Science.gov

Sample records for agonists partial agonists

  1. Dopamine receptor partial agonists and addiction.

    PubMed

    Moreira, Fabricio A; Dalley, Jeffrey W

    2015-04-01

    Many drugs abused by humans acutely facilitate, either directly or indirectly, dopamine neurotransmission in the mesolimbic pathway. As a consequence dopamine receptor agonists and antagonists have been widely investigated as putative pharmacological therapies for addiction. This general strategy, however, has had only limited success due in part to poor treatment adherence and efficacy and the significant adverse effects of dopaminergic medications. In this perspective, we discuss the potential therapeutic use of dopamine receptor partial agonists in addiction, developed initially as antipsychotic agents. Recent research indicates that the dopamine D2 receptor partial agonists, such as aripiprazole, also shows useful ancillary efficacy in several animal models of psychostimulant and opioid addiction. Notably, these findings suggest that unlike full dopamine receptor agonists and antagonists these compounds have low abuse liability and are generally well tolerated. Indeed, partial dopamine agonists attenuate the rewarding properties of opioids without interfering with their analgesic effects. Herein we discuss the utility and potential of dopamine receptor partial agonists as treatments for both stimulant and non-stimulant drug addiction.

  2. Improving the developability profile of pyrrolidine progesterone receptor partial agonists

    SciTech Connect

    Kallander, Lara S.; Washburn, David G.; Hoang, Tram H.; Frazee, James S.; Stoy, Patrick; Johnson, Latisha; Lu, Qing; Hammond, Marlys; Barton, Linda S.; Patterson, Jaclyn R.; Azzarano, Leonard M.; Nagilla, Rakesh; Madauss, Kevin P.; Williams, Shawn P.; Stewart, Eugene L.; Duraiswami, Chaya; Grygielko, Eugene T.; Xu, Xiaoping; Laping, Nicholas J.; Bray, Jeffrey D.; Thompson, Scott K.

    2010-09-17

    The previously reported pyrrolidine class of progesterone receptor partial agonists demonstrated excellent potency but suffered from serious liabilities including hERG blockade and high volume of distribution in the rat. The basic pyrrolidine amine was intentionally converted to a sulfonamide, carbamate, or amide to address these liabilities. The evaluation of the degree of partial agonism for these non-basic pyrrolidine derivatives and demonstration of their efficacy in an in vivo model of endometriosis is disclosed herein.

  3. Synthesis and structure-activity relationships of novel indazolyl glucocorticoid receptor partial agonists.

    PubMed

    Gilmore, John L; Sheppeck, James E; Wang, Jim; Dhar, T G Murali; Cavallaro, Cullen; Doweyko, Arthur M; Mckay, Lorraine; Cunningham, Mark D; Habte, Sium F; Nadler, Steven G; Dodd, John H; Somerville, John E; Barrish, Joel C

    2013-10-01

    SAR was used to further develop an indazole class of non-steroidal glucocorticoid receptor agonists aided by a GR LBD (ligand-binding domain)-agonist co-crystal structure described in the accompanying paper. Progress towards discovering a dissociated GR agonist guided by human in vitro assays biased the optimization of this compound series towards partial agonists that possessed excellent selectivity against other nuclear hormone receptors. PMID:23916594

  4. RXR Partial Agonist CBt-PMN Exerts Therapeutic Effects on Type 2 Diabetes without the Side Effects of RXR Full Agonists

    PubMed Central

    2012-01-01

    Treating insulin resistance and type 2 diabetes in rodents, currently known retinoid X receptor (RXR) agonists induce significant adverse effects. Here we introduce a novel RXR partial agonist CBt-PMN (11b), which shows a potent glucose-lowering effect and improvements of insulin secretion and glucose tolerance without the serious adverse effects caused by RXR full agonists. We suggest that RXR partial agonists may be a new class of antitype 2 diabetes drug candidates. PMID:24900488

  5. Agonists and partial agonists of rhodopsin: retinal polyene methylation affects receptor activation.

    PubMed

    Vogel, Reiner; Lüdeke, Steffen; Siebert, Friedrich; Sakmar, Thomas P; Hirshfeld, Amiram; Sheves, Mordechai

    2006-02-14

    Using Fourier transform infrared (FTIR) difference spectroscopy, we have studied the impact of sites and extent of methylation of the retinal polyene with respect to position and thermodynamic parameters of the conformational equilibrium between the Meta I and Meta II photoproducts of rhodopsin. Deletion of methyl groups to form 9-demethyl and 13-demethyl analogues, as well as addition of a methyl group at C10 or C12, shifted the Meta I/Meta II equilibrium toward Meta I, such that the retinal analogues behaved like partial agonists. This equilibrium shift resulted from an apparent reduction of the entropy gain of the transition of up to 65%, which was only partially offset by a concomitant reduction of the enthalpy increase. The analogues produced Meta II photoproducts with relatively small alterations, while their Meta I states were significantly altered, which accounted for the aberrant transitions to Meta II. Addition of a methyl group at C14 influenced the thermodynamic parameters but had little impact on the position of the Meta I/Meta II equilibrium. Neutralization of the residue 134 in the E134Q opsin mutant increased the Meta II content of the 13-demethyl analogue, but not of the 9-demethyl analogue, indicating a severe impairment of the allosteric coupling between the conserved cytoplasmic ERY motif involved in proton uptake and the Schiff base/Glu 113 microdomain in the 9-demethyl analogue. The 9-methyl group appears therefore essential for the correct positioning of retinal to link protonation of the cytoplasmic motif with protonation of Glu 113 during receptor activation.

  6. Theory of partial agonist activity of steroid hormones

    PubMed Central

    Chow, Carson C.; Ong, Karen M.; Kagan, Benjamin; Simons, S. Stoney

    2015-01-01

    The different amounts of residual partial agonist activity (PAA) of antisteroids under assorted conditions have long been useful in clinical applications but remain largely unexplained. Not only does a given antagonist often afford unequal induction for multiple genes in the same cell but also the activity of the same antisteroid with the same gene changes with variations in concentration of numerous cofactors. Using glucocorticoid receptors as a model system, we have recently succeeded in constructing from first principles a theory that accurately describes how cofactors can modulate the ability of agonist steroids to regulate both gene induction and gene repression. We now extend this framework to the actions of antisteroids in gene induction. The theory shows why changes in PAA cannot be explained simply by differences in ligand affinity for receptor and requires action at a second step or site in the overall sequence of reactions. The theory also provides a method for locating the position of this second site, relative to a concentration limited step (CLS), which is a previously identified step in glucocorticoid-regulated transactivation that always occurs at the same position in the overall sequence of events of gene induction. Finally, the theory predicts that classes of antagonist ligands may be grouped on the basis of their maximal PAA with excess added cofactor and that the members of each class differ by how they act at the same step in the overall gene induction process. Thus, this theory now makes it possible to predict how different cofactors modulate antisteroid PAA, which should be invaluable in developing more selective antagonists. PMID:25984562

  7. Rational design of orally-active, pyrrolidine-based progesterone receptor partial agonists

    SciTech Connect

    Thompson, Scott K.; Washburn, David G.; Frazee, James S.; Madauss, Kevin P.; Hoang, Tram H.; Lapinski, Leahann; Grygielko, Eugene T.; Glace, Lindsay E.; Trizna, Walter; Williams, Shawn P.; Duraiswami, Chaya; Bray, Jeffrey D.; Laping, Nicholas J.

    2010-09-03

    Using the X-ray crystal structure of an amide-based progesterone receptor (PR) partial agonist bound to the PR ligand binding domain, a novel PR partial agonist class containing a pyrrolidine ring was designed. Members of this class of N-alkylpyrrolidines demonstrate potent and highly selective partial agonism of the progesterone receptor, and one of these analogs was shown to be efficacious upon oral dosing in the OVX rat model of estrogen opposition.

  8. Pindolol--the pharmacology of a partial agonist.

    PubMed Central

    Clark, B J; Menninger, K; Bertholet, A

    1982-01-01

    1 Pindolol is a non-selective beta-adrenoceptor blocking agent; its affinity to adrenoceptors in guinea pig atria (beta 1) is not significantly different from that in guinea pig trachea (beta 1 + beta 2) and canine vascular smooth muscle (beta 2). 2 Pindolol displays a striking diversity of agonist activities in isolated tissues. Stimulant effects correspond to 40--50% of the maximum effects of isoprenaline in isolated kitten atria and guinea pig trachea and to only 10% in guinea pig atria. Effects in canine isolated mesenteric vessels are those of a full agonist, maximum responses equaling those of isoprenaline. These findings suggest that the stimulant effects of pindolol are exerted principally on beta 2-adrenoceptors. 3 Cardiac stimulation produced by pindolol in the dog is sufficient to compensate for the cardiac depression resulting from blockade of beta-adrenoceptors in the heart. Reductions in cardiac output and compensatory increases in total peripheral resistance do not occur or are much smaller than those produced by beta-adrenoceptor blocking agents lacking sympathomimetic activity. 4 Pindolol-induced relaxation of bronchial smooth muscle prevents or minimizes the bronchoconstrictor effects of injected spasmogens in the cat. 5 Pindolol has marked vasodilator activity, small doses reducing femoral and mesenteric vascular resistance by approximately 30%. Doses comparable to those used in hypertensive patients lower blood pressure by 20 mmHg in non-anaesthetized dogs. PMID:7049208

  9. Alpha/sub 1/ receptor coupling events initiated by methoxy-substituted tolazoline partial agonists

    SciTech Connect

    Wick, P.; Keung, A.; Deth, R.

    1986-03-01

    A series of mono- and dimethyoxy substituted tolazoline derivatives, known to be partial agonists at the alpha/sub 1/ receptor, were compared with the ..cap alpha../sub 1/ selective full agonist phenylephrine (PE) on isolated strips of rabbit aorta Agonist activity was evaluated in contraction, /sup 45/Ca influx, /sup 45/Ca efflux, and /sup 32/P-Phospholipid labelling studies. Maximum contractile responses for the 2-, 3-, and 3, 5- methoxy substituted tolazoline derivatives (10/sup -5/M) were 53.8, 67.6 and 99.7% of the PE (10/sup -5/M) response respectively. These same partial agonists caused a stimulation of /sup 45/Ca influx to the extent of 64, 86, and 95% of the PE response respectively. In /sup 45/Ca efflux studies, (a measure of the intracellular Ca/sup +2/ release) the tolazolines caused: 30%, 63%, and 78% of the PE stimulated level. /sup 32/P-Phosphatidic acid (PA) labelling was measured as an index of PI turnover after ..cap alpha../sub 1/ receptor stimulation. Compared to PE, the 2-, 3-, and 3,5- methoxy substituted tolazoline derivatives caused 22, 46, and 72% PA labelling. The above values are all in reasonable accord with the rank order or agonist activity shown in maximum contractile responses. The results of this investigation suggest that partial agonists stimulate ..cap alpha.. receptor coupling events at a level which is quantitatively comparable to their potencies in causing contraction of arterial smooth muscle.

  10. Synthesis and SAR of aminothiazole fused benzazepines as selective dopamine D2 partial agonists.

    PubMed

    Urbanek, Rebecca A; Xiong, Hui; Wu, Ye; Blackwell, William; Steelman, Gary; Rosamond, Jim; Wesolowski, Steven S; Campbell, James B; Zhang, Minli; Brockel, Becky; Widzowski, Daniel V

    2013-01-15

    Dopamine (D(2)) partial agonists (D2PAs) have been regarded as a potential treatment for schizophrenia patients with expected better side effect profiles than currently marketed antipsychotics. Herein we report the synthesis and SAR of a series of aminothiazole fused benzazepines as selective D(2) partial agonists. These compounds have good selectivity, CNS drug-like properties and tunable D(2) partial agonism. One of the key compounds, 8h, has good in vitro/in vivo ADME characteristics, and is active in a rat amphetamine-induced locomotor activity model. PMID:23237836

  11. Identification of PPARgamma Partial Agonists of Natural Origin (I): Development of a Virtual Screening Procedure and In Vitro Validation

    PubMed Central

    Guasch, Laura; Sala, Esther; Castell-Auví, Anna; Cedó, Lidia; Liedl, Klaus R.; Wolber, Gerhard; Muehlbacher, Markus; Mulero, Miquel; Pinent, Montserrat; Ardévol, Anna; Valls, Cristina; Pujadas, Gerard; Garcia-Vallvé, Santiago

    2012-01-01

    Background Although there are successful examples of the discovery of new PPARγ agonists, it has recently been of great interest to identify new PPARγ partial agonists that do not present the adverse side effects caused by PPARγ full agonists. Consequently, the goal of this work was to design, apply and validate a virtual screening workflow to identify novel PPARγ partial agonists among natural products. Methodology/Principal Findings We have developed a virtual screening procedure based on structure-based pharmacophore construction, protein-ligand docking and electrostatic/shape similarity to discover novel scaffolds of PPARγ partial agonists. From an initial set of 89,165 natural products and natural product derivatives, 135 compounds were identified as potential PPARγ partial agonists with good ADME properties. Ten compounds that represent ten new chemical scaffolds for PPARγ partial agonists were selected for in vitro biological testing, but two of them were not assayed due to solubility problems. Five out of the remaining eight compounds were confirmed as PPARγ partial agonists: they bind to PPARγ, do not or only moderately stimulate the transactivation activity of PPARγ, do not induce adipogenesis of preadipocyte cells and stimulate the insulin-induced glucose uptake of adipocytes. Conclusions/Significance We have demonstrated that our virtual screening protocol was successful in identifying novel scaffolds for PPARγ partial agonists. PMID:23226391

  12. Ligand-based receptor tyrosine kinase partial agonists: New paradigm for cancer drug discovery?

    PubMed Central

    Riese, David J.

    2010-01-01

    Introduction Receptor tyrosine kinases (RTKs) are validated targets for oncology drug discovery and several RTK antagonists have been approved for the treatment of human malignancies. Nonetheless, the discovery and development of RTK antagonists has lagged behind the discovery and development of agents that target G-protein coupled receptors. In part, this is because it has been difficult to discover analogs of naturally-occurring RTK agonists that function as antagonists. Areas covered Here we describe ligands of ErbB receptors that function as partial agonists for these receptors, thereby enabling these ligands to antagonize the activity of full agonists for these receptors. We provide insights into the mechanisms by which these ligands function as antagonists. We discuss how information concerning these mechanisms can be translated into screens for novel small molecule- and antibody-based antagonists of ErbB receptors and how such antagonists hold great potential as targeted cancer chemotherapeutics. Expert opinion While there have been a number of important key findings into this field, the identification of the structural basis of ligand functional specificity is still of the greatest importance. While it is true that, with some notable exceptions, peptide hormones and growth factors have not proven to be good platforms for oncology drug discovery; addressing the fundamental issues of antagonistic partial agonists for receptor tyrosine kinases has the potential to steer oncology drug discovery in new directions. Mechanism based approaches are now emerging to enable the discovery of RTK partial agonists that may antagonize both agonist-dependent and –independent RTK signaling and may hold tremendous promise as targeted cancer chemotherapeutics. PMID:21532939

  13. Nalmefene induced elevation in serum prolactin in normal human volunteers: partial kappa opioid agonist activity?

    PubMed

    Bart, Gavin; Schluger, James H; Borg, Lisa; Ho, Ann; Bidlack, Jean M; Kreek, Mary Jeanne

    2005-12-01

    In humans, mu- and kappa-opioid receptor agonists lower tuberoinfundibular dopamine, which tonically inhibits prolactin release. Serum prolactin is, therefore, a useful biomarker for tuberoinfundibular dopamine. The current study evaluated the unexpected finding that the relative mu- and kappa-opioid receptor selective antagonist nalmefene increases serum prolactin, indicating possible kappa-opioid receptor agonist activity. In all, 33 healthy human volunteers (14 female) with no history of psychiatric or substance use disorders received placebo, nalmefene 3 mg, and nalmefene 10 mg in a double-blind manner. Drugs were administered between 0900 and 1000 on separate days via 2-min intravenous infusion. Serial blood specimens were analyzed for serum levels of prolactin. Additional in vitro studies of nalmefene binding to cloned human kappa-opioid receptors transfected into Chinese hamster ovary cells were performed. Compared to placebo, both doses of nalmefene caused significant elevations in serum prolactin (p<0.002 for nalmefene 3 mg and p<0.0005 for nalmefene 10 mg). There was no difference in prolactin response between the 3 and 10 mg doses. Binding assays confirmed nalmefene's affinity at kappa-opioid receptors and antagonism of mu-opioid receptors. [(35)S]GTPgammaS binding studies demonstrated that nalmefene is a full antagonist at mu-opioid receptors and has partial agonist properties at kappa-opioid receptors. Elevations in serum prolactin following nalmefene are consistent with this partial agonist effect at kappa-opioid receptors. As kappa-opioid receptor activation can lower dopamine in brain regions important to the persistence of alcohol and cocaine dependence, the partial kappa agonist effect of nalmefene may enhance its therapeutic efficacy in selected addictive diseases.

  14. Thienorphine is a potent long-acting partial opioid agonist: a comparative study with buprenorphine.

    PubMed

    Yu, Gang; Yue, Yong-Juan; Cui, Meng-Xun; Gong, Ze-Hui

    2006-07-01

    A strategy in the development of new treatment for opioid addiction is to find partial opioid agonists with properties of long duration of action and high oral bioavailability. In a search for such compounds, thienorphine, a novel analog of buprenorphine, was synthesized. Here, we reported that, like buprenorphine, thienorphine bound potently and nonselectively to mu-, delta-, and kappa-opioid receptors stably expressed in CHO (Chinese hamster ovary) cells and behaved as a partial agonist at mu-opioid receptor. However, some differences were observed between the pharmacological profiles of thienorphine and buprenorphine. In vitro, thienorphine was more potent than buprenorphine in inhibiting [3H]diprenorphine and stimulating guanosine 5'-O-(3-[35S]thio)triphosphate binding to rat mu-opioid receptor stably expressed in CHO cells. In vivo, thienorphine exhibited a less potent but more efficacious antinociceptive effect with an ED50 value of 0.25 mg/kg s.c. and more potent antimorphine effect with an ED50 value of 0.64 mg/kg intragastric, compared with buprenorphine. Additionally, the bioavailability of thienorphine was greatly higher than that of buprenorphine after oral administration. Moreover, compared with buprenorphine, thienorphine showed a similar long-lasting antinociceptive effect but a much longer antagonism of morphine-induced lethality (more than 15 days). These results indicate that thienorphine is a potent, long-acting partial opioid agonist with high oral bioavailability and may have possible application in treating addiction. PMID:16569757

  15. Nicotinic Partial Agonists Varenicline and Sazetidine-A Have Differential Effects on Affective Behavior

    PubMed Central

    Turner, Jill R.; Castellano, Laura M.

    2010-01-01

    Clinical and preclinical studies suggest that nicotinic acetylcholine receptors are involved in affective disorders; therefore, the potential therapeutic value of nicotinic partial agonists as treatments of these disorders is of growing interest. This study evaluated the effects of acute and chronic administration of nicotine and the α4β2 nicotinic partial agonists varenicline and sazetidine-A in mouse models of anxiety and depression. Acutely, only nicotine and varenicline had anxiolytic effects in the marble-burying test and in the novelty-induced hypophagia (NIH) test. In contrast, in animal models of antidepressant efficacy, such as the forced swim and the tail suspension test, only acute sazetidine-A had significant antidepressant-like effects. The NIH test provides an anxiety-related measure that is sensitive to the effects of chronic but not acute antidepressant treatment. Chronic nicotine and chronic sazetidine-A treatment were effective in this paradigm, but varenicline was ineffective. These results suggest that the partial agonists varenicline and sazetidine-A may have diverse therapeutic benefits in affective disorders. PMID:20435920

  16. RXR partial agonist produced by side chain repositioning of alkoxy RXR full agonist retains antitype 2 diabetes activity without the adverse effects.

    PubMed

    Kawata, Kohei; Morishita, Ken-ichi; Nakayama, Mariko; Yamada, Shoya; Kobayashi, Toshiki; Furusawa, Yuki; Arimoto-Kobayashi, Sakae; Oohashi, Toshitaka; Makishima, Makoto; Naitou, Hirotaka; Ishitsubo, Erika; Tokiwa, Hiroaki; Tai, Akihiro; Kakuta, Hiroki

    2015-01-22

    We previously reported RXR partial agonist CBt-PMN (1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)-1H-benzotriazole-5-carboxylic acid: 5, EC50 = 143 nM, Emax = 75%), which showed a potent glucose-lowering effect without causing serious adverse effects. However, it remains important to elucidate the structural requirements for RXR efficacy and the glucose-lowering effect because RXR-permissive heterodimers such as PPAR/RXR or LXR/RXR are reported to be activated differently depending upon the chemical structure of RXR agonists. In this work, we show that an RXR partial agonist, NEt-4IB (6-[ethyl-(4-isobutoxy-3-isopropylphenyl)amino]pyridine-3-carboxylic acid: 8b, EC50 = 169 nM, Emax = 55%), can be obtained simply by repositioning the side chains (interchanging the isobutoxy and isopropoxy groups) at the hydrophobic moiety of the RXR full agonist NEt-3IB (6-[ethyl-(3-isobutoxy-4-isopropylphenyl)amino]pyridine-3-carboxylic acid: 7b, EC50 = 19 nM). NEt-4IB (8b) showed antitype 2 diabetes activity without the above side effects upon repeated oral administration to mice at 10 mg/kg/day, similarly to 5. PMID:25486327

  17. Structural Investigation for Optimization of Anthranilic Acid Derivatives as Partial FXR Agonists by in Silico Approaches

    PubMed Central

    Chen, Meimei; Yang, Xuemei; Lai, Xinmei; Kang, Jie; Gan, Huijuan; Gao, Yuxing

    2016-01-01

    In this paper, a three level in silico approach was applied to investigate some important structural and physicochemical aspects of a series of anthranilic acid derivatives (AAD) newly identified as potent partial farnesoid X receptor (FXR) agonists. Initially, both two and three-dimensional quantitative structure activity relationship (2D- and 3D-QSAR) studies were performed based on such AAD by a stepwise technology combined with multiple linear regression and comparative molecular field analysis. The obtained 2D-QSAR model gave a high predictive ability (R2train = 0.935, R2test = 0.902, Q2LOO = 0.899). It also uncovered that number of rotatable single bonds (b_rotN), relative negative partial charges (RPC−), oprea's lead-like (opr_leadlike), subdivided van der Waal’s surface area (SlogP_VSA2) and accessible surface area (ASA) were important features in defining activity. Additionally, the derived3D-QSAR model presented a higher predictive ability (R2train = 0.944, R2test = 0.892, Q2LOO = 0.802). Meanwhile, the derived contour maps from the 3D-QSAR model revealed the significant structural features (steric and electronic effects) required for improving FXR agonist activity. Finally, nine newly designed AAD with higher predicted EC50 values than the known template compound were docked into the FXR active site. The excellent molecular binding patterns of these molecules also suggested that they can be robust and potent partial FXR agonists in agreement with the QSAR results. Overall, these derived models may help to identify and design novel AAD with better FXR agonist activity. PMID:27070594

  18. GABAA receptor partial agonists and antagonists: structure, binding mode, and pharmacology.

    PubMed

    Krall, Jacob; Balle, Thomas; Krogsgaard-Larsen, Niels; Sørensen, Troels E; Krogsgaard-Larsen, Povl; Kristiansen, Uffe; Frølund, Bente

    2015-01-01

    A high degree of structural heterogeneity of the GABAA receptors (GABAARs) has been revealed and is reflected in multiple receptor subtypes. The subunit composition of GABAAR subtypes is believed to determine their localization relative to the synapses and adapt their functional properties to the local temporal pattern of GABA impact, enabling phasic or tonic inhibition. Specific GABAAR antagonists are essential tools for physiological and pharmacological elucidation of the different type of GABAAR inhibition. However, distinct selectivity among the receptor subtypes (populations) has been shown for only a few orthosteric ligands. Still, these examples show that it is indeed possible to obtain orthosteric subtype selectivity and they serve as models for further development in the orthosteric GABAAR ligand area. This review presents the very few existing structural classes of orthosteric GABAAR antagonists and describes the development of potent antagonists from partial agonists originally derived from the potent GABAAR agonist muscimol. In this process, several heterocyclic aromatic systems have been used in combination with structural models in order to map the orthosteric binding site and to reveal structural details to be used for obtaining potency and subtype selectivity. The challenges connected to functional characterization of orthosteric GABAAR partial agonists and antagonists, especially with regard to GABAAR stoichiometry and alternative binding sites are discussed. GABAAR antagonists have been essential in defining the tonic current but both remaining issues concerning the GABAARs involved and the therapeutic possibilities of modulating tonic inhibition underline the need for GABAAR antagonists with improved selectivity.

  19. Selective Human Estrogen Receptor Partial Agonists (ShERPAs) for Tamoxifen-Resistant Breast Cancer.

    PubMed

    Xiong, Rui; Patel, Hitisha K; Gutgesell, Lauren M; Zhao, Jiong; Delgado-Rivera, Loruhama; Pham, Thao N D; Zhao, Huiping; Carlson, Kathryn; Martin, Teresa; Katzenellenbogen, John A; Moore, Terry W; Tonetti, Debra A; Thatcher, Gregory R J

    2016-01-14

    Almost 70% of breast cancers are estrogen receptor α (ERα) positive. Tamoxifen, a selective estrogen receptor modulator (SERM), represents the standard of care for many patients; however, 30-50% develop resistance, underlining the need for alternative therapeutics. Paradoxically, agonists at ERα such as estradiol (E2) have demonstrated clinical efficacy in patients with heavily treated breast cancer, although side effects in gynecological tissues are unacceptable. A drug that selectively mimics the actions of E2 in breast cancer therapy but minimizes estrogenic effects in other tissues is a novel, therapeutic alternative. We hypothesized that a selective human estrogen receptor partial agonist (ShERPA) at ERα would provide such an agent. Novel benzothiophene derivatives with nanomolar potency in breast cancer cell cultures were designed. Several showed partial agonist activity, with potency of 0.8-76 nM, mimicking E2 in inhibiting growth of tamoxifen-resistant breast cancer cell lines. Three ShERPAs were tested and validated in xenograft models of endocrine-independent and tamoxifen-resistant breast cancer, and in contrast to E2, ShERPAs did not cause significant uterine growth.

  20. Selective Human Estrogen Receptor Partial Agonists (ShERPAs) for Tamoxifen-Resistant Breast Cancer.

    PubMed

    Xiong, Rui; Patel, Hitisha K; Gutgesell, Lauren M; Zhao, Jiong; Delgado-Rivera, Loruhama; Pham, Thao N D; Zhao, Huiping; Carlson, Kathryn; Martin, Teresa; Katzenellenbogen, John A; Moore, Terry W; Tonetti, Debra A; Thatcher, Gregory R J

    2016-01-14

    Almost 70% of breast cancers are estrogen receptor α (ERα) positive. Tamoxifen, a selective estrogen receptor modulator (SERM), represents the standard of care for many patients; however, 30-50% develop resistance, underlining the need for alternative therapeutics. Paradoxically, agonists at ERα such as estradiol (E2) have demonstrated clinical efficacy in patients with heavily treated breast cancer, although side effects in gynecological tissues are unacceptable. A drug that selectively mimics the actions of E2 in breast cancer therapy but minimizes estrogenic effects in other tissues is a novel, therapeutic alternative. We hypothesized that a selective human estrogen receptor partial agonist (ShERPA) at ERα would provide such an agent. Novel benzothiophene derivatives with nanomolar potency in breast cancer cell cultures were designed. Several showed partial agonist activity, with potency of 0.8-76 nM, mimicking E2 in inhibiting growth of tamoxifen-resistant breast cancer cell lines. Three ShERPAs were tested and validated in xenograft models of endocrine-independent and tamoxifen-resistant breast cancer, and in contrast to E2, ShERPAs did not cause significant uterine growth. PMID:26681208

  1. Partial Agonist and Antagonist Activities of a Mutant Scorpion β-Toxin on Sodium Channels*

    PubMed Central

    Karbat, Izhar; Ilan, Nitza; Zhang, Joel Z.; Cohen, Lior; Kahn, Roy; Benveniste, Morris; Scheuer, Todd; Catterall, William A.; Gordon, Dalia; Gurevitz, Michael

    2010-01-01

    Scorpion β-toxin 4 from Centruroides suffusus suffusus (Css4) enhances the activation of voltage-gated sodium channels through a voltage sensor trapping mechanism by binding the activated state of the voltage sensor in domain II and stabilizing it in its activated conformation. Here we describe the antagonist and partial agonist properties of a mutant derivative of this toxin. Substitution of seven different amino acid residues for Glu15 in Css4 yielded toxin derivatives with both increased and decreased affinities for binding to neurotoxin receptor site 4 on sodium channels. Css4E15R is unique among this set of mutants in that it retained nearly normal binding affinity but lost its functional activity for modification of sodium channel gating in our standard electrophysiological assay for voltage sensor trapping. More detailed analysis of the functional effects of Css4E15R revealed weak voltage sensor trapping activity, which was very rapidly reversed upon repolarization and therefore was not observed in our standard assay of toxin effects. This partial agonist activity of Css4E15R is observed clearly in voltage sensor trapping assays with brief (5 ms) repolarization between the conditioning prepulse and the test pulse. The effects of Css4E15R are fit well by a three-step model of toxin action involving concentration-dependent toxin binding to its receptor site followed by depolarization-dependent activation of the voltage sensor and subsequent voltage sensor trapping. Because it is a partial agonist with much reduced efficacy for voltage sensor trapping, Css4E15R can antagonize the effects of wild-type Css4 on sodium channel activation and can prevent paralysis by Css4 when injected into mice. Our results define the first partial agonist and antagonist activities for scorpion toxins and open new avenues of research toward better understanding of the structure-function relationships for toxin action on sodium channel voltage sensors and toward potential toxin

  2. PPARγ partial agonist GQ-16 strongly represses a subset of genes in 3T3-L1 adipocytes

    SciTech Connect

    Milton, Flora Aparecida; Cvoro, Aleksandra; Amato, Angelica A.; Sieglaff, Douglas H.; Filgueira, Carly S.; Arumanayagam, Anithachristy Sigamani; Caro Alves de Lima, Maria do; Rocha Pitta, Ivan; Assis Rocha Neves, Francisco de; Webb, Paul

    2015-08-28

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists that improve insulin resistance but trigger side effects such as weight gain, edema, congestive heart failure and bone loss. GQ-16 is a PPARγ partial agonist that improves glucose tolerance and insulin sensitivity in mouse models of obesity and diabetes without inducing weight gain or edema. It is not clear whether GQ-16 acts as a partial agonist at all PPARγ target genes, or whether it displays gene-selective actions. To determine how GQ-16 influences PPARγ activity on a gene by gene basis, we compared effects of rosiglitazone (Rosi) and GQ-16 in mature 3T3-L1 adipocytes using microarray and qRT-PCR. Rosi changed expression of 1156 genes in 3T3-L1, but GQ-16 only changed 89 genes. GQ-16 generally showed weak effects upon Rosi induced genes, consistent with partial agonist actions, but a subset of modestly Rosi induced and strongly repressed genes displayed disproportionately strong GQ-16 responses. PPARγ partial agonists MLR24 and SR1664 also exhibit disproportionately strong effects on transcriptional repression. We conclude that GQ-16 displays a continuum of weak partial agonist effects but efficiently represses some negatively regulated PPARγ responsive genes. Strong repressive effects could contribute to physiologic actions of GQ-16. - Highlights: • GQ-16 is an insulin sensitizing PPARγ ligand with reduced harmful side effects. • GQ-16 displays a continuum of weak partial agonist activities at PPARγ-induced genes. • GQ-16 exerts strong repressive effects at a subset of genes. • These inhibitor actions should be evaluated in models of adipose tissue inflammation.

  3. Fragmentation of GW4064 led to a highly potent partial farnesoid X receptor agonist with improved drug-like properties.

    PubMed

    Flesch, Daniel; Gabler, Matthias; Lill, Andreas; Gomez, Roberto Carrasco; Steri, Ramona; Schneider, Gisbert; Stark, Holger; Schubert-Zsilavecz, Manfred; Merk, Daniel

    2015-07-01

    The ligand activated transcription factor farnesoid X receptor (FXR) is a crucial regulator of several metabolic and inflammatory pathways and its activation by agonistic ligands seems a valuable therapeutic approach for many disorders. Most known non-steroidal FXR agonists however, have limitations that hinder their clinical development and novel FXR ligands are required. Evaluation of the co-crystal structures of the widely used FXR agonist GW4064 and related compounds in complex with the FXR ligand binding domain indicated that their disubstituted isoxazole moiety is especially relevant for FXR activation. By investigation of GW4064-fragments missing the aromatic tail, we discovered a highly potent and soluble partial FXR agonist (14, ST-1892) as well as a fluorescent FXR ligand (15) as potential pharmacological tool.

  4. The acid metabolite of ZD7114 is a partial agonist of lipolysis mediated by the rat beta 3-adrenoceptor.

    PubMed

    Mayers, R M; Quayle, S P; Thompson, A J; Grant, T L; Holloway, B R

    1996-01-11

    Experiments were performed to characterise the lipolytic effects of the acid metabolite, ZM215001, ((S)-4-[2-hydroxy-3-phenoxy-propylamino-ethoxy] phenoxyacetic acid) of the putative beta 3-adrenoceptor agonist, ZD7114 ((S)-4-[2-hydroxy-3-phenoxy-propylamino-ethoxy]-N-(2-methoxyethyl) phenoxyacetamide) on isolated rat white adipocytes. ZM215001 was used for these studies since it is the predominant moiety after in vivo administration of ZD7114. The agonist properties of ZM215001 were assessed in comparison to the standard nonselective beta-adrenoceptor agonist (+/-)-isoprenaline and the beta 3-adrenoceptor-selective agonist BRL 37344. Isoprenaline, BRL 37344 and ZM215001 all stimulated the rate of free fatty acid release from isolated adipocytes with the order of potency being BRL > isoprenaline > ZM215001. The maximum effect of BRL 37344 was equivalent to that of isoprenaline, but ZM215001 achieved only 30% of the maximum isoprenaline response. ZM215001 competitively antagonised the lipolytic response to BRL 37344 (pA2 = 7.26), whereas the agonist effects of BRL 37344 were not antagonised competitively by the selective antagonists ICI 118551 and CGP 20712A, at concentrations which would be expected to block beta 1- and beta 2-adrenoceptors respectively. These results indicate that ZM215001 has low intrinsic activity at the rat adipocyte beta 3-adrenoceptor, and is a partial agonist of lipolysis in rat white adipocytes. PMID:8720584

  5. p-( sup 125 I)iodoclonidine is a partial agonist at the alpha 2-adrenergic receptor

    SciTech Connect

    Gerhardt, M.A.; Wade, S.M.; Neubig, R.R. )

    1990-08-01

    The binding properties of p-(125I)iodoclonidine (( 125I)PIC) to human platelet membranes and the functional characteristics of PIC are reported. (125I)PIC bound rapidly and reversibly to platelet membranes, with a first-order association rate constant (kon) at room temperature of 8.0 +/- 2.7 x 10(6) M-1 sec-1 and a dissociation rate constant (koff) of 2.0 +/- 0.8 x 10(-3) sec-1. Scatchard plots of specific (125I)PIC binding (0.1-5 nM) were linear, with a Kd of 1.2 +/- 0.1 nM. (125I)PIC bound to the same number of high affinity sites as the alpha 2-adrenergic receptor (alpha 2-AR) full agonist (3H) bromoxidine (UK14,304), which represented approximately 40% of the sites bound by the antagonist (3H)yohimbine. Guanosine 5'-(beta, gamma-imido)triphosphate greatly reduced the amount of (125I)PIC bound (greater than 80%), without changing the Kd of the residual binding. In competition experiments, the alpha 2-AR-selective ligands yohimbine, bromoxidine, oxymetazoline, clonidine, p-aminoclonidine, (-)-epinephrine, and idazoxan all had Ki values in the low nanomolar range, whereas prazosin, propranolol, and serotonin yielded Ki values in the micromolar range. Epinephrine competition for (125I)PIC binding was stereoselective. Competition for (3H)bromoxidine binding by PIC gave a Ki of 1.0 nM (nH = 1.0), whereas competition for (3H)yohimbine could be resolved into high and low affinity components, with Ki values of 3.7 and 84 nM, respectively. PIC had minimal agonist activity in inhibiting adenylate cyclase in platelet membranes, but it potentiated platelet aggregation induced by ADP with an EC50 of 1.5 microM. PIC also inhibited epinephrine-induced aggregation, with an IC50 of 5.1 microM. Thus, PIC behaves as a partial agonist in a human platelet aggregation assay. (125I)PIC binds to the alpha 2B-AR in NG-10815 cell membranes with a Kd of 0.5 +/- 0.1 nM.

  6. The pharmacological properties of the imidazobenzodiazepine, FG 8205, a novel partial agonist at the benzodiazepine receptor

    PubMed Central

    Tricklebank, M.D.; Honoré, T.; Iversen, S.D.; Kemp, J.A.; Knight, A.R.; Marshall, G.R.; Rupniak, N.M.J.; Singh, L.; Tye, S.; Watjen, F.; Wong, E.H.F.

    1990-01-01

    1 The pharmacological properties of the benzodiazepine receptor ligand, FG 8205 (7-chloro-5,6-dihydro-5-methyl-6-oxo-3-(5-isopropyl-1,2,4-oxadiazol-3-yl)-4H- imidazol[1,5a][1,4]benzodiazepine) have been examined. 2 FG 8205 potently displaced [3H]-flumazenil binding in rat cortical membranes with a K1 of 3.3 nM, but was inactive at 13 neurotransmitter recognition sites. 3 Consistent with a partial agonist profile, the affinity of FG 8205 for the benzodiazepine recognition site was increased in the presence of γ-aminobutyric acid (GABA, 300μM) by a degree (—log [IC50 in the presence of GABA/IC50 alone] = 0.34) significantly less than found for diazepam (0.46). FG 8205 also potentiated the inhibitory potency of the GABAA-receptor agonist, isoguvacine, on the hippocampal CA1 population spike and, again, the maximum shift (—log dose-ratio = 0.2) was significantly less than that seen with diazepam (0.4). 4 In anticonvulsant studies, the ED50 doses of FG 8205 and diazepam needed to antagonize seizures induced by pentylenetetrazol (PTZ) or by sound in audiogenic seizure prone mice were similar with values of 0.2–0.3 mgkg-1, i.p. However, even high doses of FG 8205 (50 mgkg-1) did not protect against seizures induced by electroshock. 5 FG 8205 released responding suppressed by footshock in a rat operant conditioned emotional response task over the dose range 0.5–50 mgkg-1 (i.p.). Similar doses of FG 8205 had a marked taming effect in cynomolgus monkeys. However, measures of sedation and ataxia (as measured by rotarod in the mouse, climbing behaviour in the rat, and by scoring arousal and co-ordination in primates) were slight and only transiently affected by FG 8205, and FG 8205 significantly antagonized the rotarod performance deficit induced by diazepam in the mouse. 6 While the potentiation by FG 8205 of the response to isoguvacine in the rat hippocampal slice and the anxiolytic-like effects of the compound in both rats and primates were reversed by the

  7. Pharmacological properties of AC-3933, a novel benzodiazepine receptor partial inverse agonist.

    PubMed

    Hashimoto, T; Kiyoshi, T; Kohayakawa, H; Iwamura, Y; Yoshida, N

    2014-01-01

    We investigated in this study the pharmacological properties of AC-3933 (5-(3-methoxyphenyl)-3-(5-methyl-1,2,4-oxadiazol-3-yl)-1,6-naphthyridin-2(1H)-one), a novel benzodiazepine receptor (BzR) partial inverse agonist. AC-3933 potently inhibited [3H]-flumazenil binding to rat whole brain membrane with a Ki value of 5.15 ± 0.39 nM and a GABA ratio of 0.84 ± 0.03. AC-3933 exhibited almost no affinity for the other receptors, transporters and ion channels used in this study. In addition, AC-3933, in the presence of GABA (1 μM), gradually but significantly increased [³⁵S] tert-butylbicyclophosphorothionate binding to rat cortical membrane to 117.1% of the control (maximum increase ratio) at 3000 nM. However, this increase reached a plateau at 30 nM with hardly any change at a concentration range of 100-3000 nM (from 115.2% to 117.1%). AC-3933 (0.1-10 μM) significantly enhanced KCl-evoked acetylcholine (ACh) release from rat hippocampal slices in a concentration-dependent manner. Moreover, in vivo brain microdialysis showed that intragastric administration of AC-3933 at the dose of 10 mg/kg significantly increased extracellular ACh levels in the hippocampus of freely moving rats (area under the curve (AUC₀₋₂ h) of ACh level; 288.3% of baseline). These results indicate that AC-3933, a potent and selective BzR inverse agonist with low intrinsic activity, might be useful in the treatment of cognitive disorders associated with degeneration of the cholinergic system.

  8. Differential pathway coupling efficiency of the activated insulin receptor drives signaling selectivity by xmeta, an allosteric partial agonist antibody

    Technology Transfer Automated Retrieval System (TEKTRAN)

    XMetA, an anti-insulin receptor (IR) monoclonal antibody, is an allosteric partial agonist of the IR. We have previously reported that XMetA activates the “metabolic-biased” Akt kinase signaling pathway while having little or no effect on the “mitogenic” MAPK signaling pathwayof ERK 1/2. To inves...

  9. A FLEXIBLE APPROACH FOR EVALUATING FIXED RATIO MIXTURES OF FULL AND PARTIAL AGONISTS FOR MIXTURES OF MANY CHEMICALS.

    EPA Science Inventory

    Detecting interaction in chemical mixtures can be complicated by differences in the shapes of the dose-response curves of the individual components (e.g. mixtures of full and partial agonists with differing response maxima). We present an analysis scheme where flexible single che...

  10. Pseudoginsenoside F11, a Novel Partial PPARγ Agonist, Promotes Adiponectin Oligomerization and Secretion in 3T3-L1 Adipocytes

    PubMed Central

    Wu, Guoyu; Yi, Junyang; Liu, Ling; Wang, Pengcheng; Zhang, Zhijie

    2013-01-01

    PPARγ is a nuclear hormone receptor that functions as a master regulator of adipocyte differentiation and development. Full PPARγ agonists, such as the thiazolidinediones (TZDs), have been widely used to treat type 2 diabetes. However, they are characterized by undesirable side effects due to their strong agonist activities. Pseudoginsenoside F11 (p-F11) is an ocotillol-type ginsenoside isolated from Panax quinquefolium L. (American ginseng). In this study, we found that p-F11 activates PPARγ with modest adipogenic activity. In addition, p-F11 promotes adiponectin oligomerization and secretion in 3T3-L1 adipocytes. We also found that p-F11 inhibits obesity-linked phosphorylation of PPARγ at Ser-273 by Cdk5. Therefore, p-F11 is a novel partial PPARγ agonist, which might have the potential to be developed as a new PPARγ-targeted therapeutics for type 2 diabetes. PMID:24454336

  11. Identification of PPARgamma Partial Agonists of Natural Origin (II): In Silico Prediction in Natural Extracts with Known Antidiabetic Activity

    PubMed Central

    Guasch, Laura; Sala, Esther; Mulero, Miquel; Valls, Cristina; Salvadó, Maria Josepa; Pujadas, Gerard; Garcia-Vallvé, Santiago

    2013-01-01

    Background Natural extracts have played an important role in the prevention and treatment of diseases and are important sources for drug discovery. However, to be effectively used in these processes, natural extracts must be characterized through the identification of their active compounds and their modes of action. Methodology/Principal Findings From an initial set of 29,779 natural products that are annotated with their natural source and using a previously developed virtual screening procedure (carefully validated experimentally), we have predicted as potential peroxisome proliferators-activated receptor gamma (PPARγ) partial agonists 12 molecules from 11 extracts known to have antidiabetic activity. Six of these molecules are similar to molecules with described antidiabetic activity but whose mechanism of action is unknown. Therefore, it is plausible that these 12 molecules could be the bioactive molecules responsible, at least in part, for the antidiabetic activity of the extracts containing them. In addition, we have also identified as potential PPARγ partial agonists 10 molecules from 16 plants with undescribed antidiabetic activity but that are related (i.e., they are from the same genus) to plants with known antidiabetic properties. None of the 22 molecules that we predict as PPARγ partial agonists show chemical similarity with a group of 211 known PPARγ partial agonists obtained from the literature. Conclusions/Significance Our results provide a new hypothesis about the active molecules of natural extracts with antidiabetic properties and their mode of action. We also suggest plants with undescribed antidiabetic activity that may contain PPARγ partial agonists. These plants represent a new source of potential antidiabetic extracts. Consequently, our work opens the door to the discovery of new antidiabetic extracts and molecules that can be of use, for instance, in the design of new antidiabetic drugs or functional foods focused towards the

  12. Dopamine D1 receptors: efficacy of full (dihydrexidine) vs. partial (SKF38393) agonists in primates vs. rodents.

    PubMed

    Watts, V J; Lawler, C P; Gilmore, J H; Southerland, S B; Nichols, D E; Mailman, R B

    1993-09-28

    Although partial efficacy dopamine D1 receptor agonists have little therapeutic benefit in parkinsonism, the first high potency, full efficacy dopamine D1 receptor agonist dihydrexidine recently has been shown to have profound antiparkinsonian effects. One reason for the greater antiparkinsonian effects of dihydrexidine vs. SKF38393 might be that SKF38393, while a partial dopamine D1 receptor agonist in rodent striatal preparations, has virtually no agonist activity in monkey striatum (Pifl et al., 1991, Eur. J. Pharmacol. 202, 273). To explore this hypothesis, we compared the dopamine D1 receptor affinity and efficacy of dihydrexidine and SKF38393 in striatum from rat and monkey. In vitro binding studies using membranes from putamen of adult rhesus monkeys demonstrated that dihydrexidine competed for dopamine D1 receptors (labeled with [3H]SCH23390) with high potency (IC50 = 20 nM vs. ca. 10 nM in rat brain). SKF38393 was about 4-fold less potent than dihydrexidine in both monkey and rat brain. The in vitro functional activity of these drugs was assessed by their ability to stimulate adenylate cyclase activity in tissue homogenates. Dihydrexidine was of full efficacy (relative to dopamine) in stimulating cAMP synthesis in both monkey and rat. SKF38393 was only a partial efficacy agonist in both rat striatum and monkey putamen, but contrary to the original hypothesis, it had the same efficacy (ca. 40% relative to dihydrexidine) in membranes from both species. Interestingly, greater between-subject variation was found in the stimulation produced by SKF38393 in primate compared to rat brain, although the basis for this variation is unclear.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. The NMDA receptor partial agonist d-cycloserine does not enhance motor learning

    PubMed Central

    Günthner, Jan; Scholl, Jacqueline; Favaron, Elisa; Harmer, Catherine J; Johansen-Berg, Heidi; Reinecke, Andrea

    2016-01-01

    Rationale: There has recently been increasing interest in pharmacological manipulations that could potentially enhance exposure-based cognitive behaviour therapy for anxiety disorders. One such medication is the partial NMDA agonist d-cycloserine. It has been suggested that d-cycloserine enhances cognitive behaviour therapy by making learning faster. While animal studies have supported this view of the drug accelerating learning, evidence in human studies has been mixed. We therefore designed an experiment to measure the effects of d-cycloserine on human motor learning. Methods: Fifty-four healthy human volunteers were randomly assigned to a single dose of 250mg d-cycloserine versus placebo in a double-blind design. They then performed a motor sequence learning task. Results: D-cycloserine did not increase the speed of motor learning or the overall amount learnt. However, we noted that participants on d-cycloserine tended to respond more carefully (shifting towards slower, but more correct responses). Conclusion: The results suggest that d-cycloserine does not exert beneficial effects on psychological treatments via mechanisms involved in motor learning. Further studies are needed to clarify the influence on other cognitive mechanisms. PMID:27436230

  14. The neurobiological basis for partial agonist treatment of nicotine dependence: varenicline.

    PubMed

    Foulds, J

    2006-05-01

    Smoking cessation has major health benefits for men and women of all ages. However, most smokers are addicted to nicotine and fail repeatedly in their attempts to quit. Stimulation of nicotinic receptors in the brain, particularly alpha4beta2 receptors, releases dopamine in the meso-limbic area of the brain and is reinforcing. Nicotine abstinence reduces dopamine release, and this is associated with withdrawal symptoms and craving for nicotine. Eight current pharmacotherapies--bupropion, nortriptyline, clonidine and nicotine patch, gum, inhaler, lozenge and nasal spray--are moderately effective aids to smoking cessation. Each is significantly better than placebo, but approximately 80% of patients using one of these medications return to smoking within the first year. Varenicline, a specific alpha4beta2 nicotinic receptor partial agonist, is a new pharmacotherapy that stimulates dopamine and simultaneously blocks nicotine receptors. Phase II and III trials have yielded promising results suggesting that varenicline could be an important advance in the treatment of nicotine dependence. PMID:16700857

  15. Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) γ activators and pan-PPAR partial agonists.

    PubMed

    Liberato, Marcelo Vizoná; Nascimento, Alessandro S; Ayers, Steven D; Lin, Jean Z; Cvoro, Aleksandra; Silveira, Rodrigo L; Martínez, Leandro; Souza, Paulo C T; Saidemberg, Daniel; Deng, Tuo; Amato, Angela Angelica; Togashi, Marie; Hsueh, Willa A; Phillips, Kevin; Palma, Mário Sérgio; Neves, Francisco A R; Skaf, Munir S; Webb, Paul; Polikarpov, Igor

    2012-01-01

    Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) γ to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPARγ ligand binding domain (LBD) and found that the ligand binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8-C10) bind the PPARγ LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPARγ LBD, stronger partial agonists with full length PPARγ and exhibit full blockade of PPARγ phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPARγ also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/β-sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPARγ modulators with useful clinical profiles among natural products.

  16. Opioid partial agonist buprenorphine dampens responses to psychosocial stress in humans

    PubMed Central

    Bershad, Anya K.; Jaffe, Jerome H.; Childs, Emma; de Wit, Harriet

    2014-01-01

    Preclinical and clinical evidence indicates that opioid drugs have stress-dampening effects. In animal models, opioid analgesics attenuate responses to isolation distress, and in humans, opioids reduce stress related to anticipation of physical pain. The stress-reducing effects of opioid drugs may contribute to their abuse potential. Despite this evidence in laboratory animals, the effects of opioids on responses to psychosocial stress have not been determined in humans. Here we examined the effects of buprenorphine, a μ-opioid partial agonist used to treat opioid dependence and pain, on subjective and physiological responses to a stressful public speaking task in healthy adults. We hypothesized that buprenorphine would reduce subjective and physiological stress responses. Healthy adult volunteers (N = 48) were randomly assigned to receive placebo, 0.2mg sublingual buprenorphine, or 0.4mg sublingual buprenorphine in a two-session study with a stressful speaking task (Trier Social Stress Test; TSST) and a non-stressful control task. During the sessions, the participants reported on their mood states, provided subjective appraisals of the task, and measures of salivary cortisol, heart rate, and blood pressure at regular intervals. Stress produced its expected effects, increasing heart rate, blood pressure, salivary cortisol, and subjective ratings of anxiety and negative mood. In line with our hypothesis, both doses of buprenorphine significantly dampened salivary cortisol responses to stress. On self-report ratings, buprenorphine reduced how threatening participants found the tasks. These results suggest that enhanced opioid signaling dampens responses to social stress in humans, as it does in laboratory animals. This stress-dampening effect of buprenorphine may contribute to the non-medical use of opioid drugs. PMID:25544740

  17. Polyacetylenes from Notopterygium incisum–New Selective Partial Agonists of Peroxisome Proliferator-Activated Receptor-Gamma

    PubMed Central

    Liu, Xin; Noha, Stefan M.; Malainer, Clemens; Kramer, Matthias P.; Cocic, Amina; Kunert, Olaf; Schinkovitz, Andreas; Heiss, Elke H.; Schuster, Daniela

    2013-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of glucose and lipid metabolism and therefore an important pharmacological target to combat metabolic diseases. Since the currently used full PPARγ agonists display serious side effects, identification of novel ligands, particularly partial agonists, is highly relevant. Searching for new active compounds, we investigated extracts of the underground parts of Notopterygium incisum, a medicinal plant used in traditional Chinese medicine, and observed significant PPARγ activation using a PPARγ-driven luciferase reporter model. Activity-guided fractionation of the dichloromethane extract led to the isolation of six polyacetylenes, which displayed properties of selective partial PPARγ agonists in the luciferase reporter model. Since PPARγ activation by this class of compounds has so far not been reported, we have chosen the prototypical polyacetylene falcarindiol for further investigation. The effect of falcarindiol (10 µM) in the luciferase reporter model was blocked upon co-treatment with the PPARγ antagonist T0070907 (1 µM). Falcarindiol bound to the purified human PPARγ receptor with a Ki of 3.07 µM. In silico docking studies suggested a binding mode within the ligand binding site, where hydrogen bonds to Cys285 and Glu295 are predicted to be formed in addition to extensive hydrophobic interactions. Furthermore, falcarindiol further induced 3T3-L1 preadipocyte differentiation and enhanced the insulin-induced glucose uptake in differentiated 3T3-L1 adipocytes confirming effectiveness in cell models with endogenous PPARγ expression. In conclusion, we identified falcarindiol-type polyacetylenes as a novel class of natural partial PPARγ agonists, having potential to be further explored as pharmaceutical leads or dietary supplements. PMID:23630612

  18. Thermodynamics and mechanism of the interaction of willardiine partial agonists with a glutamate receptor: implications for drug development.

    PubMed

    Martinez, Madeline; Ahmed, Ahmed H; Loh, Adrienne P; Oswald, Robert E

    2014-06-17

    Understanding the thermodynamics of binding of a lead compound to a receptor can provide valuable information for drug design. The binding of compounds, particularly partial agonists, to subtypes of the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor is, in some cases, driven by increases in entropy. Using a series of partial agonists based on the structure of the natural product, willardiine, we show that the charged state of the ligand determines the enthalpic contribution to binding. Willardiines have uracil rings with pKa values ranging from 5.5 to 10. The binding of the charged form is largely driven by enthalpy, while that of the uncharged form is largely driven by entropy. This is due at least in part to changes in the hydrogen bonding network within the binding site involving one water molecule. This work illustrates the importance of charge to the thermodynamics of binding of agonists and antagonists to AMPA receptors and provides clues for further drug discovery. PMID:24850223

  19. Thermodynamics and mechanism of the interaction of willardiine partial agonists with a glutamate receptor: implications for drug development.

    PubMed

    Martinez, Madeline; Ahmed, Ahmed H; Loh, Adrienne P; Oswald, Robert E

    2014-06-17

    Understanding the thermodynamics of binding of a lead compound to a receptor can provide valuable information for drug design. The binding of compounds, particularly partial agonists, to subtypes of the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor is, in some cases, driven by increases in entropy. Using a series of partial agonists based on the structure of the natural product, willardiine, we show that the charged state of the ligand determines the enthalpic contribution to binding. Willardiines have uracil rings with pKa values ranging from 5.5 to 10. The binding of the charged form is largely driven by enthalpy, while that of the uncharged form is largely driven by entropy. This is due at least in part to changes in the hydrogen bonding network within the binding site involving one water molecule. This work illustrates the importance of charge to the thermodynamics of binding of agonists and antagonists to AMPA receptors and provides clues for further drug discovery.

  20. Benzodiazepine modulation of partial agonist efficacy and spontaneously active GABAA receptors supports an allosteric model of modulation

    PubMed Central

    Downing, Scott S; Lee, Yan T; Farb, David H; Gibbs, Terrell T

    2005-01-01

    Benzodiazepines (BZDs) have been used extensively for more than 40 years because of their high therapeutic index and low toxicity. Although BZDs are understood to act primarily as allosteric modulators of GABAA receptors, the mechanism of modulation is not well understood. The applicability of an allosteric model with two binding sites for γ-aminobutyric acid (GABA) and one for a BZD-like modulator was investigated. This model predicts that BZDs should enhance the efficacy of partial agonists. Consistent with this prediction, diazepam increased the efficacy of the GABAA receptor partial agonist kojic amine in chick spinal cord neurons. To further test the validity of the model, the effects of diazepam, flurazepam, and zolpidem were examined using wild-type and spontaneously active mutant α1(L263S)β3γ2 GABAA receptors expressed in HEK-293 cells. In agreement with the predictions of the allosteric model, all three modulators acted as direct agonists for the spontaneously active receptors. The results indicate that BZD-like modulators enhance the amplitude of the GABA response by stabilizing the open channel active state relative to the inactive state by less than 1 kcal, which is similar to the energy of stabilization conferred by a single hydrogen bond. PMID:15912137

  1. Treatment of cocaine craving with as-needed nalmefene, a partial κ opioid receptor agonist: first clinical experience.

    PubMed

    Grosshans, Martin; Mutschler, Jochen; Kiefer, Falk

    2015-07-01

    The treatment of cocaine dependence is difficult as no approved pharmacotherapy is available as yet. However, in preclinical and clinical trials, a variety of compounds were tested for suitability as inhibitors of craving for and relapse into the use of cocaine, among these antidepressants, antiepileptics, dopamine agonists, disulfiram, and naltrexone. Nalmefene, a structural derivative of naltrexone, shares with its parent compound approval (granted by the European Medical Agency in 2013) as a medication for the treatment of alcohol addiction in the European Union. It differs from naltrexone by a higher affinity for the δ opioid-receptors and a partial agonistic affinity to the κ opioid-receptors. It should be noted that patients addicted to cocaine show a considerable increase in κ receptors in the nucleus accumbens. This report describes the case of an abstinent cocaine-addicted patient regularly afflicted with cravings for cocaine. The patient took as-needed nalmefene for 5 months whenever she developed a craving for cocaine. For most of these interventions, the patient reported an abatement of craving and could avoid relapsing into cocaine consumption. This effect may be accounted for by nalmefene acting, other than naltrexone, as a partial agonist of the κ opioid-receptors. Therefore, nalmefene might be a promising new option in the pharmacological repertoire for the treatment of cocaine addiction.

  2. Ring-substituted histaprodifen analogues as partial agonists for histamine H(1) receptors: synthesis and structure-activity relationships.

    PubMed

    Elz, S; Kramer, K; Leschke, C; Schunack, W

    2000-01-01

    Thirteen racemic benzene ring-substituted analogues of histaprodifen (8a; 2-[2-(3,3-diphenylpropyl)-1H-imidazol-4-yl]ethanamine), a novel lead for potent and selective histamine H(1)-receptor agonists, have been prepared from substituted 4,4-diphenylbutyronitriles 5 via cyclization of the corresponding methyl butyrimidates 6 with 2-oxo-4-phthalimido-1-butyl acetate in liquid ammonia, followed by deprotection. Nitriles 5 were accessible by alkylation of either substituted diphenylmethanes with 3-bromopropionitrile or diethyl malonate with substituted 1-chloro-diphenylmethanes and subsequent standard reactions. The title compounds 8 displayed partial agonism on contractile H(1) receptors of the guinea-pig ileum (E(max) = 2-98% relative to histamine) and, compared with the endogenous agonist, were endowed with agonist potencies of 4-92%. The meta fluorinated (8c) and meta chlorinated (8f) analogues showed the highest relative potency in this series (95% confidence limits 85-99% and 78-102%), but did not exceed the value of the lead 8a (99-124%). Compound 8c (2-[2-[3-(3-fluorophenyl)-3-phenylpropyl]-1H-imidazol-4-yl]ethanamine ) was a partial agonist at contractile H(1) receptors of the guinea-pig aorta (relative potency 154% vs. 100% for histamine) and at relaxation-mediating endothelial H(1) receptors of the rat aorta (relative potency 556% vs. 100% for histamine) and matched with the functional behaviour of 8a. Agonism observed for each compound was sensitive to blockade by the selective H(1)-receptor antagonist mepyramine (pA(2) approximately 9 (guinea-pig) and pA(2) approximately 8 (rat aorta)). All histaprodifen analogues 8 stimulated neither histaminergic H(2)/H(3) nor cholinergic M(3) receptors. They displayed only low to moderate affinity for these sites (H(2): pD'(2) < 5; H(3)/M(3): pA(2) < 6). With regard to the substitution pattern on the benzene ring, there was no correlation between the histaprodifen series and the corresponding derivatives of another

  3. Neurosteroids shift partial agonist activation of GABA(A) receptor channels from low- to high-efficacy gating patterns.

    PubMed

    Bianchi, Matt T; Macdonald, Robert L

    2003-11-26

    Although GABA activates synaptic (alphabetagamma) GABA(A) receptors with high efficacy, partial agonist activation of alphabetagamma isoforms and GABA activation of the primary extrasynaptic (alphabetadelta) GABA(A) receptors are limited to low-efficacy activity, characterized by minimal desensitization and brief openings. The unusual sensitivity of alphabetadelta receptor channels to neurosteroid modulation prompted investigation of whether this high sensitivity was dependent on the delta subunit or the low-efficacy channel function that it confers. We show that the isoform specificity (alphabetadelta > alphabetagamma) of neurosteroid modulation could be reversed by conditions that reversed isoform-specific activity modes, including the use of beta-alanine to achieve increased efficacy with alphabetadelta receptors and taurine to render alphabetagamma receptors low efficacy. We suggest that neurosteroids preferentially enhance low-efficacy GABA(A) receptor activity independent of subunit composition. Allosteric conversion of partial to full agonism may be a general mechanism for reversibly scaling the efficacy of GABA(A) receptors to endogenous partial agonists.

  4. A natural history of "agonist".

    PubMed

    Russo, Ruth

    2002-01-01

    This paper constructs a brief history of the biochemical term agonist by exploring the multiple meanings of the root agôn in ancient Greek literature and describing how agonist first appeared in the scientific literature of the 20th century in the context of neurophysiologists' debates about the existence and properties of cellular receptors. While the narrow scientific definition of agonist may appear colorless and dead when compared with the web of allusions spun by the ancient Greek agôn, the scientific power and creativity of agonist actually resides precisely in its exact, restricted meaning for biomedical researchers.

  5. Active-State Model of a Dopamine D2 Receptor - Gαi Complex Stabilized by Aripiprazole-Type Partial Agonists

    PubMed Central

    Kling, Ralf C.; Tschammer, Nuska; Lanig, Harald; Clark, Timothy; Gmeiner, Peter

    2014-01-01

    Partial agonists exhibit a submaximal capacity to enhance the coupling of one receptor to an intracellular binding partner. Although a multitude of studies have reported different ligand-specific conformations for a given receptor, little is known about the mechanism by which different receptor conformations are connected to the capacity to activate the coupling to G-proteins. We have now performed molecular-dynamics simulations employing our recently described active-state homology model of the dopamine D2 receptor-Gαi protein-complex coupled to the partial agonists aripiprazole and FAUC350, in order to understand the structural determinants of partial agonism better. We have compared our findings with our model of the D2R-Gαi-complex in the presence of the full agonist dopamine. The two partial agonists are capable of inducing different conformations of important structural motifs, including the extracellular loop regions, the binding pocket and, in particular, intracellular G-protein-binding domains. As G-protein-coupling to certain intracellular epitopes of the receptor is considered the key step of allosterically triggered nucleotide-exchange, it is tempting to assume that impaired coupling between the receptor and the G-protein caused by distinct ligand-specific conformations is a major determinant of partial agonist efficacy. PMID:24932547

  6. Activation of Cyclic AMP Synthesis by Full and Partial Beta-Adrenergic Receptor Agonists in Chicken Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.

    2003-01-01

    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Accordingly, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate CAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of CAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of CAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax concentrations were approximately 15-fold weaker than isoproterenol in stimulating the rate of CAMP synthesis. When cimaterol and clenbuterol were added to culture media at concentrations known to cause significant muscle hypertrophy in animals, there was no detectable effect on stimulation of CAMP synthesis. Finally, these same levels of cimaterol and clenbuterol did not antagonize the stimulation of CAMP by either epinephrine or isoproterenol.

  7. Activation of Cyclic AMP Synthesis by Full and Partial Beta-Adrenergic Receptor Agonists in Chicken Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Cureri, Peter A. (Technical Monitor)

    2002-01-01

    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Accordingly, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate cAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of cAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of cAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax concentrations were approximately 15-fold weaker than isoproterenol in stimulating the rate of cAMP synthesis. When cimaterol and clenbuterol were added to culture media at concentrations known to cause significant muscle hypertrophy in animals, there was no detectable effect on stimulation of cAMP synthesis. Finally, these same levels of cimaterol and clenbuterol did not antagonize the stimulation of cAMP by either epinephrine or isoproterenol.

  8. The Novel, Nicotinic Alpha7 Receptor Partial Agonist, BMS-933043, Improves Cognition and Sensory Processing in Preclinical Models of Schizophrenia

    PubMed Central

    Bristow, Linda J.; Easton, Amy E.; Li, Yu-Wen; Sivarao, Digavalli V.; Lidge, Regina; Jones, Kelli M.; Post-Munson, Debra; Daly, Christopher; Lodge, Nicholas J.; Gallagher, Lizbeth; Molski, Thaddeus; Pieschl, Richard; Chen, Ping; Hendricson, Adam; Westphal, Ryan; Cook, James; Iwuagwu, Christiana; Morgan, Daniel; Benitex, Yulia; King, Dalton; Macor, John E.; Zaczek, Robert; Olson, Richard

    2016-01-01

    The development of alpha7 nicotinic acetylcholine receptor agonists is considered a promising approach for the treatment of cognitive symptoms in schizophrenia patients. In the present studies we characterized the novel agent, (2R)-N-(6-(1H-imidazol-1-yl)-4-pyrimidinyl)-4'H-spiro[4-azabicyclo[2.2.2]octane-2,5'-[1,3]oxazol]-2'-amine (BMS-933043), in vitro and in rodent models of schizophrenia-like deficits in cognition and sensory processing. BMS-933043 showed potent binding affinity to native rat (Ki = 3.3 nM) and recombinant human alpha7 nicotinic acetylcholine receptors (Ki = 8.1 nM) and agonist activity in a calcium fluorescence assay (EC50 = 23.4 nM) and whole cell voltage clamp electrophysiology (EC50 = 0.14 micromolar (rat) and 0.29 micromolar (human)). BMS-933043 exhibited a partial agonist profile relative to acetylcholine; the relative efficacy for net charge crossing the cell membrane was 67% and 78% at rat and human alpha7 nicotinic acetylcholine receptors respectively. BMS-933043 showed no agonist or antagonist activity at other nicotinic acetylcholine receptor subtypes and was at least 300 fold weaker at binding to and antagonizing human 5-HT3A receptors (Ki = 2,451 nM; IC50 = 8,066 nM). BMS-933043 treatment i) improved 24 hour novel object recognition memory in mice (0.1–10 mg/kg, sc), ii) reversed MK-801-induced deficits in Y maze performance in mice (1–10 mg/kg, sc) and set shift performance in rats (1–10 mg/kg, po) and iii) reduced the number of trials required to complete the extradimensional shift discrimination in neonatal PCP treated rats performing the intra-dimensional/extradimensional set shifting task (0.1–3 mg/kg, po). BMS-933043 also improved auditory gating (0.56–3 mg/kg, sc) and mismatch negativity (0.03–3 mg/kg, sc) in rats treated with S(+)ketamine or neonatal phencyclidine respectively. Given this favorable preclinical profile BMS-933043 was selected for further development to support clinical evaluation in humans. PMID

  9. The Novel, Nicotinic Alpha7 Receptor Partial Agonist, BMS-933043, Improves Cognition and Sensory Processing in Preclinical Models of Schizophrenia.

    PubMed

    Bristow, Linda J; Easton, Amy E; Li, Yu-Wen; Sivarao, Digavalli V; Lidge, Regina; Jones, Kelli M; Post-Munson, Debra; Daly, Christopher; Lodge, Nicholas J; Gallagher, Lizbeth; Molski, Thaddeus; Pieschl, Richard; Chen, Ping; Hendricson, Adam; Westphal, Ryan; Cook, James; Iwuagwu, Christiana; Morgan, Daniel; Benitex, Yulia; King, Dalton; Macor, John E; Zaczek, Robert; Olson, Richard

    2016-01-01

    The development of alpha7 nicotinic acetylcholine receptor agonists is considered a promising approach for the treatment of cognitive symptoms in schizophrenia patients. In the present studies we characterized the novel agent, (2R)-N-(6-(1H-imidazol-1-yl)-4-pyrimidinyl)-4'H-spiro[4-azabicyclo[2.2.2]octane-2,5'-[1,3]oxazol]-2'-amine (BMS-933043), in vitro and in rodent models of schizophrenia-like deficits in cognition and sensory processing. BMS-933043 showed potent binding affinity to native rat (Ki = 3.3 nM) and recombinant human alpha7 nicotinic acetylcholine receptors (Ki = 8.1 nM) and agonist activity in a calcium fluorescence assay (EC50 = 23.4 nM) and whole cell voltage clamp electrophysiology (EC50 = 0.14 micromolar (rat) and 0.29 micromolar (human)). BMS-933043 exhibited a partial agonist profile relative to acetylcholine; the relative efficacy for net charge crossing the cell membrane was 67% and 78% at rat and human alpha7 nicotinic acetylcholine receptors respectively. BMS-933043 showed no agonist or antagonist activity at other nicotinic acetylcholine receptor subtypes and was at least 300 fold weaker at binding to and antagonizing human 5-HT3A receptors (Ki = 2,451 nM; IC50 = 8,066 nM). BMS-933043 treatment i) improved 24 hour novel object recognition memory in mice (0.1-10 mg/kg, sc), ii) reversed MK-801-induced deficits in Y maze performance in mice (1-10 mg/kg, sc) and set shift performance in rats (1-10 mg/kg, po) and iii) reduced the number of trials required to complete the extradimensional shift discrimination in neonatal PCP treated rats performing the intra-dimensional/extradimensional set shifting task (0.1-3 mg/kg, po). BMS-933043 also improved auditory gating (0.56-3 mg/kg, sc) and mismatch negativity (0.03-3 mg/kg, sc) in rats treated with S(+)ketamine or neonatal phencyclidine respectively. Given this favorable preclinical profile BMS-933043 was selected for further development to support clinical evaluation in humans. PMID:27467081

  10. The Novel, Nicotinic Alpha7 Receptor Partial Agonist, BMS-933043, Improves Cognition and Sensory Processing in Preclinical Models of Schizophrenia.

    PubMed

    Bristow, Linda J; Easton, Amy E; Li, Yu-Wen; Sivarao, Digavalli V; Lidge, Regina; Jones, Kelli M; Post-Munson, Debra; Daly, Christopher; Lodge, Nicholas J; Gallagher, Lizbeth; Molski, Thaddeus; Pieschl, Richard; Chen, Ping; Hendricson, Adam; Westphal, Ryan; Cook, James; Iwuagwu, Christiana; Morgan, Daniel; Benitex, Yulia; King, Dalton; Macor, John E; Zaczek, Robert; Olson, Richard

    2016-01-01

    The development of alpha7 nicotinic acetylcholine receptor agonists is considered a promising approach for the treatment of cognitive symptoms in schizophrenia patients. In the present studies we characterized the novel agent, (2R)-N-(6-(1H-imidazol-1-yl)-4-pyrimidinyl)-4'H-spiro[4-azabicyclo[2.2.2]octane-2,5'-[1,3]oxazol]-2'-amine (BMS-933043), in vitro and in rodent models of schizophrenia-like deficits in cognition and sensory processing. BMS-933043 showed potent binding affinity to native rat (Ki = 3.3 nM) and recombinant human alpha7 nicotinic acetylcholine receptors (Ki = 8.1 nM) and agonist activity in a calcium fluorescence assay (EC50 = 23.4 nM) and whole cell voltage clamp electrophysiology (EC50 = 0.14 micromolar (rat) and 0.29 micromolar (human)). BMS-933043 exhibited a partial agonist profile relative to acetylcholine; the relative efficacy for net charge crossing the cell membrane was 67% and 78% at rat and human alpha7 nicotinic acetylcholine receptors respectively. BMS-933043 showed no agonist or antagonist activity at other nicotinic acetylcholine receptor subtypes and was at least 300 fold weaker at binding to and antagonizing human 5-HT3A receptors (Ki = 2,451 nM; IC50 = 8,066 nM). BMS-933043 treatment i) improved 24 hour novel object recognition memory in mice (0.1-10 mg/kg, sc), ii) reversed MK-801-induced deficits in Y maze performance in mice (1-10 mg/kg, sc) and set shift performance in rats (1-10 mg/kg, po) and iii) reduced the number of trials required to complete the extradimensional shift discrimination in neonatal PCP treated rats performing the intra-dimensional/extradimensional set shifting task (0.1-3 mg/kg, po). BMS-933043 also improved auditory gating (0.56-3 mg/kg, sc) and mismatch negativity (0.03-3 mg/kg, sc) in rats treated with S(+)ketamine or neonatal phencyclidine respectively. Given this favorable preclinical profile BMS-933043 was selected for further development to support clinical evaluation in humans.

  11. AC-3933, a benzodiazepine partial inverse agonist, improves memory performance in MK-801-induced amnesia mouse model.

    PubMed

    Hashimoto, Takashi; Iwamura, Yoshihiro

    2016-05-01

    AC-3933, a novel benzodiazepine receptor partial inverse agonist, is a drug candidate for cognitive disorders including Alzheimer's disease. We have previously reported that AC-3933 enhances acetylcholine release in the rat hippocampus and ameliorates scopolamine-induced memory impairment and age-related cognitive decline in both rats and mice. In this study, we further evaluated the procognitive effect of AC-3933 on memory impairment induced by MK-801, an N-methyl-d-aspartate receptor antagonist, in mice. Unlike the acetylcholinesterase inhibitor donepezil and the benzodiazepine receptor inverse agonist FG-7142, oral administration of AC-3933 significantly ameliorated MK-801-induced memory impairment in the Y-maze test and in the object location test. Interestingly, the procognitive effects of AC-3933 on MK-801-induced memory impairment were not affected by the benzodiazepine receptor antagonist flumazenil, although this was not the case for the beneficial effects of AC-3933 on scopolamine-induced memory deficit. Moreover, the onset of AC-3933 ameliorating effect on scopolamine- or MK-801-induced memory impairment was different in the Y-maze test. Taken together, these results indicate that AC-3933 improves memory deficits caused by both cholinergic and glutamatergic hypofunction and suggest that the ameliorating effect of AC-3933 on MK-801-induced memory impairment is mediated by a mechanism other than inverse activation of the benzodiazepine receptor.

  12. Differential pathway coupling efficiency of the activated insulin receptor drives signaling selectivity by XMetA, an allosteric partial agonist antibody

    Technology Transfer Automated Retrieval System (TEKTRAN)

    XMetA, an anti-insulin receptor (IR) monoclonal antibody, is an allosteric partial agonist of the IR. We have previously reported that XMetA activates the “metabolic-biased” Akt kinase signaling pathway while having little or no effect on the “mitogenic” MAPK signaling pathwayof ERK 1/2. To inves...

  13. Agonist-trafficking and hallucinogens.

    PubMed

    González-Maeso, Javier; Sealfon, Stuart C

    2009-01-01

    Seven transmembrane domain receptors, also termed G protein-coupled receptors (GPCRs), represent the most common molecular target for therapeutic drugs. The generally accepted pharmacological model for GPCR activation is the ternary complex model, in which GPCRs exist in a dynamic equilibrium between the active and inactive conformational states. However, the demonstration that different agonists sometimes elicit a different relative activation of two signaling pathways downstream of the same receptor has led to a revision of the ternary complex model. According to this agonist- trafficking model, agonists stabilize distinct activated receptor conformations that preferentially activate specific signaling pathways. Hallucinogenic drugs and non-hallucinogenic drugs represent an attractive experimental system with which to study agonist-trafficking of receptor signaling. Thus many of the behavioral responses induced by hallucinogenic drugs, such as lysergic acid diethylamide (LSD), psilocybin or mescaline, depend on activation of serotonin 5-HT(2A) receptors (5-HT2ARs). In contrast, this neuropsychological state in humans is not induced by closely related chemicals, such as lisuride or ergotamine, despite their similar in vitro activity at the 5-HT2AR. In this review, we summarize the current knowledge, as well as unresolved questions, regarding agonist-trafficking and the mechanism of action of hallucinogenic drugs.

  14. α4β2 nicotinic acetylcholine receptor partial agonists with low intrinsic efficacy have antidepressant-like properties

    PubMed Central

    Mineur, Yann S.; Einstein, Emily B.; Seymour, Patricia A.; Coe, Jotham W.; O’Neill, Brian T.; Rollema, Hans

    2011-01-01

    Previous studies have suggested that treatment with antagonists or partial agonists of nicotinic acetylcholine receptors containing the β2 subunit (β2* nAChRs) results in antidepressant-like effects. In the current study we tested 3 novel compounds with different affinity and functional efficacy at α4β2* nAChRs, which were synthesized as part of nAChR discovery projects at Pfizer in the tail suspension, forced swim and novelty-suppressed feeding tests of antidepressant efficacy. All compounds tested reduced immobility in the forced swim test and one of the compounds also reduced immobility in the tail suspension test. All the compounds appeared to affect food intake on their own, with 2 compounds reducing feeding significantly in the home cage, precluding a clear interpretation of the results in the novelty-suppressed feeding test. None of the compounds altered locomotor activity at the doses and time points used here. Therefore, a subset of these compounds has pharmacological and behavioral properties that demonstrate the potential of nicotinic compounds as a treatment of mood disorders. Further development of nicotinic-based antidepressants should focus on increasing nAChR subtype selectivity to obtain consistent antidepressant properties with an acceptable side effect profile. PMID:21566524

  15. Effect of oxytocin as a partial agonist at vasoconstrictor vasopressin receptors on the human isolated uterine artery.

    PubMed

    Jovanović, A; Jovanović, S; Tulić, I; Grbović, L

    1997-08-01

    1. The effect of oxytocin on endothelium-intact and endothelium-denuded segments of the human uterine artery rings was investigated. 2. In both types of preparation oxytocin induced contraction of human uterine artery with similar potency and efficacy (pEC50 values: 6.95 +/- 0.05 vs 7.06 +/- 0.01; maximal response values: 61 +/- 4.1% vs 63 +/- 5.1% for arteries with and without endothelium, respectively). 3. In contrast, human uterine arteries, both intact and denuded of endothelium, did not respond to the addition of the selective oxytocin receptor agonist, [Thr4, Gly7]oxytocin (10 nM(-1) microM). 4. The vasopressin receptor antagonists, [d(CH2)5Tyr(Me)]AVP (10-100nM) and [d(CH2)5,D-Ile2,Ile4]AVP (300 nM-3 microM) produced parallel rightward shifts of the curves for oxytocin. The Schild plots constrained to a slope of unity gave the following -log K(B) values: [d(CH2)5Tyr(Me)] AVP vs [d(CH2)5,D-Ile2,Ile4] AVP 9.24 vs 6.91 and 9.26 vs 6.84 for human uterine artery with intact and those denuded of endothelium, respectively. In contrast, in both types of preparations the oxytocin receptor antagonist, [d(CH2)5Tyr(OMe), 2Orn8]vasotocin (1 microM), did not significantly affect oxytocin-induced contractions. 5. The calculated pK(A) values for oxytocin itself also did not differ between preparations: 6.56 and 6.43 for human uterine artery with and without endothelium, respectively. In both types of preparations, the receptor reserve (K(A)/EC50) was close to unity (intact vs denuded: 3.9 vs 3.0). 6. It is concluded that, in human uterine artery, oxytocin induces contractions that are not modulated by the endothelium. It is likely that oxytocin acts as a partial agonist on human uterine artery, regardless of the endothelial condition. On the basis of differential antagonists affinity and affinity of oxytocin itself, it is probable that receptors involved in oxytocin-induced contraction in human uterine arteries belong to the V(1A) vasopressin receptors.

  16. Identification of serotonin 5-HT1A receptor partial agonists in ginger.

    PubMed

    Nievergelt, Andreas; Huonker, Peter; Schoop, Roland; Altmann, Karl-Heinz; Gertsch, Jürg

    2010-05-01

    Animal studies suggest that ginger (Zingiber officinale Roscoe) reduces anxiety. In this study, bioactivity-guided fractionation of a ginger extract identified nine compounds that interact with the human serotonin 5-HT(1A) receptor with significant to moderate binding affinities (K(i)=3-20 microM). [(35)S]-GTP gamma S assays indicated that 10-shogaol, 1-dehydro-6-gingerdione, and particularly the whole lipophilic ginger extract (K(i)=11.6 microg/ml) partially activate the 5-HT(1A) receptor (20-60% of maximal activation). In addition, the intestinal absorption of gingerols and shogaols was simulated and their interactions with P-glycoprotein were measured, suggesting a favourable pharmacokinetic profile for the 5-HT(1A) active compounds. PMID:20363635

  17. Agonist-Directed Desensitization of the β2-Adrenergic Receptor

    PubMed Central

    Goral, Vasiliy; Jin, Yan; Sun, Haiyan; Ferrie, Ann M.; Wu, Qi; Fang, Ye

    2011-01-01

    The β2-adrenergic receptor (β2AR) agonists with reduced tachyphylaxis may offer new therapeutic agents with improved tolerance profile. However, receptor desensitization assays are often inferred at the single signaling molecule level, thus ligand-directed desensitization is poorly understood. Here we report a label-free biosensor whole cell assay with microfluidics to determine ligand-directed desensitization of the β2AR. Together with mechanistic deconvolution using small molecule inhibitors, the receptor desensitization and resensitization patterns under the short-term agonist exposure manifested the long-acting agonism of salmeterol, and differentiated the mechanisms of agonist-directed desensitization between a full agonist epinephrine and a partial agonist pindolol. This study reveals the cellular mechanisms of agonist-selective β2AR desensitization at the whole cell level. PMID:21541288

  18. Valerian extract and valerenic acid are partial agonists of the 5-HT5a receptor in vitro.

    PubMed

    Dietz, Birgit M; Mahady, Gail B; Pauli, Guido F; Farnsworth, Norman R

    2005-08-18

    Insomnia is the most frequently encountered sleep complaint worldwide. While many prescription drugs are used to treat insomnia, extracts of valerian (Valeriana officinalis L., Valerianaceae) are also used for the treatment of insomnia and restlessness. To determine novel mechanisms of action, radioligand binding studies were performed with valerian extracts (100% methanol, 50% methanol, dichloromethane [DCM], and petroleum ether [PE]) at the melatonin, glutamate, and GABA(A) receptors, and 8 serotonin receptor subtypes. Both DCM and PE extracts had strong binding affinity to the 5-HT(5a) receptor, but only weak binding affinity to the 5-HT(2b) and the serotonin transporter. Subsequent binding studies focused on the 5-HT(5a) receptor due to the distribution of this receptor in the suprachiasmatic nucleus of the brain, which is implicated in the sleep-wake cycle. The PE extract inhibited [(3)H]lysergic acid diethylamide (LSD) binding to the human 5-HT(5a) receptor (86% at 50 microg/ml) and the DCM extract inhibited LSD binding by 51%. Generation of an IC(50) curve for the PE extract produced a biphasic curve, thus GTP shift experiments were also performed. In the absence of GTP, the competition curve was biphasic (two affinity sites) with an IC(50) of 15.7 ng/ml for the high-affinity state and 27.7 microg/ml for the low-affinity state. The addition of GTP (100 microM) resulted in a right-hand shift of the binding curve with an IC(50) of 11.4 microg/ml. Valerenic acid, the active constituent of both extracts, had an IC(50) of 17.2 microM. These results indicate that valerian and valerenic acid are new partial agonists of the 5-HT(5a) receptor. PMID:15921820

  19. Monoterpenoid agonists of TRPV3

    PubMed Central

    Vogt-Eisele, A K; Weber, K; Sherkheli, M A; Vielhaber, G; Panten, J; Gisselmann, G; Hatt, H

    2007-01-01

    Background and purpose: Transient receptor potential (TRP) V3 is a thermosensitive ion channel expressed predominantly in the skin and neural tissues. It is activated by warmth and the monoterpene camphor and has been hypothesized to be involved in skin sensitization. A selection of monoterpenoid compounds was tested for TRPV3 activation to establish a structure-function relationship. The related channel TRPM8 is activated by cool temperatures and a number of chemicals, among them the monoterpene (-)-menthol. The overlap of the receptor pharmacology between the two channels was investigated. Experimental approach: Transfected HEK293 cells were superfused with the test substances. Evoked currents were measured in whole cell patch clamp measurements. Dose-response curves for the most potent agonists were obtained in Xenopus laevis oocytes. Key results: Six monoterpenes significantly more potent than camphor were identified: 6-tert-butyl-m-cresol, carvacrol, dihydrocarveol, thymol, carveol and (+)-borneol. Their EC50 is up to 16 times lower than that of camphor. All of these compounds carry a ring-located hydroxyl group and neither activates TRPM8 to a major extent. Conclusions and implications: Terpenoids have long been recognized as medically and pharmacologically active compounds, although their molecular targets have only partially been identified. TRPV3 activation may be responsible for several of the described effects of terpenoids. We show here that TRPV3 is activated by a number of monoterpenes and that a secondary hydroxyl-group is a structural requirement. PMID:17420775

  20. Increased agonist affinity at the mu-opioid receptor induced by prolonged agonist exposure

    PubMed Central

    Birdsong, William T.; Arttamangkul, Seksiri; Clark, Mary J.; Cheng, Kejun; Rice, Kenner C.; Traynor, John R.; Williams, John T.

    2013-01-01

    Prolonged exposure to high-efficacy agonists results in desensitization of the mu opioid receptor (MOR). Desensitized receptors are thought to be unable to couple to G-proteins, preventing downstream signaling, however the changes to the receptor itself are not well characterized. In the current study, confocal imaging was used to determine whether desensitizing conditions cause a change in agonist-receptor interactions. Using rapid solution exchange, the binding kinetics of fluorescently labeled opioid agonist, dermorphin Alexa594 (derm A594), to MORs was measured in live cells. The affinity of derm A594 binding increased following prolonged treatment of cells with multiple agonists that are known to cause receptor desensitization. In contrast, binding of a fluorescent antagonist, naltrexamine Alexa 594, was unaffected by similar agonist pre-treatment. The increased affinity of derm A594 for the receptor was long-lived and partially reversed after a 45 min wash. Treatment of the cells with pertussis toxin did not alter the increase in affinity of the derm A594 for MOR. Likewise the affinity of derm A594 for MORs expressed in mouse embryonic fibroblasts derived from arrestin 1 and 2 knockout animals increased following treatment of the cells with the desensitization protocol. Thus, opioid receptors were “imprinted” with a memory of prior agonist exposure that was independent of G-protein activation or arrestin binding that altered subsequent agonist-receptor interactions. The increased affinity suggests that acute desensitization results in a long lasting but reversible conformational change in the receptor. PMID:23447620

  1. Novel diazabicycloalkane delta opioid agonists.

    PubMed

    Loriga, Giovanni; Lazzari, Paolo; Manca, Ilaria; Ruiu, Stefania; Falzoi, Matteo; Murineddu, Gabriele; Bottazzi, Mirko Emilio Heiner; Pinna, Giovanni; Pinna, Gérard Aimè

    2015-09-01

    Here we report the investigation of diazabicycloalkane cores as potential new scaffolds for the development of novel analogues of the previously reported diazatricyclodecane selective delta (δ) opioid agonists, as conformationally constrained homologues of the reference δ agonist (+)-4-[(αR)-α((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80). In particular, we have simplified the diazatricyclodecane motif of δ opioid agonist prototype 1a with bridged bicyclic cores. 3,6-diazabicyclo[3.1.1]heptane, 3,8-diazabicyclo[3.2.1]octane, 3,9-diazabicyclo[3.3.1]nonane, 3,9-diazabicyclo[4.2.1]nonane, and 3,10-diazabicyclo[4.3.1]decane were adopted as core motifs of the novel derivatives. The compounds were synthesized and biologically assayed as racemic (3-5) or diastereoisomeric (6,7) mixtures. All the novel compounds 3-7 showed δ agonism behaviour and remarkable affinity to δ receptors. Amongst the novel derivatives, 3,8-diazabicyclo[3.2.1]octane based compound 4 evidenced improved δ affinity and selectivity relative to SNC80.

  2. Cariprazine (RGH-188), a dopamine D(3) receptor-preferring, D(3)/D(2) dopamine receptor antagonist-partial agonist antipsychotic candidate: in vitro and neurochemical profile.

    PubMed

    Kiss, Béla; Horváth, Attila; Némethy, Zsolt; Schmidt, Eva; Laszlovszky, István; Bugovics, Gyula; Fazekas, Károly; Hornok, Katalin; Orosz, Szabolcs; Gyertyán, István; Agai-Csongor, Eva; Domány, György; Tihanyi, Károly; Adham, Nika; Szombathelyi, Zsolt

    2010-04-01

    Cariprazine {RGH-188; trans-N-[4-[2-[4-(2,3-dichlorophenyl)piperazin-1-yl]ethyl]cyclohexyl]-N',N'-dimethylurea hydrochloride}, a novel candidate antipsychotic, demonstrated approximately 10-fold higher affinity for human D(3) versus human D(2L) and human D(2S) receptors (pKi 10.07, 9.16, and 9.31, respectively). It displayed high affinity at human serotonin (5-HT) type 2B receptors (pK(i) 9.24) with pure antagonism. Cariprazine had lower affinity at human and rat hippocampal 5-HT(1A) receptors (pK(i) 8.59 and 8.34, respectively) and demonstrated low intrinsic efficacy. Cariprazine displayed low affinity at human 5-HT(2A) receptors (pK(i) 7.73). Moderate or low affinity for histamine H(1) and 5-HT(2C) receptors (pK(i) 7.63 and 6.87, respectively) suggest cariprazine's reduced propensity for adverse events related to these receptors. Cariprazine demonstrated different functional profiles at dopamine receptors depending on the assay system. It displayed D(2) and D(3) antagonism in [(35)S]GTPgammaS binding assays, but stimulated inositol phosphate (IP) production (pEC(50) 8.50, E(max) 30%) and antagonized (+/-)-quinpirole-induced IP accumulation (pK(b) 9.22) in murine cells expressing human D(2L) receptors. It had partial agonist activity (pEC(50) 8.58, E(max) 71%) by inhibiting cAMP accumulation in Chinese hamster ovary cells expressing human D(3) receptors and potently antagonized R(+)-2-dipropylamino-7-hydroxy-1,2,3,4-tetrahydronaphtalene HBr (7-OH-DPAT)-induced suppression of cAMP formation (pK(b) 9.57). In these functional assays, cariprazine showed similar (D(2)) or higher (D(3)) antagonist-partial agonist affinity and greater (3- to 10-fold) D(3) versus D(2) selectivity compared with aripiprazole. In in vivo turnover and biosynthesis experiments, cariprazine demonstrated D(2)-related partial agonist and antagonist properties, depending on actual dopaminergic tone. The antagonist-partial agonist properties of cariprazine at D(3) and D(2) receptors, with very high

  3. Kappa Opioid Receptor Agonist and Brain Ischemia

    PubMed Central

    Chunhua, Chen; Chunhua, Xi; Megumi, Sugita; Renyu, Liu

    2014-01-01

    Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury. PMID:25574482

  4. An Orally Active Phenylaminotetralin-Chemotype Serotonin 5-HT7 and 5-HT1A Receptor Partial Agonist that Corrects Motor Stereotypy in Mouse Models.

    PubMed

    Canal, Clinton E; Felsing, Daniel E; Liu, Yue; Zhu, Wanying; Wood, JodiAnne T; Perry, Charles K; Vemula, Rajender; Booth, Raymond G

    2015-07-15

    Stereotypy (e.g., repetitive hand waving) is a key phenotype of autism spectrum disorder, Fragile X and Rett syndromes, and other neuropsychiatric disorders, and its severity correlates with cognitive and attention deficits. There are no effective treatments, however, for stereotypy. Perturbation of serotonin (5-HT) neurotransmission contributes to stereotypy, suggesting that distinct 5-HT receptors may be pharmacotherapeutic targets to treat stereotypy and related neuropsychiatric symptoms. For example, preclinical studies indicate that 5-HT7 receptor activation corrects deficits in mouse models of Fragile X and Rett syndromes, and clinical trials for autism are underway with buspirone, a 5-HT1A partial agonist with relevant affinity at 5-HT7 receptors. Herein, we report the synthesis, in vitro molecular pharmacology, behavioral pharmacology, and pharmacokinetic parameters in mice after subcutaneous and oral administration of (+)-5-(2'-fluorophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine ((+)-5-FPT), a new, dual partial agonist targeting both 5-HT7 (Ki = 5.8 nM, EC50 = 34 nM) and 5-HT1A (Ki = 22 nM, EC50 = 40 nM) receptors. Three unique, heterogeneous mouse models were used to assess the efficacy of (+)-5-FPT to reduce stereotypy: idiopathic jumping in C58/J mice, repetitive body rotations in C57BL/6J mice treated with the NMDA antagonist, MK-801, and repetitive head twitching in C57BL/6J mice treated with the 5-HT2 agonist, DOI. Systemic (+)-5-FPT potently and efficaciously reduced or eliminated stereotypy in each of the mouse models without altering locomotor behavior on its own, and additional tests showed that (+)-5-FPT, at the highest behaviorally active dose tested, enhanced social interaction and did not cause behaviors indicative of serotonin syndrome. These data suggest that (+)-5-FPT is a promising medication for treating stereotypy in psychiatric disorders.

  5. Pro-cognitive and antipsychotic efficacy of the alpha7 nicotinic partial agonist SSR180711 in pharmacological and neurodevelopmental latent inhibition models of schizophrenia.

    PubMed

    Barak, Segev; Arad, Michal; De Levie, Amaya; Black, Mark D; Griebel, Guy; Weiner, Ina

    2009-06-01

    Schizophrenia symptoms can be segregated into positive, negative and cognitive, which exhibit differential sensitivity to drug treatments. Accumulating evidence points to efficacy of alpha7 nicotinic receptor (nAChR) agonists for cognitive deficits in schizophrenia but their activity against positive symptoms is thought to be minimal. The present study examined potential pro-cognitive and antipsychotic activity of the novel selective alpha7 nAChR partial agonist SSR180711 using the latent inhibition (LI) model. LI is the reduced efficacy of a previously non-reinforced stimulus to gain behavioral control when paired with reinforcement, compared with a novel stimulus. Here, no-drug controls displayed LI if non-reinforced pre-exposure to a tone was followed by weak but not strong conditioning (2 vs 5 tone-shock pairings). MK801 (0.05 mg/kg, i.p.) -treated rats as well as rats neonatally treated with nitric oxide synthase inhibitor L-NoArg (10 mg/kg, s.c.) on postnatal days 4-5, persisted in displaying LI with strong conditioning, whereas amphetamine (1 mg/kg) -treated rats failed to show LI with weak conditioning. SSR180711 (0.3, 1, 3 mg/kg, i.p.) was able to alleviate abnormally persistent LI produced by acute MK801 and neonatal L-NoArg; these models are believed to model cognitive aspects of schizophrenia and activity here was consistent with previous findings with alpha7-nAChR agonists. In addition, unexpectedly, SSR180711 (1, 3 mg/kg, i.p.) potentiated LI with strong conditioning in no-drug controls and reversed amphetamine-induced LI disruption, two effects considered predictive of activity against positive symptoms of schizophrenia. These findings suggest that SSR180711 may be beneficial not only for the treatment of cognitive symptoms in schizophrenia, as reported multiple times previously, but also positive symptoms.

  6. Pro-cognitive and antipsychotic efficacy of the alpha7 nicotinic partial agonist SSR180711 in pharmacological and neurodevelopmental latent inhibition models of schizophrenia.

    PubMed

    Barak, Segev; Arad, Michal; De Levie, Amaya; Black, Mark D; Griebel, Guy; Weiner, Ina

    2009-06-01

    Schizophrenia symptoms can be segregated into positive, negative and cognitive, which exhibit differential sensitivity to drug treatments. Accumulating evidence points to efficacy of alpha7 nicotinic receptor (nAChR) agonists for cognitive deficits in schizophrenia but their activity against positive symptoms is thought to be minimal. The present study examined potential pro-cognitive and antipsychotic activity of the novel selective alpha7 nAChR partial agonist SSR180711 using the latent inhibition (LI) model. LI is the reduced efficacy of a previously non-reinforced stimulus to gain behavioral control when paired with reinforcement, compared with a novel stimulus. Here, no-drug controls displayed LI if non-reinforced pre-exposure to a tone was followed by weak but not strong conditioning (2 vs 5 tone-shock pairings). MK801 (0.05 mg/kg, i.p.) -treated rats as well as rats neonatally treated with nitric oxide synthase inhibitor L-NoArg (10 mg/kg, s.c.) on postnatal days 4-5, persisted in displaying LI with strong conditioning, whereas amphetamine (1 mg/kg) -treated rats failed to show LI with weak conditioning. SSR180711 (0.3, 1, 3 mg/kg, i.p.) was able to alleviate abnormally persistent LI produced by acute MK801 and neonatal L-NoArg; these models are believed to model cognitive aspects of schizophrenia and activity here was consistent with previous findings with alpha7-nAChR agonists. In addition, unexpectedly, SSR180711 (1, 3 mg/kg, i.p.) potentiated LI with strong conditioning in no-drug controls and reversed amphetamine-induced LI disruption, two effects considered predictive of activity against positive symptoms of schizophrenia. These findings suggest that SSR180711 may be beneficial not only for the treatment of cognitive symptoms in schizophrenia, as reported multiple times previously, but also positive symptoms. PMID:19158670

  7. Beta-agonists and animal welfare

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of beta-agonists in animal feed is a high profile topic within the U.S. as consumers and activist groups continue to question its safety. The only beta-agonist currently available for use in swine is ractopamine hydrochloride (RAC). This is available as Paylean™ (Elanco Animal Health – FDA a...

  8. [PPAR receptors and insulin sensitivity: new agonists in development].

    PubMed

    Pégorier, J-P

    2005-04-01

    Thiazolidinediones (or glitazones) are synthetic PPARgamma (Peroxisome Proliferator-Activated Receptors gamma) ligands with well recognized effects on glucose and lipid metabolism. The clinical use of these PPARgamma agonists in type 2 diabetic patients leads to an improved glycemic control and an inhanced insulin sensitivity, and at least in animal models, to a protective effect on pancreatic beta-cell function. However, they can produce adverse effects, generally mild or moderate, but some of them (mainly peripheral edema and weight gain) may conduct to treatment cessation. Several pharmacological classes are currently in pre-clinical or clinical development, with the objective to retain the beneficial metabolic properties of PPARgamma agonists, either alone or in association with the PPARalpha agonists (fibrates) benefit on lipid profile, but devoid of the side-effects on weight gain and fluid retention. These new pharmacological classes: partial PPARgamma agonists, PPARgamma antagonists, dual PPARalpha/PPARgamma agonists, pan PPARalpha/beta(delta)/gamma agonists, RXR receptor agonists (rexinoids), are presented in this review. Main results from in vitro cell experiments and animal model studies are discussed, as well as the few published short-term studies in type 2 diabetic patients. PMID:15959400

  9. [Adrenergic beta-agonist intoxication].

    PubMed

    Carrola, Paulo; Devesa, Nuno; Silva, José Manuel; Ramos, Fernando; Alexandrino, Mário B; Moura, José J

    2003-01-01

    The authors describe two clinical cases (father and daughter), observed in the Hospital Urgency with distal tremors, anxiety, palpitations, nausea, headaches and dizziness, two hours after ingestión of cow liver. They also had leucocytosis (with neutrophylia), hypokalemia and hyperglycaemia. After treatment with potassium i.v. and propranolol, the symptoms disappeared. The symptoms recurred at home because the patients didn't take the prescribed medication and persisted for five days, with spontaneous disappearance. The serum of both patients revealed the presence of clenbuterol (65 hg/ml - father and 58 hg/ml - daughter). The animal's liver had a concentration of 1,42 mg/kg. Clenbuterol is a ß-adrenergic agonist with low specificity, with some veterinary indications. However, this substance has been illegally used as a growth's promotor. We intend to alert doctors for this problem, particularly those that work in the Urgency.

  10. Characterization of liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, in rat partial and full nigral 6-hydroxydopamine lesion models of Parkinson's disease.

    PubMed

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Mikkelsen, Jens D; Jelsing, Jacob; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-09-01

    Exendin-4, a glucagon-like peptide-1 (GLP-1) receptor agonist, have been demonstrated to promote neuroprotection in the rat 6-hydroxydopamine (6-OHDA) neurotoxin model of Parkinson's disease (PD), a neurodegenerative disorder characterized by progressive nigrostriatal dopaminergic neuron loss. In this report, we characterized the effect of a long-acting GLP-1 receptor agonist, liraglutide (500µg/kg/day, s.c.) in the context of a partial or advanced (full) 6-OHDA induced nigral lesion in the rat. Rats received a low (3µg, partial lesion) or high (13.5µg, full lesion) 6-OHDA dose stereotaxically injected into the right medial forebrain bundle (n=17-20 rats per experimental group). Six weeks after induction of a partial nigral dopaminergic lesion, vehicle or liraglutide was administered for four weeks. In the full lesion model, vehicle dosing or liraglutide treatment was applied for a total of six weeks starting three weeks pre-lesion, or administered for three weeks starting on the lesion day. Quantitative stereology was applied to assess the total number of midbrain tyrosine hydroxylase (TH) positive dopaminergic neurons. As compared to vehicle controls, liraglutide had no effect on the rotational responsiveness to d-amphetamine or apomorphine, respectively. In correspondence, while numbers of TH-positive nigral neurons were significantly reduced in the lesion side (partial lesion ≈55%; full lesion ≈90%) liraglutide administration had no influence dopaminergic neuronal loss in either PD model setting. In conclusion, liraglutide showed no neuroprotective effects in the context of moderate or substantial midbrain dopaminergic neuronal loss and associated functional motor deficits in the rat 6-OHDA lesion model of PD.

  11. β2-agonist therapy in lung disease.

    PubMed

    Cazzola, Mario; Page, Clive P; Rogliani, Paola; Matera, M Gabriella

    2013-04-01

    β2-Agonists are effective bronchodilators due primarily to their ability to relax airway smooth muscle (ASM). They exert their effects via their binding to the active site of β2-adrenoceptors on ASM, which triggers a signaling cascade that results in a number of events, all of which contribute to relaxation of ASM. There are some differences between β2-agonists. Traditional inhaled short-acting β2-agonists albuterol, fenoterol, and terbutaline provide rapid as-needed symptom relief and short-term prophylactic protection against bronchoconstriction induced by exercise or other stimuli. The twice-daily β2-agonists formoterol and salmeterol represent important advances. Their effective bronchodilating properties and long-term improvement in lung function offer considerable clinical benefits to patients. More recently, a newer β2-agonist (indacaterol) with a longer pharmacodynamic half-life has been discovered, with the hopes of achieving once-daily dosing. In general, β2-agonists have an acceptable safety profile, although there is still controversy as to whether long-acting β2-agonists may increase the risk of asthma mortality. In any case, they can induce adverse effects, such as increased heart rate, palpitations, transient decrease in PaO2, and tremor. Desensitization of β2-adrenoceptors that occurs during the first few days of regular use of β2-agonist treatment may account for the commonly observed resolution of the majority of these adverse events after the first few doses. Nevertheless, it can also induce tolerance to bronchoprotective effects of β2-agonists and has the potential to reduce bronchodilator sensitivity to them. Some novel once-daily β2-agonists (olodaterol, vilanterol, abediterol) are under development, mainly in combination with an inhaled corticosteroid or a long-acting antimuscarinic agent. PMID:23348973

  12. The evolution of beta2-agonists.

    PubMed

    Sears, M R

    2001-08-01

    Beta-agonists have been widely used in the treatment of asthma for many years Although concerns have been expressed over their safety based largely upon epidemics of increased mortality in asthmatics associated with high doses of isoprenaline in the 1960s and fenoterol in the 1970s and 1980s, the specific beta2-agonists are vital drugs in asthma management. The short-acting beta2-agonists have an important prophylactic role in the prevention of exercise-induced bronchoconstriction, and are essential in the emergency treatment of severe asthma. However, little if any benefit seems to be derived from regular use of short-acting beta2-agonists and regular or frequent use can increase the severity of the condition. The development of beta2-agonists with long-acting properties, such as salmeterol and formoterol, has provided advantages over short-acting beta-agonists, such as prolonged bronchodilation, reduced day- and night-time symptoms and improved quality of sleep, and has reduced the requirement for short-acting beta2-agonists as relief medication. Both drugs are well tolerated and, when added to inhaled corticosteroids, produce greater mprovement in lung function than increased steroid dose alone. Because of its rapid onset of action, formoterol also has the potential to be used for as-needed bronchodilator therapy in asthma.

  13. Tetrahydroaminoacridine, a cholinesterase inhibitor, and D-cycloserine, a partial NMDA receptor-associated glycine site agonist, enhances acquisition of spatial navigation.

    PubMed

    Riekkinen, P; Ikonen, S; Riekkinen, M

    1998-05-11

    The present study examines the efficacy of single and combined treatments with an antiocholinesterase, tetrahydroaminoacridine (THA, i.p.), and a glycine-B site partial agonist, D-cycloserine (DCS, i.p.) to alleviate water maze (WM) spatial navigation defect induced by medial septal (MS) lesion. THA 3 and DCS at 3 or 10 mg/kg improved acquisition of the WM test, but only DCS improved spatial bias. These drugs had no effect on consolidation. A combination of THA 3 and DCS 10 mg/kg enhanced WM acquisition more effectively than either of the treatments on their own. This suggests that combined modulation of acetylcholine and NMDA mechanisms may have greater therapeutic effect to stimulate cognitive dysfunctions.

  14. Aspirin metabolites are GPR35 agonists.

    PubMed

    Deng, Huayun; Fang, Ye

    2012-07-01

    Aspirin is widely used as an anti-inflammatory, anti-platelet, anti-pyretic, and cancer-preventive agent; however, the molecular mode of action is unlikely due entirely to the inhibition of cyclooxygenases. Here, we report the agonist activity of several aspirin metabolites at GPR35, a poorly characterized orphan G protein-coupled receptor. 2,3,5-Trihydroxybenzoic acid, an aspirin catabolite, was found to be the most potent GPR35 agonist among aspirin metabolites. Salicyluric acid, the main metabolite of aspirin, was also active. These results suggest that the GPR35 agonist activity of certain aspirin metabolites may contribute to the clinical features of aspirin. PMID:22526472

  15. Encenicline, an α7 Nicotinic Acetylcholine Receptor Partial Agonist, Reduces Immune Cell Infiltration in the Colon and Improves Experimental Colitis in Mice.

    PubMed

    Salaga, M; Blomster, L V; Piechota-Polańczyk, A; Zielińska, M; Jacenik, D; Cygankiewicz, A I; Krajewska, W M; Mikkelsen, J D; Fichna, Jakub

    2016-01-01

    The α7 pentamer nicotinic acetylcholine receptors (nAChRs) are a target in transduction of anti-inflammatory signals from the central nervous system to the gastrointestinal (GI) tract. The aim of this study was to investigate the anti-inflammatory action of the novel α7 nAChR partial agonist encenicline and to determine the mechanism underlying its activity. Anti-inflammatory activity of encenicline was evaluated using trinitrobenzenesulfonic acid (TNBS)- and dextran sulfate sodium (DSS)-induced models of colitis. Macroscopic score, ulcer score, colon length and thickness, as well as myeloperoxidase (MPO) activity were recorded. Immunohistochemistry (IHC) was used to measure the infiltration of immune cells in the colon. Furthermore, we employed flow cytometry to determine the effect of encenicline on frequencies of FoxP3(+) and interleukin (IL)-17A(+) T cells in the mouse colon. Encenicline attenuated TNBS- and DSS-induced colitis in mice via α7 nAChRs, as indicated by significantly reduced macroscopic parameters and MPO activity. Treatment with encenicline significantly reduced the infiltration of macrophages, neutrophils, and B cells in the colon of TNBS-treated animals, as indicated by IHC. In the TNBS model encenicline reduced the frequency of FoxP3(+) IL-17A(+) T cells in the colon. In the DSS-model treatment encenicline increased the frequency of FoxP3(+) T cells and reduced IL-17A(+) T cells. Stimulation of α7 nAChR with partial agonist encenicline alleviates colitis via alteration of the number and/or activation status of the immune cells in the gut, emphasizing a potential role of α7 nAChRs as a target for anticolitic drugs. PMID:26462538

  16. Mixed Kappa/Mu Opioid Receptor Agonists: The 6β-Naltrexamines

    PubMed Central

    Cami-Kobeci, Gerta; Neal, Adrian P.; Bradbury, Faye A.; Purington, Lauren C.; Aceto, Mario D.; Harris, Louis S.; Lewis, John W.; Traynor, John R.; Husbands, Stephen M.

    2011-01-01

    Ligands from the naltrexamine series have consistently demonstrated agonist activity at kappa opioid receptors (KOR), with varying activity at the mu opioid receptor (MOR). Various 6β-cinnamoylamino derivatives were made with the aim of generating ligands with a KOR agonist/MOR partial agonist profile, as ligands with this activity may be of interest as treatment agents for cocaine abuse. The ligands all displayed the desired high affinity, non-selective binding in vitro and in the functional assays were high efficacy KOR agonists with some partial agonist activity at MOR. Two of the new ligands (12a, 12b) have been evaluated in vivo, with 12a acting as a KOR agonist, and therefore somewhat similar to the previously evaluated analogues 3–6, while 12b displayed predominant MOR agonist activity. PMID:19253970

  17. [Safety of beta-agonists in asthma].

    PubMed

    Oscanoa, Teodoro J

    2014-01-01

    Beta 2 agonist bronchodilators (β2A) are very important part in the pharmacotherapy of bronchial asthma, a disease that progresses in the world in an epidemic way. The β2A are prescribed to millions of people around the world, therefore the safety aspects is of public interest. Short-Acting β2 Agonists (SABAs), such as albuterol inhaler, according to current evidence, confirming its safety when used as a quick-relief or rescue medication. The long-acting β2 agonists (LABAs) The long-acting bronchodilators β2A (Long acting β2 Agonists or LABAs) are used associated with inhaled corticosteroids as controller drugs for asthma exacerbationsaccess, for safety reasons LABAs are not recommended for use as monotherapy.

  18. Honokiol: A non-adipogenic PPARγ agonist from nature☆

    PubMed Central

    Atanasov, Atanas G.; Wang, Jian N.; Gu, Shi P.; Bu, Jing; Kramer, Matthias P.; Baumgartner, Lisa; Fakhrudin, Nanang; Ladurner, Angela; Malainer, Clemens; Vuorinen, Anna; Noha, Stefan M.; Schwaiger, Stefan; Rollinger, Judith M.; Schuster, Daniela; Stuppner, Hermann; Dirsch, Verena M.; Heiss, Elke H.

    2013-01-01

    Background Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are clinically used to counteract hyperglycemia. However, so far experienced unwanted side effects, such as weight gain, promote the search for new PPARγ activators. Methods We used a combination of in silico, in vitro, cell-based and in vivo models to identify and validate natural products as promising leads for partial novel PPARγ agonists. Results The natural product honokiol from the traditional Chinese herbal drug Magnolia bark was in silico predicted to bind into the PPARγ ligand binding pocket as dimer. Honokiol indeed directly bound to purified PPARγ ligand-binding domain (LBD) and acted as partial agonist in a PPARγ-mediated luciferase reporter assay. Honokiol was then directly compared to the clinically used full agonist pioglitazone with regard to stimulation of glucose uptake in adipocytes as well as adipogenic differentiation in 3T3-L1 pre-adipocytes and mouse embryonic fibroblasts. While honokiol stimulated basal glucose uptake to a similar extent as pioglitazone, it did not induce adipogenesis in contrast to pioglitazone. In diabetic KKAy mice oral application of honokiol prevented hyperglycemia and suppressed weight gain. Conclusion We identified honokiol as a partial non-adipogenic PPARγ agonist in vitro which prevented hyperglycemia and weight gain in vivo. General significance This observed activity profile suggests honokiol as promising new pharmaceutical lead or dietary supplement to combat metabolic disease, and provides a molecular explanation for the use of Magnolia in traditional medicine. PMID:23811337

  19. Effects of the nicotinic α7 receptor partial agonist GTS-21 on NMDA-glutamatergic receptor related deficits in sensorimotor gating and recognition memory in rats

    PubMed Central

    Terry, Alvin V.; Tehim, Ashok

    2016-01-01

    Rationale Disturbances in information processing and cognitive function are key features of schizophrenia. Nicotinic α7 acetylcholine receptors (α7-nAChR) are involved in sensory gating and cognition, thereby representing a viable therapeutic strategy. Objectives and methods We investigated the effects of GTS-21, an α7-nAChR partial agonist, on prepulse inhibition (PPI) of acoustic startle in two pharmacologic impairment models in Wistar male rats: NMDA-glutamate receptor antagonism by MK-801 and dopamine receptor agonism by apomorphine. The cognitive effects of GTS-21 were assessed using the object recognition task (ORT) at short (3 h) and long (48 h) delays in Sprague-Dawley male rats. Pharmacological specificity was assessed by methyllycaconitine (MLA) coadministration with GTS-21. Results In the PPI task, GTS-21 (1–10 mg/kg) alone did not alter the PPI response or startle amplitude. Coadministration of GTS-21 with MK-801 (0.1 mg/kg) or apomorphine (0.5 mg/kg) abolished the pharmacologic-induced PPI impairment as did the antipsychotics clozapine (5.0 mg/kg) and haloperidol (0.3 mg/kg). MK-801 alone increased startle amplitude which was blocked by GTS-21. In the ORT, GTS-21 (0.1–10 mg/kg) reversed the MK-801 (0.08 mg/kg)-induced memory deficit at the 3 h delay and enhanced memory at the 48 h delay, an effect abolished by MLA (0.313–5 mg/kg). Conclusions The results extend our preclinical pharmacological understanding of GTS-21 to include the ability of GTS-21 to modulate NMDA-glutamate receptor function, in vivo. Given the role of NMDA-glutamate receptor involvement in schizophrenia, α7-nAChR agonists may represent a novel treatment strategy for the pathophysiological deficits of schizophrenia and other psychiatric disorders. PMID:24595504

  20. PPAR Agonists and Cardiovascular Disease in Diabetes.

    PubMed

    Calkin, Anna C; Thomas, Merlin C

    2008-01-01

    Peroxisome proliferators activated receptors (PPARs) are ligand-activated nuclear transcription factors that play important roles in lipid and glucose homeostasis. To the extent that PPAR agonists improve diabetic dyslipidaemia and insulin resistance, these agents have been considered to reduce cardiovascular risk. However, data from murine models suggests that PPAR agonists also have independent anti-atherosclerotic actions, including the suppression of vascular inflammation, oxidative stress, and activation of the renin angiotensin system. Many of these potentially anti-atherosclerotic effects are thought to be mediated by transrepression of nuclear factor-kB, STAT, and activator protein-1 dependent pathways. In recent clinical trials, PPARalpha agonists have been shown to be effective in the primary prevention of cardiovascular events, while their cardiovascular benefit in patients with established cardiovascular disease remains equivocal. However, the use of PPARgamma agonists, and more recently dual PPARalpha/gamma coagonists, has been associated with an excess in cardiovascular events, possibly reflecting unrecognised fluid retention with potent agonists of the PPARgamma receptor. Newer pan agonists, which retain their anti-atherosclerotic activity without weight gain, may provide one solution to this problem. However, the complex biologic effects of the PPARs may mean that only vascular targeted agents or pure transrepressors will realise the goal of preventing atherosclerotic vascular disease.

  1. PPAR Agonists and Cardiovascular Disease in Diabetes

    PubMed Central

    Calkin, Anna C.; Thomas, Merlin C.

    2008-01-01

    Peroxisome proliferators activated receptors (PPARs) are ligand-activated nuclear transcription factors that play important roles in lipid and glucose homeostasis. To the extent that PPAR agonists improve diabetic dyslipidaemia and insulin resistance, these agents have been considered to reduce cardiovascular risk. However, data from murine models suggests that PPAR agonists also have independent anti-atherosclerotic actions, including the suppression of vascular inflammation, oxidative stress, and activation of the renin angiotensin system. Many of these potentially anti-atherosclerotic effects are thought to be mediated by transrepression of nuclear factor-kB, STAT, and activator protein-1 dependent pathways. In recent clinical trials, PPARα agonists have been shown to be effective in the primary prevention of cardiovascular events, while their cardiovascular benefit in patients with established cardiovascular disease remains equivocal. However, the use of PPARγ agonists, and more recently dual PPARα/γ coagonists, has been associated with an excess in cardiovascular events, possibly reflecting unrecognised fluid retention with potent agonists of the PPARγ receptor. Newer pan agonists, which retain their anti-atherosclerotic activity without weight gain, may provide one solution to this problem. However, the complex biologic effects of the PPARs may mean that only vascular targeted agents or pure transrepressors will realise the goal of preventing atherosclerotic vascular disease. PMID:18288280

  2. Cariprazine for the Treatment of Schizophrenia: A Review of this Dopamine D3-Preferring D3/D2 Receptor Partial Agonist.

    PubMed

    Citrome, Leslie

    2016-01-01

    Cariprazine is an antipsychotic medication and received approval by the U.S. Food and Drug Administration for the treatment of schizophrenia in September 2015. Cariprazine is a dopamine D3 and D2 receptor partial agonist, with a preference for the D3 receptor. Cariprazine is also a partial agonist at the serotonin 5-HT1A receptor and acts as an antagonist at 5-HT2B and 5-HT2A receptors. The recommended dose range of cariprazine for the treatment of schizophrenia is 1.5-6 mg/d; the starting dose of 1.5 mg/d is potentially therapeutic. Cariprazine is administered once daily and is primarily metabolized in the liver through the CYP3A4 enzyme system and, to a lesser extent, by CYP2D6. There are two active metabolites of note, desmethyl-cariprazine and didesmethyl-cariprazine; the latter's half-life is substantially longer than that for cariprazine and systemic exposure to didesmethyl-cariprazine is several times higher than that for cariprazine. Three positive, 6-week, Phase 2/3, randomized controlled trials in acute schizophrenia demonstrated superiority of cariprazine over placebo. Pooled responder rates were 31% for cariprazine 1.5-6 mg/d vs. 21% for placebo, resulting in a number needed to treat (NNT) of 10. In a 26-72 week, randomized withdrawal study, significantly fewer patients relapsed in the cariprazine group compared with placebo (24.8% vs. 47.5%), resulting in an NNT of 5. The most commonly encountered adverse events (incidence ≥5% and at least twice the rate of placebo) are extrapyramidal symptoms (number needed to harm [NNH] 15 for cariprazine 1.5-3 mg/d vs. placebo and NNH 10 for 4.5-6 mg/d vs. placebo) and akathisia (NNH 20 for 1.5-3 mg/d vs. placebo and NNH 12 for 4.5-6 mg/d vs. placebo). Short-term weight gain appears small (approximately 8% of patients receiving cariprazine 1.5-6 mg/d gained ≥7% body weight from baseline, compared with 5% for those randomized to placebo, resulting in an NNH of 34). Cariprazine is associated with no clinically

  3. AT-1001 Is a Partial Agonist with High Affinity and Selectivity at Human and Rat α3β4 Nicotinic Cholinergic Receptors

    PubMed Central

    Tuan, Edward W.; Horti, Andrew G.; Olson, Thao T.; Gao, Yongiun; Stockmeier, Craig A.; Al-Muhtasib, Nour; Bowman Dalley, Carrie; Lewin, Amanda E.; Wolfe, Barry B.; Sahibzada, Niaz; Xiao, Yingxian

    2015-01-01

    AT-1001 [N-(2-bromophenyl)-9-methyl-9-azabicyclo[3.3.1] nonan-3-amine] is a high-affinity and highly selective ligand at α3β4 nicotinic cholinergic receptors (nAChRs) that was reported to decrease nicotine self-administration in rats. It was initially reported to be an antagonist at rat α3β4 nAChRs heterologously expressed in HEK293 cells. Here we compared AT-1001 actions at rat and human α3β4 and α4β2 nAChRs similarly expressed in HEK 293 cells. We found that, as originally reported, AT-1001 is highly selective for α3β4 receptors over α4β2 receptors, but its binding selectivity is much greater at human than at rat receptors, because of a higher affinity at human than at rat α3β4 nAChRs. Binding studies in human and rat brain and pineal gland confirmed the selectivity of AT-1001 for α3β4 nAChRs and its higher affinity for human compared with rat receptors. In patch-clamp electrophysiology studies, AT-1001 was a potent partial agonist with 65–70% efficacy at both human and rat α3β4 nAChRs. It was also a less potent and weaker (18%) partial agonist at α4β2 nAChRs. Both α3β4 and α4β2 nAChRs are upregulated by exposure of cells to AT-1001 for 3 days. Similarly, AT-1001 desensitized both receptor subtypes in a concentration-dependent manner, but it was 10 and 30 times more potent to desensitize human α3β4 receptors than rat α3β4 and human α4β2 receptors, respectively. After exposure to AT-1001, the time to recovery from desensitization was longest for the human α3β4 nAChR and shortest for the human α4β2 receptor, suggesting that recovery from desensitization is primarily related to the dissociation of the ligand from the receptor. PMID:26162864

  4. (17α,20E)-17,20-[(1-methoxyethylidene)bis(oxy)]-3-oxo-19-norpregna-4,20-diene-21-carboxylic acid methyl ester (YK11) is a partial agonist of the androgen receptor.

    PubMed

    Kanno, Yuichiro; Hikosaka, Ritsuko; Zhang, Shu-Yun; Inoue, Yoshimi; Nakahama, Takayuki; Kato, Keisuke; Yamaguchi, Akemi; Tominaga, Nobuaki; Kohra, Shinya; Arizono, Koji; Inouye, Yoshio

    2011-01-01

    A novel steroid compound, (17α,20E)-17,20-[(1-methoxyethylidene)bis(oxy)]-3-oxo-19-norpregna-4,20-diene-21-carboxylic acid methyl ester (YK11), was found to be a partial agonist of the androgen receptor (AR) in an androgen responsive element (ARE)-luciferase reporter assay. YK11 accelerates nuclear translocation of AR. Furthermore, YK11 does not induce amino/carboxyl-terminal (N/C) interaction and prevents 5-α-dihydrotestosterone (DHT)-mediated N/C interaction. Thus, YK11 activates AR without causing N/C interaction, which may in turn be responsible for the partially agonistic nature of YK11 observed in the ARE-luciferase reporter system. YK11 acts as a gene-selective agonist of AR in MDA-MB 453 cells. The effect of YK11 on gene expression relative to that of androgen agonist varies depending on the gene context. YK11 activated the reporter gene by inducing the translocation of the AR into the nuclear compartment, where its amino-terminal domain (NTD) functions as a constitutive activator of AR target genes. Our results suggest that YK11 might act as selective androgen receptor modulator (SARM). PMID:21372378

  5. (R)-3'-(3-methylbenzo[b]thiophen-5-yl)spiro[1-azabicyclo[2,2,2]octane-3,5'-oxazolidin]-2'-one, a novel and potent alpha7 nicotinic acetylcholine receptor partial agonist displays cognitive enhancing properties.

    PubMed

    Tatsumi, Ryo; Fujio, Masakazu; Takanashi, Shin-ichi; Numata, Atsushi; Katayama, Jiro; Satoh, Hiroyuki; Shiigi, Yasuyuki; Maeda, Jun-ichi; Kuriyama, Makoto; Horikawa, Takashi; Murozono, Takahiro; Hashimoto, Kenji; Tanaka, Hiroshi

    2006-07-13

    Recent studies have suggested that the alpha7 nicotinic acetylcholine receptors play important roles in learning and memory. Herein, we describe our research of the structure-activity relationships (SAR) in a series of (S)-spiro[1-azabicyclo[2.2.2]octane-3,5'-oxazolidin]-2'-ones bearing various bicyclic moieties to discover novel alpha7 receptor agonists. Through a number of SAR studies on the series, we have found out that inhibition of CYP 2D6 isozyme, which was a primary obstacle for the previously identified compound, was avoidable by the introduction of bicyclic moieties. Chemical optimization of the series led to the identification of a novel and potent alpha7 nicotinic acetylcholine receptor partial agonist 23. This compound not only possessed high binding affinity (K(i) = 3 nmol/L) toward the alpha7 receptor but also showed agonistic activity even at a concentration of 0.1 micromol/L. In addition, compound 23 improved cognition in several rat models, which might suggest the potential of the alpha7 receptor partial agonist for the treatment of neurological disorders including cognitive dysfunction.

  6. Synthesis and Behavioral Studies of Chiral Cyclopropanes as Selective α4β2-Nicotinic Acetylcholine Receptor Partial Agonists Exhibiting an Antidepressant Profile. Part III.

    PubMed

    Onajole, Oluseye K; Vallerini, Gian Paolo; Eaton, J Brek; Lukas, Ronald J; Brunner, Dani; Caldarone, Barbara J; Kozikowski, Alan P

    2016-06-15

    We report the synthesis and biological characterization of novel derivatives of 3-[(1-methyl-2(S)-pyrrolidinyl)methoxy]-5-cyclopropylpyridine (4a-f and 5) as potent and highly selective α4β2-nicotinic acetylcholine receptor (nAChR) full or partial agonists. A systematic structure-activity study was carried out on the previously described compound 3b, particularly concerning its (2-methoxyethyl)cyclopropyl side-chain, in an effort to improve its metabolic stability while maintaining receptor selectivity. Compound 4d exhibited very similar subnanomolar binding affinity for α4β2- and α4β2*-nAChRs compared to 3b, and it showed excellent potency in activating high-sensitivity (HS) α4β2-nAChRs with an EC50 value of 8.2 nM. Testing of 4d in the SmartCube assay revealed that the compound has a combined antidepressant plus antipsychotic signature. In the forced swim test at a dose of 30 mg/kg given intraperitoneally, 4d was found to be as efficacious as sertraline, thus providing evidence of the potential use of the compound as an antidepressant. Additional promise for use of 4d in humans comes from pharmacokinetic studies in mice indicating brain penetration, and additional assays show compound stability in the presence of human microsomes and hepatocytes. Thus, 4d has a very favorable preclinical drug profile. PMID:27035276

  7. Molecular mimicry in Lyme arthritis demonstrated at the single cell level: LFA-1 alpha L is a partial agonist for outer surface protein A-reactive T cells.

    PubMed

    Trollmo, C; Meyer, A L; Steere, A C; Hafler, D A; Huber, B T

    2001-04-15

    Antibiotic treatment-resistant Lyme arthritis is a chronic inflammatory joint disease that follows infection with Borrelia burgdorferi (BB:). A marked Ab and T cell response to BB: outer surface protein A (OspA) often develops during prolonged episodes of arthritis. Furthermore, cross-reaction between the bacterial OspA and human LFA-1alpha(L) at the T cell level and the inability to detect BB: in the joint implicate an autoimmune mechanism. To analyze the nature of response to OspA and LFA-1alpha(L), we used OspA-specific T cell hybrids from DR4 transgenic mice, as well as cloned human cells specific for OspA(165-184), the immunodominant epitope, from five DRB1*0401(+) patients, using OspA-MHC class II tetramers. Although OspA(165-184) stimulated nearly all OspA-specific human T cell clones tested to proliferate and secrete IFN-gamma and IL-13, LFA-1alpha(L326-345) stimulated approximately 10% of these clones to proliferate and a greater percentage to secrete IL-13. Assays with LFA- or OspA-DR4 monomers revealed that higher concentrations of LFA-DR4 were needed to stimulate dual-reactive T cell hybrids. Our analysis at the clonal level demonstrates that human LFA-1alpha(L326-345) behaves as a partial agonist, perhaps playing a role in perpetuating symptoms of arthritis.

  8. Characterisation of chlorinated, brominated and mixed halogenated dioxins, furans and biphenyls as potent and as partial agonists of the Aryl hydrocarbon receptor.

    PubMed

    Wall, Richard J; Fernandes, Alwyn; Rose, Martin; Bell, David R; Mellor, Ian R

    2015-03-01

    The Aryl hydrocarbon receptor (AhR) binds a variety of chlorinated and brominated dioxins, furans and biphenyls. Mixed halogenated variants have been recently identified in food at significant levels but full characterisation requires potency data in order to gauge their impact on risk assessment. Rat H4IIE and human MCF-7 cells were treated with various mixed halogenated ligands. Antagonist properties were measured by treating cells with various concentrations of TCDD in the presence of EC25 of the putative antagonist. Measurement of CYP1A1 RNA was used to quantify the potency of agonism and antagonism. The PXDDs were found to be slightly less potent than the corresponding fully chlorinated congeners with the exception of 2-B,3,7,8-TriCDD which was 2-fold more potent than TCDD. PXDFs and non-ortho-PXBs were found to be more potent than their chlorinated congeners whilst several mono-ortho-substituted PXBs were shown to have partial agonistic properties. REPs were produced for a range of mixed halogenated AhR-activating ligands providing a more accurate estimation of potency for risk assessment. Several environmentally abundant biphenyls were shown to be antagonists and reduce the ability of TCDD to induce CYP1A1. The demonstration of antagonism for AhR ligands represents a challenge for existing REP risk assessment schemes for AhR ligands.

  9. Cytisine, a Partial Agonist of α4β2 Nicotinic Acetylcholine Receptors, Reduced Unpredictable Chronic Mild Stress-Induced Depression-Like Behaviors.

    PubMed

    Han, Jing; Wang, Dong-Sheng; Liu, Shui-Bing; Zhao, Ming-Gao

    2016-05-01

    Cytisine (CYT), a partial agonist of α4β2-nicotinic receptors, has been used for antidepressant efficacy in several tests. Nicotinic receptors have been shown to be closely associated with depression. However, little is known about the effects of CYT on the depression. In the present study, a mouse model of depression, the unpredictable chronic mild stress (UCMS), was used to evaluate the activities of CYT. UCMS caused significant depression-like behaviors, as shown by the decrease of total distances in open field test, and the prolonged duration of immobility in tail suspension test and forced swimming test. Treatment with CYT for two weeks notably relieved the depression-like behaviors in the UCMS mice. Next, proteins related to depressive disorder in the brain region of hippocampus and amygdala were analyzed to elucidate the underlying mechanisms of CYT. CYT significantly reversed the decreases of 5-HT1A, BDNF, and mTOR levels in the hippocampus and amygdala. These results imply that CYT may act as a potential anti-depressant in the animals under chronic stress. PMID:27098858

  10. Differential neuroprotective effects of the NMDA receptor-associated glycine site partial agonists 1-aminocyclopropanecarboxylic acid (ACPC) and D-cycloserine in lithium-pilocarpine status epilepticus.

    PubMed

    Peterson, Steven L; Purvis, Rebecca S; Griffith, James W

    2004-09-01

    The status epilepticus (SE) induced in rats by lithium-pilocarpine (Li-pilo) shares many common features with soman-induced SE including a glutamatergic phase that is inhibited by NMDA antagonists. The present study determined whether 1-aminocyclopropanecarboxylic acid (ACPC) or D-cycloserine (DCS), both partial agonists of the strychnine-insensitive glycine site on the NMDA receptor ionophore complex, exerted anticonvulsant or neuroprotectant activity in Li-pilo SE. ACPC or DCS were administered either immediately following pilocarpine (exposure treatment) or 5 min after the onset of SE as determined by ECoG activity. SE was allowed to proceed for 3 h before termination with propofol. The rats were sacrificed 24 h following pilocarpine administration. Neither drug had an effect on the latency to seizure onset or the duration of seizure activity. ACPC administered 5 min after SE onset produced significant neuroprotection in cortical regions, amygdala and CA1 of the hippocampus. In contrast, when administered as exposure treatment ACPC enhanced the neural damage in the thalamus and CA3 of the hippocampus suggesting the neuropathology in those regions is mediated by a different subset of NMDA receptors. DCS had no neuroprotectant activity in Li-pilo SE but exacerbated neuronal damage in the thalamus. Neither drug affected the cholinergic convulsions but both had differential effects on neural damage. This suggests that the SE-induced seizure activity and subsequent neuronal damage involve independent mechanisms.

  11. GLYX-13, an NMDA receptor glycine site functional partial agonist enhances cognition and produces antidepressant effects without the psychotomimetic side effects of NMDA receptor antagonists

    PubMed Central

    Moskal, Joseph R; Burch, Ronald; Burgdorf, Jeffrey S; Kroes, Roger A; Stanton, Patric K; Disterhoft, John F; Leander, J David

    2016-01-01

    Introduction The N-methyl-d-aspartate receptor-ionophore complex plays a key role in learning and memory and has efficacy in animals and humans with affective disorders. GLYX-13 is an N-methyl-d-aspartate receptor (NMDAR) glycine-site functional partial agonist and cognitive enhancer that also shows rapid antidepressant activity without psychotomimetic side effects. Areas covered The authors review the mechanism of action of GLYX-13 that was investigated in preclinical studies and evaluated in clinical studies. Specifically, the authors review its pharmacology, pharmacokinetics, and drug safety that were demonstrated in clinical studies. Expert opinion NMDAR full antagonists can produce rapid antidepressant effects in treatment-resistant subjects; however, they are often accompanied by psychotomimetic effects that make chronic use outside of a clinical trial inpatient setting problematic. GLYX-13 appears to exert its antidepressant effects in the frontal cortex via NMDAR-triggered synaptic plasticity. Understanding the mechanistic underpinning of GLYX-13’s antidepressant action should provide both novel insights into the role of the glutamatergic system in depression and identify new targets for therapeutic development. PMID:24251380

  12. beta2-Agonists at the Olympic Games.

    PubMed

    Fitch, Kenneth D

    2006-01-01

    The different approaches that the International Olympic Committee (IOC) had adopted to beta2-agonists and the implications for athletes are reviewed by a former Olympic team physician who later became a member of the Medical Commission of the IOC (IOC-MC). Steadily increasing knowledge of the effects of inhaled beta2-agonists on health, is concerned with the fact that oral beta2-agonists may be anabolic, and rapid increased use of inhaled beta2-agonists by elite athletes has contributed to the changes to the IOC rules. Since 2001, the necessity for athletes to meet IOC criteria (i.e., that they have asthma and/or exercise-induced asthma [EIA]) has resulted in improved management of athletes. The prevalence of beta2-agonist use by athletes mirrors the known prevalence of asthma symptoms in each country, although athletes in endurance events have the highest prevalence. The age-of-onset of asthma/EIA in elite winter athletes may be atypical. Of the 193 athletes at the 2006 Winter Olympics who met th IOC's criteria, only 32.1% had childhood asthma and 48.7% of athletes reported onset at age 20 yr or older. These findings lead to speculation that years of intense endurance training may be a causative factor in bronchial hyperreactivity. The distinction between oral (prohibited in sports) and inhaled salbutamol is possible, but athletes must be warned that excessive use of inhaled salbutamol can lead to urinary concentrations similar to those observed after oral administration. This article provides justification that athletes should provide evidence of asthma or EIA before being permitted to use inhaled beta2-agonists. PMID:17085798

  13. Pharmacological stress is required for the anti-alcohol effect of the α3β4* nAChR partial agonist AT-1001.

    PubMed

    Cippitelli, Andrea; Brunori, Gloria; Gaiolini, Kelly A; Zaveri, Nurulain T; Toll, Lawrence

    2015-06-01

    Alcohol and nicotine are often taken together. The mechanisms underlying this frequent co-abuse are not well known. Genetic and pharmacological evidence suggests that the nicotinic acetylcholine receptors (nAChRs) containing the α3 and β4 subunits play a role in alcohol as well as nicotine addiction. AT-1001 is a high affinity α3β4 nAChR partial agonist recently found to block nicotine self-administration and relapse-like behavior in rats. Here, to study the involvement of α3β4 nAChRs in the mechanisms that regulate alcohol abuse we evaluated the effects of AT-1001 on alcohol taking and seeking in Sprague-Dawley rats. AT-1001 reduced operant alcohol self-administration at the highest dose examined (3.0 mg/kg), an effect also observed for food self-administration. A dose of 1.5 mg/kg AT-1001, which had no effect on alcohol or food self-administration, essentially eliminated reinstatement of alcohol seeking induced by yohimbine (0.625 mg/kg) whereas, reinstatement induced by alcohol-associated cues was not altered, nor did AT-1001 induce reinstatement of extinguished self-administration on its own. Finally, AT-1001 showed an anxiolytic activity when measured in the presence or absence of yohimbine stress in the elevated plus maze paradigm. Together, these observations do not support a specific involvement of the α3β4 nAChR in mediating alcohol reward or cue-induced relapse to alcohol seeking but rather indicate that the α3β4 nAChR partial agonism may constitute an attractive approach for treating alcohol use disorders exacerbated by elevated stress response.

  14. Identification of Selective ERRγ Inverse Agonists.

    PubMed

    Kim, Jina; Im, Chun Young; Yoo, Eun Kyung; Ma, Min Jung; Kim, Sang-Bum; Hong, Eunmi; Chin, Jungwook; Hwang, Hayoung; Lee, Sungwoo; Kim, Nam Doo; Jeon, Jae-Han; Lee, In-Kyu; Jeon, Yong Hyun; Choi, Hueng-Sik; Kim, Seong Heon; Cho, Sung Jin

    2016-01-12

    GSK5182 (4) is currently one of the lead compounds for the development of estrogen-related receptor gamma (ERRγ) inverse agonists. Here, we report the design, synthesis, pharmacological and in vitro absorption, distribution, metabolism, excretion, toxicity (ADMET) properties of a series of compounds related to 4. Starting from 4, a series of analogs were structurally modified and their ERRγ inverse agonist activity was measured. A key pharmacophore feature of this novel class of ligands is the introduction of a heterocyclic group for A-ring substitution in the core scaffold. Among the tested compounds, several of them are potent ERRγ inverse agonists as determined by binding and functional assays. The most promising compound, 15g, had excellent binding selectivity over related subtypes (IC50 = 0.44, >10, >10, and 10 μM at the ERRγ, ERRα, ERRβ, and ERα subtypes, respectively). Compound 15g also resulted in 95% transcriptional repression at a concentration of 10 μM, while still maintaining an acceptable in vitro ADMET profile. This novel class of ERRγ inverse agonists shows promise in the development of drugs targeting ERRγ-related diseases.

  15. Multiple tyrosine metabolites are GPR35 agonists

    PubMed Central

    Deng, Huayun; Hu, Haibei; Fang, Ye

    2012-01-01

    Both kynurenic acid and 2-acyl lysophosphatidic acid have been postulated to be the endogenous agonists of GPR35. However, controversy remains whether alternative endogenous agonists exist. The molecular targets accounted for many nongenomic actions of thyroid hormones are mostly unknown. Here we report the agonist activity of multiple tyrosine metabolites at the GPR35. Tyrosine metabolism intermediates that contain carboxylic acid and/or catechol functional groups were first selected. Whole cell dynamic mass redistribution (DMR) assays enabled by label-free optical biosensor were then used to characterize their agonist activity in native HT-29. Molecular assays including β-arrestin translocation, ERK phosphorylation and receptor internalization confirmed that GPR35 functions as a receptor for 5,6-dihydroxyindole-2-carboxylic acid, 3,3′,5′-triiodothyronine, 3,3′,5-triiodothyronine, gentisate, rosmarinate, and 3-nitrotyrosine. These results suggest that multiple tyrosine metabolites are alternative endogenous ligands of GPR35, and GPR35 may represent a druggable target for treating certain diseases associated with abnormality of tyrosine metabolism. PMID:22523636

  16. FXR agonist activity of conformationally constrained analogs of GW 4064

    SciTech Connect

    Akwabi-Ameyaw, Adwoa; Bass, Jonathan Y.; Caldwell, Richard D.; Caravella, Justin A.; Chen, Lihong; Creech, Katrina L.; Deaton, David N.; Madauss, Kevin P.; Marr, Harry B.; McFadyen, Robert B.; Miller, Aaron B.; Navas, III, Frank; Parks, Derek J.; Spearing, Paul K.; Todd, Dan; Williams, Shawn P.; Wisely, G. Bruce

    2010-09-27

    Two series of conformationally constrained analogs of the FXR agonist GW 4064 1 were prepared. Replacement of the metabolically labile stilbene with either benzothiophene or naphthalene rings led to the identification of potent full agonists 2a and 2g.

  17. FXR agonist activity of conformationally constrained analogs of GW 4064.

    PubMed

    Akwabi-Ameyaw, Adwoa; Bass, Jonathan Y; Caldwell, Richard D; Caravella, Justin A; Chen, Lihong; Creech, Katrina L; Deaton, David N; Madauss, Kevin P; Marr, Harry B; McFadyen, Robert B; Miller, Aaron B; Navas, Frank; Parks, Derek J; Spearing, Paul K; Todd, Dan; Williams, Shawn P; Bruce Wisely, G

    2009-08-15

    Two series of conformationally constrained analogs of the FXR agonist GW 4064 1 were prepared. Replacement of the metabolically labile stilbene with either benzothiophene or naphthalene rings led to the identification of potent full agonists 2a and 2g.

  18. Analysis of agonist dissociation constants as assessed by functional antagonism in guinea pig left atria

    SciTech Connect

    Molenaar, P.; Malta, E.

    1986-04-01

    In electrically driven guinea pig left atria, positive inotropic responses to (-)-isoprenaline and the selective beta 1-adrenoceptor agonist RO363 were obtained in the absence and in the presence of the functional antagonists adenosine, carbachol, gallopamil, nifedipine, and Ro 03-7894. Each of the functional antagonists reduced the maximum response to both agonists and produced nonparallel rightward shifts in the cumulative concentration effect curves. For both agonists, dissociation constants (KA) were calculated using the equation described by Furchgott (1966) for irreversible antagonism. For RO363, which is a partial agonist with high agonist activity, the equations outlined for functional interaction by Mackay (1981) were also employed to calculate KA values. The KA values obtained by each method were compared with the dissociation constants (KD) for the two agonists determined from their ability to displace the radioligand (-)-(/sup 125/I)iodocyanopindolol from beta 1-adrenoceptors in guinea pig left atrial membrane preparations. The estimates of KA varied substantially from KD values. The KD values were taken as more accurate estimates of the true values for the dissociation constants because a high degree of correlation exists between pKD and pD2 values for a number of other beta-adrenoceptor agonists that behave as partial agonists and between pKD and pKB values for a number of beta-adrenoceptor antagonists. Thus, it appears that there are serious limitations in the current theory for using functional antagonism as a means of obtaining agonist dissociation constants.

  19. The effects of additional treatment with terguride, a partial dopamine agonist, on hyperprolactinemia induced by antipsychotics in schizophrenia patients: a preliminary study

    PubMed Central

    Hashimoto, Kojiro; Sugawara, Norio; Ishioka, Masamichi; Nakamura, Kazuhiko; Yasui-Furukori, Norio

    2014-01-01

    Hyperprolactinemia is a frequent consequence of treatment with antipsychotics. Earlier studies have indicated that terguride, which is a partial dopamine agonist, reduces the prolactin levels that are induced by prolactinemia. Thus, we examined the dose effects of adjunctive treatment with terguride on the plasma concentrations of prolactin in patients with elevated prolactin levels resulting from antipsychotic treatment. Terguride was concomitantly administered to 20 schizophrenic patients (10 males and 10 females) receiving paliperidone and risperidone. The dose of terguride was 1.0 mg/day. Sample collections for prolactin were conducted before terguride (baseline) and 2–4 weeks after administration. The samples were obtained after the morning dose of terguride. The average (± standard deviation) plasma prolactin concentration during terguride coadministration was significantly lower than the baseline concentration in females (82.3±37.1 ng/mL versus 56.5±28.5 ng/mL, P<0.01) but not in males (28.8±18.0 ng/mL versus 26.2±13.1 ng/mL, not significant). Additionally, a significant correlation between the ratio of prolactin reduction and the baseline prolactin concentration was identified in males (rs=−0.638, P<0.05) but not in females (rs=−0.152, not significant). Many patients complained of various adverse events following terguride administration, such as insomnia, agitation, and/or the aggravation of hallucinations. This study suggests that additional treatment with terguride decreases the prolactin concentrations in females experiencing high prolactin levels as a result of antipsychotic treatment. However, its utility for schizophrenia may be diminished because of its low tolerability. PMID:25187719

  20. Electrophysiological evidence for rapid 5-HT₁A autoreceptor inhibition by vilazodone, a 5-HT₁A receptor partial agonist and 5-HT reuptake inhibitor.

    PubMed

    Ashby, Charles R; Kehne, John H; Bartoszyk, Gerd D; Renda, Matthew J; Athanasiou, Maria; Pierz, Kerri A; Seyfried, Christoph A

    2013-08-15

    This study examined the effect of vilazodone, a combined serotonin (5-HT) reuptake inhibitor and 5-HT(1A) receptor partial agonist, paroxetine and fluoxetine on the sensitivity of 5-HT(1A) autoreceptors of serotonergic dorsal raphe nucleus neurons in rats. These effects were assessed by determining the intravenous dose of (±)-8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) required to suppress the basal firing rate of these neurons by 50% (ID₅₀) in anesthetized rats using in vivo electrophysiology. 5-HT uptake inhibition was determined by the ability of the compounds to reverse (±)-p-chloroamphetamine (PCA)-induced rat hypothalamic 5-HT depletion ex vivo. Acute vilazodone administration (0.63 and 2.1 µmol/kg, s.c.), compared with vehicle, significantly increased (2-3-fold) the ID₅₀ of 8-OH-DPAT at 4 h, but not 24h after administration. Subchronic administration (3 days) significantly increased the ID₅₀ value at 4 h (3-4-fold) and at 24 h (~2-fold). In contrast, paroxetine and fluoxetine at doses that were supramaximal for 5-HT uptake inhibition did not significantly alter the ID₅₀ value of 8-OH-DPAT after acute or subchronic administration. Vilazodone antagonized the action of PCA 3.5 h and 5 h after a single dose (ID₅₀ 1.49 and 0.46 µmol/kg, s.c., respectively), but was inactive 18 h post-administration, corroborating the electrophysiological results at 24 h following acute administration. The results are consistent with the concept of rapid and, following repeated treatment, prolonged inhibition of 5-HT(1A) autoreceptors by vilazodone. This effect could occur by either direct interaction with, or desensitization of, these receptors, an effect which cannot be ascribed to vilazodone's 5-HT reuptake inhibiting properties. PMID:23872377

  1. Skatole (3-Methylindole) Is a Partial Aryl Hydrocarbon Receptor Agonist and Induces CYP1A1/2 and CYP1B1 Expression in Primary Human Hepatocytes.

    PubMed

    Rasmussen, Martin Krøyer; Balaguer, Patrick; Ekstrand, Bo; Daujat-Chavanieu, Martine; Gerbal-Chaloin, Sabine

    2016-01-01

    Skatole (3-methylindole) is a product of bacterial fermentation of tryptophan in the intestine. A significant amount of skatole can also be inhaled during cigarette smoking. Skatole is a pulmonary toxin that induces the expression of aryl hydrocarbon receptor (AhR) regulated genes, such as cytochrome P450 1A1 (CYP1A1), in human bronchial cells. The liver has a high metabolic capacity for skatole and is the first organ encountered by the absorbed skatole; however, the effect of skatole in the liver is unknown. Therefore, we investigated the impact of skatole on hepatic AhR activity and AhR-regulated gene expression. Using reporter gene assays, we showed that skatole activates AhR and that this is accompanied by an increase of CYP1A1, CYP1A2 and CYP1B1 expression in HepG2-C3 and primary human hepatocytes. Specific AhR antagonists and siRNA-mediated AhR silencing demonstrated that skatole-induced CYP1A1 expression is dependent on AhR activation. The effect of skatole was reduced by blocking intrinsic cytochrome P450 activity and indole-3-carbinole, a known skatole metabolite, was a more potent inducer than skatole. Finally, skatole could reduce TCDD-induced CYP1A1 expression, suggesting that skatole is a partial AhR agonist. In conclusion, our findings suggest that skatole and its metabolites affect liver homeostasis by modulating the AhR pathway. PMID:27138278

  2. GLYX-13, a NMDA receptor glycine-site functional partial agonist, induces antidepressant-like effects without ketamine-like side effects.

    PubMed

    Burgdorf, Jeffrey; Zhang, Xiao-lei; Nicholson, Katherine L; Balster, Robert L; Leander, J David; Stanton, Patric K; Gross, Amanda L; Kroes, Roger A; Moskal, Joseph R

    2013-04-01

    Recent human clinical studies with the NMDA receptor (NMDAR) antagonist ketamine have revealed profound and long-lasting antidepressant effects with rapid onset in several clinical trials, but antidepressant effects were preceded by dissociative side effects. Here we show that GLYX-13, a novel NMDAR glycine-site functional partial agonist, produces an antidepressant-like effect in the Porsolt, novelty induced hypophagia, and learned helplessness tests in rats without exhibiting substance abuse-related, gating, and sedative side effects of ketamine in the drug discrimination, conditioned place preference, pre-pulse inhibition and open-field tests. Like ketamine, the GLYX-13-induced antidepressant-like effects required AMPA/kainate receptor activation, as evidenced by the ability of NBQX to abolish the antidepressant-like effect. Both GLYX-13 and ketamine persistently (24 h) enhanced the induction of long-term potentiation of synaptic transmission and the magnitude of NMDAR-NR2B conductance at rat Schaffer collateral-CA1 synapses in vitro. Cell surface biotinylation studies showed that both GLYX-13 and ketamine led to increases in both NR2B and GluR1 protein levels, as measured by Western analysis, whereas no changes were seen in mRNA expression (microarray and qRT-PCR). GLYX-13, unlike ketamine, produced its antidepressant-like effect when injected directly into the medial prefrontal cortex (MPFC). These results suggest that GLYX-13 produces an antidepressant-like effect without the side effects seen with ketamine at least in part by directly modulating NR2B-containing NMDARs in the MPFC. Furthermore, the enhancement of 'metaplasticity' by both GLYX-13 and ketamine may help explain the long-lasting antidepressant effects of these NMDAR modulators. GLYX-13 is currently in a Phase II clinical development program for treatment-resistant depression. PMID:23303054

  3. Skatole (3-Methylindole) Is a Partial Aryl Hydrocarbon Receptor Agonist and Induces CYP1A1/2 and CYP1B1 Expression in Primary Human Hepatocytes

    PubMed Central

    Balaguer, Patrick; Ekstrand, Bo; Daujat-Chavanieu, Martine; Gerbal-Chaloin, Sabine

    2016-01-01

    Skatole (3-methylindole) is a product of bacterial fermentation of tryptophan in the intestine. A significant amount of skatole can also be inhaled during cigarette smoking. Skatole is a pulmonary toxin that induces the expression of aryl hydrocarbon receptor (AhR) regulated genes, such as cytochrome P450 1A1 (CYP1A1), in human bronchial cells. The liver has a high metabolic capacity for skatole and is the first organ encountered by the absorbed skatole; however, the effect of skatole in the liver is unknown. Therefore, we investigated the impact of skatole on hepatic AhR activity and AhR-regulated gene expression. Using reporter gene assays, we showed that skatole activates AhR and that this is accompanied by an increase of CYP1A1, CYP1A2 and CYP1B1 expression in HepG2-C3 and primary human hepatocytes. Specific AhR antagonists and siRNA-mediated AhR silencing demonstrated that skatole-induced CYP1A1 expression is dependent on AhR activation. The effect of skatole was reduced by blocking intrinsic cytochrome P450 activity and indole-3-carbinole, a known skatole metabolite, was a more potent inducer than skatole. Finally, skatole could reduce TCDD-induced CYP1A1 expression, suggesting that skatole is a partial AhR agonist. In conclusion, our findings suggest that skatole and its metabolites affect liver homeostasis by modulating the AhR pathway. PMID:27138278

  4. Effect of the 5-HT(1A) partial agonist buspirone on regional brain electrical activity in man: a functional neuroimaging study using low-resolution electromagnetic tomography (LORETA).

    PubMed

    Anderer, P; Saletu, B; Pascual-Marqui, R D

    2000-12-01

    In a double-blind, placebo-controlled study, the effects of 20 mg buspirone - a 5-HT(1A) partial agonist - on regional electrical generators within the human brain were investigated utilizing three-dimensional EEG tomography. Nineteen-channel vigilance-controlled EEG recordings were carried out in 20 healthy subjects before and 1, 2, 4, 6 and 8 h after drug intake. Low-resolution electromagnetic tomography (LORETA; Key Institute for Brain-Mind Research, software: http://www.keyinst.unizh.ch) was computed from spectrally analyzed EEG data, and differences between drug- and placebo-induced changes were displayed as statistical parametric maps. Data were registered to the Talairach-Tournoux human brain atlas available as a digitized MRI (McConnell Brain Imaging Centre: http://www.bic.mni.mcgill.ca). At the pharmacodynamic peak (1st hour), buspirone increased theta and decreased fast alpha and beta sources. Areas of theta increase were mainly the left temporo-occipito-parietal and left prefrontal cortices, which is consistent with PET studies on buspirone-induced decreases in regional cerebral blood flow and fenfluramine-induced serotonin activation demonstrated by changes in regional cerebral glucose metabolism. In later hours (8th hour) with lower buspirone plasma levels, delta, theta, slow alpha and fast beta decreased, predominantly in the prefrontal and anterior limbic lobe. Whereas the results of the 1st hour speak for a slight CNS sedation (more in the sense of relaxation), those obtained in the 8th hour indicate activation. Thus, LORETA may provide useful and direct information on drug-induced changes in central nervous system function in man.

  5. Metabolism of a 14C/3H-labeled GABAA receptor partial agonist in rat, dog and human liver microsomes: evaluation of a dual-radiolabel strategy.

    PubMed

    Shaffer, Christopher L; Langer, Connie S

    2007-03-12

    The metabolism of 2-{[2-(3-fluoropyrid-2-yl)-1H-imidazol-1-yl]methyl}-1-propyl-5-cyano-1H-benzimidazole (1), a potent subtype-selective GABA(A) receptor partial agonist, was investigated in rat, dog and human liver microsomes. Due to its significant metabolic cleavage at C(8) observed in preliminary biotransformation studies with non-radiolabeled 1, both [(14)C]1 and [(3)H]1 were synthesized with respective radioisotopes placed on either side of C(8) to determine if all microsomal metabolites formed after C(8)N-dealkylation of 1 (or its core-intact metabolites) could be detected and quantified adequately. Both radiolabeled forms of 1, used separately in mono-radiolabel studies in cross-species microsomes and concomitantly in dual-radiolabel studies in rat microsomes, permitted the detection and quantification of all metabolites of 1, and a combination of radioactive and mass spectral data allowed structural elucidation of its Phase I metabolites. As expected, the sum of (14)C-only metabolites equaled that of (3)H-only metabolites in all incubations. In-line radiometric analysis worked extremely well (and was very reproducible) for quantifying either (14)C- or (3)H-compounds within separate incubations when using mono-radiolabeled 1. However, although the in-line radiodetector provided a comprehensive qualitative metabolic profile using dual-radiolabled 1, its inability to exclude completely (14)C- from (3)H-generated counts caused a degree of ambiguity pertaining to metabolite quantification. Thus, off-line liquid scintillation counting of collected dual-radiolabeled incubation LC-fractions was employed to quantify both (14)C- and (3)H-metabolites simultaneously, while in-line radiodetection was only used for qualitative analyses accompanying MS and MS/MS experiments. These studies demonstrated the analytical feasibility of using a dual-radiolabel approach for subsequent in vivo ADME studies with 1. PMID:17150324

  6. Lysergic acid diethylamide (LSD) is a partial agonist of D2 dopaminergic receptors and it potentiates dopamine-mediated prolactin secretion in lactotrophs in vitro.

    PubMed

    Giacomelli, S; Palmery, M; Romanelli, L; Cheng, C Y; Silvestrini, B

    1998-01-01

    The hallucinogenic effects of lysergic acid diethylamide (LSD) have mainly been attributed to the interaction of this drug with the serotoninergic system, but it seems more likely that they are the result of the complex interactions of the drug with both the serotoninergic and dopaminergic systems. The aim of the present study was to investigate the functional actions of LSD at dopaminergic receptors using prolactin secretion by primary cultures of rat pituitary cells as a model. LSD produced a dose-dependent inhibition of prolactin secretion in vitro with an IC50 at 1.7x10(-9) M. This action was antagonized by spiperone but not by SKF83566 or cyproheptadine, which indicates that LSD has a specific effect on D2 dopaminergic receptors. The maximum inhibition of prolactin secretion achieved by LSD was lower than that by dopamine (60% versus 80%). Moreover, the fact that LSD at 10(-8)-10(-6) M antagonized the inhibitory effect of dopamine (10(-7) M) and bromocriptine (10(-11) M) suggests that LSD acts as a partial agonist at D2 receptors on lactotrophs in vitro. Interestingly, LSD at 10(-13)-10(-10) M, the concentrations which are 10-1000-fold lower than those required to induce direct inhibition on pituitary prolactin secretion, potentiated the dopamine (10(-10)-2.5x10(-9) M)-mediated prolactin secretion by pituitary cells in vitro. These results suggest that LSD not only interacts with dopaminergic receptors but also has a unique capacity for modulating dopaminergic transmission. These findings may offer new insights into the hallucinogenic effect of LSD.

  7. Electrophysiological evidence for rapid 5-HT₁A autoreceptor inhibition by vilazodone, a 5-HT₁A receptor partial agonist and 5-HT reuptake inhibitor.

    PubMed

    Ashby, Charles R; Kehne, John H; Bartoszyk, Gerd D; Renda, Matthew J; Athanasiou, Maria; Pierz, Kerri A; Seyfried, Christoph A

    2013-08-15

    This study examined the effect of vilazodone, a combined serotonin (5-HT) reuptake inhibitor and 5-HT(1A) receptor partial agonist, paroxetine and fluoxetine on the sensitivity of 5-HT(1A) autoreceptors of serotonergic dorsal raphe nucleus neurons in rats. These effects were assessed by determining the intravenous dose of (±)-8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) required to suppress the basal firing rate of these neurons by 50% (ID₅₀) in anesthetized rats using in vivo electrophysiology. 5-HT uptake inhibition was determined by the ability of the compounds to reverse (±)-p-chloroamphetamine (PCA)-induced rat hypothalamic 5-HT depletion ex vivo. Acute vilazodone administration (0.63 and 2.1 µmol/kg, s.c.), compared with vehicle, significantly increased (2-3-fold) the ID₅₀ of 8-OH-DPAT at 4 h, but not 24h after administration. Subchronic administration (3 days) significantly increased the ID₅₀ value at 4 h (3-4-fold) and at 24 h (~2-fold). In contrast, paroxetine and fluoxetine at doses that were supramaximal for 5-HT uptake inhibition did not significantly alter the ID₅₀ value of 8-OH-DPAT after acute or subchronic administration. Vilazodone antagonized the action of PCA 3.5 h and 5 h after a single dose (ID₅₀ 1.49 and 0.46 µmol/kg, s.c., respectively), but was inactive 18 h post-administration, corroborating the electrophysiological results at 24 h following acute administration. The results are consistent with the concept of rapid and, following repeated treatment, prolonged inhibition of 5-HT(1A) autoreceptors by vilazodone. This effect could occur by either direct interaction with, or desensitization of, these receptors, an effect which cannot be ascribed to vilazodone's 5-HT reuptake inhibiting properties.

  8. SR 16435 [1-(1-(bicyclo[3.3.1]nonan-9-yl)piperidin-4-yl)indolin-2-one], a novel mixed nociceptin/orphanin FQ/mu-opioid receptor partial agonist: analgesic and rewarding properties in mice.

    PubMed

    Khroyan, Taline V; Zaveri, Nurulain T; Polgar, Willma E; Orduna, Juan; Olsen, Cris; Jiang, Faming; Toll, Lawrence

    2007-02-01

    We identified a novel nociceptin/orphanin FQ (NOP)/mu-opioid receptor agonist, SR 16435 [1-(1-(bicyclo[3.3.1]nonan-9-yl)piperidin-4-yl)indolin-2-one], with high binding affinity and partial agonist activity at both receptors. It was hypothesized that SR 16435 would produce antinociception and yet, unlike morphine, would have diminished rewarding properties and tolerance development. Antinociception was assessed in mice using the tail-flick assay, whereas behavioral and rewarding effects were assessed using the place conditioning (PC) paradigm. PC was established by pairing drug injections with a distinct compartment. Behavioral effects were measured after acute and repeated drug administration, and the test for PC was carried out 24 h after four drug- and vehicle-pairing sessions. SR 16435 produced an increase in tail-flick latency, but SR 16435-induced antinociception was lower than that observed with morphine. Given that naloxone blocked SR 16435-induced antinociception, it is highly likely that this effect was mediated by mu-opioid receptors. Compared with morphine, chronic SR 16435 treatment resulted in reduced development of tolerance to its antinociceptive effects. SR 16435-induced conditioned place preference (CPP) was evident, an effect that was probably mediated via mu-opioid receptors, as it was reversed by coadministration of naloxone. NOP agonist activity was also present, given that SR 16435 decreased global activity, and this effect was partially reversed with the selective NOP antagonist, SR 16430 [1-(cyclooctylmethyl)-4-(3-(trifluoromethyl)phenyl)piperidin-4-ol]. Naloxone, however, also reversed the SR 16435-induced decrease in activity, indicating that both opioid and NOP receptors mediate this behavior. In summary, the mixed NOP/mu-opioid partial agonist SR 16435 exhibited both NOP and mu-opioid receptor-mediated behaviors. PMID:17132815

  9. Recent advances in the discovery of alpha1-adrenoceptor agonists.

    PubMed

    Bishop, Michael J

    2007-01-01

    The alpha(1) adrenoceptors are three of nine well-characterized receptors that are activated by epinephrine and norepinephrine. Agonists acting at the alpha(1) adrenoceptors produce numerous physiological effects, and are used therapeutically for several indications. Many known alpha(1) adrenoceptor agonists are alpha(1A) selective, but the discovery of highly selective alpha(1B) and alpha(1D) adrenoceptor agonists has proven to be an extremely difficult goal to achieve. This review will focus on recent advances in the discovery, development and clinical utility of subtype-specific alpha(1) agonists as well as contributions to our understanding of agonist-receptor interactions.

  10. Agonistic and reproductive interactions in Betta splendens.

    PubMed

    Bronstein, P M

    1984-12-01

    Reproductive and agonistic behaviors in Siamese fighting fish were investigated in eight experiments, and some consequences and determinants of these sequences were isolated. First, fights and the formation of dominance-subordinancy relations were studied. Second, it was determined that large body size as well as males' prior residency in a tank produced an agonistic advantage; the magnitude of this advantage was positively related to the duration of residency. Third, the prior-residency effect in Bettas was determined by males' familiarity with visual and/or tactile cues in their home tanks. Fourth, dominant males had greater access to living space and were more likely to display at a mirror, build nests, and approach females than were subordinates. Finally, it was discovered that chemical cues associated with presumedly inert plastic tank dividers influence Bettas' social behavior.

  11. GQ-16, a TZD-Derived Partial PPARγ Agonist, Induces the Expression of Thermogenesis-Related Genes in Brown Fat and Visceral White Fat and Decreases Visceral Adiposity in Obese and Hyperglycemic Mice

    PubMed Central

    Coelho, Michella S.; de Lima, Caroline L.; Royer, Carine; Silva, Janaina B.; Oliveira, Fernanda C. B.; Christ, Camila G.; Pereira, Sidney A.; Bao, Sonia N.; Lima, Maria C. A.; Pitta, Marina G. R.; Pitta, Ivan R.; Neves, Francisco A. R.; Amato, Angélica A.

    2016-01-01

    Background Beige adipocytes comprise a unique thermogenic cell type in the white adipose tissue (WAT) of rodents and humans, and play a critical role in energy homeostasis. In this scenario, recruitment of beige cells has been an important focus of interest for the development of novel therapeutic strategies to treat obesity. PPARγ activation by full agonists (thiazolidinediones, TZDs) drives the appearance of beige cells, a process so-called browning of WAT. However, this does not translate into increased energy expenditure, and TZDs are associated with weight gain. Partial PPARγ agonists, on the other hand, do not induce weight gain, but have not been shown to drive WAT browning. The present study was designed to investigate the effects of GQ-16 on BAT and on browning of WAT in obese mice. Methods Male Swiss mice with obesity and hyperglycemia induced by high fat diet were treated with vehicle, rosiglitazone (4 mg/kg/d) or the TZD-derived partial PPARγ agonist GQ-16 (40 mg/kg/d) for 14 days. Fasting blood glucose, aspartate aminotransferase, alanine aminotransferase and lipid profile were measured. WAT and brown adipose tissue (BAT) depots were excised for determination of adiposity, relative expression of Ucp-1, Cidea, Prdm16, Cd40 and Tmem26 by RT-qPCR, histological analysis, and UCP-1 protein expression analysis by immunohistochemistry. Liver samples were also removed for histological analysis and determination of hepatic triglyceride content. Results GQ-16 treatment reduced high fat diet-induced weight gain in mice despite increasing energy intake. This was accompanied by reduced epididymal fat mass, reduced liver triglyceride content, morphological signs of increased BAT activity, increased expression of thermogenesis-related genes in interscapular BAT and epididymal WAT, and increased UCP-1 protein expression in interscapular BAT and in epididymal and inguinal WAT. Conclusion This study suggests for the first time that a partial PPARγ agonist may

  12. Signal Use by Octopuses in Agonistic Interactions.

    PubMed

    Scheel, David; Godfrey-Smith, Peter; Lawrence, Matthew

    2016-02-01

    Cephalopods show behavioral parallels to birds and mammals despite considerable evolutionary distance [1, 2]. Many cephalopods produce complex body patterns and visual signals, documented especially in cuttlefish and squid, where they are used both in camouflage and a range of interspecific interactions [1, 3-5]. Octopuses, in contrast, are usually seen as solitary and asocial [6, 7]; their body patterns and color changes have primarily been interpreted as camouflage and anti-predator tactics [8-12], though the familiar view of the solitary octopus faces a growing list of exceptions. Here, we show by field observation that in a shallow-water octopus, Octopus tetricus, a range of visible displays are produced during agonistic interactions, and these displays correlate with the outcome of those interactions. Interactions in which dark body color by an approaching octopus was matched by similar color in the reacting octopus were more likely to escalate to grappling. Darkness in an approaching octopus met by paler color in the reacting octopus accompanied retreat of the paler octopus. Octopuses also displayed on high ground and stood with spread web and elevated mantle, often producing these behaviors in combinations. This study is the first to document the systematic use of signals during agonistic interactions among octopuses. We show prima facie conformity of our results to an influential model of agonistic signaling [13]. These results suggest that interactions have a greater influence on octopus evolution than has been recognized and show the importance of convergent evolution in behavioral traits. PMID:26832440

  13. Signal Use by Octopuses in Agonistic Interactions.

    PubMed

    Scheel, David; Godfrey-Smith, Peter; Lawrence, Matthew

    2016-02-01

    Cephalopods show behavioral parallels to birds and mammals despite considerable evolutionary distance [1, 2]. Many cephalopods produce complex body patterns and visual signals, documented especially in cuttlefish and squid, where they are used both in camouflage and a range of interspecific interactions [1, 3-5]. Octopuses, in contrast, are usually seen as solitary and asocial [6, 7]; their body patterns and color changes have primarily been interpreted as camouflage and anti-predator tactics [8-12], though the familiar view of the solitary octopus faces a growing list of exceptions. Here, we show by field observation that in a shallow-water octopus, Octopus tetricus, a range of visible displays are produced during agonistic interactions, and these displays correlate with the outcome of those interactions. Interactions in which dark body color by an approaching octopus was matched by similar color in the reacting octopus were more likely to escalate to grappling. Darkness in an approaching octopus met by paler color in the reacting octopus accompanied retreat of the paler octopus. Octopuses also displayed on high ground and stood with spread web and elevated mantle, often producing these behaviors in combinations. This study is the first to document the systematic use of signals during agonistic interactions among octopuses. We show prima facie conformity of our results to an influential model of agonistic signaling [13]. These results suggest that interactions have a greater influence on octopus evolution than has been recognized and show the importance of convergent evolution in behavioral traits.

  14. Octopaminergic agonists for the cockroach neuronal octopamine receptor

    PubMed Central

    Hirashima, Akinori; Morimoto, Masako; Kuwano, Eiichi; Eto, Morifusa

    2003-01-01

    The compounds 1-(2,6-diethylphenyl)imidazolidine-2-thione and 2-(2,6-diethylphenyl)imidazolidine showed the almost same activity as octopamine in stimulating adenylate cyclase of cockroach thoracic nervous system among 70 octopamine agonists, suggesting that only these compounds are full octopamine agonists and other compounds are partial octopamine agonists. The quantitative structure-activity relationship of a set of 22 octopamine agonists against receptor 2 in cockroach nervous tissue, was analyzed using receptor surface modeling. Three-dimensional energetics descriptors were calculated from receptor surface model/ligand interaction and these three-dimensional descriptors were used in quantitative structure-activity relationship analysis. A receptor surface model was generated using some subset of the most active structures and the results provided useful information in the characterization and differentiation of octopaminergic receptor. Abbreviation: AEA arylethanolamine AII 2-(arylimino)imidazolidine AIO 2-(arylimino)oxazolidine AIT 2-(arylimino)thiazolidine APAT 2-(α-phenylethylamino)-2-thiazoline BPAT 2-(β-phenylethylamino)-2-thiazoline CAO 2-(3-chlorobenzylamino)-2-oxazoline DCAO 2-(3,5-dichlorobenzylamino)-2-oxazoline DET5 2-(2,6-diethylphenylimino)-5-methylthiazolidine DET6 2-(2,6-diethylphenylimino)thiazine EGTA ethylene glycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid GFA genetic function approximation G/PLS genetic partial least squares IND 2-aminomethyl-2-indanol LAH lithium aluminum hydride MCSG maximum common subgroup MCT6 2-(2-methyl-4-chlorophenylimino)thiazine OA octopamine PLS partial least squares QSAR quantitative structure-activity relationship SBAT 2-(substituted benzylamino)-2-thiazoline SD the sum of squared deviations of the dependent variable values from their mean SPIT 3-(substituted phenyl)imidazolidine-2-thione THI 2-amino-1-(2-thiazoyl)ethanol TMS tetramethyl silane PMID:15841226

  15. Synthesis and positron emission tomography studies of C-11 labeled isotopomers and metabolites of GTS-21, a partial α7 nicotinic cholinergic agonist drug

    PubMed Central

    Kim, Sung Won; Ding, Yu-Shin; Alexoff, David; Patel, Vinal; Logan, Jean; Lin, Kuo-Shyan; Shea, Colleen; Muench, Lisa; Xu, Youwen; Carter, Pauline; King, Payton; Constanzo, Jasmine R.; Ciaccio, James A.; Fowler, Joanna S.

    2009-01-01

    Introduction GTS-21 ((3E)-3-[(2,4-dimethoxyphenyl)methylene]-3,4,5,6-tetrahydro-2,3′-bipyridine), a partial α7 nicotinic acetylcholine receptor agonist drug, has recently been shown to improve cognition in schizophrenia and Alzheimer’s disease. One of its two major demethylated metabolites, 4-OH-GTS-21, has been suggested to contribute to its therapeutic effects. Methods We labeled GTS-21 in two different positions with carbon-11 ([2-methoxy-11C]GTS-21 and [4-methoxy-11C]GTS-21) along with two corresponding demethylated metabolites ([2-methoxy-11C]4-OH-GTS-21 and [4-methoxy-11C]2-OH-GTS-21) for pharmacokinetic studies in baboons and mice with PET. Results Both [2-methoxy-11C]GTS-21 and [4-methoxy-11C]GTS-21 showed similar initial high rapid uptake in baboon brain, peaking from 1–3.5 min (0.027–0.038 %ID/cc) followed by rapid clearance (t1/2 <15 min), resulting in low brain retention by 30 min. However, after 30 min, [2-methoxy-11C]GTS-21 continued to clear while [4-methoxy-11C]GTS-21 plateaued, suggesting the entry of a labeled metabolite into the brain. Comparison of the pharmacokinetics of the two labeled metabolites confirmed expected higher brain uptake and retention of [4-methoxy-11C]2-OH-GTS-21 (the labeled metabolite of [4-methoxy-11C]GTS-21) relative to [2-methoxy-11C]4-OH-GTS-21 (the labeled metabolite of [2-methoxy-11C]GTS-21) which had negligible brain uptake. Ex vivo studies in mice showed that GTS-21 is the major chemical form in the mouse brain. Whole body dynamic PET imaging in baboon and mouse showed that the major route of excretion of C-11 is through the gallbladder. Conclusions The major findings are (1) extremely rapid uptake and clearance of [2-methoxy-11C]GTS-21 from the brain which may need to be considered in developing optimal dosing of GTS-21 for patients, and (2) significant brain uptake of 2-OH-GTS-21, suggesting that it might contribute to the therapeutic effects of GTS-21. This study illustrates the value of comparing

  16. Anxiolytic effects of the GABA(A) receptor partial agonist, L-838,417: impact of age, test context familiarity, and stress.

    PubMed

    Morales, Melissa; Varlinskaya, Elena I; Spear, Linda P

    2013-08-01

    The partial α2,3,5 GABA(A) receptor agonist, L-838,417 has been reported to have anxiolytic effects in adult rodents. Although maturational differences exist for the GABA(A) receptor subunits, the anxiolytic effects of L-838,417 have not been tested in younger animals. The goal of the present experiments was to determine whether L-838,417 reverses anxiety-like behavior induced by either an unfamiliar environment (Experiment 1) or repeated restraint stress (Experiment 2) differentially in adolescent and adult, male and female Sprague-Dawley rats using a modified social interaction test. In Experiment 1, rats were injected with 0, 0.5, 1.0, 2.0, or 4.0 mg/kg L-838,417, i.p. and tested 30 min later in an unfamiliar test context for 10 min. In Experiment 2, rats were exposed to restraint stress (90 min daily for 5 days). Immediately after the last restraint session, animals were injected with L-838,417 and placed alone for 30 min in the test apparatus to familiarize them to this context prior to the 10 min social interaction test. In Experiment 1, L-838,417 produced anxiolytic effects in adults at 1.0 mg/kg, as indexed by a transformation of social avoidance into preference and an increase in social investigation. In adolescents, a dose of 2.0 mg/kg eliminated social avoidance, but had no anxiolytic effects on social investigation. Testing under familiar circumstances (Experiment 2) after repeated restraint stress eliminated age differences in sensitivity to L-838,417, with 0.5 mg/kg reversing the anxiogenic effects of prior stress regardless of age, but with doses ≥ 1 mg/kg decreasing social investigation, an effect possibly due in part to locomotor-impairing effects of this compound. Although locomotor activity was suppressed in both experiments, higher doses of L-838,417 were necessary to suppress locomotor activity in Experiment 1. Thus, anxiolytic effects of L-838,417 were found to be context-, age-, and stress-dependent.

  17. Monohydroxylated metabolites of the K2 synthetic cannabinoid JWH-073 retain intermediate to high cannabinoid 1 receptor (CB1R) affinity and exhibit neutral antagonist to partial agonist activity.

    PubMed

    Brents, Lisa K; Gallus-Zawada, Anna; Radominska-Pandya, Anna; Vasiljevik, Tamara; Prisinzano, Thomas E; Fantegrossi, William E; Moran, Jeffery H; Prather, Paul L

    2012-04-01

    K2 and several similar purported "incense products" spiked with synthetic cannabinoids are abused as cannabis substitutes. We hypothesized that metabolism of JWH-073, a prevalent cannabinoid found in K2, contributes to toxicity associated with K2 use. Competition receptor binding studies and G-protein activation assays, both performed by employing mouse brain homogenates, were used to determine the affinity and intrinsic activity, respectively, of potential monohydroxylated (M1, M3-M5) and monocarboxylated (M6) metabolites at cannabinoid 1 receptors (CB1Rs). Surprisingly, M1, M4 and M5 retain nanomolar affinity for CB1Rs, while M3 displays micromolar affinity and M6 does not bind to CB1Rs. JWH-073 displays equivalent efficacy to that of the CB1R full agonist CP-55,940, while M1, M3, and M5 act as CB1R partial agonists, and M4 shows little or no intrinsic activity. Further in vitro investigation by Schild analysis revealed that M4 acts as a competitive neutral CB1R antagonist (K(b)∼40nM). In agreement with in vitro studies, M4 also demonstrates CB1R antagonism in vivo by blunting cannabinoid-induced hypothermia in mice. Interestingly, M4 does not block agonist-mediated responses of other measures in the cannabinoid tetrad (e.g., locomotor suppression, catalepsy or analgesia). Finally, also as predicted by in vitro results, M1 exhibits agonist activity in vivo by inducing significant hypothermia and suppression of locomotor activity in mice. In conclusion, the present study indicates that further work examining the physiological effects of synthetic cannabinoid metabolism is warranted. Such a complex mix of metabolically produced CB1R ligands may contribute to the adverse effect profile of JWH-073-containing products.

  18. Monohydroxylated metabolites of the K2 synthetic cannabinoid JWH-073 retain intermediate to high cannabinoid 1 receptor (CB1R) affinity and exhibit neutral antagonist to partial agonist activity

    PubMed Central

    Brents, Lisa K.; Gallus-Zawada, Anna; Radominska-Pandya, Anna; Vasiljevik, Tamara; Prisinzano, Thomas E.; Fantegrossi, William E.; Moran, Jeffery H.; Prather, Paul L.

    2012-01-01

    K2 and several similar purported “incense products” spiked with synthetic cannabinoids are abused as cannabis substitutes. We hypothesized that metabolism of JWH-073, a prevalent cannabinoid found in K2, contributes to toxicity associated with K2 use. Competition receptor binding studies and G-protein activation assays, both performed by employing mouse brain homogenates, were used to determine the affinity and intrinsic activity, respectively, of potential monohydroxylated (M1, M3–M5) and monocarboxylated (M6) metabolites at cannabinoid 1 receptors (CB1Rs). Surprisingly, M1, M4 and M5 retain nanomolar affinity for CB1Rs, while M3 displays micromolar affinity and M6 does not bind to CB1Rs. JWH-073 displays equivalent efficacy to that of the CB1R full agonist CP-55,940, while M1, M3, and M5 act as CB1R partial agonists, and M4 shows little or no intrinsic activity. Further in vitro investigation by Schild analysis revealed that M4 acts as a competitive neutral CB1R antagonist (Kb~40nM). In agreement with in vitro studies, M4 also demonstrates CB1R antagonism in vivo by blunting cannabinoid-induced hypothermia in mice. Interestingly, M4 does not block agonist-mediated responses of other measures in the cannabinoid tetrad (e.g., locomotor suppression, catalepsy or analgesia). Finally, also as predicted by in vitro results, M1 exhibits agonist activity in vivo by inducing significant hypothermia and suppression of locomotor activity in mice. In conclusion, the present study indicates that further work examining the physiological effects of synthetic cannabinoid metabolism is warranted. Such a complex mix of metabolically produced CB1R ligands may contribute to the adverse effect profile of JWH-073-containing products. PMID:22266354

  19. Orvinols with Mixed Kappa/Mu Opioid Receptor Agonist Activity

    PubMed Central

    2013-01-01

    Dual-acting kappa opioid receptor (KOR) agonist and mu opioid receptor (MOR) partial agonist ligands have been put forward as potential treatment agents for cocaine and other psychostimulant abuse. Members of the orvinol series of ligands are known for their high binding affinity to both KOR and MOR, but efficacy at the individual receptors has not been thoroughly evaluated. In this study, it is shown that a predictive model for efficacy at KOR can be derived, with efficacy being controlled by the length of the group attached to C20 and by the introduction of branching into the side chain. In vivo evaluation of two ligands with the desired in vitro profile confirms both display KOR, and to a lesser extent MOR, activity in an analgesic assay suggesting that, in this series, in vitro measures of efficacy using the [35S]GTPγS assay are predictive of the in vivo profile. PMID:23438330

  20. Orvinols with mixed kappa/mu opioid receptor agonist activity.

    PubMed

    Greedy, Benjamin M; Bradbury, Faye; Thomas, Mark P; Grivas, Konstantinos; Cami-Kobeci, Gerta; Archambeau, Ashley; Bosse, Kelly; Clark, Mary J; Aceto, Mario; Lewis, John W; Traynor, John R; Husbands, Stephen M

    2013-04-25

    Dual-acting kappa opioid receptor (KOR) agonist and mu opioid receptor (MOR) partial agonist ligands have been put forward as potential treatment agents for cocaine and other psychostimulant abuse. Members of the orvinol series of ligands are known for their high binding affinity to both KOR and MOR, but efficacy at the individual receptors has not been thoroughly evaluated. In this study, it is shown that a predictive model for efficacy at KOR can be derived, with efficacy being controlled by the length of the group attached to C20 and by the introduction of branching into the side chain. In vivo evaluation of two ligands with the desired in vitro profile confirms both display KOR, and to a lesser extent MOR, activity in an analgesic assay suggesting that, in this series, in vitro measures of efficacy using the [(35)S]GTPγS assay are predictive of the in vivo profile.

  1. Sports doping: emerging designer and therapeutic β2-agonists.

    PubMed

    Fragkaki, A G; Georgakopoulos, C; Sterk, S; Nielen, M W F

    2013-10-21

    Beta2-adrenergic agonists, or β2-agonists, are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptom-relievers and, in combination with inhaled corticosteroids, as disease-controllers. The use of β2-agonists is prohibited in sports by the World Anti-Doping Agency (WADA) due to claimed anabolic effects, and also, is prohibited as growth promoters in cattle fattening in the European Union. This paper reviews the last seven-year (2006-2012) literature concerning the development of novel β2-agonists molecules either by modifying the molecule of known β2-agonists or by introducing moieties producing indole-, adamantyl- or phenyl urea derivatives. New emerging β2-agonists molecules for future therapeutic use are also presented, intending to emphasize their potential use for doping purposes or as growth promoters in the near future.

  2. alpha-Adrenoceptors in the ventricular myocardium: clonidine, naphazoline and methoxamine as partial alpha-agonists exerting a competitive dualism in action to phenylephrine.

    PubMed

    Schümann, H J; Endoh, M

    1976-04-01

    Tha alpha-sympathomimetic agonists, clonidine, naphazoline, methoxamine, oxymetazoline and phenylephrine were used to further characterize the alpha-adrenoceptors mediating the positive inotropic effect in the isolated papillary muscle of the rabbit heart. The maximal inotropic effects of these amines were compared with the effect of isoprenaline and it was examined whether or not these amines compete for alpha-adrenoceptors. On the papillary muscle stimulated at 0.5 Hz, phenylephrine showed a high affinity (pD2 value=6.13) and produced the most pronounced intrinsic activity of the alpha-sympathomimetic amines. Therefore, the intrinsic activity of phenylephrine, in the presence of prindolol (3 X 10(-8) M), was used for comparison with those of the other alpha-agonists. Clonidine caused a positive inotropic effect: the intrinsic activity amounted to 0.32 of that of phenylephrine; the affinity was the highest among the amines tested (pD2 value=6.46); its effect was inhibited by 10(-6) M phentolamine. The affinity and the intrinsic activity of naphazoline were slightly lower than those of clonidine. Methoxamine showed a relatively high intrinsic activity (0.56) but the lowest affinity (4.68). Oxymetazoline did not cause any positive inotropic effect. Clonidine, naphazoline and oxymetazoline antagonized the positive inotropic effect of phenylephrine, mediated via the alpha-adrenocaptors in the presence of 3 X 10(-8) M prindolol, in a competitive manner. This observation suggests that these alpha-sympathomimetic amines compete with phenylephrine for the same receptor site. Thus the present results provide additional evidence for alpha-adrenoceptors mediating the positive inotropic actions of sympathomimetic amines in the rabbit papillary muscle.

  3. Modulation of Innate Immune Responses via Covalently Linked TLR Agonists

    PubMed Central

    2015-01-01

    We present the synthesis of novel adjuvants for vaccine development using multivalent scaffolds and bioconjugation chemistry to spatially manipulate Toll-like receptor (TLR) agonists. TLRs are primary receptors for activation of the innate immune system during vaccination. Vaccines that contain a combination of small and macromolecule TLR agonists elicit more directed immune responses and prolong responses against foreign pathogens. In addition, immune activation is enhanced upon stimulation of two distinct TLRs. Here, we synthesized combinations of TLR agonists as spatially defined tri- and di-agonists to understand how specific TLR agonist combinations contribute to the overall immune response. We covalently conjugated three TLR agonists (TLR4, 7, and 9) to a small molecule core to probe the spatial arrangement of the agonists. Treating immune cells with the linked agonists increased activation of the transcription factor NF-κB and enhanced and directed immune related cytokine production and gene expression beyond cells treated with an unconjugated mixture of the same three agonists. The use of TLR signaling inhibitors and knockout studies confirmed that the tri-agonist molecule activated multiple signaling pathways leading to the observed higher activity. To validate that the TLR4, 7, and 9 agonist combination would activate the immune response to a greater extent, we performed in vivo studies using a vaccinia vaccination model. Mice vaccinated with the linked TLR agonists showed an increase in antibody depth and breadth compared to mice vaccinated with the unconjugated mixture. These studies demonstrate how activation of multiple TLRs through chemically and spatially defined organization assists in guiding immune responses, providing the potential to use chemical tools to design and develop more effective vaccines. PMID:26640818

  4. Alpha-adrenoceptor agonistic activity of oxymetazoline and xylometazoline.

    PubMed

    Haenisch, Britta; Walstab, Jutta; Herberhold, Stephan; Bootz, Friedrich; Tschaikin, Marion; Ramseger, René; Bönisch, Heinz

    2010-12-01

    Oxymetazoline and xylometazoline are both used as nasal mucosa decongesting α-adrenoceptor agonists during a common cold. However, it is largely unknown which of the six α-adrenoceptor subtypes are actually present in human nasal mucosa, which are activated by the two alpha-adrenoceptor agonists and to what extent. Therefore, mRNA expression in human nasal mucosa of the six α-adrenoceptor subtypes was studied. Furthermore, the affinity and potency of the imidazolines oxymetazoline and xylometazoline at these α-adrenoceptor subtypes were examined in transfected HEK293 cells. The rank order of mRNA levels of α-adrenoceptor subtypes in human nasal mucosa was: α(2A) > α(1A) ≥ α(2B) > α(1D) ≥ α(2C) > α(1B) . Oxymetazoline and xylometazoline exhibited in radioligand competition studies higher affinities than the catecholamines adrenaline and noradrenaline at most α-adrenoceptor subtypes. Compared to xylometazoline, oxymetazoline exhibited a significantly higher affinity at α(1A) - but a lower affinity at α(2B) -adrenoceptors. In functional studies in which adrenoceptor-mediated Ca(2+) signals were measured, both, oxymetazoline and xylometazoline behaved at α(2B) -adrenoceptors as full agonists but oxymetazoline was significantly more potent than xylometazoline. Furthermore, oxymetazoline was also a partial agonist at α(1A) -adrenoceptors; however, its potency was relatively low and it was much lower than its affinity. The higher potency at α(2B) -adrenoceptors, i.e. at receptors highly expressed at the mRNA level in human nasal mucosa, could eventually explain why in nasal decongestants oxymetazoline can be used in lower concentrations than xylometazoline.

  5. Alpha-adrenoceptor agonistic activity of oxymetazoline and xylometazoline.

    PubMed

    Haenisch, Britta; Walstab, Jutta; Herberhold, Stephan; Bootz, Friedrich; Tschaikin, Marion; Ramseger, René; Bönisch, Heinz

    2010-12-01

    Oxymetazoline and xylometazoline are both used as nasal mucosa decongesting α-adrenoceptor agonists during a common cold. However, it is largely unknown which of the six α-adrenoceptor subtypes are actually present in human nasal mucosa, which are activated by the two alpha-adrenoceptor agonists and to what extent. Therefore, mRNA expression in human nasal mucosa of the six α-adrenoceptor subtypes was studied. Furthermore, the affinity and potency of the imidazolines oxymetazoline and xylometazoline at these α-adrenoceptor subtypes were examined in transfected HEK293 cells. The rank order of mRNA levels of α-adrenoceptor subtypes in human nasal mucosa was: α(2A) > α(1A) ≥ α(2B) > α(1D) ≥ α(2C) > α(1B) . Oxymetazoline and xylometazoline exhibited in radioligand competition studies higher affinities than the catecholamines adrenaline and noradrenaline at most α-adrenoceptor subtypes. Compared to xylometazoline, oxymetazoline exhibited a significantly higher affinity at α(1A) - but a lower affinity at α(2B) -adrenoceptors. In functional studies in which adrenoceptor-mediated Ca(2+) signals were measured, both, oxymetazoline and xylometazoline behaved at α(2B) -adrenoceptors as full agonists but oxymetazoline was significantly more potent than xylometazoline. Furthermore, oxymetazoline was also a partial agonist at α(1A) -adrenoceptors; however, its potency was relatively low and it was much lower than its affinity. The higher potency at α(2B) -adrenoceptors, i.e. at receptors highly expressed at the mRNA level in human nasal mucosa, could eventually explain why in nasal decongestants oxymetazoline can be used in lower concentrations than xylometazoline. PMID:20030735

  6. Small Molecule Bax Agonists for Cancer Therapy

    PubMed Central

    Xin, Meiguo; Li, Rui; Xie, Maohua; Park, Dongkyoo; Owonikoko, Taofeek K.; Sica, Gabriel L.; Corsino, Patrick E.; Zhou, Jia; Ding, Chunyong; White, Mark A.; Magis, Andrew T.; Ramalingam, Suresh S.; Curran, Walter J.; Khuri, Fadlo R.; Deng, Xingming

    2014-01-01

    Bax, a central death regulator, is required at the decisional stage of apoptosis. We recently identified serine 184 (S184) of Bax as a critical functional switch controlling its proapoptotic activity. Here, we employed the structural pocket around S184 as a docking site to screen the NCI library of small molecules using the UCSF-DOCK program suite. Three compounds, small molecule Bax agonists SMBA1, SMBA2 and SMBA3, induce conformational changes in Bax by blocking S184 phosphorylation, facilitating Bax insertion into mitochondrial membranes and forming Bax oligomers. The latter leads to cytochrome c release and apoptosis in human lung cancer cells, which occurs in a Bax- but not Bak-dependent fashion. SMBA1 potently suppresses lung tumor growth via apoptosis by selectively activating Bax in vivo without significant normal tissue toxicity. Development of Bax agonists as a new class of anti-cancer drugs offers a strategy for the treatment of lung cancer and other Bax-expressing malignancies. PMID:25230299

  7. Allosteric coupling from G protein to the agonist-binding pocket in GPCRs.

    PubMed

    DeVree, Brian T; Mahoney, Jacob P; Vélez-Ruiz, Gisselle A; Rasmussen, Soren G F; Kuszak, Adam J; Edwald, Elin; Fung, Juan-Jose; Manglik, Aashish; Masureel, Matthieu; Du, Yang; Matt, Rachel A; Pardon, Els; Steyaert, Jan; Kobilka, Brian K; Sunahara, Roger K

    2016-07-01

    G-protein-coupled receptors (GPCRs) remain the primary conduit by which cells detect environmental stimuli and communicate with each other. Upon activation by extracellular agonists, these seven-transmembrane-domain-containing receptors interact with heterotrimeric G proteins to regulate downstream second messenger and/or protein kinase cascades. Crystallographic evidence from a prototypic GPCR, the β2-adrenergic receptor (β2AR), in complex with its cognate G protein, Gs, has provided a model for how agonist binding promotes conformational changes that propagate through the GPCR and into the nucleotide-binding pocket of the G protein α-subunit to catalyse GDP release, the key step required for GTP binding and activation of G proteins. The structure also offers hints about how G-protein binding may, in turn, allosterically influence ligand binding. Here we provide functional evidence that G-protein coupling to the β2AR stabilizes a ‘closed’ receptor conformation characterized by restricted access to and egress from the hormone-binding site. Surprisingly, the effects of G protein on the hormone-binding site can be observed in the absence of a bound agonist, where G-protein coupling driven by basal receptor activity impedes the association of agonists, partial agonists, antagonists and inverse agonists. The ability of bound ligands to dissociate from the receptor is also hindered, providing a structural explanation for the G-protein-mediated enhancement of agonist affinity, which has been observed for many GPCR–G-protein pairs. Our data also indicate that, in contrast to agonist binding alone, coupling of a G protein in the absence of an agonist stabilizes large structural changes in a GPCR. The effects of nucleotide-free G protein on ligand-binding kinetics are shared by other members of the superfamily of GPCRs, suggesting that a common mechanism may underlie G-protein-mediated enhancement of agonist affinity. PMID:27362234

  8. Agonist/antagonist modulation in a series of 2-aryl benzimidazole H4 receptor ligands.

    PubMed

    Savall, Brad M; Edwards, James P; Venable, Jennifer D; Buzard, Daniel J; Thurmond, Robin; Hack, Michael; McGovern, Patricia

    2010-06-01

    The present work details the transformation of a series of human histamine H(4) agonists into potent functional antagonists. Replacement of the aminopyrrolidine diamine functionality with a 5,6-fused pyrrolopiperidine ring system led to an antagonist. The dissection of this fused diamine led to the eventual replacement with heterocycles. The incorporation of histamine as the terminal amine led to a very potent and selective histamine H(4) agonist; whereas incorporation of the constrained histamine analog, spinacamine, modulated the functional activity to give a partial agonist. In two separate series, we demonstrate that constraining the terminal amino portion modulated the spectrum of functional activity of histamine H(4) ligands.

  9. Induction of depersonalization by the serotonin agonist meta-chlorophenylpiperazine.

    PubMed

    Simeon, D; Hollander, E; Stein, D J; DeCaria, C; Cohen, L J; Saoud, J B; Islam, N; Hwang, M

    1995-09-29

    Sixty-seven subjects, including normal volunteers and patients with obsessive-compulsive disorder, social phobia, and borderline personality disorder, received ratings of depersonalization after double-blind, placebo-controlled challenges with the partial serotonin agonist meta-chlorophenylpiperazine (m-CPP). Challenge with m-CPP induced depersonalization significantly more than did placebo. Subjects who became depersonalized did not differ in age, sex, or diagnosis from those who did not experience depersonalization. There was a significant correlation between the induction of depersonalization and increase in panic, but not nervousness, anxiety, sadness, depression, or drowsiness. This report suggests that serotonergic dysregulation may in part underlie depersonalization.

  10. Physical Chemistry to the Rescue: Differentiating Nicotinic and Cholinergic Agonists

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    Researches suggest that two agonists can bind to the same binding site of an important transmembrane protein and elicit a biological response through strikingly different binding interactions. Evidence is provided which suggests two possible types of nicotinic acetylcholine receptor agonist binding like acetlycholine (cholinergic) or like nicotine…

  11. GLP-1 agonist treatment: implications for diabetic retinopathy screening.

    PubMed

    Varadhan, Lakshminarayanan; Humphreys, Tracy; Hariman, Christian; Walker, Adrian B; Varughese, George I

    2011-12-01

    Rapid improvement in glycaemic control induced by GLP-1 agonist therapy could be yet another illustration of transient or permanent progression of diabetic retinopathy, similar to documented examples such as pregnancy and continuous subcutaneous insulin infusion. Specific guidelines would be needed to monitor this paradoxical phenomenon during treatment with GLP-1 agonists. PMID:21906831

  12. TOXICITY OF AHR AGONISTS TO FISH EARLY LIFE STAGES

    EPA Science Inventory

    Fish early life stages are exceptionally sensitive to the lethal toxicity of chemicals that act as arylhydrocarbon receptor (AhR) agonists. Toxicity characterizations based on 2,3,7,8-tetrachlorodibenzo-p-dioxin, generally the most potent AhR agonist, support the toxicity equiva...

  13. Black cohosh (Actaea racemosa, Cimicifuga racemosa) behaves as a mixed competitive ligand and partial agonist at the human mu opiate receptor

    PubMed Central

    Rhyu, Mee-Ra; Lu, Jian; Webster, Donna E.; Fabricant, Daniel S.; Farnsworth, Norman R.; Wang, Z. Jim

    2008-01-01

    Black cohosh is a commonly used botanical dietary supplement for the treatment of climacteric complaints. Since the opiate system in the brain is intimately associated with mood, temperature and sex hormonal levels, we investigated the activity of black cohosh extracts at the human μ opiate receptor (hMOR) expressed in Chinese hamster ovary cells. The 100% methanol-, 75% ethanol- and 40% 2-propanol- extracts of black cohosh effectively displaced the specific binding of [3H]DAMGO to hMOR. Further studies of the clinically used ethanol extract indicated that black cohosh acted as a mixed competitive ligand, displacing 77 ± 4% [3H]DAMGO to hMOR (Ki = 62.9 μg/ml). Using the [35S]GTPγS assay, the action of black cohosh was found to be consistent with an agonist, with an EC50 of 68.8 ± 7.7 μg/ml. These results demonstrate for the first time that black cohosh contains active principle(s) that activate hMOR, supporting its beneficial role in alleviating menopausal symptoms. PMID:17177511

  14. Interactions between cannabinoid receptor agonists and mu opioid receptor agonists in rhesus monkeys discriminating fentanyl.

    PubMed

    Maguire, David R; France, Charles P

    2016-08-01

    Cannabinoid receptor agonists such as delta-9-tetrahydrocannabinol (Δ(9)-THC) enhance some (antinociceptive) but not other (positive reinforcing) effects of mu opioid receptor agonists, suggesting that cannabinoids might be combined with opioids to treat pain without increasing, and possibly decreasing, abuse. The degree to which cannabinoids enhance antinociceptive effects of opioids varies across drugs insofar as Δ(9)-THC and the synthetic cannabinoid receptor agonist CP55940 increase the potency of some mu opioid receptor agonists (e.g., fentanyl) more than others (e.g., nalbuphine). It is not known whether interactions between cannabinoids and opioids vary similarly for other (abuse-related) effects. This study examined whether Δ(9)-THC and CP55940 differentially impact the discriminative stimulus effects of fentanyl and nalbuphine in monkeys (n=4) discriminating 0.01mg/kg of fentanyl (s.c.) from saline. Fentanyl (0.00178-0.0178mg/kg) and nalbuphine (0.01-0.32mg/kg) dose-dependently increased drug-lever responding. Neither Δ(9)-THC (0.032-1.0mg/kg) nor CP55940 (0.0032-0.032mg/kg) enhanced the discriminative stimulus effects of fentanyl or nalbuphine; however, doses of Δ(9)-THC and CP55940 that shifted the nalbuphine dose-effect curve markedly to the right and/or down were less effective or ineffective in shifting the fentanyl dose-effect curve. The mu opioid receptor antagonist naltrexone (0.032mg/kg) attenuated the discriminative stimulus effects of fentanyl and nalbuphine similarly. These data indicate that the discriminative stimulus effects of nalbuphine are more sensitive to attenuation by cannabinoids than those of fentanyl. That the discriminative stimulus effects of some opioids are more susceptible to modification by drugs from other classes has implications for developing maximally effective therapeutic drug mixtures with reduced abuse liability. PMID:27184925

  15. Inhibition by TRPA1 agonists of compound action potentials in the frog sciatic nerve

    SciTech Connect

    Matsushita, Akitomo; Ohtsubo, Sena; Fujita, Tsugumi; Kumamoto, Eiichi

    2013-04-26

    Highlights: •TRPA1 agonists inhibited compound action potentials in frog sciatic nerves. •This inhibition was not mediated by TRPA1 channels. •This efficacy was comparable to those of lidocaine and cocaine. •We found for the first time an ability of TRPA1 agonists to inhibit nerve conduction. -- Abstract: Although TRPV1 and TRPM8 agonists (vanilloid capsaicin and menthol, respectively) at high concentrations inhibit action potential conduction, it remains to be unknown whether TRPA1 agonists have a similar action. The present study examined the actions of TRPA1 agonists, cinnamaldehyde (CA) and allyl isothiocyanate (AITC), which differ in chemical structure from each other, on compound action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. CA and AITC concentration-dependently reduced the peak amplitude of the CAP with the IC{sub 50} values of 1.2 and 1.5 mM, respectively; these activities were resistant to a non-selective TRP antagonist ruthenium red or a selective TRPA1 antagonist HC-030031. The CA and AITC actions were distinct in property; the latter but not former action was delayed in onset and partially reversible, and CA but not AITC increased thresholds to elicit CAPs. A CAP inhibition was seen by hydroxy-α-sanshool (by 60% at 0.05 mM), which activates both TRPA1 and TRPV1 channels, a non-vanilloid TRPV1 agonist piperine (by 20% at 0.07 mM) and tetrahydrolavandulol (where the six-membered ring of menthol is opened; IC{sub 50} = 0.38 mM). It is suggested that TRPA1 agonists as well as TRPV1 and TRPM8 agonists have an ability to inhibit nerve conduction without TRP activation, although their agonists are quite different in chemical structure from each other.

  16. Pharmacological evaluation of the anxiolytic-like effects of EMD 386088, a partial 5-HT6 receptor agonist, in the rat elevated plus-maze and Vogel conflict tests.

    PubMed

    Jastrzębska-Więsek, Magdalena; Siwek, Agata; Partyka, Anna; Kubacka, Monika; Mogilski, Szczepan; Wasik, Anna; Kołaczkowski, Marcin; Wesołowska, Anna

    2014-10-01

    The 5-HT6 is one of the most recent additions to the 5-HT receptor family. Its pharmacological profile and anatomical distribution is suggestive of a putative role in mood disorders. Most of preclinical evidence suggests an anxiolytic-like action of 5-HT6 receptor antagonists. Evaluation the anxiolytic-like effects of EMD 386088, a partial 5-HT6receptor agonist, and its putative mechanism of action in rats. EMD 386088, administered intraperitoneally at a dose of 2.5 mg/kg evoked specific anxiolytic-like activity in the automated version of the conflict drinking Vogel and the elevated plus-maze tests visible by increasing all parameters indicating a potential anti-anxiety effect. Its activity was blocked by the selective 5-HT6 receptor antagonist SB 271046, but not by the selective GABAA/benzodiazepine receptor antagonist flumazenil. EMD 386088 did not intensify an anxiolytic-like effect produced by diazepam in the elevated plus-maze test. These findings suggest that EMD 386088, a 5-HT6 receptor agonist, produces anxiolytic-like activity after systemic administration which may result from direct stimulation of 5-HT6 receptors.

  17. Expression of the 5-HT1A Serotonin Receptor in the Hippocampus Is Required for Social Stress Resilience and the Antidepressant-Like Effects Induced by the Nicotinic Partial Agonist Cytisine

    PubMed Central

    Mineur, Yann S; Einstein, Emily B; Bentham, Matthew P; Wigestrand, Mattis B; Blakeman, Sam; Newbold, Sylvia A; Picciotto, Marina R

    2015-01-01

    Nicotinic acetylcholine receptor (nAChR) blockers potentiate the effects of selective serotonin reuptake inhibitors (SSRIs) in some treatment-resistant patients; however, it is not known whether these effects are independent, or whether the two neurotransmitter systems act synergistically. We first determined that the SSRI fluoxetine and the nicotinic partial agonist cytisine have synergistic effects in a mouse model of antidepressant efficacy, whereas serotonin depletion blocked the effects of cytisine. Using a pharmacological approach, we found that the 5-HT1A agonist 8-OH-DPAT also potentiated the antidepressant-like effects of cytisine, suggesting that this subtype might mediate the interaction between the serotonergic and cholinergic systems. The 5-HT1A receptors are located both presynaptically and postsynaptically. We therefore knocked down 5-HT1A receptors in either the dorsal raphe (presynaptic autoreceptors) or the hippocampus (a brain area with high expression of 5-HT1A heteroreceptors sensitive to cholinergic effects on affective behaviors). Knockdown of 5-HT1A receptors in hippocampus, but not dorsal raphe, significantly decreased the antidepressant-like effect of cytisine. This study suggests that serotonin signaling through postsynaptic 5-HT1A receptors in the hippocampus is critical for the antidepressant-like effects of a cholinergic drug and begins to elucidate the molecular mechanisms underlying interactions between the serotonergic and cholinergic systems related to mood disorders. PMID:25288485

  18. Expression of the 5-HT1A serotonin receptor in the hippocampus is required for social stress resilience and the antidepressant-like effects induced by the nicotinic partial agonist cytisine.

    PubMed

    Mineur, Yann S; Einstein, Emily B; Bentham, Matthew P; Wigestrand, Mattis B; Blakeman, Sam; Newbold, Sylvia A; Picciotto, Marina R

    2015-03-01

    Nicotinic acetylcholine receptor (nAChR) blockers potentiate the effects of selective serotonin reuptake inhibitors (SSRIs) in some treatment-resistant patients; however, it is not known whether these effects are independent, or whether the two neurotransmitter systems act synergistically. We first determined that the SSRI fluoxetine and the nicotinic partial agonist cytisine have synergistic effects in a mouse model of antidepressant efficacy, whereas serotonin depletion blocked the effects of cytisine. Using a pharmacological approach, we found that the 5-HT1A agonist 8-OH-DPAT also potentiated the antidepressant-like effects of cytisine, suggesting that this subtype might mediate the interaction between the serotonergic and cholinergic systems. The 5-HT1A receptors are located both presynaptically and postsynaptically. We therefore knocked down 5-HT1A receptors in either the dorsal raphe (presynaptic autoreceptors) or the hippocampus (a brain area with high expression of 5-HT1A heteroreceptors sensitive to cholinergic effects on affective behaviors). Knockdown of 5-HT1A receptors in hippocampus, but not dorsal raphe, significantly decreased the antidepressant-like effect of cytisine. This study suggests that serotonin signaling through postsynaptic 5-HT1A receptors in the hippocampus is critical for the antidepressant-like effects of a cholinergic drug and begins to elucidate the molecular mechanisms underlying interactions between the serotonergic and cholinergic systems related to mood disorders.

  19. Magnesium ions and opioid agonist activity in streptozotocin-induced hyperalgesia.

    PubMed

    Bujalska, Magdalena; Malinowska, Ewelina; Makulska-Nowak, Helena; Gumułka, Stanisław Witold

    2008-01-01

    Streptozotocin-induced hyperglycemia accompanied by a chronic decrease in the nociceptive threshold is considered a useful model of experimental hyperalgesia. We examined (1) the effect of the opioid receptor agonists and (2) the effect of the magnesium ions (Mg(2+)) on the antinociceptive action of opioid agonists in a diabetic neuropathic pain model. When administered alone, opioid agonists like morphine (5 mg/kg i.p.) and fentanyl (0.0625 mg/kg i.p.), as well as the partial agonist buprenorphine (0.075 mg/kg) had only little effect on streptozotocin-induced hyperalgesia. However, pretreatment with Mg(2+) at a dose of 40 mg magnesium sulfate/kg i.p. markedly enhanced the analgesic activity of all three investigated opioids. Practical aspects of co-administration of magnesium and opioids in diabetic neuropathy are discussed. PMID:18701828

  20. Chronic Contusion Spinal Cord Injury Impairs Ejaculatory Reflexes in Male Rats: Partial Recovery by Systemic Infusions of Dopamine D3 Receptor Agonist 7OHDPAT.

    PubMed

    Kozyrev, Natalie; Staudt, Michael D; Brown, Arthur; Coolen, Lique M

    2016-05-15

    Chronic spinal cord injury (SCI) causes major disruption of ejaculatory function in men. Ejaculation is a reflex and the spinal generator for ejaculatory reflexes in the rat has been located in the lumbosacral spinal cord. The effects of SCI on the rat spinal ejaculation generator and ejaculatory reflexes remain understudied. The first goal of the current study was to establish the effects of chronic SCI on the function of the spinal ejaculation generator. Male rats received a contusion injury of the spinal cord at spinal level T6-T7. Ejaculatory reflexes elicited by electrical stimulation of the dorsal penile nerve (DPN) were evaluated in injured and control rats at 4-6 weeks following SCI. SCI males demonstrated significant reductions in bursting of the bulbocavernosus muscle (BCM), an indicator for expulsion phase of ejaculation, and in seminal vesicle pressure (SVP) increases, an indicator for the emission phase of ejaculation, following DPN stimulation. Thus, contusion SCI resulted in long-term impairment of ejaculatory reflexes. The D3 agonist 7-hydroxy-2-(di-N-propylamino) tetralin (7OHDPAT) facilitates ejaculation in spinal cord intact rats, thus the second goal of the current study was to test whether subcutaneous infusions of 7OHDPAT can facilitate ejaculatory reflexes in rats with chronic SCI. Male rats received a contusion injury at T6-T7 and effects of systemic administration of 7OHDPAT (1 mg/kg) were tested 4-5 weeks following injury. Results showed that 7OHDPAT administration facilitated ejaculatory reflexes in SCI males with or without DPN stimulation, provided that supraspinal inputs to the lumbar cord were severed by transection just prior to evaluating the reflex. Thus, 7OHDPAT administration in SCI males was able to overcome the detrimental effects of SCI on ejaculatory reflexes.

  1. BU08073 a buprenorphine analogue with partial agonist activity at μ-receptors in vitro but long-lasting opioid antagonist activity in vivo in mice

    PubMed Central

    Khroyan, T V; Wu, J; Polgar, W E; Cami-Kobeci, G; Fotaki, N; Husbands, S M; Toll, L

    2015-01-01

    BACKGROUND AND PURPOSE Buprenorphine is a potent analgesic with high affinity at μ, δ and κ and moderate affinity at nociceptin opioid (NOP) receptors. Nevertheless, NOP receptor activation modulates the in vivo activity of buprenorphine. Structure activity studies were conducted to design buprenorphine analogues with high affinity at each of these receptors and to characterize them in in vitro and in vivo assays. EXPERIMENTAL APPROACH Compounds were tested for binding affinity and functional activity using [35S]GTPγS binding at each receptor and a whole-cell fluorescent assay at μ receptors. BU08073 was evaluated for antinociceptive agonist and antagonist activity and for its effects on anxiety in mice. KEY RESULTS BU08073 bound with high affinity to all opioid receptors. It had virtually no efficacy at δ, κ and NOP receptors, whereas at μ receptors, BU08073 has similar efficacy as buprenorphine in both functional assays. Alone, BU08073 has anxiogenic activity and produces very little antinociception. However, BU08073 blocks morphine and U50,488-mediated antinociception. This blockade was not evident at 1 h post-treatment, but is present at 6 h and remains for up to 3–6 days. CONCLUSIONS AND IMPLICATIONS These studies provide structural requirements for synthesis of ‘universal’ opioid ligands. BU08073 had high affinity for all the opioid receptors, with moderate efficacy at μ receptors and reduced efficacy at NOP receptors, a profile suggesting potential analgesic activity. However, in vivo, BU08073 had long-lasting antagonist activity, indicating that its pharmacokinetics determined both the time course of its effects and what receptor-mediated effects were observed. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24903063

  2. The cardiovascular effects of peroxisome proliferator-activated receptor agonists.

    PubMed

    Friedland, Sayuri N; Leong, Aaron; Filion, Kristian B; Genest, Jacques; Lega, Iliana C; Mottillo, Salvatore; Poirier, Paul; Reoch, Jennifer; Eisenberg, Mark J

    2012-02-01

    Although peroxisome proliferator-activated receptor agonists are prescribed to improve cardiovascular risk factors, their cardiovascular safety is controversial. We therefore reviewed the literature to identify landmark randomized controlled trials evaluating the effect of peroxisome proliferator-activated receptor gamma agonists (pioglitazone and rosiglitazone), alpha agonists (fenofibrate and gemfibrozil), and pan agonists (bezafibrate, muraglitazar, ragaglitazar, tesaglitazar, and aleglitazar) on cardiovascular outcomes. Pioglitazone may modestly reduce cardiovascular events but also may increase the risk of bladder cancer. Rosiglitazone increases the risk of myocardial infarction and has been withdrawn in European and restricted in the United States. Fibrates improve cardiovascular outcomes only in select subgroups: fenofibrate in diabetic patients with metabolic syndrome, gemfibrozil in patients with dyslipidemia, and bezafibrate in patients with diabetes or metabolic syndrome. The cardiovascular safety of the new pan agonist aleglitazar, currently in phase II trials, remains to be determined. The heterogenous effects of peroxisome proliferator-activated receptor agonists to date highlight the importance of postmarketing surveillance. The critical question of why peroxisome proliferator-activated receptor agonists seem to improve cardiovascular risk factors without significantly improving cardiovascular outcomes requires further investigation. PMID:22269613

  3. Antifertility effects of luteinizing hormone-releasing hormone (LHRH) agonists.

    PubMed

    Labrie, F; Bélanger, A; Kelly, P A; Séguin, C; Cusan, L; Lefebvre, F A; Reeves, J J; Lemay, A; Faure, N; Gourdeau, Y; Raynaud, J P

    1981-01-01

    This paper reviews the mechanisms responsible for the antifertility effects of luteinizing hormone-releasing hormone (LHRH) agonists. Large doses of the LHRH agonist LHRH-EA lead to a marked reduction of testicular and secondary sex organ weight, LH receptor levels, and plasma testosterone concentration. A marked inhibition of basal testicular and testosterone concentrations is obtained after daily administration of the LHRH agonists at doses greater than 10 ng. Treatment with low doses of the LHRH agonist can lead to an increased steroidogenic response to LH. Treatment with low doses of LHRH agonists could stimulate Leydig cell function while high doses are history. A study of the effects of longterm treatment with an LHRH agonsist on spermatogenesis revelaed that testis, prostate, and seminal vesicle weight decreased and plasma LH and FSH levels increased over 12 weeks. Comparison of the effects of increasing doses of LHRH agonist on testicular and ovarian gonadotropin receptors and steroidogenesis in male rats indicates that single or repeated administration of LHRH agonists can lead to loss of testicular LH receptors in the absence of the pituitary gland. The loss of ovarian gonadotropin receptors in female rats is also investigated. Antifertility effects of LHRH ethylamide are accompanied by a marked loss of LH/hCG and FSH receptors in ovarian tissue. The injection of 1,3, or 10 ng LHRH-EA in intact rats has no significant effect on ovarian LH receptor levels. A study of the direct action of LHRH agonists at the ovarian level demonstrates a close relationship between the binding activity of a large series of LHRH agonists and antagonists in the anterior pituitary gland and the ovary. Inhibition of testicular steroidogenesis in man by treatment with a potent LHRH agonist is also demonstrated. Intranasal administration of LHRH ethylamide has luteolytic effects in normal women. Daily administration of LHRH-EA inhibited ovulation in all but 2 of 89 treatment

  4. Differential effects of subtype-specific nicotinic acetylcholine receptor agonists on early and late hippocampal LTP.

    PubMed

    Kroker, Katja S; Rast, Georg; Rosenbrock, Holger

    2011-12-01

    Brain nicotinic acetylcholine receptors are involved in several neuropsychiatric disorders, e.g. Alzheimer's and Parkinson's diseases, Tourette's syndrome, schizophrenia, depression, autism, attention deficit hyperactivity disorder, and anxiety. Currently, approaches selectively targeting the activation of specific nicotinic acetylcholine receptors are in clinical development for treatment of memory impairment of Alzheimer's disease patients. These are α4β2 and α7 nicotinic acetylcholine receptor agonists which are believed to enhance cholinergic and glutamatergic neurotransmission, respectively. In order to gain a better insight into the mechanistic role of these two nicotinic acetylcholine receptors in learning and memory, we investigated the effects of the α4β2 nicotinic acetylcholine receptor agonist TC-1827 and the α7 nicotinic acetylcholine receptor partial agonist SSR180711 on hippocampal long-term potentiation (LTP), a widely accepted cellular experimental model of memory formation. Generally, LTP is distinguished in an early and a late form, the former being protein-synthesis independent and the latter being protein-synthesis dependent. TC-1827 was found to increase early LTP in a bell-shaped dose dependent manner, but did not affect late LTP. In contrast, the α7 nicotinic acetylcholine receptor partial agonist SSR180711 showed enhancing effects on both early and late LTP in a bell-shaped manner. Furthermore, SSR180711 not only increased early LTP, but also transformed it into late LTP, which was not observed with the α4β2 nicotinic acetylcholine receptor agonist. Therefore, based on these findings α7 nicotinic acetylcholine receptor (partial) agonists appear to exhibit stronger efficacy on memory improvement than α4β2 nicotinic acetylcholine receptor agonists. PMID:21968142

  5. Identification of metals from osteoblastic ST-2 cell supernatants as novel OGR1 agonists.

    PubMed

    Abe-Ohya, Rie; Ishikawa, Tomio; Shiozawa, Hideyuki; Suda, Koji; Nara, Futoshi

    2015-01-01

    Ovarian cancer G-protein-coupled receptor 1 (OGR1) is a G-protein-coupled receptor (GPCR), which has previously been identified as a receptor for protons. It has been reported in this and previous studies that OGR1 expression was markedly up-regulated during osteoclast differentiation. We predicted the possibility of other molecules activating OGR1 in neutral pH, and that osteoblasts might release OGR1 agonistic molecules and activate OGR1 expressed in osteoclasts such as RANKL. We screened for cell supernatants and organ extracts and discovered OGR1 agonistic activity in ST-2 osteoblastic cell supernatants and pancreatic tissues. Finally, we partially purified and identified essential metals, Fe, Zn, Co, Ni and Mn, as novel OGR1 agonists. These OGR1 agonistic metals induce intracellular Gq-coupled inositol phosphate signals in OGR1-expressing cells and primary osteoclasts through OGR1. We also confirmed that these OGR1 agonistic metals activated OGR1 through the same residues which act with protons. Here, we demonstrate that metals, Fe, Zn, Co, Ni and Mn are the novel OGR1 agonists, which can singly activate OGR1 in neutral pH.

  6. Functional assays to define agonists and antagonists of the sigma-2 receptor

    PubMed Central

    Zeng, Chenbo; Rothfuss, Justin M.; Zhang, Jun; Vangveravong, Suwanna; Chu, Wenhua; Li, Shihong; Tu, Zhude; Xu, Jinbin; Mach, Robert H.

    2014-01-01

    The sigma-2 receptor has been identified as a biomarker in proliferating tumors. Up to date there is no well-established functional assay for defining sigma-2 agonists and antagonists. Many sigma-2 ligands with diverse structures have been shown to induce cell death in a variety of cancer cells by triggering caspase-dependent and independent apoptosis. Therefore, in the current study, we used the cell viability assay and the caspase-3 activity assay to determine sigma-2 agonists and antagonists. Three classes of sigma-2 ligands developed in our laboratory were evaluated for their potency to induce cell death in two tumor cell lines, mouse breast cancer cell line EMT-6 and human melanoma cell line MDA-MB-435. The data showed that the EC50 values of the sigma-2 ligands using the cell viability assay ranged from 11.4 μM to >200 μM, which were comparable with the EC50 values obtained using the caspase-3 assay. Based on the cytotoxicity of a sigma-2 ligand relative to that of siramesine, a commonly accepted sigma-2 agonist, we have categorized our sigma-2 ligands into agonists, partial agonists, and antagonists. The establishment of functional assays for defining sigma-2 agonists and antagonists will facilitate functional characterization of sigma-2 receptor ligands and sigma-2 receptors. PMID:24333652

  7. Selective Retinoic Acid Receptor γ Agonists Promote Repair of Injured Skeletal Muscle in Mouse

    PubMed Central

    Di Rocco, Agnese; Uchibe, Kenta; Larmour, Colleen; Berger, Rebecca; Liu, Min; Barton, Elisabeth R.; Iwamoto, Masahiro

    2016-01-01

    Retinoic acid signaling regulates several biological events, including myogenesis. We previously found that retinoic acid receptor γ (RARγ) agonist blocks heterotopic ossification, a pathological bone formation that mostly occurs in the skeletal muscle. Interestingly, RARγ agonist also weakened deterioration of muscle architecture adjacent to the heterotopic ossification lesion, suggesting that RARγ agonist may oppose skeletal muscle damage. To test this hypothesis, we generated a critical defect in the tibialis anterior muscle of 7-week-old mice with a cautery, treated them with RARγ agonist or vehicle corn oil, and examined the effects of RARγ agonist on muscle repair. The muscle defects were partially repaired with newly regenerating muscle cells, but also filled with adipose and fibrous scar tissue in both RARγ-treated and control groups. The fibrous or adipose area was smaller in RARγ agonist–treated mice than in the control. In addition, muscle repair was remarkably delayed in RARγ-null mice in both critical defect and cardiotoxin injury models. Furthermore, we found a rapid increase in retinoid signaling in lacerated muscle, as monitored by retinoid signaling reporter mice. Together, our results indicate that endogenous RARγ signaling is involved in muscle repair and that selective RARγ agonists may be beneficial to promote repair in various types of muscle injuries. PMID:26205250

  8. Agonist-sensitive calcium pool in the pancreatic acinar cell. II. Characterization of reloading

    SciTech Connect

    Muallem, S.; Schoeffield, M.S.; Fimmel, C.J.; Pandol, S.J.

    1988-08-01

    45Ca2+ fluxes and free cytosolic Ca2+ measurements in guinea pig pancreatic acini indicated that after agonist stimulation and the release of Ca2+ from the agonist-sensitive pool at least part of the Ca2+ is extruded from the cell, resulting in 45Ca2+ efflux. In the continued presence of agonist, the pool remains permeable to Ca2+ but partially refills with Ca2+. This reloading is dependent on the concentration of extracellular Ca2+. In the absence of extracellular Ca2+, the pool is completely depleted of Ca2+. However, with increasing concentrations of CaCl2 in the incubation solution (from 0.5 to 2.0 mM) there is increasing repletion of the pool with Ca2+ during agonist stimulation. With termination of agonist stimulation, the Ca2+ permeability of the agonist-sensitive pool is rapidly reduced to that measured in the unstimulated cell. As a result, the Ca2+ incorporated into the pool during the stimulation period is rapidly trapped within the pool and exchanges poorly with medium Ca2+. Subsequently, the pool completely refills with Ca2+. The rate of Ca2+ reloading at the termination of agonist stimulation is slower than the conversion of the pool to the impermeable state. In incubation media containing 1.3 mM CaCl2, the half-time for reloading at the termination of stimulation is 5 min. These observations demonstrate the characteristics of Ca2+ reloading of the agonist-sensitive pool both during stimulation and at the termination of stimulation.

  9. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-09-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs.

  10. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs.

  11. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-09-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs. PMID:25437461

  12. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs. PMID:25326839

  13. PPAR dual agonists: are they opening Pandora's Box?

    PubMed

    Balakumar, Pitchai; Rose, Madhankumar; Ganti, Subrahmanya S; Krishan, Pawan; Singh, Manjeet

    2007-08-01

    Cardiovascular disorders are the major cause of mortality in patients of diabetes mellitus. Peroxisome proliferator activated receptors (PPARs) are ligand-activated transcription factors of nuclear hormone receptor superfamily comprising of three subtypes such as PPARalpha, PPARgamma and PPARdelta/beta. Activation of PPARalpha reduces triglycerides and involves in regulation of energy homeostasis. Activation of PPARgamma causes insulin sensitization and enhances glucose metabolism, whereas activation of PPARdelta enhances fatty acid metabolism. Current therapeutic strategies available for the treatment of diabetes do not inhibit the associated secondary cardiovascular complications. Hence, the development of multimodal drugs which can reduce hyperglycemia and concomitantly inhibit the progression of secondary cardiovascular complications may offer valuable therapeutic option. Several basic and clinical studies have exemplified the beneficial effects of PPARalpha and PPARgamma ligands in preventing the cardiovascular risks. The PPARalpha/gamma dual agonists are developed to increase insulin sensitivity and simultaneously prevent diabetic cardiovascular complications. Such compounds are under clinical trials and proposed for treatment of Type II diabetes with secondary cardiovascular complications. However, PPARalpha/gamma dual agonists such as muraglitazar, tesaglitazar and ragaglitazar have been noted to produce several cardiovascular risks and carcinogenicity, which raised number of questions about the clinical applications of dual agonists in diabetes and its associated complications. The ongoing basic studies have elucidated the cardio protective role of PPARdelta. Therefore, further studies are on the track to develop PPARalpha/delta and PPAR gamma/delta dual agonists and PPARalpha/gamma/delta pan agonists for the treatment of diabetic cardiovascular complications. The present review critically analyzes the protective and detrimental effect of PPAR agonists in

  14. Identification of M-CSF agonists and antagonists

    SciTech Connect

    Pandit, Jayvardhan; Jancarik, Jarmila; Kim, Sung-Hou; Koths, Kirston; Halenbeck, Robert; Fear, Anna Lisa; Taylor, Eric; Yamamoto, Ralph; Bohm, Andrew

    2000-02-15

    The present invention is directed to methods for crystallizing macrophage colony stimulating factor. The present invention is also directed to methods for designing and producing M-CSF agonists and antagonists using information derived from the crystallographic structure of M-CSF. The invention is also directed to methods for screening M-CSF agonists and antagonists. In addition, the present invention is directed to an isolated, purified, soluble and functional M-CSF receptor.

  15. Pharmacogenetics of beta2 adrenergic receptor agonists in asthma management.

    PubMed

    Ortega, V E

    2014-07-01

    Beta2 (β2) adrenergic receptor agonists (beta agonists) are a commonly prescribed treatment for asthma despite the small increase in risk for life-threatening adverse responses associated with long-acting beta agonist (LABA). The concern for life-threatening adverse effects associated with LABA and the inter-individual variability of therapeutic responsiveness to LABA-containing combination therapies provide the rationale for pharmacogenetic studies of beta agonists. These studies primarily evaluated genes within the β2-adrenergic receptor and related pathways; however, recent genome-wide studies have identified novel loci for beta agonist response. Recent studies have identified a role for rare genetic variants in determining beta agonist response and, potentially, the risk for rare, adverse responses to LABA. Before genomics research can be applied to the development of genetic profiles for personalized medicine, it will be necessary to continue adapting to the analysis of an increasing volume of genetic data in larger cohorts with a combination of analytical methods and in vitro studies.

  16. Pairwise agonist scanning predicts cellular signaling responses to combinatorial stimuli.

    PubMed

    Chatterjee, Manash S; Purvis, Jeremy E; Brass, Lawrence F; Diamond, Scott L

    2010-07-01

    Prediction of cellular response to multiple stimuli is central to evaluating patient-specific clinical status and to basic understanding of cell biology. Cross-talk between signaling pathways cannot be predicted by studying them in isolation and the combinatorial complexity of multiple agonists acting together prohibits an exhaustive exploration of the complete experimental space. Here we describe pairwise agonist scanning (PAS), a strategy that trains a neural network model based on measurements of cellular responses to individual and all pairwise combinations of input signals. We apply PAS to predict calcium signaling responses of human platelets in EDTA-treated plasma to six different agonists (ADP, convulxin, U46619, SFLLRN, AYPGKF and PGE(2)) at three concentrations (0.1, 1 and 10 x EC(50)). The model predicted responses to sequentially added agonists, to ternary combinations of agonists and to 45 different combinations of four to six agonists (R = 0.88). Furthermore, we use PAS to distinguish between the phenotypic responses of platelets from ten donors. Training neural networks with pairs of stimuli across the dose-response regime represents an efficient approach for predicting complex signal integration in a patient-specific disease milieu. PMID:20562863

  17. Perception of specific trigeminal chemosensory agonists

    PubMed Central

    Frasnelli, J; Albrecht, J; Bryant, B; Lundström, JN

    2011-01-01

    The intranasal trigeminal system is a third chemical sense in addition to olfaction and gustation. As opposed to smell and taste, we still lack knowledge on the relationship between receptor binding and perception for the trigeminal system. We therefore investigated the sensitivity of the intranasal trigeminal system towards agonists of the trigeminal receptors TRPM8 and TRPA1 by assessing subjects’ ability to identify which nostril has been stimulated in a monorhinal stimulation design. We summed the number of correct identifications resulting in a lateralization score. Stimuli were menthol (activating TRPM8 receptors), eucalyptol (TRPM8), mustard oil (TRPA1) and two mixtures thereof (menthol/eucalyptol and menthol/mustard oil). In addition, we examined the relationship between intensity and lateralization scores and investigated whether intensity evaluation and lateralization scores of the mixtures show additive effects. All stimuli were correctly lateralized significantly above chance. Across subjects the lateralization scores for single compounds activating the same receptor showed a stronger correlation than stimuli activating different receptors. Although single compounds were isointense, the mixture of menthol and eucalyptol (activating only TRPM8) was perceived as weaker and was lateralized less accurately than the mixture of menthol and mustard oil (activating both TRPM8 and TRPA1) suggesting suppression effects in the former mixture. In conclusion, sensitivity of different subpopulations of trigeminal sensory neurons seems to be related, but only to a certain degree. The large coherence in sensitivity between various intranasal trigeminal stimuli suggests that measuring sensitivity to one single trigeminal chemical stimulus may be sufficient to generally assess the trigeminal system’s chemosensitivity. Further, for stimuli activating the same receptor a mixture suppression effect appears to occur similar to that observed in the other chemosensory

  18. Agonist self-inhibition at the nicotinic acetylcholine receptor a nonspecific action

    SciTech Connect

    Forman, S.A.; Firestone, L.L.; Miller, K.W.

    1987-05-19

    Agonist concentration-response relationships at nicotinic postsynaptic receptors were established by measuring /sup 86/Rb/sup +/ efflux from acetylcholine receptor rich native Torpedo membrane vesicles under three different conditions: (1) integrated net ion efflux (in 10 s) from untreated vesicles, (2) integrated net efflux from vesicles in which most acetylcholine sites were irreversibly blocked with ..cap alpha..-bungarotoxin, and (3) initial rates of efflux (5-100 ms) from vesicles that were partially blocked with ..cap alpha..-bungarotoxin. Exposure to acetylcholine, carbamylcholine, suberyldicholine, phenyltrimethylammonium, or (-)-nicotine over 10/sup 8/-fold concentration ranges results in bell-shaped ion flux response curves due to stimulation of acetylcholine receptor channel opening at low concentrations and inhibition of channel function at 60-2000 times higher concentrations. Concentrations of agonists that inhibit their own maximum /sup 86/Rb/sup +/ efflux by 50% (K/sub B/ values) are 110, 211, 3.0, 39, and 8.9 mM, respectively, for the agonists listed above. For acetylcholine and carbamylcholine, K/sub B/ values determined from both 10-s and 15-ms efflux measurements are the same, indicating that the rate of agonist-induced desensitization increases to maximum at concentrations lower than those causing self-inhibition. For all partial and full agonists studied, Hill coefficients for self-inhibition are close to 1.0. Concentrations of agonists up to 8 times K/sub B/ did not change the order parameter reported by a spin-labeled fatty acid incorporated in Torpedo membranes. The authors conclude that agonist self-inhibition cannot be attributed to a general nonspecific membrane perturbation. Instead, these results are consistent with a saturable site of action either at the lipid-protein interface or on the acetylcholine receptor protein itself.

  19. Identification of Determinants Required for Agonistic and Inverse Agonistic Ligand Properties at the ADP Receptor P2Y12

    PubMed Central

    Schmidt, Philipp; Ritscher, Lars; Dong, Elizabeth N.; Hermsdorf, Thomas; Cöster, Maxi; Wittkopf, Doreen; Meiler, Jens

    2013-01-01

    The ADP receptor P2Y12 belongs to the superfamily of G protein–coupled receptors (GPCRs), and its activation triggers platelet aggregation. Therefore, potent antagonists, such as clopidogrel, are of high clinical relevance in prophylaxis and treatment of thromboembolic events. P2Y12 displays an elevated basal activity in vitro, and as such, inverse agonists may be therapeutically beneficial compared with antagonists. Only a few inverse agonists of P2Y12 have been described. To expand this limited chemical space and improve understanding of structural determinants of inverse agonist-receptor interaction, this study screened a purine compound library for lead structures using wild-type (WT) human P2Y12 and 28 constitutively active mutants. Results showed that ATP and ATP derivatives are agonists at P2Y12. The potency at P2Y12 was 2-(methylthio)-ADP > 2-(methylthio)-ATP > ADP > ATP. Determinants required for agonistic ligand activity were identified. Molecular docking studies revealed a binding pocket for the ATP derivatives that is bordered by transmembrane helices 3, 5, 6, and 7 in human P2Y12, with Y105, E188, R256, Y259, and K280 playing a particularly important role in ligand interaction. N-Methyl-anthraniloyl modification at the 3′-OH of the 2′-deoxyribose leads to ligands (mant-deoxy-ATP [dATP], mant-deoxy-ADP) with inverse agonist activity. Inverse agonist activity of mant-dATP was found at the WT human P2Y12 and half of the constitutive active P2Y12 mutants. This study showed that, in addition to ADP and ATP, other ATP derivatives are not only ligands of P2Y12 but also agonists. Modification of the ribose within ATP can result in inverse activity of ATP-derived ligands. PMID:23093496

  20. Dihydrocodeine/Agonists for Alcohol Dependents

    PubMed Central

    Ulmer, Albrecht; Müller, Markus; Frietsch, Bernhard

    2012-01-01

    Objective: Alcohol addiction too often remains insufficiently treated. It shows the same profile as severe chronic diseases, but no comparable, effective basic treatment has been established up to now. Especially patients with repeated relapses, despite all therapeutic approaches, and patients who are not able to attain an essential abstinence to alcohol, need a basic medication. It seems necessary to acknowledge that parts of them need any agonistic substance, for years, possibly lifelong. For >14 years, we have prescribed such substances with own addictive character for these patients. Methods: We present a documented best possible practice, no designed study. Since 1997, we prescribed Dihydrocodeine (DHC) to 102 heavily alcohol addicted patients, later, also Buprenorphine, Clomethiazole (>6 weeks), Baclofen, and in one case Amphetamine, each on individual indication. This paper focuses on the data with DHC, especially. The Clomethiazole-data has been submitted to a German journal. The number of treatments with the other substances is still low. Results: The 102 patients with the DHC treatment had 1367 medically assisted detoxifications and specialized therapies before! The 4 years-retention rate was 26.4%, including 2.8% successfully terminated treatments. In our 12-steps scale on clinical impression, we noticed a significant improvement from mean 3.7 to 8.4 after 2 years. The demand for medically assisted detoxifications in the 2 years remaining patients was reduced by 65.5%. Mean GGT improved from 206.6 U/l at baseline to 66.8 U/l after 2 years. Experiences with the other substances are similar but different in details. Conclusion: Similar to the Italian studies with GHB and Baclofen, we present a new approach, not only with new substances, but also with a new setting and much more trusting attitude. We observe a huge improvement, reaching an almost optimal, stable, long term status in around 1/4 of the patients already. Many further

  1. Agonist-bound structure of the human P2Y12 receptor

    PubMed Central

    Zhang, Jin; Zhang, Kaihua; Gao, Zhan-Guo; Paoletta, Silvia; Zhang, Dandan; Han, Gye Won; Li, Tingting; Ma, Limin; Zhang, Wenru; Müller, Christa E.; Yang, Huaiyu; Jiang, Hualiang; Cherezov, Vadim; Katritch, Vsevolod; Jacobson, Kenneth A.; Stevens, Raymond C.; Wu, Beili; Zhao, Qiang

    2014-01-01

    The P2Y12 receptor (P2Y12R), one of eight members of the P2YR family expressed in humans, has been identified as one of the most prominent clinical drug targets for inhibition of platelet aggregation. Consequently, extensive mutagenesis and modeling studies of the P2Y12R have revealed many aspects of agonist/antagonist binding1-4. However, the details of agonist and antagonist recognition and function at the P2Y12R remain poorly understood at the molecular level. Here, we report the structures of the human P2Y12R in complex with a full agonist 2-methylthio-adenosine-5′-diphosphate (2MeSADP, a close analogue of endogenous agonist ADP) at 2.5 Å resolution, and the corresponding ATP derivative 2-methylthio-adenosine-5′-triphosphate (2MeSATP) at 3.1 Å resolution. Analysis of these structures, together with the structure of the P2Y12R with antagonist ethyl 6-(4-((benzylsulfonyl)carbamoyl)piperidin-1-yl)-5-cyano-2-methylnicotinate (AZD1283)5, reveals dramatic conformational changes between nucleotide and non-nucleotide ligand complexes in the extracellular regions, providing the first insight into a different ligand binding landscape in the δ-group of class A G protein-coupled receptors (GPCRs). Agonist and non-nucleotide antagonist adopt different orientations in the P2Y12R, with only partially overlapped binding pockets. The agonist-bound P2Y12R structure answers long-standing ambiguities surrounding P2Y12R-agonist recognition, and reveals interactions with several residues that had not been reported to be involved in agonist binding. As a first example of a GPCR where agonist access to the binding pocket requires large scale rearrangements in the highly malleable extracellular region, the structural studies therefore will provide invaluable insight into the pharmacology and mechanisms of action of agonists and different classes of antagonists for the P2Y12R and potentially for other closely related P2YRs. PMID:24784220

  2. Selective α4β2 nicotinic acetylcholine receptor agonists target epigenetic mechanisms in cortical GABAergic neurons.

    PubMed

    Maloku, Ekrem; Kadriu, Bashkim; Zhubi, Adrian; Dong, Erbo; Pibiri, Fabio; Satta, Rosalba; Guidotti, Alessandro

    2011-06-01

    Nicotine improves cognitive performance and attention in both experimental animals and in human subjects, including patients affected by neuropsychiatric disorders. However, the specific molecular mechanisms underlying nicotine-induced behavioral changes remain unclear. We have recently shown in mice that repeated injections of nicotine, which achieve plasma concentrations comparable to those reported in high cigarette smokers, result in an epigenetically induced increase of glutamic acid decarboxylase 67 (GAD(67)) expression. Here we explored the impact of synthetic α(4)β(2) and α(7) nAChR agonists on GABAergic epigenetic parameters. Varenicline (VAR), a high-affinity partial agonist at α(4)β(2) and a lower affinity full agonist at α(7) neuronal nAChR, injected in doses of 1-5 mg/kg/s.c. twice daily for 5 days, elicited a 30-40% decrease of cortical DNA methyltransferase (DNMT)1 mRNA and an increased expression of GAD(67) mRNA and protein. This upregulation of GAD(67) was abolished by the nAChR antagonist mecamylamine. Furthermore, the level of MeCP(2) binding to GAD(67) promoters was significantly reduced following VAR administration. This effect was abolished when VAR was administered with mecamylamine. Similar effects on cortical DNMT1 and GAD(67) expression were obtained after administration of A-85380, an agonist that binds to α(4)β(2) but has negligible affinity for α(3)β(4) or α(7) subtypes containing nAChR. In contrast, PNU-282987, an agonist of the homomeric α(7) nAChR, failed to decrease cortical DNMT1 mRNA or to induce GAD(67) expression. The present study suggests that the α(4)β(2) nAChR agonists may be better suited to control the epigenetic alterations of GABAergic neurons in schizophrenia than the α(7) nAChR agonists.

  3. Glucagon-like peptide-1 receptor agonist administration suppresses both water and saline intake in rats.

    PubMed

    McKay, N J; Daniels, D

    2013-10-01

    Glucagon-like peptide-1 (GLP-1) plays an important role in energy homeostasis. Injections of GLP-1 receptor (GLP-1R) agonists suppress food intake, and endogenous GLP-1 is released when nutrients enter the gut. There is also growing evidence that the GLP-1 system is involved in the regulation of body fluid homeostasis. GLP-1R agonists suppress water intake independent of their effects on food intake. It is unknown, however, whether this suppressive effect of GLP-1R agonists extends to saline intake. Accordingly, we tested the effect of the GLP-1R agonists liraglutide (0.05 μg) and exendin-4 (0.05 μg) on water and saline intake, as stimulated either by angiotensin II (AngII) or by water deprivation with partial rehydration (WD-PR). Each agonist suppressed AngII-induced water intake; however, only exendin-4 suppressed saline intake. WD-PR-induced water and saline intakes were both attenuated by each agonist. Analysis of drinking microstructure after WD-PR found a reliable effect of the agonists on burst number. Furthermore, exendin-4 conditioned a robust taste avoidance to saccharine; however, there was no similar effect of liraglutide. To evaluate the relevance of the conditioned taste avoidance, we tested whether inducing visceral malaise by injection of lithium chloride (LiCl) suppressed fluid intake. Injection of LiCl did not suppress water or saline intakes. Overall, these results indicate that the fluid intake suppression by GLP-1R activation is not selective to water intake, is a function of post-ingestive feedback, and is not secondary to visceral malaise.

  4. Modification of opiate agonist binding by pertussis toxin

    SciTech Connect

    Abood, M.E.; Lee, N.M.; Loh, H.H.

    1986-03-05

    Opiate agonist binding is decreased by GTP, suggesting the possible involvement of GTP binding proteins in regulation of opiate receptor binding. This possibility was addressed by asking whether pertussis toxin treatment, which results in ADP-ribosylation and modification of G proteins, would alter opiate agonist binding. The striatum was chosen for the initial brain area to be studied, since regulation of opiate action in this area had been shown to be modified by pertussis toxin. Treatment of striatal membranes with pertussis toxin results in up to a 55% decrease in /sup 3/(H)-DADLE binding as compared with membranes treated identically without toxin. This corresponds to a near complete ADP-ribosylation of both G proteins in the striatal membrane. The decrease in agonist binding appears to be due to an altered affinity of the receptor for agonist as opposed to a decrease in the number of sites. This effect of pertussis toxin on opiate agonist binding demonstrates the actual involvement of G proteins in regulation of opiate receptor binding.

  5. Sound production during agonistic behavior of male Drosophila melanogaster

    PubMed Central

    Jonsson, Thorin; Kravitz, Edward A

    2011-01-01

    Male Drosophila fruit flies acquire and defend territories in order to attract females for reproduction. Both, male-directed agonistic behavior and female-directed courtship consist of series of recurrent stereotypical components. Various studies demonstrated the importance of species-specific sound patterns generated by wing vibration as being critical for male courtship success. In this study we analyzed the patterns and importance of sound signals generated during agonistic interactions of male Drosophila melanogaster. In contrast to acoustic courtship signals that consist of sine and pulse patterns and are generated by one extended wing, agonistic signals lack sine-like components and are generally produced by simultaneous movements of both wings. Though intra-pulse oscillation frequencies (carrier frequency) are identical, inter-pulse intervals are twice as long and more variable in aggression signals than in courtship songs, where their precise temporal pattern serves species recognition. Acoustic signals accompany male agonistic interactions over their entire course but occur particularly often after tapping behavior which is a major way to identify the gender of the interaction partner. Since similar wing movements may either be silent or generate sound and wing movements with sound have a greater impact on the subsequent behavior of a receiver, sound producing wing movements seem to be generated intentionally to serve as a specific signal during fruit fly agonistic encounters. PMID:20953152

  6. Radiation therapy generates platelet-activating factor agonists

    PubMed Central

    Sahu, Ravi P.; Harrison, Kathleen A.; Weyerbacher, Jonathan; Murphy, Robert C.; Konger, Raymond L.; Garrett, Joy Elizabeth; Chin-Sinex, Helen Jan; Johnston, Michael Edward; Dynlacht, Joseph R.; Mendonca, Marc; McMullen, Kevin; Li, Gengxin; Spandau, Dan F.; Travers, Jeffrey B.

    2016-01-01

    Pro-oxidative stressors can suppress host immunity due to their ability to generate oxidized lipid agonists of the platelet-activating factor-receptor (PAF-R). As radiation therapy also induces reactive oxygen species, the present studies were designed to define whether ionizing radiation could generate PAF-R agonists and if these lipids could subvert host immunity. We demonstrate that radiation exposure of multiple tumor cell lines in-vitro, tumors in-vivo, and human subjects undergoing radiation therapy for skin tumors all generate PAF-R agonists. Structural characterization of radiation-induced PAF-R agonistic activity revealed PAF and multiple oxidized glycerophosphocholines that are produced non-enzymatically. In a murine melanoma tumor model, irradiation of one tumor augmented the growth of the other (non-treated) tumor in a PAF-R-dependent process blocked by a cyclooxygenase-2 inhibitor. These results indicate a novel pathway by which PAF-R agonists produced as a byproduct of radiation therapy could result in tumor treatment failure, and offer important insights into potential therapeutic strategies that could improve the overall antitumor effectiveness of radiation therapy regimens. PMID:26959112

  7. Radiation therapy generates platelet-activating factor agonists.

    PubMed

    Sahu, Ravi P; Harrison, Kathleen A; Weyerbacher, Jonathan; Murphy, Robert C; Konger, Raymond L; Garrett, Joy Elizabeth; Chin-Sinex, Helen Jan; Johnston, Michael Edward; Dynlacht, Joseph R; Mendonca, Marc; McMullen, Kevin; Li, Gengxin; Spandau, Dan F; Travers, Jeffrey B

    2016-04-12

    Pro-oxidative stressors can suppress host immunity due to their ability to generate oxidized lipid agonists of the platelet-activating factor-receptor (PAF-R). As radiation therapy also induces reactive oxygen species, the present studies were designed to define whether ionizing radiation could generate PAF-R agonists and if these lipids could subvert host immunity. We demonstrate that radiation exposure of multiple tumor cell lines in-vitro, tumors in-vivo, and human subjects undergoing radiation therapy for skin tumors all generate PAF-R agonists. Structural characterization of radiation-induced PAF-R agonistic activity revealed PAF and multiple oxidized glycerophosphocholines that are produced non-enzymatically. In a murine melanoma tumor model, irradiation of one tumor augmented the growth of the other (non-treated) tumor in a PAF-R-dependent process blocked by a cyclooxygenase-2 inhibitor. These results indicate a novel pathway by which PAF-R agonists produced as a byproduct of radiation therapy could result in tumor treatment failure, and offer important insights into potential therapeutic strategies that could improve the overall antitumor effectiveness of radiation therapy regimens. PMID:26959112

  8. Tolerance with beta 2-adrenoceptor agonists: time for reappraisal.

    PubMed Central

    Grove, A; Lipworth, B J

    1995-01-01

    1. In spite of the widespread use of beta 2-adrenoceptor agonists in the treatment of asthma controversy continues regarding their possible role in increasing asthma mortality and morbidity. There is however no evidence available to suggest that tolerance to the bronchodilator or anti-bronchoconstrictor effects of these drugs is responsible for the deleterious effects reported with the regular use of bronchodilators. 2. There is no conclusive evidence to suggest that tolerance develops to the bronchodilator effects of short-acting beta 2-adrenoceptor agonists. Tolerance does however appear to develop to the anti-bronchoconstrictor effects of these drugs. 3. With regard to the long-acting beta 2-adrenoceptor agonists, there is evidence to suggest that tolerance develops both to their anti-bronchoconstrictor, and bronchodilator effects. Tolerance was however demonstrated in the presence of improved symptom control, therefore the clinical relevance of this phenomenon is uncertain. 4. Systemic corticosteroids can modulate lymphocyte beta 2-adrenoceptor function both preventing, and reversing tolerance. The situation regarding the effects of systemic or inhaled corticosteroids on modulating bronchodilator responses in asthmatics is less clear. There is some evidence to suggest that inhaled corticosteroids are unable to prevent bronchodilator or systemic tolerance to long-acting beta 2-adrenoceptor agonists. 5. On the basis of the current evidence, the British Thoracic Society guidelines for the management of asthma appear appropriate with regard to their recommendations for the use of long-acting beta 2-adrenoceptor agonists. PMID:7742147

  9. Current issues with beta2-adrenoceptor agonists: historical background.

    PubMed

    Tattersfield, Anne E

    2006-01-01

    The discovery that dessicated adrenal glands had beneficial effects in asthma arose in 1900 following a vogue for studying organotherapy at the end of the 19th century. The adrenal hormone adrenaline was found to have sympathomimetic properties and was isolated and synthesized in 1901. The first nonselective beta-agonist, isoproterenol, was isolated in 1940, followed by the development of selective beta2-agonists in the 1960s and the introduction of the long-acting beta2-agonists in the 1990s. The introduction of beta2-selectivity reduced adverse effects, as did developments in inhaler technology that allowed subjects to inhale much smaller doses of drug selectively to the airways. The beta2-agonists are some of the more important drugs to have been developed in the 20th century. Excessive doses can cause problems, and attempts to maximize the benefit from beta2-agonists and to reduce adverse effects has led to considerable epidemiological, clinical, and mechanistic research over the last 50 yr.

  10. Use of microdoses for induction of buprenorphine treatment with overlapping full opioid agonist use: the Bernese method

    PubMed Central

    Hämmig, Robert; Kemter, Antje; Strasser, Johannes; von Bardeleben, Ulrich; Gugger, Barbara; Walter, Marc; Dürsteler, Kenneth M; Vogel, Marc

    2016-01-01

    Background Buprenorphine is a partial µ-opioid receptor agonist used for maintenance treatment of opioid dependence. Because of the partial agonism and high receptor affinity, it may precipitate withdrawal symptoms during induction in persons on full µ-opioid receptor agonists. Therefore, current guidelines and drug labels recommend leaving a sufficient time period since the last full agonist use, waiting for clear and objective withdrawal symptoms, and reducing pre-existing full agonist therapies before administering buprenorphine. However, even with these precautions, for many patients the induction of buprenorphine is a difficult experience, due to withdrawal symptoms. Furthermore, tapering of the full agonist bears the risk of relapse to illicit opioid use. Cases We present two cases of successful initiation of buprenorphine treatment with the Bernese method, ie, gradual induction overlapping with full agonist use. The first patient began buprenorphine with overlapping street heroin use after repeatedly experiencing relapse, withdrawal, and trauma reactivation symptoms during conventional induction. The second patient was maintained on high doses of diacetylmorphine (ie, pharmaceutical heroin) and methadone during induction. Both patients tolerated the induction procedure well and reported only mild withdrawal symptoms. Discussion Overlapping induction of buprenorphine maintenance treatment with full µ-opioid receptor agonist use is feasible and may be associated with better tolerability and acceptability in some patients compared to the conventional method of induction. PMID:27499655

  11. Effects of an LH-RH agonist on reproductive responses and endocrinological parameters in landais ganders.

    PubMed

    Sellier, N; Do Thi, D X; Rousselot-Pailley, D; Péczely, P; de Reviers, M; Guémené, D

    1995-10-15

    Semen quantitative (sperm production) and qualitative parameters (percentage of live and normal spermatozoa, sperm motility, egg fertility and hatchability), as well as hormonal parameters (LH and testosterone plasma concentrations) were compared for landais ganders, which were treated or not, with an LH-RH agonist prior to being sexually active. Treatment with the LH-RH agonist at this physiological stage delayed the onset of sperm production in some of the treated males. Although, comparable data were obtained during the first half of the reproductive period, treatment with the LH-RH agonist maintained sperm output at higher levels during its second half. Although the percentage of normal and live spermatozoa, sperm motility and true hatchability did not differ, the LH-RH agonist treatment had a positive effect on gosling production because of the higher fertility of the treated birds during the second part of the reproductive period. Treatment induced a large short-term decrease in testosterone levels followed by a rebound, leading to higher levels during the second half of the reproductive period. We conclude that treatment of ganders with an LH-RH agonist partially prevented the naturally occurring decline in sperm production and induced an increase in the rate of fertility rates during the second half of the productive period.

  12. Evolution of the Bifunctional Lead μ Agonist / δ Antagonist Containing the Dmt-Tic Opioid Pharmacophore.

    PubMed

    Balboni, Gianfranco; Salvadori, Severo; Trapella, Claudio; Knapp, Brian I; Bidlack, Jean M; Lazarus, Lawrence H; Peng, Xuemei; Neumeyer, John L

    2010-02-17

    Based on a renewed importance recently attributed to bi- or multifunctional opioids, we report the synthesis and pharmacological evaluation of some analogues derived from our lead μ agonist / δ antagonist, H-Dmt-Tic-Gly-NH-Bzl. Our previous studies focused on the importance of the C-teminal benzyl function in the induction of such bifunctional activity. The introduction of some substituents in the para position of the phenyl ring (-Cl, -CH(3), partially -NO(2), inactive -NH(2)) was found to give a more potent μ agonist / antagonist effect associated with a relatively unmodified δ antagonist activity (pA(2) = 8.28-9.02). Increasing the steric hindrance of the benzyl group (using diphenylmethyl and tetrahydroisoquinoline functionalities) substantially maintained the μ agonist and δ antagonist activities of the lead compound. Finally and quite unexpectedly D-Tic2, considered as a wrong opioid message now; inserted into the reference compound in lieu of L-Tic, provided a μ agonist / δ agonist better than our reference ligand (H-Dmt-Tic-Gly-NH-Ph) and was endowed with the same pharmacological profile.

  13. Label-Free Cell Phenotypic Identification of D-Luciferin as an Agonist for GPR35.

    PubMed

    Hu, Heidi; Deng, Huayun; Fang, Ye

    2016-01-01

    D-Luciferin (also known as beetle or firefly luciferin) is one of the most widely used bioluminescent reporters for monitoring in vitro or in vivo luciferase activity. The identification of several natural phenols and thieno[3,2-b]thiophene-2-carboxylic acid derivatives as agonists for GPR35, an orphan G protein-coupled receptor, had motivated us to examine the pharmacological activity of D-Luciferin, given that it also contains phenol and carboxylic acid moieties. Here, we describe label-free cell phenotypic assays that ascertain D-Luciferin as a partial agonist for GPR35. The agonistic activity of D-Luciferin at the GPR35 shall evoke careful interpretation of biological data when D-Luciferin or its analogues are used as probes. PMID:27424891

  14. Confounding of the Comparative Safety of Prenatal Opioid Agonist Therapy

    PubMed Central

    Brogly, Susan B; Hahn, Kristen A; Diaz, Sonia Hernandez; Werler, Martha

    2016-01-01

    Prenatal opioid agonist therapy with methadone or buprenorphine prevents maternal illicit opioid use and withdrawal and improves pregnancy outcomes compared to heroin use alone. Historically, methadone has been the first-line opioid agonist therapy for pregnant opioid dependent women; in recent years buprenorphine has become first-line treatment for some opioid dependent pregnant women. While there is some evidence of better outcomes in neonates exposed to buprenorphine vs. methadone, the effect of confounding from differences in women who use buprenorphine and methadone has not been carefully examined in most studies. This review explores mechanisms by which confounding can arise in measuring associations between prenatal buprenorphine vs. methadone exposure on neonatal outcomes using a graphical approach, directed acyclic graphs. The goal of this paper is to facilitate better understanding of the factors influencing neonatal abstinence syndrome and accurate assessment of the comparative safety of opioid agonist therapies on the neonate. PMID:27547489

  15. Adenosine receptor agonists for promotion of dermal wound healing

    PubMed Central

    Valls, María D.; Cronstein, Bruce N.; Montesinos, M. Carmen

    2009-01-01

    Wound healing is a dynamic and complex process that involves a well coordinated, highly regulated series of events including inflammation, tissue formation, revascularization and tissue remodeling. However, this orderly sequence is impaired in certain pathophysiological conditions such as diabetes mellitus, venous insufficiency, chronic glucocorticoid use, aging and malnutrition. Together with proper wound care, promotion of the healing process is the primary objective in the management of chronic poorly healing wounds. Recent studies have demonstrated that A2A adenosine receptor agonists promote wound healing in normal and diabetic animals and one such agonist, Sonedenoson, is currently being evaluated as a prospective new therapy of diabetic foot ulcers. We will review the mechanisms by which adenosine receptor activation affects the function of the cells and tissues that participate in wound healing, emphasizing the potential beneficial impact of adenosine receptor agonists in diabetic impaired healing. PMID:19041853

  16. Design, evaluation, and comparison of ghrelin receptor agonists and inverse agonists as suitable radiotracers for PET imaging.

    PubMed

    Chollet, Constance; Bergmann, Ralf; Pietzsch, Jens; Beck-Sickinger, Annette G

    2012-04-18

    Ghrelin agonist and inverse agonist radiotracers, suitable for positron emission tomography (PET), were developed to study the behavior of ghrelin receptor ligands in vivo and for further design of druggable peptides. The target peptides were synthesized on solid support and conjugated to the bifunctional chelator 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA), which is known to form a stable complex with Ga(3+). Complexation with (68)Ga could be achieved under mild conditions and led to radiotracers with high radiochemical purity and specific activity. The biological activity of the radiotracers was evaluated in vitro by an inositol phosphate turnover assay. Pharmacokinetic profile and metabolic stability of the (68)Ga-NODAGA-radiotracers were investigated by small animal PET in rodent. Ghrelin derived agonists presented very high kidney accumulation, negligible tissue distribution, fast blood clearance, and poor stability in blood. Contrarily, the inverse agonist radiotracer exhibited very high stability in blood, large diffusion in tissues, reasonable kidney and liver metabolism, and slow blood clearance. This pharmacokinetic profile makes the ghrelin inverse agonist motif KwFwLL-CONH(2) suitable for further development of radiotracers and a promising lead to design peptide-based therapeutics against obesity. PMID:22372770

  17. Agonist treatment in opioid use: advances and controversy.

    PubMed

    Viswanath, Biju; Chand, Prabhat; Benegal, Vivek; Murthy, Pratima

    2012-06-01

    Opioid dependence is a chronic relapsing condition which requires comprehensive care; pharmacological agents form the mainstay of its long term treatment. The two most popular approaches are the harm reduction method using agonists and the complete abstinence method using antagonists. Currently, particularly from the harm minimization perspective and the low feasibility of an abstinence based approach, there is an increasing trend toward agonist treatment. The use of buprenorphine has gained popularity in view of its safety profile and the availability of the buprenorphine-naloxone combination has made it popular as a take-home treatment. This review outlines the pharmacological advances and controversies in this area. PMID:22813654

  18. Insect Nicotinic Receptor Agonists as Flea Adulticides in Small Animals

    PubMed Central

    Vo, Dai Tan; Hsu, Walter H.; Martin, Richard J.

    2013-01-01

    Fleas are significant ectoparasites of small animals. They can be a severe irritant to animals and serve as a vector for a number of infectious diseases. In this article, we discuss the pharmacological characteristics of four insect nicotinic acetylcholine receptor (nAChR) agonists used as fleacides in dogs and cats, which include three neonicotinoids (imidacloprid, nitenpyram, and dinotefuran) and spinosad. Insect nAChR agonists are one of the most important new classes of insecticides, which are used to control sucking insects both on plants and on companion animals. These new compounds provide a new approach for practitioners to safely and effectively eliminate fleas. PMID:20646191

  19. Beta2-agonist extraction procedures for chromatographic analysis.

    PubMed

    dos Ramos, F J

    2000-06-01

    Normally, different procedures were necessary to prepare sample matrices for chromatographic determination of beta2-agonists. The present review includes sampling, pre-treatment and extraction/purification for urine, plasma, liver, meat, feeds, hair and milk powder, as previous steps for chromatographic analysis of beta2-agonists. Six methodologies were especially revised for extraction/purification namely, liquid-liquid extraction, solid-phase extraction (SPE), matrix solid-phase dispersion, immunoaffinity chromatography, dialysis and supercritical fluid extraction. SPE was discussed in detail and five mechanisms were described: adsorption, apolar, polar, ion-exchange and mixed phase. A brief conclusion in this field was also outlined.

  20. Discovery of Highly Potent and Selective α4β2-Nicotinic Acetylcholine Receptor (nAChR) Partial Agonists Containing an Isoxazolylpyridine Ether Scaffold that Demonstrate Antidepressant-like Activity. Part II

    PubMed Central

    Yu, Li-Fang; Eaton, J. Brek; Fedolak, Allison; Zhang, Han-Kun; Hanania, Taleen; Brunner, Dani; Lukas, Ronald J.; Kozikowski, Alan P.

    2012-01-01

    In our continued efforts to develop α4β2-nicotinic acetylcholine receptor (nAChR) partial agonists as novel antidepressants having a unique mechanism of action, structure activity relationship (SAR) exploration of certain isoxazolylpyridine ethers is presented. In particular, modifications to both the azetidine ring present in the starting structure 4 and its metabolically liable hydroxyl side chain substituent have been explored to improve compound druggability. The pharmacological characterization of all new compounds has been carried out using [3H]epibatidine binding studies together with functional assays based on 86Rb+ ion flux measurements. We found that the deletion of the metabolically liable hydroxyl group or its replacement by a fluoromethyl group not only maintained potency and selectivity, but also resulted in compounds showing antidepressant-like properties in the mouse forced swim test. These isoxazolylpyridine ethers appear to represent promising lead candidates in the design of innovative chemical tools containing reporter groups for imaging purposes and of possible therapeutics. PMID:23092294

  1. Synthesis and Anti-Renal Fibrosis Activity of Conformationally Locked Truncated 2-Hexynyl-N6-Substituted-(N)-Methanocarba-nucleosides as A3 Adenosine Receptor Antagonists and Partial Agonists

    PubMed Central

    2015-01-01

    Truncated N6-substituted-(N)-methanocarba-adenosine derivatives with 2-hexynyl substitution were synthesized to examine parallels with corresponding 4′-thioadenosines. Hydrophobic N6 and/or C2 substituents were tolerated in A3AR binding, but only an unsubstituted 6-amino group with a C2-hexynyl group promoted high hA2AAR affinity. A small hydrophobic alkyl (4b and 4c) or N6-cycloalkyl group (4d) showed excellent binding affinity at the hA3AR and was better than an unsubstituted free amino group (4a). A3AR affinities of 3-halobenzylamine derivatives 4f–4i did not differ significantly, with Ki values of 7.8–16.0 nM. N6-Methyl derivative 4b (Ki = 4.9 nM) was a highly selective, low efficacy partial A3AR agonist. All compounds were screened for renoprotective effects in human TGF-β1-stimulated mProx tubular cells, a kidney fibrosis model. Most compounds strongly inhibited TGF-β1-induced collagen I upregulation, and their A3AR binding affinities were proportional to antifibrotic effects; 4b was most potent (IC50 = 0.83 μM), indicating its potential as a good therapeutic candidate for treating renal fibrosis. PMID:24456490

  2. Reduction of Cocaine Self-Administration and D3 Receptor-Mediated Behavior by Two Novel Dopamine D3 Receptor-Selective Partial Agonists, OS-3-106 and WW-III-55

    PubMed Central

    Cheung, Timothy H. C.; Loriaux, Amy L.; Weber, Suzanne M.; Chandler, Kayla N.; Lenz, Jeffrey D.; Schaan, Romina F.; Mach, Robert H.; Luedtke, Robert R.

    2013-01-01

    Dopamine D3 receptor (D3R)-selective compounds may be useful medications for cocaine dependence. In this study, we identified two novel arylamide phenylpiperazines, OS-3-106 and WW-III-55, as partial agonists at the D3R in the adenylyl cyclase inhibition assay. OS-3-106 and WW-III-55 have 115- and 862-fold D3R:D2 receptor (D2R) binding selectivity, respectively. We investigated their effects (0, 3, 5.6, or 10 mg/kg) on operant responding by using a multiple variable-interval (VI) 60-second schedule that alternated components with sucrose reinforcement and components with intravenous cocaine reinforcement (0.375 mg/kg). Additionally, we evaluated the effect of OS-3-106 (10 mg/kg) on the dose-response function of cocaine self-administration and the effect of WW-III-55 (0–5.6 mg/kg) on a progressive ratio schedule with either cocaine or sucrose reinforcement. Both compounds were also examined for effects on locomotion and yawning induced by a D3R agonist. OS-3-106 decreased cocaine and sucrose reinforcement rates, increased latency to first response for cocaine but not sucrose, and downshifted the cocaine self-administration dose-response function. WW-III-55 did not affect cocaine self-administration on the multiple-variable interval schedule, but it reduced cocaine and sucrose intake on the progressive ratio schedule. Both compounds reduced locomotion at doses that reduced responding, and both compounds attenuated yawning induced by low doses of 7-OH-DPAT (a D3R-mediated behavior), but neither affected yawning on the descending limb of the 7-OH-DPAT dose-response function (a D2R-mediated behavior). Therefore, both compounds blocked a D3R-mediated behavior. However, OS-3-106 was more effective in reducing cocaine self-administration. These findings support D3Rs, and possibly D2Rs, as targets for medications aimed at reducing the motivation to seek cocaine. PMID:24018640

  3. Agonist Met antibodies define the signalling threshold required for a full mitogenic and invasive program of Kaposi's Sarcoma cells

    SciTech Connect

    Bardelli, Claudio; Sala, Marilena; Cavallazzi, Umberto; Prat, Maria . E-mail: mprat@med.unipmn.it

    2005-09-09

    We previously showed that the Kaposi Sarcoma line KS-IMM express a functional Met tyrosine kinase receptor, which, upon HGF stimulation, activates motogenic, proliferative, and invasive responses. In this study, we investigated the signalling pathways activated by HGF, as well as by Met monoclonal antibodies (Mabs), acting as full or partial agonists. The full agonist Mab mimics HGF in all biological and biochemical aspects. It elicits the whole spectrum of responses, while the partial agonist Mab induces only wound healing. These differences correlated with a more prolonged and sustained tyrosine phosphorylation of the receptor and MAPK evoked by HGF and by the full agonist Mab, relative to the partial agonist Mab. Since Gab1, JNK and PI 3-kinase are activated with same intensity and kinetics by HGF and by the two agonist antibodies, it is concluded that level and duration of MAPK activation by Met receptor are crucial for the induction of a full HGF-dependent mitogenic and invasive program in KS cells.

  4. Structural insights into selective agonist actions of tamoxifen on human Estrogen Receptor alpha

    PubMed Central

    Chakraborty, Sandipan; Biswas, P. K.

    2014-01-01

    Tamoxifen, an anti-estrogenic ligand in breast tissues and being used as a first-line treatment in ER-positive breast cancers, is found to develop resistance followed by resumption of growth of the tumor in about 30% of cases. Whether tamoxifen starts assisting in proliferation in such cases or there exists any ligand-independent pathways to transcription is not fully understood; also, no ERα mutants have been detected so far which could lead to tamoxifen resistance. Performing in-silico conformational analysis of ERα ligand binding domain, in the absence and presence of selective agonist (Diethylstilbestrol; DES), antagonist (Faslodex; ICI), and SERM (4-hydroxy tamoxifen; 4-OHT) ligands, we elucidated ligand-responsive structural modulations of ERα-LBD dimer in their agonist and antagonist complexes and address the issue of “tamoxifen resistance”. We found DES and ICI to stabilize the dimer in their agonist and antagonist conformations, respectively. The ERα-LBD dimer without the presence of any bound ligand also leads to a stable structure in agonist conformation. However, the binding of 4-OHT to antagonist structure is found to lead to a flexible conformation allowing the protein visiting conformations populated by agonists as are evident from principal component analysis and radius of gyration plots. Further, the relaxed conformations of the 4-OHT bound protein is found to exhibit a diminished size of the co-repressor binding pocket at LBD, thus signaling a partial blockage of the co-repressor binding motif. Thus, the ability of 4-OHT bound ERα-LBD to assume flexible conformations visited by agonists and reduced co-repressor binding surface at LBD provide crucial structural insights into tamoxifen-resistance complementing our existing understanding. PMID:25060147

  5. The emerging therapeutic roles of κ-opioid agonists.

    PubMed

    Jones, Mark R; Kaye, Alan D; Kaye, Aaron J; Urman, Richard D

    2016-01-01

    The current practice of μ-opioid receptor agonists such as morphine as the primary means of acute and chronic pain relief has several dangerous consequences that limit their effectiveness, including respiratory depression, gastrointestinal motility inhibition, addiction, tolerance, and abuse. Several other opioid receptors, notably the μ-opioid (KOP) receptor, have long been known to play a role in pain relief. Recent discoveries and advancements in laboratory techniques have allowed significant developments of KOP agonists as potential novel therapies for pain relief and other pathological processes. These drugs exhibit none of the classic opioid adverse effects and have displayed pronounced analgesia in several different scenarios. New formulations since 2014 have unveiled increased oral bioavailability, exceptional peripheral versus central selectivity, and a positive safety profile. Continued refinements of established μ-opioid agonist formulations have virtually eliminated the centrally mediated side effects of dysphoria and sedation that limited the applicability of previous KOP agonists. Further research is required to better elucidate the potential of these compounds in pain management, as well as in the mediation or modulation of other complex pathophysiological processes as therapeutic agents. PMID:27194194

  6. Systemic cancer immunotherapy with Toll-like receptor 7 agonists

    PubMed Central

    Hotz, Christian; Bourquin, Carole

    2012-01-01

    Toll-like receptor (TLR) 7 agonists represent a promising strategy for the immunotherapy of cancer. We have recently investigated the influence of TLR tolerance on the efficacy of systemic tumor treatment with TLR7 ligands. We propose that considering the kinetics of receptor sensitivity highly improves the outcome of cancer immunotherapy. PMID:22720251

  7. Synthesis and immunostimulatory activity of substituted TLR7 agonists.

    PubMed

    Akinbobuyi, Babatope; Wang, Lei; Upchurch, Katherine C; Byrd, Matthew R; Chang, Charles A; Quintana, Jeremy M; Petersen, Rachel E; Seifert, Zacharie J; Boquin, José R; Oh, SangKon; Kane, Robert R

    2016-09-01

    Fifteen new substituted adenines were synthesized as potential TLR7 agonists. These compounds, along with 9 previously reported compounds, were analyzed for TLR7 activity and for the selective stimulation of B cell proliferation. Several functionalized derivatives exhibit significant activity, suggesting their potential for use as vaccine adjuvants. PMID:27476423

  8. The emerging therapeutic roles of κ-opioid agonists.

    PubMed

    Jones, Mark R; Kaye, Alan D; Kaye, Aaron J; Urman, Richard D

    2016-01-01

    The current practice of μ-opioid receptor agonists such as morphine as the primary means of acute and chronic pain relief has several dangerous consequences that limit their effectiveness, including respiratory depression, gastrointestinal motility inhibition, addiction, tolerance, and abuse. Several other opioid receptors, notably the μ-opioid (KOP) receptor, have long been known to play a role in pain relief. Recent discoveries and advancements in laboratory techniques have allowed significant developments of KOP agonists as potential novel therapies for pain relief and other pathological processes. These drugs exhibit none of the classic opioid adverse effects and have displayed pronounced analgesia in several different scenarios. New formulations since 2014 have unveiled increased oral bioavailability, exceptional peripheral versus central selectivity, and a positive safety profile. Continued refinements of established μ-opioid agonist formulations have virtually eliminated the centrally mediated side effects of dysphoria and sedation that limited the applicability of previous KOP agonists. Further research is required to better elucidate the potential of these compounds in pain management, as well as in the mediation or modulation of other complex pathophysiological processes as therapeutic agents.

  9. Synthesis and immunostimulatory activity of substituted TLR7 agonists.

    PubMed

    Akinbobuyi, Babatope; Wang, Lei; Upchurch, Katherine C; Byrd, Matthew R; Chang, Charles A; Quintana, Jeremy M; Petersen, Rachel E; Seifert, Zacharie J; Boquin, José R; Oh, SangKon; Kane, Robert R

    2016-09-01

    Fifteen new substituted adenines were synthesized as potential TLR7 agonists. These compounds, along with 9 previously reported compounds, were analyzed for TLR7 activity and for the selective stimulation of B cell proliferation. Several functionalized derivatives exhibit significant activity, suggesting their potential for use as vaccine adjuvants.

  10. Activation of endplate nicotinic acetylcholine receptors by agonists.

    PubMed

    Auerbach, Anthony

    2015-10-15

    The interaction of a small molecule made in one cell with a large receptor made in another is the signature event of cell signaling. Understanding the structure and energy changes associated with agonist activation is important for engineering drugs, receptors and synapses. The nicotinic acetylcholine receptor (AChR) is a ∼300kD ion channel that binds the neurotransmitter acetylcholine (ACh) and other cholinergic agonists to elicit electrical responses in the central and peripheral nervous systems. This mini-review is in two sections. First, general concepts of skeletal muscle AChR operation are discussed in terms of energy landscapes for conformational change. Second, adult vs. fetal AChRs are compared with regard to interaction energies between ACh and agonist-site side chains, measured by single-channel electrophysiology and molecular dynamics simulations. The five aromatic residues that form the core of each agonist binding site can be divided into two working groups, a triad (led by αY190) that behaves similarly at all sites and a coupled pair (led by γW55) that has a large influence on affinity only in fetal AChRs. Each endplate AChR has 5 homologous subunits, two of α(1) and one each of β, δ, and either γ (fetal) or ϵ (adult). These nicotinic AChRs have only 2 functional agonist binding sites located in the extracellular domain, at αδ and either αγ or αϵ subunit interfaces. The receptor undergoes a reversible, global isomerization between structures called C and O. The C shape does not conduct ions and has a relatively low affinity for ACh, whereas O conducts cations and has a higher affinity. When both agonist sites are empty (filled only with water) the probability of taking on the O conformation (PO) is low, <10(-6). When ACh molecules occupy the agonist sites the C→O opening rate constant and C↔O gating equilibrium constant increase dramatically. Following a pulse of ACh at the nerve-muscle synapse, the endplate current rises rapidly

  11. Sex differences in opioid antinociception: kappa and 'mixed action' agonists.

    PubMed

    Craft, R M; Bernal, S A

    2001-08-01

    A number of investigators have shown that male animals are more sensitive than females to the antinociceptive effects of mu-opioid agonists. The present study was conducted to examine sex differences in opioid antinociception in the rat using agonists known to differ in selectivity for and efficacy at kappa- versus mu-receptors. Dose- and time-effect curves were obtained for s.c. U69593, U50488, ethylketazocine, (-)-bremazocine, (-)-pentazocine, butorphanol and nalbuphine on the 50 or 54 degrees C hotplate and warm water tail withdrawal assays; spontaneous locomotor activity was measured 32-52 min post-injection in the same rats. On the hotplate assay, only butorphanol (54 degrees C) and nalbuphine (50 degrees C) were significantly more potent in males than females. On the tail withdrawal assay, all agonists were significantly more potent or efficacious in males than females at one or both temperatures. In contrast, no agonist was consistently more potent in one sex or the other in decreasing locomotor activity. Estrous stage in female rats only slightly influenced opioid effects, accounting for an average of 2.6% of the variance in females' antinociceptive and locomotor responses to drug (50 degrees C experiment). These results suggest that (1) sex differences in antinociceptive effects of opioids are not mu-receptor-dependent, as they may occur with opioids known to have significant kappa-receptor-mediated activity; (2) the mechanisms underlying sex differences in kappa-opioid antinociception may be primarily spinal rather than supraspinal; (3) sex differences in antinociceptive effects of opioid agonists are not secondary to sex differences in their sedative effects. PMID:11418226

  12. Perivagal antagonist treatment in rats selectively blocks the reflex and afferent responses of vagal lung C fibers to intravenous agonists.

    PubMed

    Lin, Yu-Jung; Lin, You Shuei; Lai, Ching Jung; Yuan, Zung Fan; Ruan, Ting; Kou, Yu Ru

    2013-02-01

    The terminals of vagal lung C fibers (VLCFs) express various types of pharmacological receptors that are important to the elicitation of airway reflexes and the development of airway hypersensitivity. We investigated the blockade of the reflex and afferent responses of VLCFs to intravenous injections of agonists using perivagal treatment with antagonists (PAT) targeting the transient receptor potential vanilloid 1, P2X, and 5-HT(3) receptors in anesthetized rats. Blockading these responses via perivagal capsaicin treatment (PCT), which blocks the neural conduction of C fibers, was also studied. We used capsaicin, α,β-methylene-ATP, and phenylbiguanide as the agonists, and capsazepine, iso-pyridoxalphosphate-6-azophenyl-2',5'-disulfonate, and tropisetron as the antagonists of transient receptor potential vanilloid 1, P2X, and 5-HT(3) receptors, respectively. We found that each of the PATs abolished the VLCF-mediated reflex apnea evoked by the corresponding agonist, while having no effect on the response to other agonists. Perivagal vehicle treatment failed to produce any such blockade. These blockades had partially recovered at 3 h after removal of the PATs. In contrast, PCT abolished the reflex apneic response to all three agonists. Both PATs and PCT did not affect the myelinated afferent-mediated apneic response to lung inflation. Consistently, our electrophysiological studies revealed that each of the PATs prevented the VLCF responses to the corresponding agonist, but not to any other agonist. PCT inevitably prevented the VLCF responses to all three agonists. Thus these PATs selectively blocked the stimulatory action of corresponding agonists on the VLCF terminals via mechanisms that are distinct from those of PCT. PAT may become a novel intervention for studying the pharmacological modulation of VLCFs.

  13. The Role of Dopamine in Reinforcement: Changes in Reinforcement Sensitivity Induced by D[subscript 1]-Type, D[subscript 2]-Type, and Nonselective Dopamine Receptor Agonists

    ERIC Educational Resources Information Center

    Bratcher, Natalie A.; Farmer-Dougan, Valeri; Dougan, James D.; Heidenreich, Byron A.; Garris, Paul A.

    2005-01-01

    Dose-dependent changes in sensitivity to reinforcement were found when rats were treated with low, moderate, and high doses of the partial dopamine D[subscript 1]-type receptor agonist SKF38393 and with the nonselective dopamine agonist apomorphine, but did not change when rats were treated with similar doses of the selective dopamine D[subscript…

  14. Synthesis and SAR of potent LXR agonists containing an indole pharmacophore

    SciTech Connect

    Washburn, David G.; Hoang, Tram H.; Campobasso, Nino; Smallwood, Angela; Parks, Derek J.; Webb, Christine L.; Frank, Kelly A.; Nord, Melanie; Duraiswami, Chaya; Evans, Christopher; Jaye, Michael; Thompson, Scott K.

    2009-03-27

    A novel series of 1H-indol-1-yl tertiary amine LXR agonists has been designed. Compounds from this series were potent agonists with good rat pharmacokinetic parameters. In addition, the crystal structure of an LXR agonist bound to LXR{alpha} will be disclosed.

  15. Minireview: Challenges and opportunities in development of PPAR agonists.

    PubMed

    Wright, Matthew B; Bortolini, Michele; Tadayyon, Moh; Bopst, Martin

    2014-11-01

    The clinical impact of the fibrate and thiazolidinedione drugs on dyslipidemia and diabetes is driven mainly through activation of two transcription factors, peroxisome proliferator-activated receptors (PPAR)-α and PPAR-γ. However, substantial differences exist in the therapeutic and side-effect profiles of specific drugs. This has been attributed primarily to the complexity of drug-target complexes that involve many coregulatory proteins in the context of specific target gene promoters. Recent data have revealed that some PPAR ligands interact with other non-PPAR targets. Here we review concepts used to develop new agents that preferentially modulate transcriptional complex assembly, target more than one PPAR receptor simultaneously, or act as partial agonists. We highlight newly described on-target mechanisms of PPAR regulation including phosphorylation and nongenomic regulation. We briefly describe the recently discovered non-PPAR protein targets of thiazolidinediones, mitoNEET, and mTOT. Finally, we summarize the contributions of on- and off-target actions to select therapeutic and side effects of PPAR ligands including insulin sensitivity, cardiovascular actions, inflammation, and carcinogenicity. PMID:25148456

  16. 5-Amino-6-chloro-N-[(1-isobutylpiperidin-4-yl)methyl]-2-methylimidazo[1,2-alpha]pyridine-8-carboxamide (CJ-033,466), a novel and selective 5-hydroxytryptamine4 receptor partial agonist: pharmacological profile in vitro and gastroprokinetic effect in conscious dogs.

    PubMed

    Mikami, Tadayoshi; Ochi, Yasuo; Suzuki, Keiko; Saito, Toshiyuki; Sugie, Yutaka; Sakakibara, Minoru

    2008-04-01

    5-Hydroxytryptamine (5-HT) receptors and dopamine(2) (D(2)) receptor modulate gastrointestinal motility. Gastroprokinetic agents that act on several 5-HT receptor subtypes and/or D(2) receptors are used clinically. Although the 5-HT(4) receptor is known to mediate the gastroprokinetic effects of these agents, the absence of highly selective 5-HT(4) receptor agonists has made it difficult to confirm the physiological consequences of selective 5-HT(4) receptor stimulation. In this study, we report the in vitro pharmacological profiles and the in vivo gastroprokinetic effects of 5-amino-6-chloro-N-[(1-isobutylpiperidin-4-yl)methyl]-2-methylimidazo[1,2-alpha]pyridine-8-carboxamide (CJ-033,466), a novel, potent, and selective 5-HT(4) partial agonist. Compared with preceding 5-HT(4) agonists such as cisapride, mosapride, and tegaserod, CJ-033,466 had a superior in vitro profile, with nanomolar agonistic activities for the 5-HT(4) receptor and 1000-fold greater selectivity for the 5-HT(4) receptor over other 5-HT and D(2) receptors. In vivo studies in conscious dogs showed that CJ-033,466 dose-dependently stimulated gastric antral motility in both the fasted and postprandial states at the same dose range and that it was 30 times more potent than cisapride. Furthermore, CJ-033,466 accelerated the gastric emptying rate in a gastroparesis dog model at the minimally effective dose established in the gastric motility study. In conclusion, CJ-033,466 is a potent and highly selective 5-HT(4) agonist that stimulates physiologically coordinated gastric motility, and it has no activity on other 5-HT receptor subtypes and D(2) receptors. Therefore, CJ-033,466 could be used to treat gastroparesis, providing better gastroprokinetics and reduced side effects mediated by the other receptors. PMID:18198343

  17. Agonist-Mediated Activation of STING Induces Apoptosis in Malignant B Cells.

    PubMed

    Tang, Chih-Hang Anthony; Zundell, Joseph A; Ranatunga, Sujeewa; Lin, Cindy; Nefedova, Yulia; Del Valle, Juan R; Hu, Chih-Chi Andrew

    2016-04-15

    Endoplasmic reticulum (ER) stress responses through the IRE-1/XBP-1 pathway are required for the function of STING (TMEM173), an ER-resident transmembrane protein critical for cytoplasmic DNA sensing, IFN production, and cancer control. Here we show that the IRE-1/XBP-1 pathway functions downstream of STING and that STING agonists selectively trigger mitochondria-mediated apoptosis in normal and malignant B cells. Upon stimulation, STING was degraded less efficiently in B cells, implying that prolonged activation of STING can lead to apoptosis. Transient activation of the IRE-1/XBP-1 pathway partially protected agonist-stimulated malignant B cells from undergoing apoptosis. In Eμ-TCL1 mice with chronic lymphocytic leukemia, injection of the STING agonist 3'3'-cGAMP induced apoptosis and tumor regression. Similarly efficacious effects were elicited by 3'3'-cGAMP injection in syngeneic or immunodeficient mice grafted with multiple myeloma. Thus, in addition to their established ability to boost antitumoral immune responses, STING agonists can also directly eradicate malignant B cells. Cancer Res; 76(8); 2137-52. ©2016 AACR. PMID:26951929

  18. Conversion of the interleukin 1 receptor antagonist into an agonist by site-specific mutagenesis.

    PubMed Central

    Ju, G; Labriola-Tompkins, E; Campen, C A; Benjamin, W R; Karas, J; Plocinski, J; Biondi, D; Kaffka, K L; Kilian, P L; Eisenberg, S P

    1991-01-01

    Interleukin 1 (IL-1) receptor antagonist (IL-1ra) is a naturally occurring protein that binds to the IL-1 receptor present on T cells, fibroblasts, and other cell types and acts to block IL-1-induced responses. IL-1ra is a pure antagonist and has no agonist activity in in vitro or in vivo systems. By site-specific mutagenesis, an analog of IL-1ra was created that contained a substitution of a single amino acid, Lys-145----Asp. This analog, IL-1ra K145D, exhibited partial agonist activity in the D10.G4.1 cell proliferation assay. The newly acquired agonist activity could not be neutralized by antisera to IL-1 alpha or IL-1 beta, but it could be blocked by a monoclonal antibody to the T-cell IL-1 receptor. The analog also showed agonist activity as assayed by increased prostaglandin E2 synthesis from CHO cells expressing recombinant mouse IL-1 receptor. These results with IL-1ra K145D demonstrate the importance of the region surrounding the corresponding Asp-145 residue in IL-1 beta for triggering the biological response to IL-1. Images PMID:1826365

  19. Illegal use of beta-adrenergic agonists: European Community.

    PubMed

    Kuiper, H A; Noordam, M Y; van Dooren-Flipsen, M M; Schilt, R; Roos, A H

    1998-01-01

    The use of veterinary medicinal products within the European Community is governed by a series of directives and regulations that describe the requirements for safety, quality, and efficacy of these products. Veterinary therapeutic use of beta-agonists has only been approved in the case of clenbuterol for bronchodilatation in horses and calves and for tocolysis in cows. No beta-agonists have been permitted in the European Community for growth-promoting purposes in farm animals. Surveillance for the presence of residues of veterinary agents in food-producing animals and meat is regulated by the Directive 86/469/EEC containing specific guidelines for sampling procedures on farms and in slaughterhouses. The level and frequency of sampling is dependent on the category of compounds and animal species. When positive samples have been identified (above certain action levels), sampling intensity is increased. Results of monitoring programs in EU member states during 1992 and 1993 for the occurrence of residues of beta-agonists in food-producing animals vary substantially with respect to the percentages of positive samples, ranging from 0 to 7%. The variability is partly explained by differences in sampling strategies, detection methods, and action levels applied. Identification of the proper matrices for sampling and detection of beta-agonists is important. In the case of clenbuterol, hair and choroid retinal tissue are appropriate tissues because clenbuterol accumulates in these matrices. A clear decrease in the use of clenbuterol in cattle has been observed in The Netherlands, Germany, Northern Ireland, and Spanish Basque Country over the last 3 yr. This is partly due to intensified surveillance activities at farms and slaughterhouses by governmental agencies and production sector organizations. There are data on human intoxication following consumption of liver or meat from cattle treated with beta-agonists. At the concentrations of clenbuterol measured in contaminated

  20. Cell type and gene-specific activity of the retinoid inverse agonist AGN 193109: divergent effects from agonist at retinoic acid receptor gamma in human keratinocytes.

    PubMed

    Thacher, S M; Nagpal, S; Klein, E S; Arefieg, T; Krasinski, G; DiSepio, D; Agarwal, C; Johnson, A; Eckert, R L; Chandraratna, R A

    1999-04-01

    Retinoids are important regulators of epithelial differentiation. AGN 193109 is a high-affinity antagonist and inverse agonist for the nuclear retinoic acid receptors (RARs). Paradoxically, both AGN 193109 and retinoid agonists inhibit the expression of the differentiation marker MRP-8 in normal human keratinocytes (NHKs). TTNPB, an RAR agonist, and AGN 193109 mutually antagonize MRP-8 inhibition at both mRNA and protein levels. We find that this antagonism, which is greatest at an AGN 193109:TTNPB ratio of about 10:1, is absent when either compound is in significant excess. The potent RARalpha-specific agonist, AGN 193836, has no effect on MRP-8 regulation. These data indicate that inverse agonists and agonists suppress MRP-8 in NHKs through RARgamma using distinct and mutually inhibitory mechanisms. The activity of AGN 193109 on MRP-8 is cell type specific. In differentiating ECE16-1 cervical cells, TTNPB inhibits while AGN 193109 induces MRP-8 mRNA levels. The effect of AGN 193109 on genes inhibited by retinoid agonists in NHKs is also selective; expression of the differentiation markers transglutaminase 1 and keratin 6 is not down-regulated by AGN 193109 whereas stromelysin-1 expression is suppressed. These results show a complex gene and cell context-specific interplay between agonist and inverse agonist for the regulation of gene expression.

  1. mu-Opioid receptor-stimulated guanosine-5'-O-(gamma-thio)-triphosphate binding in rat thalamus and cultured cell lines: signal transduction mechanisms underlying agonist efficacy.

    PubMed

    Selley, D E; Sim, L J; Xiao, R; Liu, Q; Childers, S R

    1997-01-01

    G protein activation by different mu-selective opioid agonists was examined in rat thalamus, SK-N-SH cells, and mu-opioid receptor-transfected mMOR-CHO cells using agonist-stimulated guanosine-5'-O-(gamma-thio)-triphosphate ([35S]GTP gamma S) binding to membranes in the presence of excess GDP. [D-Ala2, N-MePhe4, Gly5-ol]Enkephalin (DAMGO) was the most efficacious agonist in rat thalamus and SK-N-SH cells, followed by (in rank order) fentanyl = morphine > > buprenorphine. In mMOR-CHO cells expressing a high density of mu receptors, no differences were observed among DAMGO, morphine or fentanyl, but these agonists were more efficacious than buprenorphine, which was more efficacious than levallorphan. In all three systems, efficacy differences were magnified by increasing GDP concentrations, indicating that the activity state of G proteins can affect agonist efficacy. Scatchard analysis of net agon stimulated [35S]GTP gamma S binding revealed two major components responsible for agonist efficacy differences. First, differences in the KD values of agonist-stimulated [35S]GTP gamma S binding between high efficacy agonists (DAMGO, fentanyl, and morphine) and classic partial agonists (buprenorphine and levallorphan) were observed in all three systems. Second, differences in the Bmax value of agonist-stimulated [35S]GTP gamma S binding were observed between DAMGO and morphine or fentanyl in rat thalamus and SK-N-SH cells and between the high efficacy agonists and buprenorphine or levallorphan in all three systems. These results suggest that mu-opioid agonist efficacy is determined by the magnitude of the receptor-mediated affinity shift in the binding of GTP (or[35S]GTP gamma S) versus GDP to the G protein and by the number of G proteins activated per occupied receptor.

  2. Agonist-antagonist combinations in opioid dependence: a translational approach

    PubMed Central

    Mannelli, P.

    2011-01-01

    Summary The potential therapeutic benefits of co-administering opiate agonist and antagonist agents remain largely to be investigated. This paper focuses on the mechanisms of very low doses of naltrexone that help modulate the effects of methadone withdrawal and review pharmacological properties of the buprenorphine/naltrexone combination that support its clinical investigation. The bench-to-bedside development of the very low dose naltrexone treatment can serve as a translational paradigm to investigate and treat drug addiction. Further research on putative mechanisms elicited by the use of opioid agonist-antagonist combinations may lead to effective pharmacological alternatives to the gold standard methadone treatment, also useful for the management of the abuse of non opioid drugs and alcohol. PMID:22448305

  3. Grooming, rank, and agonistic support in tufted capuchin monkeys.

    PubMed

    Schino, Gabriele; Di Giuseppe, Francesca; Visalberghi, Elisabetta

    2009-02-01

    Studies investigating the relation between allogrooming and social rank in capuchin monkeys (genus Cebus) have yielded inconsistent results. In this study, we investigated the relation between grooming, agonistic support, aggression and social rank in a captive group of tufted capuchin monkeys (C. apella). Differently from most previous studies, we based our analyses on a relatively large database and studied a group with known genealogical relationships. Tufted capuchin females did not exchange grooming for rank-related benefits such as agonistic support or reduced aggression. Coherently with this picture, they did not groom up the hierarchy and did not compete for accessing high-ranking grooming partners. It is suggested that a small group size, coupled with a strong kin bias, may make the exchange of grooming for rank-related benefits impossible or unprofitable, thus eliminating the advantages of grooming up the hierarchy. We provide several possible explanations for the heterogeneity of results across capuchin studies that have addressed similar questions.

  4. Ligand Binding Ensembles Determine Graded Agonist Efficacies at a G Protein-coupled Receptor.

    PubMed

    Bock, Andreas; Bermudez, Marcel; Krebs, Fabian; Matera, Carlo; Chirinda, Brian; Sydow, Dominique; Dallanoce, Clelia; Holzgrabe, Ulrike; De Amici, Marco; Lohse, Martin J; Wolber, Gerhard; Mohr, Klaus

    2016-07-29

    G protein-coupled receptors constitute the largest family of membrane receptors and modulate almost every physiological process in humans. Binding of agonists to G protein-coupled receptors induces a shift from inactive to active receptor conformations. Biophysical studies of the dynamic equilibrium of receptors suggest that a portion of receptors can remain in inactive states even in the presence of saturating concentrations of agonist and G protein mimetic. However, the molecular details of agonist-bound inactive receptors are poorly understood. Here we use the model of bitopic orthosteric/allosteric (i.e. dualsteric) agonists for muscarinic M2 receptors to demonstrate the existence and function of such inactive agonist·receptor complexes on a molecular level. Using all-atom molecular dynamics simulations, dynophores (i.e. a combination of static three-dimensional pharmacophores and molecular dynamics-based conformational sampling), ligand design, and receptor mutagenesis, we show that inactive agonist·receptor complexes can result from agonist binding to the allosteric vestibule alone, whereas the dualsteric binding mode produces active receptors. Each agonist forms a distinct ligand binding ensemble, and different agonist efficacies depend on the fraction of purely allosteric (i.e. inactive) versus dualsteric (i.e. active) binding modes. We propose that this concept may explain why agonist·receptor complexes can be inactive and that adopting multiple binding modes may be generalized also to small agonists where binding modes will be only subtly different and confined to only one binding site.

  5. Dopamine Agonists and the Suppression of Impulsive Motor Actions in Parkinson’s Disease

    PubMed Central

    Wylie, S.A.; Claassen, D.O.; Huizenga, H.M.; Schewel, K.D.; Ridderinkhof, K.R.; Bashore, T.R.; van den Wildenberg, W.P.M.

    2012-01-01

    The suppression of spontaneous motor impulses is an essential facet of cognitive control that is linked to frontal-basal ganglia circuitry. Basal ganglia dysfunction caused by Parkinson’s disease (PD) disrupts the proficiency of action suppression, but how pharmacotherapy for PD impacts impulsive motor control is poorly understood. Dopamine agonists improve motor symptoms of PD, but can also provoke impulsive-compulsive behaviors (ICB). We investigated whether dopamine agonist medication has a beneficial or detrimental effect on impulsive action control in thirty-eight PD patients, half of whom had current ICB. Participants performed the Simon conflict task, which measures susceptibility to acting on spontaneous action impulses as well as the proficiency of suppressing these impulses. Compared to an off agonist state, patients on their agonist were no more susceptible to reacting impulsively, but were less proficient at suppressing the interference from the activation of impulsive actions. Importantly, agonist effects depended on baseline performance in the off agonist state; more proficient suppressors off agonist experienced a reduction in suppression on agonist, whereas less proficient suppressors off agonist showed improved suppression on agonist. Patients with active ICB were actually less susceptible to making fast, impulsive response errors than patients without ICB, suggesting that behavioral problems in this subset of patients may be less related to impulsivity in motor control. Our findings provide further evidence that dopamine agonist medication impacts specific cognitive control processes and that the direction of its effects depends on individual differences in performance off medication. PMID:22571461

  6. Ligand Binding Ensembles Determine Graded Agonist Efficacies at a G Protein-coupled Receptor.

    PubMed

    Bock, Andreas; Bermudez, Marcel; Krebs, Fabian; Matera, Carlo; Chirinda, Brian; Sydow, Dominique; Dallanoce, Clelia; Holzgrabe, Ulrike; De Amici, Marco; Lohse, Martin J; Wolber, Gerhard; Mohr, Klaus

    2016-07-29

    G protein-coupled receptors constitute the largest family of membrane receptors and modulate almost every physiological process in humans. Binding of agonists to G protein-coupled receptors induces a shift from inactive to active receptor conformations. Biophysical studies of the dynamic equilibrium of receptors suggest that a portion of receptors can remain in inactive states even in the presence of saturating concentrations of agonist and G protein mimetic. However, the molecular details of agonist-bound inactive receptors are poorly understood. Here we use the model of bitopic orthosteric/allosteric (i.e. dualsteric) agonists for muscarinic M2 receptors to demonstrate the existence and function of such inactive agonist·receptor complexes on a molecular level. Using all-atom molecular dynamics simulations, dynophores (i.e. a combination of static three-dimensional pharmacophores and molecular dynamics-based conformational sampling), ligand design, and receptor mutagenesis, we show that inactive agonist·receptor complexes can result from agonist binding to the allosteric vestibule alone, whereas the dualsteric binding mode produces active receptors. Each agonist forms a distinct ligand binding ensemble, and different agonist efficacies depend on the fraction of purely allosteric (i.e. inactive) versus dualsteric (i.e. active) binding modes. We propose that this concept may explain why agonist·receptor complexes can be inactive and that adopting multiple binding modes may be generalized also to small agonists where binding modes will be only subtly different and confined to only one binding site. PMID:27298318

  7. Newspapers and newspaper ink contain agonists for the ah receptor.

    PubMed

    Bohonowych, Jessica E S; Zhao, Bin; Timme-Laragy, Alicia; Jung, Dawoon; Di Giulio, Richard T; Denison, Michael S

    2008-04-01

    Ligand-dependent activation of the aryl hydrocarbon receptor (AhR) pathway leads to a diverse array of biological and toxicological effects. The best-studied ligands for the AhR include polycyclic and halogenated aromatic hydrocarbons, the most potent of which is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, as new AhR ligands are identified and characterized, their structural and physiochemical diversity continues to expand. Our identification of AhR agonists in crude extracts from diverse materials raises questions as to the magnitude and extent of human exposure to AhR ligands through normal daily activities. We have found that solvent extracts of newspapers from countries around the world stimulate the AhR signaling pathway. AhR agonist activity was observed for dimethyl sulfoxide (DMSO), ethanol, and water extracts of printed newspaper, unprinted virgin paper, and black printing ink, where activation of luciferase reporter gene expression was transient, suggesting that the AhR active chemical(s) was metabolically labile. DMSO and ethanol extracts also stimulated AhR transformation and DNA binding, and also competed with [(3)H]TCDD for binding to the AhR. In addition, DMSO extracts of printed newspaper induced cytochrome P450 1A associated 7-ethoxyresorufin-O-deethylase activity in zebrafish embryos in vivo. Although the responsible bioactive chemical(s) remain to be identified, our results demonstrate that newspapers and printing ink contain relatively potent metabolically labile agonists of the AhR. Given the large amount of recycling and reprocessing of newspapers throughout the world, release of these easily extractable AhR agonists into the environment should be examined and their potential effects on aquatic organisms assessed. PMID:18203687

  8. Synthesis of fluorinated agonist of sphingosine-1-phosphate receptor 1.

    PubMed

    Aliouane, Lucie; Chao, Sovy; Brizuela, Leyre; Pfund, Emmanuel; Cuvillier, Olivier; Jean, Ludovic; Renard, Pierre-Yves; Lequeux, Thierry

    2014-09-01

    The bioactive metabolite sphingosine-1-phosphate (S1P), a product of sphingosine kinases (SphKs), mediates diverse biological processes such as cell differentiation, proliferation, survival and angiogenesis. A fluorinated analogue of S1P receptor agonist has been synthesized by utilizing a ring opening reaction of oxacycles by a lithiated difluoromethylphosphonate anion as the key reaction. In vitro activity of this S1P analogue is also reported.

  9. A human platelet calcium calculator trained by pairwise agonist scanning.

    PubMed

    Lee, Mei Yan; Diamond, Scott L

    2015-02-01

    Since platelet intracellular calcium mobilization [Ca(t)]i controls granule release, cyclooxygenase-1 and integrin activation, and phosphatidylserine exposure, blood clotting simulations require prediction of platelet [Ca(t)]i in response to combinatorial agonists. Pairwise Agonist Scanning (PAS) deployed all single and pairwise combinations of six agonists (ADP, convulxin, thrombin, U46619, iloprost and GSNO used at 0.1, 1, and 10xEC50; 154 conditions including a null condition) to stimulate platelet P2Y1/P2Y12 GPVI, PAR1/PAR4, TP, IP receptors, and guanylate cyclase, respectively, in Factor Xa-inhibited (250 nM apixaban), diluted platelet rich plasma that had been loaded with the calcium dye Fluo-4 NW. PAS of 10 healthy donors provided [Ca(t)]i data for training 10 neural networks (NN, 2-layer/12-nodes) per donor. Trinary stimulations were then conducted at all 0.1x and 1xEC50 doses (160 conditions) as was a sampling of 45 higher ordered combinations (four to six agonists). The NN-ensemble average was a calcium calculator that accurately predicted [Ca (t)]i beyond the single and binary training set for trinary stimulations (R = 0.924). The 160 trinary synergy scores, a normalized metric of signaling crosstalk, were also well predicted (R = 0.850) as were the calcium dynamics (R = 0.871) and high-dimensional synergy scores (R = 0.695) for the 45 higher ordered conditions. The calculator even predicted sequential addition experiments (n = 54 conditions, R = 0.921). NN-ensemble is a fast calcium calculator, ideal for multiscale clotting simulations that include spatiotemporal concentrations of ADP, collagen, thrombin, thromboxane, prostacyclin, and nitric oxide.

  10. Antipsychotic Induced Symptomatic Hyperprolactinemia: Are Dopamine Agonists Safe?

    PubMed Central

    Lertxundi, Unax; Domingo-Echaburu, Saioa; Peral, Javier; García, Montserrat

    2011-01-01

    Published literature shows that dopamine agonists can reverse antipsychotic-induced hyperprolactinemia without worsening psychotic symptoms in the majority of schizophrenic patients. However, psychiatrists have been reluctant to use drugs with dopaminergic properties for fear of exacerbating psychiatric symptoms. There are reported cases of psychosis worsening published for both cabergoline and bromocriptine. Cabergoline has proven to be more effective and safe when used to treat hyperprolactinemia, but whether cabergoline is also safer than bromocriptine in antipsychotic induced hyperprolactinemia remains unproven.

  11. A human platelet calcium calculator trained by pairwise agonist scanning.

    PubMed

    Lee, Mei Yan; Diamond, Scott L

    2015-02-01

    Since platelet intracellular calcium mobilization [Ca(t)]i controls granule release, cyclooxygenase-1 and integrin activation, and phosphatidylserine exposure, blood clotting simulations require prediction of platelet [Ca(t)]i in response to combinatorial agonists. Pairwise Agonist Scanning (PAS) deployed all single and pairwise combinations of six agonists (ADP, convulxin, thrombin, U46619, iloprost and GSNO used at 0.1, 1, and 10xEC50; 154 conditions including a null condition) to stimulate platelet P2Y1/P2Y12 GPVI, PAR1/PAR4, TP, IP receptors, and guanylate cyclase, respectively, in Factor Xa-inhibited (250 nM apixaban), diluted platelet rich plasma that had been loaded with the calcium dye Fluo-4 NW. PAS of 10 healthy donors provided [Ca(t)]i data for training 10 neural networks (NN, 2-layer/12-nodes) per donor. Trinary stimulations were then conducted at all 0.1x and 1xEC50 doses (160 conditions) as was a sampling of 45 higher ordered combinations (four to six agonists). The NN-ensemble average was a calcium calculator that accurately predicted [Ca (t)]i beyond the single and binary training set for trinary stimulations (R = 0.924). The 160 trinary synergy scores, a normalized metric of signaling crosstalk, were also well predicted (R = 0.850) as were the calcium dynamics (R = 0.871) and high-dimensional synergy scores (R = 0.695) for the 45 higher ordered conditions. The calculator even predicted sequential addition experiments (n = 54 conditions, R = 0.921). NN-ensemble is a fast calcium calculator, ideal for multiscale clotting simulations that include spatiotemporal concentrations of ADP, collagen, thrombin, thromboxane, prostacyclin, and nitric oxide. PMID:25723389

  12. A Human Platelet Calcium Calculator Trained by Pairwise Agonist Scanning

    PubMed Central

    Lee, Mei Yan; Diamond, Scott L.

    2015-01-01

    Since platelet intracellular calcium mobilization [Ca(t)]i controls granule release, cyclooxygenase-1 and integrin activation, and phosphatidylserine exposure, blood clotting simulations require prediction of platelet [Ca(t)]i in response to combinatorial agonists. Pairwise Agonist Scanning (PAS) deployed all single and pairwise combinations of six agonists (ADP, convulxin, thrombin, U46619, iloprost and GSNO used at 0.1, 1, and 10xEC50; 154 conditions including a null condition) to stimulate platelet P2Y1/P2Y12 GPVI, PAR1/PAR4, TP, IP receptors, and guanylate cyclase, respectively, in Factor Xa-inhibited (250 nM apixaban), diluted platelet rich plasma that had been loaded with the calcium dye Fluo-4 NW. PAS of 10 healthy donors provided [Ca(t)]i data for training 10 neural networks (NN, 2-layer/12-nodes) per donor. Trinary stimulations were then conducted at all 0.1x and 1xEC50 doses (160 conditions) as was a sampling of 45 higher ordered combinations (four to six agonists). The NN-ensemble average was a calcium calculator that accurately predicted [Ca (t)]i beyond the single and binary training set for trinary stimulations (R = 0.924). The 160 trinary synergy scores, a normalized metric of signaling crosstalk, were also well predicted (R = 0.850) as were the calcium dynamics (R = 0.871) and high-dimensional synergy scores (R = 0.695) for the 45 higher ordered conditions. The calculator even predicted sequential addition experiments (n = 54 conditions, R = 0.921). NN-ensemble is a fast calcium calculator, ideal for multiscale clotting simulations that include spatiotemporal concentrations of ADP, collagen, thrombin, thromboxane, prostacyclin, and nitric oxide. PMID:25723389

  13. Gonadotropin-releasing hormone agonist-induced pituitary apoplexy

    PubMed Central

    Keane, Fergus; Navin, Patrick; Brett, Francesca; Dennedy, Michael C

    2016-01-01

    Summary Pituitary apoplexy represents an uncommon endocrine emergency with potentially life-threatening consequences. Drug-induced pituitary apoplexy is a rare but important consideration when evaluating patients with this presentation. We describe an unusual case of a patient with a known pituitary macroadenoma presenting with acute-onset third nerve palsy and headache secondary to tumour enlargement and apoplexy. This followed gonadotropin-releasing hormone (GNRH) agonist therapy used to treat metastatic prostate carcinoma. Following acute management, the patient underwent transphenoidal debulking of his pituitary gland with resolution of his third nerve palsy. Subsequent retrospective data interpretation revealed that this had been a secretory gonadotropinoma and GNRH agonist therapy resulted in raised gonadotropins and testosterone. Hence, further management of his prostate carcinoma required GNRH antagonist therapy and external beam radiotherapy. This case demonstrates an uncommon complication of GNRH agonist therapy in the setting of a pituitary macroadenoma. It also highlights the importance of careful, serial data interpretation in patients with pituitary adenomas. Finally, this case presents a unique insight into the challenges of managing a hormonal-dependent prostate cancer in a patient with a secretory pituitary tumour. Learning points While non-functioning gonadotropinomas represent the most common form of pituitary macroadenoma, functioning gonadotropinomas are exceedingly rare. Acute tumour enlargement, with potential pituitary apoplexy, is a rare but important adverse effect arising from GNRH agonist therapy in the presence of both functioning and non-functioning pituitary gonadotropinomas. GNRH antagonist therapy represents an alternative treatment option for patients with hormonal therapy-requiring prostate cancer, who also have diagnosed with a pituitary gonadotropinoma. PMID:27284452

  14. Increased flow precedes remote arteriolar dilations for some microapplied agonists.

    PubMed

    Frame, M D

    2000-04-01

    This study asks which occurs first in time for remote responses: a dilation or a remote change in flow. Arteriolar diameter (approximately 20 microm) and fluorescently labeled red blood cell (RBC) velocity were measured in the cremaster muscle of anesthetized (pentobarbital sodium, 70 mg/kg) hamsters (n = 51). Arterioles were locally stimulated for 60 s with micropipette-applied 10 microg/ml LM-609 (alpha(v)beta(3)-integrin agonist), 10(-3) M adenosine, or 10(-3) M 3-morpholinosydnonimine (SIN-1, nitric oxide donor) as remote response agonists or with 10(-3) M papaverine, which dilates only locally. Observations were made at a remote site 1,200 microm upstream. With LM-609 or adenosine, the RBC velocity increased first (within 5 s), and the remote dilation followed 5-7 s later. N-nitro-L-arginine (100 microM) blocked the LM-609 (100%) and adenosine (60%) remote dilations. SIN-1 induced a concurrent remote dilation and decrease in RBC velocity (approximately 10 s), suggesting the primary signal was to dilate. Papaverine had no remote effects. This study suggests that, although remote responses to some agonists are induced by primary signals to dilate, additionally, network changes in flow can stimulate extensive remote changes in diameter.

  15. Suppression of atherosclerosis by synthetic REV-ERB agonist

    SciTech Connect

    Sitaula, Sadichha; Billon, Cyrielle; Kamenecka, Theodore M.; Solt, Laura A.; Burris, Thomas P.

    2015-05-08

    The nuclear receptors for heme, REV-ERBα and REV-ERBβ, play important roles in the regulation of metabolism and inflammation. Recently it was demonstrated that reduced REV-ERBα expression in hematopoetic cells in LDL receptor null mice led to increased atherosclerosis. We sought to determine if synthetic REV-ERB agonists that we have developed might have the ability to suppress atherosclerosis in this model. A previously characterized synthetic REV-ERB agonist, SR9009, was used to determine if activation of REV-ERB activity would affect atherosclerosis in LDL receptor deficient mice. Atherosclerotic plaque size was significantly reduced (p < 0.05) in mice administered SR9009 (100 mg/kg) for seven weeks compared to control mice (n = 10 per group). SR9009 treatment of bone marrow-derived mouse macrophages (BMDM) reduced the polarization of BMDMs to proinflammatory M1 macrophage while increasing the polarization of BMDMs to anti-inflammatory M2 macrophages. Our results suggest that pharmacological targeting of REV-ERBs may be a viable therapeutic option for treatment of atherosclerosis. - Highlights: • Synthetic REV-ERB agonist treatment reduced atherosclerosis in a mouse model. • Pharmacological activation of REV-ERB decreased M1 macrophage polarization. • Pharmacological activation of REV-ERB increased M2 macrophage polarization.

  16. Emerging strategies for exploiting cannabinoid receptor agonists as medicines.

    PubMed

    Pertwee, Roger G

    2009-02-01

    Medicines that activate cannabinoid CB(1) and CB(2) receptor are already in the clinic. These are Cesamet (nabilone), Marinol (dronabinol; Delta(9)-tetrahydrocannabinol) and Sativex (Delta(9)-tetrahydrocannabinol with cannabidiol). The first two of these medicines can be prescribed to reduce chemotherapy-induced nausea and vomiting. Marinol can also be prescribed to stimulate appetite, while Sativex is prescribed for the symptomatic relief of neuropathic pain in adults with multiple sclerosis and as an adjunctive analgesic treatment for adult patients with advanced cancer. One challenge now is to identify additional therapeutic targets for cannabinoid receptor agonists, and a number of potential clinical applications for such agonists are mentioned in this review. A second challenge is to develop strategies that will improve the efficacy and/or the benefit-to-risk ratio of a cannabinoid receptor agonist. This review focuses on five strategies that have the potential to meet either or both of these objectives. These are strategies that involve: (i) targeting cannabinoid receptors located outside the blood-brain barrier; (ii) targeting cannabinoid receptors expressed by a particular tissue; (iii) targeting up-regulated cannabinoid receptors; (iv) targeting cannabinoid CB(2) receptors; or (v) 'multi-targeting'. Preclinical data that justify additional research directed at evaluating the clinical importance of each of these strategies are also discussed. PMID:19226257

  17. Molecular impact of juvenile hormone agonists on neonatal Daphnia magna.

    PubMed

    Toyota, Kenji; Kato, Yasuhiko; Miyakawa, Hitoshi; Yatsu, Ryohei; Mizutani, Takeshi; Ogino, Yukiko; Miyagawa, Shinichi; Watanabe, Hajime; Nishide, Hiroyo; Uchiyama, Ikuo; Tatarazako, Norihisa; Iguchi, Taisen

    2014-05-01

    Daphnia magna has been used extensively to evaluate organism- and population-level responses to pollutants in acute toxicity and reproductive toxicity tests. We have previously reported that exposure to juvenile hormone (JH) agonists results in a reduction of reproductive function and production of male offspring in a cyclic parthenogenesis, D. magna. Recent advances in molecular techniques have provided tools to understand better the responses to pollutants in aquatic organisms, including D. magna. DNA microarray was used to evaluate gene expression profiles of neonatal daphnids exposed to JH agonists: methoprene (125, 250 and 500 ppb), fenoxycarb (0.5, 1 and 2 ppb) and epofenonane (50, 100 and 200 ppb). Exposure to these JH analogs resulted in chemical-specific patterns of gene expression. The heat map analyses based on hierarchical clustering revealed a similar pattern between treatments with a high dose of methoprene and with epofenonane. In contrast, treatment with low to middle doses of methoprene resulted in similar profiles to fenoxycarb treatments. Hemoglobin and JH epoxide hydrolase genes were clustered as JH-responsive genes. These data suggest that fenoxycarb has high activity as a JH agonist, methoprene shows high toxicity and epofenonane works through a different mechanism compared with other JH analogs, agreeing with data of previously reported toxicity tests. In conclusion, D. magna DNA microarray is useful for the classification of JH analogs and identification of JH-responsive genes. PMID:24038158

  18. Structure of the agonist-bound neurotensin receptor.

    PubMed

    White, Jim F; Noinaj, Nicholas; Shibata, Yoko; Love, James; Kloss, Brian; Xu, Feng; Gvozdenovic-Jeremic, Jelena; Shah, Priyanka; Shiloach, Joseph; Tate, Christopher G; Grisshammer, Reinhard

    2012-10-25

    Neurotensin (NTS) is a 13-amino-acid peptide that functions as both a neurotransmitter and a hormone through the activation of the neurotensin receptor NTSR1, a G-protein-coupled receptor (GPCR). In the brain, NTS modulates the activity of dopaminergic systems, opioid-independent analgesia, and the inhibition of food intake; in the gut, NTS regulates a range of digestive processes. Here we present the structure at 2.8 Å resolution of Rattus norvegicus NTSR1 in an active-like state, bound to NTS(8-13), the carboxy-terminal portion of NTS responsible for agonist-induced activation of the receptor. The peptide agonist binds to NTSR1 in an extended conformation nearly perpendicular to the membrane plane, with the C terminus oriented towards the receptor core. Our findings provide, to our knowledge, the first insight into the binding mode of a peptide agonist to a GPCR and may support the development of non-peptide ligands that could be useful in the treatment of neurological disorders, cancer and obesity.

  19. Molecular impact of juvenile hormone agonists on neonatal Daphnia magna.

    PubMed

    Toyota, Kenji; Kato, Yasuhiko; Miyakawa, Hitoshi; Yatsu, Ryohei; Mizutani, Takeshi; Ogino, Yukiko; Miyagawa, Shinichi; Watanabe, Hajime; Nishide, Hiroyo; Uchiyama, Ikuo; Tatarazako, Norihisa; Iguchi, Taisen

    2014-05-01

    Daphnia magna has been used extensively to evaluate organism- and population-level responses to pollutants in acute toxicity and reproductive toxicity tests. We have previously reported that exposure to juvenile hormone (JH) agonists results in a reduction of reproductive function and production of male offspring in a cyclic parthenogenesis, D. magna. Recent advances in molecular techniques have provided tools to understand better the responses to pollutants in aquatic organisms, including D. magna. DNA microarray was used to evaluate gene expression profiles of neonatal daphnids exposed to JH agonists: methoprene (125, 250 and 500 ppb), fenoxycarb (0.5, 1 and 2 ppb) and epofenonane (50, 100 and 200 ppb). Exposure to these JH analogs resulted in chemical-specific patterns of gene expression. The heat map analyses based on hierarchical clustering revealed a similar pattern between treatments with a high dose of methoprene and with epofenonane. In contrast, treatment with low to middle doses of methoprene resulted in similar profiles to fenoxycarb treatments. Hemoglobin and JH epoxide hydrolase genes were clustered as JH-responsive genes. These data suggest that fenoxycarb has high activity as a JH agonist, methoprene shows high toxicity and epofenonane works through a different mechanism compared with other JH analogs, agreeing with data of previously reported toxicity tests. In conclusion, D. magna DNA microarray is useful for the classification of JH analogs and identification of JH-responsive genes.

  20. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review.

    PubMed

    Wang, Limei; Waltenberger, Birgit; Pferschy-Wenzig, Eva-Maria; Blunder, Martina; Liu, Xin; Malainer, Clemens; Blazevic, Tina; Schwaiger, Stefan; Rollinger, Judith M; Heiss, Elke H; Schuster, Daniela; Kopp, Brigitte; Bauer, Rudolf; Stuppner, Hermann; Dirsch, Verena M; Atanasov, Atanas G

    2014-11-01

    Agonists of the nuclear receptor PPARγ are therapeutically used to combat hyperglycaemia associated with the metabolic syndrome and type 2 diabetes. In spite of being effective in normalization of blood glucose levels, the currently used PPARγ agonists from the thiazolidinedione type have serious side effects, making the discovery of novel ligands highly relevant. Natural products have proven historically to be a promising pool of structures for drug discovery, and a significant research effort has recently been undertaken to explore the PPARγ-activating potential of a wide range of natural products originating from traditionally used medicinal plants or dietary sources. The majority of identified compounds are selective PPARγ modulators (SPPARMs), transactivating the expression of PPARγ-dependent reporter genes as partial agonists. Those natural PPARγ ligands have different binding modes to the receptor in comparison to the full thiazolidinedione agonists, and on some occasions activate in addition PPARα (e.g. genistein, biochanin A, sargaquinoic acid, sargahydroquinoic acid, resveratrol, amorphastilbol) or the PPARγ-dimer partner retinoid X receptor (RXR; e.g. the neolignans magnolol and honokiol). A number of in vivo studies suggest that some of the natural product activators of PPARγ (e.g. honokiol, amorfrutin 1, amorfrutin B, amorphastilbol) improve metabolic parameters in diabetic animal models, partly with reduced side effects in comparison to full thiazolidinedione agonists. The bioactivity pattern as well as the dietary use of several of the identified active compounds and plant extracts warrants future research regarding their therapeutic potential and the possibility to modulate PPARγ activation by dietary interventions or food supplements.

  1. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review

    PubMed Central

    Wang, Limei; Waltenberger, Birgit; Pferschy-Wenzig, Eva-Maria; Blunder, Martina; Liu, Xin; Malainer, Clemens; Blazevic, Tina; Schwaiger, Stefan; Rollinger, Judith M.; Heiss, Elke H.; Schuster, Daniela; Kopp, Brigitte; Bauer, Rudolf; Stuppner, Hermann; Dirsch, Verena M.; Atanasov, Atanas G.

    2014-01-01

    Agonists of the nuclear receptor PPARγ are therapeutically used to combat hyperglycaemia associated with the metabolic syndrome and type 2 diabetes. In spite of being effective in normalization of blood glucose levels, the currently used PPARγ agonists from the thiazolidinedione type have serious side effects, making the discovery of novel ligands highly relevant. Natural products have proven historically to be a promising pool of structures for drug discovery, and a significant research effort has recently been undertaken to explore the PPARγ-activating potential of a wide range of natural products originating from traditionally used medicinal plants or dietary sources. The majority of identified compounds are selective PPARγ modulators (SPPARMs), transactivating the expression of PPARγ-dependent reporter genes as partial agonists. Those natural PPARγ ligands have different binding modes to the receptor in comparison to the full thiazolidinedione agonists, and on some occasions activate in addition PPARα (e.g. genistein, biochanin A, sargaquinoic acid, sargahydroquinoic acid, resveratrol, amorphastilbol) or the PPARγ-dimer partner retinoid X receptor (RXR; e.g. the neolignans magnolol and honokiol). A number of in vivo studies suggest that some of the natural product activators of PPARγ (e.g. honokiol, amorfrutin 1, amorfrutin B, amorphastilbol) improve metabolic parameters in diabetic animal models, partly with reduced side effects in comparison to full thiazolidinedione agonists. The bioactivity pattern as well as the dietary use of several of the identified active compounds and plant extracts warrants future research regarding their therapeutic potential and the possibility to modulate PPARγ activation by dietary interventions or food supplements. PMID:25083916

  2. Selectivity of muscarinic agonists including (+/-)-aceclidine and antimuscarinics on the human intraocular muscles.

    PubMed

    Ishikawa, H; DeSantis, L; Patil, P N

    1998-08-01

    The average EC50 value and the maximum response of carbachol on the human circular ciliary muscle obtained within 24 h of postmortem hypoxia was 517 nmol/l and 135 mg, respectively. These values for carbachol did not differ significantly from that of the longitudinal ciliary muscle. However, when tested at 1 mumol/l of carbachol, the peak response of the longitudinal muscle occurred at 59 sec vs 173 sec for that of the circular muscle of 70 year old donors. The relative potency of the muscarinic agonists on the circular muscle was oxotremorine-M, 1 > carbachol, 1/4 > pilocarpine, 1/19 > aceclidine, 1/132. The relative order of potency of agonists was similar for the longitudinal muscle. Only pilocarpine and aceclidine were partial agonists which produced 80-85% of the maximum response. When compared with the EC50 values of aceclidine on the iris sphincter and the longitudinal ciliary muscles, the agonist potency was only 1/28 for the latter tissue. Implications of these findings in relation to the use of these agonists in glaucoma are discussed. The pKB values of muscarinic antagonists on the circular ciliary muscle were: atropine, 8.8; cyclopentolate, 7.8; tropicamide, 7.4; P.F. HHSiD, 7.0; pirenzepine, 6.4; and methoctramine, 5.7. Nearly equal pKB values of each antagonist were obtained for the longitudinal ciliary muscle and iris sphincter. Based on the affinity constants of various competitive antagonists, the human iris as well as ciliary muscles may contain M3, M2 or M4 subtypes of muscarinic receptors.

  3. Meclizine is an agonist ligand for mouse constitutive androstane receptor (CAR) and an inverse agonist for human CAR.

    PubMed

    Huang, Wendong; Zhang, Jun; Wei, Ping; Schrader, William T; Moore, David D

    2004-10-01

    The constitutive androstane receptor (CAR, NR1I3) is a key regulator of xenobiotic and endobiotic metabolism. The ligand-binding domains of murine (m) and human (h) CAR are divergent relative to other nuclear hormone receptors, resulting in species-specific differences in xenobiotic responses. Here we identify the widely used antiemetic meclizine (Antivert; Bonine) as both an agonist ligand for mCAR and an inverse agonist for hCAR. Meclizine increases mCAR transactivation in a dose-dependent manner. Like the mCAR agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, meclizine stimulates binding of steroid receptor coactivator 1 to the murine receptor in vitro. Meclizine administration to mice increases expression of CAR target genes in a CAR-dependent manner. In contrast, meclizine suppresses hCAR transactivation and inhibits the phenobarbital-induced expression of the CAR target genes, cytochrome p450 monooxygenase (CYP)2B10, CYP3A11, and CYP1A2, in primary hepatocytes derived from mice expressing hCAR, but not mCAR. The inhibitory effect of meclizine also suppresses acetaminophen-induced liver toxicity in humanized CAR mice. These results demonstrate that a single compound can induce opposite xenobiotic responses via orthologous receptors in rodents and humans. PMID:15272053

  4. Additive antinociceptive effects of mixtures of the κ-opioid receptor agonist spiradoline and the cannabinoid receptor agonist CP55940 in rats.

    PubMed

    Maguire, David R; France, Charles P

    2016-02-01

    Pain is a significant clinical problem, and there is a need for pharmacotherapies that are more effective with fewer adverse effects than currently available medications. Cannabinoid receptor agonists enhance the antinociceptive effects of μ-opioid receptor agonists; it is unclear whether they impact the effects of agonists acting at other opioid receptors. κ-Opioid receptor agonists have antinociceptive effects, but their clinical use is precluded by adverse effects; however, their therapeutic potential might be realized if antinociceptive effects could be selectively enhanced. In this study, the antinociceptive effects of the cannabinoid receptor agonist CP55940 and the κ-opioid receptor agonist spiradoline, alone and in combination, were studied in rats (n=7) using a warm water tail-withdrawal procedure. When administered alone, CP55940 (0.032-1.0 mg/kg) and spiradoline (1.0-32.0 mg/kg) increased tail-withdrawal latency, and mixtures of CP55940 and spiradoline (ratios of 1 : 3, 1 : 1, and 3 : 1) produced additive effects. It remains to be determined whether this additive interaction between a κ-opioid receptor agonist and a cannabinoid receptor agonist is selective for antinociception and whether it can be generalized to other drugs. PMID:26292184

  5. A study of [D-Pro2, D-Phe7, D-Trp9]-substance P and [D-Trp7,9]-substance P as tachykinin partial agonists in the rat colon.

    PubMed Central

    Bailey, S. J.; Jordan, C. C.

    1984-01-01

    Two substance P (SP) analogues, [D-Pro2, D-Phe7, D-Trp9]-SP (DPDPDT) and [D-Trp7,9]-SP (DT79), previously described as tachykinin antagonists, have been shown to contract the rat colon muscularis mucosae preparation. The maximum response exhibited by these analogues was about 30% that of the SP maximum, suggesting that they were acting as partial agonists relative to SP. The responses to DPDPDT were unaffected by pretreatment with mepyramine, methysergide or [Sar1, Ile5, Ala8]-angiotensin II, which abolished the responses to histamine, 5-hydroxytryptamine (5-HT) and angiotensin II, respectively. Methysergide also did not affect the responses to DT79; the other antagonists were not tested against this analogue. Indomethacin and cimetidine also had no inhibitory effect. Atropine (2 microM) was present in all experiments to prevent indirect muscarinic effects. Phenoxybenzamine did not affect the dose-response curves to SP, eledoisin-related peptide (ERP), kassinin, eledoisin or physalaemin, nor did it affect the responses to individual doses of DPDPDT or DT79. However, in the absence of atropine, it shifted the carbachol dose-response curve markedly to the right, and reduced its maximum. The tachykinin antagonist [D-Pro4, D-Trp7,9,10]-SP4-11 reduced the responses to individual matched doses of DPDPDT, DT79 and SP to the same degree, whilst leaving responses to 5-HT or angiotensin II unaffected. This suggested that DPDPDT and DT79 were acting at the same receptor as SP. The inhibitory effects of DPDPDT on responses to SP, ERP and kassinin, and that of DT79 on responses to SP, were analysed. All four combinations yielded data compatible with an interaction at only one receptor, although DPDPDT appeared slightly more potent at inhibiting responses to kassinin. The results are discussed in the light of the proposed existence of multiple tachykinin receptor subtypes. The possible influence of differential metabolism of tachykinin analogues is also considered. PMID:6203595

  6. Different serotonin receptor agonists have distinct effects on sound-evoked responses in inferior colliculus.

    PubMed

    Hurley, Laura M

    2006-11-01

    The neuromodulator serotonin has a complex set of effects on the auditory responses of neurons within the inferior colliculus (IC), a midbrain auditory nucleus that integrates a wide range of inputs from auditory and nonauditory sources. To determine whether activation of different types of serotonin receptors is a source of the variability in serotonergic effects, four selective agonists of serotonin receptors in the serotonin (5-HT) 1 and 5-HT2 families were iontophoretically applied to IC neurons, which were monitored for changes in their responses to auditory stimuli. Different agonists had different effects on neural responses. The 5-HT1A agonist had mixed facilitatory and depressive effects, whereas 5-HT1B and 5-HT2C agonists were both largely facilitatory. Different agonists changed threshold and frequency tuning in ways that reflected their effects on spike count. When pairs of agonists were applied sequentially to the same neurons, selective agonists sometimes affected neurons in ways that were similar to serotonin, but not to other selective agonists tested. Different agonists also differentially affected groups of neurons classified by the shapes of their frequency-tuning curves, with serotonin and the 5-HT1 receptors affecting proportionally more non-V-type neurons relative to the other agonists tested. In all, evidence suggests that the diversity of serotonin receptor subtypes in the IC is likely to account for at least some of the variability of the effects of serotonin and that receptor subtypes fulfill specialized roles in auditory processing. PMID:16870843

  7. Hypothermia and poikilothermia induced by a kappa-agonist opioid and a neuroleptic.

    PubMed

    Adler, M W; Geller, E B

    1987-08-11

    When an opioid acting selectively at the kappa opioid receptor is administered subcutaneously to rats along with a neuroleptic at an ambient temperature of 20 degrees C a marked hypothermia ensues. The combination of U-50,488H (a kappa agonist) and chlorpromazine (a neuroleptic) caused a drop in body temperature amounting to as much as 11 degrees C, with all animals recovering after 24-48 h. Naloxone partially reversed the hypothermia. Similar, but less dramatic, decreases in body temperature occurred with other neuroleptics and weaker kappa agonists. The induction of poikilothermia was indicated when the body temperature approached the environment temperature and lethality resulted in 100% of the animals at ambient temperatures of 5 degrees C or 35 degrees C. The potential utility of this or similar combinations of drugs lies in such diverse applications as cardiac surgery, treatment of the near-drowning syndrome and space travel.

  8. Defining Nicotinic Agonist Binding Surfaces through Photoaffinity Labeling†

    PubMed Central

    Tomizawa, Motohiro; Maltby, David; Medzihradszky, Katalin F.; Zhang, Nanjing; Durkin, Kathleen A.; Presley, Jack; Talley, Todd T.; Taylor, Palmer; Burlingame, Alma L.; Casida, John E.

    2016-01-01

    Nicotinic acetylcholine (ACh) receptor (nAChR) agonists are potential therapeutic agents for neurological dysfunction. In the present study, the homopentameric mollusk ACh binding protein (AChBP), used as a surrogate for the extracellular ligand-binding domain of the nAChR, was specifically derivatized by the highly potent agonist azidoepibatidine (AzEPI) prepared as a photoaffinity probe and radioligand. One EPI-nitrene photoactivated molecule was incorporated in each subunit interface binding site based on analysis of the intact derivatized protein. Tryptic fragments of the modified AChBP were analyzed by collision-induced dissociation and Edman sequencing of radiolabeled peptides. Each specific EPI-nitrene-modified site involved either Tyr195 of loop C on the principal or (+)-face or Met116 of loop E on the complementary or (−)-face. The two derivatization sites were observed in similar frequency, providing evidence of the reactivity of the azido/nitrene probe substituent and close proximity to both residues. [3H]AzEPI binds to the α4β2 nAChR at a single high-affinity site and photoaffinity-labels only the α4 subunit, presumably modifying Tyr225 spatially corresponding to Tyr195 of AChBP. Phe137 of the β2 nAChR subunit, equivalent to Met116 of AChBP, conceivably lacks sufficient reactivity with the nitrene generated from the probe. The present photoaffinity labeling in a physiologically relevant condition combined with the crystal structure of AChBP allows development of precise structural models for the AzEPI interactions with AChBP and α4β2 nAChR. These findings enabled us to use AChBP as a structural surrogate to define the nAChR agonist site. PMID:17614369

  9. INSIGHT AGONISTES: A READING OF SOPHOCLES'S OEDIPUS THE KING.

    PubMed

    Mahon, Eugene J

    2015-07-01

    In this reading of Sophocles's Oedipus the King, the author suggests that insight can be thought of as the main protagonist of the tragedy. He personifies this depiction of insight, calling it Insight Agonistes, as if it were the sole conflicted character on the stage, albeit masquerading at times as several other characters, including gods, sphinxes, and oracles. This psychoanalytic reading of the text lends itself to an analogy between psychoanalytic process and Sophocles's tragic hero. The author views insight as always transgressing against, always at war with a conservative, societal, or intrapsychic chorus of structured elements. A clinical vignette is presented to illustrate this view of insight.

  10. Narrow SAR in odorant sensing Orco receptor agonists.

    PubMed

    Romaine, Ian M; Taylor, Robert W; Saidu, Samsudeen P; Kim, Kwangho; Sulikowski, Gary A; Zwiebel, Laurence J; Waterson, Alex G

    2014-06-15

    The systematic exploration of a series of triazole-based agonists of the cation channel insect odorant receptor is reported. The structure-activity relationships of independent sections of the molecules are examined. Very small changes to the compound structure were found to exert a large impact on compound activity. Optimal substitutions were combined using a 'mix-and-match' strategy to produce best-in-class compounds that are capable of potently agonizing odorant receptor activity and may form the basis for the identification of a new mode of insect behavior modification. PMID:24813736

  11. Clenbuterol, a beta(2)-agonist, retards atrophy in denervated muscles

    NASA Technical Reports Server (NTRS)

    Zeman, Richard J.; Ludemann, Robert; Etlinger, Joseph D.

    1987-01-01

    The effects of a beta(2) agonist, clenbuterol, on the protein content as well as on the contractile strength and the muscle fiber cross-sectional area of various denervated muscles from rats were investigated. It was found that denervated soleus, anterior tibialis, and gastrocnemius muscles, but not the extensor digitorum longus, of rats treated for 2-3 weeks with clenbuterol contained 95-110 percent more protein than denervated controls. The twofold difference in the protein content of denervated solei was paralleled by similar changes in contractile strength and muscle fiber cross-sectional area.

  12. INSIGHT AGONISTES: A READING OF SOPHOCLES'S OEDIPUS THE KING.

    PubMed

    Mahon, Eugene J

    2015-07-01

    In this reading of Sophocles's Oedipus the King, the author suggests that insight can be thought of as the main protagonist of the tragedy. He personifies this depiction of insight, calling it Insight Agonistes, as if it were the sole conflicted character on the stage, albeit masquerading at times as several other characters, including gods, sphinxes, and oracles. This psychoanalytic reading of the text lends itself to an analogy between psychoanalytic process and Sophocles's tragic hero. The author views insight as always transgressing against, always at war with a conservative, societal, or intrapsychic chorus of structured elements. A clinical vignette is presented to illustrate this view of insight. PMID:26198605

  13. Estrogen Receptor Agonists and Antagonists in the Yeast Estrogen Bioassay.

    PubMed

    Wang, Si; Bovee, Toine F H

    2016-01-01

    Cell-based bioassays can be used to predict the eventual biological activity of a substance on a living organism. In vitro reporter gene bioassays are based on recombinant vertebrate cell lines or yeast strains and especially the latter are easy-to-handle, cheap, and fast. Moreover, yeast cells do not express estrogen, androgen, progesterone or glucocorticoid receptors, and are thus powerful tools in the development of specific reporter gene systems that are devoid of crosstalk from other hormone pathways. This chapter describes our experience with an in-house developed RIKILT yeast estrogen bioassay for testing estrogen receptor agonists and antagonists, focusing on the applicability of the latter. PMID:26585147

  14. Discovery of a potent and selective GPR120 agonist.

    PubMed

    Shimpukade, Bharat; Hudson, Brian D; Hovgaard, Christine Kiel; Milligan, Graeme; Ulven, Trond

    2012-05-10

    GPR120 is a receptor of unsaturated long-chain fatty acids reported to mediate GLP-1 secretion, insulin sensitization, anti-inflammatory, and anti-obesity effects and is therefore emerging as a new potential target for treatment of type 2 diabetes and metabolic diseases. Further investigation is however hindered by the lack of suitable receptor modulators. Screening of FFA1 ligands provided a lead with moderate activity on GPR120 and moderate selectivity over FFA1. Optimization led to the discovery of the first potent and selective GPR120 agonist.

  15. [Pathophysiological relevance of peroxisome proliferators activated receptors (PPAR) to joint diseases - the pro and con of agonists].

    PubMed

    Jouzeau, Jean-Yves; Moulin, David; Koufany, Meriem; Sebillaud, Sylvie; Bianchi, Arnaud; Netter, Patrick

    2008-01-01

    hyperlipidemic patients treated for long periods of time with glitazones or fibrates. Additionally, cellular and animal studies are required to assess whether partial agonists of PPAR (SPPARMs) may preserve therapeutical properties with potentially less safety concern.

  16. Evaluation of the Tolerability of Switching Patients on Chronic Full μ-Opioid Agonist Therapy to Buccal Buprenorphine

    PubMed Central

    Gruener, Daniel; Kirby, Todd; Xiang, Qinfang; Tzanis, Evan; Finn, Andrew

    2016-01-01

    Objective Assess whether patients with chronic pain receiving 80 to 220 mg oral morphine sulfate equivalent of a full μ-opioid agonist could be transitioned to buccal buprenorphine at approximately 50% of their full dose without inducing opioid withdrawal or sacrificing analgesic efficacy. Methods. A randomized, double-blind, double-dummy, active-controlled, two-period crossover study in adult patients receiving around-the-clock full opioid agonist therapy and confirmed to be opioid dependent by naloxone challenge. Study doses were substituted at the time of the regular dose schedule for each patient. The primary endpoint was the proportion of patients with a maximum Clinical Opiate Withdrawal Scale score ≥ 13 (moderate withdrawal) or use of rescue medication. Results. 35 subjects on ≥ 80 mg morphine sulfate equivalent per day were evaluable for opioid withdrawal. One patient during buccal buprenorphine treatment and two during 50% full μ-opioid agonist treatment experienced opioid withdrawal of at least moderate intensity. The mean maximum Clinical Opiate Withdrawal Scale scores were similar, and numerically lower on buccal buprenorphine. There were no significant differences in pain ratings between treatments. The most frequent adverse events with buccal buprenorphine were headache (19%), vomiting (13%), nausea, diarrhea, and drug withdrawal syndrome (each 9%), and with full μ-opioid agonist were headache (16%), drug withdrawal syndrome (13%), and nausea (6%). Conclusions. Chronic pain patients treated with around-the-clock full μ-opioid agonist therapy can be switched to buccal buprenorphine (a partial μ-opioid agonist) at approximately 50% of the full μ-opioid agonist dose without an increased risk of opioid withdrawal or loss of pain control. PMID:26917621

  17. Contamination with retinoic acid receptor agonists in two rivers in the Kinki region of Japan.

    PubMed

    Inoue, Daisuke; Nakama, Koki; Sawada, Kazuko; Watanabe, Taro; Takagi, Mai; Sei, Kazunari; Yang, Min; Hirotsuji, Junji; Hu, Jianying; Nishikawa, Jun-ichi; Nakanishi, Tsuyoshi; Ike, Michihiko

    2010-04-01

    This study was conducted to investigate the agonistic activity against human retinoic acid receptor (RAR) alpha in the Lake Biwa-Yodo River and the Ina River in the Kinki region of Japan. To accomplish this, a yeast two-hybrid assay was used to elucidate the spatial and temporal variations and potential sources of RARalpha agonist contamination in the river basins. RARalpha agonistic activity was commonly detected in the surface water samples collected along two rivers at different periods, with maximum all-trans retinoic acid (atRA) equivalents of 47.6 ng-atRA/L and 23.5 ng-atRA/L being observed in Lake Biwa-Yodo River and Ina River, respectively. The results indicated that RARalpha agonists are always present and widespread in the rivers. Comparative investigation of RARalpha and estrogen receptor alpha agonistic activities at 20 stations along each river revealed that the spatial variation pattern of RARalpha agonist contamination was entirely different from that of the estrogenic compound contamination. This suggests that the effluent from municipal wastewater treatment plants, a primary source of estrogenic compounds, seemed not to be the cause of RARalpha agonist contamination in the rivers. Fractionation using high performance liquid chromatography (HPLC) directed by the bioassay found two bioactive fractions from river water samples, suggesting the presence of at least two RARalpha agonists in the rivers. Although a trial conducted to identify RARalpha agonists in the major bioactive fraction was not completed as part of this study, comparison of retention times in HPLC analysis and quantification with liquid chromatography-mass spectrometry analysis revealed that the major causative contaminants responsible for the RARalpha agonistic activity were not RAs (natural RAR ligands) and 4-oxo-RAs, while 4-oxo-RAs were identified as the major RAR agonists in sewage in Beijing, China. These findings suggest that there are unknown RARalpha agonists with high

  18. Substituted isoxazole analogs of farnesoid X receptor (FXR) agonist GW4064

    SciTech Connect

    Bass, Jonathan Y.; Caldwell, Richard D.; Caravella, Justin A.; Chen, Lihong; Creech, Katrina L.; Deaton, David N.; Madauss, Kevin P.; Marr, Harry B.; McFadyen, Robert B.; Miller, Aaron B.; Parks, Derek J.; Todd, Dan; Williams, Shawn P.; Wisely, G. Bruce

    2010-09-27

    Starting from the known FXR agonist GW 4064 1a, a series of alternately 3,5-substituted isoxazoles was prepared. Several of these analogs were potent full FXR agonists. A subset of this series, with a tether between the isoxazole ring and the 3-position aryl substituent, were equipotent FXR agonists to GW 4064 1a, with the 2,6-dimethyl phenol analog 1t having greater FRET FXR potency than GW 4064 1a.

  19. Substituted isoxazole analogs of farnesoid X receptor (FXR) agonist GW4064.

    PubMed

    Bass, Jonathan Y; Caldwell, Richard D; Caravella, Justin A; Chen, Lihong; Creech, Katrina L; Deaton, David N; Madauss, Kevin P; Marr, Harry B; McFadyen, Robert B; Miller, Aaron B; Parks, Derek J; Todd, Dan; Williams, Shawn P; Wisely, G Bruce

    2009-06-01

    Starting from the known FXR agonist GW 4064 1a, a series of alternately 3,5-substituted isoxazoles was prepared. Several of these analogs were potent full FXR agonists. A subset of this series, with a tether between the isoxazole ring and the 3-position aryl substituent, were equipotent FXR agonists to GW 4064 1a, with the 2,6-dimethyl phenol analog 1t having greater FRET FXR potency than GW 4064 1a.

  20. Discovery of potent and selective nonsteroidal indazolyl amide glucocorticoid receptor agonists.

    PubMed

    Sheppeck, James E; Gilmore, John L; Xiao, Hai-Yun; Dhar, T G Murali; Nirschl, David; Doweyko, Arthur M; Sack, Jack S; Corbett, Martin J; Malley, Mary F; Gougoutas, Jack Z; Mckay, Lorraine; Cunningham, Mark D; Habte, Sium F; Dodd, John H; Nadler, Steven G; Somerville, John E; Barrish, Joel C

    2013-10-01

    Modification of a phenolic lead structure based on lessons learned from increasing the potency of steroidal glucocorticoid agonists lead to the discovery of exceptionally potent, nonsteroidal, indazole GR agonists. SAR was developed to achieve good selectivity against other nuclear hormone receptors with the ultimate goal of achieving a dissociated GR agonist as measured by human in vitro assays. The specific interactions by which this class of compounds inhibits GR was elucidated by solving an X-ray co-crystal structure. PMID:23953070

  1. In vitro and in vivo efficacy of a potent opioid receptor agonist, biphalin, compared to subtype-selective opioid receptor agonists for stroke treatment

    PubMed Central

    Yang, Li; Islam, Mohammad R; Karamyan, Vardan T.; Abbruscato, Thomas J.

    2015-01-01

    To meet the challenge of identification of new treatments for stroke, this study was designed to evaluate a potent, nonselective opioid receptor (OR) agonist, biphalin, in comparison to subtype selective OR agonists, as a potential neuroprotective drug candidate using in vitro and in vivo models of ischemic stroke. Our in vitro approach included mouse primary neuronal cells that were challenged with glutamate and hypoxic/aglycemic (H/A) conditions. We observed that 10 nM biphalin, exerted a statistically significant neuroprotective effect after glutamate challenge, compared to all selective opioid agonists, according to lactate dehydrogenase (LDH) and 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays. Moreover, 10 nM biphalin provided superior neuroprotection after H/A-reoxygenation compared to selective opioid agonists in all cases. Our in vitro investigations were supported by in vivo studies which indicate that the nonselective opioid agonist, biphalin, achieves enhanced neuroprotective potency compared to any of the selective opioid agonists, evidenced by reduced edema and infarct ratios. Reduction of edema and infarction was accompanied by neurological improvement of the animals in two independent behavioral tests. Collectively these data strongly suggest that concurrent agonist stimulation of mu, kappa and delta ORs with biphalin is neuroprotective and superior to neuroprotection by activation of any single OR subtype. PMID:25801116

  2. Effects of LAAM and methadone utilization in an opiate agonist treatment program.

    PubMed

    Valdivia, J F; Khattak, S

    2000-01-01

    The development and approval of levo-alpha-acetylmethadol (LAAM) as a pharmacotherapeutic agent in opioid agonist therapy provided an alternative to methadone. Clinicians recognized the potential benefits that LAAM, a synthetic mu agonist with pharmacological properties which differ from those of methadone,could have in the treatment management of addicts in opioid agonist therapy. We report our experience utilizing LAAM from 1995 to 1999 at the Hines VA opioid agonist therapy clinic. The addition of LAAM to the clinic's treatment armamentarium has resulted in management options that have improved the areas of patient recruitment, patient retention, patient traffic, take-home medication, detoxification, and treatment outcomes.

  3. Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy

    PubMed Central

    Iribarren, Kristina; Bloy, Norma; Buqué, Aitziber; Cremer, Isabelle; Eggermont, Alexander; Fridman, Wolf Hervé; Fucikova, Jitka; Galon, Jérôme; Špíšek, Radek; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2016-01-01

    ABSTRACT Accumulating preclinical evidence indicates that Toll-like receptor (TLR) agonists efficiently boost tumor-targeting immune responses (re)initiated by most, if not all, paradigms of anticancer immunotherapy. Moreover, TLR agonists have been successfully employed to ameliorate the efficacy of various chemotherapeutics and targeted anticancer agents, at least in rodent tumor models. So far, only three TLR agonists have been approved by regulatory agencies for use in cancer patients. Moreover, over the past decade, the interest of scientists and clinicians in these immunostimulatory agents has been fluctuating. Here, we summarize recent advances in the preclinical and clinical development of TLR agonists for cancer therapy. PMID:27141345

  4. Dopamine agonist-induced substance addiction: the next piece of the puzzle.

    PubMed

    Evans, Andrew

    2011-02-01

    Traditional antiparkinson treatment strategies strive to balance the antiparkinson effects of dopaminergic drugs with the avoidance of motor response complications. Dopamine agonists have an established role in delaying the emergence of motor response complications or reducing motor "off" periods. The recent recognition of a range of "behavioural addictions" that are linked to dopamine agonist use has highlighted the role of dopamine in brain reward function and addiction disorders in general. Dopamine agonists have now even been linked occasionally to new substance addictions. The challenge now for the Parkinsonologist is to also balance the net benefits of using dopamine agonists for their motor effects with avoiding the harm from behavioural compulsions. PMID:20980151

  5. Effects of gamma-aminobutyric acid agonist and antagonist drugs on local cerebral glucose utilization

    SciTech Connect

    Palacios, J.M.; Kuhar, M.J.; Rapoport, S.I.; London, E.D.

    1982-07-01

    The (/sup 14/C)2-deoxy-D-glucose method of Sokoloff et al. was used to study local cerebral glucose utilization (LCGU) in rats treated with gamma-aminobutyric acid (GABA) agonist (muscimol and 4,5,6,7-tetrahydroisoxazolo(5,4-C)pyridin-3-ol, THIP) and antagonist (bicuculline) drugs. It was of interest to determine if the pattern of LCGU responses to GABA agonists and antagonists administered systemically in vivo would reflect the known distributions of markers for central GABAergic synapses. The patterns of LCGU responses to muscimol and THIP generally were similar. Most brain regions showed dose-dependent decreases in LCGU; others showed no effects; but the red nucleus showed an increase. The GABA antagonist bicuculline produced convulsions and variable LCGU responses, depending on the time of administration. Bicuculline also partially antagonized the depressant effects of muscimol of LCGU. The magnitudes and distribution of in vivo cerebral metabolic responses to specific GABA agonists were not correlated simply with markers for GABAergic synapses. This lack of correlation indicates that additional factors, such as neural circuitry, regulate the LCGU responses to GABAergic drugs.

  6. Liver X Receptor and Peroxisome Proliferator-Activated Receptor Agonist from Cornus alternifolia

    PubMed Central

    He, Yang-Qing; Ma, Guo-Yi; Peng, Jiang-nan; Ma, Zhan-Ying; Hamann, Mark T.

    2012-01-01

    Background Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptors superfamily and are transcription factors activated by specific ligands. Liver X receptors (LXR) belong to the nuclear hormone receptors and have been shown to play an important role in cholesterol homeostasis. From the previous screening of several medicinal plants for potential partial PPARγ agonists, the extracts of Cornus alternifolia were found to exhibit promising bioactivity. In this paper, we report the isolation and structural elucidation of four new compounds and their potential as ligands for PPAR. Methods The new compounds were extracted from the leaves of Cornus alternifolia and fractionated by high-performance liquid chromatography. Their structures were elucidated on the basis of spectroscopic evidence and analysis of their hydrolysis products. Results Three new iridoid glycosides including an iridolactone, alternosides A-C (1–3), a new megastigmane glycoside, cornalternoside (4) and 10 known compounds, were obtained from the leaves of Cornus alternifolia. Kaempferol-3-O-β-glucopyranoside (5) exhibited potent agonistic activities for PPARα, PPARγ and LXR with EC50 values of 0.62, 3.0 and 1.8 μ M, respectively. Conclusions We isolated four new and ten known compounds from Cornus alternifolia, and one known compound showed agonistic activities for PPARα, PPARγ and LXR. General significance Compound 1 is the first example of a naturally occurring iridoid glycoside containing a β-glucopyranoside moiety at C-6. PMID:22353334

  7. LXR agonist rescued the deficit in the proliferation of the cerebellar granule cells induced by dexamethasone.

    PubMed

    Bian, Xuting; Zhong, Hongyu; Li, Fen; Cai, Yulong; Li, Xin; Wang, Lian; Fan, Xiaotang

    2016-09-01

    Dexamethasone (DEX) exposure during early postnatal life produces permanent neuromotor and intellectual deficits and stunts cerebellar growth. The liver X receptor (LXR) plays important roles in CNS development. However, the effects of LXR on the DEX-mediated impairment of cerebellar development remain undetermined. Thus, mice were pretreated with LXR agonist TO901317 (TO) and were later exposed to DEX to evaluate its protective effects on DEX-mediated deficit during cerebellar development. The results showed that an acute exposure of DEX on postnatal day 7 resulted in a significant impairment in cerebellar development and decreased the proliferation of granule neuron precursors in the external granule layer of cerebellum. This effect was attenuated by pretreatment with TO. We further found that the decrease in the proliferation caused by DEX occurred via up-regulation of glucocorticoid receptor and p27kip1, which could be partially prevented by LXR agonist pretreatment. Overall, our results suggest that LXR agonist pretreatment could protect against DEX-induced deficits in cerebellar development in postnatal mice and may thus be perspective recruited to counteract such GC side effects. PMID:27369072

  8. Agonist-induced redistribution of calponin in contractile vascular smooth muscle cells.

    PubMed

    Parker, C A; Takahashi, K; Tao, T; Morgan, K G

    1994-11-01

    Calponin is a thin filament-associated protein that has been implicated in playing an auxiliary regulatory role in smooth muscle contraction. We have used immunofluorescence and digital imaging microscopy to determine the cellular distribution of calponin in single cells freshly isolated from the ferret portal vein. In resting cells calponin is distributed throughout the cytosol, associated with filamentous structures, and is excluded from the nuclear area of the cell. The ratio of surface cortex-associated calponin to cytosol-associated calponin (R) was found to be 0.639 +/- 0.021. Upon depolarization of the cell with physiological saline solution containing 96 mM K+, the distribution of calponin did not change from that of a resting cell (R = 0.678 +/- 0.025, P = 0.369). Upon stimulation with an agonist (10 microM phenylephrine) that is known to activate protein kinase C (PKC) in these cells, the cellular distribution of calponin changed from primarily cytosolic to primarily surface cortex associated (R = 1.24 +/- 0.085, P < 0.001). This agonist-induced redistribution of calponin was partially inhibited by the PKC inhibitor calphostin, overlapped in time with PKC translocation, and preceded contraction of these cells. These results suggest that the physiological function of calponin may be to mediate agonist-activated contraction via a PKC-dependent pathway. PMID:7526695

  9. Identification of SR3335 (ML176): a Synthetic RORα Selective Inverse Agonist

    PubMed Central

    Kumar, Naresh; Kojetin, Douglas J.; Solt, Laura A.; Kumar, K. Ganesh; Nuhant, Philippe; Duckett, Derek R.; Cameron, Michael D.; Butler, Andrew A.; Roush, William R.; Griffin, Patrick R.; Burris, Thomas P.

    2010-01-01

    Several nuclear receptors (NRs) are still characterized as orphan receptors since ligands have not yet been identified for these proteins. The retinoic acid receptor-related receptors (RORs) have no well-defined physiological ligands. Here, we describe the identification of a selective RORα synthetic ligand, SR3335 (ML-176). SR3335 directly binds to RORα, but not other RORs, and functions as a selective partial inverse agonist of RORα in cell-based assays. Furthermore, SR3335 suppresses the expression of endogenous RORα target genes in HepG2 involved in hepatic gluconeogenesis including glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. Pharmacokinetic studies indicate that SR3335 displays reasonable exposure following an i.p. injection into mice. We assess the ability of SR3335 to suppress gluconeogenesis in vivo using a diet induced obesity (DIO) mouse model where the mice where treated with 15 mg/kg b.i.d., i.p. for 6-days followed by a pyruvate tolerance test. SR3335 treated mice displayed lower plasma glucose levels following the pyruvate challenge consistent with suppression of gluconeogenesis. Thus, we have identified the first selective synthetic RORα inverse agonist and this compound can be utilized as a chemical tool to probe the function of this receptor both in vitro and in vivo. Additionally, our data suggests that RORα inverse agonists may hold utility for suppression of elevated hepatic glucose production in type 2 diabetics. PMID:21090593

  10. Conformational variability of the glycine receptor M2 domain in response to activation by different agonists.

    PubMed

    Pless, Stephan A; Dibas, Mohammed I; Lester, Henry A; Lynch, Joseph W

    2007-12-01

    Models describing the structural changes mediating Cys loop receptor activation generally give little attention to the possibility that different agonists may promote activation via distinct M2 pore-lining domain structural rearrangements. We investigated this question by comparing the effects of different ligands on the conformation of the external portion of the homomeric alpha1 glycine receptor M2 domain. Conformational flexibility was assessed by tethering a rhodamine fluorophore to cysteines introduced at the 19' or 22' positions and monitoring fluorescence and current changes during channel activation. During glycine activation, fluorescence of the label attached to R19'C increased by approximately 20%, and the emission peak shifted to lower wavelengths, consistent with a more hydrophobic fluorophore environment. In contrast, ivermectin activated the receptors without producing a fluorescence change. Although taurine and beta-alanine were weak partial agonists at the alpha1R19'C glycine receptor, they induced large fluorescence changes. Propofol, which drastically enhanced these currents, did not induce a glycine-like blue shift in the spectral emission peak. The inhibitors strychnine and picrotoxin elicited fluorescence and current changes as expected for a competitive antagonist and an open channel blocker, respectively. Glycine and taurine (or beta-alanine) also produced an increase and a decrease, respectively, in the fluorescence of a label attached to the nearby L22'C residue. Thus, results from two separate labeled residues support the conclusion that the glycine receptor M2 domain responds with distinct conformational changes to activation by different agonists. PMID:17911099

  11. Structural complexes of the agonist, inverse agonist and antagonist bound C5a receptor: insights into pharmacology and signaling.

    PubMed

    Rana, Soumendra; Sahoo, Amita Rani; Majhi, Bharat Kumar

    2016-04-26

    The C5a receptor (C5aR) is a pharmacologically important G-protein coupled receptor (GPCR) that interacts with (h)C5a, by recruiting both the "orthosteric" sites (site1 at the N-terminus and site2 at the ECS, extra cellular surface) on C5aR in a two site-binding model. However, the complex pharmacological landscape and the distinguishing chemistry operating either at the "orthosteric" site1 or at the functionally important "orthosteric" site2 of C5aR are still not clear, which greatly limits the understanding of C5aR pharmacology. One of the major bottlenecks is the lack of an experimental structure or a refined model structure of C5aR with appropriately defined active sites. The study attempts to understand the pharmacology at the "orthosteric" site2 of C5aR rationally by generating a highly refined full-blown model structure of C5aR through advanced molecular modeling techniques, and further subjecting it to automated docking and molecular dynamics (MD) studies in the POPC bilayer. The first series of structural complexes of C5aR respectively bound to a linear native peptide agonist ((h)C5a-CT), a small molecule inverse agonist (NDT) and a cyclic peptide antagonist (PMX53) are reported, apparently establishing the unique pharmacological landscape of the "orthosteric" site2, which also illustrates an energetically distinct but coherent competitive chemistry ("cation-π" vs. "π-π" interactions) involved in distinguishing the established ligands known for targeting the "orthosteric" site2 of C5aR. Over a total of 1 μs molecular dynamics (MD) simulation in the POPC bilayer, it is evidenced that while the agonist prefers a "cation-π" interaction, the inverse agonist prefers a "cogwheel/L-shaped" interaction in contrast to the "edge-to-face/T-shaped" type π-π interactions demonstrated by the antagonist by engaging the F275(7.28) of the C5aR. In the absence of a NMR or crystallographically guided model structure of C5aR, the computational model complexes not only

  12. Structure-activity relationships of vanilloid receptor agonists for arteriolar TRPV1

    PubMed Central

    Czikora, Á; Lizanecz, E; Bakó, P; Rutkai, I; Ruzsnavszky, F; Magyar, J; Pórszász, R; Kark, T; Facskó, A; Papp, Z; Édes, I; Tóth, A

    2012-01-01

    BACKGROUND AND PURPOSE The transient receptor potential vanilloid 1 (TRPV1) plays a role in the activation of sensory neurons by various painful stimuli and is a therapeutic target. However, functional TRPV1 that affect microvascular diameter are also expressed in peripheral arteries and we attempted to characterize this receptor. EXPERIMENTAL APPROACH Sensory TRPV1 activation was measured in rats by use of an eye wiping assay. Arteriolar TRPV1-mediated smooth muscle specific responses (arteriolar diameter, changes in intracellular Ca2+) were determined in isolated, pressurized skeletal muscle arterioles obtained from the rat and wild-type or TRPV1−/− mice and in canine isolated smooth muscle cells. The vascular pharmacology of the TRPV1 agonists (potency, efficacy, kinetics of action and receptor desensitization) was determined in rat isolated skeletal muscle arteries. KEY RESULTS Capsaicin evoked a constrictor response in isolated arteries similar to that mediated by noradrenaline, this was absent in arteries from TRPV1 knockout mice and competitively inhibited by TRPV1 antagonist AMG9810. Capsaicin increased intracellular Ca2+ in the arteriolar wall and in isolated smooth muscle cells. The TRPV1 agonists evoked similar vascular constrictions (MSK-195 and JYL-79) or were without effect (resiniferatoxin and JYL-273), although all increased the number of responses (sensory activation) in the eye wiping assay. Maximal doses of all agonists induced complete desensitization (tachyphylaxis) of arteriolar TRPV1 (with the exception of capsaicin). Responses to the partial agonist JYL-1511 suggested 10% TRPV1 activation is sufficient to evoke vascular tachyphylaxis without sensory activation. CONCLUSIONS AND IMPLICATIONS Arteriolar TRPV1 have different pharmacological properties from those located on sensory neurons in the rat. PMID:21883148

  13. Serotonergic agonists stimulate inositol lipid metabolism in rabbit platelets

    SciTech Connect

    Schaechter, M.; Godfrey, P.P.; Minchin, M.C.W.; McClue, S.J.; Young, M.M.

    1985-10-28

    The metabolism of inositol phospholipids in response to serotonergic agonists was investigated in rabbit platelets. In platelets prelabelled with (/sup 3/H)-inositol, in a medium containing 10 mM LiCl which blocks the enzyme inositol-1-phosphatase, 5-hydroxytryptamine (5-HT) caused a dose-dependent accumulation of inositol phosphates (IP). This suggests a phospholipase-C-mediated breakdown of phosphoinositides. Ketanserin, a selective 5-HT/sub 2/ antagonist, was a potent inhibitor of the 5-HT response, with a Ki of 28 nM, indicating that 5-HT is activating receptors of the 5-HT/sub 2/ type in the platelet. Lysergic acid diethylamide (LSD) and quipazine also caused dose-related increases in inositol phosphate levels, though these were considerably less than those produced by 5-HT. These results show that relatively small changes in phosphoinositide metabolism induced by serotonergic agonists can be investigated in the rabbit platelet, and this cell may therefore be a useful model for the study of some 5-HT receptors. 30 references, 4 figures.

  14. Long-Acting Beta Agonists Enhance Allergic Airway Disease

    PubMed Central

    Knight, John M.; Mak, Garbo; Shaw, Joanne; Porter, Paul; McDermott, Catherine; Roberts, Luz; You, Ran; Yuan, Xiaoyi; Millien, Valentine O.; Qian, Yuping; Song, Li-Zhen; Frazier, Vincent; Kim, Choel; Kim, Jeong Joo; Bond, Richard A.; Milner, Joshua D.; Zhang, Yuan; Mandal, Pijus K.; Luong, Amber; Kheradmand, Farrah

    2015-01-01

    Asthma is one of the most common of medical illnesses and is treated in part by drugs that activate the beta-2-adrenoceptor (β2-AR) to dilate obstructed airways. Such drugs include long acting beta agonists (LABAs) that are paradoxically linked to excess asthma-related mortality. Here we show that LABAs such as salmeterol and structurally related β2-AR drugs such as formoterol and carvedilol, but not short-acting agonists (SABAs) such as albuterol, promote exaggerated asthma-like allergic airway disease and enhanced airway constriction in mice. We demonstrate that salmeterol aberrantly promotes activation of the allergic disease-related transcription factor signal transducer and activator of transcription 6 (STAT6) in multiple mouse and human cells. A novel inhibitor of STAT6, PM-242H, inhibited initiation of allergic disease induced by airway fungal challenge, reversed established allergic airway disease in mice, and blocked salmeterol-dependent enhanced allergic airway disease. Thus, structurally related β2-AR ligands aberrantly activate STAT6 and promote allergic airway disease. This untoward pharmacological property likely explains adverse outcomes observed with LABAs, which may be overcome by agents that antagonize STAT6. PMID:26605551

  15. Agonistic induction of PPARγ reverses cigarette smoke–induced emphysema

    PubMed Central

    Shan, Ming; You, Ran; Yuan, Xiaoyi; Frazier, Michael V.; Porter, Paul; Seryshev, Alexander; Hong, Jeong-Soo; Song, Li-zhen; Zhang, Yiqun; Hilsenbeck, Susan; Whitehead, Lawrence; Zarinkamar, Nazanin; Perusich, Sarah; Corry, David B.; Kheradmand, Farrah

    2014-01-01

    The development of emphysema in humans and mice exposed to cigarette smoke is promoted by activation of an adaptive immune response. Lung myeloid dendritic cells (mDCs) derived from cigarette smokers activate autoreactive Th1 and Th17 cells. mDC-dependent activation of T cell subsets requires expression of the SPP1 gene, which encodes osteopontin (OPN), a pleiotropic cytokine implicated in autoimmune responses. The upstream molecular events that promote SPP1 expression and activate mDCs in response to smoke remain unknown. Here, we show that peroxisome proliferator–activated receptor γ (PPARG/Pparg) expression was downregulated in mDCs of smokers with emphysema and mice exposed to chronic smoke. Conditional knockout of PPARγ in APCs using Cd11c-Cre Ppargflox/flox mice led to spontaneous lung inflammation and emphysema that resembled the phenotype of smoke-exposed mice. The inflammatory phenotype of Cd11c-Cre Ppargflox/flox mice required OPN, suggesting an antiinflammatory mechanism in which PPARγ negatively regulates Spp1 expression in the lung. A 2-month treatment with a PPARγ agonist reversed emphysema in WT mice despite continual smoke exposure. Furthermore, endogenous PPARγ agonists were reduced in the plasma of smokers with emphysema. These findings reveal a proinflammatory pathway, in which reduced PPARγ activity promotes emphysema, and suggest that targeting this pathway in smokers could prevent and reverse emphysema. PMID:24569375

  16. A novel PPARgamma agonist monascin's potential application in diabetes prevention.

    PubMed

    Hsu, Wei-Hsuan; Pan, Tzu-Ming

    2014-07-25

    Edible fungi of the Monascus species have been used as traditional Chinese medicine in eastern Asia for several centuries. Monascus-fermented products possess a number of functional secondary metabolites, including the anti-inflammatory pigments monascin and ankaflavin. Monascin has been shown to prevent or ameliorate several conditions, including hypercholesterolemia, hyperlipidemia, diabetes, and obesity. Recently, monascin has been shown to improve hyperglycemia, attenuate oxidative stress, inhibit insulin resistance, and suppress inflammatory cytokine production. In our recent study, we have found that monascin is a peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist. The PPARgamma agonist activity had been investigated and its exerted benefits are inhibition of inflammation in methylglyoxal (MG)-treated rats, prevention of pancreas impairment causing advanced glycation endproducts (AGEs), promotion of insulin expression in vivo and in vitro, and attenuated carboxymethyllysine (CML)-induced hepatic stellate cell (HSC) activation in the past several years. Moreover, our studies also demonstrated that monascin also activated nuclear factor-erythroid 2-related factor 2 (Nrf2) in pancreatic RIN-m5F cell line thereby invading methylglyoxal induced pancreas dysfunction. In this review, we focus on the chemo-preventive properties of monascin against metabolic syndrome through PPARgamma and Nrf2 pathways. PMID:24752777

  17. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity

    PubMed Central

    Galle-Treger, Lauriane; Suzuki, Yuzo; Patel, Nisheel; Sankaranarayanan, Ishwarya; Aron, Jennifer L.; Maazi, Hadi; Chen, Lin; Akbari, Omid

    2016-01-01

    Allergic asthma is a complex and chronic inflammatory disorder that is associated with airway hyperreactivity (AHR) and driven by Th2 cytokine secretion. Type 2 innate lymphoid cells (ILC2s) produce large amounts of Th2 cytokines and contribute to the development of AHR. Here, we show that ILC2s express the α7-nicotinic acetylcholine receptor (α7nAChR), which is thought to have an anti-inflammatory role in several inflammatory diseases. We show that engagement of a specific agonist with α7nAChR on ILC2s reduces ILC2 effector function and represses ILC2-dependent AHR, while decreasing expression of ILC2 key transcription factor GATA-3 and critical inflammatory modulator NF-κB, and reducing phosphorylation of upstream kinase IKKα/β. Additionally, the specific α7nAChR agonist reduces cytokine production and AHR in a humanized ILC2 mouse model. Collectively, our data suggest that α7nAChR expressed by ILC2s is a potential therapeutic target for the treatment of ILC2-mediated asthma. PMID:27752043

  18. A novel PPARgamma agonist monascin's potential application in diabetes prevention.

    PubMed

    Hsu, Wei-Hsuan; Pan, Tzu-Ming

    2014-07-25

    Edible fungi of the Monascus species have been used as traditional Chinese medicine in eastern Asia for several centuries. Monascus-fermented products possess a number of functional secondary metabolites, including the anti-inflammatory pigments monascin and ankaflavin. Monascin has been shown to prevent or ameliorate several conditions, including hypercholesterolemia, hyperlipidemia, diabetes, and obesity. Recently, monascin has been shown to improve hyperglycemia, attenuate oxidative stress, inhibit insulin resistance, and suppress inflammatory cytokine production. In our recent study, we have found that monascin is a peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist. The PPARgamma agonist activity had been investigated and its exerted benefits are inhibition of inflammation in methylglyoxal (MG)-treated rats, prevention of pancreas impairment causing advanced glycation endproducts (AGEs), promotion of insulin expression in vivo and in vitro, and attenuated carboxymethyllysine (CML)-induced hepatic stellate cell (HSC) activation in the past several years. Moreover, our studies also demonstrated that monascin also activated nuclear factor-erythroid 2-related factor 2 (Nrf2) in pancreatic RIN-m5F cell line thereby invading methylglyoxal induced pancreas dysfunction. In this review, we focus on the chemo-preventive properties of monascin against metabolic syndrome through PPARgamma and Nrf2 pathways.

  19. Mood disorders, circadian rhythms, melatonin and melatonin agonists.

    PubMed

    Quera Salva, M A; Hartley, S

    2012-01-01

    Recent advances in the understanding of circadian rhythms have led to an interest in the treatment of major depressive disorder with chronobiotic agents. Many tissues have autonomous circadian rhythms, which are orchestrated by the master clock, situated in the suprachiasmatic nucleus (SNC). Melatonin (N-acetyl-5-hydroxytryptamine) is secreted from the pineal gland during darkness. Melatonin acts mainly on MT1 and MT2 receptors, which are present in the SNC, regulating physiological and neuroendocrine functions, including circadian entrainment, referred to as the chronobiotic effet. Circadian rhythms has been shown to be either misaligned or phase shifted or decreased in amplitude in both acute episodes and relapse of major depressive disorder (MDD) and bipolar disorder. Manipulation of circadian rhythms either using physical treatments (such as high intensity light) or behavioral therapy has shown promise in improving symptoms. Pharmacotherapy using melatonin and pure melatonin receptor agonists, while improving sleep, has not been shown to improve symptoms of depression. A novel antidepressant, agomelatine, combines 5HT2c antagonist and melatonin agonist action, and has shown promise in both acute treatment of MDD and in preventing relapse.

  20. Pharmacology and toxicology of Cannabis derivatives and endocannabinoid agonists.

    PubMed

    Gerra, Gilberto; Zaimovic, Amir; Gerra, Maria L; Ciccocioppo, Roberto; Cippitelli, Andrea; Serpelloni, Giovanni; Somaini, Lorenzo

    2010-01-01

    For centuries Cannabis sativa and cannabis extracts have been used in natural medicine. Delta(9)-tetrahydrocannabinol (THC) is the main active ingredient of Cannabis. THC seems to be responsible for most of the pharmacological and therapeutic actions of cannabis. In a few countries THC extracts (i.e. Sativex) or THC derivatives such as nabilone, and dronabinol are used in the clinic for the treatment of several pathological conditions like chemotherapy-induced nausea and vomiting, multiple sclerosis and glaucoma. On the other hand the severe side effects and the high abuse liability of these agents represent a serious limitation in their medical use. In addition, diversion in the use of these active ingredients for recreational purpose is a concern. Over recent years, alternative approaches using synthetic cannabinoid receptor agonists or agents acting as activators of the endocannabinoid systems are under scrutiny with the hope to develop more effective and safer clinical applications. Likely, in the near future few of these new molecules will be available for clinical use. The present article review recent study and patents with focus on the cannabinoid system as a target for the treatment of central nervous system disorders with emphasis on agonists. PMID:19832688

  1. Pharmacology and toxicology of Cannabis derivatives and endocannabinoid agonists.

    PubMed

    Gerra, Gilberto; Zaimovic, Amir; Gerra, Maria L; Ciccocioppo, Roberto; Cippitelli, Andrea; Serpelloni, Giovanni; Somaini, Lorenzo

    2010-01-01

    For centuries Cannabis sativa and cannabis extracts have been used in natural medicine. Delta(9)-tetrahydrocannabinol (THC) is the main active ingredient of Cannabis. THC seems to be responsible for most of the pharmacological and therapeutic actions of cannabis. In a few countries THC extracts (i.e. Sativex) or THC derivatives such as nabilone, and dronabinol are used in the clinic for the treatment of several pathological conditions like chemotherapy-induced nausea and vomiting, multiple sclerosis and glaucoma. On the other hand the severe side effects and the high abuse liability of these agents represent a serious limitation in their medical use. In addition, diversion in the use of these active ingredients for recreational purpose is a concern. Over recent years, alternative approaches using synthetic cannabinoid receptor agonists or agents acting as activators of the endocannabinoid systems are under scrutiny with the hope to develop more effective and safer clinical applications. Likely, in the near future few of these new molecules will be available for clinical use. The present article review recent study and patents with focus on the cannabinoid system as a target for the treatment of central nervous system disorders with emphasis on agonists.

  2. Identification of agonists for a group of human odorant receptors

    PubMed Central

    Gonzalez-Kristeller, Daniela C.; do Nascimento, João B. P.; Galante, Pedro A. F.; Malnic, Bettina

    2015-01-01

    Olfaction plays a critical role in several aspects of the human life. Odorants are detected by hundreds of odorant receptors (ORs) which belong to the superfamily of G protein-coupled receptors. These receptors are expressed in the olfactory sensory neurons of the nose. The information provided by the activation of different combinations of ORs in the nose is transmitted to the brain, leading to odorant perception and emotional and behavioral responses. There are ~400 intact human ORs, and to date only a small percentage of these receptors (~10%) have known agonists. The determination of the specificity of the human ORs will contribute to a better understanding of how odorants are discriminated by the olfactory system. In this work, we aimed to identify human specific ORs, that is, ORs that are present in humans but absent from other species, and their corresponding agonists. To do this, we first selected 22 OR gene sequences from the human genome with no counterparts in the mouse, rat or dog genomes. Then we used a heterologous expression system to screen a subset of these human ORs against a panel of odorants of biological relevance, including foodborne aroma volatiles. We found that different types of odorants are able to activate some of these previously uncharacterized human ORs. PMID:25784876

  3. How does agonistic behaviour differ in albino and pigmented fish?

    PubMed Central

    Horký, Pavel; Wackermannová, Marie

    2016-01-01

    In addition to hypopigmentation of the skin and red iris colouration, albino animals also display distinct physiological and behavioural alterations. However, information on the social interactions of albino animals is rare and has mostly been limited to specially bred strains of albino rodents and animals from unique environments in caves. Differentiating between the effects of albinism and domestication on behaviour in rodents can be difficult, and social behaviour in cave fish changes according to species-specific adaptations to conditions of permanent darkness. The agonistic behaviours of albino offspring of pigmented parents have yet to be described. In this study, we observed agonistic behaviour in albino and pigmented juvenile Silurus glanis catfish. We found that the total number of aggressive interactions was lower in albinos than in pigmented catfish. The distance between conspecifics was also analysed, and albinos showed a tendency towards greater separation from their same-coloured conspecifics compared with pigmented catfish. These results demonstrate that albinism can be associated with lower aggressiveness and with reduced shoaling behaviour preference, as demonstrated by a tendency towards greater separation of albinos from conspecifics. PMID:27114883

  4. Modulation of PPAR subtype selectivity. Part 2: Transforming PPARα/γ dual agonist into α selective PPAR agonist through bioisosteric modification.

    PubMed

    Zaware, Pandurang; Shah, Shailesh R; Pingali, Harikishore; Makadia, Pankaj; Thube, Baban; Pola, Suresh; Patel, Darshit; Priyadarshini, Priyanka; Suthar, Dinesh; Shah, Maanan; Jamili, Jeevankumar; Sairam, Kalapatapu V V M; Giri, Suresh; Patel, Lala; Patel, Harilal; Sudani, Hareshkumar; Patel, Hiren; Jain, Mukul; Patel, Pankaj; Bahekar, Rajesh

    2011-01-15

    A novel series of oxime containing benzyl-1,3-dioxane-r-2-carboxylic acid derivatives (6a-k) were designed as selective PPARα agonists, through bioisosteric modification in the lipophilic tail region of PPARα/γ dual agonist. Some of the test compounds (6a, 6b, 6c and 6f) showed high selectivity towards PPARα over PPARγ in vitro. Further, highly potent and selective PPARα agonist 6c exhibited significant antihyperglycemic and antihyperlipidemic activity in vivo, along with its improved pharmacokinetic profile. Favorable in-silico interaction of 6c with PPARα binding pocket correlate its in vitro selectivity profile toward PPARα over PPARγ. Together, these results confirm discovery of novel series of oxime based selective PPARα agonists for the safe and effective treatment of various metabolic disorders. PMID:21195611

  5. Differential Effects of D-Cycloserine and ACBC at NMDA Receptors in the Rat Entorhinal Cortex Are Related to Efficacy at the Co-Agonist Binding Site.

    PubMed

    Lench, Alex M; Robson, Emma; Jones, Roland S G

    2015-01-01

    Partial agonists at the NMDA receptor co-agonist binding site may have potential therapeutic efficacy in a number of cognitive and neurological conditions. The entorhinal cortex is a key brain area in spatial memory and cognitive processing. At synapses in the entorhinal cortex, NMDA receptors not only mediate postsynaptic excitation but are expressed in presynaptic terminals where they tonically facilitate glutamate release. In a previous study we showed that the co-agonist binding site of the presynaptic NMDA receptor is endogenously and tonically activated by D-serine released from astrocytes. In this study we determined the effects of two co-agonist site partial agonists on both presynaptic and postsynaptic NMDA receptors in layer II of the entorhinal cortex. The high efficacy partial agonist, D-cycloserine, decreased the decay time of postsynaptic NMDA receptor mediated currents evoked by electrical stimulation, but had no effect on amplitude or other kinetic parameters. In contrast, a lower efficacy partial agonist, 1-aminocyclobutane-1-carboxylic acid, decreased decay time to a greater extent than D-cycloserine, and also reduced the peak amplitude of the evoked NMDA receptor mediated postsynaptic responses. Presynaptic NMDA receptors, (monitored indirectly by effects on the frequency of AMPA receptor mediated spontaneous excitatory currents) were unaffected by D-cycloserine, but were reduced in effectiveness by 1-aminocyclobutane-1-carboxylic acid. We discuss these results in the context of the effect of endogenous regulation of the NMDA receptor co-agonist site on receptor gating and the potential therapeutic implications for cognitive disorders.

  6. Benzodiazepine Site Agonists Differentially Alter Acetylcholine Release in Rat Amygdala

    PubMed Central

    Hambrecht-Wiedbusch, Viviane S.; Mitchell, Melinda F.; Firn, Kelsie A.; Baghdoyan, Helen A.; Lydic, Ralph

    2014-01-01

    Background Agonist binding at the benzodiazepine site of γ-aminobutric acid type A receptors diminishes anxiety and insomnia by actions in the amygdala. The neurochemical effects of benzodiazepine-site agonists remain incompletely understood. Cholinergic neurotransmission modulates amygdala function, and in this study we tested the hypothesis that benzodiazepine-site agonists alter acetylcholine (ACh) release in the amygdala. Methods Microdialysis and high performance liquid chromatography quantified ACh release in the amygdala of Sprague-Dawley rats (n=33). ACh was measured before and after IV administration (3 mg/kg) of midazolam or eszopiclone, with and without anesthesia. ACh in isoflurane-anesthetized rats during dialysis with Ringer’s solution(control) was compared to ACh release during dialysis with Ringer’s solution containing (100 μM) midazolam, diazepam, eszopiclone, or zolpidem. Results In unanesthetized rats, ACh in the amygdala was decreased by IV midazolam (−51.1%; P=0.0029; 95% CI= −73.0% to −29.2%) and eszopiclone (−39.6%; P=0.0222; 95% CI= −69.8% to −9.3%). In anesthetized rats, ACh in the amygdala was decreased by IV administration of midazolam (−46.2%; P=0.0041; 95% CI= −67.9% to −24.5%) and eszopiclone (−34.0%; P=0.0009; 95% CI= −44.7% to −23.3%), and increased by amygdala delivery of diazepam (43.2%; P=0.0434; 95% CI= 2.1% to 84.3%), and eszopiclone (222.2%; P=0.0159; 95% CI= 68.5% to 375.8%). Conclusions ACh release in the amygdala was decreased by IV delivery of midazolam and eszopiclone. Dialysis delivery directly into the amygdala caused either increased (eszopiclone and diazepam) or likely no significant change (midazolam and zolpidem) in ACh release. These contrasting effects of delivery route on ACh release support the interpretation that systemically administered midazolam and eszopiclone decrease ACh release in the amygdala by acting on neuronal systems outside of the amygdala. PMID:24842176

  7. Discriminative stimulus properties of indorenate, a serotonin agonist.

    PubMed Central

    Velázquez-Martínez, D N; López Cabrera, M; Sánchez, H; Ramírez, J I; Hong, E

    1999-01-01

    OBJECTIVE: To determine whether indorenate, a serotonin-receptor agonist, can exert discriminative control over operant responses, to establish the temporal course of discriminative control and to compare its stimulus properties to a (5-HT)IA receptor agonist. [3H]-8-hydroxy-2-(di-N-propylamino) tetralin (8-OH-DPAT). DESIGN: Prospective animal study. ANIMALS: Ten male Wistar rats. INTERVENTIONS: Rats were trained to press either of 2 levers for sucrose solution according to a fixed ratio schedule, which was gradually increased. Rats were given injections of either indorenate or saline solution during discrimination training. Once they had achieved an 83% accuracy rate, rats underwent generalization tests after having received a different dose of indorenate, the training dose of indorenate at various intervals before the test, various doses of 8-OH-DPT, or NAN-190 administered before indorenate or 8-OH-DPAT. OUTCOME MEASURES: Distribution of responses between the 2 levers before the first reinforcer of the session, response rate for all the responses in the session, and a discrimination index that expressed the drug-appropriate responses as a proportion of the total responses. RESULTS: Indorenate administration resulted in discriminative control over operant responses, maintained at fixed ratio 10, at a dose of 10.0 mg/kg (but not 3.0 mg/kg). When the interval between the administration of indorenate and the start of the session was varied, the time course of its cue properties followed that of its described effects on 5-HT turnover. In generalization tests, the discrimination index was a function of the dose of indorenate employed; moreover, administration of 8-OH-DPAT (from 0.1 to 1.0 mg/kg) fully mimicked the stimulus properties of indorenate in a dose-dependent way. The (5-HT)IA antagonist NAN-190 prevented the stimulus generalization from indorenate to 8-OH-DPAT. Also, NAN-190 antagonized the stimulus control of indorenate when administered 45 minutes before

  8. Impact of Efficacy at the μ-Opioid Receptor on Antinociceptive Effects of Combinations of μ-Opioid Receptor Agonists and Cannabinoid Receptor Agonists

    PubMed Central

    Maguire, David R.

    2014-01-01

    Cannabinoid receptor agonists, such as Δ9-tetrahydrocannabinol (Δ9-THC), enhance the antinociceptive effects of μ-opioid receptor agonists, which suggests that combining cannabinoids with opioids would improve pain treatment. Combinations with lower efficacy agonists might be preferred and could avoid adverse effects associated with large doses; however, it is unclear whether interactions between opioids and cannabinoids vary across drugs with different efficacy. The antinociceptive effects of μ-opioid receptor agonists alone and in combination with cannabinoid receptor agonists were studied in rhesus monkeys (n = 4) using a warm water tail withdrawal procedure. Etorphine, fentanyl, morphine, buprenorphine, nalbuphine, Δ9-THC, and CP 55,940 (2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl) cyclohexyl]-5-(2-methyloctan-2-yl)phenol) each increased tail withdrawal latency. Pretreatment with doses of Δ9-THC (1.0 mg/kg) or CP 55,940 (0.032 mg/kg) that were ineffective alone shifted the fentanyl dose-effect curve leftward 20.6- and 52.9-fold, respectively, and the etorphine dose-effect curve leftward 12.4- and 19.6-fold, respectively. Δ9-THC and CP 55,940 shifted the morphine dose-effect curve leftward only 3.4- and 7.9-fold, respectively, and the buprenorphine curve only 5.4- and 4.1-fold, respectively. Neither Δ9-THC nor CP 55,940 significantly altered the effects of nalbuphine. Cannabinoid receptor agonists increase the antinociceptive potency of higher efficacy opioid receptor agonists more than lower efficacy agonists; however, because much smaller doses of each drug can be administered in combinations while achieving adequate pain relief and that other (e.g., abuse-related) effects of opioids do not appear to be enhanced by cannabinoids, these results provide additional support for combining opioids with cannabinoids to treat pain. PMID:25194020

  9. Yawning and locomotor behavior induced by dopamine receptor agonists in mice and rats.

    PubMed

    Li, Su-Min; Collins, Gregory T; Paul, Noel M; Grundt, Peter; Newman, Amy H; Xu, Ming; Grandy, David K; Woods, James H; Katz, Jonathan L

    2010-05-01

    Dopaminergic (DA) agonist-induced yawning in rats seems to be mediated by DA D3 receptors, and low doses of several DA agonists decrease locomotor activity, an effect attributed to presynaptic D2 receptors. Effects of several DA agonists on yawning and locomotor activity were examined in rats and mice. Yawning was reliably produced in rats, and by the cholinergic agonist, physostigmine, in both the species. However, DA agonists were ineffective in producing yawning in Swiss-Webster or DA D2R and DA D3R knockout or wild-type mice. The drugs significantly decreased locomotor activity in rats at one or two low doses, with activity returning to control levels at higher doses. In mice, the drugs decreased locomotion across a 1000-10 000-fold range of doses, with activity at control levels (U-91356A) or above control levels [(+/-)-7-hydroxy-2-dipropylaminotetralin HBr, quinpirole] at the highest doses. Low doses of agonists decreased locomotion in all mice except the DA D2R knockout mice, but were not antagonized by DA D2R or D3R antagonists (L-741 626, BP 897, or PG01037). Yawning does not provide a selective in-vivo indicator of DA D3R agonist activity in mice. Decreases in mouse locomotor activity by the DA agonists seem to be mediated by D2 DA receptors.

  10. Prolonging Survival of Corneal Transplantation by Selective Sphingosine-1-Phosphate Receptor 1 Agonist

    PubMed Central

    Gao, Min; Liu, Yong; Xiao, Yang; Han, Gencheng; Jia, Liang; Wang, Liqiang; Lei, Tian; Huang, Yifei

    2014-01-01

    Corneal transplantation is the most used therapy for eye disorders. Although the cornea is somewhat an immune privileged organ, immune rejection is still the major problem that reduces the success rate. Therefore, effective chemical drugs that regulate immunoreactions are needed to improve the outcome of corneal transplantations. Here, a sphingosine-1-phosphate receptor 1 (S1P1) selective agonist was systematically evaluated in mouse allogeneic corneal transplantation and compared with the commonly used immunosuppressive agents. Compared with CsA and the non-selective sphingosine 1-phosphate (S1P) receptor agonist FTY720, the S1P1 selective agonist can prolong the survival corneal transplantation for more than 30 days with a low immune response. More importantly, the optimal dose of the S1P1 selective agonist was much less than non-selective S1P receptor agonist FTY720, which would reduce the dose-dependent toxicity in drug application. Then we analyzed the mechanisms of the selected S1P1 selective agonist on the immunosuppression. The results shown that the S1P1 selective agonist could regulate the distribution of the immune cells with less CD4+ T cells and enhanced Treg cells in the allograft, moreover the expression of anti-inflammatory cytokines TGF-β1 and IL-10 unregulated which can reduce the immunoreactions. These findings suggest that S1P1 selective agonist may be a more appropriate immunosuppressive compound to effectively prolong mouse allogeneic corneal grafts survival. PMID:25216235

  11. Conformationally constrained farnesoid X receptor (FXR) agonists: Naphthoic acid-based analogs of GW 4064.

    PubMed

    Akwabi-Ameyaw, Adwoa; Bass, Jonathan Y; Caldwell, Richard D; Caravella, Justin A; Chen, Lihong; Creech, Katrina L; Deaton, David N; Jones, Stacey A; Kaldor, Istvan; Liu, Yaping; Madauss, Kevin P; Marr, Harry B; McFadyen, Robert B; Miller, Aaron B; Iii, Frank Navas; Parks, Derek J; Spearing, Paul K; Todd, Dan; Williams, Shawn P; Wisely, G Bruce

    2008-08-01

    Starting from the known FXR agonist GW 4064 1a, a series of stilbene replacements were prepared. The 6-substituted 1-naphthoic acid 1b was an equipotent FXR agonist with improved developability parameters relative to 1a. Analog 1b also reduced the severity of cholestasis in the ANIT acute cholestatic rat model.

  12. Agonist-induced platelet procoagulant activity requires shear and a Rac1-dependent signaling mechanism

    PubMed Central

    Delaney, Michael Keegan; Liu, Junling; Kim, Kyungho; Shen, Bo; Stojanovic-Terpo, Aleksandra; Zheng, Yi; Cho, Jaehyung

    2014-01-01

    Activated platelets facilitate blood coagulation by exposing phosphatidylserine (PS) and releasing microvesicles (MVs). However, the potent physiological agonists thrombin and collagen poorly induce PS exposure when a single agonist is used. To obtain a greater procoagulant response, thrombin is commonly used in combination with glycoprotein VI agonists. However, even under these conditions, only a percentage of platelets express procoagulant activity. To date, it remains unclear why platelets poorly expose PS even when stimulated with multiple agonists and what the signaling pathways are of soluble agonist-induced platelet procoagulant activity. Here we show that physiological levels of shear present in blood significantly enhance agonist-induced platelet PS exposure and MV release, enabling low doses of a single agonist to induce full-scale platelet procoagulant activity. PS exposed on the platelet surface was immediately released as MVs, revealing a tight coupling between the 2 processes under shear. Using platelet-specific Rac1−/− mice, we discovered that Rac1 plays a common role in mediating the low-dose agonist-induced procoagulant response independent of platelet aggregation, secretion, and the apoptosis pathway. Platelet-specific Rac1 function was not only important for coagulation in vitro but also for fibrin accumulation in vivo following laser-induced arteriolar injury. PMID:25079357

  13. Effects of kappa opioid agonists alone and in combination with cocaine on heart rate and blood pressure in conscious squirrel monkeys.

    PubMed

    Schindler, Charles W; Graczyk, Zofi; Gilman, Joanne P; Negus, S Stevens; Bergman, Jack; Mello, Nancy K; Goldberg, Steven R

    2007-12-01

    As kappa agonists have been proposed as treatments for cocaine abuse, the cardiovascular effects of the kappa opioid receptor agonists ethylketocyclazocine (EKC) and enadoline were investigated in conscious squirrel monkeys. Both EKC and enadoline increased heart rate with little effect on blood pressure. This effect appeared to be specific for kappa receptors as the mu opioid agonist morphine did not mimic the effects of the kappa agonists. The opioid antagonist naltrexone, at a dose of 1.0 mg/kg, blocked the effect of EKC. An action at both central and peripheral receptors may be responsible for the heart rate increase following kappa agonist treatment. The ganglionic blocker chlorisondamine partially antagonized the effect of EKC on heart rate, suggesting central involvement, while the peripherally-acting agonist ICI 204,448 ((+/-)-1-[2,3- (Dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol hydrochloride) also increased heart rate, supporting a peripheral site of action. When given in combination with cocaine, EKC produced effects that were sub-additive, suggesting that the kappa agonists may be used safely as cocaine abuse treatments.

  14. TSH and Thyrotropic Agonists: Key Actors in Thyroid Homeostasis

    PubMed Central

    Dietrich, Johannes W.; Landgrafe, Gabi; Fotiadou, Elisavet H.

    2012-01-01

    This paper provides the reader with an overview of our current knowledge of hypothalamic-pituitary-thyroid feedback from a cybernetic standpoint. Over the past decades we have gained a plethora of information from biochemical, clinical, and epidemiological investigation, especially on the role of TSH and other thyrotropic agonists as critical components of this complex relationship. Integrating these data into a systems perspective delivers new insights into static and dynamic behaviour of thyroid homeostasis. Explicit usage of this information with mathematical methods promises to deliver a better understanding of thyrotropic feedback control and new options for personalised diagnosis of thyroid dysfunction and targeted therapy, also by permitting a new perspective on the conundrum of the TSH reference range. PMID:23365787

  15. Proopiomelanocortin Deficiency Treated with a Melanocortin-4 Receptor Agonist.

    PubMed

    Kühnen, Peter; Clément, Karine; Wiegand, Susanna; Blankenstein, Oliver; Gottesdiener, Keith; Martini, Lea L; Mai, Knut; Blume-Peytavi, Ulrike; Grüters, Annette; Krude, Heiko

    2016-07-21

    Patients with rare defects in the gene encoding proopiomelanocortin (POMC) have extreme early-onset obesity, hyperphagia, hypopigmentation, and hypocortisolism, resulting from the lack of the proopiomelanocortin-derived peptides melanocyte-stimulating hormone and corticotropin. In such patients, adrenal insufficiency must be treated with hydrocortisone early in life. No effective pharmacologic treatments have been available for the hyperphagia and obesity that characterize the condition. In this investigator-initiated, open-label study, two patients with proopiomelanocortin deficiency were treated with setmelanotide, a new melanocortin-4 receptor agonist. The patients had a sustainable reduction in hunger and substantial weight loss (51.0 kg after 42 weeks in Patient 1 and 20.5 kg after 12 weeks in Patient 2). PMID:27468060

  16. [Safety and tolerability of GLP-1 receptor agonists].

    PubMed

    Soldevila, Berta; Puig-Domingo, Manel

    2014-01-01

    Glucagon-like peptide-1 receptor agonists (GLP-1ra) are a new group of drugs with a glucose-lowering action due to their incretin effect. The GLP-1 receptor is expressed in various human tissues, which could be related to the pleiotropic effects of human GLP-1, as well as to the adverse effects described in patients treated with GLP-1ra. The risk of hypoglycaemia is low, which is one of the main considerations in the safety of this family of compounds and is also important to patients with diabetes. The most frequent adverse effect is nausea, which usually occurs at the start of treatment and is transient in 20-60% of affected patients. This article also reviews the information available on antibody formation, the potential effect on the thyroid gland, and the controversial association between this group of drugs with pancreatitis and cancer.

  17. [Safety and tolerability of GLP-1 receptor agonists].

    PubMed

    Soldevila, Berta; Puig-Domingo, Manel

    2014-09-01

    Glucagon-like peptide-1 receptor agonists (GLP-1ra) are a new group of drugs with a glucose-lowering action due to their incretin effect. The GLP-1 receptor is expressed in various human tissues, which could be related to the pleiotropic effects of human GLP-1, as well as to the adverse effects described in patients treated with GLP-1ra. The risk of hypoglycaemia is low, which is one of the main considerations in the safety of this family of compounds and is also important to patients with diabetes. The most frequent adverse effect is nausea, which usually occurs at the start of treatment and is transient in 20-60% of affected patients. This article also reviews the information available on antibody formation, the potential effect on the thyroid gland, and the controversial association between this group of drugs with pancreatitis and cancer.

  18. Locomotion induced by ventral tegmental microinjections of a nicotinic agonist.

    PubMed

    Museo, E; Wise, R A

    1990-03-01

    Bilateral microinjections of the nicotinic agonist cytisine (0.1, 1 or 10 nanomoles per side) into the ventral tegmental area increased locomotor activity. This increase in locomotion was antagonized by mecamylamine (2 mg/kg, IP), a nicotinic antagonist that readily crosses the blood-brain barrier, and by pimozide (0.3 mg/kg, IP), a central dopaminergic antagonist. Hexamethonium (2 mg/kg, IP), a nicotinic antagonist that, unlike mecamylamine, does not cross the blood-brain barrier, had no effect; this suggests that mecamylamine's attenuation of cytisine-induced locomotor activity resulted from a blockade of central and not peripheral nicotinic receptors. The data support the notion that nicotinic and dopaminergic substrates interact at the level of the VTA to produce increases in locomotor activity.

  19. The GLP-1 agonist, liraglutide, as a pharmacotherapy for obesity.

    PubMed

    Crane, James; McGowan, Barbara

    2016-03-01

    There is a global obesity epidemic that will continue to be a financial burden on healthcare systems around the world. Tackling obesity through diet and exercise should always be the first intervention, but this has not proved to be effective for a large number of patients. Pharmacotherapeutic options have been limited and many previously available drugs have been withdrawn due to safety concerns. Currently, only bariatric surgery has the capability to induce both substantial and durable weight loss. This article briefly reviews the history of pharmacotherapy for obesity before focusing on the clinical trial evidence for the use of the GLP-1 agonist liraglutide as a weight loss agent and comparing its efficacy with other emerging drug therapies for obesity. PMID:26977279

  20. The GLP-1 agonist, liraglutide, as a pharmacotherapy for obesity

    PubMed Central

    Crane, James; McGowan, Barbara

    2015-01-01

    There is a global obesity epidemic that will continue to be a financial burden on healthcare systems around the world. Tackling obesity through diet and exercise should always be the first intervention, but this has not proved to be effective for a large number of patients. Pharmacotherapeutic options have been limited and many previously available drugs have been withdrawn due to safety concerns. Currently, only bariatric surgery has the capability to induce both substantial and durable weight loss. This article briefly reviews the history of pharmacotherapy for obesity before focusing on the clinical trial evidence for the use of the GLP-1 agonist liraglutide as a weight loss agent and comparing its efficacy with other emerging drug therapies for obesity. PMID:26977279

  1. Effects of dopamine agonists on hypothalamic defensive attack in cats.

    PubMed

    Maeda, H; Sato, T; Maki, S

    1985-07-01

    The effects of methamphetamine (MAT) and apomorphine (APO), dopamine agonists, were studied in 16 cats to evaluate their effects on threshold for defensive attack behavior elicited by electrical stimulation of the ventromedial hypothalamic nucleus (VMH). Directed attack and hissing were selected from elementary responses as constituting a defensive attack. Hissing threshold was measured in two situations, one with human provocation and the other without provocation. MAT administered systemically lowered the thresholds for all three types of responses in a dose-related manner (0.5, 1.0, and 3.0 mg/kg). The effects of 1.0 mg/kg of APO were almost identical to those observed with 0.5 or 1.0 mg/kg of MAT. These results suggest that MAT-induced aggressive behavior may be mediated by a dopamine-induced increase in the excitability of the VMH. PMID:4059404

  2. Antiinfective applications of toll-like receptor 9 agonists.

    PubMed

    Krieg, Arthur M

    2007-07-01

    The innate immune system detects pathogens by the presence of highly conserved pathogen-expressed molecules, which trigger host immune defenses. Toll-like receptor (TLR) 9 detects unmethylated CpG dinucleotides in bacterial or viral DNA, and can be stimulated for therapeutic applications with synthetic oligodeoxynucleotides containing immune stimulatory "CpG motifs." TLR9 activation induces both innate and adaptive immunity. The TLR9-induced innate immune activation can be applied in the prevention or treatment of infectious diseases, and the adaptive immune-enhancing effects can be harnessed for improving vaccines. This article highlights the current understanding of the mechanism of action of CpG oligodeoxynucleotides, and provides an overview of the preclinical data and early human clinical trial results, applying these TLR9 agonists in the field of infectious diseases. PMID:17607015

  3. Could Dopamine Agonists Aid in Drug Development for Anorexia Nervosa?

    PubMed Central

    Frank, Guido K. W.

    2014-01-01

    Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage-years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight, and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological, and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction, and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction, and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways. PMID:25988121

  4. Asimadoline, a κ-Opioid Agonist, and Visceral Sensation

    PubMed Central

    Camilleri, Michael

    2009-01-01

    SUMMARY Asimadoline is a potent κ-opioid receptor agonist with a diaryl acetamide structure. It has high affinity for the κ receptor, with IC50 of 5.6 nM (guinea pig) and 1.2 nM (human recombinant), and high selectively with κ: μ: δ binding ratios of 1:501:498 in human recombinant receptors. It acts as a complete agonist in in vitro assay. Asimadoline reduced sensation in response to colonic distension at subnoxious pressures in healthy volunteers and in IBS patients without alteration of colonic compliance. Asimadoline reduced satiation and enhanced the postprandial gastric volume (in female volunteers). However, there were no significant effects on gastrointestinal transit, colonic compliance, fasting or postprandial colonic tone. In a clinical trial in 40 patients with functional dyspepsia (Rome II), asimadoline did not significantly alter satiation or symptoms over 8 weeks. However, asimadoline, 0.5 mg, significantly decreased satiation in patients with higher postprandial fullness scores, and daily postprandial fullness severity (over 8 weeks); the asimadoline 1.0 mg group was borderline significant. In a clinical trial in patients with IBS, average pain 2 hours post-on-demand treatment with asimadoline was not significantly reduced. Post-hoc analyses suggest asimadoline was effective in mixed IBS. In a 12-week study in 596 patients, chronic treatment with asimadoline, 0.5 mg and 1.0 mg, was associated with adequate relief of pain and discomfort, improvement in pain score and number of pain free days in patients with IBS-D. The 1.0 mg dose was also efficacious in IBS-alternating. There were also weeks with significant reduction in bowel frequency and urgency. Asimadoline has been well tolerated in human trials to date. PMID:18715494

  5. Recent advances in the development of farnesoid X receptor agonists

    PubMed Central

    Carey, Elizabeth J.; Lindor, Keith D.

    2015-01-01

    Farnesoid X receptors (FXRs) are nuclear hormone receptors expressed in high amounts in body tissues that participate in bilirubin metabolism including the liver, intestines, and kidneys. Bile acids (BAs) are the natural ligands of the FXRs. FXRs regulate the expression of the gene encoding for cholesterol 7 alpha-hydroxylase, which is the rate-limiting enzyme in BA synthesis. In addition, FXRs play a critical role in carbohydrate and lipid metabolism and regulation of insulin sensitivity. FXRs also modulate live growth and regeneration during liver injury. Preclinical studies have shown that FXR activation protects against cholestasis-induced liver injury. Moreover, FXR activation protects against fatty liver injury in animal models of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH), and improved hyperlipidemia, glucose intolerance, and insulin sensitivity. Obeticholic acid (OCA), a 6α-ethyl derivative of the natural human BA chenodeoxycholic acid (CDCA) is the first-in-class selective FXR agonist that is ~100-fold more potent than CDCA. Preliminary human clinical trials have shown that OCA is safe and effective. In a phase II clinical trial, administration of OCA was well-tolerated, increased insulin sensitivity and reduced markers of liver inflammation and fibrosis in patients with type II diabetes mellitus and NAFLD. In two clinical trials of OCA in patients with primary biliary cirrhosis (PBC), a progressive cholestatic liver disease, OCA significantly reduced serum alkaline phosphatase (ALP) levels, an important disease marker that correlates well with clinical outcomes of patients with PBC. Together, these studies suggest that FXR agonists could potentially be used as therapeutic tools in patients suffering from nonalcoholic fatty and cholestatic liver diseases. Larger and Longer-term studies are currently ongoing. PMID:25705637

  6. Agonistic and antagonistic estrogens in licorice root (Glycyrrhiza glabra).

    PubMed

    Simons, Rudy; Vincken, Jean-Paul; Mol, Loes A M; The, Susan A M; Bovee, Toine F H; Luijendijk, Teus J C; Verbruggen, Marian A; Gruppen, Harry

    2011-07-01

    The roots of licorice (Glycyrrhiza glabra) are a rich source of flavonoids, in particular, prenylated flavonoids, such as the isoflavan glabridin and the isoflavene glabrene. Fractionation of an ethyl acetate extract from licorice root by centrifugal partitioning chromatography yielded 51 fractions, which were characterized by liquid chromatography-mass spectrometry and screened for activity in yeast estrogen bioassays. One third of the fractions displayed estrogenic activity towards either one or both estrogen receptors (ERs; ERα and ERβ). Glabrene-rich fractions displayed an estrogenic response, predominantly to the ERα. Surprisingly, glabridin did not exert agonistic activity to both ER subtypes. Several fractions displayed higher responses than the maximum response obtained with the reference compound, the natural hormone 17β-estradiol (E(2)). The estrogenic activities of all fractions, including this so-called superinduction, were clearly ER-mediated, as the estrogenic response was inhibited by 20-60% by known ER antagonists, and no activity was found in yeast cells that did not express the ERα or ERβ subtype. Prolonged exposure of the yeast to the estrogenic fractions that showed superinduction did, contrary to E(2), not result in a decrease of the fluorescent response. Therefore, the superinduction was most likely the result of stabilization of the ER, yeast-enhanced green fluorescent protein, or a combination of both. Most fractions displaying superinduction were rich in flavonoids with single prenylation. Glabridin displayed ERα-selective antagonism, similar to the ERα-selective antagonist RU 58668. Whereas glabridin was able to reduce the estrogenic response of E(2) by approximately 80% at 6 × 10(-6) M, glabrene-rich fractions only exhibited agonistic responses, preferentially on ERα.

  7. Agonist-specific behaviour of the intracellular Ca2+ response in rat hepatocytes.

    PubMed Central

    Chatton, J Y; Cao, Y; Stucki, J W

    1997-01-01

    A variety of agonists stimulate in hepatocytes a response that takes the shape of repetitive cytosolic free Ca2+ transients called Ca2+ oscillations. The shape of spikes and the pattern of oscillations in a given cell differ depending on the agonist of the phosphoinositide pathway that is applied. In this study, the response of individual rat hepatocytes to maximal stimulation by arginine vasopressin (AVP), phenylephrine and ADP was investigated by fluorescence microscopy and flash photolysis. Hepatocytes loaded with Ca2+-sensitive probes were stimulated with a first agonist to evoke a maximal response, and then a second agonist was added. When phenylephrine or ADP was used as the first agonist, AVP applied subsequently could elicit an additional response, which did not happen when AVP was first applied and phenylephrine or ADP was applied later. Cells microinjected with caged myo-inositol 1,4,5-trisphosphate (IP3) were challenged with the different agonists and, when a maximal response was obtained, photorelease of IP3 was triggered. Cells maximally stimulated with AVP did not respond to IP3 photorelease, whereas those stimulated with phenylephrine or ADP responded with a fast Ca2+ spike above the elevated steady-state level, which was followed by an undershoot. In contrast, with all three agonists, IP3 photorelease triggered at the top of an oscillatory Ca2+ transient was able to mobilize additional Ca2+. These experiments indicate that the differential response of cells to agonists is found not only during Ca2+ oscillations but also during maximal agonist stimulation and that potency and efficacy differences exist among agonists. PMID:9371717

  8. Dissociated sterol-based liver X receptor agonists as therapeutics for chronic inflammatory diseases.

    PubMed

    Yu, Shan; Li, Sijia; Henke, Adam; Muse, Evan D; Cheng, Bo; Welzel, Gustav; Chatterjee, Arnab K; Wang, Danling; Roland, Jason; Glass, Christopher K; Tremblay, Matthew

    2016-07-01

    Liver X receptor (LXR), a nuclear hormone receptor, is an essential regulator of immune responses. Activation of LXR-mediated transcription by synthetic agonists, such as T0901317 and GW3965, attenuates progression of inflammatory disease in animal models. However, the adverse effects of these conventional LXR agonists in elevating liver lipids have impeded exploitation of this intriguing mechanism for chronic therapy. Here, we explore the ability of a series of sterol-based LXR agonists to alleviate inflammatory conditions in mice without hepatotoxicity. We show that oral treatment with sterol-based LXR agonists in mice significantly reduces dextran sulfate sodium colitis-induced body weight loss, which is accompanied by reduced expression of inflammatory markers in the large intestine. The anti-inflammatory property of these agonists is recapitulated in vitro in mouse lamina propria mononuclear cells, human colonic epithelial cells, and human peripheral blood mononuclear cells. In addition, treatment with LXR agonists dramatically suppresses inflammatory cytokine expression in a model of traumatic brain injury. Importantly, in both disease models, the sterol-based agonists do not affect the liver, and the conventional agonist T0901317 results in significant liver lipid accumulation and injury. Overall, these results provide evidence for the development of sterol-based LXR agonists as novel therapeutics for chronic inflammatory diseases.-Yu, S., Li, S., Henke, A., Muse, E. D., Cheng, B., Welzel, G., Chatterjee, A. K., Wang, D., Roland, J., Glass, C. K., Tremblay, M. Dissociated sterol-based liver X receptor agonists as therapeutics for chronic inflammatory diseases. PMID:27025962

  9. Agonist action of taurine on glycine receptors in rat supraoptic magnocellular neurones: possible role in osmoregulation.

    PubMed

    Hussy, N; Deleuze, C; Pantaloni, A; Desarménien, M G; Moos, F

    1997-08-01

    1. To evaluate the implication of taurine in the physiology of supraoptic neurones, we (i) investigated the agonist properties of taurine on glycine and GABAA receptors of supraoptic magnocellular neurones acutely dissociated from adult rats, using whole-cell voltage clamp, (ii) studied the effects of taurine and strychnine in vivo by extracellular recordings of supraoptic vasopressin neurones in anaesthetized rats, and (iii) measured the osmolarity-dependent release of endogenous taurine from isolated supraoptic nuclei by HPLC. 2. GABA, glycine and taurine evoked rapidly activating currents that all reversed close to the equilibrium potential for Cl-, indicating activation of Cl(-)-selective channels. Glycine-activated currents were reversibly blocked by strychnine (IC50 of 35 nM with 100 microM glycine), but were unaffected by the GABAA antagonist gabazine (1-3 microM). GABA-activated currents were reversibly antagonized by 3 microM gabazine, but not by strychnine (up to 1 microM). 3. Responses to 1 mM taurine were blocked by strychnine but not by gabazine and showed no additivity with glycine-induced currents, indicating selective activation of glycine receptors. Responses to 10 mM taurine were partially antagonized by gabazine, the residual current being blocked by strychnine. Thus, taurine is also a weak agonist of GABAA receptors. 4. In the presence of gabazine, taurine activated glycine receptors with an EC50 of 406 microM. Taurine activated at most 70% of maximal glycine currents, suggesting that it is a partial agonist of glycine receptors. 5. In vivo, locally applied strychnine (300 nM) increased and taurine (1 mM) decreased the basal electrical activity of vasopressin neurones in normally hydrated rats. The effect of strychnine was markedly more pronounced in water-loaded rats. 6. Taurine, which is concentrated in supraoptic glial cells, could be released from isolated supraoptic nuclei upon hyposmotic stimulation. Decreases in osmolarity of 15 and 30

  10. Mimicking corticosterone's daily rhythm with specific receptor agonists: effects on food, water, and sodium intake.

    PubMed

    Devenport, L; Stith, R

    1992-06-01

    The endogenous pattern of type I and II corticosteroid receptor stimulation was systematically assembled from specific agonists in order to detect any unique receptor interactions in the control of ingestive behavior. The type II agonists dexamethasone (0, 5, or 25 micrograms/kg) or RU28362 (0, 5, or 25 micrograms/kg) were injected daily in the final hour of the light phase of the illumination cycle of adrenalectomized rats. This was carried out in the presence or absence of continuous aldosterone (type I agonist) infusion. Additional comparisons were made with sham-operated groups and animals receiving type II agonists by continuous infusion. Type II agonists increased the intake of 2% saline and the proportion of food taken at night, but had negligible effects on total food intake. Type II agonists did not interact with the type I agonist. Type II effects were greatly potentiated by continuous infusion, though administered at the same doses as acute injection. When the effects of type II receptor stimulation emerged, they always consisted of an exacerbation of the adrenalectomy syndrome, not a return to normal quantities or patterns. In contrast, type I receptor stimulation restored both the quantities and unique day-night patterns of saline, water, and food intake to values matching intact animals. The findings suggest that the behavioral significance of corticosterone's nocturnal peak of type II stimulation is small, and that its most important function may lie in the metabolic processes it instigates during its steady rise in the light phase.

  11. Gonadotropin-releasing hormone agonist use in men without a cancer registry diagnosis of prostate cancer

    PubMed Central

    Kuo, Yong-fang; Goodwin, James S; Shahinian, Vahakn B

    2008-01-01

    Background Use of gonadotropin-releasing hormone (GnRH) agonists has become popular for virtually all stages of prostate cancer. We hypothesized that some men receive these agents after only a limited work-up for their cancer. Such cases may be missed by tumor registries, leading to underestimates of the total extent of GnRH agonist use. Methods We used linked Surveillance, Epidemiology and End-Results (SEER)-Medicare data from 1993 through 2001 to identify GnRH agonist use in men with either a diagnosis of prostate cancer registered in SEER, or with a diagnosis of prostate cancer based only on Medicare claims (from the 5% control sample of Medicare beneficiaries residing in SEER areas without a registered diagnosis of cancer). The proportion of incident GnRH agonist users without a registry diagnosis of prostate cancer was calculated. Factors associated with lack of a registry diagnosis were examined in multivariable analyses. Results Of incident GnRH agonist users, 8.9% had no diagnosis of prostate cancer registered in SEER. In a multivariable logistic regression model, lack of a registry diagnosis of prostate cancer in GnRH agonist users was significantly more likely with increasing comorbidity, whereas it was less likely in men who had undergone either inpatient admission or procedures such as radical prostatectomy, prostate biopsy, or transurethral resection of the prostate. Conclusion Reliance solely on tumor registry data may underestimate the rate of GnRH agonist use in men with prostate cancer. PMID:18620606

  12. The potent and selective α4β2*/α6*-nicotinic acetylcholine receptor partial agonist 2-[5-[5-((S)Azetidin-2-ylmethoxy)-3-pyridinyl]-3-isoxazolyl]ethanol demonstrates antidepressive-like behavior in animal models and a favorable ADME-tox profile

    PubMed Central

    Yu, Li-Fang; Brek Eaton, J; Zhang, Han-Kun; Sabath, Emily; Hanania, Taleen; Li, Guan-Nan; van Breemen, Richard B; Whiteaker, Paul; Liu, Qiang; Wu, Jie; Chang, Yong-Chang; Lukas, Ronald J; Brunner, Dani; Kozikowski, Alan P

    2014-01-01

    Preclinical and clinical studies demonstrated that the inhibition of cholinergic supersensitivity through nicotinic antagonists and partial agonists can be used successfully to treat depressed patients, especially those who are poor responders to selective serotonin reuptake inhibitors (SSRIs). In our effort to develop novel antidepressant drugs, LF-3-88 was identified as a potent nicotinic acetylcholine receptor (nAChR) partial agonist with subnanomolar to nanomolar affinities for β2-containing nAChRs (α2β2, α3β2, α4β2, and α4β2*) and superior selectivity away from α3β4 − (Ki > 104 nmol/L) and α7-nAChRs (Ki > 104 nmol/L) as well as 51 other central nervous system (CNS)-related neurotransmitter receptors and transporters. Functional activities at different nAChR subtypes were characterized utilizing 86Rb+ ion efflux assays, two-electrode voltage-clamp (TEVC) recording in oocytes, and whole-cell current recording measurements. In mouse models, administration of LF-3-88 resulted in antidepressive-like behavioral signatures 15 min post injection in the SmartCube® test (5 and 10 mg/kg, i.p.; about 45-min session), decreased immobility in the forced swim test (1–3 mg/kg, i.p.; 1–10 mg/kg, p.o.; 30 min pretreatment, 6-min trial), and decreased latency to approach food in the novelty-suppressed feeding test after 29 days chronic administration once daily (5 mg/kg but not 10 mg/kg, p.o.; 15-min trial). In addition, LF-3-88 exhibited a favorable profile in pharmacokinetic/ADME-Tox (absorption, distribution, metabolism, excretion, and toxicity) assays. This compound was also shown to cause no mortality in wild-type Balb/CJ mice when tested at 300 mg/kg. These results further support the potential of potent and selective nicotinic partial agonists for use in the treatment of depression. PMID:25505580

  13. Use of gonadotrophin-releasing hormone agonists in controlled ovarian hyperstimulation for in vitro fertilization.

    PubMed

    Muasher, S J

    1992-01-01

    The aim of ovarian hyperstimulation for in vitro fertilization (IVF) is the recruitment of multiple fertilizable healthy oocytes. Transfer of multiple embryos yields a better success rate than single-embryo transfers. Moreover, cryopreservation of excess pre-embryos allows patients an added opportunity to achieve a pregnancy without undergoing a repeat stimulated cycle. In the last 4 years, gonadotrophin-releasing hormone (Gn-RH) agonists have been used widely as adjuncts to gonadotrophins for ovarian hyperstimulation. Advantages of Gn-RH agonist use include prevention of a premature luteinising hormone (LH) surge, suppression of endogenous basal LH levels and recruitment of a larger cohort of follicles. Gn-RH agonists can be used in a long (suppression) or a short (stimulatory, flare-up) protocol. In our clinic, the use of Gn-RH agonist suppression (starting in the mid-luteal phase) prior to ovarian hyperstimulation was demonstrated to be extremely beneficial in intermediate and high responder patients but not in low responders (defined endocrinologically as patients with a basal follicle-stimulating hormone [FSH]: LH ratio of 1:1 and a basal LH:FSH ratio of greater than or equal to 1.5, respectively). We have not been able to demonstrate any beneficial effects from the use of Gn-RH agonist suppression in low responder patients (defined endocrinologically as patients with a basal FSH greater than or equal to 15 mIU/ml). In such low responder patients, the use of a 'flare-up' Gn-RH agonist protocol (Gn-RH agonist starting on day 2 of the cycle, followed by gonadotrophins on day 4 of the cycle), taking advantage of the initial agonistic stimulatory effect of Gn-RH agonists on endogenous FSH and LH secretion, has provided significant improvements in stimulation characteristics and better pregnancy results. It should be emphasised that comparisons of results cannot be attempted due to the selective use of each protocol in different patient populations.

  14. Utility of gonadotropin-releasing hormone agonists in programs of ovarian hyperstimulation with intrauterine insemination.

    PubMed

    Gagliardi, C L

    1993-09-01

    The GnRH agonists have practical and theoretic advantages for adjunctive use in ovulation induction. The IVF cycles demonstrate a decrease in the cancellation rate, an increase in the ease of scheduling, and an increase in the number of oocytes obtained per retrieval when GnRH agonists are employed. Other advantages, such as an improvement in the fertilization and cleavage rate, an increased length of the luteal phase, and an increased pregnancy rate, are suggested but not universally accepted. The utility of adding GnRH agonists to human menopausal gonadotropin-intrauterine insemination cycles is similarly in dispute. Although controlled ovarian hyperstimulation with both human menopausal gonadotropins alone and in conjunction with GnRH agonists have produced pregnancies when coupled with intrauterine insemination, it was demonstrated that there was a significantly greater pregnancy rate per cycle with the use of a GnRH agonist in a recalcitrant infertile population. Others did not substantiate this improvement in pregnancy rate per cycle in their patient population of regularly ovulating women undergoing their first controlled ovarian stimulation cycle either with or without GnRH agonist therapy. This suggests that women with ovulatory dysfunction, and particularly women who previously have not responded to therapy with human menopausal gonadotropin therapy, will reap the most benefits from the addition of a GnRH agonist to their ovulation induction regimen. The addition of a GnRH agonist to controlled ovarian hyperstimulation is a highly effective method of inducing pregnancy in a recalcitrant infertile population. Patients who did not conceive with human menopausal gonadotropins-intrauterine insemination may conceive with GnRH agonist-human menopausal gonadotropins-intrauterine insemination therapy.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8403617

  15. Differentiation between low- and high-efficacy CB1 receptor agonists using a drug discrimination protocol for rats

    PubMed Central

    LeMay, Brian J.; Halikhedkar, Aneetha; Wood, JodiAnne; Vadivel, Subramanian K.; Zvonok, Alexander; Makriyannis, Alexandros

    2013-01-01

    Rationale The “subjective high” from marijuana ingestion is likely due to Δ9-tetrahydrocannabinol (THC) activating the central cannabinoid receptor type 1 (CB1R) of the endocannabinoid signaling system. THC is a weak partial agonist according to in vitro assays, yet THC mimics the behavioral effects induced by more efficacious cannabinergics. This distinction may be important for understanding similarities and differences in the dose–effect spectra produced by marijuana/THC and designer cannabimimetics (“synthetic marijuana”). Objective We evaluated if drug discrimination is able to functionally detect/differentiate between a full, high-efficacy CB1R agonist [(±)AM5983] and the low-efficacy agonist THC in vivo. Materials and methods Rats were trained to discriminate between four different doses of AM5983 (0.10 to 0.56 mg/kg), and vehicle and dose generalization curves were determined for both ligands at all four training doses of AM5983. The high-efficacy WIN55,212-2 and the lower-efficacy (R)-(+)-methanandamide were examined at some AM5983 training conditions. Antagonism tests involved rimonabant and WIN55,212-2 and AM5983. The separate (S)- and (R)-isomers of (±)AM5983 were tested at one AM5983 training dose (0.30 mg/kg). The in vitro cyclic adenosine monophosphate (cAMP) assay examined AM5983 and the known CB1R agonist CP55,940. Results Dose generalization ed50 values increased as a function of the training dose of AM5983, but more so for the partial agonists. The order of potency was (R)-isomer > (±)AM5983 > (S)-isomer and AM5983 > WIN55,212-2 ≥ THC > (R)-(+)-methanandamide. Surmountable antagonism of AM5983 and WIN55,212-2 occurred with rimonabant. The cAMP assay confirmed the cannabinergic nature of AM5983 and CP55,940. Conclusions Drug discrimination using different training doses of a high-efficacy, full CB1R agonist differentiated between low- and high-efficacy CB1R agonists. PMID:24005529

  16. The inverse type II β-turn on D-Trp-Phe, a pharmacophoric motif for MOR agonists.

    PubMed

    Gentilucci, Luca; Tolomelli, Alessandra; De Marco, Rossella; Spampinato, Santi; Bedini, Andrea; Artali, Roberto

    2011-09-01

    Herein we propose the D-Trp-Phe sequence within an inverse type II β-turn as a new kind of pharmacophoric motif for μ-opioid receptor (MOR) cyclopeptide agonists. Initially, we observed that c[Tyr-D-Pro-D-Trp-Phe-Gly] (4), an analogue of endomorphin-1 (H-Tyr-Pro-Trp-Phe-NH₂) lacking the crucial protonatable amino group of Tyr 1, is a MOR agonist with 10⁻⁸ M affinity. Molecular docking analysis suggested that the relevant interactions with the receptor involve D-Trp-Phe. The bioactive conformation of this region was investigated by selected derivatives of 4 designed to adopt an inverse type II β-turn. These efforts led to c[Tyr-Gly-D-Trp-Phe-Gly] (14) and to the cyclotetrapeptide c[D-Asp-1-amide-β-Ala-D-Trp-Phe] (15), showing improved nanomolar affinity. Both 14 and 15 selectively bind MOR, as they have negligible affinity for the κ- and δ-opioid receptors. Both 14 and 15 behave as partial MOR agonists in functional assays. Conformational and docking analyses confirm the role of the inverse β-turn in binding. These results indicate that the D-Trp-Phe inverse β-turn structure can be used for designing non-endomorphin-like peptidomimetic opioid agonists in general, characterized by an atypical mechanism of interaction between ligand and receptor.

  17. Salvinorin A, a kappa-opioid receptor agonist hallucinogen: pharmacology and potential template for novel pharmacotherapeutic agents in neuropsychiatric disorders

    PubMed Central

    Butelman, Eduardo R.; Kreek, Mary Jeanne

    2015-01-01

    Salvinorin A is a potent hallucinogen, isolated from the ethnomedical plant Salvia divinorum. Salvinorin A is a selective high efficacy kappa-opioid receptor (KOPr) agonist, and thus implicates the KOPr system and its endogenous agonist ligands (the dynorphins) in higher functions, including cognition and perceptual effects. Salvinorin A is the only selective KOPr ligand to be widely available outside research or medical settings, and salvinorin A-containing products have undergone frequent non-medical use. KOPr/dynorphin systems in the brain are known to be powerful counter-modulatory mechanisms to dopaminergic function, which is important in mood and reward engendered by natural and chemical reinforcers (including drugs of abuse). KOPr activation (including by salvinorin A) can thus cause aversion and anhedonia in preclinical models. Salvinorin A is also a completely new scaffold for medicinal chemistry approaches, since it is a non-nitrogenous neoclerodane, unlike other known opioid ligands. Ongoing efforts have the goal of discovering novel semi-synthetic salvinorin analogs with potential KOPr-mediated pharmacotherapeutic effects (including partial agonist or biased agonist effects), with a reduced burden of undesirable effects associated with salvinorin A. PMID:26441647

  18. Cannabinoid receptor agonists reduce the short-term mitochondrial dysfunction and oxidative stress linked to excitotoxicity in the rat brain.

    PubMed

    Rangel-López, E; Colín-González, A L; Paz-Loyola, A L; Pinzón, E; Torres, I; Serratos, I N; Castellanos, P; Wajner, M; Souza, D O; Santamaría, A

    2015-01-29

    The endocannabinoid system (ECS) is involved in a considerable number of physiological processes in the Central Nervous System. Recently, a modulatory role of cannabinoid receptors (CBr) and CBr agonists on the reduction of the N-methyl-d-aspartate receptor (NMDAr) activation has been demonstrated. Quinolinic acid (QUIN), an endogenous analog of glutamate and excitotoxic metabolite produced in the kynurenine pathway (KP), selectively activates NMDAr and has been shown to participate in different neurodegenerative disorders. Since the early pattern of toxicity exerted by this metabolite is relevant to explain the extent of damage that it can produce in the brain, in this work we investigated the effects of the synthetic CBr agonist WIN 55,212-2 (WIN) and other agonists (anandamide or AEA, and CP 55,940 or CP) on early markers of QUIN-induced toxicity in rat striatal cultured cells and rat brain synaptosomes. WIN, AEA and CP exerted protective effects on the QUIN-induced loss of cell viability. WIN also preserved the immunofluorescent signals for neurons and CBr labeling that were decreased by QUIN. The QUIN-induced early mitochondrial dysfunction, lipid peroxidation and reactive oxygen species (ROS) formation were also partially or completely prevented by WIN pretreatment, but not when this CBr agonist was added simultaneously with QUIN to brain synaptosomes. These findings support a neuroprotective and modulatory role of cannabinoids in the early toxic events elicited by agents inducing excitotoxic processes.

  19. Pairwise agonist scanning-flow cytometry (PAS-FC) measures inside-out signaling and patient-specific response to combinatorial platelet agonists.

    PubMed

    Jaeger, Daniel T L; Diamond, Scott L

    2013-05-01

    Understanding the response of cells to multiple stimuli is vital for predicting donor specific responses and better understanding the signaling pathways involved. This is of particular importance in platelets because exposure of phosphatidylserine (PS) occurs upon costimulation but not with a single agonist. Here, we describe a multiplexed pairwise agonist scanning-flow cytometry (PAS-FC) method of measuring platelet inside-out responses to all pairs of six platelet agonists (convulxin, SFLLRN, AYPGKF, ADP, U46619, and PGE(2)) used at their EC(50) concentrations. These agonists allowed exploration of platelet signaling downstream of GPVI, PAR-1, PAR-4, P2Y(1), P2Y(12), TP, and IP receptors. The three-color flow cytometry method simultaneously measured integrin α(IIb)β(3) activation with PAC-1 antibody, P-selectin exposure (via α granule release) with anti-P-selectin, and PS exposure with annexin V. These responses were consistent across a healthy male donor pool. In duplicate measurements with each donor, 4 of the 10 donors had a sufficiently unique 45-parameter (15 pairs × 3 colors) phenotype to self-cluster (P < 0.001). This method has the potential for efficiently scanning for patient specific responses across a broad agonist-receptor space.

  20. Pairwise agonist scanning-flow cytometry (PAS-FC) measures inside-out signaling and patient-specific response to combinatorial platelet agonists.

    PubMed

    Jaeger, Daniel T L; Diamond, Scott L

    2013-05-01

    Understanding the response of cells to multiple stimuli is vital for predicting donor specific responses and better understanding the signaling pathways involved. This is of particular importance in platelets because exposure of phosphatidylserine (PS) occurs upon costimulation but not with a single agonist. Here, we describe a multiplexed pairwise agonist scanning-flow cytometry (PAS-FC) method of measuring platelet inside-out responses to all pairs of six platelet agonists (convulxin, SFLLRN, AYPGKF, ADP, U46619, and PGE(2)) used at their EC(50) concentrations. These agonists allowed exploration of platelet signaling downstream of GPVI, PAR-1, PAR-4, P2Y(1), P2Y(12), TP, and IP receptors. The three-color flow cytometry method simultaneously measured integrin α(IIb)β(3) activation with PAC-1 antibody, P-selectin exposure (via α granule release) with anti-P-selectin, and PS exposure with annexin V. These responses were consistent across a healthy male donor pool. In duplicate measurements with each donor, 4 of the 10 donors had a sufficiently unique 45-parameter (15 pairs × 3 colors) phenotype to self-cluster (P < 0.001). This method has the potential for efficiently scanning for patient specific responses across a broad agonist-receptor space. PMID:23662898

  1. Agonist-Specific Recruitment of Arrestin Isoforms Differentially Modify Delta Opioid Receptor Function

    PubMed Central

    Perroy, Julie; Walwyn, Wendy M.; Smith, Monique L.; Vicente-Sanchez, Ana; Segura, Laura; Bana, Alia; Kieffer, Brigitte L.; Evans, Christopher J.

    2016-01-01

    Ligand-specific recruitment of arrestins facilitates functional selectivity of G-protein-coupled receptor signaling. Here, we describe agonist-selective recruitment of different arrestin isoforms to the delta opioid receptor in mice. A high-internalizing delta opioid receptor agonist (SNC80) preferentially recruited arrestin 2 and, in arrestin 2 knock-outs (KOs), we observed a significant increase in the potency of SNC80 to inhibit mechanical hyperalgesia and decreased acute tolerance. In contrast, the low-internalizing delta agonists (ARM390, JNJ20788560) preferentially recruited arrestin 3 with unaltered behavioral effects in arrestin 2 KOs. Surprisingly, arrestin 3 KO revealed an acute tolerance to these low-internalizing agonists, an effect never observed in wild-type animals. Furthermore, we examined delta opioid receptor–Ca2+ channel coupling in dorsal root ganglia desensitized by ARM390 and the rate of resensitization was correspondingly decreased in arrestin 3 KOs. Live-cell imaging in HEK293 cells revealed that delta opioid receptors are in pre-engaged complexes with arrestin 3 at the cell membrane and that ARM390 strengthens this membrane interaction. The disruption of these complexes in arrestin 3 KOs likely accounts for the altered responses to low-internalizing agonists. Together, our results show agonist-selective recruitment of arrestin isoforms and reveal a novel endogenous role of arrestin 3 as a facilitator of resensitization and an inhibitor of tolerance mechanisms. SIGNIFICANCE STATEMENT Agonists that bind to the same receptor can produce highly distinct signaling events and arrestins are a major mediator of this ligand bias. Here, we demonstrate that delta opioid receptor agonists differentially recruit arrestin isoforms. We found that the high-internalizing agonist SNC80 preferentially recruits arrestin 2 and knock-out (KO) of this protein results in increased efficacy of SNC80. In contrast, low-internalizing agonists (ARM390 and JNJ20788560

  2. Synthesis and characterization of photoactivatable peptide agonists of the human thrombin receptor.

    PubMed

    Bischoff, R; Cordier, Y; Rasmussen, U B; Schlesinger, Y; Gachet, C; Jaquinod, M; Tripet, B; Chong, P C; Pavirani, A

    1994-08-01

    Chemical synthesis and biochemical analysis of modified agonist peptides of the human thrombin receptor derived from the sequence SFLLRNP containing photoactivatable azido groups and biotin for sensitive detection is described. Substitution of leucine in position three with p-azidophenylalanine and extension of the C-terminus with a KGGK spacer containing biotin covalently linked to the side chain of the C-terminal lysine residue resulted in an active receptor agonist as determined by intracellular Ca2+ mobilization in human erythroleukemia (HEL) cells. In contrast, substitution of phenylalanine in position two with p-azidophenylalanine reduced agonist activity significantly. PMID:8050586

  3. PPARα agonist, fenofibrate, ameliorates age-related renal injury.

    PubMed

    Kim, Eun Nim; Lim, Ji Hee; Kim, Min Young; Kim, Hyung Wook; Park, Cheol Whee; Chang, Yoon Sik; Choi, Bum Soon

    2016-08-01

    The kidney ages quickly compared with other organs. Expression of senescence markers reflects changes in the energy metabolism in the kidney. Two important issues in aging are mitochondrial dysfunction and oxidative stress. Peroxisome proliferator-activated receptor α (PPARα) is a member of the ligand-activated nuclear receptor superfamily. PPARα plays a major role as a transcription factor that regulates the expression of genes involved in various processes. In this study, 18-month-old male C57BL/6 mice were divided into two groups, the control group (n=7) and the fenofibrate-treated group (n=7) was fed the normal chow plus fenofibrate for 6months. The PPARα agonist, fenofibrate, improved renal function, proteinuria, histological change (glomerulosclerosis and tubular interstitial fibrosis), inflammation, and apoptosis in aging mice. This protective effect against age-related renal injury occurred through the activation of AMPK and SIRT1 signaling. The activation of AMPK and SIRT1 allowed for the concurrent deacetylation and phosphorylation of their target molecules and decreased the kidney's susceptibility to age-related changes. Activation of the AMPK-FOXO3a and AMPK-PGC-1α signaling pathways ameliorated oxidative stress and mitochondrial dysfunction. Our results suggest that activation of PPARα and AMPK-SIRT1 signaling may have protective effects against age-related renal injury. Pharmacological targeting of PPARα and AMPK-SIRT1 signaling molecules may prevent or attenuate age-related pathological changes in the kidney. PMID:27130813

  4. Object-horning in goitered gazelle: agonistic or marking behaviour?

    PubMed

    Blank, David; Yang, Weikang

    2014-03-01

    We studied object-horning behaviour in goitered gazelles in the natural, arid environment of Kazakhstan over a 6-year period. We found that object-horning was used by adult males mostly as a threat display during territorial conflicts. Therefore object-horning was observed most frequently in territorial single males during the rut in November-December. Object-horning, though, also had a marking effect, with the males' use of this behaviour leaving visible traces that advertized the location of preorbital and urination-defecation scent marks. Therefore, this pattern also was observed linked with preorbital marking and urination-defecation marking behaviours, especially during the rut. Goitered gazelle males chose the most abundant and eatable shrubs for object horning. In contrast to other gazelle species, object-horning in goitered gazelle was observed much more frequently and at the same rate as preorbital and urination-defecation scent markings. This, then, proved a more vigorous and aggressive level of rutting behaviour of the goitered gazelle compared to tropical gazelles, and most likely connected to the short rutting period in the studied species. We concluded, therefore, that object-horning was a manifold phenomenon that played a very important role in goitered gazelle agonistic displays, but without loosing the marking intention of this behaviour. PMID:24365541

  5. Therapeutic applications of TRAIL receptor agonists in cancer and beyond

    PubMed Central

    Amarante-Mendes, Gustavo P.; Griffith, Thomas S.

    2016-01-01

    TRAIL/Apo-2L is a member of the TNF superfamily first described as an apoptosis-inducing cytokine in 1995. Similar to TNF and Fas ligand, TRAIL induces apoptosis in caspase-dependent manner following TRAIL death receptor trimerization. Because tumor cells were shown to be particularly sensitive to this cytokine while normal cells/tissues proved to be resistant along with being able to synthesize and release TRAIL, it was rapidly appreciated that TRAIL likely served as one of our major physiologic weapons against cancer. In line with this, a number of research laboratories and pharmaceutical companies have attempted to exploit the ability of TRAIL to kill cancer cells by developing recombinant forms of TRAIL or TRAIL receptor agonists (e.g., receptor-specific mAb) for therapeutic purposes. In this review article we will describe the biochemical pathways used by TRAIL to induce different cell death programs. We will also summarize the clinical trials related to this pathway and discuss possible novel uses of TRAIL-related therapies. In recent years, the physiological importance of TRAIL has expanded beyond being a tumoricidal molecule to one critical for a number of clinical settings — ranging from infectious disease and autoimmunity to cardiovascular anomalies. We will also highlight some of these conditions where modulation of the TRAIL/TRAIL receptor system may be targeted in the future. PMID:26343199

  6. Glyoxalase 1 increases anxiety by reducing GABAA receptor agonist methylglyoxal

    PubMed Central

    Distler, Margaret G.; Plant, Leigh D.; Sokoloff, Greta; Hawk, Andrew J.; Aneas, Ivy; Wuenschell, Gerald E.; Termini, John; Meredith, Stephen C.; Nobrega, Marcelo A.; Palmer, Abraham A.

    2012-01-01

    Glyoxalase 1 (Glo1) expression has previously been associated with anxiety in mice; however, its role in anxiety is controversial, and the underlying mechanism is unknown. Here, we demonstrate that GLO1 increases anxiety by reducing levels of methylglyoxal (MG), a GABAA receptor agonist. Mice overexpressing Glo1 on a Tg bacterial artificial chromosome displayed increased anxiety-like behavior and reduced brain MG concentrations. Treatment with low doses of MG reduced anxiety-like behavior, while higher doses caused locomotor depression, ataxia, and hypothermia, which are characteristic effects of GABAA receptor activation. Consistent with these data, we found that physiological concentrations of MG selectively activated GABAA receptors in primary neurons. These data indicate that GLO1 increases anxiety by reducing levels of MG, thereby decreasing GABAA receptor activation. More broadly, our findings potentially link metabolic state, neuronal inhibitory tone, and behavior. Finally, we demonstrated that pharmacological inhibition of GLO1 reduced anxiety, suggesting that GLO1 is a possible target for the treatment of anxiety disorders. PMID:22585572

  7. Therapeutic applications of TRAIL receptor agonists in cancer and beyond.

    PubMed

    Amarante-Mendes, Gustavo P; Griffith, Thomas S

    2015-11-01

    TRAIL/Apo-2L is a member of the TNF superfamily first described as an apoptosis-inducing cytokine in 1995. Similar to TNF and Fas ligand, TRAIL induces apoptosis in caspase-dependent manner following TRAIL death receptor trimerization. Because tumor cells were shown to be particularly sensitive to this cytokine while normal cells/tissues proved to be resistant along with being able to synthesize and release TRAIL, it was rapidly appreciated that TRAIL likely served as one of our major physiologic weapons against cancer. In line with this, a number of research laboratories and pharmaceutical companies have attempted to exploit the ability of TRAIL to kill cancer cells by developing recombinant forms of TRAIL or TRAIL receptor agonists (e.g., receptor-specific mAb) for therapeutic purposes. In this review article we will describe the biochemical pathways used by TRAIL to induce different cell death programs. We will also summarize the clinical trials related to this pathway and discuss possible novel uses of TRAIL-related therapies. In recent years, the physiological importance of TRAIL has expanded beyond being a tumoricidal molecule to one critical for a number of clinical settings - ranging from infectious disease and autoimmunity to cardiovascular anomalies. We will also highlight some of these conditions where modulation of the TRAIL/TRAIL receptor system may be targeted in the future.

  8. Neurotensin agonist attenuates nicotine potentiation to cocaine sensitization.

    PubMed

    Fredrickson, Paul; Boules, Mona; Stennett, Bethany; Richelson, Elliott

    2014-03-01

    Tobacco usage typically precedes illicit drug use in adolescent and young adult populations. Several animal studies suggest nicotine increases the risk for subsequent cocaine abuse, and may be a negative prognostic factor for treatment of cocaine addiction; i.e., a "gateway drug". Neurotensin (NT) is a 13-amino acid neuropeptide that modulates dopamine, acetylcholine, glutamate, and GABA neurotransmission in brain reward pathways. NT69L, a NT(8-13) analog, blocks behavioral sensitization (an animal model for psychostimulant addiction) to nicotine, and nicotine self-administration in rats. The present study tested the effect of NT69L on the potentiating effects of nicotine on cocaine-induced locomotor sensitization. Male Wistar rats were injected daily for seven days with nicotine or saline (control) followed by four daily injections of cocaine. NT69L was administered 30 min prior to the last cocaine injection. Behavior was recorded with the use of activity chambers. Subchronic administration of nicotine enhanced cocaine-induced behavioral sensitization in Wistar rats, consistent with an hypothesized gateway effect. These behavioral effects of cocaine were attenuated by pretreatment with NT69L. The effect of the neurotensin agonist on cocaine sensitization in the nicotine treated group indicated a possible therapeutic effect for cocaine addiction, even in the presence of enhanced behavioral sensitization induced by nicotine. PMID:25379267

  9. Lipid metabolome-wide effects of the PPARgamma agonist rosiglitazone.

    PubMed

    Watkins, Steven M; Reifsnyder, Peter R; Pan, Huei-ju; German, J Bruce; Leiter, Edward H

    2002-11-01

    Successful therapy for chronic diseases must normalize a targeted aspect of metabolism without disrupting the regulation of other metabolic pathways essential for maintaining health. Use of a limited number of single molecule surrogates for disease, or biomarkers, to monitor the efficacy of a therapy may fail to predict undesirable side effects. In this study, a comprehensive metabolomic assessment of lipid metabolites was employed to determine the specific effects of the peroxisome proliferator-activated receptor gamma (PPARgamma) agonist rosiglitazone on structural lipid metabolism in a new mouse model of Type 2 diabetes. Dietary supplementation with rosiglitazone (200 mg/kg diet) suppressed Type 2 diabetes in obese (NZO x NON)F1 male mice, but chronic treatment markedly exacerbated hepatic steatosis. The metabolomic data revealed that rosiglitazone i) induced hypolipidemia (by dysregulating liver-plasma lipid exchange), ii) induced de novo fatty acid synthesis, iii) decreased the biosynthesis of lipids within the peroxisome, iv) substantially altered free fatty acid and cardiolipin metabolism in heart, and v) elicited an unusual accumulation of polyunsaturated fatty acids within adipose tissue. These observations suggest that the phenotypes induced by rosiglitazone are mediated by multiple tissue-specific metabolic variables. Because many of the effects of rosiglitazone on tissue metabolism were reflected in the plasma lipid metabolome, metabolomics has excellent potential for developing clinical assessments of metabolic response to drug therapy. PMID:12401879

  10. Agonist Derived Molecular Probes for A2A Adenosine Receptors

    PubMed Central

    Jacobson, Kenneth A.; Pannell, Lewis K.; Ji, Xiao-duo; Jarvis, Michael F.; Williams, Michael; Hutchison, Alan J.; Barrington, William W.; Stiles, Gary L.

    2011-01-01

    The adenosine agonist 2-(4-(2-carboxyethyl)phenylethylamino)-5′-N-ethylcarboxamidoadenosine (CGS21680) was recently reported to be selective for the A2A adenosine receptor subtype, which mediates its hypotensive action. To investigate structurelactivity relationships at a distal site, CGS21680 was derivatized using a functionalized congener approach. The carboxylic group of CGS21680 has been esterified to form a methyl ester, which was then treated with ethylenediamine to produce an amine congener. The amine congener was an intermediate for acylation reactions, in which the reactive acyl species contained a reported group, or the precursor for such. For radioiodination, derivatives of p-hydroxyphenylpropionic, 2-thiophenylacetic, and p-aminophenylacetic acids were prepared. The latter derivative (PAPA-APEC) was iodinated electrophilically using [125I]iodide resulting in a radioligand which was used for studies of competition of binding to striatal A, adenosine receptors in bovine brain. A biotin conjugate and an aryl sulfonate were at least 350-fold selective for A, receptors. For spectroscopic detection, a derivative of the stable free radical tetramethyl-1-piperidinyloxy (TEMPO) was prepared. For irreversible inhibition of receptors, meta- and para-phenylenediisothiocyanate groups were incorporated in the analogs. We have demonstrated that binding at A2A receptors is relatively insensitive to distal structural changes at the 2-position, and we report high affinity molecular probes for receptor characterization by radioactive, spectroscopic and affinity labelling methodology. PMID:2561548

  11. Agonists and Antagonists of TGF-β Family Ligands.

    PubMed

    Chang, Chenbei

    2016-08-01

    The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.

  12. GPER agonist G-1 decreases adrenocortical carcinoma (ACC) cell growth in vitro and in vivo.

    PubMed

    Chimento, Adele; Sirianni, Rosa; Casaburi, Ivan; Zolea, Fabiana; Rizza, Pietro; Avena, Paola; Malivindi, Rocco; De Luca, Arianna; Campana, Carmela; Martire, Emilia; Domanico, Francesco; Fallo, Francesco; Carpinelli, Giulia; Cerquetti, Lidia; Amendola, Donatella; Stigliano, Antonio; Pezzi, Vincenzo

    2015-08-01

    We have previously demonstrated that estrogen receptor (ER) alpha (ESR1) increases proliferation of adrenocortical carcinoma (ACC) through both an estrogen-dependent and -independent (induced by IGF-II/IGF1R pathways) manner. Then, the use of tamoxifen, a selective estrogen receptor modulator (SERM), appears effective in reducing ACC growth in vitro and in vivo. However, tamoxifen not only exerts antiestrogenic activity, but also acts as full agonist on the G protein-coupled estrogen receptor (GPER). Aim of this study was to investigate the effect of a non-steroidal GPER agonist G-1 in modulating ACC cell growth. We found that G-1 is able to exert a growth inhibitory effect on H295R cells both in vitro and, as xenograft model, in vivo. Treatment of H295R cells with G-1 induced cell cycle arrest, DNA damage and cell death by the activation of the intrinsic apoptotic mechanism. These events required sustained extracellular regulated kinase (ERK) 1/2 activation. Silencing of GPER by a specific shRNA partially reversed G-1-mediated cell growth inhibition without affecting ERK activation. These data suggest the existence of G-1 activated but GPER-independent effects that remain to be clarified. In conclusion, this study provides a rational to further study G-1 mechanism of action in order to include this drug as a treatment option to the limited therapy of ACC.

  13. GPER agonist G-1 decreases adrenocortical carcinoma (ACC) cell growth in vitro and in vivo

    PubMed Central

    Zolea, Fabiana; Rizza, Pietro; Avena, Paola; Malivindi, Rocco; De Luca, Arianna; Campana, Carmela; Martire, Emilia; Domanico, Francesco; Fallo, Francesco; Carpinelli, Giulia; Cerquetti, Lidia; Amendola, Donatella; Stigliano, Antonio; Pezzi, Vincenzo

    2015-01-01

    We have previously demonstrated that estrogen receptor (ER) alpha (ESR1) increases proliferation of adrenocortical carcinoma (ACC) through both an estrogen-dependent and -independent (induced by IGF-II/IGF1R pathways) manner. Then, the use of tamoxifen, a selective estrogen receptor modulator (SERM), appears effective in reducing ACC growth in vitro and in vivo. However, tamoxifen not only exerts antiestrogenic activity, but also acts as full agonist on the G protein-coupled estrogen receptor (GPER). Aim of this study was to investigate the effect of a non-steroidal GPER agonist G-1 in modulating ACC cell growth. We found that G-1 is able to exert a growth inhibitory effect on H295R cells both in vitro and, as xenograft model, in vivo. Treatment of H295R cells with G-1 induced cell cycle arrest, DNA damage and cell death by the activation of the intrinsic apoptotic mechanism. These events required sustained extracellular regulated kinase (ERK) 1/2 activation. Silencing of GPER by a specific shRNA partially reversed G-1-mediated cell growth inhibition without affecting ERK activation. These data suggest the existence of G-1 activated but GPER-independent effects that remain to be clarified. In conclusion, this study provides a rational to further study G-1 mechanism of action in order to include this drug as a treatment option to the limited therapy of ACC. PMID:26131713

  14. Peripherally Selective Cannabinoid 1 Receptor (CB1R) Agonists for the Treatment of Neuropathic Pain.

    PubMed

    Seltzman, Herbert H; Shiner, Craig; Hirt, Erin E; Gilliam, Anne F; Thomas, Brian F; Maitra, Rangan; Snyder, Rod; Black, Sherry L; Patel, Purvi R; Mulpuri, Yatendra; Spigelman, Igor

    2016-08-25

    Alleviation of neuropathic pain by cannabinoids is limited by their central nervous system (CNS) side effects. Indole and indene compounds were engineered for high hCB1R affinity, peripheral selectivity, metabolic stability, and in vivo efficacy. An epithelial cell line assay identified candidates with <1% blood-brain barrier penetration for testing in a rat neuropathy induced by unilateral sciatic nerve entrapment (SNE). The SNE-induced mechanical allodynia was reversibly suppressed, partially or completely, after intraperitoneal or oral administration of several indenes. At doses that relieve neuropathy symptoms, the indenes completely lacked, while the brain-permeant CB1R agonist HU-210 (1) exhibited strong CNS side effects, in catalepsy, hypothermia, and motor incoordination assays. Pharmacokinetic findings of ∼0.001 cerebrospinal fluid:plasma ratio further supported limited CNS penetration. Pretreatment with selective CB1R or CB2R blockers suggested mainly CB1R contribution to an indene's antiallodynic effects. Therefore, this class of CB1R agonists holds promise as a viable treatment for neuropathic pain. PMID:27482723

  15. GPER agonist G-1 decreases adrenocortical carcinoma (ACC) cell growth in vitro and in vivo.

    PubMed

    Chimento, Adele; Sirianni, Rosa; Casaburi, Ivan; Zolea, Fabiana; Rizza, Pietro; Avena, Paola; Malivindi, Rocco; De Luca, Arianna; Campana, Carmela; Martire, Emilia; Domanico, Francesco; Fallo, Francesco; Carpinelli, Giulia; Cerquetti, Lidia; Amendola, Donatella; Stigliano, Antonio; Pezzi, Vincenzo

    2015-08-01

    We have previously demonstrated that estrogen receptor (ER) alpha (ESR1) increases proliferation of adrenocortical carcinoma (ACC) through both an estrogen-dependent and -independent (induced by IGF-II/IGF1R pathways) manner. Then, the use of tamoxifen, a selective estrogen receptor modulator (SERM), appears effective in reducing ACC growth in vitro and in vivo. However, tamoxifen not only exerts antiestrogenic activity, but also acts as full agonist on the G protein-coupled estrogen receptor (GPER). Aim of this study was to investigate the effect of a non-steroidal GPER agonist G-1 in modulating ACC cell growth. We found that G-1 is able to exert a growth inhibitory effect on H295R cells both in vitro and, as xenograft model, in vivo. Treatment of H295R cells with G-1 induced cell cycle arrest, DNA damage and cell death by the activation of the intrinsic apoptotic mechanism. These events required sustained extracellular regulated kinase (ERK) 1/2 activation. Silencing of GPER by a specific shRNA partially reversed G-1-mediated cell growth inhibition without affecting ERK activation. These data suggest the existence of G-1 activated but GPER-independent effects that remain to be clarified. In conclusion, this study provides a rational to further study G-1 mechanism of action in order to include this drug as a treatment option to the limited therapy of ACC. PMID:26131713

  16. Profound and rapid reduction in body temperature induced by the melanocortin receptor agonists.

    PubMed

    Xu, Yuanzhong; Kim, Eun Ran; Fan, Shengjie; Xia, Yan; Xu, Yong; Huang, Cheng; Tong, Qingchun

    2014-08-22

    The melanocortin receptor 4 (MC4R) plays a major role in body weight regulation and its agonist MTII has been widely used to study the role of MC4Rs in energy expenditure promotion and feeding reduction. Unexpectedly, we observed that intraperitoneal (i.p.) administration of MTII induced a rapid reduction in both body temperature and energy expenditure, which was independent of its effect on feeding and followed by a prolonged increase in energy expenditure. The rapid reduction was at least partly mediated by brain neurons since intracerebroventricular (icv) administration of alpha melanocyte-stimulating hormone, an endogenous melanocortin receptor agonist, produced a similar response. In addition, the body temperature-lowering effect of MTII was independent of the presence of MC4Rs, but in a similar fashion to the previously shown effect on body temperature by 5'AMP. Moreover, β-adrenergic receptors (β-ARs) were required for the recovery from low body temperature induced by MTII and further pharmacological studies showed that the MTII's effect on body temperature may be partially mediated by the vasopressin V1a receptors. Collectively, our results reveal a previously unappreciated role for the melanocortin pathway in rapidly lowering body temperature.

  17. The agonistic and antagonistic effects of short acting estrogens: a review.

    PubMed

    Clark, J H; Markaverich, B M

    1983-01-01

    Based on a review of the literature, this paper clarifies the pharmacologic properties of shortacting estrogens and their role in physiology and medicine. Shortacting estrogens display mixed agonist-antagonistic properties when injected in saline. The mixed estrogenic function results from the rapid clearance of these compounds from target tissue. When administered by pellet implant, however, shortacting estrogens act as full agonists. Both the uterotropic and vaginotropic response patterns of these compounds are detailed. Shortacting estrogens stimulate early uterotropic responses while having little effect on true uterine growth when administered by injection in saline. Thus, they have no antagonistic action when examined by shortterm uterotropic assays, but display partial antagonism when longterm uterine growth assays are used. Previous research has suggested that shortacting estrogens would not be effectual or antagonistic if present in a continuous fashion which would result in constant or longterm occupancy of the estrogen receptor. Estradiol, however, does manifest these properties when injected. Shortacting estrogens do not act as antagonists on vaginotropic responses as they do uterotropic responses. The paper also reviews the functions of these compounds in various physiological states, including blood binding, metabolism, menstruation, and pregnancy. Finally, clinical considerations are discussed. Estriol has an apparent selective effect on vaginotropic events. It has been effective in correcting symptoms of menopause, for example. However, estriol is not believed to have a protective effect against breast cancer. When it is present in a continuous fashion, estriol acts as an estrogen, thereby ruling out such an effect. PMID:6356176

  18. Non-psychoactive CB2 cannabinoid agonists stimulate neural progenitor proliferation.

    PubMed

    Palazuelos, Javier; Aguado, Tania; Egia, Ainara; Mechoulam, Raphael; Guzmán, Manuel; Galve-Roperh, Ismael

    2006-11-01

    Cannabinoids, the active components of marijuana and their endogenous counterparts, act on the brain and many other organs through the widely expressed CB1 cannabinoid receptor. In contrast, the CB2 cannabinoid receptor is abundant in the immune system and shows a restricted expression pattern in brain cells. CB2-selective agonists are, therefore, very attractive therapeutic agents as they do not cause CB1-mediated psychoactive effects. CB2 receptor expression in brain has been partially examined in differentiated cells, while its presence and function in neural progenitor cells remain unknown. Here we show that the CB2 receptor is expressed, both in vitro and in vivo, in neural progenitors from late embryonic stages to adult brain. Selective pharmacological activation of the CB2 receptor in vitro promotes neural progenitor cell proliferation and neurosphere generation, an action that is impaired in CB2-deficient cells. Accordingly, in vivo experiments evidence that hippocampal progenitor proliferation is increased by administration of the CB2-selective agonist HU-308. Moreover, impaired progenitor proliferation was observed in CB2-deficient mice both in normal conditions and on kainate-induced excitotoxicity. These findings provide a novel physiological role for the CB2 cannabinoid receptor and open a novel therapeutic avenue for manipulating neural progenitor cell fate.

  19. The estrogen receptor antagonist ICI 182,780 can act both as an agonist and an inverse agonist when estrogen receptor α AF-2 is modified

    PubMed Central

    Movérare-Skrtic, Sofia; Börjesson, Anna E.; Farman, Helen H.; Sjögren, Klara; Windahl, Sara H.; Lagerquist, Marie K.; Andersson, Annica; Stubelius, Alexandra; Carlsten, Hans; Gustafsson, Jan-Åke; Ohlsson, Claes

    2014-01-01

    The bone-sparing effect of estrogen is primarily mediated via estrogen receptor (ER) α, which stimulates target gene transcription through two activation functions (AFs), AF-1 in the N-terminal and AF-2 in the ligand-binding domain. It was recently demonstrated that the ER antagonist ICI 182,780 (ICI) acts as an ER agonist in uterus of mice with mutations in the ERα AF-2. To evaluate the estrogen-like effects of ICI in different tissues, ovariectomized wild-type mice and mice with mutations in the ERα AF-2 (ERαAF-20) were treated with ICI, estradiol, or vehicle for 3 wk. Estradiol increased the trabecular and cortical bone mass as well as the uterine weight, whereas it reduced fat mass, thymus weight, and the growth plate height in wild-type but not in ERαAF-20 mice. Although ICI had no effect in wild-type mice, it exerted tissue-specific effects in ERαAF-20 mice. It acted as an ERα agonist on trabecular bone mass and uterine weight, whereas no effect was seen on cortical bone mass, fat mass, or thymus weight. Surprisingly, a pronounced inverse agonistic activity was seen on the growth plate height, resulting in enhanced longitudinal bone growth. In conclusion, ICI uses ERα AF-1 in a tissue-dependent manner in mice lacking ERαAF-2, resulting in no effect, agonistic activity, or inverse agonistic activity. We propose that ERα lacking AF-2 is constitutively active in the absence of ligand in the growth plate, enabling ICI to act as an inverse agonist. PMID:24395795

  20. The long-acting β2-adrenoceptor agonist, indacaterol, enhances glucocorticoid receptor-mediated transcription in human airway epithelial cells in a gene- and agonist-dependent manner

    PubMed Central

    Joshi, T; Johnson, M; Newton, R; Giembycz, M A

    2015-01-01

    Background and Purpose Inhaled glucocorticoid (ICS)/long-acting β2-adrenoceptor agonist (LABA) combination therapy is a recommended treatment option for patients with moderate/severe asthma in whom adequate control cannot be achieved by an ICS alone. Previously, we discovered that LABAs can augment dexamethasone-inducible gene expression and proposed that this effect may explain how these two drugs interact to deliver superior clinical benefit. Herein, we extended that observation by analysing, pharmacodynamically, the effect of the LABA, indacaterol, on glucocorticoid receptor (GR)-mediated gene transcription induced by seven ligands with intrinsic activity values that span the spectrum of full agonism to antagonism. Experimental Approach BEAS-2B human airway epithelial cells stably transfected with a 2× glucocorticoid response element luciferase reporter were used to model gene transcription together with an analysis of several glucocorticoid-inducible genes. Key Results Indacaterol augmented glucocorticoid-induced reporter activation in a manner that was positively related to the intrinsic activity of the GR agonist. This effect was demonstrated by an increase in response maxima without a change in GR agonist affinity or efficacy. Indacaterol also enhanced glucocorticoid-inducible gene expression. However, the magnitude of this effect was dependent on both the GR agonist and the gene of interest. Conclusions and Implications These data suggest that indacaterol activates a molecular rheostat, which increases the transcriptional competency of GR in an agonist- and gene-dependent manner without apparently changing the relationship between fractional GR occupancy and response. These findings provide a platform to rationally design ICS/LABA combination therapy that is based on the generation of agonist-dependent gene expression profiles in target and off-target tissues. PMID:25598440

  1. Effects of Trace Amine-associated Receptor 1 Agonists on the Expression, Reconsolidation, and Extinction of Cocaine Reward Memory

    PubMed Central

    Liu, Jian-Feng; Thorn, David A; Zhang, Yanan

    2016-01-01

    Background: As a modulator of dopaminergic system, trace amine-associated receptor 1 has been shown to play a critical role in regulating the rewarding properties of additive drugs. It has been demonstrated that activation of trace amine-associated receptor 1 decreased the abuse-related behaviors of cocaine in rats. However, the role of trace amine-associated receptor 1 in specific stages of cocaine reward memory is still unclear. Methods: Here, using a cocaine-induced conditioned place preference model, we tested the effects of a selective trace amine-associated receptor 1 agonist RO5166017 on the expression, reconsolidation, and extinction of cocaine reward memory. Results: We found that RO5166017 inhibited the expression but not retention of cocaine-induced conditioned place preference. RO5166017 had no effect on the reconsolidation of cocaine reward memory. Pretreatment with RO5166017 before extinction hindered the formation of extinction long-term memory. RO5166017 did not affect the movement during the conditioned place preference test, indicating the inhibitory effect of RO5166017 on the expression of cocaine-induced conditioned place preference was not caused by locomotion inhibition. Using a cocaine i.v. self-administration model, we found that the combined trace amine-associated receptor 1 partial agonist RO5263397 with extinction had no effect on the following cue- and drug-induced reinstatement of cocaine-seeking behavior. Repeated administration of the trace amine-associated receptor 1 agonist during extinction showed a continually inhibitory effect on the expression of cocaine reward memory both in cocaine-induced conditioned place preference and cocaine self-administration models. Conclusions: Taken together, these results indicate that activation of trace amine-associated receptor 1 specifically inhibited the expression of cocaine reward memory. The inhibitory effect of trace amine-associated receptor 1 agonists on cocaine reward memory suggests

  2. Characterization of the Discriminative Stimulus Effects of a NOP Receptor Agonist Ro 64-6198 in Rhesus Monkeys.

    PubMed

    Saccone, Phillip A; Zelenock, Kathy A; Lindsey, Angela M; Sulima, Agnieszka; Rice, Kenner C; Prinssen, Eric P; Wichmann, Jürgen; Woods, James H

    2016-04-01

    Nociceptin/orphanin FQ receptor (NOP) agonists have been reported to produce antinociceptive effects in rhesus monkeys with comparable efficacy to μ-opioid receptor (MOP) agonists, but without their limiting side effects. There are also known to be species differences between rodents and nonhuman primates (NHPs) in the behavioral effects of NOP agonists. The aims of this study were the following: 1) to determine if the NOP agonist Ro 64-6198 could be trained as a discriminative stimulus; 2) to evaluate its pharmacological selectivity as a discriminative stimulus; and 3) to establish the order of potency with which Ro 64-6198 produces discriminative stimulus effects compared with analgesic effects in NHPs. Two groups of rhesus monkeys were trained to discriminate either fentanyl or Ro 64-6198 from vehicle. Four monkeys were trained in the warm-water tail-withdrawal procedure to measure antinociception. Ro 64-6198 produced discriminative stimulus effects that were blocked by the NOP antagonist J-113397 and not by naltrexone. The discriminative stimulus effects of Ro 64-6198 partially generalized to diazepam, but not to fentanyl, SNC 80, ketocyclazocine, buprenorphine, phencyclidine, or chlorpromazine. Fentanyl produced stimulus effects that were blocked by naltrexone and not by J-113397, and Ro 64-6198 did not produce fentanyl-appropriate responding in fentanyl-trained animals. In measures of antinociception, fentanyl, but not Ro 64-6198, produced dose-dependent increases in tail-withdrawal latency. Together, these results demonstrate that Ro 64-6198 produced stimulus effects in monkeys that are distinct from other opioid receptor agonists, but may be somewhat similar to diazepam. In contrast to previous findings, Ro 64-6198 did not produce antinociception in the majority of animals tested even at doses considerably greater than those that produced discriminative stimulus effects. PMID:26801398

  3. Characterization of the Discriminative Stimulus Effects of a NOP Receptor Agonist Ro 64-6198 in Rhesus Monkeys

    PubMed Central

    Zelenock, Kathy A.; Lindsey, Angela M.; Sulima, Agnieszka; Rice, Kenner C.; Prinssen, Eric P.; Wichmann, Jürgen; Woods, James H.

    2016-01-01

    Nociceptin/orphanin FQ receptor (NOP) agonists have been reported to produce antinociceptive effects in rhesus monkeys with comparable efficacy to μ-opioid receptor (MOP) agonists, but without their limiting side effects. There are also known to be species differences between rodents and nonhuman primates (NHPs) in the behavioral effects of NOP agonists. The aims of this study were the following: 1) to determine if the NOP agonist Ro 64-6198 could be trained as a discriminative stimulus; 2) to evaluate its pharmacological selectivity as a discriminative stimulus; and 3) to establish the order of potency with which Ro 64-6198 produces discriminative stimulus effects compared with analgesic effects in NHPs. Two groups of rhesus monkeys were trained to discriminate either fentanyl or Ro 64-6198 from vehicle. Four monkeys were trained in the warm-water tail-withdrawal procedure to measure antinociception. Ro 64-6198 produced discriminative stimulus effects that were blocked by the NOP antagonist J-113397 and not by naltrexone. The discriminative stimulus effects of Ro 64-6198 partially generalized to diazepam, but not to fentanyl, SNC 80, ketocyclazocine, buprenorphine, phencyclidine, or chlorpromazine. Fentanyl produced stimulus effects that were blocked by naltrexone and not by J-113397, and Ro 64-6198 did not produce fentanyl-appropriate responding in fentanyl-trained animals. In measures of antinociception, fentanyl, but not Ro 64-6198, produced dose-dependent increases in tail-withdrawal latency. Together, these results demonstrate that Ro 64-6198 produced stimulus effects in monkeys that are distinct from other opioid receptor agonists, but may be somewhat similar to diazepam. In contrast to previous findings, Ro 64-6198 did not produce antinociception in the majority of animals tested even at doses considerably greater than those that produced discriminative stimulus effects. PMID:26801398

  4. Transcriptome fingerprints distinguish hallucinogenic and nonhallucinogenic 5-hydroxytryptamine 2A receptor agonist effects in mouse somatosensory cortex.

    PubMed

    González-Maeso, Javier; Yuen, Tony; Ebersole, Barbara J; Wurmbach, Elisa; Lira, Alena; Zhou, Mingming; Weisstaub, Noelia; Hen, Rene; Gingrich, Jay A; Sealfon, Stuart C

    2003-10-01

    Most neuropharmacological agents and many drugs of abuse modulate the activity of heptahelical G-protein-coupled receptors. Although the effects of these ligands result from changes in cellular signaling, their neurobehavioral activity may not correlate with results of in vitro signal transduction assays. 5-Hydroxytryptamine 2A receptor (5-HT2AR) partial agonists that have similar pharmacological profiles differ in the behavioral responses they elicit. In vitro studies suggest that different agonists acting at the same receptor may establish distinct patterns of signal transduction. Testing this hypothesis in the brain requires a global signal transduction assay that is applicable in vivo. To distinguish the cellular effects of the different 5-HT2AR agonists, we developed an assay for global signal transduction on the basis of high throughput quantification of rapidly modulated transcripts. Study of the responses to agonists in human embryonic kidney 293 cells stably expressing 5-HT2ARs demonstrated that each agonist elicits a distinct transcriptome fingerprint. We therefore studied behavioral and cortical signal transduction responses in wild-type and 5-HT2AR null-mutant mice. The hallucinogenic chemicals (+/-)-2,5-dimethoxy-4-iodoamphetamine (DOI) and lysergic acid diethylamide (LSD) stimulated a head-twitch behavioral response that was not observed with the nonhallucinogenic lisuride hydrogen maleate (LHM) and was absent in receptor null-mutant mice. We also found that DOI, LSD, and LHM each induced distinct transcriptome fingerprints in somatosensory cortex that were absent in 5-HT2AR null-mutants. Moreover, DOI and LSD showed similarities in the transcriptome fingerprints obtained that were not observed with the behaviorally inactive drug LHM. Our results demonstrate that chemicals acting at the 5-HT2AR induce specific cellular response patterns in vivo that are reflected in unique changes in the somatosensory cortex transcriptome.

  5. Increasing Potential Access to Opioid Agonist Treatment in U.S. Treatment Shortage Areas

    PubMed Central

    Dick, Andrew W.; Pacula, Rosalie Liccardo; Gordon, Adam J.; Sorbero, Mark; Burns, Rachel M.; Leslie, Douglas L.; Stein, Bradley D.

    2015-01-01

    Opioid use disorders are a significant public health problem, affecting over 2 million individuals in the US. Although opioid agonist treatment, predominantly offered in licensed methadone clinics, is both effective and cost-effective, many individuals do not receive it. Buprenorphine, approved in 2002 for prescription by waivered physicians, could improve opioid agonist treatment access for individuals unable or unwilling to receive methadone. We examine the extent to which the geographic distribution of waivered physicians has enhanced potential opioid agonist treatment access, particularly in non-metropolitan areas with fewer methadone clinics. We found that while the approximately 90% of counties classified as methadone clinic shortage areas remained constant, buprenorphine shortage areas fell from 99% of counties in 2002 to 51% in 2011, lowering the US population percentage residing in opioid treatment shortage counties to approximately 10%. The increase in buprenorphine-waivered physicians has dramatically increased potential access to opioid agonist treatment, especially in non-metropolitan counties. PMID:26056209

  6. Agonist binding to the NMDA receptor drives movement of its cytoplasmic domain without ion flow

    PubMed Central

    Dore, Kim; Aow, Jonathan; Malinow, Roberto

    2015-01-01

    The NMDA receptor (R) plays important roles in brain physiology and pathology as an ion channel. Here we examine the ion flow-independent coupling of agonist to the NMDAR cytoplasmic domain (cd). We measure FRET between fluorescently tagged cytoplasmic domains of GluN1 subunits of NMDARs expressed in neurons. Different neuronal compartments display varying levels of FRET, consistent with different NMDARcd conformations. Agonist binding drives a rapid and transient ion flow-independent reduction in FRET between GluN1 subunits within individual NMDARs. Intracellular infusion of an antibody targeting the GluN1 cytoplasmic domain blocks agonist-driven FRET changes in the absence of ion flow, supporting agonist-driven movement of the NMDARcd. These studies indicate that extracellular ligand binding to the NMDAR can transmit conformational information into the cell in the absence of ion flow. PMID:26553997

  7. Lepidozenolide from the liverwort Lepidozia fauriana acts as a farnesoid X receptor agonist.

    PubMed

    Lin, Hsiang-Ru

    2015-01-01

    Lepidozenolide is a sesquiterpenoid isolated from the liverwort Lepidozia fauriana and its possible bioactivity is unclear. The farnesoid X receptor (FXR) is a member of nuclear receptor superfamily that has been widely targeted for developing treatments for chronic liver disease and hyperglycemia. In this study, whether lepidozenolide may act as a FXR agonist was determined. Indeed, in mammalian one-hybrid and transient transfection reporter assays, lepidozenolide transactivated FXR to modulate promoter action including GAL4, CYP7A1, and PLTP promoters in a dose-dependent manner, while it exhibited slightly less agonistic activity than chenodeoxycholic acid, an endogenous FXR agonist. Through the molecular modeling docking studies lepidozenolide was shown to bind to FXR ligand binding pocket fairly well. All these results indicate that lepidozenolide acts as a FXR agonist. PMID:25315435

  8. Potent agonists of a hematopoietic stem cell cytokine receptor, c-Mpl.

    PubMed

    Tarasova, Anna; Haylock, David N; Meagher, Laurence; Be, Cheang Ly; White, Jacinta; Nilsson, Susan K; Andrade, Jessica; Cartledge, Kellie; Winkler, David A

    2013-05-01

    Several growth factors feature prominently in the control of hematopoiesis. Thrombopoietin, a class I hematopoietic cytokine, plays critical roles in regulating hematopoietic stem cell numbers and also stimulates the production and differentiation of megakaryocytes, the bone marrow cells that ultimately produce platelets. Thrombopoietin interacts with the c-Mpl cell-surface receptor. Recently, several peptide and small-molecule agonists and antagonists of c-Mpl have been reported. We conducted a bioinformatics and molecular modeling study aimed at understanding the agonist activities of peptides that bind to c-Mpl, and developed new potent peptide agonists with low nanomolar activity. These agonists also show very high activity in human CD34(+) primary cell cultures, and doubled the mean blood platelet counts when injected into mice.

  9. The pharmacokinetics of Toll-like receptor agonists and the impact on the immune system.

    PubMed

    Engel, Abbi L; Holt, Gregory E; Lu, Hailing

    2011-03-01

    Toll-like receptor (TLR) ligation activates both the innate and adaptive immune systems, and plays an important role in antiviral and anti-tumor immunity. Therefore, a significant amount of effort has been devoted to exploit the therapeutic potential of TLR agonists. Depending on the therapeutic purpose, either as adjuvants to vaccine, chemotherapy or standalone therapy, TLR agonists have been administered via different routes. Both preclinical and clinical studies have suggested that the route of administration has significant effects on pharmacokinetics, and that understanding these effects is critical to the success of TLR agonist drug development. This article will summarize the pharmacokinetics of TLR agonists with different administration routes, with an emphasis on clinical studies of TLR ligands in oncologic applications. PMID:21643519

  10. The pharmacokinetics of Toll-like receptor agonists and the impact on the immune system

    PubMed Central

    Engel, Abbi L; Holt, Gregory E; Lu, Hailing

    2011-01-01

    Toll-like receptor (TLR) ligation activates both the innate and adaptive immune systems, and plays an important role in antiviral and anti-tumor immunity. Therefore, a significant amount of effort has been devoted to exploit the therapeutic potential of TLR agonists. Depending on the therapeutic purpose, either as adjuvants to vaccine, chemotherapy or standalone therapy, TLR agonists have been administered via different routes. Both preclinical and clinical studies have suggested that the route of administration has significant effects on pharmacokinetics, and that understanding these effects is critical to the success of TLR agonist drug development. This article will summarize the pharmacokinetics of TLR agonists with different administration routes, with an emphasis on clinical studies of TLR ligands in oncologic applications. PMID:21643519

  11. Long-acting beta2-agonist in addition to tiotropium versus either tiotropium or long-acting beta2-agonist alone for chronic obstructive pulmonary disease

    PubMed Central

    Karner, Charlotta; Cates, Christopher J

    2014-01-01

    Background Long-acting bronchodilators comprising long-acting beta2-agonists and the anticholinergic agent tiotropium are commonly used for managing persistent symptoms of chronic obstructive pulmonary disease. Combining these treatments, which have different mechanisms of action, may be more effective than the individual components. However, the benefits and risks of combining tiotropium and long-acting beta2-agonists for the treatment of chronic obstructive pulmonary (COPD) disease are unclear. Objectives To assess the relative effects of treatment with tiotropium in addition to long-acting beta2-agonist compared to tiotropium or long-acting beta2-agonist alone in patients with chronic obstructive pulmonary disease. Search methods We searched the Cochrane Airways Group Specialised Register of trials and clinicaltrials.gov up to January 2012. Selection criteria We included parallel group, randomised controlled trials of three months or longer comparing treatment with tiotropium in addition to long-acting beta2-agonist against tiotropium or long-acting beta2-agonist alone for patients with chronic obstructive pulmonary disease. Data collection and analysis Two review authors independently assessed trials for inclusion and then extracted data on trial quality and the outcome results. We contacted study authors for additional information. We collected information on adverse effects from the trials. Main results Five trials were included in this review, mostly recruiting participants with moderate or severe chronic obstructive pulmonary disease. All of them compared tiotropium in addition to long-acting beta2-agonist to tiotropium alone, but only one trial additionally compared a combination of the two types of bronchodilator with long-acting beta2-agonist (formoterol) alone. Two studies used the long-acting beta2-agonist indacaterol, two used formoterol and one used salmeterol. Compared to tiotropium alone (3263 patients), treatment with tiotropium plus long

  12. Competitive molecular docking approach for predicting estrogen receptor subtype α agonists and antagonists

    PubMed Central

    2014-01-01

    Background Endocrine disrupting chemicals (EDCs) are exogenous compounds that interfere with the endocrine system of vertebrates, often through direct or indirect interactions with nuclear receptor proteins. Estrogen receptors (ERs) are particularly important protein targets and many EDCs are ER binders, capable of altering normal homeostatic transcription and signaling pathways. An estrogenic xenobiotic can bind ER as either an agonist or antagonist to increase or inhibit transcription, respectively. The receptor conformations in the complexes of ER bound with agonists and antagonists are different and dependent on interactions with co-regulator proteins that vary across tissue type. Assessment of chemical endocrine disruption potential depends not only on binding affinity to ERs, but also on changes that may alter the receptor conformation and its ability to subsequently bind DNA response elements and initiate transcription. Using both agonist and antagonist conformations of the ERα, we developed an in silico approach that can be used to differentiate agonist versus antagonist status of potential binders. Methods The approach combined separate molecular docking models for ER agonist and antagonist conformations. The ability of this approach to differentiate agonists and antagonists was first evaluated using true agonists and antagonists extracted from the crystal structures available in the protein data bank (PDB), and then further validated using a larger set of ligands from the literature. The usefulness of the approach was demonstrated with enrichment analysis in data sets with a large number of decoy ligands. Results The performance of individual agonist and antagonist docking models was found comparable to similar models in the literature. When combined in a competitive docking approach, they provided the ability to discriminate agonists from antagonists with good accuracy, as well as the ability to efficiently select true agonists and antagonists from

  13. Effects of oxytocin on serotonin 1B agonist-induced autism-like behavior in mice.

    PubMed

    Lawson, Sarah K; Gray, Andrew C; Woehrle, Nancy S

    2016-11-01

    Social impairments in autism remain poorly understood and without approved pharmacotherapies. Novel animals models are needed to elucidate mechanisms and evaluate novel treatments for the social deficits in autism. Recently, serotonin 1B receptor (5-HT1B) agonist challenge in mice was shown to induce autism-like behaviors including perseveration, reduced prepulse inhibition, and delayed alternation deficits. However, the effects of 5-HT1B agonists on autism-related social behaviors in mice remain unknown. Here, we examine the effects of 5-HT1B agonist challenge on sociability and preference for social novelty in mice. We also examine the effects of 5-HT1B agonist treatment on average rearing duration, a putative rodent measure of non-selective attention. Non-selective attention is an associated feature of autism that is also not well understood. We show that 5-HT1B receptor activation reduces sociability, preference for social novelty, and rearing in mice. In addition, we examine the ability of oxytocin, an off-label treatment for the social impairments in autism, to reverse 5-HT1B agonist-induced social and attention deficits in mice. We show that oxytocin restores social novelty preference in mice treated with a 5-HT1B agonist. We also show that oxytocin attenuates 5-HT1B agonist-induced sociability and rearing deficits in mice. Our results suggest that 5-HT1B agonist challenge provides a useful pharmacological mouse model for aspects of autism, and implicate 5-HT1B in autism social and attention deficits. Moreover, our findings suggest that oxytocin may treat the social deficits in autism through a mechanism involving 5-HT1B.

  14. Discovery of Azetidinone Acids as Conformationally-Constrained Dual PPARalpha/gamma Agonists

    SciTech Connect

    Wang, W.; Devasthale, P; Farrelly, D; Gu, L; Harrity, T; Cap, M; Chu, C; Kunselman, L; Morgan, N; et. al.

    2008-01-01

    A novel class of azetidinone acid-derived dual PPAR{alpha}/{gamma} agonists has been synthesized for the treatment of diabetes and dyslipidemia. The preferred stereochemistry in this series for binding and functional agonist activity against both PPARa and PPAR? receptors was shown to be 3S,4S. Synthesis, in vitro and in vivo activities of compounds in this series are described. A high-yielding method for N-arylation of azetidinone esters is also described.

  15. Identification of Hydroxybenzoic Acids as Selective Lactate Receptor (GPR81) Agonists with Antilipolytic Effects.

    PubMed

    Dvorak, Curt A; Liu, Changlu; Shelton, Jonathan; Kuei, Chester; Sutton, Steven W; Lovenberg, Timothy W; Carruthers, Nicholas I

    2012-08-01

    Following the characterization of the lactate receptor (GPR81), a focused screening effort afforded 3-hydroxybenzoic acid 1 as a weak agonist of both GPR81 and GPR109a (niacin receptor). An examination of structurally similar arylhydroxy acids led to the identification of 3-chloro-5-hydroxybenzoic acid 2, a selective GPR81 agonist that exhibited favorable in vivo effects on lipolysis in a mouse model of obesity.

  16. Identification of Hydroxybenzoic Acids as Selective Lactate Receptor (GPR81) Agonists with Antilipolytic Effects

    PubMed Central

    2012-01-01

    Following the characterization of the lactate receptor (GPR81), a focused screening effort afforded 3-hydroxybenzoic acid 1 as a weak agonist of both GPR81 and GPR109a (niacin receptor). An examination of structurally similar arylhydroxy acids led to the identification of 3-chloro-5-hydroxybenzoic acid 2, a selective GPR81 agonist that exhibited favorable in vivo effects on lipolysis in a mouse model of obesity. PMID:24900524

  17. Identification of benzoxazole analogs as novel, S1P(3) sparing S1P(1) agonists.

    PubMed

    Deng, Guanghui; Meng, Qinghua; Liu, Qian; Xu, Xuesong; Xu, Qiongfeng; Ren, Feng; Guo, Taylor B; Lu, Hongtao; Xiang, Jia-Ning; Elliott, John D; Lin, Xichen

    2012-06-15

    A novel series of benzoxazole-derived S1P(1) agonists were designed based on scaffold hopping molecular design strategy combined with computational approaches. Extensive SAR studies led to the discovery of compound 17d as a selective S1P(1) agonist (over S1P(3)) with high CNS penetration and favorable DMPK properties. 17d also demonstrated in vivo pharmacological efficacy to reduce blood lymphocyte in mice after oral administration.

  18. SAR of psilocybin analogs: discovery of a selective 5-HT 2C agonist.

    PubMed

    Sard, Howard; Kumaran, Govindaraj; Morency, Cynthia; Roth, Bryan L; Toth, Beth Ann; He, Ping; Shuster, Louis

    2005-10-15

    An SAR study of psilocybin and psilocin derivatives reveals that 1-methylpsilocin is a selective agonist at the h5-HT(2C) receptor. The corresponding phosphate derivative, 1-methylpsilocybin, shows efficacy in an animal model for obsessive-compulsive disorder, as does 4-fluoro-N,N-dimethyltryptamine. These results suggest a new area for development of novel 5-HT(2C) agonists with applications for drug discovery.

  19. The Good, the Bad, and the Ugly: Agonistic Behaviour in Juvenile Crocodilians

    PubMed Central

    Brien, Matthew L.; Lang, Jeffrey W.; Webb, Grahame J.; Stevenson, Colin; Christian, Keith A.

    2013-01-01

    We examined agonistic behaviour in seven species of hatchling and juvenile crocodilians held in small groups (N = 4) under similar laboratory conditions. Agonistic interactions occurred in all seven species, typically involved two individuals, were short in duration (5–15 seconds), and occurred between 1600–2200 h in open water. The nature and extent of agonistic interactions, the behaviours displayed, and the level of conspecific tolerance varied among species. Discrete postures, non-contact and contact movements are described. Three of these were species-specific: push downs by C. johnstoni; inflated tail sweeping by C. novaeguineae; and, side head striking combined with tail wagging by C. porosus. The two long-snouted species (C. johnstoni and G. gangeticus) avoided contact involving the head and often raised the head up out of the way during agonistic interactions. Several behaviours not associated with aggression are also described, including snout rubbing, raising the head up high while at rest, and the use of vocalizations. The two most aggressive species (C. porosus, C. novaeguineae) appeared to form dominance hierarchies, whereas the less aggressive species did not. Interspecific differences in agonistic behaviour may reflect evolutionary divergence associated with morphology, ecology, general life history and responses to interspecific conflict in areas where multiple species have co-existed. Understanding species-specific traits in agonistic behaviour and social tolerance has implications for the controlled raising of different species of hatchlings for conservation, management or production purposes. PMID:24349018

  20. Scaffold-Based Pan-Agonist Design for the PPARα, PPARβ and PPARγ Receptors

    PubMed Central

    Xu, Wei-Ren; Wang, Run-Ling; Wang, Jing-Fang

    2012-01-01

    As important members of nuclear receptor superfamily, Peroxisome proliferator-activated receptors (PPAR) play essential roles in regulating cellular differentiation, development, metabolism, and tumorigenesis of higher organisms. The PPAR receptors have 3 identified subtypes: PPARα, PPARβ and PPARγ, all of which have been treated as attractive targets for developing drugs to treat type 2 diabetes. Due to the undesirable side-effects, many PPAR agonists including PPARα/γ and PPARβ/γ dual agonists are stopped by US FDA in the clinical trials. An alternative strategy is to design novel pan-agonist that can simultaneously activate PPARα, PPARβ and PPARγ. Under such an idea, in the current study we adopted the core hopping algorithm and glide docking procedure to generate 7 novel compounds based on a typical PPAR pan-agonist LY465608. It was observed by the docking procedures and molecular dynamics simulations that the compounds generated by the core hopping and glide docking not only possessed the similar functions as the original LY465608 compound to activate PPARα, PPARβ and PPARγ receptors, but also had more favorable conformation for binding to the PPAR receptors. The additional absorption, distribution, metabolism and excretion (ADME) predictions showed that the 7 compounds (especially Cpd#1) hold high potential to be novel lead compounds for the PPAR pan-agonist. Our findings can provide a new strategy or useful insights for designing the effective pan-agonists against the type 2 diabetes. PMID:23119024

  1. Scaffold-based pan-agonist design for the PPARα, PPARβ and PPARγ receptors.

    PubMed

    Zhang, Li-Song; Wang, Shu-Qing; Xu, Wei-Ren; Wang, Run-Ling; Wang, Jing-Fang

    2012-01-01

    As important members of nuclear receptor superfamily, Peroxisome proliferator-activated receptors (PPAR) play essential roles in regulating cellular differentiation, development, metabolism, and tumorigenesis of higher organisms. The PPAR receptors have 3 identified subtypes: PPARα, PPARβ and PPARγ, all of which have been treated as attractive targets for developing drugs to treat type 2 diabetes. Due to the undesirable side-effects, many PPAR agonists including PPARα/γ and PPARβ/γ dual agonists are stopped by US FDA in the clinical trials. An alternative strategy is to design novel pan-agonist that can simultaneously activate PPARα, PPARβ and PPARγ. Under such an idea, in the current study we adopted the core hopping algorithm and glide docking procedure to generate 7 novel compounds based on a typical PPAR pan-agonist LY465608. It was observed by the docking procedures and molecular dynamics simulations that the compounds generated by the core hopping and glide docking not only possessed the similar functions as the original LY465608 compound to activate PPARα, PPARβ and PPARγ receptors, but also had more favorable conformation for binding to the PPAR receptors. The additional absorption, distribution, metabolism and excretion (ADME) predictions showed that the 7 compounds (especially Cpd#1) hold high potential to be novel lead compounds for the PPAR pan-agonist. Our findings can provide a new strategy or useful insights for designing the effective pan-agonists against the type 2 diabetes. PMID:23119024

  2. How neighborhood disorder increases blood pressure in youth: agonistic striving and subordination

    PubMed Central

    Elder, Gavin J.; Smyth, Joshua M.

    2012-01-01

    Growing evidence links perceptions of neighborhood disorder to adverse health outcomes but little is known about psychological processes that may mediate this association. We tested the hypothesis that two psychological mechanisms—agonistic striving and subordination—mediate the link between perceived neighborhood disorder and hypertension risk in youth. Perceived neighborhood disorder, agonistic striving, subordination experiences, negative affect, obesity, and ambulatory blood pressure during daily activities (48 h) were assessed in a multiethnic sample of 167 low- to middle-income urban adolescents. Path analyses revealed that agonistic striving, subordination, and obesity each independently mediated the association between neighborhood disorder and blood pressure; these variables accounted for 73 % of the shared variance, 42 % of which was explained by agonistic striving. The direct relationship between perceived neighborhood disorder and blood pressure was no longer significant in the presence of these mediators. Negative affect was associated with neighborhood disorder and subordination, but not blood pressure. Agonistic striving proved to be a significant and substantial mediator of the association between perceived neighborhood disorder, blood pressure, and future hypertension risk. New research should seek to clarify the processes by which stressful neighborhoods induce persistent agonistic motives and perceptions of subordination in adolescents. PMID:23229689

  3. Comparative Review of Approved Melatonin Agonists for the Treatment of Circadian Rhythm Sleep-Wake Disorders.

    PubMed

    Williams, Wilbur P Trey; McLin, Dewey E; Dressman, Marlene A; Neubauer, David N

    2016-09-01

    Circadian rhythm sleep-wake disorders (CRSWDs) are characterized by persistent or recurrent patterns of sleep disturbance related primarily to alterations of the circadian rhythm system or the misalignment between the endogenous circadian rhythm and exogenous factors that affect the timing or duration of sleep. These disorders collectively represent a significant unmet medical need, with a total prevalence in the millions, a substantial negative impact on quality of life, and a lack of studied treatments for most of these disorders. Activation of the endogenous melatonin receptors appears to play an important role in setting the circadian clock in the suprachiasmatic nucleus of the hypothalamus. Therefore, melatonin agonists, which may be able to shift and/or stabilize the circadian phase, have been identified as potential therapeutic candidates for the treatment of CRSWDs. Currently, only one melatonin receptor agonist, tasimelteon, is approved for the treatment of a CRSWD: non-24-hour sleep-wake disorder (or non-24). However, three additional commercially available melatonin receptor agonists-agomelatine, prolonged-release melatonin, and ramelteon-have been investigated for potential use for treatment of CRSWDs. Data indicate that these melatonin receptor agonists have distinct pharmacologic profiles that may help clarify their clinical use in CRSWDs. We review the pharmacokinetic and pharmacodynamic properties of these melatonin agonists and summarize their efficacy profiles when used for the treatment of CRSWDs. Further studies are needed to determine the therapeutic potential of these melatonin agonists for most CRSWDs.

  4. GLP-1 receptor agonists or DPP-4 inhibitors: how to guide the clinician?

    PubMed

    Scheen, André J

    2013-12-01

    Pharmacological treatment of type 2 diabetes has been enriched during recent years, with the launch of incretin therapies targeting glucagon-like peptide-1 (GLP-1). Such medications comprise either GLP-1 receptor agonists, with short (one or two daily injections: exenatide, liraglutide, lixisenatide) or long duration (one injection once weekly: extended-released exenatide, albiglutide, dulaglutide, taspoglutide); or oral compounds inhibiting dipeptidyl peptidase-4 (DPP-4), the enzyme that inactives GLP-1, also called gliptins (sitagliptin, vildagliptin, saxagliptin, linagliptin, alogliptin). Although both pharmacological approaches target GLP-1, important differences exist concerning the mode of administration (subcutaneous injection versus oral ingestion), the efficacy (better with GLP-1 agonists), the effects on body weight and systolic blood pressure (diminution with agonists versus neutrality with gliptins), the tolerance profile (nausea and possibly vomiting with agonists) and the cost (higher with GLP-1 receptor agonists). Both agents may exert favourable cardiovascular effects. Gliptins may represent a valuable alternative to a sulfonylurea or a glitazone after failure of monotherapy with metformin while GLP-1 receptor agonists may be considered as a good alternative to insulin (especially in obese patients) after failure of a dual oral therapy. However, this scheme is probably too restrictive and modalities of using incretins are numerous, in almost all stages of type 2 diabetes. Physicians may guide the pharmacological choice based on clinical characteristics, therapeutic goals and patient's preference.

  5. β-Adrenoreceptor agonists in the management of pain associated with renal colic: a systematic review

    PubMed Central

    Johnson, Graham David; Fakis, Apostolos; Surtees, Jane; Lennon, Robert Iain

    2016-01-01

    Objectives To determine whether β-adrenoreceptor agonists are effective analgesics for patients with renal colic through a systematic review of the literature. Setting Adult emergency departments or acute assessment units. Participants Human participants with proven or suspected renal colic. Interventions β-adrenoreceptor agonists. Outcome measures Primary: level of pain at 30 min following administration of the β-agonist. Secondary: level of pain at various time points following β-agonist administration; length of hospital stay; analgesic requirement; stone presence, size and position; degree of hydronephrosis. Results 256 records were screened and 4 identified for full-text review. No articles met the inclusion criteria. Conclusions and implications There is no evidence to support or refute the proposed use of β-agonists for analgesia in patients with renal colic. Given the biological plausibility and existing literature base, clinical trials investigating the use of β-adrenoreceptor agonists in the acute setting for treatment of the pain associated with renal colic are recommended. Trial registration number CRD42015016266. PMID:27324714

  6. Three-dimensional common-feature hypotheses for octopamine agonist 2-(arylimino)imidazolidines.

    PubMed

    Hirashima, Akinori; Morimoto, Masako; Kuwano, Eiichi; Taniguchi, Eiji; Eto, Morifusa

    2002-01-01

    Three-dimensional pharmacophore hypotheses were built from a set of 10 octopamine (OA) agonist 2-(Arylimino)imidazolidines (AIIs), 2-(Arylimino)thiazolidines (AITs) and 2-(Arylimino)oxazolidines (AIOs). Among the 10 common-featured models generated by program Catalyst/HipHop, a hypothesis including a ring aromatic (RA), a positive ionizable (PI) and three hydrophobic aliphatic (HpAl) features was considered to be important in evaluating the OA-agonist activity. Active OA agonist 2,6-Et2 AII mapped well onto all the RA, PI and HpAl features of the hypothesis. On the other hand, less active compounds were shown to be difficult to achieve the energetically favorable conformation which is found in the active molecules in order to fit the 3-D common-feature pharmacophore models. Taken together, 2,6-Et2-Ph and foramidine structures are important as OA agonists. The present studies on OA agonists demonstrate that a RA, a PI and three HpAl sites located on the molecule seem to be essential for OA-agonist activity. PMID:11738614

  7. Do inhaled beta(2)-agonists have an ergogenic potential in non-asthmatic competitive athletes?

    PubMed

    Kindermann, Wilfried

    2007-01-01

    The prevalence of asthma is higher in elite athletes than in the general population. The risk of developing asthmatic symptoms is the highest in endurance athletes and swimmers. Asthma seems particularly widespread in winter-sport athletes such as cross-country skiers. Asthmatic athletes commonly use inhaled beta(2)-agonists to prevent and treat asthmatic symptoms. However, beta(2)-agonists are prohibited according to the Prohibited List of the World Anti-Doping Agency. An exception can be made only for the substances formoterol, salbutamol, salmeterol and terbutaline by inhalation, as long as a therapeutic use exemption has been applied for and granted. In this context, the question arises of whether beta(2)-agonists have ergogenic benefits justifying the prohibition of these substances. In 17 of 19 randomised placebo-controlled trials in non-asthmatic competitive athletes, performance-enhancing effects of the inhaled beta(2)-agonists formoterol, salbutamol, salmeterol and terbutaline could not be proved. This is particularly true for endurance performance, anaerobic power and strength performance. In three of four studies, even supratherapeutic doses of salbutamol (800-1200 microg) had no ergogenic effect. In contrast to inhaled beta(2)-agonists, oral administration of salbutamol seems to be able to improve the muscle strength and the endurance performance. There appears to be no justification to prohibit inhaled beta(2)-agonists from the point of view of the ergogenic effects. PMID:17241101

  8. Three-dimensional common-feature hypotheses for octopamine agonist 2-(arylimino)imidazolidines.

    PubMed

    Hirashima, Akinori; Morimoto, Masako; Kuwano, Eiichi; Taniguchi, Eiji; Eto, Morifusa

    2002-01-01

    Three-dimensional pharmacophore hypotheses were built from a set of 10 octopamine (OA) agonist 2-(Arylimino)imidazolidines (AIIs), 2-(Arylimino)thiazolidines (AITs) and 2-(Arylimino)oxazolidines (AIOs). Among the 10 common-featured models generated by program Catalyst/HipHop, a hypothesis including a ring aromatic (RA), a positive ionizable (PI) and three hydrophobic aliphatic (HpAl) features was considered to be important in evaluating the OA-agonist activity. Active OA agonist 2,6-Et2 AII mapped well onto all the RA, PI and HpAl features of the hypothesis. On the other hand, less active compounds were shown to be difficult to achieve the energetically favorable conformation which is found in the active molecules in order to fit the 3-D common-feature pharmacophore models. Taken together, 2,6-Et2-Ph and foramidine structures are important as OA agonists. The present studies on OA agonists demonstrate that a RA, a PI and three HpAl sites located on the molecule seem to be essential for OA-agonist activity.

  9. The good, the bad, and the ugly: agonistic behaviour in juvenile crocodilians.

    PubMed

    Brien, Matthew L; Lang, Jeffrey W; Webb, Grahame J; Stevenson, Colin; Christian, Keith A

    2013-01-01

    We examined agonistic behaviour in seven species of hatchling and juvenile crocodilians held in small groups (N = 4) under similar laboratory conditions. Agonistic interactions occurred in all seven species, typically involved two individuals, were short in duration (5-15 seconds), and occurred between 1600-2200 h in open water. The nature and extent of agonistic interactions, the behaviours displayed, and the level of conspecific tolerance varied among species. Discrete postures, non-contact and contact movements are described. Three of these were species-specific: push downs by C. johnstoni; inflated tail sweeping by C. novaeguineae; and, side head striking combined with tail wagging by C. porosus. The two long-snouted species (C. johnstoni and G. gangeticus) avoided contact involving the head and often raised the head up out of the way during agonistic interactions. Several behaviours not associated with aggression are also described, including snout rubbing, raising the head up high while at rest, and the use of vocalizations. The two most aggressive species (C. porosus, C. novaeguineae) appeared to form dominance hierarchies, whereas the less aggressive species did not. Interspecific differences in agonistic behaviour may reflect evolutionary divergence associated with morphology, ecology, general life history and responses to interspecific conflict in areas where multiple species have co-existed. Understanding species-specific traits in agonistic behaviour and social tolerance has implications for the controlled raising of different species of hatchlings for conservation, management or production purposes.

  10. Identification of Ecdysone Hormone Receptor Agonists as a Therapeutic Approach for Treating Filarial Infections

    PubMed Central

    Mhashilkar, Amruta S.; Vankayala, Sai L.; Liu, Canhui; Kearns, Fiona; Mehrotra, Priyanka; Tzertzinis, George; Palli, Subba R.; Woodcock, H. Lee; Unnasch, Thomas R.

    2016-01-01

    Background A homologue of the ecdysone receptor has previously been identified in human filarial parasites. As the ecdysone receptor is not found in vertebrates, it and the regulatory pathways it controls represent attractive potential chemotherapeutic targets. Methodology/ Principal Findings Administration of 20-hydroxyecdysone to gerbils infected with B. malayi infective larvae disrupted their development to adult stage parasites. A stable mammalian cell line was created incorporating the B. malayi ecdysone receptor ligand-binding domain, its heterodimer partner and a secreted luciferase reporter in HEK293 cells. This was employed to screen a series of ecdysone agonist, identifying seven agonists active at sub-micromolar concentrations. A B. malayi ecdysone receptor ligand-binding domain was developed and used to study the ligand-receptor interactions of these agonists. An excellent correlation between the virtual screening results and the screening assay was observed. Based on both of these approaches, steroidal ecdysone agonists and the diacylhydrazine family of compounds were identified as a fruitful source of potential receptor agonists. In further confirmation of the modeling and screening results, Ponasterone A and Muristerone A, two compounds predicted to be strong ecdysone agonists stimulated expulsion of microfilaria and immature stages from adult parasites. Conclusions The studies validate the potential of the B. malayi ecdysone receptor as a drug target and provide a means to rapidly evaluate compounds for development of a new class of drugs against the human filarial parasites. PMID:27300294

  11. Metabolic mapping of A3 adenosine receptor agonist MRS5980.

    PubMed

    Fang, Zhong-Ze; Tosh, Dilip K; Tanaka, Naoki; Wang, Haina; Krausz, Kristopher W; O'Connor, Robert; Jacobson, Kenneth A; Gonzalez, Frank J

    2015-09-15

    (1S,2R,3S,4R,5S)-4-(2-((5-Chlorothiophen-2-yl)ethynyl)-6-(methylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo[3.1.0]hexane-1-carboxamide (MRS5980) is an A3AR selective agonist containing multiple receptor affinity- and selectivity-enhancing modifications and a therapeutic candidate drug for many inflammatory diseases. Metabolism-related poor pharmacokinetic behavior and toxicities are a major reason for drug R&D failure. Metabolomics with UPLC-MS was employed to profile the metabolism of MRS5980 and MRS5980-induced disruption of endogenous compounds. Recombinant drug-metabolizing enzymes screening experiment were used to determine the enzymes involved in MRS5980 metabolism. Analysis of lipid metabolism-related genes was performed to investigate the reason for MRS5980-induced lipid metabolic disorders. Unsupervised principal components analysis separated the control and MRS5980 treatment groups in feces, urine, and liver samples, but not in bile and serum. The major ions mainly contributing to the separation of feces and urine were oxidized MRS5980, glutathione (GSH) conjugates and cysteine conjugate (degradation product of the GSH conjugates) of MRS5980. The major ions contributing to the group separation of liver samples were phosphatidylcholines. In vitro incubation experiments showed the involvement of CYP3A enzymes in the oxidative metabolism of MRS5980 and direct GSH reactivity of MRS5980. The electrophilic attack by MRS5980 is a minor pathway and did not alter GSH levels in liver or liver histology, and thus may be of minor clinical consequence. Gene expression analysis further showed decreased expression of PC biosynthetic genes choline kinase a and b, which further accelerated conversion of lysophosphatidylcholine to phosphatidylcholines through increasing the expression of lysophosphatidylcholine acyltransferase 3. These data will be useful to guide rational design of drugs targeting A3AR, considering efficacy, metabolic elimination, and

  12. Cardiovascular Effects of Glucagon-Like Peptide-1 Receptor Agonists

    PubMed Central

    Kang, Yu Mi

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is a member of the proglucagon incretin family, and GLP-1 receptor agonists (RAs) have been introduced as a new class of antidiabetic medications in the past decade. The benefits of GLP-1 RAs are derived from their pleiotropic effects, which include glucose-dependent insulin secretion, suppressed glucagon secretion, and reduced appetite. Moreover, GLP-1 RAs also exert beneficial roles on multiple organ systems in which the GLP-1 receptors exist, including the cardiovascular system. Cardiovascular effects of GLP-1 RAs have been of great interest since the burden from cardiovascular diseases (CVD) has been unbearably increasing in a diabetic population worldwide, despite strict glycemic control and advanced therapeutic techniques to treat CVD. Preclinical studies have already demonstrated the beneficial effects of GLP-1 on myocardium and vascular endothelium, and many clinical studies evaluating changes in surrogate markers of CVD have suggested potential benefits from the use of GLP-1 RAs. Data from numerous clinical trials primarily evaluating the antihyperglycemic effects of multiple GLP-1 RAs have also revealed that changes in most CVD risk markers reported as secondary outcomes have been in favor of GLP-1 RAs treatment. However, to date, there is only one randomized clinical trial of GLP-1 RAs (the ELIXA study) evaluating major cardiovascular events as their primary outcomes, and in this study, a neutral cardiovascular effect of lixisenatide was observed in high-risk diabetic subjects. Therefore, the results of ongoing CVD outcome trials with the use of GLP-1 RAs should be awaited to elucidate the translation of benefits previously seen in CVD risk marker studies into large clinical trials with primary cardiovascular outcomes. PMID:27118277

  13. Metabolic mapping of A3 adenosine receptor agonist MRS5980

    PubMed Central

    Fang, Zhong-Ze; Tosh, Dilip K.; Tanaka, Naoki; Wang, Haina; Krausz, Kristopher W.; O'Connor, Robert; Jacobson, Kenneth A.; Gonzalez, Frank J.

    2015-01-01

    (1S,2R,3S,4R,5S)-4-(2-((5-Chlorothiophen-2-yl)ethynyl)-6-(methylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo[3.1.0]hexane-1-carboxamide (MRS5980) is an A3AR selective agonist containing multiple receptor affinity- and selectivity-enhancing modifications and a therapeutic candidate drug for many inflammatory diseases. Metabolism-related poor pharmacokinetic behavior and toxicities are a major reason of drug R&D failure. Metabolomics with UPLC-MS was employed to profile the metabolism of MRS5980 and MRS5980-induced disruption of endogenous compounds. Recombinant drug-metabolizing enzymes screening experiment were used to determine the enzymes involved in MRS5980 metabolism. Analysis of lipid metabolism-related genes was performed to investigate the reason for MRS5980-induced lipid metabolic disorders. Unsupervised principal components analysis separated the control and MRS5980 treatment group in feces, urine, and liver samples, but not in bile and serum. The major ions mainly contributing to the separation for feces and urine were oxidized MRS5980, glutathione (GSH) conjugates and cysteine conjugate (degradation product of the GSH conjugates) of MRS5980. The major ions contributing to the group separation of liver samples were phosphatidylcholines. In vitro incubation experiments showed the major involvement of CYP3A enzymes in the oxidative metabolism of MRS5980 and direct GSH reactivity of MRS5980. The electrophilic attack by MRS5980 is a minor pathway and did not alter GSH levels in liver or liver histology, and thus may be of minor clinical consequence. Gene expression analysis further showed decreased expression of PC biosynthetic genes choline kinase a and b, which further accelerated conversion of lysophosphatidylcholine to phosphatidylcholines through increasing the expression of lysophosphatidylcholine acyltransferase 3. These data will be useful to guide rational design of drugs targeting A3AR, considering efficacy, metabolic elimination, and

  14. Radiolabelled D2 agonists as prolactinoma imaging agents

    SciTech Connect

    Otto, C.A.

    1989-08-01

    During the past year, further studies on mAChR were conducted. These studies included verification of the difference in pituitary distribution based on ligand charge. The pituitary localization of TRB. A neutral mAChR ligand, was verified. The lack of QNB blockade of TRB uptake was tested by blockage with scopolamine, another mAChR antagonist and by testing the effect in a different strain of rat. Neither scopolamine or change of rat strain had any effect. We concluded that TRB uptake in pituitary is not a receptor-mediated process. Further studies were conducted with an additional quaternized mAChR ligand: MQNB. Pituitary localization of MQNB, like MTRB, could be blocked by pretreatment with QNB. We have tentatively concluded that permanent charge on a mAChR antagonist changes the mechanism of uptake in the pituitary. Time course studies and the effects of DES on myocardial uptake are reported. A brief report on preliminary results of evaluation of quaternized mAChR ligands in the heart is included. In a limited series of such ligands, we have observed a single binding site and a difference in B{sub max} values: QNB competition studies yield larger B{sub max} values than studies with {sup 3}H-NMS. Progress in the synthesis of D{sub 2} agonists includes solving a synthetic problem and preparation of the cold'' analogue of N-0437 using procedures applicable to eventual synthesis with {sup 11}C-CH{sub 3}I. 2 refs., 5 figs., 1 tab.

  15. GABAA agonist reduces visual awareness: a masking-EEG experiment.

    PubMed

    van Loon, Anouk M; Scholte, H Steven; van Gaal, Simon; van der Hoort, Björn J J; Lamme, Victor A F

    2012-04-01

    Consciousness can be manipulated in many ways. Here, we seek to understand whether two such ways, visual masking and pharmacological intervention, share a common pathway in manipulating visual consciousness. We recorded EEG from human participants who performed a backward-masking task in which they had to detect a masked figure form its background (masking strength was varied across trials). In a within-subject design, participants received dextromethorphan (a N-methyl-d-aspartate receptor antagonist), lorazepam (LZP; a GABA(A) receptor agonist), scopolamine (a muscarine receptor antagonist), or placebo. The behavioral results show that detection rate decreased with increasing masking strength and that of all the drugs, only LZP induced a further decrease in detection rate. Figure-related ERP signals showed three neural events of interest: (1) an early posterior occipital and temporal generator (94-121 msec) that was not influenced by any pharmacological manipulation nor by masking, (2) a later bilateral perioccipital generator (156-211 msec) that was reduced by masking as well as LZP (but not by any other drugs), and (3) a late bilateral occipital temporal generator (293-387 msec) that was mainly affected by masking. Crucially, only the intermediate neural event correlated with detection performance. In combination with previous findings, these results suggest that LZP and masking both reduce visual awareness by means of modulating late activity in the visual cortex but leave early activation intact. These findings provide the first evidence for a common mechanism for these two distinct ways of manipulating consciousness. PMID:22264199

  16. Pharmacological estimation of agonist affinity: detection of errors that may be caused by the operation of receptor isomerisation or ternary complex mechanisms.

    PubMed

    Leff, P; Harper, D; Dainty, I A; Dougall, I G

    1990-09-01

    1. Recent theoretical studies have questioned the pharmacological estimation of agonist affinity. They showed that when receptor isomerisation or ternary complex mechanisms operate, the receptor inactivation method can substantially overestimate affinity, whereas methods for partial agonist analysis are more accurate. We previously suggested that the operation of such mechanisms and therefore the presence of errors could be detected by analysing the same partial agonist by the receptor inactivation and comparative methods. This paper describes the practical application of this test. 2. The ternary complex mechanism was simulated for a partial agonist under various conditions relating receptor (R) and transducer (T) concentrations, one of which also corresponds to the receptor isomerisation mechanism. The theoretical data so generated were then analysed by the inactivation and comparative methods to quantify the magnitude of error of affinity estimation that could occur. 3. This analysis showed that for a partial agonist with approximately 85% of the activity of a full agonist, the inactivation method could produce an affinity (pKA) estimate up to 0.7 log10 units higher than that produced by the comparative method. This difference would occur when the total receptor concentration ([R0]) is less than or equal to the total transducer concentration ([T0]). It also showed that the overestimation of affinity by the inactivation method was accompanied by drastic overestimation of Em, the maximal effect parameter. 4. The test was then exemplified using the muscarinic receptor system in the guinea-pig isolated left atrial preparation, where there is evidence that a ternary complex mechanism operates. The test agonist was pilocarpine, which produced on average 83% of the activity of the full agonist, carbachol. Pilocarpine was analysed in comparison with carbachol and by receptor inactivation in the same tissue resulting in small and statistically insignificant differences

  17. Benzodiazepine recognition site inverse agonists Ro-15-4513 and FG 7142 both antagonize the EEG effects of ethanol in the rat

    SciTech Connect

    Marrosu, F.; Mereu, G.; Giorgi, O.; Corda, M.G.

    1988-01-01

    The aim of the present study was to compare the ability of Ro 15-4513 and FG 7142, two inverse agonists for benzodiazepine recognition sites, to antagonize the EEG effects of ethanol in freely moving rats. Ethanol induced sedation and ataxia associated with a progressive suppression of the fast cortical activities and an enhancement of low frequencies in both cortical and hippocampal tracings. In contrast, Ro 15-4513 and FG 7142 both caused a state of alertness associated with desynchronized cortical activity and theta hippocampal rhythm as well as spiking activity which was predominantly observed in the cortical tracings. When rats were treated with FG 7142 or Ro 15-4513 either before or after ethanol, a reciprocal antagonism of the behavioral and EEG effects of ethanol and of the partial inverse agonists was observed. These data support the view that the anti-ethanol effects of Ro 15-4513 may be related to its partial inverse agonist properties.

  18. Actions of the prototypical 5-HT1A receptor agonist 8-OH-DPAT at human alpha2-adrenoceptors: (+)8-OH-DPAT, but not (-)8-OH-DPAT is an alpha2B subtype preferential agonist.

    PubMed

    Heusler, Peter; Rauly-Lestienne, Isabelle; Tourette, Amélie; Tardif, Stéphanie; Ailhaud, Marie-Christine; Croville, Guillaume; Cussac, Didier

    2010-08-25

    8-OH-DPAT [8-hydroxy-2-(di-n-propylamino)tetralin] is the prototypical agonist at serotonin 5-HT1A receptors; however, activity at other targets contributes to the functional effects of the compound as well. We examined the properties of 8-OH-DPAT and its enantiomers at recombinant human (h)alpha2-adrenoceptor subtypes, using a panel of radioligand binding and functional tests. In competition binding experiments using [3H]-RX821002, about 10-fold selectivity of (+)8-OH-DPAT for the halpha2B subtype (pKi about 7) over halpha2A- and halpha2C-adrenoceptors was observed. In contrast, the S(-) enantiomer of 8-OH-DPAT showed similar weak affinities for the three receptor subtypes (pKis<6). The binding affinity of (+)8-OH-DPAT at the halpha2B- and the halpha2A-adrenoceptor was found sensitive to GTPgammaS, a receptor/G protein-uncoupling agent, indicating agonist properties of the drug. Furthermore, using [35S]GTPgammaS binding determination at CHO-halpha2B or CHO-halpha2A cell membranes and G protein coupled inwardly rectifying potassium (GIRK) current recordings in Xenopus oocytes expressing halpha2B, partial agonist activity of (+)8-OH-DPAT at the respective receptors was confirmed in these two different functional assays. Potency of (+)8-OH-DPAT for stimulation of [35S]GTPgammaS incorporation was lower at the halpha2A- than at the halpha2B-adrenoceptor, consistent with binding affinities. Thus, (+)8-OH-DPAT and, as a consequence, racemic (+/-)8-OH-DPAT are partial agonists at halpha2-adrenoceptors with selectivity for the halpha2B subtype, a property that might contribute to the effects of the compound described in native systems.

  19. P2Y2 receptor agonists for the treatment of dry eye disease: a review

    PubMed Central

    Lau, Oliver C F; Samarawickrama, Chameen; Skalicky, Simon E

    2014-01-01

    Recent advances in the understanding of dry eye disease (DED) have revealed previously unexplored targets for drug therapy. One of these drugs is diquafosol, a uridine nucleotide analog that is an agonist of the P2Y2 receptor. Several randomized controlled trials have demonstrated that the application of topical diquafosol significantly improves objective markers of DED such as corneal and conjunctival fluorescein staining and, in some studies, tear film break-up time and Schirmer test scores. However, this has been accompanied by only partial improvement in patient symptoms. Although evidence from the literature is still relatively limited, early studies have suggested that diquafosol has a role in the management of DED. Additional studies would be helpful to delineate how different subgroups of DED respond to diquafosol. The therapeutic combination of diquafosol with other topical agents also warrants further investigation. PMID:24511227

  20. Benzodiazepine receptor inverse agonists. beta. -CCM and RO 15-3505 both reverse the anxiolytic effects of ethanol in mice

    SciTech Connect

    Belzung, C.; Misslin, R.; Vogel, E.

    1988-01-01

    The antagonistic effects of the benzodiazepine receptor inverse agonist ..beta..-CCM and of the partial inverse agonist RO 15-3505 on the anxiolytic properties of ethanol in mice confronted with a light/dark choice procedure and with the staircase test were investigated. Both drugs reversed the effects of ethanol on some of the behavioral parameters, but ..beta..-CCM alone elicited anxiogenic intrinsic effects. RO-3505 induced seizures in mice treated with a subconvulsant dose of pentylenetetrazole, the most efficient doses being 3 and 6 mg/kg. These data indicate that ..beta..-CCM and RO 15-3505 can reverse some of the anxiolytic effects of ethanol, acting probably to oppose GABA function via the benzodiazepine receptor.

  1. High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875.

    PubMed

    Srivastava, Ankita; Yano, Jason; Hirozane, Yoshihiko; Kefala, Georgia; Gruswitz, Franz; Snell, Gyorgy; Lane, Weston; Ivetac, Anthony; Aertgeerts, Kathleen; Nguyen, Jasmine; Jennings, Andy; Okada, Kengo

    2014-09-01

    Human GPR40 receptor (hGPR40), also known as free fatty-acid receptor 1 (FFAR1), is a G-protein-coupled receptor that binds long-chain free fatty acids to enhance glucose-dependent insulin secretion. Novel treatments for type-2 diabetes mellitus are therefore possible by targeting hGPR40 with partial or full agonists. TAK-875, or fasiglifam, is an orally available, potent and selective partial agonist of hGPR40 receptor, which reached phase III clinical trials for the potential treatment of type-2 diabetes mellitus. Data from clinical studies indicate that TAK-875, which is an ago-allosteric modulator of hGPR40 (ref. 3), demonstrates improved glycaemic control and low hypoglycaemic risk in diabetic patients. Here we report the crystal structure of hGPR40 receptor bound to TAK-875 at 2.3 Å resolution. The co-complex structure reveals a unique binding mode of TAK-875 and suggests that entry to the non-canonical binding pocket most probably occurs via the lipid bilayer. The atomic details of the extensive charge network in the ligand binding pocket reveal additional interactions not identified in previous studies and contribute to a clear understanding of TAK-875 binding to the receptor. The hGPR40-TAK-875 structure also provides insights into the plausible binding of multiple ligands to the receptor, which has been observed in radioligand binding and Ca(2+) influx assay studies. Comparison of the transmembrane helix architecture with other G-protein-coupled receptors suggests that the crystallized TAK-875-bound hGPR40 complex is in an inactive-like state.

  2. Dopamine agonists, anti-progestins, anti-androgens, long-term-release GnRH agonists and anti-estrogens in canine reproduction: a review.

    PubMed

    Gobello, C

    2006-10-01

    Over the last 10 years, new drugs have been applied to canine reproduction, widening the spectrum of therapeutic possibilities for diseases that were previously surgically treated, and facilitating better control of the estrous cycle and fertility. Some are not approved for use in dogs; their use is experimental and further clinical trials are necessary. Dopamine agonists such as cabergoline, bromocriptine or metergoline are ergoderivative alkaloids that exert an anti-prolactinergic effect via stimulation of D2 pituitary receptors or inhibition of central serotoninergic ones. Their main indication is suppression of lactation. Anti-prolactinergic compounds have also been successfully used for pregnancy termination and shortening of interestrous intervals. Anti-progestins, (e.g. mifepristone and aglepristone) are synthetic steroids that bind with high affinity to progesterone (P4) receptors, preventing P4 from exerting its biological effects. Anti-progestins have been indicated in P4-dependent conditions, such as pregnancy termination, induction of parturition and the medical treatment of pyometra. Several groups of drugs have been described to have anti-androgenic properties through different mechanisms of action: progestins, receptor binding anti-androgens (e.g. flutamide), competitive enzyme inhibitors (e.g. finasteride), aromatase inhibitors, and GnRH agonists. Their main application is medical treatment of benign prostatic hyperplasia. Long-term release formulations of GnRH agonists (e.g. leuprolide or deslorelin acetate) postponed puberty and reversibly suppressed reproductive function in male and female dogs for periods exceeding 1 year. Anti-estrogens (e.g. clomiphene and tamoxifen citrate) are synthetic non-steroidal type I anti-estrogenic compounds that competitively block estrogen receptors with a combined antagonist-agonistic effect. In dogs, their action is more agonistic than antagonistic. PMID:16542717

  3. Find novel dual-agonist drugs for treating type 2 diabetes by means of cheminformatics

    PubMed Central

    Liu, Lei; Ma, Ying; Wang, Run-Ling; Xu, Wei-Ren; Wang, Shu-Qing; Chou, Kuo-Chen

    2013-01-01

    The high prevalence of type 2 diabetes mellitus in the world as well as the increasing reports about the adverse side effects of the existing diabetes treatment drugs have made developing new and effective drugs against the disease a very high priority. In this study, we report ten novel compounds found by targeting peroxisome proliferator-activated receptors (PPARs) using virtual screening and core hopping approaches. PPARs have drawn increasing attention for developing novel drugs to treat diabetes due to their unique functions in regulating glucose, lipid, and cholesterol metabolism. The reported compounds are featured with dual functions, and hence belong to the category of dual agonists. Compared with the single PPAR agonists, the dual PPAR agonists, formed by combining the lipid benefit of PPARα agonists (such as fibrates) and the glycemic advantages of the PPARγ agonists (such as thiazolidinediones), are much more powerful in treating diabetes because they can enhance metabolic effects while minimizing the side effects. This was observed in the studies on molecular dynamics simulations, as well as on absorption, distribution, metabolism, and excretion, that these novel dual agonists not only possessed the same function as ragaglitazar (an investigational drug developed by Novo Nordisk for treating type 2 diabetes) did in activating PPARα and PPARγ, but they also had more favorable conformation for binding to the two receptors. Moreover, the residues involved in forming the binding pockets of PPARα and PPARγ among the top ten compounds are explicitly presented, and this will be very useful for the in-depth conduction of mutagenesis experiments. It is anticipated that the ten compounds may become potential drug candidates, or at the very least, the findings reported here may stimulate new strategies or provide useful insights for designing new and more powerful dual-agonist drugs for treating type 2 diabetes. PMID:23630413

  4. PPAR agonists regulate brain gene expression: relationship to their effects on ethanol consumption.

    PubMed

    Ferguson, Laura B; Most, Dana; Blednov, Yuri A; Harris, R Adron

    2014-11-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. Although prescribed for dyslipidemia and type-II diabetes, PPAR agonists also possess anti-addictive characteristics. PPAR agonists decrease ethanol consumption and reduce withdrawal severity and susceptibility to stress-induced relapse in rodents. However, the cellular and molecular mechanisms facilitating these properties have yet to be investigated. We tested three PPAR agonists in a continuous access two-bottle choice (2BC) drinking paradigm and found that tesaglitazar (PPARα/γ; 1.5 mg/kg) and fenofibrate (PPARα; 150 mg/kg) decreased ethanol consumption in male C57BL/6J mice while bezafibrate (PPARα/γ/β; 75 mg/kg) did not. We hypothesized that changes in brain gene expression following fenofibrate and tesaglitazar treatment lead to reduced ethanol drinking. We studied unbiased genomic profiles in areas of the brain known to be important for ethanol dependence, the prefrontal cortex (PFC) and amygdala, and also profiled gene expression in liver. Genomic profiles from the non-effective bezafibrate treatment were used to filter out genes not associated with ethanol consumption. Because PPAR agonists are anti-inflammatory, they would be expected to target microglia and astrocytes. Surprisingly, PPAR agonists produced a strong neuronal signature in mouse brain, and fenofibrate and tesaglitazar (but not bezafibrate) targeted a subset of GABAergic interneurons in the amygdala. Weighted gene co-expression network analysis (WGCNA) revealed co-expression of treatment-significant genes. Functional annotation of these gene networks suggested that PPAR agonists might act via neuropeptide and dopaminergic signaling pathways in the amygdala. Our results reveal gene targets through which PPAR agonists can affect alcohol consumption behavior.

  5. β2-Adrenoceptor agonists as novel, safe and potentially effective therapies for Amyotrophic lateral sclerosis (ALS).

    PubMed

    Bartus, Raymond T; Bétourné, Alexandre; Basile, Anthony; Peterson, Bethany L; Glass, Jonathan; Boulis, Nicholas M

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a chronic and progressive neuromuscular disease for which no cure exists and better treatment options are desperately needed. We hypothesize that currently approved β2-adrenoceptor agonists may effectively treat the symptoms and possibly slow the progression of ALS. Although β2-agonists are primarily used to treat asthma, pharmacologic data from animal models of neuromuscular diseases suggest that these agents may have pharmacologic effects of benefit in treating ALS. These include inhibiting protein degradation, stimulating protein synthesis, inducing neurotrophic factor synthesis and release, positively modulating microglial and systemic immune function, maintaining the structural and functional integrity of motor endplates, and improving energy metabolism. Moreover, stimulation of β2-adrenoceptors can activate a range of downstream signaling events in many different cell types that could account for the diverse array of effects of these agents. The evidence supporting the possible therapeutic benefits of β2-agonists is briefly reviewed, followed by a more detailed review of clinical trials testing the efficacy of β-agonists in a variety of human neuromuscular maladies. The weight of evidence of the potential benefits from treating these diseases supports the hypothesis that β2-agonists may be efficacious in ALS. Finally, ways to monitor and manage the side effects that may arise with chronic administration of β2-agonists are evaluated. In sum, effective, safe and orally-active β2-agonists may provide a novel and convenient means to reduce the symptoms of ALS and possibly delay disease progression, affording a unique opportunity to repurpose these approved drugs for treating ALS, and rapidly transforming the management of this serious, unmet medical need. PMID:26459114

  6. PPAR agonists regulate brain gene expression: relationship to their effects on ethanol consumption.

    PubMed

    Ferguson, Laura B; Most, Dana; Blednov, Yuri A; Harris, R Adron

    2014-11-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. Although prescribed for dyslipidemia and type-II diabetes, PPAR agonists also possess anti-addictive characteristics. PPAR agonists decrease ethanol consumption and reduce withdrawal severity and susceptibility to stress-induced relapse in rodents. However, the cellular and molecular mechanisms facilitating these properties have yet to be investigated. We tested three PPAR agonists in a continuous access two-bottle choice (2BC) drinking paradigm and found that tesaglitazar (PPARα/γ; 1.5 mg/kg) and fenofibrate (PPARα; 150 mg/kg) decreased ethanol consumption in male C57BL/6J mice while bezafibrate (PPARα/γ/β; 75 mg/kg) did not. We hypothesized that changes in brain gene expression following fenofibrate and tesaglitazar treatment lead to reduced ethanol drinking. We studied unbiased genomic profiles in areas of the brain known to be important for ethanol dependence, the prefrontal cortex (PFC) and amygdala, and also profiled gene expression in liver. Genomic profiles from the non-effective bezafibrate treatment were used to filter out genes not associated with ethanol consumption. Because PPAR agonists are anti-inflammatory, they would be expected to target microglia and astrocytes. Surprisingly, PPAR agonists produced a strong neuronal signature in mouse brain, and fenofibrate and tesaglitazar (but not bezafibrate) targeted a subset of GABAergic interneurons in the amygdala. Weighted gene co-expression network analysis (WGCNA) revealed co-expression of treatment-significant genes. Functional annotation of these gene networks suggested that PPAR agonists might act via neuropeptide and dopaminergic signaling pathways in the amygdala. Our results reveal gene targets through which PPAR agonists can affect alcohol consumption behavior. PMID:25036611

  7. β2-Adrenergic agonists attenuate organic dust-induced lung inflammation.

    PubMed

    Romberger, Debra J; Heires, Art J; Nordgren, Tara M; Poole, Jill A; Toews, Myron L; West, William W; Wyatt, Todd A

    2016-07-01

    Agricultural dust exposure results in significant lung inflammation, and individuals working in concentrated animal feeding operations (CAFOs) are at risk for chronic airway inflammatory diseases. Exposure of bronchial epithelial cells to aqueous extracts of hog CAFO dusts (HDE) leads to inflammatory cytokine production that is driven by protein kinase C (PKC) activation. cAMP-dependent protein kinase (PKA)-activating agents can inhibit PKC activation in epithelial cells, leading to reduced inflammatory cytokine production following HDE exposure. β2-Adrenergic receptor agonists (β2-agonists) activate PKA, and we hypothesized that β2-agonists would beneficially impact HDE-induced adverse airway inflammatory consequences. Bronchial epithelial cells were cultured with the short-acting β2-agonist salbutamol or the long-acting β2-agonist salmeterol prior to stimulation with HDE. β2-Agonist treatment significantly increased PKA activation and significantly decreased HDE-stimulated IL-6 and IL-8 production in a concentration- and time-dependent manner. Salbutamol treatment significantly reduced HDE-induced intracellular adhesion molecule-1 expression and neutrophil adhesion to epithelial cells. Using an established intranasal inhalation exposure model, we found that salbutamol pretreatment reduced airway neutrophil influx and IL-6, TNF-α, CXCL1, and CXCL2 release in bronchoalveolar lavage fluid following a one-time exposure to HDE. Likewise, when mice were pretreated daily with salbutamol prior to HDE exposure for 3 wk, HDE-induced neutrophil influx and inflammatory mediator production were also reduced. The severity of HDE-induced lung pathology in mice repetitively exposed to HDE for 3 wk was also decreased with daily salbutamol pretreatment. Together, these results support the need for future clinical investigations to evaluate the utility of β2-agonist therapies in the treatment of airway inflammation associated with CAFO dust exposure. PMID:27190062

  8. CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice.

    PubMed

    Wagner, Martin; Halilbasic, Emina; Marschall, Hanns-Ulrich; Zollner, Gernot; Fickert, Peter; Langner, Cord; Zatloukal, Kurt; Denk, Helmut; Trauner, Michael

    2005-08-01

    Induction of hepatic phase I/II detoxification enzymes and alternative excretory pumps may limit hepatocellular accumulation of toxic biliary compounds in cholestasis. Because the nuclear xenobiotic receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR) regulate involved enzymes and transporters, we aimed to induce adaptive alternative pathways with different CAR and PXR agonists in vivo. Mice were treated with the CAR agonists phenobarbital and 1,4-bis-[2-(3,5-dichlorpyridyloxy)]benzene, as well as the PXR agonists atorvastatin and pregnenolone-16alpha-carbonitrile. Hepatic bile acid and bilirubin-metabolizing/detoxifying enzymes (Cyp2b10, Cyp3a11, Ugt1a1, Sult2a1), their regulatory nuclear receptors (CAR, PXR, farnesoid X receptor), and bile acid/organic anion and lipid transporters (Ntcp, Oatp1,2,4, Bsep, Mrp2-4, Mdr2, Abcg5/8, Asbt) in the liver and kidney were analyzed via reverse-transcriptase polymerase chain reaction and Western blotting. Potential functional relevance was tested in common bile duct ligation (CBDL). CAR agonists induced Mrp2-4 and Oatp2; PXR agonists induced only Mrp3 and Oatp2. Both PXR and CAR agonists profoundly stimulated bile acid-hydroxylating/detoxifying enzymes Cyp3a11 and Cyp2b10. In addition, CAR agonists upregulated bile acid-sulfating Sult2a1 and bilirubin-glucuronidating Ugt1a1. These changes were accompanied by reduced serum levels of bilirubin and bile acids in healthy and CBDL mice and by increased levels of polyhydroxylated bile acids in serum and urine of cholestatic mice. Atorvastatin significantly increased Oatp2, Mdr2, and Asbt, while other transporters and enzymes were moderately affected. In conclusion, administration of specific CAR or PXR ligands results in coordinated stimulation of major hepatic bile acid/bilirubin metabolizing and detoxifying enzymes and hepatic key alternative efflux systems, effects that are predicted to counteract cholestasis. PMID:15986414

  9. Preclinical pharmacology of mGlu2/3 receptor agonists: novel agents for schizophrenia?

    PubMed

    DD, Darryle D Schoepp; Marek, Gerard J

    2002-04-01

    Agonists for mGlu2/3 receptors decrease the evoked release of glutamate at certain (ie. forebrain / limbic) glutamatergic synapses, indicating that the functional role of mGlu2 and/or mGlu3 receptors is to suppress glutamate excitations. This offers a mechanism for dampening glutamate excitation under pathological states resulting from excessive glutamate release. Based, in part, on the psychotomimetic actions of phencyclidine (PCP)- like drugs, excessive or pathological glutamate release has been implicated in a number of clinical conditions including psychosis. With this in mind, the pharmacology of multiple mGlu2/3 receptor agonists have been investigated in PCP treated rats. Agonists for mGlu2/3 receptors such as LY354740 and LY379268 have been shown to block certain behavioral responses to PCP in rats. The effects of mGlu2/3 agonists on PCP-induced behaviors are blocked by a low doses of a selective mGlu2/3 receptor antagonist, indicating that these actions are mediated via mGlu2/3 receptors. In addition, mGlu2/3 agonists potently suppress glutamate release in rat prefrontal cortex, as reflected by excitatory post-synaptic potentials (EPSPs) induced by serotonin (5-HT) acting on 5HT(2A) receptors. These actions of LY354740 and LY379268 are also blocked by a selective mGlu2/3 antagonist. Atypical antipsychotic drugs such as clozapine also suppress 5-HT-induced EPSPs in this brain region, thus suggesting a common pathway for the actions of atypical antipsychotic drugs and mGlu2/3 receptor agonists. As glutamatergic dysfunction has been implicated in psychotic states and possibly in the etiology of schizophrenia, clinical studies with mGlu2/3 agonists may be warranted to further explore the validity of the glutamatergic hypothesis of schizophrenia. PMID:12769628

  10. Antimitogenic effect of bitter taste receptor agonists on airway smooth muscle cells.

    PubMed

    Sharma, Pawan; Panebra, Alfredo; Pera, Tonio; Tiegs, Brian C; Hershfeld, Alena; Kenyon, Lawrence C; Deshpande, Deepak A

    2016-02-15

    Airway remodeling is a hallmark feature of asthma and chronic obstructive pulmonary disease. Clinical studies and animal models have demonstrated increased airway smooth muscle (ASM) mass, and ASM thickness is correlated with severity of the disease. Current medications control inflammation and reverse airway obstruction effectively but have limited effect on remodeling. Recently we identified the expression of bitter taste receptors (TAS2R) on ASM cells, and activation with known TAS2R agonists resulted in ASM relaxation and bronchodilation. These studies suggest that TAS2R can be used as new therapeutic targets in the treatment of obstructive lung diseases. To further establish their effectiveness, in this study we aimed to determine the effects of TAS2R agonists on ASM growth and promitogenic signaling. Pretreatment of healthy and asthmatic human ASM cells with TAS2R agonists resulted in a dose-dependent inhibition of ASM proliferation. The antimitogenic effect of TAS2R ligands was not dependent on activation of protein kinase A, protein kinase C, or high/intermediate-conductance calcium-activated K(+) channels. Immunoblot analyses revealed that TAS2R agonists inhibit growth factor-activated protein kinase B phosphorylation without affecting the availability of phosphatidylinositol 3,4,5-trisphosphate, suggesting TAS2R agonists block signaling downstream of phosphatidylinositol 3-kinase. Furthermore, the antimitogenic effect of TAS2R agonists involved inhibition of induced transcription factors (activator protein-1, signal transducer and activator of transcription-3, E2 factor, nuclear factor of activated T cells) and inhibition of expression of multiple cell cycle regulatory genes, suggesting a direct inhibition of cell cycle progression. Collectively, these findings establish the antimitogenic effect of TAS2R agonists and identify a novel class of receptors and signaling pathways that can be targeted to reduce or prevent airway remodeling as well as

  11. Glucagon-like peptide-1 receptor agonists suppress water intake independent of effects on food intake.

    PubMed

    McKay, Naomi J; Kanoski, Scott E; Hayes, Matthew R; Daniels, Derek

    2011-12-01

    Glucagon-like peptide-1 (GLP-1) is produced by and released from the small intestine following ingestion of nutrients. GLP-1 receptor (GLP-1R) agonists applied peripherally or centrally decrease food intake and increase glucose-stimulated insulin secretion. These effects make the GLP-1 system an attractive target for the treatment of type 2 diabetes mellitus and obesity. In addition to these more frequently studied effects of GLP-1R stimulation, previous reports indicate that GLP-1R agonists suppress water intake. The present experiments were designed to provide greater temporal resolution and site specificity for the effect of GLP-1 and the long-acting GLP-1R agonists, exendin-4 and liraglutide, on unstimulated water intake when food was and was not available. All three GLP-1R ligands suppressed water intake after peripheral intraperitoneal administration, both in the presence of and the absence of food; however, the magnitude and time frame of water intake suppression varied by drug. GLP-1 had an immediate, but transient, hypodipsic effect when administered peripherally, whereas the water intake suppression by IP exendin-4 and liraglutide was much more persistent. Additionally, intracerebroventricular administration of GLP-1R agonists suppressed water intake when food was absent, but the suppression of intake showed modest differences depending on whether the drug was administered to the lateral or fourth ventricle. To the best of our knowledge, this is the first demonstration of GLP-1 receptor agonists affecting unstimulated, overnight intake in the absence of food, the first test for antidipsogenic effects of hindbrain application of GLP-1 receptor agonists, and the first test of a central effect (forebrain or hindbrain) of liraglutide on water intake. Overall, these results show that GLP-1R agonists have a hypodipsic effect that is independent of GLP-1R-mediated effects on food intake, and this occurs, in part, through central nervous system GLP-1R activation.

  12. PPAR agonists regulate brain gene expression: Relationship to their effects on ethanol consumption

    PubMed Central

    Ferguson, Laura B.; Most, Dana; Blednov, Yuri A.; Harris, R. Adron

    2014-01-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. Although prescribed for dyslipidemia and type-II diabetes, PPAR agonists also possess anti-addictive characteristics. PPAR agonists decrease ethanol consumption and reduce withdrawal severity and susceptibility to stress-induced relapse in rodents. However, the cellular and molecular mechanisms facilitating these properties have yet to be investigated. We tested three PPAR agonists in a continuous access two-bottle choice (2BC) drinking paradigm and found that tesaglitazar (PPARα/γ; 1.5 mg/kg) and fenofibrate (PPARα; 150 mg/kg) decreased ethanol consumption in male C57BL/6J mice while bezafibrate (PPARα/γ/β; 75 mg/kg) did not. We hypothesized that changes in brain gene expression following fenofibrate and tesaglitazar treatment lead to reduced ethanol drinking. We studied unbiased genomic profiles in areas of the brain known to be important for ethanol dependence, the prefrontal cortex (PFC) and amygdala, and also profiled gene expression in liver. Genomic profiles from the non-effective bezafibrate treatment were used to filter out genes not associated with ethanol consumption. Because PPAR agonists are anti-inflammatory, they would be expected to target microglia and astrocytes. Surprisingly, PPAR agonists produced a strong neuronal signature in mouse brain, and fenofibrate and tesaglitazar (but not bezafibrate) targeted a subset of GABAergic interneurons in the amygdala. Weighted gene co-expression network analysis (WGCNA) revealed co-expression of treatment-significant genes. Functional annotation of these gene networks suggested that PPAR agonists might act via neuropeptide and dopaminergic signaling pathways in the amygdala. Our results reveal gene targets through which PPAR agonists can affect alcohol consumption behavior. PMID:25036611

  13. The inhibitory effects of alpha(2)-adrenoceptor agonists on gastrointestinal transit during croton oil-induced intestinal inflammation.

    PubMed Central

    Pol, O.; Valle, L.; Ferrer, I.; Puig, M. M.

    1996-01-01

    1. The peripheral effects of alpha(2)-adrenoceptor agonists were investigated in a model of intestinal inflammation induced by intragastric administration of croton oil (CO). Our hypothesis was that inflammation would 'sensitize' adrenoceptors in peripheral and/or central terminals of myenteric and submucous plexus neurones, and enhance systemic effects of alpha(2)-adrenoceptor agonists. 2. Male swiss CD-1 mice, received intragastrically CO (0.05 ml), castor oil (CA, 0.1 ml) or saline (SS) 3 h before the study: gastrointestinal transit (GIT) was evaluated 20 min afterwards with a charcoal meal. The presence of inflammation was assessed by electron microscopy. 3. The intragastric administration of CA or CO caused an increase in GIT and weight loss, but only CO induced an inflammatory response. Both clonidine (imidazoline1/alpha(2)-agonist) and UK-14304 (alpha(2)-agonist) produced dose-related inhibitions of GIT in all groups. During inflammatory diarrhoea (CO), potencies of systemic (s.c.) clonidine and UK-14304 were significantly increased 3.5 and 2.1 times, respectively, while potencies remained unaltered in the presence of diarrhoea without inflammation (CA). The effects were reversed by administration (s.c.) of receptor-specific adrenoceptor antagonists, but not by naloxone. 4. Clonidine was 8.3 (SS) and 2.8 (CO) times more potent when administered intracerebroventricularly (i.c.v.), than when administered s.c. Inflammation of the gut did not alter the potency of i.c.v. clonidine, demonstrating that enhanced effects of s.c. clonidine are mediated by peripheral receptors. During inflammation, i.c.v. efaroxan did not antagonize low doses of s.c. clonidine (ED20 and ED50S), but partially reversed ED80S, further supporting the peripheral effects of the agonists in CO treated animals. 5. The results demonstrate that inflammation of the gut enhances the potency of alpha(2)-adrenoceptor agonists by a peripheral mechanism. The results also suggest that the inflammatory

  14. Evaluation of agonist selectivity for the NMDA receptor ion channel in bilayer lipid membranes based on integrated single-channel currents.

    PubMed

    Hirano, A; Sugawara, M; Umezawa, Y; Uchino, S; Nakajima-Iijima, S

    2000-06-01

    A new method for evaluating chemical selectivity of agonists to activate the N-methyl-D-aspartate (NMDA) receptor was presented by using typical agonists NMDA, L-glutamate and (2S, 3R, 4S)-2-(carboxycyclopropyl)glycine (L-CCG-IV) and the mouse epsilon1/zeta1 NMDA receptor incorporated in bilayer lipid membranes (BLMs) as an illustrative example. The method was based on the magnitude of an agonist-induced integrated single-channel current corresponding to the number of total ions passed through the open channel. The very magnitudes of the integrated single-channel currents were compared with the different BLMs as a new measure of agonist selectivity. The epsilon1/zeta1 NMDA receptor was partially purified from Chinese hamster ovary (CHO) cells expressing the epsilon1/zeta1 NMDA receptor and incorporated in BLMs formed by the tip-dip method. The agonist-induced integrated single-channel currents were obtained at 50 microM agonist concentration, where the integrated current for NMDA was shown to reach its saturated value. The obtained integrated currents were found to be (4.5 +/- 0.55) x 10(-13) C/s for NMDA, (5.8 +/- 0.72) x 10(-13) C/s for L-glutamate and (6.6 +/- 0.61) x 10(-13) C/s for L-CCG-IV, respectively. These results suggest that the agonist selectivity in terms of the total ion flux through the single epsilon1/zeta1 NMDA receptor is in the order of L-CCG-IV approximately = L-glutamate > NMDA.

  15. Quantitative analysis of the agonist and antagonist actions of some ATP analogues at P2X-purinoceptors in the rabbit ear artery.

    PubMed

    Leff, P; Wood, B E; O'Connor, S E; McKechnie, K

    1993-02-01

    1. The agonist and antagonist effects of a series of beta, gamma-methylene dihalo- and 2-methylthio-substituted analogues of ATP at P2x-purinoceptors have been analysed on the rabbit isolated ear artery preparation. Cumulative and sequential dosing experimental protocols were employed in the construction of agonist concentration-effect curves in order to address the possible influence of acute receptor desensitization on subsequent analyses. 2. Using the cumulative curve design the following results were obtained: D-AMP-PCBr2P, 2-methylthio-D-AMP-PCCl2P, L-AMP-PCF2P, L-AMP-PCCl2P and LAMP-PCBr2P each behaved as partial agonists. D-AMP-CPP was used as a reference full agonist and these analogues were analysed by the comparative method of Barlow et al. (1967), to provide estimates of affinity and efficacy. 2-Methylthio-L-AMP-PCBr2P was virtually silent as an agonist and was analysed as a competitive antagonist by Schild analysis. 3. Two agonists, L-AMP-PCCl2P and L-AMP-PCBr2P, were analysed by the sequential curve design, and the antagonist effects of one of the agonists, L-AMP-PCBr2P were also analysed using this protocol. The resulting estimates of affinity and efficacy, while similar to those obtained with the cumulative design, indicated that acute desensitization may affect curve definition and estimation of these quantities. 4. The following structure-activity trends emerged: D-analogues tended to have higher efficacy but lower affinity than L-analogues; efficacy varied markedly and inversely with the atomic weight of the halogen while affinity was only minimally affected; 2-methylthio- substitution also reduced efficacy with minimal effect on affinity. 5. The results of this analysis are discussed in terms of the utility of affinity and efficacy information in the classification of purinoceptors and the design of chemical probes for them. PMID:8448598

  16. Cardiovascular effects of the novel histamine H2 receptor agonist amthamine: interaction with the adrenergic system.

    PubMed

    Coruzzi, G; Gambarelli, E; Bertaccini, G; Timmerman, H

    1996-03-01

    The cardiovascular effects of the new histamine H2 receptor agonist amthamine were studied in the anaesthetized rat, with particular reference to a possible interaction with the adrenergic system. Amthamine (0.03-3 mumol/kg i.v.) caused vasodepressor responses which were antagonized by famotidine (3 mumol/kg i.v.). At higher doses (30-100 mumol/kg i.v.), amthamine induced a modest increase in the mean arterial pressure, which was significantly enhanced by the blockade of H2 receptors and significantly reduced by the alpha 2 adrenoceptor antagonist yohimbine (1 mumol/kg i.v.). The vasopressor response to amthamine was not modified in rats pre-treated with reserpine or 6-hydroxydopamine, and was only minimally modified in adrenalectomized animals, thus suggesting a predominant interaction with postjunctional alpha 2 adrenoceptors in the vascular muscle. The H2 receptor agonist dimaprit (0.3-100 mumol/kg i.v.) caused a reduction in arterial pressure, which was antagonized by famotidine, no pressor response being unmasked. Dimaprit (0.1-30 mumol/kg i.v.) did not modify heart rate but caused a modest bradycardia at 100 mumol/kg i.v. Amthamine (1-100 mumol/kg i.v.) induced a dose-dependent tachycardia, which was only partially (approximately 20%) reduced by famotidine and was totally blocked by propranolol (0.3 mg/kg i.v.). This effect was significantly reduced in rats pre-treated with reserpine or 6-hydroxydopamine and was further reduced by cocaine, thus suggesting a tyramine-like action of amthamine. In conclusion, these data demonstrate that the H2 receptor agonist amthamine can also interact with the adrenergic system when used at doses higher than those necessary to activate H2 receptors. Whereas the increase in blood pressure induced by amthamine seems to be mainly mediated by a direct activation of postjunctional alpha 2 adrenoceptors, the increase in heart rate is predominantly due to neuronal release of catecholamines. These effects should be considered when

  17. Successful Treatment of Chronic Hepatitis C with Triple Therapy in an Opioid Agonist Treatment Program

    PubMed Central

    Litwin, Alain H.; Soloway, Irene J.; Cockerham-Colas, Lauren; Reynoso, Sheila; Heo, Moonseong; Tenore, Christopher; Roose, Robert J.

    2015-01-01

    Background People who inject drugs (PWID) constitute 10 million people globally with hepatitis C virus, including many opioid agonist treatment patients. Little data exist describing clinical outcomes for patients receiving HCV treatment with direct-acting antiviral agents (DAAs) in opioid agonist treatment settings. Methods In this retrospective observational study, we describe clinical outcomes for 50 genotype-1 patients receiving HCV treatment with triple therapy: telaprevir (n = 42) or boceprevir (n = 8) in combination with pegylated interferon and ribavirin on-site in an opioid agonist treatment program. Results Overall, 70% achieved an end of treatment response (ETR) and 62% achieved a sustained virological response (SVR). These treatment outcomes are nearly equivalent to previously published HCV outcomes shown in registration trials, despite high percentages of recent drug use prior to treatment (52%), ongoing drug use during treatment (45%) and psychiatric comorbidity (86%). Only 12% (n=6) discontinued antiviral treatment early for non-virological reasons. Four patients received a blood transfusion, and one discontinued telaprevir due to severe rash. Conclusions These data demonstrate that on-site HCV treatment with direct-acting antiviral agents is effective in opioid agonist treatment patients including patients who are actively using drugs. Future interferon-free regimens will likely be even more effective. Opioid agonist treatment programs represent an opportunity to safely and effectively treat chronic hepatitis C, and PWID should have unrestricted access to DAAs. PMID:26341685

  18. GLP-1 Receptor Agonists: Nonglycemic Clinical Effects in Weight Loss and Beyond

    PubMed Central

    Ryan, Donna; Acosta, Andres

    2015-01-01

    Obective Glucagon-like peptide-1 (GLP-1) receptor agonists are indicated for treatment of type 2 diabetes since they mimic the actions of native GLP-1 on pancreatic islet cells, stimulating insulin release, while inhibiting glucagon release, in a glucose-dependent manner. The observation of weight loss has led to exploration of their potential as antiobesity agents, with liraglutide 3.0 mg day−1 approved for weight management in the US on December 23, 2014, and in the EU on March 23, 2015. This review examines the potential nonglycemic effects of GLP-1 receptor agonists. Methods A literature search was conducted to identify preclinical and clinical evidence on nonglycemic effects of GLP-1 receptor agonists. Results GLP-1 receptors are distributed widely in a number of tissues in humans, and their effects are not limited to the well-recognized effects on glycemia. Nonglycemic effects include weight loss, which is perhaps the most widely recognized nonglycemic effect. In addition, effects on the cardiovascular, neurologic, and renal systems and on taste perception may occur independently of weight loss. Conclusions GLP-1 receptor agonists may provide other nonglycemic clinical effects besides weight loss. Understanding these effects is important for prescribers in using GLP-1 receptor agonists for diabetic patients, but also if approved for chronic weight management. PMID:25959380

  19. Identification of dual PPARα/γ agonists and their effects on lipid metabolism.

    PubMed

    Gao, Quanqing; Hanh, Jacky; Váradi, Linda; Cairns, Rose; Sjöström, Helena; Liao, Vivian W Y; Wood, Peta; Balaban, Seher; Ong, Jennifer Ai; Lin, Hsuan-Yu Jennifer; Lai, Felcia; Hoy, Andrew J; Grewal, Thomas; Groundwater, Paul W; Hibbs, David E

    2015-12-15

    The three peroxisome proliferator-activated receptor (PPAR) isoforms; PPARα, PPARγ and PPARδ, play central roles in lipid metabolism and glucose homeostasis. Dual PPARα/γ agonists, which stimulate both PPARα and PPARγ isoforms to similar extents, are gaining popularity as it is believed that they are able to ameliorate the unwanted side effects of selective PPARα and PPARγ agonists; and may also be used to treat dyslipidemia and type 2 diabetes mellitus simultaneously. In this study, virtual screening of natural product libraries, using both structure-based and ligand-based drug discovery approaches, identified ten potential dual PPARα/γ agonist lead compounds (9-13 and 16-20). In vitro assays confirmed these compounds to show no statistically significant toxicity to cells, with the exception of compound 12 which inhibited cell growth to 74.5%±3.5 and 54.1%±3.7 at 50μM and 100μM, respectively. In support of their potential as dual PPARα/γ agonists, all ten compounds upregulated the expression of cholesterol transporters ABCA1 and ABCG1 in THP-1 macrophages, with indoline derivative 16 producing the greatest elevation (2.3-fold; 3.3-fold, respectively). Furthermore, comparable to the activity of established PPARα and PPARγ agonists, compound 16 stimulated triacylglycerol accumulation during 3T3-L1 adipocyte differentiation as well as fatty acid β-oxidation in HuH7 hepatocytes. PMID:26616289

  20. Use of clinically available PPAR agonists for heart failure; do the risks outweigh the potential benefits?

    PubMed

    Sarma, Satyam

    2012-06-01

    PPAR agonists represent a heterogeneous group of compounds that have been used in the treatment of cardiovascular and metabolic diseases for over thirty years. While the primary indications for PPAR agonist therapy focus on hyperlipidemia and diabetes, there is a growing body of pre-clinical data that suggests they may be beneficial in the treatment of heart failure; a disease marked by abnormal myocardial metabolism, fibrosis and insulin insensitivity. PPAR agonist treatment in numerous animal models of systolic heart failure have demonstrated improvement in cardiac function with decreased fibrosis, improved contractility and endothelial function. However, considerable controversy exists on the cardiac safety profile of PPAR agonists, particularly concern for inducing lipotoxicty and precipitating or worsening heart failure. In addition during pre-clinical testing, many compounds have been associated with increased death and adverse cardiovascular outcomes casting a pall over their future use for treating disorders of myocardial function. This article will review cardiac pathways involved in PPAR activation and their potential regulation of maladaptive pathways involved in heart failure and highlight molecular mechanisms that may contribute to adverse events and raise safety concerns. Specific attention will be focused on PPAR alpha and gamma, subtypes for which commercially available PPAR agonists are currently available.

  1. PPAR-γ Agonists and Their Effects on IGF-I Receptor Signaling: Implications for Cancer

    PubMed Central

    Belfiore, A.; Genua, M.; Malaguarnera, R.

    2009-01-01

    It is now well established that the development and progression of a variety of human malignancies are associated with dysregulated activity of the insulin-like growth factor (IGF) system. In this regard, promising drugs have been developed to target the IGF-I receptor or its ligands. These therapies are limited by the development of insulin resistance and compensatory hyperinsulinemia, which in turn, may stimulate cancer growth. Novel therapeutic approaches are, therefore, required. Synthetic PPAR-γ agonists, such as thiazolidinediones (TZDs), are drugs universally used as antidiabetic agents in patients with type 2 diabetes. In addition of acting as insulin sensitizers, PPAR-γ agonists mediate in vitro and in vivo pleiotropic anticancer effects. At least some of these effects appear to be linked with the downregulation of the IGF system, which is induced by the cross-talk of PPAR-γ agonists with multiple components of the IGF system signaling. As hyperinsulinemia is an emerging cancer risk factor, the insulin lowering action of PPAR-γ agonists may be expected to be also beneficial to reduce cancer development and/or progression. In light of these evidences, TZDs or other PPAR-γ agonists may be exploited in those tumors “addicted” to the IGF signaling and/or in tumors occurring in hyperinsulinemic patients. PMID:19609453

  2. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors

    PubMed Central

    Koshimizu, Taka-aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-01-01

    Reducing Na+ in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na+-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na+ sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na+ increased cell surface [3H]AVP binding and decreased receptor internalization. Substitution of Na+ by Cs+ or NH4+ inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na+ over Cs+. Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations. PMID:27138239

  3. The therapeutic potential of nicotinic acetylcholine receptor agonists for pain control.

    PubMed

    Decker, M W; Meyer, M D; Sullivan, J P

    2001-10-01

    Due to the limitations of currently available analgesics, a number of novel alternatives are currently under investigation, including neuronal nicotinic acetylcholine receptor (nAChR) agonists. During the 1990s, the discovery of the antinociceptive properties of the potent nAChR agonist epibatidine in rodents sparked interest in the analgesic potential of this class of compounds. Although epibatidine also has several mechanism-related toxicities, the identification of considerable nAChR diversity suggested that the toxicities and therapeutic actions of the compound might be mediated by distinct receptor subtypes. Consistent with this view, a number of novel nAChR agonists with antinociceptive activity and improved safety profiles in preclinical models have now been identified, including A-85380, ABT-594, DBO-83, SIB-1663 and RJR-2403. Of these, ABT-594 is the most advanced and is currently in Phase II clinical evaluation. Nicotinically-mediated antinociception has been demonstrated in a variety of rodent pain models and is likely mediated by the activation of descending inhibitory pathways originating in the brainstem with the predominant high-affinity nicotine site in brain, the alpha4beta2 subtype, playing a critical role. Thus, preclinical findings suggest that nAChR agonists have the potential to be highly efficacious treatments in a variety of pain states. However, clinical proof-of-principle studies will be required to determine if nAChR agonists are active in pathological pain.

  4. Modulation Effect of Peroxisome Proliferator-Activated Receptor Agonists on Lipid Droplet Proteins in Liver.

    PubMed

    Zhu, Yun-Xia; Zhang, Ming-Liang; Zhong, Yuan; Wang, Chen; Jia, Wei-Ping

    2016-01-01

    Peroxisome proliferator-activated receptor (PPAR) agonists are used for treating hyperglycemia and type 2 diabetes. However, the mechanism of action of these agonists is still under investigation. The lipid droplet-associated proteins FSP27/CIDEC and LSDP5, regulated directly by PPARγ and PPARα, are associated with hepatic steatosis and insulin sensitivity. Here, we evaluated the expression levels of FSP27/CIDEC and LSDP5 and the regulation of these proteins by consumption of a high-fat diet (HFD) or administration of PPAR agonists. Mice with diet-induced obesity were treated with the PPARγ or PPARα agonist, pioglitazone or fenofibrate, respectively. Liver tissues from db/db diabetic mice and human were also collected. Interestingly, FSP27/CIEDC was expressed in mouse and human livers and was upregulated in obese C57BL/6J mice. Fenofibrate treatment decreased hepatic triglyceride (TG) content and FSP27/CIDEC protein expression in mice fed an HFD diet. In mice, LSDP5 was not detected, even in the context of insulin resistance or treatment with PPAR agonists. However, LSDP5 was highly expressed in humans, with elevated expression observed in the fatty liver. We concluded that fenofibrate greatly decreased hepatic TG content and FSP27/CIDEC protein expression in mice fed an HFD, suggesting a potential regulatory role for fenofibrate in the amelioration of hepatic steatosis.

  5. Neuroprotection by a selective estrogen receptor beta agonist in a mouse model of global ischemia.

    PubMed

    Carswell, H V O; Macrae, I M; Gallagher, L; Harrop, E; Horsburgh, K J

    2004-10-01

    The present study employs selective estrogen receptor (ER) agonists to determine whether 17beta-estradiol-induced neuroprotection in global ischemia is receptor mediated and, if so, which subtype of receptor (ERalpha or ERbeta) is predominantly responsible. Halothane-anesthetized female C57Bl/6J mice were ovariectomized, and osmotic minipumps containing ERbeta agonist diarylpropiolnitrile (DPN) (8 mg.kg(-1).day(-1), n = 12) or vehicle (50% DMSO in 0.9% saline) (n = 9) or ERalpha agonist propyl pyrazole triol (PPT) (2 mg.kg(-1).day(-1), n = 13) or vehicle (50% DMSO in 0.9% saline) (n = 10) were implanted subcutaneously. One week later transient global ischemia was induced by bilateral carotid artery occlusion under halothane anesthesia, and the mice were perfusion fixed 72 h later. ERbeta agonist DPN significantly reduced ischemic damage by 70% in the caudate nucleus and 55% in the CA1 region compared with vehicle controls (P < 0.05, Mann-Whitney U-statistic). In contrast, pretreatment with the ERalpha agonist PPT had no effect on the extent of neuronal damage compared with controls. The data indicate a significant estrogen receptor-mediated neuroprotection in a global cerebral ischemia model involving ERbeta.

  6. Computational Prediction and Biochemical Analyses of New Inverse Agonists for the CB1 Receptor.

    PubMed

    Scott, Caitlin E; Ahn, Kwang H; Graf, Steven T; Goddard, William A; Kendall, Debra A; Abrol, Ravinder

    2016-01-25

    Human cannabinoid type 1 (CB1) G-protein coupled receptor is a potential therapeutic target for obesity. The previously predicted and experimentally validated ensemble of ligand-free conformations of CB1 [Scott, C. E. et al. Protein Sci. 2013 , 22 , 101 - 113 ; Ahn, K. H. et al. Proteins 2013 , 81 , 1304 - 1317] are used here to predict the binding sites for known CB1-selective inverse agonists including rimonabant and its seven known derivatives. This binding pocket, which differs significantly from previously published models, is used to identify 16 novel compounds expected to be CB1 inverse agonists by exploiting potential new interactions. We show experimentally that two of these compounds exhibit inverse agonist properties including inhibition of basal and agonist-induced G-protein coupling activity, as well as an enhanced level of CB1 cell surface localization. This demonstrates the utility of using the predicted binding sites for an ensemble of CB1 receptor structures for designing new CB1 inverse agonists.

  7. Alcohol Screening among Opioid Agonist Patients in a Primary Care Clinic and an Opioid Treatment Program

    PubMed Central

    Klimas, Jan; Muench, John; Wiest, Katharina; Croff, Raina; Rieckmann, Traci; McCarty, Dennis

    2016-01-01

    Problem alcohol use is associated with adverse health and economic outcomes, especially among people in opioid agonist treatment. Screening, brief intervention and referral to treatment (SBIRT) are effective in reducing alcohol use; however, issues involved in SBIRT implementation among opioid agonist patients are unknown. To assess identification and treatment of alcohol use disorders, we reviewed clinical records of opioid agonist patients screened for an alcohol use disorder in a primary care clinic (n =208) and in an opioid treatment program (n = 204) over a two year period. In the primary care clinic, 193 (93%) buprenorphine patients completed an annual alcohol screening and six (3%) had elevated AUDIT scores. Among the patients treated in the opioid treatment program, an alcohol abuse or dependence diagnosis was recorded for 54 (27%) methadone patients. Practitioner focus groups were completed in the primary care (n = 4 physicians) and the opioid treatment program (n = 11 counsellors) to assess experience with and attitudes towards screening opioid agonist patients for alcohol use disorders. Focus groups suggested organizational, structural, provider, patient and community variables hindered or fostered alcohol screening. Alcohol screening is feasible among opioid agonist patients. Effective implementation, however, requires physician training and systematic changes in workflow. PMID:25715074

  8. Identification of adiponectin receptor agonist utilizing a fluorescence polarization based high throughput assay.

    PubMed

    Sun, Yiyi; Zang, Zhihe; Zhong, Ling; Wu, Min; Su, Qing; Gao, Xiurong; Zan, Wang; Lin, Dong; Zhao, Yan; Zhang, Zhonglin

    2013-01-01

    Adiponectin, the adipose-derived hormone, plays an important role in the suppression of metabolic disorders that can result in type 2 diabetes, obesity, and atherosclerosis. It has been shown that up-regulation of adiponectin or adiponectin receptor has a number of therapeutic benefits. Given that it is hard to convert the full size adiponectin protein into a viable drug, adiponectin receptor agonists could be designed or identified using high-throughput screening. Here, we report on the development of a two-step screening process to identify adiponectin agonists. First step, we developed a high throughput screening assay based on fluorescence polarization to identify adiponectin ligands. The fluorescence polarization assay reported here could be adapted to screening against larger small molecular compound libraries. A natural product library containing 10,000 compounds was screened and 9 hits were selected for validation. These compounds have been taken for the second-step in vitro tests to confirm their agonistic activity. The most active adiponectin receptor 1 agonists are matairesinol, arctiin, (-)-arctigenin and gramine. The most active adiponectin receptor 2 agonists are parthenolide, taxifoliol, deoxyschizandrin, and syringin. These compounds may be useful drug candidates for hypoadiponectin related diseases. PMID:23691032

  9. Reconstitution of high-affinity opioid agonist binding in brain membranes

    SciTech Connect

    Remmers, A.E.; Medzihradsky, F. )

    1991-03-15

    In synaptosomal membranes from rat brain cortex, the {mu} selective agonist ({sup 3}H)dihydromorphine in the absence of sodium, and the nonselective antagonist ({sup 3}H)naltrexone in the presence of sodium, bound to two populations of opioid receptor sites with K{sub d} values of 0.69 and 8.7 nM for dihydromorphine, and 0.34 and 5.5 nM for naltrexone. The addition of 5 {mu}M guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)) strongly reduced high-affinity agonist but not antagonist binding. Exposure of the membranes to high pH reduced the number of GTP({gamma}-{sup 35}S) binding sites by 90% and low K{sub m}, opioid-sensitive GTPase activity by 95%. In these membranes, high-affinity agonist binding was abolished and modulation of residual binding by GTP({gamma}S) was diminished. Alkali treatment of the glioma cell membranes prior to fusion inhibited most of the low K{sub m} GTPase activity and prevented the reconstitution of agonist binding. The results show that high-affinity opioid agonist binding reflects the ligand-occupied receptor - guanine nucleotide binding protein complex.

  10. Pharmacological Profiles of Alpha 2 Adrenergic Receptor Agonists Identified Using Genetically Altered Mice and Isobolographic Analysis

    PubMed Central

    Fairbanks, Carolyn A.; Stone, Laura S.; Wilcox, George L.

    2009-01-01

    Endogenous, descending noradrenergic fibers convey powerful analgesic control over spinal afferent circuitry mediating the rostrad transmission of pain signals. These fibers target alpha 2 adrenergic receptors (α2ARs) on both primary afferent terminals and secondary neurons, and their activation mediates substantial inhibitory control over this transmission, rivaling that of opioid receptors which share similar a similar pattern of distribution. The terminals of primary afferent nociceptive neurons and secondary spinal dorsal horn neurons express α2AAR and α2CAR subtypes, respectively. Spinal delivery of these agents serves to reduce their side effects, which are mediated largely at supraspinal sites, by concentrating the drugs at the spinal level. Targeting these spinal α2ARs with one of five selective therapeutic agonists, clonidine, dexmedetomidine, brimonidine, ST91 and moxonidine, produces significant antinociception that can work in concert with opioid agonists to yield synergistic antinociception. Application of several genetically altered mouse lines had facilitated identification of the primary receptor subtypes that likely mediate the antinociceptive effects of these agents. This review provides first an anatomical description of the localization of the three subtypes in the central nervous system, second a detailed account of the pharmacological history of each of these six primary agonists, and finally a comprehensive report of the specific interactions of other GPCR agonists with each of the six principal α2AR agonists featured. PMID:19393691

  11. Agonists-induced platelet activation varies considerably in healthy male individuals: studies by flow cytometry.

    PubMed

    Panzer, Simon; Höcker, Lisa; Koren, Daniela

    2006-02-01

    Flow cytometric evaluation of platelet function extends our understanding of platelets' role in various clinical conditions associated with either bleeding disorders, thrombosis, or monitoring of antiplatelet therapy. The use of suboptimal concentrations of various agonists may allow assessing the "activatability" of platelets. We determined platelet responsiveness to thrombin-receptor-activating peptide-6, arachidonic acid, adenosine 5c-diphosphate (ADP), epinephrine, collagen, and ristocetin at suboptimal concentrations by determination of P-selectin expression and binding of PAC-1 in 26 healthy male individuals. The response varied considerably from one individual to the next. However, within individuals, responses to all agonists except collagen correlated strongly (p<0.05), suggesting a global variability of platelet responses. Moreover, P-selectin expression and PAC-1 binding were strongly correlated (p<0.05). Interestingly, with epinephrine, PAC-1 positive events outnumbered P-selectin positive events, while this was not seen with the other agonists. Thus, epinephrine may specifically affect the conformational switch mechanism and receptor clustering. Our data indicate that the in vitro response to suboptimal concentrations of agonists varies, but individuals with selective platelet defects may still be identified based on data obtained with the various agonists. PMID:16283308

  12. Functional selectivity of dopamine D1 receptor agonists in regulating the fate of internalized receptors *

    PubMed Central

    Ryman-Rasmussen, Jessica P.; Griffith, Adam; Oloff, Scott; Vaidehi, Nagarajan; Brown, Justin T.; Goddard, William A.; Mailman, Richard B.

    2007-01-01

    Recently, we demonstrated that D1 agonists can cause functionally selective effects when the endpoints of receptor internalization and adenylate cyclase activation are compared. The present study was designed to probe the phenomenon of functional selectivity at the D1 receptor further by testing the hypothesis that structurally dissimilar agonists with efficacies at these endpoints that equal or exceed those of dopamine would differ in ability to influence receptor fate after internalization, a functional endpoint largely unexplored for the D1 receptor. We selected two novel agonists of therapeutic interest that meet these criteria (the isochroman A-77636, and the isoquinoline dinapsoline), and compared the fates of the D1 receptor after internalization in response to these two compounds with that of dopamine. We found that dopamine caused the receptor to be rapidly recycled to the cell surface within 1 h of removal. Conversely, A-77636 caused the receptor to be retained intracellularly up to 48 h after agonist removal. Most surprisingly, the D1 receptor recovered to the cell surface 48 h after removal of dinapsoline. Taken together, these data indicate that these agonists target the D1 receptor to different intracellular trafficking pathways, demonstrating that the phenomenon of functional selectivity at the D1 receptor is operative for cellular events that are temporally downstream of immediate receptor activation. We hypothesize that these differential effects result from interactions of the synthetic ligands with aspects of the D1 receptor that are distal from the ligand binding domain. PMID:17067639

  13. Agonist mediated conformational changes of solubilized calf forebrain muscarinic acetylcholine receptors.

    PubMed

    Vanderheyden, P; Andre, C; de Backer, J P; Vauquelin, G

    1984-10-01

    Muscarinic receptors in calf forebrain membranes can be identified by the specific binding of the radiolabelled antagonist [3H]dexetimide. These receptors (2.8 pM/mg protein) comprise two non-interconvertible subpopulations with respectively high and low agonist affinity but with the same antagonist affinity. For all the agonists tested the low affinity sites represent 85 +/- 5% of the total receptor population. 0.5% Digitonin solubilized extracts contain 0.8 pM muscarinic receptor/mg protein. In contrast with the membranes, these extracts contain only sites with low agonist affinity. The alkylating reagent N-ethylmaleimide causes an increase of the acetylcholine affinity for the low affinity sites in membranes as well as for the solubilized sites. This effect is time dependent until a maximal 3-fold increase in affinity is attained. The rate of N-ethylmaleimide action is enhanced by the concomitant presence of agonists. In contrast, N-ethylmaleimide does not affect antagonist binding. This suggests that agonists mediate a conformational change of both the membrane bound low affinity muscarinic sites and of the solubilized sites, resulting in their increased susceptibility towards NEM alkylation. PMID:6487351

  14. Effect of different beta-adrenergic agonists on the intestinal absorption of galactose and phenylalanine.

    PubMed

    Díez-Sampedro, A; Pérez, M; Cobo, M T; Martínez, J A; Barber, A

    1998-08-01

    Nutrient transport across the mammalian small intestine is regulated by several factors, including intrinsic and extrinsic neural pathways, paracrine modulators, circulating hormones and luminal agents. Because beta-adrenoceptors seem to regulate gastrointestinal functions such as bicarbonate and acid secretion, intestinal motility and gastrointestinal mucosal blood flow, we have investigated the effects of different beta-adrenergic agonists on nutrient absorption by the rat jejunum in-vitro. When intestinal everted sacs were used the beta2-agonist salbutamol had no effect either on galactose uptake by the tissue or mucosal-to-serosal flux whereas mixed beta1- and beta2-agonists (isoproterenol and orciprenaline) and beta3-agonists (BRL 35135, Trecadrine, ICI 198157 and ZD 7114) inhibited galactose uptake and transfer of D-galactose from the mucosal-to-serosal media across the intestinal wall (although the inhibiting effects of isoproterenol and Trecadrine were not statistically significant). In intestinal everted rings both Trecadrine and BRL 35135 clearly reduced galactose uptake, the effect being a result of inhibition of the phlorizin-sensitive component. Total uptake of phenylalanine by the intestinal rings was also reduced by those beta3-adrenergic agonists. These results suggest that beta1- and beta3-adrenergic receptors could be involved in the regulation of intestinal active transport of sugars and amino acids. PMID:9751456

  15. 3D-Pharmacophore Identification for κ-Opioid Agonists Using Ligand-Based Drug-Design Techniques

    NASA Astrophysics Data System (ADS)

    Yamaotsu, Noriyuki; Hirono, Shuichi

    A selective κ-opioid receptor (KOR) agonist might act as a powerful analgesic without the side effects of μ-opioid receptor-selective drugs such as morphine. The eight classes of known KOR agonists have different chemical structures, making it difficult to construct a pharmacophore model that takes them all into account. Here, we summarize previous efforts to identify the pharmacophore for κ-opioid agonists and propose a new three-dimensional pharmacophore model that encompasses the κ-activities of all classes. This utilizes conformational sampling of agonists by high-temperature molecular dynamics and pharmacophore extraction through a series of molecular superpositions.

  16. Diamine Derivatives as Novel Small-Molecule, Potent, and Subtype-Selective Somatostatin SST3 Receptor Agonists

    PubMed Central

    2014-01-01

    A novel class of small-molecule, highly potent, and subtype-selective somatostatin SST3 agonists was discovered through modification of a SST3 antagonist. As an example, (1R,2S)-9 demonstrated not only potent in vitro SST3 agonist activity but also in vivo SST3 agonist activity in a mouse oral glucose tolerance test (OGTT). These agonists may be useful reagents for studying the physiological roles of the SST3 receptor and may potentially be useful as therapeutic agents. PMID:24944745

  17. Inhibition of cation channel function at the nicotinic acethylcholine receptor from Torpedo: Agonist self-inhibition and anesthetic drugs

    SciTech Connect

    Forman, S.A.

    1989-01-01

    Modulation of the nicotinic acethylcholine receptor from Torpedo by cholinergic agonists, local anesthetics, and n-alkanols was studied using {sup 86}Rb{sup +} flux studies in sealed native Torpedo electroplaque membrane vesicles. Reliable concentration-response and kinetic data were obtained using manual ten sec filtration assays in vesicles partially blocked with alpha-bungarotoxin to remove spare receptors and quenched-flow assays to assess initial {sup 86}Rb{sup +} flux rates or the rate of drug-induced receptor inactivation. Concentration response relationships for the agonists acetylcholine, carbamylcholine, suberyldicholine, phenyltrimethylammonium, and (-)-nicotine are all bell-shape due to stimulation of cation channel opening at low concentrations and inhibition of channels at higher concentrations. The rate of agonist-induced fast desensitization (k{sub d}) increases with (acetylcholine) in parallel with channel activation, suggesting that desensitization proceeds from the open state and/or states in rapid equilibrium with it. At self-inhibitory acetylcholine concentrations, a new rapid inactivation (rate = k{sub f}) is observed before fast desensitization. The rate and extent of rapid inactivation is compatible with bimolecular association between acethylcholine and inhibitory site with K{sub B} = 40 mM.

  18. Modulation of breast cancer cell viability by a cannabinoid receptor 2 agonist, JWH-015, is calcium dependent

    PubMed Central

    Hanlon, Katherine E; Lozano-Ondoua, Alysia N; Umaretiya, Puja J; Symons-Liguori, Ashley M; Chandramouli, Anupama; Moy, Jamie K; Kwass, William K; Mantyh, Patrick W; Nelson, Mark A; Vanderah, Todd W

    2016-01-01

    Introduction Cannabinoid compounds, both nonspecific as well as agonists selective for either cannabinoid receptor 1 (CB1) or cannabinoid receptor 2 (CB2), have been shown to modulate the tumor microenvironment by inducing apoptosis in tumor cells in several model systems. The mechanism of this modulation remains only partially delineated, and activity induced via the CB1 and CB2 receptors may be distinct despite significant sequence homology and structural similarity of ligands. Methods The CB2-selective agonist JWH-015 was used to investigate mechanisms downstream of CB2 activation in mouse and human breast cancer cell lines in vitro and in a murine mammary tumor model. Results JWH-015 treatment significantly reduced primary tumor burden and metastasis of luciferase-tagged murine mammary carcinoma 4T1 cells in immunocompetent mice in vivo. Furthermore, JWH-015 reduced the viability of murine 4T1 and human MCF7 mammary carcinoma cells in vitro by inducing apoptosis. JWH-015-mediated reduction of breast cancer cell viability was not dependent on Gαi signaling in vitro or modified by classical pharmacological blockade of CB1, GPR55, TRPV1, or TRPA1 receptors. JWH-015 effects were calcium dependent and induced changes in MAPK/ERK signaling. Conclusion The results of this work characterize the actions of a CB2-selective agonist on breast cancer cells in a syngeneic murine model representing how a clinical presentation of cancer progression and metastasis may be significantly modulated by a G-protein-coupled receptor. PMID:27186076

  19. Vasopressin-independent targeting of aquaporin-2 by selective E-prostanoid receptor agonists alleviates nephrogenic diabetes insipidus.

    PubMed

    Olesen, Emma T B; Rützler, Michael R; Moeller, Hanne B; Praetorius, Helle A; Fenton, Robert A

    2011-08-01

    In the kidney, the actions of vasopressin on its type-2 receptor (V2R) induce increased water reabsorption alongside polyphosphorylation and membrane targeting of the water channel aquaporin-2 (AQP2). Loss-of-function mutations in the V2R cause X-linked nephrogenic diabetes insipidus. Treatment of this condition would require bypassing the V2R to increase AQP2 membrane targeting, but currently no specific pharmacological therapy is available. The present study examined specific E-prostanoid receptors for this purpose. In vitro, prostaglandin E2 (PGE2) and selective agonists for the E-prostanoid receptors EP2 (butaprost) or EP4 (CAY10580) all increased trafficking and ser-264 phosphorylation of AQP2 in Madin-Darby canine kidney cells. Only PGE2 and butaprost increased cAMP and ser-269 phosphorylation of AQP2. Ex vivo, PGE2, butaprost, or CAY10580 increased AQP2 phosphorylation in isolated cortical tubules, whereas PGE2 and butaprost selectively increased AQP2 membrane accumulation in kidney slices. In vivo, a V2R antagonist caused a severe urinary concentrating defect in rats, which was greatly alleviated by treatment with butaprost. In conclusion, EP2 and EP4 agonists increase AQP2 phosphorylation and trafficking, likely through different signaling pathways. Furthermore, EP2 selective agonists can partially compensate for a nonfunctional V2R, providing a rationale for new treatment strategies for hereditary nephrogenic diabetes insipidus.

  20. The efficiency of electrical stimulation to counteract the negative effects of β-agonists on meat tenderness of feedlot cattle.

    PubMed

    Hope-Jones, M; Strydom, P E; Frylinck, L; Webb, E C

    2010-11-01

    Beta agonists used as growth enhancers are known to affect the aging potential of beef muscle negatively. On the other hand, procedures like electrical stimulation could accelerate rigor and the aging process. In this study, 20 out of 40 young steers received no beta agonist (C), the remaining twenty steers received a beta agonist (zilpaterol hydrochloride) (Z) for the 30 days prior to slaughter followed by 4 days withdrawal. After slaughter carcasses were split, the left side electrically stimulated (ES) and the right side not stimulated (NES). Samples were aged for 3 or 14 days post mortem. Parameters included Warner Bratzler shear force (WBSF), myofibril filament length (MFL), sarcomere length and calpastatin and calpain enzyme activity. Zilpaterol resulted in increased (P<0.001) WBSF mainly due to an increased (P<0.001) calpastatin activity. ES improved tenderness (P<0.001) in general by early onset of rigor triggering the activity of calpains. ES also reduced the calpastatin activity (P<0.001), which partially countered the effect of high calpastatin activity on the aging potential of Z loins. ES can therefore be implemented to improve meat tenderness in zilpaterol supplemented steers, although steers without zilpaterol will still have an advantage in final tenderness.

  1. PPAR-α Agonist Fenofibrate Decreased Serum Irisin Levels in Type 2 Diabetes Patients with Hypertriglyceridemia.

    PubMed

    Feng, Xiaomeng; Gao, Xia; Jia, Yumei; Zhang, Heng; Pan, Qingrong; Yao, Zhi; Yang, Ning; Liu, Jia; Xu, Yuan; Wang, Guang; Yang, Xinchun

    2015-01-01

    Irisin is related to insulin resistance and metabolic disorders. The physiologic effects of irisin are partially mediated through peroxisome proliferator-activated receptor-α (PPAR-α). We investigated the effect of fenofibrate, a PPAR-α agonist, on serum irisin in type 2 diabetes patients with hypertriglyceridemia. This study evaluated cross-sectional and interventional studies of 25 type 2 diabetes patients with hypertriglyceridemia (group A) and 40 controls (group B). Group A was treated with fenofibrate (200 mg/day) for 8 weeks. Serum irisin and clinical characteristics were examined. Serum irisin was significantly higher in group A compared with group B (45.15 ± 10.48 versus 35.38 ± 9.97 ng/ml, P < 0.001) and correlated with body mass index (r = 0.314, P = 0.011), fasting blood glucose (r = 0.399, P = 0.001), total cholesterol (r = 0.256, P = 0.040), and high-density lipoprotein cholesterol (r = 0.247, P = 0.047). In multiple regression analysis after controlling for confounders, only fasting blood glucose (β = 5.615, P < 0.001) and high-density lipoprotein cholesterol (β = 19.483, P < 0.001) were independently related to serum irisin. After 8 weeks of fenofibrate treatment, serum irisin significantly decreased in group A compared with baseline (45.15 ± 10.48 versus 38.74 ± 12.54 ng/ml, P = 0.011). Conclusively, fenofibrate decreased serum irisin in type 2 diabetes patients with hypertriglyceridemia, indicating that PPAR-α agonists may protect against metabolic disorders by improving irisin resistance. PMID:26693220

  2. Protective Effects of Adenosine Receptor Agonist in a Cirrhotic Liver Resection Model

    PubMed Central

    Iskandarov, Emil; Kadaba Srinivasan, Pramod; Xin, Wang; Bleilevens, Christian; Afify, Mamdouh; Hamza, Astrit; Wei, Lai; Hata, Koichiro; Agayev, Boyukkishi; Tolba, Rene

    2016-01-01

    Objectives To investigate the role of CGS21680, a selective adenosine A2A receptor agonist, on a bile-duct-ligated cirrhotic liver resection model in rats. Methods Male Wistar rats were allotted into 3 groups (n = 7 per time-point): the control group, the bile duct ligation + CGS21680 group (BDL + CGS), and the bile duct ligation group (BDL). Biliary cirrhosis had been previously induced by ligature of the common bile duct in the BDL + CGS and BDL groups. After 2 weeks, the animals underwent partial hepatectomy (50%). The BDL + CGS group received a single dose of CGS21680 15 minutes prior to hepatectomy. Blood samples were collected and analyzed. Results Aspartate transaminase levels were found to be lower in the control vs BDL groups (1, 3, and 24 h) (P < 0.01) and the BDL + CGS (1 and 3 hours) (P < 0.01) and BDL + CGS vs BDL (24 hours) (P < 0.05) groups. Hepatic flow was measured and BDL showed significantly lower values at the 3, 24, and 168 h time-points compared to the control (P < 0.01) and BDL + CGS groups (P < 0.05 at 3 and 168 hours; P < 0.01 at 24 h). O2C velocity was reduced in the BDL compared to the control group (P < 0.001 at 3 hours; P < 0.01 at 24 and 168 hours) and the BDL + CGS group (P < 0.01 at 24 hours). Interleukin-6 levels were abrogated in the BDL + CGS (P < 0.05) and control (P < 0.01) groups versus BDL. Histone-bound low-molecular-weight DNA fragments in the BDL + CGS (P < 0.01) and control (P < 0.05) groups were low compared to the BDL group. Conclusions Administration of CGS21680, an adenosine receptor agonist, after the resection of bile-duct-ligated cirrhotic livers led to improved liver function, regeneration, and microcirculation. PMID:27799962

  3. A Novel Class of Small Molecule Agonists with Preference for Human over Mouse TLR4 Activation

    PubMed Central

    Heeke, Darren S.; Rao, Eileen; Maynard, Sean K.; Hornigold, David; McCrae, Christopher; Fraser, Neil; Tovchigrechko, Andrey; Yu, Li; Williams, Nicola; King, Sarah; Cooper, Martin E.; Hajjar, Adeline M.; Woo, Jennifer C.

    2016-01-01

    The best-characterized Toll-like receptor 4 (TLR4) ligands are lipopolysaccharide (LPS) and its chemically modified and detoxified variant, monophosphoryl lipid A (MPL). Although both molecules are active for human TLR4, they demonstrate a potency preference for mouse TLR4 based on data from transfected cell lines and primary cells of both species. After a high throughput screening process of small molecule libraries, we have discovered a new class of TLR4 agonist with a species preference profile differing from MPL. Products of the 4-component Ugi synthesis reaction were demonstrated to potently trigger human TLR4-transfected HEK cells but not mouse TLR4, although inclusion of the human MD2 with mTLR4 was able to partially recover activity. Co-expression of CD14 was not required for optimal activity of Ugi compounds on transfected cells, as it is for LPS. The species preference profile for the panel of Ugi compounds was found to be strongly active for human and cynomolgus monkey primary cells, with reduced but still substantial activity for most Ugi compounds on guinea pig cells. Mouse, rat, rabbit, ferret, and cotton rat cells displayed little or no activity when exposed to Ugi compounds. However, engineering the human versions of TLR4 and MD2 to be expressed in mTLR4/MD2 deficient mice allowed for robust activity by Ugi compounds both in vitro and in vivo. These findings extend the range of compounds available for development as agonists of TLR4 and identify novel molecules which reverse the TLR4 triggering preference of MPL for mouse TLR4 over human TLR4. Such compounds may be amenable to formulation as more potent human-specific TLR4L-based adjuvants than typical MPL-based adjuvants. PMID:27736941

  4. 5-HT1A Agonist Properties Contribute to a Robust Response to Vilazodone in the Novelty Suppressed Feeding Paradigm

    PubMed Central

    Garcia-Garcia, Alvaro L.; Navarro-Sobrino, Míriam; Pilosof, Gila; Banerjee, Pradeep; Dranovsky, Alex

    2016-01-01

    Background: Differences in 5-HT1A receptor function have been implicated in vulnerability to depression and in response to treatment. Adding 5-HT1A partial agonists to selective serotonin reuptake inhibitors has been touted as a strategy to increase their efficacy. Here we use the novelty suppressed feeding paradigm to compare the effects of vilazodone, a high-potency selective serotonin reuptake inhibitor, with high affinity for 5-HT1A receptors to the reference selective serotonin reuptake inhibitor fluoxetine across several mouse strains that differ in their response to selective serotonin reuptake inhibitors. Methods: To confirm 5-HT1A agonist activity, body temperature was measured after acute administration of vilazodone or fluoxetine, as administration of 5-HT1A agonists induces hypothermia. We next used 3 strains of mice to examine the effects of the drugs on latency in the novelty suppressed feeding, a paradigm generally sensitive to chronic but not acute effects of antidepressants. Results: Vilazodone induces robust hypothermia and blocks stress-induced hyperthermia in a 5-HT1A-dependent manner, consistent with agonist effects at 5-HT1A autoreceptors. In 129SvEv mice, vilazodone (10mg/kg/d) reduces the latency to eat in the novelty suppressed feeding test within 8 days, while no effect of fluoxetine (20mg/kg/d) was detected at that time. In contrast, both vilazodone and fluoxetine are effective at decreasing latency to eat in the novelty suppressed feeding paradigm in a strain with low autoreceptor levels. In mice with higher autoreceptor levels, no significant difference was detected between fluoxetine and vehicle (P=.8) or vilazodone and vehicle (P=.06). Conclusion: In mice, vilazodone may offer advantages in time of onset and efficacy over a reference selective serotonin reuptake inhibitor in the novelty suppressed feeding test. PMID:27352617

  5. Interaction of the alpha-adrenoceptor agonist oxymetazoline with serotonin 5-HT1A, 5-HT1B, 5-HT1C and 5-HT1D receptors.

    PubMed

    Schoeffter, P; Hoyer, D

    1991-04-17

    Oxymetazoline was recognized with nanomolar affinity by 5-HT1A, 5-HT1B and 5-HT1D binding sites and mimicked the effects of 5-hydroxytryptamine with about the same potency and intrinsic activity as the endogenous amine in the corresponding functional tests. At 5-HT1C receptors, oxymetazoline behaved as a mixed agonist-antagonist. Clonidine had minimal activity. Methiothepin antagonized the effects of oxymetazoline (7.4 less than pKB less than 8.8). Thus, oxymetazoline is a full and potent agonist at 5-HT1A, 5-HT1B and 5-HT1D receptors and a partial agonist at 5-HT1C receptors.

  6. Incorporation of Phosphonate into Benzonaphthyridine Toll-like Receptor 7 Agonists for Adsorption to Aluminum Hydroxide.

    PubMed

    Cortez, Alex; Li, Yongkai; Miller, Andrew T; Zhang, Xiaoyue; Yue, Kathy; Maginnis, Jillian; Hampton, Janice; Hall, De Shon; Shapiro, Michael; Nayak, Bishnu; D'Oro, Ugo; Li, Chun; Skibinski, David; Mbow, M Lamine; Singh, Manmohan; O'Hagan, Derek T; Cooke, Michael P; Valiante, Nicholas M; Wu, Tom Y-H

    2016-06-23

    Small molecule Toll-like receptor 7 (TLR7) agonists have been used as vaccine adjuvants by enhancing innate immune activation to afford better adaptive response. Localized TLR7 agonists without systemic exposure can afford good adjuvanticity, suggesting peripheral innate activation (non-antigen-specific) is not required for immune priming. To enhance colocalization of antigen and adjuvant, benzonaphthyridine (BZN) TLR7 agonists are chemically modified with phosphonates to allow adsorption onto aluminum hydroxide (alum), a formulation commonly used in vaccines for antigen stabilization and injection site deposition. The adsorption process is facilitated by enhancing aqueous solubility of BZN analogs to avoid physical mixture of two insoluble particulates. These BZN-phosphonates are highly adsorbed onto alum, which significantly reduced systemic exposure and increased local retention post injection. This report demonstrates a novel approach in vaccine adjuvant design using phosphonate modification to afford adsorption of small molecule immune potentiator (SMIP) onto alum, thereby enhancing co-delivery with antigen. PMID:27270029

  7. Nicotinamide is an endogenous agonist for a C. elegans TRPV OSM-9 and OCR-4 channel

    PubMed Central

    Upadhyay, Awani; Pisupati, Aditya; Jegla, Timothy; Crook, Matt; Mickolajczyk, Keith J.; Shorey, Matthew; Rohan, Laura E.; Billings, Katherine A.; Rolls, Melissa M.; Hancock, William O.; Hanna-Rose, Wendy

    2016-01-01

    TRPV ion channels are directly activated by sensory stimuli and participate in thermo-, mechano- and chemo-sensation. They are also hypothesized to respond to endogenous agonists that would modulate sensory responses. Here, we show that the nicotinamide (NAM) form of vitamin B3 is an agonist of a Caenorhabditis elegans TRPV channel. Using heterologous expression in Xenopus oocytes, we demonstrate that NAM is a soluble agonist for a channel consisting of the well-studied OSM-9 TRPV subunit and relatively uncharacterized OCR-4 TRPV subunit as well as the orthologous Drosophila Nan-Iav TRPV channel, and we examine stoichiometry of subunit assembly. Finally, we show that behaviours mediated by these C. elegans and Drosophila channels are responsive to NAM, suggesting conservation of activity of this soluble endogenous metabolite on TRPV activity. Our results in combination with the role of NAM in NAD+ metabolism suggest an intriguing link between metabolic regulation and TRPV channel activity. PMID:27731314

  8. PPARγ AGONISTS AS THERAPEUTICS FOR THE TREATMENT OF ALZHEIMER’S DISEASE

    PubMed Central

    Landreth, Gary; Jiang, Qingguang; Mandrekar, Shweta; Heneka, Michael

    2008-01-01

    Alzheimer’s Disease is characterized by the deposition of β-amyloid within the brain parenchyma and is accompanied by the impairment of neuronal metabolism and function, leading to extensive neuronal loss. The disease involves the perturbation of synaptic function, energy and lipid metabolism. The development of amyloid plaques results in the induction of microglial-mediated inflammatory response. The nuclear receptor PPARγ is a ligand-activated transcription factor whose biological actions are to regulate glucose and lipid metabolism and suppress inflammatory gene expression. Thus, agonists of this receptor represent an attractive therapeutic target for AD. There is now an extensive body of evidence that has demonstrated the efficacy of PPARγ agonists in ameliorating disease–related pathology and improved learning and memory in animal models of AD. Recent clinical trials of the PPARγ agonist rosiglitazone have shown significant improvement in memory and cognition in AD patients. Thus, PPARγ represents an important new therapeutic target in treating AD. PMID:18625459

  9. PPAR{alpha} agonists up-regulate organic cation transporters in rat liver cells

    SciTech Connect

    Luci, Sebastian; Geissler, Stefanie; Koenig, Bettina; Koch, Alexander; Stangl, Gabriele I.; Hirche, Frank; Eder, Klaus . E-mail: klaus.eder@landw.uni-halle.de

    2006-11-24

    It has been shown that clofibrate treatment increases the carnitine concentration in the liver of rats. However, the molecular mechanism is still unknown. In this study, we observed for the first time that treatment of rats with the peroxisome proliferator activated receptor (PPAR)-{alpha} agonist clofibrate increases hepatic mRNA concentrations of organic cation transporters (OCTNs)-1 and -2 which act as transporters of carnitine into the cell. In rat hepatoma (Fao) cells, treatment with WY-14,643 also increased the mRNA concentration of OCTN-2. mRNA concentrations of enzymes involved in carnitine biosynthesis were not altered by treatment with the PPAR{alpha} agonists in livers of rats and in Fao cells. We conclude that PPAR{alpha} agonists increase carnitine concentrations in livers of rats and cells by an increased uptake of carnitine into the cell but not by an increased carnitine biosynthesis.

  10. Clinical use of deslorelin (GnRH agonist) in companion animals: a review.

    PubMed

    Lucas, X

    2014-10-01

    Over the years, many contraceptive medications have been developed for companion animals, but many secondary adverse effects have limited their use. A major advancement was achieved with the use of gonadotropin-releasing hormone (GnRH) analogues, mainly GnRH agonists, which mimic the effects of native GnRH. The development of effective low-dose, slow-release implants with potent agonists such as deslorelin (Suprelorin®, Virbac) have allowed their use to become widespread in recent years, with many potential benefits in companion animals. While the major application of deslorelin was initially male contraception, due to its two differing actions, either the stimulation of oestrus or the sterilization of fertility, its use has been increasing in the bitch as well. The aim of this study is to review the applications of deslorelin GnRH agonist implants in companion animal, such as dogs, cats and some exotic pets.

  11. Quantitative Measure of Receptor Agonist and Modulator Equi-Response and Equi-Occupancy Selectivity

    PubMed Central

    Zhang, Rumin; Kavana, Michael

    2016-01-01

    G protein-coupled receptors (GPCRs) are an important class of drug targets. Quantitative analysis by global curve fitting of properly designed dose-dependent GPCR agonism and allosterism data permits the determination of all affinity and efficacy parameters based on a general operational model. We report here a quantitative and panoramic measure of receptor agonist and modulator equi-response and equi-occupancy selectivity calculated from these parameters. The selectivity values help to differentiate not only one agonist or modulator from another, but on-target from off-target receptor or functional pathway as well. Furthermore, in conjunction with target site free drug concentrations and endogenous agonist tones, the allosterism parameters and selectivity values may be used to predict in vivo efficacy and safety margins. PMID:27116909

  12. Structure-guided development of dual β2 adrenergic/dopamine D2 receptor agonists.

    PubMed

    Weichert, Dietmar; Stanek, Markus; Hübner, Harald; Gmeiner, Peter

    2016-06-15

    Aiming to discover dual-acting β2 adrenergic/dopamine D2 receptor ligands, a structure-guided approach for the evolution of GPCR agonists that address multiple targets was elaborated. Starting from GPCR crystal structures, we describe the design, synthesis and biological investigation of a defined set of compounds leading to the identification of the benzoxazinone (R)-3, which shows agonist properties at the adrenergic β2 receptor and substantial G protein-promoted activation at the D2 receptor. This directed approach yielded molecular probes with tuned dual activity. The congener desOH-3 devoid of the benzylic hydroxyl function was shown to be a β2 adrenergic antagonist/D2 receptor agonist with Ki values in the low nanomolar range. The compounds may serve as a promising starting point for the investigation and treatment of neurological disorders. PMID:27132867

  13. Bifunctional epitope-agonist ligands of the bradykinin B(2) receptor.

    PubMed

    Gera, Lajos; Roy, Caroline; Marceau, François

    2013-03-01

    Two bradykinin (BK) B(2) receptor agonists N-terminally extended with the myc epitope were synthesized and evaluated: myc-KPG-BK and myc-KGP-B-9972. The latter was modeled on the inactivation-resistant agonist B-9972 (D-Arg(0), Hyp(3), Igl(5), Oic(7), Igl(8)-BK) and is also resistant to endosomal inactivation. Despite a large loss of affinity relative to the parent peptide, the tagged analogs are conventional agonists in the umbilical vein contractility assay and compete for [(3)H]BK binding at the rabbit B(2) receptor. Endocytosed myc-KGP-B-9972 most effectively carried AlexaFluor-488-conjugated anti-myc monoclonal antibodies into intact cells expressing the B(2) receptor. Results support the prospects of functionally-active cargoes entering cells in a pharmacologically controlled manner.

  14. Metabotropic glutamate receptor agonists potentiate a slow afterdepolarization in CNS neurons

    NASA Technical Reports Server (NTRS)

    Zheng, F.; Gallagher, J. P.

    1992-01-01

    We have previously reported that, in the rat dorsolateral septal nucleus (DLSN), metabotropic glutamate receptor (met-GluR) agonists evoked a slow depolarization accompanied by an increase in membrane conductance and burst firing. We have speculated that the burst firing elicited by met-GluR agonists may be due to activation or enhancement of a non-specific cation current, which exists in some DLSN neurons. Now we report that a slow afterdepolarization (sADP) mediated by a non-specific cation current was potentiated by both 1S,3R-ACPD and quisqualate. In addition, met-GluR agonists unmask a sADP in DLSN neurons which did not show a sADP under control conditions. Our data suggest that a non-specific cation current can be potentiated by activation of the met-GluR.

  15. Thrombin receptor agonist Peptide immobilized in microspheres stimulates reparative processes in rats with gastric ulcer.

    PubMed

    Rusanova, A V; Makarova, A M; Strukova, S M; Markvicheva, E A; Gorbachyova, L R; Stashevskaya, K S; Vasil'eva, T V; Sidorova, E I; Bespalova, Zh D; Grandfils, Ch

    2006-07-01

    The effect of synthetic thrombin receptor (PAR1) agonist peptide encapsulated in microspheres made of lactic and glycolic acid copolymer on tissue reparation was studied in rats with acetate-induced ulcer. PAR1 agonist peptide was immobilized in biodegraded lactic and glycolic acid microspheres by double emulgation, the kinetics of peptide release was analyzed, and the dynamics of ulcer healing was studied in experimental (administration of microspheres with the peptide into the stomach) and two control groups (administration of saline or spheres without peptide). Thrombin receptor agonist peptide gradually released from lactic and glycolic acid microspheres into the stomach shortened the inflammation phase and shifted the proliferation phase to the earlier period, thus accelerating healing of experimental ulcers in rats. PMID:17369897

  16. Competitive Agonists and Antagonists of Steroid Nuclear Receptors: Evolution of the Concept or Its Reversal.

    PubMed

    Smirnova, O V

    2015-10-01

    The mechanisms displaying pure and mixed steroid agonist/antagonist activity as well as principles underlying in vivo action of selective steroid receptor modulators dependent on tissue or cell type including interaction with various types of nuclear receptors are analyzed in this work. Mechanisms of in vitro action for mixed agonist/antagonist steroids are discussed depending on: specific features of their interaction with receptor hormone-binding pocket; steroid-dependent allosteric modulation of interaction between hormone-receptor complex and hormone response DNA elements; features of interacting hormone-receptor complex with protein transcriptional coregulators; level and tissue-specific composition of transcriptional coregulators. A novel understanding regarding context-selective modulators replacing the concept of steroid agonists and antagonists is discussed.

  17. The relative contribution of affinity and efficacy to agonist activity: organ selectivity of noradrenaline and oxymetazoline with reference to the classification of drug receptors.

    PubMed

    Kenakin, T P

    1984-01-01

    Oxymetazoline demonstrated a pronounced organ selectivity, when compared to noradrenaline, by being a potent full agonist in rat anococcygeus muscle and a partial agonist in rat vas deferens. Responses of rat anococcygeus muscles to oxymetazoline were relatively more sensitive to antagonism by phenoxybenzamine (Pbz) an alkylating alpha-adrenoceptor antagonist. Therefore, although oxymetazoline was more potent than noradrenaline in this tissue, after Pbz (0.3 microM for 10 min), the responses to oxymetazoline were completely inhibited while those to noradrenaline were only partially inhibited. Schild analysis with phentolamine, corynanthine, prazosin and yohimbine indicated no alpha-adrenoceptor heterogeneity within the rat anococcygeus muscle or between this tissue and rat vas deferens. Measurement of agonist Kd values and Schild analysis of oxymetazoline antagonism of responses to noradrenaline (after alkylation) confirmed the homogeneity of alpha-adrenoceptors with respect to these two agonists. The above profiles of activity would be predicted if oxymetazoline had a higher affinity but lower efficacy than noradrenaline. Experimentally this was confirmed when it was found that oxymetazoline had 5 times the affinity but 0.2 to 0.3 times the efficacy of noradrenaline. These results serve as a caveat to the use of selective receptor desensitization and/or selective receptor alkylation (or protection from alkylation) as means of differentiating drug receptors. Theoretical modelling and these experimental results indicate that high affinity/low efficacy agonists are much more sensitive to receptor coupling. The implications for therapeutic selectivity could be important in that high affinity/low efficacy agonists theoretically have a much greater potential for organ selectivity.

  18. GABAergic Agonists Modulate the Glutamate Release from Frontal Cortex Synaptosomes of Rats with Experimental Autoimmune Encephalomyelitis.

    PubMed

    Fernández Hurst, Nicolás; Chanaday, Natalí L; Roth, German A

    2015-01-01

    Experimental autoimmune encephalomyelitis (EAE) is an inflammatory demyelinating disease that mimics many of the clinical and pathological features of multiple sclerosis. We have previously described a significant diminution in the GABAergic regulation of glutamate release from synaptosomes of EAE rats isolated during the acute stage of the disease. In order to explore the possible metabolic pathways responsible for this alteration, in this work we evaluate the direct effect of different GABAergic agonists on the glutamate release and concomitant synapsin I phosphorylation in synaptosomes from the frontal cortex of control and EAE animals. The results show that GABA as well as the GABA receptor agonists Muscimol (GABAA agonist) and Baclofen (GABAB agonist) caused a decrease in glutamate release in control rats paralleled by a similar reduction in synapsin I phosphorylation. Meanwhile synaptosomes from EAE animals are responsive only to Baclofen with respect to nontreated EAE synaptosomes, since glutamate release from the synaptosomes treated with Muscimol was similar to that observed in EAE rat synaptosomes which was already reduced as consequence of the disease. In the case of the benzodiazepines Diazepam and Clonazepam (GABAA allosteric agonists), both of them induced a reduction in glutamate release in synaptosomes from the CFA rats, effect that was only observed in synaptosomes of EAE rats treated with Clonazepam. In all cases both benzodiazepines showed a higher effect on synapsin I phosphorylation than in glutamate release. These results indicate that the extent of GABAergic modulation of presynaptic terminals depends on the type of agonist employed and this regulation is altered in the frontal cortex during the acute phase of EAE with respect to control animals. PMID:26631092

  19. Estrogen receptor agonists alleviate cardiac and renal oxidative injury in rats with renovascular hypertension.

    PubMed

    Özdemir Kumral, Zarife Nigâr; Kolgazi, Meltem; Üstünova, Savaş; Kasımay Çakır, Özgür; Çevik, Özge Dağdeviren; Şener, Göksel; Yeğen, Berrak Ç

    2016-01-01

    Although endogenous estrogen is known to offer cardiac and vascular protection, the involvement of estrogen receptors in mediating the protective effect of estrogen on hypertension-induced cardiovascular and renal injury is not fully explained. We aimed to investigate the effects of estrogen receptor (ER) agonists on oxidative injury, cardiovascular and renal functions of rats with renovascular hypertension (RVH). Female Sprague-Dawley rats were randomly divided as control and RVH groups, and RVH groups had either ovariectomy (OVX) or sham-OVX. Sham-OVX-RVH and OVX-RVH groups received either ERβ agonist diarylpropiolnitrile (1 mg/kg/day) or ERα agonist propyl pyrazole triol (1 mg/kg/day) for 6 weeks starting at the third week following the surgery. At the end of the 9(th) week, systolic blood pressures were recorded, cardiac functions were determined, and the contraction/relaxation responses of aortic rings were obtained. Serum creatinine levels, tissue malondialdehyde, glutathione, superoxide dismutase, catalase levels, and myeloperoxidase activity in heart and kidney samples were analyzed, and Na(+), K(+)-ATPase activity was measured in kidney samples. In both sham-OVX and OVX rats, both agonists reduced blood pressure and reversed the impaired contractile performance of the heart, while ERβ agonist improved renal functions in both the OVX and non-OVX rats. Both agonists reduced neutrophil infiltration, lipid peroxidation, and elevated antioxidant levels in the heart, but a more ERβ-mediated protective effect was observed in the kidney. Our data suggest that activation of ERβ might play a role in preserving the function of the stenotic kidney and delaying the progression of renal injury, while both receptors mediate similar cardioprotective effects. PMID:27399230

  20. Early postnatal stress alters place conditioning to both mu- and kappa-opioid agonists.

    PubMed

    Michaels, Clifford C; Holtzman, Stephen G

    2008-04-01

    Clinical literature has established a link between early childhood incidents of neglect and trauma and adult problems with substance abuse. In rats, such early life stress has been modeled using a maternal separation (MS) paradigm in which rat pups were removed from their mothers for a few hours daily during the first two postnatal weeks. In this study, we used the MS model to investigate the effects of early postnatal stress on place conditioning to both mu- and kappa-opioid agonists in male and female Long-Evans rats. Offspring of both rearing conditions [MS or nonhandled (NH)] were conditioned using a biased procedure to saline, the mu-opioid agonist morphine (3.0, 5.6, and 10 mg/kg s.c.), or the kappa-opioid agonist spiradoline (0.3, 1.0, and 3.0 mg/kg) for 3 days, followed by a drug-free place-conditioning test 24 h later. Saline was administered in the morning, 30 min before confinement in one compartment, whereas morphine or spiradoline was administered in a similar manner 6 h later in the opposite compartment. MS offspring spent significantly more time in the morphine-paired compartment than NH offspring, indicating a greater place preference for the mu-opioid agonist. In the case of spiradoline, NH offspring spent significantly less time in the spiradoline-paired compartment, indicating a greater aversion to the kappa-opioid agonist in these animals than in MS offspring. These findings indicate that early postnatal stress can significantly alter the rewarding or aversive value of mu- and kappa-opioid agonists when measured using place conditioning. PMID:18203949

  1. Diabetogenic effect of a series of tricyclic delta opioid agonists structurally related to cyproheptadine.

    PubMed

    Codd, Ellen E; Baker, Judith; Brandt, Michael R; Bryant, Stewart; Cai, Chaozhong; Carson, John R; Chevalier, Kristen M; Colburn, Raymond W; Coogan, Timothy P; Dax, Scott L; Decorte, Bart; Kemmerer, Michael; Legrand, Edmund K; Lenhard, James M; Leone, Angelique M; Lin, Ling; Mabus, John R; McDonnell, Mark E; McMillian, Michael K; McNally, James J; Stone, Dennis J; Wang, Charles Y; Zhang, Sui-Po; Flores, Christopher M

    2010-10-01

    The unexpected observation of a hyperglycemic effect of some tricycle-based delta opioid receptor (DOR) agonists led to a series of studies to better understand the finding. Single administration of two novel tricyclic DOR agonists dose dependently elevated rat plasma glucose levels; 4-week toxicology studies confirmed the hyperglycemic finding and further revealed pancreatic β-cell hypertrophy, including vacuole formation, as well as bone dysplasia and Harderian gland degeneration with regeneration. Similar diabetogenic effects were observed in dog. A review of the literature on the antiserotonergic and antihistaminergic drug cyproheptadine (CPH) and its metabolites revealed shared structural features as well as similar hyperglycemic effects to the present series of DOR agonists. To further evaluate these effects, we established an assay measuring insulin levels in the rat pancreatic β-cell-derived RINm5F cell line, extensively used to study CPH and its metabolites. Like CPH, the initial DOR agonists studied reduced RINm5F cell insulin levels in a concentration-dependent manner. Importantly, compound DOR potency did not correlate with the insulin-reducing potency. Furthermore, the RINm5F cell insulin results correlated with the diabetogenic effect of the compounds in a 5-day mouse study. The RINm5F cell insulin assay enabled the identification of aryl-aryl-amine DOR agonists that lacked an insulin-reducing effect and did not elevate blood glucose in repeated dosing studies conducted over a suprapharmacologic dose range. Thus, not only did the RINm5F cell assay open a path for the further discovery of DOR agonists lacking diabetogenic potential but also it established a reliable, economical, and high-throughput screen for such potential, regardless of chemotype or target pharmacology. The present findings also suggest a mechanistic link between the toxicity observed here and that underlying Wolcott-Rallison Syndrome.

  2. PPARγ Agonists Promote Oligodendrocyte Differentiation of Neural Stem Cells by Modulating Stemness and Differentiation Genes

    PubMed Central

    Kanakasabai, Saravanan; Pestereva, Ecaterina; Chearwae, Wanida; Gupta, Sushil K.; Ansari, Saif; Bright, John J.

    2012-01-01

    Neural stem cells (NSCs) are a small population of resident cells that can grow, migrate and differentiate into neuro-glial cells in the central nervous system (CNS). Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor transcription factor that regulates cell growth and differentiation. In this study we analyzed the influence of PPARγ agonists on neural stem cell growth and differentiation in culture. We found that in vitro culture of mouse NSCs in neurobasal medium with B27 in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) induced their growth and expansion as neurospheres. Addition of all-trans retinoic acid (ATRA) and PPARγ agonist ciglitazone or 15-Deoxy-Δ12,14-Prostaglandin J2 (15d-PGJ2) resulted in a dose-dependent inhibition of cell viability and proliferation of NSCs in culture. Interestingly, NSCs cultured with PPARγ agonists, but not ATRA, showed significant increase in oligodendrocyte precursor-specific O4 and NG2 reactivity with a reduction in NSC marker nestin, in 3–7 days. In vitro treatment with PPARγ agonists and ATRA also induced modest increase in the expression of neuronal β-III tubulin and astrocyte-specific GFAP in NSCs in 3–7 days. Further analyses showed that PPARγ agonists and ATRA induced significant alterations in the expression of many stemness and differentiation genes associated with neuro-glial differentiation in NSCs. These findings highlight the influence of PPARγ agonists in promoting neuro-glial differentiation of NSCs and its significance in the treatment of neurodegenerative diseases. PMID:23185633

  3. Synergistic teratogenic effects induced by retinoids in mice by coadministration of a RARalpha- or RARgamma-selective agonist with a RXR-selective agonist.

    PubMed

    Elmazar, M M; Rühl, R; Nau, H

    2001-01-01

    To study the interaction of retinoid-induced limb defects and cleft palate on day 11 of gestation, a RXR-selective agonist (AGN191701, an arylpropenyl-thiophene-carboxylic acid derivative, 20 mg/kg orally) was coadministered with a RARalpha-agonist (Am580, an arylcarboxamidobenzoic acid derivative, 5 mg/kg orally) to NMRI mice. AGN191701 was neither fetotoxic nor teratogenic at the dose used but potentiated Am580-induced limb defects and cleft palate and prevented Am580-induced fetal weight retardation. These results suggest that Am580-induced limb defects and probably cleft palate on day 11 of gestation may be mediated via RARalpha-RXR heterodimerization, particularly in the absence of toxicokinetic interactions. AGN191701 was also coadministered with a RARgamma-agonist (CD437, an adamantyl-hydroxyphenyl naphthoic acid derivative, 15 mg/kg orally) on days 8 and 11 of gestation to investigate which CD437-induced defects are mediated via RARgamma-RXR heterodimerization. On day 8 of gestation, AGN191701 potentiated CD437-induced embryolethality, exencephaly, spina bifida aperta, cleft palate, and tail defects, as well as visceral and skeletal defects, but not micrognathia. On day 11 of gestation, the incidence of CD437-induced cleft palate and limb defects was also potentiated when coadministered with the RXR agonist. These results suggest that synergistic teratogenic effects can be induced by coadministration of two receptor-selective retinoids, indicating the importance of RARalpha-RXR and RARgamma-RXR heterodimers in producing structural defects during organogenesis.

  4. The role of inhaled long-acting beta-2 agonists in the management of asthma.

    PubMed Central

    Kelly, H. William; Harkins, Michelle S.; Boushey, Homer

    2006-01-01

    The role of inhaled beta-2 agonists in the management of asthma has changed significantly over the last several years. This review outlines the most recent understanding of the pathophysiology of asthma and the studies that define the roles that both short- and long-acting beta-2 agonists play in therapy for this disease. A concentration on the clinical pharmacology and genetic implications for clinical use of this class of drugs in accordance with the national and international guidelines are described. PMID:16532973

  5. The CRTH2 agonist Pyl A prevents lipopolysaccharide-induced fetal death but induces preterm labour

    PubMed Central

    Sykes, Lynne; Herbert, Bronwen R; MacIntyre, David A; Hunte, Emma; Ponnampalam, Sathana; Johnson, Mark R; Teoh, Tiong G; Bennett, Phillip R

    2013-01-01

    We have previously demonstrated that the anti-inflammatory prostaglandin 15-deoxy-Δ 12,14-prostaglandin J2 (15dPGJ2) delays inflammation-induced preterm labour in the mouse and improves pup survival through the inhibition of nuclear factor-κB (NF-κB) by a mechanism yet to be elucidated. 15dPGJ2 is an agonist of the second prostaglandin D2 receptor, chemoattractant receptor homologous to the T helper 2 cell (CRTH2). In human T helper cells CRTH2 agonists induce the production of the anti-inflammatory interleukins IL-10 and IL-4. We hypothesized that CRTH2 is involved in the protective effect of 15dPGJ2 in inflammation-induced preterm labour in the murine model. We therefore studied the effects of a specific small molecule CRTH2 agonist on preterm labour and pup survival. An intrauterine injection of lipopolysaccharide (LPS) was administered to CD1 mice at embryonic day 16, ± CRTH2 agonist/vehicle controls. Mice were killed at 4.5 hr to assess fetal wellbeing and to harvest myometrium and pup brain for analysis of NF-κB, and T helper type 1/2 interleukins. To examine the effects of the CRTH2 agonist on LPS-induced preterm labour, mice were allowed to labour spontaneously. Direct effects of the CRTH2 agonist on uterine contractility were examined ex vivo on contracting myometrial strips. The CRTH2 agonist increased fetal survival from 20 to 100% in LPS-treated mice, and inhibited circular muscle contractility ex vivo. However, it augmented LPS-induced labour and significantly increased myometrial NF-κB, IL-1β, KC-GRO, interferon-γ and tumour necrosis factor-α. This suggests that the action of 15dPGJ2 is not via CRTH2 and therefore small molecule CRTH2 agonists are not likely to be beneficial for the prevention of inflammation-induced preterm labour. PMID:23374103

  6. Beta 2-adrenergic agonist as adjunct therapy to levodopa in Parkinson's disease.

    PubMed

    Alexander, G M; Schwartzman, R J; Nukes, T A; Grothusen, J R; Hooker, M D

    1994-08-01

    We studied the effect of the beta 2-adrenergic agonist albuterol on Parkinson's disease (PD) patients receiving chronic levodopa treatment. The albuterol-treated patients demonstrated reduced parkinsonian symptoms and an increased ability to tap their index finger between two points 20 cm apart, and were able to perform a "walk test" in 70% of their control time. Three patients currently on chronic albuterol therapy still show amelioration of their parkinsonian symptoms, and two have reduced their daily levodopa dose. This study suggests that beta 2-adrenergic agonists as adjunct therapy to levodopa may be beneficial in PD.

  7. Potent complement C3a receptor agonists derived from oxazole amino acids: Structure-activity relationships.

    PubMed

    Singh, Ranee; Reed, Anthony N; Chu, Peifei; Scully, Conor C G; Yau, Mei-Kwan; Suen, Jacky Y; Durek, Thomas; Reid, Robert C; Fairlie, David P

    2015-12-01

    Potent ligands for the human complement C3a receptor (C3aR) were developed from the almost inactive tripeptide Leu-Ala-Arg corresponding to the three C-terminal residues of the endogenous peptide agonist C3a. The analogous Leu-Ser-Arg was modified by condensing the serine side chain with the leucine carbonyl with elimination of water to form leucine-oxazole-arginine. Subsequent elaboration with a variety of N-terminal amide capping groups produced agonists as potent as human C3a itself in stimulating Ca(2+) release from human macrophages. Structure-activity relationships are discussed.

  8. Synthesis and pharmacological characterization of beta2-adrenergic agonist enantiomers: zilpaterol.

    PubMed

    Kern, Christopher; Meyer, Thorsten; Droux, Serge; Schollmeyer, Dieter; Miculka, Christian

    2009-03-26

    The beta-adrenergic agonist 1 (zilpaterol) is used as production enhancer in cattle. Binding experiments of separated enantiomers on recombinant human beta(2)-adrenergic and mu-opioid receptors and functional studies showed that the (-)-1 enantiomer accounts for essentially all the beta(2)-adrenergic agonist activity and that it exhibits less affinity toward the mu-opioid receptor than (+)-1, which is a mu-opioid receptor antagonist. X-ray crystallography revealed the absolute configuration of (-)-1 to be 6R,7R.

  9. Thrombopoietin receptor agonists: a new immune modulatory strategy in immune thrombocytopenia?

    PubMed

    Schifferli, Alexandra; Kühne, Thomas

    2016-04-01

    In 2008, new drugs that mimic the effects of thrombopoietin became available for the treatment of primary immune thrombocytopenia, eg, romiplostim and eltrombopag. These drugs activate the thrombopoietin receptor, stimulate the production of megakaryocytes, and increase the production of platelets. Important clinical observation has been gained, such as unexpected long-term remission after stopping thrombopoietin receptor agonists. The pathophysiology of this unforeseen cure is currently the subject of discussion and is investigated in clinical trials and laboratory research projects. Here we evaluate the different hypotheses on how thrombopoietin receptor agonists can affect the immune system, particularly the induction of tolerance, and by which mechanisms this may be achieved. PMID:27312161

  10. Dimethyl-diphenyl-propanamide derivatives as nonsteroidal dissociated glucocorticoid receptor agonists.

    PubMed

    Yang, Bingwei V; Weinstein, David S; Doweyko, Lidia M; Gong, Hua; Vaccaro, Wayne; Huynh, Tram; Xiao, Hai-Yun; Doweyko, Arthur M; McKay, Lorraine; Holloway, Deborah A; Somerville, John E; Habte, Sium; Cunningham, Mark; McMahon, Michele; Townsend, Robert; Shuster, David; Dodd, John H; Nadler, Steven G; Barrish, Joel C

    2010-12-01

    A series of 2,2-dimethyl-3,3-diphenyl-propanamides as novel glucocorticoid receptor modulators is reported. SAR exploration led to the identification of 4-hydroxyphenyl propanamide derivatives displaying good agonist activity in GR-mediated transrepression assays and reduced agonist activity in GR-mediated transactivation assays. Compounds 17 and 30 showed anti-inflammatory activity comparable to prednisolone in the rat carrageenan-induced paw edema model, with markedly decreased side effects with regard to increases in blood glucose and expression of hepatic tyrosine aminotransferase. A hypothetical binding mode accounting for the induction of the functional activity by a 4-hydroxyl group is proposed. PMID:21073190

  11. Biperiden enhances L-DOPA methyl ester and dopamine D(l) receptor agonist SKF-82958 but antagonizes D(2)/D(3) receptor agonist rotigotine antihemiparkinsonian actions.

    PubMed

    Domino, Edward F; Ni, Lisong

    2008-12-01

    The effects of biperiden (0, 100, and 320 microg/kg), a selective muscarinic M(1)/M(4) receptor cholinergic antagonist, were studied alone and in combination with those of L-DOPA methyl ester (16.7 mg/kg), a selective dopamine D(1) receptor agonist SKF-82958 (74.8 microg/kg), or a selective D(2)/D(3) receptor agonist rotigotine (32 microg/kg) on circling behavior in MPTP induced hemiparkinsonian monkeys. The doses selected were given i.m. in approximately equieffective doses to produce contraversive circling. Biperiden alone with 5% dextrose vehicle produced a slight increase in contraversive circling in a dose related manner. When combined with L-DOPA methyl ester, it enhanced contraversive circling and decreased ipsiversive circling. When biperiden was combined with SKF-82958, contraversive circling also was enhanced and ipsiversive circling decreased. Exactly the opposite was observed with the combination of biperiden and rotigotine. The results indicate a dramatic difference in effects of a prototypic muscarinic M(1)/M(4) receptor cholinergic antagonist in combination with prototypic full dopamine D(1) or D(2)/D(3) receptor agonists. Biperiden interactions with L-DOPA methyl ester were more predominantly D(l) than D(2)/D(3) receptor-like in this animal model of hemiparkinsonism.

  12. New 4-Functionalized Glutamate Analogues Are Selective Agonists at Metabotropic Glutamate Receptor Subtype 2 or Selective Agonists at Metabotropic Glutamate Receptor Group III.

    PubMed

    Huynh, Tri H V; Erichsen, Mette N; Tora, Amélie S; Goudet, Cyril; Sagot, Emmanuelle; Assaf, Zeinab; Thomsen, Christian; Brodbeck, Robb; Stensbøl, Tine B; Bjørn-Yoshimoto, Walden E; Nielsen, Birgitte; Pin, Jean-Philippe; Gefflaut, Thierry; Bunch, Lennart

    2016-02-11

    The metabotropic glutamate (Glu) receptors (mGluRs) play key roles in modulating excitatory neurotransmission in the brain. In all, eight subtypes have been identified and divided into three groups, group I (mGlu1,5), group II (mGlu2,3), and group III (mGlu4,6-8). In this article, we present a L-2,4-syn-substituted Glu analogue, 1d, which displays selective agonist activity at mGlu2 over the remaining mGluR subtypes. A modeling study and redesign of the core scaffold led to the stereoselective synthesis of four new conformationally restricted Glu analogues, 2a-d. Most interestingly, 2a retained a selective agonist activity profile at mGlu2 (EC50 in the micromolar range), whereas 2c/2d were both selective agonists at group III, subtypes mGlu4,6,8. In general, 2d was 20-fold more potent than 2c and potently activated mGlu4,6,8 in the low-mid nanomolar range.

  13. Agonist-directed signaling of serotonin 5-HT2C receptors: differences between serotonin and lysergic acid diethylamide (LSD).

    PubMed

    Backstrom, J R; Chang, M S; Chu, H; Niswender, C M; Sanders-Bush, E

    1999-08-01

    For more than 40 years the hallucinogen lysergic acid diethylamide (LSD) has been known to modify serotonin neurotransmission. With the advent of molecular and cellular techniques, we are beginning to understand the complexity of LSD's actions at the serotonin 5-HT2 family of receptors. Here, we discuss evidence that signaling of LSD at 5-HT2C receptors differs from the endogenous agonist serotonin. In addition, RNA editing of the 5-HT2C receptor dramatically alters the ability of LSD to stimulate phosphatidylinositol signaling. These findings provide a unique opportunity to understand the mechanism(s) of partial agonism.

  14. MUC-1 Tumor Antigen Agonist Epitopes for Enhancing T-cell Responses to Human Tumors | NCI Technology Transfer Center | TTC

    Cancer.gov

    Scientists at NIH have identified 7 new agonist epitopes of the MUC-1 tumor associated antigen. Compared to their native epitope counterparts, peptides reflecting these agonist epitopes have been shown to enhance the generation of human tumor cells, which in turn have a greater ability to kill human tumor cells endogenously expressing the native MUC-1 epitope.

  15. Effect of beta-ADrenergic Agonist on Cyclic AMP Synthesis in Chicken Skeletal Muscle Cells in Culture

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Because it seems logical that these agonists exert their action on muscle through stimulation of cAMP synthesis, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate cAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of cAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of cAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax levels were approximately 15-fold weaker than isoproterenol in stimulating the rate of cAMP synthesis. In addition, the EC50 values for isoproterenol, cimaterol, clenbuterol, epinephrine, and albuterol were 360 nM, 630 nM, 900 nM, 2,470 nM, and 3,650 nM, respectively. Finally, dose response curves show that the concentrations of cimaterol and clenbuterol in culture media at concentrations known to cause significant muscle hypertrophy in animals had no detectable effect on stimulation of CAMP accumulation in chicken skeletal muscle cells.

  16. Self-administration of agonists selective for dopamine D2, D3, and D4 receptors by rhesus monkeys.

    PubMed

    Koffarnus, Mikhail N; Collins, Gregory T; Rice, Kenner C; Chen, Jianyong; Woods, James H; Winger, Gail

    2012-08-01

    Dopamine receptor mechanisms are believed to play a role in the reinforcing effects of cocaine and other drugs of abuse. The lack of receptor-selective agonists has made it difficult to determine the role of the individual dopamine receptors in mediating these reinforcing effects. In this study, rhesus monkeys with a history of intravenous cocaine self-administration were tested for the reinforcing effects of several D(3)-preferring agonists, a D(2)-preferring agonist, and a D(4) agonist. The D(2)-preferring agonist did not maintain responding in any monkeys, and the D(4) agonist was self-administered at low rates, just above those maintained by saline, in one monkey. The D(3)-preferring agonists were self-administered by approximately half of the animals, although at lower rates than cocaine. These results indicate that the apparent limited reinforcing effectiveness of D(2)-like agonists requires activity at D(3) receptors. Previous data from this laboratory and others also suggest that these drugs may not serve as reinforcers directly; the behavior may be maintained by response-contingent delivery of stimuli previously paired with cocaine. The ability of drug-related stimuli to maintain responding apparently differs among monkeys and other organisms, and may be related to individual differences in drug-taking behavior in humans. PMID:22785383

  17. Multifunctional Antibody Agonists Targeting Glucagon-like Peptide-1, Glucagon, and Glucose-Dependent Insulinotropic Polypeptide Receptors.

    PubMed

    Wang, Ying; Du, Jintang; Zou, Huafei; Liu, Yan; Zhang, Yuhan; Gonzalez, Jose; Chao, Elizabeth; Lu, Lucy; Yang, Pengyu; Parker, Holly; Nguyen-Tran, Van; Shen, Weijun; Wang, Danling; Schultz, Peter G; Wang, Feng

    2016-09-26

    Glucagon-like peptide-1 (GLP-1) receptor (GLP-1R), glucagon (GCG) receptor (GCGR), and glucose-dependent insulinotropic polypeptide (GIP, also known as gastric inhibitory polypeptide) receptor (GIPR), are three metabolically related peptide hormone receptors. A novel approach to the generation of multifunctional antibody agonists that activate these receptors has been developed. Native or engineered peptide agonists for GLP-1R, GCGR, and GIPR were fused to the N-terminus of the heavy chain or light chain of an antibody, either alone or in pairwise combinations. The fusion proteins have similar in vitro biological activities on the cognate receptors as the corresponding peptides, but circa 100-fold longer plasma half-lives. The GLP-1R mono agonist and GLP-1R/GCGR dual agonist antibodies both exhibit potent effects on glucose control and body weight reduction in mice, with the dual agonist antibody showing enhanced activity in the latter. PMID:27595986

  18. Conformational states of the nicotinic acetylcholine receptor from Torpedo californica induced by the binding of agonists, antagonists, and local anesthetics. Equilibrium measurements using tritium-hydrogen exchange

    SciTech Connect

    McCarthy, M.P.; Stroud, R.M.

    1989-01-10

    The tritium-hydrogen exchange kinetics of Torpedo californica AChR, in native membrane vesicles at pH 7.4 and 0 degrees C, have been analyzed in the presence of agonists, partial agonists, local anesthetics, and competitive antagonists. The agonists carbamylcholine (10 microM-1 mM) and suberyldicholine (10 microM) and the partial agonists decamethonium (25 microM and 1 mM) and hexamethonium (1 mM) have no effect on the exchange kinetics, although at lower concentration carbamylcholine may slightly accelerate exchange. Nondesensitizing local anesthetics do affect the exchange behavior, dependent on concentration. Procaine at 500 microM moderately retards exchange while procaine at 10 mM and tetracaine at 5 mM slightly accelerate exchange. The competitive antagonist alpha-bungarotoxin retards exchange significantly, as does d-tubocurarine although to a lesser extent. These results suggest that the resting and desensitized conformations of the AChR are very similar in overall solvent accessibility and that at lower concentrations noncompetitive blockers such as procaine may stabilize a less solvent-accessible state of the AChR. The competitive antagonists alpha-bungarotoxin and d-tubocurare also stabilize a dynamically restricted, less solvent-accessible conformation of the acetylcholine receptor, demonstrating that a large conformational change accompanies binding of these toxins. Any change in conformation which may accompany desensitization is very different from these effects.

  19. A Robotic BG1Luc Reporter Assay to Detect Estrogen Receptor Agonists

    PubMed Central

    Stoner, Matthew A.; Yang, Chun Z.; Bittner, George D.

    2014-01-01

    Endocrine disrupting chemicals with estrogenic activity (EA) have been associated with various adverse health effects. US agencies (ICCVAM/NICEATM) tasked to assess in vitro transcription activation assays to detect estrogenic receptor (ER) agonists for EA have recently validated a BG1Luc assay in manual format, but prefer robotic formats. We have developed a robotic BG1Luc EA assay to detect EA that demonstrated 100% concordance with ICCVAM meta-analyses and ICCVAM BG1Luc results in manual format for 27 ICCVAM test substances, i.e. no false negatives or false positives. This robotic assay also consistently assessed other, more problematic ICCVAM test substances such as clomiphene citrate, L-thyroxin, and tamoxifen. Agonist responses using this robotic BG1Luc assay were consistently inhibited by the ER antagonist ICI 182,780, confirming that agonist responses were due to binding to ERs rather than to a non-specific agonist response. This robotic assay also detected EA in complex mixtures of substances such as extracts of personal care products, plastic resins or plastic consumer products. This robotic BG1Luc assay had at least as high accuracy and greater sensitivity and repeatability when compared to its manual version or to the other ICCVAM/OECD validated assays for EA (manual BG1Luc and CERI). PMID:24747293

  20. Incretin-like effects of small molecule trace amine-associated receptor 1 agonists

    PubMed Central

    Raab, Susanne; Wang, Haiyan; Uhles, Sabine; Cole, Nadine; Alvarez-Sanchez, Ruben; Künnecke, Basil; Ullmer, Christoph; Matile, Hugues; Bedoucha, Marc; Norcross, Roger D.; Ottaway-Parker, Nickki; Perez-Tilve, Diego; Conde Knape, Karin; Tschöp, Matthias H.; Hoener, Marius C.; Sewing, Sabine

    2015-01-01

    Objective Type 2 diabetes and obesity are emerging pandemics in the 21st century creating worldwide urgency for the development of novel and safe therapies. We investigated trace amine-associated receptor 1 (TAAR1) as a novel target contributing to the control of glucose homeostasis and body weight. Methods We investigated the peripheral human tissue distribution of TAAR1 by immunohistochemistry and tested the effect of a small molecule TAAR1 agonist on insulin secretion in vitro using INS1E cells and human islets and on glucose tolerance in C57Bl6, and db/db mice. Body weight effects were investigated in obese DIO mice. Results TAAR1 activation by a selective small molecule agonist increased glucose-dependent insulin secretion in INS1E cells and human islets and elevated plasma PYY and GLP-1 levels in mice. In diabetic db/db mice, the TAAR1 agonist normalized glucose excursion during an oral glucose tolerance test. Sub-chronic treatment of diet-induced obese (DIO) mice with the TAAR1 agonist resulted in reduced food intake and body weight. Furthermore insulin sensitivity was improved and plasma triglyceride levels and liver triglyceride content were lower than in controls. Conclusions We have identified TAAR1 as a novel integrator of metabolic control, which acts on gastrointestinal and pancreatic islet hormone secretion. Thus TAAR1 qualifies as a novel and promising target for the treatment of type 2 diabetes and obesity. PMID:26844206

  1. Identification of a New Type of Covalent PPARγ Agonist using a Ligand-Linking Strategy.

    PubMed

    Ohtera, Anna; Miyamae, Yusaku; Yoshida, Kotaro; Maejima, Kazuhiro; Akita, Toru; Kakizuka, Akira; Irie, Kazuhiro; Masuda, Seiji; Kambe, Taiho; Nagao, Masaya

    2015-12-18

    Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated transcription factor that plays an important role in adipogenesis and glucose metabolism. The ligand-binding pocket (LBP) of PPARγ has a large Y-shaped cavity with multiple subpockets where multiple ligands can simultaneously bind and cooperatively activate PPARγ. Focusing on this unique property of the PPARγ LBP, we describe a novel two-step cell-based strategy to develop PPARγ ligands. First, a combination of ligands that cooperatively activates PPARγ was identified using a luciferase reporter assay. Second, hybrid ligands were designed and synthesized. For proof of concept, we focused on covalent agonists, which activate PPARγ through a unique activation mechanism regulated by a covalent linkage with the Cys285 residue in the PPARγ LBP. Despite their biological significance and pharmacological potential, few covalent PPARγ agonists are known except for endogenous fatty acid metabolites. With our strategy, we determined that plant-derived cinnamic acid derivatives cooperatively activated PPARγ by combining with GW9662, an irreversible antagonist. GW9662 covalently reacts with the Cys285 residue. A docking study predicted that a cinnamic acid derivative can bind to the open cavity in GW9662-bound PPARγ LBP. On the basis of the putative binding mode, structures of both ligands were linked successfully to create a potent PPARγ agonist, which enhanced the transactivation potential of PPARγ at submicromolar levels through covalent modification of Cys285. Our approach could lead to the discovery of novel high-potency PPARγ agonists.

  2. Pyridopyrimidine based cannabinoid-1 receptor inverse agonists: Synthesis and biological evaluation.

    PubMed

    Debenham, John S; Madsen-Duggan, Christina B; Wang, Junying; Tong, Xinchun; Lao, Julie; Fong, Tung M; Schaeffer, Marie-Therese; Xiao, Jing Chen; Huang, Cathy C R-R; Shen, Chun-Pyn; Sloan Stribling, D; Shearman, Lauren P; Strack, Alison M; Euan Macintyre, D; Hale, Jeffrey J; Walsh, Thomas F

    2009-05-01

    The synthesis, SAR and binding affinities are described for cannabinoid-1 receptor (CB1R) specific inverse agonists based on pyridopyrimidine and heterotricyclic scaffolds. Food intake and pharmacokinetic evaluation of several of these compounds indicate that they are effective orally active modulators of CB1R.

  3. Inhibitory GTP binding protein G/sub i/ regulates US -adrenoceptor affinity towards US -agonists

    SciTech Connect

    Marbach, I.; Levitzki, A.

    1987-05-01

    Treatment of S-49 lymphoma cell membranes with pertussis toxin (PT) causes a three-fold reduction of US -adrenoceptor (US AR) affinity towards isoproterenol. A similar treatment with cholera toxin (CT) does not cause such a modulation. The effects were studied by the detailed analysis of SVI-cyanopindolol (CYP) binding curves in the absence and presence of increasing agonist concentrations. Thus, the authors were able to compare in detail the effects of G/sub s/ and G/sub i/ on the agonist-associated state of the US AR. In contrast to these findings, PT treatment does not have any effect on the displacement of SVI-CYP by (-)isoproterenol. These results demonstrate that the inhibitory GTP protein G/sub i/ modulates the US AR affinity towards US -agonists. This might be due to the association of G/sub i/ with the agonist-bound US AR x G/sub s/ x C complex within the membrane. This hypothesis, as well as others, is under investigation.

  4. Agonistic aptamer to the insulin receptor leads to biased signaling and functional selectivity through allosteric modulation.

    PubMed

    Yunn, Na-Oh; Koh, Ara; Han, Seungmin; Lim, Jong Hun; Park, Sehoon; Lee, Jiyoun; Kim, Eui; Jang, Sung Key; Berggren, Per-Olof; Ryu, Sung Ho

    2015-09-18

    Due to their high affinity and specificity, aptamers have been widely used as effective inhibitors in clinical applications. However, the ability to activate protein function through aptamer-protein interaction has not been well-elucidated. To investigate their potential as target-specific agonists, we used SELEX to generate aptamers to the insulin receptor (IR) and identified an agonistic aptamer named IR-A48 that specifically binds to IR, but not to IGF-1 receptor. Despite its capacity to stimulate IR autophosphorylation, similar to insulin, we found that IR-A48 not only binds to an allosteric site distinct from the insulin binding site, but also preferentially induces Y1150 phosphorylation in the IR kinase domain. Moreover, Y1150-biased phosphorylation induced by IR-A48 selectively activates specific signaling pathways downstream of IR. In contrast to insulin-mediated activation of IR, IR-A48 binding has little effect on the MAPK pathway and proliferation of cancer cells. Instead, AKT S473 phosphorylation is highly stimulated by IR-A48, resulting in increased glucose uptake both in vitro and in vivo. Here, we present IR-A48 as a biased agonist able to selectively induce the metabolic activity of IR through allosteric binding. Furthermore, our study also suggests that aptamers can be a promising tool for developing artificial biased agonists to targeted receptors. PMID:26245346

  5. Profound and rapid reduction in body temperature induced by the melanocortin receptor agonists

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The melanocortin receptor 4 (MC4R) plays a major role in body weight regulation and its agonist MTII has been widely used to study the role of MC4Rs in energy expenditure promotion and feeding reduction. Unexpectedly, we observed that intraperitoneal (i.p.) administration of MTII induced a rapid red...

  6. Identification of novel multitargeted PPARα/γ/δ pan agonists by core hopping of rosiglitazone.

    PubMed

    Wang, Xue-Jiao; Zhang, Jun; Wang, Shu-Qing; Xu, Wei-Ren; Cheng, Xian-Chao; Wang, Run-Ling

    2014-01-01

    The thiazolidinedione class peroxisome proliferator-activated receptor gamma (PPARγ) agonists are restricted in clinical use as antidiabetic agents because of side effects such as edema, weight gain, and heart failure. The single and selective agonism of PPARγ is the main cause of these side effects. Multitargeted PPARα/γ/δ pan agonist development is the hot topic in the antidiabetic drug research field. In order to identify PPARα/γ/δ pan agonists, a compound database was established by core hopping of rosiglitazone, which was then docked into a PPARα/γ/δ active site to screen out a number of candidate compounds with a higher docking score and better interaction with the active site. Further, absorption, distribution, metabolism, excretion, and toxicity prediction was done to give eight compounds. Molecular dynamics simulation of the representative Cpd#1 showed more favorable binding conformation for PPARs receptor than the original ligand. Cpd#1 could act as a PPARα/γ/δ pan agonist for novel antidiabetic drug research. PMID:25422585

  7. Sphenoid wing meningioma progression after placement of a subcutaneous progesterone agonist contraceptive implant.

    PubMed

    Piper, J G; Follett, K A; Fantin, A

    1994-04-01

    A causal relationship between sex steroids and meningioma proliferation has long been suspected. We report a case of the clinical progression of a sphenoid wing meningioma after the placement of Norplant, a subcutaneous contraceptive implant containing levonorgestrel, a progesterone agonist. Although not proof of causation, this observation lends further credence to the importance of progesterone receptors in the growth and possible treatment of meningiomas.

  8. Nebulized PPARγ Agonists: A Novel Approach to Augment Neonatal Lung Maturation and Injury Repair

    PubMed Central

    Morales, Edith; Sakurai, Reiko; Husain, Sumair; Paek, Dave; Gong, Ming; Ibe, Basil; Li, Yishi; Husain, Maleha; Torday, John S.; Rehan, Virender K.

    2014-01-01

    BACKGROUND By stimulating lipofibroblast maturation, parenterally administered PPARγ agonists promote lung homeostasis and injury repair in the neonatal lung. In this study, we determined whether PPARγ agonists could be delivered effectively via nebulization to neonates, and whether this approach would also protect against hyperoxia-induced lung injury. METHODS One-day old Sprague-Dawley rat pups were administered PPARγ agonists rosiglitazone (RGZ, 3 mg/kg), pioglitazone (PGZ, 3 mg/kg), or the diluent, via nebulization every 24h; animals were exposed to 21% or 95% O2 for up to 72h. Twenty-four and 72h following initial nebulization, the pups were sacrificed for lung tissue and blood collection to determine markers of lung maturation, injury repair, and RGZ and PGZ plasma levels. RESULTS Nebulized RGZ and PGZ enhanced lung maturation in both males and females, as evidenced by the increased expression of markers of alveolar epithelial and mesenchymal maturation. This approach also protected against hyperoxia-induced lung injury, since hyperoxia-induced changes in bronchoalveolar lavage cell and protein contents and lung injury markers were all blocked by nebulized PGZ. CONCLUSIONS Nebulized PPARγ agonist administration promotes lung maturation and prevents neonatal hyperoxia-induced lung injury in both males and females. PMID:24488089

  9. Development of agonistic encounters in dominance hierarchy formation in juvenile crayfish.

    PubMed

    Sato, Daisuke; Nagayama, Toshiki

    2012-04-01

    We have characterized the behavioural patterns of crayfish during agonistic bouts between groups of crayfish of four different body lengths (9-19, 20-32, 41-48 and 69-75 mm) to characterize changes in the patterns of agonistic encounter during development. The behaviour of both dominant and subordinate animals was analysed by single frame measurement of video recordings. Behavioural acts that occurred during agonistic bouts were categorized as one of seven types: capture, fight, contact, approach, retreat, tailflip and neutral. Dominant-subordinate relationships were formed between juvenile crayfish as early as the third stage of development. Patterns of agonistic bouts to determine social hierarchy became more aggressive during development. The dominant-subordinate relationship was usually determined after contact in crayfish of less than 20 mm and 20-32 mm in length, while several bouts of fights were necessary for crayfish of 41-48 and 69-75 mm in length. Furthermore, social hierarchy was formed more rapidly in small crayfish. In larger animals, the number of approaches by dominant animals that promoted retreat in subordinate animals increased after the establishment of the winner-loser relationship. In smaller crayfish, in contrast, no measurable changes in these behaviour patterns were observed before and after the establishment of the winner-loser relationship. With increasing body size, the probability of tailflips decreased while that of retreats increased as the submissive behavioural act of subordinate animals.

  10. Discovery and characterization of novel small-molecule CXCR4 receptor agonists and antagonists

    PubMed Central

    Mishra, Rama K.; Shum, Andrew K.; Platanias, Leonidas C.; Miller, Richard J.; Schiltz, Gary E.

    2016-01-01

    The chemokine CXCL12 (SDF-1) and its cognate receptor CXCR4 are involved in a large number of physiological processes including HIV-1 infectivity, inflammation, tumorigenesis, stem cell migration, and autoimmune diseases. While previous efforts have identified a number of CXCR4 antagonists, there have been no small molecule agonists reported. Herein, we describe the identification of a novel series of CXCR4 modulators, including the first small molecules to display agonist behavior against this receptor, using a combination of structure- and ligand-based virtual screening. These agonists produce robust calcium mobilization in human melanoma cell lines which can be blocked by the CXCR4-selective antagonist AMD3100. We also demonstrate the ability of these new agonists to induce receptor internalization, ERK activation, and chemotaxis, all hallmarks of CXCR4 activation. Our results describe a new series of biologically relevant small molecules that will enable further study of the CXCR4 receptor and may contribute to the development of new therapeutics. PMID:27456816

  11. Environmental enrichment improves novel object recognition and enhances agonistic behavior in male mice.

    PubMed

    Mesa-Gresa, Patricia; Pérez-Martinez, Asunción; Redolat, Rosa

    2013-01-01

    Environmental enrichment (EE) is an experimental paradigm in which rodents are housed in complex environments containing objects that provide stimulation, the effects of which are expected to improve the welfare of these subjects. EE has been shown to considerably improve learning and memory in rodents. However, knowledge about the effects of EE on social interaction is generally limited and rather controversial. Thus, our aim was to evaluate both novel object recognition and agonistic behavior in NMRI mice receiving EE, hypothesizing enhanced cognition and slightly enhanced agonistic interaction upon EE rearing. During a 4-week period half the mice (n = 16) were exposed to EE and the other half (n = 16) remained in a standard environment (SE). On PND 56-57, animals performed the object recognition test, in which recognition memory was measured using a discrimination index. The social interaction test consisted of an encounter between an experimental animal and a standard opponent. Results indicated that EE mice explored the new object for longer periods than SE animals (P < .05). During social encounters, EE mice devoted more time to sociability and agonistic behavior (P < .05) than their non-EE counterparts. In conclusion, EE has been shown to improve object recognition and increase agonistic behavior in adolescent/early adulthood mice. In the future we intend to extend this study on a longitudinal basis in order to assess in more depth the effect of EE and the consistency of the above-mentioned observations in NMRI mice.

  12. In silico analysis of the binding of agonists and blockers to the β2-adrenergic receptor

    PubMed Central

    Vilar, Santiago; Karpiak, Joel; Berk, Barkin; Costanzi, Stefano

    2011-01-01

    Activation of G protein-coupled receptors (GPCRs) is a complex phenomenon. Here, we applied Induced Fit docking (IFD) in tandem with linear discriminant analysis (LDA) to generate hypotheses on the conformational changes induced to the β2-adrenergic receptor by agonist binding, preliminary to the sequence of events that characterize activation of the receptor. This analysis, corroborated by a follow-up molecular dynamics study, suggested that agonists induce subtle movements to the fifth transmembrane domain (TM5) of the receptor. Furthermore, molecular dynamics also highlighted a correlation between movements of TM5 and the second extracellular loop (EL2), suggesting that freedom of motion of EL2 is required for the agonist-induced TM5 displacement. Importantly, we also showed that the IFD/LDA procedure can be used as a computational means to distinguish agonists from blockers on the basis of the differential conformational changes induced to the receptor. In particular, the two most predictive models obtained are based on the RMSD induced to Ser207 and on the counterclockwise rotation induced to TM5. PMID:21334234

  13. The use of Toll-like receptor 7/8 agonists as vaccine adjuvants.

    PubMed

    Vasilakos, John P; Tomai, Mark A

    2013-07-01

    Small molecule Toll-like receptor (TLR) 7/8 agonists have demonstrated potential as vaccine adjuvants, since they directly activate APCs and can enhance both humoral and cellular immune responses, especially Th1 responses. Although the natural ligands for TLR7 and TLR8 are ssRNA, the vast majority of vaccine studies performed thus far have been performed with synthetic small molecule imidazoquinolines, such as imiquimod and resiquimod. Despite the approved clinical use of the topical TLR7 agonist, imiquimod (Aldara(®) Imiquimod 5% cream; 3M, MN, USA), for external genital warts, superficial basal cell carcinoma and actinic keratosis, no vaccines using TLR7, TLR8 or TLR7/8 agonists have progressed beyond early-phase clinical studies thus far. This review will highlight the nonclinical and clinical studies that indicate promise for TLR7/8 ligands as vaccine adjuvants, reasons for inconsistent results thus far, problems with current technology and potential paths forward for TLR7/8 agonists as vaccine adjuvants.

  14. NICOTINE EFFECTS ON THE ACTIVITY OF MICE EXPOSED PRENATALLY TO THE NICOTINIC AGONIST ANATOXIN-A.

    EPA Science Inventory

    Considerable research has shown long-lasting effects of early exposure in experimental animals to nicotine. Anatoxin-a is produced by cyanobacteria and has been shown to be a potent nicotinic agonist. This experiment evaluated the motor activity of adult mice, and their respons...

  15. Characterizing novel metabolic pathways of melatonin receptor agonist agomelatine using metabolomic approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agomelatine (AGM), an analog of melatonin, is a potential agonist at melatonin receptors 1/2 and a selective antagonist at 5-hydroxytryptamine 2C receptors. AGM is widely used for the treatment of major depressive episodes in adults. However, multiple adverse effects associated with AGM have been re...

  16. CoMSIA study on substituted aryl alkanoic acid analogs as GPR40 agonists.

    PubMed

    Bhatt, Aaditya; Patel, Pallav D; Patel, Maulik R; Singh, Satyakam; Lau-Cam, Cesar A; Talele, Tanaji T

    2011-05-01

    GPR40, a G-protein-coupled receptor has been well established to play a crucial role in regulating blood glucose levels. Hence, GPR40 is a potential target for future antidiabetic agents. The present 3D QSAR study is aimed at delineating structural parameters governing GPR40 agonistic activity. To meet this objective, a comparative molecular similarity indices analysis for 63 different GPR40 agonists was performed using two methods; a ligand-based 3D QSAR model employing the atom fit alignment method and a receptor-based 3D QSAR model that was derived from the predicted binding conformations obtained by docking all the GPR40 agonists at the active site of GPR40. The results of these studies showed the ligand-based model to be superior (r(cv)(2) value of 0.610) to the receptor-based model (r(cv)(2) value of 0.519) in terms of statistical data. The predictive ability of these models was evaluated using a test set of 15 compounds not included in the preliminary training set of 48 compounds. The predictive r(2) values for the ligand- and the receptor-based models were found to be 0.863 and 0.599, respectively. Further, interpretation of the comparative molecular similarity indices analysis contour maps with reference to the active site of GPR40 provided an insight into GPR40-agonist interactions. PMID:21352503

  17. Peroxisome proliferator-activated receptor-delta agonist ameliorated inflammasome activation in nonalcoholic fatty liver disease

    PubMed Central

    Lee, Hyun Jung; Yeon, Jong Eun; Ko, Eun Jung; Yoon, Eileen L; Suh, Sang Jun; Kang, Keunhee; Kim, Hae Rim; Kang, Seoung Hee; Yoo, Yang Jae; Je, Jihye; Lee, Beom Jae; Kim, Ji Hoon; Seo, Yeon Seok; Yim, Hyung Joon; Byun, Kwan Soo

    2015-01-01

    AIM: To evaluate the inflammasome activation and the effect of peroxisome proliferator-activated receptors (PPAR)-δ agonist treatment in nonalcoholic fatty liver disease (NAFLD) models. METHODS: Male C57BL/6J mice were classified according to control or high fat diet (HFD) with or without PPAR-δ agonist (GW) over period of 12 wk [control, HFD, HFD + lipopolysaccharide (LPS), HFD + LPS + GW group]. HepG2 cells were exposed to palmitic acid (PA) and/or LPS in the absence or presence of GW. RESULTS: HFD caused glucose intolerance and hepatic steatosis. In mice fed an HFD with LPS, caspase-1 and interleukin (IL)-1β in the liver were significantly increased. Treatment with GW ameliorated the steatosis and inhibited overexpression of pro-inflammatory cytokines. In HepG2 cells, PA and LPS treatment markedly increased mRNA of several nucleotide-binding and oligomerization domain-like receptor family members (NLRP3, NLRP6, and NLRP10), caspase-1 and IL-1β. PA and LPS also exaggerated reactive oxygen species production. All of the above effects of PA and LPS were reduced by GW. GW also enhanced the phosphorylation of AMPK-α. CONCLUSION: PPAR-δ agonist reduces fatty acid-induced inflammation and steatosis by suppressing inflammasome activation. Targeting the inflammasome by the PPAR-δ agonist may have therapeutic implication for NAFLD. PMID:26668503

  18. Novel Zn2+ Modulated GPR39 Receptor Agonists Do Not Drive Acute Insulin Secretion in Rodents

    PubMed Central

    Yasuda, Shin-ichiro; Tsuchida, Takuma; Oguma, Takahiro; Marley, Anna; Wennberg-Huldt, Charlotte; Hovdal, Daniel; Fukuda, Hajime; Yoneyama, Yukimi; Sasaki, Kazuyo; Johansson, Anders; Lundqvist, Sara; Brengdahl, Johan; Isaacs, Richard J.; Brown, Daniel; Geschwindner, Stefan; Benthem, Lambertus; Priest, Claire; Turnbull, Andrew

    2015-01-01

    Type 2 diabetes (T2D) occurs when there is insufficient insulin release to control blood glucose, due to insulin resistance and impaired β-cell function. The GPR39 receptor is expressed in metabolic tissues including pancreatic β-cells and has been proposed as a T2D target. Specifically, GPR39 agonists might improve β-cell function leading to more adequate and sustained insulin release and glucose control. The present study aimed to test the hypothesis that GPR39 agonism would improve glucose stimulated insulin secretion in vivo. A high throughput screen, followed by a medicinal chemistry program, identified three novel potent Zn2+ modulated GPR39 agonists. These agonists were evaluated in acute rodent glucose tolerance tests. The results showed a lack of glucose lowering and insulinotropic effects not only in lean mice, but also in diet-induced obese (DIO) mice and Zucker fatty rats. It is concluded that Zn2+ modulated GPR39 agonists do not acutely stimulate insulin release in rodents. PMID:26720709

  19. Agonistic aptamer to the insulin receptor leads to biased signaling and functional selectivity through allosteric modulation

    PubMed Central

    Yunn, Na-Oh; Koh, Ara; Han, Seungmin; Lim, Jong Hun; Park, Sehoon; Lee, Jiyoun; Kim, Eui; Jang, Sung Key; Berggren, Per-Olof; Ryu, Sung Ho

    2015-01-01

    Due to their high affinity and specificity, aptamers have been widely used as effective inhibitors in clinical applications. However, the ability to activate protein function through aptamer-protein interaction has not been well-elucidated. To investigate their potential as target-specific agonists, we used SELEX to generate aptamers to the insulin receptor (IR) and identified an agonistic aptamer named IR-A48 that specifically binds to IR, but not to IGF-1 receptor. Despite its capacity to stimulate IR autophosphorylation, similar to insulin, we found that IR-A48 not only binds to an allosteric site distinct from the insulin binding site, but also preferentially induces Y1150 phosphorylation in the IR kinase domain. Moreover, Y1150-biased phosphorylation induced by IR-A48 selectively activates specific signaling pathways downstream of IR. In contrast to insulin-mediated activation of IR, IR-A48 binding has little effect on the MAPK pathway and proliferation of cancer cells. Instead, AKT S473 phosphorylation is highly stimulated by IR-A48, resulting in increased glucose uptake both in vitro and in vivo. Here, we present IR-A48 as a biased agonist able to selectively induce the metabolic activity of IR through allosteric binding. Furthermore, our study also suggests that aptamers can be a promising tool for developing artificial biased agonists to targeted receptors. PMID:26245346

  20. Systemic cancer immunotherapy with Toll-like receptor 7 agonists: Timing is everything.

    PubMed

    Hotz, Christian; Bourquin, Carole

    2012-03-01

    Toll-like receptor (TLR) 7 agonists represent a promising strategy for the immunotherapy of cancer. We have recently investigated the influence of TLR tolerance on the efficacy of systemic tumor treatment with TLR7 ligands. We propose that considering the kinetics of receptor sensitivity highly improves the outcome of cancer immunotherapy. PMID:22720251

  1. Differential Effects of Cannabinoid Receptor Agonist on Social Discrimination and Contextual Fear in Amygdala and Hippocampus

    ERIC Educational Resources Information Center

    Segev, Amir; Akirav, Irit

    2011-01-01

    We examined whether the cannabinoid receptor agonist WIN55,212-2 (WIN; 5 [mu]g/side) microinjected into the hippocampus or the amygdala would differentially affect memory processes in a neutral vs. an aversive task. In the aversive contextual fear task, WIN into the basolateral amygdala impaired fear acquisition/consolidation, but not retrieval.…

  2. THE MORPHOLOGICAL BASIS FOR OLFACTORY PERCEPTION OF STEROIDS DUING AGONISTIC BEHAVIOR IN LOBSTER: PRELIMINARY EXPERIMENTS

    EPA Science Inventory

    The morphological basis for olfactory perception of steroids during agonistic behavior in lobsters: preliminary experiments. Borsay Horowitz, DJ1, Kass-Simon, G2, Coglianese, D2, Martin, L2, Boseman, M2, Cromarty, S3, Randall, K3, Fini, A.3 1US EPA, NHEERL, ORD, Atlantic Ecology...

  3. Agonist-induced activation of rat mesenteric resistance vessels: comparison between noradrenaline and vasopressin

    SciTech Connect

    Cauvin, C.; Weir, S.W.; Wallnoefer, A.R.; Rueegg, U.P.

    1988-01-01

    The effects of noradrenaline (NA, 10(-5) M) and (arginine8)vasopressin (AVP, 10(-7) M) on tension in Ca2+-free medium and on membrane potential, and the inhibition of NA- and AVP-induced contractions by isradipine, have been compared in mesenteric resistance vessels (MRVs) from Wistar-Kyoto (WKY) rats. The release of intracellular Ca2+ by AVP contributed significantly less to its tension development than does that by NA. Nonetheless, the concentration-response curves for inhibition by isradipine of NA- and AVP-induced tonic tension were nearly identical. Similarly, these two agonists produced the same degree of membrane depolarization. In addition, both agonists were able to stimulate large contractions in vessels previously depolarized by 80 mM K+. AVP also stimulated /sup 45/Ca influx into rat cultured aortic smooth muscle cells. In contrast to the stimulation of /sup 45/Ca influx by KCl depolarization, the agonist-stimulated /sup 45/Ca influx was insensitive to inhibition by organic Ca2+ antagonists. It is concluded that Ca2+ entry through receptor-operated Ca2+-permeable channels (ROCs) may contribute to agonist-induced activation of rat aortic and MRV smooth muscle.

  4. Structure-Based Design of Human TLR8-Specific Agonists with Augmented Potency and Adjuvanticity

    PubMed Central

    2016-01-01

    Human Toll-like receptor 8 (hTLR8) is expressed in myeloid dendritic cells, monocytes, and monocyte-derived dendritic cells. Engagement by TLR8 agonists evokes a distinct cytokine profile which favors the development of type 1 helper T cells. Crystal structures of the ectodomain of hTLR8 cocrystallized with two regioisomers of a dual TLR7/8-agonistic N1-substituted imidazoquinolines showed subtle differences in their interactions in the binding site of hTLR8. We hypothesized that the potency of a previously reported best-in-class pure TLR8 agonist, 3-pentylquinoline-2-amine, could be further enhanced by “designing in” functional groups that would mimic key intermolecular interactions that we had observed in the crystal structures. We performed a focused exploration of decorating the quinoline core with alkylamino groups at all possible positions. These studies have led to the identification of a novel TLR8 agonist that was ∼20-fold more potent than the parent compound and displays prominent adjuvantic activity in a rabbit model of immunization. PMID:26351878

  5. Small Molecule Agonists of Cell Adhesion Molecule L1 Mimic L1 Functions In Vivo.

    PubMed

    Kataria, Hardeep; Lutz, David; Chaudhary, Harshita; Schachner, Melitta; Loers, Gabriele

    2016-09-01

    Lack of permissive mechanisms and abundance of inhibitory molecules in the lesioned central nervous system of adult mammals contribute to the failure of functional recovery after injury, leading to severe disabilities in motor functions and pain. Peripheral nerve injury impairs motor, sensory, and autonomic functions, particularly in cases where nerve gaps are large and chronic nerve injury ensues. Previous studies have indicated that the neural cell adhesion molecule L1 constitutes a viable target to promote regeneration after acute injury. We screened libraries of known drugs for small molecule agonists of L1 and evaluated the effect of hit compounds in cell-based assays in vitro and in mice after femoral nerve and spinal cord injuries in vivo. We identified eight small molecule L1 agonists and showed in cell-based assays that they stimulate neuronal survival, neuronal migration, and neurite outgrowth and enhance Schwann cell proliferation and migration and myelination of neurons in an L1-dependent manner. In a femoral nerve injury mouse model, enhanced functional regeneration and remyelination after application of the L1 agonists were observed. In a spinal cord injury mouse model, L1 agonists improved recovery of motor functions, being paralleled by enhanced remyelination, neuronal survival, and monoaminergic innervation, reduced astrogliosis, and activation of microglia. Together, these findings suggest that application of small organic compounds that bind to L1 and stimulate the beneficial homophilic L1 functions may prove to be a valuable addition to treatments of nervous system injuries. PMID:26253722

  6. Male receiver bias for red agonistic signalling in a yellow-signalling widowbird: a field experiment.

    PubMed

    Ninnes, C E; Andersson, S

    2014-09-01

    Receiver bias models of signal evolution are typically regarded as alternatives or complements to ornament evolution due to coevolving mate choice, whereas sexually or socially selected agonistic signals are rarely studied with respect to receiver psychology. Against the background of convergent evolution of red agonistic signals from yellow ancestors in the genus Euplectes (widowbirds and bishops), we experimentally test the function of a yellow signal in the montane marsh widowbird (E. psammocromius), as well as a hypothesized receiver bias for redder (longer wavelength) hues. In a field experiment in southern Tanzania, males that had their yellow wing patches blackened lost their territories or lost territorial contests more often than controls or reddened males, which together with a longer wavelength hue in territory holders, indicates an agonistic signal function. Males painted a novel red hue, matching that of red-signalling congeners, retained their territories and won contests more often than controls. To our knowledge, this is the first demonstration of a receiver bias driving agonistic signal evolution. Although the sensory or cognitive origin of this bias is yet unknown, it strengthens our view that genetically constrained signal production (i.e. carotenoid metabolism), rather than differential selection, explains the carotenoid colour diversification in Euplectes.

  7. The Effects of Inhaled β-Adrenergic Agonists in Transient Tachypnea of the Newborn

    PubMed Central

    Keleş, Esengul; Gebeşçe, Arzu; Demirdöven, Mehmet; Yazgan, Hamza; Baştürk, Bülent; Tonbul, Alparslan

    2016-01-01

    Aim. To investigate the efficacy of an inhaled β-adrenergic agonists in transient tachypnea of the newborn (TTN). Method. We retrospectively analyzed a cohort of 51 term infants (Group 1) and 37 term infants (Group 2) monitored in the newborn intensive care unit diagnosed with TTN. Infants in Group 1 received humidified oxygen alone, and infants in Group 2 were administered the inhaled β-2 agonist plus humidified oxygen. Results. TTN clinical respiratory assessment, respiratory rate, oxygen saturation values, need for supplemental oxygen therapy, blood gas PH, PO2, and duration of hospitalization were significantly improved in infants in Group 2 as compared with infants in Group 1 (P < .05). No statistically significant difference was observed with regard to blood glucose, potassium, heart rate, and PCO2 (P > .05). Conclusion. Inhaled β-adrenergic agonist added to humidified oxygen was found to improve clinical and laboratory parameters. We believe that further studies should be conducted with larger groups to demonstrate the efficacy of β-2 agonists in TTN patients. PMID:27336017

  8. Identification of novel multitargeted PPARα/γ/δ pan agonists by core hopping of rosiglitazone

    PubMed Central

    Wang, Xue-Jiao; Zhang, Jun; Wang, Shu-Qing; Xu, Wei-Ren; Cheng, Xian-Chao; Wang, Run-Ling

    2014-01-01

    The thiazolidinedione class peroxisome proliferator-activated receptor gamma (PPARγ) agonists are restricted in clinical use as antidiabetic agents because of side effects such as edema, weight gain, and heart failure. The single and selective agonism of PPARγ is the main cause of these side effects. Multitargeted PPARα/γ/δ pan agonist development is the hot topic in the antidiabetic drug research field. In order to identify PPARα/γ/δ pan agonists, a compound database was established by core hopping of rosiglitazone, which was then docked into a PPARα/γ/δ active site to screen out a number of candidate compounds with a higher docking score and better interaction with the active site. Further, absorption, distribution, metabolism, excretion, and toxicity prediction was done to give eight compounds. Molecular dynamics simulation of the representative Cpd#1 showed more favorable binding conformation for PPARs receptor than the original ligand. Cpd#1 could act as a PPARα/γ/δ pan agonist for novel antidiabetic drug research. PMID:25422585

  9. Synthesis and Pharmacological Properties of Silicon-Containing GPR81 and GPR109A Agonists.

    PubMed

    Geyer, Marcel; Baus, Johannes A; Fjellström, Ola; Wellner, Eric; Gustafsson, Linda; Tacke, Reinhold

    2015-12-01

    The GPR81 and GPR109A receptors mediate antilipolytic effects and are potential drug targets for the treatment of metabolic disorders such as dyslipidemia and type 2 diabetes. There is still a need to identify potent GPR81 agonists as pharmacological tools. A high-throughput screen identified an acylurea-based GPR81 agonist lead series, with activities at the GPR109A receptor as well. To expand the chemical scope and to explore the pharmacological and pharmacokinetic consequences, a series of structurally related organosilicon compounds with a 6-sila-4,5,6,7-tetrahydrobenzo[d]thiazole skeleton was synthesized and studied for their physicochemical properties [octanol/water distribution coefficient (pH 7.4), solubility in HBSS buffer (pH 7.4)], agonistic potency at rat GPR81 and GPR109A receptors, and intrinsic clearance in human liver microsomes and rat hepatocytes. The straightforward synthesis of these organosilicon compounds offered a valuable expansion of the chemical scope in the above-mentioned GPR81 agonist lead series, provided potency and efficacy SAR, and yielded compounds with sub-micromolar GPR81 potency. This work supports the value of including silicon chemistry into the toolbox of medicinal chemistry.

  10. Discovery and characterization of novel small-molecule CXCR4 receptor agonists and antagonists.

    PubMed

    Mishra, Rama K; Shum, Andrew K; Platanias, Leonidas C; Miller, Richard J; Schiltz, Gary E

    2016-01-01

    The chemokine CXCL12 (SDF-1) and its cognate receptor CXCR4 are involved in a large number of physiological processes including HIV-1 infectivity, inflammation, tumorigenesis, stem cell migration, and autoimmune diseases. While previous efforts have identified a number of CXCR4 antagonists, there have been no small molecule agonists reported. Herein, we describe the identification of a novel series of CXCR4 modulators, including the first small molecules to display agonist behavior against this receptor, using a combination of structure- and ligand-based virtual screening. These agonists produce robust calcium mobilization in human melanoma cell lines which can be blocked by the CXCR4-selective antagonist AMD3100. We also demonstrate the ability of these new agonists to induce receptor internalization, ERK activation, and chemotaxis, all hallmarks of CXCR4 activation. Our results describe a new series of biologically relevant small molecules that will enable further study of the CXCR4 receptor and may contribute to the development of new therapeutics. PMID:27456816

  11. In vivo and in vitro evaluation of novel μ-opioid receptor agonist compounds.

    PubMed

    Nikaido, Yoshiaki; Kurosawa, Aya; Saikawa, Hitomi; Kuroiwa, Satoshi; Suzuki, Chiharu; Kuwabara, Nobuo; Hoshino, Hazime; Obata, Hideaki; Saito, Shigeru; Saito, Tamio; Osada, Hiroyuki; Kobayashi, Isao; Sezutsu, Hideki; Takeda, Shigeki

    2015-11-15

    Opioids are the most effective and widely used drugs for pain treatment. Morphine is an archetypal opioid and is an opioid receptor agonist. Unfortunately, the clinical usefulness of morphine is limited by adverse effects such as analgesic tolerance and addiction. Therefore, it is important to study the development of novel opioid agonists as part of pain control. The analgesic effects of opioids are mediated by three opioid receptors, namely opioid μ-, δ-, and κ-receptors. They belong to the G protein-coupled receptor superfamily and are coupled to Gi proteins. In the present study, we developed a ligand screening system to identify novel opioid μ-receptor agonists that measures [(35)S]GTPγS binding to cell membrane fractions prepared from the fat body of transgenic silkworms expressing μ-receptor-Gi1α fusion protein. We screened the RIKEN Natural Products Depository (NPDepo) chemical library, which contains 5848 compounds, and analogs of hit compounds. We successfully identified a novel, structurally unique compound, that we named GUM1, with agonist activity for the opioid μ-receptor (EC50 of 1.2 µM). The Plantar Test (Hargreaves' Method) demonstrated that subcutaneous injection of 3mg/kg of GUM1 into wild-type rats significantly extended latency time. This extension was also observed in a rat model of morphine tolerance and was inhibited by pre-treatment of naloxone. The unique molecular skeleton of GUM1 makes it an attractive molecule for further ligand-opioid receptor binding studies.

  12. Do we really need to keep redesigning β2-agonists for the management of asthma?

    PubMed

    Van Ly, David; Oliver, Brian G G

    2015-01-01

    There is an enormous drive to refine therapeutic designs and delivery systems, but in this review we ask if this is always the right direction? We choose to play devil's advocate, and argue that refining drug design is not always needed, and what is actually needed is a greater understanding of the biology of the disease. Here we focus on asthma and the β2-agonist group of bronchodilators as an example of how a class of therapeutic has been developed and continues to be developmentally refined. In this review, we define viral-induced exacerbations as the greatest cause of lung attacks and the most crucial time β2-agonist therapy is needed. We explore the reasons why β2-agonist therapy fails in patients with rhinovirus-induced exacerbations, and explain why further "engineered" β2-agonist therapies are likely to continue to fail in this subset of asthmatic population. We justify our perspective by returning to the biology that underlies the cause of disease and highlight the need for "more research" into alternative therapies for this population of asthmatic patients.

  13. Preclinical evaluation of SMM-189, a cannabinoid receptor 2-specific inverse agonist

    PubMed Central

    Presley, Chaela; Abidi, Ammaar; Suryawanshi, Satyendra; Mustafa, Suni; Meibohm, Bernd; Moore, Bob M

    2015-01-01

    Cannabinoid receptor 2 agonists and inverse agonists are emerging as new therapeutic options for a spectrum of autoimmune-related disease. Of particular interest, is the ability of CB2 ligands to regulate microglia function in neurodegenerative diseases and traumatic brain injury. We have previously reported the receptor affinity of 3′,5′-dichloro-2,6-dihydroxy-biphenyl-4-yl)-phenyl-methanone (SMM-189) and the characterization of the beneficial effects of SMM-189 in the mouse model of mild traumatic brain injury. Herein, we report the further characterization of SMM-189 as a potent and selective CB2 inverse agonist, which acts as a noncompetitive inhibitor of CP 55,940. The ability of SMM-189 to regulate microglial activation, in terms of chemokine expression and cell morphology, has been determined. Finally, we have determined that SMM-189 possesses acceptable biopharmaceutical properties indicating that the triaryl class of CB2 inverse agonists are viable compounds for continued preclinical development for the treatment of neurodegenerative disorders and traumatic brain injury. PMID:26196013

  14. Adoptive immunotherapy combined with intratumoral TLR agonist delivery eradicates established melanoma in mice

    PubMed Central

    Amos, Sally M.; Pegram, Hollie J.; Westwood, Jennifer A.; John, Liza B.; Devaud, Christel; Clarke, Chris J.; Restifo, Nicholas P.; Smyth, Mark J.; Darcy, Phillip K.; Kershaw, Michael H.

    2012-01-01

    Toll-like receptor (TLR) agonists can trigger broad inflammatory responses that elicit rapid innate immunity and promote the activities of lymphocytes, which can potentially enhance adoptive immunotherapy in the tumor-bearing setting. In the present study, we found that Polyinosinic:Polycytidylic Acid [Poly(I:C)] and CpG oligodeoxynucleotide 1826 [CpG], agonists for TLR 3 and 9, respectively, potently activated adoptively transferred T cells against a murine model of established melanoma. Intratumoral injection of Poly(I:C) and CpG, combined with systemic transfer of activated pmel-1 T cells, specific for gp10025–33, led to enhanced survival and eradication of 9-day established subcutaneous B16F10 melanomas in a proportion of mice. A series of survival studies in knockout mice supported a key mechanistic pathway, whereby TLR agonists acted via host cells to enhance IFN-γ production by adoptively transferred T cells. IFN-γ, in turn, enhanced the immunogenicity of the B16F10 melanoma line, leading to increased killing by adoptively transferred T cells. Thus, this combination approach counteracted tumor escape from immunotherapy via downregulation of immunogenicity. In conclusion, TLR agonists may represent advanced adjuvants within the setting of adoptive T-cell immunotherapy of cancer and hold promise as a safe means of enhancing this approach within the clinic. PMID:21327636

  15. Effects of retinoic acid receptor-selective agonists on human nasal epithelial cell differentiation.

    PubMed

    Million, K; Tournier, F; Houcine, O; Ancian, P; Reichert, U; Marano, F

    2001-12-01

    Retinoids play a critical role in the maintenance of the mucociliary phenotype of epithelial cells in the upper respiratory tract. To determine the role of retinoic acid receptors (RARs) in the regulation of epithelial differentiation, we tested the effect of the synthetic retinoids CD336, CD2019, and CD666, selective agonists for RARalpha, RARbeta, and RARgamma, respectively, during differentiation of human nasal epithelial (HNE) cells in vitro. Using glutamylated tubulin and transglutaminase I (Tg I) as markers of ciliated cell and squamous cell differentiation, respectively, we showed that retinoic acid (RA) stimulated mucociliary differentiation and, in parallel, inhibited squamous cell differentiation. The agonists of the three RARs independently induced ciliogenesis and inhibited squamous cell differentiation by downregulating Tg I expression in a dose- and time-dependent manner. Antagonists specific for the three RARs abolished the effects of the corresponding agonists, demonstrating an RAR-specific mediated effect. Moreover, treatment of retinoid-deficient cultures with RAR agonists induced conversion of the squamous-like phenotype into a ciliated phenotype. In conclusion, all three RARs are potentially involved in the differentiating effects of RA in respiratory epithelial cells.

  16. CoMSIA study on substituted aryl alkanoic acid analogs as GPR40 agonists.

    PubMed

    Bhatt, Aaditya; Patel, Pallav D; Patel, Maulik R; Singh, Satyakam; Lau-Cam, Cesar A; Talele, Tanaji T

    2011-05-01

    GPR40, a G-protein-coupled receptor has been well established to play a crucial role in regulating blood glucose levels. Hence, GPR40 is a potential target for future antidiabetic agents. The present 3D QSAR study is aimed at delineating structural parameters governing GPR40 agonistic activity. To meet this objective, a comparative molecular similarity indices analysis for 63 different GPR40 agonists was performed using two methods; a ligand-based 3D QSAR model employing the atom fit alignment method and a receptor-based 3D QSAR model that was derived from the predicted binding conformations obtained by docking all the GPR40 agonists at the active site of GPR40. The results of these studies showed the ligand-based model to be superior (r(cv)(2) value of 0.610) to the receptor-based model (r(cv)(2) value of 0.519) in terms of statistical data. The predictive ability of these models was evaluated using a test set of 15 compounds not included in the preliminary training set of 48 compounds. The predictive r(2) values for the ligand- and the receptor-based models were found to be 0.863 and 0.599, respectively. Further, interpretation of the comparative molecular similarity indices analysis contour maps with reference to the active site of GPR40 provided an insight into GPR40-agonist interactions.

  17. [Cardiovascular effects of GLP-1 receptor agonist treatment: focus on liraglutide].

    PubMed

    Haluzík, Martin; Trachta, Pavel; Mráz, Miloš

    2015-01-01

    Cardiovascular risk reduction is the major aim of type 2 diabetes mellitus treatment. The effects of various antidiabetics on the cardiovascular complications are currently under careful scrutiny. Incretin-based therapy that utilizes the effects of glucagon-like peptide 1 (GLP-1) or stimulation of its receptor by GLP-1 receptor agonists represents one of the most promising approaches from the potential cardiovascular risk reduction point of view. Experimental studies have shown that the GLP-1 and GLP-1 agonists treatment improves endothelial function, decrease blood pressure and protects myocardium during experimentally-induced ischemia. Clinical studies with GLP-1 receptor agonists consistently show that, in addition to good antidiabetic efficacy, its long-term administration decreases blood pressure, body weight and improves circulating lipid levels while slightly increasing heart rate. In this paper, we focus on the cardiovascular effects of GLP-1 receptor agonist liraglutide. Preliminary analyses of cardiovascular complications in phase III trials with liraglutide indicate its good cardiovascular safety. A possibility of cardioprotective effects of liraglutide remains still open and is currently studied within a prospective cardiovascular trial LEADER. PMID:26375689

  18. Peroxisome proliferator-activated receptor agonists modulate neuropathic pain: a link to chemokines?

    PubMed Central

    Freitag, Caroline M.; Miller, Richard J.

    2014-01-01

    Chronic pain presents a widespread and intractable medical problem. While numerous pharmaceuticals are used to treat chronic pain, drugs that are safe for extended use and highly effective at treating the most severe pain do not yet exist. Chronic pain resulting from nervous system injury (neuropathic pain) is common in conditions ranging from multiple sclerosis to HIV-1 infection to type II diabetes. Inflammation caused by neuropathy is believed to contribute to the generation and maintenance of neuropathic pain. Chemokines are key inflammatory mediators, several of which (MCP-1, RANTES, MIP-1α, fractalkine, SDF-1 among others) have been linked to chronic, neuropathic pain in both human conditions and animal models. The important roles chemokines play in inflammation and pain make them an attractive therapeutic target. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors known for their roles in metabolism. Recent research has revealed that PPARs also play a role in inflammatory gene repression. PPAR agonists have wide-ranging effects including inhibition of chemokine expression and pain behavior reduction in animal models. Experimental evidence suggests a connection between the pain ameliorating effects of PPAR agonists and suppression of inflammatory gene expression, including chemokines. In early clinical research, one PPARα agonist, palmitoylethanolamide (PEA), shows promise in relieving chronic pain. If this link can be better established, PPAR agonists may represent a new drug therapy for neuropathic pain. PMID:25191225

  19. Nonshivering thermogenesis in marsupials: absence of thermogenic response to beta 3-adrenergic agonists.

    PubMed

    Nicol, S C; Pavlides, D; Andersen, N A

    1997-07-01

    The status of nonshivering thermogenesis (NST) in marsupials remains controversial. Although morphological studies have failed to find evidence for the presence of brown adipose tissue (BAT) in adults or juveniles of species from all extant families of marsupial, a number of studies have investigated the metabolic response of marsupials to noradrenaline (NA) and yielded conflicting results. In eutherian mammals, NA stimulates NST in BAT by acting on beta 3-receptors, and in the experiments reported here we investigated the response of adult and juvenile brush tail possums (Trichosurus vulpecula), a Brazilian opossum (Monodelphis domestica), adult and juvenile red-necked (Bennett's) wallabies (Macropus rufogriseus) and the laboratory rat to selective beta 3-agonists (ICI D7114 and BRL 35135) and to NA. Wallabies were tested with the beta 3-agonists only. Although NA and both beta 3-agonists caused an 85% increase in oxygen consumption in rats, there was no significant effect on any of the marsupials. These results clearly indicate no beta 3-stimulated NST in these marsupials. All reports of metabolic responses to NA are from macropods, and a recent study demonstrates that NA and other alpha-adrenergic agonists stimulate thermogenesis in a small macropod, the bettong (Bettongia gaimardi), by acting on alpha 1-receptors. Thermogenic responses to NA seems to be restricted to macropods, showing the danger of characterising the response of any one