist-induced loss of sup 125 I-. beta. -endorphin opioid receptor sites in NG108-15, but not SK-N-SH neuroblastoma cells

    SciTech Connect

    Cone, R.I.; Lameh, J.; Sadee, W. )

    1991-01-01

    The authors have measured {mu} and {delta} opioid receptor sites on intact SK-N-SH and NG108-15 neuroblastoma cells, respectively, in culture. Use of {sup 125}I-{beta}-endorphin ({beta}E) as a tracer, together with {beta}E(6-31) to block high-affinity non-opioid binding in both cell lines, permitted the measurement of cell surface {mu} and {delta} opioid receptor sites. Labeling was at {delta} sites in NG108-15 cells and predominantly at {mu} sites in SK-N-SH cells. Pretreatment with the {mu} and {delta} agonist, DADLE, caused a rapid loss of cell surface {delta} receptor sites in NG108-15 cells, but failed to reduce significantly {mu} receptor density in SK-N-SH cells.

  13. Bacterial toll-like receptor agonists induce sequential NF-kB-mediated leukotriene B4 and prostaglandin E2 production in chicken heterophils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies of the response of the primary avian polymorphonuclear leukocyte, the heterophil, to microbe-associated molecular patterns (MAMPs) through toll-like receptors (TLR) have concentrated on the activation of the respiratory burst, release of intracellular granules, and the induction of cytokine ...

  14. Ligands to the platelet fibrinogen receptor glycoprotein IIb-IIIa do not affect agonist-induced second messengers Ca2+ or cyclic AMP.

    PubMed Central

    Williams, J A; Ashby, B; Daniel, J L

    1990-01-01

    Previous studies have suggested that the platelet glycoprotein complex GPIIb-IIIa, which is the putative fibrinogen receptor, regulates Ca2+ influx into platelets, possibly operating as a Ca2+ channel. We have used RGD-peptides (peptides containing the sequence Arg-Gly-Asp; disintegrins), isolated from snake venoms, that have a high affinity and specificity for the fibrinogen-binding site of GPIIb-IIIa to address the question of whether blocking this site inhibits Ca2+ movement from the extracellular medium to the cytosol. Using fura-2-loaded human platelets, we found that neither disintegrins nor a monoclonal antibody (M148) to the GPIIb-IIIa complex altered the level of cytosolic Ca2+ obtained when the cells were stimulated with various agonists in the presence of either nominal or 1 mM extracellular Ca2+. In the presence of Mn2+, an ion that quenches fura-2 fluorescence, fura-2-loaded platelets were stimulated with thrombin or ADP. Neither disintegrins nor the monoclonal antibody altered the kinetics or the amount of quenching of fura-2 fluorescence by Mn2+. These data indicate that the binding of ligands to the fibrinogen receptor is not associated with an inhibition of Ca2+ movement through a receptor-operated channel. Furthermore, the disintegrins have no effect on platelet cyclic AMP metabolism in either the presence or the absence of phosphodiesterase inhibitors. PMID:2168700

  15. Administration of caffeine inhibited adenosine receptor agonist-induced decreases in motor performance, thermoregulation, and brain neurotransmitter release in exercising rats.

    PubMed

    Zheng, Xinyan; Hasegawa, Hiroshi

    2016-01-01

    We examined the effects of an adenosine receptor agonist on caffeine-induced changes in thermoregulation, neurotransmitter release in the preoptic area and anterior hypothalamus, and endurance exercise performance in rats. One hour before the start of exercise, rats were intraperitoneally injected with either saline alone (SAL), 10 mg kg(-1) caffeine and saline (CAF), a non-selective adenosine receptor agonist (5'-N-ethylcarboxamidoadenosine [NECA]: 0.5 mg kg(-1)) and saline (NECA), or the combination of caffeine and NECA (CAF+NECA). Rats ran until fatigue on the treadmill with a 5% grade at a speed of 18 m min(-1) at 23 °C. Compared to the SAL group, the run time to fatigue (RTTF) was significantly increased by 52% following caffeine administration and significantly decreased by 65% following NECA injection (SAL: 91 ± 14.1 min; CAF: 137 ± 25.8 min; NECA: 31 ± 13.7 min; CAF+NECA: 85 ± 11.8 min; p<0.05). NECA decreased the core body temperature (Tcore), oxygen consumption, which is an index of heat production, tail skin temperature, which is an index of heat loss, and extracellular dopamine (DA) release at rest and during exercise. Furthermore, caffeine injection inhibited the NECA-induced decreases in the RTTF, Tcore, heat production, heat loss, and extracellular DA release. Neither caffeine nor NECA affected extracellular noradrenaline or serotonin release. These results support the findings of previous studies showing improved endurance performance and overrides in body limitations after caffeine administration, and imply that the ergogenic effects of caffeine may be associated with the adenosine receptor blockade-induced increases in brain DA release. PMID:26604076

  16. Agonist-induced activation of histamine H3 receptor signals to extracellular signal-regulated kinases 1 and 2 through PKC-, PLD-, and EGFR-dependent mechanisms.

    PubMed

    Lai, Xiangru; Ye, Lingyan; Liao, Yuan; Jin, Lili; Ma, Qiang; Lu, Bing; Sun, Yi; Shi, Ying; Zhou, Naiming

    2016-04-01

    The histamine H3 receptor (H3R), abundantly expressed in the central and the peripheral nervous system, has been recognized as a promising target for the treatment of various important CNS diseases including narcolepsy, Alzheimer's disease, and attention deficit hyperactivity disorder. The H3R acts via Gi/o -proteins to inhibit adenylate cyclase activity and modulate MAPK activity. However, the underlying molecular mechanisms for H3R mediation of the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) remain to be elucidated. In this study, using HEK293 cells stably expressing human H3R and mouse primary cortical neurons endogenously expressing mouse H3R, we found that the H3R-mediated activation of ERK1/2 was significantly blocked by both the pertussis toxin and the MEK1/2 inhibitor U0126. Upon stimulation by H3R agonist histamine or imetit, H3R was shown to rapidly induce ERK1/2 phosphorylation via PLC/PKC-, PLDs-, and epidermal growth factor receptor (EGFR) transactivation-dependent pathways. Furthermore, it was also indicated that while the βγ-subunits play a key role in H3R-activated ERK1/2 phosphorylation, β-arrestins were not required for ERK1/2 activation. In addition, when the cultured mouse cortical neurons were exposed to oxygen and glucose deprivation conditions (OGD), imetit exhibited neuroprotective properties through the H3R. Treatment of cells with the inhibitor UO126 abolished these protective effects. This suggests a possible neuroprotective role of the H3R-mediated ERK1/2 pathway under hypoxia conditions. These observations may provide new insights into the pharmacological effects and the physiological functions modulated by the H3R-mediated activation of ERK1/2. Histamine H3 receptors are abundantly expressed in the brain and play important roles in various CNS physiological functions. However, the underlying mechanisms for H3R-induced activation of extracellular signal-regulated kinase (ERK)1/2 remain largely unknown. Here

  17. Engineered G protein coupled receptors reveal independent regulation of internalization, desensitization and acute signaling

    PubMed Central

    Scearce-Levie, Kimberly; Lieberman, Michael D; Elliott, Heather H; Conklin, Bruce R

    2005-01-01

    Background The physiological regulation of G protein-coupled receptors, through desensitization and internalization, modulates the length of the receptor signal and may influence the development of tolerance and dependence in response to chronic drug treatment. To explore the importance of receptor regulation, we engineered a series of Gi-coupled receptors that differ in signal length, degree of agonist-induced internalization, and ability to induce adenylyl cyclase superactivation. All of these receptors, based on the kappa opioid receptor, were modified to be receptors activated solely by synthetic ligands (RASSLs). This modification allows us to compare receptors that have the same ligands and effectors, but differ only in desensitization and internalization. Results Removal of phosphorylation sites in the C-terminus of the RASSL resulted in a mutant that was resistant to internalization and less prone to desensitization. Replacement of the C-terminus of the RASSL with the corresponding portion of the mu opioid receptor eliminated the induction of AC superactivation, without disrupting agonist-induced desensitization or internalization. Surprisingly, removal of phosphorylation sites from this chimera resulted in a receptor that is constitutively internalized, even in the absence of agonist. However, the receptor still signals and desensitizes in response to agonist, indicating normal G-protein coupling and partial membrane expression. Conclusions These studies reveal that internalization, desensitization and adenylyl cyclase superactivation, all processes that decrease chronic Gi-receptor signals, are independently regulated. Furthermore, specific mutations can radically alter superactivation or internalization without affecting the efficacy of acute Gi signaling. These mutant RASSLs will be useful for further elucidating the temporal dynamics of the signaling of G protein-coupled receptors in vitro and in vivo. PMID:15707483

  18. Allosteric modulation of M1 muscarinic acetylcholine receptor internalization and subcellular trafficking.

    PubMed

    Yeatman, Holly R; Lane, J Robert; Choy, Kwok Ho Christopher; Lambert, Nevin A; Sexton, Patrick M; Christopoulos, Arthur; Canals, Meritxell

    2014-05-30

    Allosteric modulators are an attractive approach to achieve receptor subtype-selective targeting of G protein-coupled receptors. Benzyl quinolone carboxylic acid (BQCA) is an unprecedented example of a highly selective positive allosteric modulator of the M1 muscarinic acetylcholine receptor (mAChR). However, despite favorable pharmacological characteristics of BQCA in vitro and in vivo, there is limited evidence of the impact of allosteric modulation on receptor regulatory mechanisms such as β-arrestin recruitment or receptor internalization and endocytic trafficking. In the present study we investigated the impact of BQCA on M1 mAChR regulation. We show that BQCA potentiates agonist-induced β-arrestin recruitment to M1 mAChRs. Using a bioluminescence resonance energy transfer approach to monitor intracellular trafficking of M1 mAChRs, we show that once internalized, M1 mAChRs traffic to early endosomes, recycling endosomes and late endosomes. We also show that BQCA potentiates agonist-induced subcellular trafficking. M1 mAChR internalization is both β-arrestin and G protein-dependent, with the third intracellular loop playing an important role in the dynamics of β-arrestin recruitment. As the global effect of receptor activation ultimately depends on the levels of receptor expression at the cell surface, these results illustrate the need to extend the characterization of novel allosteric modulators of G protein-coupled receptors to encapsulate the consequences of chronic exposure to this family of ligands. PMID:24753247

  19. FSL-1, a Toll-like Receptor 2/6 Agonist, Induces Expression of Interleukin-1α in the Presence of 27-hydroxycholesterol

    PubMed Central

    Heo, Weon; Kim, Sun-Mi; Eo, Seong-Kug; Rhim, Byung-Yong

    2014-01-01

    We investigated the question of whether cholesterol catabolite can influence expression of inflammatory cytokines via Toll-like receptors (TLR) in monocytic cells. Treatment of THP-1 monocytic cells with 27-hydroxycholesterol (27OHChol) resulted in induction of gene transcription of TLR6 and elevated level of cell surface TLR6. Addition of FSL-1, a TLR6 agonist, to 27OHChol-treated cells resulted in transcription of the IL-1α gene and enhanced secretion of the corresponding gene product. However, cholesterol did not affect TLR6 expression, and addition of FSL-1 to cholesterol-treated cells did not induce expression of IL-1α. Using pharmacological inhibitors, we investigated molecular mechanisms underlying the expression of TLR6 and IL-1α. Treatment with Akt inhibitor IV or U0126 resulted in significantly attenuated expression of TLR6 and IL-1α induced by 27OHChol and 27OHChol plus FSL-1, respectively. In addition, treatment with LY294002, SB202190, or SP600125 resulted in significantly attenuated secretion of IL-1α. These results indicate that 27OHChol can induce inflammation by augmentation of TLR6-mediated production of IL-1α in monocytic cells via multiple signaling pathways. PMID:25598661

  20. A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation

    PubMed Central

    Wang, Jian-Da; Cao, Yu-Lan; Li, Qian; Yang, Ya-Ping; Jin, Mengmeng; Chen, Dong; Wang, Fen; Wang, Guang-Hui; Qin, Zheng-Hong; Hu, Li-Fang; Liu, Chun-Feng

    2015-01-01

    Autophagy dysfunction is implicated in the pathogenesis of Parkinson disease (PD). BECN1/Beclin 1 acts as a critical regulator of autophagy and other cellular processes; yet, little is known about the function and regulation of BECN1 in PD. In this study, we report that dopamine D2 and D3 receptor (DRD2 and DRD3) activation by pramipexole and quinpirole could enhance BECN1 transcription and promote autophagy activation in several cell lines, including PC12, MES23.5 and differentiated SH-SY5Y cells, and also in tyrosine hydroxylase positive primary midbrain neurons. Moreover, we identified a novel FOS (FBJ murine osteosarcoma viral oncogene homolog) binding sequence (5′-TGCCTCA-3′) in the rat and human Becn1/BECN1 promoter and uncovered an essential role of FOS binding in the enhancement of Becn1 transcription in PC12 cells in response to the dopamine agonist(s). In addition, we demonstrated a critical role of intracellular Ca2+ elevation, followed by the enhanced phosphorylation of CAMK4 (calcium/calmodulin-dependent protein kinase IV) and CREB (cAMP responsive element binding protein) in the increases of FOS expression and autophagy activity. More importantly, pramipexole treatment ameliorated the SNCA/α-synuclein accumulation in rotenone-treated PC12 cells that overexpress wild-type or A53T mutant SNCA by promoting autophagy flux. This effect was also demonstrated in the substantia nigra and the striatum of SNCAA53T transgenic mice. The inhibition of SNCA accumulation by pramipexole was attenuated by cotreatment with the DRD2 and DRD3 antagonists and Becn1 siRNAs. Thus, our findings suggest that DRD2 and DRD3 agonist(s) may induce autophagy activation via a BECN1-dependent pathway and have the potential to reduce SNCA accumulation in PD. PMID:26649942

  1. Agonist-induced changes in the structure of the acetylcholine receptor M2 regions revealed by photoincorporation of an uncharged nicotinic noncompetitive antagonist.

    PubMed

    White, B H; Cohen, J B

    1992-08-01

    To characterize structural changes induced in the nicotinic acetylcholine receptor (AChR) by agonists, we have mapped the sites of photoincorporation of the cholinergic noncompetitive antagonist 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine (]125I]TID) in the presence and absence of 50 microM carbamylcholine. [125I]TID binds to the AChR with similar affinity under both these conditions, but agonist inhibits photoincorporation into all subunits by greater than 75% (White, B. H., Howard, S., Cohen, S. G., and Cohen, J. B. (1991) J. Biol. Chem. 266, 21595-21607). [125I]TID-labeled sites on the beta- and delta-subunits were identified by amino-terminal sequencing of both cyanogen bromide (CNBr) and tryptic fragments purified by Tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by reversed-phase high-performance liquid chromatography. In the absence of agonist, [125I]TID specifically labels homologous aliphatic residues (beta L-257, delta L-265, beta V-261, and delta V-269) in the M2 region of both subunits. In the presence of agonist, labeling of these residues is reduced approximately 90%, and the distribution of labeled residues is broadened to include a homologous set of serine residues at the amino terminus of M2. In the beta-subunit residues beta S-250, beta S-254, beta L-257, and beta V-261 are all labeled in the presence of carbamylcholine. This pattern of labeling supports an alpha-helical model for M2 with the labeled face forming the ion channel lumen. The observed redistribution of label in the resting and desensitized states provides the first direct evidence for an agonist-dependent rearrangement of the M2 helices. The efficient labeling of the resting state channel in a region capable of structural change also suggests a plausible model for AChR gating in which the aliphatic residues labeled by [125I]TID form a permeability barrier to the passage of ions. We also report increased labeling of the M1 region of the delta

  2. Control of the efficiency of agonist-induced information transfer and stability of the ternary complex containing the delta opioid receptor and the alpha subunit of G(i1) by mutation of a receptor/G protein contact interface.

    PubMed

    Moon, H E; Bahia, D S; Cavalli, A; Hoffmann, M; Milligan, G

    2001-09-01

    Fusion proteins were constructed between the delta opioid receptor and forms of the alpha subunit of G(i1) in which cysteine(351) was mutated to a range of amino acids. GDP reduced the binding of the agonist [(3)H]DADLE but not the antagonist [(3)H]naltrindole to both the receptor alone and all the delta opioid receptor-Cys(351)XaaG(i1)alpha fusion proteins. For the fusion proteins the pEC(50) for GDP was strongly correlated with the n-octanol/H(2)O partition co-efficient of G protein residue(351). Fusion proteins in which this residue was either isoleucine or glycine had similar observed binding kinetics for [(3)H]DADLE. However, the rate of dissociation of [(3)H]DADLE was substantially greater for the glycine-containing fusion protein than that containing isoleucine, indicating that more hydrophobic residues imbued greater stability to the agonist-receptor-G protein ternary complex. This resulted in a higher affinity of binding of [(3)H]DADLE to the fusion protein containing isoleucine(351). In expectation with the binding data, maximal DADLE-stimulated GTP hydrolysis by the isoleucine(351)-containing fusion protein was two-fold greater and the potency of DADLE seven-fold higher than for the version containing glycine. These results demonstrate that the stability of the ternary complex between delta opioid receptor, G(i1)alpha and an agonist (but not antagonist) ligand is dependent upon the nature of residue(351) of the G protein and that this determines the effectiveness of information flow from the receptor to the G protein. PMID:11522323

  3. Rapid internalization and recycling of the human neuropeptide Y Y(1) receptor.

    PubMed

    Gicquiaux, Hervé; Lecat, Sandra; Gaire, Mireille; Dieterlen, Alain; Mély, Yves; Takeda, Kenneth; Bucher, Bernard; Galzi, Jean-Luc

    2002-02-22

    Desensitization of G protein-coupled receptors (GPCRs) involves receptor phosphorylation and reduction in the number of receptors at the cell surface. The neuropeptide Y (NPY) Y(1) receptor undergoes fast desensitization. We examined agonist-induced signaling and internalization using NPY Y(1) receptors fused to green fluorescent protein (EGFP). When expressed in HEK293 cells, EGFP-hNPY Y(1) receptors were localized at the plasma membrane, desensitized rapidly as assessed using calcium responses, and had similar properties compared to hNPY Y(1) receptors. Upon agonist challenge, the EGFP signal decreased rapidly (t(1/2) = 107 +/- 3 s) followed by a slow recovery. This decrease was blocked by BIBP3226, a Y(1) receptor antagonist, or by pertussis toxin, in agreement with Y(1) receptor activation. Internalization of EGFP-hNPY Y(1) receptors to acidic endosomal compartments likely accounts for the decrease in the EGFP signal, being absent after pretreatment with monensin. Concanavalin A and hypertonic sucrose, which inhibit clathrin-mediated endocytosis, blocked the decrease in fluorescence. After agonist, intracellular EGFP signals were punctate and co-localized with transferrin-Texas Red, a marker of clathrin-associated internalization and recycling, but not with LysoTracker Red, a lysosomal pathway marker, supporting receptor trafficking to recycling endosomes rather than the late endosomal/lysosomal pathway. Pulse-chase experiments revealed no receptor degradation after internalization. The slow recovery of fluorescence was unaffected by cycloheximide or actinomycin D, indicating that de novo synthesis of receptors was not limiting. Use of a multicompartment model to fit our fluorescence data allows simultaneous determination of internalization and recycling rate constants. We propose that rapid internalization of receptors via the clathrin-coated pits recycling pathway may largely account for the rapid desensitization of NPY Y(1) receptors. PMID:11741903

  4. Comparison of the kinetics and extent of muscarinic M1-M5receptor internalization, recycling and downregulation in Chinese Hamster Ovary cells

    PubMed Central

    Thangaraju, Arunkumar; Sawyer, Gregory W.

    2010-01-01

    We characterized agonist-induced internalization, recycling and downregulation of each muscarinic receptor subtype (M1 – M5) stably expressed in Chinese hamster ovary (CHO) cells. The radioligands [3H]QNB and [3H]NMS were used to measure the total and plasma membrane populations of muscarinic receptors, respectively. Following carbachol treatment (1 mM), the rank orders for the rate of carbachol-induced internalization of the muscarinic subtypes were M2 > M4 = M5 > M3 = M1, respectively. Unlike the M2 receptor, M1, M3, M4 and M5 receptors recycled back to the plasma membrane after one-hour carbachol treatment. The receptor downregulation elicited to 24-hour carbachol treatment was similar for M2, M3, M4 and M5 receptors, whereas that for the M1 receptor was greater. Our results indicate that there are subtype-specific differences in the rate and extent of agonist-induced muscarinic receptor internalization, recycling and downregulation in CHO cells. PMID:21044619

  5. Cold Suppresses Agonist-induced Activation of TRPV1

    PubMed Central

    Chung, M.-K.; Wang, S.

    2011-01-01

    Cold therapy is frequently used to reduce pain and edema following acute injury or surgery such as tooth extraction. However, the neurobiological mechanisms of cold therapy are not completely understood. Transient receptor potential vanilloid 1 (TRPV1) is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and pathological pain under conditions of inflammation or injury. Although capsaicin-induced nociception, neuropeptide release, and ionic currents are suppressed by cold, it is not known if cold suppresses agonist-induced activation of recombinant TRPV1. We demonstrate that cold strongly suppressed the activation of recombinant TRPV1 by multiple agonists and capsaicin-evoked currents in trigeminal ganglia neurons under normal and phosphorylated conditions. Cold-induced suppression was partially impaired in a TRPV1 mutant that lacked heat-mediated activation and potentiation. These results suggest that cold-induced suppression of TRPV1 may share a common molecular basis with heat-induced potentiation, and that allosteric inhibition may contribute, in part, to the cold-induced suppression. We also show that combination of cold and a specific antagonist of TRPV1 can produce an additive suppression. Our results provide a mechanistic basis for cold therapy and may enhance anti-nociceptive approaches that target TRPV1 for managing pain under inflammation and tissue injury, including that from tooth extraction. PMID:21666106

  6. Chemokine receptor internalization and intracellular trafficking.

    PubMed

    Neel, Nicole F; Schutyser, Evemie; Sai, Jiqing; Fan, Guo-Huang; Richmond, Ann

    2005-12-01

    The internalization and intracellular trafficking of chemokine receptors have important implications for the cellular responses elicited by chemokine receptors. The major pathway by which chemokine receptors internalize is the clathrin-mediated pathway, but some receptors may utilize lipid rafts/caveolae-dependent internalization routes. This review discusses the current knowledge and controversies regarding these two different routes of endocytosis. The functional consequences of internalization and the regulation of chemokine receptor recycling will also be addressed. Modifications of chemokine receptors, such as palmitoylation, ubiquitination, glycosylation, and sulfation, may also impact trafficking, chemotaxis and signaling. Finally, this review will cover the internalization and trafficking of viral and decoy chemokine receptors. PMID:15998596

  7. Dopamine agonist-induced penile erection and yawning: differential role of D₂-like receptor subtypes and correlation with nitric oxide production in the paraventricular nucleus of the hypothalamus of male rats.

    PubMed

    Sanna, Fabrizio; Succu, Salvatora; Melis, Maria Rosaria; Argiolas, Antonio

    2012-05-01

    The dopamine D₃ preferring agonist pramipexole (50 ng) induced penile erection and yawning when injected into the paraventricular nucleus of the hypothalamus of male rats, like the mixed D₁/D₂-like agonist apomorphine (50 ng), while the D₄ agonist PD 168,077 (100 ng), induced penile erection only. These responses lasted for 45-60 min and occurred with an increase of NO₂- and NO₃- concentrations in the dialysate obtained from the paraventricular nucleus by intracerebral microdialysis. Pramipexole and apomorphine responses were reduced by the D₂ preferring antagonist L-741,626 (5 μg), but not by the D₃ preferring antagonist SB-277011A (10 μg), or the D₄ preferring antagonist L-745,870 (5 μg), injected into the PVN before the dopamine agonist. In contrast, PD 168,077 responses were reduced by L-745,870, but not by L-741,626 or SB-277011A. Pramipexole, apomorphine and PD 168,077 effects were also reduced by the nitric oxide synthase inhibitor S-methyl-L-thiocitrulline (20 μg) and the N-type voltage-dependent Ca²⁺ channels blocker ω-conotoxin (5 ng), given into the paraventricular nucleus, and by the oxytocin antagonist d(CH₂)₅Tyr(Me)²-Orn⁸-vasotocin (2 μg), given intracerebroventricularly but not into the paraventricular nucleus before dopamine agonists. These results suggest that stimulation of D₂, but not D₃ or D₄ receptors, by pramipexole or apomorphine increases Ca²⁺ influx in cell bodies of oxytocinergic neurons. This increases the production of nitric oxide, which activates oxytocinergic neurotransmission in extra-hypothalamic brain areas and spinal cord, leading to penile erection and yawning. However, the stimulation of D₄ receptors by PD 168,077 also increases Ca²⁺ influx/nitric oxide production leading to penile erection, but not yawning. PMID:22391116

  8. Agonist-Activated Bombyx Corazonin Receptor Is Internalized via an Arrestin-Dependent and Clathrin-Independent Pathway.

    PubMed

    Yang, Jingwen; Shen, Zhangfei; Jiang, Xue; Yang, Huipeng; Huang, Haishan; Jin, Lili; Chen, Yajie; Shi, Liangen; Zhou, Naiming

    2016-07-19

    Agonist-induced internalization plays a key role in the tight regulation of the extent and duration of G protein-coupled receptor signaling. Previously, we have shown that the Bombyx corazonin receptor (BmCrzR) activates both Gαq- and Gαs-dependent signaling cascades. However, the molecular mechanisms involved in the regulation of the internalization and desensitization of BmCrzR remain to be elucidated. Here, vectors for expressing BmCrzR fused with enhanced green fluorescent protein (EGFP) at the C-terminal end were used to further characterize BmCrzR internalization. We found that the BmCrzR heterologously expressed in HEK-293 and BmN cells was rapidly internalized from the plasma membrane into the cytoplasm in a concentration- and time-dependent manner via a β-arrestin (Kurtz)-dependent and clathrin-independent pathway in response to agonist challenge. While most of the internalized receptors were recycled to the cell surface via early endosomes, some others were transported to lysosomes for degradation. Assays using RNA interference revealed that both GRK2 and GRK5 were essentially involved in the regulation of BmCrzR phosphorylation and internalization. Further investigations indicated that the identified cluster of Ser/Thr residues ((411)TSS(413)) was responsible for GRK-mediated phosphorylation and internalization. This is the first detailed investigation of the internalization and trafficking of Bombyx corazonin receptors. PMID:27348044

  9. Molecular determinants of NMDA receptor internalization.

    PubMed

    Roche, K W; Standley, S; McCallum, J; Dune Ly, C; Ehlers, M D; Wenthold, R J

    2001-08-01

    Although synaptic AMPA receptors have been shown to rapidly internalize, synaptic NMDA receptors are reported to be static. It is not certain whether NMDA receptor stability at synaptic sites is an inherent property of the receptor, or is due to stabilization by scaffolding proteins. In this study, we demonstrate that NMDA receptors are internalized in both heterologous cells and neurons, and we define an internalization motif, YEKL, on the distal C-terminus of NR2B. In addition, we show that the synaptic protein PSD-95 inhibits NR2B-mediated internalization, and that deletion of the PDZ-binding domain of NR2B increases internalization in neurons. This suggests an involvement for PSD-95 in NMDA receptor regulation and an explanation for NMDA receptor stability at synaptic sites. PMID:11477425

  10. G Protein-coupled Receptor Kinase-mediated Phosphorylation Regulates Post-endocytic Trafficking of the D2 Dopamine Receptor*S⃞

    PubMed Central

    Namkung, Yoon; Dipace, Concetta; Javitch, Jonathan A.; Sibley, David R.

    2009-01-01

    We investigated the role of G protein-coupled receptor kinase (GRK)-mediated phosphorylation in agonist-induced desensitization, arrestin association, endocytosis, and intracellular trafficking of the D2 dopamine receptor (DAR). Agonist activation of D2 DARs results in rapid and sustained receptor phosphorylation that is solely mediated by GRKs. A survey of GRKs revealed that only GRK2 or GRK3 promotes D2 DAR phosphorylation. Mutational analyses resulted in the identification of eight serine/threonine residues within the third cytoplasmic loop of the receptor that are phosphorylated by GRK2/3. Simultaneous mutation of these eight residues results in a receptor construct, GRK(-), that is completely devoid of agonist-promoted GRK-mediated receptor phosphorylation. We found that both wild-type (WT) and GRK(-) receptors underwent a similar degree of agonist-induced desensitization as assessed using [35S]GTPγS binding assays. Similarly, both receptor constructs internalized to the same extent in response to agonist treatment. Furthermore, using bioluminescence resonance energy transfer assays to directly assess receptor association with arrestin3, we found no differences between the WT and GRK(-) receptors. Thus, phosphorylation is not required for arrestin-receptor association or agonist-induced desensitization or internalization. In contrast, when we examined recycling of the D2 DARs to the cell surface, subsequent to agonist-induced endocytosis, the GRK(-) construct exhibited less recycling in comparison with the WT receptor. This impairment appears to be due to a greater propensity of the GRK(-) receptors to down-regulate once internalized. In contrast, if the receptor is highly phosphorylated, then receptor recycling is promoted. These results reveal a novel role for GRK-mediated phosphorylation in regulating the post-endocytic trafficking of a G protein-coupled receptor. PMID:19332542

  11. Internalization and desensitization of the oxytocin receptor is inhibited by Dynamin and clathrin mutants in human embryonic kidney 293 cells.

    PubMed

    Smith, M P; Ayad, V J; Mundell, S J; McArdle, C A; Kelly, E; López Bernal, A

    2006-02-01

    Oxytocin (OT) has long been used as an uterotonic during labor management in women, and yet responses to OT infusion remain variable and unpredictable among patients. The investigation of oxytocin receptor (OTR) regulation will benefit labor management, because the clinical practice of continuous iv infusion of OT is not optimal. As with other G protein-coupled receptors, it is likely that the OTR internalizes and/or desensitizes upon continuous agonist exposure. The mechanisms by which this might occur, however, are unclear. Here we explore OTR internalization and desensitization in human embryonic kidney cells by utilizing inhibitors of heterologous second messenger systems and recently available mutant cDNA constructs. We report rapid and extensive internalization and desensitization of the OTR upon agonist exposure. Internalization was unaffected by inhibitors of protein kinase C or Ca(2+) calmodulin-dependant kinase II but was significantly reduced after transfection with dominant-negative mutant cDNAs of G protein-coupled receptor kinase 2, beta-Arrestin2, Dynamin, and Eps15 (a component of clathrin-coated pits). Moreover, desensitization of the OTR, measured by a calcium mobilization assay, was also inhibited by the aforementioned cDNA constructs. Thus, our data demonstrate, for the first time, the importance of the classical clathrin-mediated pathway during agonist-induced OTR internalization and desensitization. PMID:16179383

  12. Effects of oxytocin on serotonin 1B agonist-induced autism-like behavior in mice.

    PubMed

    Lawson, Sarah K; Gray, Andrew C; Woehrle, Nancy S

    2016-11-01

    Social impairments in autism remain poorly understood and without approved pharmacotherapies. Novel animals models are needed to elucidate mechanisms and evaluate novel treatments for the social deficits in autism. Recently, serotonin 1B receptor (5-HT1B) agonist challenge in mice was shown to induce autism-like behaviors including perseveration, reduced prepulse inhibition, and delayed alternation deficits. However, the effects of 5-HT1B agonists on autism-related social behaviors in mice remain unknown. Here, we examine the effects of 5-HT1B agonist challenge on sociability and preference for social novelty in mice. We also examine the effects of 5-HT1B agonist treatment on average rearing duration, a putative rodent measure of non-selective attention. Non-selective attention is an associated feature of autism that is also not well understood. We show that 5-HT1B receptor activation reduces sociability, preference for social novelty, and rearing in mice. In addition, we examine the ability of oxytocin, an off-label treatment for the social impairments in autism, to reverse 5-HT1B agonist-induced social and attention deficits in mice. We show that oxytocin restores social novelty preference in mice treated with a 5-HT1B agonist. We also show that oxytocin attenuates 5-HT1B agonist-induced sociability and rearing deficits in mice. Our results suggest that 5-HT1B agonist challenge provides a useful pharmacological mouse model for aspects of autism, and implicate 5-HT1B in autism social and attention deficits. Moreover, our findings suggest that oxytocin may treat the social deficits in autism through a mechanism involving 5-HT1B. PMID:27439030

  13. The role of TRPP2 in agonist-induced gallbladder smooth muscle contraction.

    PubMed

    Zhong, Xingguo; Fu, Jie; Song, Kai; Xue, Nairui; Gong, Renhua; Sun, Dengqun; Luo, Huilai; He, Wenzhu; Pan, Xiang; Shen, Bing; Du, Juan

    2016-04-01

    TRPP2 channel protein belongs to the superfamily of transient receptor potential (TRP) channels and is widely expressed in various tissues, including smooth muscle in digestive gut. Accumulating evidence has demonstrated that TRPP2 can mediate Ca(2+) release from Ca(2+) stores. However, the functional role of TRPP2 in gallbladder smooth muscle contraction still remains unclear. In this study, we used Ca(2+) imaging and tension measurements to test agonist-induced intracellular Ca(2+) concentration increase and smooth muscle contraction of guinea pig gallbladder, respectively. When TRPP2 protein was knocked down in gallbladder muscle strips from guinea pig, carbachol (CCh)-evoked Ca(2+) release and extracellular Ca(2+) influx were reduced significantly, and gallbladder contractions induced by endothelin 1 and cholecystokinin were suppressed markedly as well. CCh-induced gallbladder contraction was markedly suppressed by pretreatment with U73122, which inhibits phospholipase C to terminate inositol 1,4,5-trisphosphate receptor (IP3) production, and 2-aminoethoxydiphenyl borate (2APB), which inhibits IP3 recepor (IP3R) to abolish IP3R-mediated Ca(2+) release. To confirm the role of Ca(2+) release in CCh-induced gallbladder contraction, we used thapsigargin (TG)-to deplete Ca(2+) stores via inhibiting sarco/endoplasmic reticulum Ca(2+)-ATPase and eliminate the role of store-operated Ca(2+) entry on the CCh-induced gallbladder contraction. Preincubation with 2 μmol L(-1) TG significantly decreased the CCh-induced gallbladder contraction. In addition, pretreatments with U73122, 2APB or TG abolished the difference of the CCh-induced gallbladder contraction between TRPP2 knockdown and control groups. We conclude that TRPP2 mediates Ca(2+) release from intracellular Ca(2+) stores, and has an essential role in agonist-induced gallbladder muscle contraction. PMID:26660312

  14. Deletion of the distal COOH-terminus of the A2B adenosine receptor switches internalization to an arrestin- and clathrin-independent pathway and inhibits recycling

    PubMed Central

    Mundell, SJ; Matharu, A-L; Nisar, S; Palmer, TM; Benovic, JL; Kelly, E

    2010-01-01

    Background and purpose: We have investigated the effect of deletions of a postsynaptic density, disc large and zo-1 protein (PDZ) motif at the end of the COOH-terminus of the rat A2B adenosine receptor on intracellular trafficking following long-term exposure to the agonist 5′-(N-ethylcarboxamido)-adenosine. Experimental approach: The trafficking of the wild type A2B adenosine receptor and deletion mutants expressed in Chinese hamster ovary cells was studied using an enzyme-linked immunosorbent assay in combination with immunofluorescence microscopy. Key results: The wild type A2B adenosine receptor and deletion mutants were all extensively internalized following prolonged treatment with NECA. The intracellular compartment through which the Gln325-stop receptor mutant, which lacks the Type II PDZ motif found in the wild type receptor initially trafficked was not the same as the wild type receptor. Expression of dominant negative mutants of arrestin-2, dynamin or Eps-15 inhibited internalization of wild type and Leu330-stop receptors, whereas only dominant negative mutant dynamin inhibited agonist-induced internalization of Gln325-stop, Ser326-stop and Phe328-stop receptors. Following internalization, the wild type A2B adenosine receptor recycled rapidly to the cell surface, whereas the Gln325-stop receptor did not recycle. Conclusions and implications: Deletion of the COOH-terminus of the A2B adenosine receptor beyond Leu330 switches internalization from an arrestin- and clathrin-dependent pathway to one that is dynamin dependent but arrestin and clathrin independent. The presence of a Type II PDZ motif appears to be essential for arrestin- and clathrin-dependent internalization, as well as recycling of the A2B adenosine receptor following prolonged agonist addition. PMID:20128803

  15. Internalization and desensitization of adenosine receptors

    PubMed Central

    Klaasse, Elisabeth C.; de Grip, Willem J.; Beukers, Margot W.

    2007-01-01

    Until now, more than 800 distinct G protein-coupled receptors (GPCRs) have been identified in the human genome. The four subtypes of the adenosine receptor (A1, A2A, A2B and A3 receptor) belong to this large family of GPCRs that represent the most widely targeted pharmacological protein class. Since adenosine receptors are widespread throughout the body and involved in a variety of physiological processes and diseases, there is great interest in understanding how the different subtypes are regulated, as a basis for designing therapeutic drugs that either avoid or make use of this regulation. The major GPCR regulatory pathway involves phosphorylation of activated receptors by G protein-coupled receptor kinases (GRKs), a process that is followed by binding of arrestin proteins. This prevents receptors from activating downstream heterotrimeric G protein pathways, but at the same time allows activation of arrestin-dependent signalling pathways. Upon agonist treatment, adenosine receptor subtypes are differently regulated. For instance, the A1Rs are not (readily) phosphorylated and internalize slowly, showing a typical half-life of several hours, whereas the A2AR and A2BR undergo much faster downregulation, usually shorter than 1 h. The A3R is subject to even faster downregulation, often a matter of minutes. The fast desensitization of the A3R after agonist exposure may be therapeutically equivalent to antagonist occupancy of the receptor. This review describes the process of desensitization and internalization of the different adenosine subtypes in cell systems, tissues and in vivo studies. In addition, molecular mechanisms involved in adenosine receptor desensitization are discussed. PMID:18368531

  16. Aging changes agonist induced contractile responses in permeabilized rat bladder.

    PubMed

    Durlu-Kandilci, N Tugba; Denizalti, Merve; Sahin-Erdemli, Inci

    2015-08-01

    Aging alters bladder functions where a decrease in filling, storage and emptying is observed. These changes cause urinary incontinence, especially in women. The aim of this study is to examine how aging affects the intracellular calcium movements due to agonist-induced contractions in permeabilized female rat bladder. Urinary bladder isolated from young and old female Sprague-Dawley rats were used. Small detrusor strips were permeabilized with β-escin. The contractile responses induced with agonists were compared between young and old groups. Carbachol-induced contractions were decreased in permeabilized detrusor from old rats compared to young group. Heparin and ryanodine decreased carbachol-induced contractions in young rats where only heparin inhibited these contractions in olds. Caffeine-induced contractions but not inositol triphosphate (IP3)-induced contractions were decreased in old group compared to youngs. The cumulative calcium response curves (pCa 8-4) were also decreased in old rats. Carbachol-induced calcium sensitization responses did not alter by age where GTP-β-S and GF-109203X but not Y-27632 inhibited these responses. Carbachol-induced contractions decrease with aging in rat bladder detrusor. It can be postulated as IP3-induced calcium release (IICR) is primarily responsible for the contractions in older rats where the decrease in carbachol contractions in aging may be as a result of a decrease in calcium-induced calcium release (CICR), rather than carbachol-induced calcium sensitization. PMID:26153091

  17. Agonist-induced activation of rat mesenteric resistance vessels: comparison between noradrenaline and vasopressin

    SciTech Connect

    Cauvin, C.; Weir, S.W.; Wallnoefer, A.R.; Rueegg, U.P.

    1988-01-01

    The effects of noradrenaline (NA, 10(-5) M) and (arginine8)vasopressin (AVP, 10(-7) M) on tension in Ca2+-free medium and on membrane potential, and the inhibition of NA- and AVP-induced contractions by isradipine, have been compared in mesenteric resistance vessels (MRVs) from Wistar-Kyoto (WKY) rats. The release of intracellular Ca2+ by AVP contributed significantly less to its tension development than does that by NA. Nonetheless, the concentration-response curves for inhibition by isradipine of NA- and AVP-induced tonic tension were nearly identical. Similarly, these two agonists produced the same degree of membrane depolarization. In addition, both agonists were able to stimulate large contractions in vessels previously depolarized by 80 mM K+. AVP also stimulated /sup 45/Ca influx into rat cultured aortic smooth muscle cells. In contrast to the stimulation of /sup 45/Ca influx by KCl depolarization, the agonist-stimulated /sup 45/Ca influx was insensitive to inhibition by organic Ca2+ antagonists. It is concluded that Ca2+ entry through receptor-operated Ca2+-permeable channels (ROCs) may contribute to agonist-induced activation of rat aortic and MRV smooth muscle.

  18. SERCA2a controls the mode of agonist-induced intracellular Ca2+ signal, transcription factor NFAT and proliferation in human vascular smooth muscle cells.

    PubMed

    Bobe, Regis; Hadri, Lahouaria; Lopez, Jose J; Sassi, Yassine; Atassi, Fabrice; Karakikes, Ioannis; Liang, Lifan; Limon, Isabelle; Lompré, Anne-Marie; Hatem, Stephane N; Hajjar, Roger J; Lipskaia, Larissa

    2011-04-01

    In blood vessels, tone is maintained by agonist-induced cytosolic Ca(2+) oscillations of quiescent/contractile vascular smooth muscle cells (VSMCs). However, in synthetic/proliferative VSMCs, Gq/phosphoinositide receptor-coupled agonists trigger a steady-state increase in cytosolic Ca(2+) followed by a Store Operated Calcium Entry (SOCE) which translates into activation of the proliferation-associated transcription factor NFAT. Here, we report that in human coronary artery smooth muscle cells (hCASMCs), the sarco/endoplasmic reticulum calcium ATPase type 2a (SERCA2a) expressed in the contractile form of the hCASMCs, controls the nature of the agonist-induced Ca(2+) transient and the resulting down-stream signaling pathway. Indeed, restoring SERCA2a expression by gene transfer in synthetic hCASMCs 1) increased Ca(2+) storage capacity; 2) modified agonist-induced IP(3)R Ca(2+) release from steady-state to oscillatory mode (the frequency of agonist-induced IP(3)R Ca(2+) signal was 11.66 ± 1.40/100 s in SERCA2a-expressing cells (n=39) vs 1.37 ± 0.20/100 s in control cells (n=45), p<0.01); 3) suppressed SOCE by preventing interactions between SR calcium sensor STIM1 and pore forming unit ORAI1; 4) inhibited calcium regulated transcription factor NFAT and its down-stream physiological function such as proliferation and migration. This study provides evidence for the first time that oscillatory and steady-state patterns of Ca(2+) transients have different effects on calcium-dependent physiological functions in smooth muscle cells. PMID:21195084

  19. Preferred recycling pathway by internalized PGE2 EP4 receptor following agonist stimulation in cultured dorsal root ganglion neurons contributes to enhanced EP4 receptor sensitivity.

    PubMed

    St-Jacques, Bruno; Ma, Weiya

    2016-06-21

    Prostaglandin E2 (PGE2), a well-known pain mediator abundantly produced in injured tissues, sensitizes nociceptive dorsal root ganglion (DRG) neurons (nociceptors) through its four EP receptors (EP1-4). Our prior study showed that PGE2 or EP4 agonist stimulates EP4 externalization and this event was not only suppressed by the inhibitor of anterograde export, but also by the recycling inhibitor (St-Jacques and Ma, 2013). These data suggest that EP4 recycling also contributes to agonist-enhanced EP4 surface abundance. In the current study, we tested this hypothesis using antibody-feeding-based internalization assay, recycling assay and FITC-PGE2 binding assay. We observed that selective EP4 agonist 1-hydroxy-PGE1 (1-OH-PGE1) or CAY10850 time- and concentration-dependently increased EP4 internalization in cultured DRG neuron. Internalized EP4 was predominantly localized in the early endosomes and recycling endosomes, but rarely in the late endosomes and lysosomes. These observations were confirmed by FITC-PGE2 binding assay. We further revealed that 1-OH-PGE1 or CAY10850 time- and concentration-dependently increased EP4 recycling. Double exposures to 1-OH-PGE1 induced a greater increase in calcitonin gene-related peptide (CGRP) release than a single exposure or vehicle exposure, an event blocked by pre-treatment with the recycling inhibitor monensin. Our data suggest that EP4 recycling contributes to agonist-induced cell surface abundance and consequently enhanced receptor sensitivity. Facilitating EP4 externalization and recycling is a novel mechanism underlying PGE2-induced nociceptor sensitization. PMID:27060485

  20. G Protein Beta 5 Is Targeted to D2-Dopamine Receptor-Containing Biochemical Compartments and Blocks Dopamine-Dependent Receptor Internalization

    PubMed Central

    Octeau, J. Christopher; Schrader, Joseph M.; Masuho, Ikuo; Sharma, Meenakshi; Aiudi, Christopher; Chen, Ching-Kang; Kovoor, Abraham; Celver, Jeremy

    2014-01-01

    G beta 5 (Gbeta5, Gβ5) is a unique G protein β subunit that is thought to be expressed as an obligate heterodimer with R7 regulator of G protein signaling (RGS) proteins instead of with G gamma (Gγ) subunits. We found that D2-dopamine receptor (D2R) coexpression enhances the expression of Gβ5, but not that of the G beta 1 (Gβ1) subunit, in HEK293 cells, and that the enhancement of expression occurs through a stabilization of Gβ5 protein. We had previously demonstrated that the vast majority of D2R either expressed endogenously in the brain or exogenously in cell lines segregates into detergent-resistant biochemical fractions. We report that when expressed alone in HEK293 cells, Gβ5 is highly soluble, but is retargeted to the detergent-resistant fraction after D2R coexpression. Furthermore, an in-cell biotin transfer proximity assay indicated that D2R and Gβ5 segregating into the detergent-resistant fraction specifically interacted in intact living cell membranes. Dopamine-induced D2R internalization was blocked by coexpression of Gβ5, but not Gβ1. However, the same Gβ5 coexpression levels had no effect on agonist-induced internalization of the mu opioid receptor (MOR), cell surface D2R levels, dopamine-mediated recruitment of β-arrestin to D2R, the amplitude of D2R-G protein coupling, or the deactivation kinetics of D2R-activated G protein signals. The latter data suggest that the interactions between D2R and Gβ5 are not mediated by endogenously expressed R7 RGS proteins. PMID:25162404

  1. G protein beta 5 is targeted to D2-dopamine receptor-containing biochemical compartments and blocks dopamine-dependent receptor internalization.

    PubMed

    Octeau, J Christopher; Schrader, Joseph M; Masuho, Ikuo; Sharma, Meenakshi; Aiudi, Christopher; Chen, Ching-Kang; Kovoor, Abraham; Celver, Jeremy

    2014-01-01

    G beta 5 (Gbeta5, Gβ5) is a unique G protein β subunit that is thought to be expressed as an obligate heterodimer with R7 regulator of G protein signaling (RGS) proteins instead of with G gamma (Gγ) subunits. We found that D2-dopamine receptor (D2R) coexpression enhances the expression of Gβ5, but not that of the G beta 1 (Gβ1) subunit, in HEK293 cells, and that the enhancement of expression occurs through a stabilization of Gβ5 protein. We had previously demonstrated that the vast majority of D2R either expressed endogenously in the brain or exogenously in cell lines segregates into detergent-resistant biochemical fractions. We report that when expressed alone in HEK293 cells, Gβ5 is highly soluble, but is retargeted to the detergent-resistant fraction after D2R coexpression. Furthermore, an in-cell biotin transfer proximity assay indicated that D2R and Gβ5 segregating into the detergent-resistant fraction specifically interacted in intact living cell membranes. Dopamine-induced D2R internalization was blocked by coexpression of Gβ5, but not Gβ1. However, the same Gβ5 coexpression levels had no effect on agonist-induced internalization of the mu opioid receptor (MOR), cell surface D2R levels, dopamine-mediated recruitment of β-arrestin to D2R, the amplitude of D2R-G protein coupling, or the deactivation kinetics of D2R-activated G protein signals. The latter data suggest that the interactions between D2R and Gβ5 are not mediated by endogenously expressed R7 RGS proteins. PMID:25162404

  2. Agonist-induced Ca2+ Sensitization in Smooth Muscle

    PubMed Central

    Artamonov, Mykhaylo V.; Momotani, Ko; Stevenson, Andra; Trentham, David R.; Derewenda, Urszula; Derewenda, Zygmunt S.; Read, Paul W.; Gutkind, J. Silvio; Somlyo, Avril V.

    2013-01-01

    Many agonists, acting through G-protein-coupled receptors and Gα subunits of the heterotrimeric G-proteins, induce contraction of smooth muscle through an increase of [Ca2+]i as well as activation of the RhoA/RhoA-activated kinase pathway that amplifies the contractile force, a phenomenon known as Ca2+ sensitization. Gα12/13 subunits are known to activate the regulator of G-protein signaling-like family of guanine nucleotide exchange factors (RhoGEFs), which includes PDZ-RhoGEF (PRG) and leukemia-associated RhoGEF (LARG). However, their contributions to Ca2+-sensitized force are not well understood. Using permeabilized blood vessels from PRG(−/−) mice and a new method to silence LARG in organ-cultured blood vessels, we show that both RhoGEFs are activated by the physiologically and pathophysiologically important thromboxane A2 and endothelin-1 receptors. The co-activation is the result of direct and independent activation of both RhoGEFs as well as their co-recruitment due to heterodimerization. The isolated recombinant C-terminal domain of PRG, which is responsible for heterodimerization with LARG, strongly inhibited Ca2+-sensitized force. We used photolysis of caged phenylephrine, caged guanosine 5′-O-(thiotriphosphate) (GTPγS) in solution, and caged GTPγS or caged GTP loaded on the RhoA·RhoGDI complex to show that the recruitment and activation of RhoGEFs is the cause of a significant time lag between the initial Ca2+ transient and phasic force components and the onset of Ca2+-sensitized force. PMID:24106280

  3. The mechanosensitive APJ internalization via clathrin-mediated endocytosis: A new molecular mechanism of cardiac hypertrophy.

    PubMed

    He, Lu; Chen, Linxi; Li, Lanfang

    2016-05-01

    The G protein-coupled receptor APJ elicits cellular response to diverse extracellular stimulus. Accumulating evidence reveals that APJ receptor plays a prominent role in the cardiomyocyte adapting to hypertrophic stimulation. At present, it remains obscure that the regulatory mechanism of APJ receptor in myocardial hypertrophy. The natural endogenous ligands apelin and Elabela as well as agonists maintain high affinity for the APJ receptor and drive its internalization. Ligand-activated receptor internalization is mainly performed by clathrin-mediated endocytic pathway. Simultaneously, clathrin-mediated endocytosis takes participate in the occurrence and development of cardiac hypertrophy. In this study, we hypothesize that natural ligands and agonists induce the mechanosensitive APJ internalization via clathrin-mediated endocytosis. APJ internalization may contribute to the development of cardiac hypertrophy. The mechanosensitive APJ internalization via clathrin-mediated endocytosis may be a new molecular mechanism of cardiac hypertrophy. PMID:27063076

  4. The transcriptional PPARβ/δ network in human macrophages defines a unique agonist-induced activation state

    PubMed Central

    Adhikary, Till; Wortmann, Annika; Schumann, Tim; Finkernagel, Florian; Lieber, Sonja; Roth, Katrin; Toth, Philipp M.; Diederich, Wibke E.; Nist, Andrea; Stiewe, Thorsten; Kleinesudeik, Lara; Reinartz, Silke; Müller-Brüsselbach, Sabine; Müller, Rolf

    2015-01-01

    Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a lipid ligand-inducible transcription factor with established metabolic functions, whereas its anti-inflammatory function is poorly understood. To address this issue, we determined the global PPARβ/δ-regulated signaling network in human monocyte-derived macrophages. Besides cell type-independent, canonical target genes with metabolic and immune regulatory functions we identified a large number of inflammation-associated NFκB and STAT1 target genes that are repressed by agonists. Accordingly, PPARβ/δ agonists inhibited the expression of multiple pro-inflammatory mediators and induced an anti-inflammatory, IL-4-like morphological phenotype. Surprisingly, bioinformatic analyses also identified immune stimulatory effects. Consistent with this prediction, PPARβ/δ agonists enhanced macrophage survival under hypoxic stress and stimulated CD8+ T cell activation, concomitantly with the repression of immune suppressive target genes and their encoded products CD274 (PD-1 ligand), CD32B (inhibitory Fcγ receptor IIB) and indoleamine 2,3-dioxygenase 1 (IDO-1), as well as a diminished release of the immune suppressive IDO-1 metabolite kynurenine. Comparison with published data revealed a significant overlap of the PPARβ/δ transcriptome with coexpression modules characteristic of both anti-inflammatory and pro-inflammatory cytokines. Our findings indicate that PPARβ/δ agonists induce a unique macrophage activation state with strong anti-inflammatory but also specific immune stimulatory components, pointing to a context-dependent function of PPARβ/δ in immune regulation. PMID:25934804

  5. Arrestin Scaffolds NHERF1 to the P2Y12 Receptor to Regulate Receptor Internalization*

    PubMed Central

    Nisar, Shaista P.; Cunningham, Margaret; Saxena, Kunal; Pope, Robert J.; Kelly, Eamonn; Mundell, Stuart J.

    2012-01-01

    We have recently shown in a patient with mild bleeding that the PDZ-binding motif of the platelet G protein-coupled P2Y12 receptor (P2Y12R) is required for effective receptor traffic in human platelets. In this study we show for the first time that the PDZ motif-binding protein NHERF1 exerts a major role in potentiating G protein-coupled receptor (GPCR) internalization. NHERF1 interacts with the C-tail of the P2Y12R and unlike many other GPCRs, NHERF1 interaction is required for effective P2Y12R internalization. In vitro and prior to agonist stimulation P2Y12R/NHERF1 interaction requires the intact PDZ binding motif of this receptor. Interestingly on receptor stimulation NHERF1 no longer interacts directly with the receptor but instead binds to the receptor via the endocytic scaffolding protein arrestin. These findings suggest a novel model by which arrestin can serve as an adaptor to promote NHERF1 interaction with a GPCR to facilitate effective NHERF1-dependent receptor internalization. PMID:22610101

  6. Arrestin scaffolds NHERF1 to the P2Y12 receptor to regulate receptor internalization.

    PubMed

    Nisar, Shaista P; Cunningham, Margaret; Saxena, Kunal; Pope, Robert J; Kelly, Eamonn; Mundell, Stuart J

    2012-07-13

    We have recently shown in a patient with mild bleeding that the PDZ-binding motif of the platelet G protein-coupled P2Y(12) receptor (P2Y(12)R) is required for effective receptor traffic in human platelets. In this study we show for the first time that the PDZ motif-binding protein NHERF1 exerts a major role in potentiating G protein-coupled receptor (GPCR) internalization. NHERF1 interacts with the C-tail of the P2Y(12)R and unlike many other GPCRs, NHERF1 interaction is required for effective P2Y(12)R internalization. In vitro and prior to agonist stimulation P2Y(12)R/NHERF1 interaction requires the intact PDZ binding motif of this receptor. Interestingly on receptor stimulation NHERF1 no longer interacts directly with the receptor but instead binds to the receptor via the endocytic scaffolding protein arrestin. These findings suggest a novel model by which arrestin can serve as an adaptor to promote NHERF1 interaction with a GPCR to facilitate effective NHERF1-dependent receptor internalization. PMID:22610101

  7. The Inhibitory Effect of Shikonin on the Agonist-Induced Regulation of Vascular Contractility

    PubMed Central

    Je, Hyun Dong; Kim, Hyeong-Dong; La, Hyen-Oh

    2015-01-01

    Shikonin, a natural flavonoid found in the roots of Lithospermum erythrorhizon, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of shikonin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Shikonin significantly relaxed fluoride-, thromboxane A2- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, shikonin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and the inhibition of MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of shikonin on agonist-induced vascular contraction regardless of endothelial function. PMID:25995821

  8. Endothelium-Independent Effect of Fisetin on the Agonist-Induced Regulation of Vascular Contractility

    PubMed Central

    Je, Hyun Dong; Sohn, Uy Dong; La, Hyen-Oh

    2016-01-01

    Fisetin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of fisetin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Fisetin significantly relaxed fluoride-, thromboxane A2- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, fisetin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of fisetin on agonist-induced vascular contraction regardless of endothelial function. PMID:26759702

  9. Activation of cyclic AMP-dependent protein kinase inhibits the desensitization and internalization of metabotropic glutamate receptors 1a and 1b.

    PubMed

    Mundell, Stuart J; Pula, Giordano; More, Julia C A; Jane, David E; Roberts, Peter J; Kelly, Eamonn

    2004-06-01

    In this study, we characterized the effects of activation of cyclic AMP-dependent protein kinase (PKA) on the internalization and functional coupling of the metabotropic glutamate receptor (mGluR1) splice variants mGluR1a and mGluR1b. Using an enzyme-linked immunosorbent assay technique to assess receptor internalization, we found that the glutamate-induced internalization of mGluR1a or mGluR1b transiently expressed in human embryonic kidney (HEK) 293 cells was inhibited by coactivation of endogenous beta2-adrenoceptors with isoprenaline or by direct activation of adenylyl cyclase with forskolin. The PKA inhibitor N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide hydrochloride (H89) blocked the effects of both isoprenaline and forskolin. The heterologous internalization of the mGluR1 splice variants triggered by carbachol was also inhibited by isoprenaline and forskolin in a PKA-sensitive fashion, whereas the constitutive (agonist-independent) internalization of mGluR1a was inhibited only modestly by PKA activation. Using inositol phosphate (IP) accumulation in cells prelabeled with [3H]inositol to assess receptor coupling, PKA activation increased basal IP accumulation in mGluR1a receptor-expressing cells and also increased glutamate-stimulated IP accumulation in both mGluR1a- and mGluR1b-expressing cells, but only at short times of glutamate addition. Furthermore, PKA activation completely blocked the carbachol-induced heterologous desensitization of glutamate-stimulated IP accumulation in both mGluR1a- and mGluR1b-expressing cells. In coimmunoprecipitation experiments, the ability of glutamate to increase association of GRK2 and arrestin-2 with mGluR1a and mGluR1b was inhibited by PKA activation with forskolin. Together, these results indicate that PKA activation inhibits the agonist-induced internalization and desensitization of mGluR1a and mGluR1b, probably by reducing their interaction with GRK2 and nonvisual arrestins. PMID:15155843

  10. Nonprofessional Phagocytic Cell Receptors Involved in Staphylococcus aureus Internalization

    PubMed Central

    Alva-Murillo, Nayeli; López-Meza, Joel Edmundo

    2014-01-01

    Staphylococcus aureus is a successful human and animal pathogen. The majority of infections caused by this pathogen are life threatening, primarily because S. aureus has developed multiple evasion strategies, possesses intracellular persistence for long periods, and targets the skin and soft tissues. Therefore, it is very important to understand the mechanisms employed by S. aureus to colonize and proliferate in these cells. The aim of this review is to describe the recent discoveries concerning the host receptors of nonprofessional phagocytes involved in S. aureus internalization. Most of the knowledge related to the interaction of S. aureus with its host cells has been described in professional phagocytic cells such as macrophages. Here, we showed that in nonprofessional phagocytes the α5β1 integrin host receptor, chaperons, and the scavenger receptor CD36 are the main receptors employed during S. aureus internalization. The characterization and identification of new bacterial effectors and the host cell receptors involved will undoubtedly lead to new discoveries with beneficial purposes. PMID:24826382

  11. Alpha-tocopherol inhibits agonist-induced monocytic cell adhesion to cultured human endothelial cells.

    PubMed Central

    Faruqi, R; de la Motte, C; DiCorleto, P E

    1994-01-01

    Antioxidants have been proposed to be anti-atherosclerotic agents; however, the mechanisms underlying their beneficial effects are poorly understood. We have examined the effect of alpha-tocopherol (alpha-tcp) on one cellular event in atherosclerotic plaque development, monocyte adhesion to stimulated endothelial cells (ECs). Human umbilical vein ECs were pretreated with alpha-tcp before stimulation with known agonists of monocyte adhesion: IL-1 (10 ng/ml), LPS (10 ng/ml), thrombin (30 U/ml), or PMA (10 nM). Agonist-induced monocytic cell adhesion, but not basal adhesion, was inhibited in a time- and concentration-dependent manner by alpha-tcp. The IC50 of alpha-tcp on an IL-1-induced response was 45 microM. The inhibition correlated with a decrease in steady state levels of E-selectin mRNA and cell surface expression of E-selectin which is consistent with the ability of a monoclonal antibody to E-selectin to inhibit monocytic cell adhesion in this system. Probucol (50 microM) and N-acetylcysteine (20 mM) also inhibited agonist-induced monocytic cell adhesion; whereas, several other antioxidants had no significant effect. Protein kinase C (PKC) does not appear to play a role in the alpha-tcp effect since no suppression of phosphorylation of PKC substrates was observed. Activation of the transcription factor NF-kappa B is reported to be necessary but not sufficient for E-selectin expression in EC. Electrophoretic mobility shift assays failed to show an alpha-tcp-induced decrease in activation of this transcription factor after cytokine stimulation. It has been hypothesized that alpha-tcp acts as an anti-atherosclerotic molecule by inhibiting generation of oxidized LDL--a putative triggering molecule in the atherosclerotic process. Our results point to a novel alternative mechanism of action of alpha-tcp. Images PMID:7518838

  12. Analysis of Chemokine Receptor Trafficking by Site-Specific Biotinylation

    PubMed Central

    Liebick, Marcel; Schläger, Christian; Oppermann, Martin

    2016-01-01

    Chemokine receptors undergo internalization and desensitization in response to ligand activation. Internalized receptors are either preferentially directed towards recycling pathways (e.g. CCR5) or sorted for proteasomal degradation (e.g. CXCR4). Here we describe a method for the analysis of receptor internalization and recycling based on specific Bir A-mediated biotinylation of an acceptor peptide coupled to the receptor, which allows a more detailed analysis of receptor trafficking compared to classical antibody-based detection methods. Studies on constitutive internalization of the chemokine receptors CXCR4 (12.1% ± 0.99% receptor internalization/h) and CCR5 (13.7% ± 0.68%/h) reveals modulation of these processes by inverse (TAK779; 10.9% ± 0.95%/h) or partial agonists (Met-CCL5; 15.6% ± 0.5%/h). These results suggest an actively driven internalization process. We also demonstrate the advantages of specific biotinylation compared to classical antibody detection during agonist-induced receptor internalization, which may be used for immunofluorescence analysis as well. Site-specific biotinylation may be applicable to studies on trafficking of transmembrane proteins, in general. PMID:27310579

  13. Rapid internalization of the insulin receptor in rat hepatoma cells

    SciTech Connect

    Backer, J.M.; White, M.F.; Kahn, C.R.

    1987-05-01

    The authors have studied the internalization of the insulin receptor (IR) in rat hepatoma cells (Fao). The cells were surface-iodinated at 4C, stimulated with insulin at 37C, and then cooled rapidly, trypsinized at 4C and solubilized. The IR was immunoprecipitated with a specific antibody, and internalization of the IR was assessed by the appearance of trypsin-resistant bands on SDS-PAGE. Insulin induced the internalization of surface receptors with a t 1/2 of 9-10 mins; cells not exposed to insulin internalized less than 20% of the IR during 1 h at 37C. Further experiments demonstrated that the accumulation of trypsin-resistant IR paralleled a loss of receptor from the cell surface. Insulin-stimulated cells were chilled and iodinated at 4C, followed by solubilization, immunoprecipitation and SDS-PAGE; alternatively, insulin-stimulated cells were chilled, surface-bound ligand removed by washing the cells at pH 4.2, and specific ( SVI)insulin binding measured at 4C. Both techniques confirmed the disappearance of IR from the cell surface at rates comparable to the insulin-stimulated internalization described above. The total amount of phosphotyrosine-containing IR, as assessed by immunoprecipitation with an anti-phosphotyrosine antibody, remained constant during this time interval, suggesting that active kinase is translocated into the cell. In summary, the authors data indicate that insulin binding increases the rate of IR internalization of Fao cells. This relocation may facilitate the interaction of the activated tyrosine kinase in the IR with intracellular substrates, thus transmitting the insulin signal to metabolic pathways.

  14. Analysis of receptor tyrosine kinase internalization using flow cytometry.

    PubMed

    Li, Ning; Hill, Kristen S; Elferink, Lisa A

    2008-01-01

    The internalization of activated receptor tyrosine kinases (RTKs) by endocytosis and their subsequent down regulation in lysosomes plays a critical role in regulating the duration and intensity of downstream signaling events. Uncoupling of the RTK cMet from ligand-induced degradation was recently shown to correlate with sustained receptor signaling and increased cell tumorigenicity, suggesting that the corruption of these endocytic mechanisms could contribute to increased cMet signaling in metastatic cancers. To understand how cMet signaling for normal cell growth is controlled by endocytosis and how these mechanisms are dysregulated in metastatic cancers, we developed flow cytometry-based assays to examine cMet internalization. PMID:19066037

  15. Regulation of muscarinic acetylcholine receptors in the 1321N1 human astrocytoma cell line

    SciTech Connect

    Hoover, R.K.

    1989-01-01

    The binding of muscarinic agonists, partial agonists and antagonists to muscarinic receptors of 1321N1 human astrocytoma cells was studied. Binding was studied in both intact cells and cell lysates. Partial agonists and antagonists exhibited similar apparent affinities in intact cell competition binding assays with either the lipophilic radioligand ({sup 3}H)QNB or the hydrophilic radioligand ({sup 3}H)NMS. In contrast, full agonists exhibited markedly lower apparent affinities in intact cells with ({sup 3}H)QNB than with ({sup 3}H)NMS. Treatment of cells with antimycin A to deplete intracellular ATP prevented agonist-induced internalization of muscarinic receptors as assessed by sucrose density gradient assays of receptor subcellular distribution. In ATP-depleted cells, the apparent affinities of full agonists vs ({sup 3}H)QNB were markedly higher. The apparent affinities of partial agonists and of antagonists were unaffected by ATP depletion. In other studies, the effects of the protein kinase C activator phorbol 12-myristate, 13-acetate (PMA) on muscarinic receptor downregulation and internalization in 1321N1 cells were determined. PMA alone did not induce muscarinic receptor downregulation but instead decreased both the rate and final extent of downregulation induced by the agonist carbachol. The specificity of other protein kinase C activators for inhibiting carbachol-induced downregulation indicated involvement of protein kinase C. Furthermore, the protein kinase C inhibitor staurosporine prevented the inhibitory effect of PMA on downregulation. However, staurosporine did not inhibit agonist-induced downregulation.

  16. Chemokine receptor CXCR3 agonist prevents human T-cell migration in a humanized model of arthritic inflammation.

    PubMed

    O'Boyle, Graeme; Fox, Christopher R J; Walden, Hannah R; Willet, Joseph D P; Mavin, Emily R; Hine, Dominic W; Palmer, Jeremy M; Barker, Catriona E; Lamb, Christopher A; Ali, Simi; Kirby, John A

    2012-03-20

    The recruitment of T lymphocytes during diseases such as rheumatoid arthritis is regulated by stimulation of the chemokine receptors expressed by these cells. This study was designed to assess the potential of a CXCR3-specific small-molecule agonist to inhibit the migration of activated human T cells toward multiple chemokines. Further experiments defined the molecular mechanism for this anti-inflammatory activity. Analysis in vitro demonstrated agonist induced internalization of both CXCR3 and other chemokine receptors coexpressed by CXCR3(+) T cells. Unlike chemokine receptor-specific antagonists, the CXCR3 agonist inhibited migration of activated T cells toward the chemokine mixture in synovial fluid from patients with active rheumatoid arthritis. A humanized mouse air-pouch model showed that intravenous treatment with the CXCR3 agonist prevented inflammatory migration of activated human T cells toward this synovial fluid. A potential mechanism for this action was defined by demonstration that the CXCR3 agonist induces receptor cross-phosphorylation within CXCR3-CCR5 heterodimers on the surface of activated T cells. This study shows that generalized chemokine receptor desensitization can be induced by specific stimulation of a single chemokine receptor on the surface of activated human T cells. A humanized mouse model was used to demonstrate that this receptor desensitization inhibits the inflammatory response that is normally produced by the chemokines present in synovial fluid from patients with active rheumatoid arthritis. PMID:22392992

  17. Internalization and molecular interactions of human CD21 receptor.

    PubMed

    Tessier, Jacques; Cuvillier, Armelle; Glaudet, Florence; Khamlichi, Ahmed Amine

    2007-03-01

    The human CD21 is a receptor for cleavage fragments of the third complement component and for Epstein-Barr virus. Previous mutational studies showed that the cytoplasmic domain of CD21 is absolutely required for internalization of either ligand. With the exception of CD19, CD81, Leu-13 and CD35 that can form a complex with CD21 at the cell surface, no other partner that interacts with the hCD21 transmembrane or the cytoplasmic domain was identified. We investigated the internalization capacity of hCD21 tail mutants in the absence of B cell receptor cross-linking by using stable murine B cell transfectants. We provide evidence that at least two internalization motifs are activated when hCD21 binds a monoclonal antibody. In order to identify the cellular proteins that interact with the hCD21 transmembrane and cytoplasmic domains, we combined a mutational mapping with a two-hybrid system approach both in yeast and in mammalian cells. We identified four novel partners that are involved in intracellular trafficking, sorting or cytoskeleton remodeling and we mapped the hCD21 transmembrane and tail subdomains they interact with. We discuss the potential physiological significance of these findings in the context of hCD21 internalization and intracellular trafficking. PMID:17118449

  18. Agonist-induced ADP-ribosylation of a cytosolic protein in human platelets

    SciTech Connect

    Bruene, B.; Molina Y Vedia, L.; Lapetina, E.G. )

    1990-05-01

    {alpha}-Thrombin and phorbol 12,13-dibutyrate stimulated the mono(ADP-ribosyl)ation of a 42-kDa cytosolic protein of human platelets. This effect was mediated by protein kinase C activation and was inhibited by protein kinase C inhibitor staurosporine. It also was prevented by prostacyclin, which is known to inhibit the phospholipase C-induced formation of 1,2-diacylglycerol, which is one of the endogenous activators of protein kinase C. On sodium dodecyl sulfate/polyacrylamide gel electrophoresis, the 42-kDa protein that is ADP-ribosylated by {alpha}-thrombin was clearly distinct from the {alpha} subunits of membrane-bound inhibitory and stimulatory guanine nucleotide-binding regulatory proteins, respectively G{sub i{alpha}} and G{sub s{alpha}}; the 47-kDa protein that is phosphorylated by protein kinase C in platelets; and the 39-kDa protein that has been shown to be endogenously ADP-ribosylated by agents that release nitric oxide. This information shows that agonist-induced activation of protein kinase leads to the ADP-ribosylation of a specific protein. This covalent modification might have a functional role in platelet activation.

  19. Agonist-induced redistribution of calponin in contractile vascular smooth muscle cells.

    PubMed

    Parker, C A; Takahashi, K; Tao, T; Morgan, K G

    1994-11-01

    Calponin is a thin filament-associated protein that has been implicated in playing an auxiliary regulatory role in smooth muscle contraction. We have used immunofluorescence and digital imaging microscopy to determine the cellular distribution of calponin in single cells freshly isolated from the ferret portal vein. In resting cells calponin is distributed throughout the cytosol, associated with filamentous structures, and is excluded from the nuclear area of the cell. The ratio of surface cortex-associated calponin to cytosol-associated calponin (R) was found to be 0.639 +/- 0.021. Upon depolarization of the cell with physiological saline solution containing 96 mM K+, the distribution of calponin did not change from that of a resting cell (R = 0.678 +/- 0.025, P = 0.369). Upon stimulation with an agonist (10 microM phenylephrine) that is known to activate protein kinase C (PKC) in these cells, the cellular distribution of calponin changed from primarily cytosolic to primarily surface cortex associated (R = 1.24 +/- 0.085, P < 0.001). This agonist-induced redistribution of calponin was partially inhibited by the PKC inhibitor calphostin, overlapped in time with PKC translocation, and preceded contraction of these cells. These results suggest that the physiological function of calponin may be to mediate agonist-activated contraction via a PKC-dependent pathway. PMID:7526695

  20. Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization

    NASA Technical Reports Server (NTRS)

    Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.

    1999-01-01

    We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.

  1. Total Internal Reflection Fluorescence Quantification of Receptor Pharmacology

    PubMed Central

    Fang, Ye

    2015-01-01

    Total internal reflection fluorescence (TIRF) microscopy has been widely used as a single molecule imaging technique to study various fundamental aspects of cell biology, owing to its ability to selectively excite a very thin fluorescent volume immediately above the substrate on which the cells are grown. However, TIRF microscopy has found little use in high content screening due to its complexity in instrumental setup and experimental procedures. Inspired by the recent demonstration of label-free evanescent wave biosensors for cell phenotypic profiling and drug screening with high throughput, we had hypothesized and demonstrated that TIRF imaging is also amenable to receptor pharmacology profiling. This paper reviews key considerations and recent applications of TIRF imaging for pharmacology profiling. PMID:25922915

  2. GnRH-agonist induced depressive and anxiety symptoms during in vitro fertilization-embryo transfer cycles.

    PubMed

    Bloch, Miki; Azem, Foad; Aharonov, Inbar; Ben Avi, Irit; Yagil, Yaron; Schreiber, Shaul; Amit, Ami; Weizman, Abraham

    2011-01-01

    To determine whether the use of a GnRH agonist inducing a hypogonadic state during IVF-ET cycles induces negative mood symptoms, we conducted a prospective randomized study in 108 women comparing two different controlled ovarian stimulation protocols. A significant phase effect was observed for depression and anxiety symptoms during IVF-ET cycles reflecting an increase in symptoms between the hypogonadal phase and the peak in gonadotropin stimulation; however, the hypogonadal phase induced by the GnRH agonist was not associated with a significant increase in any of the studied mood parameters. PMID:20801439

  3. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors.

    PubMed

    Koshimizu, Taka-Aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-01-01

    Reducing Na(+) in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na(+)-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na(+) sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na(+) increased cell surface [(3)H]AVP binding and decreased receptor internalization. Substitution of Na(+) by Cs(+) or NH4(+) inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na(+) over Cs(+). Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations. PMID:27138239

  4. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors

    PubMed Central

    Koshimizu, Taka-aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-01-01

    Reducing Na+ in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na+-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na+ sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na+ increased cell surface [3H]AVP binding and decreased receptor internalization. Substitution of Na+ by Cs+ or NH4+ inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na+ over Cs+. Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations. PMID:27138239

  5. In Vivo Techniques to Investigate the Internalization Profile of Opioid Receptors

    PubMed Central

    Pradhan, Amynah A.; Tawfik, Vivianne L.; Laboy, Alycia F.; Scherrer, Grégory

    2015-01-01

    G-protein-coupled receptors (GPCRs) regulate a remarkable diversity of biological functions, and are thus often targeted for drug therapies. Receptor internalization is commonly observed following agonist binding and activation. Receptor trafficking events have been well characterized in cell systems, but the in vivo significance of GPCR internalization is still poorly understood. To address this issue, we have developed an innovative knock-in mouse model, where an opioid receptor is directly visible in vivo. These knockin mice express functional fluorescent delta opioid receptors (DOR-eGFP) in place of the endogenous receptor, and these receptors are expressed at physiological levels within their native environment. DOR-eGFP mice have proven to be an extraordinary tool in studying receptor neuroanatomy, real-time receptor trafficking in live neurons, and in vivo receptor internalization. We have used this animal model to determine the relationship between receptor trafficking in neurons and receptor function at a behavioral level. Here, we describe in detail the construction and characterization of this knockin mouse. We also outline how to use these mice to examine the behavioral consequences of agonist-specific trafficking at the delta opioid receptor. These techniques are potentially applicable to any GPCR, and highlight the powerful nature of this imaging tool. PMID:25293318

  6. Monitoring ligand-mediated internalization of G protein-coupled receptor as a novel pharmacological approach.

    PubMed

    Fukunaga, Shin'ichi; Setoguchi, Shingo; Hirasawa, Akira; Tsujimoto, Gozoh

    2006-12-01

    Agonist activation of a G protein-coupled receptor (GPCR) results in the redistribution of the receptor protein away from the cell surface into internal cellular compartments through a process of endocytosis known as internalization. Visualization of receptor internalization has become experimentally practicable by using fluorescent reagents such as green fluorescent protein (GFP). In this study, we examined whether the ligand-mediated internalization of a GPCR can be exploited for pharmacological evaluations. We acquired fluorescent images of cells expressing GFP-labeled GPCRs and evaluated the ligand-mediated internalization quantitatively by image processing. Using beta2-adrenoceptor and vasopressin V1a receptor as model GPCRs that couple to Gs and Gq, respectively, we first examined whether these GFP-tagged GPCRs exhibited appropriate pharmacology. The rank order of receptor internalization potency for a variety of agonists and antagonists specific to each receptor corresponded well with that previously observed in ligand binding studies. In addition to chemical ligand-induced internalization, this cell-based fluorescence imaging system successfully monitored the internalization of the proton-sensing GPCR TDAG8, and that of the free fatty acid-sensitive GPCR GPR120. The results show that monitoring receptor internalization can be a useful approach for pharmacological characterization of GPCRs and in fishing for ligands of orphan GPCRs. PMID:16978657

  7. The Inhibitory Effect of Apigenin on the Agonist-Induced Regulation of Vascular Contractility via Calcium Desensitization-Related Pathways

    PubMed Central

    Je, Hyun Dong; Kim, Hyeong-Dong; La, Hyen-Oh

    2014-01-01

    Apigenin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of apigenin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Apigenin significantly relaxed fluoride-, thromboxane A2 mimetic- or phorbol ester-induced vascular contraction, which suggests that apigenin could be an anti-hypertensive that reduces agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, apigenin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels, which suggests the mechanism involving the inhibition of Rho-kinase and MEK activity and the subsequent phosphorylation of MYPT1 and ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of apigenin on agonist-induced vascular contraction regardless of endothelial function. PMID:24753814

  8. Protease-activated Receptor-4 Signaling and Trafficking Is Regulated by the Clathrin Adaptor Protein Complex-2 Independent of β-Arrestins.

    PubMed

    Smith, Thomas H; Coronel, Luisa J; Li, Julia G; Dores, Michael R; Nieman, Marvin T; Trejo, JoAnn

    2016-08-26

    Protease-activated receptor-4 (PAR4) is a G protein-coupled receptor (GPCR) for thrombin and is proteolytically activated, similar to the prototypical PAR1. Due to the irreversible activation of PAR1, receptor trafficking is intimately linked to signal regulation. However, unlike PAR1, the mechanisms that control PAR4 trafficking are not known. Here, we sought to define the mechanisms that control PAR4 trafficking and signaling. In HeLa cells depleted of clathrin by siRNA, activated PAR4 failed to internalize. Consistent with clathrin-mediated endocytosis, expression of a dynamin dominant-negative K44A mutant also blocked activated PAR4 internalization. However, unlike most GPCRs, PAR4 internalization occurred independently of β-arrestins and the receptor's C-tail domain. Rather, we discovered a highly conserved tyrosine-based motif in the third intracellular loop of PAR4 and found that the clathrin adaptor protein complex-2 (AP-2) is important for internalization. Depletion of AP-2 inhibited PAR4 internalization induced by agonist. In addition, mutation of the critical residues of the tyrosine-based motif disrupted agonist-induced PAR4 internalization. Using Dami megakaryocytic cells, we confirmed that AP-2 is required for agonist-induced internalization of endogenous PAR4. Moreover, inhibition of activated PAR4 internalization enhanced ERK1/2 signaling, whereas Akt signaling was markedly diminished. These findings indicate that activated PAR4 internalization requires AP-2 and a tyrosine-based motif and occurs independent of β-arrestins, unlike most classical GPCRs. Moreover, these findings are the first to show that internalization of activated PAR4 is linked to proper ERK1/2 and Akt activation. PMID:27402844

  9. Pharmacological Evaluation of the Long-Term Effects of Xanomeline on the M1 Muscarinic Acetylcholine Receptor

    PubMed Central

    Grant, Marianne K. O.; Noetzel, Meredith J.; De Lorme, Kayla C.; Jakubík, Jan; Doležal, Vladimír; El-Fakahany, Esam E.

    2010-01-01

    Xanomeline is a unique agonist of muscarinic receptors that possesses functional selectivity at the M1 and M4 receptor subtypes. It also exhibits wash-resistant binding to and activation of the receptor. In the present work we investigated the consequences of this type of binding of xanomeline on the binding characteristics and function of the M1 muscarinic receptor. Pretreatment of CHO cells that stably express the M1 receptor for 1 hr with increasing concentrations of xanomeline followed by washing and waiting for an additional 23 hr in control culture media transformed xanomeline-induced inhibition of [3H]NMS binding from monophasic to biphasic. The high-affinity xanomeline binding site exhibited three orders of magnitude higher affinity than in the case of xanomeline added directly to the binding assay medium containing control cells. These effects were associated with a marked decrease in maximal radioligand binding and attenuation of agonist-induced increase in PI hydrolysis and were qualitatively similar to those caused by continuous incubation of cells with xanomeline for 24 hr. Attenuation of agonist-induced PI hydrolysis by persistently-bound xanomeline developed with a time course that parallels the return of receptor activation by prebound xanomeline towards basal levels. Additional data indicated that blockade of the receptor orthosteric site or the use of a non-functional receptor mutant reversed the long-term effects of xanomeline, but not its persistent binding at an allosteric site. Furthermore, the long-term effects of xanomeline on the receptor are mainly due to receptor down-regulation rather than internalization. PMID:21203415

  10. Characterization of the single transmembrane domain of human receptor activity-modifying protein 3 in adrenomedullin receptor internalization

    SciTech Connect

    Kuwasako, Kenji; Kitamura, Kazuo; Nagata, Sayaka; Nozaki, Naomi; Kato, Johji

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer RAMP3 mediates CLR internalization much less effectively than does RAMP2. Black-Right-Pointing-Pointer The RAMP3 TMD participates in the negative regulation of CLR/RAMP3 internalization. Black-Right-Pointing-Pointer A new strategy of promoting internalization and resensitization of the receptor was found. -- Abstract: Two receptor activity-modifying proteins (RAMP2 and RAMP3) enable calcitonin receptor-like receptor (CLR) to function as two heterodimeric receptors (CLR/RAMP2 and CLR/RAMP3) for adrenomedullin (AM), a potent cardiovascular protective peptide. Following AM stimulation, both receptors undergo rapid internalization through a clathrin-dependent pathway, after which CLR/RAMP3, but not CLR/RAMP2, can be recycled to the cell surface for resensitization. However, human (h)RAMP3 mediates CLR internalization much less efficiently than does hRAMP2. Therefore, the molecular basis of the single transmembrane domain (TMD) and the intracellular domain of hRAMP3 during AM receptor internalization was investigated by transiently transfecting various RAMP chimeras and mutants into HEK-293 cells stably expressing hCLR. Flow cytometric analysis revealed that substituting the RAMP3 TMD with that of RAMP2 markedly enhanced AM-induced internalization of CLR. However, this replacement did not enhance the cell surface expression of CLR, [{sup 125}I]AM binding affinity or AM-induced cAMP response. More detailed analyses showed that substituting the Thr{sup 130}-Val{sup 131} sequence in the RAMP3 TMD with the corresponding sequence (Ile{sup 157}-Pro{sup 158}) from RAMP2 significantly enhanced AM-mediated CLR internalization. In contrast, substituting the RAMP3 target sequence with Ala{sup 130}-Ala{sup 131} did not significantly affect CLR internalization. Thus, the RAMP3 TMD participates in the negative regulation of CLR/RAMP3 internalization, and the aforementioned introduction of the Ile-Pro sequence into the RAMP3 TMD may be a

  11. The HPV16 E6 Oncoprotein Causes Prolonged Receptor Protein Tyrosine Kinase Signaling and Enhances Internalization of Phosphorylated Receptor Species

    PubMed Central

    Spangle, Jennifer M.; Munger, Karl

    2013-01-01

    The high-risk human papillomavirus (HPV) E6 proteins are consistently expressed in HPV-associated lesions and cancers. HPV16 E6 sustains the activity of the mTORC1 and mTORC2 signaling cascades under conditions of growth factor deprivation. Here we report that HPV16 E6 activated mTORC1 by enhanced signaling through receptor protein tyrosine kinases, including epidermal growth factor receptor and insulin receptor and insulin-like growth factor receptors. This is evidenced by sustained signaling through these receptors for several hours after growth factor withdrawal. HPV16 E6 increased the internalization of activated receptor species, and the signaling adaptor protein GRB2 was shown to be critical for HPV16 E6 mediated enhanced EGFR internalization and mTORC1 activation. As a consequence of receptor protein kinase mediated mTORC1 activation, HPV16 E6 expression increased cellular migration of primary human epithelial cells. This study identifies a previously unappreciated mechanism by which HPV E6 proteins perturb host-signaling pathways presumably to sustain protein synthesis during the viral life cycle that may also contribute to cellular transforming activities of high-risk HPV E6 proteins. PMID:23516367

  12. K+ efflux agonists induce NLRP3 inflammasome activation independently of Ca2+ signaling1

    PubMed Central

    Katsnelson, Michael A.; Rucker, L. Graham; Russo, Hana M.; Dubyak, George R.

    2015-01-01

    Perturbation of intracellular ion homeostasis is a major cellular stress signal for activation of NLRP3 inflammasome signaling that results in caspase-1 mediated production of IL-1β and pyroptosis. However, the relative contributions of decreased cytosolic [K+] versus increased cytosolic [Ca2+] remain disputed and incompletely defined. We investigated roles for elevated cytosolic [Ca2+] in NLRP3 activation and downstream inflammasome signaling responses in primary murine dendritic cells and macrophages in response to two canonical NLRP3 agonists (ATP and nigericin) that facilitate primary K+ efflux by mechanistically distinct pathways or the lysosome-destabilizing agonist Leu-Leu-O-methyl ester (LLME). The study provides three major findings relevant to this unresolved area of NLRP3 regulation. First, increased cytosolic [Ca2+] was neither a necessary nor sufficient signal for the NLRP3 inflammasome cascade during activation by endogenous ATP-gated P2X7 receptor channels, the exogenous bacterial ionophore nigericin, or the lysosomotropic agent LLME. Second, agonists for three Ca2+-mobilizing G protein-coupled receptors (formyl peptide receptor/FPR; P2Y2 purinergic receptor/P2Y2R; calcium-sensing receptor/CaSR) expressed in murine dendritic cells were ineffective as activators of rapidly induced NLRP3 signaling when directly compared to the K+ efflux agonists. Third, the intracellular Ca2+ buffer, BAPTA, and the channel blocker, 2-aminoethoxydiphenyl borate (2-APB), widely used reagents for disruption of Ca2+-dependent signaling pathways, strongly suppressed nigericin-induced NLRP3 inflammasome signaling via mechanisms dissociated from their canonical or expected effects on Ca2+ homeostasis. The results indicate that the ability of K+ efflux agonists to activate NLRP3 inflammasome signaling can be dissociated from changes in cytosolic [Ca2+] as a necessary or sufficient signal. PMID:25762778

  13. Reduced agonist-induced endothelium-dependent vasodilation in uremia is attributable to an impairment of vascular nitric oxide.

    PubMed

    Passauer, Jens; Pistrosch, Frank; Büssemaker, Eckhart; Lässig, Grit; Herbrig, Kay; Gross, Peter

    2005-04-01

    Current concepts for the explanation of endothelial dysfunction and accelerated atherosclerosis in uremia propose a reduced vascular bioavailability of nitric oxide (NO). The aim of the present study was to test the contributions of NO and NO/prostacyclin (PGI(2))-independent mechanisms to both baseline vascular tone and agonist-induced endothelium-dependent vasodilation in patients on hemodialysis (HD). In 10 HD patients and eight matched healthy control subjects, forearm blood flow (FBF) was measured at rest and during intrabrachial infusions of norepinephrine (NE; endothelium-independent vasoconstrictor, 60, 120, and 240 pmol/min) and N-monomethyl-L-arginine (blocker of NO synthases, 16 micromol/min). After inhibition of cyclo-oxygenase by ibuprofen (1200 mg orally), endothelium-dependent and -independent vasodilation was assessed by infusion of acetylcholine (ACh; 1, 5, 10, 50, 100, and 300 nmol/min) and sodium-nitroprusside (2.5, 5, and 10 microg/min). NO/PGI(2)-independent vasodilation was tested by equal infusions of ACh during NO clamp. N-monomethyl-L-arginine reduced resting FBF to a comparable degree in both groups. Vascular responses to ACh were reduced in HD (P = 0.003 versus control by ANOVA), whereas those to sodium nitroprusside were mainly at control level. Infusion of ACh during NO clamp caused a similar increment of FBF in both groups. NO-mediated vasodilation as calculated by the difference between ACh-induced responses without and with NO clamp was substantially impaired in HD (P < 0.001) compared with control. In HD patients, baseline NO-mediated arteriolar tone is at control level. This study provides first evidence that endothelial dysfunction of uremic patients as shown by reduced agonist-induced endothelium-dependent vasodilation is attributable to reduced stimulation of NO, whereas the NO/PGI(2)-resistant portion of ACh-mediated vasodilation is unaffected. PMID:15728785

  14. Roles of regulated internalization in the polarization of cell surface receptors

    PubMed Central

    Tian, Wei; Cao, Youfang; Ismael, Amber; Stone, David

    2016-01-01

    Cell polarization, the generation of cellular asymmetries, is a fundamental biological process. Polarity of different molecules can arise through several mechanisms. Among these, internalization has been shown to play an important role in the polarization of cell surface receptors. The internalization of cell surface receptors can be upregulated upon ligand binding. Additional regulatory mechanism can downregulate the internalization process. Here we describe a general model, which incorporates these two opposing processes, to study the role of internalization in the establishment of cell polarity. We find that the competition between these two processes is sufficient to induce receptor polarization. Our results show that regulated internalization provides additional regulation on polarization as well. In addition, we discuss applications of our model to the yeast system, which shows the capability and potential of the model. PMID:25570171

  15. Down-regulation of insulin receptors is related to insulin internalization

    SciTech Connect

    Geiger, D.; Carpentier, J.L.; Gorden, P.; Orci, L. )

    1989-11-01

    In the present study, we have tested the influence of inhibition of endocytosis by hypertonic medium on the regulation of cell surface insulin receptors. We show that active internalization of {sup 125}I-insulin is markedly inhibited by hypertonic media and that, in parallel, cell surface invaginations are significantly diminished. These two events are accompanied by a marked inhibition of cell surface insulin receptor down-regulation. These data provide further strong evidence that receptor-mediated endocytosis is the major mechanism by which insulin receptors are regulated at the surface of target cells.

  16. Propranolol Restricts the Mobility of Single EGF-Receptors on the Cell Surface before Their Internalization

    PubMed Central

    Otero, Carolina; Linke, Max; Sanchez, Paula; González, Alfonso; Schaap, Iwan A. T.

    2013-01-01

    The epidermal growth factor receptor is involved in morphogenesis, proliferation and cell migration. Its up-regulation during tumorigenesis makes this receptor an interesting therapeutic target. In the absence of the ligand, the inhibition of phosphatidic acid phosphohydrolase activity by propranolol treatment leads to internalization of empty/inactive receptors. The molecular events involved in this endocytosis remain unknown. Here, we quantified the effects of propranolol on the mobility of single quantum-dot labelled receptors before the actual internalization took place. The single receptors showed a clear stop-and-go motion; their diffusive tracks were continuously interrupted by sub-second stalling events, presumably caused by transient clustering. In the presence of propranolol we found that: i) the diffusion rate reduced by 22 %, which indicates an increase in drag of the receptor. Atomic force microscopy measurements did not show an increase of the effective membrane tension, such that clustering of the receptor remains the likely mechanism for its reduced mobility. ii) The receptor got frequently stalled for longer periods of multiple seconds, which may signal the first step of the internalization process. PMID:24349439

  17. Only high-affinity receptors for interleukin 2 mediate internalization of ligand

    SciTech Connect

    Weissman, A.M.; Harford, J.B.; Svetlik, P.B.; Leonard, W.L.; Depper, J.M.; Waldmann, T.A.; Greene, W.C.; Klausner, R.D.

    1986-03-01

    Interleukin 2 (IL-2) receptors are expressed on activated T cells and in select T-cell leukemias. Recently, it has been demonstrated that at least two classes of receptor for IL-2 exist with markedly different affinities for ligand. All known biological actions of IL-2 have been correlated with occupancy of high-affinity sites; the function of the low-affinity sites remains unknown. Receptor-mediated endocytosis is the primary means of internalization of cell-surface receptors and their ligands. The internalization of IL-2 bound to high- and low-affinity receptor sites was studied in a human T-cell lymphotrophic virus type 1 (HTLV-1)-infected human T-cell leukemia cell line and in a cloned murine cytotoxic T-cell line (CTLL). Internalization of IL-2 occurred only when bound to high-affinity sites. In addition, an anti-receptor antibody (anti-Tac), which binds equally well to high- and low-affinity sites, demonstrated no detectable internalization. The implications of these findings as they relate to IL-2 receptor structure and function are discussed.

  18. A novel D2-dopaminergic and alpha2-adrenoceptor receptor agonist induces substantial and prolonged IOP decrease in normotensive rabbits.

    PubMed

    Savolainen, Jouko; Rautio, Jarkko; Razzetti, Roberta; Järvinen, Tomi

    2003-06-01

    The effects of a novel and selective D2-dopaminergic/alpha2-adrenoceptor agonist, CHF1035, and its metabolite CHF1024 on intraocular pressure (IOP) were determined in rabbits. Because CHF1035 is a mixture of two enantiomers, CHF1800 (+) and CHF1810 (-), pure enantiomers were also studied to determine possible differences in IOP-decreasing ability depending on the stereochemistry of the molecule. CHF1035, CHF1800 (+), CHF1810 (-), CHF1024, brimonidine and 0.9% NaCl were administered topically to rabbits and IOP was then measured at fixed time intervals. The dose-response profile (0.01-1.0% w/v) was determined for CHF1035. CHF1035 and its metabolite CHF1024 significantly lowered IOP in the treated eyes. CHF1035 showed a maximum IOP decrease (7.6 +/- 1.5 mmHg) 5 h post-dosing, whereas the metabolite CHF1024 showed a maximum decrease in IOP (7.0 +/- 0.8 mmHg) 3 h post-dosing. The maximum IOP decrease produced by CHF1035 in the treated eye was comparable with that produced by brimonidine (7.8 +/- 0.9 mmHg), but CHF1035 had a significantly longer duration of action. Unlike brimonidine, CHF1035 and CHF1024 did not decrease IOP in the untreated eye. CHF1810 (-) lowered the IOP more than CHF1800 (+). No irritation, evaluated as eyelid closure, was observed after topical administration of any of the compounds. Only in the case of CHF1035 1% solution, two rabbits out of six closed the eye for 30-45 s. In conclusion, CHF1035 and its metabolite CHF1024 significantly decreased the IOP in rabbits, and are potential novel IOP lowering agents. Especially, CHF1035 produced a substantial decrease in IOP for a prolonged period of time, and thus may prove useful in glaucoma therapy. PMID:12841939

  19. Glutamate Receptor Ion Channels: Structure, Regulation, and Function

    PubMed Central

    Wollmuth, Lonnie P.; McBain, Chris J.; Menniti, Frank S.; Vance, Katie M.; Ogden, Kevin K.; Hansen, Kasper B.; Yuan, Hongjie; Myers, Scott J.; Dingledine, Ray

    2010-01-01

    The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors. PMID:20716669

  20. Tyrosine phosphorylation of the insulin receptor is not required for receptor internalization: studies in 2,4-dinitrophenol-treated cells

    SciTech Connect

    Backer, J.M.; Kahn, C.R.; White, M.F.

    1989-05-01

    The relation between insulin-stimulated autophosphorylation of the insulin receptor and internalization of the receptor was studied in Fao rat hepatoma cells. Treatment of Fao cells with 2,4-dinitrophenol for 45 min depleted cellular ATP by 80% and equally inhibited insulin-stimulated receptor autophosphorylation, as determined by immunoprecipitation of surface-iodinated or (/sup 32/P)phosphate-labeled cells with anti-phosphotyrosine antibody. In contrast, internalization of the insulin receptor and internalization and degradation of /sup 125/I-labeled insulin by 2,4-dinitrophenol-treated cells were normal. These data show that autophosphorylation of the insulin receptor is not required for the receptor-mediated internalization of insulin in Fao cells and suggest that insulin receptor recycling is independent of autophosphorylation.

  1. The F-BAR Protein PACSIN2 Regulates Epidermal Growth Factor Receptor Internalization

    PubMed Central

    de Kreuk, Bart-Jan; Anthony, Eloise C.; Geerts, Dirk; Hordijk, Peter L.

    2012-01-01

    Signaling via growth factor receptors, including the epidermal growth factor (EGF) receptor, is key to various cellular processes, such as proliferation, cell survival, and cell migration. In a variety of human diseases such as cancer, aberrant expression and activation of growth factor receptors can lead to disturbed signaling. Intracellular trafficking is crucial for proper signaling of growth factor receptors. As a result, the level of cell surface expression of growth factor receptors is an important determinant for the outcome of downstream signaling. BAR domain-containing proteins represent an important family of proteins that regulate membrane dynamics. In this study, we identify a novel role for the F-BAR protein PACSIN2 in the regulation of EGF receptor signaling. We show that internalized EGF as well as the (activated) EGF receptor translocated to PACSIN2-positive endosomes. Furthermore, loss of PACSIN2 increased plasma membrane expression of the EGF receptor in resting cells and increased EGF-induced phosphorylation of the EGF receptor. As a consequence, EGF-induced activation of Erk and Akt as well as cell proliferation were enhanced in PACSIN2-depleted cells. In conclusion, this study identifies a novel role for the F-BAR-domain protein PACSIN2 in regulating EGF receptor surface levels and EGF-induced downstream signaling. PMID:23129763

  2. The Regulated Expression, Intracellular Trafficking, and Membrane Recycling of the P2Y-like Receptor GPR17 in Oli-neu Oligodendroglial Cells*

    PubMed Central

    Fratangeli, Alessandra; Parmigiani, Elena; Fumagalli, Marta; Lecca, Davide; Benfante, Roberta; Passafaro, Maria; Buffo, Annalisa; Abbracchio, Maria P.; Rosa, Patrizia

    2013-01-01

    GPR17 is a G-protein-coupled receptor that is activated by two classes of molecules: uracil-nucleotides and cysteinyl-leukotrienes. GPR17 is required for initiating the differentiation of oligodendrocyte precursors but has to be down-regulated to allow cells to undergo terminal maturation. Although a great deal has been learned about GPR17 expression and signaling, no information is currently available about the trafficking of native receptors after the exposure of differentiating oligodendrocytes to endogenous agonists. Here, we demonstrate that neuron-conditioned medium induces the transcriptionally mediated, time-regulated expression of GPR17 in Oli-neu, an oligodendrocyte precursor cell line, making these cells suitable for studying the endocytic traffic of the native receptor. Agonist-induced internalization, intracellular trafficking, and membrane recycling of GPR17 were analyzed by biochemical and immunofluorescence assays using an ad hoc-developed antibody against the extracellular N-terminal of GPR17. Both UDP-glucose and LTD4 increased GPR17 internalization, although with different efficiency. At early time points, internalized GPR17 co-localized with transferrin receptor, whereas at later times it partially co-localized with the lysosomal marker Lamp1, suggesting that a portion of GPR17 is targeted to lysosomes upon ligand binding. An analysis of receptor recycling and degradation demonstrated that a significant aliquot of GPR17 is recycled to the cell surface. Furthermore, internalized GPR17 displayed a co-localization with the marker of the “short loop” recycling endosomes, Rab4, while showing very minor co-localization with the “long loop” recycling marker, Rab11. Our results provide the first data on the agonist-induced trafficking of native GPR17 in oligodendroglial cells and may have implications for both physiological and pathological myelination. PMID:23288840

  3. Discovery of Regulators of Receptor Internalization with High-Throughput Flow Cytometry

    PubMed Central

    Tapia, Phillip H.; Fisher, Gregory W.; Simons, Peter C.; Strouse, J. Jacob; Foutz, Terry; Waggoner, Alan S.; Jarvik, Jonathan; Sklar, Larry A.

    2012-01-01

    We developed a platform combining fluorogen-activating protein (FAP) technology with high-throughput flow cytometry to detect real-time protein trafficking to and from the plasma membrane in living cells. The hybrid platform facilitates drug discovery for trafficking receptors such as G protein-coupled receptors and was validated with the β2-adrenergic receptor (β2AR) system. When a chemical library containing ∼1200 off-patent drugs was screened against cells expressing FAP-tagged β2ARs, all 33 known β2AR-active ligands in the library were successfully identified, together with a number of compounds that might regulate receptor internalization in a nontraditional manner. Results indicated that the platform identified ligands of target proteins regardless of the associated signaling pathway; therefore, this approach presents opportunities to search for biased receptor modulators and is suitable for screening of multiplexed targets for improved efficiency. The results revealed that ligands may be biased with respect to the rate or duration of receptor internalization and that receptor internalization may be independent of activation of the mitogen-activated protein kinase pathway. PMID:22767611

  4. Cardiac β2-Adrenergic Receptor Phosphorylation at Ser355/356 Regulates Receptor Internalization and Functional Resensitization.

    PubMed

    Fan, Xiaofang; Gu, Xuejiang; Zhao, Ru; Zheng, Qingqing; Li, Lan; Yang, Wenbing; Ding, Lu; Xue, Feng; Fan, Junming; Gong, Yongsheng; Wang, Yongyu

    2016-01-01

    Previous studies have demonstrated that β2-adrenergic receptors (β2ARs) can be phosphorylated by G protein-coupled receptor kinases (GRKs) and protein kinase A (PKA), affecting β2AR internalization and desensitization. However, the exact physiological function of β2ARs in cardiomyocytes is unknown. In this study, we showed that neonatal mouse cardiomyocytes had different contraction and internalization responses to sustained or repeated, transient agonist stimulation. Specifically, short-time stimulation (10 min) with epinephrine or norepinephrine increased the cardiomyocyte contraction rate, reaching a maximum at 5 min, followed by a slow decline. When the agonist was re-added after a 60-min wash-out period, the increase in the cardiomyocyte contraction rate was similar to the initial response. In contrast, when cardiomyocytes were exposed continuously to epinephrine or norepinephrine for 60 min, the second agonist stimulation did not increase the contraction response. These results indicated that continuous β2AR stimulation caused functional desensitization. Phosphorylation of β2ARs at serine (Ser)355/356 GRK phosphorylation sites, but not at Ser345/346 PKA phosphorylation sites increased with continuous epinephrine stimulation for 60 min. Accordingly, β2AR internalization increased. Interestingly, β2AR internalization was blocked by mutations at the GRK phosphorylation sites, but not by mutations at the PKA phosphorylation sites. Furthermore, inhibition of β2AR dephosphorylation by okadaic acid, a phosphatase 2A inhibitor, impaired the recovery of internalized β2ARs and reduced the cardiomyocyte contraction rate in response to epinephrine. Finally, epinephrine treatment induced the physical interaction of β-arrestin with internalized β2ARs in cardiomyocytes. Together, these data revealed the essential role of the Ser355/356 phosphorylation status of β2ARs in regulating receptor internalization and physiological resensitization in neonatal

  5. Cardiac β2-Adrenergic Receptor Phosphorylation at Ser355/356 Regulates Receptor Internalization and Functional Resensitization

    PubMed Central

    Zhao, Ru; Zheng, Qingqing; Li, Lan; Yang, Wenbing; Ding, Lu; Xue, Feng; Fan, Junming; Gong, Yongsheng

    2016-01-01

    Previous studies have demonstrated that β2-adrenergic receptors (β2ARs) can be phosphorylated by G protein-coupled receptor kinases (GRKs) and protein kinase A (PKA), affecting β2AR internalization and desensitization. However, the exact physiological function of β2ARs in cardiomyocytes is unknown. In this study, we showed that neonatal mouse cardiomyocytes had different contraction and internalization responses to sustained or repeated, transient agonist stimulation. Specifically, short-time stimulation (10 min) with epinephrine or norepinephrine increased the cardiomyocyte contraction rate, reaching a maximum at 5 min, followed by a slow decline. When the agonist was re-added after a 60-min wash-out period, the increase in the cardiomyocyte contraction rate was similar to the initial response. In contrast, when cardiomyocytes were exposed continuously to epinephrine or norepinephrine for 60 min, the second agonist stimulation did not increase the contraction response. These results indicated that continuous β2AR stimulation caused functional desensitization. Phosphorylation of β2ARs at serine (Ser)355/356 GRK phosphorylation sites, but not at Ser345/346 PKA phosphorylation sites increased with continuous epinephrine stimulation for 60 min. Accordingly, β2AR internalization increased. Interestingly, β2AR internalization was blocked by mutations at the GRK phosphorylation sites, but not by mutations at the PKA phosphorylation sites. Furthermore, inhibition of β2AR dephosphorylation by okadaic acid, a phosphatase 2A inhibitor, impaired the recovery of internalized β2ARs and reduced the cardiomyocyte contraction rate in response to epinephrine. Finally, epinephrine treatment induced the physical interaction of β-arrestin with internalized β2ARs in cardiomyocytes. Together, these data revealed the essential role of the Ser355/356 phosphorylation status of β2ARs in regulating receptor internalization and physiological resensitization in neonatal

  6. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors.

    PubMed

    Panula, Pertti; Chazot, Paul L; Cowart, Marlon; Gutzmer, Ralf; Leurs, Rob; Liu, Wai L S; Stark, Holger; Thurmond, Robin L; Haas, Helmut L

    2015-07-01

    Histamine is a developmentally highly conserved autacoid found in most vertebrate tissues. Its physiological functions are mediated by four 7-transmembrane G protein-coupled receptors (H1R, H2R, H3R, H4R) that are all targets of pharmacological intervention. The receptors display molecular heterogeneity and constitutive activity. H1R antagonists are long known antiallergic and sedating drugs, whereas the H2R was identified in the 1970s and led to the development of H2R-antagonists that revolutionized stomach ulcer treatment. The crystal structure of ligand-bound H1R has rendered it possible to design new ligands with novel properties. The H3R is an autoreceptor and heteroreceptor providing negative feedback on histaminergic and inhibition on other neurons. A block of these actions promotes waking. The H4R occurs on immuncompetent cells and the development of anti-inflammatory drugs is anticipated. PMID:26084539

  7. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors

    PubMed Central

    Chazot, Paul L.; Cowart, Marlon; Gutzmer, Ralf; Leurs, Rob; Liu, Wai L. S.; Stark, Holger; Thurmond, Robin L.; Haas, Helmut L.

    2015-01-01

    Histamine is a developmentally highly conserved autacoid found in most vertebrate tissues. Its physiological functions are mediated by four 7-transmembrane G protein–coupled receptors (H1R, H2R, H3R, H4R) that are all targets of pharmacological intervention. The receptors display molecular heterogeneity and constitutive activity. H1R antagonists are long known antiallergic and sedating drugs, whereas the H2R was identified in the 1970s and led to the development of H2R-antagonists that revolutionized stomach ulcer treatment. The crystal structure of ligand-bound H1R has rendered it possible to design new ligands with novel properties. The H3R is an autoreceptor and heteroreceptor providing negative feedback on histaminergic and inhibition on other neurons. A block of these actions promotes waking. The H4R occurs on immuncompetent cells and the development of anti-inflammatory drugs is anticipated. PMID:26084539

  8. Internalization mechanism of neuropeptide Y bound to its Y1 receptor investigated by high resolution microscopy

    NASA Astrophysics Data System (ADS)

    Kempf, Noémie; Didier, Pascal; Postupalenko, Viktoriia; Bucher, Bernard; Mély, Yves

    2015-06-01

    The neuropeptide Y (NPY) plays numerous biological roles that are mediated by a family of G-protein-coupled receptors. Among the latter, the NPY Y1 subtype receptor undergoes a rapid desensitization following agonist exposure. This desensitization was suggested to result from a rapid clathrin-dependent internalization of Y1 and its recycling at the plasma membrane via sorting/early endosomes (SE/EE) and recycling endosomes (RE). Herein, to validate and quantitatively consolidate the mechanism of NPY internalization, we quantitatively investigated the NPY-induced internalization of the Y1 receptor by direct stochastic optical reconstruction microscopy (dSTORM), a super-resolution imaging technique that can resolve EE and SE, which are below the resolution limit of conventional optical microscopes. Using Cy5-labeled NPY, we could monitor with time the internalization and recycling of NPY on HEK293 cells stably expressing eGFP-labeled Y1 receptors. Furthermore, by discriminating the SE/EE from the larger RE by their sizes and monitoring these two populations as a function of time, we could firmly consolidate the kinetic model describing the internalization mechanism of the Y1 receptors as the basis for their rapid desensitization following agonist exposure.

  9. α1 -AR agonist induced piloerection protects against the development of traction alopecia.

    PubMed

    Goren, Andy; Shapiro, Jerry; Sinclair, Rodney; Kovacevic, Maja; McCoy, John

    2016-05-01

    Traction alopecia is hair loss that occurs after persistent pulling (e.g., during cosmetic procedures) on the roots of hair over time. Unlike plucking, which is painful, persistent pulling may go unnoticed until a patient presents with either bald spots or diffuse telogen shedding. Each hair follicle in the scalp contains an arrector pili muscle that, when contracted, erects the hair. The smooth muscle in the arrector pili expresses α1 adrenergic receptors (α1 -AR). As such, we hypothesized that contraction of the arrector pili muscle via an α1 -AR agonist would increase the threshold of force required to pluck hair during cosmetic procedures. Female subjects, ages 18-40, were recruited to study the effect of topically applied phenylephrine, a selective α1 -AR agonist, on epilation force and hair shedding during cosmetic procedures. In our blinded study, 80% of subjects demonstrated reduced shedding on days using phenylephrine compared to days using a placebo solution. The average reduction in hair loss was approximately 42%. In addition, the force threshold required for epilation increased by approximately 172% following topical phenylephrine application. To our knowledge this is the first study demonstrating the utility of α1 -AR agonists in the treatment of traction alopecia and hair shedding during cosmetic procedures. PMID:26678522

  10. Physiological concentrations of bile acids down-regulate agonist induced secretion in colonic epithelial cells.

    PubMed

    Keating, Niamh; Mroz, Magdalena S; Scharl, Michael M; Marsh, Christine; Ferguson, Gail; Hofmann, Alan F; Keely, Stephen J

    2009-08-01

    In patients with bile acid malabsorption, high concentrations of bile acids enter the colon and stimulate Cl(-) and fluid secretion, thereby causing diarrhoea. However, deoxycholic acid (DCA), the predominant colonic bile acid, is normally present at lower concentrations where its role in regulating transport is unclear. Thus, the current study set out to investigate the effects of physiologically relevant DCA concentrations on colonic epithelial secretory function. Cl(-) secretion was measured as changes in short-circuit current across voltage-clamped T(84) cell monolayers. At high concentrations (0.5-1 mM), DCA acutely stimulated Cl(-) secretion but this effect was associated with cell injury, as evidenced by decreased transepithelial resistance (TER) and increased lactate dehydrogenase (LDH) release. In contrast, chronic (24 hrs) exposure to lower DCA concentrations (10-200 microM) inhibited responses to Ca(2+) and cAMP-dependent secretagogues without altering TER, LDH release, or secretagogue-induced increases in intracellular second messengers. Other bile acids - taurodeoxycholic acid, chenodeoxycholic acid and cholic acid - had similar antisecretory effects. DCA (50 microM) rapidly stimulated phosphorylation of the epidermal growth factor receptor (EGFr) and both ERK and p38 MAPKs (mitogen-activated protein kinases). The EGFr inhibitor, AG1478, and the protein synthesis inhibitor, cycloheximide, reversed the antisecretory effects of DCA, while the MAPK inhibitors, PD98059 and SB203580, did not. In summary, our studies suggest that, in contrast to its acute prosecretory effects at pathophysiological concentrations, lower, physiologically relevant, levels of DCA chronically down-regulate colonic epithelial secretory function. On the basis of these data, we propose a novel role for bile acids as physiological regulators of colonic secretory capacity. PMID:19583809

  11. Systems Analysis of a RIG-I Agonist Inducing Broad Spectrum Inhibition of Virus Infectivity

    PubMed Central

    Goulet, Marie-Line; Olagnier, David; Xu, Zhengyun; Paz, Suzanne; Belgnaoui, S. Mehdi; Lafferty, Erin I.; Janelle, Valérie; Arguello, Meztli; Paquet, Marilene; Ghneim, Khader; Richards, Stephanie; Smith, Andrew; Wilkinson, Peter; Cameron, Mark; Kalinke, Ulrich; Qureshi, Salman; Lamarre, Alain; Haddad, Elias K.; Sekaly, Rafick Pierre; Peri, Suraj; Balachandran, Siddharth; Lin, Rongtuan; Hiscott, John

    2013-01-01

    The RIG-I like receptor pathway is stimulated during RNA virus infection by interaction between cytosolic RIG-I and viral RNA structures that contain short hairpin dsRNA and 5′ triphosphate (5′ppp) terminal structure. In the present study, an RNA agonist of RIG-I was synthesized in vitro and shown to stimulate RIG-I-dependent antiviral responses at concentrations in the picomolar range. In human lung epithelial A549 cells, 5′pppRNA specifically stimulated multiple parameters of the innate antiviral response, including IRF3, IRF7 and STAT1 activation, and induction of inflammatory and interferon stimulated genes - hallmarks of a fully functional antiviral response. Evaluation of the magnitude and duration of gene expression by transcriptional profiling identified a robust, sustained and diversified antiviral and inflammatory response characterized by enhanced pathogen recognition and interferon (IFN) signaling. Bioinformatics analysis further identified a transcriptional signature uniquely induced by 5′pppRNA, and not by IFNα-2b, that included a constellation of IRF7 and NF-kB target genes capable of mobilizing multiple arms of the innate and adaptive immune response. Treatment of primary PBMCs or lung epithelial A549 cells with 5′pppRNA provided significant protection against a spectrum of RNA and DNA viruses. In C57Bl/6 mice, intravenous administration of 5′pppRNA protected animals from a lethal challenge with H1N1 Influenza, reduced virus titers in mouse lungs and protected animals from virus-induced pneumonia. Strikingly, the RIG-I-specific transcriptional response afforded partial protection from influenza challenge, even in the absence of type I interferon signaling. This systems approach provides transcriptional, biochemical, and in vivo analysis of the antiviral efficacy of 5′pppRNA and highlights the therapeutic potential associated with the use of RIG-I agonists as broad spectrum antiviral agents. PMID:23633948

  12. Physiological concentrations of bile acids down‐regulate agonist induced secretion in colonic epithelial cells

    PubMed Central

    Keating, Niamh; Mroz, Magdalena S.; Scharl, Michael M.; Marsh, Christine; Ferguson, Gail; Hofmann, Alan F.

    2009-01-01

    Abstract In patients with bile acid malabsorption, high concentrations of bile acids enter the colon and stimulate Cl− and fluid secretion, thereby causing diarrhoea. However, deoxycholic acid (DCA), the predominant colonic bile acid, is normally present at lower concentrations where its role in regulating transport is unclear. Thus, the current study set out to investigate the effects of physiologically relevant DCA concentrations on colonic epithelial secretory function. Cl− secretion was measured as changes in short‐circuit current across voltage‐clamped T84 cell monolayers. At high concentrations (0.5–1 mM), DCA acutely stimulated Cl− secretion but this effect was associated with cell injury, as evidenced by decreased transepithelial resistance (TER) and increased lactate dehydrogenase (LDH) release. In contrast, chronic (24 hrs) exposure to lower DCA concentrations (10–200 μM) inhibited responses to Ca2+ and cAMP‐dependent secretagogues without altering TER, LDH release, or secretagogue‐induced increases in intracellular second messengers. Other bile acids – taurodeoxycholic acid, chenodeoxycholic acid and cholic acid – had similar antisecretory effects. DCA (50 μM) rapidly stimulated phosphorylation of the epidermal growth factor receptor (EGFr) and both ERK and p38 MAPKs (mitogen‐activated protein kinases). The EGFr inhibitor, AG1478, and the protein synthesis inhibitor, cycloheximide, reversed the antisecretory effects of DCA, while the MAPK inhibitors, PD98059 and SB203580, did not. In summary, our studies suggest that, in contrast to its acute prosecretory effects at pathophysiological concentrations, lower, physiologically relevant, levels of DCA chronically down‐regulate colonic epithelial secretory function. On the basis of these data, we propose a novel role for bile acids as physiological regulators of colonic secretory capacity. PMID:19583809

  13. Cyclic AMP enhances agonist-induced Ca2+ entry into endothelial cells by activation of potassium channels and membrane hyperpolarization.

    PubMed Central

    Graier, W F; Kukovetz, W R; Groschner, K

    1993-01-01

    The mechanism underlying cyclic AMP (cAMP)-mediated amplification of agonist-induced Ca2+ responses in endothelial cells was investigated in pig endothelial cells. Forskolin, adenosine and isoprenaline, as well as the membrane-permeant cAMP analogue dibutyryl cAMP, enhanced bradykinin-induced rises in intracellular free Ca2+ as well as bradykinin-induced Mn2+ entry. These agents were also found to hyperpolarize endothelial cells without increasing intracellular Ca2+ by itself, i.e. in the absence of bradykinin. Both amplification of bradykinin effects and the hyperpolarizing action was blocked by the protein kinase inhibitor H-8. The involvement of K+ channels in the hyperpolarizing effects of forskolin was consequently studied in perforated outside-out vesicles. Two different types of K+ channels were recorded, one of which had a large conductance (170 pS) and was activated by forskolin. We suggest that stimulation of endothelial adenylate cyclase results in activation of large-conductance K+ channels and consequently in membrane hyperpolarization, which in turn enhances bradykinin-induced entry of Ca2+ by increasing its electrochemical gradient. PMID:8385935

  14. Microplate-compatible total internal reflection fluorescence microscopy for receptor pharmacology

    NASA Astrophysics Data System (ADS)

    Chen, Minghan; Zaytseva, Natalya V.; Wu, Qi; Li, Min; Fang, Ye

    2013-05-01

    We report the use of total internal reflection fluorescence (TIRF) microscopy for analyzing receptor pharmacology and the development of a microplate-compatible TIRF imaging system. Using stably expressed green fluorescence protein tagged β2-adrenergic receptor as the reporter, we found that the activation of different receptors results in distinct kinetic signatures of the TIRF intensity of cells. These TIRF signatures closely resemble the characteristics of their respective label-free dynamic mass redistribution signals in the same cells. This suggests that TIRF in microplate can be used for profiling and screening drugs.

  15. Comparing analgesia and μ-opioid receptor internalization produced by intrathecal enkephalin

    PubMed Central

    Chen, Wenling; Song, Bingbing; Lao, Lijun; Pérez, Orlando A.; Kim, Woojae; Marvizón, Juan Carlos G.

    2007-01-01

    Summary Opioid receptors in the spinal cord produce strong analgesia, but the mechanisms controlling their activation by endogenous opioids remain unclear. We have previously shown in spinal cord slices that peptidases preclude μ-opioid receptor (MOR) internalization by opioids. Our present goals were to investigate whether enkephalin-induced analgesia is also precluded by peptidases, and whether it is mediated by MORs or δ-opioid receptors (DORs). Tail-flick analgesia and MOR internalization were measured in rats injected intrathecally with Leu-enkephalin and peptidase inhibitors. Without peptidase inhibitors, Leu-enkephalin produced neither analgesia nor MOR internalization at doses up to 100 nmol, whereas with peptidase inhibitors it produced analgesia at 0.3 nmol and MOR internalization at 1 nmol. Leu-enkephalin was ten times more potent to produce analgesia than to produce MOR internalization, suggesting that DORs were involved. Selective MOR or DOR antagonists completely blocked the analgesia elicited by 0.3 nmol Leu-enkephalin (a dose that produced little MOR internalization), indicating that it involved these two receptors, possibly by an additive or synergistic interaction. The selective MOR agonist endomorphin-2 produced analgesia even in the presence of a DOR antagonist, but at doses substantially higher than Leu-enkephalin. Unlike Leu-enkephalin, endomorphin-2 had the same potencies to induce analgesia and MOR internalization. We concluded that low doses of enkephalins produce analgesia by activating both MORs and DORs. Analgesia can also be produced exclusively by MORs at higher agonist doses. Since peptidases prevent the activation of spinal opioid receptors by enkephalins, the coincident release of opioids and endogenous peptidase inhibitors may be required for analgesia. PMID:17845806

  16. International Union of Basic and Clinical Pharmacology. XCIII. The parathyroid hormone receptors--family B G protein-coupled receptors.

    PubMed

    Gardella, Thomas J; Vilardaga, Jean-Pierre

    2015-01-01

    The type-1 parathyroid hormone receptor (PTHR1) is a family B G protein-coupled receptor (GPCR) that mediates the actions of two polypeptide ligands; parathyroid hormone (PTH), an endocrine hormone that regulates the levels of calcium and inorganic phosphate in the blood by acting on bone and kidney, and PTH-related protein (PTHrP), a paracrine-factor that regulates cell differentiation and proliferation programs in developing bone and other tissues. The type-2 parathyroid hormone receptor (PTHR2) binds a peptide ligand, called tuberoinfundibular peptide-39 (TIP39), and while the biologic role of the PTHR2/TIP39 system is not as defined as that of the PTHR1, it likely plays a role in the central nervous system as well as in spermatogenesis. Mechanisms of action at these receptors have been explored through a variety of pharmacological and biochemical approaches, and the data obtained support a basic "two-site" mode of ligand binding now thought to be used by each of the family B peptide hormone GPCRs. Recent crystallographic studies on the family B GPCRs are providing new insights that help to further refine the specifics of the overall receptor architecture and modes of ligand docking. One intriguing pharmacological finding for the PTHR1 is that it can form surprisingly stable complexes with certain PTH/PTHrP ligand analogs and thereby mediate markedly prolonged cell signaling responses that persist even when the bulk of the complexes are found in internalized vesicles. The PTHR1 thus appears to be able to activate the Gα(s)/cAMP pathway not only from the plasma membrane but also from the endosomal domain. The cumulative findings could have an impact on efforts to develop new drug therapies for the PTH receptors. PMID:25713287

  17. Persistent cAMP Signaling by Internalized LH Receptors in Ovarian Follicles.

    PubMed

    Lyga, Sandra; Volpe, Silvia; Werthmann, Ruth C; Götz, Konrad; Sungkaworn, Titiwat; Lohse, Martin J; Calebiro, Davide

    2016-04-01

    A crucial event in female reproduction occurs at midcycle, when a LH peak induces the final maturation of ovarian follicles. LH signals via a G protein-coupled receptor selectively expressed in the outermost follicular cell layers. However, how LH signals are relayed inside these cells and finally to the oocyte is incompletely understood. Here, we monitored LH signaling in intact ovarian follicles of transgenic mice expressing a fluorescent cAMP sensor. We found that LH stimulation induces 2 phases of cAMP signaling in all cell layers surrounding the oocyte. Interfering with LH receptor internalization abolished the second, persistent cAMP phase and partially inhibited oocyte meiosis resumption. These data suggest that persistent cAMP signals from internalized LH receptors contribute to transmitting LH effects inside follicle cells and ultimately to the oocyte. Thus, this study indicates that the recently proposed paradigm of cAMP signaling by internalized G protein-coupled receptors is implicated in receptor function and is physiologically relevant. PMID:26828746

  18. Differential Signaling of the Endogenous Agonists at the β2-Adrenergic Receptor*

    PubMed Central

    Reiner, Susanne; Ambrosio, Manuela; Hoffmann, Carsten; Lohse, Martin J.

    2010-01-01

    The concept of “functional selectivity” or “biased signaling” suggests that a ligand can have distinct efficacies with regard to different signaling pathways. We have investigated the question of whether biased signaling may be related to distinct agonist-induced conformational changes in receptors using the β2-adrenergic receptor (β2AR) and its two endogenous ligands epinephrine and norepinephrine as a model system. Agonist-induced conformational changes were determined in a fluorescently tagged β2AR FRET sensor. In this β2AR sensor, norepinephrine caused signals that amounted to only ≈50% of those induced by epinephrine and the standard “full” agonist isoproterenol. Furthermore, norepinephrine-induced changes in the β2AR FRET sensor were slower than those induced by epinephrine (rate constants, 47 versus 128 ms). A similar partial β2AR activation signal was revealed for the synthetic agonists fenoterol and terbutaline. However, norepinephrine was almost as efficient as epinephrine (and isoproterenol) in causing activation of Gs and adenylyl cyclase. In contrast, fenoterol was quite efficient in triggering β-arrestin2 recruitment to the cell surface and its interaction with β2AR, as well as internalization of the receptors, whereas norepinephrine caused partial and slow changes in these assays. We conclude that partial agonism of norepinephrine at the β2AR is related to the induction of a different active conformation and that this conformation is efficient in signaling to Gs and less efficient in signaling to β-arrestin2. These observations extend the concept of biased signaling to the endogenous agonists of the β2AR and link it to distinct conformational changes in the receptor. PMID:20837485

  19. The mechanism of agonist induced Ca2+ signalling in intact endothelial cells studied confocally in in situ arteries.

    PubMed

    Mumtaz, S; Burdyga, G; Borisova, L; Wray, Susan; Burdyga, T

    2011-01-01

    In endothelial cells there remain uncertainties in the details of how Ca(2+) signals are generated and maintained, especially in intact preparations. In particular the role of the sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA), in contributing to the components of agonist-induced signals is unclear. The aim of this work was to increase understanding of the detailed mechanism of Ca(2+) signalling in endothelial cells using real time confocal imaging of Fluo-4 loaded intact rat tail arteries in response to muscarinic stimulation. In particular we have focused on the role of SERCA, and its interplay with capacitative Ca(2+) entry (CCE) and ER Ca(2+) release and uptake. We have determined its contribution to the Ca(2+) signal and how it varies with different physiological stimuli, including single and repeated carbachol applications and brief and prolonged exposures. In agreement with previous work, carbachol stimulated a rise in intracellular Ca(2+) in the endothelial cells, consisting of a rapid initial phase, then a plateau upon which oscillations of Ca(2+) were superimposed, followed by a decline to basal Ca(2+) levels upon carbachol removal. Our data support the following conclusions: (i) the size (amplitude and duration) of the Ca(2+) spike and early oscillations are limited by SERCA activity, thus both are increased if SERCA is inhibited. (ii) SERCA activity is such that brief applications of carbachol do not trigger CCE, presumably because the fall in luminal Ca(2+) is not sufficient to trigger it. However, longer applications sufficient to deplete the ER or even partial SERCA inhibition stimulate CCE. (iii) Ca(2+) entry occurs via STIM-mediated CCE and SERCA contributes to the cessation of CCE. In conclusion our data show how SERCA function is crucial to shaping endothelial cell Ca signals and its dynamic interplay with both CCE and ER Ca releases. PMID:21176847

  20. International Union of Basic and Clinical Pharmacology. LXXVII. Kisspeptin Receptor Nomenclature, Distribution, and Function

    PubMed Central

    Kirby, Helen R.; Maguire, Janet J.; Colledge, William H.

    2010-01-01

    Kisspeptins are members of the Arg-Phe amide family of peptides, which have been identified as endogenous ligands for a G-protein-coupled receptor encoded by a gene originally called GPR54 (also known as AXOR12 or hOT7T175). After this pairing, the gene has been renamed KISS1R. The International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification recommends that the official name for the receptor is the kisspeptin receptor to follow the convention of naming the receptor protein after the endogenous ligand. The endogenous ligand was initially called metastin, after its role as a metastasis suppressor, and is now referred to as kisspeptin-54 (KP-54), a C-terminally amidated 54-amino acid peptide cleaved from the 145-amino acid gene product. Shorter C-terminal cleavage fragments [KP-14, KP-13 and KP-10 (the smallest active fragment)] are also biologically active. Both receptor and peptide are widely expressed in human, rat, and mouse; the receptor sequence shares more than 80% homology in these species. Activation of the kisspeptin receptor by kisspeptin is via coupling to Gq/11 and the phospholipase C pathway, causing Ca2+ mobilization. Mutations in the KISS1R gene result in hypogonadotropic hypogonadotropism, and targeted disruption of Kiss1r in mice reproduces this phenotype, which led to the discovery of the remarkable ability of the kisspeptin receptor to act as a molecular switch for puberty. In addition to regulating the reproductive axis, the kisspeptin receptor is also implicated in cancer, placentation, diabetes, and the cardiovascular system. PMID:21079036

  1. Phosphorylation and Internalization of Lysophosphatidic Acid Receptors LPA1, LPA2, and LPA3

    PubMed Central

    Alcántara-Hernández, Rocío; Hernández-Méndez, Aurelio; Campos-Martínez, Gisselle A.; Meizoso-Huesca, Aldo; García-Sáinz, J. Adolfo

    2015-01-01

    Results The lysophosphatidic acid receptors LPA1, LPA2, and LPA3 were individually expressed in C9 cells and their signaling and regulation were studied. Agonist-activation increases intracellular calcium concentration in a concentration-dependent fashion. Phorbol myristate acetate markedly inhibited LPA1- and LPA3-mediated effect, whereas that mediated by LPA2 was only partially diminished; the actions of the phorbol ester were inhibited by bisindolylmaleimide I and by overnight incubation with the protein kinase C activator, which leads to down regulation of this protein kinase. Homologous desensitization was also observed for the three LPA receptors studied, with that of LPA2 receptors being consistently of lesser magnitude; neither inhibition nor down-regulation of protein kinase C exerted any effect on homologous desensitization. Activation of LPA1–3 receptors induced ERK 1/2 phosphorylation; this effect was markedly attenuated by inhibition of epidermal growth factor receptor tyrosine kinase activity, suggesting growth factor receptor transactivation in this effect. Lysophosphatidic acid and phorbol myristate acetate were able to induce LPA1–3 phosphorylation, in time- and concentration-dependent fashions. It was also clearly observed that agonists and protein kinase C activation induced internalization of these receptors. Phosphorylation of the LPA2 subtype required larger concentrations of these agents and its internalization was less intense than that of the other subtypes. Conclusion Our data show that these three LPA receptors are phosphoproteins whose phosphorylation state is modulated by agonist-stimulation and protein kinase C-activation and that differences in regulation and cellular localization exist, among the subtypes. PMID:26473723

  2. Visualization of distinct patterns of subcellular redistribution of the thyrotropin-releasing hormone receptor-1 and gqalpha /G11alpha induced by agonist stimulation.

    PubMed Central

    Drmota, T; Novotny, J; Gould, G W; Svoboda, P; Milligan, G

    1999-01-01

    The rat thyrotropin-releasing hormone receptor-1 (TRHR-1) was modified by the addition of green fluorescent protein (GFP) and expressed stably in HEK293 cells. Extensive overlap of plasma membrane distribution of autofluorescent TRHR-1-GFP with that of the phosphoinositidase C-linked G-proteins Gqalpha/G11alpha, identified by indirect immunofluorescence, was monitored concurrently. Addition of thyrotropin-releasing hormone resulted in rapid separation of TRHR-1-GFP and Gqalpha/G11alpha signals as the receptor was internalized. This situation persisted for more than an hour. At longer time periods a fraction of the cellular Gqalpha/G11alpha was also internalized, although much of the Gqalpha/G11alpha immunoreactivity remained associated with the plasma membrane. Parallel experiments, in which the cellular distribution of TRHR-1-GFP and Gqalpha/G11alpha immunoreactivity were monitored in sucrose-gradient fractions following cell disruption, also demonstrated a rapid, agonist-induced movement of TRHR-1-GFP away from the plasma membrane to low-density vesicular fractions. At later time points, a fraction of the cellular Gqalpha/G11alpha immunoreactivity was also redistributed to overlapping, but non-identical, low-density-vesicle-containing fractions. Pretreatment of the cells with cytochalasin D or nocodazole prevented agonist-induced redistribution of G-protein but not TRHR-1-GFP, further indicating resolution of the mechanics of these two processes. The combination of a GFP-modified receptor and immunostaining of the G-proteins activated by that receptor allows, for the first time, concurrent analysis of the varying dynamics and bases of internalization and redistribution of two elements of the same signal-transduction cascade. PMID:10333499

  3. Desensitization and internalization of metabotropic glutamate receptor 1a following activation of heterologous Gq/11-coupled receptors.

    PubMed

    Mundell, Stuart J; Pula, Giordano; McIlhinney, R A Jeffrey; Roberts, Peter J; Kelly, Eamonn

    2004-06-15

    In this study we characterized the heterologous desensitization and internalization of the metabotropic glutamate receptor 1 (mGluR1) splice variants mGluR1a and mGluR1b following activation of endogenous G(q/11)-coupled receptors in HEK293 cells. Agonist activation of M1 muscarinic acetylcholine or P2Y1 purinergic receptors triggered the PKC- and CaMKII-dependent internalization of mGluR1a. In co-immunoprecipitation studies, both glutamate and carbachol increased the association of GRK2 with mGluR1a. Co-addition of the protein kinase C (PKC) inhibitor GF109203X and the Ca(2+) calmodulin-dependent kinase II (CaMKII) inhibitor KN-93 blocked the ability of glutamate and carbachol to increase the association of GRK2 with mGluR1a. Glutamate also increased the association of GRK2 with mGluR1b, whereas carbachol did not. However, unlike mGluR1a, glutamate-stimulated association of GRK2 with mGluR1b was not reduced by PKC/CaMKII inhibition. Pretreatment of cells expressing mGluR1a or mGluR1b with carbachol rapidly desensitized subsequent glutamate-stimulated inositol phosphate accumulation. The carbachol-induced heterologous desensitization and internalization of mGluR1a was blocked by LY367385, an mGluR1a antagonist with inverse agonist activity. Furthermore, LY367385 blocked the ability of carbachol to increase the association of GRK2 with mGluR1a. On the other hand, LY367385 had no effect on the carbachol-induced desensitization and internalization of the nonconstitutively active mGluR1b splice variant. These results demonstrate that the internalization of mGluR1a, triggered homologously by glutamate or heterologously by carbachol, is PKC/CaMKII-, GRK2-, arrestin-, and clathrin-dependent and that PKC/CaMKII activation appears to be necessary for GRK2 to associate with mGluR1a. Furthermore, the heterologous desensitization of mGluR1a is dependent upon the splice variant being in an active conformation. PMID:15182196

  4. Real-time imaging of Mu opioid receptors by total internal reflection fluorescence microscopy

    PubMed Central

    Roman-Vendrell, Cristina; Yudowski, Guillermo Ariel

    2016-01-01

    Receptor trafficking and signaling are intimately linked, especially in the Mu opioid receptor (MOR) where ligand dependent endocytosis and recycling have been associated to opioid tolerance and dependence. Ligands of the Mu opioid receptor (MOR) can induce receptor endocytosis and recycling within minutes of exposure in heterologous systems and cultured neurons. Endocytosis removes desensitized receptors after their activation from the plasma membrane, while recycling promotes resensitization by delivering functional receptors to the cell surface. These rapid mechanisms can escape traditional analytical methods where only snapshots are obtained from highly dynamic events. Total internal reflection fluorescence (TIRF) microscopy is a powerful tool that can be used to investigate, in real-time, surface trafficking events at the single molecule level. The restricted excitation of fluorophores located at or near the plasma membrane in combination with high sensitivity quantitative cameras, makes it possible to record and analyze individual endocytic and recycling event in real time. In this chapter, we describe a TIRF microscopy protocol to investigate in real time, the ligand dependent MOR trafficking in Human Embryonic Kidney 293 cells and dissociated striatal neuronal cultures. This approach can provide unique spatio-temporal resolution to understand the fundamental events controlling MOR trafficking at the plasma membrane. PMID:25293317

  5. The 37kDa/67kDa Laminin Receptor acts as a receptor for Aβ42 internalization

    PubMed Central

    Da Costa Dias, Bianca; Jovanovic, Katarina; Gonsalves, Danielle; Moodley, Kiashanee; Reusch, Uwe; Knackmuss, Stefan; Weinberg, Marc S.; Little, Melvyn; Weiss, Stefan F. T.

    2014-01-01

    Neuronal loss is a major neuropathological hallmark of Alzheimer's disease (AD). The associations between soluble Aβ oligomers and cellular components cause this neurotoxicity. The 37 kDa/67 kDa laminin receptor (LRP/LR) has recently been implicated in Aβ pathogenesis. In this study the mechanism underlying the pathological role of LRP/LR was elucidated. Försters Resonance Energy Transfer (FRET) revealed that LRP/LR and Aβ form a biologically relevant interaction. The ability of LRP/LR to form stable associations with endogenously shed Aβ was confirmed by pull down assays and Aβ-ELISAs. Antibody blockade of this association significantly lowered Aβ42 induced apoptosis. Furthermore, antibody blockade and shRNA mediated downregulation of LRP/LR significantly hampered Aβ42 internalization. These results suggest that LRP/LR is a receptor for Aβ42 internalization, mediating its endocytosis and contributing to the cytotoxicity of the neuropeptide by facilitating intra-cellular Aβ42 accumulation. These findings recommend anti-LRP/LR specific antibodies and shRNAs as potential therapeutic tools for AD treatment. PMID:24990253

  6. Adenosine receptor desensitization and trafficking.

    PubMed

    Mundell, Stuart; Kelly, Eamonn

    2011-05-01

    As with the majority of G-protein-coupled receptors, all four of the adenosine receptor subtypes are known to undergo agonist-induced regulation in the form of desensitization and trafficking. These processes can limit the ability of adenosine receptors to couple to intracellular signalling pathways and thus reduce the ability of adenosine receptor agonists as well as endogenous adenosine to produce cellular responses. In addition, since adenosine receptors couple to multiple signalling pathways, these pathways may desensitize differentially, while the desensitization of one pathway could even trigger signalling via another. Thus, the overall picture of adenosine receptor regulation can be complex. For all adenosine receptor subtypes, there is evidence to implicate arrestins in agonist-induced desensitization and trafficking, but there is also evidence for other possible forms of regulation, including second messenger-dependent kinase regulation, heterologous effects involving G proteins, and the involvement of non-clathrin trafficking pathways such as caveolae. In this review, the evidence implicating these mechanisms is summarized for each adenosine receptor subtype, and we also discuss those issues of adenosine receptor regulation that remain to be resolved as well as likely directions for future research in this field. PMID:20550943

  7. Quantitative evaluation of human delta opioid receptor desensitization using the operational model of drug action.

    PubMed

    Navratilova, Edita; Waite, Sue; Stropova, Dagmar; Eaton, Miriam C; Alves, Isabel D; Hruby, Victor J; Roeske, William R; Yamamura, Henry I; Varga, Eva V

    2007-05-01

    Agonist-mediated desensitization of the opioid receptors is thought to function as a protective mechanism against sustained opioid signaling and therefore may prevent the development of opioid tolerance. However, the exact molecular mechanism of opioid receptor desensitization remains unresolved because of difficulties in measuring and interpreting receptor desensitization. In the present study, we investigated deltorphin II-mediated rapid desensitization of the human delta opioid receptors (hDOR) by measuring guanosine 5'-O-(3-[(35)S]thio)-triphosphate binding and inhibition of cAMP accumulation. We developed a mathematical analysis based on the operational model of agonist action (Black et al., 1985) to calculate the proportion of desensitized receptors. This approach permits a correct analysis of the complex process of functional desensitization by taking into account receptor-effector coupling and the time dependence of agonist pretreatment. Finally, we compared hDOR desensitization with receptor phosphorylation at Ser363, the translocation of beta-arrestin2, and hDOR internalization. We found that in Chinese hamster ovary cells expressing the hDOR, deltorphin II treatment leads to phosphorylation of Ser363, translocation of beta-arrestin2 to the plasma membrane, receptor internalization, and uncoupling from G proteins. It is noteworthy that mutation of the primary phosphorylation site Ser363 to alanine had virtually no effect on agonist-induced beta-arrestin2 translocation and receptor internalization yet significantly attenuated receptor desensitization. These results strongly indicate that phosphorylation of Ser363 is the primary mechanism of hDOR desensitization. PMID:17322005

  8. Centaurin-alpha 1, an ADP-ribosylation factor 6 GTPase activating protein, inhibits beta 2-adrenoceptor internalization.

    PubMed

    Lawrence, Joanna; Mundell, Stuart J; Yun, Hongruo; Kelly, Eamonn; Venkateswarlu, Kanamarlapudi

    2005-06-01

    The small GTP-binding protein ADP ribosylation factor 6 (ARF6) has recently been implicated in the internalization of G protein-coupled receptors (GPCRs), although its precise molecular mechanism in this process remains unclear. We have recently identified centaurin alpha(1) as a GTPase activating protein (GAP) for ARF6. In the current study, we characterized the effects of centaurin alpha(1) on the agonist-induced internalization of the beta(2)-adrenoceptor transiently expressed in human embryonic kidney (HEK) 293 cells. Using an enzyme-linked immunosorbent assay as well as confocal imaging of cells, we found that expression of centaurin alpha(1) strongly inhibited the isoproterenol-induced internalization of beta(2)-adrenoceptor. On the other hand, expression of functionally inactive versions of centaurin alpha(1), including an R49C mutant, which has no catalytic activity, and a double pleckstrin homology (PH) mutant (DM; R148C/R273C), which has mutations in both the PH domains of centaurin alpha(1), rendering it unable to translocate to the cell membrane, were unable to inhibit beta(2)-adrenoceptor internalization. In addition, a constitutively active version of ARF6, ARF6Q67L, reversed the ability of centaurin alpha(1) to inhibit beta(2)-adrenoceptor internalization. Finally, expression of centaurin alpha(1) also inhibited the agonist-induced internalization of beta(2)-adrenoceptor endogenously expressed in HEK 293 cells, whereas the R49C and DM mutant versions of centaurin alpha(1) had no effect. Together, these data indicate that by acting as an ARF6 GAP, centaurin alpha(1) is able to switch off ARF6 and so inhibit its ability to mediate beta(2)-adrenoceptor internalization. Thus, ARF6 GAPs, such as centaurin alpha(1), are likely to play a crucial role in GPCR trafficking by modulating the activity of ARF6. PMID:15778454

  9. Fluorophore assisted light inactivation (FALI) of recombinant 5-HT3A receptor constitutive internalization and function

    PubMed Central

    Morton, Russell A.; Luo, Guoxiang; Davis, Margaret I.; Hales, Tim G.; Lovinger, David M.

    2011-01-01

    Fluorescent proteins and molecules are now widely used to tag and visualize proteins resulting in an improved understanding of protein trafficking, localization, and function. In addition, fluorescent tags have also been used to inactivate protein function in a spatially and temporally-defined manner, using a technique known as fluorophore-assisted light inactivation (FALI) or chromophore-assisted light inactivation (CALI). In this study we tagged the serotonin3 A subunit with the α-bungarotoxin binding sequence (BBS) and subsequently labeled 5-HT3A/BBS receptors with fluorescently conjugated α-bungarotoxin in live cells. We show that 5-HT3A/BBS receptors are constitutively internalized in the absence of an agonist and internalization as well as receptor function are inhibited by fluorescence. The fluorescence-induced disruption of function and internalization was reduced with oxygen radical scavengers suggesting the involvement of reactive oxygen species, implicating the FALI process. Furthermore, these data suggest that intense illumination during live-cell microscopy may result in inadvertent FALI and inhibition of protein trafficking. PMID:21338684

  10. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the Formyl Peptide Receptor (FPR) Family

    PubMed Central

    YE, RICHARD D.; BOULAY, FRANÇOIS; WANG, JI MING; DAHLGREN, CLAES; GERARD, CRAIG; PARMENTIER, MARC; SERHAN, CHARLES N.; MURPHY, PHILIP M.

    2009-01-01

    Formyl peptide receptors (FPRs) are a small group of seven-transmembrane domain, G protein-coupled receptors that are expressed mainly by mammalian phagocytic leukocytes and are known to be important in host defense and inflammation. The three human FPRs (FPR1, FPR2/ALX, and FPR3) share significant sequence homology and are encoded by clustered genes. Collectively, these receptors bind an extraordinarily numerous and structurally diverse group of agonistic ligands, including N-formyl and nonformyl peptides of different composition, that chemoattract and activate phagocytes. N-formyl peptides, which are encoded in nature only by bacterial and mitochondrial genes and result from obligatory initiation of bacterial and mitochondrial protein synthesis with N-formylmethionine, is the only ligand class common to all three human receptors. Surprisingly, the endogenous anti-inflammatory peptide annexin 1 and its N-terminal fragments also bind human FPR1 and FPR2/ALX, and the anti-inflammatory eicosanoid lipoxin A4 is an agonist at FPR2/ALX. In comparison, fewer agonists have been identified for FPR3, the third member in this receptor family. Structural and functional studies of the FPRs have produced important information for understanding the general pharmacological principles governing all leukocyte chemoattractant receptors. This article aims to provide an overview of the discovery and pharmacological characterization of FPRs, to introduce an International Union of Basic and Clinical Pharmacology (IUPHAR)-recommended nomenclature, and to discuss unmet challenges, including the mechanisms used by these receptors to bind diverse ligands and mediate different biological functions. PMID:19498085

  11. Quantitative measurement of cell membrane receptor internalization by the nanoluciferase reporter: Using the G protein-coupled receptor RXFP3 as a model.

    PubMed

    Liu, Yu; Song, Ge; Shao, Xiao-Xia; Liu, Ya-Li; Guo, Zhan-Yun

    2015-02-01

    Nanoluciferase (NanoLuc) is a newly developed small luciferase reporter with the brightest bioluminescence to date. In the present work, we developed NanoLuc as a sensitive bioluminescent reporter to measure quantitatively the internalization of cell membrane receptors, based on the pH dependence of the reporter activity. The G protein-coupled receptor RXFP3, the cognate receptor of relaxin-3/INSL7, was used as a model receptor. We first generated stable HEK293T cells that inducibly coexpressed a C-terminally NanoLuc-tagged human RXFP3 and a C-terminally enhanced green fluorescent protein (EGFP)-tagged human RXFP3. The C-terminal EGFP-tag and NanoLuc-tag had no detrimental effects on the ligand-binding potency and intracellular trafficking of RXFP3. Based on the fluorescence of the tagged EGFP reporter, the ligand-induced RXFP3 internalization was visualized directly under a fluorescence microscope. Based on the bioluminescence of the tagged NanoLuc reporter, the ligand-induced RXFP3 internalization was measured quantitatively by a convenient bioluminescent assay. Coexpression of an EGFP-tagged inactive [E141R]RXFP3 had no detrimental effect on the ligand-binding potency and ligand-induced internalization of the NanoLuc-tagged wild-type RXFP3, suggesting that the mutant RXFP3 and wild-type RXFP3 worked independently. The present bioluminescent internalization assay could be extended to other G protein-coupled receptors and other cell membrane receptors to study ligand-receptor and receptor-receptor interactions. PMID:25434927

  12. Identification of Phosphorylation Sites Regulating sst3 Somatostatin Receptor Trafficking.

    PubMed

    Lehmann, Andreas; Kliewer, Andrea; Günther, Thomas; Nagel, Falko; Schulz, Stefan

    2016-06-01

    The human somatostatin receptor 3 (sst3) is expressed in about 50% of all neuroendocrine tumors and hence a promising target for multireceptor somatostatin analogs. The sst3 receptor is unique among ssts in that it exhibits a very long intracellular C-terminal tail containing a huge number of potential phosphate acceptor sites. Consequently, our knowledge about the functional role of the C-terminal tail in sst3 receptor regulation is very limited. Here, we have generated a series of phosphorylation-deficient mutants that enabled us to determine crucial sites for its agonist-induced β-arrestin mobilization, internalization, and down-regulation. Based on this information, we generated phosphosite-specific antibodies for C-terminal Ser(337)/Thr(341), Thr(348), and Ser(361) that enabled us to investigate the temporal patterns of sst3 phosphorylation and dephosphorylation. We found that the endogenous ligand somatostatin induced a rapid and robust phosphorylation that was completely blocked by the sst3 antagonist NVP-ACQ090. The stable somatostatin analogs pasireotide and octreotide promoted clearly less phosphorylation compared with somatostatin. We also show that sst3 phosphorylation occurred within seconds to minutes, whereas dephosphorylation of the sst3 receptor occurred at a considerable slower rate. In addition, we also identified G protein-coupled receptor kinases 2 and 3 and protein phosphatase 1α and 1β as key regulators of sst3 phosphorylation and dephosphorylation, respectively. Thus, we here define the C-terminal phosphorylation motif of the human sst3 receptor that regulates its agonist-promoted phosphorylation, β-arrestin recruitment, and internalization of this clinically relevant receptor. PMID:27101376

  13. Chemoreceptors of crustaceans: similarities to receptors for neuroactive substances in internal tissues.

    PubMed Central

    Carr, W E; Ache, B W; Gleeson, R A

    1987-01-01

    A description is given of crustacean chemosensory systems and the neurophysiological procedures used to study them. Their response properties and tuning characteristics are discussed. A review is then provided of specific crustacean chemoreceptors that are stimulated selectively by either purine nucleotides, taurine, glutamate, or glycine, all of which have neuroactive properties in internal tissues. Two distinctly different types of purinergic chemoreceptors occur on the antennules of the spiny lobster. P1-like chemoreceptors have a potency sequence of AMP greater than ADP greater than ATP greater than adenosine and show a strict structural requirement for the ribose phosphate moiety. P2-like chemoreceptors have a potency sequence of ATP greater than ADP greater than AMP or adenosine and show a broad sensitivity to nucleotide triphosphates with modifications in both the purine and ribose phosphate moieties. Sensilla containing the dendrites of chemosensory neurons also possess an ectonucleotidase(s) that inactivates excitatory nucleotides to yield adenosine which is subsequently internalized by a sensillar uptake system. Narrowly tuned taurinergic chemoreceptors are present on both the antennules and legs of lobsters. Although taurine itself is the most effective stimulant, the taurine analogs hypotaurine and beta-alanine are also very excitatory. Structure-activity studies indicate these chemoreceptors have marked similarities to taurine-sensitive systems in internal tissues of vertebrates. By contrast, comparative studies of glutamatergic chemoreceptors on the legs of lobsters indicate response spectra different from those of the glutamate receptors in lobster neuromuscular junctions and the three classes of excitatory amino acid receptors identified internally in vertebrates. Crustacean chemoreceptors for glycine, ecdysteroids, and pyridine are also described. The hypothesis that receptors for internal neuroactive agents may have originally evolved as external

  14. Neonatal Fc Receptor Mediates Internalization of Fc in Transfected Human Endothelial Cells

    PubMed Central

    Goebl, Nancy A.; Babbey, Clifford M.; Datta-Mannan, Amita; Witcher, Derrick R.; Wroblewski, Victor J.

    2008-01-01

    The neonatal Fc receptor, FcRn mediates an endocytic salvage pathway that prevents degradation of IgG, thus contributing to the homeostasis of circulating IgG. Based on the low affinity of IgG for FcRn at neutral pH, internalization of IgG by endothelial cells is generally believed to occur via fluid-phase endocytosis. To investigate the role of FcRn in IgG internalization, we used quantitative confocal microscopy to characterize internalization of fluorescent Fc molecules by HULEC-5A lung microvascular endothelia transfected with GFP fusion proteins of human or mouse FcRn. In these studies, cells transfected with FcRn accumulated significantly more intracellular Fc than untransfected cells. Internalization of FcRn-binding forms of Fc was proportional to FcRn expression level, was enriched relative to dextran internalization in proportion to FcRn expression level, and was blocked by incubation with excess unlabeled Fc. Because we were unable to detect either surface expression of FcRn or surface binding of Fc, these results suggest that FcRn-dependent internalization of Fc may occur through sequestration of Fc by FcRn in early endosomes. These studies indicate that FcRn-dependent internalization of IgG may be important not only in cells taking up IgG from an extracellular acidic space, but also in endothelial cells participating in homeostatic regulation of circulating IgG levels. PMID:18843053

  15. Internalization of gonadotropin-releasing hormone receptors (GnRHRs): does arrestin binding to the C-terminal tail target GnRHRs for dynamin-dependent internalization?

    PubMed

    Hislop, James N; Caunt, Christopher J; Sedgley, Kathleen R; Kelly, Eammon; Mundell, Stuart; Green, Lisa D; McArdle, Craig A

    2005-08-01

    Activation of seven-transmembrane receptors is typically followed by desensitization and arrestin-dependent internalization via vesicles that are pinched off by a dynamin collar. Arrestins also scaffold Src, which mediates dynamin-dependent internalization of beta2-adrenergic receptors. Type I mammalian gonadotropin-releasing hormone receptors (GnRHRs) do not rapidly desensitize or internalize (characteristics attributed to their unique lack of C-terminal tails) whereas non-mammalian GnRHRs (that have C-terminal tails) are rapidly internalized and desensitized. Moreover, internalization of Xenopus (X) GnRHRs is dynamin-dependent whereas that of human (h) GnRHRs is not, raising the possibility that binding of arrestin to the C-terminal tails of GnRHRs targets them to the dynamin-dependent internalization pathway. To test this we have compared wild-type GnRHRs with chimeric receptors (XGnRHR C-terminal tail added to the hGnRHR alone (h.XtGnRHR) or with exchange of the third intracellular loops (h.Xl.XtGnRHR)). We show that adding the XGnRHR C-terminal tail facilitates arrestin- and dynamin-dependent internalization as well as arrestin/green fluorescent protein translocation, but Src (or mitogen-activated protein kinase/extracellular-signal-regulated kinase kinase) inhibition does not slow internalization, and h.XtGnRHR internalization is slower than that of the hGnRHR. Moreover, arrestin expression increased XGnRHR internalization even when dynamin was inhibited and h.Xl.XtGnRHR underwent rapid arrestin-dependent internalization without signaling to G(q/11). Thus, although the C-terminal tail can direct GnRHRs for arrestin- and dynamin-dependent internalization, this effect is not dependent on Src activation and arrestin can also facilitate dynamin-independent internalization. PMID:16087731

  16. Ligand-mediated autophosphorylation activity of the epidermal growth factor receptor during internalization

    SciTech Connect

    Lai, W.H.; Cameron, P.H.; Doherty, J.J. II; Posner, B.I.; Bergeron, J.J. )

    1989-12-01

    The association of EGF with its receptor in endosomes isolated from rat liver homogenates was assessed biochemically by polyethylene glycol precipitation and morphologically by electron microscope radioautography. The proportion of receptor-bound ligand in endosomes at 15 min after the injection of doses of 0.1 and 1 microgram EGF/100 g body weight was 57%. This value increased to 77% for the dose of 10 micrograms EGF injected. Quantitative electron microscope radioautography carried out on endosomes isolated at 15 min after the injection of 10 micrograms 125I-EGF demonstrated that most radiolabel was over the endosomal periphery thereby indicating that ligand-receptor complexes were in the bounding membrane but not in intraluminal vesicles of the content. EGF receptor autophosphorylation activity during internalization was evaluated in plasmalemma and endosome fractions. This activity was markedly but transiently reduced on the cell surface shortly after the administration of saturating doses of EGF. The same activity, however, was augmented and prolonged in endosomes for up to 30 min after EGF injection. The transient desensitization of cell surface activity was not due to prior in vivo phosphorylation since receptor dephosphorylation in vitro failed to restore autophosphorylation activity. Transient desensitization of cell surface autophosphorylation activity coincided with a diminished capacity for endocytosis of 125I-EGF with endocytosis returning to normal after the restoration of cell surface autophosphorylation activity. The inhibition of cell surface autophosphorylation activity and the activation of endosomal autophosphorylation activity coincident with downregulation suggest that EGF receptor traffic is governed by ligand-regulated phosphorylation activity.

  17. Rab11a and myosin Vb regulate recycling of the M4 muscarinic acetylcholine receptor.

    PubMed

    Volpicelli, Laura A; Lah, James J; Fang, Guofu; Goldenring, James R; Levey, Allan I

    2002-11-15

    Agonist-induced internalization followed by subsequent return to the cell surface regulates G-protein-coupled receptor (GPCR) activity. Because the cellular responsiveness to ligand depends on the balance between receptor degradation and recycling, it is crucial to identify the molecules involved in GPCR recovery to the cell surface. In this study, we identify mechanisms involved in the recycling of the M4 subtype of muscarinic acetylcholine receptor. M4 is highly expressed in the CNS, plays a role in locomotor activity, and is a novel therapeutic target for neurologic and psychiatric disorders. Previous studies show that, after cholinergic stimulation, M4 internalizes from the cell surface to endosomes in cell culture and the rat brain. Here, we show that, after activation, M4 traffics to transferrin receptor- and Rab11a-positive perinuclear endosomes. Expression of the constitutively GDP-bound, inactive mutant Rab11aS25N inhibits M4 trafficking to recycling endosomes. Expression of the C-terminal tail of myosin Vb, a Rab11a effector, enhances M4 accumulation in perinuclear endosomes. Both Rab11aS25N and the myosin Vb tail impair M4 recycling. The results demonstrate that GPCR recycling is mediated through a discrete pathway using both Rab11a and myosin Vb. PMID:12427833

  18. Internalized insulin-receptor complexes are unidirectionally translocated to chloroquine-sensitive degradative sites. Dependence on metabolic energy

    SciTech Connect

    Berhanu, P.

    1988-04-25

    Insulin receptors on the surface of isolated rat adipocytes were photoaffinity labeled at 12 degrees C with the iodinated photoreactive insulin analogue, 125I-B2 (2-nitro-4-azidophenylacetyl)-des-PheB1-insulin, and the pathways in the intracellular processing of the labeled receptors were studied at 37 degrees C. During 37 degrees C incubations, the labeled 440-kDa insulin receptors were continuously internalized (as assessed by trypsin inaccessibility) and degraded such that up to 50% of the initially labeled receptors were lost by 120 min. Metabolic poisons (0.125-0.75 mM 2,4-dinitrophenol (DNP) and 1-10 mM NaF), which led to dose-dependent depletion of adipocyte ATP pools, inhibited receptor loss, and caused up to 3-fold increase in intracellular receptor accumulation. This effect was due to inhibition of intracellular receptor degradation, and there was no apparent effect of the metabolic poisons on initial internalization of the receptors. Following maximal intracellular accumulation of labeled insulin receptors in the presence of NaF or DNP, removal of these agents resulted in a subsequent, time-dependent degradation of the accumulated receptors. However, when the lysosomotropic agent, chloroquine (0.2 mM), was added immediately following removal of the metabolic poisons, further degradation of the intracellularly accumulated receptors was prevented, suggesting that the chloroquine-sensitive degradation of insulin receptors occurs distal to the site of inhibition by NaF or DNP. To confirm this, maximal intracellular accumulation of labeled receptors was first allowed to occur in the presence of chloroquine and the cells were then washed and reincubated in chloroquine-free media in the absence or presence of NaF or DNP. Under these conditions, degradation of the intracellularly accumulated receptors continued to occur, and NaF or DNP failed to block the degradation.

  19. A role for sorting nexin 2 in epidermal growth factor receptor down-regulation: evidence for distinct functions of sorting nexin 1 and 2 in protein trafficking.

    PubMed

    Gullapalli, Anuradha; Garrett, Tiana A; Paing, May M; Griffin, Courtney T; Yang, Yonghua; Trejo, JoAnn

    2004-05-01

    Sorting nexin 1 (SNX1) and SNX2, homologues of the yeast vacuolar protein-sorting (Vps)5p, contain a phospholipid-binding motif termed the phox homology (PX) domain and a carboxyl terminal coiled-coil region. A role for SNX1 in trafficking of cell surface receptors from endosomes to lysosomes has been proposed; however, the function of SNX2 remains unknown. Toward understanding the function of SNX2, we first examined the distribution of endogenous protein in HeLa cells. We show that SNX2 resides primarily in early endosomes, whereas SNX1 is found partially in early endosomes and in tubulovesicular-like structures distributed throughout the cytoplasm. We also demonstrate that SNX1 interacts with the mammalian retromer complex through its amino terminal domain, whereas SNX2 does not. Moreover, activated endogenous epidermal growth factor receptor (EGFR) colocalizes markedly with SNX2-positive endosomes, but minimally with SNX1-containing vesicles. To assess SNX2 function, we examined the effect of a PX domain-mutated SNX2 that is defective in vesicle localization on EGFR trafficking. Mutant SNX2 markedly inhibited agonist-induced EGFR degradation, whereas internalization remained intact. In contrast, SNX1 PX domain mutants failed to effect EGFR degradation, whereas a SNX1 deletion mutant significantly inhibited receptor down-regulation. Interestingly, knockdown of SNX1 and SNX2 expression by RNA interference failed to alter agonist-induced EGFR down-regulation. Together, these findings suggest that both SNX1 and SNX2 are involved in regulating lysosomal sorting of internalized EGFR, but neither protein is essential for this process. These studies are the first to demonstrate a function for SNX2 in protein trafficking. PMID:14978220

  20. G Protein-coupled Receptor Kinase 2–mediated Phosphorylation of Ezrin Is Required for G Protein-coupled Receptor–dependent Reorganization of the Actin Cytoskeleton

    PubMed Central

    Cant, Sarah H.; Pitcher, Julie A.

    2005-01-01

    G protein-coupled receptor kinase 2 (GRK2) phosphorylates and desensitizes activated G protein-coupled receptors (GPCRs). Here, we identify ezrin as a novel non-GPCR substrate of GRK2. GRK2 phosphorylates glutathione S-transferase (GST)-ezrin, but not an ezrin fusion protein lacking threonine 567 (T567), in vitro. These results suggest that T567, the regulatory phosphorylation site responsible for maintaining ezrin in its active conformation, represents the principle site of GRK2-mediated phosphorylation. Two lines of evidence indicate that GRK2-mediated ezrin-radixinmoesin (ERM) phosphorylation serves to link GPCR activation to cytoskeletal reorganization. First, in Hep2 cells muscarinic M1 receptor (M1MR) activation causes membrane ruffling. This ruffling response is ERM dependent and is accompanied by ERM phosphorylation. Inhibition of GRK2, but not rho kinase or protein kinase C, prevents ERM phosphorylation and membrane ruffling. Second, agonist-induced internalization of the β2-adrenergic receptor (β2AR) and M1MR is accompanied by ERM phosphorylation and localization of phosphorylated ERM to receptor-containing endocytic vesicles. The colocalization of internalized β2AR and phosphorylated ERM is not dependent on Na+/H+ exchanger regulatory factor binding to the β2AR. Inhibition of ezrin function impedes β2AR internalization, further linking GPCR activation, GRK activity, and ezrin function. Overall, our results suggest that GRK2 serves not only to attenuate but also to transduce GPCR-mediated signals. PMID:15843435

  1. [Differences in dynamics of insulin and insulin-like growth I (IGF-I) receptors internalization in isolated rat hepatocytes].

    PubMed

    2013-01-01

    Insulin and IGF-I are two related peptides performing in the mammalian body functionally different roles of the metabolic and growth hormones, respectively. Internalization of the insulin-receptor complex (IRC) is the most important chain of mechanism of the action of hormone. To elucidate differences in the main stages of internalization of the two related hormones, the internalization dynamics of 125I-insulin and 125I-IGF-I was traced in isolated rat hepatocytes at 37 and 12 degrees C. There were established marked differences in the process of internalization of labeled hormones, which is stimulated by insulin and IGF-I. At 37 degrees C the insulin-stimulated internalization, unlike the process initiated by IGF-I, did not reach the maximal level for 1 h of incubation. However, essential differences in the internalization course of these two related peptide were obvious at the temperature of 12 degrees C. The internalization level of insulin receptors at 12 degrees C decreased by one third in spite of a significant increase of the insulin receptor binding on the hepatocytes plasma membrane. At 12 degrees C a slight decrease of the proportion of intracellular 125I-IGF-I correlated with a decrease in the 125I-IGF-I binding to receptors on the cell membrane. Internalization of IGF-I receptors was not affected by low temperature, as neither its level, nor the rate changed at 12 degrees C. The paradoxical decrease of the insulin-stimulated internalization at low temperature seems to represent a peculiar "inhibition mechanism" of immersion of IRC into the cell, which leads to accumulation of the complexes on the cell surface and possibly to a readjustment of the insulin biological activity. The resistance of internalization of the IGF-I receptor to cold seems to be related to the more ancient origin of this mechanism in the poikilothermal vertebrates. PMID:25509050

  2. [Differences in dynamics of insulin and insulin-like growth I (IGF-I) receptors internalization in isolated rat hepatocytes].

    PubMed

    Kolychev, A P; Ternovskaya, E E; Arsenieva, A V; Shapkina, E V

    2013-01-01

    Insulin and IGF-I are two related peptides performing in the mammalian body functionally different roles of the metabolic and growth hormones, respectively. Internalization of the insulin-receptor complex (IRC) is the most important chain of mechanism of the action of hormone. To elucidate differences in the main stages of internalization of the two related hormones, the internalization dynamics of 125I-insulin and 125I-IGF-I was traced in isolated rat hepatocytes at 37 and 12 degrees C. There were established marked differences in the process of internalization of labeled hormones, which is stimulated by insulin and IGF-I. At 37 degrees C the insulin-stimulated internalization, unlike the process initiated by IGF-I, did not reach the maximal level for 1 h of incubation. However, essential differences in the internalization course of these two related peptide were obvious at the temperature of 12 degrees C. The internalization level of insulin receptors at 12 degrees C decreased by one third in spite of a significant increase of the insulin receptor binding on the hepatocytes plasma membrane. At 12 degrees C a slight decrease of the proportion of intracellular 125I-IGF-I correlated with a decrease in the 125I-IGF-I binding to receptors on the cell membrane. Internalization of IGF-I receptors was not affected by low temperature, as neither its level, nor the rate changed at 12 degrees C. The paradoxical decrease of the insulin-stimulated internalization at low temperature seems to represent a peculiar "inhibition mechanism" of immersion of IRC into the cell, which leads to accumulation of the complexes on the cell surface and possibly to a readjustment of the insulin biological activity. The resistance of internalization of the IGF-I receptor to cold seems to be related to the more ancient origin of this mechanism in the poikilothermal vertebrates. PMID:25490849

  3. Smoke carcinogens cause bone loss through the aryl hydrocarbon receptor and induction of CYP1 enzymes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Smoking is a major risk factor for osteoporosis and fracture. Here, we show that smoke toxins and environmental chemicals such as benzo[a]pyrene (BaP), 2,3,7,8-tetrachlorodibenzo-pdioxin (TCDD), and 3-methyl cholanthrene, which are well known aryl hydrocarbon receptor (AHR) agonists, induce osteocla...

  4. G6b-B inhibits constitutive and agonist-induced signaling by glycoprotein VI and CLEC-2.

    PubMed

    Mori, Jun; Pearce, Andrew C; Spalton, Jennifer C; Grygielska, Beata; Eble, Johannes A; Tomlinson, Michael G; Senis, Yotis A; Watson, Steve P

    2008-12-19

    Platelets play an essential role in wound healing by forming thrombi that plug holes in the walls of damaged blood vessels. To achieve this, platelets express a diverse array of cell surface receptors and signaling proteins that induce rapid platelet activation. In this study we show that two platelet glycoprotein receptors that signal via an immunoreceptor tyrosine-based activation motif (ITAM) or an ITAM-like domain, namely the collagen receptor complex glycoprotein VI (GPVI)-FcR gamma-chain and the C-type lectin-like receptor 2 (CLEC-2), respectively, support constitutive (i.e. agonist-independent) signaling in a cell line model using a nuclear factor of activated T-cells (NFAT) transcriptional reporter assay that can detect low level activation of phospholipase Cgamma (PLCgamma). Constitutive and agonist signaling by both receptors is dependent on Src and Syk family kinases, and is inhibited by G6b-B, a platelet immunoglobulin receptor that has two immunoreceptor tyrosine-based inhibitory motifs in its cytosolic tail. Mutation of the conserved tyrosines in the two immunoreceptor tyrosine-based inhibitory motifs prevents the inhibitory action of G6b-B. Interestingly, the inhibitory activity of G6b-B is independent of the Src homology 2 (SH2)-domain containing tyrosine phosphatases, SHP1 and SHP2, and the inositol 5'-phosphatase, SHIP. Constitutive signaling via Src and Syk tyrosine kinases is observed in platelets and is associated with tyrosine phosphorylation of GPVI-FcR gamma-chain and CLEC-2. We speculate that inhibition of constitutive signaling through Src and Syk tyrosine kinases by G6b-B may help to prevent unwanted platelet activation. PMID:18955485

  5. International Union of Pharmacology. LXXXIX. Update on the Extended Family of Chemokine Receptors and Introducing a New Nomenclature for Atypical Chemokine Receptors

    PubMed Central

    Bachelerie, Francoise; Ben-Baruch, Adit; Burkhardt, Amanda M.; Combadiere, Christophe; Farber, Joshua M.; Graham, Gerard J.; Horuk, Richard; Sparre-Ulrich, Alexander Hovard; Locati, Massimo; Luster, Andrew D.; Mantovani, Alberto; Matsushima, Kouji; Nibbs, Robert; Nomiyama, Hisayuki; Power, Christine A.; Proudfoot, Amanda E. I.; Rosenkilde, Mette M.; Rot, Antal; Sozzani, Silvano; Thelen, Marcus; Yoshie, Osamu; Zlotnik, Albert

    2014-01-01

    Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145–176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human

  6. The Chemokine Receptor CCR1 Is Constitutively Active, Which Leads to G Protein-independent, β-Arrestin-mediated Internalization*

    PubMed Central

    Gilliland, C. Taylor; Salanga, Catherina L.; Kawamura, Tetsuya; Trejo, JoAnn; Handel, Tracy M.

    2013-01-01

    Activation of G protein-coupled receptors by their associated ligands has been extensively studied, and increasing structural information about the molecular mechanisms underlying ligand-dependent receptor activation is beginning to emerge with the recent expansion in GPCR crystal structures. However, some GPCRs are also able to adopt active conformations in the absence of agonist binding that result in the initiation of signal transduction and receptor down-modulation. In this report, we show that the CC-type chemokine receptor 1 (CCR1) exhibits significant constitutive activity leading to a variety of cellular responses. CCR1 expression is sufficient to induce inhibition of cAMP formation, increased F-actin content, and basal migration of human and murine leukocytes. The constitutive activity leads to basal phosphorylation of the receptor, recruitment of β-arrestin-2, and subsequent receptor internalization. CCR1 concurrently engages Gαi and β-arrestin-2 in a multiprotein complex, which may be accommodated by homo-oligomerization or receptor clustering. The data suggest the presence of two functional states for CCR1; whereas receptor coupled to Gαi functions as a canonical GPCR, albeit with high constitutive activity, the CCR1·β-arrestin-2 complex is required for G protein-independent constitutive receptor internalization. The pertussis toxin-insensitive uptake of chemokine by the receptor suggests that the CCR1·β-arrestin-2 complex may be related to a potential scavenging function of the receptor, which may be important for maintenance of chemokine gradients and receptor responsiveness in complex fields of chemokines during inflammation. PMID:24056371

  7. SGIP1 alters internalization and modulates signaling of activated cannabinoid receptor 1 in a biased manner.

    PubMed

    Hájková, Alena; Techlovská, Šárka; Dvořáková, Michaela; Chambers, Jayne Nicole; Kumpošt, Jiří; Hubálková, Pavla; Prezeau, Laurent; Blahos, Jaroslav

    2016-08-01

    Many diseases of the nervous system are accompanied by alterations in synaptic functions. Synaptic plasticity mediated by the endogenous cannabinoid system involves the activation of the cannabinoid receptor 1 (CB1R). The principles of CB1R signaling must be understood in detail for its therapeutic exploration. We detected the Src homology 3-domain growth factor receptor-bound 2-like (endophilin) interacting protein 1 (SGIP1) as a novel CB1R partner. SGIP1 is functionally linked to clathrin-mediated endocytosis and its overexpression in animals leads to an energy regulation imbalance resulting in obesity. We report that SGIP1 prevents the endocytosis of activated CB1R and that it alters signaling via the CB1R in a biased manner. CB1R mediated G-protein activation is selectively influenced by SGIP1, β-arrestin associated signaling is changed profoundly, most likely as a consequence of the prevention of the receptor's internalization elicited by SGIP1. PMID:26970018

  8. Morphine-induced internalization of the L83I mutant of the rat μ-opioid receptor

    PubMed Central

    Cooke, A E; Oldfield, S; Krasel, C; Mundell, S J; Henderson, G; Kelly, E

    2015-01-01

    BACKGROUND AND PURPOSE Naturally occurring single-nucleotide polymorphisms (SNPs) within GPCRs can result in alterations in various pharmacological parameters. Understanding the regulation and function of endocytic trafficking of the μ-opioid receptor (MOP receptor) is of great importance given its implication in the development of opioid tolerance. This study has compared the agonist-dependent trafficking and signalling of L83I, the rat orthologue of a naturally occurring variant of the MOP receptor. EXPERIMENTAL APPROACH Cell surface elisa, confocal microscopy and immunoprecipitation assays were used to characterize the trafficking properties of the MOP-L83I variant in comparison with the wild-type receptor in HEK 293 cells. Functional assays were used to compare the ability of the L83I variant to signal to several downstream pathways. KEY RESULTS Morphine-induced internalization of the L83I MOP receptor was markedly increased in comparison with the wild-type receptor. The altered trafficking of this variant was found to be specific to morphine and was both G-protein receptor kinase- and dynamin-dependent. The enhanced internalization of L83I variant in response to morphine was not due to increased phosphorylation of serine 375, arrestin association or an increased ability to signal. CONCLUSIONS AND IMPLICATIONS These results suggest that morphine promotes a specific conformation of the L83I variant that makes it more liable to internalize in response to morphine, unlike the wild-type receptor that undergoes significantly less morphine-stimulated internalization, providing an example of a ligand-selective biased receptor. The presence of this SNP within an individual may consequently affect the development of tolerance and analgesic responses. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24697554

  9. Internal receptors in insect appendages project directly into a special brain neuropile

    PubMed Central

    2013-01-01

    Background The great majority of afferent neurons of insect legs project into their segmental ganglion. Intersegmental projections are rare and are only formed by sense organs associated with the basal joints of the legs. Such intersegmental projections never ascend as far as the brain and they form extensive ramifications within thoracic ganglia. A few afferents of chordotonal organs of the subcoxal joints ascend as far as the suboesophageal ganglion. Results We describe novel afferent neurons in distal segments of locust legs that project directly into the brain without forming ramifications in other ganglia. In the brain, the fibres terminate with characteristic terminals in a small neuropile previously named the superficial ventral inferior protocerebrum. The somata of these neurons are located in the tibiae and tarsi of all legs and they are located within branches of peripheral nerves, or closely associated with such branches. They are not associated with any accessory structures such as tendons or connective tissue strands as typical for insect internal mechanoreceptors such as chordotonal organs or stretch receptors. Morphologically they show great similarity to certain insect infrared receptors. We could not observe projections into the superficial ventral inferior protocerebrum after staining mandibular or labial nerves, but we confirm previous studies that showed projections into the same brain neuropile after staining maxillary and antennal nerves, indicating that most likely similar neurons are present in these appendages also. Conclusion Because of their location deep within the lumen of appendages the function of these neurons as infrared receptors is unlikely. Their projection pattern and other morphological features indicate that the neurons convey information about an internal physiological parameter directly into a special brain neuropile. We discuss their possible function as thermoreceptors. PMID:24015902

  10. Structural/functional relationships between internal and external MSH receptors: modulation of expression in Cloudman melanoma cells by UVB radiation

    SciTech Connect

    Chakraborty, A.K.; Orlow, S.J.; Bolognia, J.L.; Pawelek, J.M. )

    1991-04-01

    Expression of internal receptors for MSH is an important criterion for responsiveness to MSH by Cloudman melanoma cells. Here, we show that internal and external receptors for MSH are of identical molecular weights (50-53 kDa) and share common antigenic determinants, indicating a structural relationship between the 2 populations of molecules. The internal receptors co-purified with a sub-cellular fraction highly enriched for small vesicles, many of which were coated. Ultraviolet B light (UVB) acted synergistically with MSH to increase tyrosinase activity and melanin content of cultured Cloudman melanoma cells, consistent with previous findings in the skin of mice and guinea pigs. Preceding the rise in tyrosinase activity in cultured cells, UVB elicited a decrease in internal MSH binding sites and a concomitant increase in external sites. The time frame for the UVB effects on MSH receptors and melanogenesis, 48 hours, was similar to that for a response to solar radiation in humans. Together, the results indicate a key role for MSH receptors in the induction of melanogenesis by UVB and suggest a potential mechanism of action for UVB: redistribution of MSH receptors with a resultant increase in cellular responsiveness to MSH.

  11. Inhibition of Rho-associated kinase blocks agonist-induced Ca2+ sensitization of myosin phosphorylation and force in guinea-pig ileum

    PubMed Central

    Swärd, Karl; Dreja, Karl; Susnjar, Marija; Hellstrand, Per; Hartshorne, David J; Walsh, Michael P

    2000-01-01

    Ca2+ sensitization of smooth muscle contraction involves the small GTPase RhoA, inhibition of myosin light chain phosphatase (MLCP) and enhanced myosin regulatory light chain (LC20) phosphorylation. A potential effector of RhoA is Rho-associated kinase (ROK).The role of ROK in Ca2+ sensitization was investigated in guinea-pig ileum.Contraction of permeabilized muscle strips induced by GTPγS at pCa 6.5 was inhibited by the kinase inhibitors Y-27632, HA1077 and H-7 with IC50 values that correlated with the known Ki values for inhibition of ROK. GTPγS also increased LC20 phosphorylation and this was prevented by HA1077. Contraction and LC20 phosphorylation elicited at pCa 5.75 were, however, unaffected by HA1077.Pre-treatment of intact tissue strips with HA1077 abolished the tonic component of carbachol-induced contraction and the sustained elevation of LC20 phosphorylation, but had no effect on the transient or sustained increase in [Ca2+]i induced by carbachol.LC20 phosphorylation and contraction dynamics suggest that the ROK-mediated increase in LC20 phosphorylation is due to MLCP inhibition, not myosin light chain kinase activation.In the absence of Ca2+, GTPγS stimulated 35S incorporation from [35S]ATPγS into the myosin targeting subunit of MLCP (MYPT). The enhanced thiophosphorylation was inhibited by HA1077. No thiophosphorylation of LC20 was detected.These results indicate that ROK mediates agonist-induced increases in myosin phosphorylation and force by inhibiting MLCP activity through phosphorylation of MYPT. Under Ca2+-free conditions, ROK does not appear to phosphorylate LC20in situ, in contrast to its ability to phosphorylate myosin in vitro. In particular, ROK activation is essential for the tonic phase of agonist-induced contraction. PMID:10618150

  12. Agonist-selective, Receptor-specific Interaction of Human P2Y Receptors with β-Arrestin-1 and -2*S⃞

    PubMed Central

    Hoffmann, Carsten; Ziegler, Nicole; Reiner, Susanne; Krasel, Cornelius; Lohse, Martin J.

    2008-01-01

    Interaction of G-protein-coupled receptors with β-arrestins is an important step in receptor desensitization and in triggering “alternative” signals. By means of confocal microscopy and fluorescence resonance energy transfer, we have investigated the internalization of the human P2Y receptors 1, 2, 4, 6, 11, and 12 and their interaction with β-arrestin-1 and -2. Co-transfection of each individual P2Y receptor with β-arrestin-1-GFP or β-arrestin-2-YFP into HEK-293 cells and stimulation with the corresponding agonists resulted in a receptor-specific interaction pattern. The P2Y1 receptor stimulated with ADP strongly translocated β-arrestin-2-YFP, whereas only a slight translocation was observed for β-arrestin-1-GFP. The P2Y4 receptor exhibited equally strong translocation for β-arrestin-1-GFP and β-arrestin-2-YFP when stimulated with UTP. The P2Y6, P2Y11, and P2Y12 receptor internalized only when GRK2 was additionally co-transfected, but β-arrestin translocation was only visible for the P2Y6 and P2Y11 receptor. The P2Y2 receptor showed a β-arrestin translocation pattern that was dependent on the agonist used for stimulation. UTP translocated β-arrestin-1-GFP and β-arrestin-2-YFP equally well, whereas ATP translocated β-arrestin-1-GFP to a much lower extent than β-arrestin-2-YFP. The same agonist-dependent pattern was seen in fluorescence resonance energy transfer experiments between the fluorescently labeled P2Y2 receptor and β-arrestins. Thus, the P2Y2 receptor would be classified as a class A receptor when stimulated with ATP or as a class B receptor when stimulated with UTP. The ligand-specific recruitment of β-arrestins by ATP and UTP stimulation of P2Y2 receptors was further found to result in differential stimulation of ERK phosphorylation. This suggests that the two different agonists induce distinct active states of this receptor that show differential interactions with β-arrestins. PMID:18703513

  13. Methylation of the Glucocorticoid Receptor Gene Promoter in Preschoolers: Links With Internalizing Behavior Problems.

    PubMed

    Parade, Stephanie H; Ridout, Kathryn K; Seifer, Ronald; Armstrong, David A; Marsit, Carmen J; McWilliams, Melissa A; Tyrka, Audrey R

    2016-01-01

    Accumulating evidence suggests that early adversity is linked to methylation of the glucocorticoid receptor (GR) gene, NR3C1, which is a key regulator of the hypothalamic-pituitary-adrenal axis. Yet no prior work has considered the contribution of methylation of NR3C1 to emerging behavior problems and psychopathology in childhood. This study examined the links between methylation of NR3C1 and behavior problems in preschoolers. Data were drawn from a sample of preschoolers with early adversity (n = 171). Children ranged in age from 3 to 5 years, were racially and ethnically diverse, and nearly all qualified for public assistance. Seventy-one children had child welfare documentation of moderate to severe maltreatment in the past 6 months. Structured record review and interviews in the home were used to assess early adversity. Parents reported on child internalizing and externalizing behavior problems. Methylation of NR3C1 at exons 1D , 1F , and 1H were measured via sodium bisulfite pyrosequencing from saliva DNA. Methylation of NR3C1 at exons 1D and 1F was positively associated with internalizing (r = .21, p < .01 and r = .23, p < .01, respectively), but not externalizing, behavior problems. Furthermore, NR3C1 methylation mediated effects of early adversity on internalizing behavior problems. These results suggest that methylation of NR3C1 contributes to psychopathology in young children, and NR3C1 methylation from saliva DNA is salient to behavioral outcomes. PMID:26822445

  14. Interleukin-1-induced gene expression requires the membrane-raft-dependent internalization of the interleukin-1 receptor.

    PubMed

    Windheim, Mark

    2016-10-01

    Interleukin-1 (IL-1) binding to its receptor triggers signaling events at the plasma membrane that are essential but not sufficient for the induction of the IL-1-dependent gene expression. In addition, the ligand-induced endocytosis of the IL-1 receptor and signaling events that are initiated after the internalization of the IL-1 receptor presumably involving signaling endosomes are critical for the IL-1-induced gene expression. In this study, we investigate the role of membrane domains, commonly denoted as lipid rafts, in the IL-1-induced signal transduction. We demonstrate that the internalization of the IL-1 receptor depends on the integrity of lipid rafts and that the disruption of lipid rafts strongly reduces the IL-1-induced gene expression. Interestingly, the IL-1-dependent signaling events activated at the plasma membrane are not influenced by the disruption of lipid rafts suggesting that IL-1 signaling is initiated in a non-raft domain of the plasma membrane. Subsequently, the IL-1 receptor is translocated to lipid rafts where receptor endocytosis occurs to enable the internalization-dependent IL-1 signaling to activate the IL-1-induced gene expression. PMID:27327966

  15. Receptor Crosslinking: A General Method to Trigger Internalization and Lysosomal Targeting of Therapeutic Receptor:Ligand Complexes

    PubMed Central

    Moody, Paul R; Sayers, Edward J; Magnusson, Johannes P; Alexander, Cameron; Borri, Paola; Watson, Peter; Jones, Arwyn T

    2015-01-01

    A major unmet clinical need is a universal method for subcellular targeting of bioactive molecules to lysosomes. Delivery to this organelle enables either degradation of oncogenic receptors that are overexpressed in cancers, or release of prodrugs from antibody–drug conjugates. Here, we describe a general method that uses receptor crosslinking to trigger endocytosis and subsequently redirect trafficking of receptor:cargo complexes from their expected route, to lysosomes. By incubation of plasma membrane receptors with biotinylated cargo and subsequent addition of streptavidin to crosslink receptor:cargo–biotin complexes, we achieved rapid and selective lysosomal targeting of transferrin, an anti-MHC class I antibody, and the clinically approved anti-Her2 antibody trastuzumab. These three protein ligands each target a receptor with a distinct cellular function and intracellular trafficking profile. Importantly, we confirmed that crosslinking of trastuzumab increased lysosomal degradation of its cognate oncogenic receptor Her2 in breast cancer cell lines SKBR3 and BT474. These data suggest that crosslinking could be exploited for a wide range of target receptors, for navigating therapeutics through the endolysosomal pathway, for significant therapeutic benefit. PMID:26412588

  16. Lupus risk variants in the PXK locus alter B-cell receptor internalization.

    PubMed

    Vaughn, Samuel E; Foley, Corinne; Lu, Xiaoming; Patel, Zubin H; Zoller, Erin E; Magnusen, Albert F; Williams, Adrienne H; Ziegler, Julie T; Comeau, Mary E; Marion, Miranda C; Glenn, Stuart B; Adler, Adam; Shen, Nan; Nath, Swapan; Stevens, Anne M; Freedman, Barry I; Tsao, Betty P; Jacob, Chaim O; Kamen, Diane L; Brown, Elizabeth E; Gilkeson, Gary S; Alarcón, Graciela S; Reveille, John D; Anaya, Juan-Manuel; James, Judith A; Moser, Kathy L; Criswell, Lindsey A; Vilá, Luis M; Alarcón-Riquelme, Marta E; Petri, Michelle; Scofield, R Hal; Kimberly, Robert P; Ramsey-Goldman, Rosalind; Binjoo, Young; Choi, Jeongim; Bae, Sang-Cheol; Boackle, Susan A; Vyse, Timothy J; Guthridge, Joel M; Namjou, Bahram; Gaffney, Patrick M; Langefeld, Carl D; Kaufman, Kenneth M; Kelly, Jennifer A; Harley, Isaac T W; Harley, John B; Kottyan, Leah C

    2014-01-01

    Genome wide association studies have identified variants in PXK that confer risk for humoral autoimmune diseases, including systemic lupus erythematosus (SLE or lupus), rheumatoid arthritis and more recently systemic sclerosis. While PXK is involved in trafficking of epidermal growth factor Receptor (EGFR) in COS-7 cells, mechanisms linking PXK to lupus pathophysiology have remained undefined. In an effort to uncover the mechanism at this locus that increases lupus-risk, we undertook a fine-mapping analysis in a large multi-ancestral study of lupus patients and controls. We define a large (257kb) common haplotype marking a single causal variant that confers lupus risk detected only in European ancestral populations and spans the promoter through the 3' UTR of PXK. The strongest association was found at rs6445972 with P < 4.62 × 10(-10), OR 0.81 (0.75-0.86). Using stepwise logistic regression analysis, we demonstrate that one signal drives the genetic association in the region. Bayesian analysis confirms our results, identifying a 95% credible set consisting of 172 variants spanning 202 kb. Functionally, we found that PXK operates on the B-cell antigen receptor (BCR); we confirmed that PXK influenced the rate of BCR internalization. Furthermore, we demonstrate that individuals carrying the risk haplotype exhibited a decreased rate of BCR internalization, a process known to impact B cell survival and cell fate. Taken together, these data define a new candidate mechanism for the genetic association of variants around PXK with lupus risk and highlight the regulation of intracellular trafficking as a genetically regulated pathway mediating human autoimmunity. PMID:25620976

  17. In vivo (/sup 3/H)spiperone binding: evidence for accumulation in corpus striatum by agonist-mediated receptor internalization

    SciTech Connect

    Chugani, D.C.; Ackermann, R.F.; Phelps, M.E.

    1988-06-01

    The processes of receptor internalization and recycling have been well-documented for receptors for hormones, growth factors, lysosomal enzymes, and cellular substrates. Evidence also exists that these processes also occur for beta-adrenergic, muscarinic cholinergic, and delta-opiate receptors in frog erythrocytes or cultured nervous tissue. In this study, evidence is presented that agonist-mediated receptor internalization and recycling occurs at the dopamine receptor in rat corpus striatum. First, the in vivo binding of the dopamine antagonist (3H)spiperone was increased by both electrical stimulation and pharmacologically induced increases of dopamine release. Conversely, depletion of dopamine with reserpine decreased in vivo (3H)spiperone binding, but the same reserpine treatment did not alter its in vitro binding. Second, the rate of dissociation of (3H)spiperone from microsomal membranes prepared from rat striatum following in vivo binding was fivefold slower than its dissociation following in vitro equilibrium binding. Mild detergent treatment, employed to disrupt endocytic vesicle membranes, increased the rate of dissociation of in vivo bound (3H)spiperone from microsomal membranes to values not significantly different from its in vitro bound dissociation rate. Third, treatment of rats with chloroquine, a drug that prevents receptor recycling but not internalization, prior to (3H)spiperone injection resulted in a selective increase of in vivo (3H)spiperone binding in the light microsome membranes. The existence of mechanisms that rapidly alter the number of neurotransmitter receptors at synapses provides dynamic regulation of receptors in response to varied acute stimulation states.

  18. Intranasally Administered Neuropeptide S (NPS) Exerts Anxiolytic Effects Following Internalization Into NPS Receptor-Expressing Neurons

    PubMed Central

    Ionescu, Irina A; Dine, Julien; Yen, Yi-Chun; Buell, Dominik R; Herrmann, Leonie; Holsboer, Florian; Eder, Matthias; Landgraf, Rainer; Schmidt, Ulrike

    2012-01-01

    Experiments in rodents revealed neuropeptide S (NPS) to constitute a potential novel treatment option for anxiety diseases such as panic and post-traumatic stress disorder. However, both its cerebral target sites and the molecular underpinnings of NPS-mediated effects still remain elusive. By administration of fluorophore-conjugated NPS, we pinpointed NPS target neurons in distinct regions throughout the entire brain. We demonstrated their functional relevance in the hippocampus. In the CA1 region, NPS modulates synaptic transmission and plasticity. NPS is taken up into NPS receptor-expressing neurons by internalization of the receptor–ligand complex as we confirmed by subsequent cell culture studies. Furthermore, we tracked internalization of intranasally applied NPS at the single-neuron level and additionally demonstrate that it is delivered into the mouse brain without losing its anxiolytic properties. Finally, we show that NPS differentially modulates the expression of proteins of the glutamatergic system involved inter alia in synaptic plasticity. These results not only enlighten the path of NPS in the brain, but also establish a non-invasive method for NPS administration in mice, thus strongly encouraging translation into a novel therapeutic approach for pathological anxiety in humans. PMID:22278093

  19. Inhibition of mu and delta opioid receptor ligand binding by the peptide aldehyde protease inhibitor, leupeptin.

    PubMed

    Christoffers, Keith H; Khokhar, Arshia; Chaturvedi, Kirti; Howells, Richard D

    2002-04-15

    We reported recently that the ubiquitin-proteasome pathway is involved in agonist-induced down regulation of mu and delta opioid receptors [J. Biol. Chem. 276 (2001) 12345]. While evaluating the effects of various protease inhibitors on agonist-induced opioid receptor down regulation, we observed that while the peptide aldehyde, leupeptin (acetyl-L-Leucyl-L-Leucyl-L-Arginal), did not affect agonist-induced down regulation, leupeptin at submillimolar concentrations directly inhibited radioligand binding to opioid receptors. In this study, the inhibitory activity of leupeptin on radioligand binding was characterized utilizing human embryonic kidney (HEK) 293 cell lines expressing transfected mu, delta, or kappa opioid receptors. The rank order of potency for leupeptin inhibition of [3H]bremazocine binding to opioid receptors was mu > delta > kappa. In contrast to the effect of leupeptin, the peptide aldehyde proteasome inhibitor, MG 132 (carbobenzoxy-L-Leucyl-L-Leucyl-L-Leucinal), had significantly less effect on bremazocine binding to mu, delta, or kappa opioid receptors. We propose that leupeptin inhibits ligand binding by reacting reversibly with essential sulfhydryl groups that are necessary for high-affinity ligand/receptor interactions. PMID:11853866

  20. Agonist-independent internalization of metabotropic glutamate receptor 1a is arrestin- and clathrin-dependent and is suppressed by receptor inverse agonists.

    PubMed

    Pula, Giordano; Mundell, Stuart J; Roberts, Peter J; Kelly, Eamonn

    2004-05-01

    Three group I mGluR antagonists CPCCOEt, LY367385 and BAY36-7620, were analyzed for their effect on cell surface expression of metabotropic glutamate receptor 1a and 1b. All three antagonists inhibited glutamate-induced internalization of mGluR1a and mGluR1b. However, when added alone, either LY367385 or BAY36-7620 increased the cell surface expression of mGluR1a but not mGluR1b. Both LY367385 and BAY36-7620 displayed inverse agonist activity as judged by their ability to inhibit basal inositol phosphate accumulation in cells expressing the constitutively active mGluR1a. Interestingly, mGluR1a but not mGluR1b was constitutively internalized in HEK293 cells and both LY367385 and BAY36-7620 inhibited the constitutive internalization of this splice variant. Furthermore, coexpression of dominant negative mutant constructs of arrestin-2 [arrestin-2-(319-418)] or Eps15 [Eps15(E Delta 95-295)] increased cell surface expression of mGluR1a and blocked constitutive receptor internalization. In the presence of these dominant negative mutants, incubation of cells with LY367385 and BAY36-7620 produced no further increase in cell surface expression of mGluR1a. Taken together, these results suggest that the constitutive activity of mGluR1a triggers the internalization of the receptor through an arrestin- and clathrin-dependent pathway, and that inverse agonists increase the cell surface expression of mGluR1a by promoting an inactive form of mGluR1a, which does not undergo constitutive internalization. PMID:15140199

  1. β2-Adrenoceptor agonist-induced RGS2 expression is a genomic mechanism of bronchoprotection that is enhanced by glucocorticoids.

    PubMed

    Holden, Neil S; Bell, Matthew J; Rider, Christopher F; King, Elizabeth M; Gaunt, David D; Leigh, Richard; Johnson, Malcolm; Siderovski, David P; Heximer, Scott P; Giembycz, Mark A; Newton, Robert

    2011-12-01

    In asthma and chronic obstructive pulmonary disease, activation of G(q)-protein-coupled receptors causes bronchoconstriction. In each case, the management of moderate-to-severe disease uses inhaled corticosteroid (glucocorticoid)/long-acting β(2)-adrenoceptor agonist (LABA) combination therapies, which are more efficacious than either monotherapy alone. In primary human airway smooth muscle cells, glucocorticoid/LABA combinations synergistically induce the expression of regulator of G-protein signaling 2 (RGS2), a GTPase-activating protein that attenuates G(q) signaling. Functionally, RGS2 reduced intracellular free calcium flux elicited by histamine, methacholine, leukotrienes, and other spasmogens. Furthermore, protection against spasmogen-increased intracellular free calcium, following treatment for 6 h with LABA plus corticosteroid, was dependent on RGS2. Finally, Rgs2-deficient mice revealed enhanced bronchoconstriction to spasmogens and an absence of LABA-induced bronchoprotection. These data identify RGS2 gene expression as a genomic mechanism of bronchoprotection that is induced by glucocorticoids plus LABAs in human airway smooth muscle and provide a rational explanation for the clinical efficacy of inhaled corticosteroid (glucocorticoid)/LABA combinations in obstructive airways diseases. PMID:22080612

  2. Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules.

    PubMed

    Hern, Jonathan A; Baig, Asma H; Mashanov, Gregory I; Birdsall, Berry; Corrie, John E T; Lazareno, Sebastian; Molloy, Justin E; Birdsall, Nigel J M

    2010-02-01

    G-protein-coupled receptors (GPCRs) are the largest family of transmembrane signaling proteins in the human genome. Events in the GPCR signaling cascade have been well characterized, but the receptor composition and its membrane distribution are still generally unknown. Although there is evidence that some members of the GPCR superfamily exist as constitutive dimers or higher oligomers, interpretation of the results has been disputed, and recent studies indicate that monomeric GPCRs may also be functional. Because there is controversy within the field, to address the issue we have used total internal reflection fluorescence microscopy (TIRFM) in living cells to visualize thousands of individual molecules of a model GPCR, the M(1) muscarinic acetylcholine receptor. By tracking the position of individual receptors over time, their mobility, clustering, and dimerization kinetics could be directly determined with a resolution of approximately 30 ms and approximately 20 nm. In isolated CHO cells, receptors are randomly distributed over the plasma membrane. At any given time, approximately 30% of the receptor molecules exist as dimers, and we found no evidence for higher oligomers. Two-color TIRFM established the dynamic nature of dimer formation with M(1) receptors undergoing interconversion between monomers and dimers on the timescale of seconds. PMID:20133736

  3. Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules

    PubMed Central

    Hern, Jonathan A.; Baig, Asma H.; Mashanov, Gregory I.; Birdsall, Berry; Corrie, John E. T.; Lazareno, Sebastian; Molloy, Justin E.; Birdsall, Nigel J. M.

    2010-01-01

    G-protein–coupled receptors (GPCRs) are the largest family of transmembrane signaling proteins in the human genome. Events in the GPCR signaling cascade have been well characterized, but the receptor composition and its membrane distribution are still generally unknown. Although there is evidence that some members of the GPCR superfamily exist as constitutive dimers or higher oligomers, interpretation of the results has been disputed, and recent studies indicate that monomeric GPCRs may also be functional. Because there is controversy within the field, to address the issue we have used total internal reflection fluorescence microscopy (TIRFM) in living cells to visualize thousands of individual molecules of a model GPCR, the M1 muscarinic acetylcholine receptor. By tracking the position of individual receptors over time, their mobility, clustering, and dimerization kinetics could be directly determined with a resolution of ~30 ms and ~20 nm. In isolated CHO cells, receptors are randomly distributed over the plasma membrane. At any given time, ~30% of the receptor molecules exist as dimers, and we found no evidence for higher oligomers. Two-color TIRFM established the dynamic nature of dimer formation with M1 receptors undergoing interconversion between monomers and dimers on the timescale of seconds. PMID:20133736

  4. Functional Analysis of Free Fatty Acid Receptor GPR120 in Human Eosinophils: Implications in Metabolic Homeostasis

    PubMed Central

    Konno, Yasunori; Ueki, Shigeharu; Takeda, Masahide; Kobayashi, Yoshiki; Tamaki, Mami; Moritoki, Yuki; Oyamada, Hajime; Itoga, Masamichi; Kayaba, Hiroyuki; Omokawa, Ayumi; Hirokawa, Makoto

    2015-01-01

    Recent evidence has shown that eosinophils play an important role in metabolic homeostasis through Th2 cytokine production. GPR120 (FFA4) is a G protein-coupled receptor (GPCR) for long-chain fatty acids that functions as a regulator of physiological energy metabolism. In the present study, we aimed to investigate whether human eosinophils express GPR120 and, if present, whether it possesses a functional capacity on eosinophils. Eosinophils isolated from peripheral venous blood expressed GPR120 at both the mRNA and protein levels. Stimulation with a synthetic GPR120 agonist, GW9508, induced rapid down-regulation of cell surface expression of GPR120, suggesting ligand-dependent receptor internalization. Although GPR120 activation did not induce eosinophil chemotactic response and degranulation, we found that GW9508 inhibited eosinophil spontaneous apoptosis and Fas receptor expression. The anti-apoptotic effect was attenuated by phosphoinositide 3-kinase (PI3K) inhibitors and was associated with inhibition of caspase-3 activity. Eosinophil response investigated using ELISpot assay indicated that stimulation with a GPR120 agonist induced IL-4 secretion. These findings demonstrate the novel functional properties of fatty acid sensor GPR120 on human eosinophils and indicate the previously unrecognized link between nutrient metabolism and the immune system. PMID:25790291

  5. Prolactin receptor-mediated internalization of imaging agents detects epithelial ovarian cancer

    NASA Astrophysics Data System (ADS)

    Sundaram, Karthik M.

    Epithelial ovarian cancer (EOC) has the highest mortality rate of all gynecologic malignant tumors. Diagnosis of epithelial ovarian cancer (EOC) presents two main challenges. The first challenge is detecting low volume (< 1 g) and early stage (≤ stage II) masses to prevent rapid progression to late stages and ultimately death. The second challenge is differentiating malignant from benign tissue to avoid costly and invasive surgeries (19.5 surgeries are required to find 1 cancer even with multiple screenings). First-line diagnostic tests such as ultrasound and serum marker tests (e.g. CA-125) aid in diagnosis but they lack the sensitivity and specificity required to overcome both challenges. Magnetic resonance imaging (MRI), a second-line diagnostic aided by gadolinium based contrast agents (CAs), offers higher resolution pictures for classifying indeterminate ovarian masses. But as currently practiced, MRI still lacks the sensitivity and specificity required to alter patient outcomes. In this work we develop a new paradigm for EOC diagnosis that targets the prolactin receptor (PRLR) - a cell surface tyrosine kinase receptor that is over-expressed in moderate to high levels on > 98% of epithelial ovarian cancers. Upon binding of native ligands to PRLR, the ligand:PRLR complex is internalized by cells. By conjugating gadolinium-chelates, molecules normally used as contrast agents diagnostically, to human placental lactogen (hPL), a native ligand of PRLR, we show that MRI becomes highly sensitive and specific for detecting PRLR (+) tumors in a nude mouse model of EOC. We further establish the adaptability of this approach for fluorescence-based imaging techniques using an hPL conjugated Cy5.5 dye. We conclude that molecular imaging of PRLR with hPL-conjugated imaging agents can address the current challenges that limit EOC diagnosis.

  6. International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G Protein–Coupled Receptors

    PubMed Central

    Aust, Gabriela; Araç, Demet; Engel, Felix B.; Formstone, Caroline; Fredriksson, Robert; Hall, Randy A.; Harty, Breanne L.; Kirchhoff, Christiane; Knapp, Barbara; Krishnan, Arunkumar; Liebscher, Ines; Lin, Hsi-Hsien; Martinelli, David C.; Monk, Kelly R.; Peeters, Miriam C.; Piao, Xianhua; Prömel, Simone; Schöneberg, Torsten; Schwartz, Thue W.; Singer, Kathleen; Stacey, Martin; Ushkaryov, Yuri A.; Vallon, Mario; Wolfrum, Uwe; Wright, Mathew W.; Xu, Lei; Langenhan, Tobias

    2015-01-01

    The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein–coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential. PMID:25713288

  7. International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors.

    PubMed

    Hamann, Jörg; Aust, Gabriela; Araç, Demet; Engel, Felix B; Formstone, Caroline; Fredriksson, Robert; Hall, Randy A; Harty, Breanne L; Kirchhoff, Christiane; Knapp, Barbara; Krishnan, Arunkumar; Liebscher, Ines; Lin, Hsi-Hsien; Martinelli, David C; Monk, Kelly R; Peeters, Miriam C; Piao, Xianhua; Prömel, Simone; Schöneberg, Torsten; Schwartz, Thue W; Singer, Kathleen; Stacey, Martin; Ushkaryov, Yuri A; Vallon, Mario; Wolfrum, Uwe; Wright, Mathew W; Xu, Lei; Langenhan, Tobias; Schiöth, Helgi B

    2015-01-01

    The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential. PMID:25713288

  8. IRAS Modulates Opioid Tolerance and Dependence by Regulating μ Opioid Receptor Trafficking.

    PubMed

    Li, Fei; Ma, Hao; Wu, Ning; Li, Jin

    2016-09-01

    Imidazoline receptor antisera-selected (IRAS) protein, the mouse homologue named Nischarin, was found to target to early endosomes with properties of sorting nexins in vitro. Recently, we generated IRAS knockout mice and found IRAS deficiency exacerbated the analgesic tolerance and physical dependence caused by opioids, suggesting that IRAS plays a role in regulating μ opioid receptor (MOR) functions. In the present study, we found that IRAS interacts with MOR and regulates MOR trafficking in vitro. In the CHO or HEK293 cells co-expressing MOR and IRAS, IRAS, through its PX domain, interacted with MOR. The interaction facilitated the recycling of internalized MOR and prevented MOR downregulation induced by DAMGO, the MOR agonist. Functionally, IRAS accelerated MOR resensitization and attenuated DAMGO-induced MOR desensitization, which is believed as one of mechanisms mediating opioid tolerance and dependence. Taken together, we propose that IRAS is a new MOR interacting protein and regulates agonist-induced trafficking of MOR via sorting internalized MOR to the recycling pathway, which may be a molecular mechanism underlying IRAS modulating opioid tolerance and dependence. PMID:26363797

  9. Flumazenil decreases surface expression of α4β2δ GABAA receptors by increasing the rate of receptor internalization.

    PubMed

    Kuver, Aarti; Smith, Sheryl S

    2016-01-01

    Increases in expression of α4βδ GABAA receptors (GABARs), triggered by fluctuations in the neurosteroid THP (3α-OH-5α[β]-pregnan-20-one), are associated with changes in mood and cognition. We tested whether α4βδ trafficking and surface expression would be altered by in vitro exposure to flumazenil, a benzodiazepine ligand which reduces α4βδ expression in vivo. We first determined that flumazenil (100 nM-100 μM, IC50=∼1 μM) acted as a negative modulator, reducing GABA (10 μM)-gated current in the presence of 100 nM THP (to increase receptor efficacy), assessed with whole cell patch clamp recordings of recombinant α4β2δ expressed in HEK-293 cells. Surface expression of recombinant α4β2δ receptors was detected using a 3XFLAG reporter at the C-terminus of α4 (α4F) using confocal immunocytochemical techniques following 48 h exposure of cells to GABA (10 μM)+THP (100 nM). Flumazenil (10 μM) decreased surface expression of α4F by ∼60%, while increasing its intracellular accumulation, after 48 h. Reduced surface expression of α4β2δ after flumazenil treatment was confirmed by decreases in the current responses to 100 nM of the GABA agonist gaboxadol. Flumazenil-induced decreases in surface expression of α4β2δ were prevented by the dynamin blocker, dynasore, and by leupeptin, which blocks lysosomal enzymes, suggesting that flumazenil is acting to increase endocytosis and lysosomal degradation of the receptor. Flumazenil increased the rate of receptor removal from the cell surface by 2-fold, assessed using botulinum toxin B to block insertion of new receptors. These findings may suggest new therapeutic strategies for regulation of α4β2δ expression using flumazenil. PMID:26592470

  10. 4-Hydroxynonenal, an aldehydic product of lipid peroxidation, impairs signal transduction associated with muscarinic acetylcholine and metabotropic glutamate receptors: possible action on G alpha(q/11).

    PubMed

    Blanc, E M; Kelly, J F; Mark, R J; Waeg, G; Mattson, M P

    1997-08-01

    Considerable data indicate that oxidative stress and membrane lipid peroxidation contribute to neuronal degeneration in an array of age-related neurodegenerative disorders. In contrast, the impact of subtoxic levels of membrane lipid peroxidation on neuronal function is largely unknown. We now report that 4-hydroxynonenal (HNE), an aldehydic product of lipid peroxidation, disrupts coupling of muscarinic cholinergic receptors and metabotropic glutamate receptors to phospholipase C-linked GTP-binding proteins in cultured rat cerebrocortical neurons. At subtoxic concentrations, HNE markedly inhibited GTPase activity, inositol phosphate release, and elevation of intracellular calcium levels induced by carbachol (muscarinic agonist) and (RS)-3,5-dihydroxyphenyl glycine (metabotropic glutamate receptor agonist). Maximal impairment of agonist-induced responses occurred within 30 min of exposure to HNE. Other aldehydes, including malondialdehyde, had little effect on agonist-induced responses. Antioxidants that suppress lipid peroxidation did not prevent impairment of agonist-induced responses by HNE, whereas glutathione, which is known to bind and detoxify HNE, did prevent impairment of agonist-induced responses. HNE itself did not induce oxidative stress. Immunoprecipitation-western blot analysis using an antibody to HNE-protein conjugates showed that HNE can bind to G alpha(q/11). HNE also significantly suppressed inositol phosphate release induced by aluminum fluoride. Collectively, our data suggest that HNE plays a role in altering receptor-G protein coupling in neurons under conditions of oxidative stress that may occur both normally, and before cell degeneration and death in pathological settings. PMID:9231714

  11. Delayed expression of large conductance K+ channels reshaping agonist-induced currents in mouse pancreatic acinar cells

    PubMed Central

    Oshiro, Takako; Takahashi, Hidenori; Ohsaga, Atsushi; Ebihara, Satoru; Sasaki, Hidetada; Maruyama, Yoshio

    2005-01-01

    Epithelial secretory cells display cell-specific mechanisms of fluid secretion and express large conductance voltage- and Ca2+-activated K+ (Maxi-K) channels that generate the membrane negativity for effective Cl− exit to the lumen. Rat and mouse pancreatic acinar cells had been thought to be peculiar in this sense because of the previously reported lack of Maxi-K channels. However, this view is not entirely correct as evidenced in the present paper. Searching for their presence in pancreatic acinar cells in mice from 5 to 84 weeks of age with patch-clamp current measurements, we demonstrated that the expression of Maxi-K channels is regulated in an age-associated manner after birth. The expression started at approximately 12 postnatal weeks and increased steadily up to 84 weeks. In support of this, RT-PCR could not detect mSlo mRNA, the Maxi-K gene, at either 7 or 8 weeks but could at 58 and 64 postnatal weeks. These results suggest that a key steering element for fluid secretion, the Maxi-K channel, is progressively re-organized in rodent pancreas. A pancreatic secretagogue, acetylcholine, evoked Maxi-K channel current overlapping to various degrees on the previously known current response. This suggests that the rise in internal Ca2+ activates Maxi-K channels which reshape the mode of secretagogue-evoked current response and contribute to Cl− driving in fluid secretion in an age-associated fashion. PMID:15611028

  12. Internalization and trafficking of guanylyl (guanylate) cyclase/natriuretic peptide receptor A is regulated by an acidic tyrosine-based cytoplasmic motif GDAY

    PubMed Central

    Pandey, Kailash N.; Nguyen, Huong T.; Garg, Renu; Khurana, Madan L.; Fink, Jude

    2004-01-01

    We have identified a GDAY motif in the C-terminal domain of guanylyl cyclase (guanylate cyclase)/NPRA (natriuretic peptide receptor A) sequence, which serves a dual role as an internalization signal and a recycling signal. To delineate the role of the GDAY motif in receptor internalization and sequestration, we mutated Gly920, Asp921 and Tyr923 to alanine residues (GDAY/AAAA) in the NPRA cDNA sequence. The cDNAs encoding wild-type and mutant receptors were transfected in HEK-293 cells (human embryonic kidney 293 cells). The internalization studies of ligand–receptor complexes revealed that endocytosis of 125I-ANP by HEK-293 cells expressing G920A, Y923A or GDAY/AAAA mutant receptor was decreased by almost 50% (P<0.001) when compared with cells expressing the wild-type receptor. However, the effect of D921A mutation on receptor internalization was minimal. Ligand-mediated down-regulation of G920A, Y923A and GDAY/AAAA mutant receptors was decreased by 35–40% when compared with wild-type NPRA. Subsequently, the recycling of internalized D921A and GDAY/AAAA mutant receptors from the intracellular pool was decreased by more than 40±4% when compared with wild-type NPRA. Recycling of G920A and Y923A mutant receptors was also decreased, but to a significantly lesser extent compared with the D921A or GDAY/AAAA mutant receptors. We conclude that the Gly920 and Tyr923 residues within the GDAY consensus motif are necessary for internalization, and that residue Asp921 is important for recycling of NPRA. The current results provide new evidence for a dual role of the GDAY sequence motif in ligand-mediated internalization, recycling and down-regulation of a single-transmembrane receptor protein NPRA. PMID:15574117

  13. Contractile effects of intracellularly administered angiotensin II are partially dependent on membrane receptors internalization in isolated rat aorta.

    PubMed

    Petrescu, G; Costuleanu, M; Slătineanu, S M; Foia, L; Costuleanu, N; Costuleanu, A

    2001-01-01

    In the present study we used the isolated rat aorta as a model to characterize the modulation of contractile effects of extra- and intracellularly administered angiotensin II by dithiothreitol (DTT) and hyperosmotic sucrose. DTT inactivation of AT1 receptor as well as disruption of the clathrin-coated pits by hyperosmotic sucrose significantly inhibited the contraction induced by intracellularly administered AII. We suggest that these intracellular effects of angiotensin peptides are associated with AT1 receptor activation/internalization and may thus be part of the mechanism of angiotensin peptides direct contractile effects in the vascular smooth muscle. PMID:12092224

  14. Involvement of PRMT1 in hnRNPQ activation and internalization of insulin receptor

    SciTech Connect

    Iwasaki, Hiroaki

    2008-07-25

    Insulin signaling in skeletal L6 myotubes is known to be affected by arginine methylation catalyzed by protein N-arginine methyltransferase 1 (PRMT1), however, the mechanism by which this occurs has not yet been defined. This study aimed to determine the exact substrate involved in the methylation and regulating insulin signaling in cells. Insulin enhanced arginine methylation of a 66-kDa protein (p66) concomitant with translocation of PRMT1 to the membrane fraction. Peptide mass fingerprinting identified p66 as a heterogeneous nuclear ribonucleoprotein, hnRNPQ that was bound to and methylated by PRMT1. Pharmacological inhibition of methylation (MTA) and small interfering RNA against PRMT1 (PRMT1-siRNA) attenuated insulin-stimulated tyrosine phosphorylation of hnRNPQ and insulin receptor (IR), and the interaction between hnRNPQ and IR. MTA, PRMT1-siRNA, and hnRNPQ-siRNA inhibited internalization of IR in the same manner. These data suggest that the PRMT1-mediated methylation of hnRNPQ is implicated in IR trafficking and insulin signaling in skeletal L6 myotubes.

  15. Processing of receptor-bound somatostatin: internalization and degradation by pancreatic acini

    SciTech Connect

    Viguerie, N.; Esteve, J.P.; Susini, C.; Vaysse, N.; Ribet, A.

    1987-04-01

    The authors have previously demonstrated the presence of specific binding sites for somatostatin on plasma membranes from pancreatic acinar cells. In the present study they attempted to characterize the fate of receptor-bound /sup 125/I-(Tyr/sup 11/)somatostatin. Internalization of somatostatin was rapid (reaching a plateau at 20% of the cell-associated specific radioactivity) and temperature dependent. To follow the processing of bound somatostatin, acini were incubated with /sup 125/I-(Tyr/sup 11/)somatostatin at 5/sup 0/C during 16 h then, after washing, incubated at 37/sup 0/C for 90 min in fresh medium. Surface-bound somatostatin decreased rapidly, whereas radioactivity increased in the cell interior and the incubation medium. Intracellular and membrane-bound radioactivity was mainly intact /sup 125/I-(Tyr/sup 11/)somatostatin. Degradation occurred at the plasma membrane level and led to iodotyrosine production. After 15 min of incubation, 15% of the initially surface-bound /sup 125/I-(Tyr/sup 11/)somatostatin was compartmentalized within the cell, mainly in the microsomal fraction. After 30 min, a significant increase in radioactivity appeared in the nuclear fraction. These results indicate that the major part of somatostatin cellular degradation takes place at the plasma membrane level. Within the cell, somatostatin is routed to the nucleus via particular fractions sedimenting with microsomal vesicles.

  16. The Aryl Hydrocarbon Receptor: A Key Bridging Molecule of External and Internal Chemical Signals

    PubMed Central

    Tian, Jijing; Feng, Yu; Fu, Hualing; Xie, Heidi Qunhui; Jiang, Joy Xiaosong; Zhao, Bin

    2015-01-01

    The aryl hydrocarbon receptor (AhR) is a highly evolutionary conserved, ligand-activated transcription factor that is best known to mediate the toxicities of dioxins and dioxin-like compounds. Phenotype of AhR-null mice, together with the recent discovery of a variety of endogenous and plant-derived ligands, point to the integral roles of AhR in normal cell physiology, in addition to its roles in sensing the environmental chemicals. Here, we summarize the current knowledge about AhR signaling pathways, its ligands and AhR-mediated effects on cell specialization, host defense and detoxification. AhR-mediated health effects particularly in liver, immune, and nervous systems, as well as in tumorgenesis are discussed. Dioxin-initiated embryotoxicity and immunosuppressive effects in fish and birds are reviewed. Recent data demonstrate that AhR is a convergence point of multiple signaling pathways that inform the cell of its external and internal environments. As such, AhR pathway is a promising potential target for therapeutics targeting nervous, liver, and autoimmune diseases through AhR ligand-mediated interventions and other perturbations of AhR signaling. Additionally, using available laboratory data obtained on animal models, AhR-centered adverse outcome pathway analysis is useful in reexamining known and potential adverse outcomes of specific or mixed compounds on wildlife. PMID:26079192

  17. The human insulin receptor mRNA contains a functional internal ribosome entry segment

    PubMed Central

    Spriggs, Keith A.; Cobbold, Laura C.; Ridley, Simon H.; Coldwell, Mark; Bottley, Andrew; Bushell, Martin; Willis, Anne E.; Siddle, Kenneth

    2009-01-01

    Regulation of mRNA translation is an important mechanism determining the level of expression of proteins in eukaryotic cells. Translation is most commonly initiated by cap-dependent scanning, but many eukaryotic mRNAs contain internal ribosome entry segments (IRESs), providing an alternative means of initiation capable of independent regulation. Here, we show by using dicistronic luciferase reporter vectors that the 5′-UTR of the mRNA encoding human insulin receptor (hIR) contains a functional IRES. RNAi-mediated knockdown showed that the protein PTB was required for maximum IRES activity. Electrophoretic mobility shift assays confirmed that PTB1, PTB2 and nPTB, but not unr or PTB4, bound to hIR mRNA, and deletion mapping implicated a CCU motif 448 nt upstream of the initiator AUG in PTB binding. The IR-IRES was functional in a number of cell lines, and most active in cells of neuronal origin, as assessed by luciferase reporter assays. The IRES was more active in confluent than sub-confluent cells, but activity did not change during differentiation of 3T3-L1 fibroblasts to adipocytes. IRES activity was stimulated by insulin in sub-confluent cells. The IRES may function to maintain expression of IR protein in tissues such as the brain where mRNA translation by cap-dependent scanning is less effective. PMID:19654240

  18. A Long Lasting β1 Adrenergic Receptor Stimulation of cAMP/Protein Kinase A (PKA) Signal in Cardiac Myocytes*

    PubMed Central

    Fu, Qin; Kim, Sungjin; Soto, Dagoberto; De Arcangelis, Vania; DiPilato, Lisa; Liu, Shubai; Xu, Bing; Shi, Qian; Zhang, Jin; Xiang, Yang K.

    2014-01-01

    Small-molecule, ligand-activated G protein-coupled receptors are generally thought to be rapidly desensitized within a period of minutes through receptor phosphorylation and internalization after repeated or prolonged stimulation. This transient G protein-coupled receptor activation remains at odds with many observed long-lasting cellular and physiological responses. Here, using live cell imaging of cAMP with a FRET-based biosensor and myocyte contraction assay, we show that the catecholamine-activated β1 adrenergic receptor (β1AR) continuously stimulates second messenger cAMP synthesis in primary cardiac myocytes and neurons, which lasts for more than 8 h (a decay t½ of 3.9 h) in cardiac myocytes. However, the β1AR-induced cAMP signal is counterbalanced and masked by the receptor-bound phosphodiesterase (PDE) 4D8-dependent cAMP hydrolysis. Inhibition of PDE4 activity recovers the receptor-induced cAMP signal and promotes contractile response in mouse hearts during extended periods of agonist stimulation. β1AR associates with PDE4D8 through the receptor C-terminal PDZ motif-dependent binding to synaptic-associated protein 97 (SAP97). Knockdown of SAP97 or mutation of the β1AR PDZ motif disrupts the complex and promotes sustained agonist-induced cAMP activity, PKA phosphorylation, and cardiac myocyte contraction response. Together, these findings unveil a long lasting adrenergic signal in neurons and myocytes under prolonged stimulation and an underappreciated role of PDE that is essential in classic receptor signaling desensitization and in maintaining a long lasting cAMP equilibrium for ligand-induced physiological response. PMID:24713698

  19. Cross-Desensitization and Cointernalization of H1 and H2 Histamine Receptors Reveal New Insights into Histamine Signal Integration

    PubMed Central

    Alonso, Natalia; Fernandez, Natalia; Notcovich, Cintia; Monczor, Federico; Simaan, May; Baldi, Alberto; Gutkind, J. Silvio; Davio, Carlos

    2013-01-01

    G protein-coupled receptor signaling does not result from sequential activation of a linear pathway of proteins/enzymes, but rather from complex interactions of multiple, branched signaling routes, i.e., signaling networks. In this work we present an exhaustive study of the cross-talk between H1 and H2 histamine receptors (H1R and H2R) in U937 cells and Chinese hamster ovary-transfected cells. By desensitization assays we demonstrated the existence of a crossdesensitization between both receptors independent of protein kinase A or C. H1R-agonist stimulation inhibited cell proliferation and induced apoptosis in U937 cells following treatment of 48 hours. H1R-induced antiproliferative and apoptotic response was inhibited by an H2R agonist suggesting that the cross-talk between both receptors modifies their function. Binding and confocal microscopy studies revealed cointernalization of both receptors upon treatment with the agonists. To evaluate potential heterodimerization of the receptors, sensitized emission fluorescence resonance energy transfer experiments were performed in human embryonic kidney 293T cells using H1R-cyan fluorescent protein and H2R-yellow fluorescent protein. To our knowledge these findings may represent the first demonstration of agonist-induced heterodimerization of the H1R and H2R. In addition, we also show that the inhibition of the internalization process did not prevent receptor crossdesensitization, which was mediated by G protein-coupled receptor kinase 2. Our study provides new insights into the complex signaling network mediated by histamine and further knowledge for the rational use of its ligands. PMID:23462507

  20. c-Src-mediated phosphorylation of AP-2 reveals a general mechanism for receptors internalizing through the clathrin pathway.

    PubMed

    Zimmerman, Brandon; Simaan, May; Lee, Mi-Hye; Luttrell, Louis M; Laporte, Stéphane A

    2009-01-01

    Clathrin-mediated endocytosis is a complex process regulated at many different levels. We showed previously that activation of the angiotensin type 1 receptor (AT1R), which belongs to the G protein-coupled receptor (GPCR) family, leads to c-Src-dependent tyrosine phosphorylation of beta2-adaptin, a subunit of the clathrin adaptor AP-2. The phosphorylation of beta2-adaptin on tyrosine residue 737 (Y737) negatively regulates its interaction with betaarrestin, another important clathrin adaptor for GPCR internalization. Here we sought to determine whether AP-2 phosphorylation represents a general mechanism for different receptors internalizing through the clathrin pathway. Using a specifically designed antibody against the phosphorylated form of Y737 on beta2-adaptin, we demonstrate that this residue is phosphorylated by AT1R in different cell types like HEK293, COS-7 and vascular smooth muscle cells. Using RNA interference approaches, we reveal that this agonist-mediated event is both betaarrestin- and c-Src-dependent, and that it occurs at the plasma membrane in clathrin-coated vesicles (CCVs). We further show that this is not only a common event employed by other GPCRs like the beta2-adrenergic, vasopressin V2, bradykinin type 2, platelet-activating factor and endothelin A receptors but that the epidermal growth factor receptor is capable of eliciting the phosphorylation of AP-2 in CCVs. Our results imply that tyrosine phosphorylation of Y737 on beta2-adaptin is a common regulatory mechanism employed by different receptors undergoing clathrin-dependent endocytosis, and suggest a wider function for this event than originally anticipated. PMID:18938240

  1. A Novel Function of Noc2 in Agonist-Induced Intracellular Ca2+ Increase during Zymogen-Granule Exocytosis in Pancreatic Acinar Cells

    PubMed Central

    Ogata, Sho; Miki, Takashi; Seino, Susumu; Tamai, Seiichi; Kasai, Haruo; Nemoto, Tomomi

    2012-01-01

    Noc2, a putative Rab effector, contributes to secretory-granule exocytosis in neuroendocrine and exocrine cells. Here, using two-photon excitation live-cell imaging, we investigated its role in Ca2+-dependent zymogen granule (ZG) exocytosis in pancreatic acinar cells from wild-type (WT) and Noc2-knockout (KO) mice. Imaging of a KO acinar cell revealed an expanded granular area, indicating ZG accumulation. In our spatiotemporal analysis of the ZG exocytosis induced by agonist (cholecystokinin or acetylcholine) stimulation, the location and rate of progress of ZG exocytosis did not differ significantly between the two strains. ZG exocytosis from KO acinar cells was seldom observed at physiological concentrations of agonists, but was normal (vs. WT) at high concentrations. Flash photolysis of a caged calcium compound confirmed the integrity of the fusion step of ZG exocytosis in KO acinar cells. The decreased ZG exocytosis present at physiological concentrations of agonists raised the possibility of impaired elicitation of calcium spikes. When calcium spikes were evoked in KO acinar cells by a high agonist concentration: (a) they always started at the apical portion and traveled to the basal portion, and (b) calcium oscillations over the 10 µM level were observed, as in WT acinar cells. At physiological concentrations of agonists, however, sufficient calcium spikes were not observed, suggesting an impaired [Ca2+]i-increase mechanism in KO acinar cells. We propose that in pancreatic acinar cells, Noc2 is not indispensable for the membrane fusion of ZG per se, but instead performs a novel function favoring agonist-induced physiological [Ca2+]i increases. PMID:22615885

  2. β2-Adrenergic agonist-induced hypertrophy of the quadriceps skeletal muscle does not modulate disease severity in the rodent meniscectomy model of osteoarthritis

    PubMed Central

    Tonge, D.P.; Jones, S.W.; Parr, T.; Bardsley, R.; Doherty, M.; Maciewicz, R.A.

    2010-01-01

    Summary Objective To examine whether β2-adrenergic agonist-induced hypertrophy of the quadriceps skeletal muscle can modulate the severity of osteoarthritis (OA) in the rodent meniscectomy (MNX) model. Methods Male Lewis rats were subcutaneously administered with 1.5 mg/kg/day clenbuterol hydrochloride (n = 15) or saline vehicle (n = 20) for 14 days. Following pre-treatment, five animals from each group were sacrificed to assess the immediate effects of clenbuterol. The remaining animals underwent either invasive knee surgery (clenbuterol pre-treated n = 10; saline pre-treated n = 10) or a sham control surgical procedure (saline pre-treated n = 5). During disease initiation and progression, weight bearing was assessed by hindlimb loading. Myosin heavy chain (MHC) protein isoforms were quantified by silver stained SDS PAGE. OA severity was graded by assessment of toluidine blue stained step coronal sections of the total knee joint. Results Clenbuterol treatment resulted in an increase in total bodyweight, growth rate and in quadriceps skeletal muscle mass. Meniscal surgery resulted in the development of OA-like lesions, changes to weight bearing, and changes in MHC protein expression in the quadriceps. Clenbuterol-induced skeletal muscle hypertrophy had no effect on either weight bearing or articular pathology following MNX surgery. Conclusions Our data reveal that clenbuterol-induced skeletal muscle hypertrophy is unable to mimic the beneficial clinical effects of increased musculature derived through targeted strength training in humans, in a rodent model of MNX-induced OA. In addition we observed fibre-type switching to “slow twitch” in the quadriceps muscle during the induction of OA that warrants further investigation as to its relationship to joint stability. PMID:20060953

  3. A novel function of Noc2 in agonist-induced intracellular Ca2+ increase during zymogen-granule exocytosis in pancreatic acinar cells.

    PubMed

    Ogata, Sho; Miki, Takashi; Seino, Susumu; Tamai, Seiichi; Kasai, Haruo; Nemoto, Tomomi

    2012-01-01

    Noc2, a putative Rab effector, contributes to secretory-granule exocytosis in neuroendocrine and exocrine cells. Here, using two-photon excitation live-cell imaging, we investigated its role in Ca(2+)-dependent zymogen granule (ZG) exocytosis in pancreatic acinar cells from wild-type (WT) and Noc2-knockout (KO) mice. Imaging of a KO acinar cell revealed an expanded granular area, indicating ZG accumulation. In our spatiotemporal analysis of the ZG exocytosis induced by agonist (cholecystokinin or acetylcholine) stimulation, the location and rate of progress of ZG exocytosis did not differ significantly between the two strains. ZG exocytosis from KO acinar cells was seldom observed at physiological concentrations of agonists, but was normal (vs. WT) at high concentrations. Flash photolysis of a caged calcium compound confirmed the integrity of the fusion step of ZG exocytosis in KO acinar cells. The decreased ZG exocytosis present at physiological concentrations of agonists raised the possibility of impaired elicitation of calcium spikes. When calcium spikes were evoked in KO acinar cells by a high agonist concentration: (a) they always started at the apical portion and traveled to the basal portion, and (b) calcium oscillations over the 10 µM level were observed, as in WT acinar cells. At physiological concentrations of agonists, however, sufficient calcium spikes were not observed, suggesting an impaired [Ca(2+)](i)-increase mechanism in KO acinar cells. We propose that in pancreatic acinar cells, Noc2 is not indispensable for the membrane fusion of ZG per se, but instead performs a novel function favoring agonist-induced physiological [Ca(2+)](i) increases. PMID:22615885

  4. Thymol, a dietary monoterpene phenol abrogates mitochondrial dysfunction in β-adrenergic agonist induced myocardial infarcted rats by inhibiting oxidative stress.

    PubMed

    Nagoor Meeran, M F; Jagadeesh, G S; Selvaraj, P

    2016-01-25

    Mitochondrial dysfunction has been suggested to be one of the important pathological events in isoproterenol (ISO), a synthetic catecholamine and β-adrenergic agonist induced myocardial infarction (MI). In this context, we have evaluated the impact of thymol against ISO induced oxidative stress and calcium uniporter malfunction involved in the pathology of mitochondrial dysfunction in rats. Male albino Wistar rats were pre and co-treated with thymol (7.5 mg/kg body weight) daily for 7 days. Isoproterenol (100 mg/kg body weight) was subcutaneously injected into rats on 6th and 7th day to induce MI. To explore the extent of cardiac mitochondrial damage, the activities/levels of cardiac marker enzymes, mitochondrial lipid peroxidation products, antioxidants, lipids, calcium, adenosine triphosphate and multi marker enzymes were evaluated. Isoproterenol induced myocardial infarcted rats showed a significant increase in the activities of cardiac diagnostic markers, heart mitochondrial lipid peroxidation, lipids, calcium, and a significant decrease in the activities/levels of heart mitochondrial superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, isocitrate, malate, α-ketoglutarate and NADH-dehydrogenases, cytochrome-C-oxidase, and adenosine triphosphate. Thymol pre and co-treatment showed near normalized effects on all the biochemical parameters studied. Transmission electron microscopic findings and mitochondrial swelling studies confirmed our biochemical findings. The in vitro study also revealed the potent free-radical scavenging activity of thymol. Thus, thymol attenuates the involvement of ISO against oxidative stress and calcium uniporter malfunction associated with mitochondrial dysfunction in rats. PMID:26721194

  5. Statins and PPAR{alpha} agonists induce myotoxicity in differentiated rat skeletal muscle cultures but do not exhibit synergy with co-treatment

    SciTech Connect

    Johnson, Timothy E. . E-mail: Timothy_Johnson@merck.com; Zhang, Xiaohua; Shi, Shu; Umbenhauer, Diane R.

    2005-11-01

    Statins and fibrates (weak PPAR{alpha} agonists) are prescribed for the treatment of lipid disorders. Both drugs cause myopathy, but with a low incidence, 0.1-0.5%. However, combined statin and fibrate therapy can enhance myopathy risk. We tested the myotoxic potential of PPAR subtype selective agonists alone and in combination with statins in a differentiated rat myotube model. A pharmacologically potent experimental PPAR{alpha} agonist, Compound A, induced myotoxicity as assessed by TUNEL staining at a minimum concentration of 1 nM, while other weaker PPAR{alpha} compounds, for example, WY-14643, Gemfibrozil and Bezafibrate increased the percentage of TUNEL-positive nuclei at micromolar concentrations. In contrast, the PPAR{gamma} agonist Rosiglitazone caused little or no cell death at up to 10 {mu}M and the PPAR{delta} ligand GW-501516 exhibited comparatively less myotoxicity than that seen with Compound A. An experimental statin (Compound B) and Atorvastatin also increased the percentage of TUNEL-positive nuclei and co-treatment with WY-14643, Gemfibrozil or Bezafibrate had less than a full additive effect on statin-induced cell killing. The mechanism of PPAR{alpha} agonist-induced cell death was different from that of statins. Unlike statins, Compound A and WY-14643 did not activate caspase 3/7. In addition, mevalonate and geranylgeraniol reversed the toxicity caused by statins, but did not prevent the cell killing induced by WY-14643. Furthermore, unlike statins, Compound A did not inhibit the isoprenylation of rab4 or rap1a. Interestingly, Compound A and Compound B had differential effects on ATP levels. Taken together, these observations support the hypothesis that in rat myotube cultures, PPAR{alpha} agonism mediates in part the toxicity response to PPAR{alpha} compounds. Furthermore, PPAR{alpha} agonists and statins cause myotoxicity through distinct and independent pathways.

  6. Increased expression of the collagen internalization receptor uPARAP/Endo180 in the stroma of head and neck cancer.

    PubMed

    Sulek, Jay; Wagenaar-Miller, Rebecca A; Shireman, Jessica; Molinolo, Alfredo; Madsen, Daniel H; Engelholm, Lars H; Behrendt, Niels; Bugge, Thomas H

    2007-04-01

    Local growth, invasion, and metastasis of malignancies of the head and neck involve extensive degradation and remodeling of the underlying, collagen-rich connective tissue. Urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 is an endocytic receptor recently shown to play a critical role in the uptake and intracellular degradation of collagen by mesenchymal cells. As a step toward determining the putative function of uPARAP/Endo180 in head and neck cancer progression, we used immunohistochemistry to determine the expression of this collagen internalization receptor in 112 human squamous cell carcinomas and 19 normal or tumor-adjacent head and neck tissue samples from the tongue, gingiva, cheek, tonsils, palate, floor of mouth, larynx, maxillary sinus, upper jaw, nasopharynx/nasal cavity, and lymph nodes. Specificity of detection was verified by staining of serial sections with two different monoclonal antibodies against two non-overlapping epitopes on uPARAP/Endo180 and by the use of isotype-matched non-immune antibodies. uPARAP/Endo180 expression was observed in stromal fibroblast-like, vimentin-positive cells. Furthermore, expression of the collagen internalization receptor was increased in tumor stroma compared with tumor-adjacent connective tissue or normal submucosal connective tissue and was most prominent in poorly differentiated tumors. These data suggest that uPARAP/Endo180 participates in the connective tissue destruction during head and neck squamous cell carcinoma progression by mediating cellular uptake and lysosomal degradation of collagen. PMID:17189524

  7. Ephrinb1 and Ephrinb2 Are Associated with Interleukin-7 Receptor α and Retard Its Internalization from the Cell Surface*

    PubMed Central

    Luo, Hongyu; Wu, Zenghui; Qi, Shijie; Jin, Wei; Han, Bing; Wu, Jiangping

    2011-01-01

    IL-7 plays vital roles in thymocyte development, T cell homeostasis, and the survival of these cells. IL-7 receptor α (IL-7Rα) on thymocytes and T cells is rapidly internalized upon IL-7 ligation. Ephrins (Efns) are cell surface molecules and ligands of the largest receptor kinase family, Eph kinases. We discovered that T cell-specific double gene knock-out (dKO) of Efnb1 and Efnb2 in mice led to reduced IL-7Rα expression in thymocytes and T cells, and that IL-7Rα down-regulation was accelerated in dKO CD4 cells upon IL-7 treatment. On the other hand, Efnb1 and Efnb2 overexpression on T cell lymphoma EL4 cells retarded IL-7Rα down-regulation. dKO T cells manifested compromised STAT5 activation and homeostatic proliferation, an IL-7-dependent process. Fluorescence resonance energy transfer and immunoprecipitation demonstrated that Efnb1 and Efnb2 interacted physically with IL-7Rα. Such interaction likely retarded IL-7Rα internalization, as Efnb1 and Efnb2 were not internalized. Therefore, we revealed a novel function of Efnb1 and Efnb2 in stabilizing IL-7Rα expression at the post-translational level, and a previously unknown modus operandi of Efnbs in the regulation of expression of other vital cell surface receptors. PMID:22069310

  8. A negatively charged transmembrane aspartate residue controls activation of the relaxin-3 receptor RXFP3.

    PubMed

    Liu, Yu; Zhang, Lei; Shao, Xiao-Xia; Hu, Meng-Jun; Liu, Ya-Li; Xu, Zeng-Guang; Guo, Zhan-Yun

    2016-08-15

    Relaxin-3 is an insulin/relaxin superfamily neuropeptide involved in the regulation of food intake and stress response via activation of its cognate receptor RXFP3, an A-class G protein-coupled receptor (GPCR). In recent studies, a highly conserved ExxxD motif essential for binding of relaxin-3 has been identified at extracellular end of the second transmembrane domain (TMD2) of RXFP3. For most of the A-class GPCRs, a highly conserved negatively charged Asp residue (Asp(2.50) using Ballesteros-Weinstein numbering and Asp128 in human RXFP3) is present at the middle of TMD2. To elucidate function of the conserved transmembrane Asp128, in the present work we replaced it with other residues and the resultant RXFP3 mutants all retained quite high ligand-binding potency, but their activation and agonist-induced internalization were abolished or drastically decreased. Thus, the negatively charged transmembrane Asp128 controlled transduction of agonist-binding information from the extracellular region to the intracellular region through maintaining RXFP3 in a metastable state for efficient conformational change induced by binding of an agonist. PMID:27353281

  9. International Union of Basic and Clinical Pharmacology. XCIII. The Parathyroid Hormone Receptors—Family B G Protein–Coupled Receptors

    PubMed Central

    Vilardaga, Jean-Pierre

    2015-01-01

    The type-1 parathyroid hormone receptor (PTHR1) is a family B G protein–coupled receptor (GPCR) that mediates the actions of two polypeptide ligands; parathyroid hormone (PTH), an endocrine hormone that regulates the levels of calcium and inorganic phosphate in the blood by acting on bone and kidney, and PTH-related protein (PTHrP), a paracrine-factor that regulates cell differentiation and proliferation programs in developing bone and other tissues. The type-2 parathyroid hormone receptor (PTHR2) binds a peptide ligand, called tuberoinfundibular peptide-39 (TIP39), and while the biologic role of the PTHR2/TIP39 system is not as defined as that of the PTHR1, it likely plays a role in the central nervous system as well as in spermatogenesis. Mechanisms of action at these receptors have been explored through a variety of pharmacological and biochemical approaches, and the data obtained support a basic “two-site” mode of ligand binding now thought to be used by each of the family B peptide hormone GPCRs. Recent crystallographic studies on the family B GPCRs are providing new insights that help to further refine the specifics of the overall receptor architecture and modes of ligand docking. One intriguing pharmacological finding for the PTHR1 is that it can form surprisingly stable complexes with certain PTH/PTHrP ligand analogs and thereby mediate markedly prolonged cell signaling responses that persist even when the bulk of the complexes are found in internalized vesicles. The PTHR1 thus appears to be able to activate the Gαs/cAMP pathway not only from the plasma membrane but also from the endosomal domain. The cumulative findings could have an impact on efforts to develop new drug therapies for the PTH receptors. PMID:25713287

  10. Homologous desensitization of human histamine H₃ receptors expressed in CHO-K1 cells.

    PubMed

    Osorio-Espinoza, Angélica; Escamilla-Sánchez, Juan; Aquino-Jarquin, Guillermo; Arias-Montaño, José-Antonio

    2014-02-01

    Histamine H₃ receptors (H₃Rs) modulate the function of the nervous system at the pre- and post-synaptic levels. In this work we aimed to determine whether, as other G protein-coupled receptors (GPCRs), H₃Rs desensitize in response to agonist exposure. By using CHO-K1 cells stably transfected with the human H₃R (hH3R) we show that functional responses (inhibition of forskolin-induced cAMP accumulation in intact cells and stimulation of [(35)S]-GTPγS binding to cell membranes) were markedly reduced after agonist exposure. For cAMP accumulation assays the effect was significant at 60 min with a maximum at 90 min. Agonist exposure resulted in decreased binding sites for the radioligand [(3)H]-N-methyl-histamine ([(3)H]-NMHA) to intact cells and modified the sub-cellular distribution of H₃Rs, as detected by sucrose density gradients and [(3)H]-NMHA binding to cell membranes, suggesting receptor internalization. The reduction in the inhibition of forskolin-stimulated cAMP formation observed after agonist pre-incubation was prevented by incubation in hypertonic medium or in ice-cold medium. Agonist-induced loss in binding sites was also prevented by hypertonic medium or incubation at 4 °C, but not by filipin III, indicating clathrin-dependent endocytosis. Immunodetection showed that CHO-K1 cells express GPCR kinases (GRKs) 2/3, and both the GRK general inhibitor ZnCl₂ and a small interfering RNA against GRK-2 reduced receptor desensitization. Taken together these results indicate that hH₃Rs experience homologous desensitization upon prolonged exposure to agonists, and that this process involves the action of GRK-2 and internalization via clathrin-coated vesicles. PMID:24161268

  11. Agonist-selective mechanisms of mu-opioid receptor desensitization in human embryonic kidney 293 cells.

    PubMed

    Johnson, Elizabeth A; Oldfield, Sue; Braksator, Ellen; Gonzalez-Cuello, Ana; Couch, Daniel; Hall, Kellie J; Mundell, Stuart J; Bailey, Chris P; Kelly, Eamonn; Henderson, Graeme

    2006-08-01

    The ability of two opioid agonists, [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) and morphine, to induce mu-opioid receptor (MOR) phosphorylation, desensitization, and internalization was examined in human embryonic kidney (HEK) 293 cells expressing rat MOR1 as well G protein-coupled inwardly rectifying potassium channel (GIRK) channel subunits. Both DAMGO and morphine activated GIRK currents, but the maximum response to DAMGO was greater than that of morphine, indicating that morphine is a partial agonist. The responses to DAMGO and morphine desensitized rapidly in the presence of either drug. Expression of a dominant negative mutant G protein-coupled receptor kinase 2 (GRK2), GRK2-K220R, markedly attenuated the DAMGO-induced desensitization of MOR1, but it had no effect on morphine-induced MOR1 desensitization. In contrast, inhibition of protein kinase C (PKC) either by the PKC inhibitory peptide PKC (19-31) or staurosporine reduced MOR1 desensitization by morphine but not that induced by DAMGO. Morphine and DAMGO enhanced MOR1 phosphorylation over basal. The PKC inhibitor bisindolylmaleimide 1 (GF109203X) inhibited MOR1 phosphorylation under basal conditions and in the presence of morphine, but it did not inhibit DAMGO-induced phosphorylation. DAMGO induced arrestin-2 translocation to the plasma membrane and considerable MOR1 internalization, whereas morphine did not induce arrestin-2 translocation and induced very little MOR1 internalization. Thus, DAMGO and morphine each induce desensitization of MOR1 signaling in HEK293 cells but by different molecular mechanisms; DAMGO-induced desensitization is GRK2-dependent, whereas morphine-induced desensitization is in part PKC-dependent. MORs desensitized by DAMGO activation are then readily internalized by an arrestin-dependent mechanism, whereas those desensitized by morphine are not. These data suggest that opioid agonists induce different conformations of the MOR that are susceptible to different

  12. Direct demonstration of insulin receptor internalization. A quantitative electron microscopic study of covalently bound /sup 125/I-photoreactive insulin incubated with isolated hepatocytes

    SciTech Connect

    Gorden, P.; Carpentier, J.L.; Moule, M.L.; Yip, C.C.; Orci, L.

    1982-07-01

    When /sup 125/I-insulin is incubated with isolated rodent hepatocytes at 37 degrees C, the ligand initially binds to the plasma membrane of the cell and is subsequently internalized by adsorptive endocytosis. To confirm directly that the insulin receptor is internalized with the ligand, we covalently linked photoreactive /sup 125/I-N sigma B29 (azidobenzoyl) insulin to its specific hepatocyte receptor and followed its fate by quantitative electron microscopic autoradiography. We found that the covalently linked photoreactive insulin is internalized by the cell in fashion analogous to the internalization of ordinary /sup 125/I-insulin, indicating that, at least under these conditions, the insulin receptor is internalized with the ligand.

  13. Quantitative analysis of G-protein-coupled receptor internalization using DnaE intein-based assay.

    PubMed

    Lu, Bin; Chen, Linjie; Zhang, Yaping; Shi, Ying; Zhou, Naiming

    2016-01-01

    G-protein-coupled receptors (GPCRs), the largest family of cell surface receptors, are involved in many physiological processes. They represent highly important therapeutic targets for drug discovery. Currently, there are numerous cell-based assays developed for the pharmacological profiling of GPCRs and the identification of novel agonists and antagonists. However, the development of new, faster, easier, and more cost-effective approaches to detect GPCR activity remains highly desirable. β-arrestin-dependent internalization has been demonstrated to be a common mechanism for most GPCRs. Here we describe a novel assay for quantitative analysis of GPCR internalization based on DnaE intein-mediated reconstitution of fragmented Renilla luciferase or Firefly luciferase when activated GPCRs interact with β-arrestin2 or Rab5. Further validation, using functionally divergent GPCRs, showed that EC50 values obtained for the known agonists and antagonists were in close agreement with the results of previous reports. This suggests that this assay is sensitive enough to permit quantification of GPCR internalization. Compared with conventional assays, this novel assay system is cost-effective, rapid, and easy to manipulate. These advantages may allow this assay to be used universally as a functional cell-based system for GPCR characterization and in the screening process of drug discovery. PMID:26928549

  14. N-METHYL-d-ASPARTATE RECEPTORS AND LARGE CONDUCTANCE CALCIUM-SENSITIVE POTASSIUM CHANNELS INHIBIT THE RELEASE OF OPIOID PEPTIDES THAT INDUCE μ-OPIOID RECEPTOR INTERNALIZATION IN THE RAT SPINAL CORD

    PubMed Central

    SONG, B.; MARVIZÓN, J. C. G.

    2006-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the μ-opioid receptor, we measured μ-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced μ-opioid receptor internalization in half of the μ-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-d-aspartate (IC50=2 μM), and N-methyl-d-aspartate antagonists prevented this effect. μ-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-d-aspartate receptor activation. N-methyl-d-aspartate did not affect μ-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-d-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-d-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase μ-opioid receptor internalization in the absence of N-methyl-d-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked μ-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-d-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since μ-opioid receptors in the dorsal horn

  15. N-methyl-D-aspartate receptors and large conductance calcium-sensitive potassium channels inhibit the release of opioid peptides that induce mu-opioid receptor internalization in the rat spinal cord.

    PubMed

    Song, B; Marvizón, J C G

    2005-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the mu-opioid receptor, we measured mu-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced mu-opioid receptor internalization in half of the mu-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-D-aspartate (IC50=2 microM), and N-methyl-D-aspartate antagonists prevented this effect. mu-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-D-aspartate receptor activation. N-methyl-D-aspartate did not affect mu-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-D-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-D-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase mu-opioid receptor internalization in the absence of N-methyl-D-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked mu-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-D-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since mu-opioid receptors in the dorsal horn

  16. Rigidified 2-aminopyrimidines as histamine H4 receptor antagonists: effects of substitution about the rigidifying ring.

    PubMed

    Koenig, John R; Liu, Huaqing; Drizin, Irene; Witte, David G; Carr, Tracy L; Manelli, Arlene M; Milicic, Ivan; Strakhova, Marina I; Miller, Thomas R; Esbenshade, Timothy A; Brioni, Jorge D; Cowart, Marlon

    2010-03-15

    Three novel series of histamine H(4) receptor (H(4)R) antagonists containing the 2-aminopyrimidine motif are reported. The best of these compounds display good in vitro potency in both functional and binding assays. In addition, representative compounds are able to completely block itch responses when dosed ip in a mouse model of H(4)-agonist induced scratching, thus demonstrating their activities as H(4)R antagonists. PMID:20171098

  17. Luteinizing hormone/chorionic gonadotrophin receptor overexpressed in granulosa cells from polycystic ovary syndrome ovaries is functionally active.

    PubMed

    Kanamarlapudi, Venkateswarlu; Gordon, Uma D; López Bernal, Andrés

    2016-06-01

    Polycystic ovarian syndrome (PCOS) is associated with anovulatory infertility. Luteinizing hormone/chorionic gonadotrophin receptor (LHCGR), which is critical for ovulation, has been suggested to be expressed prematurely in the ovarian follicles of women with PCOS. This study aimed to analyse the expression and activity of LHCGR in ovarian granulosa cells from PCOS patients and the involvement of ARF6 small GTPase in LHCGR internalization. Granulosa cells (GC) isolated from follicular fluid collected during oocyte retrieval from normal women (n = 19) and women with PCOS (n = 17) were used to study differences in LHCGR protein expression and activity between normal and PCOS patients. LHCGR expression is up-regulated in GC from PCOS women. LHCGR in PCOS GC is functionally active, as shown by increased cAMP production upon human gonadotrophin (HCG)-stimulation. Moreover, ARF6 is highly expressed in GC from PCOS patients and HCG-stimulation increases the concentrations of active ARF6. The inhibition of ARF6 activation attenuates HCG-induced LHCGR internalization in both normal and PCOS GC, indicating that there are no alterations in LHCGR internalisation in GC from PCOS. In conclusion, the expression and activation of LHCGR and ARF6 are up-regulated in GC from PCOS women but the mechanism of agonist-induced LHCGR internalization is unaltered. PMID:27061682

  18. Epidermal growth factor receptors destined for the nucleus are internalized via a clathrin-dependent pathway

    SciTech Connect

    De Angelis Campos, Ana Carolina; Rodrigues, Michele Angela; Andrade, Carolina de; Miranda de Goes, Alfredo; Nathanson, Michael H.; Gomes, Dawidson A.

    2011-08-26

    Highlights: {yields} EGF and its receptor translocates to the nucleus in liver cells. {yields} Real time imaging shows that EGF moves to the nucleus. {yields} EGF moves with its receptor to the nucleus. {yields} Dynamin and clathrin are necessary for EGFR nuclear translocation. -- Abstract: The epidermal growth factor (EGF) transduces its actions via the EGF receptor (EGFR), which can traffic from the plasma membrane to either the cytoplasm or the nucleus. However, the mechanism by which EGFR reaches the nucleus is unclear. To investigate these questions, liver cells were analyzed by immunoblot of cell fractions, confocal immunofluorescence and real time confocal imaging. Cell fractionation studies showed that EGFR was detectable in the nucleus after EGF stimulation with a peak in nuclear receptor after 10 min. Movement of EGFR to the nucleus was confirmed by confocal immunofluorescence and labeled EGF moved with the receptor to the nucleus. Small interference RNA (siRNA) was used to knockdown clathrin in order to assess the first endocytic steps of EGFR nuclear translocation in liver cells. A mutant dynamin (dynamin K44A) was also used to determine the pathways for this traffic. Movement of labeled EGF or EGFR to the nucleus depended upon dynamin and clathrin. This identifies the pathway that mediates the first steps for EGFR nuclear translocation in liver cells.

  19. Primary Macrophage Chemotaxis Induced by Cannabinoid Receptor 2 Agonists Occurs Independently of the CB2 Receptor

    PubMed Central

    Taylor, Lewis; Christou, Ivy; Kapellos, Theodore S.; Buchan, Alice; Brodermann, Maximillian H.; Gianella-Borradori, Matteo; Russell, Angela; Iqbal, Asif J.; Greaves, David R.

    2015-01-01

    Activation of CB2 has been demonstrated to induce directed immune cell migration. However, the ability of CB2 to act as a chemoattractant receptor in macrophages remains largely unexplored. Using a real-time chemotaxis assay and a panel of chemically diverse and widely used CB2 agonists, we set out to examine whether CB2 modulates primary murine macrophage chemotaxis. We report that of 12 agonists tested, only JWH133, HU308, L-759,656 and L-759,633 acted as macrophage chemoattractants. Surprisingly, neither pharmacological inhibition nor genetic ablation of CB2 had any effect on CB2 agonist-induced macrophage chemotaxis. As chemotaxis was pertussis toxin sensitive in both WT and CB2-/- macrophages, we concluded that a non-CB1/CB2, Gi/o-coupled GPCR must be responsible for CB2 agonist-induced macrophage migration. The obvious candidate receptors GPR18 and GPR55 could not mediate JWH133 or HU308-induced cytoskeletal rearrangement or JWH133-induced β-arrestin recruitment in cells transfected with either receptor, demonstrating that neither are the unidentified GPCR. Taken together our results conclusively demonstrate that CB2 is not a chemoattractant receptor for murine macrophages. Furthermore we show for the first time that JWH133, HU308, L-759,656 and L-759,633 have off-target effects of functional consequence in primary cells and we believe that our findings have wide ranging implications for the entire cannabinoid field. PMID:26033291

  20. International Union of Basic and Clinical Pharmacology. LXXXVIII. G Protein-Coupled Receptor List: Recommendations for New Pairings with Cognate Ligands

    PubMed Central

    Alexander, Stephen P. H.; Sharman, Joanna L.; Pawson, Adam J.; Benson, Helen E.; Monaghan, Amy E.; Liew, Wen Chiy; Mpamhanga, Chidochangu P.; Bonner, Tom I.; Neubig, Richard R.; Pin, Jean Philippe; Spedding, Michael; Harmar, Anthony J.

    2013-01-01

    In 2005, the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR) published a catalog of all of the human gene sequences known or predicted to encode G protein-coupled receptors (GPCRs), excluding sensory receptors. This review updates the list of orphan GPCRs and describes the criteria used by NC-IUPHAR to recommend the pairing of an orphan receptor with its cognate ligand(s). The following recommendations are made for new receptor names based on 11 pairings for class A GPCRs: hydroxycarboxylic acid receptors [HCA1 (GPR81) with lactate, HCA2 (GPR109A) with 3-hydroxybutyric acid, HCA3 (GPR109B) with 3-hydroxyoctanoic acid]; lysophosphatidic acid receptors [LPA4 (GPR23), LPA5 (GPR92), LPA6 (P2Y5)]; free fatty acid receptors [FFA4 (GPR120) with omega-3 fatty acids]; chemerin receptor (CMKLR1; ChemR23) with chemerin; CXCR7 (CMKOR1) with chemokines CXCL12 (SDF-1) and CXCL11 (ITAC); succinate receptor (SUCNR1) with succinate; and oxoglutarate receptor [OXGR1 with 2-oxoglutarate]. Pairings are highlighted for an additional 30 receptors in class A where further input is needed from the scientific community to validate these findings. Fifty-seven human class A receptors (excluding pseudogenes) are still considered orphans; information has been provided where there is a significant phenotype in genetically modified animals. In class B, six pairings have been reported by a single publication, with 28 (excluding pseudogenes) still classified as orphans. Seven orphan receptors remain in class C, with one pairing described by a single paper. The objective is to stimulate research into confirming pairings of orphan receptors where there is currently limited information and to identify cognate ligands for the remaining GPCRs. Further information can be found on the IUPHAR Database website (http://www.iuphar-db.org). PMID:23686350

  1. Cryptococcus neoformans Is Internalized by Receptor-Mediated or ‘Triggered’ Phagocytosis, Dependent on Actin Recruitment

    PubMed Central

    Guerra, Caroline Rezende; Seabra, Sergio Henrique; de Souza, Wanderley; Rozental, Sonia

    2014-01-01

    Cryptococcosis by the encapsulated yeast Cryptococcus neoformans affects mostly immunocompromised individuals and is a frequent neurological complication in AIDS patients. Recent studies support the idea that intracellular survival of Cryptococcus yeast cells is important for the pathogenesis of cryptococcosis. However, the initial steps of Cryptococcus internalization by host cells remain poorly understood. Here, we investigate the mechanism of Cryptococcus neoformans phagocytosis by peritoneal macrophages using confocal and electron microscopy techniques, as well as flow cytometry quantification, evaluating the importance of fungal capsule production and of host cell cytoskeletal elements for fungal phagocytosis. Electron microscopy analyses revealed that capsular and acapsular strains of C. neoformans are internalized by macrophages via both ‘zipper’ (receptor-mediated) and ‘trigger’ (membrane ruffle-dependent) phagocytosis mechanisms. Actin filaments surrounded phagosomes of capsular and acapsular yeasts, and the actin depolymerizing drugs cytochalasin D and latrunculin B inhibited yeast internalization and actin recruitment to the phagosome area. In contrast, nocodazole and paclitaxel, inhibitors of microtubule dynamics decreased internalization but did not prevent actin recruitment to the site of phagocytosis. Our results show that different uptake mechanisms, dependent on both actin and tubulin dynamics occur during yeast internalization by macrophages, and that capsule production does not affect the mode of Cryptococcus uptake by host cells. PMID:24586631

  2. [TOLL-LIKE RECEPTORS IN COSMONAUT'S PERIPHERAL BLOOD CELLS AFTER LONG-DURATION MISSIONS TO THE INTERNATIONAL SPACE STATION].

    PubMed

    Berendeeva, T A; Ponomarev, S A; Antropova, E N; Rykova, M P

    2015-01-01

    Studies of Toll-like receptors (TLR) in 20 cosmonauts-members of long-duration (124-199-day) missions to the International space station evidenced changes in relative and absolute counts of peripheral blood monocytes with TLR2, TLR4 and TLR6 on the surface, expression of TLR2 and TLR6 genes, and genes of molecules involved in the TLR signaling pathway and TLR-related NF-KB-, JNK/p38- and IRF pathways on the day of return to Earth. The observed changes displayed individual variability. PMID:26934790

  3. Increased Neuronal Expression of Neurokinin-1 Receptor and Stimulus-Evoked Internalization of the Receptor in the Rostral Ventromedial Medulla of the Rat after Peripheral Inflammatory Injury1

    PubMed Central

    Hamity, Marta V.; Walder, Roxanne Y.; Hammond, Donna L.

    2014-01-01

    This study examined possible mechanisms by which Substance P (Sub P) assumes a pronociceptive role in the rostral ventromedial medulla (RVM) under conditions of peripheral inflammatory injury, in this case produced by intraplantar (ipl) injection of complete Freund’s adjuvant (CFA). In saline- and CFA-treated rats, neurokinin-1 receptor (NK1R) immunoreactivity was localized to neurons in the RVM. Four days after ipl injection of CFA, the number of NK1R immunoreactive neurons in the RVM was increased by 30%, and there was a concomitant increase in NK1R immunoreactive processes in CFA-treated rats. Although NK1R immunoreactivity was increased, tachykinin-1 receptor (Tacr1) mRNA was not increased in the RVM of CFA-treated rats. To assess changes in Sub P release, the number of RVM neurons that exhibited NK1R internalization was examined in saline- and CFA-treated rats following noxious heat stimulation of the hind paws. Only CFA-treated rats that experienced noxious heat stimulation exhibited a significant increase in the number of neurons showing NK1R internalization. These data suggest that tonic Sub P release is not increased as a simple consequence of peripheral inflammation, but that phasic or evoked release of Sub P in the RVM is increased in response to noxious peripheral stimulation in a persistent inflammatory state. These data support the proposal that an upregulation of the NK1R in the RVM, as well as enhanced release of Sub P following noxious stimulation underlie the pronociceptive role of Sub P under conditions of persistent inflammatory injury. PMID:24639151

  4. Methylation of the Glucocorticoid Receptor Gene Promoter in Preschoolers: Links with Internalizing Behavior Problems

    ERIC Educational Resources Information Center

    Parade, Stephanie H.; Ridout, Kathryn K.; Seifer, Ronald; Armstrong, David A.; Marsit, Carmen J.; McWilliams, Melissa A.; Tyrka, Audrey R.

    2016-01-01

    Accumulating evidence suggests that early adversity is linked to methylation of the glucocorticoid receptor (GR) gene, "NR3C1," which is a key regulator of the hypothalamic-pituitary-adrenal axis. Yet no prior work has considered the contribution of methylation of "NR3C1" to emerging behavior problems and psychopathology in…

  5. Hepatitis C Virus Induces Epidermal Growth Factor Receptor Activation via CD81 Binding for Viral Internalization and Entry

    PubMed Central

    Diao, Jingyu; Pantua, Homer; Ngu, Hai; Komuves, Laszlo; Diehl, Lauri; Schaefer, Gabriele

    2012-01-01

    While epidermal growth factor receptor (EGFR) has been shown to be important in the entry process for multiple viruses, including hepatitis C virus (HCV), the molecular mechanisms by which EGFR facilitates HCV entry are not well understood. Using the infectious cell culture HCV model (HCVcc), we demonstrate that the binding of HCVcc particles to human hepatocyte cells induces EGFR activation that is dependent on interactions between HCV and CD81 but not claudin 1. EGFR activation can also be induced by antibody mediated cross-linking of CD81. In addition, EGFR ligands that enhance the kinetics of HCV entry induce EGFR internalization and colocalization with CD81. While EGFR kinase inhibitors inhibit HCV infection primarily by preventing EGFR endocytosis, antibodies that block EGFR ligand binding or inhibitors of EGFR downstream signaling have no effect on HCV entry. These data demonstrate that EGFR internalization is critical for HCV entry and identify a hitherto-unknown association between CD81 and EGFR. PMID:22855500

  6. The Heat Shock Cognate Protein hsc73 Assembles with A1 Adenosine Receptors To Form Functional Modules in the Cell Membrane

    PubMed Central

    Sarrió, Sara; Casadó, Vicent; Escriche, Marisol; Ciruela, Francisco; Mallol, Josefa; Canela, Enric I.; Lluis, Carmen; Franco, Rafael

    2000-01-01

    A1 adenosine receptors (A1Rs) are G protein-coupled heptaspanning receptors that interact at the outer face of the plasma membrane with cell surface ecto-adenosine deaminase (ecto-ADA). By affinity chromatography the heat shock cognate protein hsc73 was identified as a cytosolic component able to interact with the third intracellular loop of the receptor. As demonstrated by surface plasmon resonance, purified A1Rs interact specifically with hsc73 with a dissociation constant in the nanomolar range (0.5 ± 0.1 nM). The interaction between hsc73 and A1R led to a marked reduction in the binding of the ligands and prevented activation of G proteins, as deduced from 35S-labeled guanosine-5′-O-(3-thio)triphosphate binding assays. Interestingly this effect was stronger than that exerted by guanine nucleotide analogs, which uncouple receptors from G proteins, and was completely prevented by ADA. As assessed by immunoprecipitation a high percentage of A1Rs in cell lysates are coupled to hsc73. A relatively high level of colocalization between A1R and hsc73 was detected in DDT1MF-2 cells by means of confocal microscopy, and no similar results were obtained for other G protein-coupled receptors. Colocalization between hsc73 and A1R was detected in specific regions of rat cerebellum and in the body of cortical neurons but not in dendrites or synapses. Remarkably, agonist-induced receptor internalization leads to the endocytosis of A1Rs by two qualitatively different vesicle types, one in which A1R and hsc73 colocalize and another in which hsc73 is absent. These results open the interesting possibility that signaling via G protein-coupled receptors may be regulated by heat shock proteins. PMID:10866672

  7. A Broad G Protein-Coupled Receptor Internalization Assay that Combines SNAP-Tag Labeling, Diffusion-Enhanced Resonance Energy Transfer, and a Highly Emissive Terbium Cryptate

    PubMed Central

    Levoye, Angélique; Zwier, Jurriaan M.; Jaracz-Ros, Agnieszka; Klipfel, Laurence; Cottet, Martin; Maurel, Damien; Bdioui, Sara; Balabanian, Karl; Prézeau, Laurent; Trinquet, Eric; Durroux, Thierry; Bachelerie, Françoise

    2015-01-01

    Although G protein-coupled receptor (GPCR) internalization has long been considered as a major aspect of the desensitization process that tunes ligand responsiveness, internalization is also involved in receptor resensitization and signaling, as well as the ligand scavenging function of some atypical receptors. Internalization thus contributes to the diversity of GPCR-dependent signaling, and its dynamics and quantification in living cells has generated considerable interest. We developed a robust and sensitive assay to follow and quantify ligand-induced and constitutive-induced GPCR internalization but also receptor recycling in living cells. This assay is based on diffusion-enhanced resonance energy transfer (DERET) between cell surface GPCRs labeled with a luminescent terbium cryptate donor and a fluorescein acceptor present in the culture medium. GPCR internalization results in a quantifiable reduction of energy transfer. This method yields a high signal-to-noise ratio due to time-resolved measurements. For various GPCRs belonging to different classes, we demonstrated that constitutive and ligand-induced internalization could be monitored as a function of time and ligand concentration, thus allowing accurate quantitative determination of kinetics of receptor internalization but also half-maximal effective or inhibitory concentrations of compounds. In addition to its selectivity and sensitivity, we provided evidence that DERET-based internalization assay is particularly suitable for characterizing biased ligands. Furthermore, the determination of a Z′-factor value of 0.45 indicates the quality and suitability of DERET-based internalization assay for high-throughput screening (HTS) of compounds that may modulate GPCRs internalization. PMID:26617570

  8. Effect of size and conformation of the ligand on asialoglycoprotein receptor-mediated ligand internalization and degradation in rat hepatocytes

    SciTech Connect

    Chang, C.H.; Chang, T.M.

    1987-05-01

    The rates of internalization and degradation of /sup 125/-I-labeled desialylated cyanogen bromide fragment I of orosomucoid (AS-CNBr-I) and its reduced and carboxymethylated derivative (AS-RC-CNBr-I) were compared with those of /sup 125/I-labeled asialoorosomucoid (ASOR) in rat hepatocytes. At 30 nM the rates of internalization and degradation of /sup 125/I-AS-CNBr-I were greater than those of /sup 125/I-ASOR. /sup 125/I-AS-RC-CNBr-I also had a lower rate of internalization and degradation. In contrast to /sup 125/I-ASOR, when degradation was inhibited by 5 ..mu..M colchicine there was a significant intracellular accumulation of the smaller ligands. At 4/sup 0/C the hepatocytes were found to bind the fragmented ligands more than /sup 125/I-ASOR. Incubation of the cells with bound ligand at 37/sup 0/ indicated that diacytosis of /sup 125/I-ASOR was greater than the smaller ligands. Colchincine markedly enhanced diacytosis of /sup 125/I-ASOR. On the other hand, there were marked accumulation of the smaller ligands by colchicine. These results suggest that the rates of internalization, degradation and diacytosis of the ligand are affected by the size and conformation of the ligand through different rates of receptor binding and intracellular transport.

  9. Identifying bias in CCR1 antagonists using radiolabelled binding, receptor internalization, β-arrestin translocation and chemotaxis assays

    PubMed Central

    Gilchrist, A; Gauntner, T D; Fazzini, A; Alley, K M; Pyen, D S; Ahn, J; Ha, S J; Willett, A; Sansom, S E; Yarfi, J L; Bachovchin, K A; Mazzoni, M R; Merritt, J R

    2014-01-01

    Background and Purpose Investigators have suggested that the chemokine receptor CCR1 plays a role in multiple myeloma. Studies using antisense and neutralizing antibodies to CCR1 showed that down-regulation of the receptor altered disease progression in a mouse model. More recently, experiments utilizing scid mice injected with human myeloma cells demonstrated that the CCR1 antagonist BX471 reduced osteolytic lesions, while the CCR1 antagonist MLN-3897 prevented myeloma cell adhesion to osteoclasts. However, information is limited regarding the pharmacology of CCR1 antagonists in myeloma cells. Experimental Approach We compared several well-studied CCR1 antagonists including AZD4818, BX471, CCX354, CP-481715, MLN-3897 and PS899877 for their ability to inhibit binding of [125I]-CCL3 in vitro using membranes prepared from RPMI 8226 cells, a human multiple myeloma cell line that endogenously expresses CCR1. In addition, antagonists were assessed for their ability to modulate CCL3-mediated internalization of CCR1 and CCL3-mediated cell migration using RPMI 8226 cells. As many GPCRs signal through β–arrestin-dependent pathways that are separate and distinct from those driven by G-proteins, we also evaluated the compounds for their ability to alter β-arrestin translocation. Key Results There were clear differences between the CCR1 antagonists in their ability to inhibit CCL3 binding to myeloma cells, as well as in their ability to inhibit G–protein-dependent and -independent functional responses. Conclusions and Implications Our studies demonstrate that tissue phenotype seems to be relevant with regards to CCR1. Moreover, it appears that for CCR1 antagonists, inhibition of β-arrestin translocation is not necessarily linked to chemotaxis or receptor internalization. PMID:24990525

  10. Binding of Gq protein stabilizes the activated state of the muscarinic receptor type 1.

    PubMed

    Tateyama, Michihiro; Kubo, Yoshihiro

    2013-02-01

    Activation of G protein coupled receptors (GPCRs) induces various cellular responses through interactions with G proteins. The key trigger of GPCR activation is agonist binding. It is reportedly known that the agonist-bound active conformation of the GPCRs, such as the muscarinic acetylcholine receptor type 1 (M(1)R), can be affected by the coupling of G proteins and by depolarization of the membrane potential. Here we aimed at investigating their effects on the structural rearrangements of the M(1)Rs between the active and quiescent states, using the fluorescence resonance energy transfer (FRET) technique. For this purpose, fluorescent M(1)R constructs that maintained intact activation of the Gq pathway and interaction with Gq were used. We captured the agonist-induced conformational changes of the M(1)R as the FRET decreases and found that the FRET decreases were enhanced by co-expression of the Gq subunits. In addition, co-expression of the Gq subunits decelerated the recovery of the declined FRET upon removal of the agonists, which was slower than the dissociation of the Gq subunits from the receptor. These results suggested that Gq binding stabilizes the agonist-induced activated conformation of the M(1)R. We also found that depolarization of the membrane potential slightly but significantly enhanced the agonist-induced FRET decrease, by accelerating the agonist-induced conformational changes. Thus, structural rearrangement analyses by FRET revealed that Gq coupling stabilizes the active conformation of the M(1)R and also suggested that depolarization accelerates the transition from quiescent to activation conformation. PMID:23085334

  11. International Union of Basic and Clinical Pharmacology. XCVI. Pattern Recognition Receptors in Health and Disease

    PubMed Central

    Orr, Selinda; Ferguson, Brian; Symmons, Martyn F.; Boyle, Joseph P.; Monie, Tom P.

    2015-01-01

    Since the discovery of Toll, in the fruit fly Drosophila melanogaster, as the first described pattern recognition receptor (PRR) in 1996, many families of these receptors have been discovered and characterized. PRRs play critically important roles in pathogen recognition to initiate innate immune responses that ultimately link to the generation of adaptive immunity. Activation of PRRs leads to the induction of immune and inflammatory genes, including proinflammatory cytokines and chemokines. It is increasingly clear that many PRRs are linked to a range of inflammatory, infectious, immune, and chronic degenerative diseases. Several drugs to modulate PRR activity are already in clinical trials and many more are likely to appear in the near future. Here, we review the different families of mammalian PRRs, the ligands they recognize, the mechanisms of activation, their role in disease, and the potential of targeting these proteins to develop the anti-inflammatory therapeutics of the future. PMID:25829385

  12. Regulation of µ-Opioid Receptors: Desensitization, Phosphorylation, Internalization, and Tolerance

    PubMed Central

    Williams, John T.; Ingram, Susan L.; Henderson, Graeme; Chavkin, Charles; von Zastrow, Mark; Schulz, Stefan; Koch, Thomas; Evans, Christopher J.

    2013-01-01

    Morphine and related µ-opioid receptor (MOR) agonists remain among the most effective drugs known for acute relief of severe pain. A major problem in treating painful conditions is that tolerance limits the long-term utility of opioid agonists. Considerable effort has been expended on developing an understanding of the molecular and cellular processes that underlie acute MOR signaling, short-term receptor regulation, and the progression of events that lead to tolerance for different MOR agonists. Although great progress has been made in the past decade, many points of contention and controversy cloud the realization of this progress. This review attempts to clarify some confusion by clearly defining terms, such as desensitization and tolerance, and addressing optimal pharmacological analyses for discerning relative importance of these cellular mechanisms. Cellular and molecular mechanisms regulating MOR function by phosphorylation relative to receptor desensitization and endocytosis are comprehensively reviewed, with an emphasis on agonist-biased regulation and areas where knowledge is lacking or controversial. The implications of these mechanisms for understanding the substantial contribution of MOR signaling to opioid tolerance are then considered in detail. While some functional MOR regulatory mechanisms contributing to tolerance are clearly understood, there are large gaps in understanding the molecular processes responsible for loss of MOR function after chronic exposure to opioids. Further elucidation of the cellular mechanisms that are regulated by opioids will be necessary for the successful development of MOR-based approaches to new pain therapeutics that limit the development of tolerance. PMID:23321159

  13. Identification and Quantification of a New Family of Peptide Endocannabinoids (Pepcans) Showing Negative Allosteric Modulation at CB1 Receptors*

    PubMed Central

    Bauer, Mark; Chicca, Andrea; Tamborrini, Marco; Eisen, David; Lerner, Raissa; Lutz, Beat; Poetz, Oliver; Pluschke, Gerd; Gertsch, Jürg

    2012-01-01

    The α-hemoglobin-derived dodecapeptide RVD-hemopressin (RVDPVNFKLLSH) has been proposed to be an endogenous agonist for the cannabinoid receptor type 1 (CB1). To study this peptide, we have raised mAbs against its C-terminal part. Using an immunoaffinity mass spectrometry approach, a whole family of N-terminally extended peptides in addition to RVD-Hpα were identified in rodent brain extracts and human and mouse plasma. We designated these peptides Pepcan-12 (RVDPVNFKLLSH) to Pepcan-23 (SALSDLHAHKLRVDPVNFKLLSH), referring to peptide length. The most abundant Pepcans found in the brain were tested for CB1 receptor binding. In the classical radioligand displacement assay, Pepcan-12 was the most efficacious ligand but only partially displaced both [3H]CP55,940 and [3H]WIN55,212-2. The data were fitted with the allosteric ternary complex model, revealing a cooperativity factor value α < 1, thus indicating a negative allosteric modulation. Dissociation kinetic studies of [3H]CP55,940 in the absence and presence of Pepcan-12 confirmed these results by showing increased dissociation rate constants induced by Pepcan-12. A fluorescently labeled Pepcan-12 analog was synthesized to investigate the binding to CB1 receptors. Competition binding studies revealed Ki values of several Pepcans in the nanomolar range. Accordingly, using competitive ELISA, we found low nanomolar concentrations of Pepcans in human plasma and ∼100 pmol/g in mouse brain. Surprisingly, Pepcan-12 exhibited potent negative allosteric modulation of the orthosteric agonist-induced cAMP accumulation, [35S]GTPγS binding, and CB1 receptor internalization. Pepcans are the first endogenous allosteric modulators identified for CB1 receptors. Given their abundance in the brain, Pepcans could play an important physiological role in modulating endocannabinoid signaling. PMID:22952224

  14. International Union of Pharmacology. LXX. Subtypes of γ-Aminobutyric AcidA Receptors: Classification on the Basis of Subunit Composition, Pharmacology, and Function. Update

    PubMed Central

    Olsen, Richard W.; Sieghart, Werner

    2010-01-01

    In this review we attempt to summarize experimental evidence on the existence of defined native GABAA receptor subtypes and to produce a list of receptors that actually seem to exist according to current knowledge. This will serve to update the most recent classification of GABAA receptors (Pharmacol Rev 50:291–313, 1998) approved by the Nomenclature Committee of the International Union of Pharmacology. GABAA receptors are chloride channels that mediate the major form of fast inhibitory neurotransmission in the central nervous system. They are members of the Cys-loop pentameric ligand-gated ion channel (LGIC) superfamily and share structural and functional homology with other members of that family. GABAA receptors are assembled from a family of 19 homologous subunit gene products and form numerous, mostly hetero-oligomeric, pentamers. Such receptor subtypes with properties that depend on subunit composition vary in topography and ontogeny, in cellular and subcellular localization, in their role in brain circuits and behaviors, in their mechanisms of regulation, and in their pharmacology. We propose several criteria, which can be applied to all the members of the LGIC superfamily, for including a receptor subtype on a list of native hetero-oligomeric subtypes. With these criteria, we develop a working GABAA receptor list, which currently includes 26 members, but will undoubtedly be modified and grow as information expands. The list is divided into three categories of native receptor subtypes: “identified,” “existence with high probability,” and “tentative.” PMID:18790874

  15. Temperature dependence of high-affinity CCK receptor binding and CCK internalization in rat pancreatic acini

    SciTech Connect

    Williams, J.A.; Bailey, A.C.; Roach, E. Univ. of California, San Francisco )

    1988-04-01

    {sup 125}I-labeled cholecystokinin (CCK) binding and internalization were studied as a function of temperatures in isolated rat pancreatic acini. At 37{degree}C, acini readily bound and degraded {sup 125}I-CCK. When labeled hormone binding was inhibited by increasing amounts of unlabeled CCK, competition-inhibition curves were biphasic, consistent with both high- (K{sub d}, 18 pM) and low-affinity (K{sub d}, 13 nM) binding sites. At 4{degree}C, acini bound only one-third as much {sup 125}I-CCK and degradation was essentially abolished. At 4{degree}C, CCK competition curves were consistent with a single class of low-affinity binding sites (K{sub d}, 19 nM). Internalization of {sup 125}I-CCK was evaluated by three washing procedures utilizing acid, base, and trypsin. All were shown to remove membrane-bound {sup 125}I-CCK, and this finding was validated for trypsin by electron microscope autotradiography. When internalization of {sup 125}I-CCK was evaluated as a function of the medium concentration of CCK, both high- and low-affinity components were observed. These results suggest that high-affinity CCK binding and CCK internalization are separate temperature-sensitive processes. Moreover, internalization is not uniquely associated with high-affinity binding.

  16. Unit Title: Imaging the Insertion of Superecliptic pHluorin Labeled Dopamine D2 Receptor Using Total Internal Reflection Fluorescence Microscopy

    PubMed Central

    Daly, Kathryn M.; Li, Yun; Lin, Da-Ting

    2015-01-01

    A better understanding of mechanisms governing receptor insertion to the plasma membrane (PM) requires an experimental approach with excellent spatial and temporal resolutions. Here we present a strategy that enables dynamic visualization of insertion events for dopamine D2 receptors into the PM. This approach includes tagging a pH-sensitive GFP, superecliptic pHluorin, to the extracellular domain of the receptor. By imaging pHluorin-tagged receptors under total internal reflection fluorescence microscopy (TIRFM), we were able to directly visualize individual receptor insertion events into the PM in cultured neurons. This novel imaging approach can be applied to both secreted proteins and many membrane proteins with an extracellular domain labeled with superecliptic pHluorin, and will ultimately allow for detailed dissections of the key mechanisms governing secretion of soluble proteins or the insertion of different membrane proteins to the PM. PMID:25559003

  17. Role of FQQI motif in the internalization, trafficking, and signaling of guanylyl-cyclase/natriuretic peptide receptor-A in cultured murine mesangial cells.

    PubMed

    Mani, Indra; Garg, Renu; Pandey, Kailash N

    2016-01-01

    Binding of the cardiac hormone atrial natriuretic peptide (ANP) to transmembrane guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), produces the intracellular second messenger cGMP in target cells. To delineate the critical role of an endocytic signal in intracellular sorting of the receptor, we have identified a FQQI (Phe(790), Gln(791), Gln(792), and Ile(793)) motif in the carboxyl-terminal region of NPRA. Mouse mesangial cells (MMCs) were transiently transfected with the enhanced green fluorescence protein (eGFP)-tagged wild-type (WT) and mutant constructs of eGFP-NPRA. The mutation FQQI/AAAA, in the eGFP-NPRA cDNA sequence, markedly attenuated the internalization of mutant receptors by almost 49% compared with the WT receptor. Interestingly, we show that the μ1B subunit of adaptor protein-1 binds directly to a phenylalanine-based FQQI motif in the cytoplasmic tail of the receptor. However, subcellular trafficking indicated that immunofluorescence colocalization of the mutated receptor with early endosome antigen-1 (EEA-1), lysosome-associated membrane protein-1 (LAMP-1), and Rab 11 marker was decreased by 57% in early endosomes, 48% in lysosomes, and 42% in recycling endosomes, respectively, compared with the WT receptor in MMCs. The receptor containing the mutated motif (FQQI/AAAA) also produced a significantly decreased level of intracellular cGMP during subcellular trafficking than the WT receptor. The coimmunoprecipitation assay confirmed a decreased level of colocalization of the mutant receptor with subcellular compartments during endocytic processes. The results suggest that the FQQI motif is essential for the internalization and subcellular trafficking of NPRA during the hormone signaling process in intact MMCs. PMID:26377794

  18. International Validation of Two Human Recombinant Estrogen Receptor (ERa) Binding Assays

    EPA Science Inventory

    An international validation study has been successfully completed for 2 competitive binding assays using human recombinant ERa. Assays evaluated included the Freyberger-Wilson (FW) assay using a full length human ER, and the Chemical Evaluation and Research Institute (CERI) assay...

  19. Down-regulation does not mediate natriuretic peptide-dependent desensitization of natriuretic peptide receptor (NPR)-A or NPR-B: guanylyl cyclase-linked natriuretic peptide receptors do not internalize.

    PubMed

    Fan, Danhua; Bryan, Paula M; Antos, Laura K; Potthast, Regine J; Potter, Lincoln R

    2005-01-01

    Natriuretic peptide receptor A (NPR-A/GC-A) and B (NPR-B/GC-B) are members of the transmembrane guanylyl cyclase family that mediate the effects of natriuretic peptides via the second messenger, cGMP. Despite numerous reports of these receptors being down-regulated in response to various pathological conditions, no studies have actually measured desensitization and receptor internalization in the same cell line. Furthermore, the ligand-dependent trafficking properties of NPR-A remain controversial, whereas nothing is known about the trafficking of NPR-B. In this report, we tested whether down-regulation explains the ligand-dependent desensitization of NPR-A and NPR-B and characterized their trafficking properties using a combination of hormone-binding and antibody-based assays. Quantitative partition analysis indicated that (125)I-atrial natriuretic peptide (ANP) was rapidly released into the medium after 293T cells stably expressing NPR-A were warmed from 4 degrees to 37 degrees C. High-performance liquid chromatography fractionation of medium supplemented with the protease inhibitor phosphoramidon indicated that the (125)I-ANP was mostly intact. In contrast, (125)I-ANP purified from medium bathing cells expressing NPR-C, a receptor known to internalize natriuretic peptides, was degraded. Cleavable biotinylation and noncleavable biotinylation assays indicated that neither NPR-A nor NPR-B was internalized or degraded in response to natriuretic peptide binding. In contrast, agonist-dependent internalization of a G protein-coupled receptor was clearly apparent in the same cell line. Finally, we show that NPR-A and NPR-B are desensitized in cells in which they are not internalized. We suggest that mechanisms other than receptor down-regulation account for the desensitization of NPR-A and NPR-B that occurs in response to various physiological and pathological stimuli. PMID:15459247

  20. Phenethyl pyridines with non-polar internal substituents as selective ligands for estrogen receptor beta.

    PubMed

    Waibel, Michael; Kieser, Karen J; Carlson, Kathryn E; Stossi, Fabio; Katzenellenbogen, Benita S; Katzenellenbogen, John A

    2009-09-01

    To create estrogen receptor beta (ERbeta)-selective ligands with improved biological characteristics, we have extended our investigations of structurally simple bibenzyl-core ligands by preparing a series of compounds in which one phenol is replaced by a 3-hydroxypyridine ring. These phenethyl pyridines were obtained by picoline anion alkylation, and compounds with different patterns of alkyl substitution on the central two carbon units were prepared. Binding affinities for ERalpha and ERbeta were determined, and ligands with promising affinities and selectivities for ERbeta were further tested for their gene transcriptional activity. Several compounds had high affinity selectivity and good potency selectivity in transcription assays. This study advances our understanding of compounds having ER-subtype selectivity and will help to direct efforts in developing novel ER ligands. PMID:19394116

  1. The Golgi-associated PDZ Domain Protein PIST/GOPC Stabilizes the β1-Adrenergic Receptor in Intracellular Compartments after Internalization*

    PubMed Central

    Koliwer, Judith; Park, Minjong; Bauch, Carola; von Zastrow, Mark; Kreienkamp, Hans-Jürgen

    2015-01-01

    Many G-protein-coupled receptors carry C-terminal ligand motifs for PSD-95/discs large/ZO-1 (PDZ) domains; via interaction with PDZ domain-containing scaffold proteins, this allows for integration of receptors into signaling complexes. However, the presence of PDZ domain proteins attached to intracellular membranes suggests that PDZ-type interactions may also contribute to subcellular sorting of receptors. The protein interacting specifically with Tc10 (PIST; also known as GOPC) is a trans-Golgi-associated protein that interacts through its single PDZ domain with a variety of cell surface receptors. Here we show that PIST controls trafficking of the interacting β1-adrenergic receptor both in the anterograde, biosynthetic pathway and during postendocytic recycling. Overexpression and knockdown experiments show that PIST leads to retention of the receptor in the trans-Golgi network (TGN), to the effect that overexpressed PIST reduces activation of the MAPK pathway by β1-adrenergic receptor (β1AR) agonists. Receptors can be released from retention in the TGN by coexpression of the plasma membrane-associated scaffold PSD-95, which allows for transport of receptors to the plasma membrane. Stimulation of β1 receptors and activation of the cAMP pathway lead to relocation of PIST from the TGN to an endosome-like compartment. Here PIST colocalizes with SNX1 and the internalized β1AR and protects endocytosed receptors from lysosomal degradation. In agreement, β1AR levels are decreased in hippocampi of PIST-deficient mice. Our data suggest that PIST contributes to the fine-tuning of β1AR sorting both during biosynthetic and postendocytic trafficking. PMID:25614626

  2. Effects of the Dopamine D2 Allosteric Modulator, PAOPA, on the Expression of GRK2, Arrestin-3, ERK1/2, and on Receptor Internalization

    PubMed Central

    Basu, Dipannita; Tian, Yuxin; Bhandari, Jayant; Jiang, Jian Ru; Hui, Patricia; Johnson, Rodney L.; Mishra, Ram K.

    2013-01-01

    The activity of G protein-coupled receptors (GPCRs) is intricately regulated by a range of intracellular proteins, including G protein-coupled kinases (GRKs) and arrestins. Understanding the effects of ligands on these signaling pathways could provide insights into disease pathophysiologies and treatment. The dopamine D2 receptor is a GPCR strongly implicated in the pathophysiology of a range of neurological and neuropsychiatric disorders, particularly schizophrenia. Previous studies from our lab have shown the preclinical efficacy of a novel allosteric drug, 3(R)- [(2(S)-pyrrolidinylcarbonyl)amino]-2-oxo-1-pyrrolidineacetamide (PAOPA), in attenuating schizophrenia-like behavioural abnormalities in rodent models of the disease. As an allosteric modulator, PAOPA binds to a site on the D2 receptor, which is distinct from the endogenous ligand-binding site, in order to modulate the binding of the D2 receptor ligand, dopamine. The exact signaling pathways affected by this allosteric modulator are currently unknown. The objectives of this study were to decipher the in vivo effects, in rats, of chronic PAOPA administration on D2 receptor regulatory and downstream molecules, including GRK2, arrestin-3 and extracellular receptor kinase (ERK) 1/2. Additionally, an in vitro cellular model was also used to study PAOPA’s effects on D2 receptor internalization. Results from western immunoblots showed that chronic PAOPA treatment increased the striatal expression of GRK2 by 41%, arrestin-3 by 34%, phospho-ERK1 by 51% and phospho-ERK2 by 36%. Results also showed that the addition of PAOPA to agonist treatment in cells increased D2 receptor internalization by 33%. This study provides the foundational evidence of putative signaling pathways, and changes in receptor localization, affected by treatment with PAOPA. It improves our understanding on the diverse mechanisms of action of allosteric modulators, while advancing PAOPA’s development into a novel drug for the improved

  3. Relation between muscarinic receptor cationic current and internal calcium in guinea-pig jejunal smooth muscle cells.

    PubMed Central

    Pacaud, P; Bolton, T B

    1991-01-01

    1. The action of carbachol, which activates muscarinic receptors, was studied in single patch-clamped cells where free internal calcium concentration in the cell (Cai2+) was estimated using the emission from the dye Indo-1. Cells were dialysed with potassium-free caesium solution to block any Ca(2+)-activated K(+)-current. 2. Carbachol applied to the cell evoked an initial peak in Cai2+ followed by a smaller sustained rise (plateau) upon which several oscillations in Cai2+ were often superimposed; the changes in inward, cationic current (icarb) followed changes in Cai2+ closely. Calcium entry blocker did not affect these responses. 3. The initial peak in Cai2+ produced by carbachol was due to calcium store release: it was essentially unchanged at +50 mV, and abolished by prior application of caffeine (10 mM) to the cell or by inclusion of heparin (which blocks D-myoinositol 1,4,5-trisphosphate receptors) in the pipette. In contrast, the rise in Cai2+ produced by ATP in rabbit ear artery smooth muscle cells was unaffected by caffeine or heparin as it was due to calcium entry into the cell. 4. The later sustained rise (plateau) in Cai2+ produced by carbachol was due to the entry of calcium into the cell down its electrochemical gradient as it was affected by changing the cell membrane potential or the calcium concentration of the bathing solution. As the sustained rise in Cai2+ produced by caffeine had similar properties, it was suggested that depletion of calcium stores can evoke an increased calcium entry into the cell through some pathway. 5. The cationic current evoked by carbachol was strongly dependent on Cai2+. It was small if any rise in Cai2+ due to calcium store release was prevented by the inclusion of heparin in the pipette solution and increased greatly if calcium entry was provoked through voltage-dependent channels by applying a depolarizing pulse or if calcium was released from stores by caffeine. 6. In the longitudinal muscle of guinea-pig small

  4. An Ultra-High Fluorescence Enhancement and High Throughput Assay for Revealing Expression and Internalization of Chemokine Receptor CXCR4.

    PubMed

    He, Hua; Wang, Xiaojuan; Cheng, Tiantian; Xia, Yongqing; Lao, Jun; Ge, Baosheng; Ren, Hao; Khan, Naseer Ullah; Huang, Fang

    2016-04-18

    Revealing chemokine receptor CXCR4 expression, distribution, and internalization levels in different cancers helps to evaluate cancer progression or prognosis and to set personalized treatment strategy. We here describe a sensitive and high-throughput immunoassay for determining CXCR4 expression and distribution in cancer cells. The assay is accessible to a wide range of users in an ordinary lab only by dip-coating poly(styrene-co-N-isopropylacrylamide) spheres on the glass substrate. The self- assembled spheres form three-dimensional photonic colloidal crystals which enhance the fluorescence of CF647 and Alexa Fluor 647 by a factor of up to 1000. CXCR4 in cells is detected by using the sandwich immunoassay, where the primary antibody recognizes CXCR4 and the secondary antibody is labeled with CF647. With the newly established assay, we quantified the total expression of CXCR4, its distribution on the cell membrane and cytoplasm, and revealed their internalization level upon SDF-1α activation in various cancer cells, even for those with extremely low expression level. PMID:26879206

  5. Single-domain antibodies that compete with the natural ligand fibroblast growth factor block the internalization of the fibroblast growth factor receptor 1

    SciTech Connect

    Veggiani, Gianluca; Ossolengo, Giuseppe; Aliprandi, Marisa; Cavallaro, Ugo; Marco, Ario de

    2011-05-20

    Highlights: {yields} Recombinant antibodies for FGFR1 were isolated from a llama naive library in VHH format. {yields} These antibodies compete with the natural ligand FGF-2 for the same epitope on FGFR1. {yields} The antibody competition inhibits the FGF-2-dependent internalization of FGFR1. -- Abstract: Single-domain antibodies in VHH format specific for fibroblast growth factor receptor 1 (FGFR1) were isolated from a phage-display llama naive library. In particular, phage elution in the presence of the natural receptor ligand fibroblast growth factor (FGF) allowed for the identification of recombinant antibodies that compete with FGF for the same region on the receptor surface. These antibodies posses a relatively low affinity for FGFR1 and were never identified when unspecific elution conditions favoring highly affine binders were applied to panning procedures. Two populations of competitive antibodies were identified that labeled specifically the receptor-expressing cells in immunofluorescence and recognize distinct epitopes. Antibodies from both populations effectively prevented FGF-dependent internalization and nuclear accumulation of the receptor in cultured cells. This achievement indicates that these antibodies have a capacity to modulate the receptor physiology and, therefore, constitute powerful reagents for basic research and a potential lead for therapeutic applications.

  6. Alpha1a-Adrenoceptor Genetic Variant Triggers Vascular Smooth Muscle Cell Hyperproliferation and Agonist Induced Hypertrophy via EGFR Transactivation Pathway

    PubMed Central

    Schwinn, Debra A.; Oganesian, Anush

    2015-01-01

    α1a Adrenergic receptors (α1aARs) are the predominant AR subtype in human vascular smooth muscle cells (SMCs). α1aARs in resistance vessels are crucial in the control of blood pressure, yet the impact of naturally occurring human α1aAR genetic variants in cardiovascular disorders remains poorly understood. To this end, we present novel findings demonstrating that 3D cultures of vascular SMCs expressing human α1aAR-247R (247R) genetic variant demonstrate significantly increased SMC contractility compared with cells expressing the α1aAR-WT (WT) receptor. Stable expression of 247R genetic variant also triggers MMP/EGFR-transactivation dependent serum- and agonist-independent (constitutive) hyperproliferation and agonist-dependent hypertrophy of SMCs. Agonist stimulation reduces contractility Using pathway-specific inhibitors we determined that the observed hyperproliferation of 247R-expressing cells is triggered via β-arrestin1/Src/MMP-2/EGFR/ERK-dependent mechanism. MMP-2-specific siRNA inhibited 247R-triggered hyperproliferation indicating MMP-2 involvement in 247R-triggered hyperproliferation in SMCs. β-arrestin1-specific shRNA also inhibited 247R-triggered hyperproliferation but did not affect hypertrophy in 247R-expressing SMCs, indicating that agonist-dependent hypertrophy is independent of β-arrestin1. Our data reveal that in different cardiovascular cells the same human receptor genetic variant can activate alternative modulators of the same signaling pathway. Thus, our findings in SMCs demonstrate that depending on the type of cells expressing the same receptor (or receptor variant), different target-specific inhibitors could be used to modulate aberrant hyperproliferative or hypertrophic pathways in order to restore normal phenotype. PMID:26571308

  7. c-Src regulates clathrin adapter protein 2 interaction with beta-arrestin and the angiotensin II type 1 receptor during clathrin- mediated internalization.

    PubMed

    Fessart, Delphine; Simaan, May; Laporte, Stéphane A

    2005-02-01

    Beta-arrestins are multifunctional adapters involved in the internalization and signaling of G protein-coupled receptors (GPCRs). They target receptors to clathrin-coated pits (CCPs) through binding with clathrin and clathrin adapter 2 (AP-2) complex. They also act as transducers of signaling by recruiting c-Src kinase to certain GPCRs. Here we sought to determine whether c-Src regulates the recruitment of AP-2 to beta-arrestin and the angiotensin II (Ang II) type 1 receptor (AT1R) during internalization. We show that the agonist stimulation of native AT1R in vascular smooth muscle cells (VSMCs) induces the formation of an endogenous complex containing c-Src, beta-arrestins and AP-2. In vitro studies using coimmunoprecipitation experiments and a yeast three-hybrid assay reveal that c-Src stabilizes the agonist-independent association between beta-arrestin2 and the beta-subunit of AP-2 independently of the kinase activity of c-Src. However, although c-Src expression promoted the rapid dissociation of AP-2 from both beta-arrestin and AT1R after receptor stimulation, a kinase-inactive mutant of c-Src failed to induce the dissociation of AP-2 from the agonist-occupied receptor. Thus, the consequence of c-Src in regulating the dissociation of AP-2 from the receptor was also examined on the internalization of AT1R by depleting c-Src in human embryonic kidney (HEK) 293 cells using a small interfering RNA strategy. Experiments in c-Src depleted cells reveal that AT1R remained mostly colocalized with AP-2 at the plasma membrane after Ang II stimulation, consistent with the observed delay in receptor internalization. Moreover, coimmunoprecipitation experiments in c-Src depleted HEK 293 cells and VSMCs showed an increased association of AP-2 to the agonist-occupied AT1R and beta-arrestin, respectively. Together, our results support a role for c-Src in regulating the dissociation of AP-2 from agonist-occupied AT1R and beta-arrestin during the clathrin-mediated internalization

  8. Nicotinic acetylcholine receptors: upregulation, age-related effects and associations with drug use

    PubMed Central

    Melroy-Greif, W. E.; Stitzel, J. A.; Ehringer, M. A.

    2016-01-01

    Nicotinic acetylcholine receptors are ligand-gated ion channels that exogenously bind nicotine. Nicotine produces rewarding effects by interacting with these receptors in the brain’s reward system. Unlike other receptors, chronic stimulation by an agonist induces an upregulation of receptor number that is not due to increased gene expression in adults; while upregulation also occurs during development and adolescence there have been some opposing findings regarding a change in corresponding gene expression. These receptors have also been well studied with regard to human genetic associations and, based on evidence suggesting shared genetic liabilities between substance use disorders, numerous studies have pointed to a role for this system in comorbid drug use. This review will focus on upregulation of these receptors in adulthood, adolescence and development, as well as the findings from human genetic association studies which point to different roles for these receptors in risk for initiation and continuation of drug use. PMID:26351737

  9. Non-ionotropic signaling by the NMDA receptor: controversy and opportunity.

    PubMed

    Gray, John A; Zito, Karen; Hell, Johannes W

    2016-01-01

    Provocative emerging evidence suggests that the N-methyl-d-aspartate (NMDA) receptor can signal in the absence of ion flux through the receptor. This non-ionotropic signaling is thought to be due to agonist-induced conformational changes in the receptor, independently of channel opening. Non-ionotropic NMDA receptor signaling has been proposed to be sufficient to induce synaptic long-term depression (LTD), directly challenging the decades-old model that prolonged low-level calcium influx is required to induce LTD. Here, we briefly review these recent findings, focusing primarily on the potential role of non-ionotropic signaling in NMDA receptor-mediated LTD. Further reports concerning additional roles of non-ionotropic NMDA receptor signaling are also discussed. If validated, this new view of NMDA receptor-mediated signaling will usher in an exciting new era of exploring synapse function and dysfunction. PMID:27303637

  10. Non-ionotropic signaling by the NMDA receptor: controversy and opportunity

    PubMed Central

    Gray, John A.; Zito, Karen; Hell, Johannes W.

    2016-01-01

    Provocative emerging evidence suggests that the N-methyl-d-aspartate (NMDA) receptor can signal in the absence of ion flux through the receptor. This non-ionotropic signaling is thought to be due to agonist-induced conformational changes in the receptor, independently of channel opening. Non-ionotropic NMDA receptor signaling has been proposed to be sufficient to induce synaptic long-term depression (LTD), directly challenging the decades-old model that prolonged low-level calcium influx is required to induce LTD. Here, we briefly review these recent findings, focusing primarily on the potential role of non-ionotropic signaling in NMDA receptor-mediated LTD. Further reports concerning additional roles of non-ionotropic NMDA receptor signaling are also discussed. If validated, this new view of NMDA receptor-mediated signaling will usher in an exciting new era of exploring synapse function and dysfunction. PMID:27303637

  11. PPAR Agonist-Induced Reduction of Mcp1 in Atherosclerotic Plaques of Obese, Insulin-Resistant Mice Depends on Adiponectin-Induced Irak3 Expression

    PubMed Central

    Arnould, Thierry; Tsatsanis, Christos; Holvoet, Paul

    2013-01-01

    Synthetic peroxisome proliferator-activated receptor (PPAR) agonists are used to treat dyslipidemia and insulin resistance. In this study, we examined molecular mechanisms that explain differential effects of a PPARα agonist (fenofibrate) and a PPARγ agonist (rosiglitazone) on macrophages during obesity-induced atherogenesis. Twelve-week-old mice with combined leptin and LDL-receptor deficiency (DKO) were treated with fenofibrate, rosiglitazone or placebo for 12 weeks. Only rosiglitazone improved adipocyte function, restored insulin sensitivity, and inhibited atherosclerosis by decreasing lipid-loaded macrophages. In addition, it increased interleukin-1 receptor-associated kinase-3 (Irak3) and decreased monocyte chemoattractant protein-1 (Mcp1) expressions, indicative of a switch from M1 to M2 macrophages. The differences between fenofibrate and rosiglitazone were independent of Pparγ expression. In bone marrow-derived macrophages (BMDM), we identified the rosiglitazone-associated increase in adiponectin as cause of the increase in Irak3. Interestingly, the deletion of Irak3 in BMDM (IRAK3−/− BMDM) resulted in activation of the canonical NFκB signaling pathway and increased Mcp1 protein secretion. Rosiglitazone could not decrease the elevated Mcp1 secretion in IRAK3−/− BMDM directly and fenofibrate even increased the secretion, possibly due to increased mitochondrial reactive oxygen species production. Furthermore, aortic extracts of high-fat insulin-resistant LDL-receptor deficient mice, with lower adiponectin and Irak3 and higher Mcp1, showed accelerated atherosclerosis. In aggregate, our results emphasize an interaction between PPAR agonist-mediated increase in adiponectin and macrophage-associated Irak3 in the protection against atherosclerosis by PPAR agonists. PMID:23620818

  12. Binding of HCV E2 to CD81 induces RANTES secretion and internalization of CC chemokine receptor 5.

    PubMed

    Nattermann, J; Nischalke, H D; Feldmann, G; Ahlenstiel, G; Sauerbruch, T; Spengler, U

    2004-11-01

    Hepatitis C virus (HCV) infection has been shown to be associated with reduced expression of the CC chemokine receptor (CCR) 5, and reduced responsiveness of lymphocytes to chemokines. However, the mechanism by which HCV alters CCR5 expression remains unclear. Here, we investigated whether altered CCR5 expression in hepatitis C results from interactions of CD81 with the HCV E2 protein. Peripheral blood mononuclear cells (PBMC) from HCV-negative individuals were prepared by Ficoll density gradient separation. PBMC subpopulations (CD4+, CD8+ lymphocytes, CD19+ B cells, natural killer (NK) cells and monocyte-derived dendritic cells) were isolated and stimulated with immobilized HCV E2, and changes in CCR5 expression and CC-chemokine secretion were determined. Migration assays were performed using a 5-microm nitrocellulose filter microchamber system according to the manufacturer's recommendations. Exposure of PBMC to HCV E2 induced a dose-dependent release of regulated on activation normal T-cell-expressed and secreted (RANTES), down-regulation of CCR5 expression and intracellular accumulation of CCR5. This effect was blocked by preincubation of PBMC with anti-CD81. RANTES release following exposure to HCV E2 was mainly attributable to CD8+ cells. After exposure to HCV E2 markedly fewer CD8-positive lymphocytes were attracted by RANTES when compared with CD8+ cells that were studied in the absence of HCV E2. Our results suggest that interaction of HCV E2 with CD81 leads to increased RANTES secretion by CD8+ lymphocytes which induces down-regulation of CCR5 surface via receptor internalization resulting in altered lymphocyte migration. PMID:15500552

  13. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid Receptors and Their Ligands: Beyond CB1 and CB2

    PubMed Central

    Howlett, A. C.; Abood, M. E.; Alexander, S. P. H.; Di Marzo, V.; Elphick, M. R.; Greasley, P. J.; Hansen, H. S.; Kunos, G.; Mackie, K.; Mechoulam, R.; Ross, R. A.

    2010-01-01

    There are at least two types of cannabinoid receptors (CB1 and CB2). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid Δ9-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB1, non-CB2 established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors. From these data, it is clear that some ligands that interact similarly with CB1 and/or CB2 receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel “CB3” cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB1, non-CB2 pharmacological receptor or channel. However, it does identify certain pharmacological targets that should be investigated further as potential CB3 receptors or channels. These include TRP vanilloid 1, which possibly functions as an ionotropic cannabinoid receptor under physiological and/or pathological conditions, and some deorphanized GPCRs. Also discussed are 1) the ability of CB1 receptors to form heteromeric complexes with certain other GPCRs, 2) phylogenetic relationships that exist between CB1/CB2 receptors and other GPCRs, 3) evidence for the existence of several as-yet-uncharacterized non-CB1, non-CB2 cannabinoid receptors; and 4) current cannabinoid receptor nomenclature. PMID:21079038

  14. Permeation and block of rat GluR6 glutamate receptor channels by internal and external polyamines.

    PubMed Central

    Bähring, R; Bowie, D; Benveniste, M; Mayer, M L

    1997-01-01

    1. Polyamine block of rat GluR6(Q) glutamate receptor channels was studied in outside-out patches from transiently transfected HEK 293 cells. With symmetrical 150 mM Na+ and 30 microM internal spermine there was biphasic voltage dependence with 95% block at +40 mV but only 20% block at +140 mV. Dose-inhibition analysis for external spermine also revealed biphasic block; the Kd at +40 mV (54 microM) was lower than at +80 (167 microM) and -80 mV (78 microM). 2. For internal polyamines relief from block was most pronounced for spermine, weaker for N-(4-hydroxyphenylpropanoyl)-spermine (PPS), and virtually absent for philanthotoxin 343 (PhTX 343), suggesting that permeation of polyamines varies with cross-sectional width (spermine, 0.44 nm; PPS, 0.70 nm; PhTX 343, 0.75 nm). 3. With putrescine, spermidine, or spermine as sole external cations, inward currents at -120 mV confirmed permeation of polyamines. For bi-ionic conditions with 90 mM polyamine and 150 mM Na+i, reversal potentials were -12.4 mV for putrescine (permeability ratio relative to Na+, PPut/PNa = 0.42) and -32.7 mV for spermidine (PSpd/PNa = 0.07). Currents carried by spermine were too small to analyse accurately in the majority of patches. 4. Increasing [Na+]i from 44 to 330 mM had no effect on the potential for 50% block (V1/2) by 30 microM internal spermine; however, relief from block at positive membrane potentials increased with [Na+]i. In contrast, raising [Na+]o from 44 to 330 mM resulted in a depolarizing shift in V1/2, indicating a strong interaction between internal polyamines and external permeant ions. 5. The Woodhull infinite barrier model of ion channel block adequately described the action of spermine at membrane potentials insufficient to produce relief from block. For 30 microM internal spermine such analysis gave Kd(O) = 2.5 microM, z theta = 1.97; block by 30 microM external spermine was weaker and less voltage dependent (Kd(O) = 37.8 microM and z delta = 0.55); delta and theta are

  15. Role of Cysteine Residues in the Carboxyl-Terminus of the Follicle-Stimulating Hormone Receptor in Intracellular Traffic and Postendocytic Processing.

    PubMed

    Melo-Nava, Brenda; Casas-González, Patricia; Pérez-Solís, Marco A; Castillo-Badillo, Jean; Maravillas-Montero, José L; Jardón-Valadez, Eduardo; Zariñán, Teresa; Aguilar-Rojas, Arturo; Gallay, Nathalie; Reiter, Eric; Ulloa-Aguirre, Alfredo

    2016-01-01

    Posttranslational modifications occurring during the biosynthesis of G protein-coupled receptors include glycosylation and palmitoylation at conserved cysteine residues located in the carboxyl-terminus of the receptor. In a number of these receptors, these modifications play an important role in receptor function and particularly, in intracellular trafficking. In the present study, the three cysteine residues present in the carboxyl-terminus of the human FSHR were replaced with glycine by site-directed mutagenesis. Wild-type and mutant (Cys627/629/655Gly) FSHRs were then transiently expressed in HEK-293 cells and analyzed for cell-surface plasma membrane expression, agonist-stimulated signaling and internalization, and postendocytic processing in the absence and presence of lysosome and/or proteasome inhibitors. Compared with the wild-type FSHR, the triple mutant FSHR exhibited ~70% reduction in plasma membrane expression as well as a profound attenuation in agonist-stimulated cAMP production and ERK1/2 phosphorylation. Incubation of HEK-293 cells expressing the wild-type FSHR with 2-bromopalmitate (palmitoylation inhibitor) for 6 h, decreased plasma membrane expression of the receptor by ~30%. The internalization kinetics and β-arrestin 1 and 2 recruitment were similar between the wild-type and triple mutant FSHR as disclosed by assays performed in non-equilibrium binding conditions and by confocal microscopy. Cells expressing the mutant FSHR recycled the internalized FSHR back to the plasma membrane less efficiently than those expressing the wild-type FSHR, an effect that was counteracted by proteasome but not by lysosome inhibition. These results indicate that replacement of the cysteine residues present in the carboxyl-terminus of the FSHR, impairs receptor trafficking from the endoplasmic reticulum/Golgi apparatus to the plasma membrane and its recycling from endosomes back to the cell surface following agonist-induced internalization. Since in the FSHR these

  16. Role of Cysteine Residues in the Carboxyl-Terminus of the Follicle-Stimulating Hormone Receptor in Intracellular Traffic and Postendocytic Processing

    PubMed Central

    Melo-Nava, Brenda; Casas-González, Patricia; Pérez-Solís, Marco A.; Castillo-Badillo, Jean; Maravillas-Montero, José L.; Jardón-Valadez, Eduardo; Zariñán, Teresa; Aguilar-Rojas, Arturo; Gallay, Nathalie; Reiter, Eric; Ulloa-Aguirre, Alfredo

    2016-01-01

    Posttranslational modifications occurring during the biosynthesis of G protein-coupled receptors include glycosylation and palmitoylation at conserved cysteine residues located in the carboxyl-terminus of the receptor. In a number of these receptors, these modifications play an important role in receptor function and particularly, in intracellular trafficking. In the present study, the three cysteine residues present in the carboxyl-terminus of the human FSHR were replaced with glycine by site-directed mutagenesis. Wild-type and mutant (Cys627/629/655Gly) FSHRs were then transiently expressed in HEK-293 cells and analyzed for cell-surface plasma membrane expression, agonist-stimulated signaling and internalization, and postendocytic processing in the absence and presence of lysosome and/or proteasome inhibitors. Compared with the wild-type FSHR, the triple mutant FSHR exhibited ~70% reduction in plasma membrane expression as well as a profound attenuation in agonist-stimulated cAMP production and ERK1/2 phosphorylation. Incubation of HEK-293 cells expressing the wild-type FSHR with 2-bromopalmitate (palmitoylation inhibitor) for 6 h, decreased plasma membrane expression of the receptor by ~30%. The internalization kinetics and β-arrestin 1 and 2 recruitment were similar between the wild-type and triple mutant FSHR as disclosed by assays performed in non-equilibrium binding conditions and by confocal microscopy. Cells expressing the mutant FSHR recycled the internalized FSHR back to the plasma membrane less efficiently than those expressing the wild-type FSHR, an effect that was counteracted by proteasome but not by lysosome inhibition. These results indicate that replacement of the cysteine residues present in the carboxyl-terminus of the FSHR, impairs receptor trafficking from the endoplasmic reticulum/Golgi apparatus to the plasma membrane and its recycling from endosomes back to the cell surface following agonist-induced internalization. Since in the FSHR these

  17. Stimulation of glutamate receptors in the ventral tegmental area is necessary for serotonin-2 receptor-induced increases in mesocortical dopamine release.

    PubMed

    Pehek, E A; Hernan, A E

    2015-04-01

    Modulation of dopamine (DA) released by serotonin-2 (5-HT2) receptors has been implicated in the mechanism of action of antipsychotic drugs. The mesocortical DA system has been implicated particularly in the cognitive deficits observed in schizophrenia. Agonism at 5-HT2A receptors in the prefrontal cortex (PFC) is associated with increases in cortical DA release. Evidence indicates that 5-HT2A receptors in the cortex regulate mesocortical DA release through stimulation of a "long-loop" feedback system from the PFC to the ventral tegmental area (VTA) and back. However, a causal role for VTA glutamate in the 5-HT2-induced increases in PFC DA has not been established. The present study does so by measuring 5-HT2 agonist-induced DA release in the cortex after infusions of glutamate antagonists into the VTA of the rat. Infusions of a combination of a N-methyl-d-aspartic acid (NMDA) (AP-5: 2-amino-5-phosphopentanoic acid) and an AMPA/kainate (CNQX: 6-cyano-7-nitroquinoxaline-2,3-dione) receptor antagonist into the VTA blocked the increases in cortical DA produced by administration of the 5-HT2 agonist DOI [(±)-2,5-dimethoxy-4-iodoamphetamine] (2.5mg/kg s.c.). These results demonstrate that stimulation of glutamate receptors in the VTA is necessary for 5-HT2 agonist-induced increases in cortical DA. PMID:25637799

  18. International Union of Basic and Clinical Pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress.

    PubMed

    Woodward, D F; Jones, R L; Narumiya, S

    2011-09-01

    It is now more than 15 years since the molecular structures of the major prostanoid receptors were elucidated. Since then, substantial progress has been achieved with respect to distribution and function, signal transduction mechanisms, and the design of agonists and antagonists (http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=58). This review systematically details these advances. More recent developments in prostanoid receptor research are included. The DP(2) receptor, also termed CRTH2, has little structural resemblance to DP(1) and other receptors described in the original prostanoid receptor classification. DP(2) receptors are more closely related to chemoattractant receptors. Prostanoid receptors have also been found to heterodimerize with other prostanoid receptor subtypes and nonprostanoids. This may extend signal transduction pathways and create new ligand recognition sites: prostacyclin/thromboxane A(2) heterodimeric receptors for 8-epi-prostaglandin E(2), wild-type/alternative (alt4) heterodimers for the prostaglandin FP receptor for bimatoprost and the prostamides. It is anticipated that the 15 years of research progress described herein will lead to novel therapeutic entities. PMID:21752876

  19. Preliminary study on the inhibition of nuclear internalization of Tat peptides by conjugation with a receptor-specific peptide and fluorescent dyes

    NASA Astrophysics Data System (ADS)

    Shen, Duanwen; Liang, Kexiang; Ye, Yunpeng; Tetteh, Elizabeth; Achilefu, Samuel

    2006-02-01

    Numerous studies have shown that basic Tat peptide (48-57) internalized non-specifically in cells and localized in the nucleus. However, localization of imaging agents in cellular nucleus is not desirable because of the potential mutagenesis. When conjugated to the peptides that undergo receptor-mediated endocytosis, Tat peptide could target specific cells or pathologic tissue. We tested this hypothesis by incorporating a somatostatin receptor-avid peptide (octreotate, Oct) and two different fluorescent dyes, Cypate 2 (Cy2) and fluorescein 5'-carboxlic acid (5-FAM), into the Tat-peptide sequence. In addition to the Cy2 or 5-FAM-labeled Oct conjugated to Tat peptide (Tat) to produce Tat-Oct-Cypate2 or Tat-Oct-5-FAM, we also labeled the Tat the Tat peptide with these dyes (Tat-Cy2 and Tat-5-FAM) to serve as positive control. A somatostatin receptor-positive pancreatic tumor cell line, AR42J, was used to assess cell internalization. The results show that Tat-5-FAM and Tat-Cypate2 localized in both nucleus and cytoplasm of the cells. In contrast to Tat-Oct-Cypate2, which localized in both the cytoplasm and nucleus, Tat-Oct-5-FAM internalized in the cytoplasm but not in the nucleus of AR42J cells. The internalizations were inhibited by adding non-labeled corresponding peptides, suggesting that the endocytoses of each group of labeled and the corresponding unlabeled compounds occurred through a common pathway. Thus, fluorescent probes and endocytosis complex between octreotate and somatostatin receptors in cytoplasm could control nuclear internalization of Tat peptides.

  20. Identification of specific sites in the third intracellular loop and carboxyl terminus of the Bombyx mori pheromone biosynthesis activating neuropeptide receptor crucial for ligand-induced internalization.

    PubMed

    Hull, J J; Lee, J M; Matsumoto, S

    2011-12-01

    Sex pheromone production in most moths is mediated by the pheromone biosynthesis activating neuropeptide receptor (PBANR). Using fluorescent Bombyx mori PBANR (BmPBANR) chimeras to study PBANR regulation, we previously showed that BmPBANR undergoes rapid ligand-induced internalization, that the endocytotic motif resides between residues 358-367 of the BmPBANR C terminus, and that the internalization pathway is clathrin-dependent. Here, we sought to expand our understanding of the molecular mechanisms underlying BmPBANR function and regulation by transiently expressing a series of fluorescent BmPBANR chimeric constructs in cultured Spodoptera frugiperda (Sf9) cells and assaying for internalization of a fluorescently labelled ligand. Pharmacological inhibition of phospholipase C significantly reduced internalization, suggesting that BmPBANR regulation proceeds via a conventional G-protein-dependent pathway. This was further supported by impaired internalization following site-directed mutagenesis of R263 and R264, two basic residues at the transmembrane 6 intracellular junction that are thought to stabilize G-protein coupling via electrostatic interactions. Ala substitution of S333 and S366, two consensus protein kinase C sites in the C terminus, likewise impaired internalization, as did RNA interference-mediated knockdown of Sf9 protein kinase C. N-terminal truncations of BmPBANR indicate that the first 27 residues are not necessary for cell surface trafficking or receptor functionality. PMID:21955122

  1. Co-stimulation with TLR7/8 and TLR9 agonists induce down-regulation of innate immune responses in sheep blood mononuclear and B cells.

    PubMed

    Booth, Jayaum S; Buza, Joram J; Potter, Andrew; Babiuk, Lorne A; Mutwiri, George K

    2010-05-01

    Toll-like receptors (TLRs) play an important role in the activation of innate and adaptive immune responses. Stimulation with multiple TLR agonists may result in synergistic, complimentary or inhibitory effects on innate immune responses. In this study, we investigated the effects of co-stimulation of sheep peripheral blood mononuclear cells (PBMC) and B cells with agonists for TLR3, 4, 7/8 and 9. Sheep PBMC stimulated with either CpG (TLR9 agonist) or RNA oligoribonucleotides ([ORNs], TLR7/8 agonist) exhibited significant IL-12 production, but only CpG induced IFNalpha, IgM and proliferative responses. In contrast, poly(I:C) (TLR3 agonist) and LPS (TLR4 agonist) did not induce any of these responses. Interestingly, we observed that co-stimulation of PBMC with CpG+ORN or CpG+imiquimod (another TLR7/8 agonist) resulted in significant reduction in CpG-induced IFNalpha production, B cell proliferation and IgM responses. Pre-incubation of cells with CpG prior to exposure of the cells to imiquimod resulted in similar inhibitory responses indicating that the down-regulatory mechanisms are not associated with competition for cellular uptake or for receptors of the two agonists. Sheep B cells constitutively expressed TLR7, TLR8 and TLR9 mRNA transcripts, suggesting a possible role of TLR cross-talk in the down-regulatory mechanisms. Down-regulation of responses by co-stimulation with closely related TLRs may be a regulatory mechanism by which the host prevents overstimulation of innate immune responses. PMID:20051250

  2. Antagonism of protease-activated receptor 2 protects against experimental colitis.

    PubMed

    Lohman, Rink-Jan; Cotterell, Adam J; Suen, Jacky; Liu, Ligong; Do, Anh T; Vesey, David A; Fairlie, David P

    2012-02-01

    Many trypsin-like serine proteases such as β-tryptase are involved in the pathogenesis of colitis and inflammatory bowel diseases. Inhibitors of individual proteases show limited efficacy in treating such conditions, but also probably disrupt digestive and defensive functions of proteases. Here, we investigate whether masking their common target, protease-activated receptor 2 (PAR2), is an effective therapeutic strategy for treating acute and chronic experimental colitis in rats. A novel PAR2 antagonist (5-isoxazoyl-Cha-Ile-spiro[indene-1,4'-piperidine]; GB88) was evaluated for the blockade of intracellular calcium release in colonocytes and anti-inflammatory activity in acute (PAR2 agonist-induced) versus chronic [2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced] models of colitis in Wistar rats. Disease progression (disease activity index, weight loss, and mortality) and postmortem colonic histopathology (inflammation, bowel wall thickness, and myeloperoxidase) were measured. PAR2 and tryptase colocalization were investigated by using immunohistochemistry. GB88 was a more potent antagonist of PAR2 activation in colonocytes than another reported compound, N¹-3-methylbutyryl-N⁴-6-aminohexanoyl-piperazine (ENMD-1068) (IC₅₀ 8 μM versus 5 mM). Acute colonic inflammation induced in rats by the PAR2 agonist SLIGRL-NH₂ was inhibited by oral administration of GB88 (10 mg/kg) with markedly reduced edema, mucin depletion, PAR2 receptor internalization, and mastocytosis. Chronic TNBS-induced colitis in rats was ameliorated by GB88 (10 mg/kg/day p.o.), which reduced mortality and pathology (including colon obstruction, ulceration, wall thickness, and myeloperoxidase release) more effectively than the clinically used drug sulfasalazine (100 mg/kg/day p.o.). These disease-modifying properties for the PAR2 antagonist in both acute and chronic experimental colitis strongly support a pathogenic role for PAR2 and PAR2-activating proteases and therapeutic potential for

  3. Receptor-mediated endocytosis of insulin in lower vertebrates: internalization and intracellular processing of 125I-insulin in isolated hepatocytes of lamprey and frog.

    PubMed

    Lappova, Y L; Leibush, B N

    1995-10-01

    The binding of 125I-insulin to cellular insulin receptors and the internalization of insulin-receptor complexes have been studied in isolated hepatocytes of frog and lamprey. Two classes of binding sites (Kd 10(-9) and 10(-8) M) were found in cells of both species. The molecular weight of the insulin receptor alpha-subunit was 130 kDa in both species. Internalization of bound 125I-insulin in both species was found in the temperature range 0 to 20 degrees. Cells "loaded" with 125I-insulin were used to estimate the fate of the internalized ligand. Release of internalized ligand from frog cells increased at temperatures ranging from 0 to 20 degrees. At 0 degrees the degraded 125I-insulin was 5%, at 5 degrees 7%, and at 20 degrees 17% of total radioactivity accumulated in the medium. In lamprey hepatocytes there was neither radioactivity accumulation in the incubation medium nor release from cells at all temperatures studied. The intracellular degradation of internalized 125I-insulin in frog hepatocytes was much lower than that in lamprey cells. In frog hepatocytes the specific binding of 125I-insulin was increased twofold in the presence of the lysosomal inhibitor chloroquine. In contrast no increase was found in lamprey hepatocytes. In conclusion, the processing pathways of internalized insulin in the cells of ectothermal and endothermal vertebrates are generally similar but in ectothermal animals all events take place at lower temperatures and at lower rates. The peculiarities of insulin processing in lamprey hepatocytes most likely result from the transformation of hepatocytes during the nonfeeding prespawning period. PMID:8575649

  4. Agonist-independent desensitization and internalization of the human platelet-activating factor receptor by coumermycin-gyrase B-induced dimerization.

    PubMed

    Perron, Amelie; Chen, Zhang-Guo; Gingras, Denis; Dupre, Denis J; Stankova, Jana; Rola-Pleszczynski, Marek

    2003-07-25

    Platelet-activating factor (PAF) is a phospholipid with potent and diverse physiological actions, particularly as a mediator of inflammation. We have reported previously that mutant G protein-coupled receptors (GPCRs) affect the functional properties of coexpressed wild-type human PAF receptor (hPAFR) (Le Gouill, C., Parent, J. L., Caron, C. A., Gaudreau, R., Volkov, L., Rola-Pleszczynski, M., and Stankova, J. (1999) J. Biol. Chem. 274, 12548-12554). Increasing evidence suggests that dimerization of GPCRs may play an important role in the regulation of their biological activity. Additional data have also suggested that dimerization may be important in the subsequent internalization of the delta-opioid receptor. To investigate the specific role of dimerization in the internalization process of GPCRs, we generated a fusion protein of hPAFR and bacterial DNA gyrase B (GyrB), dimerized through the addition of coumermycin. We found that dimerization potentiates PAF-induced internalization of hPAFR-GyrB in Chinese hamster ovary cells stably expressing c-Myc-hPAFR-GyrB. Coumermycin-driven dimerization was also sufficient to induce an agonist-independent sequestration process in an arrestin- and clathrin-independent manner. Moreover, the protein kinase C inhibitors staurosporine and GF109203X blocked the coumermycin-induced desensitization of hPAFR-GyrB, suggesting the implication of protein kinase C in the molecular mechanism mediating the agonist-independent desensitization of the receptor. Taken together, these findings suggest a novel mechanism of GPCR desensitization and internalization triggered by dimerization. PMID:12756251

  5. Aluminium inhibits muscarinic agonist-induced inositol 1,4,5-trisphosphate production and calcium mobilization in permeabilized SH-SY5Y human neuroblastoma cells.

    PubMed

    Wood, P C; Wojcikiewicz, R J; Burgess, J; Castleden, C M; Nahorski, S R

    1994-06-01

    The effects of aluminium (as Al3+) on carbachol-induced inositol 1,4,5-trisphosphate (InsP3) production and Ca2+ mobilisation were assessed in electropermeabilised human SH-SY5Y neuroblastoma cells. Al3+ had no effect on InsP3-induced Ca2+ release but appreciably reduced carbachol-induced Ca2+ release (IC50 of approximately 90 microM). Al3+ also inhibited InsP3 production (IC50 of approximately 15 microM). Dimethyl hydroxypyridin-4-one, a potent Al3+ chelator (Ks = 31), at 100 microM was able to abort and reverse the effects of Al3+ on both Ca2+ release and InsP3 production. These data suggest that, in permeabilised cells, the effect of Al3+ on the phosphoinositide-mediated signalling pathway is at the level of phosphatidylinositol 4,5-bisphosphate hydrolysis. This may reflect interference with receptor-G protein-phospholipase C coupling or an interaction with phosphatidylinositol 4,5-bisphosphate. PMID:8189229

  6. TLR7 agonist induced repression of hepatocellular carcinoma via the TLR7-IKK-NF-κB-IL6 signaling pathway

    PubMed Central

    REN, XINGBIN; WANG, FEI; JI, BAOJU; GAO, CHUNHAI

    2016-01-01

    Toll-like receptors (TLRs) are key members of innate immunity, involved in the defense against diseases, and evidence has revealed that TLR4/5 is involved in the carcinogenesis of hepatic cancer. TLR7 belongs to the TLR family, and its roles in immune-associated hepatic diseases have been well characterized; however, the consequences of agonist targeting of TLR7 in hepatic cancer have not previously been reported. The present study aimed to investigate the effects and underlying mechanisms of Imiquimod, a TLR7 agonist, on hepatic carcinogenesis by affecting the self-renewal of hepatic cancer stem cells. To detect the effects of this TLR7 agonist on hepatic cancer cells an MTT assay, mammosphere formation assay, ALDEFLUOR™ fluorescence-based stem cell sorting was used, and the potential signaling involved in the mechanism was investigated by western blot analysis. The TLR7 agonist Imiquimod demonstrated inhibitory effects on the cell proliferation and mammosphere formation of hepatic cells and stem cells, and decreased stem cell number (P<0.01). These effects may be achieved via the TLR7/IκB kinase/nuclear factor-κB/interleukin-6 signaling pathway, with decreased levels of Snail expression. The present study demonstrated the effects and mechanisms of the TLR7 agonist on hepatic cancer occurred via suppression of the self-renewal of cancer stem cells, indicating novel potential functions of the TLR7 agonist in the treatment of HCC. PMID:27123047

  7. Ovarian morphology and internal vis-à-vis non internal laying in relation to triacylglycerol, hormones and their receptors concentration around the age of sexual maturity in broiler breeder hens.

    PubMed

    Singh, R P; Moudgal, R P; Agarwal, R; Sirajuddin, M; Mohan, J; Sastry, K V H; Tyagi, J S

    2013-01-01

    1. Ovarian morphology, serum hormone concentrations of 17-β-estradiol, progesterone, testosterone, tri-iodothyronine (T3), thyroxine (T4) and triacylglycerol (TAG) were investigated at 23 and 26 weeks of age in broiler breeder hens provided with ad libitum access to feed. Progesterone, oestrogen-β, thyroid-α and -β receptor mRNAs were also quantified in the infundibulum at the same ages. 2. A large variation in the ovarian morphology was observed at 23 weeks of age including hens with undeveloped ovaries, non-laying hens with post ovulatory follicles (POF) and a predominance of non-laying hens without a POF. 3. Serum concentrations of triglyceride, 17-β-estradiol and progesterone at 23 weeks of age were lower in hens with an undeveloped ovary compared with other groups of hens, whereas testosterone, triiodothyronine and thyroxin were higher. 4. At 26 weeks of age, the average number of hierarchical yellow follicles in normal layers was 7.64 ± 0·41 whereas in internal layers, the follicular numbers were significantly greater at 8.66 ± 0·53. The higher follicular numbers in internal layers were associated with higher serum triglyceride and progesterone concentrations. 5. Oestrogen receptor-β and thyroid receptor-β mRNA was up regulated in the infundibulum of internal layers compared with normal laying hens at 26 weeks of age. PMID:23444865

  8. Stabilin-1 and Stabilin-2 are specific receptors for the cellular internalization of phosphorothioate-modified antisense oligonucleotides (ASOs) in the liver

    PubMed Central

    Miller, Colton M.; Donner, Aaron J.; Blank, Emma E.; Egger, Andrew W.; Kellar, Brianna M.; Østergaard, Michael E.; Seth, Punit P.; Harris, Edward N.

    2016-01-01

    Phosphorothioate (PS)-modified antisense oligonucleotides (ASOs) have been extensively investigated over the past three decades as pharmacological and therapeutic agents. One second generation ASO, Kynamro™, was recently approved by the FDA for the treatment of homozygous familial hypercholesterolemia and over 35 second generation PS ASOs are at various stages of clinical development. In this report, we show that the Stabilin class of scavenger receptors, which were not previously thought to bind DNA, do bind and internalize PS ASOs. With the use of primary cells from mouse and rat livers and recombinant cell lines each expressing Stabilin-1 and each isoform of Stabilin-2 (315-HARE and 190-HARE), we have determined that PS ASOs bind with high affinity and these receptors are responsible for bulk, clathrin-mediated endocytosis within the cell. Binding is primarily dependent on salt-bridge formation and correct folding of the intact protein receptor. Increased internalization rates also enhanced ASO potency for reducing expression of the non-coding RNA Malat-1, in Stabilin-expressing cell lines. A more thorough understanding of mechanisms by which ASOs are internalized in cells and their intracellular trafficking pathways will aid in the design of next generation antisense agents with improved therapeutic properties. PMID:26908652

  9. International Union of Basic and Clinical Pharmacology. XCVII. G Protein–Coupled Estrogen Receptor and Its Pharmacologic Modulators

    PubMed Central

    2015-01-01

    Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein–coupled receptor (GPCR) family (GPR30/G protein–coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor. PMID

  10. Systemic treatment with a 5HT1a agonist induces anti-oxidant protection and preserves the retina from mitochondrial oxidative stress.

    PubMed

    Biswal, Manas R; Ahmed, Chulbul M; Ildefonso, Cristhian J; Han, Pingyang; Li, Hong; Jivanji, Hiral; Mao, Haoyu; Lewin, Alfred S

    2015-11-01

    Chronic oxidative stress contributes to age related diseases including age related macular degeneration (AMD). Earlier work showed that the 5-hydroxy-tryptamine 1a (5HT1a) receptor agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) protects retinal pigment epithelium (RPE) cells from hydrogen peroxide treatment and mouse retinas from oxidative insults including light injury. In our current experiments, RPE derived cells subjected to mitochondrial oxidative stress were protected from cell death by the up-regulation of anti-oxidant enzymes and of the metal ion chaperone metallothionein. Differentiated RPE cells were resistant to oxidative stress, and the expression of genes for protective proteins was highly increased by oxidative stress plus drug treatment. In mice treated with 8-OH-DPAT, the same genes (MT1, HO1, NqO1, Cat, Sod1) were induced in the neural retina, but the drug did not affect the expression of Sod2, the gene for manganese superoxide dismutase. We used a mouse strain deleted for Sod2 in the RPE to accelerate age-related oxidative stress in the retina and to test the impact of 8-OH-DPAT on the photoreceptor and RPE degeneration developed in these mice. Treatment of mice with daily injections of the drug led to increased electroretinogram (ERG) amplitudes in dark-adapted mice and to a slight improvement in visual acuity. Most strikingly, in mice treated with a high dose of the drug (5 mg/kg) the structure of the RPE and Bruch's membrane and the normal architecture of photoreceptor outer segments were preserved. These results suggest that systemic treatment with this class of drugs may be useful in preventing geographic atrophy, the advanced form of dry AMD, which is characterized by RPE degeneration. PMID:26315784

  11. Identification and function of adenosine A3 receptor in afferent arterioles.

    PubMed

    Lu, Yan; Zhang, Rui; Ge, Ying; Carlstrom, Mattias; Wang, Shaohui; Fu, Yiling; Cheng, Liang; Wei, Jin; Roman, Richard J; Wang, Lei; Gao, Xichun; Liu, Ruisheng

    2015-05-01

    Adenosine plays an important role in regulation of renal microcirculation. All receptors of adenosine, A1, A2A, A2B, and A3, have been found in the kidney. However, little is known about the location and function of the A3 receptor in the kidney. The present study determined the expression and role of A3 receptors in mediating the afferent arteriole (Af-Art) response and studied the interaction of A3 receptors with angiotensin II (ANG II), A1 and A2 receptors on the Af-Art. We found that the A3 receptor expressed in microdissected isolated Af-Art and the mRNA levels of A3 receptor were 59% of A1. In the isolated microperfused Af-Art, A3 receptor agonist IB-MECA did not have a constrictive effect. Activation of A3 receptor dilated the preconstricted Af-Art by norepinephrine and blunted the vasoconstrictive effect of both adenosine A1 receptor activation and ANG II on the Af-Art, respectively. Selective A2 receptor antagonist (both A2A and A2B) had no effect on A3 receptor agonist-induced vasodilation, indicating that the dilatory effect of A3 receptor activation is not mediated by activation of A2 receptor. We conclude that the A3 receptor is expressed in the Af-Art, and activation of the A3 receptor dilates the Af-Art. PMID:25608966

  12. RNA editing of the human serotonin 5-HT(2C) receptor delays agonist-stimulated calcium release.

    PubMed

    Price, R D; Sanders-Bush, E

    2000-10-01

    RNA encoding the human 5-HT(2C) receptor undergoes adenosine-to-inosine RNA editing events at five positions in the putative second intracellular loop, with a corresponding reduction in receptor/G-protein coupling. Agonist-stimulated calcium release was examined in NIH-3T3 fibroblasts stably expressing the nonedited human INI (hINI) or the edited hVSV or hVGV variants. We hypothesized that different receptor isoforms would show altered dynamics of agonist-induced calcium release. The three isoforms showed a rightward shift in agonist concentration-response curves for eliciting calcium release (EC(50) values: hINI, 2.2 nM; hVSV, 15 nM; hVGV, 49 nM). Additionally, the hVGV receptor showed a blunted and delayed [Ca(2+)](i) peak compared with the hINI or hVSV receptor isoforms. These distinctions in agonist-induced [Ca(2+)](i) release imply that edited 5-HT(2C) receptors may produce distinct physiological responses within the central nervous system. PMID:10999958

  13. Focal adhesion kinase-mediated activation of glycogen synthase kinase 3β regulates IL-33 receptor internalization and IL-33 signaling

    PubMed Central

    Zhao, Jing; Wei, Jianxin; Bowser, Rachel K; Traister, Russell S; Fan, Ming-Hui; Zhao, Yutong

    2014-01-01

    IL-33, a relatively new member of the IL-1 cytokine family, plays a crucial role in allergic inflammation and acute lung injury. ST2L, the receptor for IL-33, is expressed on immune effector cells and lung epithelia, and plays a critical role in triggering inflammation. We have previously shown that ST2L stability is regulated by the ubiquitin-proteasome system, however its upstream internalization has not been studied. Here, we demonstrate that glycogen synthase kinase 3β (GSK3β) regulates ST2L internalization and IL-33 signaling. IL-33 treatment induced ST2L internalization, an effect was attenuated by inhibition or downregulation of GSK3β. GSK3β was found to interact with ST2L on serine residue 446 in response to IL-33 treatment. GSK3β binding site mutant (ST2LS446A) and phosphorylation site mutant (ST2LS442A) are resistant to IL-33-induced ST2L internalization. We also found that IL-33 activated focal adhesion kinase (FAK). Inhibition of FAK impaired IL-33-induced GSK3β activation and ST2L internalization. Further, inhibition of ST2L internalization enhanced IL-33-induced cytokine release in lung epithelial cells. These results suggest that modulation of the ST2L internalization by FAK/GSK3β might serve as a unique strategy to lessen pulmonary inflammation. PMID:25472995

  14. Heteromers of μ-δ opioid receptors: new pharmacology and novel therapeutic possibilities

    PubMed Central

    Fujita, Wakako; Gomes, Ivone; Devi, Lakshmi A

    2015-01-01

    Several studies suggest that heteromerization between μ (MOP) and δ (DOP) opioid receptors modulates the signalling properties of the individual receptors. For example, whereas activation of MOP receptors by an agonist induces G protein-mediated signalling, the same agonist induces β-arrestin-mediated signalling in the context of the MOP-DOP receptor heteromer. Moreover, heteromer-mediated signalling is allosterically modulated by a combination of MOP and DOP receptor ligands. This has implications in analgesia given that morphine-induced antinociception can be potentiated by DOP receptor ligands. Recently reagents selectively targeting the MOP-DOP receptor heteromer such as bivalent ligands, antibodies or membrane permeable peptides have been generated; these reagents are enabling studies to elucidate the contribution of endogenously expressed heteromers to analgesia as well as to the development of side-effects associated with chronic opioid use. Recent advances in drug screening technology have led to the identification of a MOP-DOP receptor heteromer-biased agonist that activates both G protein-mediated and β-arrestin-mediated signalling. Moreover, this heteromer-biased agonist exhibits potent antinociceptive activity but with reduced side-effects, suggesting that ligands targeting the MOP-DOP receptor heteromer form a basis for the development of novel therapeutics for the treatment of pain. In this review, we summarize findings regarding the biological and functional characteristics of the MOP-DOP receptor heteromer and the in vitro and in vivo properties of heteromer-selective ligands. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24571499

  15. Antinociceptive effects of imidazoline I2 receptor agonists in the formalin test in rats.

    PubMed

    Thorn, David A; Qiu, Yanyan; Jia, Shushan; Zhang, Yanan; Li, Jun-Xu

    2016-06-01

    The imidazoline I2 receptor is an emerging drug target for analgesics. This study extended previous studies by examining the antinociceptive effects of three I2 receptor agonists (2-BFI, BU224, and CR4056) in the formalin test. The receptor mechanisms and anatomical mediation of I2 receptor agonist-induced antinociception were also examined. Formalin-induced flinching responses (2%, 50 μl) were quantified after treatment with I2 receptor agonists alone or in combination with the I2 receptor antagonist idazoxan. Anatomical mediation was studied by locally administering 2-BFI into the plantar surface or into the right lateral ventricle through cannulae (intracerebroventricular). The locomotor activity was also examined after central (intracerebroventricular) administration of 2-BFI. 2-BFI (1-10 mg/kg, intraperitoneal) and BU224 (1-10 mg/kg, intraperitoneal) attenuated the spontaneous flinching response observed during 10 min (phase 1) and 20-60 min (phase 2) following formalin treatment, whereas CR4056 (1-32 mg/kg, intraperitoneal) decreased only phase 2 flinching response. The I2 receptor antagonist idazoxan attenuated the antinociceptive effects of 2-BFI and BU224 during phase 1, but not phase 2. Peripheral administration of 2-BFI (1-10 mg/kg, intraplantar) to the hind paw of rats had no antinociceptive effect. In contrast, centrally delivered 2-BFI (10-100 µg, intracerebroventricular) dose-dependently attenuated phase 1 and phase 2 flinching at doses that did not reduce the locomotor activity. Together, these data revealed the differential antinociceptive effects of I2 receptor agonists and the differential antagonism profiles by idazoxan, suggesting the involvement of different I2 receptor subtypes in reducing different phases of formalin-induced pain-like behaviors. In addition, the results also suggest the central mediation of I2 receptor agonist-induced antinociceptive actions. PMID:26599907

  16. Cyclization of the urokinase receptor-derived ser-arg-ser-arg-tyr Peptide generates a potent inhibitor of trans-endothelial migration of monocytes.

    PubMed

    Yousif, Ali Munaim; Minopoli, Michele; Bifulco, Katia; Ingangi, Vincenzo; Di Carluccio, Gioconda; Merlino, Francesco; Motti, Maria Letizia; Grieco, Paolo; Carriero, Maria Vincenza

    2015-01-01

    The receptor for the urokinase-type plasminogen activator (uPAR) is a widely recognized master regulator of cell migration and uPAR88-92 is the minimal sequence required to induce cell motility. We and others have previously documented that the uPAR88-92 sequence, even in the form of synthetic linear peptide (SRSRY), interacts with the formyl peptide receptor type 1 (FPR1), henceforth inducing cell migration of several cell lines, including monocytes. FPR1 is mainly expressed by mammalian phagocytic leukocytes and plays a crucial role in chemotaxis. In this study, we present evidence that the cyclization of the SRSRY sequence generates a new potent and stable inhibitor of monocyte trafficking. In rat basophilic leukaemia RBL-2H3/ETFR cells expressing high levels of constitutively activated FPR1, the cyclic SRSRY peptide ([SRSRY]) blocks FPR1 mediated cell migration by interfering with both internalization and ligand-uptake of FPR1. Similarly to RBL-2H3/ETFR cells, [SRSRY] competes with fMLF for binding to FPR1 and prevents agonist-induced FPR1 internalization in human monocyte THP-1 cells. Unlike scramble [RSSYR], [SRSRY] inhibits fMLF-directed migration of monocytes in a dose-dependent manner, with IC50 value of 0.01 nM. PMA-differentiated THP-1 cell exposure to fMLF gradient causes a marked cytoskeletal re-organization with the formation of F-actin rich pseudopodia that are prevented by the addition of [SRSRY]. Furthermore, [SRSRY] prevents migration of human primary monocytes and trans-endothelial migration of monocytes. Our findings indicate that [SRSRY] is a new FPR1 inhibitor which may suggest the development of new drugs for treating pathological conditions sustained by increased motility of monocytes, such as chronic inflammatory diseases. PMID:25938482

  17. Cyclization of the Urokinase Receptor-Derived Ser-Arg-Ser-Arg-Tyr Peptide Generates a Potent Inhibitor of Trans-Endothelial Migration of Monocytes

    PubMed Central

    Bifulco, Katia; Ingangi, Vincenzo; Di Carluccio, Gioconda; Merlino, Francesco; Motti, Maria Letizia; Grieco, Paolo; Carriero, Maria Vincenza

    2015-01-01

    The receptor for the urokinase-type plasminogen activator (uPAR) is a widely recognized master regulator of cell migration and uPAR88-92 is the minimal sequence required to induce cell motility. We and others have previously documented that the uPAR88-92 sequence, even in the form of synthetic linear peptide (SRSRY), interacts with the formyl peptide receptor type 1 (FPR1), henceforth inducing cell migration of several cell lines, including monocytes. FPR1 is mainly expressed by mammalian phagocytic leukocytes and plays a crucial role in chemotaxis. In this study, we present evidence that the cyclization of the SRSRY sequence generates a new potent and stable inhibitor of monocyte trafficking. In rat basophilic leukaemia RBL-2H3/ETFR cells expressing high levels of constitutively activated FPR1, the cyclic SRSRY peptide ([SRSRY]) blocks FPR1 mediated cell migration by interfering with both internalization and ligand-uptake of FPR1. Similarly to RBL-2H3/ETFR cells, [SRSRY] competes with fMLF for binding to FPR1 and prevents agonist-induced FPR1 internalization in human monocyte THP-1 cells. Unlike scramble [RSSYR], [SRSRY] inhibits fMLF-directed migration of monocytes in a dose-dependent manner, with IC50 value of 0.01 nM. PMA-differentiated THP-1 cell exposure to fMLF gradient causes a marked cytoskeletal re-organization with the formation of F-actin rich pseudopodia that are prevented by the addition of [SRSRY]. Furthermore, [SRSRY] prevents migration of human primary monocytes and trans-endothelial migration of monocytes. Our findings indicate that [SRSRY] is a new FPR1 inhibitor which may suggest the development of new drugs for treating pathological conditions sustained by increased motility of monocytes, such as chronic inflammatory diseases. PMID:25938482

  18. Epidermal Growth Factor Receptors with Tyrosine Kinase Domain Mutations Exhibit Reduced Cbl Association, Poor Ubiquitylation, and Down-regulation but Are Efficiently Internalized

    PubMed Central

    Padrón, David; Sato, Mitsuo; Shay, Jerry W.; Gazdar, Adi F.; Minna, John D.; Roth, Michael G.

    2010-01-01

    Some non–small cell lung cancers (NSCLC) with epidermal growth factor receptor (EGFR) tyrosine kinase domain mutations require altered signaling through the EGFR for cell survival and are exquisitely sensitive to tyrosine kinase inhibitors. EGFR down-regulation was impaired in two NSCLCs with EGFR tyrosine kinase domain mutations. The mutant receptors were poorly ubiquitylated and exhibited decreased association with the ubiquitin ligase Cbl. Over-expression of Cbl increased the degradation of EGFR. Treatment with geldanamycin, an inhibitor of the chaperone heat shock protein 90, also increased both wild-type and mutant EGFR degradation without affecting internalization. The down-regulation of the mutant EGFRs was still impaired when they were stably expressed in normal human bronchial epithelial cells. Thus, the mutations that altered signaling also decreased the interaction of EGFRs with the mechanisms responsible for endosomal sorting. PMID:17699773

  19. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, Classification, and Pharmacology of G Protein-Coupled Melatonin Receptors

    PubMed Central

    Delagrange, Philippe; Krause, Diana N.; Sugden, David; Cardinali, Daniel P.; Olcese, James

    2010-01-01

    The hormone melatonin (5-methoxy-N-acetyltryptamine) is synthesized primarily in the pineal gland and retina, and in several peripheral tissues and organs. In the circulation, the concentration of melatonin follows a circadian rhythm, with high levels at night providing timing cues to target tissues endowed with melatonin receptors. Melatonin receptors receive and translate melatonin's message to influence daily and seasonal rhythms of physiology and behavior. The melatonin message is translated through activation of two G protein-coupled receptors, MT1 and MT2, that are potential therapeutic targets in disorders ranging from insomnia and circadian sleep disorders to depression, cardiovascular diseases, and cancer. This review summarizes the steps taken since melatonin's discovery by Aaron Lerner in 1958 to functionally characterize, clone, and localize receptors in mammalian tissues. The pharmacological and molecular properties of the receptors are described as well as current efforts to discover and develop ligands for treatment of a number of illnesses, including sleep disorders, depression, and cancer. PMID:20605968

  20. Characterization of prostanoid receptors in podocytes.

    PubMed

    Bek, M; Nüsing, R; Kowark, P; Henger, A; Mundel, P; Pavenstädt, H

    1999-10-01

    Prostaglandins participate in the regulation of important glomerular functions and are involved in the pathogenesis of glomerular diseases. This study investigates the influence of prostaglandins on membrane voltage, ion conductances, cAMP accumulation, and cytosolic calcium activity ([Ca2+]i) in differentiated podocytes. Prostaglandin E2 (PGE2) caused a concentration-dependent depolarization and an increase of the whole cell conductance in podocytes (EC50 approximately 50 nM). Compared with PGE2, the EP2/EP3/EP4 receptor agonist 11-deoxy-PGE1 caused an equipotent depolarization, whereas the DP receptor agonist BW 245 C, the EP1/EP3 receptor agonist sulprostone, and the IP receptor agonist iloprost were at least 100 to 1000 times less potent than PGE2. The EP2 receptor agonist butaprost did not change membrane voltage of podocytes. The depolarizing effect of PGE2 was increased in an extracellular solution with a reduced Cl- concentration (from 145 to 32 mM). PGE2 and the prostaglandin agonists, but not the IP receptor agonist iloprost and the EP2 receptor agonist butaprost, induced a time- and concentration-dependent cAMP accumulation in podocytes. In fura-2 fluorescence experiments, PGE2, sulprostone, PGF2alpha, fluprostenol (a potent FP agonist), and U-46619 (a selective thromboxane A2 agonist) induced a biphasic increase of [Ca2+]i in 60 to 80% of podocytes. In reverse transcription-PCR studies, podocyte mRNA for the EP1, EP4, FP, and TP receptor could be amplified. These data indicate that in podocytes, PGE2 regulates distinct cellular functions via the EP1 and EP4 receptor, thereby increasing [Ca2+]i and cAMP, respectively. Furthermore, PGF1alpha and U-46619 increase [Ca2+]i via their specific receptors. PMID:10505684

  1. G protein-coupled estrogen receptor 1-mediated effects in the rat myometrium.

    PubMed

    Tica, Andrei A; Dun, Erica C; Tica, Oana S; Gao, Xin; Arterburn, Jeffrey B; Brailoiu, G Cristina; Oprea, Tudor I; Brailoiu, Eugen

    2011-11-01

    G protein-coupled estrogen receptor 1 (GPER), also named GPR30, has been previously identified in the female reproductive system. In this study, GPER expression was found in the female rat myometrium by reverse transcriptase-polymerase chain reaction and immunocytochemistry. Using GPER-selective ligands, we assessed the effects of the GPER activation on resting membrane potential and cytosolic Ca(2+) concentration ([Ca(2+)](i)) in rat myometrial cells, as well as on contractility of rat uterine strips. G-1, a specific GPER agonist, induced a concentration-dependent depolarization and increase in [Ca(2+)](i) in myometrial cells. The depolarization was abolished in Na(+)-free saline. G-1-induced [Ca(2+)](i) increase was markedly decreased by nifedipine, a L-type Ca(2+) channel blocker, by Ca(2+)-free or Na(+)-free saline. Intracellular administration of G-1 produced a faster and transitory increase in [Ca(2+)](i), with a higher amplitude than that induced by extracellular application, supporting an intracellular localization of the functional GPER in myometrial cells. Depletion of internal Ca(2+) stores with thapsigargin produced a robust store-activated Ca(2+) entry; the Ca(2+) response to G-1 was similar to the constitutive Ca(2+) entry and did not seem to involve store-operated Ca(2+) entry. In rat uterine strips, administration of G-1 increased the frequency and amplitude of contractions and the area under the contractility curve. The effects of G-1 on membrane potential, [Ca(2+)](i), and uterine contractility were prevented by pretreatment with G-15, a GPER antagonist, further supporting the involvement of GPER in these responses. Taken together, our results indicate that GPER is expressed and functional in rat myometrium. GPER activation produces depolarization, elevates [Ca(2+)](i) and increases contractility in myometrial cells. PMID:21865584

  2. Roles of Dopamine D2 Receptor Subregions in Interactions with β-Arrestin2

    PubMed Central

    Zhang, Xiaohan; Choi, Bo-Gil; Kim, Kyeong-Man

    2016-01-01

    β-Arrestins are one of the protein families that interact with G protein-coupled receptors (GPCRs). The roles of β-arrestins are multifaceted, as they mediate different processes including receptor desensitization, endocytosis, and G protein-independent signaling. Thus, determining the GPCR regions involved in the interactions with β-arrestins would be a preliminary step in understanding the molecular mechanisms involved in the selective direction of each function. In the current study, we determined the roles of the N-terminus, intracellular loops, and C-terminal tail of a representative GPCR in the interaction with β-arrestin2. For this, we employed dopamine D2 and D3 receptors (D2R and D3R, respectively), since they display distinct agonist-induced interactions with β-arrestins. Our results showed that the second and third intracellular loops of D2R are involved in the agonist-induced translocation of β-arrestins toward plasma membranes. In contrast, the N- and C-termini of D2R exerted negative effects on the basal interaction with β-arrestins. PMID:27068263

  3. Prostanoid Receptors Involved in Regulation of the Beating Rate of Neonatal Rat Cardiomyocytes

    PubMed Central

    Mechiche, Hakima; Grassin-Delyle, Stanislas; Robinet, Arnaud; Nazeyrollas, Pierre; Devillier, Philippe

    2012-01-01

    Although prostanoids are known to be involved in regulation of the spontaneous beating rate of cultured neonatal rat cardiomyocytes, the various subtypes of prostanoid receptors have not been investigated in detail. In our experiments, prostaglandin (PG)F2α and prostanoid FP receptor agonists (fluprostenol, latanoprost and cloprostenol) produced a decrease in the beating rate. Two prostanoid IP receptor agonists (iloprost and beraprost) induced first a marked drop in the beating rate and then definitive abrogation of beating. In contrast, the prostanoid DP receptor agonists (PGD2 and BW245C) and TP receptor agonists (U-46619) produced increases in the beating rate. Sulprostone (a prostanoid EP1 and EP3 receptor agonist) induced marked increases in the beating rate, which were suppressed by SC-19220 (a selective prostanoid EP1 antagonist). Butaprost (a selective prostanoid EP2 receptor agonist), misoprostol (a prostanoid EP2 and EP3 receptor agonist), 11-deoxy-PGE1 (a prostanoid EP2, EP3 and EP4 receptor agonist) did not alter the beating rate. Our results strongly suggest that prostanoid EP1 receptors are involved in positive regulation of the beating rate. Prostanoid EP1 receptor expression was confirmed by western blotting with a selective antibody. Hence, neonatal rat cardiomyocytes express both prostanoid IP and FP receptors (which negatively regulate the spontaneous beating rate) and prostanoid TP, DP1 and EP1 receptors (which positively regulate the spontaneous beating rate). PMID:22984630

  4. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells.

    PubMed

    Raufman, Jean-Pierre; Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng

    2011-11-18

    Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre-treatment with anti-MMP1 antibody. This study contributes to understanding mechanisms underlying muscarinic receptor agonist-induced promotion of colon cancer and, more importantly, indicates that blocking MMP1 expression and activation has therapeutic promise to stop or retard colon cancer invasion and dissemination. PMID:22027145

  5. PAF-receptor is preferentially expressed in a distinct synthetic phenotype of smooth muscle cells cloned from human internal thoracic artery: Functional implications in cell migration

    SciTech Connect

    Stengel, Dominique; O'Neil, Caroline; Brocheriou, Isabelle; Karabina, Sonia-Athina; Durand, Herve; Caplice, Noel M.; Pickering, J. Geoffrey; Ninio, Ewa . E-mail: ninio@chups.jussieu.fr

    2006-08-04

    Platelet-activating-Factor (PAF) and its structural analogues formed upon low density lipoprotein oxidation are involved in atherosclerotic plaque formation and may signal through PAF-receptor (PAF-R) expressed in human macrophages and in certain smooth muscle cells (SMCs) in the media, but rarely in the intima of human plaques. Our aim was to determine which SMC phenotype expresses PAF-R and whether this receptor is functional in cell migration. Circulating SMC progenitors and two phenotypically distinct clones of proliferative, epithelioid phenotype vs contractile, spindle-shaped SMCs from the media of adult internal thoracic artery were studied for the presence of PAF-receptor (PAF-R). The levels of specific mRNA were obtained by reverse transcription/real-time PCR, the protein expression was deduced from immunohistochemistry staining, and the functional transmigration assay was performed by Boyden chamber-type chemotaxis assay. Only SMCs of spindle-shape and synthetic phenotype expressed both mRNA and PAF-R protein and in the functional test migrated at low concentrations of PAF. Two unrelated, specific PAF-R antagonists inhibited PAF-induced migration, but did not modify the migration initiated by PDGF. The presence of functional PAF-R in arterial spindle-shaped SMCs of synthetic phenotype may be important for their migration from the media into the intima and atherosclerotic plaques formation.

  6. Alteration of dopamine receptor sensitivity by opiates and the subsequent effect of this alteration on opiate tolerance and dependence

    SciTech Connect

    Martin, J.R.

    1985-01-01

    The present study was undertaken to determine whether there is an alteration of dopamine receptor sensitivity following opiate administration, and whether this alteration has any influence on the development of opiate tolerance and dependence. Behavioral hypersensitivity to direct-acting dopamine agonists was observed in mice following acute or chronic morphine administration. Acute levorphanol administration also resulted in potentiation of dopamine agonist-induced behaviors. An increase in density of dopamine receptors, as measured by (/sup 3/H)butyrophenone binding accompanied the development of behavioral hypersensitivity. This increase was localized to the striatum, an area important in the mediation of dopamine-agonist induced behaviors. Naloxone or LiCl coadministered with the opiates prevented the development of hypersensitivity and the increase in density of dopamine receptors. Coadministration of lithium enhanced the development of acute and chronic tolerance. Lithium enhanced the development of dependence as determined by naloxone-induced hypothermia in chronically morphine-treated mice. Apomorphine enhanced naloxone-induced withdrawal in acutely dependent mice. This enhancement was blocked by coadministration of lithium with the opiates. These results suggest that dopamine receptor supersensitivity influences the degree of tolerance and dependence.

  7. Effect of peptidases on the ability of exogenous and endogenous neurokinins to produce neurokinin 1 receptor internalization in the rat spinal cord

    PubMed Central

    Marvizón, Juan Carlos G; Wang, Xueren; Lao, Li-Jun; Song, Bingbing

    2003-01-01

    The ability of peptidases to restrict neurokinin 1 receptor (NK1R) activation by exogenously applied or endogenously released neurokinins was investigated by measuring NK1R internalization in rat spinal cord slices. Concentration–response curves for substance P and neurokinin A were obtained in the presence and absence of 10 μM thiorphan, an inhibitor of neutral endopeptidase (EC 3.4.24.11), plus 10 μM captopril, an inhibitor of dipeptidyl carboxypeptidase (EC 3.4.15.1). These inhibitors significantly decreased the EC50 of substance P to produce NK1R internalization from 32 to 9 nM, and the EC50 of neurokinin A from 170 to 60 nM. Substance P was significantly more potent than neurokinin A, both with and without these peptidase inhibitors. In the presence of peptidase inhibitors, neurokinin B was 10 times less potent than neurokinin A and 64 times less potent than substance P (EC50=573 nM). Several aminopeptidase inhibitors (actinonin, amastatin, bacitracin, bestatin and puromycin) failed to further increase the effect of thiorphan plus captopril on the NK1R internalization produced by 10 nM substance P. Electrical stimulation of the dorsal root produced NK1R internalization by releasing endogenous neurokinins. Thiorphan plus captopril increased NK1R internalization produced by 1 Hz stimulation, but not by 30 Hz stimulation. Therefore, NEN and DCP restrict NK1R activation by endogenous neurokinins when they are gradually released by low-frequency firing of primary afferents, but become saturated or inhibited when primary afferents fire at a high frequency. PMID:14623771

  8. Labeling Internalizing Anti-Epidermal Growth Factor Receptor Variant III Monoclonal Antibody with 177Lu: In Vitro Comparison of Acyclic and Macrocyclic Ligands

    PubMed Central

    Hens, Marc; Vaidyanathan, Ganesan; Welsh, Phil; Zalutsky, Michael R.

    2009-01-01

    Introduction The monoclonal antibody (mAb) L8A4, reactive with the epidermal growth factor receptor variant III (EGFRvIII), internalizes rapidly in glioma cells after receptor binding. Combining this tumor specific mAb with the low energy β-emitter 177Lu would be an attractive approach for brain tumor radioimmunotherapy, provided that trapping of the radionuclide in tumor cells after mAb intracellular processing could be maximized. Materials and Methods L8A4 mAb was labeled with 177Lu using the acyclic ligands [(R)-2-Amino-3-(4-isothiocyanatophenyl)propyl]-trans-(S,S)-cyclohexane-1,2-diamine-pentaacetic acid (CHX-A″-DTPA), 2-(4-Isothiocyanatobenzyl)-diethylenetriaminepenta-acetic acid (pSCN-Bz-DTPA), and 2-(4-Isothiocyanatobenzyl)-6-methyldiethylenetriaminepentaacetic acid (1B4M-DTPA) and the macrocyclic ligands S-2-(4-Isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-tetraacetic acid (C-DOTA) and α-(5-isothiocyanato-2-methoxyphenyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (MeO-DOTA). Paired-label internalization and cellular processing assays were performed on EGFRvIII-expressing U87.ΔEGFR glioma cells over 24-h to directly compare 177Lu-labeled L8A4 to L8A4 labeled with 125I using either Iodogen or N-succinimidyl 4-guanidinomethyl-3-[125I]iodobenzoate ([125I]SGMIB). In order to facilitate comparison of labeling methods, the primary parameter evaluated was the ratio of 177Lu to 125I activity retained in U87.ΔEGFR cells. Results All chelates demonstrated higher retention of internalized activity compared with mAb labeled using Iodogen, with 177Lu/125I ratios of >20 observed for the 3 DTPA chelates at 24 h. When compared to L8A4 labeled using SGMIB, except for MeO-DOTA, internalized activity for 125I was higher than 177Lu from 1–8 h with the opposite behavior observed thereafter. At 24 h, 177Lu/125I ratios were between 1.5 and 3, with higher values observed for the 3 DTPA chelates. Conclusions The nature of the chelate used to label this

  9. Internalization of RGD peptide conjugates of near-infrared fluorescent probes in different cell lines occurs via different integrin receptor subtypes

    NASA Astrophysics Data System (ADS)

    Bloch, S.; Xu, B.; Ye, Y.; Liang, K.; Achilefu, S.

    2006-02-01

    Expression of integrin α vβ 3 is upregulated in a number of cancers including colon, pancreas, lung and breast. Previous studies demonstrated that near infrared (NIR) fluorescent probes designed to target α vβ 3 accumulated both in vitro and in vivo in α vβ 3-positive tumor cells. To evaluate the selectivity of some NIR-labeled RGD peptides for α vβ 3, the molecular probes were incubated in different cells, including the α vβ 3-positive U87 and A549 cells, and α vβ 3-negative HT29 cells. Whereas the RGD compounds tested internalized in the A549 cells, their uptake by the HT29 cell line, which is positive for α vβ 5 and α vβ 6, was low. The uptake of these probes in U87 depended on the structural features of the compounds. Further studies with functional blocking antibodies showed that the internalization in the α vβ 3-positive cells may be mediated by different integrin receptor subtypes. The preliminary results suggest that the internalization of linear RGD peptides is mediated by the α vβ 3 heterodimer but rearrangement of the peptide sequence could alter the selectivity of the molecular probes for different integrin subunits in the dimeric α and β proteins. Thus, a careful choice of RGD peptides can be used to monitor the functional status of different integrins in cells and tissues.

  10. Impact of Concanavalin-A-Mediated Cytoskeleton Disruption on Low-Density Lipoprotein Receptor-Related Protein-1 Internalization and Cell Surface Expression in Glioblastomas

    PubMed Central

    Nanni, Samuel Burke; Pratt, Jonathan; Beauchemin, David; Haidara, Khadidja; Annabi, Borhane

    2016-01-01

    The low-density lipoprotein receptor-related protein 1 (LRP-1) is a multiligand endocytic receptor, which plays a pivotal role in controlling cytoskeleton dynamics during cancer cell migration. Its rapid endocytosis further allows efficient clearance of extracellular ligands. Concanavalin-A (ConA) is a lectin used to trigger in vitro physiological cellular processes, including cytokines secretion, nitric oxide production, and T-lymphocytes activation. Given that ConA exerts part of its effects through cytoskeleton remodeling, we questioned whether it affected LRP-1 expression, intracellular trafficking, and cell surface function in grade IV U87 glioblastoma cells. Using flow cytometry and confocal microscopy, we found that loss of the cell surface 600-kDa mature form of LRP-1 occurs upon ConA treatment. Consequently, internalization of the physiological α2-macroglobulin and the synthetic angiopep-2 ligands of LRP-1 was also decreased. Silencing of known mediators of ConA, such as the membrane type-1 matrix metalloproteinase, and the Toll-like receptors (TLR)-2 and TLR-6 was unable to rescue ConA-mediated LRP-1 expression decrease, implying that the loss of LRP-1 was independent of cell surface relayed signaling. The ConA-mediated reduction in LRP-1 expression was emulated by the actin cytoskeleton-disrupting agent cytochalasin-D, but not by the microtubule inhibitor nocodazole, and required both lysosomal- and ubiquitin-proteasome system-mediated degradation. Our study implies that actin cytoskeleton integrity is required for proper LRP-1 cell surface functions and that impaired trafficking leads to specialized compartmentation and degradation. Our data also strengthen the biomarker role of cell surface LRP-1 functions in the vectorized transport of therapeutic angiopep bioconjugates into brain cancer cells. PMID:27226736

  11. A single base deletion in the Tfm androgen receptor gene creates a short-lived messenger RNA that directs internal translation initiation.

    PubMed Central

    Gaspar, M L; Meo, T; Bourgarel, P; Guenet, J L; Tosi, M

    1991-01-01

    Testosterone-resistant male mice hemizygous for the X-chromosome-linked mutant gene Tfm express detectable but severely reduced levels of androgen receptor mRNA, amounting to about 10% of the level found in normal male littermates. No structural abnormality could be identified in the coding region of the messenger by a series of RNase-protection assays. However, cell-free translation of RNAs transcribed in vitro from enzymatically amplified overlapping segments of exon 1 revealed a truncated receptor protein and helped to localize the site of premature termination. Sequence analysis of the relevant DNA segment disclosed that deletion of a single nucleotide in the hexacytidine stretch at position 1107-1112 alters the reading frame of the messenger and introduces 41 missense amino acids before a premature termination codon at position 1235-1237. Separately initiated carboxyl-terminal polypeptides are synthesized in vitro, starting probably at the in-frame AUG codon 1507-1509, which lies in a favorable context for translation initiation, and at the non-AUG codon 1144-1146. Transcriptional impairments of the Tfm gene were ruled out by a quantitative analysis of enzymatically amplified nuclear RNA precursors. No other change could be identified by sequencing the complete coding region of Tfm cDNA. The finding of the unsuspected termination codon and the evidence of internally initiated carboxyl-terminal polypeptides reconcile previous conclusions and account for all known phenotypic properties of the mutation. Images PMID:1924321

  12. 64Cu antibody-targeting of the T-cell receptor and subsequent internalization enables in vivo tracking of lymphocytes by PET.

    PubMed

    Griessinger, Christoph M; Maurer, Andreas; Kesenheimer, Christian; Kehlbach, Rainer; Reischl, Gerald; Ehrlichmann, Walter; Bukala, Daniel; Harant, Maren; Cay, Funda; Brück, Jürgen; Nordin, Renate; Kohlhofer, Ursula; Rammensee, Hans-Georg; Quintanilla-Martinez, Leticia; Schaller, Martin; Röcken, Martin; Pichler, Bernd J; Kneilling, Manfred

    2015-01-27

    T cells are key players in inflammation, autoimmune diseases, and immunotherapy. Thus, holistic and noninvasive in vivo characterizations of the temporal distribution and homing dynamics of lymphocytes in mammals are of special interest. Herein, we show that PET-based T-cell labeling facilitates quantitative, highly sensitive, and holistic monitoring of T-cell homing patterns in vivo. We developed a new T-cell receptor (TCR)-specific labeling approach for the intracellular labeling of mouse T cells. We found that continuous TCR plasma membrane turnover and the endocytosis of the specific (64)Cu-monoclonal antibody (mAb)-TCR complex enables a stable labeling of T cells. The TCR-mAb complex was internalized within 24 h, whereas antigen recognition was not impaired. Harmful effects of the label on the viability, DNA-damage and apoptosis-necrosis induction, could be minimized while yielding a high contrast in in vivo PET images. We were able to follow and quantify the specific homing of systemically applied (64)Cu-labeled chicken ovalbumin (cOVA)-TCR transgenic T cells into the pulmonary and perithymic lymph nodes (LNs) of mice with cOVA-induced airway delayed-type hypersensitivity reaction (DTHR) but not into pulmonary and perithymic LNs of naïve control mice or mice diseased from turkey or pheasant OVA-induced DTHR. Our protocol provides consequent advancements in the detection of small accumulations of immune cells in single LNs and specific homing to the sites of inflammation by PET using the internalization of TCR-specific mAbs as a specific label of T cells. Thus, our labeling approach is applicable to other cells with constant membrane receptor turnover. PMID:25587131

  13. The human D2 dopamine receptor synergizes with the A2A adenosine receptor to stimulate adenylyl cyclase in PC12 cells.

    PubMed

    Kudlacek, Oliver; Just, Herwig; Korkhov, Vladimir M; Vartian, Nina; Klinger, Markus; Pankevych, Halyna; Yang, Qiong; Nanoff, Christian; Freissmuth, Michael; Boehm, Stefan

    2003-07-01

    The adenosine A(2A) receptor and the dopamine D(2) receptor are prototypically coupled to G(s) and G(i)/G(o), respectively. In striatal intermediate spiny neurons, these receptors are colocalized in dendritic spines and act as mutual antagonists. This antagonism has been proposed to occur at the level of the receptors or of receptor-G protein coupling. We tested this model in PC12 cells which endogenously express A(2A) receptors. The human D(2) receptor was introduced into PC12 cells by stable transfection. A(2A)-agonist-mediated inhibition of D(2) agonist binding was absent in PC12 cell membranes but present in HEK293 cells transfected as a control. However, in the resulting PC12 cell lines, the action of the D(2) agonist quinpirole depended on the expression level of the D(2) receptor: at low and high receptor levels, the A(2A)-agonist-induced elevation of cAMP was enhanced and inhibited, respectively. Forskolin-stimulated cAMP formation was invariably inhibited by quinpirole. The effects of quinpirole were abolished by pretreatment with pertussis toxin. A(2A)-receptor-mediated cAMP formation was inhibited by other G(i)/G(o)-coupled receptors that were either endogenously present (P(2y12)-like receptor for ADP) or stably expressed after transfection (A(1) adenosine, metabotropic glutamate receptor-7A). Similarly, voltage activated Ca(2+) channels were inhibited by the endogenous P(2Y) receptor and by the heterologously expressed A(1) receptor but not by the D(2) receptor. These data indicate functional segregation of signaling components. Our observations are thus compatible with the proposed model that D(2) and A(2A) receptors are closely associated, but they highlight the fact that this interaction can also support synergism. PMID:12784121

  14. PDGF-induced receptor phosphorylation and phosphoinositide hydrolysis are unaffected by protein kinase C activation in mouse swiss 3T3 and human skin fibroblasts

    SciTech Connect

    Sturani, E.; Vicentini, L.M.; Zippel, R.; Toschi, L.; Pandiella-Alonso, A.; Comoglio, P.M.; Meldolesi, J.

    1986-05-29

    Short (1-10 min) pretreatment of intact cells with activators of protein kinase C (e.g. phorbol-12 myristate, 13-acetate, PMA) affects the activity of a variety of surface receptors (for growth factors, hormones and neurotransmitters), with inhibition of transmembrane signal generation. In two types of fibroblasts it is demonstrated that the PDGF receptor is unaffected by PMA. Exposure to PMA at concentrations up to 100 nM for 10 min failed to inhibit either one of the agonist-induced, receptor-coupled responses of PDGF: the autophosphorylation of receptor molecules at tyrosine residues, and the hydrolysis of membrane polyphosphoinositides. In contrast, the EGF receptor autophosphorylation (in A 431 cells) and the bombesin-induced phosphoinositide hydrolysis were readily inhibited by PMA.

  15. Effects of temperature and ethanol on agonist and antagonist binding to rat heart muscarinic receptors in the absence and presence of GTP.

    PubMed Central

    Waelbroeck, M; Robberecht, P; Chatelain, P; De Neef, P; Christophe, J

    1985-01-01

    The effect of temperature on the binding of four agonists and three antagonists to rat heart muscarinic receptors was studied in the absence and presence of GTP. The binding of agonists to two states (or classes) of receptors, in the absence of GTP, led to enthalpy and entropy changes that decreased sharply above 25 degrees C, suggesting that agonists induced 'isomerization' reactions (large conformational changes and/or receptor-effector association). Both temperature increase and ethanol decreased hydrophobic interactions, thereby hindering binding and/or agonist-induced 'isomerization' reactions. Addition of GTP to the incubation medium also appeared to reverse (or prevent) 'isomerization' reactions. For agonist binding to the low-affinity state, in the presence of GTP, and for antagonist binding, the thermodynamic parameters observed could be readily explained by simple receptor-ligand associations; large entropy increases and small enthalpy increases, provoked by hydrophobic and ionic interactions, were partly neutralized by entropy and enthalpy decreases, due to hydrogen bonds and van der Waals interactions. The muscarinic antagonists used (atropine, n-methylscopolamine and dexetimide), being more hydrophobic molecules than the agonists tested (carbamylcholine, oxotremorine and pilocarpine), induced larger entropy changes or more negative enthalpy changes. PMID:4062907

  16. Effects of temperature and ethanol on agonist and antagonist binding to rat heart muscarinic receptors in the absence and presence of GTP.

    PubMed

    Waelbroeck, M; Robberecht, P; Chatelain, P; De Neef, P; Christophe, J

    1985-10-15

    The effect of temperature on the binding of four agonists and three antagonists to rat heart muscarinic receptors was studied in the absence and presence of GTP. The binding of agonists to two states (or classes) of receptors, in the absence of GTP, led to enthalpy and entropy changes that decreased sharply above 25 degrees C, suggesting that agonists induced 'isomerization' reactions (large conformational changes and/or receptor-effector association). Both temperature increase and ethanol decreased hydrophobic interactions, thereby hindering binding and/or agonist-induced 'isomerization' reactions. Addition of GTP to the incubation medium also appeared to reverse (or prevent) 'isomerization' reactions. For agonist binding to the low-affinity state, in the presence of GTP, and for antagonist binding, the thermodynamic parameters observed could be readily explained by simple receptor-ligand associations; large entropy increases and small enthalpy increases, provoked by hydrophobic and ionic interactions, were partly neutralized by entropy and enthalpy decreases, due to hydrogen bonds and van der Waals interactions. The muscarinic antagonists used (atropine, n-methylscopolamine and dexetimide), being more hydrophobic molecules than the agonists tested (carbamylcholine, oxotremorine and pilocarpine), induced larger entropy changes or more negative enthalpy changes. PMID:4062907

  17. Morphine drives internal ribosome entry site-mediated hnRNP K translation in neurons through opioid receptor-dependent signaling

    PubMed Central

    Lee, Pin-Tse; Chao, Po-Kuan; Ou, Li-Chin; Chuang, Jian-Ying; Lin, Yen-Chang; Chen, Shu-Chun; Chang, Hsiao-Fu; Law, Ping-Yee; Loh, Horace H.; Chao, Yu-Sheng; Su, Tsung-Ping; Yeh, Shiu-Hwa

    2014-01-01

    Heterogeneous nuclear ribonucleoprotein K (hnRNP K) binds to the promoter region of mu-opioid receptor (MOR) to regulate its transcriptional activity. How hnRNP K contributes to the analgesic effects of morphine, however, is largely unknown. We provide evidence that morphine increases hnRNP K protein expression via MOR activation in rat primary cortical neurons and HEK-293 cells expressing MORs, without increasing mRNA levels. Using the bicistronic reporter assay, we examined whether morphine-mediated accumulation of hnRNP K resulted from translational control. We identified potential internal ribosome entry site elements located in the 5′ untranslated regions of hnRNP K transcripts that were regulated by morphine. This finding suggests that internal translation contributes to the morphine-induced accumulation of hnRNP K protein in regions of the central nervous system correlated with nociceptive and antinociceptive modulatory systems in mice. Finally, we found that down-regulation of hnRNP K mediated by siRNA attenuated morphine-induced hyperpolarization of membrane potential in AtT20 cells. Silencing hnRNP K expression in the spinal cord increased nociceptive sensitivity in wild-type mice, but not in MOR-knockout mice. Thus, our findings identify the role of translational control of hnRNP K in morphine-induced analgesia through activation of MOR. PMID:25361975

  18. Increased desensitization of dopamine D₂ receptor-mediated response in the ventral tegmental area in the absence of adenosine A(2A) receptors.

    PubMed

    Al-Hasani, R; Foster, J D; Metaxas, A; Ledent, C; Hourani, S M O; Kitchen, I; Chen, Y

    2011-09-01

    G-protein coupled receptors interact to provide additional regulatory mechanisms for neurotransmitter signaling. Adenosine A(2A) receptors are expressed at a high density in striatal neurons, where they closely interact with dopamine D₂ receptors and modulate effects of dopamine and responses to psychostimulants. A(2A) receptors are expressed at much lower densities in other forebrain neurons but play a more prominent yet opposing role to striatal receptors in response to psychostimulants in mice. It is, therefore, possible that A(2A) receptors expressed at low levels elsewhere in the brain may also regulate neurotransmitter systems and modulate neuronal functions. Dopamine D₂ receptors play an important role in autoinhibition of neuronal firing in dopamine neurons of the ventral tegmental area (VTA) and dopamine release in other brain areas. Here, we examined the effect of A(2A) receptor deletion on D₂ receptor-mediated inhibition of neuronal firing in dopamine neurons in the VTA. Spontaneous activity of dopamine neurons was recorded in midbrain slices, and concentration-dependent effects of the dopamine D₂ receptor agonist, quinpirole, was compared between wild-type and A(2A) knockout mice. The potency of quinpirole applied in single concentrations and the expression of D₂ receptors were not altered in the VTA of the knockout mice. However, quinpirole applied in stepwise escalating concentrations caused significantly reduced maximal inhibition in A(2A) knockout mice, indicating an enhanced agonist-induced desensitization of D₂ receptors in the absence of A(2A) receptors. The A(2A) receptor agonist, CGS21680, did not exert any effect on dopamine neuron firing or response to quinpirole, revealing a novel non-pharmacological interaction between adenosine A(2A) receptors and dopaminergic neurotransmission in midbrain dopamine neurons. Altered D₂ receptor desensitization may result in changes in dopamine neuron firing rate and pattern and dopamine

  19. The Internalization of Neurotensin by the Low-Affinity Neurotensin Receptors (NTSR2 and vNTSR2) Activates ERK 1/2 in Glioma Cells and Allows Neurotensin-Polyplex Transfection of tGAS1.

    PubMed

    Ayala-Sarmiento, Alberto E; Martinez-Fong, Daniel; Segovia, José

    2015-08-01

    Glioblastoma is the most malignant primary brain tumor and is very resistant to treatment; hence, it has a poor prognosis. Neurotensin receptor type 1 (NTSR1) plays a key role in cancer malignancy and has potential therapeutic applications. However, the presence and function of neurotensin (NTS) receptors in glioblastoma is not clearly established. RT-PCR assays showed that healthy (non-tumor) astroglial cells and C6 glioma cells express NTSR2 and its isoform (vNTSR2) rather than NTSR1. In glioma cells, NTS promotes the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK 1/2), an effect that was completely abolished by blocking the internalization of the NTS/NTSR complex. We demonstrated pharmacologically that the internalization is dependent on the activation of NTSR2 receptors and it was prevented by levocabastine, a NTSR2 receptor antagonist. The internalization of NTSR2 and vNTSR2 was further demonstrated by its ability to mediate gene transfer (transfection) via the NTS-polyplex system. Expression of reporter transgenes and of the pro-apoptotic soluble form of growth arrest specific 1 (tGAS1) was observed in glioma cells. A significant reduction on the viability of C6 cells was determined when tGAS1 was transfected into glioma cells. Conversely, astroglial cells could neither internalize NTS nor activate ERK 1/2 and could not be transfected by the NTS-polyplex. These results demonstrate that the internalization process of NTSR2 receptors is a key regulator necessary to trigger the activation of the ERK 1/2. Our data support a new internalization pathway in glioma C6 cells that involve NTSR2/vNTSR2, which can be used to selectively transfer therapeutic genes using the NTS-polyplex system. PMID:25772140

  20. Structural requirements for C3d,g/Epstein-Barr virus receptor (CR2/CD21) ligand binding, internalization, and viral infection.

    PubMed

    Carel, J C; Myones, B L; Frazier, B; Holers, V M

    1990-07-25

    The structure of CR2, the human C3d,g/EBV receptor (CR2/CD21) consists of 15 or 16 60-70 amino acid repeats called short consensus repeats (SCRs) followed by a transmembrane and a 34-amino acid intracytoplasmic domain. Functions of CR2 include binding the human complement component C3d,g when it is covalently attached to targets or cross-linked in the fluid phase. In addition, CR2 binds the Epstein-Barr virus (EBV) and mediates internalization of EBV and subsequent infection of cells. In order to explore functional roles of the repetitive extracytoplasmic SCR structure and the intracytoplasmic domain of CR2, we have created truncated CR2 (rCR2) mutants bearing serial deletions of extracytoplasmic SCRs and also the intracytoplasmic tail. We then stably transfected these rCR2 mutants into two cell lines, murine fibroblast L cells and human erythroleukemic K562 cells. Phenotypic analysis of these expressed mutants revealed that 1) The C3d,g- and EBV-binding sites are found in the two amino-terminal SCRs of CR2, 2) expression of SCRs 3 and 4 is further required for high affinity binding to soluble cross-linked C3d,g, 3) the intracytoplasmic domain of CR2 is not required for binding C3d,g or EBV but is necessary for internalization of cross-linked C3d,g as well as for EBV infection of cells, 4) monoclonal anti-CR2 antibodies with similar activities react with single widely separated epitopes, and 5) no functional roles can yet be clearly assigned to SCRs 5-15, as rCR2 mutants not containing these SCRs show no major differences from wild-type rCR2 in binding or internalizing cross-linked C3d,g or mediating EBV binding and infection. PMID:1695627

  1. Non-uniform changes in membrane receptors in the rat urinary bladder following outlet obstruction.

    PubMed

    Zeng, Jianwen; Ekman, Mari; Jiang, Chonghe; Uvelius, Bengt; Swärd, Karl

    2015-09-01

    The aim of the present study was to investigate the expression and distribution of membrane receptors after bladder outlet obstruction (BOO). Partial bladder outlet obstruction (BOO) was induced in female rats and bladders were harvested after either 10 days or 6 weeks of BOO. The expression of different receptors was surveyed by microarrays and corroborated by immunohistochemistry and western blotting. A microarray experiment identified 10 membrane receptors that were differentially expressed compared to sham-operated rats including both upregulated and downregulated receptors. Four of these were selected for functional experiments on the basis of magnitude of change and relevance to bladder physiology. At 6 weeks of BOO, maximal contraction was reduced for neuromedin B and vasopressin (AVP), consistent with reductions of receptor mRNA levels. Glycine receptor-induced contraction on the other hand was increased and receptor mRNA expression was accordingly upregulated. Maximal relaxation by the β3-adrenergic receptor agonist CL316243 was reduced as was the receptor mRNA level. Immunohistochemistry supported reduced expression of neuromedin B receptors, V1a receptors and β3-adrenergic receptors, but glycine receptor expression appeared unchanged. Western blotting confirmed repression of V1a receptors and induction of glycine receptors in BOO. mRNA for vasopressin was detectable in the bladder, suggesting local AVP production. We conclude that changes in receptor expression following bladder outlet obstruction are non-uniform. Some receptors are upregulated, conferring increased responsiveness to agonist, whereas others are downregulated, leading to decreased agonist-induced responses. This study might help to select pharmacological agents that are effective in modulating lower urinary tract symptoms in BOO. PMID:26004535

  2. Identification of key residues involved in the activation and signaling properties of dopamine D3 receptor.

    PubMed

    Kota, Kokila; Kuzhikandathil, Eldo V; Afrasiabi, Milad; Lacy, Brett; Kontoyianni, Maria; Crider, A Michael; Song, Daniel

    2015-09-01

    The dopamine D3 receptor exhibits agonist-dependent tolerance and slow response termination (SRT) signaling properties that distinguish it from the closely-related D2 receptors. While amino acid residues important for D3 receptor ligand binding have been identified, the residues involved in activation of D3 receptor signaling and induction of signaling properties have not been determined. In this paper, we used cis and trans isomers of a novel D3 receptor agonist, 8-OH-PBZI, and site-directed mutagenesis to identify key residues involved in D3 receptor signaling function. Our results show that trans-8-OH-PBZI, but not cis-8-OH-PBZI, elicit the D3 receptor tolerance and SRT properties. We show that while both agonists require a subset of residues in the orthosteric binding site of D3 receptors for activation of the receptor, the ability of the two isomers to differentially induce tolerance and SRT is mediated by interactions with specific residues in the sixth transmembrane helix and third extracellular loop of the D3 receptor. We also show that unlike cis-8-OH-PBZI, which is a partial agonist at the dopamine D2S receptor and full agonist at dopamine D2L receptor, trans-8-OH-PBZI is a full agonist at both D2S and D2L receptors. The different effect of the two isomers on D3 receptor signaling properties and D2S receptor activation correlated with differential effects of the isomers on agonist-induced mouse locomotor activity. The two isomers of 8-OH-PBZI represent novel pharmacological tools for in silico D3 and D2 receptor homology modeling and for determining the role of D3 receptor tolerance and SRT properties in signaling and behavior. PMID:26116441

  3. Ligand binding and internalization by the rat hepatic asialoglycoprotein receptor does not generate polyphosphoinositide derived second messengers

    SciTech Connect

    Medh, J.D.; Haynes, P.A.; Weigel, P.H.; LaBelle, E.F. )

    1989-01-01

    We have studied the effects of asialoorosomucoid (ASOR) on the hydrolysis of ({sup 32}P)-inositol phospholipids in isolated rat hepatocytes. When internalization of ASOR is maximal at 310 molecules/cell/sec, there is neither a decrease in the amount of ({sup 32}P)-phosphatidylinositol-4,5-bisphosphate (PIP{sub 2}) not an increase in ({sup 32}P)-phosphatidic acid (PA) up to 30 min after stimulation. On the other hand, 10-{sup 6}M vasopressin, which was used as a positive control, caused a 35-40% decrease in the level of ({sup 32}P)-PIP{sub 2} and a 70-80% increase in ({sup 32}P)-PA within 30 sec. Addition of orosomucoid or ASOR, even at concentrations 1000-times the K{sub d}, did not change the levels of any of the six phospholipids tested. Similarly, addition of ASOR did not increase the levels of soluble ({sup 3}H)-inositol phosphates, whereas vasopressin caused a 6-fold increase in ({sup 3}H)-inositol-1,4-diphosphate (IP{sub 2}) and a 4-fold increase in ({sup 3}H)-inositol-1,4,5-triphosphate (IP{sub 3}) in isolated rat hepatocytes prelabeled with ({sup 3}H)-inositol.

  4. Determination of sites of U50,488H-promoted phosphorylation of the mouse κ opioid receptor (KOPR): disconnect between KOPR phosphorylation and internalization.

    PubMed

    Chen, Chongguang; Chiu, Yi-Ting; Wu, Wenman; Huang, Peng; Mann, Anika; Schulz, Stefan; Liu-Chen, Lee-Yuan

    2016-02-15

    Phosphorylation sites of KOPR (κ opioid receptor) following treatment with the selective agonist U50,488H {(-)(trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidiny)cyclo-hexyl]benzeneacetamide} were identified after affinity purification, SDS/PAGE, in-gel digestion with Glu-C and HPLC-MS/MS. Single- and double-phosphorylated peptides were identified containing phosphorylated Ser(356), Thr(357), Thr(363) and Ser(369) in the C-terminal domain. Antibodies were generated against three phosphopeptides containing pSer(356)/pThr(357), pThr(363) and pSer(369) respectively, and affinity-purified antibodies were found to be highly specific for phospho-KOPR. U50,488H markedly enhanced staining of the KOPR by pThr(363)-, pSer(369)- and pSer(356)/pThr(357)-specific antibodies in immunoblotting, which was blocked by the selective KOPR antagonist norbinaltorphimine. Ser(369) phosphorylation affected Thr(363) phosphorylation and vice versa, and Thr(363) or Ser(369) phosphorylation was important for Ser(356)/Thr(357) phosphorylation, revealing a phosphorylation hierarchy. U50,488H, but not etorphine, promoted robust KOPR internalization, although both were full agonists. U50,488H induced higher degrees of phosphorylation than etorphine at Ser(356)/Thr(357), Thr(363) and Ser(369) as determined by immunoblotting. Using SILAC (stable isotope labelling by amino acids in cell culture) and HPLC-MS/MS, we found that, compared with control (C), U50,488H (U) and etorphine (E) KOPR promoted single phosphorylation primarily at Thr(363) and Ser(369) with U/E ratios of 2.5 and 2 respectively. Both induced double phosphorylation at Thr(363)+Ser(369) and Thr(357)+Ser(369) with U/E ratios of 3.3 and 3.4 respectively. Only U50,488H induced triple phosphorylation at Ser(356)+Thr(357)+Ser(369). An unphosphorylated KOPR-(354-372) fragment containing all of the phosphorylation sites was detected with a C/E/U ratio of 1/0.7/0.4, indicating that ∼60% and ∼30% of the mouse KOPR are phosphorylated

  5. Relaxation measurements on the acetylcholine receptor.

    PubMed Central

    Sheridan, R E; Lester, H A

    1975-01-01

    In Electrophorus electroplaques, the agonist-induced postsynaptic conductance depends on membrane potential. During steady exposure to agonists, after a voltage step the conductance relaxes on a millisecond time scale, exponentially approaching a new equilibrium value. The relaxation rate constant k is an instantaneous function of voltage, insensitive to the past or present conductance. Two components sum to form k. A concentration-sensitive component increases linearly with agonist concentration and decreases during desensitization or exposure to curare. Thus this component reflects the average frequency at which acetylcholine receptors are opening. The voltage-sensitive component, obtained by extrapolating k to zero agonist concentration, increases at more positive potentials. For acetylcholine, the voltage-sensitive component equals the rate constant for the exponential decay of postsynaptic currents; it thus seems to be the closing rate for active receptors. The voltage-sensitive component has the relative amplitudes acetylcholine less than carbamoylcholine less than decamethonium, and for each agonist equals the closing rate determined from "noise" measurements at neuromuscular junctions. The kinetic data explain several aspects of the steady-state conductance induced by agonists, but shed no light on apparent cooperative effects. PMID:1059136

  6. IFN-alpha/beta-dependent cross-priming induced by specific toll-like receptor agonists.

    PubMed

    Durand, Vanessa; Wong, Simon Y C; Tough, David F; Le Bon, Agnes

    2006-04-12

    Toll-like receptors (TLR) are pattern recognition receptors that have been identified as crucial in the initiation of innate immune responses against pathogens. They are thought to be involved in shaping appropriate adaptive immune responses, although their precise contribution has not yet been fully characterised. Our aim was to investigate in vivo the effect of different TLR stimuli on cellular immune responses. We examined the ability of a range of TLR stimuli to induce CD8+ T cell responses against a model soluble protein antigen, ovalbumin (OVA). We found that TLR 3, TLR 4, and TLR 9 agonists induced functional cross-priming, and that this process was dependent on IFN-alpha/beta signalling pathway. PMID:16823911

  7. Pharmacological and Therapeutic Effects of A3 Adenosine Receptor (A3AR) Agonists

    PubMed Central

    Fishman, Pnina; Bar-Yehuda, Sara; Liang, Bruce T.; Jacobson, Kenneth A.

    2011-01-01

    The Gi-coupled A3 adenosine receptor (A3AR) mediates anti-inflammatory, anticancer and anti-ischemic protective effects. The receptor is overexpressed in inflammatory and cancer cells, while low expression is found in normal cells, rendering the A3AR as a potential therapeutic target. Highly selective A3AR agonists have been synthesized and molecular recognition in the binding site has been characterized. The present review summarizes preclinical and clinical human studies demonstrating that A3AR agonists induce specific anti-inflammatory and anticancer effects via a molecular mechanism that entails modulation of the Wnt and the NF-κB signal transduction pathways. Currently, A3AR agonists are being developed for the treatment of inflammatory diseases including rheumatoid arthritis and psoriasis; ophthalmic diseases such as dry eye syndrome and glaucoma; liver diseases such as hepatocellular carcinoma and hepatitis. PMID:22033198

  8. Exploring the mechanism of general anesthesia: kinetic analysis of GABAA receptor electrophysiology.

    PubMed

    Lee, Daniel K; Albershardt, Daniel J; Cantor, Robert S

    2015-03-10

    A kinetic model of the effect of agonist and anesthetics on ligand-gated ion channels, developed in earlier work, is further refined and used to predict traces observed in fast-perfusion electrophysiological studies on recombinant GABAA receptors under a wide range of agonist and/or anesthetic concentrations. The model incorporates only three conformational states (resting, open, and desensitized) but allows for the modulation of the conformational free energy landscape connecting these states resulting from adsorption of agonist and/or anesthetic to the bilayer in which the protein is embedded. The model is shown to reproduce the diverse and complex features of experimental traces remarkably well, including both anesthetic-induced and agonist-induced traces, as well as the modulation of agonist-induced traces by anesthetic, either coapplied or continuously present. The solutions to the kinetic equations, which give the time-dependence of each of the nine protein states (three ligation states for each of the three conformations), describe the flow of probability among these states and thus reveal the kinetic underpinnings of the traces. Many of the parameters in the model, such as the desorption rate constants of anesthetic and agonist, are directly related to model-independent experimental measurements and thus can serve as a definitive test of its validity. PMID:25762320

  9. Exercise reduces GABA synaptic input onto NTS baroreceptor second-order neurons via NK1 receptor internalization in spontaneously hypertensive rats

    PubMed Central

    Chen, Chao-Yin; Bechtold, Andrea G.; Tabor, Jocelyn; Bonham, Ann C.

    2009-01-01

    A single bout of mild to moderate exercise can lead to a post-exercise decrease in blood pressure in hypertensive subjects, namely post-exercise hypotension (PEH). The full expression of PEH requires a functioning baroreflex, hypertension and activation of muscle afferents (exercise), suggesting that interactions in the neural networks regulating exercise and blood pressure result in this fall in blood pressure. The nucleus tractus solitarii (NTS) is the first brain site that receives inputs from nerves carrying blood pressure and muscle activity information, making it an ideal site for integrating cardiovascular responses to exercise. During exercise, muscle afferents excite NTS GABA neurons via substance P and microinjection of a substance P-neurokinin 1 receptor (NK1-R) antagonist into the NTS attenuates PEH. The data suggest that an interaction between the substance P NK1-R and GABAergic transmission in the NTS may contribute to PEH. We performed voltage-clamping on NTS baroreceptor second-order neurons in spontaneously hypertensive rats (SHRs). All animals were sacrificed within 30 min and the patch-clamp recordings were performed 2-8 hr after the sham/exercise protocol. The data showed that a single bout of exercise reduces 1) the frequency but not the amplitude of GABA spontaneous inhibitory synaptic currents (sIPCs), 2) endogenous substance P influence on sIPSC frequency, and 3) sIPSC frequency response to exogenous application of substance P. Furthermore, immunofluorescence labeling in NTS show an increased substance P NK1-R internalization on GABA neurons. The data suggest that exercise-induced NK1-R internalization results in a reduced intrinsic inhibitory input to the neurons in the baroreflex pathway. PMID:19261870

  10. Antitumor activity and immune response induction of a dual agonist of Toll-like receptors 7 and 8.

    PubMed

    Wang, Daqing; Precopio, Melissa; Lan, Tao; Yu, Dong; Tang, Jimmy X; Kandimalla, Ekambar R; Agrawal, Sudhir

    2010-06-01

    Viral and synthetic single-stranded RNAs are the ligands for Toll-like receptors 7 and 8 (TLR7 and TLR8). We have reported a novel class of synthetic oligoribonucleotides, referred to as stabilized immune-modulatory RNA compounds, which act as agonists of TLR7, TLR8, or both TLR7 and TLR8 depending on the sequence composition and the presence of specific chemical modifications. In the present study, we evaluated the antitumor activity of a dual TLR7/8 agonist in tumor-bearing mice with peritoneal disseminated CT26.CL25 colon and 3LL-C75 lung carcinomas. Peritoneal administration of dual TLR7/8 agonist in mice bearing CT26.CL25 colon carcinomas had potent dose-dependent antitumor activity, which was associated with a marked decrease in CD4(+)CD25(+)Foxp3(+) T regulatory cells and a significant increase in tumor antigen-specific IFN-gamma-secreting effector cell responses in splenocytes and local tumor-infiltrating cells. In 3LL-C75 lung carcinoma, dual TLR7/8 agonist induced strong immune responses and antitumor effects in C57BL/6 and TLR9(-/-) mice, but not in TLR7(-/-) and MyD88(-/-) mice, indicating that the agonist induces immune responses via TLR7 and through the MyD88-dependent signaling pathway. TLR8 is not functional in mice. Additionally, s.c. administration of TLR7/8 agonist effectively prevented lung metastasis of tumors in the CT26.CL25 pulmonary metastasis model. These studies show that the dual TLR7/8 agonist induced Th1-type immune responses and potent antitumor activity in mice via TLR7 and through the MyD88-dependent pathway. PMID:20515950

  11. G-protein mediates voltage regulation of agonist binding to muscarinic receptors: effects on receptor-Na/sup +/ channel interaction

    SciTech Connect

    Cohen-Armon, M.; Garty, H.; Sokolovsky, M.

    1988-01-12

    The authors previous experiments in membranes prepared from rat heart and brain led them to suggest that the binding of agonist to the muscarinic receptors and to the Na/sup +/ channels is a coupled event mediated by guanine nucleotide binding protein(s) (G-protein(s)). These in vitro findings prompted us to employ synaptoneurosomes from brain stem tissue to examine (i) the binding properties of (/sup 3/H) acetylcholine at resting potential and under depolarization conditions in the absence and presence of pertussis toxin; (ii) the binding of (/sup 3/H)batrachotoxin to Na/sup +/ channel(s) in the presence of the muscarinic agonists; and (iii) muscarinically induced /sup 22/Na/sup +/ uptake in the presence and absence of tetrodotoxin, which blocks Na/sup +/ channels. The findings indicate that agonist binding to muscarinic receptors is voltage dependent, that this process is mediated by G-protein(s), and that muscarinic agonists induce opening of Na/sup +/channels. The latter process persists even after pertussis toxin treatment, indicating that it is not likely to be mediated by pertussis toxin sensitive G-protein(s). The system with its three interacting components-receptor, G-protein, and Na/sup +/ channel-is such that at resting potential the muscarinic receptor induces opening of Na/sup +/ channels; this property may provide a possible physiological mechanism for the depolarization stimulus necessary for autoexcitation or repetitive firing in heart or brain tissues.

  12. Proerectile effects of dopamine D2-like agonists are mediated by the D3 receptor in rats and mice.

    PubMed

    Collins, Gregory T; Truccone, Andrew; Haji-Abdi, Faiza; Newman, Amy Hauck; Grundt, Peter; Rice, Kenner C; Husbands, Stephen M; Greedy, Benjamin M; Enguehard-Gueiffier, Cecile; Gueiffier, Alain; Chen, Jianyong; Wang, Shaomeng; Katz, Jonathan L; Grandy, David K; Sunahara, Roger K; Woods, James H

    2009-04-01

    Dopamine D(2)-like agonists induce penile erection (PE) and yawning in a variety of species, effects that have been suggested recently to be specifically mediated by the D(4) and D(3) receptors, respectively. The current studies were aimed at characterizing a series of D(2), D(3), and D(4) agonists with respect to their capacity to induce PE and yawning in the rat and the proerectile effects of apomorphine [(R)-(-)-5,6,6a,7-tetrahydro-6-methyl-4H-dibenzo-[de,g]quinoline-10,11-diol hydrochloride] in wild-type and D(4) receptor (R) knockout (KO) mice. All D(3) agonists induced dose-dependent increases in PE and yawning over a similar range of doses, whereas significant increases in PE or yawning were not observed with any of the D(4) agonists. Likewise, D(2), D(3), and D(4) antagonists were assessed for their capacity to alter apomorphine- and pramipexole (N'-propyl-4,5,6,7-tetrahydrobenzothiazole-2,6-diamine dihydrochloride)-induced PE and yawning. The D(3) antagonist, PG01037 [N-{4-[4-(2,3-dichlorophenyl)-piperazin-1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide hydrochloride], inhibited the induction of PE and yawning, whereas the D(2) antagonist, L-741,626 [3-[4-(4-chlorophenyl)-4-hydroxypiperidin-l-yl]methyl-1H-indole], reversed the inhibition of PE and yawning observed at higher doses. The D(4) antagonist, L-745,870 [3-(4-[4-chlorophenyl]piperazin-1-yl)-methyl-1H-pyrrolo[2,3-b]pyridine trihydrochloride], did not alter apomorphine- or pramipexole-induced PE or yawning. A role for the D(3) receptor was further supported because apomorphine was equipotent at inducing PE in wild-type and D(4)RKO mice, effects that were inhibited by the D(3) antagonist, PG01037, in both wild-type and D(4)R KO mice. Together, these studies provide strong support that D(2)-like agonist-induced PE and yawning are differentially mediated by the D(3) (induction) and D(2) (inhibition) receptors. These studies fail to support a role for the D(4) receptor in the regulation of PE or

  13. Inhibition of Estrogen Receptor-DNA Binding by the "Pure" Antiestrogen ICI 164,384 Appears to be Mediated by Impaired Receptor Dimerization

    NASA Astrophysics Data System (ADS)

    Fawell, Stephen E.; White, Roger; Hoare, Susan; Sydenham, Mark; Page, Martin; Parker, Malcolm G.

    1990-09-01

    Many estrogen-antagonist and -agonist ligands have been synthesized, some of which have proved clinically important in the treatment of hormone-dependent breast tumors and endocrine disorders. Here we show that the "pure" antiestrogen ICI 164,384 inhibits mouse estrogen receptor-DNA binding in vitro. The effects of this steroid on DNA binding can be overcome by addition of an anti-receptor antibody whose epitope lies N-terminal to the receptor DNA-binding domain. Since this antibody is also capable of restoring DNA-binding activity to receptor mutants that either lack the dimerization domain or bear deleterious mutations within it, we propose that ICI 164,384 reduces DNA binding by interfering with receptor dimerization. In contrast, when complexed with the antagonist/partial agonist tamoxifen, the estrogen receptor is capable of binding to DNA in vitro, but tamoxifen does not promote the agonist-induced conformational change obtained with estradiol. The implications of these data are discussed in relation to the in vivo properties of these drugs.

  14. P2X-mediated AMPA receptor internalization and synaptic depression is controlled by two CaMKII phosphorylation sites on GluA1 in hippocampal neurons.

    PubMed

    Pougnet, Johan-Till; Compans, Benjamin; Martinez, Audrey; Choquet, Daniel; Hosy, Eric; Boué-Grabot, Eric

    2016-01-01

    Plasticity at excitatory synapses can be induced either by synaptic release of glutamate or the release of gliotransmitters such as ATP. Recently, we showed that postsynaptic P2X2 receptors activated by ATP released from astrocytes downregulate synaptic AMPAR, providing a novel mechanism by which glial cells modulate synaptic activity. ATP- and lNMDA-induced depression in the CA1 region of the hippocampus are additive, suggesting distinct molecular pathways. AMPARs are homo-or hetero-tetramers composed of GluA1-A4. Here, we first show that P2X2-mediated AMPAR inhibition is dependent on the subunit composition of AMPAR. GluA3 homomers are insensitive and their presence in heteromers alters P2X-mediated inhibition. Using a mutational approach, we demonstrate that the two CaMKII phosphorylation sites S567 and S831 located in the cytoplasmic Loop1 and C-terminal tail of GluA1 subunits, respectively, are critical for P2X2-mediated AMPAR inhibition recorded from co-expressing Xenopus oocytes and removal of surface AMPAR at synapses of hippocampal neurons imaged by the super-resolution dSTORM technique. Finally, using phosphorylation site-specific antibodies, we show that P2X-induced depression in hippocampal slices produces a dephosphorylation of the GluA1 subunit at S567, contrary to NMDAR-mediated LTD. These findings indicate that GluA1 phosphorylation of S567 and S831 is critical for P2X2-mediated AMPAR internalization and ATP-driven synaptic depression. PMID:27624155

  15. The phenotype of TNF receptor-associated autoinflammatory syndrome (TRAPS) at presentation: a series of 158 cases from the Eurofever/EUROTRAPS international registry

    PubMed Central

    Lachmann, H J; Papa, R; Gerhold, K; Obici, L; Touitou, I; Cantarini, L; Frenkel, J; Anton, J; Kone-Paut, I; Cattalini, M; Bader-Meunier, B; Insalaco, A; Hentgen, V; Merino, R; Modesto, C; Toplak, N; Berendes, R; Ozen, S; Cimaz, R; Jansson, A; Brogan, P A; Hawkins, P N; Ruperto, N; Martini, A; Woo, P; Gattorno, M

    2014-01-01

    Objective To evaluate the genetic findings, demographic features and clinical presentation of tumour necrosis factor receptor-associated autoinflammatory syndrome (TRAPS) in patients from the Eurofever/EUROTRAPS international registry. Methods A web-based registry collected retrospective data on patients with TNFRSF1A sequence variants and inflammatory symptoms. Participating hospitals included paediatric rheumatology centres and adult centres with a specific interest in autoinflammatory diseases. Cases were independently validated by experts in the disease. Results Complete information on 158 validated patients was available. The most common TNFRSF1A variant was R92Q (34% of cases), followed by T50M (10%). Cysteine residues were disrupted in 27% of cases, accounting for 39% of sequence variants. A family history was present in 19% of patients with R92Q and 64% of those with other variants. The median age at which symptoms began was 4.3 years but 9.1% of patients presented after 30 years of age. Attacks were recurrent in 88% and the commonest features associated with the pathogenic variants were fever (88%), limb pain (85%), abdominal pain (74%), rash (63%) and eye manifestations (45%). Disease associated with R92Q presented slightly later at a median of 5.7 years with significantly less rash or eye signs and more headaches. Children were more likely than adults to present with lymphadenopathy, periorbital oedema and abdominal pains. AA amyloidosis has developed in 16 (10%) patients at a median age of 43 years. Conclusions In this, the largest reported case series to date, the genetic heterogeneity of TRAPS is accompanied by a variable phenotype at presentation. Patients had a median 70 symptomatic days a year, with fever, limb and abdominal pain and rash the commonest symptoms. Overall, there is little evidence of a significant effect of age or genotype on disease features at presentation. PMID:23965844

  16. Pharmacology of the Adenosine A3 Receptor in the Vasculature and Essential Hypertension

    PubMed Central

    Ho, Ming-Fen; Low, Leanne M.; Rose’Meyer, Roselyn B.

    2016-01-01

    Background Essential hypertension is considered to be a multifactorial disorder and its aetiology has yet to be clearly identified. As the adenosine receptors have a significant role in mediating vasodilation, alterations in their structures or signalling pathways may be involved in the development of hypertension. This study aimed to measure the expression of adenosine A3 receptors in a range of cardiovascular tissues and determine whether they could be altered with essential hypertension, and to functionally test responses to adenosine A3 receptor agonists in coronary blood vessels using the isolated perfused heart preparation. Methods mRNA samples from cardiovascular tissues and a range of blood vessels were collected from 10 week old male spontaneously hypertensive rats and age-gender matched Wistar rats (n = 8). The Langendorff heart perfusion preparation was used to characterise adenosine A3 receptor mediated coronary vasodilation in the rat heart. Results Adenosine A3 receptor agonists induced coronary vasodilation. The expression of adenosine A3 receptors in cardiovascular tissues was altered in a tissue-specific pattern. Specifically, down-regulation of adenosine A3 receptor expression occurred in hypertensive hearts, which might be associated with attenuated vasodilator responses observed in coronary vessels to adenosine A3 receptor agonists. Conclusions This study demonstrated alterations in the expression of adenosine A3 receptors occurred in a tissue specific mode, and reduced adenosine A3 receptor mediated coronary vasodilation in hearts from spontaneously hypertensive rats. Our findings with regard to changes in the adenosine A3 receptor in hypertensive hearts suggest that adenosine A3 receptor might play a role in the physiopathology of essential hypertension and potentially open the way to pharmacologic manipulation of vasomotor activity by the use of adenosine A3 receptor agonists. PMID:26907173

  17. Intracolonical administration of protease-activated receptor-2 agonists produced visceral hyperalgesia by up-regulating serotonin in the colon of rats.

    PubMed

    Li, Zhi; Zhang, Xiao-Jun; Xu, Hong-xi; Sung, Joseph J Y; Bian, Zhao-xiang

    2009-03-15

    This study aimed to investigate the underlying mechanism of protease-activated receptor-2 (PAR-2) agonist-induced visceral hyperalgesia. Male Sprague-Dawley rat pups were submitted to colonic injection of PAR-2 agonist for 6 consecutive days. The visceral sensitivity to colorectal distention was evaluated by electromyography. The enterochromaffin (EC) cell number, 5-HT content and tryrptophan hydroxylase (TPH) protein expression were detected with immunohistochemistry, fluorescent measurement and Western blot analysis. PAR-2 agonist induced a significant increase of visceral nociceptive response to colorectal distention and a series of neurochemical changes in rat colon, including proliferation of EC cells, increased 5-HT content and enhanced TPH expression. Expression of PAR-2 in EC cells was reported for the first time. Further, selective 5-HT(3) receptor antagonist alosteron significantly inhibited PAR-2-induced visceral hyperalgesia. The enhanced 5-HT signaling is likely responsible for the visceral hyperalgesia induced by PAR-2 agonist. Interruption of this pathway is a possible target for the treatment of visceral hyperalgesia in gastrointestinal diseases. PMID:19374846

  18. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    SciTech Connect

    Raufman, Jean-Pierre; Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. Black-Right-Pointing-Pointer Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. Black-Right-Pointing-Pointer Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre

  19. Revisiting the Endocytosis of the M2 Muscarinic Acetylcholine Receptor

    PubMed Central

    Ockenga, Wymke; Tikkanen, Ritva

    2015-01-01

    The agonist-induced endocytosis of the muscarinic acetylcholine receptor M2 is different from that of the other members of the muscarinic receptor family. The uptake of the M2 receptor involves the adapter proteins of the β-arrestin family and the small GTPase ADP-ribosylation factor 6. However, it has remained inconclusive if M2 endocytosis is dependent on clathrin or the large GTPase dynamin. We here show by means of knocking down the clathrin heavy chain that M2 uptake upon agonist stimulation requires clathrin. The expression of various dominant-negative dynamin-2 mutants and the use of chemical inhibitors of dynamin function revealed that dynamin expression and membrane localization as such appear to be necessary for M2 endocytosis, whereas dynamin GTPase activity is not required for this process. Based on the data from the present and from previous studies, we propose that M2 endocytosis takes place by means of an atypical clathrin-mediated pathway that may involve a specific subset of clathrin-coated pits/vesicles. PMID:25985102

  20. Does the kappa opioid receptor system contribute to pain aversion?

    PubMed Central

    Cahill, Catherine M.; Taylor, Anna M. W.; Cook, Christopher; Ong, Edmund; Morón, Jose A.; Evans, Christopher J.

    2014-01-01

    The kappa opioid receptor (KOR) and the endogenous peptide-ligand dynorphin have received significant attention due the involvement in mediating a variety of behavioral and neurophysiological responses, including opposing the rewarding properties of drugs of abuse including opioids. Accumulating evidence indicates this system is involved in regulating states of motivation and emotion. Acute activation of the KOR produces an increase in motivational behavior to escape a threat, however, KOR activation associated with chronic stress leads to the expression of symptoms indicative of mood disorders. It is well accepted that KOR can produce analgesia and is engaged in chronic pain states including neuropathic pain. Spinal studies have revealed KOR-induced analgesia in reversing pain hypersensitivities associated with peripheral nerve injury. While systemic administration of KOR agonists attenuates nociceptive sensory transmission, this effect appears to be a stress-induced effect as anxiolytic agents, including delta opioid receptor agonists, mitigate KOR agonist-induced analgesia. Additionally, while the role of KOR and dynorphin in driving the dysphoric and aversive components of stress and drug withdrawal has been well characterized, how this system mediates the negative emotional states associated with chronic pain is relatively unexplored. This review provides evidence that dynorphin and the KOR system contribute to the negative affective component of pain and that this receptor system likely contributes to the high comorbidity of mood disorders associated with chronic neuropathic pain. PMID:25452729

  1. Comparison of the activation kinetics of the M3 acetylcholine receptor and a constitutively active mutant receptor in living cells.

    PubMed

    Hoffmann, Carsten; Nuber, Susanne; Zabel, Ulrike; Ziegler, Nicole; Winkler, Christiane; Hein, Peter; Berlot, Catherine H; Bünemann, Moritz; Lohse, Martin J

    2012-08-01

    Activation of G-protein-coupled receptors is the first step of the signaling cascade triggered by binding of an agonist. Here we compare the activation kinetics of the G(q)-coupled M(3) acetylcholine receptor (M(3)-AChR) with that of a constitutively active mutant receptor (M(3)-AChR-N514Y) using M(3)-AChR constructs that report receptor activation by changes in the fluorescence resonance energy transfer (FRET) signal. We observed a leftward shift in the concentration-dependent FRET response for acetylcholine and carbachol with M(3)-AChR-N514Y. Consistent with this result, at submaximal agonist concentrations, the activation kinetics of M(3)-AChR-N514Y were significantly faster, whereas at maximal agonist concentrations the kinetics of receptor activation were identical. Receptor deactivation was significantly faster with carbachol than with acetylcholine and was significantly delayed by the N514Y mutation. Receptor-G-protein interaction was measured by FRET between M(3)-AChR-yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP)-Gγ(2). Agonist-induced receptor-G-protein coupling was of a time scale similar to that of receptor activation. As observed for receptor deactivation, receptor-G-protein dissociation was slower for acetylcholine than that for carbachol. Acetylcholine-stimulated increases in receptor-G-protein coupling of M(3)-AChR-N514Y reached only 12% of that of M(3)-AChR and thus cannot be kinetically analyzed. G-protein activation was measured using YFP-tagged Gα(q) and CFP-tagged Gγ(2). Activation of G(q) was significantly slower than receptor activation and indistinguishable for the two agonists. However, G(q) deactivation was significantly prolonged for acetylcholine compared with that for carbachol. Consistent with decreased agonist-stimulated coupling to G(q), agonist-stimulated G(q) activation by M(3)-AChR-N514Y was not detected. Taken together, these results indicate that the N514Y mutation produces constitutive activation of M(3

  2. Stimulation of proliferation of a human osteosarcoma cell line by exogenous acidic fibroblast growth factor requires both activation of receptor tyrosine kinase and growth factor internalization.

    PubMed Central

    Wiedłocha, A; Falnes, P O; Rapak, A; Muñoz, R; Klingenberg, O; Olsnes, S

    1996-01-01

    U2OS Dr1 cells, originating from a human osteosarcoma, are resistant to the intracellular action of diphtheria toxin but contain toxin receptors on their surfaces. These cells do not have detectable amounts of fibroblast growth factor receptors. When these cells were transfected with fibroblast growth factor receptor 4, the addition of acidic fibroblast growth factor to the medium induced tyrosine phosphorylation, DNA synthesis, and cell proliferation. A considerable fraction of the cell-associated growth factor was found in the nuclear fraction. When the growth factor was fused to the diphtheria toxin A fragment, it was still bound to the growth factor receptor and induced tyrosine phosphorylation but did not induce DNA synthesis or cell proliferation, nor was any fusion protein recovered in the nuclear fraction. On the other hand, when the fusion protein was associated with the diphtheria toxin B fragment to allow translocation to the cytosol by the toxin pathway, the fusion protein was targeted to the nucleus and stimulated both DNA synthesis and cell proliferation. In untransfected cells containing toxin receptors but not fibroblast growth factor receptors, the fusion protein was translocated to the cytosol and targeted to the nucleus, but in this case, it stimulated only DNA synthesis. These data indicate that the following two signals are required to stimulate cell proliferation in transfected U2OS Dr1 cells: the tyrosine kinase signal from the activated fibroblast growth factor receptor and translocation of the growth factor into the cell. PMID:8524304

  3. Reengineering the Collision Coupling and Diffusion Mode of the A2A-adenosine Receptor

    PubMed Central

    Keuerleber, Simon; Thurner, Patrick; Gruber, Christian W.; Zezula, Jürgen; Freissmuth, Michael

    2012-01-01

    The A2A-adenosine receptor undergoes restricted collision coupling with its cognate G protein Gs and lacks a palmitoylation site at the end of helix 8 in its intracellular C terminus. We explored the hypothesis that there was a causal link between the absence of a palmitoyl moiety and restricted collision coupling by introducing a palmitoylation site. The resulting mutant A2A-R309C receptor underwent palmitoylation as verified by both mass spectrometry and metabolic labeling. In contrast to the wild type A2A receptor, the concentration-response curve for agonist-induced cAMP accumulation was shifted to the left with increasing expression levels of A2A-R309C receptor, an observation consistent with collision coupling. Single particle tracking of quantum dot-labeled receptors confirmed that wild type and mutant A2A receptor differed in diffusivity and diffusion mode; agonist activation resulted in a decline in mean square displacement of both receptors, but the drop was substantially more pronounced for the wild type receptor. In addition, in the agonist-bound state, the wild type receptor was frequently subject to confinement events (estimated radius 110 nm). These were rarely seen with the palmitoylated A2A-R309C receptor, the preferred diffusion mode of which was a random walk in both the basal and the agonist-activated state. Taken together, the observations link restricted collision coupling to diffusion limits imposed by the absence of a palmitoyl moiety in the C terminus of the A2A receptor. The experiments allowed for visualizing local confinement of an agonist-activated G protein-coupled receptor in an area consistent with the dimensions of a lipid raft. PMID:23071116

  4. Leukotriene D4 receptor-mediated hydrolysis of phosphoinositide and mobilization of calcium in sheep tracheal smooth muscle cells

    SciTech Connect

    Mong, S.; Miller, J.; Wu, H.L.; Crooke, S.T.

    1988-02-01

    A sheep tracheal smooth muscle primary culture cell system was developed to characterize leukotriene D4 (LTD4) receptor-mediated biochemical and pharmacological effects. (/sup 3/H)LTD4 binding to the enriched plasma membrane receptor was specific, stereoselective and saturable. LTE4 and high affinity receptor antagonists bound to the receptors with a rank-order potency that was expected from previous smooth muscle contraction studies. In the (/sup 3/H)myoinositol labeled cells, LTD4 and LTE4 induced phosphoinositide hydrolysis. The biosynthesis of (/sup 3/H)inositol-trisphosphate was rapid and the induction of biosynthesis of (/sup 3/H)inositol-monophosphate by LTs was stereoselective and specific and was inhibited specifically by a receptor antagonist, SKF 104353. In the fura-2 loaded smooth muscle cells, LTD4 and LTE4 induced transient intracellular Ca++ mobilization. The fura-2/Ca++ transient was stereoselective and specific and was inhibited by receptor antagonist, SKF 104353. These results suggest that the cultured sheep tracheal smooth muscle cells have plasma membrane receptors for LTD4. These receptors were coupled to a phospholipase C that, when activated by agonists, induced hydrolysis of inositol containing phospholipids. The hydrolysis products, e.g. diacylglycerol and inositol-trisphosphate, may serve as intracellular messengers that trigger or contribute to the contractile effect in sheep tracheal smooth muscle.

  5. The role of protease-activated receptor type 2 in nociceptive signaling and pain.

    PubMed

    Mrozkova, P; Palecek, J; Spicarova, D

    2016-07-18

    Protease-activated receptors (PARs) belong to the G-protein-coupled receptor family, that are expressed in many body tissues especially in different epithelial cells, mast cells and also in neurons and astrocytes. PARs play different physiological roles according to the location of their expression. Increased evidence supports the importance of PARs activation during nociceptive signaling and in the development of chronic pain states. This short review focuses on the role of PAR2 receptors in nociceptive transmission with the emphasis on the modulation at the spinal cord level. PAR2 are cleaved and subsequently activated by endogenous proteases such as tryptase and trypsin. In vivo, peripheral and intrathecal administration of PAR2 agonists induces thermal and mechanical hypersensitivity that is thought to be mediated by PAR2-induced release of pronociceptive neuropeptides and modulation of different receptors. PAR2 activation leads also to sensitization of transient receptor potential channels (TRP) that are crucial for nociceptive signaling and modulation. PAR2 receptors may play an important modulatory role in the development and maintenance of different pathological pain states and could represent a potential target for new analgesic treatments. PMID:27070742

  6. Preclinical pharmacology and pharmacokinetics of AZD3783, a selective 5-hydroxytryptamine 1B receptor antagonist.

    PubMed

    Zhang, Minli; Zhou, Diansong; Wang, Yi; Maier, Donna L; Widzowski, Daniel V; Sobotka-Briner, Cynthia D; Brockel, Becky J; Potts, William M; Shenvi, Ashok B; Bernstein, Peter R; Pierson, M Edward

    2011-11-01

    The preclinical pharmacology and pharmacokinetic properties of (2R)-6-methoxy-8-(4-methylpiperazin-1-yl)-N-(4-morpholin-4-ylphenyl)chromane-2-carboxamide (AZD3783), a potent 5-hydroxytryptamine 1B (5-HT(1B)) receptor antagonist, were characterized as part of translational pharmacokinetic/pharmacodynamic hypothesis testing in human clinical trials. The affinity of AZD3783 to the 5-HT(1B) receptor was measured in vitro by using membrane preparations containing recombinant human or guinea pig 5-HT(1B) receptors and in native guinea pig brain tissue. In vivo antagonist potency of AZD3783 for the 5HT(1B) receptor was investigated by measuring the blockade of 5-HT(1B) agonist-induced guinea pig hypothermia. The anxiolytic-like potency was assessed using the suppression of separation-induced vocalization in guinea pig pups. The affinity of AZD3783 for human and guinea pig 5-HT(1B) receptor (K(i), 12.5 and 11.1 nM, respectively) was similar to unbound plasma EC(50) values for guinea pig receptor occupancy (11 nM) and reduction of agonist-induced hypothermia (18 nM) in guinea pig. Active doses of AZD3783 in the hypothermia assay were similar to doses that reduced separation-induced vocalization in guinea pig pups. AZD3783 demonstrated favorable pharmacokinetic properties. The predicted pharmacokinetic parameters (total plasma clearance, 6.5 ml/min/kg; steady-state volume of distribution, 6.4 l/kg) were within 2-fold of the values observed in healthy male volunteers after a single 20-mg oral dose. This investigation presents a direct link between AZD3783 in vitro affinity and in vivo receptor occupancy to preclinical disease model efficacy. Together with predicted human pharmacokinetic properties, we have provided a model for the quantitative translational pharmacology of AZD3783 that increases confidence in the optimal human receptor occupancy required for antidepressant and anxiolytic effects in patients. PMID:21825000

  7. The Toll-like receptor 2 (TLR2) ligand FSL-1 is internalized via the clathrin-dependent endocytic pathway triggered by CD14 and CD36 but not by TLR2

    PubMed Central

    Shamsul, Haque M; Hasebe, Akira; Iyori, Mitsuhiro; Ohtani, Makoto; Kiura, Kazuto; Zhang, Diya; Totsuka, Yasunori; Shibata, Ken- ichiro

    2010-01-01

    Little is known of how Toll-like receptor (TLR) ligands are processed after recognition by TLRs. This study was therefore designed to investigate how the TLR2 ligand FSL-1 is processed in macrophages after recognition by TLR2. FSL-1 was internalized into the murine macrophage cell line, RAW264.7. Both chlorpromazine and methyl-β-cyclodextrin, which inhibit clathrin-dependent endocytosis, reduced FSL-1 uptake by RAW264.7 cells in a dose-dependent manner but nystatin, which inhibits caveolae- and lipid raft-dependent endocytosis, did not. FSL-1 was co-localized with clathrin but not with TLR2 in the cytosol of RAW264.7 cells. These results suggest that internalization of FSL-1 is clathrin dependent. In addition, FSL-1 was internalized by peritoneal macrophages from TLR2-deficient mice. FSL-1 was internalized by human embryonic kidney 293 cells transfected with CD14 or CD36 but not by the non-transfected cells. Also, knockdown of CD14 or CD36 in the transfectants reduced FSL-1 uptake. In this study, we suggest that (i) FSL-1 is internalized into macrophages via a clathrin-dependent endocytic pathway, (ii) the FSL-1 uptake by macrophages occurs irrespective of the presence of TLR2, and (iii) CD14 and CD36 are responsible for the internalization of FSL-1. PMID:20113368

  8. Desensitization of Functional µ-Opioid Receptors Increases Agonist Off-Rate

    PubMed Central

    2014-01-01

    Desensitization of µ-opioid receptors (MORs) develops over 5–15 minutes after the application of some, but not all, opioid agonists and lasts for tens of minutes after agonist removal. The decrease in function is receptor selective (homologous) and could result from 1) a reduction in receptor number or 2) a decrease in receptor coupling. The present investigation used photolysis of two caged opioid ligands to examine the kinetics of MOR-induced potassium conductance before and after MOR desensitization. Photolysis of a caged antagonist, carboxynitroveratryl-naloxone (caged naloxone), blocked the current induced by a series of agonists, and the time constant of decline was significantly decreased after desensitization. The increase in the rate of current decay was not observed after partial blockade of receptors with the irreversible antagonist, β-chlornaltrexamine (β-CNA). The time constant of current decay after desensitization was never more rapid than 1 second, suggesting an increased agonist off-rate rather than an increase in the rate of channel closure downstream of the receptor. The rate of G protein–coupled K+ channel (GIRK) current activation was examined using photolysis of a caged agonist, carboxynitrobenzyl-tyrosine-[Leu5]-enkephalin. After acute desensitization or partial irreversible block of MORs with β-CNA, there was an increase in the time it took to reach a peak current. The decrease in the rate of agonist-induced GIRK conductance was receptor selective and dependent on receptor number. The results indicate that opioid receptor desensitization reduced the number of functional receptor and that the remaining active receptors have a reduced agonist affinity. PMID:24748657

  9. Metabolic Syndrome Abolishes Glucagon-Like Peptide 1 Receptor Agonist Stimulation of SERCA in Coronary Smooth Muscle.

    PubMed

    Dineen, Stacey L; McKenney, Mikaela L; Bell, Lauren N; Fullenkamp, Allison M; Schultz, Kyle A; Alloosh, Mouhamad; Chalasani, Naga; Sturek, Michael

    2015-09-01

    Metabolic syndrome (MetS) doubles the risk of adverse cardiovascular events. Glucagon-like peptide 1 (GLP-1) receptor agonists induce weight loss, increase insulin secretion, and improve glucose tolerance. Studies in healthy animals suggest cardioprotective properties of GLP-1 receptor agonists, perhaps partially mediated by improved sarco-endoplasmic reticulum Ca(2+) ATPase (SERCA) activity. We examined the acute effect of GLP-1 receptor agonists on coronary smooth muscle cells (CSM) enzymatically isolated from lean, healthy Ossabaw miniature swine. Intracellular Ca(2+) handling was interrogated with fura-2. The GLP-1 receptor agonist exenatide activated SERCA but did not alter other Ca(2+) transporters. Further, we tested the hypothesis that chronic, in vivo treatment with GLP-1 receptor agonist AC3174 would attenuate coronary artery disease (CAD) in swine with MetS. MetS was induced in 20 swine by 6 months' feeding of a hypercaloric, atherogenic diet. Swine were then randomized (n = 10/group) into placebo or AC3174 treatment groups and continued the diet for an additional 6 months. AC3174 treatment attenuated weight gain, increased insulin secretion, and improved glucose tolerance. Intravascular ultrasound and histology showed no effect of AC3174 on CAD. MetS abolished SERCA activation by GLP-1 receptor agonists. We conclude that MetS confers vascular resistance to GLP-1 receptor agonists, partially through impaired cellular signaling steps involving SERCA. PMID:25845661

  10. Role of Prostaglandin D2 and DP1 Receptor on Japanese Cedar Pollen-Induced Allergic Rhinitis in Mice.

    PubMed

    Nakano, Yoshiyuki; Kidani, Yujiro; Goto, Kumiko; Furue, Shingo; Tomita, Yasuhiko; Inagaki, Naoki; Tanaka, Hiroyuki; Shichijo, Michitaka

    2016-05-01

    Although we previously demonstrated the contribution of the DP1receptor in nasal obstruction using animals sensitized with ovalbumin in the presence of adjuvant, the contribution of the DP1receptor in sneezing is unclear. Here, we developed a mouse model of Japanese cedar (JC:Cryptomeria japonica) pollinosis to evaluate the symptoms of sneezing. To achieve this, we used JC pollen crude extract in the absence of adjuvant to sensitize mice to develop a model closer to the pathophysiology of human JC pollinosis. The immunologic and pharmacologic features of this model are highly similar to those observed in JC pollinosis in humans. Using this model, we found that DP1receptor antagonists suppressed JC pollen extract-induced sneezing and that a DP1receptor agonist induced sneezing. Moreover, JC pollen extract-induced sneezing was diminished in DP1receptor knockout mice. In conclusion, we developed a novel mouse model of allergic rhinitis that closely mimics human JC pollinosis. A strong contribution of DP1receptor signaling to sneezing was demonstrated using this model, suggesting that DP1receptor antagonists could suppress sneezing and nasal obstruction, and therefore these agents could be a new therapeutic option for allergic rhinitis. PMID:26945086

  11. Domain Architecture of a Calcium-Permeable AMPA Receptor in a Ligand-Free Conformation

    PubMed Central

    Midgett, Charles R.; Gill, Avinash; Madden, Dean R.

    2012-01-01

    Ligand-gated ion channels couple the free energy of agonist binding to the gating of selective transmembrane ion pores, permitting cells to regulate ion flux in response to external chemical stimuli. However, the stereochemical mechanisms responsible for this coupling remain obscure. In the case of the ionotropic glutamate receptors (iGluRs), the modular nature of receptor subunits has facilitated structural analysis of the N-terminal domain (NTD), and of multiple conformations of the ligand-binding domain (LBD). Recently, the crystallographic structure of an antagonist-bound form of the receptor was determined. However, disulfide trapping of this conformation blocks channel opening, suggesting that channel activation involves additional quaternary packing arrangements. To explore the conformational space available to iGluR channels, we report here a second, clearly distinct domain architecture of homotetrameric, calcium-permeable AMPA receptors, determined by single-particle electron microscopy of untagged and fluorescently tagged constructs in a ligand-free state. It reveals a novel packing of NTD dimers, and a separation of LBD dimers across a central vestibule. In this arrangement, which reconciles diverse functional observations, agonist-induced cleft closure across LBD dimers can be converted into a twisting motion that provides a basis for receptor activation. PMID:22232575

  12. Blockade of the locomotor stimulant effects of amphetamine by group I, group II, and group III metabotropic glutamate receptor ligands in the rat nucleus accumbens: possible interactions with dopamine receptors.

    PubMed

    David, H N; Abraini, J H

    2003-05-01

    Previous investigations have shown that mGlu receptors would be involved in the amphetamine-induced motor response. However, data are somewhat controversial across studies where methodological protocols vary. The aim of the present study was to determine the involvement of mGlu receptors in the NAcc in the locomotor-activating properties of amphetamine in rats well habituated to their experimental environment, a condition known to modulate the motor response to amphetamine. Focal infusion of the group I mGlu receptor antagonist S-4-CPG, which has no effect on basal motor activity, virtually suppressed the locomotor response to amphetamine, while infusion of the group II mGlu receptor antagonist LY 341495 or the group III mGlu receptor agonist AP4, at the minimal dose that produces locomotor activation, reduced it by approximately a half. These effects were blocked by the group I mGlu receptor agonist DHPG, the group II mGlu receptor agonist APDC, and the group III mGlu receptor antagonist MPPG, respectively. These data confirm that mGlu receptors in the NAcc contribute to the psychostimulant motor effect of amphetamine. Results are discussed from the view of recent neuropharmacological studies that have defined the effects of these mGlu receptor ligands on basal motor activity and DA receptor agonists-induced locomotor responses in rats exposed to similar experimental procedures (Eur J Neuroscience 13 (2001) 2157; Neuropharmacology 41 (2001) 454; Eur J Neuroscience 13 (2001) 869). It is suggested that the contribution of mGlu receptors to the amphetamine-induced motor response may result mainly from their functional, either direct or indirect, interactions with D1-like receptors in the NAcc. PMID:12681370

  13. Role of the vasopressin 1b receptor in rodent aggressive behavior and synaptic plasticity in hippocampal area CA2.

    PubMed

    Pagani, J H; Zhao, M; Cui, Z; Avram, S K Williams; Caruana, D A; Dudek, S M; Young, W S

    2015-04-01

    The vasopressin 1b receptor (Avpr1b) is critical for social memory and social aggression in rodents, yet little is known about its specific roles in these behaviors. Some clues to Avpr1b function can be gained from its profile of expression in the brain, which is largely limited to the pyramidal neurons of the CA2 region of the hippocampus, and from experiments showing that inactivation of the gene or antagonism of the receptor leads to a reduction in social aggression. Here we show that partial replacement of the Avpr1b through lentiviral delivery into the dorsal CA2 region restored the probability of socially motivated attack behavior in total Avpr1b knockout mice, without altering anxiety-like behaviors. To further explore the role of the Avpr1b in this hippocampal region, we examined the effects of Avpr1b agonists on pyramidal neurons in mouse and rat hippocampal slices. We found that selective Avpr1b agonists induced significant potentiation of excitatory synaptic responses in CA2, but not in CA1 or in slices from Avpr1b knockout mice. In a way that is mechanistically very similar to synaptic potentiation induced by oxytocin, Avpr1b agonist-induced potentiation of CA2 synapses relies on NMDA (N-methyl-D-aspartic acid) receptor activation, calcium and calcium/calmodulin-dependent protein kinase II activity, but not on cAMP-dependent protein kinase activity or presynaptic mechanisms. Our data indicate that the hippocampal CA2 is important for attacking in response to a male intruder and that the Avpr1b, likely through its role in regulating CA2 synaptic plasticity, is a necessary mediator. PMID:24863146

  14. Regulation and functional characterization of a rat recombinant dopamine D3 receptor.

    PubMed

    Cox, B A; Rosser, M P; Kozlowski, M R; Duwe, K M; Neve, R L; Neve, K A

    1995-09-01

    We stably expressed a rat D3 receptor cDNA in C6 glioma cells (C6-D3 cells), quantifying receptor expression with the radioligands [125I]epidepride (KD = 0.1 nM) and [3H]spiperone (KD = 0.7 nM). As reported previously for D2 receptors, quinpirole induced a 9-16% increase in the rate of extracellular acidification by C6-D3 cells. The acidification was inhibited by epidepride and by the Na+/H+ antiporter inhibitors, amiloride and methylisobutylamiloride, but pertussis toxin treatment had no effect on quinpirole-induced extracellular acidification. These data suggest that D3 receptor stimulation of Na+/H+ exchange in C6 glioma cells is not mediated by the pertussis toxin-sensitive G proteins, Gi or G(o). Overnight treatment of C6-D3 cells with N-propylnorapomorphine, dopamine, or quinpirole resulted in large concentration-dependent increases (up to 500%) in the density of D3 receptors on membranes prepared from the cells. Antagonists had smaller, variable effects on the density of D3 receptors in C6-D3 cells, except for domperidone, which significantly increased the density of D3 receptors. Treatment with pertussis toxin had no effect on the agonist-induced receptor up-regulation, indicating that an interaction with pertussis toxin-sensitive G proteins was not required. Densitometry analysis of Northern blots of RNA prepared from C6-D3 cells showed no significant N-propylnorapomorphine-induced increase in D3 receptor message. Treatment with cycloheximide, however, completely prevented receptor up-regulation by N-propylnorapomorphine. Pretreatment of C6-D2 cells with 10 microM DA resulted in a substantial heterologous sensitization, in which isoproterenol-stimulated adenylyl cyclase activity was enhanced more than twofold.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8525456

  15. The p38 mitogen-activated protein kinase signaling pathway is involved in regulating low-density lipoprotein receptor-related protein 1-mediated β-amyloid protein internalization in mouse brain.

    PubMed

    Ma, Kai-Ge; Lv, Jia; Hu, Xiao-Dan; Shi, Li-Li; Chang, Ke-Wei; Chen, Xin-Lin; Qian, Yi-Hua; Yang, Wei-Na; Qu, Qiu-Min

    2016-07-01

    Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Recently, increasing evidence suggests that intracellular β-amyloid protein (Aβ) alone plays a pivotal role in the progression of AD. Therefore, understanding the signaling pathway and proteins that control Aβ internalization may provide new insight for regulating Aβ levels. In the present study, the regulation of Aβ internalization by p38 mitogen-activated protein kinases (MAPK) through low-density lipoprotein receptor-related protein 1 (LRP1) was analyzed in vivo. The data derived from this investigation revealed that Aβ1-42 were internalized by neurons and astrocytes in mouse brain, and were largely deposited in mitochondria and lysosomes, with some also being found in the endoplasmic reticulum. Aβ1-42-LRP1 complex was formed during Aβ1-42 internalization, and the p38 MAPK signaling pathway was activated by Aβ1-42 via LRP1. Aβ1-42 and LRP1 were co- localized in the cells of parietal cortex and hippocampus. Furthermore, the level of LRP1-mRNA and LRP1 protein involved in Aβ1-42 internalization in mouse brain. The results of this investigation demonstrated that Aβ1-42 induced an LRP1-dependent pathway that related to the activation of p38 MAPK resulting in internalization of Aβ1-42. These results provide evidence supporting a key role for the p38 MAPK signaling pathway which is involved in the regulation of Aβ1-42 internalization in the parietal cortex and hippocampus of mouse through LRP1 in vivo. PMID:27163530

  16. Differential adapter recruitment by TLR2 co-receptors.

    PubMed

    Piao, Wenji; Ru, Lisa W; Toshchakov, Vladimir Y

    2016-07-01

    TLR2 heterodimers with TLR1 or TLR6 recognize distinct pathogen-associated molecules such as tri- and di-acylated lipopeptides. The activated TLR2 heterodimers recruit Toll-IL-1R domain- (TIR-) containing adapter proteins, TIRAP and MyD88, through the receptor TIR domains. Molecular recognition mechanisms responsible for agonist-driven, TIR domain-mediated receptor-adapter interactions as well as the structure of resultant signaling complexes remain unknown. We previously reported that the cell-permeable peptide derived from helix D of TLR2 TIR (2R9) specifically binds TIRAP in vitro and in cells and thereby inhibits TIRAP-dependent TLR signaling. This study demonstrates that cell-permeable peptides from D helix of TLR1 or TLR6, peptides 1R9 and 6R9 respectively, inhibit signaling mediated by cognate TLR2 co-receptors. Interestingly, 1R9 and 6R9 bind different TLR2 adapters, as they selectively bind MyD88 and TIRAP TIR, respectively. Both peptides block the agonist-induced co-immunoprecipitation (co-IP) of TLR2 with TIRAP or MyD88, but not TLR2 co-IP with co-receptors. Our data suggest that D helices of TLR1 and TLR6 TIR domains are adapter recruitment sites in both co-receptors; yet the sites recruit different adapters. The D helix in TLR1 is the MyD88 docking site, whereas in TLR6 this site recruits TIRAP. PMID:27150837

  17. International Union of Basic and Clinical Pharmacology. XCV. Recent advances in the understanding of the pharmacology and biological roles of relaxin family peptide receptors 1-4, the receptors for relaxin family peptides.

    PubMed

    Halls, Michelle L; Bathgate, Ross A D; Sutton, Steve W; Dschietzig, Thomas B; Summers, Roger J

    2015-01-01

    Relaxin, insulin-like peptide 3 (INSL3), relaxin-3, and INSL5 are the cognate ligands for the relaxin family peptide (RXFP) receptors 1-4, respectively. RXFP1 activates pleiotropic signaling pathways including the signalosome protein complex that facilitates high-sensitivity signaling; coupling to Gα(s), Gα(i), and Gα(o) proteins; interaction with glucocorticoid receptors; and the formation of hetero-oligomers with distinctive pharmacological properties. In addition to relaxin-related ligands, RXFP1 is activated by Clq-tumor necrosis factor-related protein 8 and by small-molecular-weight agonists, such as ML290 [2-isopropoxy-N-(2-(3-(trifluoromethylsulfonyl)phenylcarbamoyl)phenyl)benzamide], that act allosterically. RXFP2 activates only the Gα(s)- and Gα(o)-coupled pathways. Relaxin-3 is primarily a neuropeptide, and its cognate receptor RXFP3 is a target for the treatment of depression, anxiety, and autism. A variety of peptide agonists, antagonists, biased agonists, and an allosteric modulator target RXFP3. Both RXFP3 and the related RXFP4 couple to Gα(i)/Gα(o) proteins. INSL5 has the properties of an incretin; it is secreted from the gut and is orexigenic. The expression of RXFP4 in gut, adipose tissue, and β-islets together with compromised glucose tolerance in INSL5 or RXFP4 knockout mice suggests a metabolic role. This review focuses on the many advances in our understanding of RXFP receptors in the last 5 years, their signal transduction mechanisms, the development of novel compounds that target RXFP1-4, the challenges facing the field, and current prospects for new therapeutics. PMID:25761609

  18. International Union of Basic and Clinical Pharmacology. XCV. Recent Advances in the Understanding of the Pharmacology and Biological Roles of Relaxin Family Peptide Receptors 1–4, the Receptors for Relaxin Family Peptides

    PubMed Central

    Halls, Michelle L.; Bathgate, Ross A. D.; Sutton, Steve W.; Dschietzig, Thomas B.

    2015-01-01

    Relaxin, insulin-like peptide 3 (INSL3), relaxin-3, and INSL5 are the cognate ligands for the relaxin family peptide (RXFP) receptors 1–4, respectively. RXFP1 activates pleiotropic signaling pathways including the signalosome protein complex that facilitates high-sensitivity signaling; coupling to Gαs, Gαi, and Gαo proteins; interaction with glucocorticoid receptors; and the formation of hetero-oligomers with distinctive pharmacological properties. In addition to relaxin-related ligands, RXFP1 is activated by Clq-tumor necrosis factor-related protein 8 and by small-molecular-weight agonists, such as ML290 [2-isopropoxy-N-(2-(3-(trifluoromethylsulfonyl)phenylcarbamoyl)phenyl)benzamide], that act allosterically. RXFP2 activates only the Gαs- and Gαo-coupled pathways. Relaxin-3 is primarily a neuropeptide, and its cognate receptor RXFP3 is a target for the treatment of depression, anxiety, and autism. A variety of peptide agonists, antagonists, biased agonists, and an allosteric modulator target RXFP3. Both RXFP3 and the related RXFP4 couple to Gαi/Gαo proteins. INSL5 has the properties of an incretin; it is secreted from the gut and is orexigenic. The expression of RXFP4 in gut, adipose tissue, and β-islets together with compromised glucose tolerance in INSL5 or RXFP4 knockout mice suggests a metabolic role. This review focuses on the many advances in our understanding of RXFP receptors in the last 5 years, their signal transduction mechanisms, the development of novel compounds that target RXFP1–4, the challenges facing the field, and current prospects for new therapeutics. PMID:25761609

  19. Pharmacological characterisation of the goldfish somatostatin sst5 receptor.

    PubMed

    Nunn, Caroline; Feuerbach, Dominik; Lin, Xinwei; Peter, Richard; Hoyer, Daniel

    2002-02-01

    Somatostatin (somatotropin release inhibiting factor, SRIF), exerts its effects via specific G protein coupled receptors of which five subtypes have been cloned (sst1-5). Recently, SRIF receptors have also been cloned from fish tissues. In this study, goldfish sst5 receptors (gfsst5) were expressed and characterised in the Chinese hamster lung fibroblast cell line, that harbours the luciferase reporter gene driven by the serum responsive element (CCL39-SRE-Luci). The agonist radioligands [125I]-LTT-SRIF-28 ([Leu8, DTrp22, 125I-Tyr25]SRIF-28) and [125I][Tyr10]cortistatin-14 labelled similar receptor densities with high affinity and in a saturable manner (pKd: 9.99-9.71; Bmax: 300-350 fmol mg-1). 5'-Guanylyl-imidodiphosphate inhibited radioligand binding to some degree (38.5-57.9%). In competition binding studies, the pharmacological profile of SRIF binding sites defined with [125I]LTT-SRIF-28 and [125I][Tyr10]cortistatin-14 correlated significantly (r2=0.97, n=20). Pharmacological profiles of human and mouse sst5 receptors expressed in CCL39 cells correlated markedly less with those of the gfsst5 profile (r2=0.52-0.78, n > or = b16). Functional expression of the gfsst5 receptor was examined by measurement of agonist-induced luciferase expression and stimulation of [35S]GTPgammaS ([35S]guanosine 5'-O-(3-thiotriphosphate) binding. Profiles were similar to those achieved in radioligand binding studies (r2=0.81-0.93, n=20), although relative potency (pEC50) was reduced compared to pKd values. Relative efficacy profiles of luciferase expression and [35S]GTPgammaS binding, were rather divergent (r2=0.48, n=20) with peptides showing full agonism at one pathway and absence of agonism at the other. BIM 23056 (D-Phe-Phe-Tyr-D-Trp-Lys-Val-Phe-D-Nal-NH2) acted as an antagonist on the effects of SRIF-14 (pKB=6.74 +/- 0.23) on stimulation of [35S]GTPgammaS binding. Pertussis toxin abolished the effect of SRIF-14 on luciferase expression and [35S]GTPgammaS binding suggesting

  20. ERK and β-arrestin interaction: a converging-point of signaling pathways for multiple types of cell-surface receptors

    PubMed Central

    Eishingdrelo, Haifeng; Sun, Wei; Li, Hua; Wang, Li; Eishingdrelo, Alex; Dai, Sheng; McKew, John C.; Zheng, Wei

    2016-01-01

    β-arrestin, a signal adaptor protein, mediates intracellular signal transductions through protein-protein interactions by bringing two or more proteins in proximity. Extracellular signal-regulated kinase (ERK), a protein kinase in the family of mitogen-activated protein kinases (MAPKs), is involved in various receptor signal pathways. Interaction of ERK with β-arrestin or formation of ERK/β-arrestin signal complex occurs in response to activation of a variety of cell-surface receptors. The ERK/β-arrestin signal complex may be a common transducer to converge a variety of extracellular stimuli to similar downstream intracellular signaling pathways. By using a cell based protein-protein interaction LinkLight assay technology, we demonstrate a direct interaction between ERK and β-arrestin in respond to extracellular stimuli, which can be sensitively and quantitatively monitored. Activations of G-protein coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and cytokine receptors promote formation of the ERK/β-arrestin signal complex. Our data indicate that the ERK/β-arrestin signal complex is a common transducer participated in a variety of receptor signaling pathways. Furthermore, we demonstrate that receptor antagonists or kinase inhibitors can block the agonist induced ERK and β-arrestin interaction. Thus, the ERK/β-arrestin interaction assay is useful for screening of new receptor modulators. PMID:25361946

  1. Human herpesvirus 8-encoded chemokine vCCL2/vMIP-II is an agonist of the atypical chemokine receptor ACKR3/CXCR7.

    PubMed

    Szpakowska, Martyna; Dupuis, Nadine; Baragli, Alessandra; Counson, Manuel; Hanson, Julien; Piette, Jacques; Chevigné, Andy

    2016-08-15

    The atypical chemokine receptor CXCR7/ACKR3 binds two endogenous chemokines, CXCL12 and CXCL11, and is upregulated in many cancers or following infection by several cancer-inducing viruses, including HHV-8. ACKR3 is a ligand-scavenging receptor and does not activate the canonical G protein pathways but was proposed to trigger β-arrestin-dependent signaling. Here, we identified the human herpesvirus 8-encoded CC chemokine vCCL2/vMIP-II as a third high-affinity ligand for ACKR3. vCCL2 acted as partial ACKR3 agonist, inducing β-arrestin recruitment to the receptor, subsequent reduction of its surface levels and its delivery to endosomes. In addition, ACKR3 reduced vCCL2-triggered MAP kinase and PI3K/Akt signaling through other chemokine receptors. Our data suggest that ACKR3 acts as a scavenger receptor for vCCL2, regulating its availability and activity toward human receptors, thereby likely controlling its function in HHV-8 infection. Our study provides new insights into the complex crosstalk between viral chemokines and host receptors as well as into the biology of ACKR3, this atypical and still enigmatic receptor. PMID:27238288

  2. Link between D1 and D2 dopamine receptors is reduced in schizophrenia and Huntington diseased brain.

    PubMed

    Seeman, P; Niznik, H B; Guan, H C; Booth, G; Ulpian, C

    1989-12-01

    Dopamine receptor types D1 and D2 can oppose or enhance each other's actions for electrical, biochemical, and psychomotor effects. We report a D1-D2 interaction in homogenized tissue as revealed by ligand binding. D2 agonists lowered the binding of [3H]raclopride to D2 receptors in striatal and anterior pituitary tissues. Pretreating the tissue with the D1-selective antagonist SCH 23390 prevented the agonist-induced decrease in [3H]raclopride binding to D2 sites in the striatum but not in the anterior pituitary, which has no D1 receptors. Conversely, a dopamine-induced reduction in the binding of [3H]SCH 23390 to D1 receptors could be prevented by the D2-selective antagonist eticlopride. Receptor photolabeling experiments confirmed both these D1-D2 interactions. The blocking effect by SCH 23390 was similar to that produced by a nonhydrolyzable guanine nucleotide analogue, and SCH 23390 reduced the number of agonist-labeled D2 receptors in the high-affinity state. Thus, the D1-D2 link may be mediated by guanine nucleotide-binding protein components. The link may underlie D1-D2 interactions influencing behavior, since the link was missing in over half the postmortem striata from patients with schizophrenia and Huntington disease (both diseases that show some hyperdopamine signs) but was present in human control, Alzheimer, and Parkinson striata. PMID:2574862

  3. (/sup 3/H)-8-cyclopentyl-1,3-dipropylxanthine binding to A1 adenosine receptors of intact rat ventricular myocytes

    SciTech Connect

    Martens, D.; Lohse, M.J.; Schwabe, U.

    1988-09-01

    The purpose of the present study was the identification of A1 adenosine receptors in intact rat ventricular myocytes, which are thought to mediate the negative inotropic effects of adenosine. The adenosine receptor antagonist (/sup 3/H)-8-cyclopentyl-1,3-dipropylxanthine was used as radioligand. Binding of the radioligand to intact myocytes was rapid, reversible, and saturable with a binding capacity of 40,000 binding sites per cell. The dissociation constant of the radioligand was 0.48 nM. The adenosine receptor antagonists 8-cyclopentyl-1,3-dipropylxanthine, xanthine amine congener, and theophylline were competitive inhibitors with affinities in agreement with results obtained for A1 receptors in other tissues. Competition experiments using the adenosine receptor agonists R-N(6)-phenylisopropyladenosine, 5'-N-ethylcarboxamidoadenosine, and S-N(6)-phenylisopropyladenosine gave monophasic displacement curves with Ki values of 50 nM, 440 nM, and 4,300 nM, which agreed well with the GTP-inducible low affinity state in cardiac membranes. The low affinity for agonists was not due to agonist-induced desensitization, and correlated well with the corresponding IC50 values for the inhibition of cyclic AMP accumulation by isoprenaline. It is suggested that only a low affinity state of A1 receptors can be detected in intact rat myocytes due to the presence of high concentrations of guanine nucleotides in intact cells.

  4. CysLT1 leukotriene receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors

    PubMed Central

    Mamedova, Liaman; Capra, Valérie; Accomazzo, Maria Rosa; Gao, Zhan-Guo; Ferrario, Silvia; Fumagalli, Marta; Abbracchio, Maria P.; Rovati, G. Enrico; Jacobson, Kenneth A.

    2016-01-01

    Montelukast and pranlukast are orally active leukotriene receptor antagonists selective for the CysLT1 receptor. Conversely, the hP2Y1,2,4,6,11,12,13,14 receptors represent a large family of GPCRs responding to either adenine or uracil nucleotides, or to sugar-nucleotides. Montelukast and pranlukast were found to inhibit nucleotide-induced calcium mobilization in a human monocyte-macrophage like cell line, DMSO-differentiated U937 (dU937). Montelukast and pranlukast inhibited the effects of UTP with IC50 values of 7.7 and 4.3 μM, respectively, and inhibited the effects of UDP with IC50 values of 4.5 and 1.6 μM, respectively, in an insurmountable manner. Furthermore, ligand binding studies using [3H]LTD4 excluded the possibility of orthosteric nucleotide binding to the CysLT1 receptor. dU937 cells were shown to express P2Y2, P2Y4, P2Y6, P2Y11, P2Y13 and P2Y14 receptors. Therefore, these antagonists were studied functionally in a heterologous expression system for the human P2Y receptors. In 1321N1 astrocytoma cells stably expressing human P2Y1,2,4,6 receptors, CysLT1 antagonists inhibited both the P2Y agonist-induced activation of phospholipase C and intracellular Ca2+ mobilization. IC50 values at P2Y1 and P2Y6 receptors were <1 μM. In control astrocytoma cells expressing an endogenous M3 muscarinic receptor, 10 μM montelukast had no effect on the carbachol-induced rise in intracellular Ca2+. These data demonstrated that CysLT1 receptor antagonists interact functionally with signaling pathways of P2Y receptors, and this should foster the study of possible implications for the clinical use of these compounds in asthma or in other inflammatory conditions. PMID:16280122

  5. Molecular determinants for drug-receptor interactions. 8. Anisotropic and internal motions in morphine, nalorphine, oxymorphone, naloxone and naltrexone in aqueous solution by carbon-13 NMR spin-lattice relaxation times

    NASA Astrophysics Data System (ADS)

    Grassi, Antonio; Perly, Bruno; Pappalardo, Giuseppe C.

    1989-02-01

    Carbon-13 NMR spin-lattice relaxation times ( T1) were measured for morphine, oxymorphone, nalorphine, naloxone and naltrexone as hydrochloride salts in 2H 2O solution. The data refer to the molecules in the N-equatorial configuration. The experimental T1 values were interpreted using a model of anisotropic reorientation of a rigid body with superimposed internal motions of the flexible N-methyl, N-methyl-allyl and N-methyl-cyclopropyl fragments. The calculated internal motional rates were found to markedly decrease on passing from agonists to mixed (nalorphine) and pure (naloxone, naltrexone) antagonists. For these latter the observed trend of the internal flexibility about NC and CC bonds of the N-substituents is discussed in terms of a correlation with their relative antagonistic potencies. In fact, such an evidence of decreasing internal conformational dynamics in the order nalorphine, naloxone, naltrexone, appeared interestingly in line with the "two-state" model of opiate receptor operation mode proposed by Snyder.

  6. Thromboxane receptor hyper-responsiveness in hypoxic pulmonary hypertension requires serine 324

    PubMed Central

    Santhosh, K T; Sikarwar, A S; Hinton, M; Chelikani, P; Dakshinamurti, S

    2014-01-01

    Background and Purpose Dysregulation of the thromboxane A2 (TP) receptor, resulting in agonist hypersensitivity and hyper-responsiveness, contributes to exaggerated vasoconstriction in the hypoxic pulmonary artery in neonatal persistent pulmonary hypertension. We previously reported that hypoxia inhibits TP receptor phosphorylation, causing desensitization. Hence, we examined the role of PKA-accessible serine residues in determining TP receptor affinity, using site-directed mutational analysis. Experimental Approach Vasoconstriction to a thromboxane mimetic and phosphorylation of TP receptor serine was examined in pulmonary arteries from neonatal swine with persistent pulmonary hypertension and controls. Effects of hypoxia were determined in porcine and human TP receptors. Human TPα serines at positions 324, 329 and 331 (C-terminal tail) were mutated to alanine and transiently expressed in HEK293T cells. Saturation binding and displacement kinetics of a TP antagonist and agonist were determined in porcine TP, wild-type human TPα and all TP mutants. Agonist-elicited calcium mobilization was determined for each TP mutant, in the presence of a PKA activator or inhibitor, and in hypoxic and normoxic conditions. Key Results The Ser324A mutant was insensitive to PKA activation and hypoxia, had a high affinity for agonist and increased agonist-induced calcium mobilization. Ser329A was no different from wild-type TP receptors. Ser331A was insensitive to hypoxia and PKA with a decreased agonist-mediated response. Conclusions and Implications In hypoxic pulmonary hypertension, loss of site-specific phosphorylation of the TP receptor causes agonist hyper-responsiveness. Ser324 is the primary residue phosphorylated by PKA, which regulates TP receptor-agonist interactions. Ser331 mutation confers loss of TP receptor-agonist interaction, regardless of PKA activity. PMID:24490858

  7. A Binding Site Model and Structure-Activity Relationships for the Rat A3 Adenosine Receptor

    PubMed Central

    VAN GALEN, PHILIP J. M.; VAN BERGEN, ANDREW H.; GALLO-RODRIGUEZ, CAROLA; MELMAN, NELI; OLAH, MARK E.; IJZERMAN, AD P.; STILES, GARY L.; JACOBSON, KENNETH A.

    2012-01-01

    SUMMARY A novel adenosine receptor, the A3 receptor, has recently been cloned. We have systematically investigated the hitherto largely unexplored structure-activity relationships (SARs) for binding at A3 receptors, using 125I-N6-2-(4-aminophenyl)ethyladenosine as a radioligand and membranes from Chinese hamster ovary cells stably transfected with the rat A3-cDNA. As is the case for A1 and A2a, receptors, substitutions at the N6 and 5′ positions of adenosine, the prototypic agonist ligand, may yield fairly potent compounds. However, the highest affinity and A3 selectivity is found for N6,5′-disubstituted compounds, in contrast to A1 and A2a receptors. Thus, N6-benzyladenosine-5′-N-ethylcarboxamide is highly potent (Ki, 6.8 nM) and moderately selective (13- and 14-fold versus A1 and A2a). The N6 region of the A3 receptor also appears to tolerate hydrophilic substitutions, in sharp contrast to the other subtypes. Potencies of N6,5′-disubstituted compounds in inhibition of adenylate cyclase via A3 receptors parallel their high affinity in the binding assay. None of the typical xanthine or nonxanthine (A1/A2) antagonists tested show any appreciable affinity for rat A3 receptors. 1,3-Dialkylxanthines did not antagonize the A3 agonist-induced inhibition of adenylate cyclase. A His residue in helix 6 that is absent in A3 receptors but present in A1/A2 receptors may be causal in this respect. In a molecular model for the rat A3 receptor, this mutation, together with an increased bulkiness of residues surrounding the ligand, make antagonist binding unfavorable when compared with a previously developed A1 receptor model. Second, this A3 receptor model predicted similarities with A1 and A2 receptors in the binding requirements for the ribose moiety and that xanthine-7-ribosides would bind to rat A3 receptors. This hypothesis was supported experimentally by the moderate affinity (Ki 6 μM) of 7-riboside of 1,3-dibutylxanthine, which appears to be a partial agonist at

  8. Letter: Iatrogenic lipomatosis: a rare manifestation of treatment with a peroxisome proliferator-activated receptor gamma agonist.

    PubMed

    Femia, Alisa; Klein, Peter A

    2010-01-01

    Lipomas are common benign neoplasms of adipose tissue. Lipomatosis, the progressive appearance of multiple lipomas, is most often associated with specific congenital, familial, or idiopathic syndromes. In one reported case, the development of multiple lipomas occurred as a result of treatment with rosiglitazone, a peroxisome proliferator-activated receptor (PPAR) gamma agonist. We report a second case of lipomatosis occurring as a result of treatment with a PPAR gamma agonist. This case occurred in a 77-year-old woman who developed multiple lipomas two years after beginning treatment with pioglitazone, a PPAR gamma agonist. Histopathologic examination confirmed these lesions to be lipomas. Within four weeks of discontinuation of pioglitazone, regression of the lipomas began. We describe a case of PPAR agonist-induced lipoma formation, review relevant literature, and provide a molecular mechanism for this side effect. PMID:20409422

  9. Mixed nicotinic and muscarinic features of cholinergic receptor coupled to secretion in bovine chromaffin cells.

    PubMed Central

    Shirvan, M H; Pollard, H B; Heldman, E

    1991-01-01

    Acetylcholine evokes release from cultured bovine chromaffin cells by a mechanism that is believed to be classically nicotinic. However, we found that the full muscarinic agonist oxotremorine-M (Oxo-M) induced a robust catecholamine (CA) secretion. By contrast, muscarine, pilocarpine, bethanechol, and McN-A-343 did not elicit any secretory response. Desensitization of the response to nicotine by Oxo-M and desensitization of the response to Oxo-M by nicotine suggest that both nicotine and Oxo-M were acting at the same receptor. Additional experiments supporting this conclusion show that nicotine-induced secretion and Oxo-M-induced secretion were similarly blocked by various muscarinic and nicotinic antagonists. Moreover, secretion induced by nicotine and Oxo-M were Ca2+ dependent, and both agonists induced 45Ca2+ uptake. Equilibrium binding studies showed that [3H]Oxo-M bound to chromaffin cell membranes with a Kd value of 3.08 x 10(-8) M and a Hill coefficient of 1.00, suggesting one binding site for this ligand. Nicotine inhibited Oxo-M binding in a noncompetitive manner, suggesting that both ligands bind at two different sites on the same receptor. We propose that the receptor on bovine chromaffin cells that is coupled to secretion represents an unusual cholinergic receptor that has both nicotinic and muscarinic features. Images PMID:2052567

  10. Constitutive Phosphorylation by Protein Kinase C Regulates D1 Dopamine Receptor Signaling

    PubMed Central

    Rankin, Michele L.; Sibley, David R.

    2010-01-01

    The D1 dopamine receptor (D1DAR) is robustly phosphorylated by multiple protein kinases, yet the phosphorylation sites and functional consequences of these modifications are not fully understood. Here, we report that the D1DAR is phosphorylated by protein kinase C (PKC) in the absence of agonist stimulation. Phosphorylation of the D1DAR by PKC is constitutive in nature, can be induced by phorbol ester treatment or through activation of Gq-mediated signal transduction pathways, and is abolished by PKC inhibitors. We demonstrate that most, but not all, isoforms of PKC are capable of phosphorylating the receptor. To directly assess the functional role of PKC phosphorylation of the D1DAR, a site-directed mutagenesis approach was used to identify the PKC sites within the receptor. Five serine residues were found to mediate the PKC phosphorylation. Replacement of these residues had no effect on D1DAR expression or agonist-induced desensitization; however, G protein coupling and cAMP accumulation were significantly enhanced in PKC-null D1DAR. Thus, constitutive or heterologous PKC phosphorylation of the D1DAR dampens dopamine activation of the receptor, most likely occurring in a context-specific manner, mediated by the repertoire of PKC isozymes within the cell. PMID:20969574

  11. Fluorescent knock-in mice to decipher the physiopathological role of G protein-coupled receptors

    PubMed Central

    Ceredig, Rhian A.; Massotte, Dominique

    2015-01-01

    G protein-coupled receptors (GPCRs) modulate most physiological functions but are also critically involved in numerous pathological states. Approximately a third of marketed drugs target GPCRs, which places this family of receptors in the main arena of pharmacological pre-clinical and clinical research. The complexity of GPCR function demands comprehensive appraisal in native environment to collect in-depth knowledge of receptor physiopathological roles and assess the potential of therapeutic molecules. Identifying neurons expressing endogenous GPCRs is therefore essential to locate them within functional circuits whereas GPCR visualization with subcellular resolution is required to get insight into agonist-induced trafficking. Both remain frequently poorly investigated because direct visualization of endogenous receptors is often hampered by the lack of appropriate tools. Also, monitoring intracellular trafficking requires real-time visualization to gather in-depth knowledge. In this context, knock-in mice expressing a fluorescent protein or a fluorescent version of a GPCR under the control of the endogenous promoter not only help to decipher neuroanatomical circuits but also enable real-time monitoring with subcellular resolution thus providing invaluable information on their trafficking in response to a physiological or a pharmacological challenge. This review will present the animal models and discuss their contribution to the understanding of the physiopathological role of GPCRs. We will also address the drawbacks associated with this methodological approach and browse future directions. PMID:25610398

  12. Mixed nicotinic and muscarinic features of cholinergic receptor coupled to secretion in bovine chromaffin cells

    SciTech Connect

    Shirvan, M.H.; Pollard, H.B.; Heldman, E. )

    1991-06-01

    Acetylcholine evokes release from cultured bovine chromaffin cells by a mechanism that is believed to be classically nicotinic. However, the authors found that the full muscarinic agonist oxotremorine-M (Oxo-M) induced a robust catecholamine (CA) secretion. By contrast, muscarine, pilocarpine, bethanechol, and McN-A-343 did not elicit any secretory response. Desensitization of the response to nicotine by Oxo-M and desensitization of the response to Oxo-M by nicotine suggest that both nicotine and Oxo-M were acting at the same receptor. Additional experiments supporting this conclusion show that nicotine-induced secretion and Oxo-M-induced secretion were similarly blocked by various muscarinic and nicotinic antagonists. Moreover, secretion induced by nicotine and Oxo-M were Ca{sup 2+} dependent, and both agonists induced {sup 45}Ca{sup 2+} uptake. Equilibrium binding studies showed that ({sup 3}H)Oxo-M bound to chromaffin cell membranes with a K{sub d} value of 3.08 {times} 10{sup {minus}8}M and a Hill coefficient of 1.00, suggesting one binding site for this ligand. Nicotine inhibited Oxo-M binding in a noncompetitive manner, suggesting that both ligands bind at two different sites on the same receptor. They propose that the receptor on bovine chromaffin cells that is coupled to secretion represents an unusual cholinergic receptor that has both nicotinic and muscarinic features.

  13. Developmental Regulation of the Toxin Sensitivity of Ca2+ -Permeable AMPA Receptors in Cortical Glia

    PubMed Central

    Meucci, Olimpia; Fatatis, Alessandro; Holzwarth, James A.; Miller, Richard J.

    2009-01-01

    We examined the properties of glutamate agonist-induced Ca2+ fluxes in cultured CG-4 and O-2A progenitor cells from rat cortex. Kainate-induced Ca2+ fluxes in these cells were found to be attributable to the activation of AMPA receptors. Thus, these fluxes were enhanced by cyclothiazide but not by concanavalin A and were blocked completely by GYKI-53655. We simultaneously examined kainate-induced Ca2+ entry and Na+ currents in these cells under voltage-clamp conditions. Both of these parameters were blocked by Joro spider toxin (JSTx) in undifferentiated cells. However, neither JSTx nor Argiotoxin 636 effectively blocked either parameter in cells differentiated into type II astrocytes. This change in toxin sensitivity occurred slowly over a period of several days. Similar results were obtained in Ca2+ -imaging studies. When cells were differentiated into oligodendrocytes, they showed an intermediate sensitivity to block by JSTx as assessed using imaging and voltage-clamp studies. Analysis of the expression of AMPA-receptor subunits showed an increase in the concentration of glutamate receptor-2 (GluR2) in CG-4 cells as they differentiated into type II astrocytes and oligodendrocytes. These results demonstrate that the AMPA receptors in cells of the O-2A lineage flux appreciable amounts of Ca2+ but may contain variable amounts of edited GluR2 subunits. PMID:8551336

  14. Morphine induces mesangial cell proliferation and glomerulopathy via kappa-opioid receptors.

    PubMed

    Weber, Marc L; Farooqui, Mariya; Nguyen, Julia; Ansonoff, Michael; Pintar, John E; Hebbel, Robert P; Gupta, Kalpna

    2008-06-01

    Morphine sulfate (MS) stimulates mesangial cell (MC) proliferation, a process central to development of glomerular disease. The purpose of this study was to examine whether specific opioid receptors (OR) and signal transducer and activators of transcription 3 (STAT3) signaling are associated with MS-induced MC proliferation. C57Bl/6J and OR-specific knockout (KO) mice were treated for up to 6 wk with PBS, MS (0.7-2.14 mg/kg), naloxone (equimolar to MS), or MS+naloxone (n = 6 per group). Glomerular volume and expression of PCNA, Thy1, and ED1/CD68 were analyzed in kidney sections. Cell proliferation and STAT3 phosphorylation were analyzed by bromodeoxyuridine (BrdU) ELISA and Western blot, respectively, in MCs in vitro. MS treatment led to enlarged kidneys and glomerulopathy and naloxone reversed these effects. MS treatment increased glomerular volume in both mu-OR (MOR) KO and delta-OR (DOR) KO mice, but not in kappa-OR (KOR) KO mice. To ascertain that MS-induced glomerulopathy in vivo was due to MC proliferation, we further examined the OR-specific effects of MS in MCs in vitro. MS-induced MC proliferation in vitro was inhibited by KOR-specific nor-BNI, but not by DOR or MOR-specific antagonists naltrindol or CTOP, respectively. KOR-specific agonist U50488H stimulated proliferation of MCs, but DOR-specific agonist DPDPE and MOR-specific agonist DAMGO did not. MS failed to stimulate proliferation of MCs from KOR KO mice. MS and KOR agonists induced STAT3 phosphorylation, and STAT3 inhibitor blocked KOR agonist-induced MC proliferation. We show that MS stimulates glomerulopathy and MC proliferation via KOR and STAT3 signaling. PMID:18385270

  15. Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma

    PubMed Central

    Friesen, Claudia; Hormann, Inis; Roscher, Mareike; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf; Debatin, Klaus-Michael; Miltner, Erich

    2014-01-01

    Glioblastoma are the most frequent and malignant human brain tumors, having a very poor prognosis. The enhanced radio- and chemoresistance of glioblastoma and the glioblastoma stem cells might be the main reason why conventional therapies fail. The second messenger cyclic AMP (cAMP) controls cell proliferation, differentiation, and apoptosis. Downregulation of cAMP sensitizes tumor cells for anti-cancer treatment. Opioid receptor agonists triggering opioid receptors can activate inhibitory Gi proteins, which, in turn, block adenylyl cyclase activity reducing cAMP. In this study, we show that downregulation of cAMP by opioid receptor activation improves the effectiveness of anti-cancer drugs in treatment of glioblastoma. The µ-opioid receptor agonist D,L-methadone sensitizes glioblastoma as well as the untreatable glioblastoma stem cells for doxorubicin-induced apoptosis and activation of apoptosis pathways by reversing deficient caspase activation and deficient downregulation of XIAP and Bcl-xL, playing critical roles in glioblastomas’ resistance. Blocking opioid receptors using the opioid receptor antagonist naloxone or increasing intracellular cAMP by 3-isobutyl-1-methylxanthine (IBMX) strongly reduced opioid receptor agonist-induced sensitization for doxorubicin. In addition, the opioid receptor agonist D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux, whereas doxorubicin increased opioid receptor expression in glioblastomas. Furthermore, opioid receptor activation using D,L-methadone inhibited tumor growth significantly in vivo. Our findings suggest that opioid receptor activation triggering downregulation of cAMP is a promising strategy to inhibit tumor growth and to improve the effectiveness of anti-cancer drugs in treatment of glioblastoma and in killing glioblastoma stem cells. PMID:24626197

  16. Serotonin 2A and 2B receptor-induced phrenic motor facilitation: differential requirement for spinal NADPH oxidase activity

    PubMed Central

    MacFarlane, P.M.; Vinit, S.; Mitchell, G.S.

    2011-01-01

    Acute intermittent hypoxia (AIH) facilitates phrenic motor output by a mechanism that requires spinal serotonin (type 2) receptor activation, NADPH oxidase activity and formation of reactive oxygen species (ROS). Episodic spinal serotonin (5-HT) receptor activation alone, without changes in oxygenation, is sufficient to elicit NADPH oxidase-dependent phrenic motor facilitation (pMF). Here we investigated: 1) whether serotonin 2A and/or 2B (5-HT2a/b) receptors are expressed in identified phrenic motor neurons, and 2) which receptor subtype is capable of eliciting NADPH-oxidase-dependent pMF. In anesthetized, artificially ventilated adult rats, episodic C4 intrathecal injections (3 × 6µl injections, 5 min intervals) of a 5-HT2a (DOI) or 5-HT2b (BW723C86) receptor agonist elicited progressive and sustained increases in integrated phrenic nerve burst amplitude (i.e. pMF), an effect lasting at least 90 minutes post-injection for both receptor subtypes. 5-HT2a and 5-HT2b receptor agonist-induced pMF were both blocked by selective antagonists (ketanserin and SB206553, respectively), but not by antagonists to the other receptor subtype. Single injections of either agonist failed to elicit pMF, demonstrating a need for episodic receptor activation. Phrenic motor neurons retrogradely labeled with cholera toxin B fragment expressed both 5-HT2a and 5-HT2b receptors. Pre-treatment with NADPH oxidase inhibitors (apocynin and DPI) blocked 5-HT2b, but not 5-HT2a-induced pMF. Thus, multiple spinal type 2 serotonin receptors elicit pMF, but they act via distinct mechanisms that differ in their requirement for NADPH oxidase activity. PMID:21223996

  17. A G protein-coupled receptor (GPCR) in red: live cell imaging of the kappa opioid receptor-tdTomato fusion protein (KOPR-tdT) in neuronal cells

    PubMed Central

    Huang, Peng; Chiu, Yi-Ting; Chen, Chongguang; Wang, Yujun; Liu-Chen, Lee-Yuan

    2013-01-01

    Introduction In contrast to green fluorescent protein and variants (GFPs), red fluorescent proteins (RFPs) have rarely been employed for generation of GPCR fusion proteins, likely because of formation of aggregates and cell toxicity of some RFPs. Among all the RFPs available, tdTomato (tdT), one of the non-aggregating RFP, has the highest brightness score (about 3 times that of eGFP) and unsurpassed photostability. Methods We fused tdT to the KOPR C-terminus. The KOPR-tdT cDNA construct was transfected into Neuro2A mouse neuroblastoma cell line (Neuro2A cells) and rat cortical primary neurons for characterization of pharmacological properties and imaging studies on KOPR trafficking. Results KOPR-tdT retained KOPR properties (cell surface expression, ligand binding, agonist-induced signaling and internalization) when expressed in Neuro2A cells and rat primary cortical neurons. Live cell imaging of KOPR-tdT enables visualization of time course of agonist-induced internalization of KOPR in real time for 60 min, without photobleaching and apparent cell toxicity. U50,488H-induced KOPR internalization occurred as early as 4 min and plateaued at about 30 min. A unique pattern of internalized KOPR in processes of primary neurons was induced by U50,488H. Discussion tdT is an alternative to, or even a better tool than, GFPs for fusing to GPCR for trafficking studies, because tdT has higher brightness and thus better resolution and less photobleaching problems due to reduced laser power used. It also has advantages associated with its longer-wavelength emission including spectral separation from autofluorescence and GFPs, reduced cell toxicity the laser may impose, and greater tissue penetration. These advantages of tdT over GPFs may be critical for live cell imaging studies of GPCRs in vitro and for studying GPCRs in vivo because of their low abundance. PMID:23856011

  18. Propagation of conformational changes during μ-opioid receptor activation

    PubMed Central

    Sounier, Rémy; Mas, Camille; Steyaert, Jan; Laeremans, Toon; Manglik, Aashish; Huang, Weijiao; Kobilka, Brian; Déméné, Héléne; Granier, Sébastien

    2016-01-01

    μ-Opioid receptors (μOR) are G protein coupled receptors (GPCRs) that are activated by a structurally diverse spectrum of natural and synthetic agonists including endogenous endorphin peptides, morphine and methadone. The recent structures of the μOR in inactive1 and agonist-induced active states (companion article) provide snapshots of the receptor at the beginning and end of a signaling event, but little is known about the dynamic sequence of events that span these two states. Here we report the use of solution-state NMR to examine the process of μOR activation. We obtained spectra of the μOR in the absence of ligand, and in the presence of the high-affinity agonist BU72 alone, or with BU72 and a G protein mimetic nanobody. Our results show that conformational changes in transmembrane segments (TM) 5 and 6, which are required for the full engagement of a G protein, are almost completely dependent on the presence of both the agonist and the G protein mimetic nanobody revealing a weak allosteric coupling between the agonist binding pocket and the G protein coupling interface (TM5 and TM6) similar to what has been observed for the β2-adrenergic receptor2. Unexpectedly, in the presence of agonist alone, we observe larger spectral changes involving intracellular loop 1 (ICL1) and helix 8 (H8), when compared to changes in TM5 and TM6. These results suggest that one or both of these domains may play a role in the initial interaction with the G protein, and that TM5 and TM6 are only engaged later in the process of complex formation. The initial interactions between the G protein and ICL1 and/or H8 may play a role in G protein coupling specificity as has been suggested for other family A GPCRs. PMID:26245377

  19. Overexpression of the dopamine D3 receptor in the rat dorsal striatum induces dyskinetic behaviors.

    PubMed

    Cote, Samantha R; Chitravanshi, Vineet C; Bleickardt, Carina; Sapru, Hreday N; Kuzhikandathil, Eldo V

    2014-04-15

    L-DOPA-induced dyskinesias (LID) are motor side effects associated with treatment of Parkinson's disease (PD). The etiology of LID is not clear; however, studies have shown that the dopamine D3 receptor is upregulated in the basal ganglia of mice, rats and non-human primate models of LID. It is not known if the upregulation of D3 receptor is a cause or result of LID. In this paper we tested the hypothesis that overexpression of the dopamine D3 receptor in dorsal striatum, in the absence of dopamine depletion, will elicit LID. Replication-deficient recombinant adeno-associated virus-2 expressing the D3 receptor or enhanced green fluorescent protein (EGFP) were stereotaxically injected, unilaterally, into the dorsal striatum of adult rats. Post-hoc immunohistochemical analysis revealed that ectopic expression of the D3 receptor was limited to neurons near the injection sites in the dorsal striatum. Following a 3-week recovery period, rats were administered saline, 6 mg/kg L-DOPA, 0.1 mg/kg PD128907 or 10 mg/kg ES609, i.p., and motor behaviors scored. Rats overexpressing the D3 receptor specifically exhibited contralateral axial abnormal involuntary movements (AIMs) following administration of L-DOPA and PD128907 but not saline or the novel agonist ES609. Daily injection of 6 mg/kg L-DOPA to the rats overexpressing the D3 receptor also caused increased vacuous chewing behavior. These results suggest that overexpression of the D3 receptor in the dorsal striatum results in the acute expression of agonist-induced axial AIMs and chronic L-DOPA-induced vacuous chewing behavior. Agonists such as ES609 might provide a novel therapeutic approach to treat dyskinesia. PMID:24462727

  20. The hippocampal NMDA receptors may be involved in acquisition, but not expression of ACPA-induced place preference.

    PubMed

    Nasehi, Mohammad; Sharaf-Dolgari, Elmira; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2015-12-01

    Numerous studies have investigated the functional interactions between the endocannabinoid and glutamate systems in the hippocampus. The present study was made to test whether N-methyl-D-aspartate (NMDA) receptors of the CA1 region of the dorsal hippocampus (CA1) are implicated in ACPA (a selective cannabinoid CB1 receptor agonist)-induced place preference. Using a 3-day schedule of conditioning, it was found that intraperitoneal (i.p.) administration of ACPA (0.02mg/kg) caused a significant conditioned place preference (CPP) in male albino NMRI mice. Intra-CA1 microinjection of the NMDA or D-[1]-2-amino-7-Phosphonoheptanoic acid (D-AP7, NMDA receptor antagonist), failed to induce CPP or CPA (condition place aversion), while NMDA (0.5μg/mouse) potentiated the ACPA (0.01mg/kg)-induced CPP; and D-AP7 (a specific NMDA receptor antagonist; 0.5 and 1μg/mouse) reversed the ACPA (0.02mg/kg)-induced CPP. Moreover, microinjection of different doses of glutamatergic agents on the testing day did not alter the expression of ACPA-induced place preference. None of the treatments, with the exception of ACPA (0.04mg/kg), had an effect on locomotor activity. In conclusion, these observations provide evidence that glutamate NMDA receptors of the CA1 may be involved in the potentiation of ACPA rewarding properties in the acquisition, but not expression, of CPP in mice. PMID:26072736

  1. International Union of Basic and Clinical Pharmacology. XCII. Urotensin II, urotensin II-related peptide, and their receptor: from structure to function.

    PubMed

    Vaudry, Hubert; Leprince, Jérôme; Chatenet, David; Fournier, Alain; Lambert, David G; Le Mével, Jean-Claude; Ohlstein, Eliot H; Schwertani, Adel; Tostivint, Hervé; Vaudry, David

    2015-01-01

    Urotensin II (UII) is a cyclic neuropeptide that was first isolated from the urophysis of teleost fish on the basis of its ability to contract the hindgut. Subsequently, UII was characterized in tetrapods including humans. Phylogenetic studies and synteny analysis indicate that UII and its paralogous peptide urotensin II-related peptide (URP) belong to the somatostatin/cortistatin superfamily. In mammals, the UII and URP genes are primarily expressed in cholinergic neurons of the brainstem and spinal cord. UII and URP mRNAs are also present in various organs notably in the cardiovascular, renal, and endocrine systems. UII and URP activate a common G protein-coupled receptor, called UT, that exhibits relatively high sequence identity with somatostatin, opioid, and galanin receptors. The UT gene is widely expressed in the central nervous system (CNS) and in peripheral tissues including the retina, heart, vascular bed, lung, kidney, adrenal medulla, and skeletal muscle. Structure-activity relationship studies and NMR conformational analysis have led to the rational design of a number of peptidic and nonpeptidic UT agonists and antagonists. Consistent with the wide distribution of UT, UII has now been shown to exert a large array of biologic activities, in particular in the CNS, the cardiovascular system, and the kidney. Here, we review the current knowledge concerning the pleiotropic actions of UII and discusses the possible use of antagonists for future therapeutic applications. PMID:25535277

  2. Activation of MrgC receptor inhibits N-type calcium channels in small-diameter primary sensory neurons in mice

    PubMed Central

    Li, Zhe; He, Shao-Qiu; Xu, Qian; Yang, Fei; Tiwari, Vinod; Liu, Qin; Tang, Zongxiang; Han, Liang; Chu, Yu-Xia; Wang, Yun; Hin, Niyada; Tsukamoto, Takashi; Slusher, Barbara; Guan, Xiaowei; Wei, Feng; Raja, Srinivasa N; Dong, Xinzhong; Guan, Yun

    2014-01-01

    Mas-related G-protein-coupled receptor subtype C (mouse MrgC11 and rat rMrgC), expressed specifically in small-diameter primary sensory neurons, may constitute a novel pain inhibitory mechanism. We have shown previously that intrathecal administration of MrgC-selective agonists can strongly attenuate persistent pain in various animal models. However, the underlying mechanisms for MrgC agonist-induced analgesia remain elusive. Here, we conducted patch-clamp recordings to test the effect of MrgC agonists on high-voltage-activated (HVA) calcium current in small-diameter dorsal root ganglion (DRG) neurons. Using pharmacological approaches, we show for the first time that an MrgC agonist (JHU58) selectively and dose-dependently inhibits N-type, but not L- or P/Q-type, HVA calcium channels in mouse DRG neurons. Activation of HVA calcium channels is important to neurotransmitter release and synaptic transmission. Patch-clamp recordings in spinal cord slices showed that JHU58 attenuated the evoked excitatory postsynaptic currents in substantia gelatinosa (SG) neurons in wild-type mice, but not in Mrg knockout mice, after peripheral nerve injury. These findings indicate that activation of endogenously expressed MrgC receptors at central terminals of primary sensory fibers may decrease peripheral excitatory inputs onto SG neurons. Together, these results suggest potential cellular and molecular mechanisms that may contribute to intrathecal MrgC agonist-induced analgesia. Because MrgC shares substantial genetic homogeneity with human MrgX1, our findings may suggest a rationale for developing intrathecally delivered MrgX1 receptor agonists to treat pathological pain in humans and provide critical insight regarding potential mechanisms that may underlie its analgesic effects. PMID:24813294

  3. An amino acid residue in the second extracellular loop determines the agonist-dependent tolerance property of the human D3 dopamine receptor.

    PubMed

    Gil-Mast, Sara; Kortagere, Sandhya; Kota, Kokila; Kuzhikandathil, Eldo V

    2013-06-19

    The D3 dopamine receptor is a therapeutic target for treating various nervous system disorders such as schizophrenia, Parkinson's disease, depression, and addictive behaviors. The crystal structure of the D3 receptor bound to an antagonist was recently described; however, the structural features that contribute to agonist-induced conformational changes and signaling properties are not well understood. We have previously described the conformation-dependent tolerance and slow response termination (SRT) signaling properties of the D3 receptor and identified the C147 residue in the second intracellular loop (IL2) of the D3 receptor as important for the tolerance property. Interestingly, while IL2 and the C147 residue, in particular, were important for dopamine- and quinpirole-induced tolerance, this residue did not affect the severe tolerance induced by the high affinity, D3 receptor-selective agonist, PD128907. Here, we used D2/D3 receptor chimeras and site-specific D3 receptor mutants to identify another residue, D187, in the second extracellular loop (EC2) of the human D3 receptor that mediates the tolerance property induced by PD128907, quinpirole, pramipexole, and dopamine. Molecular dynamics simulations confirmed the distinct conformation adopted by D3 receptor during tolerance and suggested that in the tolerant D3 receptor the D187 residue in EC2 forms a salt bridge with the H354 residue in EC3. Indeed, site-directed mutation of the H354 residue resulted in loss of PD1287907-induced tolerance. The mapping of specific amino acid residues that contribute to agonist-dependent conformation changes and D3 receptor signaling properties refines the agonist-bound D3 receptor pharmacophore model which will help develop novel D3 receptor agonists. PMID:23477444

  4. Characterization of histamine receptors in isolated pig basilar artery by functional and radioligand binding studies

    SciTech Connect

    Miyamoto, Atsushi; Nishio, Akira )

    1993-01-01

    Histamine receptors in pig basilar arteries were investigated in vitro by radioligand binding assays and by measuring the contractile and relaxant responses to histamine. Histamine and 2-pyridyethylamine (H[sub 1]-agonist) induced concentration-dependent contractions, whereas impromidine (H[sub 2]-agonist) induced concentration-dependent relaxations. These responses were independent of the presence of endothelial cells. Diphenhydramine (H[sub 1]-antagonist) partially reversed the histamine-induced contractions to relaxations. Cimetidine (H[alpha][sub 2]-antagonist) potentiated the contraction in a concentration-dependent manner. In the presence of cimetidine, the pEC[sub 50] value of histamine for the contraction was 6.30, and diphenhydramine competitively antagonized the histamine-induced contractions (pA[sub 2], 7.77). In the presence of diphenhydramine, the pEC[sub 50] value of histamine for the relaxation was 5.93, and cimetidine competitively antagonized the histamine-induced relaxations (pA[sub 2], 6.62). In the binding studies, the K[sub d] value of [[sup 3]H]mepyramine was 2.1 nM and the B[sub max] value was 95.6 fmol/mg protein. A competition experiment with diphenhydramine showed that the pK[sub i] value (7.51) was similar to the pA[sub 2] value. The K[sub d] value for [[sup 3]H]cimetidine was 126.0 nM and the B[sub max] value was 459.8 fmol/mg protein. The pK[sub d] (6.90) for [[sup 3]H]cimetidine was similar to the pA[sub 2] for cimetidine. The Hill coefficients for these experiments were not significantly different from unity. The present findings indicate that the number of H[sub 1]-receptors, in terms of the B[sub max] value for [[sup 3]H]mepyramine, is smaller than that of H[sub 2]-receptors, in terms of the B[sub max] value for [[sup 3]H]cimetidine. However, the contractile response to histamine is predominantly mediated through stimulation of H[sub 1]-receptors on vascular smooth muscle cells in pig basilar artery.

  5. Skewed pattern of Toll-like receptor 4-mediated cytokine production in human neonatal blood: Low LPS-induced IL-12p70 and high IL-10 persist throughout the first month of life

    PubMed Central

    Belderbos, M.E.; van Bleek, G.M.; Levy, O.; Blanken, M.O.; Houben, M.L.; Schuijff, L.; Kimpen, J.L.L.; Bont, L.

    2010-01-01

    Newborns are highly susceptible to infectious diseases, which may be due to impaired immune responses. This study aims to characterize the ontogeny of neonatal TLR-based innate immunity during the first month of life. Cellularity and Toll-like receptor (TLR) agonist-induced cytokine production were compared between cord blood obtained from healthy neonates born after uncomplicated gestation and delivery (n=18), neonatal venous blood obtained at the age of one month (n=96), and adult venous blood (n=17). Cord blood TLR agonist-induced production of the Th1-polarizing cytokines IL-12p70 and IFN-α was generally impaired, but for TLR3, 7 and 9 agonists, rapidly increased to adult levels during the first month of life. In contrast, TLR4 demonstrated a slower maturation, with low LPS-induced IL-12p70 production and high IL-10 production up until the age of one month. Polarization in neonatal cytokine responses to LPS could contribute to neonatal susceptibility to severe bacterial infection. PMID:19648060

  6. An elevation in physical coupling of type 1 inositol 1,4,5-trisphosphate (IP3) receptors to transient receptor potential 3 (TRPC3) channels constricts mesenteric arteries in genetic hypertension.

    PubMed

    Adebiyi, Adebowale; Thomas-Gatewood, Candice M; Leo, M Dennis; Kidd, Michael W; Neeb, Zachary P; Jaggar, Jonathan H

    2012-11-01

    Hypertension is associated with an elevation in agonist-induced vasoconstriction, but mechanisms involved require further investigation. Many vasoconstrictors bind to phospholipase C-coupled receptors, leading to an elevation in inositol 1,4,5-trisphosphate (IP(3)) that activates sarcoplasmic reticulum IP(3) receptors. In cerebral artery myocytes, IP(3) receptors release sarcoplasmic reticulum Ca(2+) and can physically couple to canonical transient receptor potential 3 (TRPC3) channels in a caveolin-1-containing macromolecular complex, leading to cation current activation that stimulates vasoconstriction. Here, we investigated mechanisms by which IP(3) receptors control vascular contractility in systemic arteries and IP(3)R involvement in elevated agonist-induced vasoconstriction during hypertension. Total and plasma membrane-localized TRPC3 protein was ≈2.7- and 2-fold higher in mesenteric arteries of spontaneously hypertensive rats (SHRs) than in Wistar-Kyoto (WKY) rat controls, respectively. In contrast, IP(3)R1, TRPC1, TRPC6, and caveolin-1 expression was similar. TRPC3 expression was also similar in arteries of pre-SHRs and WKY rats. Control, IP(3)-induced and endothelin-1 (ET-1)-induced fluorescence resonance energy transfer between IP3R1 and TRPC3 was higher in SHR than WKY myocytes. IP3-induced cation current was ≈3-fold larger in SHR myocytes. Pyr3, a selective TRPC3 channel blocker, and calmodulin and IP(3) receptor binding domain peptide, an IP(3)R-TRP physical coupling inhibitor, reduced IP(3)-induced cation current and ET-1-induced vasoconstriction more in SHR than WKY myocytes and arteries. Thapsigargin, a sarcoplasmic reticulum Ca(2+)-ATPase blocker, did not alter ET-1-stimulated vasoconstriction in SHR or WKY arteries. These data indicate that ET-1 stimulates physical coupling of IP(3)R1 to TRPC3 channels in mesenteric artery myocytes, leading to vasoconstriction. Furthermore, an elevation in IP(3)R1 to TRPC3 channel molecular coupling augments

  7. Identification of domains influencing assembly and ion channel properties in α7 nicotinic receptor and 5-HT3 receptor subunit chimaeras

    PubMed Central

    Gee, V J; Kracun, S; Cooper, S T; Gibb, A J; Millar, N S

    2007-01-01

    Background and purpose: Nicotinic acetylcholine receptors (nAChRs) and 5-hydroxytryptamine type 3 receptors (5-HT3Rs) are members of the superfamily of neurotransmitter-gated ion channels. Both contain five subunits which assemble to form either homomeric or heteromeric subunit complexes. With the aim of identifying the influence of subunit domains upon receptor assembly and function, a series of chimaeras have been constructed containing regions of the neuronal nAChR α7 subunit and the 5-HT3 receptor 3A subunit. Experimental approach: A series of subunit chimaeras containing α7 and 5-HT3A subunit domains have been constructed and expressed in cultured mammalian cells. Properties of the expressed receptors have been examined by means of radioligand binding, agonist-induced changes in intracellular calcium and patch-clamp electrophysiology. Key results: Subunit domains which influence properties such as rectification, desensitization and conductance have been identified. In addition, the influence of subunit domains upon subunit folding, receptor assembly and cell-surface expression has been identified. Co-expression studies with the nAChR-associated protein RIC-3 revealed that, in contrast to the potentiating effect of RIC-3 on α7 nAChRs, RIC-3 caused reduced levels of cell-surface expression of some α7/5-HT3A chimaeras. Conclusions and implications: Evidence has been obtained which demonstrates that subunit transmembrane domains are critical for efficient subunit folding and assembly. In addition, functional characterization of subunit chimaeras revealed that both extracellular and cytoplasmic domains exert a dramatic and significant influence upon single-channel conductance. These data support a role for regions other than hydrophobic transmembrane domains in determining ion channel properties. PMID:17721553

  8. Structural Basis of Activation of Bitter Taste Receptor T2R1 and Comparison with Class A G-protein-coupled Receptors (GPCRs)*

    PubMed Central

    Singh, Nisha; Pydi, Sai Prasad; Upadhyaya, Jasbir; Chelikani, Prashen

    2011-01-01

    The human bitter taste receptors (T2Rs) are non-Class A members of the G-protein-coupled receptor (GPCR) superfamily, with very limited structural information. Amino acid sequence analysis reveals that most of the important motifs present in the transmembrane helices (TM1–TM7) of the well studied Class A GPCRs are absent in T2Rs, raising fundamental questions regarding the mechanisms of activation and how T2Rs recognize bitter ligands with diverse chemical structures. In this study, the bitter receptor T2R1 was used to systematically investigate the role of 15 transmembrane amino acids in T2Rs, including 13 highly conserved residues, by amino acid replacements guided by molecular modeling. Functional analysis of the mutants by calcium imaging analysis revealed that replacement of Asn-662.65 and the highly conserved Asn-241.50 resulted in greater than 90% loss of agonist-induced signaling. Our results show that Asn-241.50 plays a crucial role in receptor activation by mediating an hydrogen bond network connecting TM1-TM2-TM7, whereas Asn-662.65 is essential for binding to the agonist dextromethorphan. The interhelical hydrogen bond between Asn-241.50 and Arg-552.54 restrains T2R receptor activity because loss of this bond in I27A and R55A mutants results in hyperactive receptor. The conserved amino acids Leu-1975.50, Ser-2005.53, and Leu-2015.54 form a putative LXXSL motif which performs predominantly a structural role by stabilizing the helical conformation of TM5 at the cytoplasmic end. This study provides for the first time mechanistic insights into the roles of the conserved transmembrane residues in T2Rs and allows comparison of the activation mechanisms of T2Rs with the Class A GPCRs. PMID:21852241

  9. Laryngeal pressure receptors.

    PubMed

    Mathew, O P; Sant'Ambrogio, G; Fisher, J T; Sant'Ambrogio, F B

    1984-07-01

    We studied the response characteristics of laryngeal pressure receptors in anesthetized dogs, breathing through a tracheal cannula, by recording single unit action potentials from the peripheral cut end of the internal branch of the superior laryngeal nerve. The larynx, with the rest of the upper airway, was isolated and cannulated separately for the application of distending and collapsing pressures. We identified receptors responding to either negative or positive pressure and a few responding to both. All these receptors showed a marked dynamic sensitivity and had the characteristics of slowly adapting mechanoreceptors. The majority of pressure receptors were active at zero transmural pressure and the gain of their response to pressure was higher at lower values, suggesting a role for these receptors in eupnea. Reflex alterations in breathing pattern and upper airway muscle activity during upper airway pressure changes, previously reported, are presumably mediated by the receptors described here. Moreover, these receptors may play a role in certain pathological states, such as obstructive sleep apnea, in which the upper airway is transiently subjected to large collapsing pressure. PMID:6484319

  10. Structural Determinants for the Binding of Morphinan Agonists to the μ-Opioid Receptor.

    PubMed

    Cong, Xiaojing; Campomanes, Pablo; Kless, Achim; Schapitz, Inga; Wagener, Markus; Koch, Thomas; Carloni, Paolo

    2015-01-01

    Atomistic descriptions of the μ-opioid receptor (μOR) noncovalently binding with two of its prototypical morphinan agonists, morphine (MOP) and hydromorphone (HMP), are investigated using molecular dynamics (MD) simulations. Subtle differences between the binding modes and hydration properties of MOP and HMP emerge from the calculations. Alchemical free energy perturbation calculations show qualitative agreement with in vitro experiments performed in this work: indeed, the binding free energy difference between MOP and HMP computed by forward and backward alchemical transformation is 1.2±1.1 and 0.8±0.8 kcal/mol, respectively, to be compared with 0.4±0.3 kcal/mol from experiment. Comparison with an MD simulation of μOR covalently bound with the antagonist β-funaltrexamine hints to agonist-induced conformational changes associated with an early event of the receptor's activation: a shift of the transmembrane helix 6 relative to the transmembrane helix 3 and a consequent loss of the key R165-T279 interhelical hydrogen bond. This finding is consistent with a previous proposal suggesting that the R165-T279 hydrogen bond between these two helices indicates an inactive receptor conformation. PMID:26280453

  11. X-ray structures of AMPA receptor-cone snail toxin complexes illuminate activation mechanism.

    PubMed

    Chen, Lei; Dürr, Katharina L; Gouaux, Eric

    2014-08-29

    AMPA-sensitive glutamate receptors are crucial to the structural and dynamic properties of the brain, to the development and function of the central nervous system, and to the treatment of neurological conditions from depression to cognitive impairment. However, the molecular principles underlying AMPA receptor activation have remained elusive. We determined multiple x-ray crystal structures of the GluA2 AMPA receptor in complex with a Conus striatus cone snail toxin, a positive allosteric modulator, and orthosteric agonists, at 3.8 to 4.1 angstrom resolution. We show how the toxin acts like a straightjacket on the ligand-binding domain (LBD) "gating ring," restraining the domains via both intra- and interdimer cross-links such that agonist-induced closure of the LBD "clamshells" is transduced into an irislike expansion of the gating ring. By structural analysis of activation-enhancing mutants, we show how the expansion of the LBD gating ring results in pulling forces on the M3 helices that, in turn, are coupled to ion channel gating. PMID:25103405

  12. Stoichiometry for α-bungarotoxin block of α7 acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Dacosta, Corrie J. B.; Free, Chris R.; Sine, Steven M.

    2015-08-01

    α-Bungarotoxin (α-Btx) binds to the five agonist binding sites on the homopentameric α7-acetylcholine receptor, yet the number of bound α-Btx molecules required to prevent agonist-induced channel opening remains unknown. To determine the stoichiometry for α-Btx blockade, we generate receptors comprised of wild-type and α-Btx-resistant subunits, tag one of the subunit types with conductance mutations to report subunit stoichiometry, and following incubation with α-Btx, monitor opening of individual receptor channels with defined subunit stoichiometry. We find that a single α-Btx-sensitive subunit confers nearly maximal suppression of channel opening, despite four binding sites remaining unoccupied by α-Btx and accessible to the agonist. Given structural evidence that α-Btx locks the agonist binding site in an inactive conformation, we conclude that the dominant mechanism of antagonism is non-competitive, originating from conformational arrest of the binding sites, and that the five α7 subunits are interdependent and maintain conformational symmetry in the open channel state.

  13. Epinephrine and norepinephrine act as potent agonists at the recombinant human dopamine D4 receptor.

    PubMed

    Lanau, F; Zenner, M T; Civelli, O; Hartman, D S

    1997-02-01

    The catecholamines dopamine (DA), epinephrine (EP), and norepinephrine (NE) play important roles in learning and memory, emotional states, and control of voluntary movement, as well as cardiovascular and kidney function. They activate distinct but overlapping neuronal pathways through five distinct DA receptors (D1R-D5R) and at least 10 different adrenergic receptors (alpha 1a/b/c, alpha 2a/b/c-1/c-2, and beta 1/beta 2/beta 3). The D4R, which is localized to mesolimbic areas of the brain implicated in affective and emotional behavior, has a deduced amino acid sequence with homology to both adrenergic and dopaminergic receptor subtypes. We report here that DA, EP, and NE all show binding in the nanomolar range to three isoforms of the recombinant human D4R (hD4R): D4.2, D4.4, and D4.7. Submicromolar concentrations of DA, EP, and NE were sufficient to activate hD4R isoforms in two different functional assays: agonist-induced guanosine 5'-O-(3-[35S]thiotriphosphate) binding and modulation of adenylyl cyclase activity. DA was approximately fivefold more potent than EP and NE at the D4R, whereas activation of the human D2R required at least 100-fold higher catecholamine concentrations. Functional activation of the D4R by multiple neurotransmitters may provide a novel mechanism for integration of catecholamine signaling in the brain and periphery. PMID:9003072

  14. Rapid Remodeling of Invadosomes by Gi-coupled Receptors: DISSECTING THE ROLE OF Rho GTPases.

    PubMed

    Kedziora, Katarzyna M; Leyton-Puig, Daniela; Argenzio, Elisabetta; Boumeester, Anja J; van Butselaar, Bram; Yin, Taofei; Wu, Yi I; van Leeuwen, Frank N; Innocenti, Metello; Jalink, Kees; Moolenaar, Wouter H

    2016-02-26

    Invadosomes are actin-rich membrane protrusions that degrade the extracellular matrix to drive tumor cell invasion. Key players in invadosome formation are c-Src and Rho family GTPases. Invadosomes can reassemble into circular rosette-like superstructures, but the underlying signaling mechanisms remain obscure. Here we show that Src-induced invadosomes in human melanoma cells (A375M and MDA-MB-435) undergo rapid remodeling into dynamic extracellular matrix-degrading rosettes by distinct G protein-coupled receptor agonists, notably lysophosphatidic acid (LPA; acting through the LPA1 receptor) and endothelin. Agonist-induced rosette formation is blocked by pertussis toxin, dependent on PI3K activity and accompanied by localized production of phosphatidylinositol 3,4,5-trisphosphate, whereas MAPK and Ca(2+) signaling are dispensable. Using FRET-based biosensors, we show that LPA and endothelin transiently activate Cdc42 through Gi, concurrent with a biphasic decrease in Rac activity and differential effects on RhoA. Cdc42 activity is essential for rosette formation, whereas G12/13-mediated RhoA-ROCK signaling suppresses the remodeling process. Our results reveal a Gi-mediated Cdc42 signaling axis by which G protein-coupled receptors trigger invadosome remodeling, the degree of which is dictated by the Cdc42-RhoA activity balance. PMID:26740622

  15. Stoichiometry for α-bungarotoxin block of α7 acetylcholine receptors

    PubMed Central

    daCosta, Corrie J. B.; Free, Chris R.; Sine, Steven M.

    2015-01-01

    α-Bungarotoxin (α-Btx) binds to the five agonist binding sites on the homopentameric α7-acetylcholine receptor, yet the number of bound α-Btx molecules required to prevent agonist-induced channel opening remains unknown. To determine the stoichiometry for α-Btx blockade, we generate receptors comprised of wild-type and α-Btx-resistant subunits, tag one of the subunit types with conductance mutations to report subunit stoichiometry, and following incubation with α-Btx, monitor opening of individual receptor channels with defined subunit stoichiometry. We find that a single α-Btx-sensitive subunit confers nearly maximal suppression of channel opening, despite four binding sites remaining unoccupied by α-Btx and accessible to the agonist. Given structural evidence that α-Btx locks the agonist binding site in an inactive conformation, we conclude that the dominant mechanism of antagonism is non-competitive, originating from conformational arrest of the binding sites, and that the five α7 subunits are interdependent and maintain conformational symmetry in the open channel state. PMID:26282895

  16. Identification, characterization, and regulation of a nicotinic acetylcholine receptor on bovine adrenal chromaffin cells in culture

    SciTech Connect

    Higgins, L.S.

    1988-01-01

    Synaptic input to bovine adrenal chromaffin cells is mediated by nicotinic acetylcholine receptors (AChRs) and results in secretion of catecholamines. Three probes previously shown to recognize AChRs on neurons were used to identify the AChR on bovine adrenal chromaffin cells in culture: monoclonal antibody mAb 35, a toxin that blocks receptor function, and the agonist nicotine. Competition for {sup 3}H-nicotine binding was used to measure the affinity of cholinergic ligands, and revealed the pharmacological profile expected for a neuronal-type AChR. At steady state the rate both of receptor insertion into and loss from the plasma membrane is about 3%/hour, resulting in a half-life in the surface of about 24 hours. Exposure to the anti-AChR antibody results in a loss of AChRs from the surface of the cells through a process that has the characteristics of antigenic modulation. The number of AChRs on the surface of the chromaffin cells can also be modulated by agonists and hormones, including glucocotricoids. Catecholamines, three peptides that may be secreted by chromaffin cells, and K{sup +}-induced secretion reduce agonist-induced catecholamine release by decreasing the number of AChRs, providing a mechanism for autoregulation.

  17. Gonadotropin-releasing hormone agonist-induced pituitary apoplexy

    PubMed Central

    Keane, Fergus; Navin, Patrick; Brett, Francesca; Dennedy, Michael C

    2016-01-01

    Summary Pituitary apoplexy represents an uncommon endocrine emergency with potentially life-threatening consequences. Drug-induced pituitary apoplexy is a rare but important consideration when evaluating patients with this presentation. We describe an unusual case of a patient with a known pituitary macroadenoma presenting with acute-onset third nerve palsy and headache secondary to tumour enlargement and apoplexy. This followed gonadotropin-releasing hormone (GNRH) agonist therapy used to treat metastatic prostate carcinoma. Following acute management, the patient underwent transphenoidal debulking of his pituitary gland with resolution of his third nerve palsy. Subsequent retrospective data interpretation revealed that this had been a secretory gonadotropinoma and GNRH agonist therapy resulted in raised gonadotropins and testosterone. Hence, further management of his prostate carcinoma required GNRH antagonist therapy and external beam radiotherapy. This case demonstrates an uncommon complication of GNRH agonist therapy in the setting of a pituitary macroadenoma. It also highlights the importance of careful, serial data interpretation in patients with pituitary adenomas. Finally, this case presents a unique insight into the challenges of managing a hormonal-dependent prostate cancer in a patient with a secretory pituitary tumour. Learning points While non-functioning gonadotropinomas represent the most common form of pituitary macroadenoma, functioning gonadotropinomas are exceedingly rare. Acute tumour enlargement, with potential pituitary apoplexy, is a rare but important adverse effect arising from GNRH agonist therapy in the presence of both functioning and non-functioning pituitary gonadotropinomas. GNRH antagonist therapy represents an alternative treatment option for patients with hormonal therapy-requiring prostate cancer, who also have diagnosed with a pituitary gonadotropinoma. PMID:27284452

  18. Multimodal function of the sweet taste receptor expressed in pancreatic β-cells: generation of diverse patterns of intracellular signals by sweet agonists.

    PubMed

    Nakagawa, Yuko; Nagasawa, Masahiro; Mogami, Hideo; Lohse, Martin; Ninomiya, Yuzo; Kojima, Itaru

    2013-01-01

    The sweet taste receptor is expressed in the taste bud and is activated by numerous sweet molecules with diverse chemical structures. It is, however, not known whether these sweet agonists induce a similar cellular response in target cells. Using MIN6 cells, a pancreatic β-cell line expressing endogenous sweet taste receptor, we addressed this question by monitoring changes in cytoplasmic Ca2+ ([Ca2+]i) and cAMP ([cAMP]i) induced by four sweet taste receptor agonists. Glycyrrhizin evoked sustained elevation of [Ca2+]i but [cAMP]i was not affected. Conversely, an artificial sweetener saccharin induced sustained elevation of [cAMP]i but did not increase [Ca2+]i. In contrast, sucralose and acesulfame K induced rapid and sustained increases in both [Ca2+]i and [cAMP]i. Although the latter two sweeteners increased [Ca2+]i and [cAMP]i, their actions were not identical: [Ca2+]i response to sucralose but not acesulfame K was inhibited by gurmarin, an antagonist of the sweet taste receptor which blocks the gustducin-dependent pathway. In addition, [Ca2+]i response to acesulfame K but not to sucralose was resistant to a Gq inhibitor. These results indicate that four types of sweeteners activate the sweet taste receptor differently and generate distinct patterns of intracellular signals. The sweet taste receptor has amazing multimodal functions producing multiple patterns of intracellular signals. PMID:23933592

  19. Inhibition of metabotropic glutamate receptor 1 suppresses tumor growth and angiogenesis in experimental non-small cell lung cancer.

    PubMed

    Xia, Hui; Zhao, Ying-Nan; Yu, Chang-Hai; Zhao, Yun-Long; Liu, Yang

    2016-07-15

    Metabotropic glutamate receptor 1 (mGlu1 receptor) is expressed in many cancer cell types as compared to normal counterparts underscoring its potential role in tumor behavior. The aim of present study was to test the role of mGlu1 receptor in experimental non-small cell lung cancer (NSCLC). First, protein expression of mGlu1 receptor was higher in human NSCLC cell lines, including both adenocarcinoma and squamous carcinoma subtypes, when compared to normal bronchial epithelial cells. Inhibition of mGlu1 receptor by BAY36-7620 (an mGlu1 receptor-specific inhibitor) inhibited tumor growth and prolonged survival of mice with tumors of A549 or H1299. Treatment with BAY36-7620 suppressed AKT phosphorylation in A549 tumors and pre-treatment with BAY36-7620 blocked the L-quisqualate (a potent mGlu1 receptor agonist)-induced AKT phosphorylation in A549 cells. Treatment with BAY36-7620 reduced cellular proliferation of A549 cells. Treatment with BAY36-7620 enhanced cleaved PARP levels and reduced protein expression of bcl-2, HIF-1α, and VEGF. In contrast, treatment with L-quisqualate reduced cleaved PARP levels and enhanced protein expression of bcl-2, HIF-1α, VEGF, and IL-8, which was reversed by co-incubation with MK2206 (an AKT inhibitor). Pre-treatment with BAY36-7620 blocked the VEGF-induced AKT phosphorylation in HUVECs. Treatment of HUVECs with L-quisqualate resulted in enhancement of capillary tube formation, which was reversed by co-incubation with MK2206. Furthermore, mGlu1 receptor knockdown suppressed tumor growth and prolonged survival of mice with tumors of A549 or H1299. Collectively, inhibition of mGlu1 receptor suppressed tumor growth and angiogenesis in experimental NSCLC. PMID:27132814

  20. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    SciTech Connect

    Levy, J.R.; Olefsky, J.M.

    1988-05-05

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4/sup 0/C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37/sup 0/C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation.

  1. Peripheral Adenosine A3 Receptor Activation Causes Regulated Hypothermia in Mice That Is Dependent on Central Histamine H1 Receptors.

    PubMed

    Carlin, Jesse Lea; Tosh, Dilip K; Xiao, Cuiying; Piñol, Ramón A; Chen, Zhoumou; Salvemini, Daniela; Gavrilova, Oksana; Jacobson, Kenneth A; Reitman, Marc L

    2016-02-01

    Adenosine can induce hypothermia, as previously demonstrated for adenosine A1 receptor (A1AR) agonists. Here we use the potent, specific A3AR agonists MRS5698, MRS5841, and MRS5980 to show that adenosine also induces hypothermia via the A3AR. The hypothermic effect of A3AR agonists is independent of A1AR activation, as the effect was fully intact in mice lacking A1AR but abolished in mice lacking A3AR. A3AR agonist-induced hypothermia was attenuated by mast cell granule depletion, demonstrating that the A3AR hypothermia is mediated, at least in part, via mast cells. Central agonist dosing had no clear hypothermic effect, whereas peripheral dosing of a non-brain-penetrant agonist caused hypothermia, suggesting that peripheral A3AR-expressing cells drive the hypothermia. Mast cells release histamine, and blocking central histamine H1 (but not H2 or H4) receptors prevented the hypothermia. The hypothermia was preceded by hypometabolism and mice with hypothermia preferred a cooler environmental temperature, demonstrating that the hypothermic state is a coordinated physiologic response with a reduced body temperature set point. Importantly, hypothermia is not required for the analgesic effects of A3AR agonists, which occur with lower agonist doses. These results support a mechanistic model for hypothermia in which A3AR agonists act on peripheral mast cells, causing histamine release, which stimulates central histamine H1 receptors to induce hypothermia. This mechanism suggests that A3AR agonists will probably not be useful for clinical induction of hypothermia. PMID:26606937

  2. Insertion of an aspartic acid moiety into cyclic pseudopeptides: synthesis and biological characterization of potent antagonists for the human Tachykinin NK-2 receptor.

    PubMed

    Fedi, Valentina; Altamura, Maria; Balacco, Giuseppe; Canfarini, Franca; Criscuoli, Marco; Giannotti, Danilo; Giolitti, Alessandro; Giuliani, Sandro; Guidi, Antonio; Harmat, Nicholas J S; Nannicini, Rossano; Pasqui, Franco; Patacchini, Riccardo; Perrotta, Enzo; Tramontana, Manuela; Triolo, Antonio; Maggi, Carlo Alberto

    2004-12-30

    A new series of monocyclic pseudopeptide tachykinin NK-2 receptor antagonists has been derived from the lead compound MEN11558. A synthesis for these molecules sharing the same intermediate was designed and performed. The replacement of the succinic moiety with an aspartic acid and the functionalization of its amino group with a wide variety of substituents led to very potent and selective NK-2 antagonists. Best results were obtained through the insertion in position 12 of an amino group with R configuration, linked by a short spacer to a saturated nitrogen heterocycle (morpholine, piperidine, or piperazine). The study led to compounds 54 and 57, endowed with high in vivo potency at very low doses and long duration of action in animal models of bronchoconstriction. In particular 54 and 57 completely inhibited NK-2 agonist induced bronchoconstriction in guinea pig after intratracheal administration at subnanomolar doses (ED(50) = 0.27 nmol/kg and 0.15 nmol/kg, respectively). PMID:15615542

  3. Apo- and holo-lactoferrin are both internalized by lactoferrin receptor via clathrin-mediated endocytosis but differentially affect ERK-signaling and cell proliferation in Caco-2 cells

    PubMed Central

    Jiang, Rulan; Lopez, Veronica; Kelleher, Shannon L.; Lönnerdal, Bo

    2011-01-01

    Lactoferrin (Lf) is a major iron-binding and multi-functional protein in exocrine fluids such as breast milk and mucosal secretions. The functions of Lf appear dependent upon the iron-saturation of the Lf protein and are postulated to be mediated through Lf internalization by a Lf receptor (LfR). However, mechanisms by which LfR mediates Lf internalization in enterocytes are unknown. We now demonstrate that a LfR previously cloned from the small intestine mediates Lf endocytosis in a human enterocyte model (Caco-2 cells). LfR was detected at the plasma membrane by cell surface biotinylation; both apo-Lf and holo-Lf uptake were significantly inhibited in cells transfected with LfR siRNA. Treatments of hypertonic sucrose and clathrin siRNA and co-immunoprecipitation of LfR with clathrin adaptor AP2 indicate that LfR regulates Lf endocytosis via clathrin-mediated endocytosis. Although both iron-free Lf (apo-Lf) and iron-saturated Lf (holo-Lf) enter Caco-2 cells via a similar mechanism and no significant differences were observed in the binding and uptake of apo- and holo-Lf in Caco-2 cells, apo-Lf but not holo-Lf stimulates proliferation of Caco-2 cells. Interestingly, apo-Lf stimulated extracellular signal-regulated mitogen-activated protein kinase (ERK) cascade to a significantly greater extent than holo-Lf and the apo-Lf induced proliferation was significantly inhibited by an ERK cascade inhibitor (U0126) and clathrin siRNA. Taken together, our data suggest that LfR is a major pathway through which Lf is taken up by enterocytes, which occurs independently of iron saturation through clathrin-mediated endocytosis. The differential effects of apo- and holo-Lf are not due to differences in cellular internalization mechanisms. PMID:21935933

  4. Mutation D816V Alters the Internal Structure and Dynamics of c-KIT Receptor Cytoplasmic Region: Implications for Dimerization and Activation Mechanisms

    PubMed Central

    Laine, Elodie; Chauvot de Beauchêne, Isaure; Perahia, David; Auclair, Christian; Tchertanov, Luba

    2011-01-01

    The type III receptor tyrosine kinase (RTK) KIT plays a crucial role in the transmission of cellular signals through phosphorylation events that are associated with a switching of the protein conformation between inactive and active states. D816V KIT mutation is associated with various pathologies including mastocytosis and cancers. D816V-mutated KIT is constitutively active, and resistant to treatment with the anti-cancer drug Imatinib. To elucidate the activating molecular mechanism of this mutation, we applied a multi-approach procedure combining molecular dynamics (MD) simulations, normal modes analysis (NMA) and binding site prediction. Multiple 50-ns MD simulations of wild-type KIT and its mutant D816V were recorded using the inactive auto-inhibited structure of the protein, characteristic of type III RTKs. Computed free energy differences enabled us to quantify the impact of D816V on protein stability in the inactive state. We evidenced a local structural alteration of the activation loop (A-loop) upon mutation, and a long-range structural re-organization of the juxta-membrane region (JMR) followed by a weakening of the interaction network with the kinase domain. A thorough normal mode analysis of several MD conformations led to a plausible molecular rationale to propose that JMR is able to depart its auto-inhibitory position more easily in the mutant than in wild-type KIT and is thus able to promote kinase mutant dimerization without the need for extra-cellular ligand binding. Pocket detection at the surface of NMA-displaced conformations finally revealed that detachment of JMR from the kinase domain in the mutant was sufficient to open an access to the catalytic and substrate binding sites. PMID:21698178

  5. Functional Impact of 14 Single Nucleotide Polymorphisms Causing Missense Mutations of Human α7 Nicotinic Receptor

    PubMed Central

    Zhang, Qinhui; Du, Yingjie; Zhang, Jianliang; Xu, Xiaojun; Xue, Fenqin; Guo, Cong; Huang, Yao; Lukas, Ronald J.; Chang, Yongchang

    2015-01-01

    The α7nicotinic receptor (nAChR) is a major subtype of the nAChRs in the central nervous system, and the receptor plays an important role in brain function. In the dbSNP database, there are 55 single nucleotide polymorphisms (SNPs) that cause missense mutations of the human α7nAChR in the coding region. In this study, we tested the impact of 14 SNPs that cause missense mutations in the agonist binding site or the coupling region between binding site and channel gate on the receptor function. The wild type or mutant receptors were expressed or co-expressed in Xenopus oocytes, and the agonist-induced currents were tested using two-electrode voltage clamp. Our results demonstrated that 6 mutants were nonfunctional, 4 mutants had reduced current expression, and 1 mutants altered ACh and nicotine efficacy in the opposite direction, and one additional mutant had slightly reduced agonist sensitivity. Interestingly, the function of most of these nonfunctional mutants could be rescued by α7nAChR positive allosteric modulator PNU-120596 and agonist-PAM 4BP-TQS. Finally, when coexpressed with the wild type, the nonfunctional mutants could also influence the receptor function. These changes of the receptor properties by the mutations could potentially have an impact on the physiological function of the α7nAChR-mediated cholinergic synaptic transmission and anti-inflammatory effects in the human SNP carriers. Rescuing the nonfunctional mutants could provide a novel way to treat the related disorders. PMID:26340537

  6. Identification of short-acting κ-opioid receptor antagonists with anxiolytic-like activity.

    PubMed

    Peters, Matthew F; Zacco, Anna; Gordon, John; Maciag, Carla M; Litwin, Linda C; Thompson, Carolann; Schroeder, Patricia; Sygowski, Linda A; Piser, Timothy M; Brugel, Todd A

    2011-07-01

    The κ-opioid receptor plays a central role in mediating the response to stressful life events. Inhibiting κ-opioid receptor signaling is proposed as a mechanism for treating stress-related conditions such as depression and anxiety. Preclinical testing consistently confirms that disruption of κ-opioid signaling is efficacious in animal models of mood disorders. However, concerns about the feasibility of developing antagonists into drugs stem from an unusual pharmacodynamic property of prototypic κ-opioid receptor-selective antagonists; they inhibit receptor signaling for weeks to months after a single dose. Several fundamental questions include - is it possible to identify short-acting antagonists; is long-lasting inhibition necessary for efficacy; and is it safe to develop long-acting antagonists in the clinic. Here, we test representative compounds (AZ-ECPC, AZ-MTAB, and LY-DMPF) from three new chemical series of κ-opioid receptor ligands for long-lasting inhibition. Each compound dose-dependently reversed κ-opioid agonist-induced diuresis. However, unlike the prototypic antagonist, nBNI, which fully inhibited evoked diuresis for at least four weeks, the new compounds showed no inhibition after one week. The two compounds with greater potency and selectivity were tested in prenatally-stressed rats on the elevated plus maze, an exploration-based model of anxiety. Spontaneous exploration of open arms in the elevated plus maze was suppressed by prenatal stress and restored with both compounds. These findings indicate that persistent inhibition is not an inherent property of κ-opioid-selective antagonists and that post-stress dosing with transient inhibitors can be effective in a mood disorder model. This further supports κ-opioid receptor as a promising target for developing novel psychiatric medications. PMID:21539838

  7. Functional Impact of 14 Single Nucleotide Polymorphisms Causing Missense Mutations of Human α7 Nicotinic Receptor.

    PubMed

    Zhang, Qinhui; Du, Yingjie; Zhang, Jianliang; Xu, Xiaojun; Xue, Fenqin; Guo, Cong; Huang, Yao; Lukas, Ronald J; Chang, Yongchang

    2015-01-01

    The α7nicotinic receptor (nAChR) is a major subtype of the nAChRs in the central nervous system, and the receptor plays an important role in brain function. In the dbSNP database, there are 55 single nucleotide polymorphisms (SNPs) that cause missense mutations of the human α7nAChR in the coding region. In this study, we tested the impact of 14 SNPs that cause missense mutations in the agonist binding site or the coupling region between binding site and channel gate on the receptor function. The wild type or mutant receptors were expressed or co-expressed in Xenopus oocytes, and the agonist-induced currents were tested using two-electrode voltage clamp. Our results demonstrated that 6 mutants were nonfunctional, 4 mutants had reduced current expression, and 1 mutants altered ACh and nicotine efficacy in the opposite direction, and one additional mutant had slightly reduced agonist sensitivity. Interestingly, the function of most of these nonfunctional mutants could be rescued by α7nAChR positive allosteric modulator PNU-120596 and agonist-PAM 4BP-TQS. Finally, when coexpressed with the wild type, the nonfunctional mutants could also influence the receptor function. These changes of the receptor properties by the mutations could potentially have an impact on the physiological function of the α7nAChR-mediated cholinergic synaptic transmission and anti-inflammatory effects in the human SNP carriers. Rescuing the nonfunctional mutants could provide a novel way to treat the related disorders. PMID:26340537

  8. Genetics of taste receptors.

    PubMed

    Bachmanov, Alexander A; Bosak, Natalia P; Lin, Cailu; Matsumoto, Ichiro; Ohmoto, Makoto; Reed, Danielle R; Nelson, Theodore M

    2014-01-01

    Taste receptors function as one of the interfaces between internal and external milieus. Taste receptors for sweet and umami (T1R [taste receptor, type 1]), bitter (T2R [taste receptor, type 2]), and salty (ENaC [epithelial sodium channel]) have been discovered in the recent years, but transduction mechanisms of sour taste and ENaC-independent salt taste are still poorly understood. In addition to these five main taste qualities, the taste system detects such noncanonical "tastes" as water, fat, and complex carbohydrates, but their reception mechanisms require further research. Variations in taste receptor genes between and within vertebrate species contribute to individual and species differences in taste-related behaviors. These variations are shaped by evolutionary forces and reflect species adaptations to their chemical environments and feeding ecology. Principles of drug discovery can be applied to taste receptors as targets in order to develop novel taste compounds to satisfy demand in better artificial sweeteners, enhancers of sugar and sodium taste, and blockers of bitterness of food ingredients and oral medications. PMID:23886383

  9. Genetics of Taste Receptors

    PubMed Central

    Bachmanov, Alexander A.; Bosak, Natalia P.; Lin, Cailu; Matsumoto, Ichiro; Ohmoto, Makoto; Reed, Danielle R.; Nelson, Theodore M.

    2016-01-01

    Taste receptors function as one of the interfaces between internal and external milieus. Taste receptors for sweet and umami (T1R [taste receptor, type 1]), bitter (T2R [taste receptor, type 2]), and salty (ENaC [epithelial sodium channel]) have been discovered in the recent years, but transduction mechanisms of sour taste and ENaC-independent salt taste are still poorly understood. In addition to these five main taste qualities, the taste system detects such noncanonical “tastes” as water, fat, and complex carbohydrates, but their reception mechanisms require further research. Variations in taste receptor genes between and within vertebrate species contribute to individual and species differences in taste-related behaviors. These variations are shaped by evolutionary forces and reflect species adaptations to their chemical environments and feeding ecology. Principles of drug discovery can be applied to taste receptors as targets in order to develop novel taste compounds to satisfy demand in better artificial sweeteners, enhancers of sugar and sodium taste, and blockers of bitterness of food ingredients and oral medications. PMID:23886383

  10. Identification of a stretch of six divergent amino acids on the alpha5 helix of Galpha16 as a major determinant of the promiscuity and efficiency of receptor coupling.

    PubMed Central

    Ho, Maurice K C; Chan, Jasmine H P; Wong, Cecilia S S; Wong, Yung H

    2004-01-01

    A broad repertory of G-protein-coupled receptors shows effective coupling with the haematopoietic G16 protein. In the present study, individual residues along the C-terminal alpha5 helix of Galpha16 were examined for their contributions in defining receptor-coupling specificity. Residues that are relatively conserved within, but diverse between, the subfamilies of cloned Galpha subunits were mutated into the corresponding Galpha(z) residues. Six G(i)-linked receptors with different coupling efficiencies to Galpha16 were examined for their ability to utilize the various Galpha16 mutants to mediate agonist-induced inositol phosphate accumulation and Ca2+ mobilization. Co-operative enhancements of receptor coupling were observed with chimaeras harbouring multiple mutations at Glu350, Lys357 and Leu364 of Galpha16. Mutation of Leu364 into isoleucine appeared to be more efficient in enhancing receptor recognition compared with mutations at the other two sites. Mutation of a stretch of six consecutive residues (362-367) lying towards the end of the alpha5 helix was found to broaden significantly the receptor-coupling profile of Galpha16, and the effect was mediated partly through interactions with the beta2-beta3 loop. These results suggested that a stretch of six distinctive residues at the alpha5 helix of Galpha16 is particularly important, whereas other discrete residues spreading along the alpha5 helix function co-operatively for determining the specificity of receptor recognition. PMID:15005654

  11. The 5' leader of the mRNA encoding the mouse neurotrophin receptor TrkB contains two internal ribosomal entry sites that are differentially regulated.

    PubMed

    Timmerman, Stephanie L; Pfingsten, Jennifer S; Kieft, Jeffrey S; Krushel, Les A

    2008-01-01

    A single internal ribosomal entry site (IRES) in conjunction with IRES transactivating factors (ITAFs) is sufficient to recruit the translational machinery to a eukaryotic mRNA independent of the cap structure. However, we demonstrate that the mouse TrkB mRNA contains two independent IRESes. The mouse TrkB mRNA consists of one of two 5' leaders (1428 nt and 448 nt), both of which include the common 3' exon (Ex2, 344 nt). Dicistronic RNA transfections and in vitro translation of monocistronic RNA demonstrated that both full-length 5' leaders, as well as Ex2, exhibit IRES activity indicating the IRES is located within Ex2. Additional analysis of the upstream sequences demonstrated that the first 260 nt of exon 1 (Ex1a) also contains an IRES. Dicistronic RNA transfections into SH-SY5Y cells showed the Ex1a IRES is constitutively active. However, the Ex2 IRES is only active in response to retinoic acid induced neural differentiation, a state which correlates with the synthesis of the ITAF polypyrimidine tract binding protein (PTB1). Correspondingly, addition or knock-down of PTB1 altered Ex2, but not Ex1a IRES activity in vitro and ex vivo, respectively. These results demonstrate that the two functionally independent IRESes within the mouse TrkB 5' leader are differentially regulated, in part by PTB1. PMID:18779873

  12. Discussion of the changing attitudes and regulations on the international scene toward the use of the ocean as a receptor of waste streams

    SciTech Connect

    Garber, W.F.; Storrs, P.N.

    1987-01-01

    Although it is recognized that the title of this session is ''Petroleum and the Ocean Environment,'' the concern of the authors' is for changing attitudes and regulations on the international scene. This subject can best be traced by considering the ''environmental'' laws covering all wastes including petroleum and because there has been more litigation involved, the treatment and discharge of mixed domestic, industrial, and commercial wastes from cities. The major part of this discussion, therefore, considers these sources of information. The authors believe that there is a greater possibility that science and engineering will be used where wastes are to be discharged to the ocean in other nations, than in the United States at the present time. The realities of the resources available tend to force realistic environmental evaluations, and tend to blunt uniformed ''environmental'' group influence. The ''environmental'' group approach now seems to have the greatest political and, thus, public decision making impact. In terms of ocean dischargers, severe energy intensive treatment procedures are being mandated, solids monitoring to be a queer mixture of parameters that may be some environmental value mixed with those that seem to be required for political reasons.

  13. Syndecan-2 Exerts Antifibrotic Effects by Promoting Caveolin-1–mediated Transforming Growth Factor-β Receptor I Internalization and Inhibiting Transforming Growth Factor-β1 Signaling

    PubMed Central

    Shi, Yuanyuan; Gochuico, Bernadette R.; Yu, Guoying; Tang, Xiaomeng; Osorio, Juan C.; Fernandez, Isis E.; Risquez, Cristobal F.; Patel, Avignat S.; Shi, Ying; Wathelet, Marc G.; Goodwin, Andrew J.; Haspel, Jeffrey A.; Ryter, Stefan W.; Billings, Eric M.; Kaminski, Naftali; Morse, Danielle

    2013-01-01

    Rationale: Alveolar transforming growth factor (TGF)-β1 signaling and expression of TGF-β1 target genes are increased in patients with idiopathic pulmonary fibrosis (IPF) and in animal models of pulmonary fibrosis. Internalization and degradation of TGF-β receptor TβRI inhibits TGF-β signaling and could attenuate development of experimental lung fibrosis. Objectives: To demonstrate that after experimental lung injury, human syndecan-2 confers antifibrotic effects by inhibiting TGF-β1 signaling in alveolar epithelial cells. Methods: Microarray assays were performed to identify genes differentially expressed in alveolar macrophages of patients with IPF versus control subjects. Transgenic mice that constitutively overexpress human syndecan-2 in macrophages were developed to test the antifibrotic properties of syndecan-2. In vitro assays were performed to determine syndecan-2–dependent changes in epithelial cell TGF-β1 signaling, TGF-β1, and TβRI internalization and apoptosis. Wild-type mice were treated with recombinant human syndecan-2 during the fibrotic phase of bleomycin-induced lung injury. Measurements and Main Results: We observed significant increases in alveolar macrophage syndecan-2 levels in patients with IPF. Macrophage-specific overexpression of human syndecan-2 in transgenic mice conferred antifibrotic effects after lung injury by inhibiting TGF-β1 signaling and downstream expression of TGF-β1 target genes, reducing extracellular matrix production and alveolar epithelial cell apoptosis. In vitro, syndecan-2 promoted caveolin-1–dependent internalization of TGF-β1 and TβRI in alveolar epithelial cells, which inhibited TGF-β1 signaling and epithelial cell apoptosis. Therapeutic administration of human syndecan-2 abrogated lung fibrosis in mice. Conclusions: Alveolar macrophage syndecan-2 exerts antifibrotic effects by promoting caveolin-1–dependent TGF-β1 and TβRI internalization and inhibiting TGF-β1 signaling in alveolar epithelial

  14. V1a- and V2-type vasopressin receptors mediate vasopressin-induced Ca2+ responses in isolated rat supraoptic neurones

    PubMed Central

    Gouzènes, Laurent; Sabatier, Nancy; Richard, Philippe; Moos, Françoise C; Dayanithi, Govindan

    1999-01-01

    The pharmacological profile of receptors activated by vasopressin (AVP) in freshly dissociated supraoptic magnocellular neurones was investigated using specific V1a- and V2-type AVP receptor agonists and antagonists. In 97 % of AVP-responding neurones (1–3000 nm) V1a or V2 receptor type agonists (F-180 and dDAVP, respectively) elicited dose-dependent [Ca2+]i transients that were suppressed by removal of external Ca2+. The [Ca2+]i response induced by 1 μm F-180 or dDAVP was selectively blocked by 10 nm of V1a and V2 antagonists (SR 49059 and SR 121463A, respectively). The response to V1a agonist was maintained in the presence of the V2 antagonist, and the V2 agonist-induced response persisted in the presence of the V1a antagonist. The [Ca2+]i response induced by 1 μm AVP was partially (61 %) blocked by 10 nm SR 121463A. This blockade was increased by a further 31 % with the addition of 10 nm SR 49059. Similarly, the AVP-induced response was partially (47 %) decreased by SR 49059, and a further inhibition of 33 % was achieved in the presence of SR 121463A. We demonstrate that AVP acts on the magnocellular neurones via two distinct types of AVP receptors that exhibit the pharmacological profiles of V1a and V2 types. However, since V2 receptor mRNA is not expressed in the supraoptic nucleus (SON), and since V1b receptor transcripts are observed in the SON, we propose that the V2 receptor agonist and antagonist act on a ‘V2-like’ receptor or a new type of AVP receptor that remains to be elucidated. The possibility that V2 ligands act on the V1b receptor cannot be excluded. PMID:10358117

  15. Characteristics of muscarinic receptors that selectively couple to inhibition of adenylate cyclase or stimulation of phospholipase C on NG108-15 and 1321N1 cells

    SciTech Connect

    Liang, M.

    1988-01-01

    The purpose of this dissertation was to establish whether different muscarinic receptor proteins selectively couple to different second messenger response system. Although both second messenger response systems are fully functional in both cell lines, activation of muscarinic cholinergic receptors only results in inhibition of adenylate cyclase in NG108-15 neuroblastoma {times} glioma cells and stimulation of phosphoinositide hydrolysis in 1321N1 human astrocytoma cells. Muscarinic receptors on both cell types were covalently labeled with ({sup 3}H)Propylbenzilylcholine mustard (({sup 3}H)PBCM) and the mobilities of the ({sup 3}H)PBCM-labelled species of both cells were compared by SDS-PAGE. 1321N1 and NG108-15 cells each primarily expressed a single ({sup 3}H)PBCM-labelled species with an apparent size of approximately 92,000 and 66,000 Da, respectively. ({sup 3}H)PBCM labelling was completely inhibited by 1 {mu}M atropine or by down-regulation of muscarinic receptors by an overnight incubation with carbachol. The apparent size of the ({sup 3}H)PBCM-labelled species of both cell lines was not altered by treatment with a series of protease inhibitors or by treatment with dithiothreitol and iodoacetamide. Another approach for determining differences in the muscarinic receptors of 2 cells lines was to study agonist-induced alteration of muscarinic receptor number. Exposure of both cell types to agonists resulted in rapid loss of muscarinic receptors from cell surface without change of total cellular muscarinic receptors followed by subsequently loss of receptors from cells. Muscarinic receptors on both cell lines were regulated by agonist with similar properties.

  16. General, kappa, delta and mu opioid receptor antagonists mediate feeding elicited by the GABA-B agonist baclofen in the ventral tegmental area and nucleus accumbens shell in rats: reciprocal and regional interactions.

    PubMed

    Miner, Patricia; Shimonova, Lyudmila; Khaimov, Arthur; Borukhova, Yaffa; Ilyayeva, Ester; Ranaldi, Robert; Bodnar, Richard J

    2012-03-14

    Food intake is significantly increased following administration of agonists of GABA and opioid receptors into the nucleus accumbens shell (NACs) and ventral tegmental area (VTA). GABA-A or GABA-B receptor antagonist pretreatment within the VTA or NACs differentially affects mu-opioid agonist-induced feeding elicited from the same site. Correspondingly, general or selective opioid receptor antagonist pretreatment within the VTA or NACs differentially affects GABA agonist-induced feeding elicited from the same site. Regional interactions have been evaluated in feeding studies by administering antagonists in one site prior to agonist administration in a second site. Thus, opioid antagonist-opioid agonist and GABA antagonist-GABA agonist feeding interactions have been identified between the VTA and NACs. However, pretreatment with GABA-A or GABA-B receptor antagonists in the VTA failed to affect mu opioid agonist-induced feeding elicited from the NACs, and correspondingly, these antagonists administered in the NACs failed to affect mu opioid-induced feeding elicited from the VTA. To evaluate whether regional and reciprocal VTA and NACs feeding interactions occur for opioid receptor modulation of GABA agonist-mediated feeding, the present study examined whether feeding elicited by the GABA-B agonist, baclofen microinjected into the NACs was dose-dependently blocked by pretreatment with general (naltrexone: NTX), mu (beta-funaltrexamine: BFNA), kappa (nor-binaltorphamine: NBNI) or delta (naltrindole: NTI) opioid antagonists in the VTA, and correspondingly, whether VTA baclofen-induced feeding was dose-dependently blocked by NACs pretreatment with NTX, BFNA, NBNI or NTI in rats. Bilateral pairs of cannulae aimed at the VTA and NACs were stereotaxically implanted in rats, and their food intakes were assessed following vehicle and baclofen (200 ng) in each site. Baclofen produced similar magnitudes of increased food intake following VTA and NACs treatment. Baclofen

  17. Type 3 Muscarinic Receptors Contribute to Clearance of Citrobacter rodentium

    PubMed Central

    McLean, Leon P.; Smith, Allen; Cheung, Lumei; Sun, Rex; Grinchuk, Viktoriya; Vanuytsel, Tim; Desai, Neemesh; Urban, Joseph F.; Zhao, Aiping; Raufman, Jean-Pierre; Shea-Donohue, Terez

    2016-01-01

    Background The role of muscarinic receptors in mucosal homeostasis, response to enteric pathogens, and modulation of immune cell function is undefined. Methods The contribution of type 3 muscarinic receptors (M3R) to mucosal homeostasis within the colon and host defense against Citrobacter rodentium was determined in uninfected and C. rodentium-infected WT and M3R-deficient (Chrm3−/−) mice. In addition, WT and Chrm3−/− bone marrow-derived macrophages (BMDM) were studied to determine the ability of M3R to modulate macrophage phenotype and function. Results In Chrm3−/− mice clearance of C. rodentium was delayed despite an amplified TH1/TH17 response. Delayed clearance of C. rodentium from Chrm3−/− mice was associated with prolonged adherence of bacteria to colonic mucosa, decreased goblet cell number, and decreased mucin 2 gene expression. Treatment of BMDM with bethanechol, a muscarinic-selective agonist, induced a classically activated macrophage phenotype, which was dependent on M3R expression. Chrm3−/− BMDM retained their ability to attain a classically activated macrophage phenotype when treated with the TH1 cytokine IFN-γ. Conclusions In Chrm3−/− mice mucin production is attenuated and is associated with prolonged adherence of C. rodentium to colonic mucosa. The immune response, as characterized by production of TH1/TH17 cytokines, in C. rodentium-infected Chrm3−/− mice is intact. In addition, M3R activity promotes the development of classically activated macrophages. Our data establish a role for M3R in host defense against C. rodentium through effects on goblet cell mucus production and in the modulation of macrophage phenotype and function. PMID:25985244

  18. Physiological functions of transient receptor potential channels in pulmonary arterial smooth muscle cells.

    PubMed

    Yang, Xiao-Ru; Lin, Mo-Jun; Sham, James S K

    2010-01-01

    The transient receptor potential (TRP) gene superfamily, which consists of 7 subfamilies with at least 28 mammalian homologues, is known to encode a wide variety of cation channels with diverse biophysical properties, activation mechanisms, and physiological functions. Recent studies have identified multiple TRP channel subtypes, belonging to the canonical (TRPC), melastatin-related (TRPM), and vanilloid-related (TRPV) subfamilies, in pulmonary arterial smooth muscle cells (PASMCs). They operate as specific Ca(2+) pathways responsive to stimuli, including Ca(2+) store depletion, receptor activation, reactive oxygen species, growth factors, and mechanical stress. Increasing evidence suggests that these channels play crucial roles in agonist-induced pulmonary vasoconstriction, hypoxic pulmonary vasoconstriction, smooth muscle cell proliferation, vascular remodeling, and pulmonary arterial hypertension. This chapter highlighted and discussed these putative physiological functions of TRP channels in pulmonary vasculatures. Since Ca(2+) ions regulate many cellular processes via specific Ca(2+) signals, future investigations of these novel channels will likely uncover more important regulatory mechanisms of pulmonary vascular functions in health and in disease states. PMID:20204726

  19. Evidence for the pharmacological similarity between the central presynaptic muscarinic autoreceptor and postsynaptic muscarinic receptors.

    PubMed Central

    Bowen, D. M.; Marek, K. L.

    1982-01-01

    Twenty antagonist substances with varying potencies for central and peripheral postsynaptic muscarinic receptors have been examined for effects on the central presynaptic muscarinic autoreceptor. This has been monitored by measuring the stimulating effects of the substances on acetylcholine synthesis by rat neocortical tissue prisms. Dose-response curves for selected agents showed that maximal stimulation of synthesis was to 136-140% of the value without an antagonist. At a concentration of 1 microM, 17 of the substances caused a significant increase in synthesis, whilst at 0.01 microM significant stimulation occurred with only atropine, dexetimide, N-methyl-piperdin-4-yl (R)-2-cyclohexyl-2-hydroxyl-2-phenylacetate, quinuclidinyl benzilate (QNB) and scopolamine. Linear regression analysis between synthesis values obtained with the substances and published data for the effects on either cholinoceptor-agonist induced contraction of guinea-pig ileum or the binding of [3H]-QNB to rat forebrain membranes gave correlation coefficients of r = 0.84 (P less than 0.01), and r = 0.75 (P less than 0.02) respectively. The results provide no indication of a pharmacological difference between the central presynaptic muscarinic autoreceptor and central and peripheral postsynaptic muscarinic receptors. PMID:7186824

  20. HuR’s post-transcriptional regulation of death receptor 5 in pancreatic cancer cells

    PubMed Central

    Pineda, Danielle M.; Rittenhouse, David W.; Valley, Christopher C.; Cozzitorto, Joseph A.; Burkhart, Richard A.; Leiby, Benjamin; Winter, Jordan M.; Weber, Matthew C.; Londin, Eric R.; Rigoutsos, Isidore; Yeo, Charles J.; Gorospe, Myriam; Witkiewicz, Agnieska K.; Sachs, Jonathan N.; Brody, Jonathan R.

    2012-01-01

    Apoptosis is one of the core signaling pathways disrupted in pancreatic ductal adenocarcinoma (PDA). Death receptor 5 (DR5) is a member of the tumor necrosis factor (TNF)-receptor superfamily that is expressed in cancer cells. Binding of TNF-related apoptosis-inducing ligand (TRAIL) to DR5 is a potent trigger of the extrinsic apoptotic pathway, and numerous clinical trials are based on DR5-targeted therapies for cancer, including PDA. Human antigen R (HuR), an RNA-binding protein, regulates a select number of transcripts under stress conditions. Here we report that HuR translocates from the nucleus to the cytoplasm of PDA cells upon treatment with a DR5 agonist. High doses of DR5 agonist induce cleavage of both HuR and caspase 8. HuR binds to DR5 mRNA at the 5′-untranslated region (UTR) in PDA cells in response to different cancer-associated stressors and subsequently represses DR5 protein expression; silencing HuR augments DR5 protein production by enabling its translation and thus enhances apoptosis. In PDA specimens (n = 53), negative HuR cytoplasmic expression correlated with elevated DR5 expression (odds ratio 16.1, p < 0.0001). Together, these data demonstrate a feedback mechanism elicited by HuR-mediated repression of the key apoptotic membrane protein DR5. PMID:22785201

  1. Estrogen-related receptor gamma induces cardiac hypertrophy by activating GATA4.

    PubMed

    Kwon, Duk-Hwa; Eom, Gwang Hyeon; Kee, Hae Jin; Nam, Yoon Seok; Cho, Young Kuk; Kim, Don-Kyu; Koo, Ja Young; Kim, Hyung-Seok; Nam, Kwang-Il; Kim, Kyung Keun; Lee, In-Kyu; Park, Seung Bum; Choi, Hueng-Sik; Kook, Hyun

    2013-12-01

    Estrogen-related receptor gamma (ERRγ) is an orphan nuclear receptor that has biological roles mainly in metabolism and that controls metabolic switching in perinatal heart. In adult heart diseases, however, the functional roles of ERRγ have not yet been elucidated. In the present study, we aimed to characterize the role of ERRγ in cardiac hypertrophy. The functional roles of ERRγ in the development of cardiac hypertrophy were examined in primary cultured cardiomyocytes and in animal models. ERRγ expression was increased in hearts from human hypertrophic cardiomyopathy patients and in both cellular and animal models of cardiac hypertrophy. Transgenic overexpression in mouse heart as well as forced expression of ERRγ in cardiomyocytes induced hypertrophic phenotypes. Knock-down of ERRγ blocked agonist-induced hypertrophic phenotypes. ERRγ bound directly to the proximal ERR-responsive element in the GATA4 promoter in a sequence-specific manner and thereby induced transcription. ERRγ-induced hypertrophy was blocked by inhibition of GATA4. GSK-5182, an inverse agonist of ERRγ, completely blocked cardiac hypertrophy in cardiomyocytes. It also prevented aortic banding-induced cardiac hypertrophy and fibrosis in mouse heart. These findings demonstrate a novel ERRγ/GATA4 signal cascade in the development of cardiac hypertrophy and suggest GSK-5182 as a possible therapeutic. PMID:24083978

  2. β2-Adrenergic receptor agonists activate CFTR in intestinal organoids and subjects with cystic fibrosis.

    PubMed

    Vijftigschild, Lodewijk A W; Berkers, Gitte; Dekkers, Johanna F; Zomer-van Ommen, Domenique D; Matthes, Elizabeth; Kruisselbrink, Evelien; Vonk, Annelotte; Hensen, Chantal E; Heida-Michel, Sabine; Geerdink, Margot; Janssens, Hettie M; van de Graaf, Eduard A; Bronsveld, Inez; de Winter-de Groot, Karin M; Majoor, Christof J; Heijerman, Harry G M; de Jonge, Hugo R; Hanrahan, John W; van der Ent, Cornelis K; Beekman, Jeffrey M

    2016-09-01

    We hypothesized that people with cystic fibrosis (CF) who express CFTR (cystic fibrosis transmembrane conductance regulator) gene mutations associated with residual function may benefit from G-protein coupled receptor (GPCR)-targeting drugs that can activate and enhance CFTR function.We used intestinal organoids to screen a GPCR-modulating compound library and identified β2-adrenergic receptor agonists as the most potent inducers of CFTR function.β2-Agonist-induced organoid swelling correlated with the CFTR genotype, and could be induced in homozygous CFTR-F508del organoids and highly differentiated primary CF airway epithelial cells after rescue of CFTR trafficking by small molecules. The in vivo response to treatment with an oral or inhaled β2-agonist (salbutamol) in CF patients with residual CFTR function was evaluated in a pilot study. 10 subjects with a R117H or A455E mutation were included and showed changes in the nasal potential difference measurement after treatment with oral salbutamol, including a significant improvement of the baseline potential difference of the nasal mucosa (+6.35 mV, p<0.05), suggesting that this treatment might be effective in vivo Furthermore, plasma that was collected after oral salbutamol treatment induced CFTR activation when administered ex vivo to organoids.This proof-of-concept study suggests that organoids can be used to identify drugs that activate CFTR function in vivo and to select route of administration. PMID:27471203

  3. Structural Determinants for the Binding of Morphinan Agonists to the μ-Opioid Receptor

    PubMed Central

    Kless, Achim; Schapitz, Inga; Wagener, Markus; Koch, Thomas; Carloni, Paolo

    2015-01-01

    Atomistic descriptions of the μ-opioid receptor (μOR) noncovalently binding with two of its prototypical morphinan agonists, morphine (MOP) and hydromorphone (HMP), are investigated using molecular dynamics (MD) simulations. Subtle differences between the binding modes and hydration properties of MOP and HMP emerge from the calculations. Alchemical free energy perturbation calculations show qualitative agreement with in vitro experiments performed in this work: indeed, the binding free energy difference between MOP and HMP computed by forward and backward alchemical transformation is 1.2±1.1 and 0.8±0.8 kcal/mol, respectively, to be compared with 0.4±0.3 kcal/mol from experiment. Comparison with an MD simulation of μOR covalently bound with the antagonist β-funaltrexamine hints to agonist-induced conformational changes associated with an early event of the receptor’s activation: a shift of the transmembrane helix 6 relative to the transmembrane helix 3 and a consequent loss of the key R165-T279 interhelical hydrogen bond. This finding is consistent with a previous proposal suggesting that the R165-T279 hydrogen bond between these two helices indicates an inactive receptor conformation. PMID:26280453

  4. α4 nicotinic acetylcholine receptor modulated by galantamine on nigrostriatal terminals regulates dopamine receptor-mediated rotational behavior.

    PubMed

    Inden, Masatoshi; Takata, Kazuyuki; Yanagisawa, Daijiro; Ashihara, Eishi; Tooyama, Ikuo; Shimohama, Shun; Kitamura, Yoshihisa

    2016-03-01

    Galantamine, an acetylcholine esterase (AChE) inhibitor used to treat dementia symptoms, also acts as an allosteric potentiating ligand (APL) at nicotinic acetylcholine receptors (nAChRs). This study was designed to evaluate the allosteric effect of galantamine on nAChR regulation of nigrostrial dopaminergic neuronal function in the hemiparkinsonian rat model established by unilateral nigral 6-hydroxydopamine (6-OHDA) injection. Methamphetamine, a dopamine releaser, induced ipsilateral rotation, whereas dopamine agonists apomorphine (a non-selective dopamine receptor agonist), SKF38393 (a selective dopamine D1 receptor agonist), and quinpirole (a selective dopamine D2 receptor agonist) induced contralateral rotation. When 6-OHDA-injected rats were co-treated with nomifensine, a dopamine transporter inhibitor, a more pronounced and a remarkable effect of nicotine and galantamine was observed. Under these conditions, the combination of nomifensine with nicotine or galantamine induced the ipsilateral rotation similar to the methamphetamine-induced rotational behavior, indicating that nicotine and galantamine also induce dopamine release from striatal terminals. Both nicotine- and galantamine-induced rotations were significantly blocked by flupenthixol (an antagonist of both D1 and D2 dopamine receptors) and mecamylamine (an antagonist of nAChRs), suggesting that galantamine modulation of nAChRs on striatal dopaminergic terminals regulates dopamine receptor-mediated movement. Immunohistochemical staining showed that α4 nAChRs were highly expressed on striatal dopaminergic terminals, while no α7 nAChRs were detected. Pretreatment with the α4 nAChR antagonist dihydroxy-β-erythroidine significantly inhibited nicotine- and galantamine-induced rotational behaviors, whereas pretreatment with the α7 nAChR antagonist methyllycaconitine was ineffective. Moreover, the α4 nAChR agonist ABT-418 induced ipsilateral rotation, while the α7 nAChR agonist PNU282987 had no

  5. Molecular mechanisms of Cys-loop ion channel receptor modulation by ivermectin

    PubMed Central

    Lynagh, Timothy; Lynch, Joseph W.

    2012-01-01

    Ivermectin is an anthelmintic drug that works by inhibiting neuronal activity and muscular contractility in arthropods and nematodes. It works by activating glutamate-gated chloride channels (GluClRs) at nanomolar concentrations. These receptors, found exclusively in invertebrates, belong to the pentameric Cys-loop receptor family of ligand-gated ion channels (LGICs). Higher (micromolar) concentrations of ivermectin also activate or modulate vertebrate Cys-loop receptors, including the excitatory nicotinic and the inhibitory GABA type-A and glycine receptors (GlyRs). An X-ray crystal structure of ivermectin complexed with the C. elegans α GluClR demonstrated that ivermectin binds to the transmembrane domain in a cleft at the interface of adjacent subunits. It also identified three hydrogen bonds thought to attach ivermectin to its site. Site-directed mutagenesis and voltage-clamp electrophysiology have also been employed to probe the binding site for ivermectin in α1 GlyRs. These have raised doubts as to whether the hydrogen bonds are essential for high ivermectin potency. Due to its lipophilic nature, it is likely that ivermectin accumulates in the membrane and binds reversibly (i.e., weakly) to its site. Several lines of evidence suggest that ivermectin opens the channel pore via a structural change distinct from that induced by the neurotransmitter agonist. Conformational changes occurring at locations distant from the pore can be probed using voltage-clamp fluorometry (VCF), a technique which involves quantitating agonist-induced fluorescence changes from environmentally sensitive fluorophores covalently attached to receptor domains of interest. This technique has demonstrated that ivermectin induces a global conformational change that propagates from the transmembrane domain to the neurotransmitter binding site, thus suggesting a mechanism by which ivermectin potentiates neurotransmitter-gated currents. Together, this information provides new insights into

  6. The cholesterol dependence of activation and fast desensitization of the nicotinic acetylcholine receptor.

    PubMed Central

    Rankin, S E; Addona, G H; Kloczewiak, M A; Bugge, B; Miller, K W

    1997-01-01

    When nicotinic acetylcholine receptors are reconstituted into lipid bilayers lacking cholesterol, agonists no longer stimulate cation flux. The kinetics of this process are difficult to study because variations in vesicle morphology cause errors in flux measurements. We developed a new stopped-flow fluorescence assay to study activation independently of vesicle morphology. When receptors were rapidly mixed with agonist plus ethidium, the earliest fluorescence increase reported the fraction of channels that opened and their apparent rate of fast desensitization. These processes were absent when the receptor was reconstituted into dioleoylphosphatidylcholine or into a mixture of that lipid with dioleoylphosphatidic acid (12 mol%), even though a fluorescent agonist reported that resting-state receptors were still present. The agonist-induced channel opening probability increased with bilayer cholesterol, with a midpoint value of 9 +/- 1.7 mol% and a Hill coefficient of 1.9 +/- 0.69, reaching a plateau above 20-30 mol% cholesterol that was equal to the native value. On the other hand, the observed fast desensitization rate was comparable to that for native membranes from the lowest cholesterol concentration examined (5 mol%). Thus the ability to reach the open state after activation varies with the cholesterol concentration in the bilayer, whereas the rate of the open state to fast desensitized state transition is unaffected. The structural basis for this is unknown, but an interesting corollary is that the channels of newly synthesized receptors are not fully primed by cholesterol until they are inserted into the plasma membrane--a novel form of posttranslational processing. PMID:9370438

  7. Metformin Disrupts Crosstalk Between G protein-Coupled Receptor and Insulin Receptor Signaling Systems and Inhibits Pancreatic Cancer Growth

    PubMed Central

    Kisfalvi, Krisztina; Eibl, Guido; Sinnett-Smith, James; Rozengurt, Enrique

    2009-01-01

    Recently we identified a novel crosstalk between insulin and G-protein-coupled receptor (GPCR) signaling pathways in human pancreatic cancer cells. Insulin enhanced GPCR signaling through a rapamycin-sensitive mTOR-dependent pathway. Metformin, the most widely used drug in the treatment of type-2 diabetes, activates AMP kinase (AMPK), which negatively regulates mTOR. Here, we determined whether metformin disrupts crosstalk between insulin receptor and GPCR signaling in pancreatic cancer cells. Treatment of human pancreatic cancer cells (PANC-1, MIAPaCa-2, BxPC-3) with insulin (10ng/ml) for 5 min markedly enhanced the increase in intracellular [Ca2+] induced by GPCR agonists (e.g. neurotensin, bradykinin, angiotensin II). Metformin pretreatment completely abrogated insulin-induced potentiation of Ca2+ signaling but did not interfere with the effect of GPCR agonists alone. Insulin also enhanced GPCR agonist-induced growth, measured by DNA synthesis, and numbers of cells cultured in adherent or non-adherent conditions. Low doses of metformin (0.1-0.5 mM) blocked stimulation of DNA synthesis, anchorage-dependent and independent growth induced by insulin and GPCR agonists. Treatment with metformin induced striking and sustained increase in the phosphorylation of AMPK at Thr172 and a selective AMPK inhibitor (compound C, at 5μM) reversed the effects of metformin on [Ca2+]i, and DNA synthesis, indicating that metformin acts through AMPK activation. In view of these results we tested whether metformin inhibits pancreatic cancer growth. Administration of metformin significantly decreased the growth of MIAPaCa-2 and PANC-1 cells xenografted on the flank of nude mice. The results raise the possibility that metformin could be a potential candidate in novel treatment strategies for human pancreatic cancer. PMID:19679549

  8. The influence of different cellular environments on PET radioligand binding: An application to D2/3-dopamine receptor imaging

    PubMed Central

    Quelch, Darren R.; Withey, Sarah L.; Nutt, David J.; Tyacke, Robin J.; Parker, Christine A.

    2014-01-01

    Various D2/3 receptor PET radioligands are sensitive to endogenous dopamine release in vivo. The Occupancy Model is generally used to interpret changes in binding observed in in vivo competition binding studies; an Internalisation Hypothesis may also contribute to these changes in signal. Extension of in vivo competition imaging to other receptor systems has been relatively unsuccessful. A greater understanding of the cellular processes underlying signal changes following endogenous neurotransmitter release may help translate this imaging paradigm to other receptor systems. To investigate the Internalisation Hypothesis we assessed the effects of different cellular environments, representative of those experienced by a receptor following agonist-induced internalisation, on the binding of three D2/3 PET ligands with previously reported sensitivities to endogenous dopamine in vivo, namely [3H]spiperone, [3H]raclopride and [3H]PhNO. Furthermore, we determined the contribution of each cellular compartment to total striatal binding for these D2/3 ligands. These studies suggest that sensitivity to endogenous dopamine release in vivo is related to a decrease in affinity in the endosomal environment compared with those found at the cell surface. In agreement with these findings we also demonstrate that ∼25% of total striatal binding for [3H]spiperone originates from sub-cellular, microsomal receptors, whereas for [3H]raclopride and [3H]PhNO, this fraction is lower, representing ∼14% and 17%, respectively. This pharmacological approach is fully translatable to other receptor systems. Assessment of affinity shifts in different cellular compartments may play a crucial role for understanding if a radioligand is sensitive to endogenous release in vivo, for not just the D2/3, but other receptor systems. PMID:24910074

  9. The influence of allosteric modulators and transmembrane mutations on desensitisation and activation of α7 nicotinic acetylcholine receptors

    PubMed Central

    Chatzidaki, Anna; D'Oyley, Jarryl M.; Gill-Thind, JasKiran K.; Sheppard, Tom D.; Millar, Neil S.

    2015-01-01

    Acetylcholine activates nicotinic acetylcholine receptors (nAChRs) by binding at an extracellular orthosteric site. Previous studies have described several positive allosteric modulators (PAMs) that are selective for homomeric α7 nAChRs. These include type I PAMs, which exert little or no effect on the rate of receptor desensitisation, and type II PAMs, which cause a dramatic loss of agonist-induced desensitisation. Here we report evidence that transmembrane mutations in α7 nAChRs have diverse effects on receptor activation and desensitisation by allosteric ligands. It has been reported previously that the L247T mutation, located toward the middle of the second transmembrane domain (at the 9′ position), confers reduced levels of desensitisation. In contrast, the M260L mutation, located higher up in the TM2 domain (at the 22′ position), does not show any difference in desensitisation compared to wild-type receptors. We have found that in receptors containing the L247T mutation, both type I PAMs and type II PAMs are converted into non-desensitising agonists. In contrast, in receptors containing the M260L mutation, this effect is seen only with type II PAMs. These findings, indicating that the M260L mutation has a selective effect on type II PAMs, have been confirmed both with previously described PAMs and also with a series of novel α7-selective PAMs. The novel PAMs examined in this study have close chemical similarity but diverse pharmacological properties. For example, they include compounds displaying effects on receptor desensitisation that are typical of classical type I and type II PAMs but, in addition, they include compounds with intermediate properties. PMID:25998276

  10. Inhibition of cation channel function at the nicotinic acethylcholine receptor from Torpedo: Agonist self-inhibition and anesthetic drugs

    SciTech Connect

    Forman, S.A.

    1989-01-01

    Modulation of the nicotinic acethylcholine receptor from Torpedo by cholinergic agonists, local anesthetics, and n-alkanols was studied using {sup 86}Rb{sup +} flux studies in sealed native Torpedo electroplaque membrane vesicles. Reliable concentration-response and kinetic data were obtained using manual ten sec filtration assays in vesicles partially blocked with alpha-bungarotoxin to remove spare receptors and quenched-flow assays to assess initial {sup 86}Rb{sup +} flux rates or the rate of drug-induced receptor inactivation. Concentration response relationships for the agonists acetylcholine, carbamylcholine, suberyldicholine, phenyltrimethylammonium, and (-)-nicotine are all bell-shape due to stimulation of cation channel opening at low concentrations and inhibition of channels at higher concentrations. The rate of agonist-induced fast desensitization (k{sub d}) increases with (acetylcholine) in parallel with channel activation, suggesting that desensitization proceeds from the open state and/or states in rapid equilibrium with it. At self-inhibitory acetylcholine concentrations, a new rapid inactivation (rate = k{sub f}) is observed before fast desensitization. The rate and extent of rapid inactivation is compatible with bimolecular association between acethylcholine and inhibitory site with K{sub B} = 40 mM.

  11. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    SciTech Connect

    Xu, Yuan Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  12. Gβ promotes pheromone receptor polarization and yeast chemotropism by inhibiting receptor phosphorylation.

    PubMed

    Ismael, Amber; Tian, Wei; Waszczak, Nicholas; Wang, Xin; Cao, Youfang; Suchkov, Dmitry; Bar, Eli; Metodiev, Metodi V; Liang, Jie; Arkowitz, Robert A; Stone, David E

    2016-01-01

    Gradient-directed cell migration (chemotaxis) and growth (chemotropism) are processes that are essential to the development and life cycles of all species. Cells use surface receptors to sense the shallow chemical gradients that elicit chemotaxis and chemotropism. Slight asymmetries in receptor activation are amplified by downstream signaling systems, which ultimately induce dynamic reorganization of the cytoskeleton. During the mating response of budding yeast, a model chemotropic system, the pheromone receptors on the plasma membrane polarize to the side of the cell closest to the stimulus. Although receptor polarization occurs before and independently of actin cable-dependent delivery of vesicles to the plasma membrane (directed secretion), it requires receptor internalization. Phosphorylation of pheromone receptors by yeast casein kinase 1 or 2 (Yck1/2) stimulates their internalization. We showed that the pheromone-responsive Gβγ dimer promotes the polarization of the pheromone receptor by interacting with Yck1/2 and locally inhibiting receptor phosphorylation. We also found that receptor phosphorylation is essential for chemotropism, independently of its role in inducing receptor internalization. A mathematical model supports the idea that the interaction between Gβγ and Yck1/2 results in differential phosphorylation and internalization of the pheromone receptor and accounts for its polarization before the initiation of directed secretion. PMID:27072657

  13. [Interceptors:--"silent" chemokine receptors].

    PubMed

    Grodecka, Magdalena; Waśniowska, Kazimiera

    2007-01-01

    The physiological effect caused by chemokines is regulated by interactions with a group of rodopsin-like G protein-coupled receptors (GPCRs). These receptors share a number of common features: the polypeptide chain is a 7-transmembrane ?-helix (7 TMD motif) and the region involved in G-protein interaction (the DRYLAIV sequence) is located in the second transmembrane loop. So far, 19 chemokine receptors have been identified. Three of them (Duffy glycoprotein, D6, and CCX-CKR proteins), although structurally related to other GPCRs, lack the ability of G-protein signal transduction. Instead, they efficiently internalize their cognate ligands, regulating chemokine levels in various body compartments. These three proteins are suggested to form a distinct chemokine receptor family, designated "interceptors" or "silent" chemokine receptors. PMID:17507871

  14. The N-terminal domains of both NR1 and NR2 subunits determine allosteric Zn2+ inhibition and glycine affinity of N-methyl-D-aspartate receptors.

    PubMed

    Madry, Christian; Mesic, Ivana; Betz, Heinrich; Laube, Bodo

    2007-12-01

    The N-methyl-D-aspartate (NMDA) subtype of ionotropic glutamate receptors (iGluRs) is a tetrameric protein composed of homologous NR1 and NR2 subunits, which require the binding of glycine and glutamate, respectively, for efficient channel gating. The extracellular N-terminal domains (NTDs) of iGluR subunits show sequence homology to the bacterial periplasmic leucine/isoleucine/valine binding protein (LIVBP) and have been implicated in iGluR assembly, trafficking, and function. Here, we investigated how deletion of the NR1- and NR2-NTDs affects the expression and function of NMDA receptors. Both proteolytic cleavage of the NR1-NTD from assembled NR1/NR2 receptors and coexpression of the NTD-deleted NR1 subunit with wild-type or NTD-deleted NR2 subunits resulted in agonist-gated channels that closely resembled wild-type receptors. This indicates that the NTDs of both NMDA receptor subunits are not essential for receptor assembly and function. However, deletion of either the NR1 or the NR2 NTD eliminated high-affinity, allosteric inhibition of agonist-induced currents by Zn2+ and ifenprodil, consistent with the idea that interdomain interactions between these domains are important for allosteric receptor modulation. Furthermore, by replacing the NR2A-NTD with the NR2B NTD, and vice versa, the different glycine affinities of NR1/NR2A and NR1/NR2B receptors were found to be determined by their respective NR2-NTDs. Together, these data show that the NTDs of both the NR1 and NR2 subunits determine allosteric inhibition and glycine potency but are not required for NMDA receptor assembly. PMID:17878266

  15. Candida glabrata binds to glycosylated and lectinic receptors on the coronary endothelial luminal membrane and inhibits flow sense and cardiac responses to agonists.

    PubMed

    Torres-Tirado, David; Knabb, Maureen; Castaño, Irene; Patrón-Soberano, Araceli; De Las Peñas, Alejandro; Rubio, Rafael

    2016-01-01

    Candida glabrata (CG) is an opportunistic fungal pathogen that initiates infection by binding to host cells via specific lectin-like adhesin proteins. We have previously shown the importance of lectin-oligosaccharide binding in cardiac responses to flow and agonists. Because of the lectinic-oligosaccharide nature of CG binding, we tested the ability of CG to alter the agonist- and flow-induced changes in cardiac function in isolated perfused guinea pig hearts. Both transmission and scanning electron microscopy showed strong attachment of CG to the coronary endothelium, even after extensive washing. CG shifted the coronary flow vs. auricular-ventricular (AV) delay relationship upward, indicating that greater flow was required to achieve the same AV delay. This effect was completely reversed with mannose, partially reversed with galactose and N-acetylgalactosamine, but hyaluronan had no effect. Western blot analysis was used to determine binding of CG to isolated coronary endothelial luminal membrane (CELM) receptors, and the results indicate that flow-sensitive CELM receptors, ANG II type I, α-adrenergic 1A receptor, endothelin-2, and VCAM-1 bind to CG. In addition, CG inhibited agonist-induced effects of bradykinin, angiotensin, and phenylephrine on AV delay, coronary perfusion pressure, and left ventricular pressure. Mannose reversed the inhibitory effects of CG on the agonist responses. These results suggest that CG directly binds to flow-sensitive CELM receptors via lectinic-oligosaccharide interactions with mannose and disrupts the lectin-oligosaccharide binding necessary for flow-induced cardiac responses. PMID:26491100

  16. Dimerization of the thyrotropin-releasing hormone receptor potentiates hormone-dependent receptor phosphorylation.

    PubMed

    Song, Gyun Jee; Jones, Brian W; Hinkle, Patricia M

    2007-11-13

    The G protein-coupled thyrotropin (TSH)-releasing hormone (TRH) receptor forms homodimers. Regulated receptor dimerization increases TRH-induced receptor endocytosis. These studies test whether dimerization increases receptor phosphorylation, which could potentiate internalization. Phosphorylation at residues 355-365, which is critical for internalization, was measured with a highly selective phospho-site-specific antibody. Two strategies were used to drive receptor dimerization. Dimerization of a TRH receptor-FK506-binding protein (FKBP) fusion protein was stimulated by a dimeric FKBP ligand. The chemical dimerizer caused a large increase in TRH-dependent phosphorylation within 1 min, whereas a monomeric FKBP ligand had no effect. The dimerizer did not alter phoshorylation of receptors lacking the FKBP domain. Dimerization of receptors containing an N-terminal HA epitope also was induced with anti-HA antibody. Anti-HA IgG strongly increased TRH-induced phosphorylation, whereas monomeric Fab fragments had no effect. Anti-HA antibody did not alter phosphorylation in receptors lacking an HA tag. Furthermore, two phosphorylation-defective TRH receptors functionally complemented one another and permitted phosphorylation. Receptors with a D71A mutation in the second transmembrane domain do not signal, whereas receptors with four Ala mutations in the 355-365 region signal normally but lack phosphorylation sites. When D71A- and 4Ala-TRH receptors were expressed alone, neither underwent TRH-dependent phosphorylation. When they were expressed together, D71A receptor was phosphorylated by G protein-coupled receptor kinases in response to TRH. These results suggest that the TRH receptor is phosphorylated preferentially when it is in dimers or when preexisting receptor dimers are driven into microaggregates. Increased receptor phosphorylation may amplify desensitization. PMID:17989235

  17. Link between D sub 1 and D sub 2 dopamine receptors is reduced in schizophrenia and Huntington diseased brain

    SciTech Connect

    Seeman, P.; Niznik, H.B.; Guan, H.C.; Booth, G.; Ulpian, C. )

    1989-12-01

    Dopamine receptor types D{sub 1} and D{sub 2} can oppose enhance each other's actions for electrical, biochemical, and psychomotor effects. The authors report a D{sub 1}-D{sub 2} interaction in homogenized tissue as revealed by ligand binding. D{sub 2} agonists lowered the binding of ({sup 3}H)raclopride to D{sub 2} receptors in striatal and anterior pituitary tissues. Pretreating the tissue with the D{sub 1}-selective antagonist SCH 23390 prevented the agonist-induced decrease in ({sup 3}H)raclopride binding to D{sub 2} sites in the striatum but not in the anterior pituitary, which has no D{sub 1} receptors. Conversely, a dopamine-induced reduction in the binding of ({sup 3}H)SCH 23390 to D{sub 1} receptors could be prevented by the D{sub 2}-selective antagonist eticlopride. Receptor photolabeling experiments confirmed both these D{sub 1}-D{sub 2} interactions. The blocking effect by SCH 23390 was similar to that produced by a nonhydrolyzable guanine nucleotide analogue, and SCH 23390 reduced the number of agonist-labeled D{sub 2} receptors in the high-affinity state. Thus, the D{sub 1}-D{sub 2} link may be mediated by guanine nucleotide-binding protein components. The link may underlie D{sub 1}-D{sub 2} interactions influencing behavior, since the link was missing in over half the postmortem striata from patients with schizophrenia and Huntington disease (both diseases that show some hyperdopamine signs) but was present in human control, Alzheimer, and Parkinson striata.

  18. GPCR signaling along the endocytic pathway

    PubMed Central

    Irannejad, Roshanak; von Zastrow, Mark

    2016-01-01

    Many G protein-coupled receptors (GPCRs) internalize after agonist-induced activation. While endocytosis has long been associated with homeostatic attenuation of cellular responsiveness, accumulating evidence from study of a wide range of eukaryotes reveals that the endocytic pathway also contributes to generating receptor-initiated signals themselves. Here we review recent progress in this area, discussing primarily but not exclusively GPCR signaling in mammalian cells. PMID:24680436

  19. Agonist self-inhibition at the nicotinic acetylcholine receptor a nonspecific action

    SciTech Connect

    Forman, S.A.; Firestone, L.L.; Miller, K.W.

    1987-05-19

    Agonist concentration-response relationships at nicotinic postsynaptic receptors were established by measuring /sup 86/Rb/sup +/ efflux from acetylcholine receptor rich native Torpedo membrane vesicles under three different conditions: (1) integrated net ion efflux (in 10 s) from untreated vesicles, (2) integrated net efflux from vesicles in which most acetylcholine sites were irreversibly blocked with ..cap alpha..-bungarotoxin, and (3) initial rates of efflux (5-100 ms) from vesicles that were partially blocked with ..cap alpha..-bungarotoxin. Exposure to acetylcholine, carbamylcholine, suberyldicholine, phenyltrimethylammonium, or (-)-nicotine over 10/sup 8/-fold concentration ranges results in bell-shaped ion flux response curves due to stimulation of acetylcholine receptor channel opening at low concentrations and inhibition of channel function at 60-2000 times higher concentrations. Concentrations of agonists that inhibit their own maximum /sup 86/Rb/sup +/ efflux by 50% (K/sub B/ values) are 110, 211, 3.0, 39, and 8.9 mM, respectively, for the agonists listed above. For acetylcholine and carbamylcholine, K/sub B/ values determined from both 10-s and 15-ms efflux measurements are the same, indicating that the rate of agonist-induced desensitization increases to maximum at concentrations lower than those causing self-inhibition. For all partial and full agonists studied, Hill coefficients for self-inhibition are close to 1.0. Concentrations of agonists up to 8 times K/sub B/ did not change the order parameter reported by a spin-labeled fatty acid incorporated in Torpedo membranes. The authors conclude that agonist self-inhibition cannot be attributed to a general nonspecific membrane perturbation. Instead, these results are consistent with a saturable site of action either at the lipid-protein interface or on the acetylcholine receptor protein itself.

  20. Checking the STEP-Associated Trafficking and Internalization of Glutamate Receptors for Reduced Cognitive Deficits: A Machine Learning Approach-Based Cheminformatics Study and Its Application for Drug Repurposing

    PubMed Central

    Jamal, Salma; Goyal, Sukriti; Shanker, Asheesh; Grover, Abhinav

    2015-01-01

    Background Alzheimer’s disease, a lethal neurodegenerative disorder that leads to progressive memory loss, is the most common form of dementia. Owing to the complexity of the disease, its root cause still remains unclear. The existing anti-Alzheimer’s drugs are unable to cure the disease while the current therapeutic options have provided only limited help in restoring moderate memory and remain ineffective at restricting the disease’s progression. The striatal-enriched protein tyrosine phosphatase (STEP) has been shown to be involved in the internalization of the receptor, N-methyl D-aspartate (NMDR) and thus is associated with the disease. The present study was performed using machine learning algorithms, docking protocol and molecular dynamics (MD) simulations to develop STEP inhibitors, which could be novel anti-Alzheimer’s molecules. Methods The present study deals with the generation of computational predictive models based on chemical descriptors of compounds using machine learning approaches followed by substructure fragment analysis. To perform this analysis, the 2D molecular descriptors were generated and machine learning algorithms (Naïve Bayes, Random Forest and Sequential Minimization Optimization) were utilized. The binding mechanisms and the molecular interactions between the predicted active compounds and the target protein were modelled using docking methods. Further, the stability of the protein-ligand complex was evaluated using MD simulation studies. The substructure fragment analysis was performed using Substructure fingerprint (SubFp), which was further explored using a predefined dictionary. Results The present study demonstrates that the computational methodology used can be employed to examine the biological activities of small molecules and prioritize them for experimental screening. Large unscreened chemical libraries can be screened to identify potential novel hits and accelerate the drug discovery process. Additionally, the

  1. Opioid receptor desensitization: mechanisms and its link to tolerance

    PubMed Central

    Allouche, Stéphane; Noble, Florence; Marie, Nicolas

    2014-01-01

    Opioid receptors (OR) are part of the class A of G-protein coupled receptors and the target of the opiates, the most powerful analgesic molecules used in clinic. During a protracted use, a tolerance to analgesic effect develops resulting in a reduction of the effectiveness. So understanding mechanisms of tolerance is a great challenge and may help to find new strategies to tackle this side effect. This review will summarize receptor-related mechanisms that could underlie tolerance especially receptor desensitization. We will focus on the latest data obtained on molecular mechanisms involved in opioid receptor desensitization: phosphorylation, receptor uncoupling, internalization, and post-endocytic fate of the receptor. PMID:25566076

  2. Norepinephrine-induced alteration in the coupling of. cap alpha. /sub 1/-adrenergic receptor occupancy to calcium efflux in rabbit aortic smooth muscle cells

    SciTech Connect

    Colucci, W.S.; Alexander, R.W.

    1986-03-01

    To determine whether ..cap alpha..-adrenergic desensitization of vascular smooth muscle is due to an alteration in ..cap alpha../sub 1/-adrenergic receptor coupling, the authors determined the relationship between receptor occupancy and maximal receptor-coupled Ca/sup 2 +/ efflux in cultured rabbit aortic smooth muscle cells (i) under basal conditions as defined by receptor inactivation with phenoxybenzamine and (ii) after 48 hr of exposure to several concentrations of 1-norepinephrine (NE). Neither phenoxybenzamine nor NE exposure caused a change in binding affinity for (/sup 3/H)prazosin or NE. Maximal (/sup 3/H)prazosin binding capacity and maximal NE-stimulated /sup 45/Ca/sup 2 +/ efflux decreased progressively with exposure of incubated cells to increasing concentrations of phenoxybenzamine or NE. An approximately 80% decrease in maximal (/sup 3/H)prazosin binding capacity caused by either phenoxybenzamine or NE resulted in complete loss of NE-stimulated /sup 45/Ca/sup 2 +/ efflux, indicating that under these conditions approximately 20% of ..cap alpha../sub 1/-adrenergic receptors are not coupled to the Ca/sup 2 +/ efflux. Under basal conditions, the relationship between maximal (/sup 3/H)prazosin binding capacity and maximal NE-stimulated /sup 45/Ca/sup 2 +/ efflux was markedly nonlinear, so that a near maximal response could be elicited by occupancy of only approximately 40% of the receptors. Thus, an alteration in occupancy-response coupling at a step proximal to Ca/sup 2 +/ mobilization and/or influx, rather than a reduction in receptor number, is of primary importance in the process of agonist-induced ..cap alpha..-adrenergic receptor desensitization of vascular smooth muscle cells.

  3. Lipoxin receptors.

    PubMed

    Romano, Mario; Recchia, Irene; Recchiuti, Antonio

    2007-01-01

    Lipoxins (LXs) represent a class of arachidonic acid (AA) metabolites that carry potent immunoregulatory and anti-inflammatory properties, LXA4 and LXB4 being the main components of this series. LXs are generated by cooperation between 5-lipoxygenase (LO) and 12- or 15-LO during cell-cell interactions or by single cell types. LX epimers at carbon 15, the 15-epi-LXs, are formed by aspirin-acetylated cyclooxygenase-2 (COX-2) in cooperation with 5-LO. 15-epi-LXA4 is also termed aspirin-triggered LX (ATL). In vivo studies with stable LX and ATL analogs have established that these eicosanoids possess potent anti-inflammatory activities. A LXA4 receptor has been cloned. It belongs to the family of chemotactic receptors and clusters with formyl peptide receptors on chromosome 19. Therefore, it was initially denominated formyl peptide receptor like 1 (FPRL1). This receptor binds with high affinity and stereoselectivity LXA4 and ATL. It also recognizes a variety of peptides, synthetic, endogenously generated, or disease associated, but with lower affinity compared to LXA4. For this reason, this receptor has been renamed ALX. This review summarizes the current knowledge on ALX expression, signaling, and potential pathophysiological role. The involvement of additional recognition sites in LX bioactions is also discussed. PMID:17767357

  4. ALT telomeres get together with nuclear receptors.

    PubMed

    Aeby, Eric; Lingner, Joachim

    2015-02-26

    Nuclear receptors bind chromosome ends in "alternative lengthening of telomeres" (ALT) cancer cells that maintain their ends by homologous recombination instead of telomerase. Marzec et al. now demonstrate that, in ALT cells, nuclear receptors not only trigger distal chromatin associations to mediate telomere-telomere recombination events, but also drive chromosome-internal targeted telomere insertions (TTI). PMID:25723159

  5. Dynamic Interaction of Stargazin-like TARPs with Cycling AMPA Receptors at Synapses

    NASA Astrophysics Data System (ADS)

    Tomita, Susumu; Fukata, Masaki; Nicoll, Roger A.; Bredt, David S.

    2004-03-01

    Activity-dependent plasticity in the brain arises in part from changes in the number of synaptic AMPA receptors. Synaptic trafficking of AMPA receptors is controlled by stargazin and homologous transmembrane AMPA receptor regulatory proteins (TARPs). We found that TARPs were stable at the plasma membrane, whereas AMPA receptors were internalized in a glutamate-regulated manner. Interaction with AMPA receptors involved both extra- and intracellular determinants of TARPs. Upon binding to glutamate, AMPA receptors detached from TARPs. This did not require ion flux or intracellular second messengers. This allosteric mechanism for AMPA receptor dissociation from TARPs may participate in glutamate-mediated internalization of receptors in synaptic plasticity.

  6. Structural basis for receptor subtype-specific regulation revealed by a chimeric beta 3/beta 2-adrenergic receptor.

    PubMed Central

    Liggett, S B; Freedman, N J; Schwinn, D A; Lefkowitz, R J

    1993-01-01

    The physiological significance of multiple G-protein-coupled receptor subtypes, such as the beta-adrenergic receptors (beta ARs), remains obscure, since in many cases several subtypes activate the same effector and utilize the same physiological agonists. We inspected the deduced amino acid sequences of the beta AR subtypes for variations in the determinants for agonist regulation as a potential basis for subtype differentiation. Whereas the beta 2AR has a C terminus containing 11 serine and threonine residues representing potential sites for beta AR kinase phosphorylation, which mediates rapid agonist-promoted desensitization, only 3 serines are present in the comparable region of the beta 3AR, and they are in a nonfavorable context. The beta 3AR also lacks sequence homology in regions which are important for agonist-mediated sequestration and down-regulation of the beta 2AR, although such determinants are less well defined. We therefore tested the idea that the agonist-induced regulatory properties of the two receptors might differ by expressing both subtypes in CHW cells and exposing them to the agonist isoproterenol. The beta 3AR did not display short-term agonist-promoted functional desensitization or sequestration, or long-term down-regulation. To assign a structural basis for these subtype-specific differences in agonist regulation, we constructed a chimeric beta 3/beta 2AR which comprised the beta 3AR up to proline-365 of the cytoplasmic tail and the C terminus of the beta 2AR. When cells expressing this chimeric beta 3/beta 2AR were exposed to isoproterenol, functional desensitization was observed. Whole-cell phosphorylation studies showed that the beta 2AR displayed agonist-dependent phosphorylation, but no such phosphorylation could be demonstrated with the beta 3AR, even when beta AR kinase was overexpressed. In contrast, the chimeric beta 3/beta 2AR did display agonist-dependent phosphorylation, consistent with its functional desensitization. In

  7. Molecular properties of muscarinic acetylcholine receptors

    PubMed Central

    HAGA, Tatsuya

    2013-01-01

    Muscarinic acetylcholine receptors, which comprise five subtypes (M1-M5 receptors), are expressed in both the CNS and PNS (particularly the target organs of parasympathetic neurons). M1-M5 receptors are integral membrane proteins with seven transmembrane segments, bind with acetylcholine (ACh) in the extracellular phase, and thereafter interact with and activate GTP-binding regulatory proteins (G proteins) in the intracellular phase: M1, M3, and M5 receptors interact with Gq-type G proteins, and M2 and M4 receptors with Gi/Go-type G proteins. Activated G proteins initiate a number of intracellular signal transduction systems. Agonist-bound muscarinic receptors are phosphorylated by G protein-coupled receptor kinases, which initiate their desensitization through uncoupling from G proteins, receptor internalization, and receptor breakdown (down regulation). Recently the crystal structures of M2 and M3 receptors were determined and are expected to contribute to the development of drugs targeted to muscarinic receptors. This paper summarizes the molecular properties of muscarinic receptors with reference to the historical background and bias to studies performed in our laboratories. PMID:23759942

  8. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila

    PubMed Central

    Benton, Richard; Vannice, Kirsten S.; Gomez-Diaz, Carolina; Vosshall, Leslie B.

    2009-01-01

    Summary Ionotropic glutamate receptors (iGluRs) mediate neuronal communication at synapses throughout vertebrate and invertebrate nervous systems. We have characterized a novel family of iGluR-related genes in Drosophila, which we name Ionotropic Receptors (IRs). These receptors do not belong to the well-described Kainate, AMPA, or NMDA classes of iGluRs, and have divergent ligand-binding domains that lack their characteristic glutamate-interacting residues. IRs are expressed in a combinatorial fashion in sensory neurons that respond to many distinct odors but do not express either insect odorant receptors (ORs) or gustatory receptors (GRs). IR proteins accumulate in sensory dendrites and not at synapses. Mis-expression of IRs induces novel odor responses in ectopic neurons. Together, these results lead us to propose that the IRs comprise a novel family of chemosensory receptors. Conservation of IR/iGluR-related proteins in bacteria, plants, and animals suggests that this receptor family represents an evolutionarily ancient mechanism for sensing both internal and external chemical cues. PMID:19135896

  9. Role of transient receptor potential C3 in TNF-alpha-enhanced calcium influx in human airway myocytes.

    PubMed

    White, Thomas A; Xue, Ailing; Chini, Eduardo N; Thompson, Michael; Sieck, Gary C; Wylam, Mark E

    2006-08-01

    Previous studies have suggested that the proinflammatory cytokine, TNF-alpha, contributes to airway hyperresponsivness by altering airway smooth muscle (ASM) Ca(2+) responses to agonist stimulation. The present study examined the effects of TNF-alpha on Ca(2+) influx pathways in cultured human ASM cells (HASMCs). Proteins encoded by the transient receptor potential (TRP) gene family function as channels through which receptor-operated and store-operated Ca(2+) entry (SOCE) occur. In the present study, the presence of TRPC1, TRPC3, TRPC4, TRPC5, and TRPC6 mRNA and protein expression was confirmed in cultured HASMCs using RT-PCR and Western blot analysis. TNF-alpha treatment significantly increased TRPC3 mRNA and protein levels in HASMCs as well as SOCE. TNF-alpha treatment also increased both the peak and plateau intracellular Ca(2+) concentration responses in HASMCs elicited by acetylcholine and bradykinin. The effects of TNF-alpha treatment on SOCE and agonist-induced intracellular Ca(2+) concentration responses were attenuated using small interfering RNA transfection, which knocked down TRPC3 expression. Thus, in inflammatory airway diseases, TNF-alpha treatment may result in increased myocyte activation due to altered Ca(2+) influx pathways. These results suggest that TRPC3 may be an important therapeutic target in inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease. PMID:16574942

  10. Topographical evaluation of behavioural phenotype in a line of mice with targeted gene deletion of the D2 dopamine receptor.

    PubMed

    Clifford, J J; Usiello, A; Vallone, D; Kinsella, A; Borrelli, E; Waddington, J L

    2000-01-28

    The phenotype of spontaneous and dopamine D2-like agonist-induced behaviour was assessed topographically in a line of mice with targeted gene deletion of the D1 receptor. An ethologically-based, rapid time-sampling behavioural check-list technique was used to resolve and quantify all behaviours in the natural repertoire of the mouse. Relative to wildtypes [D2+/+], D2-null [D2-/-] mice evidenced over a 1 h period of initial exploration modest but significant reductions in locomotion, grooming, rearing free and rearing to wall; rearing seated, sniffing, sifting and stillness were not altered. Individual elements of behaviour habituated similarly over a 6 h period for both genotypes. The dose-dependent induction of stereotyped sniffing and ponderous locomotion by the D2-like agonist RU 24213 (0.1-12.5 mg/kg) in wildtypes was essentially absent in D2-null mice. The ethogram of spontaneous behaviour in D2-null mice was characterised by only modest reductions in, and topographical shifts between, certain individual elements of behaviour. Essential abolition of D2-like agonist responsivity in D2-null mice vis-à-vis considerable preservation of spontaneous behavioural topography suggests compensatory processes subsequent to developmental absence of the D2 receptor that are able to sustain function under naturalistic, tonic conditions but not during phasic challenge. PMID:10698004

  11. Exploring the positive allosteric modulation of human α7 nicotinic receptors from a single-channel perspective.

    PubMed

    Andersen, Natalia D; Nielsen, Beatriz E; Corradi, Jeremías; Tolosa, María F; Feuerbach, Dominik; Arias, Hugo R; Bouzat, Cecilia

    2016-08-01

    Enhancement of α7 nicotinic receptor (nAChR) function by positive allosteric modulators (PAMs) is a promising therapeutic strategy to improve cognitive deficits. PAMs have been classified only on the basis of their macroscopic effects as type I, which only enhance agonist-induced currents, and type II, which also decrease desensitization and reactivate desensitized nAChRs. To decipher the molecular basis underlying these distinct activities, we explored the effects on single-α7 channel currents of representative members of each type and of less characterized compounds. Our results reveal that all PAMs enhance open-channel lifetime and produce episodes of successive openings, thus indicating that both types affect α7 kinetics. Different PAM types show different sensitivity to temperature, suggesting different mechanisms of potentiation. By using a mutant α7 receptor that is insensitive to the prototype type II PAM (PNU-120596), we show that some though not all type I PAMs share the structural determinants of potentiation. Overall, our study provides novel information on α7 potentiation, which is key to the ongoing development of therapeutic compounds. PMID:26926428

  12. Optimization of Chemical Functionalities of Indole-2-carboxamides To Improve Allosteric Parameters for the Cannabinoid Receptor 1 (CB1)

    PubMed Central

    2015-01-01

    5-Chloro-3-ethyl-N-(4-(piperidin-1-yl)phenethyl)-1H-indole-2-carboxamide (1; ORG27569) is a prototypical allosteric modulator for the cannabinoid type 1 receptor (CB1). Here, we reveal key structural requirements of indole-2-carboxamides for allosteric modulation of CB1: a critical chain length at the C3-position, an electron withdrawing group at the C5-position, the length of the linker between the amide bond and the phenyl ring B, and the amino substituent on the phenyl ring B. These significantly impact the binding affinity (KB) and the binding cooperativity (α). A potent CB1 allosteric modulator 5-chloro-N-(4-(dimethylamino)phenethyl)-3-propyl-1H-indole-2-carboxamide (12d) was identified. It exhibited a KB of 259.3 nM with a strikingly high binding α of 24.5. We also identified 5-chloro-N-(4-(dimethylamino)phenethyl)-3-hexyl-1H-indole-2-carboxamide (12f) with a KB of 89.1 nM, which is among the lowest KB values obtained for any allosteric modulator of CB1. These positive allosteric modulators of orthosteric agonist binding nonetheless antagonized the agonist-induced G-protein coupling to the CB1 receptor, yet induced β-arrestin mediated ERK1/2 phosphorylation. PMID:24635495

  13. Novel allosteric agonists of M1 muscarinic acetylcholine receptors induce brain region-specific responses that correspond with behavioral effects in animal models

    PubMed Central

    Digby, G.J.; Noetzel, M.J.; Bubser, M.; Utley, T.J.; Walker, A.G.; Byun, N.E.; Lebois, E.P.; Xiang, Z.; Sheffler, D.J.; Cho, H.P.; Davis, A.A.; Nemirovsky, N.E.; Mennenga, S.E.; Camp, B.W.; Bimonte-Nelson, H.A.; Bode, J.; Italiano, K.; Morrison, R.; Daniels, J.S.; Niswender, C.M.; Olive, M.F.; Lindsley, C.W.; Jones, C.K.; Conn, P.J.

    2012-01-01

    M1 muscarinic acetylcholine receptors (mAChRs) represent a viable target for treatment of multiple disorders of the central nervous system (CNS) including Alzheimer’s disease and schizophrenia. The recent discovery of highly selective allosteric agonists of M1 receptors has provided a major breakthrough in developing a viable approach for discovery of novel therapeutic agents that target these receptors. Here, we describe the characterization of two novel M1 allosteric agonists VU0357017 and VU0364572 that display profound differences in their efficacy in activating M1 coupling to different signaling pathways including Ca++ and β-arrestin responses. Interestingly, the ability of these agents to differentially activate coupling of M1 to specific signaling pathways leads to selective actions on some but not all M1-mediated responses in brain circuits. These novel M1 allosteric agonists induced robust electrophysiological effects in rat hippocampal slices but showed lower efficacy in striatum and no measureable effects on M1-mediated responses in medial prefrontal cortical pyramidal cells in mice. Consistent with these actions, both M1 agonists enhanced acquisition of hippocampal-dependent cognitive function but did not reverse amphetamine-induced hyperlocomotion in rats. Together, these data reveal that M1 allosteric agonists can differentially regulate coupling of M1 to different signaling pathways and this can dramatically alter the actions of these compounds on specific brain circuits important for learning and memory and psychosis. PMID:22723693

  14. Relationship of epidermal growth factor receptor activating mutations with histologic subtyping according to International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society 2011 adenocarcinoma classification and their impact on overall survival

    PubMed Central

    Maturu, Venkata Nagarjuna; Singh, Navneet; Bal, Amanjit; Gupta, Nalini; Das, Ashim; Behera, Digambar

    2016-01-01

    Background: There is limited Indian data on epidermal growth factor receptor (EGFR) gene activating mutations (AMs) prevalence and their clinicopathologic associations. The current study aimed to assess the relationship between EGFR AM and histologic subtypes and their impact on overall survival (OS) in a North Indian cohort. Patients and Methods: Retrospective analysis of nonsmall cell lung cancer patients who underwent EGFR mutation testing (n = 186) over 3 years period (2012–2014). EGFR mutations were tested using polymerase chain reaction amplification and direct sequencing. Patients were classified as EGFR AM, EGFR wild type (WT) or EGFR unknown (UKN). Histologically adenocarcinomas (ADC) were further categorized as per the International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society-2011 classification. Results: Overall EGFR AM prevalence was 16.6%. The ratio of exon 19 deletions to exon 21 L858R mutations was 3.17:1. Female sex (P = 0.002), never smoking status (P = 0.002), metastatic disease (P = 0.032), and nonsolid subtype of ADC (P = 0.001) were associated with EGFR AM on univariate logistic regression analysis (LRA). On multivariate LRA, solid ADC was negatively associated with EGFR AM. Median OS was higher in patients with EGFR AM (750 days) as compared to EGFR-WT (459 days) or EGFR-UKN (291 days) for the overall population and in patients with Stage IV disease (750 days vs. 278 days for EGFR-WT, P = 0.024). On univariate Cox proportional hazard (CPH) analysis, smoking, poor performance status (Eastern Cooperative Oncology Group ≥ 2), EGFR-UKN status, and solid ADC were associated with worse OS while female sex and lepidic ADC had better OS. On multivariate CPH analysis, lepidic ADC (hazard ratio [HR] =0.12) and EGFR-WT/EGFR-UKN (HR = 2.39 and HR = 3.30 respectively) were independently associated with OS in separate analyses. Conclusions: Histologic subtyping of ADC performed on small biopsies is

  15. Conformational dynamics of a class C G protein-coupled receptor

    PubMed Central

    Vafabakhsh, Reza; Levitz, Joshua; Isacoff, Ehud Y.

    2015-01-01

    G protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors in eukaryotes. Crystal structures have provided insight into GPCR interaction with ligands and G-proteins1,2, but our understanding of the conformational dynamics of activation is incomplete. Metabotropic glutamate receptors (mGluRs) are dimeric class C GPCRs that modulate neuronal excitability, synaptic plasticity, and serve as drug targets for neurological disorders3,4. A “clamshell” ligand-binding domain (LBD), which contains the ligand binding site, is coupled to the transmembrane domain (TMD) via a cysteine rich domain, and LBD closure appears to be the first step in activation5,6. Crystal structures of isolated mGluR LBD dimers led to the suggestion that activation also involves a reorientation of the dimer interface from a “relaxed” to an “active” state7,8, but the relationship between ligand binding, LBD closure and dimer interface rearrangement in activation remains unclear. We used single-molecule fluorescence resonance energy transfer (smFRET) to probe the activation mechanism of full-length mammalian group II mGluRs. We find that the LBDs interconvert between three conformations: resting, activated and a short-lived intermediate state. Orthosteric agonists induce transitions between these conformational states with efficacy determined by occupancy of the active conformation. Unlike mGluR2, mGluR3 displays basal dynamics, which are Ca2+ dependent and lead to basal protein activation. Our results support a general mechanism for the activation of mGluRs in which agonist binding induces closure of the LBDs followed by dimer interface reorientation. Our experimental strategy should be widely applicable to study conformational dynamics in GPCRs and other membrane proteins. PMID:26258295

  16. Conformational dynamics of a class C G-protein-coupled receptor.

    PubMed

    Vafabakhsh, Reza; Levitz, Joshua; Isacoff, Ehud Y

    2015-08-27

    G-protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors in eukaryotes. Crystal structures have provided insight into GPCR interactions with ligands and G proteins, but our understanding of the conformational dynamics of activation is incomplete. Metabotropic glutamate receptors (mGluRs) are dimeric class C GPCRs that modulate neuronal excitability, synaptic plasticity, and serve as drug targets for neurological disorders. A 'clamshell' ligand-binding domain (LBD), which contains the ligand-binding site, is coupled to the transmembrane domain via a cysteine-rich domain, and LBD closure seems to be the first step in activation. Crystal structures of isolated mGluR LBD dimers led to the suggestion that activation also involves a reorientation of the dimer interface from a 'relaxed' to an 'active' state, but the relationship between ligand binding, LBD closure and dimer interface rearrangement in activation remains unclear. Here we use single-molecule fluorescence resonance energy transfer to probe the activation mechanism of full-length mammalian group II mGluRs. We show that the LBDs interconvert between three conformations: resting, activated and a short-lived intermediate state. Orthosteric agonists induce transitions between these conformational states, with efficacy determined by occupancy of the active conformation. Unlike mGluR2, mGluR3 displays basal dynamics, which are Ca(2+)-dependent and lead to basal protein activation. Our results support a general mechanism for the activation of mGluRs in which agonist binding induces closure of the LBDs, followed by dimer interface reorientation. Our experimental strategy should be widely applicable to study conformational dynamics in GPCRs and other membrane proteins. PMID:26258295

  17. The actions of some cannabinoid receptor ligands in the rat isolated mesenteric artery

    PubMed Central

    White, Richard; Robin Hiley, C

    1998-01-01

    The actions of a number of cannabinoid receptor ligands were investigated using the myograph-mounted rat isolated mesenteric artery. Anandamide, CP 55,940, HU-210, palmitoylethanolamide and WIN 55,212-2 all caused concentration-dependent relaxations of methoxamine-precontracted vessels which were not affected by removal of the endothelium.Precontracting vessels with 60 mM KCl instead of methoxamine greatly reduced the vasorelaxant effects of anandamide and palmitoylethanolamide. High K+ solution caused a modest decrease in the relaxant potency of CP 55,940 and HU-210, and had no effect on relaxations induced by WIN 55,212-2.Relaxations of methoxamine-induced tone by anandamide, CP 55,940 and HU-210, but not palmitoylethanolamide and WIN 55,212-2, were attenuated by the cannabinoid receptor antagonist, SR 141716A. Relaxation of vessels contracted with 60 mM KCl by CP 55,940 was also sensitive to SR 141716A.Anandamide and CP 55,940 caused small but concentration-dependent contractions in resting vessels in the absence of extracellular calcium. These were not sensitive to SR 141716A. Palmitoylethanolamide and WIN 55,212-2 produced smaller contractions only at higher concentrations.Anandamide and CP 55,940, but not palmitoylethanolamide and WIN 55,212-2, caused concentration-dependent inhibition of the phasic contractions induced by methoxamine in calcium-free conditions, but only anandamide caused inhibition of contractions to caffeine under such conditions. These inhibitory effects were not antagonised by SR 141716A.The present study provides the first detailed investigation of the actions of cannabinoid agonists on vascular smooth muscle. Our results show that these compounds exert both receptor-dependent and -independent effects on agonist-induced calcium mobilization in the rat isolated mesenteric artery. PMID:9806337

  18. Structure-activity relationships of vanilloid receptor agonists for arteriolar TRPV1

    PubMed Central

    Czikora, Á; Lizanecz, E; Bakó, P; Rutkai, I; Ruzsnavszky, F; Magyar, J; Pórszász, R; Kark, T; Facskó, A; Papp, Z; Édes, I; Tóth, A

    2012-01-01

    BACKGROUND AND PURPOSE The transient receptor potential vanilloid 1 (TRPV1) plays a role in the activation of sensory neurons by various painful stimuli and is a therapeutic target. However, functional TRPV1 that affect microvascular diameter are also expressed in peripheral arteries and we attempted to characterize this receptor. EXPERIMENTAL APPROACH Sensory TRPV1 activation was measured in rats by use of an eye wiping assay. Arteriolar TRPV1-mediated smooth muscle specific responses (arteriolar diameter, changes in intracellular Ca2+) were determined in isolated, pressurized skeletal muscle arterioles obtained from the rat and wild-type or TRPV1−/− mice and in canine isolated smooth muscle cells. The vascular pharmacology of the TRPV1 agonists (potency, efficacy, kinetics of action and receptor desensitization) was determined in rat isolated skeletal muscle arteries. KEY RESULTS Capsaicin evoked a constrictor response in isolated arteries similar to that mediated by noradrenaline, this was absent in arteries from TRPV1 knockout mice and competitively inhibited by TRPV1 antagonist AMG9810. Capsaicin increased intracellular Ca2+ in the arteriolar wall and in isolated smooth muscle cells. The TRPV1 agonists evoked similar vascular constrictions (MSK-195 and JYL-79) or were without effect (resiniferatoxin and JYL-273), although all increased the number of responses (sensory activation) in the eye wiping assay. Maximal doses of all agonists induced complete desensitization (tachyphylaxis) of arteriolar TRPV1 (with the exception of capsaicin). Responses to the partial agonist JYL-1511 suggested 10% TRPV1 activation is sufficient to evoke vascular tachyphylaxis without sensory activation. CONCLUSIONS AND IMPLICATIONS Arteriolar TRPV1 have different pharmacological properties from those located on sensory neurons in the rat. PMID:21883148

  19. Designing Human m1 Muscarinic Receptor-Targeted Hydrophobic Eigenmode Matched Peptides as Functional Modulators

    PubMed Central

    Selz, Karen A.; Mandell, Arnold J.; Shlesinger, Michael F.; Arcuragi, Vani; Owens, Michael J.

    2004-01-01

    A new proprietary de novo peptide design technique generated ten 15-residue peptides targeting and containing the leading nontransmembrane hydrophobic autocorrelation wavelengths, “modes”, of the human m1 muscarinic cholinergic receptor, m1AChR. These modes were also shared by the m4AChR subtype (but not the m2, m3, or m5 subtypes) and the three-finger snake toxins that pseudoirreversibly bind m1AChR. The linear decomposition of the hydrophobically transformed m1AChR amino acid sequence yielded ordered eigenvectors of orthogonal hydrophobic variational patterns. The weighted sum of two eigenvectors formed the peptide design template. Amino acids were iteratively assigned to template positions randomly, within hydrophobic groups. One peptide demonstrated significant functional indirect agonist activity, and five produced significant positive allosteric modulation of atropine-reversible, direct-agonist-induced cellular activation in stably m1AChR-transfected Chinese hamster ovary cells, reflected in integrated extracellular acidification responses. The peptide positive allosteric ligands produced left-shifts and peptide concentration-response augmentation in integrated extracellular acidification response asymptotic sigmoidal functions and concentration-response behavior in Hill number indices of positive cooperativity. Peptide mode specificity was suggested by negative crossover experiments with human m2ACh and D2 dopamine receptors. Morlet wavelet transformation of the leading eigenvector-derived, m1AChR eigenfunctions locates seven hydrophobic transmembrane segments and suggests possible extracellular loop locations for the peptide-receptor mode-matched, modulatory hydrophobic aggregation sites. PMID:14990463

  20. Roles of nicotinic acetylcholine receptor β subunits in function of human α4-containing nicotinic receptors

    PubMed Central

    Wu, Jie; Liu, Qiang; Yu, Kewei; Hu, Jun; Kuo, Yen-Ping; Segerberg, Marsha; St John, Paul A; Lukas, Ronald J

    2006-01-01

    Naturally expressed nicotinic acetylcholine receptors (nAChR) containing α4 subunits (α4*-nAChR) in combination with β2 subunits (α4β2-nAChR) are among the most abundant, high-affinity nicotine binding sites in the mammalian brain. β4 subunits are also richly expressed and colocalize with α4 subunits in several brain regions implicated in behavioural responses to nicotine and nicotine dependence. Thus, α4β4-nAChR also may exist and play important functional roles. In this study, properties were determined of human α4β2- and α4β4-nAChR heterologously expressed de novo in human SH-EP1 epithelial cells. Whole-cell currents mediated via human α4β4-nAChR have ∼4-fold higher amplitude than those mediated via human α4β2-nAChR and exhibit much slower acute desensitization and functional rundown. Nicotinic agonists induce peak whole-cell current responses typically with higher functional potency at α4β4-nAChR than at α4β2-nAChR. Cytisine and lobeline serve as full agonists at α4β4-nAChR but are only partial agonists at α4β2-nAChR. However, nicotinic antagonists, except hexamethonium, have comparable affinities for functional α4β2- and α4β4-nAChR. Whole-cell current responses show stronger inward rectification for α4β2-nAChR than for α4β4-nAChR at a positive holding potential. Collectively, these findings demonstrate that human nAChR β2 or β4 subunits can combine with α4 subunits to generate two forms of α4*-nAChR with distinctive physiological and pharmacological features. Diversity in α4*-nAChR is of potential relevance to nervous system function, disease, and nicotine dependence. PMID:16825297

  1. EndothelinB receptor-mediated contraction in human pulmonary resistance arteries.

    PubMed Central

    McCulloch, K. M.; Docherty, C. C.; Morecroft, I.; MacLean, M. R.

    1996-01-01

    1. Using wire myography, we have examined the endothelin (ET) receptor subtypes mediating vasoconstriction to ET peptides in human pulmonary resistance arteries (150-200 microns, i.d.). 2. Cumulative concentration-response curves to ET-1, sarafotoxin 6c (SX6c) and ET-3 were constructed in the presence and absence of the selective antagonists FR 139317 (ETA-selective), BMS 182874 (ETA-selective) and BQ-788 (ETB-selective). 3. All agonists induced concentration-dependent contractions. However, the response curves to ET-1 were biphasic in nature. The first component demonstrated a shallow slope up to 1 nM ET-1. Above 1 nM ET-1 the response curve was markedly steeper. Maximum responses to ET-3 and SX6c were the same as those to 1 nM ET-1 and 30% of those to 0.1 microM ET-1. The order of potency, taking 0.3 microM as a maximum concentration was SX6c >> ET-3 > ET-1 (pEC50 values of: 10.75 +/- 0.27, 9.05 +/- 0.19, 8.32 +/- 0.08 respectively). Taking 1 nM ET-1 as a maximum, the EC50 for ET-1 was 10.08 +/- 0.13 and therefore ET-1 was equipotent to ET-3 and SX6c over the first component of the response curve. 4. Responses to ET-1 up to 1 nM were resistant to the effects of the ETA receptor antagonists, FR 139317 and BMS 182874 but were inhibited by the ETB receptor antagonist, BQ-788. Conversely, responses to ET-1 over 1 nM were inhibited by the ETA receptor antagonists, FR 139317 and BMS 182874 but unaffected by the ETB receptor antagonist, BQ-788. 5. The results suggest that at concentrations up to 1 nM, responses to ET-1 are mediated via the ETB receptor, whilst the responses to higher concentrations are mediated by ETA receptors. PMID:8937714

  2. Defects in muscarinic receptor-coupled signal transduction in isolated parotid gland cells after in vivo irradiation: evidence for a non-DNA target of radiation

    PubMed Central

    Coppes, R P; Meter, A; Latumalea, S P; Roffel, A F; Kampinga, H H

    2005-01-01

    Radiation-induced dysfunction of normal tissue, an unwanted side effect of radiotherapeutic treatment of cancer, is usually considered to be caused by impaired loss of cell renewal due to sterilisation of stem cells. This implies that the onset of normal tissue damage is usually determined by tissue turnover rate. Salivary glands are a clear exception to this rule: they have slow turnover rates (>60 days), yet develop radiation-induced dysfunction within hours to days. We showed that this could not be explained by a hypersensitivity to radiation-induced apoptosis or necrosis of the differentiated cells. In fact, salivary cells are still capable of amylase secretion shortly after irradiation while at the same time water secretion seems specifically and severely impaired. Here, we demonstrate that salivary gland cells isolated after in vivo irradiation are impaired in their ability to mobilise calcium from intracellular stores (Ca2+i), the driving force for water secretion, after exposure to muscarinic acetylcholine receptor agonists. Using radioligand-receptor-binding assays it is shown that radiation caused no changes in receptor density, receptor affinity nor in receptor-G-protein coupling. However, muscarinic acetylcholine agonist-induced activation of protein kinase C alpha (PKCα), measured as translocation to the plasma membrane, was severely affected in irradiated cells. Also, the phorbol ester PMA could no longer induce PKCα translocation in irradiated cells. Our data hence indicate that irradiation specifically interferes with PKCα association with membranes, leading to impairment of intracellular signalling. To the best of our knowledge, these data for the first time suggest that, the cells' capacity to respond to a receptor agonist is impaired after irradiation. PMID:15668705

  3. Synergistic effect between prelimbic 5-HT3 and CB1 receptors on memory consolidation deficit in adult male Sprague-Dawley rats: An isobologram analysis.

    PubMed

    Ahmadi-Mahmoodabadi, N; Nasehi, M; Emam Ghoreishi, M; Zarrindast, M-R

    2016-03-11

    The serotonergic system has often been defined as a neuromodulator system, and is specifically involved in learning and memory via its various receptors. Serotonin is involved in many of the same processes affected by cannabinoids. The present study investigated the influence of bilateral post-training intra-prelimbic (PL) administrations of serotonergic 5-hydroxytryptamine type-3 (5-HT3) receptor agents on arachidonylcyclopropylamide (ACPA) (cannabinoid CB1 receptor agonist)-induced amnesia, using the step-through inhibitory avoidance (IA) task to assess memory in adult male Sprague-Dawley rats. The results indicated that sole intra-PL microinjection of ACPA (0.1 and 0.5μg/rat) and 5-HT3 serotonin receptor agonist (m-Chlorophenylbiguanide hydrochloride, m-CPBG; 0.001, 0.01 and 0.1μg/rat) impaired, whereas Y-25130 (a selective 5-HT3 serotonin receptor antagonist; 0.001 and 0.01 and 0.1μg/rat) did not alter IA memory consolidation, by itself. Moreover, intra-PL administration of subthreshold dose of m-CPBG (0.0005μg/rat) potentiated, while Y-25130 (0. 1μg/rat) restored ACPA-induced memory consolidation deficit. The isobologram analysis showed that there is a synergistic effect between ACPA and m-CPBG on memory consolidation deficit. These findings suggest that 5-HT3 receptor mechanism(s), at least partly, play(s) a role in modulating the effect of ACPA on memory consolidation in the PL area. PMID:26701293

  4. PKC-mediated inhibitory feedback of the cholecystokinin 1 receptor controls the shape of oscillatory Ca²⁺ signals.

    PubMed

    Willems, Peter H G M; Pahle, Jürgen; Stalpers, Xenia L; Mugahid, Douaa; Nikolaew, Alexander; Koopman, Werner J H; Kummer, Ursula

    2015-06-01

    Translation of extracellular hormonal input into cellular responses is often mediated by repetitive increases in cytosolic free Ca(2+) concentration ([Ca(2+) ]c ). Amplitude, duration and frequency of these so-called [Ca(2+) ]c oscillations then carry information about the nature and concentration of the extracellular signalling molecule. At present, there are different hypotheses concerning the induction and control of these oscillations. Here, we investigated the role of agonist-induced