Science.gov

Sample records for agouti signalling peptide

  1. The early origin of melanocortin receptors, agouti-related peptide, agouti signalling peptide, and melanocortin receptor-accessory proteins, with emphasis on pufferfishes, elephant shark, lampreys, and amphioxus.

    PubMed

    Västermark, Ake; Schiöth, Helgi B

    2011-06-11

    There are conflicting theories about the evolution of melanocortin MC receptors while only few studies have addressed the evolution of agouti-related peptide (AgRP) and agouti signalling peptide (ASIP), which are antagonists at the melanocortin receptors (MCRs), or the melanocortin MC(2) receptor accessory proteins (MRAP1 and MRAP2). Previously we have cloned melanocortin MC receptors (MC(a) and MC(b)) genes in river lamprey and here we identify orthologues to these melanocortin MC receptor sequences in the sea lamprey. We investigate the putative presence of the melanocortin MC receptor genes in lancelet (amphioxus; Branchiostoma floridae) but we find it unlikely that such gene exists, due to a sharp drop in sequence similarity beyond sequence clusters of known receptors. We show the presence of AgRP and ASIP in elephant shark, a cartilaginous fish belonging to the subclass of Elasmobranchii. However, we do not find any of these genes in lamprey or lancelet after detailed analysis of both targeted and whole proteome regular expression scans. We found MRAP2, but not MRAP1, to be present in elephant shark and sea lamprey while Fugu (T. rubripes) has both genes. This study shows that the most ancient presence of these melanocortin-related sequences is found in elephant shark and lampreys considering the current available sequence data.

  2. Solid-phase peptide head-to-side chain cyclodimerization: discovery of C(2)-symmetric cyclic lactam hybrid α-melanocyte-stimulating hormone (MSH)/agouti-signaling protein (ASIP) analogues with potent activities at the human melanocortin receptors.

    PubMed

    Mayorov, Alexander V; Cai, Minying; Palmer, Erin S; Liu, Zhihua; Cain, James P; Vagner, Josef; Trivedi, Dev; Hruby, Victor J

    2010-10-01

    A novel hybrid melanocortin pharmacophore was designed based on the pharmacophores of the agouti-signaling protein (ASIP), an endogenous melanocortin antagonist, and α-melanocyte-stimulating hormone (α-MSH), an endogenous melanocortin agonist. The designed hybrid ASIP/MSH pharmacophore was explored in monomeric cyclic, and cyclodimeric templates. The monomeric cyclic disulfide series yielded peptides with hMC3R-selective non-competitive binding affinities. The direct on-resin peptide lactam cyclodimerization yielded nanomolar range (25-120 nM) hMC1R-selective full and partial agonists in the cyclodimeric lactam series which demonstrates an improvement over the previous attempts at hybridization of MSH and agouti protein sequences. The secondary structure-oriented pharmacophore hybridization strategy will prove useful in development of unique allosteric and orthosteric melanocortin receptor modulators. This report also illustrates the utility of peptide cyclodimerization for the development of novel GPCR peptide ligands.

  3. Characterization, tissue distribution and regulation by fasting of the agouti family of peptides in the sea bass (Dicentrarchus labrax).

    PubMed

    Agulleiro, Maria Josep; Cortés, Raúl; Leal, Esther; Ríos, Diana; Sánchez, Elisa; Cerdá-Reverter, José Miguel

    2014-09-01

    The melanocortin system is one of the most complex hormonal systems in vertebrates. Atypically, the signaling of melanocortin receptors is regulated by the binding of endogenous antagonists, named agouti-signaling protein (ASIP) and agouti-related protein (AGRP). Teleost specific genome duplication (TSGD) rendered new gene copies in teleost fish and up to four different genes of the agouti family of peptides have been characterized. In this paper, molecular cloning was used to characterize mRNA of the agouti family of peptides in sea bass. Four different genes were identified: AGRP1, ASIP1, AGRP2 and ASIP2. The AGRP1 gene is mainly expressed in the brain whereas ASIP1 is mainly expressed in the ventral skin. Both ASIP2 and AGRP2 are expressed in the brain and the pineal gland but also in some peripheral tissues. Immunocytochemical studies demonstrated that AGRP1 is exclusively expressed within the lateral tuberal nucleus, the homologue of the mammalian arcuate nucleus in fish. Long-term fasting (8-29 days) increased the hypothalamic expression of AGRP1 but depressed AGRP2 expression (15-29 days). In contrast, the hypothalamic expression of ASIP2 was upregulated during short-term fasting suggesting that this peptide could be involved in the short term regulation of food intake in the sea bass.

  4. Agouti signaling protein stimulates cell division in "viable yellow" (A vy/a) mouse liver

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enhanced linear growth, hyperplasia, and tumorigenesis are well-known characteristics of "viable yellow" agouti Avy/- mice (1); however, the functional basis for this aspect of the phenotype is unknown. In the present study, we ascertained whether agouti signaling protein (ASIP) levels in Avy/a or a...

  5. Regulation of PPARgamma and obesity by agouti/melanocortin signaling in adipocytes.

    PubMed

    Mynatt, Randall L; Stephens, Jacquelins M

    2003-06-01

    To study the potential biological role of agouti/melanocortin signaling in human adipose tissue, we engineered transgenic mice to overexpress agouti in adipose tissue. The aP2-agouti transgenic mice become significantly heavier than littermates. The increased body weight is maintained at approximately 15% above nontransgenic mice through 20 weeks and is caused by increased fat mass. The obesity is increased by a high-fat diet. There is no change in food intake in the aP2-agouti mice suggesting changes in energy utilization. A possible mechanism is that the agouti/melanocortin signaling regulates levels of PPARgamma. PPARgamma functions as a major regulator of adipocyte differentiation and as a receptor for the antidiabetic thiazolidinediones. Agouti increases PPARgamma protein levels in differentiated 3T3-L1 adipocytes, and PPARgamma expression is elevated in the fat pads of the aP2-agouti transgenic mice. The modest weight gain observed in the transgenic mice suggests that hypothalamic pathways regulating food intake are intact and the observed adiposity is within ranges that can be achieved by a paracrine mechanism at the adipocyte level.

  6. Transient ectopic overexpression of agouti-signalling protein 1 (asip1) induces pigment anomalies in flatfish.

    PubMed

    Guillot, Raúl; Ceinos, Rosa Maria; Cal, Rosa; Rotllant, Josep; Cerdá-Reverter, José Miguel

    2012-01-01

    While flatfish in the wild exhibit a pronounced countershading of the dorso-ventral pigment pattern, malpigmentation is commonly observed in reared animals. In fish, the dorso-ventral pigment polarity is achieved because a melanization inhibition factor (MIF) inhibits melanoblast differentiation and encourages iridophore proliferation in the ventrum. A previous work of our group suggested that asip1 is the uncharacterized MIF concerned. In order to further support this hypothesis, we have characterized asip1 mRNAs in both turbot and sole and used deduced peptide alignments to analyze the evolutionary history of the agouti-family of peptides. The putative asip precursors have the characteristics of a secreted protein, displaying a putative hydrophobic signal. Processing of the potential signal peptide produces mature proteins that include an N-terminal region, a basic central domain with a high proportion of lysine residues as well as a proline-rich region that immediately precedes the C-terminal poly-cysteine domain. The expression of asip1 mRNA in the ventral area was significantly higher than in the dorsal region. Similarly, the expression of asip1 within the unpigmented patches in the dorsal skin of pseudoalbino fish was higher than in the pigmented dorsal regions but similar to those levels observed in the ventral skin. In addition, the injection/electroporation of asip1 capped mRNA in both species induced long term dorsal skin paling, suggesting the inhibition of the melanogenic pathways. The data suggest that fish asip1 is involved in the dorsal-ventral pigment patterning in adult fish, where it induces the regulatory asymmetry involved in precursor differentiation into mature chromatophore. Adult dorsal pseudoalbinism seems to be the consequence of the expression of normal developmental pathways in an inaccurate position that results in unbalanced asip1 production levels. This, in turn, generates a ventral-like differentiation environment in dorsal regions.

  7. Hypothalamic Agouti-Related Peptide mRNA is Elevated During Natural and Stress-Induced Anorexia.

    PubMed

    Dunn, I C; Wilson, P W; D'Eath, R B; Boswell, T

    2015-09-01

    As part of their natural lives, animals can undergo periods of voluntarily reduced food intake and body weight (i.e. animal anorexias) that are beneficial for survival or breeding, such as during territorial behaviour, hibernation, migration and incubation of eggs. For incubation, a change in the defended level of body weight or 'sliding set point' appears to be involved, although the neural mechanisms reponsible for this are unknown. We investigated how neuropeptide gene expression in the arcuate nucleus of the domestic chicken responded to a 60-70% voluntary reduction in food intake measured both after incubation and after an environmental stressor involving transfer to unfamiliar housing. We hypothesised that gene expression would not change in these circumstances because the reduced food intake and body weight represented a defended level in birds with free access to food. Unexpectedly, we observed increased gene expression of the orexigenic peptide agouti-related peptide (AgRP) in both incubating and transferred animals compared to controls. Also pro-opiomelanocortin (POMC) mRNA was higher in incubating hens and significantly increased 6 days after exposure to the stressor. Conversely expression of neuropeptide Y and cocaine- and amphetamine-regulated transcript gene was unchanged in both experimental situations. We conclude that AgRP expression remains sensitive to the level of energy stores during natural anorexias, which is of adaptive advantage, although its normal orexigenic effects are over-ridden by inhibitory signals. In the case of stress-induced anorexia, increased POMC may contribute to this inhibitory role, whereas, for incubation, reduced feeding may also be associated with increased expression in the hypothalamus of the anorexigenic peptide vasoactive intestinal peptide.

  8. PDK1-Foxo1 in Agouti-Related Peptide Neurons Regulates Energy Homeostasis by Modulating Food Intake and Energy Expenditure

    PubMed Central

    Cao, Yongheng; Nakata, Masanori; Okamoto, Shiki; Takano, Eisuke; Yada, Toshihiko; Minokoshi, Yasuhiko; Hirata, Yukio; Nakajima, Kazunori; Iskandar, Kristy; Hayashi, Yoshitake; Ogawa, Wataru; Barsh, Gregory S.; Hosoda, Hiroshi; Kangawa, Kenji; Itoh, Hiroshi; Noda, Tetsuo; Kasuga, Masato; Nakae, Jun

    2011-01-01

    Insulin and leptin intracellular signaling pathways converge and act synergistically on the hypothalamic phosphatidylinositol-3-OH kinase/3-phosphoinositide-dependent protein kinase 1 (PDK1). However, little is known about whether PDK1 in agouti-related peptide (AGRP) neurons contributes to energy homeostasis. We generated AGRP neuron-specific PDK1 knockout (AGRPPdk1−/−) mice and mice with selective expression of transactivation-defective Foxo1 (Δ256Foxo1AGRPPdk1−/−). The AGRPPdk1−/− mice showed reductions in food intake, body length, and body weight. The Δ256Foxo1AGRPPdk1−/− mice showed increased body weight, food intake, and reduced locomotor activity. After four weeks of calorie-restricted feeding, oxygen consumption and locomotor activity were elevated in AGRPPdk1−/− mice and reduced in Δ256Foxo1AGRPPdk1−/− mice. In vitro, ghrelin-induced changes in [Ca2+]i and inhibition of ghrelin by leptin were significantly attenuated in AGRPPdk1−/− neurons compared to control neurons. However, ghrelin-induced [Ca2+]i changes and leptin inhibition were restored in Δ256Foxo1AGRPPdk1−/− mice. These results suggested that PDK1 and Foxo1 signaling pathways play important roles in the control of energy homeostasis through AGRP-independent mechanisms. PMID:21694754

  9. Agouti regulates adipocyte transcription factors.

    PubMed

    Mynatt, R L; Stephens, J M

    2001-04-01

    Agouti is a secreted paracrine factor that regulates pigmentation in hair follicle melanocytes. Several dominant mutations cause ectopic expression of agouti, resulting in a phenotype characterized by yellow fur, adult-onset obesity and diabetes, increased linear growth and skeletal mass, and increased susceptibility to tumors. Humans also produce agouti protein, but the highest levels of agouti in humans are found in adipose tissue. To mimic the human agouti expression pattern in mice, transgenic mice (aP2-agouti) that express agouti in adipose tissue were generated. The transgenic mice develop a mild form of obesity, and they are sensitized to the action of insulin. We correlated the levels of specific regulators of insulin signaling and adipocyte differentiation with these phenotypic changes in adipose tissue. Signal transducers and activators of transcription (STAT)1, STAT3, and peroxisome proliferator-activated receptor (PPAR)-gamma protein levels were elevated in the transgenic mice. Treatment of mature 3T3-L1 adipocytes recapitulated these effects. These data demonstrate that agouti has potent effects on adipose tissue. We hypothesize that agouti increases adiposity and promotes insulin sensitivity by acting directly on adipocytes via PPAR-gamma.

  10. Agouti signalling protein (ASIP) gene: molecular cloning, sequence characterisation and tissue distribution in domestic goose.

    PubMed

    Zhang, J; Wang, C; Liu, Y; Liu, J; Wang, H Y; Liu, A F; He, D Q

    2016-06-01

    Agouti signalling protein (ASIP) is an endogenous antagonist of melanocortin-1 receptor (MC1R) and is involved in the regulation of pigmentation in mammals. The objective of this study was to identify and characterise the ASIP gene in domestic goose. The goose ASIP cDNA consisted of a 44-nucleotide 5'-terminal untranslated region (UTR), a 390-nucleotide open-reading frame (ORF) and a 45-nucleotide 3'-UTR. The length of goose ASIP genomic DNA was 6176 bp, including three coding exons and two introns. Bioinformatic analysis indicated that the ORF encodes a protein of 130 amino-acid residues with a molecular weight of 14.88 kDa and an isoelectric point of 9.73. Multiple sequence alignments and phylogenetic analysis showed that the amino-acid sequence of ASIP was conserved in vertebrates, especially in the avian species. RT-qPCR showed that the goose ASIP mRNA was differentially expressed in the pigment deposition tissues, including eye, foot, feather follicle, skin of the back, as well as in skin of the abdomen. The expression level of the ASIP gene in skin of the abdomen was higher than that in skin of the back. Those findings will contribute to further understanding the functions of the ASIP gene in geese plumage colouring.

  11. [Participation of Agouti related peptide in machanisms of wakefulness-sleep cycle regulation].

    PubMed

    Romanova, I V; Mikhrina, A L

    2013-01-01

    Agouti-related protein (AGRP) is expresses in hypothalamic neurons in human and animals. Immunohistochemical study in rats Wistar rats demonstrates significant changes AGRP optical density in the neurons of arcuate hypothalamic nucleus as well as in processes in the hypothalamus and nucleus accumbens after the 6 hours of sleep deprivation (increase) and after 2 hours of post-deprivative sleep (decrease). Comparison of these results with earlier obtained shows the opposite trend changes in AGRP optical density and speed limiting enzyme of dopamine synthesis-tyrosine hydroxylase in the hypothalamus and in striatonigral system. The increase of AGRP was accompanied by a decrease of tyrosine hydroxylase and the decrease of AGRP, apposite, it increases. The obtained data demonstrate the role ofAGRP as a modulator of the functional activity of the dopaminergic brain neurons. The problem of the relationship of various functions of organism (food behavior, sleep, stress) is discusses by their participation in the regulation of the same neurotransmitter systems.

  12. Plant peptide hormone signalling.

    PubMed

    Motomitsu, Ayane; Sawa, Shinichiro; Ishida, Takashi

    2015-01-01

    The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions.

  13. Molecular structure and chromosomal mapping of the human homolog of the agouti gene

    SciTech Connect

    Kwon, H.Y.; Woychik, R.P.; Bultman, S.J. |; Loeffler, C.; Hansmann, I.; Chen, W.J.; Furdon, P.J.; Wilkison, W.; Powell, J.G.; Usala, A.L.

    1994-10-11

    The agouti (a) locus in mouse chromosome 2 normally regulates coat color pigmentation. The mouse agouti gene was recently cloned and shown to encode a distinctive 131-amino acid protein with a consensus signal peptide. Here the authors describe the cloning of the human homolog of the mouse agouti gene using an interspecies DNA-hybridization approach. Sequence analysis revealed that the coding region of the human agouti gene is 85% identical to the mouse gene and has the potential to encode a protein of 132 amino acids with a consensus signal peptide. Chromosomal assignment using somatic-cell-hybrid mapping panels and fluorescence in situ hybridization demonstrated that the human agouti gene maps to chromosome band 20q11.2. This result revealed that the human agouti gene is closely linked to several traits, including a locus called MODY (for maturity onset diabetes of the young) and another region that is associated with the development of myeloid leukemia. Initial expression studies with RNA from several adult human tissues showed that the human agouti gene is expressed in adipose tissue and testis.

  14. Agouti Related Peptide Secreted Via Human Mesenchymal Stem Cells Upregulates Proteasome Activity in an Alzheimer’s Disease Model

    PubMed Central

    Lee, Na Kyung; Park, Sang Eon; Kwon, Soo Jin; Shim, Sangmi; Byeon, Yeji; Kim, Jong-Hwa; Na, Duk L.; Chang, Jong Wook

    2017-01-01

    The activity of the ubiquitin proteasome system (UPS) is downregulated in aggregation diseases such as Alzheimer’s disease (AD). In this study, we investigated the therapeutic potential of the Agouti-related peptide (AgRP), which is secreted by human mesenchymal stem cells (MSCs), in terms of its effect on the regulation of proteasome activity in AD. When SH-SY5Y human neuroblastoma cells were co-cultured with MSCs isolated from human Wharton’s Jelly (WJ-MSC), their proteasome activity was significantly upregulated. Further analysis of the conditioned media after co-culture allowed us to identify significant concentrations of a neuropeptide, called AgRP. The stereotactic delivery of either WJ-MSCs or AgRP into the hippocampi of C57BL6/J and 5XFAD mice induced a significant increase of proteasome activity and suppressed the accumulation of ubiquitin-conjugated proteins. Collectively, these findings suggest strong therapeutic potential for WJ-MSCs and AgRP to enhance proteasome activity, thereby potentially reducing abnormal protein aggregation and delaying the clinical progression of various neurodegenerative diseases. PMID:28051110

  15. Agouti-related peptide plays a critical role in leptin's effects on female puberty and reproduction

    PubMed Central

    Sheffer-Babila, Sharone; Sun, Yan; Israel, Davelene D.; Liu, Shun-Mei; Neal-Perry, Genevieve

    2013-01-01

    Deficient leptin signaling causes infertility via reduced activity of GnRH neurons, causing a hypogonadal state in both rodents and humans. Because GnRH neurons do not express leptin receptors, leptin's effect on GnRH neurons must be indirect. Neurons within the hypothalamic arcuate nucleus that coexpress AGRP and NPY are considered to be important intermediate neurons involved in leptin regulation of GnRH neurons. Previously, we reported that the absence of AGRP and haploinsufficiency of MC4R in leptin receptor mutant (Leprdb/db) females result in restoration of fertility and lactation despite the persistence of obesity and insulin resistance. The overarching hypothesis in the present study is that the absence or reduction of leptin's inhibition of AGRP/NPY neurons leads to suppression of GnRH release in cases of leptin signaling deficiency. Since TAC2 (NKB)-TAC3R signaling plays a role in puberty maturation and is modulated by metabolic status, the other aim of this study is to test whether TAC2/NKB neurons in ARC regulated by melanocortinergic signals herein affect leptin's action on puberty and reproduction. Our data showed that AGRP deficiency in Leprdb/db females restores normal timing of vaginal opening and estrous cycling, although uterine weight gain and mammary gland development are morphologically delayed. Nonetheless, Agrp−/− Leprdb/db females are fertile and sustain adequate nutrition of pups with lactation to weaning age. AGRP deficiency results in advanced vaginal opening in wild-type female mice. The postpubertal increase in hypothalamic TAC2 mRNA was not observed in Leprdb/db females, whereas AGRP deficiency restored it in Leprdb/db females. Additionally, MC4R activation with MTII induced FOS expression in TAC2 neurons, supporting the concept of melanocortinergic regulation of TAC2 neurons. These studies suggest that AGRP imposes an inhibitory effect on puberty and that TAC2 neurons may transmit melanocortinergic inhibition of GnRH neurons

  16. Polymorphism of the goat agouti signaling protein gene and its relationship with coat color in Italian and Spanish breeds.

    PubMed

    Badaoui, B; D'Andrea, M; Pilla, F; Capote, J; Zidi, A; Jordana, J; Ferrando, A; Delgado, J V; Martínez, A; Vidal, O; Amills, M

    2011-08-01

    Agouti signaling protein (ASIP) is one of the key players in the modulation of hair pigmentation in mammals. Binding to the melanocortin 1 receptor, ASIP induces the synthesis of phaeomelanin, associated with reddish brown, red, tan, and yellow coats. We have sequenced 2.8 kb of the goat ASIP gene in 48 individuals and identified two missense (Cys126Gly and Val128Gly) and two intronic polymorphisms. In silico analysis revealed that the Cys126Gly substitution may cause a structural change by disrupting a highly conserved disulfide bond. We studied its segregation in 12 Spanish and Italian goat breeds (N = 360) with different pigmentation patterns and found striking differences in the frequency of the putative loss-of-function Gly(126) allele (Italian 0.43, Spanish Peninsular 0.08), but we did not observe a clear association with coat color. This suggests that the frequency of this putative loss-of-function allele has evolved under the influence of demographic rather than selection factors in goats from these two geographical areas.

  17. Disruption of the RIIβ subunit of PKA reverses the obesity syndrome of agouti lethal yellow mice

    PubMed Central

    Czyzyk, Traci A.; Sikorski, Maria A.; Yang, Linghai; McKnight, G. Stanley

    2008-01-01

    Agouti lethal yellow (Ay) mice express agouti ectopically because of a genetic rearrangement at the agouti locus. The agouti peptide is a potent antagonist of the melanocortin 4 receptor (MC4R) expressed in neurons, and this leads to hyperphagia, hypoactivity, and increased fat mass. The MC4R signals through Gs and is thought to stimulate the production of cAMP and activation of downstream cAMP effector molecules such as PKA. Disruption of the RIIβ regulatory subunit gene of PKA results in release of the active catalytic subunit and an increase in basal PKA activity in cells where RIIβ is highly expressed. Because RIIβ is expressed in neurons including those in the hypothalamic nuclei where MC4R is prominent we tested the possibility that the RIIβ knockout might rescue the body weight phenotypes of the Ay mice. Disruption of the RIIβ PKA regulatory subunit gene in mice leads to a 50% reduction in white adipose tissue and resistance to diet-induced obesity and hyperglycemia. The RIIβ mutation rescued the elevated body weight, hyperphagia, and obesity of Ay mice. Partial rescue of the Ay phenotypes was even observed on an RIIβ heterozygote background. These results suggest that the RIIβ gene mutation alters adiposity and locomotor activity by modifying PKA signaling pathways downstream of the agouti antagonism of MC4R in the hypothalamus. PMID:18172198

  18. Epistatic Interaction of the Melanocortin 1 Receptor and Agouti Signaling Protein Genes Modulates Wool Color in the Brazilian Creole Sheep.

    PubMed

    Hepp, Diego; Gonçalves, Gislene Lopes; Moreira, Gilson Rudinei Pires; de Freitas, Thales Renato Ochotorena

    2016-11-01

    Different pigmentation genes have been associated with color diversity in domestic animal species. The melanocortin 1 receptor (MC1R), agouti signaling protein (ASIP), tyrosinase-related protein 1 (TYRP1), and v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) genes are candidate genes responsible for variation in wool color among breeds of sheep. Although the influence of these genes has been described in some breeds, in many others the effect of interactions among genes underlying wool color has not been investigated. The Brazilian Creole sheep is a local breed with a wide variety of wool color, ranging from black to white with several intermediate hues. We analyzed in this study the influence of the genes MC1R, ASIP, TYRP1, and KIT on the control of wool color in this breed. A total of 410 samples were analyzed, including 148 white and 262 colored individuals. The MC1R and ASIP polymorphisms were significantly associated with the segregation of either white or colored wool. The dominant MC1R allele (E(D) p.M73K and p.D121N) was present only in colored animals. All white individuals were homozygous for the MC1R recessive allele (E(+)) and carriers of the duplicated copy of ASIP A gene expression assay showed that only the carrier of the duplicated copy of ASIP produces increased levels in skin, not detectable in the single homozygous copy. These results demonstrate that the epistatic interaction of the genotypes in the MC1R and ASIP gene is responsible for the striking color variation in the Creole breed.

  19. Coat colours in the Massese sheep breed are associated with mutations in the agouti signalling protein (ASIP) and melanocortin 1 receptor (MC1R) genes.

    PubMed

    Fontanesi, L; Dall'Olio, S; Beretti, F; Portolano, B; Russo, V

    2011-01-01

    Massese is an Italian dairy sheep breed characterized by animals with black skin and horns and black or apparent grey hairs. Owing to the presence of these two coat colour types, this breed can be considered an interesting model to evaluate the effects of coat colour gene polymorphisms on this phenotypic trait. Two main loci have been already shown to affect coat colour in sheep: Agouti and Extension coding for the agouti signalling protein (ASIP) and melanocortin 1 receptor (MC1R) genes, respectively. The Agouti locus is affected by a large duplication including the ASIP gene that may determine the Agouti white and tan allele (A(Wt)). Other disrupting or partially inactivating mutations have been identified in exon 2 (a deletion of 5 bp, D(5); and a deletion of 9 bp, D(9)) and in exon 4 (g.5172T>A, p.C126S) of the ASIP gene. Three missense mutations in the sheep MC1R gene cause the dominant black E(D) allele (p.M73K and p.D121N) and the putative recessive e allele (p.R67C). Here, we analysed these ASIP and MC1R mutations in 161 Massese sheep collected from four flocks. The presence of one duplicated copy allele including the ASIP gene was associated with grey coat colour (P = 9.4E-30). Almost all animals with a duplicated copy allele (37 out of 41) showed uniform apparent grey hair and almost all animals without a duplicated allele (117 out of 120) were completely black. Different forms of duplicated alleles were identified in Massese sheep including, in almost all cases, copies with exon 2 disrupting or partially inactivating mutations making these alleles different from the A(Wt) allele. A few exceptions were observed in the association between ASIP polymorphisms and coat colour: three grey sheep did not carry any duplicated copy allele and four black animals carried a duplicated copy allele. Of the latter four sheep, two carried the E(D) allele of the MC1R gene that may be the cause of their black coat colour. The coat colour of all other black animals may be

  20. Agouti expression in human adipose tissue: functional consequences and increased expression in type 2 diabetes.

    PubMed

    Smith, Steven R; Gawronska-Kozak, Barbara; Janderová, Lenka; Nguyen, Taylor; Murrell, Angela; Stephens, Jacqueline M; Mynatt, Randall L

    2003-12-01

    It is well recognized that the agouti/melanocortin system is an important regulator of body weight homeostasis. Given that agouti is expressed in human adipose tissue and that the ectopic expression of agouti in adipose tissue results in moderately obese mice, the link between agouti expression in human adipose tissue and obesity/type 2 diabetes was investigated. Although there was no apparent relationship between agouti mRNA levels and BMI, agouti mRNA levels were significantly elevated in subjects with type 2 diabetes. The regulation of agouti in cultured human adipocytes revealed that insulin did not regulate agouti mRNA, whereas dexamethasone treatment potently increased the levels of agouti mRNA. Experiments with cultured human preadipocytes and with cells obtained from transgenic mice that overexpress agouti demonstrated that melanocortin receptor (MCR) signaling in adipose tissue can regulate both preadipocyte proliferation and differentiation. Taken together, these results reveal that agouti can regulate adipogenesis at several levels and suggest that there are functional consequences of elevated agouti levels in human adipose tissue. The influence of MCR signaling on adipogenesis combined with the well-established role of MCR signaling in the hypothalamus suggest that adipogenesis is coordinately regulated with food intake and energy expenditure.

  1. Recognition of Bacterial Signal Peptides by Mammalian Formyl Peptide Receptors

    PubMed Central

    Bufe, Bernd; Schumann, Timo; Kappl, Reinhard; Bogeski, Ivan; Kummerow, Carsten; Podgórska, Marta; Smola, Sigrun; Hoth, Markus; Zufall, Frank

    2015-01-01

    Formyl peptide receptors (FPRs) are G-protein-coupled receptors that function as chemoattractant receptors in innate immune responses. Here we perform systematic structure-function analyses of FPRs from six mammalian species using structurally diverse FPR peptide agonists and identify a common set of conserved agonist properties with typical features of pathogen-associated molecular patterns. Guided by these results, we discover that bacterial signal peptides, normally used to translocate proteins across cytoplasmic membranes, are a vast family of natural FPR agonists. N-terminally formylated signal peptide fragments with variable sequence and length activate human and mouse FPR1 and FPR2 at low nanomolar concentrations, thus establishing FPR1 and FPR2 as sensitive and broad signal peptide receptors. The vomeronasal receptor mFpr-rs1 and its sequence orthologue hFPR3 also react to signal peptides but are much more narrowly tuned in signal peptide recognition. Furthermore, all signal peptides examined here function as potent activators of the innate immune system. They elicit robust, FPR-dependent calcium mobilization in human and mouse leukocytes and trigger a range of classical innate defense mechanisms, such as the production of reactive oxygen species, metalloprotease release, and chemotaxis. Thus, bacterial signal peptides constitute a novel class of immune activators that are likely to contribute to mammalian immune defense against bacteria. This evolutionarily conserved detection mechanism combines structural promiscuity with high specificity and enables discrimination between bacterial and eukaryotic signal sequences. With at least 175,542 predicted sequences, bacterial signal peptides represent the largest and structurally most heterogeneous class of G-protein-coupled receptor agonists currently known for the innate immune system. PMID:25605714

  2. Copy number variation and missense mutations of the agouti signaling protein (ASIP) gene in goat breeds with different coat colors.

    PubMed

    Fontanesi, L; Beretti, F; Riggio, V; Gómez González, E; Dall'Olio, S; Davoli, R; Russo, V; Portolano, B

    2009-01-01

    In goats, classical genetic studies reported a large number of alleles at the Agouti locus with effects on coat color and pattern distribution. From these early studies, the dominant A(Wt) (white/tan) allele was suggested to cause the white color of the Saanen breed. Here, we sequenced the coding region of the goat ASIP gene in 6 goat breeds (Girgentana, Maltese, Derivata di Siria, Murciano-Granadina, Camosciata delle Alpi, and Saanen), with different coat colors and patterns. Five single nucleotide polymorphisms (SNPs) were identified, 3 of which caused missense mutations in conserved positions of the cysteine-rich carboxy-terminal domain of the protein (p.Ala96Gly, p.Cys126Gly, and p.Val128Gly). Allele and genotype frequencies suggested that these mutations are not associated or not completely associated with coat color in the investigated goat breeds. Moreover, genotyping and sequencing results, deviation from Hardy-Weinberg equilibrium, as well as allele copy number evaluation from semiquantitative fluorescent multiplex PCR, indicated the presence of copy number variation (CNV) in all investigated breeds. To confirm the presence of CNV and evaluate its extension, we applied a bovine-goat cross-species array comparative genome hybridization (aCGH) experiment using a custom tiling array based on bovine chromosome 13. aCGH results obtained for 8 goat DNA samples confirmed the presence of CNV affecting a region of less that 100 kb including the ASIP and AHCY genes. In Girgentana and Saanen breeds, this CNV might cause the A(Wt) allele, as already suggested for a similar structural mutation in sheep affecting the ASIP and AHCY genes, providing evidence for a recurrent interspecies CNV. However, other mechanisms may also be involved in determining coat color in these 2 breeds.

  3. Defining MC1R regulation in human melanocytes by its agonist α-melanocortin and antagonists agouti signaling protein and β-defensin 3.

    PubMed

    Swope, Viki B; Jameson, Joshua A; McFarland, Kevin L; Supp, Dorothy M; Miller, William E; McGraw, Dennis W; Patel, Mira A; Nix, Matthew A; Millhauser, Glenn L; Babcock, George F; Abdel-Malek, Zalfa A

    2012-09-01

    The melanocortin 1 receptor (MC1R), a G(s) protein-coupled receptor, has an important role in human pigmentation. We investigated the regulation of expression and activity of the MC1R in primary human melanocyte cultures. Human β-defensin 3 (HBD3) acted as an antagonist for MC1R, inhibiting the α-melanocortin (α-melanocyte-stimulating hormone (α-MSH))-induced increase in the activities of adenylate cyclase and tyrosinase, the rate-limiting enzyme for melanogenesis. α-Melanocortin and forskolin, which activate adenylate cyclase, and 12-O-tetradecanoylphorbol-13-acetate, which activates protein kinase C, increased, whereas exposure to UV radiation reduced, MC1R gene and membrane protein expression. Brief treatment with α-MSH resulted in MC1R desensitization, whereas continuous treatment up to 3 hours caused a steady rise in cAMP, suggesting receptor recycling. Pretreatment with agouti signaling protein or HBD3 prohibited responsiveness to α-MSH, but not forskolin, suggesting receptor desensitization by these antagonists. Melanocytes from different donors expressed different levels of the G protein-coupled receptor kinases (GRKs) 2, 3, 5, and 6, as well as β-arrestin 1. Therefore, in addition to the MC1R genotype, regulation of MC1R expression and activity is expected to affect human pigmentation and the responses to UV.

  4. Peptide signalling during angiosperm seed development.

    PubMed

    Ingram, Gwyneth; Gutierrez-Marcos, Jose

    2015-08-01

    Cell-cell communication is pivotal for the coordination of various features of plant development. Recent studies in plants have revealed that, as in animals, secreted signal peptides play critical roles during reproduction. However, the precise signalling mechanisms in plants are not well understood. In this review, we discuss the known and putative roles of secreted peptides present in the seeds of angiosperms as key signalling factors involved in coordinating different aspects of seed development.

  5. Recognition of a signal peptide by the signal recognition particle

    PubMed Central

    Janda, Claudia Y.; Li, Jade; Oubridge, Chris; Hernández, Helena; Robinson, Carol V.; Nagai, Kiyoshi

    2010-01-01

    Targeting of proteins to appropriate sub-cellular compartments is a crucial process in all living cells. Secretory and membrane proteins usually contain an N-terminal signal peptide, which is recognised by the signal recognition particle (SRP) when nascent polypeptide chains emerge from the ribosome. The SRP-ribosome nascent chain complex is then targeted through its GTP-dependent interaction with SRP-receptor to the protein-conducting channel on endoplasmic reticulum membrane in eukaryotes or plasma membrane in bacteria. A universally conserved component of SRP1, 2, SRP54 or its bacterial homolog, fifty-four homolog (Ffh), binds the signal peptides which have a highly divergent sequence divisible into a positively charged n-region, an h-region commonly containing 8-20 hydrophobic residues and a polar c-region 3-5. No structure has been reported that exemplified SRP54 binding of any signal sequence. We have produced a fusion protein between Sulfolobus solfataricus SRP54 and a signal peptide connected via a flexible linker. This fusion protein oligomerises in solution, through interaction between the SRP54 and signal peptide moieties belonging to different chains, and it is functional, able to bind SRP RNA and SRP-receptor FtsY. Here we present the crystal structure at 3.5 Å resolution of an SRP54-signal peptide complex in the dimer, which reveals how a signal sequence is recognised by SRP54. PMID:20364120

  6. Peptide pheromone signaling in Streptococcus and Enterococcus

    PubMed Central

    Cook, Laura C.; Federle, Michael J.

    2014-01-01

    Intercellular chemical signaling in bacteria, commonly referred to as quorum sensing (QS), relies on the production and detection of compounds known as pheromones to elicit coordinated responses among members of a community. Pheromones produced by Gram-positive bacteria are comprised of small peptides. Based on both peptide structure and sensory system architectures, Gram-positive bacterial signaling pathways may be classified into one of four groups with a defining hallmark: cyclical peptides of the Agr type, peptides that contain Gly-Gly processing motifs, sensory systems of the RNPP family, or the recently characterized Rgg-like regulatory family. The recent discovery that Rgg family members respond to peptide pheromones increases substantially the number of species in which QS is likely a key regulatory component. These pathways control a variety of fundamental behaviors including conjugation, natural competence for transformation, biofilm development, and virulence factor regulation. Overlapping QS pathways found in multiple species and pathways that utilize conserved peptide pheromones provide opportunities for interspecies communication. Here we review pheromone signaling identified in the genera Enterococcus and Streptococcus, providing examples of all four types of pathways. PMID:24118108

  7. Posttranslationally modified small-peptide signals in plants.

    PubMed

    Matsubayashi, Yoshikatsu

    2014-01-01

    Cell-to-cell signaling is essential for many processes in plant growth and development, including coordination of cellular responses to developmental and environmental cues. Cumulative studies have demonstrated that peptide signaling plays a greater-than-anticipated role in such intercellular communication. Some peptides act as signals during plant growth and development, whereas others are involved in defense responses or symbiosis. Peptides secreted as signals often undergo posttranslational modification and proteolytic processing to generate smaller peptides composed of approximately 10 amino acid residues. Such posttranslationally modified small-peptide signals constitute one of the largest groups of secreted peptide signals in plants. The location of the modification group incorporated into the peptides by specific modification enzymes and the peptide chain length defined by the processing enzymes are critical for biological function and receptor interaction. This review covers 20 years of research into posttranslationally modified small-peptide signals in plants.

  8. Versatile synthesis of the signaling peptide glorin

    PubMed Central

    Barnett, Robert; Raszkowski, Daniel; Winckler, Thomas

    2017-01-01

    We present a versatile synthesis of the eukaryotic signaling peptide glorin as well as glorinamide, a synthetic analog. The ability of these compounds to activate glorin-induced genes in the social amoeba Polysphondylium pallidum was evaluated by quantitative reverse transcription PCR, whereby both compounds showed bioactivity comparable to a glorin standard. This synthetic route will be useful in conducting detailed structure–activity relationship studies as well as in the design of chemical probes to dissect glorin-mediated signaling pathways. PMID:28326133

  9. Role of signal peptides in targeting of proteins in cyanobacteria.

    PubMed Central

    Mackle, M M; Zilinskas, B A

    1994-01-01

    Proteins of cyanobacteria may be transported across one of two membrane systems: the typical eubacterial cell envelope (consisting of an inner membrane, periplasmic space, and an outer membrane) and the photosynthetic thylakoids. To investigate the role of signal peptides in targeting in cyanobacteria, Synechococcus sp. strain PCC 7942 was transformed with vectors carrying the chloramphenicol acetyltransferase reporter gene fused to coding sequences for one of four different signal peptides. These included signal peptides of two proteins of periplasmic space origin (one from Escherichia coli and the other from Synechococcus sp. strain PCC 7942) and two other signal peptides of proteins located in the thylakoid lumen (one from a cyanobacterium and the other from a higher plant). The location of the gene fusion products expressed in Synechococcus sp. strain PCC 7942 was determined by a chloramphenicol acetyltransferase enzyme-linked immunosorbent assay of subcellular fractions. The distribution pattern for gene fusions with periplasmic signal peptides was different from that of gene fusions with thylakoid lumen signal peptides. Primary sequence analysis revealed conserved features in the thylakoid lumen signal peptides that were absent from the periplasmic signal peptides. These results suggest the importance of the signal peptide in protein targeting in cyanobacteria and point to the presence of signal peptide features conserved between chloroplasts and cyanobacteria for targeting of proteins to the thylakoid lumen. Images PMID:8144451

  10. Agouti sequence polymorphisms in coyotes, wolves and dogs suggest hybridization.

    PubMed

    Schmutz, Sheila M; Berryere, Thomas G; Barta, Jodi L; Reddick, Kimberley D; Schmutz, Josef K

    2007-01-01

    Domestic dogs have been shown to have multiple alleles of the Agouti Signal Peptide (ASIP) in exon 4 and we wished to determine the level of polymorphism in the common wild canids of Canada, wolves and coyotes, in comparison. All Canadian coyotes and most wolves have banded hairs. The ASIP coding sequence of the wolf did not vary from the domestic dog but one variant was detected in exon 4 of coyotes that did not alter the arginine at this position. Two other differences were found in the sequence flanking exon 4 of coyotes compared with the 45 dogs and 1 wolf. The coyotes also demonstrated a relatively common polymorphism in the 3' UTR sequence that could be used for population studies. One of the ASIP alleles (R96C) in domestic dogs causes a solid black coat color in homozygotes. Although some wolves are melanistic, this phenotype does not appear to be caused by this same mutation. However, one wolf, potentially a dog-wolf hybrid or descendant thereof, was heterozygous for this allele. Likewise 2 coyotes, potentially dog-coyote or wolf-coyote hybrid descendants, were heterozygous for the several polymorphisms in and flanking exon 4. We could conclude that these were coyote-dog hybrids because both were heterozygous for 2 mutations causing fawn coat color in dogs.

  11. Characterizing Intercellular Signaling Peptides in Drug Addiction

    PubMed Central

    Romanova, Elena V.; Hatcher, Nathan G.; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2009-01-01

    Intercellular signaling peptides (SPs) coordinate the activity of cells and influence organism behavior. SPs, a chemically and structurally diverse group of compounds responsible for transferring information between neurons, are broadly involved in neural plasticity, learning and memory, as well as in drug addiction phenomena. Historically, SP discovery and characterization has tracked advances in measurement capabilities. Today, a suite of analytical technologies is available to investigate individual SPs, as well as entire intercellular signaling complements, in samples ranging from individual cells to entire organisms. Immunochemistry and in situ hybridization are commonly used for following preselected SPs. Discovery-type investigations targeting the transcriptome and proteome are accomplished using high-throughput characterization technologies such as microarrays and mass spectrometry. By integrating directed approaches with discovery approaches, multiplatform studies fill critical gaps in our knowledge of drug-induced alterations in intercellular signaling. Throughout the past 35 years, the National Institute on Drug Abuse has made significant resources available to scientists that study the mechanisms of drug addiction. The roles of SPs in the addiction process are highlighted, as are the analytical approaches used to detect and characterize them. PMID:18722391

  12. Signal peptides are allosteric activators of the protein translocase

    PubMed Central

    Gouridis, Giorgos; Karamanou, Spyridoula; Gelis, Ioannis; Kalodimos, Charalampos G.; Economou, Anastassios

    2010-01-01

    Extra-cytoplasmic polypeptides are usually synthesized as “preproteins” carrying aminoterminal, cleavable signal peptides1 and secreted across membranes by translocases. The main bacterial translocase comprises the SecYEG protein-conducting channel and the peripheral ATPase motor SecA2,3. Most proteins destined for the periplasm and beyond are exported post-translationally by SecA2,3. Preprotein targeting to SecA is thought to involve signal peptides4 and chaperones like SecB5,6. Here we reveal that signal peptides have a novel role beyond targeting: they are essential allosteric activators of the translocase. Upon docking on their binding groove on SecA, signal peptides act in trans to drive three successive states: first, “triggering” that drives the translocase to a lower activation energy state; then “trapping” that engages non-native preprotein mature domains docked with high affinity on the secretion apparatus and, finally, “secretion” during which trapped mature domains undergo multiple turnovers of translocation in segments7. A significant contribution by mature domains renders signal peptides less critical in bacterial secretory protein targeting than currently assumed. Rather, it is their function as allosteric activators of the translocase that renders signal peptides essential for protein secretion. A role for signal peptides and targeting sequences as allosteric activators may be universal in protein translocases. PMID:19924216

  13. Molecular characterization of the mouse agouti locus.

    PubMed

    Bultman, S J; Michaud, E J; Woychik, R P

    1992-12-24

    The agouti (a) locus acts within the microenvironment of the hair follicle to regulate coat color pigmentation in the mouse. We have characterized a gene encoding a novel 131 amino acid protein that we propose is the one gene associated with the agouti locus. This gene is normally expressed in a manner consistent with a locus function, and, more importantly, its structure and expression are affected by a number of representative alleles in the agouti dominance hierarchy. In addition, we found that the pleiotropic effects associated with the lethal yellow (Ay) mutation, which include pronounced obesity, diabetes, and the development of neoplasms, are accompanied by deregulated overexpression of the agouti gene in numerous tissues of the adult animal.

  14. Targeting kinase signaling pathways with constrained peptide scaffolds.

    PubMed

    Hanold, Laura E; Fulton, Melody D; Kennedy, Eileen J

    2017-02-07

    Kinases are amongst the largest families in the human proteome and serve as critical mediators of a myriad of cell signaling pathways. Since altered kinase activity is implicated in a variety of pathological diseases, kinases have become a prominent class of proteins for targeted inhibition. Although numerous small molecule and antibody-based inhibitors have already received clinical approval, several challenges may still exist with these strategies including resistance, target selection, inhibitor potency and in vivo activity profiles. Constrained peptide inhibitors have emerged as an alternative strategy for kinase inhibition. Distinct from small molecule inhibitors, peptides can provide a large binding surface area that allows them to bind shallow protein surfaces rather than defined pockets within the target protein structure. By including chemical constraints within the peptide sequence, additional benefits can be bestowed onto the peptide scaffold such as improved target affinity and target selectivity, cell permeability and proteolytic resistance. In this review, we highlight examples of diverse chemistries that are being employed to constrain kinase-targeting peptide scaffolds and highlight their application to modulate kinase signaling as well as their potential clinical implications.

  15. A novel fuzzy Fisher classifier for signal peptide prediction.

    PubMed

    Gao, Cui-Fang; Qiu, Zi-Xue; Wu, Xiao-Jun; Tian, Feng-Wei; Zhang, Hao; Chen, Wei

    2011-08-01

    Signal peptides recognition by bioinformatics approaches is particularly important for the efficient secretion and production of specific proteins. We concentrate on developing an integrated fuzzy Fisher clustering (IFFC) and designing a novel classifier based on IFFC for predicting secretory proteins. IFFC provides a powerful optimal discriminant vector calculated by fuzzy intra-cluster scatter matrix and fuzzy inter-cluster scatter matrix. Because the training samples and test samples are processed together in IFFC, it is convenient for users to employ their own specific samples of high reliability as training data if necessary. The cross-validation results on some existing datasets indicate that the fuzzy Fisher classifier is quite promising for signal peptide prediction.

  16. Crystal Structure of a Bacterial Signal Peptide Peptidase

    SciTech Connect

    Kim,A.; Oliver, D.; Paetzel, M.

    2008-01-01

    Signal peptide peptidase (Spp) is the enzyme responsible for cleaving the remnant signal peptides left behind in the membrane following Sec-dependent protein secretion. Spp activity appears to be present in all cell types, eukaryotic, prokaryotic and archaeal. Here we report the first structure of a signal peptide peptidase, that of the Escherichia coli SppA (SppAEC). SppAEC forms a tetrameric assembly with a novel bowl-shaped architecture. The bowl has a dramatically hydrophobic interior and contains four separate active sites that utilize a Ser/Lys catalytic dyad mechanism. Our structural analysis of SppA reveals that while in many Gram-negative bacteria as well as characterized plant variants, a tandem duplication in the protein fold creates an intact active site at the interface between the repeated domains, other species, particularly Gram-positive and archaeal organisms, encode half-size, unduplicated SppA variants that could form similar oligomers to their duplicated counterparts, but using an octamer arrangement and with the catalytic residues provided by neighboring monomers. The structure reveals a similarity in the protein fold between the domains in the periplasmic Ser/Lys protease SppA and the monomers seen in the cytoplasmic Ser/His/Asp protease ClpP. We propose that SppA may, in addition to its role in signal peptide hydrolysis, have a role in the quality assurance of periplasmic and membrane-bound proteins, similar to the role that ClpP plays for cytoplasmic proteins.

  17. Positive and negative peptide signals control stomatal density.

    PubMed

    Shimada, Tomoo; Sugano, Shigeo S; Hara-Nishimura, Ikuko

    2011-06-01

    The stoma is a micro valve found on aerial plant organs that promotes gas exchange between the atmosphere and the plant body. Each stoma is formed by a strict cell lineage during the early stages of leaf development. Molecular genetics research using the model plant Arabidopsis has revealed the genes involved in stomatal differentiation. Cysteine-rich secretory peptides of the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family play crucial roles as extracellular signaling factors. Stomatal development is orchestrated by the positive factor STOMAGEN/EPFL9 and the negative factors EPF1, EPF2, and CHALLAH/EPFL6 in combination with multiple receptors. EPF1 and EPF2 are produced in the stomatal lineage cells of the epidermis, whereas STOMAGEN and CHALLAH are derived from the inner tissues. These findings highlight the complex cell-to-cell and intertissue communications that regulate stomatal development. To optimize gas exchange, particularly the balance between the uptake of carbon dioxide (CO(2)) and loss of water, plants control stomatal activity in response to environmental conditions. The CO(2) level and light intensity influence stomatal density. Plants sense environmental cues in mature leaves and adjust the stomatal density of newly forming leaves, indicating the involvement of long-distance systemic signaling. This review summarizes recent research progress in the peptide signaling of stomatal development and discusses the evolutionary model of the signaling machinery.

  18. A Small Subset of Signal Peptidase Residues are Perturbed by Signal Peptide Binding

    PubMed Central

    Musial-Siwek, Monika; Yeagle, Philip L.; Kendall, Debra A.

    2008-01-01

    Perturbations of the chemical shifts of a small subset of residues in the catalytically active domain of Escherichia coli signal peptidase I (SPase I) upon binding signal peptide suggest the contact surface on the enzyme for the substrate. SPase I, an integral membrane protein, is vital to preprotein transport in prokaryotic and eukaryotic secretory systems; it binds and proteolyses the N-terminal signal peptide of the preprotein, permitting folding and localization of the mature protein. Employing isotopically labeled C-terminal E. coli SPase I Δ2–75 and an unlabeled soluble synthetic alkaline phosphatase signal peptide, SPase I Δ2–75 was titrated with the signal peptide and 2Δ 1H-15N hetero-nuclear single-quantum correlation nuclear magnetic resonance spectra revealed chemical shifts of specific enzyme residues sensitive to substrate binding. These residues were identified by 3D HNCACB, 3D CBCA(CO)NH, and 3D HN(CO) experiments. Residues Ile80, Glu82, Gln85, Ile86, Ser88, Gly89, Ser90, Met91, Leu95, Ile101, Gly109, Val132, Lys134, Asp142, Ile144, Lys145, and Thr234, alter conformation and are likely all in, or adjacent to, the substrate binding site. The remainder of the enzyme structure is unperturbed. Ramifications for conformational changes for substrate docking and catalysis are discussed. PMID:18637988

  19. Identification of a signal peptide for oryzacystatin-I.

    PubMed

    Womack, J S; Randall, J; Kemp, J D

    2000-04-01

    A previously unidentified extension of an open reading frame from the genomic DNA of Japonica rice (Oryza sativa L.) encoding oryzacystatin-I (OC-I; access. M29259, protein ID AAA33912.1) has been identified as a 5' gene segment coding for the OC-I signal peptide. The signal peptide appears to direct a pre-protein (SPOC-I; Accession No. AF164378) to the endoplasmic reticulum, where it is processed into the mature form of OC-I. The start codon of SPOC-I begins 114 bp upstream from that previously published for OC-I. A putative proteolytic site. which may yield a mature OC-I approximately 12 residues larger than previously described, has been identified within SPOC-I between Ala-26 and Glu-27. The signal peptide sequence was amplified by polymerase chain reaction using genomic DNA from O. sativa seedlings and ligated to the 5' end of the truncated OC-I gene at the endogenous SalI site. Partially purified protein extracts from Escherichia coli expressing SPOC-I reacted with polyclonal antibodies raised against OC-I and revealed a protein of the expected molecular weight (15,355 Da). In-vitro translation of SPOC-I in the presence of microsomal membranes yielded a processed product approximately 2.7 kDa smaller than the pre-protein. Nicotiana tabacum L. cv. Xanthi plants independently transformed with the SPOC-I gene processed SPOC-I and accumulated the mature form of OC-I (approximately 12.6 kDa), which co-migrated with natural, mature OC-I extracted from rice seed when separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

  20. Liver-specific expression of the agouti gene in transgenic mice promotes liver carcinogenesis in the absence of obesity and diabetes

    SciTech Connect

    Kuklin, Alexander; Mynatt, Randall; Klebig, Mitch; Kiefer, Laura; Wilkison, William O; Woychik, Richard P; Michaud III, Edward J

    2004-01-01

    Background: The agouti protein is a paracrine factor that is normally present in the skin of many species of mammals. Agouti regulates the switch between black and yellow hair pigmentation by signalling through the melanocortin 1 receptor (Mc1r) on melanocytes. Lethal yellow (Ay) and viable yellow (Avy) are dominant regulatory mutations in the mouse agouti gene that cause the wild- ype protein to be produced at abnormally high levels throughout the body. Mice harboring these mutations exhibit a pleiotropic syndrome characterized by yellow coat color, obesity, hyperglycemia, hyperinsulinemia, and increased susceptibility to hyperplasia and carcinogenesis in numerous tissues, including the liver. The goal of this research was to determine if ectopic expression of the agouti gene in the liver alone is sufficient to recapitulate any aspect of this syndrome. For this purpose, we generated lines of transgenic mice expressing high levels of agouti in the liver under the regulatory control of the albumin promoter. Expression levels of the agouti transgene in the liver were quantified by Northern blot analysis. Functional agouti protein in the liver of transgenic mice was assayed by its ability to inhibit binding of the -melanocyte stimulating hormone ( MSH) to the Mc1r. Body weight, plasma insulin and blood glucose levels were analyzed in control and transgenic mice. Control and transgenic male mice were given a single intraperitoneal injection (10 mg/kg) of the hepatocellular carcinogen, diethylnitrosamine (DEN), at 15 days of age. Mice were euthanized at 36 or 40 weeks after DEN injection and the number of tumors per liver and total liver weights were recorded. Results: The albumin-agouti transgene was expressed at high levels in the livers of mice and produced a functional agouti protein. Albumin-agouti transgenic mice had normal body weights and normal levels of blood glucose and plasma insulin, but responded to chemical initiation of the liver with an increased number

  1. Peptoid mimics of agouti related protein.

    PubMed

    Thompson, Darren A; Chai, Biao-Xin; Rood, Hilary L E; Siani, Michael A; Douglas, Nicholai R; Gantz, Ira; Millhauser, Glenn L

    2003-04-17

    The Agouti Related Protein (AGRP) is an endogenous antagonist of melanocortin-3 and -4 receptors, each of which plays a key role in body weight homeostasis. We designed a peptoid trimer based on AGRP 111-113 in which a single chiral atom is used to partially restrain the backbone structure. Peptoid 5 displaced both radiolabeled Nle4-alpha-MSH (IC(50)=3.1 microM) and AGRP (86-132) (IC(50)=1.9 microM) from the human melanocortin-4 receptor and functioned as an antagonist of alpha-MSH stimulated cAMP generation, thus providing an important lead in the development of AGRP mimetics.

  2. The endogenous peptide signal, ZmPep1, regulates maize innate immunity and enhances disease resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ZmPep1 (Zea mays elicitor peptide 1) is a bioactive peptide signal encoded by a previously uncharacterized Zea mays gene. The gene, ZmPROPEP1, was identified as an ortholog of the Arabidopsis gene AtPROPEP1, which encodes the precursor protein of elicitor peptide 1 (AtPep1). Together with its recep...

  3. The use of signal peptide domains as vaccine candidates.

    PubMed

    Kovjazin, Riva; Carmon, Lior

    2014-01-01

    Signal peptide (SP) domains have a common motif but also sequence specific features. This knowledge was mainly ignored by immunologists who considered SP as generic, short-lived, targeting sequences. Consequently, while SP-derived MHC class I, class II and HLA-E epitopes have been isolated, their use as antigen-specific vaccine candidates (VCs) was mostly neglected. Recently we demonstrated the rational of selecting entire SP domains as multi-epitope long peptide VCs based on their high T and B-cell epitope densities. This review summarizes preclinical and clinical results demonstrating the various advantages of human SP domain VCs derived from both bacterial and tumor antigens. Such vaccine design provides for a straightforward, yet unique immunotherapeutic means of generating robust, non-toxic, diversified, combined antigen-specific CD4+/CD8+ T/B-cell immunity, irrespective of patient HLA repertoire also in disease associated transporter-associated with antigen processing (TAP) deficiencies. Subsequent clinical trials will further assess the full potential of this approach.

  4. Structural and Molecular Evolutionary Analysis of Agouti and Agouti-Related Proteins

    PubMed Central

    Jackson, Pilgrim J.; Douglas, Nick R.; Chai, Biaoxin; Binkley, Jonathan; Sidow, Arend; Barsh, Gregory S.; Millhauser, Glenn L.

    2010-01-01

    Summary Agouti (ASIP) and Agouti-related protein (AgRP) are endogenous antagonists of melanocortin receptors that play critical roles in the regulation of pigmentation and energy balance, respectively, and which arose from a common ancestral gene early in vertebrate evolution. The N-terminal domain of ASIP facilitates antagonism by binding to an accessory receptor, but here we show that the N-terminal domain of AgRP has the opposite effect and acts as a prodomain that negatively regulates antagonist function. Computational analysis reveals similar patterns of evolutionary constraint in the ASIP and AgRP C-terminal domains, but fundamental differences between the N-terminal domains. These studies shed light on the relationships between regulation of pigmentation and body weight, and they illustrate how evolutionary structure function analysis can reveal both unique and common mechanisms of action for paralogous gene products. PMID:17185225

  5. Short peptides interfering with signaling pathways as new therapeutic tools for cancer treatment.

    PubMed

    Ellert-Miklaszewska, Aleksandra; Poleszak, Katarzyna; Kaminska, Bozena

    2017-01-01

    Short peptides have many advantages, such as low molecular weight, selectivity for a specific target, organelles or cells with minimal toxicity. We describe properties of short peptides, which interfere with communication networks in tumor cells and within microenvironment of malignant gliomas, the most common brain tumors. We focus on ligand/receptor axes and intracellular signaling pathways critical for gliomagenesis that could be targeted with interfering peptides. We review structures and efficacy of organelle-specific and cell-penetrating peptides and describe diverse chemical modifications increasing proteolytic stability and protecting synthetic peptides against degradation. We report results of application of short peptides in glioma therapy clinical trials, their rises and falls. The most advanced examples of therapeutics such as short interfering peptides combined with cell-penetrating peptides that show good effectiveness in disease models are presented. It is foreseen that identification of peptides with better clinical properties may improve their success rates in clinical trials.

  6. Placentation in the capybara (Hydrochaerus hydrochaeris), Agouti (Dasyprocta aguti) and paca (Agouti paca).

    PubMed

    Miglino, M A; Carter, A M; dos Santos Ferraz, R H; Fernandes Machado, M R

    2002-05-01

    Placentae of three hystricimorph rodents--capybara, agouti and paca--were examined by conventional histology, immunohistochemistry for cytokeratin and vimentin, and TUNEL staining. The placentae were divided into lobules of labyrinthine syncytium separated by interlobular and marginal trophoblast. The subplacenta comprised cytotrophoblasts, supported on lamellae of allantoic mesoderm, and syncytiotrophoblast. The central excavation was still apparent in the definitive placenta of capybara. In agouti and paca, the decidua of the junctional zone formed a mesoplacenta comprising a capsule and a pedicle. Towards term the pedicle formed a tenuous attachment between placenta and uterine wall comprising a few maternal vessels surrounded by degraded tissue. In paca placenta, it was shown by TUNEL staining that breakdown of this tissue occurred by apoptosis. The visceral yolk sac was highly villous and, in agouti, the yolk sac villi were extremely long. Lateral to its attachment to the placenta, the fetal surface was covered with non-vascular yolk sac endoderm. A layer of spongiotrophoblast cells was interposed between the endoderm and the marginal trophoblast.

  7. Plant elicitor peptides are conserved signals regulating direct and indirect anti-herbivore defense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect-induced defenses occur in nearly all plants and are regulated by conserved signaling pathways. As the first described plant peptide signal, systemin regulates anti-herbivore defenses in the Solanaceae, but in other plant families peptides with analogous activity have remained elusive. In the ...

  8. Plant elicitor peptides are conserved signals regulating direct and indirect anti-herbivore defense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect-induced defenses occur in nearly all plants and are regulated by conserved signaling pathways. As the first described plant peptide signal, systemin regulates anti-herbivore defenses in the Solanaceae, but in other plant families peptides with analogous activity have remained elusive. In th...

  9. Message in a bottle: small signalling peptide outputs during growth and development.

    PubMed

    Czyzewicz, Nathan; Yue, Kun; Beeckman, Tom; De Smet, Ive

    2013-12-01

    Classical and recently found phytohormones play an important role in plant growth and development, but plants additionally control these processes through small signalling peptides. Over 1000 potential small signalling peptide sequences are present in the Arabidopsis genome. However, to date, a mere handful of small signalling peptides have been functionally characterized and few have been linked to a receptor. Here, we assess the potential small signalling peptide outputs, namely the molecular, biochemical, and morphological changes they trigger in Arabidopsis. However, we also include some notable studies in other plant species, in order to illustrate the varied effects that can be induced by small signalling peptides. In addition, we touch on some evolutionary aspects of small signalling peptides, as studying their signalling outputs in single-cell green algae and early land plants will assist in our understanding of more complex land plants. Our overview illustrates the growing interest in the small signalling peptide research area and its importance in deepening our understanding of plant growth and development.

  10. [Analysis of signal peptides of the secreted proteins in Agrobacterium tumefaciens C58].

    PubMed

    Fan, Cheng-Ming; Li, Cheng-Yun; Zhao, Ming-Fu; He, Yue-Qiu

    2005-08-01

    The 4554 ORFs of Agrobacterium tumefaciens C58 Cereon were used for the prediction of signal peptides by the network tools, such as SignalP3.0, LipoP1.0, TMHMM2.0 and TargetP1.01. Total 203 signal peptides with conserved amino residues are found, among them, 158 are secretary types, 9 are RR-motif types, 28 are SignalPase II types and 8 are bacteriocin-pheromone types. However, only two signal peptides from the secreted proteins, AGR-C-1878p and AGR-C-1880p have the same amino sequences, showing the signal peptides of the strain are highly variable.

  11. Overlapping transport and chaperone-binding functions within a bacterial twin-arginine signal peptide.

    PubMed

    Grahl, Sabine; Maillard, Julien; Spronk, Chris A E M; Vuister, Geerten W; Sargent, Frank

    2012-03-01

    The twin-arginine translocation (Tat) pathway is a protein targeting system present in many prokaryotes. The physiological role of the Tat pathway is the transmembrane translocation of fully-folded proteins, which are targeted by N-terminal signal peptides bearing conserved SRRxFLK 'twin-arginine' amino acid motifs. In Escherichia coli the majority of Tat targeted proteins bind redox cofactors and it is important that only mature, cofactor-loaded precursors are presented for export. Cellular processes have been unearthed that sequence these events, for example the signal peptide of the periplasmic nitrate reductase (NapA) is bound by a cytoplasmic chaperone (NapD) that is thought to regulate assembly and export of the enzyme. In this work, genetic, biophysical and structural approaches were taken to dissect the interaction between NapD and the NapA signal peptide. A NapD binding epitope was identified towards the N-terminus of the signal peptide, which overlapped significantly with the twin-arginine targeting motif. NMR spectroscopy revealed that the signal peptide adopted a α-helical conformation when bound by NapD, and substitution of single residues within the NapA signal peptide was sufficient to disrupt the interaction. This work provides an increased level of understanding of signal peptide function on the bacterial Tat pathway.

  12. Bunyamwera orthobunyavirus glycoprotein precursor is processed by cellular signal peptidase and signal peptide peptidase

    PubMed Central

    Shi, Xiaohong; Botting, Catherine H.; Li, Ping; Niglas, Mark; Brennan, Benjamin; Shirran, Sally L.; Szemiel, Agnieszka M.; Elliott, Richard M.

    2016-01-01

    The M genome segment of Bunyamwera virus (BUNV)—the prototype of both the Bunyaviridae family and the Orthobunyavirus genus—encodes the glycoprotein precursor (GPC) that is proteolytically cleaved to yield two viral structural glycoproteins, Gn and Gc, and a nonstructural protein, NSm. The cleavage mechanism of orthobunyavirus GPCs and the host proteases involved have not been clarified. In this study, we investigated the processing of BUNV GPC and found that both NSm and Gc proteins were cleaved at their own internal signal peptides (SPs), in which NSm domain I functions as SPNSm and NSm domain V as SPGc. Moreover, the domain I was further processed by a host intramembrane-cleaving protease, signal peptide peptidase, and is required for cell fusion activities. Meanwhile, the NSm domain V (SPGc) remains integral to NSm, rendering the NSm topology as a two-membrane-spanning integral membrane protein. We defined the cleavage sites and boundaries between the processed proteins as follows: Gn, from residue 17–312 or nearby residues; NSm, 332–477; and Gc, 478–1433. Our data clarified the mechanism of the precursor cleavage process, which is important for our understanding of viral glycoprotein biogenesis in the genus Orthobunyavirus and thus presents a useful target for intervention strategies. PMID:27439867

  13. Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server.

    PubMed

    Käll, Lukas; Krogh, Anders; Sonnhammer, Erik L L

    2007-07-01

    When using conventional transmembrane topology and signal peptide predictors, such as TMHMM and SignalP, there is a substantial overlap between these two types of predictions. Applying these methods to five complete proteomes, we found that 30-65% of all predicted signal peptides and 25-35% of all predicted transmembrane topologies overlap. This impairs predictions of 5-10% of the proteome, hence this is an important issue in protein annotation. To address this problem, we previously designed a hidden Markov model, Phobius, that combines transmembrane topology and signal peptide predictions. The method makes an optimal choice between transmembrane segments and signal peptides, and also allows constrained and homology-enriched predictions. We here present a web interface (http://phobius.cgb.ki.se and http://phobius.binf.ku.dk) to access Phobius.

  14. Mechanistic Parameterization of the Kinomic Signal in Peptide Arrays.

    PubMed

    Dussaq, Alex; Anderson, Joshua C; Willey, Christopher D; Almeida, Jonas S

    2016-05-01

    Kinases play a role in every cellular process involved in tumorigenesis ranging from proliferation, migration, and protein synthesis to DNA repair. While genetic sequencing has identified most kinases in the human genome, it does not describe the 'kinome' at the level of activity of kinases against their substrate targets. An attempt to address that limitation and give researchers a more direct view of cellular kinase activity is found in the PamGene PamChip® system, which records and compares the phosphorylation of 144 tyrosine or serine/threonine peptides as they are phosphorylated by cellular kinases. Accordingly, the kinetics of this time dependent kinomic signal needs to be well understood in order to transduce a parameter set into an accurate and meaningful mathematical model. Here we report the analysis and mathematical modeling of kinomic time series, which achieves a more accurate description of the accumulation of phosphorylated product than the current model, which assumes first order enzyme-substrate kinetics. Reproducibility of the proposed solution was of particular attention. Specifically, the non-linear parameterization procedure is delivered as a public open source web application where kinomic time series can be accurately decomposed into the model's two parameter values measuring phosphorylation rate and capacity. The ability to deliver model parameterization entirely as a client side web application is an important result on its own given increasing scientific preoccupation with reproducibility. There is also no need for a potentially transitory and opaque server-side component maintained by the authors, nor of exchanging potentially sensitive data as part of the model parameterization process since the code is transferred to the browser client where it can be inspected and executed.

  15. Mechanistic Parameterization of the Kinomic Signal in Peptide Arrays

    PubMed Central

    Dussaq, Alex; Anderson, Joshua C; Willey, Christopher D; Almeida, Jonas S

    2016-01-01

    Kinases play a role in every cellular process involved in tumorigenesis ranging from proliferation, migration, and protein synthesis to DNA repair. While genetic sequencing has identified most kinases in the human genome, it does not describe the ‘kinome’ at the level of activity of kinases against their substrate targets. An attempt to address that limitation and give researchers a more direct view of cellular kinase activity is found in the PamGene PamChip® system, which records and compares the phosphorylation of 144 tyrosine or serine/threonine peptides as they are phosphorylated by cellular kinases. Accordingly, the kinetics of this time dependent kinomic signal needs to be well understood in order to transduce a parameter set into an accurate and meaningful mathematical model. Here we report the analysis and mathematical modeling of kinomic time series, which achieves a more accurate description of the accumulation of phosphorylated product than the current model, which assumes first order enzyme-substrate kinetics. Reproducibility of the proposed solution was of particular attention. Specifically, the non-linear parameterization procedure is delivered as a public open source web application where kinomic time series can be accurately decomposed into the model’s two parameter values measuring phosphorylation rate and capacity. The ability to deliver model parameterization entirely as a client side web application is an important result on its own given increasing scientific preoccupation with reproducibility. There is also no need for a potentially transitory and opaque server-side component maintained by the authors, nor of exchanging potentially sensitive data as part of the model parameterization process since the code is transferred to the browser client where it can be inspected and executed. PMID:27601856

  16. MBSJ MCC Young Scientist Award 2010. Recent progress in research on small post-translationally modified peptide signals in plants.

    PubMed

    Matsubayashi, Yoshikatsu

    2012-01-01

    Peptide signaling plays a major role in various aspects of plant growth and development, as has been shown in recent biochemical, genetic and bioinformatic studies. There are over a dozen secreted peptides recognized in plants known to regulate cellular functions. To become functional, these secreted peptide signals often undergo post-translational modifications, such as tyrosine sulfation, proline hydroxylation, and hydroxyproline arabinosylation, and successive proteolytic processing. These types of ‘small post-translationally modified peptide signals’ are one of the major groups of peptide signals found in plants. In parallel with the discovery of peptide signals, specific receptors for such peptide signals were identified as being membrane-localized leucine-rich repeat receptor kinases. This short review highlights the recent progress in research on small post-translationally modified peptide signals, including our own research.

  17. Optimal secretion of alkali-tolerant xylanase in Bacillus subtilis by signal peptide screening.

    PubMed

    Zhang, Weiwei; Yang, Mingming; Yang, Yuedong; Zhan, Jian; Zhou, Yaoqi; Zhao, Xin

    2016-10-01

    Xylanases are industrially important enzymes for xylan digestion. We experimentally screened over 114 Sec and 24 Tat pathway signal peptides, with two different promoters, for optimal production of an alkaline active xylanase (XynBYG) from Bacillus pumilus BYG in a Bacillus subtilis host. Though both promoters yielded highly consistent secretion levels (0.97 Pearson correlation coefficient), the Sec pathway was found to be more efficient than the Tat pathway for XynBYG secretion. Furthermore, the optimal signal peptide (phoB) for XynBYG secretion was found to be different from the optimal peptides for cutinase and esterase reported in previous studies. A partial least squares regression analysis further identified several statistically important variables: helical properties, amino acid composition bias, and the discrimination score in Signal P. These variables explain the observed 23 % variance in the secretion yield of XynBYG by the different signal peptides. The results also suggest that the helical propensity of a signal peptide plays a significant role in the beta-rich xylanase, but not in the helix-rich cutinase, suggesting a coupling of the conformations between the signal peptide and its cargo protein for optimal secretion.

  18. Rational design of cyclic peptides to disrupt TGF-Β/SMAD7 signaling in heterotopic ossification.

    PubMed

    Zhong, Biao; Zhang, Chi; Guo, Shang; Zhang, Changqing

    2017-03-01

    The human TGF-β/SMAD7 signaling has been recognized as an attractive target of heterotopic ossification (HO). Here, we report a successful rational design of cyclic peptides to disrupt the signaling pathway by targeting TGF-β-receptor complex. The intermolecular interaction between TGF-β and its cognate receptor is characterized in detail using molecular dynamics simulation, binding energetic analysis, and alanine scanning. With the computational analysis a binding loop of receptor protein is identified that plays an essential role in the peptide-mediated TGF-β-receptor interaction. Subsequently, the loop is stripped from the protein context to generate a linear peptide segment, which possesses considerable flexibility and intrinsic disorder, and thus would incur a large entropy penalty upon binding to TGF-β. In order to minimize the unfavorable entropic effect, the linear peptide is cyclized by adding a disulfide bond between the N- and C-terminal cysteine residues of the peptide, resulting in a cyclic peptide. In vitro fluorescence anisotropy assays substantiate that the cyclic peptide can bind tightly to TGF-β with determined Kd value of 54μM. We also demonstrated that structural optimization can further improve the peptide affinity by site-directed mutagenesis of selected residues based on the computationally modeled complex structure of TGF-β with the cyclic peptide.

  19. Signalling processes involved in C-peptide-induced chemotaxis of CD4-positive lymphocytes.

    PubMed

    Aleksic, M; Walcher, D; Giehl, K; Bach, H; Grüb, M; Durst, R; Hombach, V; Marx, N

    2009-06-01

    Previous data from our group demonstrated that C-peptide induces chemotaxis of CD4-positive lymphocytes in-vitro, mediated by activation of G-protein and PI 3-kinase gamma, but additional signalling pathways involved in this process remained unexplored. In the present study we further analyze intracellular signalling pathways which lead to C-peptide-induced CD4-positive lymphocyte migration. We provide evidence that C-peptide-induced chemotaxis of CD4-positive lymphocytes is critically dependent on activation of Src-kinase and RhoA, Rac-1 and Cdc42 GTPases. Furthermore, C-peptide stimulates phosphorylation of PAK, LIMK and cofilin downstream of Rac-1 and Cdc42, leading to cofilin inactivation and actin filament stabilization. In addition, C-peptide induces ROCK kinase activity and MLC phosphorylation downstream of RhoA, thereby stimulating myosin mediated cell contraction. In contrast, C-peptide does not activate ERK1/2, p38 or Akt in CD4-positive lymphocytes. Our data support an active role of C-peptide in CD4-positive lymphocyte chemotaxis and elucidate molecular mechanisms in C-peptide-induced cell migration.

  20. Peptide Ligand Structure and I-Aq Binding Avidity Influence T Cell Signaling Pathway Utilization

    PubMed Central

    Myers, Linda K; Cullins, David L; Park, Jeoung-Eun; Yi, Ae-Kyung; Brand, David D; Rosloniec, Edward F; Stuart, John M; Kang, Andrew H

    2015-01-01

    Factors that drive T cells to signal through differing pathways remain unclear. We have shown that an altered peptide ligand (A9) activates T cells to utilize an alternate signaling pathway which is dependent upon FcRγ and Syk. However, it remains unknown whether the affinity of peptide binding to MHC drives this selection. To answer this question we developed a panel of peptides designed so that amino acids interacting with the p6 and p9 predicted MHC binding pockets were altered. Analogs were tested for binding to I-Aq using a competitive binding assay and selected analogs were administered to arthritic mice. Using the collagen-induced arthritis (CIA) model, arthritis severity was correlated with T cell cytokine production and molecular T cell signaling responses. We establish that reduced affinity of interaction with the MHC correlates with T cell signaling through the alternative pathway, leading ultimately to secretion of suppressive cytokine and attenuation of arthritis. PMID:25982319

  1. Analysis of the function of the agouti gene in obesity and diabetes

    SciTech Connect

    Mynatt, R.L.; Miltenberger, R.J.; Klebig, M.L.

    1996-09-01

    This chapter discusses the agouti gene and dominant mutations in that gene that lead to agouti-induced obesity, and recent work with transgenic mice to elucidate the role of agouti in obesity. Agouti was cloned in 1992 by the lab of Rick Woychik at Oak Ridge National Laboratory, making it the first of many recently cloned mouse obesity genes. Sequence analysis predicted that mouse agouti is a secreted protein of 131 amino acids. The mature protein has a basic central region (lys57-arg85), a proline-rich domain (pro86-pro91) and a C-terminal region (cys 92-cys 13 1) containing 10 cysteine residues which form 5 disulfide bonds. The human homologue of agouti has also been cloned by the Woychik lab and maps to human chromosome 20q 11.2. Human agouti is 132 amino acids long and is 85% similar to the mouse agouti protein and is normally expressed in adipose tissue. The researchers have been able to recapitulate obesity, hyperinsulinemia, and hyperglycemia with the ubiquitous expression of agouti. Agouti expression in either liver and adipose tissue alone does not cause obesity, and there`s a dose-dependent effect of agouti on body weight, food efficiency, body temperature, and insulin and glucose levels.

  2. Natriuretic peptide receptor B signaling in the cardiovascular system: protection from cardiac hypertrophy.

    PubMed

    Pagel-Langenickel, Ines; Buttgereit, Jens; Bader, Michael; Langenickel, Thomas H

    2007-08-01

    Natriuretic peptides (NP) represent a family of structurally homologous but genetically distinct peptide hormones involved in regulation of fluid and electrolyte balance, blood pressure, fat metabolism, cell proliferation, and long bone growth. Recent work suggests a role for natriuretic peptide receptor B (NPR-B) signaling in regulation of cardiac growth by either a direct effect on cardiomyocytes or by modulation of other signaling pathways including the autonomic nervous system. The research links NPR-B for the first time to a cardiac phenotype in vivo and underlines the importance of the NP in the cardiovascular system. This manuscript will focus on the role of NPR-B and its ligand C-type natriuretic peptide in cardiovascular physiology and disease and will evaluate these new findings in the context of the known function of this receptor, with a perspective on how future research might further elucidate NPR-B function.

  3. Amplification of single molecule translocation signal using β-strand peptide functionalized nanopores.

    PubMed

    Liebes-Peer, Yael; Rapaport, Hanna; Ashkenasy, Nurit

    2014-07-22

    Changes in ionic current flowing through nanopores due to binding or translocation of single biopolymer molecules enable their detection and characterization. It is, however, much more challenging to detect small molecules due to their rapid and small signal signature. Here we demonstrate the use of de novo designed peptides for functionalization of nanopores that enable the detection of a small analytes at the single molecule level. The detection relies on cooperative peptide conformational change that is induced by the binding of the small molecule to a receptor domain on the peptide. This change results in alteration of the nanopore effective diameter and hence induces current perturbation signal. On the basis of this approach, we demonstrate here the detection of diethyl 4-nitrophenyl phosphate (paraoxon), a poisonous organophosphate molecule. Paraoxon binding is induced by the incorporation of the catalytic triad of acetylcholine esterase in the hydrophilic domain of a short amphiphilic peptide and promotes β-sheet assembly of the peptide both in solution and for peptide molecules immobilized on solid surfaces. Nanopores coated with this peptide allowed the detection of paraoxon at the single molecule level revealing two binding arrangements. This unique approach, hence, provides the ability to study interactions of small molecules with the corresponding engineered receptors at the single molecule level. Furthermore, the suggested versatile platform may be used for the development of highly sensitive small analytes sensors.

  4. Immune Signaling and Antimicrobial Peptide Expression in Lepidoptera

    PubMed Central

    Casanova-Torres, Ángel M.; Goodrich-Blair, Heidi

    2013-01-01

    Many lepidopteran insects are agricultural pests that affect stored grains, food and fiber crops. These insects have negative ecological and economic impacts since they lower crop yield, and pesticides are expensive and can have off-target effects on beneficial arthropods. A better understanding of lepidopteran immunity will aid in identifying new targets for the development of specific insect pest management compounds. A fundamental aspect of immunity, and therefore a logical target for control, is the induction of antimicrobial peptide (AMP) expression. These peptides insert into and disrupt microbial membranes, thereby promoting pathogen clearance and insect survival. Pathways leading to AMP expression have been extensively studied in the dipteran Drosophila melanogaster. However, Diptera are an important group of pollinators and pest management strategies that target their immune systems is not recommended. Recent advances have facilitated investigation of lepidopteran immunity, revealing both conserved and derived characteristics. Although the general pathways leading to AMP expression are conserved, specific components of these pathways, such as recognition proteins have diverged. In this review we highlight how such comparative immunology could aid in developing pest management strategies that are specific to agricultural insect pests. PMID:25861461

  5. Biased signaling by peptide agonists of protease activated receptor 2.

    PubMed

    Jiang, Yuhong; Yau, Mei-Kwan; Kok, W Mei; Lim, Junxian; Wu, Kai-Chen; Liu, Ligong; Hill, Timothy A; Suen, Jacky Y; Fairlie, David P

    2017-02-07

    Protease activated receptor 2 (PAR2) is associated with metabolism, obesity, inflammatory, respiratory and gastrointestinal disorders, pain, cancer and other diseases. The extracellular N-terminus of PAR2 is a common target for multiple proteases, which cleave it at different sites to generate different N-termini that activate different PAR2-mediated intracellular signaling pathways. There are no synthetic PAR2 ligands that reproduce the same signaling profiles and potencies as proteases. Structure-activity relationships here for 26 compounds spanned a signaling bias over 3 log units, culminating in three small ligands as biased agonist tools for interrogating PAR2 functions. DF253 (2f-LAAAAI-NH2) triggered PAR2-mediated calcium release (EC50 2 μM) but not ERK1/2 phosphorylation (EC50 > 100 μM) in CHO cells transfected with hPAR2. AY77 (Isox-Cha-Chg-NH2) was a more potent calcium-biased agonist (EC50 40 nM, Ca2+; EC50 2 μM, ERK1/2), while its analogue AY254 (Isox-Cha-Chg-A-R-NH2) was an ERK-biased agonist (EC50 2 nM, ERK1/2; EC50 80 nM, Ca2+). Signaling bias led to different functional responses in human colorectal carcinoma cells (HT29). AY254, but not AY77 or DF253, attenuated cytokine-induced caspase 3/8 activation, promoted scratch-wound healing and induced IL-8 secretion, all via PAR2-ERK1/2 signaling. Different ligand components were responsible for different PAR2 signaling and functions, clues that can potentially lead to drugs that modulate different pathway-selective cellular and physiological responses.

  6. Structure-Function Analysis of Peptide Signaling in the Clostridium perfringens Agr-Like Quorum Sensing System

    PubMed Central

    Ma, Menglin; Li, Jihong

    2015-01-01

    ABSTRACT The accessory growth regulator (Agr)-like quorum sensing (QS) system of Clostridium perfringens controls the production of many toxins, including beta toxin (CPB). We previously showed (J. E. Vidal, M. Ma, J. Saputo, J. Garcia, F. A. Uzal, and B. A. McClane, Mol Microbiol 83:179–194, 2012, http://dx.doi.org/10.1111/j.1365-2958.2011.07925.x) that an 8-amino-acid, AgrD-derived peptide named 8-R upregulates CPB production by this QS system. The current study synthesized a series of small signaling peptides corresponding to sequences within the C. perfringens AgrD polypeptide to investigate the C. perfringens autoinducing peptide (AIP) structure-function relationship. When both linear and cyclic ring forms of these peptides were added to agrB null mutants of type B strain CN1795 or type C strain CN3685, the 5-amino-acid peptides, whether in a linear or ring (thiolactone or lactone) form, induced better signaling (more CPB production) than peptide 8-R for both C. perfringens strains. The 5-mer thiolactone ring peptide induced faster signaling than the 5-mer linear peptide. Strain-related variations in sensing these peptides were detected, with CN3685 sensing the synthetic peptides more strongly than CN1795. Consistent with those synthetic peptide results, Transwell coculture experiments showed that CN3685 exquisitely senses native AIP signals from other isolates (types A, B, C, and D), while CN1795 barely senses even its own AIP. Finally, a C. perfringens AgrD sequence-based peptide with a 6-amino-acid thiolactone ring interfered with CPB production by several C. perfringens strains, suggesting potential therapeutic applications. These results indicate that AIP signaling sensitivity and responsiveness vary among C. perfringens strains and suggest C. perfringens prefers a 5-mer AIP to initiate Agr signaling. IMPORTANCE Clostridium perfringens possesses an Agr-like quorum sensing (QS) system that regulates virulence, sporulation, and toxin production. The

  7. GluA1 signal peptide determines the spatial assembly of heteromeric AMPA receptors

    PubMed Central

    Li, Yan-Jun; Kalyanaraman, Chakrapani; Qiu, Li-Li; Chen, Chen; Xiao, Qi; Liu, Wen-Xue; Zhang, Wei; Yang, Jian-Jun; Chen, Guiquan; Jacobson, Matthew P.; Shi, Yun Stone

    2016-01-01

    AMPA-type glutamate receptors (AMPARs) mediate fast excitatory neurotransmission and predominantly assemble as heterotetramers in the brain. Recently, the crystal structures of homotetrameric GluA2 demonstrated that AMPARs are assembled with two pairs of conformationally distinct subunits, in a dimer of dimers formation. However, the structure of heteromeric AMPARs remains unclear. Guided by the GluA2 structure, we performed cysteine mutant cross-linking experiments in full-length GluA1/A2, aiming to draw the heteromeric AMPAR architecture. We found that the amino-terminal domains determine the first level of heterodimer formation. When the dimers further assemble into tetramers, GluA1 and GluA2 subunits have preferred positions, possessing a 1–2–1–2 spatial assembly. By swapping the critical sequences, we surprisingly found that the spatial assembly pattern is controlled by the excisable signal peptides. Replacements with an unrelated GluK2 signal peptide demonstrated that GluA1 signal peptide plays a critical role in determining the spatial priority. Our study thus uncovers the spatial assembly of an important type of glutamate receptors in the brain and reveals a novel function of signal peptides. PMID:27601647

  8. Versatile signal peptide of Flavobacterium-originated organophosphorus hydrolase for efficient periplasmic translocation of heterologous proteins in Escherichia coli.

    PubMed

    Kang, Dong Gyun; Seo, Jeong Hyun; Jo, Byung Hoon; Kim, Chang Sup; Choi, Suk Soon; Cha, Hyung Joon

    2016-07-08

    Organophosphorus hydrolase (OPH) from Flavobacterium species is a membrane-associated homodimeric metalloenzyme and has its own signal peptide in its N-terminus. We found that OPH was translocated into the periplasmic space when the original signal peptide-containing OPH was expressed in recombinant Escherichia coli even though its translocation efficiency was relatively low. To investigate the usability of this OPH signal peptide for periplasmic expression of heterologous proteins in an E. coli system, we employed green fluorescent protein (GFP) as a cytoplasmic folding reporter and alkaline phosphatase (ALP) as a periplasmic folding reporter. We found that the OPH signal peptide was able to use both twin-arginine translocation (Tat) and general secretory (Sec) machineries by switching translocation pathways according to the nature of target proteins in E. coli. These results might be due to the lack of Sec-avoidance sequence in the c-region and a moderate hydrophobicity of the OPH signal peptide. Interestingly, the OPH signal peptide considerably enhanced the translocation efficiencies for both GFP and ALP compared with commonly used TorA and PelB signal peptides that have Tat and Sec pathway dependences, respectively. Therefore, this OPH signal peptide could be successfully used in recombinant E. coli system for efficient periplasmic production of target protein regardless of the subcellular localization where functional folding of the protein occurs. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:848-854, 2016.

  9. N-terminal or signal peptide sequence engineering prevents truncation of human monoclonal antibody light chains.

    PubMed

    Gibson, S J; Bond, N J; Milne, S; Lewis, A; Sheriff, A; Pettman, G; Pradhan, R; Higazi, D R; Hatton, D

    2017-03-28

    Monoclonal antibodies (mAbs) contain short N-terminal signal peptides on each individual polypeptide that comprises the mature antibody, targeting them for export from the cell in which they are produced. The signal peptide is cleaved from each heavy chain (Hc) and light chain (Lc) polypeptide after translocation to the ER and prior to secretion. This process is generally highly efficient, producing a high proportion of correctly cleaved Hc and Lc polypeptides. However, mis-cleavage of the signal peptide can occur, resulting in truncation or elongation at the N-terminus of the Hc or Lc. This is undesirable for antibody manufacturing as it can impact efficacy and can result in product heterogeneity. Here, we describe a truncated variant of the Lc that was detected during a routine developability assessment of the recombinant human IgG1 MEDI8490 in Chinese hamster ovary cells. We found that the truncation of the Lc was caused due to the use of the murine Hc signal peptide together with a lambda Lc containing an SYE amino acid motif at the N-terminus. This truncation was not caused by mis-processing of the mRNA encoding the Lc and was not dependent on expression platform (transient or stable), the scale of the fed-batch culture or clonal lineage. We further show that using alternative signal peptides or engineering the Lc SYE N-terminal motif prevented the truncation and that this strategy will improve Lc homogeneity of other SYE lambda Lc-containing mAbs. This article is protected by copyright. All rights reserved.

  10. Isolation and characterization of Agouti: a diabetes/obesity related gene

    DOEpatents

    Woychik, Richard P.

    2000-06-27

    The present invention relates to the cloning and expression of the Agouti gene and analogous genes in transformed, transfected and transgenic mice. The present invention provides an animal model for the study of diabetes, obesity and tumors for the testing of potential therapeutic agents. The present invention provides oligonucleotide probes for the detection of the Agouti gene and mutations in the gene. The present invention also relates to the isolation and recombinant production of the Agouti gene product, production of antibodies to the Agouti gene product and their use as diagnostic and therapeutic agents.

  11. Isolation and characterization of Agouti: a diabetes/obesity related gene

    DOEpatents

    Woychik, Richard P.

    1998-01-01

    The present invention relates to the cloning and expression of the Agouti gene and analogous genes in transformed, transfected and transgenic mice. The present invention provides an animal model for the study of diabetes, obesity and tumors for the testing of potential therapeutic agents. The present invention provides oligonucleotide probes for the detection of the Agouti gene and mutations in the gene. The present invention also relates to the isolation and recombinant production of the Agouti gene product, production of antibodies to the Agouti gene product and their use as diagnostic and therapeutic agents.

  12. Signal peptide prediction based on analysis of experimentally verified cleavage sites

    PubMed Central

    Zhang, Zemin; Henzel, William J.

    2004-01-01

    A number of computational tools are available for detecting signal peptides, but their abilities to locate the signal peptide cleavage sites vary significantly and are often less than satisfactory. We characterized a set of 270 secreted recombinant human proteins by automated Edman analysis and used the verified cleavage sites to evaluate the success rate of a number of computational prediction programs. An examination of the frequency of amino acid in the N-terminal region of the data set showed a preference of proline and glutamine but a bias against tyrosine. The data set was compared to the SWISS-PROT database and revealed a high percentage of discrepancies with cleavage site annotations that were computationally generated. The best program for predicting signal sequences was found to be SignalP 2.0-NN with an accuracy of 78.1% for cleavage site recognition. The new data set can be utilized for refining prediction algorithms, and we have built an improved version of profile hidden Markov model for signal peptides based on the new data. PMID:15340161

  13. Rhizobial peptidase HrrP cleaves host-encoded signaling peptides and mediates symbiotic compatibility.

    PubMed

    Price, Paul A; Tanner, Houston R; Dillon, Brett A; Shabab, Mohammed; Walker, Graham C; Griffitts, Joel S

    2015-12-08

    Legume-rhizobium pairs are often observed that produce symbiotic root nodules but fail to fix nitrogen. Using the Sinorhizobium meliloti and Medicago truncatula symbiotic system, we previously described several naturally occurring accessory plasmids capable of disrupting the late stages of nodule development while enhancing bacterial proliferation within the nodule. We report here that host range restriction peptidase (hrrP), a gene found on one of these plasmids, is capable of conferring both these properties. hrrP encodes an M16A family metallopeptidase whose catalytic activity is required for these symbiotic effects. The ability of hrrP to suppress nitrogen fixation is conditioned upon the genotypes of both the host plant and the hrrP-expressing rhizobial strain, suggesting its involvement in symbiotic communication. Purified HrrP protein is capable of degrading a range of nodule-specific cysteine-rich (NCR) peptides encoded by M. truncatula. NCR peptides are crucial signals used by M. truncatula for inducing and maintaining rhizobial differentiation within nodules, as demonstrated in the accompanying article [Horváth B, et al. (2015) Proc Natl Acad Sci USA, 10.1073/pnas.1500777112]. The expression pattern of hrrP and its effects on rhizobial morphology are consistent with the NCR peptide cleavage model. This work points to a symbiotic dialogue involving a complex ensemble of host-derived signaling peptides and bacterial modifier enzymes capable of adjusting signal strength, sometimes with exploitative outcomes.

  14. Rhizobial peptidase HrrP cleaves host-encoded signaling peptides and mediates symbiotic compatibility

    PubMed Central

    Price, Paul A.; Tanner, Houston R.; Dillon, Brett A.; Shabab, Mohammed; Walker, Graham C.; Griffitts, Joel S.

    2015-01-01

    Legume–rhizobium pairs are often observed that produce symbiotic root nodules but fail to fix nitrogen. Using the Sinorhizobium meliloti and Medicago truncatula symbiotic system, we previously described several naturally occurring accessory plasmids capable of disrupting the late stages of nodule development while enhancing bacterial proliferation within the nodule. We report here that host range restriction peptidase (hrrP), a gene found on one of these plasmids, is capable of conferring both these properties. hrrP encodes an M16A family metallopeptidase whose catalytic activity is required for these symbiotic effects. The ability of hrrP to suppress nitrogen fixation is conditioned upon the genotypes of both the host plant and the hrrP-expressing rhizobial strain, suggesting its involvement in symbiotic communication. Purified HrrP protein is capable of degrading a range of nodule-specific cysteine-rich (NCR) peptides encoded by M. truncatula. NCR peptides are crucial signals used by M. truncatula for inducing and maintaining rhizobial differentiation within nodules, as demonstrated in the accompanying article [Horváth B, et al. (2015) Proc Natl Acad Sci USA, 10.1073/pnas.1500777112]. The expression pattern of hrrP and its effects on rhizobial morphology are consistent with the NCR peptide cleavage model. This work points to a symbiotic dialogue involving a complex ensemble of host-derived signaling peptides and bacterial modifier enzymes capable of adjusting signal strength, sometimes with exploitative outcomes. PMID:26401024

  15. Conservation of capa peptide-induced nitric oxide signalling in Diptera.

    PubMed

    Pollock, Valerie P; McGettigan, James; Cabrero, Pablo; Maudlin, Ian M; Dow, Julian A T; Davies, Shireen-A

    2004-11-01

    In D. melanogaster Malpighian (renal) tubules, the capa peptides stimulate production of nitric oxide (NO) and guanosine 3', 5'-cyclic monophosphate (cGMP), resulting in increased fluid transport. The roles of NO synthase (NOS), NO and cGMP in capa peptide signalling were tested in several other insect species of medical relevance within the Diptera (Aedes aegypti, Anopheles stephensi and Glossina morsitans) and in one orthopteran out-group, Schistocerca gregaria. NOS immunoreactivity was detectable by immunocytochemistry in tubules from all species studied. D. melanogaster, A. aegypti and A. stephensi express NOS in only principal cells, whereas G. morsitans and S. gregaria show more general NOS expression in the tubule. Measurement of associated NOS activity (NADPH diaphorase) shows that both D. melanogaster capa-1 and the two capa peptides encoded in the A. gambiae genome, QGLVPFPRVamide (AngCAPA-QGL) and GPTVGLFAFPRVamide (AngCAPA-GPT), all stimulate NOS activity in D. melanogaster, A. aegypti, A. stephensi and G. morsitans tubules but not in S. gregaria. Furthermore, capa-stimulated NOS activity in all the Diptera was inhibited by the NOS inhibitor l-NAME. All capa peptides stimulate an increase in cGMP content across the dipteran species, but not in the orthopteran S. gregaria. Similarly, all capa peptides tested stimulate fluid secretion in D. melanogaster, A. aegypti, A. stephensi and G. morsitans tubules but are either without effect or are inhibitory on S. gregaria. Consistent with these results, the Drosophila capa receptor was shown to be expressed in Drosophila tubules, and its closest Anopheles homologue was shown to be expressed in Anopheles tubules. Thus, we provide the first demonstration of physiological roles for two putative A. gambiae neuropeptides. We also demonstrate neuropeptide modulation of fluid secretion in tsetse tubule for the first time. Finally, we show the generality of capa peptide action, to stimulate NO/cGMP signalling and

  16. High-resolution mass spectrometry driven discovery of peptidic danger signals in insect immunity.

    PubMed

    Berisha, Arton; Mukherjee, Krishnendu; Vilcinskas, Andreas; Spengler, Bernhard; Römpp, Andreas

    2013-01-01

    The 'danger model' is an alternative concept for immune response postulating that the immune system reacts to entities that do damage (danger associated molecular patterns, DAMP) and not only to entities that are foreign (pathogen-associated molecular patterns, PAMP) as proposed by classical immunology concepts. In this study we used Galleria mellonella to validate the danger model in insects. Hemolymph of G. mellonella was digested with thermolysin (as a representative for virulence-associated metalloproteinases produced by humanpathogens) followed by chromatographic fractionation. Immune-stimulatory activity was tested by measuring lysozyme activity with the lytic zone assays against Micrococcus luteus cell wall components. Peptides were analyzed by nano-scale liquid chromatography coupled to high-resolution Fourier transform mass spectrometers. Addressing the lack of a genome sequence we complemented the rudimentary NCBI protein database with a recently established transcriptome and de novo sequencing methods for peptide identification. This approach led to identification of 127 peptides, 9 of which were identified in bioactive fractions. Detailed MS/MS experiments in comparison with synthetic analogues confirmed the amino acid sequence of all 9 peptides. To test the potential of these putative danger signals to induce immune responses we injected the synthetic analogues into G. mellonella and monitored the anti-bacterial activity against living Micrococcus luteus. Six out of 9 peptides identified in the bioactive fractions exhibited immune-stimulatory activity when injected. Hence, we provide evidence that small peptides resulting from thermolysin-mediated digestion of hemolymph proteins function as endogenous danger signals which can set the immune system into alarm. Consequently, our study indicates that the danger model also plays a role in insect immunity.

  17. Melanocyte stimulating hormone peptides inhibit TNF-alpha signaling in human dermal fibroblast cells.

    PubMed

    Hill, R P; MacNeil, S; Haycock, J W

    2006-02-01

    Alpha-melanocyte stimulating hormone (alpha-MSH) has been identified as a potent anti-inflammatory in various tissues including the skin. It has previously been shown in skin cell keratinocytes and melanocytes/melanoma cells that MSH peptides inhibit TNF-alpha stimulated NF-kappaB activity and intercellular adhesion molecule-1 (ICAM-1) upregulation. However, the precise anti-inflammatory role of MSH peptides in dermal fibroblasts is unclear. Some studies report on pro-inflammatory responses, while others on anti-inflammatory responses. The present study confirms MC1R expression in cultured human dermal fibroblasts and reports that the MSH peptides alpha-MSH and KP(-D-)V inhibit TNF-alpha stimulated NF-kappaB activity and ICAM-1 upregulation, consistent with an anti-inflammatory role. However, involvement of IkappaB-alpha regulation by either peptide was not confirmed, supporting a mechanism independent of the NF-kappaB inhibitor. In conclusion, alpha-MSH and KP(-D-)V peptides have an anti-inflammatory action on dermal fibroblast signaling by inhibiting the pro-inflammatory activity of TNF-alpha in vitro.

  18. A Role of TDIF Peptide Signaling in Vascular Cell Differentiation is Conserved Among Euphyllophytes

    PubMed Central

    Hirakawa, Yuki; Bowman, John L.

    2015-01-01

    Peptide signals mediate a variety of cell-to-cell communication crucial for plant growth and development. During Arabidopsis thaliana vascular development, a CLE (CLAVATA3/EMBRYO SURROUNDING REGION-related) family peptide hormone, TDIF (tracheary element differentiation inhibitory factor), regulates procambial cell fate by its inhibitory activity on xylem differentiation. To address if this activity is conserved among vascular plants, we performed comparative analyses of TDIF signaling in non-flowering vascular plants (gymnosperms, ferns and lycophytes). We identified orthologs of TDIF/CLE as well as its receptor TDR/PXY (TDIF RECEPTOR/PHLOEM INTERCALATED WITH XYLEM) in Ginkgo biloba, Adiantum aethiopicum, and Selaginella kraussiana by RACE-PCR. The predicted TDIF peptide sequences in seed plants and ferns were identical to that of A. thaliana TDIF. We examined the effects of exogenous CLE peptide-motif sequences of TDIF in these species. We found that liquid culturing of dissected leaves or shoots was useful for examining TDIF activity during vascular development. TDIF treatment suppressed xylem/tracheary element differentiation of procambial cells in G. biloba and A. aethiopicum leaves. In contrast, neither TDIF nor putative endogenous TDIF inhibited xylem differentiation in developing shoots and rhizophores of S. kraussiana. These data suggest that activity of TDIF in vascular development is conserved among extant euphyllophytes. In addition to the conserved function, via liquid culturing of its bulbils, we found a novel inhibitory activity on root growth in the fern Asplenium × lucrosum suggesting lineage-specific co-option of peptide signaling occurred during the evolution of vascular plant organs. PMID:26635860

  19. Drosophila neprilysins control insulin signaling and food intake via cleavage of regulatory peptides

    PubMed Central

    Hallier, Benjamin; Schiemann, Ronja; Cordes, Eva; Vitos-Faleato, Jessica; Walter, Stefan; Heinisch, Jürgen J; Malmendal, Anders; Paululat, Achim; Meyer, Heiko

    2016-01-01

    Insulin and IGF signaling are critical to numerous developmental and physiological processes, with perturbations being pathognomonic of various diseases, including diabetes. Although the functional roles of the respective signaling pathways have been extensively studied, the control of insulin production and release is only partially understood. Herein, we show that in Drosophila expression of insulin-like peptides is regulated by neprilysin activity. Concomitant phenotypes of altered neprilysin expression included impaired food intake, reduced body size, and characteristic changes in the metabolite composition. Ectopic expression of a catalytically inactive mutant did not elicit any of the phenotypes, which confirms abnormal peptide hydrolysis as a causative factor. A screen for corresponding substrates of the neprilysin identified distinct peptides that regulate insulin-like peptide expression, feeding behavior, or both. The high functional conservation of neprilysins and their substrates renders the characterized principles applicable to numerous species, including higher eukaryotes and humans. DOI: http://dx.doi.org/10.7554/eLife.19430.001 PMID:27919317

  20. A RHAMM mimetic peptide blocks hyaluronan signaling and reduces inflammation and fibrogenesis in excisional skin wounds.

    PubMed

    Tolg, Cornelia; Hamilton, Sara R; Zalinska, Ewa; McCulloch, Lori; Amin, Ripal; Akentieva, Natalia; Winnik, Francoise; Savani, Rashmin; Bagli, Darius J; Luyt, Len G; Cowman, Mary K; McCarthy, Jim B; Turley, Eva A

    2012-10-01

    Hyaluronan is activated by fragmentation and controls inflammation and fibroplasia during wound repair and diseases (eg, cancer). Hyaluronan-binding peptides were identified that modify fibrogenesis during skin wound repair. Peptides were selected from 7- to 15mer phage display libraries by panning with hyaluronan-Sepharose beads and assayed for their ability to block fibroblast migration in response to hyaluronan oligosaccharides (10 kDa). A 15mer peptide (P15-1), with homology to receptor for hyaluronan mediated motility (RHAMM) hyaluronan binding sequences, was the most effective inhibitor. P15-1 bound to 10-kDa hyaluronan with an affinity of K(d) = 10(-7) and appeared to specifically mimic RHAMM since it significantly reduced binding of hyaluronan oligosaccharides to recombinant RHAMM but not to recombinant CD44 or TLR2,4, and altered wound repair in wild-type but not RHAMM(-/-) mice. One topical application of P15-1 to full-thickness excisional rat wounds significantly reduced wound macrophage number, fibroblast number, and blood vessel density compared to scrambled, negative control peptides. Wound collagen 1, transforming growth factor β-1, and α-smooth muscle actin were reduced, whereas tenascin C was increased, suggesting that P15-1 promoted a form of scarless healing. Signaling/microarray analyses showed that P15-1 blocks RHAMM-regulated focal adhesion kinase pathways in fibroblasts. These results identify a new class of reagents that attenuate proinflammatory, fibrotic repair by blocking hyaluronan oligosaccharide signaling.

  1. Antimicrobial peptides trigger a division block in Escherichia coli through stimulation of a signalling system

    PubMed Central

    Yadavalli, Srujana S.; Carey, Jeffrey N.; Leibman, Rachel S.; Chen, Annie I.; Stern, Andrew M.; Roggiani, Manuela; Lippa, Andrew M.; Goulian, Mark

    2016-01-01

    Antimicrobial peptides are an important component of the molecular arsenal employed by hosts against bacteria. Many bacteria in turn possess pathways that provide protection against these compounds. In Escherichia coli and related bacteria, the PhoQ/PhoP signalling system is a key regulator of this antimicrobial peptide defence. Here we show that treating E. coli with sublethal concentrations of antimicrobial peptides causes cells to filament, and that this division block is controlled by the PhoQ/PhoP system. The filamentation results from increased expression of QueE, an enzyme that is part of a tRNA modification pathway but that, as we show here, also affects cell division. We also find that a functional YFP–QueE fusion localizes to the division septum in filamentous cells, suggesting QueE blocks septation through interaction with the divisome. Regulation of septation by PhoQ/PhoP may protect cells from antimicrobial peptide-induced stress or other conditions associated with high-level stimulation of this signalling system. PMID:27471053

  2. Structural analysis of a signal peptide inside the ribosome tunnel by DNP MAS NMR

    PubMed Central

    Lange, Sascha; Franks, W. Trent; Rajagopalan, Nandhakishore; Döring, Kristina; Geiger, Michel A.; Linden, Arne; van Rossum, Barth-Jan; Kramer, Günter; Bukau, Bernd; Oschkinat, Hartmut

    2016-01-01

    Proteins are synthesized in cells by ribosomes and, in parallel, prepared for folding or targeting. While ribosomal protein synthesis is progressing, the nascent chain exposes amino-terminal signal sequences or transmembrane domains that mediate interactions with specific interaction partners, such as the signal recognition particle (SRP), the SecA–adenosine triphosphatase, or the trigger factor. These binding events can set the course for folding in the cytoplasm and translocation across or insertion into membranes. A distinction of the respective pathways depends largely on the hydrophobicity of the recognition sequence. Hydrophobic transmembrane domains stabilize SRP binding, whereas less hydrophobic signal sequences, typical for periplasmic and outer membrane proteins, stimulate SecA binding and disfavor SRP interactions. In this context, the formation of helical structures of signal peptides within the ribosome was considered to be an important factor. We applied dynamic nuclear polarization magic-angle spinning nuclear magnetic resonance to investigate the conformational states of the disulfide oxidoreductase A (DsbA) signal peptide stalled within the exit tunnel of the ribosome. Our results suggest that the nascent chain comprising the DsbA signal sequence adopts an extended structure in the ribosome with only minor populations of helical structure. PMID:27551685

  3. General Signal Amplification Strategy for Nonfaradic Impedimetric Sensing: Trastuzumab Detection Employing a Peptide Immunosensor.

    PubMed

    Liu, Juan; Chisti, Mohammad Muhsin; Zeng, Xiangqun

    2017-04-04

    A label-free and reagent-free peptide mimotope capacitive biosensor has been developed for cancer drug (trastuzumab) quantification based on nonfaradic readout. The low sensitivity issue of capacitive biosensors was overcome with two innovations: peptide mimotope mixed self-assembled monolayer (SAM) biointerface and dilution of the analysis buffer. Signal amplification was achieved through dilution of phosphate-buffered saline (PBS) to tune Cdl to dominate the overall capacitance change upon target binding, which contribution is often negligible without dilution. After 1000× dilution, the limit of detection was lowered 500-fold (0.22 μg/mL) and the sensitivity was increased 20-fold [0.04192 (μg/mL)(-1)] in comparison with undiluted PBS. The proposed signal amplification strategy is more straightforward and practical compared to biorecognition element engineering and other strategies. The proposed method was further applied to planar electrodes for optimizing sensing response time to less than 1 min.

  4. Use of a porous silicon-gold plasmonic nanostructure to enhance serum peptide signals in MALDI-TOF analysis.

    PubMed

    Li, Xiao; Tan, Jie; Yu, Jiekai; Feng, Jiandong; Pan, Aiwu; Zheng, Shu; Wu, Jianmin

    2014-11-07

    Small peptides in serum are potential biomarkers for the diagnosis of cancer and other diseases. The identification of peptide biomarkers in human plasma/serum has become an area of high interest in medical research. However, the direct analysis of peptides in serum samples using mass spectrometry is challenging due to the low concentration of peptides and the high abundance of high-molecular-weight proteins in serum, the latter of which causes severe signal suppression. Herein, we reported that porous semiconductor-noble metal hybrid nanostructures can both eliminate the interference from large proteins in serum samples and significantly enhance the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) yields of peptides captured on the nanostructure. Serum peptide fingerprints with high fidelity can be acquired rapidly, and successful discrimination of colorectal cancer patients based on peptide fingerprints is demonstrated.

  5. Optimization of adiponectin-derived peptides for inhibition of cancer cell growth and signaling.

    PubMed

    Otvos, Laszlo; Kovalszky, Ilona; Olah, Julia; Coroniti, Roberta; Knappe, Daniel; Nollmann, Friederike I; Hoffmann, Ralf; Wade, John D; Lovas, Sandor; Surmacz, Eva

    2015-05-01

    Adiponectin, an adipose tissue-excreted adipokine plays protective roles in metabolic and cardiovascular diseases and exerts anti-cancer activities, partially by interfering with leptin-induced signaling. Previously we identified the active site in the adiponectin protein, and generated both a nanomolar monomeric agonist of the adiponectin receptor (10-mer ADP355) and an antagonist (8-mer ADP400) to modulate various adiponectin receptor-mediated cellular functions. As physiologically circulating adiponectin forms multimeric complexes, we also generated an agonist dimer with improved biodistribution and in vitro efficacy. In the current report, we attempted to optimize the monomeric agonist structure. Neither extension of the peptide up to 14-mer analogs nor reinstallation of native residues in permissible positions enhanced significantly the activity profile. The only substitutions that resulted in 5-10-fold improved agonistic activity were the replacement of turn-forming Gly4 and Tyr7 residues with Pro and Hyp, respectively, yielding the more active native β-sheet structure. All peptides retained good stability in human serum exhibiting half-lives >2 h. The cellular efficacy and stability rankings among the peptides followed expected structure-activity relationship trends. To investigate whether simultaneous activation of adiponectin pathways and inhibition of leptin-induced signals can result in cytostatic and anti-oncogenic signal transduction processes, we developed a chimera of the leptin receptor antagonist peptide Allo-aca (placed to the N-terminus) and ADP355 (at the C-terminus). The in vitro anti-tumor activity and intracellular signaling of the chimera were dominated by the more active Allo-aca component. The ADP355 part, however, reversed unfavorable in vivo metabolic effects of the leptin receptor antagonist.

  6. Combined effects of insulin treatment and adipose tissue-specific agouti expression on the development of obesity.

    PubMed

    Mynatt, R L; Miltenberger, R J; Klebig, M L; Zemel, M B; Wilkinson, J E; Wilkinson, W O; Woychik, R P

    1997-02-04

    The agouti gene product is a secreted protein that acts in a paracrine manner to regulate coat color in mammals. Several dominant mutations at the agouti locus in mice cause the ectopic, ubiquitous expression of agouti, resulting in a condition similar to adult-onset obesity and non-insulin-dependent diabetes mellitus. The human agouti protein is 85% homologous to mouse agouti; however, unlike the mouse agouti gene, human agouti is normally expressed in adipose tissue. To address whether expression of agouti in human adipose tissue is physiologically relevant, transgenic mice were generated that express agouti in adipose tissue. Similar to most humans, these mice do not become obese or diabetic. However, we found that daily insulin injections significantly increased weight gain in the transgenic lines expressing agouti in adipose tissue, but not in nontransgenic mice. These results suggest that insulin triggers the onset of obesity and that agouti expression in adipose tissue potentiates this effect. Accordingly, the investigation of agouti's role in obesity and non-insulin-dependent diabetes mellitus in mice holds significant promise for understanding the pathophysiology of human obesity.

  7. A Method for Structure–Activity Analysis of Quorum-Sensing Signaling Peptides from Naturally Transformable Streptococci

    PubMed Central

    2009-01-01

    Many species of streptococci secrete and use a competence-stimulating peptide (CSP) to initiate quorum sensing for induction of genetic competence, bacteriocin production, and other activities. These signaling molecules are small, unmodified peptides that induce powerful strain-specific activity at nano-molar concentrations. This feature has provided an excellent opportunity to explore their structure–function relationships. However, CSP variants have also been identified in many species, and each specifically activates its cognate receptor. How such minor changes dramatically affect the specificity of these peptides remains unclear. Structure–activity analysis of these peptides may provide clues for understanding the specificity of signaling peptide–receptor interactions. Here, we use the Streptococcus mutans CSP as an example to describe methods of analyzing its structure–activity relationship. The methods described here may provide a platform for studying quorum-sensing signaling peptides of other naturally transformable streptococci. PMID:19517207

  8. Transcriptional Profiling of the Oral Pathogen Streptococcus mutans in Response to Competence Signaling Peptide XIP

    PubMed Central

    Wenderska, Iwona B.; Latos, Andrew; Pruitt, Benjamin; Palmer, Sara; Spatafora, Grace

    2017-01-01

    ABSTRACT In the cariogenic Streptococcus mutans, competence development is regulated by the ComRS signaling system comprised of the ComR regulator and the ComS prepeptide to the competence signaling peptide XIP (ComX-inducing peptide). Aside from competence development, XIP signaling has been demonstrated to regulate cell lysis, and recently, the expression of bacteriocins, small antimicrobial peptides used by bacteria to inhibit closely related species. Our study further explores the effect of XIP signaling on the S. mutans transcriptome. RNA sequencing revealed that XIP induction resulted in a global change in gene expression that was consistent with a stress response. An increase in several membrane-bound regulators, including HdrRM and BrsRM, involved in bacteriocin production, and the VicRKX system, involved in acid tolerance and biofilm formation, was observed. Furthermore, global changes in gene expression corresponded to changes observed during the stringent response to amino acid starvation. Effects were also observed on genes involved in sugar transport and carbon catabolite repression and included the levQRST and levDEFG operons. Finally, our work identified a novel heat shock-responsive intergenic region, encoding a small RNA, with a potential role in competence shutoff. IMPORTANCE Genetic competence provides bacteria with an opportunity to increase genetic diversity or acquire novel traits conferring a survival advantage. In the cariogenic pathogen Streptococcus mutans, DNA transformation is regulated by the competence stimulating peptide XIP (ComX-inducing peptide). The present study utilizes high-throughput RNA sequencing (RNAseq) to provide a greater understanding of how global gene expression patterns change in response to XIP. Overall, our work demonstrates that in S. mutans, XIP signaling induces a response that resembles the stringent response to amino acid starvation. We further identify a novel heat shock-responsive intergenic region with a

  9. Acetylcholinesterase (AChE)--amyloid-beta-peptide complexes in Alzheimer's disease. the Wnt signaling pathway.

    PubMed

    Inestrosa, Nibaldo C; Urra, Soledad; Colombres, Marcela

    2004-11-01

    Alzheimer's disease (AD) is characterized by selective neuronal cell death, which is probably caused by amyloid beta-peptide (Abeta) oligomers and fibrils. We have found that acetylcholinesterase (AChE), a senile plaque component, increases amyloid fibril assembly with the formation of highly toxic complexes (Abeta-AChE). The neurotoxic effect induced by Abeta-AChE complexes was higher than that induced by the Abeta peptide alone as shown both in vitro (hippocampal neurons) and in vivo (rats injected with Abeta peptide in the dorsal hippocampus). Interestingly, treatment with Abeta-AChE complexes decreases the cytoplasmic beta-catenin level, a key component of Wnt signaling. Conversely, the activation of this signaling pathway by Wnt-3a promotes neuronal survival and rescues changes in Wnt components (activation or subcellular localization). Moreover Frzb-1, a Wnt antagonist reverses the Wnt-3a neuroprotection effect against Abeta neurotoxicity. Compounds that mimic the Wnt signaling or modulate the cross-talking with this pathway could be used as neuroprotective agents for therapeutic strategies in AD patients.

  10. Molecular analysis of the mouse agouti gene and the role of dominant agouti-locus mutations in obesity and insulin resistance

    SciTech Connect

    Klebig, M.L.; Woychik, R.P.; Wilkinson, J.E.

    1994-09-01

    The lethal yellow (A{sup y/-}) and viable yellow (A{sup vy/-}) mouse agouti mutants have a predominantly yellow pelage and display a complex syndrome that includes obesity, hyperinsulinemia, and insulin resistance, hallmark features of obesity-associated noninsulin-dependent diabetes mellitus (NIDDM) in humans. A new dominant agouti allele, A{sup iapy}, has recently been identified; like the A{sup vy} allele, it is homozygous viable and confers obesity and yellow fur in heterozygotes. The agouti gene was cloned and characterized at the molecular level. The gene is expressed in the skin during hair growth and is predicted to encode a 131 amino acid protein, that is likely to be a secreted factor. In both Ay/- and A{sup iapy}/- mice, the obesity and other dominant pleiotropic effects are associated with an ectopic expression of agouti in many tissues where the gene product is normally not produced. In Ay, a 170-kb deletion has occurred that causes an upstream promoter to drive the ectopic expression of the wild-type agouti coding exons. In A{sup iapy}, the coding region of the gene is expressed from a cryptic promoter within the LTR of an intracisternal A-particle (IAP), which has integrated within the region just upstream of the first agouti coding exon. Transgenic mice ubiquitously expressing the cloned agouti gene under the influence of the beta-actin and phosphoglycerate kinase promoters display obesity, hyperinsulinemia, and yellow coat color. This demonstrates unequivocally that ectopic expression of agouti is responsible for the yellow obese syndrome.

  11. Death and survival in Streptococcus mutans: differing outcomes of a quorum-sensing signaling peptide.

    PubMed

    Leung, Vincent; Dufour, Delphine; Lévesque, Céline M

    2015-01-01

    Bacteria are considered "social" organisms able to communicate with one another using small hormone-like molecules (pheromones) in a process called quorum-sensing (QS). These signaling molecules increase in concentration as a function of bacterial cell density. For most human pathogens, QS is critical for virulence and biofilm formation, and the opportunity to interfere with bacterial QS could provide a sophisticated means for manipulating the composition of pathogenic biofilms, and possibly eradicating the infection. Streptococcus mutans is a well-characterized resident of the dental plaque biofilm, and is the major pathogen of dental caries (cavities). In S. mutans, its CSP QS signaling peptide does not act as a classical QS signal by accumulating passively in proportion to cell density. In fact, particular stresses such as those encountered in the oral cavity, induce the production of the CSP pheromone, suggesting that the pheromone most probably functions as a stress-inducible alarmone by triggering the signaling to the bacterial population to initiate an adaptive response that results in different phenotypic outcomes. This mini-review discusses two different CSP-induced phenotypes, bacterial "suicide" and dormancy, and the underlying mechanisms by which S. mutans utilizes the same QS signaling peptide to regulate two opposite phenotypes.

  12. LL37 and Cationic Peptides Enhance TLR3 Signaling by Viral Double-stranded RNAs

    PubMed Central

    Lai, Yvonne; Adhikarakunnathu, Sreedevi; Bhardwaj, Kanchan; Ranjith-Kumar, C. T.; Wen, Yahong; Jordan, Jarrat L.; Wu, Linda H.; Dragnea, Bogdan; Mateo, Lani San; Kao, C. Cheng

    2011-01-01

    Background Toll-like Receptor 3 (TLR3) detects viral dsRNA during viral infection. However, most natural viral dsRNAs are poor activators of TLR3 in cell-based systems, leading us to hypothesize that TLR3 needs additional factors to be activated by viral dsRNAs. The anti-microbial peptide LL37 is the only known human member of the cathelicidin family of anti-microbial peptides. LL37 complexes with bacterial lipopolysaccharide (LPS) to prevent activation of TLR4, binds to ssDNA to modulate TLR9 and ssRNA to modulate TLR7 and 8. It synergizes with TLR2/1, TLR3 and TLR5 agonists to increase IL8 and IL6 production. This work seeks to determine whether LL37 enhances viral dsRNA recognition by TLR3. Methodology/Principal Findings Using a human bronchial epithelial cell line (BEAS2B) and human embryonic kidney cells (HEK 293T) transiently transfected with TLR3, we found that LL37 enhanced poly(I:C)-induced TLR3 signaling and enabled the recognition of viral dsRNAs by TLR3. The presence of LL37 also increased the cytokine response to rhinovirus infection in BEAS2B cells and in activated human peripheral blood mononuclear cells. Confocal microscopy determined that LL37 could co-localize with TLR3. Electron microscopy showed that LL37 and poly(I:C) individually formed globular structures, but a complex of the two formed filamentous structures. To separate the effects of LL37 on TLR3 and TLR4, other peptides that bind RNA and transport the complex into cells were tested and found to activate TLR3 signaling in response to dsRNAs, but had no effect on TLR4 signaling. This is the first demonstration that LL37 and other RNA-binding peptides with cell penetrating motifs can activate TLR3 signaling and facilitate the recognition of viral ligands. Conclusions/Significance LL37 and several cell-penetrating peptides can enhance signaling by TLR3 and enable TLR3 to respond to viral dsRNA. PMID:22039520

  13. alpha-Melanocyte-stimulating hormone and oxytocin: a peptide signalling cascade in the hypothalamus.

    PubMed

    Sabatier, N

    2006-09-01

    alpha-Melanocyte-stimulating hormone (alpha-MSH) and oxytocin share remarkable similarities of effects on behaviour in rats; in particular, they both inhibit feeding behaviour and stimulate sexual behaviour. Recently, we showed that alpha-MSH interacts with the magnocellular oxytocin system in the supraoptic nucleus; alpha-MSH induces the release of oxytocin from the dendrites of magnocellular neurones but it inhibits the secretion of oxytocin from their nerve terminals in the posterior pituitary. This effect of alpha-MSH on supraoptic nucleus oxytocin neurones is remarkable for two reasons. First, it illustrates the capacity of magnocellular neurones to differentially regulate peptide release from dendrites and axons and, second, it emphasises the putative role of magnocellular neurones as a major source of central oxytocin release, and as a likely substrate of some oxytocin-mediated behaviours. The ability of peptides to differentially control secretion from different compartments of their targets indicates one way by which peptide signals might have a particularly significant effect on neuronal circuitry. This suggests a possible explanation for the striking way in which some peptides can influence specific, complex behaviours.

  14. Leptin responsiveness in mice that ectopically express agouti protein.

    PubMed

    Harris, Ruth B S; Mitchell, Tiffany D; Mynatt, Randall L

    Agouti protein is an endogenous antagonist of melanocortin receptors (MCR), including MCR3 and MCR4, which have been implicated as part of the hypothalamic mechanism that mediates leptin-induced hypophagia. In this experiment we examined the effects of peripheral and central leptin administration in male and female beta-actin promoter (BAPa) mice that express agouti protein ectopically and have a phenotype that includes obesity and diabetes which is exaggerated in males compared with females. Intraperitoneal infusion of 10 microg leptin/day for 13 days caused weight loss and a transient inhibition of food intake in wild-type mice, with a greater effect in males than females. Male BAPa mice were resistant to leptin infusion whereas female mice lost weight. All of the mice lost body weight following a single intracerebroventricular injection of leptin but the effect was greater in female BAPa mice than any other group. There also was a delayed suppression of food intake that was the same for wild-type and BAPa female mice, whereas food intake recovered faster in BAPa than wild-type males. The dissociation between food intake and body weight loss implies a significant effect of leptin on energy expenditure in BAPa mice. These results demonstrate that the effect of leptin on energy balance is not entirely dependent upon the melanocortin system.

  15. Peptides targeting Toll-like receptor signalling pathways for novel immune therapeutics.

    PubMed

    Gomariz, R P; Gutiérrez-Cañas, I; Arranz, A; Carrión, M; Juarranz, Y; Leceta, J; Martínez, C

    2010-01-01

    Toll-like receptors (TLRs) are a family of key proteins that permit mammals to detect microbes and endogenous molecules, which are present in body fluids, cell membranes and cytoplasm. They confer mechanisms to the host for maintaining homeostasis, activating innate immunity and inducing signals that lead to the activation of adaptive immunity. TLR signalling induces the expression of pro-inflammatory and anti-viral genes through different and intricate pathways. However, persistent signalling can be dangerous and all members of the TLR family are involved in the pathogenesis of acute and chronic inflammation, autoimmunity, allergy, cancer and aging. The pharmaceutical industry has begun intensive work developing novel immunotherapeutic approaches based on both activation and inhibition of TLR triggering. Further, clinical trials are pending to evaluate TLR agonists as novel vaccine adjuvants and for the treatment of infectious diseases, allergic diseases and asthma. Since systemic, metabolic and neuroendocrine changes are elicited by inflammation, TLR activity is susceptible of regulation by hormones and neuroendocrine factors. Neuroendocrine mediators are important players in modulating different phases of TLR regulation contributing to the endogenous control of homeostasis through local, regional and systemic routes. Vasoactive intestinal peptide (VIP) is an important signal molecule of the neuroendocrine-immune network that has recently emerged as a potential candidate for the treatment of inflammatory and autoimmune disorders by controlling innate and adaptive immunity. This review shows current advances in the understanding of TLR modulation by VIP that could contribute to the use of this natural peptide as a therapeutic tool.

  16. OmpA signal peptide leads to heterogenous secretion of B. subtilis chitosanase enzyme from E. coli expression system.

    PubMed

    Pechsrichuang, Phornsiri; Songsiriritthigul, Chomphunuch; Haltrich, Dietmar; Roytrakul, Sittiruk; Namvijtr, Peenida; Bonaparte, Napolean; Yamabhai, Montarop

    2016-01-01

    The production of secreted recombinant proteins from E. coli is pivotal to the biotechnological industry because it reduces the cost of downstream processing. Proteins destined for secretion contain an N-terminal signal peptide that is cleaved by secretion machinery in the plasma membrane. The resulting protein is released in an active mature form. In this study, Bacillus subtilis chitosanase (Csn) was used as a model protein to compare the effect of two signal peptides on the secretion of heterologous recombinant protein. The results showed that the E. coli secretion machinery could recognize both native bacillus and E. coli signal peptides. However, only the native bacillus signal peptide could generate the same N-terminal sequence as in the wild type bacteria. When the recombinant Csn constructs contained the E. coli OmpA signal peptide, the secreted enzymes were heterogeneous, comprising a mixed population of secreted enzymes with different N-terminal sequences. Nevertheless, the E. coli OmpA signal peptide was found to be more efficient for high expression and secretion of bacillus Csn. These findings may be used to help engineer other recombinant proteins for secretory production in E. coli.

  17. Plasmodium falciparum signal peptide peptidase cleaves malaria heat shock protein 101 (HSP101). Implications for gametocytogenesis

    SciTech Connect

    Baldwin, Michael; Russo, Crystal; Li, Xuerong; Chishti, Athar H.

    2014-08-08

    Highlights: • PfSPP is an ER resident protease. • PfSPP is expressed both as a monomer and dimer. • The signal peptide of HSP101 is the first known substrate of PfSPP. • Reduced PfSPP activity may significantly affect ER homeostasis. - Abstract: Previously we described the identification of a Plasmodium falciparum signal peptide peptidase (PfSPP) functioning at the blood stage of malaria infection. Our studies also demonstrated that mammalian SPP inhibitors prevent malaria parasite growth at the late-ring/early trophozoite stage of intra-erythrocytic development. Consistent with its role in development, we tested the hypothesis that PfSPP functions at the endoplasmic reticulum of P.falciparum where it cleaves membrane-bound signal peptides generated following the enzyme activity of signal peptidase. The localization of PfSPP to the endoplasmic reticulum was confirmed by immunofluorescence microscopy and immunogold electron microscopy. Biochemical analysis indicated the existence of monomer and dimer forms of PfSPP in the parasite lysate. A comprehensive bioinformatics screen identified several candidate PfSPP substrates in the parasite genome. Using an established transfection based in vivo luminescence assay, malaria heat shock protein 101 (HSP101) was identified as a substrate of PfSPP, and partial inhibition of PfSPP correlated with the emergence of gametocytes. This finding unveils the first known substrate of PfSPP, and provides new perspectives for the function of intra-membrane proteolysis at the erythrocyte stage of malaria parasite life cycle.

  18. Structure, signaling mechanism and regulation of the natriuretic peptide receptor guanylate cyclase.

    SciTech Connect

    Misono, K. S.; Philo, J. S.; Arakawa, T.; Ogata, C. M.; Qiu, Y.; Ogawa, H.; Young, H. S.

    2011-06-01

    Atrial natriuretic peptide (ANP) and the homologous B-type natriuretic peptide are cardiac hormones that dilate blood vessels and stimulate natriuresis and diuresis, thereby lowering blood pressure and blood volume. ANP and B-type natriuretic peptide counterbalance the actions of the renin-angiotensin-aldosterone and neurohormonal systems, and play a central role in cardiovascular regulation. These activities are mediated by natriuretic peptide receptor-A (NPRA), a single transmembrane segment, guanylyl cyclase (GC)-linked receptor that occurs as a homodimer. Here, we present an overview of the structure, possible chloride-mediated regulation and signaling mechanism of NPRA and other receptor GCs. Earlier, we determined the crystal structures of the NPRA extracellular domain with and without bound ANP. Their structural comparison has revealed a novel ANP-induced rotation mechanism occurring in the juxtamembrane region that apparently triggers transmembrane signal transduction. More recently, the crystal structures of the dimerized catalytic domain of green algae GC Cyg12 and that of cyanobacterium GC Cya2 have been reported. These structures closely resemble that of the adenylyl cyclase catalytic domain, consisting of a C1 and C2 subdomain heterodimer. Adenylyl cyclase is activated by binding of G{sub s}{alpha} to C2 and the ensuing 7{sup o} rotation of C1 around an axis parallel to the central cleft, thereby inducing the heterodimer to adopt a catalytically active conformation. We speculate that, in NPRA, the ANP-induced rotation of the juxtamembrane domains, transmitted across the transmembrane helices, may induce a similar rotation in each of the dimerized GC catalytic domains, leading to the stimulation of the GC catalytic activity.

  19. A RHAMM Mimetic Peptide Blocks Hyaluronan Signaling and Reduces Inflammation and Fibrogenesis in Excisional Skin Wounds

    PubMed Central

    Tolg, Cornelia; Hamilton, Sara R.; Zalinska, Ewa; McCulloch, Lori; Amin, Ripal; Akentieva, Natalia; Winnik, Francoise; Savani, Rashmin; Bagli, Darius J.; Luyt, Len G.; Cowman, Mary K.; McCarthy, Jim B.; Turley, Eva A.

    2013-01-01

    Hyaluronan is activated by fragmentation and controls inflammation and fibroplasia during wound repair and diseases (eg, cancer). Hyaluronan-binding peptides were identified that modify fibrogenesis during skin wound repair. Peptides were selected from 7- to 15mer phage display libraries by panning with hyaluronan-Sepharose beads and assayed for their ability to block fibroblast migration in response to hyaluronan oligosaccharides (10 kDa). A 15mer peptide (P15-1), with homology to receptor for hyaluronan mediated motility (RHAMM) hyaluronan binding sequences, was the most effective inhibitor. P15-1 bound to 10-kDa hyaluronan with an affinity of Kd = 10−7 and appeared to specifically mimic RHAMM since it significantly reduced binding of hyaluronan oligosaccharides to recombinant RHAMM but not to recombinant CD44 or TLR2,4, and altered wound repair in wild-type but not RHAMM−/− mice. One topical application of P15-1 to full-thickness excisional rat wounds significantly reduced wound macrophage number, fibroblast number, and blood vessel density compared to scrambled, negative control peptides. Wound collagen 1, transforming growth factor β-1, and α-smooth muscle actin were reduced, whereas tenascin C was increased, suggesting that P15-1 promoted a form of scarless healing. Signaling/microarray analyses showed that P15-1 blocks RHAMM-regulated focal adhesion kinase pathways in fibroblasts. These results identify a new class of reagents that attenuate proinflammatory, fibrotic repair by blocking hyaluronan oligosaccharide signaling. PMID:22889846

  20. Feedback Inhibition in the PhoQ/PhoP Signaling System by a Membrane Peptide

    PubMed Central

    Lippa, Andrew M.; Goulian, Mark

    2009-01-01

    The PhoQ/PhoP signaling system responds to low magnesium and the presence of certain cationic antimicrobial peptides. It regulates genes important for growth under these conditions, as well as additional genes important for virulence in many gram-negative pathogens. PhoQ is a sensor kinase that phosphorylates and activates the transcription factor PhoP. Since feedback inhibition is a common theme in stress-response circuits, we hypothesized that some members of the PhoP regulon may play such a role in the PhoQ/PhoP pathway. We therefore screened for PhoP-regulated genes that mediate feedback in this system. We found that deletion of mgrB (yobG), which encodes a 47 amino acid peptide, results in a potent increase in PhoP-regulated transcription. In addition, over-expression of mgrB decreased transcription at both high and low concentrations of magnesium. Localization and bacterial two-hybrid studies suggest that MgrB resides in the inner-membrane and interacts directly with PhoQ. We further show that MgrB homologs from Salmonella typhimurium and Yersinia pestis also repress PhoP-regulated transcription in these organisms. In cell regulatory circuits, feedback has been associated with modulating the induction kinetics and/or the cell-to-cell variability in response to stimulus. Interestingly, we found that elimination of MgrB-mediated feedback did not have a significant effect on the kinetics of reporter protein production and did not decrease the variability in expression among cells. Our results indicate MgrB is a broadly conserved membrane peptide that is a critical mediator of negative feedback in the PhoQ/PhoP circuit. This new regulator may function as a point of control that integrates additional input signals to modulate the activity of this important signaling system. PMID:20041203

  1. Signal peptide-dependent inhibition of MHC class I heavy chain translation by rhesus cytomegalovirus.

    PubMed

    Powers, Colin J; Früh, Klaus

    2008-10-03

    The US2-11 region of human and rhesus cytomegalovirus encodes a conserved family of glycoproteins that inhibit MHC-I assembly with viral peptides, thus preventing cytotoxic T cell recognition. Since HCMV lacking US2-11 is no longer able to block assembly and transport of MHC-I, we examined whether this is also observed for RhCMV lacking the corresponding region. Unexpectedly, recombinant RhCMV lacking US2-11 was still able to inhibit MHC-I expression in infected fibroblasts, suggesting the presence of an additional MHC-I evasion mechanism. Progressive deletion analysis of RhCMV-specific genomic regions revealed that MHC-I expression is fully restored upon additional deletion of rh178. The protein encoded by this RhCMV-specific open reading frame is anchored in the endoplasmic reticulum membrane. In the presence of rh178, RhCMV prevented MHC-I heavy chain (HC) expression, but did not inhibit mRNA transcription or association of HC mRNA with translating ribosomes. Proteasome inhibitors stabilized a HC degradation intermediate in the absence of rh178, but not in its presence, suggesting that rh178 prevents completion of HC translation. This interference was signal sequence-dependent since replacing the signal peptide with that of CD4 or murine HC rendered human HCs resistant to rh178. We have identified an inhibitor of antigen presentation encoded by rhesus cytomegalovirus unique in both its lack of homology to any other known protein and in its mechanism of action. By preventing signal sequence-dependent HC translocation, rh178 acts prior to US2, US3 and US11 which attack MHC-I proteins after protein synthesis is completed. Rh178 is the first viral protein known to interfere at this step of the MHC-I pathway, thus taking advantage of the conserved nature of HC leader peptides, and represents a new mechanism of translational interference.

  2. Saccharomyces cerevisiae secretes and correctly processes human interferon hybrid proteins containing yeast invertase signal peptides.

    PubMed Central

    Chang, C N; Matteucci, M; Perry, L J; Wulf, J J; Chen, C Y; Hitzeman, R A

    1986-01-01

    Synthetic oligonucleotides coding for the yeast invertase secretion signal peptide were fused to the gene for the mature form of human interferon (huIFN-alpha 2). Two plasmids (E3 and F2) were constructed. E3 contained the invertase signal codons in a reading frame with the mature huIFN-alpha 2 gene. F2 had a deletion of the codon for alanine at amino acid residue-5 in the invertase signal and an addition of a methionine codon located between the coding sequences for the invertase signal and mature huIFN-alpha 2. Both hybrid genes were located adjacent to the promoter from the 3-phosphoglycerate kinase gene on the multicopy yeast expression plasmid, YEp1PT. Yeast transformants containing these plasmids produced somewhat more IFN than did the same expression plasmid containing the IFN gene with its human secretion signal sequence. HuIFN-alpha 2, purified from the medium of yeast cells containing E3, was found to be processed at the correct site. The huIFN-alpha 2 made by plasmid F2 was found to be completely processed at the junction between the invertase signal (a variant) and the methionine of methionine-huIFN-alpha 2. These results strongly suggested that the invertase signal (or its variant) attached to huIFN was efficiently recognized by the presumed signal recognition particle and was cleaved by the signal peptidase in the yeast cells. These results also suggested that amino acid changes on the right side of the cleavage site did not necessarily prevent cleavage or secretion. Images PMID:3023906

  3. Evaluation of Recombinant Human Growth Hormone Secretion in E. coli using the L-asparaginase II Signal Peptide

    PubMed Central

    Zamani, Mozhdeh; Nezafat, Navid; Ghasemi, Younes

    2016-01-01

    Background: In the recent years, there has been an increasing interest in secretory production of recombinant proteins, due to its various advantages compared with intracellular expression. Signal peptides play a critical role in prosperous secretion of recombinant proteins. Accordingly, different signal peptides have been assessed for their ability to produce secretory proteins by trial-and-error experiments. The aim of this study was to evaluate the effect of L-asparaginase II signal peptide on the recombinant human Growth Hormone (hGH) protein secretion in the Escherichia coli (E. coli) host. Methods: Cloning and expression of a synthetic hGH gene, containing L-asparaginase II signal sequence was performed in E. coli BL21 (DE3) using 0.1mM IPTG as an inducer at 23°C overnight. Periplasmic protein extraction was performed using three methods, including osmotic shock, osmotic shock in the presence of glycine and combined Lysozyme/EDTA osmotic shock. Afterwards, the hGH expression was determined by SDS-PAGE. Results: Based on experimentally obtained results, hGH protein is expressed as inclusion body even in the presence of L-asparaginase II signal peptide. Conclusion: Therefore, this signal peptide is not effective for secretory production of the recombinant hGH. PMID:27920886

  4. Getting something for nothing: Regeneration of peptide signals from apparently exhausted MALDI samples by “waterboarding"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An often cited advantage of MALDI-MS is the ability to archive and reuse sample plates after the initial analysis is complete. However, experience demonstrates that the peptide ion signals decay rapidly as the number of laser shots becomes large. Thus, the signal level obtainable from an archived sa...

  5. Peptides interfering with protein-protein interactions in the ethylene signaling pathway delay tomato fruit ripening

    NASA Astrophysics Data System (ADS)

    Bisson, Melanie M. A.; Kessenbrock, Mareike; Müller, Lena; Hofmann, Alexander; Schmitz, Florian; Cristescu, Simona M.; Groth, Georg

    2016-08-01

    The plant hormone ethylene is involved in the regulation of several processes with high importance for agricultural applications, e.g. ripening, aging and senescence. Previous work in our group has identified a small peptide (NOP-1) derived from the nuclear localization signal of the Arabidopsis ethylene regulator ETHYLENE INSENSITIVE-2 (EIN2) C-terminal part as efficient inhibitor of ethylene responses. Here, we show that NOP-1 is also able to efficiently disrupt EIN2-ETR1 complex formation in tomato, indicating that the NOP-1 inhibition mode is conserved across plant species. Surface application of NOP-1 on green tomato fruits delays ripening similar to known inhibitors of ethylene perception (MCP) and ethylene biosynthesis (AVG). Fruits treated with NOP-1 showed similar ethylene production as untreated controls underlining that NOP-1 blocks ethylene signaling by targeting an essential interaction in this pathway, while having no effect on ethylene biosynthesis.

  6. Peptides interfering with protein-protein interactions in the ethylene signaling pathway delay tomato fruit ripening

    PubMed Central

    Bisson, Melanie M. A.; Kessenbrock, Mareike; Müller, Lena; Hofmann, Alexander; Schmitz, Florian; Cristescu, Simona M.; Groth, Georg

    2016-01-01

    The plant hormone ethylene is involved in the regulation of several processes with high importance for agricultural applications, e.g. ripening, aging and senescence. Previous work in our group has identified a small peptide (NOP-1) derived from the nuclear localization signal of the Arabidopsis ethylene regulator ETHYLENE INSENSITIVE-2 (EIN2) C-terminal part as efficient inhibitor of ethylene responses. Here, we show that NOP-1 is also able to efficiently disrupt EIN2-ETR1 complex formation in tomato, indicating that the NOP-1 inhibition mode is conserved across plant species. Surface application of NOP-1 on green tomato fruits delays ripening similar to known inhibitors of ethylene perception (MCP) and ethylene biosynthesis (AVG). Fruits treated with NOP-1 showed similar ethylene production as untreated controls underlining that NOP-1 blocks ethylene signaling by targeting an essential interaction in this pathway, while having no effect on ethylene biosynthesis. PMID:27477591

  7. Plasma agouti-related protein levels in women with anorexia nervosa.

    PubMed

    Moriya, Junko; Takimoto, Yoshiyuki; Yoshiuchi, Kazuhiro; Shimosawa, Tatsuo; Akabayashi, Akira

    2006-10-01

    Agouti-related protein (AGRP) is the competitive antagonist of alpha-melanocyte stimulating hormone (alpha-MSH) located at melanocortin receptors 3 and 4 (MC3R and MC4R), and also acts as an MC4R inverse agonist. Hypothalamic AGRP controls food intake and body weight in rodents. It has also been found in human plasma. To study the possibility of disturbances in melanocortin receptor-related peptides in eating disorders, plasma AGRP, alpha-MSH, and leptin levels were measured in 18 female patients with anorexia nervosa (AN) (age, 23.5+/-7.1 yr; body mass index (BMI) 14.5+/-1.8 kg/m(2)) and 17 age-matched female controls (age, 25.8+/-3.9 yr; BMI 20.2+/-1.6 kg/m(2)). Blood samples were collected after overnight fasting, and plasma peptides levels were measured using ELISA. Plasma AGRP levels increased significantly in AN patients when compared with controls (P<0.01) while plasma alpha-MSH levels were not significantly different. Plasma leptin levels decreased significantly in AN patients when compared with controls (P<0.001). In addition, plasma AGRP levels were negatively correlated with leptin (r=-0.41, P<0.01) and BMI (r=-0.40, P<0.05) in all subjects. In conclusion, plasma AGRP elevation may be related to energy homeostasis disturbance in AN, and in addition to leptin, peripheral AGRP levels could be used as a nutritional marker in AN patients.

  8. Corticotropin-releasing factor family peptide signaling in feline bladder urothelial cells.

    PubMed

    Hanna-Mitchell, Ann T; Wolf-Johnston, Amanda; Roppolo, James R; Buffington, Tony C A; Birder, Lori A

    2014-07-01

    Corticotropin-releasing factor (CRF) plays a central role in the orchestration of behavioral and neuroendocrine responses to stress. The family of CRF-related peptides (CRF and paralogs: urocortin (Ucn)-I, -II, and -III) and associated receptors (CRFR1 and CRFR2) are also expressed in peripheral tissues such as the skin and gastrointestinal tract. Local signaling may exert multiple effects of stress-induced exacerbation of many complex syndromes, including psoriasis and visceral hypersensitivity. Interstitial cystitis/painful bladder syndrome (IC/PBS), a chronic visceral pain syndrome characterized by urinary frequency, urgency, and pelvic pain, is reported to be exacerbated by stress. Functional changes in the epithelial lining of the bladder, a vital blood-urine barrier called the urothelium, may play a role in IC/PBS. This study investigated the expression and functional activity of CRF-related peptides in the urothelium of normal cats and cats with feline interstitial cystitis (FIC), a chronic idiopathic cystitis exhibiting similarities to humans diagnosed with IC/PBS. Western blots analysis showed urothelial (UT) expression of CRFR1 and CRFR2. Enzyme immunoassay revealed release of endogenous ligands (CRF and Ucn) by UT cells in culture. Evidence of functional activation of CRFR1 and CRFR2 by receptor-selective agonists (CRF and UCN3 respectively) was shown by i) the measurement of ATP release using the luciferin-luciferase assay and ii) the use of membrane-impermeant fluorescent dyes (FM dyes) for fluorescence microscopy to assess membrane exocytotic responses in real time. Our findings show evidence of CRF-related peptide signaling in the urothelium. Differences in functional responses between FIC and normal UT indicate that this system is altered in IC/PBS.

  9. Central & peripheral glucagon-like peptide-1 receptor signaling differentially regulate addictive behaviors.

    PubMed

    Sirohi, Sunil; Schurdak, Jennifer D; Seeley, Randy J; Benoit, Stephen C; Davis, Jon F

    2016-07-01

    Recent data implicate glucagon-like peptide-1 (GLP-1), a potent anorexigenic peptide released in response to nutrient intake, as a regulator for the reinforcing properties of food, alcohol and psychostimulants. While, both central and peripheral mechanisms mediate effects of GLP-1R signaling on food intake, the extent to which central or peripheral GLP-1R signaling regulates reinforcing properties of drugs of abuse is unknown. Here, we examined amphetamine reinforcement, alcohol intake and hedonic feeding following peripheral administration of EX-4 (a GLP-1 analog) in FLOX and GLP-1R KD(Nestin) (GLP-1R selectively ablated from the central nervous system) mice (n=13/group). First, the effect of EX-4 pretreatment on the expression of amphetamine-induced conditioned place preference (Amp-CPP) was examined in the FLOX and GLP-1R KD(Nestin) mice. Next, alcohol intake (10% v/v) was evaluated in FLOX and GLP-1R KD(Nestin) mice following saline or EX-4 injections. Finally, we assessed the effects of EX-4 pretreatment on hedonic feeding behavior. Results indicate that Amp-CPP was completely blocked in the FLOX mice, but not in the GLP-1R KD(Nestin) mice following EX-4 pretreatment. Ex-4 pretreatment selectively blocked alcohol consumption in the FLOX mice, but was ineffective in altering alcohol intake in the GLP-1R KD(Nestin) mice. Notably, hedonic feeding was partially blocked in the GLP-1R KD(Nestin) mice, whereas it was abolished in the FLOX mice. The present study provides critical insights regarding the nature by which GLP-1 signaling controls reinforced behaviors and underscores the importance of both peripheral and central GLP-1R signaling for the regulation of addictive disorders.

  10. Diet-induced hypermethylation at agouti viable yellow is not inherited transgenerationally through the female

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of nonmutagenic environmental exposures can sometimes be transmitted for several generations, suggesting transgenerational inheritance of induced epigenetic variation. Methyl donor supplementation of female mice during pregnancy induces CpG hypermethylation at the agouti viable yellow (A...

  11. Who's behind that mask and cape? The Asian leopard cat's Agouti (ASIP) allele likely affects coat colour phenotype in the Bengal cat breed.

    PubMed

    Gershony, L C; Penedo, M C T; Davis, B W; Murphy, W J; Helps, C R; Lyons, L A

    2014-12-01

    Coat colours and patterns are highly variable in cats and are determined mainly by several genes with Mendelian inheritance. A 2-bp deletion in agouti signalling protein (ASIP) is associated with melanism in domestic cats. Bengal cats are hybrids between domestic cats and Asian leopard cats (Prionailurus bengalensis), and the charcoal coat colouration/pattern in Bengals presents as a possible incomplete melanism. The complete coding region of ASIP was directly sequenced in Asian leopard, domestic and Bengal cats. Twenty-seven variants were identified between domestic and leopard cats and were investigated in Bengals and Savannahs, a hybrid with servals (Leptailurus serval). The leopard cat ASIP haplotype was distinguished from domestic cat by four synonymous and four non-synonymous exonic SNPs, as well as 19 intronic variants, including a 42-bp deletion in intron 4. Fifty-six of 64 reported charcoal cats were compound heterozygotes at ASIP, with leopard cat agouti (A(P) (be) ) and domestic cat non-agouti (a) haplotypes. Twenty-four Bengals had an additional unique haplotype (A2) for exon 2 that was not identified in leopard cats, servals or jungle cats (Felis chaus). The compound heterozygote state suggests the leopard cat allele, in combination with the recessive non-agouti allele, influences Bengal markings, producing a darker, yet not completely melanistic coat. This is the first validation of a leopard cat allele segregating in the Bengal breed and likely affecting their overall pelage phenotype. Genetic testing services need to be aware of the possible segregation of wild felid alleles in all assays performed on hybrid cats.

  12. Agouti regulation of intracellular calcium: Role in the insulin resistance of viable yellow mice

    SciTech Connect

    Zemel, M.B.; Kim, J.H.; Woychik, R.P.; Michaud, E.J.; Hadwell, S.H.; Patel, I.R.; Wilkison, W.O.

    1995-05-23

    Several dominant mutations at the agouti locus in the mouse cause a syndrome of marked obesity, hyperinsulinemia, and insulin resistance. Although it is known that the agouti gene is expressed in an ectopic manner in these mutants, the precise mechanism by which the agouti gene product mediates these effects is unclear. Since intracellular Ca{sup 2+} is believed to play a role in mediating insulin action and dysregulation of Ca{sup 2+} flux is observed in diabetic animals and humans, we examined the status of intracellular Ca{sup 2+} in mice carrying the dominant agouti allele, viable yellow (A{sup vy}). We show here that in mice carrying this mutation, the intracellular free calcium concentration ([Ca{sup 2+}]{sub i}) is elevated in skeletal muscle, and the degree of elevation is closely correlated with the degree to which the mutant traits are expressed in individual animals. Moreover, we demonstrate that the agouti gene product is capable of inducing increased [Ca{sup 2+}]{sub i} in cultured and freshly isolated skeletal muscle myocytes from wild-type mice. Based on these findings, we present a model in which we propose that the agouti polypeptide promotes insulin resistance in mutant animals through its ability to increase [Ca{sup 2+}]{sub i}. 36 refs., 3 figs., 2 tabs.

  13. Peptides and food intake.

    PubMed

    Sobrino Crespo, Carmen; Perianes Cachero, Aránzazu; Puebla Jiménez, Lilian; Barrios, Vicente; Arilla Ferreiro, Eduardo

    2014-01-01

    The mechanisms for controlling food intake involve mainly an interplay between gut, brain, and adipose tissue (AT), among the major organs. Parasympathetic, sympathetic, and other systems are required for communication between the brain satiety center, gut, and AT. These neuronal circuits include a variety of peptides and hormones, being ghrelin the only orexigenic molecule known, whereas the plethora of other factors are inhibitors of appetite, suggesting its physiological relevance in the regulation of food intake and energy homeostasis. Nutrients generated by food digestion have been proposed to activate G-protein-coupled receptors on the luminal side of enteroendocrine cells, e.g., the L-cells. This stimulates the release of gut hormones into the circulation such as glucagon-like peptide-1 (GLP-1), oxyntomodulin, pancreatic polypeptides, peptide tyrosine tyrosine, and cholecystokinin, which inhibit appetite. Ghrelin is a peptide secreted from the stomach and, in contrast to other gut hormones, plasma levels decrease after a meal and potently stimulate food intake. Other circulating factors such as insulin and leptin relay information regarding long-term energy stores. Both hormones circulate at proportional levels to body fat content, enter the CNS proportionally to their plasma levels, and reduce food intake. Circulating hormones can influence the activity of the arcuate nucleus (ARC) neurons of the hypothalamus, after passing across the median eminence. Circulating factors such as gut hormones may also influence the nucleus of the tractus solitarius (NTS) through the adjacent circumventricular organ. On the other hand, gastrointestinal vagal afferents converge in the NTS of the brainstem. Neural projections from the NTS, in turn, carry signals to the hypothalamus. The ARC acts as an integrative center, with two major subpopulations of neurons influencing appetite, one of them coexpressing neuropeptide Y and agouti-related protein (AgRP) that increases food

  14. Peptides and Food Intake

    PubMed Central

    Sobrino Crespo, Carmen; Perianes Cachero, Aránzazu; Puebla Jiménez, Lilian; Barrios, Vicente; Arilla Ferreiro, Eduardo

    2014-01-01

    The mechanisms for controlling food intake involve mainly an interplay between gut, brain, and adipose tissue (AT), among the major organs. Parasympathetic, sympathetic, and other systems are required for communication between the brain satiety center, gut, and AT. These neuronal circuits include a variety of peptides and hormones, being ghrelin the only orexigenic molecule known, whereas the plethora of other factors are inhibitors of appetite, suggesting its physiological relevance in the regulation of food intake and energy homeostasis. Nutrients generated by food digestion have been proposed to activate G-protein-coupled receptors on the luminal side of enteroendocrine cells, e.g., the L-cells. This stimulates the release of gut hormones into the circulation such as glucagon-like peptide-1 (GLP-1), oxyntomodulin, pancreatic polypeptides, peptide tyrosine tyrosine, and cholecystokinin, which inhibit appetite. Ghrelin is a peptide secreted from the stomach and, in contrast to other gut hormones, plasma levels decrease after a meal and potently stimulate food intake. Other circulating factors such as insulin and leptin relay information regarding long-term energy stores. Both hormones circulate at proportional levels to body fat content, enter the CNS proportionally to their plasma levels, and reduce food intake. Circulating hormones can influence the activity of the arcuate nucleus (ARC) neurons of the hypothalamus, after passing across the median eminence. Circulating factors such as gut hormones may also influence the nucleus of the tractus solitarius (NTS) through the adjacent circumventricular organ. On the other hand, gastrointestinal vagal afferents converge in the NTS of the brainstem. Neural projections from the NTS, in turn, carry signals to the hypothalamus. The ARC acts as an integrative center, with two major subpopulations of neurons influencing appetite, one of them coexpressing neuropeptide Y and agouti-related protein (AgRP) that increases food

  15. Pilose antler peptide protects osteoblasts from inflammatory and oxidative injury through EGF/EGFR signaling.

    PubMed

    Chunhui, Yang; Wenjun, Cai; Hui, Wen; Liquan, Sha; Changwei, Zhao; Tianzhu, Zhang; Wenhai, Zhao

    2017-02-16

    Epidermal growth factor (EGF)/EFG receptor (EGFR) signaling plays an important role in the osteoblastogenesis. The potential effects of pilose antler peptide (PAP) on osteoblast cell damages was investigated in our present study through EGF/EGFR signaling. In MC3T3-E1 osteoblastic cells, PAP treatment significantly inhibited the production of inflammatory cytokines by decreasing the levels of serum proinflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). PAP treatment also alleviated the oxidative responses as indicated by increased activities of catalase (SOD) and decreased levels of malondialdehyde (MDA). EGF inhibition, by siRNA knockdown, almost abolished PAP-induced osteoblast cytoprotection against inflammation and oxidant stress. Further, our results showed that PAP stimulated the nuclear erythroid factor 2-related factor 2 (Nrf2)2/heme oxygenase-1(HO-1) signaling, and inhibited the activation of uclear factor kappa B (NF-κB) pathway in MC3T3-E1 cells. On the other hand, EGF siRNA knockdown inhibited PAP-induced cytoprotection, which decreased the expression of Nrf-2, HO-1 and increased the level of p-NF-κBp65, p-IκBα in MC3T3-E1 cells. Thus, our research demonstrated that PAP protects osteoblasts from inflammatory and oxidative injury through EGF/EGFR signaling.

  16. Real-time trafficking and signaling of the glucagon-like peptide-1 receptor.

    PubMed

    Roed, Sarah Noerklit; Wismann, Pernille; Underwood, Christina Rye; Kulahin, Nikolaj; Iversen, Helle; Cappelen, Karen Arevad; Schäffer, Lauge; Lehtonen, Janne; Hecksher-Soerensen, Jacob; Secher, Anna; Mathiesen, Jesper Mosolff; Bräuner-Osborne, Hans; Whistler, Jennifer L; Knudsen, Sanne Moeller; Waldhoer, Maria

    2014-02-15

    The glucagon-like peptide-1 incretin receptor (GLP-1R) of family B G protein-coupled receptors (GPCRs) is a major drug target in type-2-diabetes due to its regulatory effect on post-prandial blood-glucose levels. The mechanism(s) controlling GLP-1R mediated signaling are far from fully understood. A fundamental mechanism controlling the signaling capacity of GPCRs is the post-endocytic trafficking of receptors between recycling and degradative fates. Here, we combined microscopy with novel real-time assays to monitor both receptor trafficking and signaling in living cells. We find that the human GLP-1R internalizes rapidly and with similar kinetics in response to equipotent concentrations of GLP-1 and the stable GLP-1 analogues exendin-4 and liraglutide. Receptor internalization was confirmed in mouse pancreatic islets. GLP-1R is shown to be a recycling receptor with faster recycling rates mediated by GLP-1 as compared to exendin-4 and liraglutide. Furthermore, a prolonged cycling of ligand-activated GLP-1Rs was observed and is suggested to be correlated with a prolonged cAMP signal.

  17. Arenavirus Stable Signal Peptide Is the Keystone Subunit for Glycoprotein Complex Organization

    PubMed Central

    Bederka, Lydia H.; Bonhomme, Cyrille J.; Ling, Emily L.

    2014-01-01

    ABSTRACT The rodent arenavirus glycoprotein complex encodes a stable signal peptide (SSP) that is an essential structural component of mature virions. The SSP, GP1, and GP2 subunits of the trimeric glycoprotein complex noncovalently interact to stud the surface of virions and initiate arenavirus infectivity. Nascent glycoprotein production undergoes two proteolytic cleavage events: first within the endoplasmic reticulum (ER) to cleave SSP from the remaining precursor GP1/2 (glycoprotein complex [GPC]) glycoprotein and second within the Golgi stacks by the cellular SKI-1/S1P for GP1/2 processing to yield GP1 and GP2 subunits. Cleaved SSP is not degraded but retained as an essential glycoprotein subunit. Here, we defined functions of the 58-amino-acid lymphocytic choriomeningitis virus (LCMV) SSP in regard to glycoprotein complex processing and maturation. Using molecular biology techniques, confocal microscopy, and flow cytometry, we detected SSP at the plasma membrane of transfected cells. Further, we identified a sorting signal (FLLL) near the carboxyl terminus of SSP that is required for glycoprotein maturation and trafficking. In the absence of SSP, the glycoprotein accumulated within the ER and was unable to undergo processing by SKI-1/S1P. Mutation of this highly conserved FLLL motif showed impaired glycoprotein processing and secretory pathway trafficking, as well as defective surface expression and pH-dependent membrane fusion. Immunoprecipitation of SSP confirmed an interaction between the signal peptide and the GP2 subunit; however, mutations within this FLLL motif disrupted the association of the GP1 subunit with the remaining glycoprotein complex. PMID:25352624

  18. Spinal cord interneurons expressing the gastrin releasing peptide receptor convey itch through VGLUT2-mediated signaling.

    PubMed

    Aresh, Bejan; Freitag, Fabio B; Perry, Sharn; Blümel, Edda; Lau, Joey; Franck, Marina C M; Lagerström, Malin C

    2017-02-01

    Itch is a sensation that promotes the desire to scratch, which can be evoked by mechanical and chemical stimuli. In the spinal cord, neurons expressing the gastrin releasing peptide receptor (GRPR) have been identified as specific mediators of itch. However, our understanding of the GRPR-population in the spinal cord, and thus how these neurons exercise their functions, is limited. For this purpose, we constructed a Cre line designed to target the GRPR population of neurons (Grpr-Cre). Our analysis revealed that Grpr-Cre cells in the spinal cord are predominantly excitatory interneurons that are found in the dorsal lamina, especially in lamina II-IV. Application of the specific agonist gastrin releasing peptide (GRP) induced spike responses in 43.3% of the patched Grpr-Cre neurons, where the majority of the cells displayed a tonic firing property. Additionally, our analysis showed that the Grpr-Cre population expresses Vglut2 mRNA and mice ablated of Vglut2 in Grpr-Cre cells (Vglut2-lox;Grpr-Cre mice) displayed less spontaneous itch, and attenuated responses to both histaminergic and non-histaminergic agents. We could also show that application of the itch-inducing peptide natriuretic polypeptide b (NPPB) induces calcium influx in a sub-population of Grpr-Cre neurons. To summarize, our data indicate that the Grpr-Cre spinal cord neural population is composed of interneurons that use VGLUT2-mediated signaling for transmitting chemical and spontaneous itch stimuli to the next, currently unknown, neurons in the labeled line of itch.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  19. Gasotransmitter delivery via self-assembling peptides: Treating diseases with natural signaling gases.

    PubMed

    Qian, Yun; Matson, John B

    2016-07-01

    Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are powerful signaling molecules that play a variety of roles in mammalian biology. Collectively called gasotransmitters, these gases have wide-ranging therapeutic potential, but their clinical use is limited by their gaseous nature, extensive reactivity, short half-life, and systemic toxicity. Strategies for gasotransmitter delivery with control over the duration and location of release are therefore vital for developing effective therapies. An attractive strategy for gasotransmitter delivery is though injectable or implantable gels, which can ideally deliver their payload over a controllable duration and then degrade into benign metabolites. Self-assembling peptide-based gels are well-suited to this purpose due to their tunable mechanical properties, easy chemical modification, and inherent biodegradability. In this review we illustrate the biological roles of NO, CO, and H2S, discuss their therapeutic potential, and highlight recent efforts toward their controlled delivery with a focus on peptide-based delivery systems.

  20. Peptide Immunoaffinity Enrichment and Targeted Mass Spectrometry Enables Multiplex, Quantitative Pharmacodynamic Studies of Phospho-Signaling*

    PubMed Central

    Whiteaker, Jeffrey R.; Zhao, Lei; Yan, Ping; Ivey, Richard G.; Voytovich, Uliana J.; Moore, Heather D.; Lin, Chenwei; Paulovich, Amanda G.

    2015-01-01

    In most cell signaling experiments, analytes are measured one Western blot lane at a time in a semiquantitative and often poorly specific manner, limiting our understanding of network biology and hindering the translation of novel therapeutics and diagnostics. We show the feasibility of using multiplex immuno-MRM for phospho-pharmacodynamic measurements, establishing the potential for rapid and precise quantification of cell signaling networks. A 69-plex immuno-MRM assay targeting the DNA damage response network was developed and characterized by response curves and determinations of intra- and inter-assay repeatability. The linear range was ≥3 orders of magnitude, the median limit of quantification was 2.0 fmol/mg, the median intra-assay variability was 10% CV, and the median interassay variability was 16% CV. The assay was applied in proof-of-concept studies to immortalized and primary human cells and surgically excised cancer tissues to quantify exposure–response relationships and the effects of a genomic variant (ATM kinase mutation) or pharmacologic (kinase) inhibitor. The study shows the utility of multiplex immuno-MRM for simultaneous quantification of phosphorylated and nonmodified peptides, showing feasibility for development of targeted assay panels to cell signaling networks. PMID:25987412

  1. IGF-I regulates the age-dependent signaling peptide humanin.

    PubMed

    Lee, Changhan; Wan, Junxiang; Miyazaki, Brian; Fang, Yimin; Guevara-Aguirre, Jaime; Yen, Kelvin; Longo, Valter; Bartke, Andrzej; Cohen, Pinchas

    2014-10-01

    Aging is influenced by endocrine pathways including the growth hormone/insulin-like growth factor-1 (GH/IGF) axis. Mitochondrial function has also been linked to the aging process, but the relevant mitochondrial signals mediating the effects of mitochondria are poorly understood. Humanin is a novel signaling peptide that acts as a potent regulator of cellular stress responses and protects from a variety of in vitro and in vivo toxic and metabolic insults. The circulating levels of humanin decline with age in mice and humans. Here, we demonstrate a negative correlation between the activity of the GH-IGF axis and the levels of humanin, as well as a positive correlation between humanin and lifespan in mouse models with altered GH/IGF-I axis. Long-lived, GH-deficient Ames mice displayed elevated humanin levels, while short-lived GH-transgenic mice have reduced humanin levels. Furthermore, treatment with GH or IGF-I reduced circulating humanin levels in both mice and human subjects. Our results indicate that GH and IGF are potent regulators of humanin levels and that humanin levels correlate with lifespan in mice. This suggests that humanin represents a circulating mitochondrial signal that participates in modulating the aging process, adding a coordinated mitochondrial element to the endocrine regulation of aging.

  2. A CRISPR screen defines a signal peptide processing pathway required by flaviviruses.

    PubMed

    Zhang, Rong; Miner, Jonathan J; Gorman, Matthew J; Rausch, Keiko; Ramage, Holly; White, James P; Zuiani, Adam; Zhang, Ping; Fernandez, Estefania; Zhang, Qiang; Dowd, Kimberly A; Pierson, Theodore C; Cherry, Sara; Diamond, Michael S

    2016-07-07

    Flaviviruses infect hundreds of millions of people annually, and no antiviral therapy is available. We performed a genome-wide CRISPR/Cas9-based screen to identify host genes that, when edited, resulted in reduced flavivirus infection. Here, we validated nine human genes required for flavivirus infectivity, and these were associated with endoplasmic reticulum functions including translocation, protein degradation, and N-linked glycosylation. In particular, a subset of endoplasmic reticulum-associated signal peptidase complex (SPCS) proteins was necessary for proper cleavage of the flavivirus structural proteins (prM and E) and secretion of viral particles. Loss of SPCS1 expression resulted in markedly reduced yield of all Flaviviridae family members tested (West Nile, Dengue, Zika, yellow fever, Japanese encephalitis, and hepatitis C viruses), but had little impact on alphavirus, bunyavirus, or rhabdovirus infection or the surface expression or secretion of diverse host proteins. We found that SPCS1 dependence could be bypassed by replacing the native prM protein leader sequences with a class I major histocompatibility complex (MHC) antigen leader sequence. Thus, SPCS1, either directly or indirectly via its interactions with unknown host proteins, preferentially promotes the processing of specific protein cargo, and Flaviviridae have a unique dependence on this signal peptide processing pathway. SPCS1 and other signal processing pathway members could represent pharmacological targets for inhibiting infection by the expanding number of flaviviruses of medical concern.

  3. A CRISPR screen defines a signal peptide processing pathway required by flaviviruses

    PubMed Central

    Zhang, Rong; Miner, Jonathan J.; Gorman, Matthew J.; Rausch, Keiko; Ramage, Holly; White, James P.; Zuiani, Adam; Zhang, Ping; Fernandez, Estefania; Zhang, Qiang; Dowd, Kimberly A.; Pierson, Theodore C.; Cherry, Sara; Diamond, Michael S.

    2016-01-01

    Flaviviruses infect hundreds of millions of people annually, with no antiviral therapy available1,2. We performed a genome-wide CRISPR/Cas9-based screen to identify host genes that when edited resulted in reduced flavivirus infection. We validated nine human genes required for flavivirus infectivity, and these were associated with endoplasmic reticulum (ER) functions including translocation, protein degradation, and N-linked glycosylation. In particular, a subset of ER-associated signal peptidase complex (SPCS) proteins was necessary for the proper cleavage of the flavivirus structural proteins (prM and E) and secretion of viral particles. Loss of SPCS1 expression resulted in markedly reduced yield of all Flaviviridae family members tested (West Nile, Dengue, Zika, yellow fever, Japanese encephalitis, and hepatitis C viruses), yet had little impact on alphavirus, bunyavirus, or rhabdovirus infection or the surface expression or secretion of diverse host proteins. We found that SPCS1 dependence could be bypassed by replacing the native prM protein leader sequences with a class I MHC antigen leader sequence. Thus, SPCS1, either directly or indirectly via its interactions with unknown host proteins, preferentially promotes the processing of specific protein cargo, and Flaviviridae have a unique dependence on this signal peptide processing pathway. SPCS1 and other signal processing pathway members could represent pharmacological targets for inhibiting infection of the expanding number of flaviviruses of medical concern. PMID:27383988

  4. Monodisperse Magnetite Nanoparticles Coupled with Nuclear Localization Signal Peptide for Cell-Nucleus Targeting

    PubMed Central

    Xu, Chenjie; Xie, Jin; Kohler, Nathan; Walsh, Edward G.; Chin, Y. Eugene; Sun, Shouheng

    2009-01-01

    Functionalization of monodisperse superparamagnetic magnetite (Fe3O4) nanoparticles for cell specific targeting is crucial for cancer diagnostics and therapeutics. Targeted magnetic nanoparticles can be used to enhance the tissue contrast in magnetic resonance imaging (MRI), to improve the efficiency in anticancer drug delivery, and to eliminate tumor cells by magnetic fluid hyperthermia. Herein we report the nucleus-targeting Fe3O4 nanoparticles functionalized with protein and nuclear localization signal (NLS) peptide. These NLS-coated nanoparticles were introduced into the HeLa cell cytoplasm and nucleus, where the particles were monodispersed and non-aggregated. The success of labeling was examined and identified by fluorescence microscopy and MRI. The work demonstrates that monodisperse magnetic nanoparticles can be readily functionalized and stabilized for potential diagnostic and therapeutic applications. PMID:18080259

  5. Differential Inhibition of Signal Peptide Peptidase Family Members by Established γ-Secretase Inhibitors

    PubMed Central

    Ran, Yong; Ladd, Gabriela Z.; Ceballos-Diaz, Carolina; Jung, Joo In; Greenbaum, Doron; Felsenstein, Kevin M.; Golde, Todd E.

    2015-01-01

    The signal peptide peptidases (SPPs) are biomedically important proteases implicated as therapeutic targets for hepatitis C (human SPP, (hSPP)), plasmodium (Plasmodium SPP (pSPP)), and B-cell immunomodulation and neoplasia (signal peptide peptidase like 2a, (SPPL2a)). To date, no drug-like, selective inhibitors have been reported. We use a recombinant substrate based on the amino-terminus of BRI2 fused to amyloid β 1-25 (Aβ1-25) (FBA) to develop facile, cost-effective SPP/SPPL protease assays. Co-transfection of expression plasmids expressing the FBA substrate with SPP/SPPLs were conducted to evaluate cleavage, which was monitored by ELISA, Western Blot and immunoprecipitation/MALDI-TOF Mass spectrometry (IP/MS). No cleavage is detected in the absence of SPP/SPPL overexpression. Multiple γ-secretase inhibitors (GSIs) and (Z-LL)2 ketone differentially inhibited SPP/SPPL activity; for example, IC50 of LY-411,575 varied from 51±79 nM (on SPPL2a) to 5499±122 nM (on SPPL2b), while Compound E showed inhibition only on hSPP with IC50 of 1465±93 nM. Data generated were predictive of effects observed for endogenous SPPL2a cleavage of CD74 in a murine B-Cell line. Thus, it is possible to differentially inhibit SPP family members. These SPP/SPPL cleavage assays will expedite the search for selective inhibitors. The data also reinforce similarities between SPP family member cleavage and cleavage catalyzed by γ-secretase. PMID:26046535

  6. Promotion of Cell Growth and Adhesion of a Peptide Hydrogel Scaffold via mTOR/Cadherin Signaling.

    PubMed

    Wei, Guojun; Wang, Liping; Dong, Daming; Teng, Zhaowei; Shi, Zuowei; Wang, Kaifu; An, Gang; Guan, Ying; Han, Bo; Yao, Meng; Xian, Cory J

    2017-02-18

    Understanding neurite outgrowth, orientation, and migration is important for the design of biomaterials that interface with the neural tissue. However, the molecular signaling alternations have not been well elucidated to explain the impact of hydrogels on cell morphology. In our previous studies, a silk fibroin peptide (SF16) hydrogel was found to be an effective matrix for the viability, morphology and proliferation of PC12 rat pheocrhomocytoma cells. We found that PC12 cells in the peptide hydrogel exhibited adhesive morphology compared to those cultured in agarose or collagen. Moreover, we identified that cell adhesion molecules (E- and N-cadherin) controlled by mTOR signaling were highly induced in PC12 cells cultured in the SF16 peptide hydrogel. Our findings suggest that the SF16 peptide might be suitable to be a cell-adhesion material in cell culture or tissue engineering, and mTOR/cadherin signaling is required for the cell adhesion in the SF16-peptide hydrogel. This article is protected by copyright. All rights reserved.

  7. [Ovarian activity of Agouti paca (Rodentia: Agoutidae) under captivity].

    PubMed

    Montes Pérez, Rubén C; Cabrera Baz, Elsy A

    2006-09-01

    The ovarian activity of Agouti paca was characterized by hormonal profiles and ovarian structures. Samples of blood were taken from eight females (seven adults and one juvenile) at the breeding grounds of the Facultad de Medicina Veterinaria y Zootecnia in Yucatśn, Mexico. Sampling lasted approximately two months and was done every three and six days. Blood was collected from anesthetized animals, and the levels of progesterone (P4) and 17 beta estradiol (E2) were analized by radioimmunoassay technique. Macroscopic and microscopic analyses were carried out in ovaries of dead animals. The estrous cycle lasted 29+/-8.4 days, levels of 1.61+/-0.65 ng/ml for P4 and 39+/-24 pg/ml for E2 were observed for a follicular phase, 6.18+/-3.70 ng/ml and 29+/-16 pg/ml for P4 and E2 respectively in the luteal phase. Statistically significant differences were found between phases for P4 but not for E2. The presence of extragonadal steroids with levels of P4 of 1.9+/-0.77 ng/ml and E2 of 22+/-17 pg/ml were observed, which are not produced by the effects of managing stress. The changes in the levels of P4 during the cycle are indicators of luteal activity, with the intersticial tissue acting probably as active steroids-producing gland. Follicular growth was observed during the entire cycle.

  8. Roles of the signal peptide and mature domains in the secretion and maturation of the neutral metalloprotease from Streptomyces cacaoi.

    PubMed Central

    Chang, S C; Su, M H; Lee, Y H

    1997-01-01

    The neutral metalloprotease (Npr) of Streptomyces cacaoi is synthesized as a prepro-Npr precursor form consisting of a secretory signal peptide, a propeptide and the mature metalloprotease. The maturation of Npr occurs extracellularly via an autoproteolytic processing of the secreted pro-Npr. The integrity of the propeptide is essential for the formation of mature active Npr but not for its secretion [Chang, Chang and Lee (1994) J. Biol. Chem. 269, 3548-3554]. In this study we investigated whether the secretion and maturation of Npr require the integrity of its signal peptide region and mature protease domain. Five signal peptide mutants were generated, including the substitution mutations at the positively charged region (mutant IR6LE), the central hydrophobic region (mutants GI19EL and G19N), the boundary of the hydrophobic core-cleavage region (mutant P30L) and at the residues adjacent to the signal peptidase cleavage site (mutant YA33SM). All these lesions delayed the export of Npr to the growth medium and also resulted in a 2-10-fold decrease in Npr export. The most severe effect was noted in mutants GI19EL and P30L. When these signal peptide mutations were fused separately with the propeptide lacking the Npr mature domain, the secretory defect on the propeptide was also observed, and this impairment was again more severely expressed in mutants GI19EL and P30L. Thus the Npr signal peptide seems to have more constraints on the hydrophobic core region and at the proline residue within the boundary of the hydrophobic core-cleavage site. Deletion mutations within the C-terminal mature protease domain that left its active site intact still blocked the proteolytic processing of mutant precursor forms of pro-Npr, although their secretions were unaffected. These results, together with our previous findings, strongly suggest that the signal peptide of Npr plays a pivotal role in the secretion of both Npr and the propeptide, but not in the maturation of Npr. On the

  9. Metformin enhances glucagon-like peptide 1 via cooperation between insulin and Wnt signaling.

    PubMed

    Kim, Mi-Hyun; Jee, Jae-Hwan; Park, Sunyoung; Lee, Myung-Shik; Kim, Kwang-Won; Lee, Moon-Kyu

    2014-02-01

    One aspect of the effects of metformin on glucagon-like peptide (GLP)-1 might be associated with the mechanism by which the cross talk between insulin and Wnt signaling enhances GLP1 secretion, due to the action of metformin as an insulin sensitizer. However, this remains completely unknown. In this study, we have investigated the mechanisms of the action of metformin on cross talk between insulin and Wnt signaling. GLP1 enhancement by meformin was determined in human NCI-H716 intestinal L-cells and hyperglycemic db/db mice treated with metformin (0.25 and 0.5 mM and/or 12.5 mg/kg body weight) for 24 h and 2 months. Metformin increased GLP1 secretion in L-cells and db/db mice. Metformin stimulated the nuclear translocation of β-catenin and TOPflash reporter activity, and gene depletion of β-catenin or enhancement of mutation of transcription factor 7-like 2 binding site offset GLP1. In addition, insulin receptor substrate 2 gene depletion blocked metformin-enhanced β-catenin translocation. These effects were preceded by an increase in glucose utilization and calcium influx, the activation of calcium-dependent protein kinase, and, in turn, the activation of insulin signaling, and the inhibition of glycogen synthase kinase 3β, a potent inhibitor of β-catenin. Furthermore, high blood glucose levels were controlled via GLP1 receptor-dependent insulinotropic pathways in db/db mice, which were evidenced by the increase in GLP1 and insulin levels at 30 min after oral glucose loading and pancreatic insulinotropic gene expression. Our findings indicate that the cooperation between Wnt and its upstream insulin signaling pathways might be a novel and important mechanism underlying the effects of metformin on GLP1 production.

  10. Computational Prediction and Experimental Validation of Signal Peptide Cleavage in the Extracellular Proteome of a Natural Microbial Community

    SciTech Connect

    Erickson, Brian K; Mueller, Ryan; Verberkmoes, Nathan C; Shah, Manesh B; Singer, Steven; Thelen, Michael P.; Banfield, Jillian F.; Hettich, Robert {Bob} L

    2010-01-01

    An integrated computational/experimental approach was used to predict and identify signal peptide cleavages among microbial proteins of environmental biofilm communities growing in acid mine drainage (AMD). SignalP-3.0 was employed to computationally query the AMD protein database of >16,000 proteins, which resulted in 1,480 predicted signal peptide cleaved proteins. LC-MS/MS analyses of extracellular (secretome) microbial preparations from different locations and developmental states empirically confirmed 531 of these signal peptide cleaved proteins. The majority of signal-cleavage proteins (58.4%) are annotated to have unknown functions; however, Pfam domain analysis revealed that many may be involved in extracellular functions expected within the AMD system. Examination of the abundances of signal-cleaved proteins across 28 proteomes from biofilms collected over a 4-year period demonstrated a strong correlation with the developmental state of the biofilm. For example, class I cytochromes are abundant in early growth states, whereas cytochrome oxidases from the same organism increase in abundance later in development. These results likely reflect shifts in metabolism that occur as biofilms thicken and communities diversify. In total, these results provide experimental confirmation of proteins that are designed to function in the extreme acidic extracellular environment and will serve as targets for future biochemical analysis.

  11. Amyloid beta-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons.

    PubMed Central

    Kelly, J F; Furukawa, K; Barger, S W; Rengen, M R; Mark, R J; Blanc, E M; Roth, G S; Mattson, M P

    1996-01-01

    Cholinergic pathways serve important functions in learning and memory processes, and deficits in cholinergic transmission occur in Alzheimer disease (AD). A subset of muscarinic cholinergic receptors are linked to G-proteins that activate phospholipase C, resulting in the liberation of inositol trisphosphate and Ca2+ release from intracellular stores. We now report that amyloid beta-peptide (Abeta), which forms plaques in the brain in AD, impairs muscarinic receptor activation of G proteins in cultured rat cortical neurons. Exposure of rodent fetal cortical neurons to Abeta25-35 and Abeta1-40 resulted in a concentration and time-dependent attenuation of carbachol-induced GTPase activity without affecting muscarinic receptor ligand binding parameters. Downstream events in the signal transduction cascade were similarly attenuated by Abeta. Carbachol-induced accumulation of inositol phosphates (IP, IP2, IP3, and IP4) was decreased and calcium imaging studies revealed that carbachol-induced release of calcium was severely impaired in neurons pretreated with Abeta. Muscarinic cholinergic signal transduction was disrupted with subtoxic levels of exposure to AP. The effects of Abeta on carbachol-induced GTPase activity and calcium release were attenuated by antioxidants, implicating free radicals in the mechanism whereby Abeta induced uncoupling of muscarinic receptors. These data demonstrate that Abeta disrupts muscarinic receptor coupling to G proteins that mediate induction of phosphoinositide accumulation and calcium release, findings that implicate Abeta in the impairment of cholinergic transmission that occurs in AD. PMID:8692890

  12. Defects in functional expression of an influenza virus hemagglutinin lacking the signal peptide sequences.

    PubMed Central

    Sekikawa, K; Lai, C J

    1983-01-01

    We have investigated the requirement of the signal sequence for expression of influenza virus hemagglutinin (HA). For this purpose we used a recombinant prepared from a late-region deletion mutant of simian virus 40 (SV40) and cloned influenza HA DNA; the influenza DNA was inserted into the late region of SV40 previously occupied by the deleted sequences coding for SV40 capsid proteins. A simple in-phase deletion was made in the HA DNA, resulting in loss of 11 internal amino acids from the 16 amino acid signal peptide. This deletion HA recombinant was then used to infect African green monkey kidney cells. Mutant HA was not detected on the cell surface but stably accumulated in the cytoplasm at a level similar to that of wild-type HA. NaDodSO4/polyacrylamide gel analysis of lysates from infected cells showed that mutant HA was not glycosylated. Significantly, the amount of mutant HA synthesized was not affected by tunicamycin. In contrast, wild-type HA was decreased more than 90% by tunicamycin. These findings suggest that mutant polypeptide is synthesized on free polyribosomes rather than on membrane-bound polyribosomes. The mutant HA failed to agglutinate erythrocytes, probably due to a defect directly or indirectly associated with the lack of carbohydrate side chains. Images PMID:6304718

  13. Growth phase and pH influence peptide signaling for competence development in Streptococcus mutans.

    PubMed

    Guo, Qiang; Ahn, Sang-Joon; Kaspar, Justin; Zhou, Xuedong; Burne, Robert A

    2014-01-01

    The development of competence by the dental caries pathogen Streptococcus mutans is mediated primarily through the alternative sigma factor ComX (SigX), which is under the control of multiple regulatory systems and activates the expression of genes involved in DNA uptake and recombination. Here we report that the induction of competence and competence gene expression by XIP (sigX-inducing peptide) and CSP (competence-stimulating peptide) is dependent on the growth phase and that environmental pH has a potent effect on the responses to XIP. A dramatic decline in comX and comS expression was observed in mid- and late-exponential-phase cells. XIP-mediated competence development and responses to XIP were optimal around a neutral pH, although mid-exponential-phase cells remained refractory to XIP treatment, and acidified late-exponential-phase cultures were resistant to killing by high concentrations of XIP. Changes in the expression of the genes for the oligopeptide permease (opp), which appears to be responsible for the internalization of XIP, could not entirely account for the behaviors observed. Interestingly, comS and comX expression was highly induced in response to endogenously overproduced XIP or ComS in mid-exponential-phase cells. In contrast to the effects of pH on XIP, competence induction and responses to CSP in complex medium were not affected by pH, although a decreased response to CSP in cells that had exited early-exponential phase was observed. Collectively, these results indicate that competence development may be highly sensitive to microenvironments within oral biofilms and that XIP and CSP signaling in biofilms could be spatially and temporally heterogeneous.

  14. In silico analysis and experimental validation of lipoprotein and novel Tat signal peptides processing in Anabaena sp. PCC7120.

    PubMed

    Kumari, Sonika; Chaurasia, Akhilesh Kumar

    2015-12-01

    Signal peptide (SP) plays a pivotal role in protein translocation. Lipoprotein- and twin arginine translocase (Tat) dependent signal peptides were studied in All3087, a homolog of competence protein of Synechocystis PCC6803 and in two putative alkaline phosphatases (ALPs, Alr2234 and Alr4976), respectively. In silico analysis of All3087 is shown to possess the characteristics feature of competence proteins such as helix-hairpin-helix, N and C-terminal HKD endonuclease domain, calcium binding domain and N-terminal lipoprotein signal peptide. The SP recognition-cleavage site in All3087 was predicted (AIA-AC) using SignalP while further in-depth analysis using Pred-Lipo and WebLogo analysis for consensus sequence showed it as IAA-C. Activities of putative ALPs were confirmed by heterologous overexpression, activity assessment and zymogram analysis. ALP activity in Anabaena remains cell bound in log-phase, but during late log/stationary phase, an enhanced ALP activity was detected in extracellular milieu. The enhancement of ALP activity during stationary phase was not only due to inorganic phosphate limitation but also contributed by the presence of novel bipartite Tat-SP. The Tat signal transported the folded active ALPs to the membrane, followed by anchoring into the membrane and successive cleavage enabling transportation of the ALPs to the extracellular milieu, because of bipartite architecture and processing of transit Tat-SP.

  15. Cellular insulin resistance disrupts leptin-mediated control of neuronal signaling and transcription.

    PubMed

    Nazarians-Armavil, Anaies; Menchella, Jonathan A; Belsham, Denise D

    2013-06-01

    Central resistance to the actions of insulin and leptin is associated with the onset of obesity and type 2 diabetes mellitus, whereas leptin and insulin signaling is essential for both glucose and energy homeostasis. Although it is known that leptin resistance can lead to attenuated insulin signaling, whether insulin resistance can lead to or exacerbate leptin resistance is unknown. To investigate the molecular events underlying crosstalk between these signaling pathways, immortalized hypothalamic neuronal models, rHypoE-19 and mHypoA-2/10, were used. Prolonged insulin exposure was used to induce cellular insulin resistance, and thereafter leptin-mediated regulation of signal transduction and gene expression was assessed. Leptin directly repressed agouti-related peptide mRNA levels but induced urocortin-2, insulin receptor substrate (IRS)-1, IRS2, and IR transcription, through leptin-mediated phosphatidylinositol 3-kinase/Akt activation. Neuronal insulin resistance, as assessed by attenuated Akt phosphorylation, blocked leptin-mediated signal transduction and agouti-related peptide, urocortin-2, IRS1, IRS2, and insulin receptor synthesis. Insulin resistance caused a substantial decrease in insulin receptor protein levels, forkhead box protein 1 phosphorylation, and an increase in suppressor of cytokine signaling 3 protein levels. Cellular insulin resistance may cause or exacerbate neuronal leptin resistance and, by extension, obesity. It is essential to unravel the effects of neuronal insulin resistance given that both peripheral, as well as the less widely studied central insulin resistance, may contribute to the development of metabolic, reproductive, and cardiovascular disorders. This study provides improved understanding of the complex cellular crosstalk between insulin-leptin signal transduction that is disrupted during neuronal insulin resistance.

  16. Ectopic expression of the agouti gene in transgenic mice causes obesity, features of type II diabetes, and yellow fur.

    PubMed

    Klebig, M L; Wilkinson, J E; Geisler, J G; Woychik, R P

    1995-05-23

    Mice that carry the lethal yellow (Ay) or viable yellow (Avy) mutation, two dominant mutations of the agouti (a) gene in mouse chromosome 2, exhibit a phenotype that includes yellow fur, marked obesity, a form of type II diabetes associated with insulin resistance, and an increased susceptibility to tumor development. Molecular analyses of these and several other dominant "obese yellow" a-locus mutations suggested that ectopic expression of the normal agouti protein gives rise to this complex pleiotropic phenotype. We have now tested this hypothesis directly by generating transgenic mice that ectopically express an agouti cDNA clone encoding the normal agouti protein in all tissues examined. Transgenic mice of both sexes have yellow fur, become obese, and develop hyperinsulinemia. In addition, male transgenic mice develop hyperglycemia by 12-20 weeks of age. These results demonstrate conclusively that the ectopic agouti expression is responsible for most, if not all, of the phenotypic traits of the dominant, obese yellow mutants.

  17. Signalling pathways of an insulin-mimetic phosphoinositolglycan-peptide in muscle and adipose tissue.

    PubMed Central

    Kessler, A; Müller, G; Wied, S; Crecelius, A; Eckel, J

    1998-01-01

    A novel phosphoinositolglycan-peptide (PIG-P) from the yeast Saccharomyces cerevisiae potently mimicks insulin action on glucose transport and metabolism in rat muscle and adipose tissue. The aim of the present study was to elucidate the cellular signalling pathways of this insulin-mimetic compound. Rapid onset and reversibility of PIG-P action on glucose transport were observed in isolated adipocytes with a half-time of transport stimulation of 6-8 min (insulin less than 5 min). Combined treatment with PIG-P and insulin indicated additive stimulation of glucose transport at submaximal concentrations and non-additive action of both agents at maximal doses. The tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) was markedly increased in response to PIG-P in rat cardiomyocytes without any effect on the tyrosine phosphorylation of the insulin receptor beta-subunit. PIG-P action in these cells was accompanied by phosphorylation/dephosphorylation of several proteins with molecular masses of 15-30 kDa, a response not detected with insulin. Downstream signalling of IRS-1 was then analysed by monitoring IRS-1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity in cardiomyocytes. A stable (2 and 15 min incubation with PIG-P) 7-fold stimulation corresponding to about 50% of insulin action could be detected. Increased tyrosine phosphorylation of IRS-1 and enhanced PI 3-kinase activity in response to PIG-P independent of the insulin receptor was also observed in isolated adipocytes. Involvement of PI 3-kinase in PIG-P action was subsequently confirmed by the dose-dependent inhibition of PIG-P-activated glucose transport in rat diaphragm and adipocytes by the PI 3-kinase inhibitors wortmannin and LY294002. These data suggest divergent upstream signalling by insulin and PIG-P involving phosphoproteins not affected by insulin. However, PIG-P and insulin action converge at the level of IRS-1 inducing insulin-independent PI 3-kinase-mediated signalling to

  18. Tuberoinfundibular peptide of 39 residues (TIP39) signaling modulates acute and tonic nociception

    PubMed Central

    Dimitrov, Eugene L.; Petrus, Emily; Usdin, Ted B.

    2010-01-01

    Tuberoinfundibular peptide of 39 residues (TIP39) synthesizing neurons at the caudal border of the thalamus and in the lateral pons project to areas rich in its receptor, the parathyroid hormone 2 receptor (PTH2R). These areas include many involved in processing nociceptive information. Here we examined the potential role of TIP39 signaling in nociception using a PTH2R antagonist (HYWH) and mice with deletion of TIP39's coding sequence or PTH2R null mutation. Intracerebroventricular (icv) infusion of HYWH significantly inhibited nociceptive responses in tail-flick and hot-plate tests and attenuated the nociceptive response to hindpaw formalin injection. TIP39-KO and PTH2R-KO had increased response latency in the 55 °C hot-plate test and reduced responses in the hindpaw formalin test. The tail-flick test was not affected in either KO line. Thermal hypoalgesia in KO mice was dose-dependently reversed by systemic administration of the cannabinoid receptor 1 (CB1) antagonist rimonabant, which did not affect nociception in wild-type (WT). Systemic administration of the cannabinoid agonist CP 55,940 did not affect nociception in KO mice at a dose effective in WT. WT mice administered HYWH icv, and both KOs, had significantly increased stress-induced analgesia (SIA). Rimonabant blocked the increased SIA in TIP39-KO, PTH2R-KO or after HYWH infusion. CB1 and FAAH mRNA were decreased and increased, respectively, in the basolateral amygdala of TIP39-KO mice. These data suggest that TIP39 signaling modulates nociception, very likely by inhibiting endocannabinoid circuitry at a supraspinal level. We infer a new central mechanism for endocannabinoid regulation, via TIP39 acting on the PTH2R in discrete brain regions. PMID:20696160

  19. AMP-activated Protein Kinase Signaling Activation by Resveratrol Modulates Amyloid-β Peptide Metabolism*

    PubMed Central

    Vingtdeux, Valérie; Giliberto, Luca; Zhao, Haitian; Chandakkar, Pallavi; Wu, Qingli; Simon, James E.; Janle, Elsa M.; Lobo, Jessica; Ferruzzi, Mario G.; Davies, Peter; Marambaud, Philippe

    2010-01-01

    Alzheimer disease is an age-related neurodegenerative disorder characterized by amyloid-β (Aβ) peptide deposition into cerebral amyloid plaques. The natural polyphenol resveratrol promotes anti-aging pathways via the activation of several metabolic sensors, including the AMP-activated protein kinase (AMPK). Resveratrol also lowers Aβ levels in cell lines; however, the underlying mechanism responsible for this effect is largely unknown. Moreover, the bioavailability of resveratrol in the brain remains uncertain. Here we show that AMPK signaling controls Aβ metabolism and mediates the anti-amyloidogenic effect of resveratrol in non-neuronal and neuronal cells, including in mouse primary neurons. Resveratrol increased cytosolic calcium levels and promoted AMPK activation by the calcium/calmodulin-dependent protein kinase kinase-β. Direct pharmacological and genetic activation of AMPK lowered extracellular Aβ accumulation, whereas AMPK inhibition reduced the effect of resveratrol on Aβ levels. Furthermore, resveratrol inhibited the AMPK target mTOR (mammalian target of rapamycin) to trigger autophagy and lysosomal degradation of Aβ. Finally, orally administered resveratrol in mice was detected in the brain where it activated AMPK and reduced cerebral Aβ levels and deposition in the cortex. These data suggest that resveratrol and pharmacological activation of AMPK have therapeutic potential against Alzheimer disease. PMID:20080969

  20. A Cyclic Peptide Inhibitor of HIF-1 Heterodimerization That Inhibits Hypoxia Signaling in Cancer Cells

    PubMed Central

    2013-01-01

    Hypoxia inducible factor-1 (HIF-1) is a heterodimeric transcription factor that acts as the master regulator of cellular response to reduced oxygen levels, thus playing a key role in the adaptation, survival, and progression of tumors. Here we report cyclo-CLLFVY, identified from a library of 3.2 million cyclic hexapeptides using a genetically encoded high-throughput screening platform, as an inhibitor of the HIF-1α/HIF-1β protein–protein interaction in vitro and in cells. The identified compound inhibits HIF-1 dimerization and transcription activity by binding to the PAS-B domain of HIF-1α, reducing HIF-1-mediated hypoxia response signaling in a variety of cell lines, without affecting the function of the closely related HIF-2 isoform. The reported cyclic peptide demonstrates the utility of our high-throughput screening platform for the identification of protein–protein interaction inhibitors, and forms the starting point for the development of HIF-1 targeted cancer therapeutics. PMID:23796364

  1. Quantitative Peptidomics Study Reveals That a Wound-Induced Peptide from PR-1 Regulates Immune Signaling in Tomato[W][OPEN

    PubMed Central

    Chen, Ying-Lan; Lee, Chi-Ying; Cheng, Kai-Tan; Chang, Wei-Hung; Huang, Rong-Nan; Nam, Hong Gil

    2014-01-01

    Many important cell-to-cell communication events in multicellular organisms are mediated by peptides, but only a few peptides have been identified in plants. In an attempt to address the difficulties in identifying plant signaling peptides, we developed a novel peptidomics approach and used this approach to discover defense signaling peptides in plants. In addition to the canonical peptide systemin, several novel peptides were confidently identified in tomato (Solanum lycopersicum) and quantified to be induced by both wounding and methyl jasmonate (MeJA). A wounding or wounding plus MeJA-induced peptide derived from the pathogenesis-related protein 1 (PR-1) family was found to induce significant antipathogen and minor antiherbivore responses in tomato. This study highlights a role for PR-1 in immune signaling and suggests the potential application of plant endogenous peptides in efforts to defeat biological threats in crop production. As PR-1 is highly conserved across many organisms and the putative peptide from At-PR1 was also found to be bioactive in Arabidopsis thaliana, our results suggest that this peptide may be useful for enhancing resistance to stress in other plant species. PMID:25361956

  2. A TNF receptor loop peptide mimic blocks RANK ligand-induced signaling, bone resorption, and bone loss.

    PubMed

    Aoki, Kazuhiro; Saito, Hiroaki; Itzstein, Cecile; Ishiguro, Masaji; Shibata, Tatsuya; Blanque, Roland; Mian, Anower Hussain; Takahashi, Mariko; Suzuki, Yoshifumi; Yoshimatsu, Masako; Yamaguchi, Akira; Deprez, Pierre; Mollat, Patrick; Murali, Ramachandran; Ohya, Keiichi; Horne, William C; Baron, Roland

    2006-06-01

    Activating receptor activator of NF-kappaB (RANK) and TNF receptor (TNFR) promote osteoclast differentiation. A critical ligand contact site on the TNFR is partly conserved in RANK. Surface plasmon resonance studies showed that a peptide (WP9QY) that mimics this TNFR contact site and inhibits TNF-alpha-induced activity bound to RANK ligand (RANKL). Changing a single residue predicted to play an important role in the interaction reduced the binding significantly. WP9QY, but not the altered control peptide, inhibited the RANKL-induced activation of RANK-dependent signaling in RAW 264.7 cells but had no effect on M-CSF-induced activation of some of the same signaling events. WP9QY but not the control peptide also prevented RANKL-induced bone resorption and osteoclastogenesis, even when TNFRs were absent or blocked. In vivo, where both RANKL and TNF-alpha promote osteoclastogenesis, osteoclast activity, and bone loss, WP9QY prevented the increased osteoclastogenesis and bone loss induced in mice by ovariectomy or low dietary calcium, in the latter case in both wild-type and TNFR double-knockout mice. These results suggest that a peptide that mimics a TNFR ligand contact site blocks bone resorption by interfering with recruitment and activation of osteoclasts by both RANKL and TNF.

  3. Identification of IL-23p19 as an endothelial proinflammatory peptide that promotes gp130-STAT3 signaling.

    PubMed

    Espígol-Frigolé, Georgina; Planas-Rigol, Ester; Ohnuki, Hidetaka; Salvucci, Ombretta; Kwak, Hyeongil; Ravichandran, Sarangan; Luke, Brian; Cid, Maria C; Tosato, Giovanna

    2016-03-15

    Interleukin-23 (IL-23), a heterodimeric cytokine composed of the unique p19 peptide (IL-23p19) and a peptide called IL-12p40, which is shared with IL-12, is implicated in Crohn's disease, rheumatoid arthritis, psoriasis, and other immune-mediated inflammatory diseases. Endothelial cells produce the IL-23p19 peptide in the absence of the IL-12p40 chain and thus do not make heterodimeric IL-23. We found that intercellular IL-23p19 increased the cell surface abundances of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) on endothelial cells, which enhanced the attachment of leukocytes and increased their transendothelial migration. Intracellular p19 associated with the cytokine receptor subunit gp130 and stimulated the gp130-dependent activation of signal transducer and activator of transcription 3 (STAT3) signaling. Proinflammatory factors promoted the generation of IL-23p19 in endothelial cells. The adventitial capillaries of inflamed temporal arteries in patients with giant-cell arteritis (GCA) had endothelial p19 protein associated with gp130, but did not contain the IL-12p40 chain. Because adventitial capillaries are essential for the entry of inflammatory cells into arterial walls, these data suggest that p19 may contribute to GCA disease and could represent a therapeutic target. Our results provide evidence that IL-23p19 is a previously unrecognized endothelial proinflammatory peptide that promotes leukocyte transendothelial migration, advancing our current understanding of the complexities of inflammatory responses.

  4. Novel peptides for deciphering structural and signalling functions of E-cadherin in mouse embryonic stem cells

    PubMed Central

    Segal, Joe M.; Ward, Christopher M.

    2017-01-01

    We have previously shown that E-cadherin regulates the naive pluripotent state of mouse embryonic stem cells (mESCs) by enabling LIF-dependent STAT3 phosphorylation, with E-cadherin null mESCs exhibiting over 3000 gene transcript alterations and a switch to Activin/Nodal-dependent pluripotency. However, elucidation of the exact mechanisms associated with E-cadherin function in mESCs is compounded by the difficulty in delineating the structural and signalling functions of this protein. Here we show that mESCs treated with the E-cadherin neutralising antibody DECMA-1 or the E-cadherin binding peptide H-SWELYYPLRANL-NH2 (Epep) exhibit discrete profiles for pluripotent transcripts and NANOG protein expression, demonstrating that the type of E-cadherin inhibitor employed dictates the cellular phenotype of mESCs. Alanine scanning mutation of Epep revealed residues critical for Tbx3, Klf4 and Esrrb transcript repression, cell-cell contact abrogation, cell survival in suspension, STAT3 phosphorylation and water solubility. STAT3 phosphorylation was found to be independent of loss of cell-cell contact and Activin/Nodal-dependent pluripotency and a peptide is described that enhances STAT3 phosphorylation and Nanog transcript and protein expression in mESCs. These peptides represent a useful resource for deciphering the structural and signalling functions of E-cadherin and demonstrate that complete absence of E-cadherin protein is likely required for hierarchical signalling pathway alterations in mESCs. PMID:28169326

  5. Inhibition of TLR4 signaling by Brucella TIR-containing protein TcpB-derived decoy peptides.

    PubMed

    Ke, Yuehua; Li, Wenna; Wang, Yufei; Yang, Mingjuan; Guo, Jinpeng; Zhan, Shaoxia; Du, Xinying; Wang, Zhoujia; Yang, Min; Li, Juan; Li, Wenfeng; Chen, Zeliang

    2016-09-01

    Brucella spp. avoid host immune recognition and thus, weaken the immune response to infection. The Toll/interleukin-1 receptor (TIR) domain-containing protein (TcpB/Btp1) of Brucella spp. is thought to be involved in blocking host innate immune responses by binding to adaptors downstream of Toll-like receptors. In this study, based on the observation that TcpB binds to the host target proteins, MAL, through the TIR domain, we examined decoy peptides from TcpB TIR domains and found that TB-8 and TB-9 substantially inhibit lipopolysaccharide (LPS)-induced signaling in vitro and in vivo. Both these peptides share a common loop, the DD loop, indicating a novel structural region mediating TIR interactions. The inhibition of LPS signaling by TB-8 and TB-9 shows no preference to MyD88-dependent cytokines, such as TNF-α and IL-1β or TRIF-dependent cytokines including IFN-β and IL-6. Furthermore, these two peptides rescue the virulence of Brucella ΔtcpB mutants at the cellular level, indicating key roles of the DD loop in Brucella pathogenesis. In conclusion, identification of inhibitors from the bacterial TIR domains is helpful not only for illustrating interacting mechanisms between TIR domains and bacterial pathogenesis, but also for developing novel signaling inhibitors and therapeutics for human inflammatory diseases.

  6. Signal peptide discrimination and cleavage site identification using SVM and NN.

    PubMed

    Kazemian, H B; Yusuf, S A; White, K

    2014-02-01

    About 15% of all proteins in a genome contain a signal peptide (SP) sequence, at the N-terminus, that targets the protein to intracellular secretory pathways. Once the protein is targeted correctly in the cell, the SP is cleaved, releasing the mature protein. Accurate prediction of the presence of these short amino-acid SP chains is crucial for modelling the topology of membrane proteins, since SP sequences can be confused with transmembrane domains due to similar composition of hydrophobic amino acids. This paper presents a cascaded Support Vector Machine (SVM)-Neural Network (NN) classification methodology for SP discrimination and cleavage site identification. The proposed method utilises a dual phase classification approach using SVM as a primary classifier to discriminate SP sequences from Non-SP. The methodology further employs NNs to predict the most suitable cleavage site candidates. In phase one, a SVM classification utilises hydrophobic propensities as a primary feature vector extraction using symmetric sliding window amino-acid sequence analysis for discrimination of SP and Non-SP. In phase two, a NN classification uses asymmetric sliding window sequence analysis for prediction of cleavage site identification. The proposed SVM-NN method was tested using Uni-Prot non-redundant datasets of eukaryotic and prokaryotic proteins with SP and Non-SP N-termini. Computer simulation results demonstrate an overall accuracy of 0.90 for SP and Non-SP discrimination based on Matthews Correlation Coefficient (MCC) tests using SVM. For SP cleavage site prediction, the overall accuracy is 91.5% based on cross-validation tests using the novel SVM-NN model.

  7. Efficient expression of nattokinase in Bacillus licheniformis: host strain construction and signal peptide optimization.

    PubMed

    Wei, Xuetuan; Zhou, Yinhua; Chen, Jingbang; Cai, Dongbo; Wang, Dan; Qi, Gaofu; Chen, Shouwen

    2015-02-01

    Nattokinase (NK) possesses the potential for prevention and treatment of thrombus-related diseases. In this study, high-level expression of nattokinase was achieved in Bacillus licheniformis WX-02 via host strain construction and signal peptides optimization. First, ten genes (mpr, vpr, aprX, epr, bpr, wprA, aprE, bprA, hag, amyl) encoding for eight extracellular proteases, a flagellin and an amylase were deleted to obtain B. licheniformis BL10, which showed no extracellular proteases activity in gelatin zymography. Second, the gene fragments of P43 promoter, Svpr, nattokinase and TamyL were combined into pHY300PLK to form the expression vector pP43SNT. In BL10 (pP43SNT), the fermentation activity and product activity per unit of biomass of nattokinase reached 14.33 FU/mL and 2,187.71 FU/g respectively, which increased by 39 and 156 % compared to WX-02 (pP43SNT). Last, Svpr was replaced with SsacC and SbprA, and the maximum fermentation activity (33.83 FU/mL) was achieved using SsacC, which was 229 % higher than that of WX-02 (pP43SNT). The maximum NK fermentation activity in this study reaches the commercial production level of solid state fermentation, and this study provides a promising engineered strain for industrial production of nattokinase, as well as a potential platform host for expression of other target proteins.

  8. Growth of Streptococcus mutans in Biofilms Alters Peptide Signaling at the Sub-population Level

    PubMed Central

    Shields, Robert C.; Burne, Robert A.

    2016-01-01

    Streptococcus mutans activates multiple cellular processes in response to the formation of a complex between comX-inducing peptide (XIP) and the ComR transcriptional regulator. Bulk phase and microfluidic experiments previously revealed that ComR-dependent activation of comX is altered by pH and by carbohydrate source. Biofilm formation is a major factor in bacterial survival and virulence in the oral cavity. Here, we sought to determine the response of S. mutans biofilm cells to XIP during different stages of biofilm maturation. Using flow cytometry and confocal microscopy, we showed that exogenous addition of XIP to early biofilms resulted in robust comX activation. However, as the biofilms matured, increasing amounts of XIP were required to activate comX expression. Single-cell analysis demonstrated that the entire population was responding to XIP with activation of comX in early biofilms, but only a sub-population was responding in mature biofilms. The sub-population response of mature biofilms was retained when the cells were dispersed and then treated with XIP. The proportion and intensity of the bi-modal response of mature biofilm cells was altered in mutants lacking the Type II toxins MazF and RelE, or in a strain lacking the (p)ppGpp synthase/hydrolase RelA. Thus, competence signaling is markedly altered in cells growing in mature biofilms, and pathways that control cell death and growth/survival decisions modulate activation of comX expression in these sessile populations. PMID:27471495

  9. Signaling Pathways Involved in Renal Oxidative Injury: Role of the Vasoactive Peptides and the Renal Dopaminergic System

    PubMed Central

    Rukavina Mikusic, N. L.; Kravetz, M. C.; Kouyoumdzian, N. M.; Della Penna, S. L.; Rosón, M. I.; Fernández, B. E.; Choi, M. R.

    2014-01-01

    The physiological hydroelectrolytic balance and the redox steady state in the kidney are accomplished by an intricate interaction between signals from extrarenal and intrarenal sources and between antinatriuretic and natriuretic factors. Angiotensin II, atrial natriuretic peptide and intrarenal dopamine play a pivotal role in this interactive network. The balance between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide, by one side, and the prooxidant effect of the renin angiotensin system, by the other side, contributes to ensuring the normal function of the kidney. Different pathological scenarios, as nephrotic syndrome and hypertension, where renal sodium excretion is altered, are associated with an impaired interaction between two natriuretic systems as the renal dopaminergic system and atrial natriuretic peptide that may be involved in the pathogenesis of renal diseases. The aim of this review is to update and comment the most recent evidences about the intracellular pathways involved in the relationship between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide and the prooxidant effect of the renin angiotensin system in the pathogenesis of renal inflammation. PMID:25436148

  10. Overcoming the Refractory Expression of Secreted Recombinant Proteins in Mammalian Cells through Modification of the Signal Peptide and Adjacent Amino Acids

    PubMed Central

    Güler-Gane, Gülin; Kidd, Sara; Sridharan, Sudharsan; Vaughan, Tristan J.; Wilkinson, Trevor C. I.

    2016-01-01

    The expression and subsequent purification of mammalian recombinant proteins is of critical importance to many areas of biological science. To maintain the appropriate tertiary structure and post-translational modifications of such proteins, transient mammalian expression systems are often adopted. The successful utilisation of these systems is, however, not always forthcoming and some recombinant proteins prove refractory to expression in mammalian hosts. In this study we focussed on the role of different N-terminal signal peptides and residues immediately downstream, in influencing the level of secreted recombinant protein obtained from suspension HEK293 cells. Using secreted alkaline phosphatase (SEAP) as a model protein, we identified that the +1/+2 downstream residues flanking a heterologous signal peptide significantly affect secreted levels. By incorporating these findings we conducted a comparison of different signal peptide sequences and identified the most productive as secrecon, a computationally-designed sequence. Importantly, in the context of the secrecon signal peptide and SEAP, we also demonstrated a clear preference for specific amino acid residues at the +1 position (e.g. alanine), and a detrimental effect of others (cysteine, proline, tyrosine and glutamine). When proteins that naturally contain these “undesirable” residues at the +1 position were expressed with their native signal peptide, the heterologous secrecon signal peptide, or secrecon with an additional alanine at the +1 or +1 and +2 position, the level of expression differed significantly and in an unpredictable manner. For each protein, however, at least one of the panel of signal peptide/adjacent amino acid combinations enabled successful recombinant expression. In this study, we highlight the important interplay between a signal peptide and its adjacent amino acids in enabling protein expression, and we describe a strategy that could enable recombinant proteins that have so far

  11. Co-translational processing of glycoprotein 3 from equine arteritis virus: N-glycosylation adjacent to the signal peptide prevents cleavage.

    PubMed

    Matczuk, Anna Karolina; Kunec, Dusan; Veit, Michael

    2013-12-06

    Signal peptide cleavage and N-glycosylation of proteins are co-translational processes, but little is known about their interplay if they compete for adjacent sites. Here we report two unique findings for processing of glycoprotein 3 of equine arteritis virus. Glycoprotein 3 (Gp3) contains an N-terminal signal peptide, which is not removed, although bioinformatics predicts cleavage with high probability. There is an overlapping sequon, NNTT, adjacent to the signal peptide that we show to be glycosylated at both asparagines. Exchanging the overlapping sequon and blocking glycosylation allows signal peptide cleavage, indicating that carbohydrate attachment inhibits processing of a potentially cleavable signal peptide. Bioinformatics analyses suggest that a similar processing scheme may exist for some cellular proteins. Membrane fractionation and secretion experiments revealed that the signal peptide of Gp3 does not act as a membrane anchor, indicating that it is completely translocated into the lumen of the endoplasmic reticulum. Membrane attachment is caused by the hydrophobic C terminus of Gp3, which, however, does not span the membrane but rather attaches the protein peripherally to endoplasmic reticulum membranes.

  12. Identification of putative insulin-like peptides and components of insulin signaling pathways in parasitic platyhelminths by the use of genome-wide screening.

    PubMed

    Wang, Shuai; Luo, Xuenong; Zhang, Shaohua; Yin, Cai; Dou, Yongxi; Cai, Xuepeng

    2014-02-01

    No endogenous insulin-like peptides in parasitic flatworms have been reported. Insulin receptors from flukes and tapeworms have been shown to interact directly with the host-derived insulin molecule, which suggests the exploitation of host-derived insulin. In this study, a strategy of genome-wide searches followed by comprehensive analyses of strictly conserved features of the insulin family was used to demonstrate the presence of putative insulin-like peptides in the genomes of six tapeworms and two flukes. In addition, whole insulin signaling pathways were annotated on a genome-wide scale. Two putative insulin-like peptide genes in each genome of tapeworms and one insulin-like peptide gene in each genome of flukes were identified. The comprehensive analyses revealed that all of these peptides showed the common features shared by other members of the insulin family, and the phylogenetic analysis implied a putative gene duplication event in the Cestoda during the evolution of insulin-like peptide genes. The quantitative expression analysis and immunolocalization results suggested a putative role of these peptides in reproduction. Entire sets of major components of the classic insulin signaling pathway were successfully identified, suggesting that this pathway in parasitic flatworms might also regulate many other important biological activities. We believe that the identification of the insulin-like peptides gives us a better understanding of the insulin signaling pathway in these parasites, as well as host-parasite interactions.

  13. Downstream signaling molecules bind to different phosphorylated immunoreceptor tyrosine-based activation motif (ITAM) peptides of the high affinity IgE receptor.

    PubMed

    Kimura, T; Kihara, H; Bhattacharyya, S; Sakamoto, H; Appella, E; Siraganian, R P

    1996-11-01

    The cytoplasmic tails of both the beta and gamma subunits of the high affinity IgE receptor (FcepsilonRI) contain a consensus sequence termed the immunoreceptor tyrosine-based activation motif (ITAM). This motif plays a critical role in receptor-mediated signal transduction. Synthetic peptides based on the ITAM sequences of the beta and gamma subunits of FcepsilonRI were used to investigate which proteins associate with these motifs. Tyrosine-phosphorylated beta and gamma ITAM peptides immobilized on beads precipitated Syk, Lyn, Shc, Grb2, and phospholipase C-gamma1 from lysates of rat basophilic leukemia RBL-2H3 cells. Syk was precipitated predominantly by the tyrosine-diphosphorylated gamma ITAM peptide, but much less by the diphosphorylated beta ITAM peptide or by the monophosphorylated peptides. Phospholipase C-gamma1, Shc, and Grb2 were precipitated only by the diphosphorylated beta ITAM peptide. Non-phosphorylated ITAM peptides did not precipitate these proteins. In membrane binding assays, fusion proteins containing the Src homology 2 domains of phospholipase C-gamma1, Shc, Syk, and Lyn directly bound the tyrosine-phosphorylated ITAM peptides. Although the ITAM sequences of the beta and gamma subunits of FcepsilonRI are similar, once they are tyrosine-phosphorylated they preferentially bind different downstream signaling molecules. Tyrosine phosphorylation of the ITAM of the gamma subunit recruits and activates Syk, whereas the beta subunit may be important for the Ras signaling pathway.

  14. Co-Encapsulating the Fusogenic Peptide INF7 and Molecular Imaging Probes in Liposomes Increases Intracellular Signal and Probe Retention

    PubMed Central

    Martin, Erik W.; Li, Changqing; Lu, Wuyuan; Kao, Joseph P. Y.

    2015-01-01

    Liposomes are promising vehicles to deliver diagnostic and therapeutic agents to cells in vivo. After uptake into cells by endocytosis, liposomes are degraded in the endolysosomal system. Consequently, the encapsulated cargo molecules frequently remain sequestered in endosomal compartments; this limits their usefulness in many applications (e.g. gene delivery). To overcome this, various fusogenic peptides have been developed to facilitate delivery of liposomally-encapsulated molecules into the cytosol. One such peptide is the pH-sensitive influenza-derived peptide INF7. Liposomal delivery of imaging agents is an attractive approach for enabling cell imaging and cell tracking in vivo, but can be hampered by inadequate intracellular accumulation and retention of probes caused by exocytosis (and possible degradation) of endosome-entrapped probes. Such signal loss could be minimized by facilitating escape of probe molecules from endolysosomal compartments into the cytosol. We investigated the ability of co-encapsulated INF7 to release liposomally-delivered rhodamine fluorophores into the cytosol after endosomal acidification/maturation. We co-encapsulated INF7 and fluorescent rhodamine derivatives having vastly different transport properties to show that after endocytosis by CV1 cells, the INF7 peptide is activated by acidic endosomal pH and facilitates efficient release of the fluorescent tracers into the cytosol. Furthermore, we show that INF7-facilitated escape from endosomes markedly enhanced retention of tracers that cannot be actively extruded from the cytosol. Minimizing loss of intracellular probes improves cellular imaging by increasing the signal-to-noise ratio of images and lengthening the time window that imaging can be performed. In particular, this will enhance in vivo electron paramagnetic resonance imaging, an emergent magnetic resonance imaging modality requires exogenous paramagnetic imaging agents and is highly promising for cellular and molecular

  15. Single-Step Affinity Purification of ERK Signaling Complexes Using the Streptavidin-Binding Peptide (SBP) Tag.

    PubMed

    Yang, Liu; Veraksa, Alexey

    2017-01-01

    Elucidation of biological functions of signaling proteins is facilitated by studying their protein-protein interaction networks. Affinity purification combined with mass spectrometry (AP-MS) has become a favorite method to study protein complexes. Here we describe a procedure for single-step purification of ERK (Rolled) and associated proteins from Drosophila cultured cells. The use of the streptavidin-binding peptide (SBP) tag allows for a highly efficient isolation of native ERK signaling complexes, which are suitable for subsequent analysis by mass spectrometry. Our analysis of the ERK interactome has identified both known and novel signaling components. This method can be easily adapted for SBP-based purification of protein complexes in any expression system.

  16. Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission

    PubMed Central

    Santiago, Julia; Brandt, Benjamin; Wildhagen, Mari; Hohmann, Ulrich; Hothorn, Ludwig A; Butenko, Melinka A; Hothorn, Michael

    2016-01-01

    Plants constantly renew during their life cycle and thus require to shed senescent and damaged organs. Floral abscission is controlled by the leucine-rich repeat receptor kinase (LRR-RK) HAESA and the peptide hormone IDA. It is unknown how expression of IDA in the abscission zone leads to HAESA activation. Here we show that IDA is sensed directly by the HAESA ectodomain. Crystal structures of HAESA in complex with IDA reveal a hormone binding pocket that accommodates an active dodecamer peptide. A central hydroxyproline residue anchors IDA to the receptor. The HAESA co-receptor SERK1, a positive regulator of the floral abscission pathway, allows for high-affinity sensing of the peptide hormone by binding to an Arg-His-Asn motif in IDA. This sequence pattern is conserved among diverse plant peptides, suggesting that plant peptide hormone receptors may share a common ligand binding mode and activation mechanism. DOI: http://dx.doi.org/10.7554/eLife.15075.001 PMID:27058169

  17. Truncated Glucagon-like Peptide-1 and Exendin-4 α-Conotoxin pl14a Peptide Chimeras Maintain Potency and α-Helicity and Reveal Interactions Vital for cAMP Signaling in Vitro.

    PubMed

    Swedberg, Joakim E; Schroeder, Christina I; Mitchell, Justin M; Fairlie, David P; Edmonds, David J; Griffith, David A; Ruggeri, Roger B; Derksen, David R; Loria, Paula M; Price, David A; Liras, Spiros; Craik, David J

    2016-07-22

    Glucagon-like peptide-1 (GLP-1) signaling through the glucagon-like peptide 1 receptor (GLP-1R) is a key regulator of normal glucose metabolism, and exogenous GLP-1R agonist therapy is a promising avenue for the treatment of type 2 diabetes mellitus. To date, the development of therapeutic GLP-1R agonists has focused on producing drugs with an extended serum half-life. This has been achieved by engineering synthetic analogs of GLP-1 or the more stable exogenous GLP-1R agonist exendin-4 (Ex-4). These synthetic peptide hormones share the overall structure of GLP-1 and Ex-4, with a C-terminal helical segment and a flexible N-terminal tail. Although numerous studies have investigated the molecular determinants underpinning GLP-1 and Ex-4 binding and signaling through the GLP-1R, these have primarily focused on the length and composition of the N-terminal tail or on how to modulate the helicity of the full-length peptides. Here, we investigate the effect of C-terminal truncation in GLP-1 and Ex-4 on the cAMP pathway. To ensure helical C-terminal regions in the truncated peptides, we produced a series of chimeric peptides combining the N-terminal portion of GLP-1 or Ex-4 and the C-terminal segment of the helix-promoting peptide α-conotoxin pl14a. The helicity and structures of the chimeric peptides were confirmed using circular dichroism and NMR, respectively. We found no direct correlation between the fractional helicity and potency in signaling via the cAMP pathway. Rather, the most important feature for efficient receptor binding and signaling was the C-terminal helical segment (residues 22-27) directing the binding of Phe(22) into a hydrophobic pocket on the GLP-1R.

  18. In vivo analysis of fibroin heavy chain signal peptide of silkworm Bombyx mori using recombinant baculovirus as vector

    SciTech Connect

    Wang Shengpeng; Guo Tingqing; Guo Xiuyang; Huang Junting; Lu Changde . E-mail: cdlu@sibs.ac.cn

    2006-03-24

    In order to investigate the functional signal peptide of silkworm fibroin heavy chain (FibH) and the effect of N- and C-terminal parts of FibH on the secretion of FibH in vivo, N- and C-terminal segments of fibh gene were fused with enhanced green fluorescent protein (EGFP) gene. The fused gene was then introduced into silkworm larvae and expressed in silk gland using recombinant AcMNPV (Autographa californica multiple nuclear polyhedrosis virus) as vector. The fluorescence of EGFP was observed with fluorescence microscope. FibH-EGFP fusion proteins extracted from silk gland were analyzed by Western blot. Results showed that the two alpha helices within N-terminal 163 amino acid residues and the C-terminal 61 amino acid residues were not necessary for cleavage of signal peptide and secretion of the fusion protein into silk gland. Then the C-terminal 61 amino acid residues were substituted with a His-tag in the fusion protein to facilitate the purification. N-terminal sequencing of the purified protein showed that the signal cleavage site is between position 21 and 22 amino acid residues.

  19. Polyplexes assembled from self-peptides and regulatory nucleic acids blunt toll-like receptor signaling to combat autoimmunity.

    PubMed

    Hess, Krystina L; Andorko, James I; Tostanoski, Lisa H; Jewell, Christopher M

    2017-02-01

    Autoimmune diseases occur when the immune system incorrectly recognizes self-molecules as foreign; in the case of multiple sclerosis (MS), myelin is attacked. Intriguingly, new studies reveal toll-like receptors (TLRs), pathways usually involved in generating immune responses against pathogens, play a significant role in driving autoimmune disease in both humans and animal models. We reasoned polyplexes formed from myelin self-antigen and regulatory TLR antagonists might limit TLR signaling during differentiation of myelin-specific T cells, inducing tolerance by biasing T cells away from inflammatory phenotypes. Complexes were formed by modifying myelin peptide with cationic amino acids to create peptides able to condense the anionic nucleic-acid based TLR antagonist. These immunological polyplexes eliminate synthetic polymers commonly used to condense polyplexes and do not rely on gene expression; however, the complexes mimic key features of traditional polyplexes such as tunable loading and co-delivery. Using these materials and classic polyplex analysis techniques, we demonstrate condensation of both immune signals, protection from enzymatic degradation, and tunable physicochemical properties. We show polyplexes reduce TLR signaling, and in primary dendritic cell and T cell co-culture, reduce myelin-driven inflammation. During mouse models of MS, these tolerogenic polyplexes improve the progression, severity, and incidence of disease.

  20. REVIEW: Role of cyclic AMP signaling in the production and function of the incretin hormone glucagon-like peptide-1

    NASA Astrophysics Data System (ADS)

    Yu, Zhiwen; Jin, Tianru

    2008-01-01

    Pancreatic cells express the proglucagon gene (gcg) and thereby produce the peptide hormone glucagon, which stimulates hepatic glucose production and thereby increases blood glucose levels. The same gcg gene is also expressed in the intestinal endocrine L cells and certain neural cells in the brain. In the gut, gcg expression leads to the production of glucagon-like peptide-1 (GLP-1). This incretin hormone stimulates insulin secretion when blood glucose level is high. In addition, GLP-1 stimulates pancreatic cell proliferation, inhibits cell apoptosis, and has been utilized in the trans-differentiation of insulin producing cells. Today, a long-term effective GLP-1 receptor agonist has been developed as a drug in treating diabetes and potentially other metabolic disorders. Extensive investigations have shown that the expression of gcg and the production of GLP-1 can be activated by the elevation of the second messenger cyclic AMP (cAMP). Recent studies suggest that in addition to protein kinase A (PKA), exchange protein activated by cAMP (Epac), another effector of cAMP signaling, and the crosstalk between PKA and Wnt signaling pathway, are also involved in cAMP-stimulated gcg expression and GLP-1 production. Furthermore, functions of GLP-1 in pancreatic cells are mainly mediated by cAMP-PKA, cAMP-Epac and Wnt signaling pathways as well.

  1. The impact of adhesion peptides within hydrogels on the phenotype and signaling of normal and cancerous mammary epithelial cells

    PubMed Central

    Weiss, Michael S.; Bernabé, Beatriz Peñalver; Shikanov, Ariella; Bluver, Dennis A.; Mui, Michael D.; Shin, Seungjin; Broadbelt, Linda J.; Shea, Lonnie D.

    2012-01-01

    The microenviroment contributes to directing mammary epithelial cell (MEC) development and the progression of breast cancer. Three-dimensional culture models have been used to support formation of structures that display varying degrees of disorganization that parallel the degree of cancer. Synthetic hydrogels were employed to investigate the mechanisms by which specific adhesion signals in the microenvironment directed development. Polyethylene glycol-based hydrogels supported 3D growth of MECs and directed formation of a range of phenotypes that were functions of genotype, and identity and concentration of adhesion peptides RGD and YIGSR. Non-cancerous and cancerous MECs responded differentially to the same adhesion cues and produced variable structural organizations. An analysis of dynamic signaling pathways revealed differential activities of transcription factors within the MAPK and JAK/STAT pathways in response to genotype and adhesion. These results directly implicate adhesion in cancer development and demonstrate that AP1, CREB, STAT1, and STAT3 all contribute to the genotype dependence of cellular response to adhesion peptides. The tools presented in this work could be applied to other systems and connect extracellular cues with intracellular signaling to molecularly dissect tissue development and further biomaterials development. PMID:22341213

  2. Differential Use of Signal Peptides and Membrane Domains Is a Common Occurrence in the Protein Output of Transcriptional Units

    PubMed Central

    Davis, Melissa J; Hanson, Kelly A; Clark, Francis; Fink, J. Lynn; Zhang, Fasheng; Kasukawa, Takeya; Kai, Chikatoshi; Kawai, Jun; Carninci, Piero; Hayashizaki, Yoshihide; Teasdale, Rohan D

    2006-01-01

    Membrane organization describes the orientation of a protein with respect to the membrane and can be determined by the presence, or absence, and organization within the protein sequence of two features: endoplasmic reticulum signal peptides and alpha-helical transmembrane domains. These features allow protein sequences to be classified into one of five membrane organization categories: soluble intracellular proteins, soluble secreted proteins, type I membrane proteins, type II membrane proteins, and multi-spanning membrane proteins. Generation of protein isoforms with variable membrane organizations can change a protein's subcellular localization or association with the membrane. Application of MemO, a membrane organization annotation pipeline, to the FANTOM3 Isoform Protein Sequence mouse protein set revealed that within the 8,032 transcriptional units (TUs) with multiple protein isoforms, 573 had variation in their use of signal peptides, 1,527 had variation in their use of transmembrane domains, and 615 generated protein isoforms from distinct membrane organization classes. The mechanisms underlying these transcript variations were analyzed. While TUs were identified encoding all pairwise combinations of membrane organization categories, the most common was conversion of membrane proteins to soluble proteins. Observed within our high-confidence set were 156 TUs predicted to generate both extracellular soluble and membrane proteins, and 217 TUs generating both intracellular soluble and membrane proteins. The differential use of endoplasmic reticulum signal peptides and transmembrane domains is a common occurrence within the variable protein output of TUs. The generation of protein isoforms that are targeted to multiple subcellular locations represents a major functional consequence of transcript variation within the mouse transcriptome. PMID:16683029

  3. A Cytosolic STIM2 Preprotein Created by Signal Peptide Inefficiency Activates ORAI1 in a Store-independent Manner*

    PubMed Central

    Graham, Sarah J. L.; Dziadek, Marie A.; Johnstone, Lorna S.

    2011-01-01

    Calcium (Ca2+) influx through the plasma membrane store-operated Ca2+ channel ORAI1 is controlled by Ca2+ sensors of the stromal interaction molecule (STIM) family. STIM1 responds to endoplasmic reticulum (ER) Ca2+ store depletion by redistributing and activating ORAI1 from regions of the ER juxtaposed to the plasma membrane. Unlike STIM1, STIM2 can regulate ORAI1 in a store-dependent and store-independent manner, but the mechanism by which this is achieved is unknown. Here we find that STIM2 is translated from a highly conserved methionine residue and is directed to the ER by an incredibly long 101-amino acid signal peptide. We find that although the majority of the total STIM2 population resides on the ER membrane, a second population escapes ER targeting to accumulate as a full-length preprotein in the cytosol, signal peptide intact. Unlike STIM2, preSTIM2 localizes to the inner leaflet of the plasma membrane where it interacts with ORAI1 to regulate basal Ca2+ concentration and Ca2+-dependent gene transcription in a store-independent manner. Furthermore, a third protein comprising a fragment of the STIM2 signal peptide is released from the ER membrane into the cytosol where it regulates gene transcription in a Ca2+-independent manner. This study establishes a new model for STIM2-mediated regulation of ORAI1 in which two distinct proteins, STIM2 and preSTIM2, control store-dependent and store-independent modes of ORAI1 activation. PMID:21383014

  4. Regulation of sporulation initiation by NprR and its signaling peptide NprRB: molecular recognition and conformational changes.

    PubMed

    Cabrera, Rosina; Rocha, Jorge; Flores, Víctor; Vázquez-Moreno, Luz; Guarneros, Gabriel; Olmedo, Gabriela; Rodríguez-Romero, Adela; de la Torre, Mayra

    2014-11-01

    NprR belongs to the RNPP family of quorum-sensing receptors, a group of intracellular regulators activated directly by signaling oligopeptides in Gram-positive bacteria. In Bacillus thuringiensis (Bt), nprR is located in a transcriptional cassette with nprRB that codes for the precursor of the signaling peptide NprRB. NprR is a transcriptional regulator activated by binding of reimported NprRB; however, several reports suggest that NprR also participates in sporulation but the mechanism is unknown. Our in silico results, based on the structural similarity between NprR from Bt and Spo0F-binding Rap proteins from Bacillus subtilis, suggested that NprR could bind Spo0F to modulate the sporulation phosphorelay in Bt. Deletion of nprR-nprRB cassette from Bt caused a delay in sporulation and defective trigger of the Spo0A∼P-activated genes spoIIA and spoIIIG. The DNA-binding domain of NprR was not necessary for this second function, since truncated NprRΔHTH together with nprRB gene was able to restore the sporulation wild type phenotype in the ΔnprR-nprRB mutant. Fluorescence assays showed direct binding between NprR and Spo0F, supporting that NprR is a bifunctional protein. To understand how the NprR activation by NprRB could result in two different functions, we studied the molecular recognition mechanism between the signaling peptide and the receptor. Using synthetic variants of NprRB, we found that SSKPDIVG displayed the highest affinity (Kd = 7.19 nM) toward the recombinant NprR and demonstrated that recognition involves conformational selection. We propose that the peptide concentration in the cell controls the oligomerization state of the NprR-NprRB complex for switching between its two functions.

  5. Transcriptional regulation and signal-peptide-dependent secretion of exolevanase (LsdB) in the endophyte Gluconacetobacter diazotrophicus.

    PubMed

    Menéndez, Carmen; Banguela, Alexander; Caballero-Mellado, Jesús; Hernández, Lázaro

    2009-03-01

    Gluconacetobacter diazotrophicus utilizes plant sucrose with a constitutively expressed levansucrase (LsdA), producing extracellular levan, which may be degraded under energetically unfavored conditions. Reverse transcriptase-PCR analysis revealed that lsdA and the downstream exolevanase gene (lsdB) form an operon. lsdB transcription was induced during growth with low fructose concentrations (0.44 to 33 mM) and repressed by glucose. Transport of LsdB to the periplasm involved N-terminal signal peptide cleavage. Type II secretion mutants failed to transfer LsdB across the outer membrane, impeding levan hydrolysis.

  6. Transcriptional Regulation and Signal-Peptide-Dependent Secretion of Exolevanase (LsdB) in the Endophyte Gluconacetobacter diazotrophicus▿

    PubMed Central

    Menéndez, Carmen; Banguela, Alexander; Caballero-Mellado, Jesús; Hernández, Lázaro

    2009-01-01

    Gluconacetobacter diazotrophicus utilizes plant sucrose with a constitutively expressed levansucrase (LsdA), producing extracellular levan, which may be degraded under energetically unfavored conditions. Reverse transcriptase-PCR analysis revealed that lsdA and the downstream exolevanase gene (lsdB) form an operon. lsdB transcription was induced during growth with low fructose concentrations (0.44 to 33 mM) and repressed by glucose. Transport of LsdB to the periplasm involved N-terminal signal peptide cleavage. Type II secretion mutants failed to transfer LsdB across the outer membrane, impeding levan hydrolysis. PMID:19139238

  7. Biofilm mode of growth of Streptococcus intermedius favored by a competence-stimulating signaling peptide.

    PubMed

    Petersen, Fernanda C; Pecharki, Daniele; Scheie, Anne A

    2004-09-01

    Gram-positive and gram-negative bacteria use quorum sensing to coordinate population behavior. In several streptococci, quorum sensing mediated by competence-stimulating peptides (CSP) is associated with development of competence for transformation. We show here that a synthetic CSP favored the biofilm mode of growth of Streptococcus intermedius without affecting the rate of culture growth.

  8. Selective Inhibition of Mitochondrial JNK Signaling Achieved Using Peptide Mimicry of the Sab Kinase Interacting Motif-1 (KIM1)

    PubMed Central

    Chambers, Jeremy W.; Cherry, Lisa; Laughlin, John D.; Figuera-Losada, Mariana; LoGrasso, Philip V.

    2011-01-01

    The c-jun N-terminal kinases (JNKs) are responsive to stress stimuli leading to activation of proapoptotic proteins and transcription. Additionally, JNK mitochondrial localization has been reported. To selectively target mitochondrial JNK signaling, we exploited JNKs interaction with its mitochondrial scaffold, Sab, using small interfering RNAs (siRNAs) and a cell permeable peptide corresponding to the KIM1 domain of Sab. Gene silencing and peptide interference of this interaction disrupted JNK translocation to the mitochondria and reduced phosphorylation of Bcl-2 without significant impact on c-Jun phosphorylation or AP-1 transcription. In contrast, the JNK inhibitory peptide (TI-JIP1) prevented these three functions. Tat-SabKIM1 selectivity was also demonstrated in anisomycin-stressed HeLa cells where Tat-SabKIM1 prevented Bcl-2 phosphorylation, cell death, loss of mitochondrial membrane potential, and superoxide generation, but not c-Jun phosphorylation. Conversely, TI-JIP1 prevented all aforementioned stress-induced events. This probe introduces a means to evaluate JNK-mediated events on the mitochondria without intervening in nuclear functions of JNK. PMID:21563797

  9. Selective inhibition of mitochondrial JNK signaling achieved using peptide mimicry of the Sab kinase interacting motif-1 (KIM1).

    PubMed

    Chambers, Jeremy W; Cherry, Lisa; Laughlin, John D; Figuera-Losada, Mariana; Lograsso, Philip V

    2011-08-19

    The c-jun N-terminal kinases (JNKs) are responsive to stress stimuli leading to activation of proapoptotic proteins and transcription. Additionally, JNK mitochondrial localization has been reported. To selectively target mitochondrial JNK signaling, we exploited JNK interaction with its mitochondrial scaffold, Sab, using small interfering RNAs (siRNAs) and a cell-permeable peptide corresponding to the KIM1 domain of Sab. Gene silencing and peptide interference of this interaction disrupted JNK translocation to the mitochondria and reduced phosphorylation of Bcl-2 without significant impact on c-Jun phosphorylation or AP-1 transcription. In contrast, the JNK inhibitory peptide (TI-JIP1) prevented these three functions. Tat-Sab(KIM1) selectivity was also demonstrated in anisomycin-stressed HeLa cells where Tat-Sab(KIM1) prevented Bcl-2 phosphorylation, cell death, loss of mitochondrial membrane potential, and superoxide generation but not c-Jun phosphorylation. Conversely, TI-JIP1 prevented all aforementioned stress-induced events. This probe introduces a means to evaluate JNK-mediated events on the mitochondria without intervening in nuclear functions of JNK.

  10. Interactions between straw size and thawing rates on the cryopreservation of agouti (Dasyprocta aguti) epididymal sperm.

    PubMed

    Silva, M A; Peixoto, G C X; Sousa, P C; Bezerra, F S B; Bezerra, A C D S; Silva, A R

    2012-02-01

    This study verifies the interactions between straw size and thawing rates and their impact on the epididymal sperm from this species. Caudae epididymidum from 10 agoutis were subjected to retrograde washing using a coconut water extender (ACP-109c(®) ). Epididymal sperm were evaluated and extended in ACP-109c(®) plus egg yolk (20%) and glycerol (6%). The samples were packaged in 0.25- or 0.50-ml straws, frozen in liquid nitrogen and thawed at 37°C/1 min or 70°C/8 s, followed by a re-evaluation. The use of 0.25-ml straws thawed at 37°C/1 min provided a value of 26.6% for sperm motility. No interactions between straw size and thawing rates were verified on agouti sperm (p > 0.05), but when 0.5-ml straws were thawed at 70°C/8 s, sperm vigour decreased significantly (p < 0.05). It is recommended that the agouti epididymal sperm cryopreserved in ACP-109c(®) extender should be packaged in 0.25- or 0.50-ml straws and thawed at 37°C/60 s.

  11. Characterization of the dog agouti gene and a nonagouti mutation in german shepherd dogs

    SciTech Connect

    Kerns, Julie A.; Newton, J.; Berryere, Tom G.; Rubin, Edward M.; Cheng, Jan-Fang; Schmutz, Sheila M.; Barsh, Gregory S.

    2004-07-08

    The interaction between two genes, Agouti and Melanocortin-1 receptor (Mc1r), produces diverse pigment patterns in mammals by regulating the type, amount, and distribution pattern of the two pigment types found in mammalian hair: eumelanin (brown/black) and pheomelanin (yellow/red). In domestic dogs (Canis familiaris), there is a tremendous variation in coat color patterns between and within breeds; however, previous studies suggest that the molecular genetics of pigment-type switching in dogs may differ from that of other mammals. Here we report the identification and characterization of the Agouti gene from domestic dogs, predicted to encode a 131-amino-acid secreted protein 98 percent identical to the fox homolog, and which maps to chromosome CFA24 in a region of conserved linkage. Comparative analysis of the Doberman Pinscher Agouti cDNA, the fox cDNA, and 180 kb of Doberman Pinscher genomic DNA suggests that, as with laboratory mice, different pigment-type-switching patterns in the canine family are controlled by alternative usage of different promoters and untranslated first exons. A small survey of Labrador Retrievers, Greyhounds, Australian Shepherds, and German Shepherd Dogs did not uncover any polymorphisms, but we identified a single nucleotide variant in black German Shepherd Dogs predicted to cause an Arg-to-Cys substitution at codon 96, which is likely to account for recessive inheritance of a uniform black coat.

  12. Amyloid β Peptide Enhances RANKL-Induced Osteoclast Activation through NF-κB, ERK, and Calcium Oscillation Signaling

    PubMed Central

    Li, Shangfu; Yang, Bu; Teguh, Dian; Zhou, Lin; Xu, Jiake; Rong, Limin

    2016-01-01

    Osteoporosis and Alzheimer’s disease (AD) are common chronic degenerative disorders which are strongly associated with advanced age. We have previously demonstrated that amyloid beta peptide (Aβ), one of the pathological hallmarks of AD, accumulated abnormally in osteoporotic bone specimens in addition to having an activation effect on osteoclast (Bone 2014,61:164-75). However, the underlying molecular mechanisms remain unclear. Activation of NF-κB, extracellular signal-regulated kinase (ERK) phosphorylates, and calcium oscillation signaling pathways by receptor activator NF-κB ligand (RANKL) plays a pivotal role in osteoclast activation. Targeting this signaling to modulate osteoclast function has been a promising strategy for osteoclast-related diseases. In this study, we investigated the effects of Aβ on RANKL-induced osteoclast signaling pathways in vitro. In mouse bone marrow monocytes (BMMs), Aβ exerted no effect on RANKL-induced osteoclastogenesis but promoted osteoclastic bone resorption. In molecular levels, Aβ enhanced NF-κB activity and IκB-α degradation, activated ERK phosphorylation and stimulated calcium oscillation, thus leading to upregulation of NFAT-c1 expression during osteoclast activation. Taken together, our data demonstrate that Aβ enhances RANKL-induced osteoclast activation through IκB-α degradation, ERK phosphorylation, and calcium oscillation signaling pathways and that Aβ may be a promising agent in the treatment of osteoclast-related disease such as osteoporosis. PMID:27735865

  13. Glucagon-like peptide-1 and cholecystokinin production and signaling in the pancreatic islet as an adaptive response to obesity.

    PubMed

    Linnemann, Amelia K; Davis, Dawn Belt

    2016-04-01

    Precise control of blood glucose is dependent on adequate β-cell mass and function. Thus, reductions in β-cell mass and function lead to insufficient insulin production to meet demand, and result in diabetes. Recent evidence suggests that paracrine signaling in the islet might be important in obesity, and disruption of this signaling could play a role in the pathogenesis of diabetes. For example, we recently discovered a novel islet incretin axis where glucagon-like peptide-1 regulates β-cell production of another classic gut hormone, cholecystokinin. This axis is stimulated by obesity, and plays a role in enhancing β-cell survival. In the present review, we place our observations in the wider context of the literature on incretin regulation in the islet, and discuss the potential for therapeutic targeting of these pathways.

  14. Somatostatin signaling system as an ancestral mechanism: Myoregulatory activity of an Allatostatin-C peptide in Hydra.

    PubMed

    Alzugaray, María Eugenia; Hernández-Martínez, Salvador; Ronderos, Jorge Rafael

    2016-08-01

    The coordination of physiological processes requires precise communication between cells. Cellular interactions allow cells to be functionally related, facilitating the maintaining of homeostasis. Neuropeptides functioning as intercellular signals are widely distributed in Metazoa. It is assumed that neuropeptides were the first intercellular transmitters, appearing early during the evolution. In Cnidarians, neuropeptides are mainly involved in neurotransmission, acting directly or indirectly on epithelial muscle cells, and thereby controlling coordinated movements. Allatostatins are a group of chemically unrelated neuropeptides that were originally characterized based on their ability to inhibit juvenil hormone synthesis in insects. Allatostatin-C has pleiotropic functions, acting as myoregulator in several insects. In these studies, we analyzed the myoregulatory effect of Aedes aegypti Allatostatin-C in Hydra sp., a member of the phylum Cnidaria. Allatostatin-C peptide conjugated with Qdots revealed specifically distributed cell populations that respond to the peptide in different regions of hydroids. In vivo physiological assays using Allatostatin-C showed that the peptide induced changes in shape and length in tentacles, peduncle and gastrovascular cavity. The observed changes were dose and time dependent suggesting the physiological nature of the response. Furthermore, at highest doses, Allatostatin-C induced peristaltic movements of the gastrovascular cavity resembling those that occur during feeding. In silico search of putative Allatostatin-C receptors in Cnidaria showed that genomes predict the existence of proteins of the somatostatin/Allatostatin-C receptors family. Altogether, these results suggest that Allatostatin-C has myoregulatory activity in Hydra sp, playing a role in the control of coordinated movements during feeding, indicating that Allatostatin-C/Somatostatin based signaling might be an ancestral mechanism.

  15. Molecular mechanisms linking diabetes mellitus and Alzheimer disease: beta-amyloid peptide, insulin signaling, and neuronal function.

    PubMed

    Takeda, Shuko; Sato, Naoyuki; Rakugi, Hiromi; Morishita, Ryuichi

    2011-06-01

    The incidence of Alzheimer disease (AD) and diabetes mellitus (DM) is increasing at an alarming rate and has become a major public health concern worldwide. Recent epidemiological studies have provided direct evidence that DM is a strong risk factor for AD; this finding is now attracting attention. However, the underlying mechanisms for this association remain largely unknown. Previous in vitro and in vivo studies reported that diabetic conditions could cause an increase in the beta-amyloid peptide (Aβ) levels, which exhibits neurotoxic properties and plays a causative role in AD. However, unexpectedly, recent clinicopathological studies have shown no evidence that the pathological hallmarks of AD, including amyloid plaque, were increased in the brains of diabetic patients, suggesting that DM could affect the pathogenesis of AD through mechanisms other than modulation of Aβ metabolism. One possible mechanism is the alteration in brain insulin signaling. It has been shown that insulin signaling is involved in a variety of neuronal functions, and that it also plays a significant role in the pathophysiology of AD. Thus, the modification of neuronal insulin signaling by diabetic conditions may contribute to AD progression. Another possible mechanism is cerebrovascular alteration, a common pathological change observed in both diseases. Accumulating evidence has suggested the importance of Aβ-induced cerebrovascular dysfunction in AD, and indicated that pathological interactions between the receptor for advanced glycation end products (RAGE) and Aβ peptides may play a role in this dysfunction. Our study has provided a further understanding of the potential underlying mechanisms linking DM and AD by establishing novel mouse models showing pathological manifestations of both diseases. The current review summarizes the results from recent studies on the pathological relationship between DM and AD while focusing on brain insulin signaling and cerebrovascular alteration

  16. Efficient Secretion of Recombinant Proteins from Rice Suspension-Cultured Cells Modulated by the Choice of Signal Peptide

    PubMed Central

    Huang, Li-Fen; Tan, Chia-Chun; Yeh, Ju-Fang; Liu, Hsin-Yi; Liu, Yu-Kuo; Ho, Shin-Lon; Lu, Chung-An

    2015-01-01

    Plant-based expression systems have emerged as a competitive platform in the large-scale production of recombinant proteins. By adding a signal peptide, αAmy3sp, the desired recombinant proteins can be secreted outside transgenic rice cells, making them easy to harvest. In this work, to improve the secretion efficiency of recombinant proteins in rice expression systems, various signal peptides including αAmy3sp, CIN1sp, and 33KDsp have been fused to the N-terminus of green fluorescent protein (GFP) and introduced into rice cells to explore the efficiency of secretion of foreign proteins. 33KDsp had better efficiency than αAmy3sp and CIN1sp for the secretion of GFP from calli and suspension-cultured cells. 33KDsp was further applied for the secretion of mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) from transgenic rice suspension-cultured cells; approximately 76%–92% of total rice-derived mGM-CSF (rmGM-CSF) was detected in the culture medium. The rmGM-CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF-60. The extracellular yield of rmGM-CSF reached 31.7 mg/L. Our study indicates that 33KDsp is better at promoting the secretion of recombinant proteins in rice suspension-cultured cell systems than the commonly used αAmy3sp. PMID:26473722

  17. Integration of reward signalling and appetite regulating peptide systems in the control of food‐cue responses

    PubMed Central

    Westbrook, R F; Morris, M J

    2015-01-01

    Understanding the neurobiological substrates that encode learning about food‐associated cues and how those signals are modulated is of great clinical importance especially in light of the worldwide obesity problem. Inappropriate or maladaptive responses to food‐associated cues can promote over‐consumption, leading to excessive energy intake and weight gain. Chronic exposure to foods rich in fat and sugar alters the reinforcing value of foods and weakens inhibitory neural control, triggering learned, but maladaptive, associations between environmental cues and food rewards. Thus, responses to food‐associated cues can promote cravings and food‐seeking by activating mesocorticolimbic dopamine neurocircuitry, and exert physiological effects including salivation. These responses may be analogous to the cravings experienced by abstaining drug addicts that can trigger relapse into drug self‐administration. Preventing cue‐triggered eating may therefore reduce the over‐consumption seen in obesity and binge‐eating disorder. In this review we discuss recent research examining how cues associated with palatable foods can promote reward‐based feeding behaviours and the potential involvement of appetite‐regulating peptides including leptin, ghrelin, orexin and melanin concentrating hormone. These peptide signals interface with mesolimbic dopaminergic regions including the ventral tegmental area to modulate reactivity to cues associated with palatable foods. Thus, a novel target for anti‐obesity therapeutics is to reduce non‐homeostatic, reward driven eating behaviour, which can be triggered by environmental cues associated with highly palatable, fat and sugar rich foods. PMID:26403657

  18. Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: interfamily incompatibility of perception but compatibility of downstream signalling

    PubMed Central

    Lori, Martina; van Verk, Marcel C.; Hander, Tim; Schatowitz, Hendrik; Klauser, Dominik; Flury, Pascale; Gehring, Christoph A.; Boller, Thomas; Bartels, Sebastian

    2015-01-01

    Plant elicitor peptides (Peps) are potent inducers of pattern-triggered immunity and amplify the immune response against diverse pathogens. Peps have been discovered and studied extensively in Arabidopsis and only recently orthologues in maize were also identified and characterized in more detail. Here, the presence of PROPEPs, the Pep precursors, and PEPRs, the Pep receptors, was investigated within the plant kingdom. PROPEPs and PEPRs were identified in most sequenced species of the angiosperms. The conservation and compatibility of the Pep-PEPR-system was analysed by using plants of two distantly related dicot families, Brassicaceae and Solanaceae, and a representative family of monocot plants, the Poaceae. All three plant families contain important crop plants, including maize, rice, tomato, potato, and canola. Peps were not recognized by species outside of their plant family of origin, apparently because of a divergence of the Pep sequences. Three family-specific Pep motifs were defined and the integration of such a motif into the Pep sequence of an unrelated Pep enabled its perception. Transient transformation of Nicotiana benthamiana with the coding sequences of the AtPEPR1 and ZmPEPR1a led to the recognition of Pep peptides of Brassicaceae or Poaceae origin, respectively, and to the proper activation of downstream signalling. It was concluded that signalling machinery downstream of the PEPRs is highly conserved whereas the leucine-rich repeat domains of the PEPRs co-evolved with the Peps, leading to distinct motifs and, with it, interfamily incompatibility. PMID:26002971

  19. Integration of reward signalling and appetite regulating peptide systems in the control of food-cue responses.

    PubMed

    Reichelt, A C; Westbrook, R F; Morris, M J

    2015-11-01

    Understanding the neurobiological substrates that encode learning about food-associated cues and how those signals are modulated is of great clinical importance especially in light of the worldwide obesity problem. Inappropriate or maladaptive responses to food-associated cues can promote over-consumption, leading to excessive energy intake and weight gain. Chronic exposure to foods rich in fat and sugar alters the reinforcing value of foods and weakens inhibitory neural control, triggering learned, but maladaptive, associations between environmental cues and food rewards. Thus, responses to food-associated cues can promote cravings and food-seeking by activating mesocorticolimbic dopamine neurocircuitry, and exert physiological effects including salivation. These responses may be analogous to the cravings experienced by abstaining drug addicts that can trigger relapse into drug self-administration. Preventing cue-triggered eating may therefore reduce the over-consumption seen in obesity and binge-eating disorder. In this review we discuss recent research examining how cues associated with palatable foods can promote reward-based feeding behaviours and the potential involvement of appetite-regulating peptides including leptin, ghrelin, orexin and melanin concentrating hormone. These peptide signals interface with mesolimbic dopaminergic regions including the ventral tegmental area to modulate reactivity to cues associated with palatable foods. Thus, a novel target for anti-obesity therapeutics is to reduce non-homeostatic, reward driven eating behaviour, which can be triggered by environmental cues associated with highly palatable, fat and sugar rich foods.

  20. The mitochondrial-derived peptide humanin activates the ERK1/2, AKT, and STAT3 signaling pathways and has age-dependent signaling differences in the hippocampus.

    PubMed

    Kim, Su-Jeong; Guerrero, Noel; Wassef, Gabriella; Xiao, Jialin; Mehta, Hemal H; Cohen, Pinchas; Yen, Kelvin

    2016-07-26

    Humanin is a small secreted peptide that is encoded in the mitochondrial genome. Humanin and its analogues have a protective role in multiple age-related diseases including type 2 diabetes and Alzheimer's disease, through cytoprotective and neuroprotective effects both in vitro and in vivo. However, the humanin-mediated signaling pathways are not well understood. In this paper, we demonstrate that humanin acts through the GP130/IL6ST receptor complex to activate AKT, ERK1/2, and STAT3 signaling pathways. Humanin treatment increases phosphorylation in AKT, ERK 1/2, and STAT3 where PI3K, MEK, and JAK are involved in the activation of those three signaling pathways, respectively. Furthermore, old mice, but not young mice, injected with humanin showed an increase in phosphorylation in AKT and ERK1/2 in the hippocampus. These findings uncover a key signaling pathway of humanin that is important for humanin's function and also demonstrates an age-specific in vivo effect in a region of the brain that is critical for memory formation in an age-dependent manner.

  1. SCUBE3 (signal peptide-CUB-EGF domain-containing protein 3) modulates fibroblast growth factor signaling during fast muscle development.

    PubMed

    Tu, Cheng-Fen; Tsao, Ku-Chi; Lee, Shyh-Jye; Yang, Ruey-Bing

    2014-07-04

    SCUBE3 (signal peptide CUB-EGF-like domain-containing protein 3) belongs to a newly identified secreted and cell membrane-associated SCUBE family, which is evolutionarily conserved in vertebrates. Scube3 is predominantly expressed in a variety of developing tissues in mice such as somites, neural tubes, and limb buds. However, its function during development remains unclear. In this study, we first showed that knockdown of SCUBE3 in C2C12 myoblasts inhibited FGF receptor 4 expression and FGF signaling, thus resulting in reduced myogenic differentiation. Furthermore, knockdown of zebrafish scube3 by antisense morpholino oligonucleotides specifically suppressed the expression of the myogenic marker myod1 within the lateral fast muscle precursors, whereas its expression in the adaxial slow muscle precursors was largely unaffected. Consistent with these findings, immunofluorescent staining of fast but not slow muscle myosin was markedly decreased in scube3 morphants. Further genetic studies identified fgf8 as a key regulator in scube3-mediated fast muscle differentiation in zebrafish. Biochemical and molecular analysis showed that SCUBE3 acts as a FGF co-receptor to augment FGF8 signaling. Scube3 may be a critical upstream regulator of fast fiber myogenesis by modulating fgf8 signaling during zebrafish embryogenesis.

  2. The mitochondrial-derived peptide humanin activates the ERK1/2, AKT, and STAT3 signaling pathways and has age-dependent signaling differences in the hippocampus

    PubMed Central

    Kim, Su-Jeong; Guerrero, Noel; Wassef, Gabriella; Xiao, Jialin; Mehta, Hemal H.; Cohen, Pinchas; Yen, Kelvin

    2016-01-01

    Humanin is a small secreted peptide that is encoded in the mitochondrial genome. Humanin and its analogues have a protective role in multiple age-related diseases including type 2 diabetes and Alzheimer's disease, through cytoprotective and neuroprotective effects both in vitro and in vivo. However, the humanin-mediated signaling pathways are not well understood. In this paper, we demonstrate that humanin acts through the GP130/IL6ST receptor complex to activate AKT, ERK1/2, and STAT3 signaling pathways. Humanin treatment increases phosphorylation in AKT, ERK 1/2, and STAT3 where PI3K, MEK, and JAK are involved in the activation of those three signaling pathways, respectively. Furthermore, old mice, but not young mice, injected with humanin showed an increase in phosphorylation in AKT and ERK1/2 in the hippocampus. These findings uncover a key signaling pathway of humanin that is important for humanin's function and also demonstrates an age-specific in vivo effect in a region of the brain that is critical for memory formation in an age-dependent manner. PMID:27384491

  3. Peptide modifications differentially alter G protein-coupled receptor internalization and signaling bias.

    PubMed

    Mäde, Veronika; Babilon, Stefanie; Jolly, Navjeet; Wanka, Lizzy; Bellmann-Sickert, Kathrin; Diaz Gimenez, Luis E; Mörl, Karin; Cox, Helen M; Gurevich, Vsevolod V; Beck-Sickinger, Annette G

    2014-09-15

    Although G protein-coupled receptors (GPCRs) are targeted by more clinically used drugs than any other type of protein, their ligand development is particularly challenging. Humans have four neuropeptide Y receptors: hY1R and hY5R are orexigenic, while hY2R and hY4R are anorexigenic, and represent important anti-obesity drug targets. We show for the first time that PEGylation and lipidation, chemical modifications that prolong the plasma half-lives of peptides, confer additional benefits. Both modifications enhance pancreatic polypeptide preference for hY2R/hY4R over hY1R/hY5R. Lipidation biases the ligand towards arrestin recruitment and internalization, whereas PEGylation confers the opposite bias. These effects were independent of the cell system and modified residue. We thus provide novel insights into the mode of action of peptide modifications and open innovative venues for generating peptide agonists with extended therapeutic potential.

  4. Peptide Modifications Differentially Alter G Protein-Coupled Receptor Internalization and Signaling Bias**

    PubMed Central

    Mäde, Veronika; Babilon, Stefanie; Jolly, Navjeet; Wanka, Lizzy; Bellmann-Sickert, Kathrin; Diaz Gimenez, Luis E.; Mörl, Karin; Cox, Helen M.; Gurevich, Vsevolod V.; Beck-Sickinger, Annette G.

    2016-01-01

    Although G protein-coupled receptors (GPCRs) are targeted by more clinically used drugs than any other type of protein, their ligand development is particularly challenging. Humans have four neuropeptide Y receptors: hY1R and hY5R are orexigenic, while hY2R and hY4R are anorexigenic, and represent important anti-obesity drug targets. We show for the first time that PEGylation and lipidation, chemical modifications that prolong the plasma half-lives of peptides, confer additional benefits. Both modifications enhance pancreatic polypeptide preference for hY2R/hY4R over hY1R/hY5R. Lipidation biases the ligand towards arrestin recruitment and internalization, whereas PEGylation confers the opposite bias. These effects were independent of the cell system and modified residue. We thus provide novel insights into the mode of action of peptide modifications and open innovative venues for generating peptide agonists with extended therapeutic potential. PMID:25065900

  5. Enhancing heterologous protein expression and secretion in HEK293 cells by means of combination of CMV promoter and IFNα2 signal peptide.

    PubMed

    Román, Ramón; Miret, Joan; Scalia, Federica; Casablancas, Antoni; Lecina, Martí; Cairó, Jordi J

    2016-12-10

    Efficient production and secretion of recombinant proteins in mammalian cell lines relies in a combination of genetic, metabolic and culture strategy factors. The present work assesses the influence of two key genetic components of expression vectors (promoter and signal peptide) on protein production and secretion effciency in HEK293 cells expressing eGFP as a reporter protein. Firstly, the strength of 3 different promoters was evaluated using transient expression methods. Flow cytometry analysis revealed that the highest level of intracellular protein expression was found when eGFP was under the control of CMV promoter, being 3-times higher in comparison to the rest of the promoters tested. Secondly, 5 different signal peptides were assessed in stable transfected cell lines. Spectrofluorometry was used to determine intra- and extracellular protein expression levels in terms of fluorescence, and the results were further confirmed by SDS-PAGE. The highest secretion efficiency was found for human IFNα2 signal peptide, achieving up to 2-fold increase in the amount of secreted protein compared to other signal peptides. The results showed that the combination of CMV promoter and IFNα2 signal peptide resulted highly efficient for recombinant protein production in HEK293 cells.

  6. Specific expression of GFP{sub uv}-{beta}1,3-N-acetylglucosaminyltransferase 2 fusion protein in fat body of Bombyx mori silkworm larvae using signal peptide

    SciTech Connect

    Kato, Tatsuya; Park, Enoch Y. . E-mail: yspark@agr.shizuoka.ac.jp

    2007-08-03

    Bombyxin (bx) and prophenoloxidase-activating enzyme (ppae) signal peptides from Bombyx mori, their modified signal peptides, and synthetic signal peptides were investigated for the secretion of GFP{sub uv}-{beta}1,3-N-acetylglucosaminyltransferase 2 (GGT2) fusion protein in B. mori Bm5 cells and silkworm larvae using cysteine protease deficient B. mori multiple nucleopolyhedrovirus (BmMNPV-CP{sup -} ) and its bacmid. The secretion efficiencies of all signal peptides were 15-30% in Bm5 cells and 24-30% in silkworm larvae, while that of the +16 signal peptide was 0% in Bm5 cells and 1% in silkworm larvae. The fusion protein that contained the +16 signal peptide was expressed specifically in the endoplasmic reticulum (ER) and in the fractions of cell precipitations. Ninety-four percent of total intracellular {beta}1,3-N-acetylglucosaminyltransferase ({beta}3GnT) activity was detected in cell precipitations following the 600, 8000, and 114,000g centrifugations. In the case of the +38 signal peptide, 60% of total intracellular activity was detected in the supernatant from the 114,000g spin, and only 1% was found in the precipitate. Our results suggest that the +16 signal peptide might be situated in the transmembrane region and not cleaved by signal peptidase in silkworm or B. mori cells. Therefore, the fusion protein connected to the +16 signal peptide stayed in the fat body of silkworm larvae with biological function, and was not secreted extracellularly.

  7. Signal peptides and trans-membrane regions are broadly immunogenic and have high CD8+ T cell epitope densities: Implications for vaccine development.

    PubMed

    Kovjazin, Riva; Volovitz, Ilan; Daon, Yair; Vider-Shalit, Tal; Azran, Roy; Tsaban, Lea; Carmon, Lior; Louzoun, Yoram

    2011-04-01

    Cell mediated immune response has a major role in controlling the elimination of infectious agents. The rational design of sub-unit peptide vaccines against intracellular pathogens or cancer requires the use of antigenic sequence/s that can induce highly potent, long lasting and antigen-specific responses in the majority of the population. A promising peptide selection strategy is the detection of multi-epitope peptide sequences with an ability to bind multiple MHC alleles. While past research sought the best epitopes based on their specific antigenicity, we ask whether specific defined domains have high epitope densities. Signal peptides and trans-membrane domains were found to have exceptionally high epitope densities. The improved MHC binding of these domains relies on their hydrophobic nature and, in signal peptides, also on their specific sequence. The high epitope density of SP was computed using in-silico methods and corroborated by the high percentage of identified SP epitope in the IEDB (immune epitope database). The enhanced immunogenicity of SP was then experimentally confirmed using a panel of nine peptides derived from Mycobacterium tuberculosis (MTb) proteins used in human PBMC proliferation assays and T cell lines functional assays. Our results show the exceptionally high antigen specific response rates and population coverage to SP sequences compared with non-SP peptide antigens derived from the same proteins. The results suggest a novel scheme for the rational design of T cell vaccines using a domain based rather than an epitope based approach.

  8. Evolutionarily conserved CLE peptide signaling in plant development, symbiosis, and parasitism.

    PubMed

    Miyawaki, Kaori; Tabata, Ryo; Sawa, Shinichiro

    2013-10-01

    Small polypeptides are widely used as signaling molecules in cell-to-cell communication in animals and plants. The CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) gene family is composed of numerous genes that contain conserved CLE domains in various plant species and plant-parasitic nematodes. Here, we review recent progress in our understanding of CLE signaling during stem cell maintenance in Arabidopsis and grasses. We also summarize the roles of CLE signaling in the legume-Rhizobium symbiosis and infection by plant-parasitic nematodes. CLE signaling is important for diverse aspects of cell-to-cell signaling and long-distance communication, which are critical for survival, and the basic components of the CLE signaling pathway are evolutionarily conserved in both plants and animals.

  9. Hindbrain nucleus tractus solitarius glucagon-like peptide-1 receptor signaling reduces appetitive and motivational aspects of feeding

    PubMed Central

    Grill, Harvey J.

    2014-01-01

    Central glucagon-like peptide-1 receptor (GLP-1R) signaling reduces food intake by affecting a variety of neural processes, including those mediating satiation, motivation, and reward. While the literature suggests that separable neurons and circuits control these processes, this notion has not been adequately investigated. The intake inhibitory effects of GLP-1R signaling in the hindbrain medial nucleus tractus solitarius (mNTS) have been attributed to interactions with vagally transmitted gastrointestinal satiation signals that are also processed by these neurons. Here, behavioral and pharmacological techniques are used to test the novel hypothesis that the reduction of food intake following mNTS GLP-1R stimulation also results from effects on food-motivated appetitive behaviors. Results show that mNTS GLP-1R activation by microinjection of exendin-4, a long-acting GLP-1R agonist, reduced 1) intake of a palatable high-fat diet, 2) operant responding for sucrose under a progressive ratio schedule of reinforcement and 3) the expression of a conditioned place preference for a palatable food. Together, these data demonstrate that the intake inhibitory effects of mNTS GLP-1R signaling extend beyond satiation and include effects on food reward and motivation that are typically ascribed to midbrain and forebrain neurons. PMID:24944243

  10. Proopiomelanocortin, agouti-related protein, and leptin in human cerebrospinal fluid: correlations with body weight and adiposity

    PubMed Central

    Page-Wilson, Gabrielle; Meece, Kana; White, Anne; Rosenbaum, Michael; Leibel, Rudolph L.; Smiley, Richard

    2015-01-01

    Leptin and its neuronal targets, which produce proopiomelanocortin (POMC) and agouti-related protein (AgRP), regulate energy balance. This study characterized leptin, POMC, and AgRP in the cerebrospinal fluid (CSF) of 47 healthy human subjects, 23 lean and 24 overweight/obese (OW/OB), as related to BMI, adiposity, plasma leptin, soluble leptin receptor (s-OB-R), and insulin. POMC was measured since the POMC prohormone is the predominant POMC peptide in CSF and correlates with hypothalamic POMC in rodents. Plasma AgRP was similarly characterized. CSF leptin was 83-fold lower than in plasma and correlated strongly with BMI, body fat, and insulin. The relative amount of leptin transported into CSF declined with increasing BMI, ranging from 4.5 to 0.52%, consistent with a saturable transport mechanism. CSF sOB-R was 78-fold lower than in plasma and correlated negatively with plasma and CSF leptin. CSF POMC was higher in lean vs. OW/OB subjects (P < 0.001) and correlated negatively with CSF leptin (r = −0.60, P < 0.001) and with plasma leptin, insulin, BMI, and adiposity. CSF AgRP was not different in lean vs. OW/OB; however, plasma AgRP was higher in lean subjects (P = 0.001) and correlated negatively with BMI, adiposity, leptin, insulin, and HOMA (P < 0.005). Thus, CSF measurements may provide useful biomarkers for brain leptin and POMC activity. The striking negative correlation between CSF leptin and POMC could be secondary to leptin resistance and/or neuronal changes associated with obesity but may also indicate that POMC plays a primary role in regulating body weight and adiposity. The role of plasma AgRP as a neuroendocrine biomarker deserves further study. PMID:26152765

  11. Isolation of Positive Modulator of Glucagon-like Peptide-1 Signaling from Trigonella foenum-graecum (Fenugreek) Seed.

    PubMed

    King, Klim; Lin, Nai-Pin; Cheng, Yu-Hong; Chen, Gao-Hui; Chein, Rong-Jie

    2015-10-23

    The glucagon-like peptide-1 receptor (GLP-1R) is expressed in many tissues and has been implicated in diverse physiological functions, such as energy homeostasis and cognition. GLP-1 analogs are approved for treatment of type 2 diabetes and are undergoing clinical trials for other disorders, including neurodegenerative diseases. GLP-1 analog therapies maintain chronically high plasma levels of the analog and can lead to loss of spatiotemporal control of GLP-1R activation. To avoid adverse effects associated with current therapies, we characterized positive modulators of GLP-1R signaling. We screened extracts from edible plants using an intracellular cAMP biosensor and GLP-1R endocytosis assays. Ethanol extracts from fenugreek seeds enhanced GLP-1 signaling. These seeds have previously been found to reduce glucose and glycated hemoglobin levels in humans. An active compound (N55) with a new N-linoleoyl-2-amino-γ-butyrolactone structure was purified from fenugreek seeds. N55 promoted GLP-1-dependent cAMP production and GLP-1R endocytosis in a dose-dependent and saturable manner. N55 specifically enhanced GLP-1 potency more than 40-fold, but not that of exendin 4, to stimulate cAMP production. In contrast to the current allosteric modulators that bind to GLP-1R, N55 binds to GLP-1 peptide and facilitates trypsin-mediated GLP-1 inactivation. These findings identify a new class of modulators of GLP-1R signaling and suggest that GLP-1 might be a viable target for drug discovery. Our results also highlight a feasible approach for screening bioactive activity of plant extracts.

  12. Isolation of Positive Modulator of Glucagon-like Peptide-1 Signaling from Trigonella foenum-graecum (Fenugreek) Seed*

    PubMed Central

    King, Klim; Lin, Nai-Pin; Cheng, Yu-Hong; Chen, Gao-Hui; Chein, Rong-Jie

    2015-01-01

    The glucagon-like peptide-1 receptor (GLP-1R) is expressed in many tissues and has been implicated in diverse physiological functions, such as energy homeostasis and cognition. GLP-1 analogs are approved for treatment of type 2 diabetes and are undergoing clinical trials for other disorders, including neurodegenerative diseases. GLP-1 analog therapies maintain chronically high plasma levels of the analog and can lead to loss of spatiotemporal control of GLP-1R activation. To avoid adverse effects associated with current therapies, we characterized positive modulators of GLP-1R signaling. We screened extracts from edible plants using an intracellular cAMP biosensor and GLP-1R endocytosis assays. Ethanol extracts from fenugreek seeds enhanced GLP-1 signaling. These seeds have previously been found to reduce glucose and glycated hemoglobin levels in humans. An active compound (N55) with a new N-linoleoyl-2-amino-γ-butyrolactone structure was purified from fenugreek seeds. N55 promoted GLP-1-dependent cAMP production and GLP-1R endocytosis in a dose-dependent and saturable manner. N55 specifically enhanced GLP-1 potency more than 40-fold, but not that of exendin 4, to stimulate cAMP production. In contrast to the current allosteric modulators that bind to GLP-1R, N55 binds to GLP-1 peptide and facilitates trypsin-mediated GLP-1 inactivation. These findings identify a new class of modulators of GLP-1R signaling and suggest that GLP-1 might be a viable target for drug discovery. Our results also highlight a feasible approach for screening bioactive activity of plant extracts. PMID:26336108

  13. [Peptides are opening the door for novel treatments of obesity and loss of appetite].

    PubMed

    Broberger, Christian; Hökfelt, Tomas

    2002-12-05

    A wide spectrum of diseases, as well as states of attenuated ability to heal and recover, can be traced to over- or underweight. Patients at the extremes of the energy balance spectrum are becoming more and more common. In order to provide adequate care for such patients an understanding of the mechanisms governing feeding behaviour is required. In the last decade, important advances have been made in this direction, as several factors mediating signals of hunger and satiety to and within the brain have been identified. These factors include hormonal signals (such as leptin and insulin) from the energy stores as well as neuronal influences (via the vagus nerve) from the digestive tract. The information encoded therein is routed to specific nuclei of the hypothalamus and brain stem, respectively, leading to activation of complex neuronal networks spanning the most rostral regions of the brain all the way to the effector neurones of the autonomic nervous system located in the spinal cord. Several recently characterized neuropeptides showing potent stimulation of appetite (neuropeptide Y, agouti gene-related peptide, orexin, melanin-concentrating hormone) and satiety (melanocortins, cholecystokinin, cocaine- and amphetamine-regulated transcript) have been localized to these pathways. These peptides, and the mechanisms through which they operate, offer promise for new therapeutic strategies in the treatment of obesity and anorexia.

  14. Limiting angiotensin II signaling with a cell penetrating peptide mimicking the second intracellular loop of the angiotensin II type I receptor

    PubMed Central

    Yu, Jun; Taylor, Linda; Mierke, Dale; Berg, Eric; Shia, Michael; Fishman, Jordan; Sallum, Christine; Polgar, Peter

    2010-01-01

    A cell-penetrating peptide consisting of the second intracellular loop (IC2) of the Angiotensin II (AngII) type I receptor (AT1) linked to the HIV transactivating regulatory protein (TAT) domain was used to identify the role of this motif for intracellular signal transduction. HEK-293 cells stably transfected with AT1R cDNA and primary cultures of human pulmonary artery smooth muscle cells expressing endogenous AT1 receptor were exposed to the cell-penetrating peptide construct and the effect on angiotensin II signaling determined. The AT1 IC2 peptide effectively inhibited AngII stimulated phosphatidylinositol turnover and calcium influx. It also limited the activation of Akt/PKB as determined by an inhibition of phosphorylation of Akt at Ser473 and completely abolished the AngII dependent activation of the transcriptional factor NFκB. In contrast, the AT1 IC2 peptide had no effect on AngII/AT1 receptor activation of ERK. These results illustrate the potential of using cell penetrating peptides to both delineate receptor-mediated signal transduction as well as to selectively regulate G protein coupled receptor signaling. PMID:20492449

  15. The Signal Peptide of the Junín Arenavirus Envelope Glycoprotein Is Myristoylated and Forms an Essential Subunit of the Mature G1-G2 Complex

    PubMed Central

    York, Joanne; Romanowski, Victor; Lu, Min; Nunberg, Jack H.

    2004-01-01

    Arenaviruses comprise a diverse family of rodent-borne viruses that are responsible for recurring and emerging outbreaks of viral hemorrhagic fevers worldwide. The Junín virus, a member of the New World arenaviruses, is endemic to the pampas grasslands of Argentina and is the etiologic agent of Argentine hemorrhagic fever. In this study, we have analyzed the assembly and function of the Junín virus envelope glycoproteins. The mature envelope glycoprotein complex is proteolytically processed from the GP-C precursor polypeptide and consists of three noncovalently associated subunits, G1, G2, and a stable 58-amino-acid signal peptide. This tripartite organization is found both on virions of the attenuated Candid 1 strain and in cells expressing the pathogenic MC2 strain GP-C gene. Replacement of the Junín virus GP-C signal peptide with that of human CD4 has little effect on glycoprotein assembly while abolishing the ability of the G1-G2 complex to mediate pH-dependent cell-cell fusion. In addition, we demonstrate that the Junín virus GP-C signal peptide subunit is myristoylated at its N-terminal glycine. Alanine substitution for the modified glycine residue in the GP-C signal peptide does not affect formation of the tripartite envelope glycoprotein complex but markedly reduces its membrane fusion activity. In contrast to the classical view that signal peptides act primarily in targeting nascent polypeptides to the endoplasmic reticulum, we suggest that the signal peptide of the arenavirus GP-C may serve additional functions in envelope glycoprotein structure and trafficking. PMID:15367645

  16. Structure, Topology and Tilt of Cell-Signaling Peptides Containing Nuclear Localization Sequences in Membrane Bilayers Determined by Solid-State NMR and Molecular Dynamics Simulation Studies

    PubMed Central

    Ramamoorthy, Ayyalusamy; Kandasamy, Senthil K.; Lee, Dong-Kuk; Kidambi, Srikanth; Larson, Ronald G.

    2008-01-01

    Cell-signaling peptides have been extensively used to transport functional molecules across the plasma membrane into living cells. These peptides consist of a hydrophobic sequence and a cationic nuclear localization sequence (NLS). It has been assumed that the hydrophobic region penetrates through the hydrophobic lipid bilayer and delivers the NLS inside the cell. To better understand the transport mechanism of these peptides, in this study, we investigated the structure, orientation, tilt of the peptide relative to the bilayer normal, and the membraneinteraction of two cell-signaling peptides, SA and SKP. Results from CD and solid-state NMR experiments combined with molecular dynamics simulations suggest that the hydrophobic region is helical and has a transmembrane orientation with the helical axis tilted away from the bilayer normal. The influence of the hydrophobic mismatch, between the hydrophobic length of the peptide and the hydrophobic thickness of the bilayer, on the tilt angle of the peptides was investigated using thicker POPC and thinner DMPC bilayers. NMR experiments showed that the hydrophobic domain of each peptide has a tilt angle of 15±3° in POPC, while in DMPC 25±3° and 30±3° tilts were observed for SA and SKP peptides respectively. These results are in good agreement with molecular dynamics simulations, which predicts a tilt angle of 13.3° (SA in POPC), 16.4° (SKP in POPC), 22.3° (SA in DMPC) and 31.7° (SKP in POPC). These results and simulations on the hydrophobic fragment of SA or SKP suggest that the tilt of helices increases with a decrease in the bilayer thickness without changing the phase, order, and structure of the lipid bilayers. PMID:17240980

  17. Rational design of DKK3 structure-based small peptides as antagonists of Wnt signaling pathway and in silico evaluation of their efficiency

    PubMed Central

    Poorebrahim, Mansour; Sadeghi, Solmaz; Rahimi, Hamzeh; Karimipoor, Morteza; Azadmanesh, Kayhan; Mazlomi, Mohammad Ali; Teimoori-Toolabi, Ladan

    2017-01-01

    Dysregulated Wnt signaling pathway is highly associated with the pathogenesis of several human cancers. Dickkopf proteins (DKKs) are thought to inhibit Wnt signaling pathway through binding to lipoprotein receptor-related protein (LRP) 5/6. In this study, based on the 3-dimensional (3D) structure of DKK3 Cys-rich domain 2 (CRD2), we have designed and developed several peptide inhibitors of Wnt signaling pathway. Modeller 9.15 package was used to predict 3D structure of CRD2 based on the Homology modeling (HM) protocol. After refinement and minimization with GalaxyRefine and NOMAD-REF servers, the quality of selected models was evaluated utilizing VADAR, SAVES and ProSA servers. Molecular docking studies as well as literature-based information revealed two distinct boxes located at CRD2 which are actively involved in the DKK3-LRP5/6 interaction. A peptide library was constructed conducting the backrub sequence tolerance scanning protocol in Rosetta3.5 according to the DKK3-LRP5/6 binding sites. Seven tolerated peptides were chosen and their binding affinity and stability were improved by some logical amino acid substitutions. Molecular dynamics (MD) simulations of peptide-LRP5/6 complexes were carried out using GROMACS package. After evaluation of binding free energies, stability, electrostatic potential and some physicochemical properties utilizing computational approaches, three peptides (PEP-I1, PEP-I3 and PEP-II2) demonstrated desirable features. However, all seven improved peptides could sufficiently block the Wnt-binding site of LRP6 in silico. In conclusion, we have designed and improved several small peptides based on the LRP6-binding site of CRD2 of DKK3. These peptides are highly capable of binding to LRP6 in silico, and may prevent the formation of active Wnt-LRP6-Fz complex. PMID:28234935

  18. Novel leptin OB3 peptide-induced signaling and progression in thyroid cancers: Comparison with leptin

    PubMed Central

    Hsieh, Meng-Ti; Lai, Hsuan-Yu; Ke, Chien-Chih; Crawford, Dana R.; Lee, Oscar K.; Fu, Earl; Mousa, Shaker A.; Grasso, Patricia; Liu, Leroy F.; Chang, Heng-Yu; Tang, Heng-Yuan; Lin, Hung-Yun; Davis, Paul J.

    2016-01-01

    Obesity results in increased secretion of cytokines from adipose tissue and is a risk factor for various cancers. Leptin is largely produced by adipose tissue and cancer cells. It induces cell proliferation and may serve to induce various cancers. OB3-leptin peptide (OB3) is a new class of functional leptin peptide. However, its mitogenic effect has not been determined. In the present study, because of a close link between leptin and the hypothalamic-pituitary-thyroid axis, OB3 was compared with leptin in different thyroid cancer cells for gene expression, proliferation and invasion. Neither agent stimulated cell proliferation. Leptin stimulated cell invasion, but reduced adhesion in anaplastic thyroid cancer cells. Activated ERK1/2 and STAT3 contributed to leptin-induced invasion. In contrast, OB3 did not affect expression of genes involved in proliferation and invasion. In vivo studies in the mouse showed that leptin, but not OB3, significantly increased circulating levels of thyrotropin (TSH), a growth factor for thyroid cancer. In summary, OB3 is a derivative of leptin that importantly lacks the mitogenic effects of leptin on thyroid cancer cells. PMID:27050378

  19. Rgg-Associated SHP Signaling Peptides Mediate Cross-Talk in Streptococci

    PubMed Central

    Fleuchot, Betty; Guillot, Alain; Mézange, Christine; Besset, Colette; Chambellon, Emilie; Monnet, Véronique; Gardan, Rozenn

    2013-01-01

    We described a quorum-sensing mechanism in the streptococci genus involving a short hydrophobic peptide (SHP), which acts as a pheromone, and a transcriptional regulator belonging to the Rgg family. The shp/rgg genes, found in nearly all streptococcal genomes and in several copies in some, have been classified into three groups. We used a genetic approach to evaluate the functionality of the SHP/Rgg quorum-sensing mechanism, encoded by three selected shp/rgg loci, in pathogenic and non-pathogenic streptococci. We characterized the mature form of each SHP pheromone by mass-spectrometry. We produced synthetic peptides corresponding to these mature forms, and used them to study functional complementation and cross-talk between these different SHP/Rgg systems. We demonstrate that a SHP pheromone of one system can influence the activity of a different system. Interestingly, this does not seem to be dependent on the SHP/Rgg group and cross-talk between pathogenic and non-pathogenic streptococci is observed. PMID:23776602

  20. Maternal epigenetics and methyl supplements affect agouti gene expression in A{sup vy}/a mice

    SciTech Connect

    Wolff, G.L.

    1998-08-01

    Viable yellow (A{sup vy}/a) mice are larger, obese, hyperinsulinemic, more susceptible to cancer, and, on average, shorter lived than their non-yellow siblings. They are epigenetic mosaics ranging from a yellow phenotype with maximum ectopic agouti overexpression, through a continuum of mottled agouti/yellow phenotypes with partial agouti overexpression, to a pseudoagouti phenotype with minimal ectopic expression. Pseudoagouti A{sup vy}/a mice are lean, healthy, and longer lived than their yellow siblings. Here the authors report that feeding pregnant black a/a dams methyl-supplemented diets alters epigenetic regulation of agouti expression in their offspring, as indicated by increased agouti/black mottling in the direction of the pseudoagouti phenotype. They also present confirmatory evidence that epigenetic phenotypes are maternally heritable. Thus A{sup vy} expression, already known to be modulated by imprinting, strain-specific modification, and maternal epigenetic inheritance, is also modulated by maternal diet. These observations suggest, at least in this special case, that maternal dietary supplementation may positively affect health and longevity of the offspring. Therefore, this experimental system should be useful for identifying maternal factors that modulate epigenetic mechanisms, especially DNA methylation, in developing embryos.

  1. Ectopic expression of the agouti gene in transgenic mice causes obesity, features of type II diabetes, and yellow fur

    SciTech Connect

    Klebig, M.L.; Woychik, R.P.; Wilkinson, J.E.; Geisler, J.G. |

    1995-05-23

    Mice that carry the lethal yellow (A{sup y}) or viable yellow (A{sup vy}) mutation, two dominant mutations of the agouti (a) gene in mouse chromosome 2, exhibit a phenotype that includes yellow fur, marked obesity, a form of type II diabetes associated with insulin resistance, and an increased susceptibility to tumor development. Molecular analyses of these and several other dominant {open_quotes}obese yellow{close_quotes} a-locus mutations suggested that ectopic expression of the normal agouti protein gives rise to this complex pleiotropic phenotype. We have now tested this hypothesis directly by generating transgenic mice that ectopically express an agouti cDNA clone encoding the normal agouti protein in all tissues examined. Transgenic mice of both sexes have yellow fur, become obese, and develop hyperinsulinemia. In addition, male transgenic mice develop hyperglycemia by 12-20 weeks of age. These results demonstrate conclusively that the ectopic agouti expression is responsible for most, if not all, of the phenotypic traits of the dominant, obese yellow mutants. 42 refs., 5 figs.

  2. Human kallikrein 4 signal peptide induces cytotoxic T cell responses in healthy donors and prostate cancer patients.

    PubMed

    Wilkinson, Ray; Woods, Katherine; D'Rozario, Rachael; Prue, Rebecca; Vari, Frank; Hardy, Melinda Y; Dong, Ying; Clements, Judith A; Hart, Derek N J; Radford, Kristen J

    2012-02-01

    Immunotherapy is a promising new treatment for patients with advanced prostate and ovarian cancer, but its application is limited by the lack of suitable target antigens that are recognized by CD8+ cytotoxic T lymphocytes (CTL). Human kallikrein 4 (KLK4) is a member of the kallikrein family of serine proteases that is significantly overexpressed in malignant versus healthy prostate and ovarian tissue, making it an attractive target for immunotherapy. We identified a naturally processed, HLA-A*0201-restricted peptide epitope within the signal sequence region of KLK4 that induced CTL responses in vitro in most healthy donors and prostate cancer patients tested. These CTL lysed HLA-A*0201+ KLK4 + cell lines and KLK4 mRNA-transfected monocyte-derived dendritic cells. CTL specific for the HLA-A*0201-restricted KLK4 peptide were more readily expanded to a higher frequency in vitro compared to the known HLA-A*0201-restricted epitopes from prostate cancer antigens; prostate-specific antigen (PSA), prostate-specific membrane antigen (PSMA) and prostatic acid phosphatase (PAP). These data demonstrate that KLK4 is an immunogenic molecule capable of inducing CTL responses and identify it as an attractive target for prostate and ovarian cancer immunotherapy.

  3. Bacterial expression, correct membrane targeting and functional folding of the HIV-1 membrane protein Vpu using a periplasmic signal peptide.

    PubMed

    Deb, Arpan; Johnson, William A; Kline, Alexander P; Scott, Boston J; Meador, Lydia R; Srinivas, Dustin; Martin-Garcia, Jose M; Dörner, Katerina; Borges, Chad R; Misra, Rajeev; Hogue, Brenda G; Fromme, Petra; Mor, Tsafrir S

    2017-01-01

    Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which the Vpu protein contributes to HIV-1 pathogenesis. Here we describe expression of Vpu in bacteria, its purification and characterization. We report the successful expression of PelB-Vpu in Escherichia coli using the leader peptide pectate lyase B (PelB) from Erwinia carotovora. The protein was detergent extractable and could be isolated in a very pure form. We demonstrate that the PelB signal peptide successfully targets Vpu to the cell membranes and inserts it as a type I membrane protein. PelB-Vpu was biophysically characterized by circular dichroism and dynamic light scattering experiments and was shown to be an excellent candidate for elucidating structural models.

  4. Bacterial expression, correct membrane targeting and functional folding of the HIV-1 membrane protein Vpu using a periplasmic signal peptide

    PubMed Central

    Deb, Arpan; Johnson, William A.; Kline, Alexander P.; Scott, Boston J.; Meador, Lydia R.; Srinivas, Dustin; Martin-Garcia, Jose M.; Dörner, Katerina; Borges, Chad R.; Misra, Rajeev; Hogue, Brenda G.; Fromme, Petra

    2017-01-01

    Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which the Vpu protein contributes to HIV-1 pathogenesis. Here we describe expression of Vpu in bacteria, its purification and characterization. We report the successful expression of PelB-Vpu in Escherichia coli using the leader peptide pectate lyase B (PelB) from Erwinia carotovora. The protein was detergent extractable and could be isolated in a very pure form. We demonstrate that the PelB signal peptide successfully targets Vpu to the cell membranes and inserts it as a type I membrane protein. PelB-Vpu was biophysically characterized by circular dichroism and dynamic light scattering experiments and was shown to be an excellent candidate for elucidating structural models. PMID:28225803

  5. A Nascent Peptide Signal Responsive to Endogenous Levels of Polyamines Acts to Stimulate Regulatory Frameshifting on Antizyme mRNA.

    PubMed

    Yordanova, Martina M; Wu, Cheng; Andreev, Dmitry E; Sachs, Matthew S; Atkins, John F

    2015-07-17

    The protein antizyme is a negative regulator of cellular polyamine concentrations from yeast to mammals. Synthesis of functional antizyme requires programmed +1 ribosomal frameshifting at the 3' end of the first of two partially overlapping ORFs. The frameshift is the sensor and effector in an autoregulatory circuit. Except for Saccharomyces cerevisiae antizyme mRNA, the frameshift site alone only supports low levels of frameshifting. The high levels usually observed depend on the presence of cis-acting stimulatory elements located 5' and 3' of the frameshift site. Antizyme genes from different evolutionary branches have evolved different stimulatory elements. Prior and new multiple alignments of fungal antizyme mRNA sequences from the Agaricomycetes class of Basidiomycota show a distinct pattern of conservation 5' of the frameshift site consistent with a function at the amino acid level. As shown here when tested in Schizosaccharomyces pombe and mammalian HEK293T cells, the 5' part of this conserved sequence acts at the nascent peptide level to stimulate the frameshifting, without involving stalling detectable by toe-printing. However, the peptide is only part of the signal. The 3' part of the stimulator functions largely independently and acts at least mostly at the nucleotide level. When polyamine levels were varied, the stimulatory effect was seen to be especially responsive in the endogenous polyamine concentration range, and this effect may be more general. A conserved RNA secondary structure 3' of the frameshift site has weaker stimulatory and polyamine sensitizing effects on frameshifting.

  6. Signal-peptide-peptidase-like 2a is required for CD74 intramembrane proteolysis in human B cells

    PubMed Central

    Schneppenheim, Janna; Hüttl, Susann; Kruchen, Anne; Fluhrer, Regina; Müller, Ingo; Saftig, Paul; Schneppenheim, Reinhard; Martin, Christa L; Schröder, Bernd

    2015-01-01

    The invariant chain (CD74) mediates targeting of the MHCII complex to endosomal compartments, where CD74 undergoes degradation allowing MHCII to acquire peptides. We demonstrated recently that intramembrane proteolysis of the final membrane-bound N-terminal fragment (NTF) of CD74 is catalysed by Signal-peptide-peptidase-like 2a (SPPL2a) and that this process is indispensable for development and function of B lymphocytes in mice. In SPPL2a−/− mice, homeostasis of these cells is disturbed by the accumulation of the unprocessed CD74 NTF. So far, evidence for this essential role of SPPL2a is restricted to mice. Nevertheless, inhibition of SPPL2a has been suggested as novel approach to target B cells for treating autoimmunity. Here, we characterize human B cell lines with a homozygous microdeletion on chromosome 15. We demonstrate that this deletion disrupts the SPPL2a genomic locus and leads to loss of SPPL2a transcript. Lymphoblastoid cell lines from patients with this deletion exhibit absence of SPPL2a at the protein level and show an accumulation of the CD74 NTF comparable to B cells from SPPL2a−/− mice. By this means, we present evidence that the role of SPPL2a in CD74 proteolysis is conserved in human B cells and provide support for modulation of SPPL2a activity as a therapeutic concept. PMID:25035924

  7. Shedding of glycan-modifying enzymes by signal peptide peptidase-like 3 (SPPL3) regulates cellular N-glycosylation

    PubMed Central

    Voss, Matthias; Künzel, Ulrike; Higel, Fabian; Kuhn, Peer-Hendrik; Colombo, Alessio; Fukumori, Akio; Haug-Kröper, Martina; Klier, Bärbel; Grammer, Gudula; Seidl, Andreas; Schröder, Bernd; Obst, Reinhard; Steiner, Harald; Lichtenthaler, Stefan F; Haass, Christian; Fluhrer, Regina

    2014-01-01

    Protein N-glycosylation is involved in a variety of physiological and pathophysiological processes such as autoimmunity, tumour progression and metastasis. Signal peptide peptidase-like 3 (SPPL3) is an intramembrane-cleaving aspartyl protease of the GxGD type. Its physiological function, however, has remained enigmatic, since presently no physiological substrates have been identified. We demonstrate that SPPL3 alters the pattern of cellular N-glycosylation by triggering the proteolytic release of active site-containing ectodomains of glycosidases and glycosyltransferases such as N-acetylglucosaminyltransferase V, β-1,3 N-acetylglucosaminyltransferase 1 and β-1,4 galactosyltransferase 1. Cleavage of these enzymes leads to a reduction in their cellular activity. In line with that, reduced expression of SPPL3 results in a hyperglycosylation phenotype, whereas elevated SPPL3 expression causes hypoglycosylation. Thus, SPPL3 plays a central role in an evolutionary highly conserved post-translational process in eukaryotes. PMID:25354954

  8. Peptide-based communication system enables Escherichia coli to Bacillus megaterium interspecies signaling.

    PubMed

    Marchand, Nicholas; Collins, Cynthia H

    2013-11-01

    The use of mixtures of microorganisms, or microbial consortia, has the potential to improve the productivity and efficiency of increasingly complex bioprocesses. However, the use of microbial consortia has been limited by our ability to control and coordinate the behaviors of microorganisms in synthetic communities. Synthetic biologists have previously engineered cell-cell communication systems that employ machinery from bacterial quorum-sensing (QS) networks to enable population-level control of gene expression. However, additional communication systems, such as those that enable communication between different species of bacteria, are needed to enable the use of diverse species in microbial consortia for bioprocessing. Here, we use the agr QS system from Staphylococcus aureus to generate an orthogonal synthetic communication system between Gram-negative Escherichia coli and Gram-positive Bacillus megaterium that is based on the production and recognition of autoinducing peptides (AIPs). We describe the construction and characterization of two types of B. megaterium "receiver" cells, capable of AIP-dependent gene expression in response to AIPs that differ by a single amino acid. Further, we observed interspecies communication when these receiver cells were co-cultured with AIP-producing E. coli. We show that the two AIP-based systems exhibit differences in sensitivity and specificity that may be advantageous in tuning communication-dependent networks in synthetic consortia. These peptide-based communication systems will enable the coordination of gene expression, metabolic pathways and growth between diverse microbial species, and represent a key step towards the use of microbial consortia in bioprocessing and biomanufacturing.

  9. Molecular basis of the pleiotropic phenotype of mice carrying the hypervariable yellow (A{sup hvy}) mutation at the agouti locus

    SciTech Connect

    Argeson, A.C.; Nelson, K.K.; Siracusa, L.D.

    1996-02-01

    The murine agouti locus regulates a switch in pigment synthesis between eumelanin (black/brown pigment) and phaeomelanin (yellow/red pigment) by hair bulb melanocytes. We recently described a spontaneous mutation, hypervariable yellow (A{sup hvy}) and demonstrated that A{sup hvy} is responsible for the largest range of phenotypes yet identified at the agouti locus, producing mice that are obese with yellow coats to mice that are of normal weight with black coats. Here, we show that agouti expression is altered both temporally and spatially in A{sup hvy} mutants. Agouti expression levels are positively correlated with the degree of yellow pigmentation in individual A{sup hvy} mice, consistent with results from other dominant yellow agouti mutations. Sequencing of 5{prime} RACE and genomic PCR products revealed that A{sup hvy} resulted from the integration of an intracisternal A particle (IAP) in an antisense orientation within the 5{prime} untranslated agouti exon 1C. This retrovirus-like element is responsible for deregulating agouti expression in A{sup hvy} mice; agouti expression is correlated with the methylation state of CpG residues in the IAP long terminal repeat as well as in host genomic DNA. In addition, the data suggest that the variable phenotype of A{sup hvy} offspring is influenced in part by the phenotype of their A{sup hvy} female parent. 42 refs., 7 figs., 1 tab.

  10. Structural and ultrastructural features of the agouti tongue (Dasyprocta aguti Linnaeus, 1766).

    PubMed

    Ciena, Adriano Polican; de Sousa Bolina, Cristina; de Almeida, Sonia Regina Yokomizo; Rici, Rose Eli Grassi; de Oliveira, Moacir Franco; da Silva, Marcelo Cavenaghi Pereira; Miglino, Maria Angélica; Watanabe, Ii-sei

    2013-08-01

    The agouti (Dasyprocta aguti Linnaeus, 1766) is a wild rodent belonging to the family Dasyproctidae that is found throughout Brazil and feeds on fruits and seeds. The aim of the present study was to describe the following features of the tongue of agouti: its morphological structures, the three-dimensional characteristics of the lingual papillae surface, the connective tissue cores (CTCs) and the epithelial cell ultrastructure. Four types of papillae were observed on the dorsal surface of the tongue with a triangular shape: filiform, fungiform, foliate and vallate. Filiform papillae were distributed throughout the tongue surface, and removal of the epithelial surface revealed conical CTCs and multifilaments. Fungiform papillae were observed in the rostral and middle regions, whereas foliate papillae developed in pairs on the lateral margin of the caudal region. Removal of the epithelium in these regions revealed CTCs with parallel laminar conformation. Vallate papillae were arranged in a V-shape in the caudal region, and their CTCs ranged in shape from elongate to ovoid. The ultrastructural components of the dorsal epithelium were the basal, spinous, granular and keratinised layers. A broad area with cytoplasmic projections was identified in the interface region between the lamina propria and the basal layer. Flattened cells with intermediate filaments were observed in the transitional region between spinous and granular layers. The keratinised layer was composed of superimposed epithelial cells where desmosomes and cell-surface microridges were observed. These structural features, including the three-dimensional aspects of the lingual papillae, the CTCs and the epithelial ultrastructure, indicate that when compared with other animals, particularly other rodent species, the morphological features of the tongue of agouti are relatively well developed, especially regarding foliate and vallate papillae.

  11. Structural and ultrastructural features of the agouti tongue (Dasyprocta aguti Linnaeus, 1766)

    PubMed Central

    Ciena, Adriano Polican; Bolina, Cristina de Sousa; de Almeida, Sonia Regina Yokomizo; Rici, Rose Eli Grassi; de Oliveira, Moacir Franco; da da Silva, Marcelo Cavenaghi Pereira; Miglino, Maria Angélica; Watanabe, Ii-sei

    2013-01-01

    The agouti (Dasyprocta aguti Linnaeus, 1766) is a wild rodent belonging to the family Dasyproctidae that is found throughout Brazil and feeds on fruits and seeds. The aim of the present study was to describe the following features of the tongue of agouti: its morphological structures, the three-dimensional characteristics of the lingual papillae surface, the connective tissue cores (CTCs) and the epithelial cell ultrastructure. Four types of papillae were observed on the dorsal surface of the tongue with a triangular shape: filiform, fungiform, foliate and vallate. Filiform papillae were distributed throughout the tongue surface, and removal of the epithelial surface revealed conical CTCs and multifilaments. Fungiform papillae were observed in the rostral and middle regions, whereas foliate papillae developed in pairs on the lateral margin of the caudal region. Removal of the epithelium in these regions revealed CTCs with parallel laminar conformation. Vallate papillae were arranged in a V-shape in the caudal region, and their CTCs ranged in shape from elongate to ovoid. The ultrastructural components of the dorsal epithelium were the basal, spinous, granular and keratinised layers. A broad area with cytoplasmic projections was identified in the interface region between the lamina propria and the basal layer. Flattened cells with intermediate filaments were observed in the transitional region between spinous and granular layers. The keratinised layer was composed of superimposed epithelial cells where desmosomes and cell-surface microridges were observed. These structural features, including the three-dimensional aspects of the lingual papillae, the CTCs and the epithelial ultrastructure, indicate that when compared with other animals, particularly other rodent species, the morphological features of the tongue of agouti are relatively well developed, especially regarding foliate and vallate papillae. PMID:23701183

  12. Agouti revisited: transcript quantification of the ASIP gene in bovine tissues related to protein expression and localization.

    PubMed

    Albrecht, Elke; Komolka, Katrin; Kuzinski, Judith; Maak, Steffen

    2012-01-01

    Beside its role in melanogenesis, the agouti signaling protein (ASIP) has been related to obesity. The potentially crucial role in adipocyte development makes it a tempting candidate for economic relevant, fat related traits in farm animals. The objective of our study was to characterize the mRNA expression of different ASIP transcripts and of putative targets in different bovine tissues, as well as to study consequences on protein abundance and localization. ASIP mRNA abundance was determined by RT-qPCR in adipose and further tissues of cattle representing different breeds and crosses. ASIP mRNA was up-regulated more than 9-fold in intramuscular fat of Japanese Black cattle compared to Holstein (p<0.001). Further analyses revealed that a transposon-derived transcript was solely responsible for the increased ASIP mRNA abundance. This transcript was observed in single individuals of different breeds indicating a wide spread occurrence of this insertion at the ASIP locus in cattle. The protein was detected in different adipose tissues, skin, lung and liver, but not in skeletal muscle by Western blot with a bovine-specific ASIP antibody. However, the protein abundance was not related to the observed ASIP mRNA over-expression. Immuno-histochemical analyses revealed a putative nuclear localization of ASIP additionally to the expected cytosolic signal in different cell types. The expression of melanocortin receptors (MCR) 1 to 5 as potential targets for ASIP was analyzed by RT-PCR in subcutaneous fat. Only MC1R and MC4R were detected indicating a similar receptor expression like in human adipose tissue. Our results provide evidence for a widespread expression of ASIP in bovine tissues at mRNA and, for the first time, at protein level. ASIP protein is detectable in adipocytes as well as in further cells of adipose tissue. We generated a basis for a more detailed investigation of ASIP function in peripheral tissues of various mammalian species.

  13. Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors

    PubMed Central

    Culhane, Kelly J.; Liu, Yuting; Cai, Yingying; Yan, Elsa C. Y.

    2015-01-01

    Although family B G protein-coupled receptors (GPCRs) contain only 15 members, they play key roles in transmembrane signal transduction of hormones. Family B GPCRs are drug targets for developing therapeutics for diseases ranging from metabolic to neurological disorders. Despite their importance, the molecular mechanism of activation of family B GPCRs remains largely unexplored due to the challenges in expression and purification of functional receptors to the quantity for biophysical characterization. Currently, there is no crystal structure available of a full-length family B GPCR. However, structures of key domains, including the extracellular ligand binding regions and seven-helical transmembrane regions, have been solved by X-ray crystallography and NMR, providing insights into the mechanisms of ligand recognition and selectivity, and helical arrangements within the cell membrane. Moreover, biophysical and biochemical methods have been used to explore functions, key residues for signaling, and the kinetics and dynamics of signaling processes. This review summarizes the current knowledge of the signal transduction mechanism of family B GPCRs at the molecular level and comments on the challenges and outlook for mechanistic studies of family B GPCRs. PMID:26594176

  14. CGRP-RCP, a novel protein required for signal transduction at calcitonin gene-related peptide and adrenomedullin receptors.

    PubMed

    Evans, B N; Rosenblatt, M I; Mnayer, L O; Oliver, K R; Dickerson, I M

    2000-10-06

    It is becoming clear that receptors that initiate signal transduction by interacting with G-proteins do not function as monomers, but often require accessory proteins for function. Some of these accessory proteins are chaperones, required for correct transport of the receptor to the cell surface, but the function of many accessory proteins remains unknown. We determined the role of an accessory protein for the receptor for calcitonin gene-related peptide (CGRP), a potent vasodilator neuropeptide. We have previously shown that this accessory protein, the CGRP-receptor component protein (RCP), is expressed in CGRP responsive tissues and that RCP protein expression correlates with the biological efficacy of CGRP in vivo. However, the function of RCP has remained elusive. In this study stable cell lines were made that express antisense RCP RNA, and CGRP- and adrenomedullin-mediated signal transduction were greatly reduced. However, the loss of RCP did not effect CGRP binding or receptor density, indicating that RCP did not behave as a chaperone but was instead coupling the CGRP receptor to downstream effectors. A candidate CGRP receptor named calcitonin receptor-like receptor (CRLR) has been identified, and in this study RCP co-immunoprecipitated with CRLR indicating that these two proteins interact directly. Since CGRP and adrenomedullin can both signal through CRLR, which has been previously shown to require a chaperone protein for function, we now propose that a functional CGRP or adrenomedullin receptor consists of at least three proteins: the receptor (CRLR), the chaperone protein (RAMP), and RCP that couples the receptor to the cellular signal transduction pathway.

  15. Conventional Matrices Loaded Onto a Graphene Layer Enhances MALDI-TOF/TOF Signal: Its Application to Improve Detection of Phosphorylated Peptides

    NASA Astrophysics Data System (ADS)

    Rodríguez, Carlos E.; Palacios, Javier; Fajardo, Ignacio; Urdiales, José Luis; Le Guével, Xavier; Lozano, José; Sánchez-Jiménez, Francisca

    2016-02-01

    This is the first study where graphene is used as a MALDI adjuvant in combination with the traditional matrix α-cyano-4-hydroxycinnamic acid (CHCA) to improve the signal intensity of peptide samples. Use of this amended matrix not only leads to increased signals but also to a higher number of peaks detected in complex samples. Additionally, the use of graphene has a stabilizing effect that can also be exploited to improve the detection of easily cleavable molecules.

  16. Construction of a highly active secretory expression system via an engineered dual promoter and a highly efficient signal peptide in Bacillus subtilis.

    PubMed

    Guan, Chengran; Cui, Wenjing; Cheng, Jintao; Liu, Rui; Liu, Zhongmei; Zhou, Li; Zhou, Zhemin

    2016-05-25

    A strong promoter and highly efficient signal peptides are essential for the secretory overproduction of recombinant proteins in Bacillus subtilis. To enhance the limited overexpression capability of natural promoters, various strategies for promoter engineering have been developed and used to construct gene expression systems in B. subtilis and other hosts. By applying a semi-rational approach for promoter engineering, a series of expression plasmids containing single and dual promoters were constructed using aminopeptidase (AP) with an intrinsic signal peptide as the reporter protein. Of the single and dual promoters investigated, the dual promoter PgsiB-PHpaII gave the best performance. To optimize secretion efficiency, the signal peptide YncM was selected after screening a library containing 19 different Sec-type signal peptides. The AP activity detected in the supernatants of a recombinant strain containing the plasmid pBSG24-YncM was as high as 88.86U/mL. The capacity of the expression plasmid pBSG24-YncM was also evaluated with batch fermentation in a 5-L fermentor. Increased production of AP (205U/mL, equal to 1.7g/L) was achieved after 45h of fermentation. These results suggest that this expression system can be used for high-level protein expression in B. subtilis.

  17. Bioinformatic and phylogenetic analysis of the CLAVATA3/EMBRYO-SURROUNDING REGION (CLE) and the CLE-LIKE signal peptide genes in the Pinophyta

    PubMed Central

    2014-01-01

    Background There is a rapidly growing awareness that plant peptide signalling molecules are numerous and varied and they are known to play fundamental roles in angiosperm plant growth and development. Two closely related peptide signalling molecule families are the CLAVATA3-EMBRYO-SURROUNDING REGION (CLE) and CLE-LIKE (CLEL) genes, which encode precursors of secreted peptide ligands that have roles in meristem maintenance and root gravitropism. Progress in peptide signalling molecule research in gymnosperms has lagged behind that of angiosperms. We therefore sought to identify CLE and CLEL genes in gymnosperms and conduct a comparative analysis of these gene families with angiosperms. Results We undertook a meta-analysis of the GenBank/EMBL/DDBJ gymnosperm EST database and the Picea abies and P. glauca genomes and identified 93 putative CLE genes and 11 CLEL genes among eight Pinophyta species, in the genera Cryptomeria, Pinus and Picea. The predicted conifer CLE and CLEL protein sequences had close phylogenetic relationships with their homologues in Arabidopsis. Notably, perfect conservation of the active CLE dodecapeptide in presumed orthologues of the Arabidopsis CLE41/44-TRACHEARY ELEMENT DIFFERENTIATION (TDIF) protein, an inhibitor of tracheary element (xylem) differentiation, was seen in all eight conifer species. We cloned the Pinus radiata CLE41/44-TDIF orthologues. These genes were preferentially expressed in phloem in planta as expected, but unexpectedly, also in differentiating tracheary element (TE) cultures. Surprisingly, transcript abundances of these TE differentiation-inhibitors sharply increased during early TE differentiation, suggesting that some cells differentiate into phloem cells in addition to TEs in these cultures. Applied CLE13 and CLE41/44 peptides inhibited root elongation in Pinus radiata seedlings. We show evidence that two CLEL genes are alternatively spliced via 3′-terminal acceptor exons encoding separate CLEL peptides

  18. The role of proteolytic processing and the stable signal peptide in expression of the Old World arenavirus envelope glycoprotein ectodomain

    SciTech Connect

    Burri, Dominique J.; Pasquato, Antonella; Ramos da Palma, Joel; Igonet, Sebastien; Oldstone, Michael B.A.; Kunz, Stefan

    2013-02-05

    Maturation of the arenavirus GP precursor (GPC) involves proteolytic processing by cellular signal peptidase and the proprotein convertase subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P), yielding a tripartite complex comprised of a stable signal peptide (SSP), the receptor-binding GP1, and the fusion-active transmembrane GP2. Here we investigated the roles of SKI-1/S1P processing and SSP in the biosynthesis of the recombinant GP ectodomains of lymphocytic choriomeningitis virus (LCMV) and Lassa virus (LASV). When expressed in mammalian cells, the LCMV and LASV GP ectodomains underwent processing by SKI-1/S1P, followed by dissociation of GP1 from GP2. The GP2 ectodomain spontaneously formed trimers as revealed by chemical cross-linking. The endogenous SSP, known to be crucial for maturation and transport of full-length arenavirus GPC was dispensable for processing and secretion of the soluble GP ectodomain, suggesting a specific role of SSP in the stable prefusion conformation and transport of full-length GPC.

  19. Expression Pattern of the Alpha-Kafirin Promoter Coupled with a Signal Peptide from Sorghum bicolor L. Moench

    PubMed Central

    Ahmad, Norazlina; Sant, Rajnesh; Bokan, Milovan; Steadman, Kathryn J.; Godwin, Ian D.

    2012-01-01

    Regulatory sequences with endosperm specificity are essential for foreign gene expression in the desired tissue for both grain quality improvement and molecular pharming. In this study, promoters of seed storage α-kafirin genes coupled with signal sequence (ss) were isolated from Sorghum bicolor L. Moench genomic DNA by PCR. The α-kafirin promoter (α-kaf) contains endosperm specificity-determining motifs, prolamin-box, the O2-box 1, CATC, and TATA boxes required for α-kafirin gene expression in sorghum seeds. The constructs pMB-Ubi-gfp and pMB-kaf-gfp were microprojectile bombarded into various sorghum and sweet corn explants. GFP expression was detected on all explants using the Ubi promoter but only in seeds for the α-kaf promoter. This shows that the α-kaf promoter isolated was functional and demonstrated seed-specific GFP expression. The constructs pMB-Ubi-ss-gfp and pMB-kaf-ss-gfp were also bombarded into the same explants. Detection of GFP expression showed that the signal peptide (SP)::GFP fusion can assemble and fold properly, preserving the fluorescent properties of GFP. PMID:22315514

  20. Expression pattern of sonic hedgehog signaling and calcitonin gene-related peptide in the socket healing process after tooth extraction.

    PubMed

    Pang, Pai; Shimo, Tsuyoshi; Takada, Hiroyuki; Matsumoto, Kenichi; Yoshioka, Norie; Ibaragi, Soichiro; Sasaki, Akira

    2015-11-06

    Sonic Hedgehog (SHH), a neural development inducer, plays a significant role in the bone healing process. Calcitonin gene-related peptide (CGRP), a neuropeptide marker of sensory nerves, has been demonstrated to affect bone formation. The roles of SHH signaling and CGRP-positive sensory nerves in the alveolar bone formation process have been unknown. Here we examined the expression patterns of SHH signaling and CGRP in mouse socket by immunohistochemistry and immunofluorescence analysis. We found that the expression level of SHH peaked at day 3 and was then decreased at 5 days after tooth extraction. CGRP, PTCH1 and GLI2 were each expressed in a similar pattern with their highest expression levels at day 5 and day 7 after tooth extraction. CGRP and GLI2 were co-expressed in some inflammatory cells and bone forming cells. In some areas, CGRP-positive neurons expressed GLI2. In conclusion, SHH may affect alveolar bone healing by interacting with CGRP-positive sensory neurons and thus regulate the socket's healing process after tooth extraction.

  1. Peptide YY signaling in the lateral parabrachial nucleus increases food intake through the Y1 receptor

    PubMed Central

    Golub, Danielle; Hayes, Matthew R.; Grill, Harvey J.

    2015-01-01

    Although central PYY delivery potently increases food intake, the sites of action and mechanisms mediating these hyperphagic effects are not fully understood. The present studies investigate the contribution of lateral parabrachial nucleus (lPBN) PYY-Y receptor signaling to food intake control, as lPBN neurons express Y receptors and receive PYY fibers and are known to integrate circulating and visceral sensory signals to regulate energy balance. Immunohistochemical results identified a subpopulation of gigantocellular reticular nucleus PYY-producing neurons that project monosynaptically to the lPBN, providing an endogenous source of PYY to the lPBN. lPBN microinjection of PYY-(1–36) or PYY-(3–36) markedly increased food intake by increasing meal size. To determine which receptors mediate these behavioral results, we first performed quantitative real-time PCR to examine the relative levels of Y receptor expression in lPBN tissue. Gene expression analyses revealed that, while Y1, Y2, and Y5 receptors are each expressed in lPBN tissue, Y1 receptor mRNA is expressed at fivefold higher levels than the others. Furthermore, behavioral/pharmacological results demonstrated that the hyperphagic effects of PYY-(3–36) were eliminated by lPBN pretreatment with a selective Y1 receptor antagonist. Together, these results highlight the lPBN as a novel site of action for the intake-stimulatory effects of central PYY-Y1 receptor signaling. PMID:26330345

  2. Incubation of Fear Is Regulated by TIP39 Peptide Signaling in the Medial Nucleus of the Amygdala

    PubMed Central

    Tsuda, Mumeko C.; Yeung, Ho-Man; Kuo, Jonathan

    2015-01-01

    Fear-related psychopathologies such as post-traumatic stress disorder are characterized by impaired extinction of fearful memories. Recent behavioral evidence suggests that the neuropeptide tuberoinfundibular peptide of 39 residues (TIP39), via its receptor, the parathyroid hormone 2 receptor (PTH2R), modulates fear memory. Here we examined the anatomical and cellular localization of TIP39 signaling that contributes to the increase in fear memory over time following a traumatic event, called fear memory incubation. Contextual freezing, a behavioral sign of fear memory, was significantly greater in PTH2R knock-out than wild-type male mice 2 and 4 weeks after a 2 s 1.5 mA footshock. PTH2R knock-out mice had significantly reduced c-Fos activation in the medial amygdala (MeA) following both footshock and fear recall, but had normal activation in the hypothalamic paraventricular nucleus and the amygdalar central nucleus compared with wild-type. We therefore investigated the contribution of MeA TIP39 signaling to fear incubation. Similar to the effect of global TIP39 signaling loss, blockade of TIP39 signaling in the MeA by lentivirus-mediated expression of a secreted PTH2R antagonist augmented fear incubation. Ablation of MeA PTH2R-expressing neurons also strengthened the fear incubation effect. Using the designer receptor exclusively activated by designer drug pharmacogenetic approach, transient inhibition of MeA PTH2R-expressing neurons before or immediately after the footshock, but not at the time of fear recall, enhanced fear incubation. Collectively, the findings demonstrate that TIP39 signaling within the MeA at the time of an aversive event regulates the increase over time in fear associated with the event context. SIGNIFICANCE STATEMENT Fear-related psychopathologies such as post-traumatic stress disorder (PTSD) are characterized by excessive responses to trauma-associated cues. Fear responses can increase over time without additional cue exposure or stress

  3. Glucagon-Like Peptide-1 Receptor Agonists (GLP-1RAs) in the Brain-Adipocyte Axis.

    PubMed

    Geloneze, Bruno; de Lima-Júnior, José Carlos; Velloso, Lício A

    2017-02-23

    The complexity of neural circuits that control food intake and energy balance in the hypothalamic nuclei explains some of the constraints involved in the prevention and treatment of obesity. Two major neuronal populations present in the arcuate nucleus control caloric intake and energy expenditure: one population co-expresses orexigenic agouti-related peptide (AgRP) and neuropeptide Y and the other expresses the anorexigenic anorectic neuropeptides proopiomelanocortin and cocaine- and amphetamine-regulated transcript (POMC/CART). In addition to integrating signals from neurotransmitters and hormones, the hypothalamic systems that regulate energy homeostasis are affected by nutrients. Fat-rich diets, for instance, elicit hypothalamic inflammation (reactive activation and proliferation of microglia, a condition named gliosis). This process generates resistance to the anorexigenic hormones leptin and insulin, contributing to the genesis of obesity. Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs) have increasingly been used to treat type 2 diabetes mellitus. One compound (liraglutide) was recently approved for the treatment of obesity. Although most studies suggest that GLP-1RAs promote weight loss mainly due to their inhibitory effect on food intake, other central effects that have been described for native GLP-1 and some GLP-1RAs in rodents and humans encourage future clinical trials to explore additional mechanisms that potentially underlie the beneficial effects observed with this drug class. In this article we review the most relevant data exploring the mechanisms involved in the effects of GLP-1RAs in the brain-adipocyte axis.

  4. SKPDT is a signaling peptide that stimulates sporulation and cry1Aa expression in Bacillus thuringiensis but not in Bacillus subtilis.

    PubMed

    Aceves-Diez, Angel E; Robles-Burgueño, Refugio; de la Torre, Mayra

    2007-08-01

    We have identified and characterized in the supernatant of the transition phase of Bacillus thuringiensis var. kurstaki the peptide SKPDT. This peptide was previously identified by in silico analysis by Pottathil and Lazazzera (Front Biosci 8:32-45 2003) as a putative signaling peptide (NprRB) of the Phr family in B. thuringiensis. The chemically synthesized NprRB did not affect the growth kinetics of B. thuringiensis var. kurstaki but stimulated the sporulation, spore release, and transcription of cry1Aa when added to cultures during the transition phase. In fact, when the peptide (100 nM) was added to a culture in transition phase, the transcription of cry1Aa was stimulated almost threefold, mainly from the late promoter BtII, which requires the late-stage sporulation-specific transcription factor sigma (K). On the other hand, NprRB did not have any effect on B. subtilis. Thus, SKPDT seems to be a signaling peptide specific for B. thuringiensis.

  5. A Nascent Peptide Signal Responsive to Endogenous Levels of Polyamines Acts to Stimulate Regulatory Frameshifting on Antizyme mRNA*

    PubMed Central

    Yordanova, Martina M.; Wu, Cheng; Andreev, Dmitry E.; Sachs, Matthew S.; Atkins, John F.

    2015-01-01

    The protein antizyme is a negative regulator of cellular polyamine concentrations from yeast to mammals. Synthesis of functional antizyme requires programmed +1 ribosomal frameshifting at the 3′ end of the first of two partially overlapping ORFs. The frameshift is the sensor and effector in an autoregulatory circuit. Except for Saccharomyces cerevisiae antizyme mRNA, the frameshift site alone only supports low levels of frameshifting. The high levels usually observed depend on the presence of cis-acting stimulatory elements located 5′ and 3′ of the frameshift site. Antizyme genes from different evolutionary branches have evolved different stimulatory elements. Prior and new multiple alignments of fungal antizyme mRNA sequences from the Agaricomycetes class of Basidiomycota show a distinct pattern of conservation 5′ of the frameshift site consistent with a function at the amino acid level. As shown here when tested in Schizosaccharomyces pombe and mammalian HEK293T cells, the 5′ part of this conserved sequence acts at the nascent peptide level to stimulate the frameshifting, without involving stalling detectable by toe-printing. However, the peptide is only part of the signal. The 3′ part of the stimulator functions largely independently and acts at least mostly at the nucleotide level. When polyamine levels were varied, the stimulatory effect was seen to be especially responsive in the endogenous polyamine concentration range, and this effect may be more general. A conserved RNA secondary structure 3′ of the frameshift site has weaker stimulatory and polyamine sensitizing effects on frameshifting. PMID:25998126

  6. Targeting Yes-associated Protein with Evolved Peptide Aptamers to Disrupt TGF-β Signaling Pathway: Therapeutic Implication for Bone Tumor.

    PubMed

    Ji, Wei-Ping; Dong, Yang

    2015-11-01

    The binding of transcription coactivator Yes-associated protein (YAP) to Smad transcription factors is an important event in activating transforming growth factor-β (TGF-β) signaling pathway, which is involved in the tumorigenicity and metastasis of bone tumor. Design of peptide aptamers to disrupt YAPSmad interaction has been established as a promising approach for bone tumor therapy. Here, an evolution strategy was used to optimize Smad-derived peptides for high potency binding to YAP WW2 domain, resulting in an improved peptide population, from which those high-scoring candidates were characterized rigorously using molecular dynamics (MD) simulations and interaction free energy calculations. With the computational protocol we were able to generate a number of potential domain binders, which were then substantiated by using fluorescence spectroscopy assay. Subsequently, the complex structure of YAP WW2 domain with a high-affinity peptide was modeled and examined in detail, which was then used to guide structure-based peptide optimization to obtain several strong domain binders. Structural and energetic analysis revealed that electrostatic complementarity is primarily responsible for domainpeptide recognition, while other nonbonded interactions such as hydrogen bonding and salt bridges can contribute significantly to the recognition specificity.

  7. Comparison among different cryoprotectants for cryopreservation of epididymal sperm from agouti (Dasyprocta leporina).

    PubMed

    Castelo, T S; Silva, A M; Bezerra, L G P; Costa, C Y M; Lago, A E A; Bezerra, J A B; Campos, L B; Praxedes, E C G; Silva, A R

    2015-12-01

    We verify the effects of different cryoprotectants on the cryopreservation of agouti (Dasyprocta leporina) epididymal sperm. We used 16 pairs of testes-epididymis complexes of sexually mature animals. We immediately evaluated epididymal sperm obtained by retrograde flushing for concentration, motility, vigor, viability, osmotic response, and morphology. Samples were extended in a coconut water extender plus 20% egg yolk, containing glycerol, ethylene glycol, dimethylsulfoxide - DMSO, or dimethylformamide. Finally, samples were stored in 0.25 mL straws, frozen in liquid nitrogen, and thawed after one week, being reevaluated and assessed for membrane integrity using fluorescent probes. The higher values for postthawing sperm motility, vigor, and membrane integrity were achieved by the usage of glycerol, when compared to ethylene glycol and dimethylformamide (P < 0.05); however, no differences were found between glycerol and DMSO (P > 0.05). All cryoprotectants provided a similar effect on the preservation of sperm morphology, osmotic response, and viability (P > 0.05). Therefore, here onwards, there was testing of glycerol and DMSO at 3 and 6% concentrations using the same freezing-thawing protocol reported previously. As the main result, DMSO at 6% concentration provided a decrease in sperm parameters, as well as in the chromatin integrity and in the binding capability of sperm. In conclusion, glycerol 3 or 6% and DMSO 3% can be used as alternative cryoprotectants for agouti epididymal sperm cryopreservation.

  8. Calcitonin gene-related peptide inhibits autophagic-lysosomal proteolysis through cAMP/PKA signaling in rat skeletal muscles.

    PubMed

    Machado, Juliano; Manfredi, Leandro H; Silveira, Wilian A; Gonçalves, Dawit A P; Lustrino, Danilo; Zanon, Neusa M; Kettelhut, Isis C; Navegantes, Luiz C

    2016-03-01

    Calcitonin gene-related peptide (CGRP) is a neuropeptide released by motor neuron in skeletal muscle and modulates the neuromuscular transmission by induction of synthesis and insertion of acetylcholine receptor on postsynaptic muscle membrane; however, its role in skeletal muscle protein metabolism remains unclear. We examined the in vitro and in vivo effects of CGRP on protein breakdown and signaling pathways in control skeletal muscles and muscles following denervation (DEN) in rats. In isolated muscles, CGRP (10(-10) to 10(-6)M) reduced basal and DEN-induced activation of overall proteolysis in a concentration-dependent manner. The in vitro anti-proteolytic effect of CGRP was completely abolished by CGRP8-37, a CGRP receptor antagonist. CGRP down-regulated the lysosomal proteolysis, the mRNA levels of LC3b, Gabarapl1 and cathepsin L and the protein content of LC3-II in control and denervated muscles. In parallel, CGRP elevated cAMP levels, stimulated PKA/CREB signaling and increased Foxo1 phosphorylation in both conditions. In denervated muscles and starved C2C12 cells, Rp-8-Br-cAMPs or PKI, two PKA inhibitors, completely abolished the inhibitory effect of CGRP on Foxo1, 3 and 4 and LC3 lipidation. A single injection of CGRP (100 μg kg(-1)) in denervated rats increased the phosphorylation levels of CREB and Akt, inhibited Foxo transcriptional activity, the LC3 lipidation as well as the mRNA levels of LC3b and cathepsin L, two bona fide targets of Foxo. This study shows for the first time that CGRP exerts a direct inhibitory action on autophagic-lysosomal proteolysis in control and denervated skeletal muscle by recruiting cAMP/PKA signaling, effects that are related to inhibition of Foxo activity and LC3 lipidation.

  9. The β-amyloid peptide compromises Reelin signaling in Alzheimer’s disease

    PubMed Central

    Cuchillo-Ibañez, Inmaculada; Mata-Balaguer, Trinidad; Balmaceda, Valeria; Arranz, Juan José; Nimpf, Johannes; Sáez-Valero, Javier

    2016-01-01

    Reelin is a signaling protein that plays a crucial role in synaptic function, which expression is influenced by β-amyloid (Aβ). We show that Reelin and Aβ oligomers co-immunoprecipitated in human brain extracts and were present in the same size-exclusion chromatography fractions. Aβ treatment of cells led to increase expression of Reelin, but secreted Reelin results trapped together with Aβ aggregates. In frontal cortex extracts an increase in Reelin mRNA, and in soluble and insoluble (guanidine-extractable) Reelin protein, was associated with late Braak stages of Alzheimer’s disease (AD), while expression of its receptor, ApoER2, did not change. However, Reelin-dependent induction of Dab1 phosphorylation appeared reduced in AD. In cells, Aβ reduced the capacity of Reelin to induce internalization of biotinylated ApoER2 and ApoER2 processing. Soluble proteolytic fragments of ApoER2 generated after Reelin binding can be detected in cerebrospinal fluid (CSF). Quantification of these soluble fragments in CSF could be a tool to evaluate the efficiency of Reelin signaling in the brain. These CSF-ApoER2 fragments correlated with Reelin levels only in control subjects, not in AD, where these fragments diminished. We conclude that while Reelin expression is enhanced in the Alzheimer’s brain, the interaction of Reelin with Aβ hinders its biological activity. PMID:27531658

  10. Modulation of 4HNE-mediated signaling by proline-rich peptides from ovine colostrum.

    PubMed

    Boldogh, Istvan; Liebenthal, Daniel; Hughes, T Kley; Juelich, Terry L; Georgiades, Jerzy A; Kruzel, Marian L; Stanton, G John

    2003-04-01

    In previous studies we showed that colostrinin (CLN), a complex of proline-rich polypeptides derived from ovine colostrum, induces mitogenic stimulation, as well as a variety of cytokines in human peripheral blood leukocytes, and possesses antioxidant activity in pheochromocytoma (PC12) cells. In this study we investigated the effects of CLN on 4-hydroxynonenal (4HNE)-mediated adduct formation, generation of reactive oxygen species (ROS), glutathione (GSH) metabolism, and the modification of signal transduction cascade that leads to activation of c-Jun N-terminal kinase (JNK) in PC12 cells. Here we demonstrate that CLN (1) reduced the abundance of 4HNE-protein adducts, as shown by fluorescent microscopy and Western blot analysis; (2) reduced intracellular levels of ROS, as shown by a decrease in 2',7'-dichlorodihydro-fluorescein-mediated fluorescence; (3) inhibited 4HNE-mediated GSH depletion, as determined fluorimetrically; and (4) inhibited 4HNE-induced activation of JNKs. Together, these findings suggest that CLN appears to down-regulate 4HNE-mediated lipid peroxidation and its product-induced signaling that otherwise may lead to pathological changes at the cellular and organ level. These findings also suggest further that CLN could be useful in the treatment of diseases such as Alzheimer's, as well as those in which ROS are implicated in pathogenesis.

  11. Structure analysis of the membrane-bound PhoD signal peptide of the Tat translocase shows an N-terminal amphiphilic helix.

    PubMed

    Klein, Marco J; Grage, Stephan L; Muhle-Goll, Claudia; Bürck, Jochen; Afonin, Sergii; Ulrich, Anne S

    2012-12-01

    Tat signal peptides provide the key signature for proteins that get exported by the bacterial twin arginine translocase. We have characterized the structure of the PhoD signal peptide from Bacillus subtilis in suitable membrane-mimicking environments. High-resolution ¹³C/¹⁵N NMR analysis in detergent micelles revealed a helical stretch in the signal peptide between positions 5 and 15, in good agreement with secondary structure prediction and circular dichroism results. This helix was found to be aligned parallel to the membrane surface according to oriented circular dichroism experiments carried out with planar lipid bilayers. The N-terminal α-helix exhibits a pronounced amphiphilic character, in contrast to the general view in the literature. So far, signal sequences had been supposed to consist of a positively charged N-terminal domain, followed by an α-helical hydrophobic segment, plus a C-terminal domain carrying the peptidase cleavage site. Based on our new structural insights, we propose a model for the folding and membrane interactions of the Tat signal sequence from PhoD.

  12. Myristoylation of the Arenavirus Envelope Glycoprotein Stable Signal Peptide Is Critical for Membrane Fusion but Dispensable for Virion Morphogenesis

    PubMed Central

    York, Joanne

    2016-01-01

    ABSTRACT Arenaviruses are responsible for severe and often fatal hemorrhagic disease. In the absence of effective antiviral therapies and vaccines, these viruses pose serious threats to public health and biodefense. Arenaviruses enter the host cell by fusion of the viral and endosomal membranes, a process mediated by the virus envelope glycoprotein GPC. Unlike other class I viral fusion proteins, GPC retains its stable signal peptide (SSP) as an essential third subunit in the mature complex. SSP spans the membrane twice and is myristoylated at its cytoplasmic N terminus. Mutations that abolish SSP myristoylation have been shown to reduce pH-induced cell-cell fusion activity of ectopically expressed GPC to ∼20% of wild-type levels. In order to examine the role of SSP myristoylation in the context of the intact virus, we used reverse genetics to generate Junín viruses (Candid #1 isolate) in which the critical glycine-2 residue in SSP was either replaced by alanine (G2A) or deleted (ΔG2). These mutant viruses produced smaller foci of infection in Vero cells and showed an ∼5-fold reduction in specific infectivity, commensurate with the defect in cell-cell fusion. However, virus assembly and GPC incorporation into budded virions were unaffected. Our findings suggest that the myristate moiety is cryptically disposed in the prefusion GPC complex and may function late in the fusion process to promote merging of the viral and cellular membranes. IMPORTANCE Hemorrhagic fever arenaviruses pose significant threats to public health and biodefense. Arenavirus entry into the host cell is promoted by the virus envelope glycoprotein GPC. Unlike other viral envelope glycoproteins, GPC contains a myristoylated stable signal peptide (SSP) as an essential third subunit. Myristoylation has been shown to be important for the membrane fusion activity of recombinantly expressed GPC. Here, we use reverse genetics to study the role of SSP myristoylation in the context of the intact

  13. A LuxR Homolog in a Cottonwood Tree Endophyte That Activates Gene Expression in Response to a Plant Signal or Specific Peptides

    PubMed Central

    Schaefer, Amy L.; Oda, Yasuhiro; Coutinho, Bruna Goncalves; Pelletier, Dale A.; Weiburg, Justin; Venturi, Vittorio; Greenberg, E. Peter

    2016-01-01

    ABSTRACT Homologs of the LuxR acyl-homoserine lactone (AHL) quorum-sensing signal receptor are prevalent in Proteobacteria isolated from roots of the Eastern cottonwood tree, Populus deltoides. Many of these isolates possess an orphan LuxR homolog, closely related to OryR from the rice pathogen Xanthomonas oryzae. OryR does not respond to AHL signals but, instead, responds to an unknown plant compound. We discovered an OryR homolog, PipR, in the cottonwood endophyte Pseudomonas sp. strain GM79. The genes adjacent to pipR encode a predicted ATP-binding cassette (ABC) peptide transporter and peptidases. We purified the putative peptidases, PipA and AapA, and confirmed their predicted activities. A transcriptional pipA-gfp reporter was responsive to PipR in the presence of plant leaf macerates, but it was not influenced by AHLs, similar to findings with OryR. We found that PipR also responded to protein hydrolysates to activate pipA-gfp expression. Among many peptides tested, the tripeptide Ser-His-Ser showed inducer activity but at relatively high concentrations. An ABC peptide transporter mutant failed to respond to leaf macerates, peptone, or Ser-His-Ser, while peptidase mutants expressed higher-than-wild-type levels of pipA-gfp in response to any of these signals. Our studies are consistent with a model where active transport of a peptidelike signal is required for the signal to interact with PipR, which then activates peptidase gene expression. The identification of a peptide ligand for PipR sets the stage to identify plant-derived signals for the OryR family of orphan LuxR proteins. PMID:27486195

  14. A LuxR homolog in a cottonwood tree endophyte that activates gene expression in response to a plant signal or specific peptides

    DOE PAGES

    Schaefer, Amy L.; Oda, Yasuhiro; Coutinho, Bruna Goncalves; ...

    2016-08-02

    Homologs of the LuxR acyl-homoserine lactone (AHL) quorum-sensing signal receptor are prevalent in Proteobacteria isolated from roots of the Eastern cottonwood tree, Populus deltoides. Many of these isolates possess an orphan LuxR homolog, closely related to OryR from the rice pathogen Xanthomonas oryzae. OryR does not respond to AHL signals but, instead, responds to an unknown plant compound. We discovered an OryR homolog, PipR, in the cottonwood endophyte Pseudomonas sp. strain GM79. The genes adjacent to pipR encode a predicted ATP-binding cassette (ABC) peptide transporter and peptidases. We purified the putative peptidases, PipA and AapA, and confirmed their predicted activities.more » A transcriptional pipA-gfp reporter was responsive to PipR in the presence of plant leaf macerates, but it was not influenced by AHLs, similar to findings with OryR. We found that PipR also responded to protein hydrolysates to activate pipA-gfp expression. Among many peptides tested, the tripeptide Ser-His-Ser showed inducer activity but at relatively high concentrations. An ABC peptide transporter mutant failed to respond to leaf macerates, peptone, or Ser-His-Ser, while peptidase mutants expressed higher-than-wild-type levels of pipA-gfp in response to any of these signals. Our studies are consistent with a model where active transport of a peptidelike signal is required for the signal to interact with PipR, which then activates peptidase gene expression. As a result, the identification of a peptide ligand for PipR sets the stage to identify plant-derived signals for the OryR family of orphan LuxR proteins.« less

  15. A LuxR homolog in a cottonwood tree endophyte that activates gene expression in response to a plant signal or specific peptides

    SciTech Connect

    Schaefer, Amy L.; Oda, Yasuhiro; Coutinho, Bruna Goncalves; Pelletier, Dale A.; Weiburg, Justin; Venturi, Vittorio; Greenberg, E. Peter; Harwood, Caroline S.

    2016-08-02

    Homologs of the LuxR acyl-homoserine lactone (AHL) quorum-sensing signal receptor are prevalent in Proteobacteria isolated from roots of the Eastern cottonwood tree, Populus deltoides. Many of these isolates possess an orphan LuxR homolog, closely related to OryR from the rice pathogen Xanthomonas oryzae. OryR does not respond to AHL signals but, instead, responds to an unknown plant compound. We discovered an OryR homolog, PipR, in the cottonwood endophyte Pseudomonas sp. strain GM79. The genes adjacent to pipR encode a predicted ATP-binding cassette (ABC) peptide transporter and peptidases. We purified the putative peptidases, PipA and AapA, and confirmed their predicted activities. A transcriptional pipA-gfp reporter was responsive to PipR in the presence of plant leaf macerates, but it was not influenced by AHLs, similar to findings with OryR. We found that PipR also responded to protein hydrolysates to activate pipA-gfp expression. Among many peptides tested, the tripeptide Ser-His-Ser showed inducer activity but at relatively high concentrations. An ABC peptide transporter mutant failed to respond to leaf macerates, peptone, or Ser-His-Ser, while peptidase mutants expressed higher-than-wild-type levels of pipA-gfp in response to any of these signals. Our studies are consistent with a model where active transport of a peptidelike signal is required for the signal to interact with PipR, which then activates peptidase gene expression. As a result, the identification of a peptide ligand for PipR sets the stage to identify plant-derived signals for the OryR family of orphan LuxR proteins.

  16. A gene encoding a peptide with similarity to the plant IDA signaling peptide (AtIDA) is expressed most abundantly in the root-knot nematode (Meloidogyne incognita) soon after root infection.

    PubMed

    Tucker, Mark L; Yang, Ronghui

    2013-06-01

    Small peptides play important roles in intercellular signaling. Inflorescence deficient in abscission (ida) is an Arabidopsis mutant that does not abscise (shed) its flower petals. The IDA gene encodes a small, secreted peptide that putatively binds to two redundant receptor-like kinases (HAESA and HAESA-like2) that initiate a signal transduction pathway. We identified IDA-like (IDL) genes in the genomic sequence for Meloidogyne incognita and Meloidogyne hapla. No orthologous sequences were found in any other genus of nematodes. Transcript for both M. incognita and M. hapla IDLs were found in total RNA isolated from infected root systems of tomato, Solanum lycopersicum. Five and three prime RACE of RNA from M. incognita infected tomato roots revealed a sequence of 392 nt that includes a poly (A) tail of 39 nt. The open reading frame encodes a 47 aa protein with a putative 25 aa N-terminal signal peptide. Expression of MiIDL1 is very low in eggs and pre-parasitic J2 and rapidly increases in the first four days post inoculation (dpi) and then declines at approximately 14 dpi. A proposed role for the root-knot nematode IDL is discussed.

  17. An obesity-dependent lactation defect in the viable yellow agouti mouse is associated with mammary inflammation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maternal obesity is known to delay lactogenesis in breast-feeding women, as well as negatively impact lactation in other species. Obesity is also understood to be associated with inflammation. Work with the viable yellow agouti (Avy) mouse in our laboratory has documented a lactation defect in obese...

  18. The signal peptide of the IgE receptor alpha-chain prevents surface expression of an immunoreceptor tyrosine-based activation motif-free receptor pool.

    PubMed

    Platzer, Barbara; Fiebiger, Edda

    2010-05-14

    The high affinity receptor for IgE, Fc epsilon receptor I (FcepsilonRI), is an activating immune receptor and key regulator of allergy. Antigen-mediated cross-linking of IgE-loaded FcepsilonRI alpha-chains induces cell activation via immunoreceptor tyrosine-based activation motifs in associated signaling subunits, such as FcepsilonRI gamma-chains. Here we show that the human FcepsilonRI alpha-chain can efficiently reach the cell surface by itself as an IgE-binding receptor in the absence of associated signaling subunits when the endogenous signal peptide is swapped for that of murine major histocompatibility complex class-I H2-K(b). This single-chain isoform of FcepsilonRI exited the endoplasmic reticulum (ER), trafficked to the Golgi and, subsequently, trafficked to the cell surface. Mutational analysis showed that the signal peptide regulates surface expression in concert with other described ER retention signals of FcepsilonRI-alpha. Once the FcepsilonRI alpha-chain reached the cell surface by itself, it formed a ligand-binding receptor that stabilized upon IgE contact. Independently of the FcepsilonRI gamma-chain, this single-chain FcepsilonRI was internalized after receptor cross-linking and trafficked into a LAMP-1-positive lysosomal compartment like multimeric FcepsilonRI. These data suggest that the single-chain isoform is capable of shuttling IgE-antigen complexes into antigen loading compartments, which plays an important physiologic role in the initiation of immune responses toward allergens. We propose that, in addition to cytosolic and transmembrane ER retention signals, the FcepsilonRI alpha-chain signal peptide contains a negative regulatory signal that prevents expression of an immunoreceptor tyrosine-based activation motif-free IgE receptor pool, which would fail to induce cell activation.

  19. Lipoxidation adducts with peptides and proteins: deleterious modifications or signaling mechanisms?

    PubMed

    Domingues, Rosário M; Domingues, Pedro; Melo, Tânia; Pérez-Sala, Dolores; Reis, Ana; Spickett, Corinne M

    2013-10-30

    Protein lipoxidation refers to the modification by electrophilic lipid oxidation products to form covalent adducts, which for many years has been considered as a deleterious consequence of oxidative stress. Oxidized lipids or phospholipids containing carbonyl moieties react readily with lysine to form Schiff bases; alternatively, oxidation products containing α,β-unsaturated moieties are susceptible to nucleophilic attack by cysteine, histidine or lysine residues to yield Michael adducts, overall corresponding to a large number of possible protein adducts. The most common detection methods for lipoxidized proteins take advantage of the presence of reactive carbonyl groups to add labels, or use antibodies. These methods have limitations in terms of specificity and identification of the modification site. The latter question is satisfactorily addressed by mass spectrometry, which enables the characterization of the adduct structure. This has allowed the identification of lipoxidized proteins in physiological and pathological situations. While in many cases lipoxidation interferes with protein function, causing inhibition of enzymatic activity and increased immunogenicity, there are a small number of cases where lipoxidation results in gain of function or activity. For certain proteins lipoxidation may represent a form of redox signaling, although more work is required to confirm the physiological relevance and mechanisms of such processes. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.

  20. A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress.

    PubMed

    Brandman, Onn; Stewart-Ornstein, Jacob; Wong, Daisy; Larson, Adam; Williams, Christopher C; Li, Gene-Wei; Zhou, Sharleen; King, David; Shen, Peter S; Weibezahn, Jimena; Dunn, Joshua G; Rouskin, Silvi; Inada, Toshifumi; Frost, Adam; Weissman, Jonathan S

    2012-11-21

    The conserved transcriptional regulator heat shock factor 1 (Hsf1) is a key sensor of proteotoxic and other stress in the eukaryotic cytosol. We surveyed Hsf1 activity in a genome-wide loss-of-function library in Saccaromyces cerevisiae as well as ~78,000 double mutants and found Hsf1 activity to be modulated by highly diverse stresses. These included disruption of a ribosome-bound complex we named the Ribosome Quality Control Complex (RQC) comprising the Ltn1 E3 ubiquitin ligase, two highly conserved but poorly characterized proteins (Tae2 and Rqc1), and Cdc48 and its cofactors. Electron microscopy and biochemical analyses revealed that the RQC forms a stable complex with 60S ribosomal subunits containing stalled polypeptides and triggers their degradation. A negative feedback loop regulates the RQC, and Hsf1 senses an RQC-mediated translation-stress signal distinctly from other stresses. Our work reveals the range of stresses Hsf1 monitors and elucidates a conserved cotranslational protein quality control mechanism.

  1. Nicotine withdrawal increases body weight, neuropeptide Y and Agouti-related protein expression in the hypothalamus and decreases uncoupling protein-3 expression in the brown adipose tissue in high-fat fed mice.

    PubMed

    Fornari, Alice; Pedrazzi, Patrizia; Lippi, Giordano; Picciotto, Marina R; Zoli, Michele; Zini, Isabella

    2007-01-03

    Nicotine is known to decrease body weight in normal rodents and human smokers, whereas nicotine withdrawal or smoking cessation can increase body weight. We have found that mice fed a high fat diet do not show the anorectic effect of chronic nicotine treatment, but do increase their body weight following nicotine withdrawal. Nicotine withdrawal is accompanied by increased expression of the orexigenic peptides neuropeptide Y and Agouti-related protein in the hypothalamus, and decreased expression of the metabolic protein uncoupling protein-3 in brown adipose tissue. These data suggest that diet can influence the ability of nicotine to modulate body weight regulation and demonstrate that chronic nicotine exposure results in adaptive changes in central and peripheral molecules which regulate feeding behavior and energy metabolism.

  2. Cerebrospinal Fluid Levels of Leptin, Proopiomelanocortin, and Agouti-Related Protein in Human Pregnancy: Evidence for Leptin Resistance

    PubMed Central

    Page-Wilson, Gabrielle; Reitman-Ivashkov, Elena; Meece, Kana; White, Anne; Rosenbaum, Michael; Smiley, Richard M.

    2013-01-01

    Context: Leptin suppresses appetite by modulating the expression of hypothalamic neuropeptides including proopiomelanocortin (POMC) and agouti-related peptide (AgRP). Yet during pregnancy, caloric consumption increases despite elevated plasma leptin levels. Design and Participants: To investigate this paradox, we measured leptin and soluble leptin receptor in plasma and leptin, POMC, and AgRP in cerebrospinal fluid (CSF) from 21 fasting pregnant women before delivery by cesarean section at a university hospital and from 14 fasting nonpregnant women. Results: Prepregnancy body mass index was 24.6 ± 1.1 (se) vs. 31.3 ± 1.3 at term vs. 26.5 ± 1.6 kg/m2 in controls. Plasma leptin (32.9 ± 4.6 vs. 16.7 ± 3.0 ng/ml) and soluble leptin receptor (30.9 ± 2.3 vs. 22.1 ± 1.4 ng/ml) levels were significantly higher in pregnant women. However, mean CSF leptin did not differ between the two groups (283 ± 34 vs. 311 ± 32 pg/ml), consistent with a relative decrease in leptin transport into CSF during pregnancy. Accordingly, the CSF/plasma leptin percentage was 1.0 ± 0.01% in pregnant subjects vs. 2.1 ± 0.2% in controls (P < 0.0001). Mean CSF AgRP was significantly higher in pregnant subjects (32.3 ± 2.7 vs. 23.5 ± 2.5 pg/ml; P = 0.03). Mean CSF POMC was not significantly different in pregnant subjects (200 ± 13.6 vs. 229 ± 17.3 fmol/ml; P = 0.190). However, the mean AgRP/POMC ratio was significantly higher among pregnant women (P = 0.003), consistent with an overall decrease in melanocortin tone favoring increased food intake during pregnancy. Conclusions: These data demonstrate that despite peripheral hyperleptinemia, positive energy balance is achieved during pregnancy by a relative decrease in central leptin concentrations and resistance to leptin's effects on target neuropeptides that regulate energy balance. PMID:23118421

  3. Dissection of the role of the stable signal peptide of the arenavirus envelope glycoprotein in membrane fusion.

    PubMed

    Messina, Emily L; York, Joanne; Nunberg, Jack H

    2012-06-01

    The arenavirus envelope glycoprotein (GPC) retains a stable signal peptide (SSP) as an essential subunit in the mature complex. The 58-amino-acid residue SSP comprises two membrane-spanning hydrophobic regions separated by a short ectodomain loop that interacts with the G2 fusion subunit to promote pH-dependent membrane fusion. Small-molecule compounds that target this unique SSP-G2 interaction prevent arenavirus entry and infection. The interaction between SSP and G2 is sensitive to the phylogenetic distance between New World (Junín) and Old World (Lassa) arenaviruses. For example, heterotypic GPC complexes are unable to support virion entry. In this report, we demonstrate that the hybrid GPC complexes are properly assembled, proteolytically cleaved, and transported to the cell surface but are specifically defective in their membrane fusion activity. Chimeric SSP constructs reveal that this incompatibility is localized to the first transmembrane segment of SSP (TM1). Genetic changes in TM1 also affect sensitivity to small-molecule fusion inhibitors, generating resistance in some cases and inhibitor dependence in others. Our studies suggest that interactions of SSP TM1 with the transmembrane domain of G2 may be important for GPC-mediated membrane fusion and its inhibition.

  4. Zfp521 Is a Target Gene and Key Effector of Parathyroid Hormone-Related Peptide Signaling in Growth Plate Chondrocytes

    PubMed Central

    Correa, Diego; Hesse, Eric; Seriwatanachai, Dutmanee; Kiviranta, Riku; Saito, Hiroaki; Yamana, Kei; Neff, Lynn; Atfi, Azeddine; Coillard, Lucie; Sitara, Despina; Maeda, Yukiko; Warming, Soren; Jenkins, Nancy A.; Copeland, Neal G.; Horne, William C.; Lanske, Beate; Baron, Roland

    2010-01-01

    Summary In the growth plate, the interplay between Parathyroid Hormone-Related Peptide (PTHrP) and Indian Hedgehog (Ihh) signaling tightly regulates chondrocyte proliferation and differentiation during longitudinal bone growth. We found that PTHrP increases the expression of Zfp521, a zinc finger transcriptional co-regulator, in pre-hypertrophic chondrocytes. Mice with chondrocyte-targeted deletion of Zfp521 resembled PTHrP-/- and chondrocyte-specific PTHR1-/- mice, with decreased chondrocyte proliferation, early hypertrophic transition and reduced growth plate thickness. Deleting Zfp521 increased expression of Runx2 and Runx2 target genes, and decreased cyclin D1 and Bcl-2 expression while increasing caspase-3 activation and apoptosis. Zfp521 associated with Runx2 in chondrocytes, antagonizing its activity via an HDAC4-dependent mechanism. PTHrP failed to up-regulate cyclin D1 and to antagonize Runx2, Ihh and Collagen X expression when Zfp521 was absent. Thus, Zfp521 is an important PTHrP target gene that regulates growth plate chondrocyte proliferation and differentiation. PMID:20951345

  5. Fusion activity of African henipavirus F proteins with a naturally occurring start codon directly upstream of the signal peptide.

    PubMed

    Weis, Michael; Behner, Laura; Binger, Tabea; Drexler, Jan Felix; Drosten, Christian; Maisner, Andrea

    2015-04-02

    Compared to the fusion proteins of pathogenic Nipah and Hendra viruses, the F protein of prototype African henipavirus GH-M74a displays a drastically reduced surface expression and fusion activity. A probable reason for limited F expression is the unusually long sequence located between the gene start and the signal peptide (SP) not present in other henipaviruses. Such a long pre-SP extension can prevent efficient ER translocation or protein maturation and processing. As its truncation can therefore enhance surface expression, the recent identification of a second in-frame start codon directly upstream of the SP in another African henipavirus F gene (GH-UP28) raised the question if such a naturally occurring minor sequence variation can lead to the synthesis of a pre-SP truncated translation product, thereby increasing the production of mature F proteins. To test this, we analyzed surface expression and biological activity of F genes carrying the second SP-proximal start codon of GH-UP28. Though we observed minor differences in the expression levels, introduction of the additional start codon did not result in an increased fusion activity, even if combined with further mutations in the pre-SP region. Thus, limited bioactivity of African henipavirus F protein is maintained even after sequence changes that alter the gene start allowing the production of F proteins without an unusually long pre-SP.

  6. Construction of a novel secretion expression system guided by native signal peptide of PhoD in Zymomonas mobilis.

    PubMed

    Wu, Bo; He, Ming-Xiong; Feng, Hong; Shui, Zong-Xia; Tang, Xiao-Yu; Hu, Qi-Chun; Zhang, Yi-Zheng

    2014-01-01

    In the current study, three native signal peptides (SPs) from PhoC, PhoD, and ZMO0331were investigated and compared to construct novel secretion expression systems in Zymomonas mobilis. The secretion expression of target protein, α-amylase from Bacillus amyloliquefaciens (BAA), guided by PhoD's SP resulted in more hydrolysis of starch than that by the other two SPs. Extracellular and intracellular α-amylase activities of the strain containing PhoD's SP were also higher than the other two strains containing PhoC or ZMO0331's SP. In addition, the evidence by alcohol dehydrogenase activity assay further confirmed that the starch hydrolysis was resulted from the secretion expression of BAA rather than the breakage of cells. Our results indicated that the SP of PhoD is able to serve as a promising candidate to assist secretion expression of heterogeneous genes in Z. mobilis. This will contribute to development of engineered Z. mobilis strains converting starch into ethanol.

  7. A CD44v6 peptide reveals a role of CD44 in VEGFR-2 signaling and angiogenesis.

    PubMed

    Tremmel, Martina; Matzke, Alexandra; Albrecht, Imke; Laib, Anna M; Olaku, Vivienne; Ballmer-Hofer, Kurt; Christofori, Gerhard; Héroult, Mélanie; Augustin, Hellmut G; Ponta, Helmut; Orian-Rousseau, Véronique

    2009-12-10

    A specific splice variant of the CD44 cell- surface protein family, CD44v6, has been shown to act as a coreceptor for the receptor tyrosine kinase c-Met on epithelial cells. Here we show that also on endothelial cells (ECs), the activity of c-Met is dependent on CD44v6. Furthermore, another receptor tyrosine kinase, VEGFR-2, is also regulated by CD44v6. The CD44v6 ectodomain and a small peptide mimicking a specific extracellular motif of CD44v6 or a CD44v6-specific antibody prevent CD44v6-mediated receptor activation. This indicates that the extracellular part of CD44v6 is required for interaction with c-Met or VEGFR-2. In the cytoplasm, signaling by activated c-Met and VEGFR-2 requires association of the CD44 carboxy-terminus with ezrin that couples CD44v6 to the cytoskeleton. CD44v6 controls EC migration, sprouting, and tubule formation induced by hepatocyte growth factor (HGF) or VEGF-A. In vivo the development of blood vessels from grafted EC spheroids and angiogenesis in tumors is impaired by CD44v6 blocking reagents, suggesting that the coreceptor function of CD44v6 for c-Met and VEGFR-2 is a promising target to block angiogenesis in pathologic conditions.

  8. A highly efficient modified human serum albumin signal peptide to secrete proteins in cells derived from different mammalian species.

    PubMed

    Attallah, Carolina; Etcheverrigaray, Marina; Kratje, Ricardo; Oggero, Marcos

    2017-01-10

    Signal peptides (SPs) are key elements in the production of recombinant proteins; however, little information is available concerning different SP in mammalian cells other than CHO. In order to study the efficiency of different SPs to direct the traffic along the secretory pathway of the green fluorescence protein (GFP) and a scFv-Fc fusion protein; CHO-K1, HEK293 and NS0 cell lines were transfected in a transient and stable way. SP of human azurocidin (AZ), modified human albumin (mSA), modified Cricetulus griseus Ig kappa chain V III region MOPC 63 like (mIgκ C) and modified human Ig kappa chain V III region VG (mIgκ H) were evaluated. The efficiency of SPs to translocate a propeptide across the ER membrane was evaluated by fluorescence microscopy and flow cytometry for the GFP inside the secretory pathway, and by antigen-specific indirect ELISA for the scFv-Fc outside the cell. The mSA SP was successful in directing the secretion of the active proteins in these different types of mammalian cells, regardless of the transgene copy number. The goal of this work was to demonstrate that a modified version of SA SP might be used in different mammalian cells employing the same expression vector.

  9. [Adenylyl cyclase signaling mechanisms of the insulin superfamily peptide action and their impairment in myometrium of pregnant women with type 2 diabetes].

    PubMed

    Plesneva, S a; Kuznetsova, L A; Shpakov, A O; Sharova, T S; Pertseva, M N

    2008-10-01

    For the first time we found in myometrium of the women and pregnant women that adenylyl cyclase (AC) stimulating effects of relaxin, insulin and insulin growth factor 1 are realized via six-component AC signaling mechanisms involving the following signaling chain: receptor-tyrosine kinase ==> Gi protein (beta gamma dimmer) ==> phosphatidylinositol 3-kinase ==> protein kinase C (zeta) ==> Gs protein ==> adenylyl cyclase (AC), which are similar to the discovered adenylyl cyclase signaling mechanisms of insulin and relaxin action in vertebrates (rat) and invertebrates (mollusk). The effect of relaxin is more pronounced as compared with other peptides (relaxin > insulin > insulin-like growth factor-1) in myometrium of pregnant women. It is connected with the specific role ofrelaxin as main regulator of reproductive functions. For the first time we revealed the functional defects in distal parts of adenylyl cyclase signaling mechanisms of the insulin superfamily peptides action in the condition type-2 diabetes (the increase of the basal adenylyl cyclase activity and decrease of the peptide-stimulated AX activity in presence of guanilylimidodiphosphate). The defects are localized on the level of Gs protein, adenylyl cyclase and their functional coupling. The data obtained confirm our conception about molecular defects in hormoneregulated adenylyl cyclase system as a key reason of type-2 diabetes.

  10. Reduced graphene oxide decorated with gold nanoparticle as signal amplification element on ultra-sensitive electrochemiluminescence determination of caspase-3 activity and apoptosis using peptide based biosensor

    PubMed Central

    Khalilzadeh, Balal; Shadjou, Nasrin; Afsharan, Hadi; Eskandani, Morteza; Nozad Charoudeh, Hojjatollah; Rashidi, Mohammad-Reza

    2016-01-01

    Introduction:Growing demands for ultrasensitive biosensing have led to the development of numerous signal amplification strategies. In this report, a novel electrochemiluminescence (ECL) method was developed for the detection and determination of caspase-3 activity based on reduced graphene oxide sheets decorated by gold nanoparticles as signal amplification element and horseradish peroxidase enzyme (HRP) as ECL intensity enhancing agent. Methods: The ECL intensity of the luminol was improved by using the streptavidin coated magnetic beads and HRP in the presence of hydrogen peroxide. The cleavage behavior of caspase-3 was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques using biotinylated peptide (DEVD containing peptide) which was coated on reduced graphene oxide decorated with gold nanoparticle. The surface modification of graphene oxide was successfully confirmed by FTIR, UV-vis and x-ray spectroscopy. Results: ECL based biosensor showed that the linear dynamic range (LDR) and the lower limit of quantification (LLOQ) were 0.5-100 and 0.5 femtomolar (fM), respectively. Finally, the performance of the engineered peptide based biosensor was validated in the A549 cell line as real samples. Conclusion: The prepared peptide based biosensor could be considered as an excellent candidate for early detection of apoptosis, cell turnover, and cancer related diseases. PMID:27853677

  11. Dark Agouti rat model of chemotherapy-induced mucositis: establishment and current state of the art.

    PubMed

    Vanhoecke, Barbara; Bateman, Emma; Mayo, Bronwen; Vanlancker, Eline; Stringer, Andrea; Thorpe, Daniel; Keefe, Dorothy

    2015-06-01

    Mucositis is a major oncological problem. The entire gastrointestinal and genitourinary tract and also other mucosal surfaces can be affected in recipients of radiotherapy, and/or chemotherapy. Major progress has been made in recent years in understanding the mechanisms of oral and small intestinal mucositis, which appears to be more prominent than colonic damage. This progress is largely due to the development of representative laboratory animal models of mucositis. This review focuses on the development and establishment of the Dark Agouti rat mammary adenocarcinoma model by the Mucositis Research Group of the University of Adelaide over the past 20 years to characterize the mechanisms underlying methotrexate-, 5-fluorouracil-, and irinotecan-induced mucositis. It also aims to summarize the results from studies using different animal model systems to identify new molecular and cellular markers of mucositis.

  12. Dark Agouti rat model of chemotherapy-induced mucositis: Establishment and current state of the art

    PubMed Central

    Vanhoecke, Barbara; Bateman, Emma; Mayo, Bronwen; Vanlancker, Eline; Thorpe, Daniel; Keefe, Dorothy

    2015-01-01

    Mucositis is a major oncological problem. The entire gastrointestinal and genitourinary tract and also other mucosal surfaces can be affected in recipients of radiotherapy, and/or chemotherapy. Major progress has been made in recent years in understanding the mechanisms of oral and small intestinal mucositis, which appears to be more prominent than colonic damage. This progress is largely due to the development of representative laboratory animal models of mucositis. This review focuses on the development and establishment of the Dark Agouti rat mammary adenocarcinoma model by the Mucositis Research Group of the University of Adelaide over the past 20 years to characterize the mechanisms underlying methotrexate-, 5-fluorouracil-, and irinotecan-induced mucositis. It also aims to summarize the results from studies using different animal model systems to identify new molecular and cellular markers of mucositis. PMID:25966981

  13. Quinolizidine alkaloids in Ormosia arborea seeds inhibit predation but not hoarding by agoutis (Dasyprocta leporina).

    PubMed

    Guimarães, Paulo Roberto; José, Juliana; Galetti, Mauro; Trigo, José Roberto

    2003-05-01

    Quinolizidine alkaloids (QAs) are secondary compounds found in seeds of many species of plants, possibly protecting them against pathogens and seed predators. QAs were isolated from Ormosia arborea seeds and bioassayed against red-rumped agoutis (Dasyprocta leporina, Rodentia: Caviomorpha) to verify if they inhibit seed predation and food hoarding (seed dispersal). Three treatments were used: (1) seeds of O. arborea, (2) palatable seeds of Mimusops coriacea (Sapotaceae) treated with MeOH, and (3) seeds of M. coriacea treated with QAs dissolved in MeOH in similar concentration to that present in O. arborea. Palatable seeds were significantly more preyed upon than seeds treated with QAs and Ormosia seeds, but QAs did not influence hoarding behavior. QAs in O. arborea may have a strong effect in avoiding seed predation by rodents, without reducing dispersal.

  14. C-type natriuretic peptide activates a non-selective cation current in acutely isolated rat cardiac fibroblasts via natriuretic peptide C receptor-mediated signalling.

    PubMed

    Rose, R A; Hatano, N; Ohya, S; Imaizumi, Y; Giles, W R

    2007-04-01

    In the heart, fibroblasts play an essential role in the deposition of the extracellular matrix and they also secrete a number of hormonal factors. Although natriuretic peptides, including C-type natriuretic peptide (CNP) and brain natriuretic peptide, have antifibrotic effects on cardiac fibroblasts, the effects of CNP on fibroblast electrophysiology have not been examined. In this study, acutely isolated ventricular fibroblasts from the adult rat were used to measure the effects of CNP (2 x 10(-8) M) under whole-cell voltage-clamp conditions. CNP, as well as the natriuretic peptide C receptor (NPR-C) agonist cANF (2 x 10(-8) M), significantly increased an outwardly rectifying non-selective cation current (NSCC). This current has a reversal potential near 0 mV. Activation of this NSCC by cANF was abolished by pre-treating fibroblasts with pertussis toxin, indicating the involvement of G(i) proteins. The cANF-activated NSCC was inhibited by the compounds Gd(3+), SKF 96365 and 2-aminoethoxydiphenyl borate. Quantitative RT-PCR analysis of mRNA from rat ventricular fibroblasts revealed the expression of several transient receptor potential (TRP) channel transcripts. Additional electrophysiological analysis showed that U73122, a phospholipase C antagonist, inhibited the cANF-activated NSCC. Furthermore, the effects of CNP and cANF were mimicked by the diacylglycerol analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG), independently of protein kinase C activity. These are defining characteristics of specific TRPC channels. More detailed molecular analysis confirmed the expression of full-length TRPC2, TRPC3 and TRPC5 transcripts. These data indicate that CNP, acting via the NPR-C receptor, activates a NSCC that is at least partially carried by TRPC channels in cardiac fibroblasts.

  15. C-Mannosylated peptides derived from the thrombospondin type 1 repeat enhance lipopolysaccharide-induced signaling in macrophage-like RAW264.7 cells.

    PubMed

    Muroi, Eiji; Manabe, Shino; Ikezaki, Midori; Urata, Yoshishige; Sato, Shinichi; Kondo, Takahito; Ito, Yukishige; Ihara, Yoshito

    2007-09-01

    C-Mannosylation is a unique type of glycosylation occurring at the first Trp (W) in the WXXW motif, which is found in the thrombospondin type 1 repeat (TSR) of proteins. However, the biological function of C-mannosylation is not fully understood. In this study, we investigated the effect of C-mannosylated TSR-derived peptides on lipopolysaccharide (LPS)-induced signaling in macrophage-like RAW264.7 cells. The cells were stimulated with LPS in the presence or absence of chemically synthesized peptides with or without C-mannose (e.g., (C-Man)-Trp-Ser-Pro-Trp [C-Man-WSPW], C-Man-W, WSPW, etc.), then the effects of the peptides on cellular viability and signaling were examined. We found a cytotoxic effect in the cells treated with LPS and C-Man-WSPW, but not in the cells solely treated with LPS or C-Man-WSPW. We also found that production of tumor necrosis factor-alpha (TNF-alpha) was upregulated more in response to LPS plus C-Man-WSPW, than in response to LPS plus WSPW or LPS alone. Among the LPS-induced signaling pathways that induce production of TNF-alpha, the activation of c-Jun N-terminal kinase (JNK) was greatly enhanced by LPS and C-Man-WSPW, and the production of TNF-alpha was suppressed by an inhibitor for JNK. Together, these results demonstrate a novel function of the C-mannosylated TSR-derived peptide motif, to promote LPS-induced JNK signaling, and this leads to an enhancement of cytotoxicity via the upregulation of TNF-alpha production.

  16. Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats.

    PubMed

    Kamegai, J; Tamura, H; Shimizu, T; Ishii, S; Sugihara, H; Wakabayashi, I

    2001-11-01

    Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor (GHS-R), was originally purified from the rat stomach. Like the synthetic growth hormone secretagogues (GHSs), ghrelin specifically releases growth hormone (GH) after intravenous administration. Also consistent with the central actions of GHSs, ghrelin-immunoreactive cells were shown to be located in the hypothalamic arcuate nucleus as well as the stomach. Recently, we showed that a single central administration of ghrelin increased food intake and hypothalamic agouti-related protein (AGRP) gene expression in rodents, and the orexigenic effect of this peptide seems to be independent of its GH-releasing activity. However, the effect of chronic infusion of ghrelin on food consumption and body weight and their possible mechanisms have not been elucidated. In this study, we determined the effects of chronic intracerebroventricular treatment with ghrelin on metabolic factors and on neuropeptide genes that are expressed in hypothalamic neurons that have been previously shown to express the GHS-R and to regulate food consumption. Chronic central administration of rat ghrelin (1 microg/rat every 12 h for 72 h) significantly increased food intake and body weight. However, it did not affect plasma insulin, glucose, leptin, or GH concentrations. We also found that chronic central administration of ghrelin increased both neuropeptide Y (NPY) mRNA levels (151.0 +/- 10.1% of saline-treated controls; P < 0.05) and AGRP mRNA levels (160.0 +/- 22.5% of saline-treated controls; P < 0.05) in the arcuate nucleus. Thus, the primary hypothalamic targets of ghrelin are NPY/AGRP-containing neurons, and ghrelin is a newly discovered orexigenic peptide in the brain and stomach.

  17. Targeting receptor tyrosine kinases and their downstream signaling with cell-penetrating peptides in human pulmonary artery smooth muscle and endothelial cells.

    PubMed

    Yu, Jun; Rupasinghe, Chamila; Wilson, Jamie L; Taylor, Linda; Rahimi, Nader; Mierke, Dale; Polgar, Peter

    2015-05-01

    Cell-penetrating peptide (CPP) intracellular delivery of receptor signaling motifs provides an opportunity to regulate specific receptor tyrosine kinase signal transductions. We targeted tyrosine residues Y740 and Y751 of the PDGF receptor β (PDGFRβ) and Y1175 of the VEGF receptor 2 (VEGFR2). The Y740 and Y751 motifs activated ERK and Akt, while the Y1175 motif activated ERK. Targeting either Y740 or Y751 of the PDGFRβ in human pulmonary artery smooth muscle cells (HPASMC) effectively inhibited PDGF activation of ERK or Akt. Interfering with the Y751 region of the PDGFRβ proved more effective than targeting the Y740 region. The phosphorylation of Y751 of the CPP and the length and exact sequence of the mimicking peptide proved crucial. On the other hand, in human pulmonary artery endothelial cell phosphorylation of the VEGFR2 Y1175 CPP was not a determinant in blockage of ERK activation. Likewise, the length of the peptide mimic was not crucial with a very small sequence containing the Y1175 remaining effective. Physiologic proof of concept for the effectiveness of the CPP was confirmed by blockage of HPASMC migration in response to PDGF following culture injury. Thus targeted blockage of tyrosine kinase receptor signaling can be very effective.

  18. A signal peptide secretion screen in Fucus distichus embryos reveals expression of glucanase, EGF domain-containing, and LRR receptor kinase-like polypeptides during asymmetric cell growth.

    PubMed

    Belanger, Kenneth D; Wyman, Aaron J; Sudol, Michelle N; Singla-Pareek, Sneh L; Quatrano, Ralph S

    2003-10-01

    Zygotes of the brown alga Fucus distichus (L.) Powell develop polarity prior to the first embryonic cell division and retain a pattern of asymmetric growth during early embryogenesis. In order to identify F. distichus polypeptides secreted during asymmetric cell growth, we used a functional assay in Saccharomyces cerevisiae to screen a cDNA library generated from asymmetrically growing Fucus embryos for sequences encoding polypeptides that function as signal peptides for secretion. We isolated and sequenced 222 plasmids containing Fucus cDNAs encoding signal peptide activity. The cDNA inserts from these plasmids were translated in silico into 244 potential polypeptide sequences, 169 of which are predicted to contain signal peptides. BlastP analysis of the Fucus sequences revealed similarity between many Fucus proteins and cell surface proteins that function in development in other eukaryotes, including epidermal growth factor (EGF)-like repeat-containing proteins, plant leucine-rich repeat (LRR)-receptor kinases, and algal beta-1, 3-exoglucanase. However, most of the isolated Fucus polypeptides lack similarity to known proteins. The isolation of cDNAs encoding secreted Fucus proteins provides an important step toward characterizing cell surface proteins important for asymmetric organization and growth in fucoid embryos.

  19. Agouti Revisited: Transcript Quantification of the ASIP Gene in Bovine Tissues Related to Protein Expression and Localization

    PubMed Central

    Albrecht, Elke; Komolka, Katrin; Kuzinski, Judith; Maak, Steffen

    2012-01-01

    Beside its role in melanogenesis, the agouti signaling protein (ASIP) has been related to obesity. The potentially crucial role in adipocyte development makes it a tempting candidate for economic relevant, fat related traits in farm animals. The objective of our study was to characterize the mRNA expression of different ASIP transcripts and of putative targets in different bovine tissues, as well as to study consequences on protein abundance and localization. ASIP mRNA abundance was determined by RT-qPCR in adipose and further tissues of cattle representing different breeds and crosses. ASIP mRNA was up-regulated more than 9-fold in intramuscular fat of Japanese Black cattle compared to Holstein (p<0.001). Further analyses revealed that a transposon-derived transcript was solely responsible for the increased ASIP mRNA abundance. This transcript was observed in single individuals of different breeds indicating a wide spread occurrence of this insertion at the ASIP locus in cattle. The protein was detected in different adipose tissues, skin, lung and liver, but not in skeletal muscle by Western blot with a bovine-specific ASIP antibody. However, the protein abundance was not related to the observed ASIP mRNA over-expression. Immuno-histochemical analyses revealed a putative nuclear localization of ASIP additionally to the expected cytosolic signal in different cell types. The expression of melanocortin receptors (MCR) 1 to 5 as potential targets for ASIP was analyzed by RT-PCR in subcutaneous fat. Only MC1R and MC4R were detected indicating a similar receptor expression like in human adipose tissue. Our results provide evidence for a widespread expression of ASIP in bovine tissues at mRNA and, for the first time, at protein level. ASIP protein is detectable in adipocytes as well as in further cells of adipose tissue. We generated a basis for a more detailed investigation of ASIP function in peripheral tissues of various mammalian species. PMID:22530003

  20. Induction of apoptosis by a peptide from Porphyra yezoensis: regulation of the insulin-like growth factor I receptor signaling pathway in MCF-7 cells.

    PubMed

    Park, Su-Jin; Ryu, Jina; Kim, In-Hye; Choi, Youn-Hee; Nam, Taek-Jeong

    2014-09-01

    This study examined how PPY, a peptide from Porphyra yezoensis, regulates multiple cell growth-related signaling pathways in MCF-7 cells. This study determined that PPY induces cell cycle arrest and inhibits the IGF-IR signaling pathway. Cell proliferation studies revealed that PPY induced cell death in a dose-dependent manner. Expression levels of IGF-IR were decreased in MCF-7 cells by PPY in a dose‑dependent manner. These results indicate that inhibition of the IGF-IR pathway is also involved in PPY induced proliferation of MCF-7 cells. In addition, these data demonstrated that PPY induces cell cycle arrest and activates apoptosis.

  1. The Startling Properties of Fibroblast Growth Factor 2: How to Exit Mammalian Cells without a Signal Peptide at Hand*

    PubMed Central

    La Venuta, Giuseppe; Zeitler, Marcel; Steringer, Julia P.; Müller, Hans-Michael; Nickel, Walter

    2015-01-01

    For a long time, protein transport into the extracellular space was believed to strictly depend on signal peptide-mediated translocation into the lumen of the endoplasmic reticulum. More recently, this view has been challenged, and the molecular mechanisms of unconventional secretory processes are beginning to emerge. Here, we focus on unconventional secretion of fibroblast growth factor 2 (FGF2), a secretory mechanism that is based upon direct protein translocation across plasma membranes. Through a combination of genome-wide RNAi screening approaches and biochemical reconstitution experiments, the basic machinery of FGF2 secretion was identified and validated. This includes the integral membrane protein ATP1A1, the phosphoinositide phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), and Tec kinase, as well as membrane-proximal heparan sulfate proteoglycans on cell surfaces. Hallmarks of unconventional secretion of FGF2 are: (i) sequential molecular interactions with the inner leaflet along with Tec kinase-dependent tyrosine phosphorylation of FGF2, (ii) PI(4,5)P2-dependent oligomerization and membrane pore formation, and (iii) extracellular trapping of FGF2 mediated by heparan sulfate proteoglycans on cell surfaces. Here, we discuss new developments regarding this process including the mechanism of FGF2 oligomerization during membrane pore formation, the functional role of ATP1A1 in FGF2 secretion, and the possibility that other proteins secreted by unconventional means make use of a similar mechanism to reach the extracellular space. Furthermore, given the prominent role of extracellular FGF2 in tumor-induced angiogenesis, we will discuss possibilities to develop highly specific inhibitors of FGF2 secretion, a novel approach that may yield lead compounds with a high potential to develop into anti-cancer drugs. PMID:26416892

  2. Inhibition of Wnt signaling induces amyloidogenic processing of amyloid precursor protein and the production and aggregation of Amyloid-β (Aβ)42 peptides.

    PubMed

    Tapia-Rojas, Cheril; Burgos, Patricia V; Inestrosa, Nibaldo C

    2016-12-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder and the most frequent cause of dementia in the aged population. According to the amyloid hypothesis, the amyloid-β (Aβ) peptide plays a key role in the pathogenesis of AD. Aβ is generated from the amyloidogenic processing of amyloid precursor protein and can aggregate to form oligomers, which have been described as a major synaptotoxic agent in neurons. Dysfunction of Wnt signaling has been linked to increased Aβ formation; however, several other studies have argued against this possibility. Herein, we use multiple experimental approaches to confirm that the inhibition of Wnt signaling promoted the amyloidogenic proteolytic processing of amyloid precursor protein. We also demonstrate that inhibiting Wnt signaling increases the production of the Aβ42 peptide, the Aβ42 /Aβ40 ratio, and the levels of Aβ oligomers such as trimers and tetramers. Moreover, we show that activating Wnt signaling reduces the levels of Aβ42 and its aggregates, increases Aβ40 levels, and reduces the Aβ42 /Aβ40 ratio. Finally, we show that the protective effects observed in response to activation of the Wnt pathway rely on β-catenin-dependent transcription, which is demonstrated experimentally via the expression of various 'mutant forms of β-catenin'. Together, our findings indicate that loss of the Wnt signaling pathway may contribute to the pathogenesis of AD.

  3. The Application of Gaussian Mixture Models for Signal Quantification in MALDI-ToF Mass Spectrometry of Peptides

    PubMed Central

    Spainhour, John Christian G.; Janech, Michael G.; Schwacke, John H.; Velez, Juan Carlos Q.; Ramakrishnan, Viswanathan

    2014-01-01

    Matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) coupled with stable isotope standards (SIS) has been used to quantify native peptides. This peptide quantification by MALDI-TOF approach has difficulties quantifying samples containing peptides with ion currents in overlapping spectra. In these overlapping spectra the currents sum together, which modify the peak heights and make normal SIS estimation problematic. An approach using Gaussian mixtures based on known physical constants to model the isotopic cluster of a known compound is proposed here. The characteristics of this approach are examined for single and overlapping compounds. The approach is compared to two commonly used SIS quantification methods for single compound, namely Peak Intensity method and Riemann sum area under the curve (AUC) method. For studying the characteristics of the Gaussian mixture method, Angiotensin II, Angiotensin-2-10, and Angiotenisn-1-9 and their associated SIS peptides were used. The findings suggest, Gaussian mixture method has similar characteristics as the two methods compared for estimating the quantity of isolated isotopic clusters for single compounds. All three methods were tested using MALDI-TOF mass spectra collected for peptides of the renin-angiotensin system. The Gaussian mixture method accurately estimated the native to labeled ratio of several isolated angiotensin peptides (5.2% error in ratio estimation) with similar estimation errors to those calculated using peak intensity and Riemann sum AUC methods (5.9% and 7.7%, respectively). For overlapping angiotensin peptides, (where the other two methods are not applicable) the estimation error of the Gaussian mixture was 6.8%, which is within the acceptable range. In summary, for single compounds the Gaussian mixture method is equivalent or marginally superior compared to the existing methods of peptide quantification and is capable of quantifying overlapping (convolved) peptides within the

  4. Blocking protein phosphatase 2A signaling prevents endothelial-to-mesenchymal transition and renal fibrosis: a peptide-based drug therapy

    NASA Astrophysics Data System (ADS)

    Deng, Yuanjun; Guo, Yanyan; Liu, Ping; Zeng, Rui; Ning, Yong; Pei, Guangchang; Li, Yueqiang; Chen, Meixue; Guo, Shuiming; Li, Xiaoqing; Han, Min; Xu, Gang

    2016-01-01

    Endothelial-to-mesenchymal transition (EndMT) contributes to the emergence of fibroblasts and plays a significant role in renal interstitial fibrosis. Protein phosphatase 2A (PP2A) is a major serine/threonine protein phosphatase in eukaryotic cells and regulates many signaling pathways. However, the significance of PP2A in EndMT is poorly understood. In present study, the role of PP2A in EndMT was evaluated. We demonstrated that PP2A activated in endothelial cells (EC) during their EndMT phenotype acquisition and in the mouse model of obstructive nephropathy (i.e., UUO). Inhibition of PP2A activity by its specific inhibitor prevented EC undergoing EndMT. Importantly, PP2A activation was dependent on tyrosine nitration at 127 in the catalytic subunit of PP2A (PP2Ac). Our renal-protective strategy was to block tyrosine127 nitration to inhibit PP2A activation by using a mimic peptide derived from PP2Ac conjugating a cell penetrating peptide (CPP: TAT), termed TAT-Y127WT. Pretreatment withTAT-Y127WT was able to prevent TGF-β1-induced EndMT. Administration of the peptide to UUO mice significantly ameliorated renal EndMT level, with preserved density of peritubular capillaries and reduction in extracellular matrix deposition. Taken together, these results suggest that inhibiting PP2Ac nitration using a mimic peptide is a potential preventive strategy for EndMT in renal fibrosis.

  5. A fibronectin peptide redirects PDGF-BB/PDGFR complexes to macropinocytosis-like internalization and augments PDGF-BB survival signals

    PubMed Central

    Zhu, Jia; Lin, Fubao; Brown, Deborah A.; Clark, Richard A.F.

    2013-01-01

    Growth factor-binding domains identified in various extracellular matrix (ECM) proteins have been shown to regulate growth factor activity in many ways. Recently we identified a fibronectin peptide (P12) that can bind platelet-derived growth factor BB (PDGF-BB) and promote adult human dermal fibroblast (AHDF) survival under stress. In vivo experiments in a porcine burn injury model showed that P12 limited burn injury progression, suggesting an active role in tissue survival. In this report, we explored the molecular mechanism of this peptide in ADHF under nutrient deprivation. Our results showed that P12 acted like some cell penetrating peptides (CPPs) in that it redirected ligand-bound PDGFR from the clathrin-dependent endocytic pathway to a slower, macropinocytosis-like pathway. P12 slowed internalization and degradation of PDGF-BB, augmented its survival signals, and promoted cell survival after nutrient-removal. Our findings demonstrate a mechanism for a potential therapeutic peptide that increases cell and tissue survival by acting as a cofactor to PDGF-BB. PMID:24304816

  6. Inhibition on JAK-STAT3 Signaling Transduction Cascade Is Taken by Bioactive Peptide Alpha-S2 Casein Protein from Goat Ethawah Breed Milk

    PubMed Central

    Rohmah, Rista Nikmatu; Hardiyanti, Ferlany; Fatchiyah, Fatchiyah

    2015-01-01

    Background: RA is a systemic inflammatory disease that causes developing comorbidity conditions. This condition can cause by overproduction of pro-inflammatory cytokine. In a previous study, we have found bioactive peptide CSN1S2 from Ethawah goat milk for anti-inflammatory for repair the ileum destruction. However, the signaling transduction cascade of bioactive peptides inhibits inflammation still not clear yet. Therefore, we analyzed the signaling transduction cascade via JAK-STAT3 pathway by in vivo and in silico. Methods: The ileum was isolated DNA and amplification with specific primer. The sequence was analyzed using the Sanger sequencing method. Modeling 3D-structure was predicted by SWISS-MODEL and virtual interaction was analyzed by docking system using Pymol and Discovery Studio 4.0 software. Results: This study showed that STAT3 has target gene 480bp. The normal group and normal treating- CSN1S2 of goat milk have similarity from gene bank. Whereas, RA group had transversion mutation that the purine change into pyrimidine even cause frameshift mutation. Interestingly, after treating with the CSN1S2 protein of goat milk shows reverse to the normal acid sequence group. Based on in silico study, from eight peptides, only three peptides of CSN1S2 protein, which carried by PePT1 to enter the small intestine. The fragments are PepT1-41-NMAIHPR-47; PepT1-182-KISQYYQK-189 and PepT1-214-TNAIPYVR-221. We have found just one bioactive peptide of f182-KISQYYQK-189 is able bind to STAT3. The energy binding of f182-KISQYYQK-189 and RA-STAT3 amino acid, it was Σ = -402.43 kJ/mol and the energy binding of f182-KISQYYQK-189 and RAS-STAT3 amino acid is decreasing into Σ = -407.09 kJ/mol. Conclusion: This study suggested that the fragment 182-KISQYYQK-189 peptides from Ethawah goat milk may act as an anti-inflammatory agent via JAK-STAT3 signal transduction cascade at the cellular level. PMID:26483598

  7. Molecular steps in the immune signaling pathway evoked by plant elicitor peptides: Ca2+-dependent protein kinases, nitric oxide, and reactive oxygen species are downstream from the early Ca2+ signal.

    PubMed

    Ma, Yi; Zhao, Yichen; Walker, Robin K; Berkowitz, Gerald A

    2013-11-01

    Endogenous plant elicitor peptides (Peps) can act to facilitate immune signaling and pathogen defense responses. Binding of these peptides to the Arabidopsis (Arabidopsis thaliana) plasma membrane-localized Pep receptors (PEPRs) leads to cytosolic Ca(2+) elevation, an early event in a signaling cascade that activates immune responses. This immune response includes the amplification of signaling evoked by direct perception of pathogen-associated molecular patterns by plant cells under assault. Work included in this report further characterizes the Pep immune response and identifies new molecular steps in the signal transduction cascade. The PEPR coreceptor BRASSINOSTEROID-INSENSITIVE1 Associated Kinase1 contributes to generation of the Pep-activated Ca(2+) signal and leads to increased defense gene expression and resistance to a virulent bacterial pathogen. Ca(2+)-dependent protein kinases (CPKs) decode the Ca(2+) signal, also facilitating defense gene expression and enhanced resistance to the pathogen. Nitric oxide and reduced nicotinamide adenine dinucleotide phosphate oxidase-dependent reactive oxygen species generation (due to the function of Respiratory Burst Oxidase Homolog proteins D and F) are also involved downstream from the Ca(2+) signal in the Pep immune defense signal transduction cascade, as is the case with BRASSINOSTEROID-INSENSITIVE1 Associated Kinase1 and CPK5, CPK6, and CPK11. These steps of the pathogen defense response are required for maximal Pep immune activation that limits growth of a virulent bacterial pathogen in the plant. We find a synergism between function of the PEPR and Flagellin Sensing2 receptors in terms of both nitric oxide and reactive oxygen species generation. Presented results are also consistent with the involvement of the secondary messenger cyclic GMP and a cyclic GMP-activated Ca(2+)-conducting channel in the Pep immune signaling pathway.

  8. Effects of Conformational Peptide Probe DP4 on Bidirectional Signaling between DHPR and RyR1 Calcium Channels in Voltage-Clamped Skeletal Muscle Fibers

    PubMed Central

    Olojo, Rotimi O.; Hernández-Ochoa, Erick O.; Ikemoto, Noriaki; Schneider, Martin F.

    2011-01-01

    In skeletal muscle, excitation-contraction coupling involves the activation of dihydropyridine receptors (DHPR) and type-1 ryanodine receptors (RyR1) to produce depolarization-dependent sarcoplasmic reticulum Ca2+ release via orthograde signaling. Another form of DHPR-RyR1 communication is retrograde signaling, in which RyRs modulate the gating of DHPR. DP4 (domain peptide 4), is a peptide corresponding to residues Leu2442-Pro2477 of the central domain of the RyR1 that produces RyR1 channel destabilization. Here we explore the effects of DP4 on orthograde excitation-contraction coupling and retrograde RyR1-DHPR signaling in isolated murine muscle fibers. Intracellular dialysis of DP4 increased the peak amplitude of Ca2+ release during step depolarizations by 64% without affecting its voltage-dependence or kinetics, and also caused a similar increase in Ca2+ release during an action potential waveform. DP4 did not modify either the amplitude or the voltage-dependence of the intramembrane charge movement. However, DP4 augmented DHPR Ca2+ current density without affecting its voltage-dependence. Our results demonstrate that the conformational changes induced by DP4 regulate both orthograde E-C coupling and retrograde RyR1-DHPR signaling. PMID:21575570

  9. Pregnancy in Hystricomorpha: gestational age and embryonic-fetal development of agouti (Dasyprocta prymnolopha, Wagler 1831) estimated by ultrasonography.

    PubMed

    Sousa, F C A; Alves, F R; Fortes, E A M; Ferraz, M S; Machado Júnior, A A N; de Menezes, D J A; de Carvalho, M A M

    2012-10-01

    Thirty-one pregnant agoutis, between Days 9 and 103 of gestation (Day 1 = day of detection of sperm in the vaginal smear), underwent B-mode ultrasonography; gestational sac diameter (GSD), crown-rump length (CRL), embryonic-fetal diameter (EFD), and placenta diameter (PD) were measured. There were positive correlations (P < 0.05) between GSD and CRL (r = 0.98), GSD and PD (r = 0.88), CRL and PD (r = 0.86), days of gestation (DG) and CRL (r = 0.85), and DG and PD (r = 0.73). The gestational sac was first observed on Day 14. The embryo was first seen on Day 18 in 9/31 of pregnant agoutis and on Day 22 in 20/31 of pregnant agoutis. Heartbeats were detected from the Day 25 and placentas were observed in 100% of the animals from Day 25. Early limb bud and ossification of the fetal skull were identified on Days 27 (15/31) and 45 (24/31), respectively. Fetal orientation (head and body) was evident from Day 40, the stomach, liver and lungs were identified on Day 50, the kidneys were reliably seen only on Day 55, and the aorta and vena cava were seen on Day 70. The fetal bowel and the urinary bladder were the last structures to be observed (Day 85). Ultrasonography was effective for early pregnancy diagnosis in agouti and for obtaining information on embryonic and fetal structures that could be used to predict gestational age and birth, thereby contributing to their reproductive management in captivity.

  10. Functional anatomy of the female genital organs of the wild black agouti (Dasyprocta fuliginosa) female in the Peruvian Amazon.

    PubMed

    Mayor, P; Bodmer, R E; Lopez-Bejar, M

    2011-02-01

    This study examined anatomical and histological characteristics of genital organs of 38 black agouti females in the wild in different reproductive stages, collected by rural hunters in the North-eastern Peruvian Amazon. Females in the follicular phase of the estrous cycle had greater antral follicle sizes than other females, the largest antral follicle measuring 2.34mm. Antral follicles in pregnant females and females in luteal phase of the estrous cycle had an average maximum diameter smaller than 1mm. In black agouti females in follicular phase, some antral follicles are selected to continue to growth, reaching a pre-ovulatory diameter of 2mm. Mean ovulation rate was 2.5 follicles and litter size was 2.1 embryos or fetuses per pregnant female, resulting in a rate of ovum mortality of 20.8%. Many follicles from which ovulation did not occur of 1-mm maximum diameter luteinize forming accessory CL. The constituent active luteal tissues of the ovary are functional and accessory CL. Although all females had accessory CL, transformation of follicles into accessory CL occurred especially in pregnant females, resulting in a contribution from 9% to 23% of the total luteal volume as pregnancy advances. The persistence of functional CL throughout pregnancy might reflect the importance for the maintenance of gestation and may be essential for the continuous hormonal production. The duplex uterus of the agouti female is composed by two completely independent uterine horns with correspondent separate cervices opening into the vagina. In pregnant females, most remarkable observed uterine adaptations were induced by the progressive enlargement caused by the normal pregnancy evolution. The wild black agouti showed different vaginal epithelium features in accordance with the reproductive state of the female.

  11. Deletion of eIF2beta suppresses testicular cancer incidence and causes recessive lethality in agouti-yellow mice.

    PubMed

    Heaney, Jason D; Michelson, Megan V; Youngren, Kirsten K; Lam, Man-Yee J; Nadeau, Joseph H

    2009-04-15

    The agouti-yellow (A(y)) deletion is the only genetic modifier known to suppress testicular germ cell tumor (TGCT) susceptibility in mice or humans. The A(y) mutation deletes Raly and Eif2s2, and induces the ectopic expression of agouti, all of which are potential TGCT-modifying mutations. Here we report that the reduced TGCT incidence of heterozygous A(y) males and the recessive embryonic lethality of A(y) are caused by the deletion of Eif2s2, the beta subunit of translation initiation factor eIF2. We found that the incidence of affected males was reduced 2-fold in mice that were partially deficient for Eif2s2 and that embryonic lethality occurred near the time of implantation in mice that were fully deficient for Eif2s2. In contrast, neither reduced expression of Raly in gene-trap mice nor ectopic expression of agouti in transgenic or viable-yellow (A(vy)) mutants affected TGCT incidence or embryonic viability. In addition, we provide evidence that partial deficiency of Eif2s2 attenuated germ cell proliferation and differentiation, both of which are important to TGCT formation. These results show that germ cell development and TGCT pathogenesis are sensitive to the availability of the eIF2 translation initiation complex and to changes in the rate of translation.

  12. Recovery and cryopreservation of epididymal sperm from agouti (Dasiprocta aguti) using powdered coconut water (ACP-109c) and Tris extenders.

    PubMed

    Silva, M A; Peixoto, G C X; Santos, E A A; Castelo, T S; Oliveira, M F; Silva, A R

    2011-10-01

    The objective was to compare the use of powdered coconut water (ACP-109c; ACP Biotecnologia, Fortaleza, CE, Brazil) and Tris extenders for recovery and cryopreservation of epididymal sperm from agouti. The caudae epididymus and proximal ductus deferens from 10 sexually mature agoutis were subjected to retrograde washing using ACP-109c (ACP Biotecnologia) or Tris. Epididymal sperm were evaluated for motility, vigor, sperm viability, membrane integrity, and morphology. Samples were centrifuged, and extended in the same diluents plus egg yolk (20%) and glycerol (6%), frozen in liquid nitrogen, and subsequently thawed at 37°C for 1 min, followed by re-evaluation of sperm characteristics. The two extenders were similarly efficient for epididymal recovery, with regard to the number and quality of sperm recovered. However, for both extenders, sperm quality decreased (P < 0.05) after centrifugation and dilution. After sperm cryopreservation and thawing, there were (mean ± SEM) 26.5 ± 2.6% motile sperm with 2.6 ± 0.2 vigor in the ACP-109c (ACP Biotecnologia) group, which was significantly better than 9.7 ± 2.6% motile sperm with 1.2 ± 0.3 vigor in Tris. In conclusion, agouti epididymal sperm were successfully recovered using either ACP-109c (ACP Biotecnologia) or Tris extenders; however, ACP-109c (ACP Biotecnologia) was a significantly better extender for processing and cryopreserving these sperm.

  13. More Than 1,001 Problems with Protein Domain Databases: Transmembrane Regions, Signal Peptides and the Issue of Sequence Homology

    PubMed Central

    Wong, Wing-Cheong; Maurer-Stroh, Sebastian; Eisenhaber, Frank

    2010-01-01

    Large-scale genome sequencing gained general importance for life science because functional annotation of otherwise experimentally uncharacterized sequences is made possible by the theory of biomolecular sequence homology. Historically, the paradigm of similarity of protein sequences implying common structure, function and ancestry was generalized based on studies of globular domains. Having the same fold imposes strict conditions over the packing in the hydrophobic core requiring similarity of hydrophobic patterns. The implications of sequence similarity among non-globular protein segments have not been studied to the same extent; nevertheless, homology considerations are silently extended for them. This appears especially detrimental in the case of transmembrane helices (TMs) and signal peptides (SPs) where sequence similarity is necessarily a consequence of physical requirements rather than common ancestry. Thus, matching of SPs/TMs creates the illusion of matching hydrophobic cores. Therefore, inclusion of SPs/TMs into domain models can give rise to wrong annotations. More than 1001 domains among the 10,340 models of Pfam release 23 and 18 domains of SMART version 6 (out of 809) contain SP/TM regions. As expected, fragment-mode HMM searches generate promiscuous hits limited to solely the SP/TM part among clearly unrelated proteins. More worryingly, we show explicit examples that the scores of clearly false-positive hits, even in global-mode searches, can be elevated into the significance range just by matching the hydrophobic runs. In the PIR iProClass database v3.74 using conservative criteria, we find that at least between 2.1% and 13.6% of its annotated Pfam hits appear unjustified for a set of validated domain models. Thus, false-positive domain hits enforced by SP/TM regions can lead to dramatic annotation errors where the hit has nothing in common with the problematic domain model except the SP/TM region itself. We suggest a workflow of flagging

  14. Corn Silk Extract and Its Bioactive Peptide Ameliorated Lipopolysaccharide-Induced Inflammation in Mice via the Nuclear Factor-κB Signaling Pathway.

    PubMed

    Ho, Tin-Yun; Li, Chia-Cheng; Lo, Hsin-Yi; Chen, Feng-Yuan; Hsiang, Chien-Yun

    2017-02-01

    Bioactive peptides derived from foods have shown beneficial anti-inflammatory potential. Inhibitory κB kinase-β (IKKβ) plays a crucial role in the activation of nuclear factor-κB (NF-κB), a transcription factor involved in inflammation. Here we applied proteomic and bioinformatics approaches to identify anti-inflammatory peptides that target IKKβ from corn silk. Corn silk extract significantly suppressed lipopolysaccharide (LPS)-induced NF-κB activities [(1.7 ± 0.2)-fold vs (3.0 ± 0.6)-fold, p < 0.05] in cells. Trypsin hydrolysate of corn silk also suppressed LPS-induced NF-κB activities [(1.1 ± 0.3)-fold vs 3.3 ± 0.5 fold, p < 0.01]. In addition, both corn silk extract and trypsin hydrolysate significantly inhibited LPS-induced interleukin-1β (IL-1β) production by 58.3 ± 4.5 and 55.1 ± 7.4%, respectively. A novel peptide, FK2, docked into the ATP-binding pocket of IKKβ, was further identified from trypsin hydrolysis of corn silk. FK2 inhibited IKKβ activities, IκB phosphorylation, and subsequent NF-κB activation [(2.3 ± 0.4)-fold vs (5.5 ± 0.4)-fold, p < 0.001]. Moreover, FK2 significantly reduced NF-κB-driven luminescent signals in organs by 5-11-fold and suppressed LPS-induced NF-κB activities and IL-β production in tissues. In conclusion, our findings indicated that corn silk displayed anti-inflammatory abilities. In addition, we first identified an anti-inflammatory peptide FK2 from corn silk. Moreover, the anti-inflammatory effect of FK2 might be through IKKβ-NF-κB signaling pathways.

  15. Conservation of the abscission signaling peptide IDA during Angiosperm evolution: withstanding genome duplications and gain and loss of the receptors HAE/HSL2

    PubMed Central

    Stø, Ida M.; Orr, Russell J. S.; Fooyontphanich, Kim; Jin, Xu; Knutsen, Jonfinn M. B.; Fischer, Urs; Tranbarger, Timothy J.; Nordal, Inger; Aalen, Reidunn B.

    2015-01-01

    The peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), which signals through the leucine-rich repeat receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2), controls different cell separation events in Arabidopsis thaliana. We hypothesize the involvement of this signaling module in abscission processes in other plant species even though they may shed other organs than A. thaliana. As the first step toward testing this hypothesis from an evolutionarily perspective we have identified genes encoding putative orthologs of IDA and its receptors by BLAST searches of publically available protein, nucleotide and genome databases for angiosperms. Genes encoding IDA or IDA-LIKE (IDL) peptides and HSL proteins were found in all investigated species, which were selected as to represent each angiosperm order with available genomic sequences. The 12 amino acids representing the bioactive peptide in A. thaliana have virtually been unchanged throughout the evolution of the angiosperms; however, the number of IDL and HSL genes varies between different orders and species. The phylogenetic analyses suggest that IDA, HSL2, and the related HSL1 gene, were present in the species that gave rise to the angiosperms. HAE has arisen from HSL1 after a genome duplication that took place after the monocot—eudicots split. HSL1 has also independently been duplicated in the monocots, while HSL2 has been lost in gingers (Zingiberales) and grasses (Poales). IDA has been duplicated in eudicots to give rise to functionally divergent IDL peptides. We postulate that the high number of IDL homologs present in the core eudicots is a result of multiple whole genome duplications (WGD). We substantiate the involvement of IDA and HAE/HSL2 homologs in abscission by providing gene expression data of different organ separation events from various species. PMID:26579174

  16. The signal peptide-like segment of hpaXm is required for its association to the cell wall in transgenic tobacco plants.

    PubMed

    Li, Le; Miao, Weiguo; Liu, Wenbo; Zhang, Shujian

    2017-01-01

    Harpins, encoded by hrp (hypersensitive response and pathogenicity) genes of Gram-negative plant pathogens, are elicitors of hypersensitive response (HR). HpaXm is a novel harpin-like protein described from cotton leaf blight bacteria, Xanthomonas citri subsp. malvacearum-a synonym of X. campestris pv. malvacearum (Smith 1901-1978). A putative signal peptide (1-MNSLNTQIGANSSFL-15) of hpaXm was predicted in the nitroxyl-terminal (N-terminal)by SignalP (SignalP 3.0 server). Here, we explored the function of the N-terminal leader peptide like segment of hpaXm using transgenic tobacco (Nicotiana tabacum cv. Xanthi nc.). Transgenic tobacco lines expressing the full-length hpaXm and the signal peptide-like segment-deleted mutant hpaXmΔLP were developed using transformation mediated by Agrobacterium tumefaciens. The target genes were confirmed integrated into the tobacco genomes and expressed normally. Using immune colloidal-gold detection technique, hpaXm protein was found to be transferred to the cytoplasm, the cell membrane, and organelles such as chloroplasts, mitochondria, and nucleus, as well as the cell wall. However, the deletion mutant hpaXmΔLP expressed in transgenic tobacco was found unable to cross the membrane to reach the cell wall. Additionally, soluble proteins extracted from plants transformed with hpaXm and hpaXmΔLP were bio-active. Defensive micro-HR induced by the transgene expression of hpaXm and hpaXmΔLP were observed on transgenic tobacco leaves. Disease resistance bioassays to tobacco mosaic virus (TMV) showed that tobacco plants transformed with hpaXm and with hpaXmΔLP exhibited enhanced resistance to TMV. In summary, the N-terminal signal peptide-like segment (1-45 bp) in hpaXm sequence is not necessary for transgene expression, bioactivity of hpaXm and resistance to TMV in transgenic tobacco, but is required for the protein to be translocated to the cell wall.

  17. The signal peptide-like segment of hpaXm is required for its association to the cell wall in transgenic tobacco plants

    PubMed Central

    Li, Le; Miao, Weiguo; Liu, Wenbo; Zhang, Shujian

    2017-01-01

    Harpins, encoded by hrp (hypersensitive response and pathogenicity) genes of Gram-negative plant pathogens, are elicitors of hypersensitive response (HR). HpaXm is a novel harpin-like protein described from cotton leaf blight bacteria, Xanthomonas citri subsp. malvacearum—a synonym of X. campestris pv. malvacearum (Smith 1901–1978). A putative signal peptide (1-MNSLNTQIGANSSFL-15) of hpaXm was predicted in the nitroxyl-terminal (N-terminal)by SignalP (SignalP 3.0 server). Here, we explored the function of the N-terminal leader peptide like segment of hpaXm using transgenic tobacco (Nicotiana tabacum cv. Xanthi nc.). Transgenic tobacco lines expressing the full-length hpaXm and the signal peptide-like segment-deleted mutant hpaXmΔLP were developed using transformation mediated by Agrobacterium tumefaciens. The target genes were confirmed integrated into the tobacco genomes and expressed normally. Using immune colloidal-gold detection technique, hpaXm protein was found to be transferred to the cytoplasm, the cell membrane, and organelles such as chloroplasts, mitochondria, and nucleus, as well as the cell wall. However, the deletion mutant hpaXmΔLP expressed in transgenic tobacco was found unable to cross the membrane to reach the cell wall. Additionally, soluble proteins extracted from plants transformed with hpaXm and hpaXmΔLP were bio-active. Defensive micro-HR induced by the transgene expression of hpaXm and hpaXmΔLP were observed on transgenic tobacco leaves. Disease resistance bioassays to tobacco mosaic virus (TMV) showed that tobacco plants transformed with hpaXm and with hpaXmΔLP exhibited enhanced resistance to TMV. In summary, the N-terminal signal peptide-like segment (1–45 bp) in hpaXm sequence is not necessary for transgene expression, bioactivity of hpaXm and resistance to TMV in transgenic tobacco, but is required for the protein to be translocated to the cell wall. PMID:28141855

  18. Identification of a system required for the functional surface localization of sugar binding proteins with class III signal peptides in Sulfolobus solfataricus.

    PubMed

    Zolghadr, Behnam; Weber, Stefan; Szabó, Zalán; Driessen, Arnold J M; Albers, Sonja-Verena

    2007-05-01

    The hyperthermophilic archaeon Sulfolobus solfataricus contains an unusual large number of sugar binding proteins that are synthesized as precursors with a class III signal peptide. Such signal peptides are commonly used to direct archaeal flagellin subunits or bacterial (pseudo)pilins into extracellular macromolecular surface appendages. Likewise, S. solfataricus binding proteins have been suggested to assemble in higher ordered surface structures as well, tentatively termed the bindosome. Here we show that S. solfataricus contains a specific system that is needed for the functional surface localization of sugar binding proteins. This system, encoded by the bas (bindosome assembly system) operon, is composed of five proteins: basABC, three homologues of so-called bacterial (pseudo)pilins; BasE, a cytoplasmic ATPase; and BasF, an integral membrane protein. Deletion of either the three (pseudo)pilin genes or the basEF genes resulted in a severe defect of the cells to grow on substrates which are transported by sugar binding proteins containing class III signal peptides, while growth on glucose and maltose was restored when the corresponding genes were reintroduced in these cells. Concomitantly, DeltabasABC and DeltabasEF cells were severely impaired in glucose uptake even though the sugar binding proteins were normally secreted across the cytoplasmic membrane. These data underline the hypothesis that the bas operon is involved in the functional localization of sugar binding proteins at the cell surface of S. solfataricus. In contrast to surface structure assembly systems of Gram-negative bacteria, the bas operon seems to resemble an ancestral simplified form of these machineries.

  19. Leucine Leucine-37 Uses Formyl Peptide Receptor–Like 1 to Activate Signal Transduction Pathways, Stimulate Oncogenic Gene Expression, and Enhance the Invasiveness of Ovarian Cancer Cells

    PubMed Central

    Coffelt, Seth B.; Tomchuck, Suzanne L.; Zwezdaryk, Kevin J.; Danka, Elizabeth S.; Scandurro, Aline B.

    2009-01-01

    Emerging evidence suggests that the antimicrobial peptide, leucine leucine-37 (LL-37), could play a role in the progression of solid tumors. LL-37 is expressed as the COOH terminus of human cationic antimicrobial protein-18 (hCAP-18) in ovarian, breast, and lung cancers. Previous studies have shown that the addition of LL-37 to various cancer cell lines in vitro stimulates proliferation, migration, and invasion. Similarly, overexpression of hCAP-18/LL-37 in vivo accelerates tumor growth. However, the receptor or receptors through which these processes are mediated have not been thoroughly examined. In the present study, expression of formyl peptide receptor–like 1 (FPRL1) was confirmed on ovarian cancer cells. Proliferation assays indicated that LL-37 does not signal through a G protein–coupled receptor, such as FPRL1, to promote cancer cell growth. By contrast, FPRL1 was required for LL-37–induced invasion through Matrigel. The peptide stimulated mitogen-activated protein kinase and Janus-activated kinase/signal transducers and activators of transcription signaling cascades and led to the significant activation of several transcription factors, through both FPRL1-dependent and FPRL1-independent pathways. Likewise, expression of some LL-37–stimulated genes was attenuated by the inhibition of FPRL1. Increased expression of CXCL10, EGF, and PDGF-BB as well as other soluble factors was confirmed from conditioned medium of LL-37–treated cells. Taken together, these data suggest that LL-37 potentiates a more aggressive behavior from ovarian cancer cells through its interaction with FPRL1. PMID:19491199

  20. Leucine leucine-37 uses formyl peptide receptor-like 1 to activate signal transduction pathways, stimulate oncogenic gene expression, and enhance the invasiveness of ovarian cancer cells.

    PubMed

    Coffelt, Seth B; Tomchuck, Suzanne L; Zwezdaryk, Kevin J; Danka, Elizabeth S; Scandurro, Aline B

    2009-06-01

    Emerging evidence suggests that the antimicrobial peptide, leucine leucine-37 (LL-37), could play a role in the progression of solid tumors. LL-37 is expressed as the COOH terminus of human cationic antimicrobial protein-18 (hCAP-18) in ovarian, breast, and lung cancers. Previous studies have shown that the addition of LL-37 to various cancer cell lines in vitro stimulates proliferation, migration, and invasion. Similarly, overexpression of hCAP-18/LL-37 in vivo accelerates tumor growth. However, the receptor or receptors through which these processes are mediated have not been thoroughly examined. In the present study, expression of formyl peptide receptor-like 1 (FPRL1) was confirmed on ovarian cancer cells. Proliferation assays indicated that LL-37 does not signal through a G protein-coupled receptor, such as FPRL1, to promote cancer cell growth. By contrast, FPRL1 was required for LL-37-induced invasion through Matrigel. The peptide stimulated mitogen-activated protein kinase and Janus-activated kinase/signal transducers and activators of transcription signaling cascades and led to the significant activation of several transcription factors, through both FPRL1-dependent and FPRL1-independent pathways. Likewise, expression of some LL-37-stimulated genes was attenuated by the inhibition of FPRL1. Increased expression of CXCL10, EGF, and PDGF-BB as well as other soluble factors was confirmed from conditioned medium of LL-37-treated cells. Taken together, these data suggest that LL-37 potentiates a more aggressive behavior from ovarian cancer cells through its interaction with FPRL1.

  1. Design, pharmacology, and NMR structure of a minimized cystine knot with agouti-related protein activity.

    PubMed

    Jackson, Pilgrim J; McNulty, Joseph C; Yang, Ying-Kui; Thompson, Darren A; Chai, Biaoxin; Gantz, Ira; Barsh, Gregory S; Millhauser, Glenn L

    2002-06-18

    The agouti-related protein (AGRP) is an endogenous antagonist of the melanocortin receptors MC3R and MC4R found in the hypothalamus and exhibits potent orexigenic activity. The cysteine-rich C-terminal domain of this protein, corresponding to AGRP(87-132), exhibits receptor binding affinity and antagonism equivalent to that of the full-length protein. The NMR structure of this active domain was recently determined and suggested that melanocortin receptor contacts were made primarily by two loops presented by a well-structured cystine knot domain within AGRP(87-132) [McNulty et al. (2001) Biochemistry 40, 15520-15527]. This hypothesis is tested here with NMR structure and activity studies of a 34-residue AGRP analogue designed to contain only the cystine knot domain. The designed miniprotein folds to a homogeneous product, retains the desired cystine knot architecture, functions as an antagonist, and maintains the melanocortin receptor pharmacological profile of AGRP(87-132). The AGRP-like activity of this molecule supports the hypothesis that indeed the cystine knot region possesses the melanocortin receptor contact points. Moreover, this potent AGRP analogue is synthetically accessible, may serve in the development of therapeutics for the treatment of diseases related to energy balance. and may also find use as a new reagent for probing melanocortin receptor structure and function.

  2. Vasopressin-like peptide and its receptor function in an indirect diuretic signaling pathway in the red flour beetle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The insect vasopressin-like peptide (AVPL) is of special interest because of its potential function in the regulation of diuresis. Genome sequences of the red flour beetle Tribolium castaneum yielded the genes encoding AVPL and AVPL receptor, whereas the homologous sequences are absent in the genome...

  3. Targeting the Nrf2 Signaling Pathway in the Retina With a Gene-Delivered Secretable and Cell-Penetrating Peptide

    PubMed Central

    Ildefonso, Cristhian J.; Jaime, Henrique; Brown, Emily E.; Iwata, Ryo L.; Ahmed, Chulbul M.; Massengill, Michael T.; Biswal, Manas R.; Boye, Shannon E.; Hauswirth, William W.; Ash, John D.; Li, Qiuhong; Lewin, Alfred S.

    2016-01-01

    Purpose Oxidative stress has been linked to several ocular diseases, initiating an inflammatory response that increases tissue injury. The Nrf2 transcription factor regulates expression of antioxidant genes and is tightly regulated by Kelch-Like ECH-Associated Protein 1 (Keap-1). We evaluate the antioxidant and anti-inflammatory properties of an adeno-associated virus (AAV) vector delivering an Nrf2-derived peptide that binds Keap-1. Methods The sequence of the Nrf2 peptide was fused to a cell-penetrating peptide (Tat-peptide) sequence (TatNrf2mer). The effects of lentiviral-delivered TatNrf2mer were studied in vitro. Transcript (quantitative [q] RT-PCR) and protein levels (ELISA and immunofluorescence) were quantified. Cell viability was measured by MTT and Cell Titer assays. The AAV vectors were packaged with the TatNrf2mer fused to secretable green fluorescent protein (GFP) under the control of the small chicken β actin promoter. The protective effects of this vector were evaluated in a model of RPE oxidative injury and in a mouse model of uveitis after intravitreal injection. Results Expression of TatNrf2mer peptide induced antioxidant gene expression, blocked IL-1β secretion, and protected cells from oxidative injury. In mice, TatNrf2mer expression partially protected photoreceptor function based on ERG responses and optical coherence tomography measurements in the sodium iodate (NaIO3) model. Furthermore, sGFP-TatNrf2mer expression decreased IL-1β and IL-6 in the NaIO3-treated mice, and resulted in a 54% decrease in the number of inflammatory cells in the vitreous body of the endotoxin-induced uveitis mouse model. Conclusions The intravitreally delivered AAV-TatNrf2mer has antioxidant and anti-inflammatory effects in widely-used models of ocular injury, suggesting it also could be useful in ocular diseases associated with oxidative stress and inflammasome activation. PMID:26842755

  4. Blocking protein phosphatase 2A signaling prevents endothelial-to-mesenchymal transition and renal fibrosis: a peptide-based drug therapy

    PubMed Central

    Deng, Yuanjun; Guo, Yanyan; Liu, Ping; Zeng, Rui; Ning, Yong; Pei, Guangchang; Li, Yueqiang; Chen, Meixue; Guo, Shuiming; Li, Xiaoqing; Han, Min; Xu, Gang

    2016-01-01

    Endothelial-to-mesenchymal transition (EndMT) contributes to the emergence of fibroblasts and plays a significant role in renal interstitial fibrosis. Protein phosphatase 2A (PP2A) is a major serine/threonine protein phosphatase in eukaryotic cells and regulates many signaling pathways. However, the significance of PP2A in EndMT is poorly understood. In present study, the role of PP2A in EndMT was evaluated. We demonstrated that PP2A activated in endothelial cells (EC) during their EndMT phenotype acquisition and in the mouse model of obstructive nephropathy (i.e., UUO). Inhibition of PP2A activity by its specific inhibitor prevented EC undergoing EndMT. Importantly, PP2A activation was dependent on tyrosine nitration at 127 in the catalytic subunit of PP2A (PP2Ac). Our renal-protective strategy was to block tyrosine127 nitration to inhibit PP2A activation by using a mimic peptide derived from PP2Ac conjugating a cell penetrating peptide (CPP: TAT), termed TAT-Y127WT. Pretreatment withTAT-Y127WT was able to prevent TGF-β1-induced EndMT. Administration of the peptide to UUO mice significantly ameliorated renal EndMT level, with preserved density of peritubular capillaries and reduction in extracellular matrix deposition. Taken together, these results suggest that inhibiting PP2Ac nitration using a mimic peptide is a potential preventive strategy for EndMT in renal fibrosis. PMID:26805394

  5. PI3K p110α/Akt signaling negatively regulates secretion of the intestinal peptide neurotensin through interference of granule transport.

    PubMed

    Li, Jing; Song, Jun; Cassidy, Margaret G; Rychahou, Piotr; Starr, Marlene E; Liu, Jianyu; Li, Xin; Epperly, Garretson; Weiss, Heidi L; Townsend, Courtney M; Gao, Tianyan; Evers, B Mark

    2012-08-01

    Neurotensin (NT), an intestinal peptide secreted from N cells in the small bowel, regulates a variety of physiological functions of the gastrointestinal tract, including secretion, gut motility, and intestinal growth. The class IA phosphatidylinositol 3-kinase (PI3K) family, which comprised of p110 catalytic (α, β and δ) and p85 regulatory subunits, has been implicated in the regulation of hormone secretion from endocrine cells. However, the underlying mechanisms remain poorly understood. In particular, the role of PI3K in intestinal peptide secretion is not known. Here, we show that PI3K catalytic subunit, p110α, negatively regulates NT secretion in vitro and in vivo. We demonstrate that inhibition of p110α, but not p110β, induces NT release in BON, a human endocrine cell line, which expresses NT mRNA and produces NT peptide in a manner analogous to N cells, and QGP-1, a pancreatic endocrine cell line that produces NT peptide. In contrast, overexpression of p110α decreases NT secretion. Consistently, p110α-inhibition increases plasma NT levels in mice. To further delineate the mechanisms contributing to this effect, we demonstrate that inhibition of p110α increases NT granule trafficking by up-regulating α-tubulin acetylation; NT secretion is prevented by overexpression of HDAC6, an α-tubulin deacetylase. Moreover, ras-related protein Rab27A (a small G protein) and kinase D-interacting substrate of 220 kDa (Kidins220), which are associated with NT granules, play a negative and positive role, respectively, in p110α-inhibition-induced NT secretion. Our findings identify the critical role and novel mechanisms for the PI3K signaling pathway in the control of intestinal hormone granule transport and release.

  6. PI3K p110α/Akt Signaling Negatively Regulates Secretion of the Intestinal Peptide Neurotensin Through Interference of Granule Transport

    PubMed Central

    Li, Jing; Song, Jun; Cassidy, Margaret G.; Rychahou, Piotr; Starr, Marlene E.; Liu, Jianyu; Li, Xin; Epperly, Garretson; Weiss, Heidi L.; Townsend, Courtney M.; Gao, Tianyan

    2012-01-01

    Neurotensin (NT), an intestinal peptide secreted from N cells in the small bowel, regulates a variety of physiological functions of the gastrointestinal tract, including secretion, gut motility, and intestinal growth. The class IA phosphatidylinositol 3-kinase (PI3K) family, which comprised of p110 catalytic (α, β and δ) and p85 regulatory subunits, has been implicated in the regulation of hormone secretion from endocrine cells. However, the underlying mechanisms remain poorly understood. In particular, the role of PI3K in intestinal peptide secretion is not known. Here, we show that PI3K catalytic subunit, p110α, negatively regulates NT secretion in vitro and in vivo. We demonstrate that inhibition of p110α, but not p110β, induces NT release in BON, a human endocrine cell line, which expresses NT mRNA and produces NT peptide in a manner analogous to N cells, and QGP-1, a pancreatic endocrine cell line that produces NT peptide. In contrast, overexpression of p110α decreases NT secretion. Consistently, p110α-inhibition increases plasma NT levels in mice. To further delineate the mechanisms contributing to this effect, we demonstrate that inhibition of p110α increases NT granule trafficking by up-regulating α-tubulin acetylation; NT secretion is prevented by overexpression of HDAC6, an α-tubulin deacetylase. Moreover, ras-related protein Rab27A (a small G protein) and kinase D-interacting substrate of 220 kDa (Kidins220), which are associated with NT granules, play a negative and positive role, respectively, in p110α-inhibition-induced NT secretion. Our findings identify the critical role and novel mechanisms for the PI3K signaling pathway in the control of intestinal hormone granule transport and release. PMID:22700584

  7. The insertion of a full-length Bos taurus LINE element is responsible for a transcriptional deregulation of the Normande Agouti gene.

    PubMed

    Girardot, Michael; Guibert, Sylvain; Laforet, Marie-Pierre; Gallard, Yves; Larroque, Hélène; Oulmouden, Ahmad

    2006-08-01

    Mammalian pigmentation is controlled by the concerted action of Tyr, Tyrp1 and Dct producing eumelanin and/or pheomelanin in melanocytes. The ratio of these two pigments is determined by the agonist alpha-melanocyte stimulating hormone and the antagonist Agouti protein acting on the Mc1r. Here we show that the Agouti gene is over-expressed in Normande breed compared with Prim'Holstein breed. The Normande cattle have a characteristic coat color phenotype with a variable presence of black (eumelanin) hair over a red/brown background. We have found a previously undescribed full-length L1-BT element inserted in the 5'-genomic sequence of the Agouti gene in Normande cattle which promotes the over-expression of alternative transcripts. The variable expression of the alternative transcript directed by the long interspersed nuclear element promoter may be the origin of the brindle coat color pattern of the Normande breed. This new bovine Agouti allele isolated in Normande breed has been named Abr. Finally, as ectopic over-expression of Agouti in Ay mice is responsible for the obesity syndrome, we discuss the possible consequences of Abr for meat and milk production in cattle.

  8. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism.

    PubMed

    Hasbi, Ahmed; Perreault, Melissa L; Shen, Maurice Y F; Zhang, Lucia; To, Ryan; Fan, Theresa; Nguyen, Tuan; Ji, Xiaodong; O'Dowd, Brian F; George, Susan R

    2014-11-01

    Although the dopamine D1-D2 receptor heteromer has emerging physiological relevance and a postulated role in different neuropsychiatric disorders, such as drug addiction, depression, and schizophrenia, there is a need for pharmacological tools that selectively target such receptor complexes in order to analyze their biological and pathophysiological functions. Since no selective antagonists for the D1-D2 heteromer are available, serial deletions and point mutations were used to precisely identify the amino acids involved in an interaction interface between the receptors, residing within the carboxyl tail of the D1 receptor that interacted with the D2 receptor to form the D1-D2 receptor heteromer. It was determined that D1 receptor carboxyl tail residues (404)Glu and (405)Glu were critical in mediating the interaction with the D2 receptor. Isolated mutation of these residues in the D1 receptor resulted in the loss of agonist activation of the calcium signaling pathway mediated through the D1-D2 receptor heteromer. The physical interaction between the D1 and D2 receptor could be disrupted, as shown by coimmunoprecipitation and BRET analysis, by a small peptide generated from the D1 receptor sequence that contained these amino acids, leading to a switch in G-protein affinities and loss of calcium signaling, resulting in the inhibition of D1-D2 heteromer function. The use of the D1-D2 heteromer-disrupting peptide in vivo revealed a pathophysiological role for the D1-D2 heteromer in the modulation of behavioral despair. This peptide may represent a novel pharmacological tool with potential therapeutic benefits in depression treatment.

  9. FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis

    PubMed Central

    Chen, Jia; Yu, Feng; Liu, Ying; Du, Changqing; Li, Xiushan; Zhu, Sirui; Wang, Xianchun; Lan, Wenzhi; Rodriguez, Pedro L.; Liu, Xuanming; Li, Dongping; Chen, Liangbi; Luan, Sheng

    2016-01-01

    Receptor-like kinase FERONIA (FER) plays a crucial role in plant response to small molecule hormones [e.g., auxin and abscisic acid (ABA)] and peptide signals [e.g., rapid alkalinization factor (RALF)]. It remains unknown how FER integrates these different signaling events in the control of cell growth and stress responses. Under stress conditions, increased levels of ABA will inhibit cell elongation in the roots. In our previous work, we have shown that FER, through activation of the guanine nucleotide exchange factor 1 (GEF1)/4/10-Rho of Plant 11 (ROP11) pathway, enhances the activity of the phosphatase ABA Insensitive 2 (ABI2), a negative regulator of ABA signaling, thereby inhibiting ABA response. In this study, we found that both RALF and ABA activated FER by increasing the phosphorylation level of FER. The FER loss-of-function mutant displayed strong hypersensitivity to both ABA and abiotic stresses such as salt and cold conditions, indicating that FER plays a key role in ABA and stress responses. We further showed that ABI2 directly interacted with and dephosphorylated FER, leading to inhibition of FER activity. Several other ABI2-like phosphatases also function in this pathway, and ABA-dependent FER activation required PYRABACTIN RESISTANCE (PYR)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR)–A-type protein phosphatase type 2C (PP2CA) modules. Furthermore, suppression of RALF1 gene expression, similar to disruption of the FER gene, rendered plants hypersensitive to ABA. These results formulated a mechanism for ABA activation of FER and for cross-talk between ABA and peptide hormone RALF in the control of plant growth and responses to stress signals. PMID:27566404

  10. Receptor Activity-modifying Protein-directed G Protein Signaling Specificity for the Calcitonin Gene-related Peptide Family of Receptors*

    PubMed Central

    Weston, Cathryn; Winfield, Ian; Harris, Matthew; Hodgson, Rose; Shah, Archna; Dowell, Simon J.; Mobarec, Juan Carlos; Woodlock, David A.; Reynolds, Christopher A.; Poyner, David R.; Watkins, Harriet A.; Ladds, Graham

    2016-01-01

    The calcitonin gene-related peptide (CGRP) family of G protein-coupled receptors (GPCRs) is formed through the association of the calcitonin receptor-like receptor (CLR) and one of three receptor activity-modifying proteins (RAMPs). Binding of one of the three peptide ligands, CGRP, adrenomedullin (AM), and intermedin/adrenomedullin 2 (AM2), is well known to result in a Gαs-mediated increase in cAMP. Here we used modified yeast strains that couple receptor activation to cell growth, via chimeric yeast/Gα subunits, and HEK-293 cells to characterize the effect of different RAMP and ligand combinations on this pathway. We not only demonstrate functional couplings to both Gαs and Gαq but also identify a Gαi component to CLR signaling in both yeast and HEK-293 cells, which is absent in HEK-293S cells. We show that the CGRP family of receptors displays both ligand- and RAMP-dependent signaling bias among the Gαs, Gαi, and Gαq/11 pathways. The results are discussed in the context of RAMP interactions probed through molecular modeling and molecular dynamics simulations of the RAMP-GPCR-G protein complexes. This study further highlights the importance of RAMPs to CLR pharmacology and to bias in general, as well as identifying the importance of choosing an appropriate model system for the study of GPCR pharmacology. PMID:27566546

  11. Topical administration of a suppressor of cytokine signaling-1 (SOCS1) mimetic peptide inhibits ocular inflammation and mitigates ocular pathology during mouse uveitis.

    PubMed

    He, Chang; Yu, Cheng-Rong; Sun, Lin; Mahdi, Rashid M; Larkin, Joseph; Egwuagu, Charles E

    2015-08-01

    Uveitis is a diverse group of potentially sight-threatening intraocular inflammatory diseases and pathology derives from sustained production of pro-inflammatory cytokines in the optical axis. Although topical or systemic steroids are effective therapies, their adverse effects preclude prolonged usage and are impetus for seeking alternative immunosuppressive agents, particularly for patients with refractory uveitis. In this study, we synthesized a 16 amino acid membrane-penetrating lipophilic suppressor of cytokine signaling 1 peptide (SOCS1-KIR) that inhibits JAK/STAT signaling pathways and show that it suppresses and ameliorates experimental autoimmune uveitis (EAU), the mouse model of human uveitis. Fundus images, histological and optical coherence tomography analysis of eyes showed significant suppression of clinical disease, with average clinical score of 0.5 compared to 2.0 observed in control mice treated with scrambled peptide. We further show that SOCS1-KIR conferred protection from ocular pathology by inhibiting the expansion of pathogenic Th17 cells and inhibiting trafficking of inflammatory cells into the neuroretina during EAU. Dark-adapted scotopic and photopic electroretinograms further reveal that SOCS1-KIR prevented decrement of retinal function, underscoring potential neuroprotective effects of SOCS1-KIR in uveitis. Importantly, SOCS1-KIR is non-toxic, suggesting that topical administration of SOCS1-Mimetics can be exploited as a non-invasive treatment for uveitis and for limiting cytokine-mediated pathology in other ocular inflammatory diseases including scleritis.

  12. Coupling of growth to nutritional status: The role of novel periphery-to-brain signaling by the CCHa2 peptide in Drosophila melanogaster

    PubMed Central

    Sano, Hiroko

    2015-01-01

    ABSTRACT The coupling of growth to nutritional status is an important adaptive response of living organisms to their environment. For this ability, animals have evolved various strategies, including endocrine systems that respond to changing nutritional conditions. In animals, nutritional information is mostly perceived by peripheral organs, such as the digestive tract and adipose tissues, and is subsequently transmitted to other peripheral organs or the brain, which integrates the incoming signals and orchestrates physiological and behavioral responses. In Drosophila melanogaster, adipose tissue, known as the fat body, functions as an endocrine organ that communicates with the brain. This fat body-brain axis coordinates growth with nutritional status by regulating the secretion of Drosophila insulin-like peptides (Dilps) from the brain. However, the molecular nature of the fat body-brain axis remains to be elucidated. We recently demonstrated that a small peptide, CCHamide-2 (CCHa2), expressed in the fat body and gut, directly stimulates its receptor (CCHa2-R) in the brain, leading to Dilp production. Notably, the expression of CCHa2 is sensitive to the presence of nutrients, particularly sugars. Our results, together with the results of previous studies, show that signaling between peripheral organs and the brain is a conserved strategy that couples nutritional availability to organismal physiology. PMID:26980588

  13. The Fusion Protein Signal-Peptide-Coding Region of Canine Distemper Virus: A Useful Tool for Phylogenetic Reconstruction and Lineage Identification

    PubMed Central

    Sarute, Nicolás; Calderón, Marina Gallo; Pérez, Ruben; La Torre, José; Hernández, Martín; Francia, Lourdes; Panzera, Yanina

    2013-01-01

    Canine distemper virus (CDV; Paramyxoviridae, Morbillivirus) is the etiologic agent of a multisystemic infectious disease affecting all terrestrial carnivore families with high incidence and mortality in domestic dogs. Sequence analysis of the hemagglutinin (H) gene has been widely employed to characterize field strains, permitting the identification of nine CDV lineages worldwide. Recently, it has been established that the sequences of the fusion protein signal-peptide (Fsp) coding region are extremely variable, suggesting that analysis of its sequence might be useful for strain characterization studies. However, the divergence of Fsp sequences among worldwide strains and its phylogenetic resolution has not yet been evaluated. We constructed datasets containing the Fsp-coding region and H gene sequences of the same strains belonging to eight CDV lineages. Both datasets were used to evaluate their phylogenetic resolution. The phylogenetic analysis revealed that both datasets clustered the same strains into eight different branches, corresponding to CDV lineages. The inter-lineage amino acid divergence was fourfold greater for the Fsp peptide than for the H protein. The likelihood mapping revealed that both datasets display strong phylogenetic signals in the region of well-resolved topologies. These features indicate that Fsp-coding region sequence analysis is suitable for evolutionary studies as it allows for straightforward identification of CDV lineages. PMID:23675493

  14. HSP70 and modified HPV 16 E7 fusion gene without the addition of a signal peptide gene sequence as a candidate therapeutic tumor vaccine.

    PubMed

    Zong, Jinbao; Wang, Changyuan; Wang, Qingyong; Peng, Qinglin; Xu, Yufei; Xie, Xixiu; Xu, Xuemei

    2013-12-01

    Millions of women are currently infected with high-risk human papillomavirus (HPV), which is considered to be a major risk factor for cervical cancer. Thus, it is urgent to develop therapeutic vaccines to eliminate the established infections or HPV-related diseases. In the present study, using the mycobacterium tuberculosis heat shock protein 70 (MtHSP70) gene linked to the modified HPV 16 E7 (mE7) gene, we generated two potential therapeutic HPV DNA vaccines, mE7/MtHSP70 and SigmE7/MtHSP70, the latter was linked to the signal peptide gene sequence of human CD33 at the upstream of the fusion gene. We found that vaccination with the mE7/MtHSP70 DNA vaccine induced a stronger E7-specific CD8+ T cell response and resulted in a more significant therapeutic effect against E7-expressing tumor cells in mice. Our results demonstrated that HSP70 can play a more important role in mE7 and MtHSP70 fusion DNA vaccine without the help of a signal peptide. This may facilitate the use of HSP70 and serve as a significant reference for future study.

  15. Mastoparan, a G protein agonist peptide, differentially modulates TLR4- and TLR2-mediated signaling in human endothelial cells and murine macrophages.

    PubMed

    Lentschat, Arnd; Karahashi, Hisae; Michelsen, Kathrin S; Thomas, Lisa S; Zhang, Wenxuan; Vogel, Stefanie N; Arditi, Moshe

    2005-04-01

    Previous studies have implicated a role for heterotrimeric G protein-coupled signaling in B cells, monocytes, and macrophages stimulated with LPS and have shown that G proteins coimmunoprecipitate with membrane-bound CD14. In this study, we have extended these observations in human dermal microvessel endothelial cells (HMEC) that lack membrane-bound CD14 and in murine macrophages to define further the role of heterotrimeric G proteins in TLR signaling. Using the wasp venom-derived peptide, mastoparan, to disrupt G protein-coupled signaling, we identified a G protein-dependent signaling pathway in HMEC stimulated with TLR4 agonists that is necessary for the activation of p38 phosphorylation and kinase activity, NF-kappaB and IL-6 transactivation, and IL-6 secretion. In contrast, HMEC activation by TLR2 agonists, TNF-alpha, or IL-1beta was insensitive to mastoparan. In the murine macrophage cell line, RAW 264.7, and in primary murine macrophages, G protein dysregulation by mastoparan resulted in significant inhibition of LPS-induced signaling leading to both MyD88-dependent and MyD88-independent gene expression, while TLR2-mediated gene expression was not significantly inhibited. In addition to inhibition of TLR4-mediated MAPK phosphorylation in macrophages, mastoparan blunted IL-1R-associated kinase-1 kinase activity induced by LPS, but not by TLR2 agonists, yet failed to affect phosphorylation of Akt by phosphoinositol-3-kinase induced by either TLR2- or TLR4-mediated signaling. These data confirm the importance of heterotrimeric G proteins in TLR4-mediated responses in cells that use either soluble or membrane-associated CD14 and reveal a level of TLR and signaling pathway specificity not previously appreciated.

  16. Agouti-related protein increases food hoarding more than food intake in Siberian hamsters.

    PubMed

    Day, Diane E; Bartness, Timothy J

    2004-01-01

    Agouti-related protein (AgRP), an endogenous melanocortin 3/4 receptor antagonist, appears to play an important role in the control of food intake and energy balance because exogenous administration in rats and overexpression in mice result in hyperphagia and body mass gain. Furthermore, arcuate nucleus AgRP mRNA is increased with fasting in laboratory rats and mice and is decreased with refeeding. In Siberian hamsters, fasting also increases arcuate nucleus AgRP mRNA, but these animals increase food hoarding, rather than food intake with refeeding. Therefore, we tested whether exogenous AgRP increased food hoarding in this species. Hamsters were trained in a hoarding/foraging apparatus to run a programmed number of wheel revolutions to earn food pellets. Four doses of AgRP-(83-132) or vehicle were injected into the third ventricle at the beginning of the dark phase, and food hoarding, food intake, and foraging were measured at various time points subsequently. Overall, food hoarding was stimulated as much as 10 times more than food intake, and both responses occurred as early as 1 h after injection. Food hoarding was increased the greatest at the lowest dose (0.1 nmol), whereas food intake was increased the greatest at the second lowest dose (1 nmol). Food intake and especially food hoarding were increased up to seven days after the AgRP injections. Foraging was increased at all AgRP doses except the highest dose (100 nmol). These results suggest that AgRP triggers the search for food in this species, and once they find it, hoarding predominates over eating.

  17. Molecular characterization of a region of DNA associated with mutations at the agouti locus in the mouse.

    PubMed

    Bultman, S J; Russell, L B; Gutierrez-Espeleta, G A; Woychik, R P

    1991-09-15

    Molecular characterization of a radiation-induced agouti (a)-locus mutation has resulted in the isolation of a segment of DNA that maps at or near the a locus on chromosome 2 in the mouse. This region of DNA is deleted in several radiation- or chemical-induced homozygous-lethal a-locus mutations and is associated with specific DNA structural alterations in two viable a-locus mutations. We propose that DNA probes from this region of chromosome 2 will be useful for ultimately characterizing the individual gene or genes associated with a-locus function.

  18. CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner.

    PubMed

    Araya, Takao; Miyamoto, Mayu; Wibowo, Juliarni; Suzuki, Akinori; Kojima, Soichi; Tsuchiya, Yumiko N; Sawa, Shinichiro; Fukuda, Hiroo; von Wirén, Nicolaus; Takahashi, Hideki

    2014-02-04

    Morphological plasticity of root systems is critically important for plant survival because it allows plants to optimize their capacity to take up water and nutrients from the soil environment. Here we show that a signaling module composed of nitrogen (N)-responsive CLE (CLAVATA3/ESR-related) peptides and the CLAVATA1 (CLV1) leucine-rich repeat receptor-like kinase is expressed in the root vasculature in Arabidopsis thaliana and plays a crucial role in regulating the expansion of the root system under N-deficient conditions. CLE1, -3, -4, and -7 were induced by N deficiency in roots, predominantly expressed in root pericycle cells, and their overexpression repressed the growth of lateral root primordia and their emergence from the primary root. In contrast, clv1 mutants showed progressive outgrowth of lateral root primordia into lateral roots under N-deficient conditions. The clv1 phenotype was reverted by introducing a CLV1 promoter-driven CLV1:GFP construct producing CLV1:GFP fusion proteins in phloem companion cells of roots. The overaccumulation of CLE2, -3, -4, and -7 in clv1 mutants suggested the amplitude of the CLE peptide signals being feedback-regulated by CLV1. When CLE3 was overexpressed under its own promoter in wild-type plants, the length of lateral roots was negatively correlated with increasing CLE3 mRNA levels; however, this inhibitory action of CLE3 was abrogated in the clv1 mutant background. Our findings identify the N-responsive CLE-CLV1 signaling module as an essential mechanism restrictively controlling the expansion of the lateral root system in N-deficient environments.

  19. Uncleaved ApoM signal peptide is required for formation of large ApoM/sphingosine 1-phosphate (S1P)-enriched HDL particles.

    PubMed

    Liu, Mingxia; Allegood, Jeremy; Zhu, Xuewei; Seo, Jeongmin; Gebre, Abraham K; Boudyguina, Elena; Cheng, Dongmei; Chuang, Chia-Chi; Shelness, Gregory S; Spiegel, Sarah; Parks, John S

    2015-03-20

    Apolipoprotein M (apoM), a plasma sphingosine 1-phosphate (S1P) carrier, associates with plasma HDL via its uncleaved signal peptide. Hepatocyte-specific apoM overexpression in mice stimulates formation of both larger nascent HDL in hepatocytes and larger mature apoM/S1P-enriched HDL particles in plasma by enhancing hepatic S1P synthesis and secretion. Mutagenesis of apoM glutamine 22 to alanine (apoM(Q22A)) introduces a functional signal peptidase cleavage site. Expression of apoM(Q22A) in ABCA1-expressing HEK293 cells resulted in the formation of smaller nascent HDL particles compared with wild type apoM (apoM(WT)). When apoM(Q22A) was expressed in vivo, using recombinant adenoviruses, smaller plasma HDL particles and decreased plasma S1P and apoM were observed relative to expression of apoM(WT). Hepatocytes isolated from both apoM(WT)- and apoM(Q22A)-expressing mice displayed an equivalent increase in cellular levels of S1P, relative to LacZ controls; however, relative to apoM(WT), apoM(Q22A) hepatocytes displayed more rapid apoM and S1P secretion but minimal apoM(Q22A) bound to nascent lipoproteins. Pharmacologic inhibition of ceramide synthesis increased cellular sphingosine and S1P but not medium S1P in both apoM(WT) and apoM(Q22A) hepatocytes. We conclude that apoM secretion is rate-limiting for hepatocyte S1P secretion and that its uncleaved signal peptide delays apoM trafficking out of the cell, promoting formation of larger nascent apoM- and S1P-enriched HDL particles that are probably precursors of larger apoM/S1P-enriched plasma HDL.

  20. Expression of peptide fragments from proADM and involvement of mitogen-activated protein kinase signaling pathways in pulmonary remodeling induced by high pulmonary blood flow.

    PubMed

    Li, Wei; Guo, Aili; Wang, Lijuan; Kong, Qingyu; Wang, Rong; Han, Li; Zhao, Cuifen

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by progressive pulmonary arterial remodeling and right ventricular failure. Despite recent advances in pathophysiological mechanism exploration and new therapeutic approaches, PAH remains a challenging condition. In this study, we investigated the roles of the peptide fragments from proadrenomedullin (proADM) such as adrenomedullin (ADM), adrenotensin (ADT), and proadrenomedullin N-terminal 20 peptide (PAMP) during pulmonary remodeling caused by high pulmonary blood flow, and probed the possible involvement of mitogen-activated protein kinase (MAPK) signal transduction pathways. Sixteen rat models of PAH were artificially established by surgically connecting the left common carotid artery to the external jugular vein. We subcutaneously injected an extracellular signal-regulated protein kinase (ERK1/2) inhibitor, PD98059, in eight rats, treated another eight rats with an equal volume of saline. Eight rats without connections served as the control group. We observed that mRNA expression levels of ADM, stress-activated protein kinase (SAPK), and ERK1/2 were significantly elevated in the shunted rats; furthermore, ERK1/2 levels were significantly inhibited by PD98059. Protein levels of ADM, PAMP, p-SAPK, and p-ERK1/2 were significantly higher ADT was lower, and p-p38 remained unchanged in the rat models compared with the controls. However, the protein expression of both ADM and p-ERK1/2 was significantly inhibited by PD98059. Our results suggest that levels of ADM, ADT, and PAMP respond to pulmonary remodeling, and that activation of the SAPK and ERK1/2 signaling pathways is involved in pulmonary hypertension and artery remodeling caused by high pulmonary blood flow.

  1. Mutagenesis and computer modelling approach to study determinants for recognition of signal peptides by the mitochondrial processing peptidase.

    PubMed

    Zhang, X P; Sjöling, S; Tanudji, M; Somogyi, L; Andreu, D; Eriksson, L E; Gräslund, A; Whelan, J; Glaser, E

    2001-09-01

    Determinants for the recognition of a mitochondrial presequence by the mitochondrial processing peptidase (MPP) have been investigated using mutagenesis and bioinformatics approaches. All plant mitochondrial presequences with a cleavage site that was confirmed by experimental studies can be grouped into three classes. Two major classes contain an arginine residue at position -2 or -3, and the third class does not have any conserved arginines. Sequence logos revealed loosely conserved cleavage motifs for the first two classes but no significant amino acid conservation for the third class. Investigation of processing determinants for a class III precursor, Nicotiana plumbaginifolia F1beta precursor of ATP synthase (pF1beta), was performed using a series of pF1beta presequence mutants and mutant presequence peptides derived from the C-terminal portion of the presequence. Replacement of -2 Gln by Arg inhibited processing, whereas replacement of either the most proximally located -5 Arg or -15 Arg by Leu had only a low inhibitory effect. The C-terminal portion of the pF1beta presequence forms a helix-turn-helix structure. Mutations disturbing or prolonging the helical element upstream of the cleavage site inhibited processing significantly. Structural models of potato MPP and the C-terminal pF1beta presequence peptide were built by homology modelling and empirical conformational energy search methods, respectively. Molecular docking of the pF1beta presequence peptide to the MPP model suggested binding of the peptide to the negatively charged binding cleft formed by the alpha-MPP and beta-MPP subunits in close proximity to the H111XXE114H115X(116-190)E191 proteolytic active site on beta-MPP. Our results show for the first time that the amino acid at the -2 position, even if not an arginine, as well as structural properties of the C-terminal portion of the presequence are important determinants for the processing of a class III precursor by MPP.

  2. Structural basis for the activation mechanism of the PlcR virulence regulator by the quorum-sensing signal peptide PapR

    PubMed Central

    Grenha, Rosa; Slamti, Leyla; Nicaise, Magali; Refes, Yacine; Lereclus, Didier; Nessler, Sylvie

    2013-01-01

    The quorum-sensing regulator PlcR is the master regulator of most known virulence factors in Bacillus cereus. It is a helix-turn-helix (HTH)-type transcription factor activated upon binding of its cognate signaling peptide PapR on a tetratricopeptide repeat-type regulatory domain. The structural and functional properties of PlcR have defined a new family of sensor regulators, called the RNPP family (for Rap, NprR, PrgX, and PlcR), in Gram-positive bacteria. To fully understand the activation mechanism of PlcR, we took a closer look at the conformation changes induced upon binding of PapR and of its target DNA, known as PlcR-box. For that purpose we have determined the structures of the apoform of PlcR (Apo PlcR) and of the ternary complex of PlcR with PapR and the PlcR-box from the plcA promoter. Comparison of the apoform of PlcR with the previously published structure of the PlcR–PapR binary complex shows how a small conformational change induced in the C-terminal region of the tetratricopeptide repeat (TPR) domain upon peptide binding propagates via the linker helix to the N-terminal HTH DNA-binding domain. Further comparison with the PlcR–PapR–DNA ternary complex shows how the activation of the PlcR dimer allows the linker helix to undergo a drastic conformational change and subsequent proper positioning of the HTH domains in the major groove of the two half sites of the pseudopalindromic PlcR-box. Together with random mutagenesis experiments and interaction measurements using peptides from distinct pherogroups, this structural analysis allows us to propose a molecular mechanism for this functional switch. PMID:23277548

  3. Gs-coupled GPCR signalling in AgRP neurons triggers sustained increase in food intake

    PubMed Central

    Nakajima, Ken-ichiro; Cui, Zhenzhong; Li, Chia; Meister, Jaroslawna; Cui, Yinghong; Fu, Ou; Smith, Adam S.; Jain, Shalini; Lowell, Bradford B.; Krashes, Michael J.; Wess, Jürgen

    2016-01-01

    Agouti-related peptide (AgRP) neurons of the hypothalamus play a key role in regulating food intake and body weight, by releasing three different orexigenic molecules: AgRP; GABA; and neuropeptide Y. AgRP neurons express various G protein-coupled receptors (GPCRs) with different coupling properties, including Gs-linked GPCRs. At present, the potential role of Gs-coupled GPCRs in regulating the activity of AgRP neurons remains unknown. Here we show that the activation of Gs-coupled receptors expressed by AgRP neurons leads to a robust and sustained increase in food intake. We also provide detailed mechanistic data linking the stimulation of this class of receptors to the observed feeding phenotype. Moreover, we show that this pathway is clearly distinct from other GPCR signalling cascades that are operative in AgRP neurons. Our data suggest that drugs able to inhibit this signalling pathway may become useful for the treatment of obesity. PMID:26743492

  4. Pigment epithelium-derived factor (PEDF) peptide promotes the expansion of hepatic stem/progenitor cells via ERK and STAT3-dependent signaling

    PubMed Central

    Shih, Shou-Chuan; Ho, Tsung-Chuan; Chen, Show-Li; Tsao, Yeou-Ping

    2017-01-01

    Hepatic stem/progenitor cells (HPC) have been considered as a potential cell source of an alternative to liver transplantation. Production of large numbers of autologous HPC from small pieces of live tissue is crucial for the application of HPC-based liver therapy. In this study, we demonstrated that a synthetic 44-amino acid peptide (44-mer) derived from pigment epithelium-derived factor (PEDF) can facilitate the production of a large number of actively dividing HPC from normal adult rat livers in a 35-day culture period. The phenotypic properties of HPC were characterized by morphological observation, colony formation and high expression of classical HPC markers including epithelial cell adhesion molecule (EpCAM), leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and tumor-associated calcium signal transducer (TROP2). The 44-mer stimulated HPC proliferation in vitro and in mouse livers injured by a single intraperitoneal injection of carbon tetrachloride. In addition, the 44-mer induced the phosphorylation of ERK1/2 and STAT3 in HPC. Blocking the activity of ERK or STAT3 with pharmacological inhibitors attenuated the effects of the 44-mer on the induction of HPC proliferation. The long-term expanded HPC still possessed a bipotent ability to differentiate towards bile duct cells and mature hepatocytes. These results imply that the PEDF peptide may be a simple and effective agent to improve HPC-based liver therapy. PMID:28386338

  5. Histochemical Characterization, Distribution and Morphometric Analysis of NADPH Diaphorase Neurons in the Spinal Cord of the Agouti

    PubMed Central

    Freire, Marco Aurélio M.; Tourinho, Suzane C.; Guimarães, Joanilson S.; Oliveira, Jorge Luiz F.; Picanço-Diniz, Cristovam W.; Gomes-Leal, Walace; Pereira, Antonio

    2008-01-01

    We evaluated the neuropil distribution of the enzymes NADPH diaphorase (NADPH-d) and cytochrome oxidase (CO) in the spinal cord of the agouti, a medium-sized diurnal rodent, together with the distribution pattern and morphometrical characteristics of NADPH-d reactive neurons across different spinal segments. Neuropil labeling pattern was remarkably similar for both enzymes in coronal sections: reactivity was higher in regions involved with pain processing. We found two distinct types of NADPH-d reactive neurons in the agouti's spinal cord: type I neurons had large, heavily stained cell bodies while type II neurons displayed relatively small and poorly stained somata. We concentrated our analysis on type I neurons. These were found mainly in the dorsal horn and around the central canal of every spinal segment, with a few scattered neurons located in the ventral horn of both cervical and lumbar regions. Overall, type I neurons were more numerous in the cervical region. Type I neurons were also found in the white matter, particularly in the ventral funiculum. Morphometrical analysis revealed that type I neurons located in the cervical region have dendritic trees that are more complex than those located in both lumbar and thoracic regions. In addition, NADPH-d cells located in the ventral horn had a larger cell body, especially in lumbar segments. The resulting pattern of cell body and neuropil distribution is in accordance with proposed schemes of segregation of function in the mammalian spinal cord. PMID:18958200

  6. Secretory expression of porcine interferon-gamma in baculovirus using HBM signal peptide and its inhibition activity on the replication of porcine reproductive and respiratory syndrome virus.

    PubMed

    Wang, Yan-Bin; Wang, Zhen-Ya; Chen, Hong-Ying; Cui, Bao-An; Wang, Ya-Bin; Zhang, Hong-Ying; Wang, Rui

    2009-12-15

    The gene sequence encoding mature porcine interferon-gamma (PoIFN-gamma) fused with a C-terminal 6x histidine tag was cloned into the baculovirus pFastBac Dual vector of the Bac-to-Bac Baculovirus expression system under the control of PH promoter. The authentic signal sequence of porcine interferon-gamma was substituted with the honeybee melittin (HBM) signal sequence, and expressed in insect cells. The recombinant proteins were detected by SDS-PAGE and immunofluorescence assay. The nickel affinity column purified recombinant porcine interferon-gamma with HBM signal peptide (rPoIFN-gammaH) was shown to be a 19kDa protein as confirmed by Western blot analysis. The recombinant PoIFN-gammaH was shown to have cytokine activity, inhibiting the cytopathic effect of vesicular stomatitis virus (VSV) in PK-15 cells at about 1.07x10(6)U/mL. The 2(-7) dilution of the rPoIFN-gammaH in culture supernatant protected the MARC-145 cells from the cytopathic effect caused by 100TCID(50) of porcine reproductive and respiratory syndrome virus.

  7. β-Arrestin 1’s Interaction with TC45 Attenuates Stat signaling by dephosphorylating Stat to inhibit antimicrobial peptide expression

    PubMed Central

    Sun, Jie-Jie; Yang, Hui-Ting; Niu, Guo-Juan; Feng, Xiao-Wu; Lan, Jiang-Feng; Zhao, Xiao-Fan; Wang, Jin-Xing

    2016-01-01

    Impaired phosphatase activity leads to the persistent activation of signal transducers and activators of transcription (Stat). In mammals, Stat family members are often phosphorylated or dephosphorylated by the same enzymes. To date, only one Stat similar to mammalian Stat5a/b has been found in crustaceans and there have been few studies in Stat signal regulation in crustaceans. Here, we report that β-arrestin1 interacts with TC45 (45-kDa form of T cell protein tyrosine phosphatase) in the nucleus to attenuate Stat signaling by promoting dephosphorylation of Stat. Initially, we showed that Stat translocates into the nucleus to induce antimicrobial peptide (AMP) expression after bacterial infection. βArr1 enters the nucleus of hemocytes and recruits TC45 to form the βarr1-TC45-Stat complex, which dephosphorylates Stat efficiently. The interaction of TC45 with Stat decreased and Stat phosphorylation increased in βarr1-silenced shrimp (Marsupenaeus japonicus) after challenge with Vibrio anguillarum. βArr1 directly interacts with Stat in nucleus and accelerates Stat dephosphorylation by recruiting TC45 after V. anguillarum challenge. Further study showed that βarr1 and TC45 also affect AMP expression, which is regulated by Stat. Therefore, βarr1 and TC45 are involved in the anti-V. anguillarum immune response by regulating Stat activity negatively to decrease AMP expression in shrimp. PMID:27782165

  8. A peptide from Porphyra yezoensis stimulates the proliferation of IEC-6 cells by activating the insulin-like growth factor I receptor signaling pathway.

    PubMed

    Lee, Min-Kyeong; Kim, In-Hye; Choi, Youn-Hee; Nam, Taek-Jeong

    2015-02-01

    Porphyra yezoensis (P. yezoensis) is the most noteworthy red alga and is mainly consumed in China, Japan and Korea. In the present study, the effects of a P. yezoensis peptide (PY‑PE) on cell proliferation and the associated signaling pathways were examined in IEC‑6 rat intestinal epithelial cells. First, the MTS assay showed that PY‑PE induced cell proliferation in a dose‑dependent manner. Subsequently, the mechanism behind the proliferative activity induced by PY‑PE was determined. The insulin‑like growth factor‑I receptor (IGF‑IR) signaling pathway was the main focus as it plays an important role in the regulation of cell growth and proliferation. PY‑PE increased the protein and mRNA expression of IGF‑IR, insulin receptor substrate‑1, Shc and PY‑99. In addition, PY‑PE stimulated extracellular signal‑regulated kinase phosphorylation and phosphatidylinositol 3‑kinase/Akt activation but inhibited p38 and c‑Jun N‑terminal kinase phosphorylation. Furthermore, PY‑PE treatment increased protein and mRNA expression levels of activator protein‑1, which regulates cell proliferation and survival, in the nuclear fraction. These results have significant implications for understanding the role of cell proliferation signaling pathways in intestinal epithelial cells.

  9. ER stress stimulates production of the key antimicrobial peptide, cathelicidin, by forming a previously unidentified intracellular S1P signaling complex.

    PubMed

    Park, Kyungho; Ikushiro, Hiroko; Seo, Ho Seong; Shin, Kyong-Oh; Kim, Young Il; Kim, Jong Youl; Lee, Yong-Moon; Yano, Takato; Holleran, Walter M; Elias, Peter; Uchida, Yoshikazu

    2016-03-08

    We recently identified a previously unidentified sphingosine-1-phosphate (S1P) signaling mechanism that stimulates production of a key innate immune element, cathelicidin antimicrobial peptide (CAMP), in mammalian cells exposed to external perturbations, such as UVB irradiation and other oxidative stressors that provoke subapoptotic levels of endoplasmic reticulum (ER) stress, independent of the well-known vitamin D receptor-dependent mechanism. ER stress increases cellular ceramide and one of its distal metabolites, S1P, which activates NF-κB followed by C/EBPα activation, leading to CAMP production, but in a S1P receptor-independent fashion. We now show that S1P activates NF-κB through formation of a previously unidentified signaling complex, consisting of S1P, TRAF2, and RIP1 that further associates with three stress-responsive proteins; i.e., heat shock proteins (GRP94 and HSP90α) and IRE1α. S1P specifically interacts with the N-terminal domain of heat shock proteins. Because this ER stress-initiated mechanism is operative in both epithelial cells and macrophages, it appears to be a universal, highly conserved response, broadly protective against diverse external perturbations that lead to increased ER stress. Finally, these studies further illuminate how ER stress and S1P orchestrate critical stress-specific signals that regulate production of one protective response by stimulating production of the key innate immune element, CAMP.

  10. One pot synthesis of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging.

    PubMed

    Yang, Lei; Jiang, Weihua; Qiu, Lipeng; Jiang, Xuewei; Zuo, Daiying; Wang, Dongkai; Yang, Li

    2015-04-14

    Strong blue fluorescent polyethylene glycol (PEG) anchored carbon nitride dots (CDs@PEG) with a high quantum yield (QY) of 75.8% have been synthesized by a one step hydrothermal treatment. CDs with a diameter of ca. 6 nm are well dispersed in water and present a graphite-like structure. Photoluminescence (PL) studies reveal that CDs display excitation-dependent behavior and are stable under various test conditions. Based on the as-prepared CDs, we designed novel cell nucleus targeting imaging carbon dots functionalized with a nuclear localization signal (NLS) peptide. The favourable biocompatibilities of CDs and NLS modified CDs (NLS-CDs) are confirmed by in vitro cytotoxicity assays. Importantly, intracellular localization experiments in MCF7 and A549 cells demonstrate that NLS-CDs could be internalized in the nucleus and show blue light, which indicates that CDs may serve as cell nucleus imaging probes.

  11. One pot synthesis of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Jiang, Weihua; Qiu, Lipeng; Jiang, Xuewei; Zuo, Daiying; Wang, Dongkai; Yang, Li

    2015-03-01

    Strong blue fluorescent polyethylene glycol (PEG) anchored carbon nitride dots (CDs@PEG) with a high quantum yield (QY) of 75.8% have been synthesized by a one step hydrothermal treatment. CDs with a diameter of ca. 6 nm are well dispersed in water and present a graphite-like structure. Photoluminescence (PL) studies reveal that CDs display excitation-dependent behavior and are stable under various test conditions. Based on the as-prepared CDs, we designed novel cell nucleus targeting imaging carbon dots functionalized with a nuclear localization signal (NLS) peptide. The favourable biocompatibilities of CDs and NLS modified CDs (NLS-CDs) are confirmed by in vitro cytotoxicity assays. Importantly, intracellular localization experiments in MCF7 and A549 cells demonstrate that NLS-CDs could be internalized in the nucleus and show blue light, which indicates that CDs may serve as cell nucleus imaging probes.Strong blue fluorescent polyethylene glycol (PEG) anchored carbon nitride dots (CDs@PEG) with a high quantum yield (QY) of 75.8% have been synthesized by a one step hydrothermal treatment. CDs with a diameter of ca. 6 nm are well dispersed in water and present a graphite-like structure. Photoluminescence (PL) studies reveal that CDs display excitation-dependent behavior and are stable under various test conditions. Based on the as-prepared CDs, we designed novel cell nucleus targeting imaging carbon dots functionalized with a nuclear localization signal (NLS) peptide. The favourable biocompatibilities of CDs and NLS modified CDs (NLS-CDs) are confirmed by in vitro cytotoxicity assays. Importantly, intracellular localization experiments in MCF7 and A549 cells demonstrate that NLS-CDs could be internalized in the nucleus and show blue light, which indicates that CDs may serve as cell nucleus imaging probes. Electronic supplementary information (ESI) available: The formulation of PEGylation CD optimization procedure, Table S1 and Fig. S1-S7. See DOI: 10.1039/c5nr01080

  12. Modulation of Glucagon-like Peptide-1 (GLP-1) Potency by Endocannabinoid-like Lipids Represents a Novel Mode of Regulating GLP-1 Receptor Signaling.

    PubMed

    Cheng, Yu-Hong; Ho, Mei-Shang; Huang, Wei-Ting; Chou, Ying-Ting; King, Klim

    2015-06-05

    Glucagon-like peptide-1 (GLP-1) analogs are approved for treatment of type 2 diabetes and are in clinical trials for disorders including neurodegenerative diseases. GLP-1 receptor (GLP-1R) is expressed in many peripheral and neuronal tissues and is activated by circulating GLP-1. Other than food intake, little is known about factors regulating GLP-1 secretion. Given a normally basal circulating level of GLP-1, knowledge of mechanisms regulating GLP-1R signaling, which has diverse functions in extrapancreatic tissues, remains elusive. In this study, we found that the potency of GLP-1, not exendin 4, is specifically enhanced by the endocannabinoid-like lipids oleoylethanolamide (OEA) and 2-oleoylglycerol but not by stearoylethanolamide (SEA) or palmitoylethanolamide. 9.2 μM OEA enhances the potency of GLP-1 in stimulating cAMP production by 10-fold but does not affect its receptor binding affinity. OEA and 2-oleoylglycerol, but not SEA, bind to GLP-1 in a dose-dependent and saturable manner. OEA but not SEA promoted GLP-1(7-36) amide to trypsin inactivation in a dose-dependent and saturable manner. Susceptibility of GLP-1(7-36) amide to trypsin inactivation is increased 40-fold upon binding to OEA but not to SEA. Our findings indicate that OEA binds to GLP-1(7-36) amide and enhances the potency that may result from a conformational change of the peptide. In conclusion, modulating potency of GLP-1 by physiologically regulated endocannabinoid-like lipids allows GLP-1R signaling to be regulated spatiotemporally at a constant basal GLP-1 level.

  13. Enhanced production of secretory glycoprotein VSTM1-v2 with mouse IgGκ signal peptide in optimized HEK293F transient transfection.

    PubMed

    Liu, Huihui; Zou, Xiajuan; Li, Ting; Wang, Xiaolin; Yuan, Wanqiong; Chen, Yingyu; Han, Wenling

    2016-02-01

    VSTM1-v2 is a secretory glycoprotein identified by our laboratory. Our previous study revealed that VSTM1-v2 could promote differentiation and activation of Th17 cells. To explore the role of VSTM1-v2 in the immune system further, a source of abundant high-quality recombinant protein is warranted. However, high-level expression of bioactive VSTM1-v2 is difficult due to its weak secretion capacity. To obtain sufficient recombinant VSTM1-v2, we developed an improved expression and purification system by replacing the native signal peptide with a mouse IgGκ signal peptide that did not alter the protein cleavage site. We also optimized parameters for a transient gene expression system in HEK293F cells suspended in serum-free media with polyethyleneimine. Finally, 3.6 mg/L recombinant VSTM1-v2 protein with N-glycosylation and no less than 95% purity was obtained through one-step purification with Ni affinity chromatography. The final yield after purification was increased by more than 7-fold compared to the yield from our previously reported HEK293T system (from 0.5 mg/L to 3.6 mg/L). More importantly, VSTM1-v2 protein exhibited excellent bioactivity. In conclusion, the improved system is not only a dependable source of abundant bioactive VSTM1-v2 for functional studies but also demonstrates a highly efficient approach for enhancing the production of proteins in a short time period, especially for secretory proteins with poor yields.

  14. Signal transduction by the formyl peptide receptor. Studies using chimeric receptors and site-directed mutagenesis define a novel domain for interaction with G-proteins.

    PubMed

    Amatruda, T T; Dragas-Graonic, S; Holmes, R; Perez, H D

    1995-11-24

    The binding of small peptide ligands to high affinity chemoattractant receptors on the surface of neutrophils and monocytes leads to activation of heterotrimeric G-proteins, stimulation of phosphatidylinositol-phospholipase C (PI-PLC), and subsequently to the inflammatory response. It was recently shown (Amatruda, T. T., Gerard, N. P., Gerard, C., and Simon, M. I. (1993) J. Biol. Chem. 268, 10139-10144) that the receptor for the chemoattractant peptide C5a specifically interacts with G alpha 16, a G-protein alpha subunit of the Gq class, to trigger ligand-dependent stimulation of PI-PLC in transfected cells. In order to further characterize this chemoattractant peptide signal transduction pathway, we transfected cDNAs encoding the formylmethionylleucylphenylalanine receptor (fMLPR) into COS cells and measured the production of inositol phosphates. Ligand-dependent activation of PI-PLC was seen in COS cells transfected with the fMLPR and G alpha 16 and stimulated with fMLP but not in cells transfected with receptor alone or with receptor plus G alpha q. Chimeric receptors in which the N-terminal extracellular domain, the second intracellular domain, or the intracellular C-terminal tail of the fMLP receptor was replaced with C5a receptor domains (Perez, H. D., Holmes, R., Vilander, L. R., Adams, R. R., Manzana, W., Jolley, D., and Andrews, W. H. (1993) J. Biol. Chem. 268, 2292-2295) were capable of ligand-dependent activation of PI-PLC when co-transfected with G alpha 16. A chimeric receptor exchanging the first intracellular domain of the fMLPR was constitutively activated, stimulating PI-PLC in the absence of ligand. Constitutive activation of PI-PLC, to a level 233% of that seen in cells transfected with wild-type fMLP receptors, was dependent on G alpha 16. Site-directed mutagenesis of the first intracellular domain of the fMLPR (amino acids 54-62) reveals this to be a domain necessary for ligand-dependent activation of G alpha 16. These results suggest that

  15. The proliferative effects of Pyropia yezoensis peptide on IEC-6 cells are mediated through the epidermal growth factor receptor signaling pathway.

    PubMed

    Lee, Min-Kyeong; Kim, In-Hye; Choi, Youn-Hee; Choi, Jeong-Wook; Kim, Young-Min; Nam, Taek-Jeong

    2015-04-01

    For a number of years, seaweed has been used as a functional food in Asian countries, particularly in Korea, Japan and China. Pyropia yezoensis is a marine red alga that has potentially beneficial biological activities. In this study, we examined the mechanisms through which a Pyropia yezoensis peptide [PYP1 (1-20)] induces the proliferation of IEC-6 cells, a rat intestinal epithelial cell line, and the involvement of the epidermal growth factor receptor (EGFR) signaling pathway. First, cell viability assay revealed that PYP1 (1-20) induced cell proliferation in a concentration-dependent manner. Subsequently, we examined the mechanisms responsible for this induction of proliferation induced by PYP1 (1-20). EGFR is widely expressed in mammalian epithelial tissues, and the binding of this ligand affects a variety of cell physiological parameters, such as cell growth and proliferation. PYP1 (1-20) increased the expression of EGFR, Shc, growth factor receptor-bound protein 2 (Grb2) and son of sevenless (SOS). EGFR also induced the activation of the Ras signaling pathway through Raf, MEK and extracellular signal-regulated kinase (ERK) phosphorylation. In addition, cell cycle analysis revealed the expression of cell cycle-related proteins. The results demonstrated an increased number of cells in the G1 phase and an enhanced cell proliferation. In addition, the upregulation of cyclin D, cyclin E, Cdk2, Cdk4 and Cdk6 was observed accompanied by a decreased in p21 and p27 expression. These findings suggest that PYP1 (1-20) stimulates the proliferation of rat IEC-6 cells by activating the EGFR signaling pathway. Therefore, PYP1 (1-20) may be a potential source for the development of bio-functional foods which promotes the proliferation of intestinal epithelial cells.

  16. Pyropia yezoensis peptide promotes collagen synthesis by activating the TGF-β/Smad signaling pathway in the human dermal fibroblast cell line Hs27

    PubMed Central

    Kim, Cho-Rong; Kim, Young-Min; Lee, Min-Kyeong; Kim, In-Hye; Choi, Youn-Hee; Nam, Taek-Jeong

    2017-01-01

    Pyropia yezoensis (P. yezoensis) is a marine algae that exhibits antioxidant, anti-inflammatory, antitumor and anti-aging activities. In this study, we investigated the effects of the P. yezoensis peptide, PYP1-5, on collagen synthesis in the human dermal fibroblast cell line Hs27. Skin aging is related to reduced collagen production and the activities of multiple enzymes, including matrix metalloproteinases (MMPs), which degrade collagen structure in the dermis, and tissue inhibitor of tissue inhibitor of metalloproteinases (TIMPs), which inhibit the action of MMPs. While collagen synthesis is associated with a number of signaling pathways, we examined the increased collagen synthesis via the upregulation of the transforming growth factor-β (TGF-β)/Smad signaling pathway. Using MTS assay, we found that PYP1-5 did not affect cell viability. Moreover, we confirmed that PYP1-5 increased type 1 collagen expression using enzyme-linked immunosorbent assay (ELISA), western blot analysis and quantitative PCR. In addition, we identified changes in various enzymes, as well as the mechanisms behind the PYP1-5-induced collagen synthesis. PYP1-5 decreased the MMP-1 protein and mRNA levels, and increased the TIMP-1 and TIMP-2 protein and mRNA levels. In addition, PYP1-5 activated the TGF-β/Smad signaling pathway, which increased TGF-β1, p-Smad2 and p-Smad3 expression, while inhibiting Smad7, an inhibitor of the TGF-β/Smad pathway. Furthermore, PYP1-5 upregulated transcription factor specificity protein 1 (Sp1) expression, which is reportedly involved in type 1 collagen expression. These findings indicate that PYP1-5 activates the TGF-β/Smad signaling pathway, which subsequently induces collagen synthesis in Hs27 cells. PMID:27878236

  17. Discovery of a novel splice variant of Fcar (CD89) unravels sequence segments necessary for efficient secretion: A story of bad signal peptides and good ones that nevertheless do not make it

    PubMed Central

    Lua, Wai-Heng; Ling, Wei-Li; Su, Chinh Tran-To; Yeo, Joshua Yi

    2017-01-01

    ABSTRACT The IgA receptor, Fcar (CD89) consists of 5 sequence segments: 2 segments (S1, S2) forming the potential signal peptide, 2 extracellular EC domains that include the IgA binding site, and the transmembrane and cytoplasmic tail (TM/C) region. Numerous Fcar splice variants have been reported with various combinations of the sequence segments mentioned above. Here, we report a novel splice variant termed variant APD isolated from a healthy volunteer that lacks only the IgA-binding EC1 domain. Despite possessing the complete signal peptide S1+S2, the variant APD is only found in the intracellular space whereas the wild-type variant 1 is efficiently secreted and variant 4 leaks to the extracellular space. Further mutational experiments involving signal peptide replacements, cleavage site modifications, and studies on alternative isoforms demonstrate that despite the completeness of the signal peptide motif, the presence of the EC1 domain is essential for efficient extracellular export. PMID:28103138

  18. Amyloid β peptide directly impairs pineal gland melatonin synthesis and melatonin receptor signaling through the ERK pathway.

    PubMed

    Cecon, Erika; Chen, Min; Marçola, Marina; Fernandes, Pedro A C; Jockers, Ralf; Markus, Regina P

    2015-06-01

    Melatonin is the hormone produced by the pineal gland known to regulate physiologic rhythms and to display immunomodulatory and neuroprotective properties. It has been reported that Alzheimer disease patients show impaired melatonin production and altered expression of the 2 G protein-coupled melatonin receptors (MTRs), MT₁ and MT₂, but the underlying mechanisms are not known. Here we evaluated whether this dysfunction of the melatonergic system is directly caused by amyloid β peptides (Aβ(1-40) and Aβ(1-42)). Aβ treatment of rat pineal glands elicited an inflammatory response within the gland, evidenced by the up-regulation of 52 inflammatory genes, and decreased the production of melatonin up to 75% compared to vehicle-treated glands. Blocking NF-κB activity prevented this effect. Exposure of HEK293 cells stably expressing recombinant MT₁ or MT₂ receptors to Aβ lead to a 40% reduction in [(125)I]iodomelatonin binding to MT₁. ERK1/2 activation triggered by MTRs, but not by the β₂-adrenergic receptor, was markedly impaired by Aβ in HEK293 transfected cells, as well as in primary rat endothelial cells expressing endogenous MTRs. Our data reveal the melatonergic system as a new target of Aβ, opening new perspectives to Alzheimer disease diagnosis and therapeutic intervention.

  19. Selective targeting of glucagon-like peptide-1 signalling as a novel therapeutic approach for cardiovascular disease in diabetes

    PubMed Central

    Tate, Mitchel; Chong, Aaron; Robinson, Emma; Green, Brian D; Grieve, David J

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone whose glucose-dependent insulinotropic actions have been harnessed as a novel therapy for glycaemic control in type 2 diabetes. Although it has been known for some time that the GLP-1 receptor is expressed in the CVS where it mediates important physiological actions, it is only recently that specific cardiovascular effects of GLP-1 in the setting of diabetes have been described. GLP-1 confers indirect benefits in cardiovascular disease (CVD) under both normal and hyperglycaemic conditions via reducing established risk factors, such as hypertension, dyslipidaemia and obesity, which are markedly increased in diabetes. Emerging evidence indicates that GLP-1 also exerts direct effects on specific aspects of diabetic CVD, such as endothelial dysfunction, inflammation, angiogenesis and adverse cardiac remodelling. However, the majority of studies have employed experimental models of diabetic CVD and information on the effects of GLP-1 in the clinical setting is limited, although several large-scale trials are ongoing. It is clearly important to gain a detailed knowledge of the cardiovascular actions of GLP-1 in diabetes given the large number of patients currently receiving GLP-1-based therapies. This review will therefore discuss current understanding of the effects of GLP-1 on both cardiovascular risk factors in diabetes and direct actions on the heart and vasculature in this setting and the evidence implicating specific targeting of GLP-1 as a novel therapy for CVD in diabetes. PMID:25231355

  20. Characterization, tissue distribution, and regulation of agouti-related protein (AgRP), cocaine- and amphetamine-regulated transcript (CART) and neuropeptide Y (NPY) in Atlantic salmon (Salmo salar).

    PubMed

    Murashita, Koji; Kurokawa, Tadahide; Ebbesson, Lars O E; Stefansson, Sigurd O; Rønnestad, Ivar

    2009-06-01

    Key peptide hormones involved in the control of appetite in vertebrates were identified, their genes characterized and their regulation studied in Atlantic salmon: two agouti-related proteins (AgRP), cocaine- and amphetamine-regulated transcript (CART) and neuropeptide Y (NPY). The AgRP-1 and AgRP-2 genes encode prepro-proteins of 142- and 117-amino acids, respectively. The deduced AgRP-2 protein has 10 cysteine residues in the C-terminal polycysteine domain, while the AgRP-1 lacks the 6th and 7th cysteine residues observed in other species. AgRP-1 was principally expressed in the pituitary and skin, while AgRP-2 was highly expressed in the mid-gut, red muscle and gonads. The CART gene, encoding 118-amino acids, was strongly expressed in the brain and eye. In addition to salmon CART, we identified three to six variants of the CART gene in lower vertebrates by mining available databases. The salmon NPY gene, encoding 100-amino acids, was mainly expressed in the brain and eye. AgRP-1 and CART mRNA levels in the brain decreased after 6 days of fasting while AgRP-2 and NPY showed no significant change, suggesting that AgRP-1 and CART are involved in feeding regulation in Atlantic salmon. The identification of multiple variants of these appetite-regulating genes emphasizes the importance to further investigate the complex regulation of these genes.

  1. An uncleaved signal peptide directs the Malus xiaojinensis iron transporter protein Mx IRT1 into the ER for the PM secretory pathway.

    PubMed

    Zhang, Peng; Tan, Song; Berry, James O; Li, Peng; Ren, Na; Li, Shuang; Yang, Guang; Wang, Wei-Bing; Qi, Xiao-Ting; Yin, Li-Ping

    2014-11-07

    Malus xiaojinensis iron-regulated transporter 1 (Mx IRT1) is a highly effective inducible iron transporter in the iron efficient plant Malus xiaojinensis. As a multi-pass integral plasma membrane (PM) protein, Mx IRT1 is predicted to consist of eight transmembrane domains, with a putative N-terminal signal peptide (SP) of 1-29 amino acids. To explore the role of the putative SP, constructs expressing Mx IRT1 (with an intact SP) and Mx DsIRT1 (with a deleted SP) were prepared for expression in Arabidopsis and in yeast. Mx IRT1 could rescue the iron-deficiency phenotype of an Arabidopsis irt1 mutant, and complement the iron-limited growth defect of the yeast mutant DEY 1453 (fet3fet4). Furthermore, fluorescence analysis indicated that a chimeric Mx IRT1-eGFP (enhanced Green Fluorescent Protein) construct was translocated into the ER (Endoplasmic reticulum) for the PM sorting pathway. In contrast, the SP-deleted Mx DsIRT1 could not rescue either of the mutant phenotypes, nor direct transport of the GFP signal into the ER. Interestingly, immunoblot analysis indicated that the SP was not cleaved from the mature protein following transport into the ER. Taken together, data presented here provides strong evidence that an uncleaved SP determines ER-targeting of Mx IRT1 during the initial sorting stage, thereby enabling the subsequent transport and integration of this protein into the PM for its crucial role in iron uptake.

  2. Sensitive immunosensor for tumor necrosis factor α based on dual signal amplification of ferrocene modified self-assembled peptide nanowire and glucose oxidase functionalized gold nanorod.

    PubMed

    Sun, Zhifang; Deng, Liu; Gan, Hao; Shen, Rujuan; Yang, Minghui; Zhang, Yi

    2013-01-15

    Sensitive electrochemical immunosensor for the detection of protein biomarker tumor necrosis factor α (TNF-α) was reported that uses ferrocene carboxylic acid (Fc) functionalized self-assembled peptide nanowire (Fc-PNW) as sensor platform and glucose oxidase (GOx) modified gold nanorod (GNR) as label. Greatly enhanced sensitivity is achieved based on a dual signal amplification strategy: first, the synthesized Fc-PNW used as the sensor platform increased the loading of primary anti-TNF-α antibody (Ab(1)) onto electrode surface due to its large surface area. At the same time, the Fc moiety on the nanowire is used as a mediator for GOx to catalyze the glucose reaction. Second, multiple GOx and secondary anti-TNF-α antibody (Ab(2)) molecules are bounded onto each GNR to increase the sensitivity of the immunosensor. After the preparation of the immunosensor based on the traditional sandwich protocol, the response of the immunosensor towards glucose was used as a signal to differentiate various concentrations of TNF-α. The resulting immunosensor has high sensitivity, wide linear range (0.005-10ng/mL) and good selectivity. This immunosensor preparation strategy is a promising platform for clinical screening of protein biomarkers.

  3. Signaling from Glia and Cholinergic Neurons Controls Nutrient-Dependent Production of an Insulin-like Peptide for Drosophila Body Growth.

    PubMed

    Okamoto, Naoki; Nishimura, Takashi

    2015-11-09

    The insulin-like peptide (ILP) family plays key biological roles in the control of body growth. Although the functions of ILPs are well understood, the mechanisms by which organisms sense their nutrient status and thereby control ILP production remain largely unknown. Here, we show that signaling relay and feedback mechanisms control the nutrient-dependent expression of Drosophila ILP5 (Dilp5). The expression of dilp5 in brain insulin-producing cells (IPCs) is negatively regulated by the transcription factor FoxO. Glia-derived Dilp6 remotely regulates the FoxO activity in IPCs, primarily through Jeb secreted by cholinergic neurons. Dilp6 production by surface glia is amplified by cellular response to circulating Dilps derived from IPCs, in concert with amino acid signals. The induction of dilp5 is critical for sustaining body growth under restricted food conditions. These results provide a molecular framework that explains how the production of an endocrine hormone in a specific tissue is coordinated with environmental conditions.

  4. The guanylyl cyclase-A receptor transduces an atrial natriuretic peptide/ATP activation signal in the absence of other proteins.

    PubMed

    Wong, S K; Ma, C P; Foster, D C; Chen, A Y; Garbers, D L

    1995-12-22

    Attempts to activate partially purified preparations of the guanylyl cyclase-A (GC-A) receptor with atrial natriuretic peptide (ANP) have previously failed, leading to speculation that essential cofactors are lost during purification procedures. The receptor was modified to contain the FLAG epitope (DYKDDDDK), expressed in Sf9 cells, and purified to apparent homogeneity (4.3 mumol cyclic GMP formed/min/mg protein; 5.8 mmol 125I-ANP binding site/mg protein) by a combination of immunoaffinity, Q-Sepharose FF, and wheat germ agglutinin batch chromatography. High initial protein/detergent ratios, the presence of glycerol (40%), and the inclusion of protein phosphatase inhibitors in all buffers resulted in the purification of a receptor that continued to transduce the ANP/ATP activation signal. Both native and purified GC-A contained a single class of high affinity ANP binding sites (Kd = 60 pM) and an equivalent EC50 for ATP (0.3 mM). Positive cooperativity as a function of MnGTP was retained during purification. Thus, GC-A is capable of transducing a ligand binding signal in the absence of other proteins.

  5. Design and construction of novel molecular conjugates for signal amplification (I): conjugation of multiple horseradish peroxidase molecules to immunoglobulin via primary amines on lysine peptide chains.

    PubMed

    Dhawan, Subhash

    2002-12-01

    Immunoconjugates are widely used for indirect detection of analytes (such as antibodies or antigens) in a variety of immunoassays. However, the availability of functional groups such as primary amines or free sulfhydryls in an immunoglobulin molecule is the limiting factor for optimal conjugation and, therefore, determines the sensitivity of an assay. In the present study, an N-terminal bromoacetylated 20 amino acid peptide containing 20 lysine residues was conjugated to N-succinimidyl-S-acetylthioacetate (SATA)-modified IgG or free sulfhydryl groups on 2-mercaptoethylamine (2-MEA)-reduced IgG molecules via a thioether (S[bond]CH(2)CONH) linkage to introduce multiple reactive primary amines per IgG. These primary amines were then covalently coupled with maleimide-activated horseradish peroxidase (HRP). The poly-HRP-antibody conjugates thus generated demonstrated greater than 15-fold signal amplification upon reaction with orthophenyldiamine substrate. The poly-HRP-antibody conjugates efficiently detected human immunodeficiency virus (HIV)-1 antibodies in plasma specimens with significantly higher sensitivity than conventionally prepared HRP-antibody conjugates in an HIV-1 solid-phase enzyme immunoassay and Western blot analysis. The signal amplification techniques reported here could have the potential for development of highly sensitive immunodiagnostic assay systems.

  6. Activation of the mTOR signaling pathway in breast cancer MCF‑7 cells by a peptide derived from Porphyra yezoensis.

    PubMed

    Park, Su-Jin; Ryu, Jina; Kim, In-Hye; Choi, Youn-Hee; Nam, Taek-Jeong

    2015-01-01

    Seaweeds have beneficial nutritional and medicinal properties. Several studies have examined the polysaccharides found in the extracts of Porphyra yezoensis (PPY), although the effects of particular proteins have not been reported, and peptides from the marine alga PPY function in antitumor cell signaling, although the precise mechanism is not well understood. Apoptosis plays an important role in cell death, which affects cell proliferation. Generally, regulation of apoptosis requires participation of the p53 and Bcl-2 family by the mammalian target of rapamycin (mTOR) pathway, which is activated in a variety of malignant cancers. Autophagy is another signaling pathway that leads to degradation of cellular components by lysosomal activity, and the relationship between autophagy and cancer has been of interest for several years. The present study investigated mTOR pathway activation in MCF-7 cells treated with 500 ng PPY for 24 h by assessing LC3 as a monitor of autophagy. We observed that the p53/NF-κB and mTOR pathways were affected by PPY, which contributes to our understanding of the functional relationship between the Bcl-2 family and mTOR under apoptotic conditions in MCF-7 cells.

  7. An Uncleaved Signal Peptide Directs the Malus xiaojinensis Iron Transporter Protein Mx IRT1 into the ER for the PM Secretory Pathway

    PubMed Central

    Zhang, Peng; Tan, Song; Berry, James O.; Li, Peng; Ren, Na; Li, Shuang; Yang, Guang; Wang, Wei-Bing; Qi, Xiao-Ting; Yin, Li-Ping

    2014-01-01

    Malus xiaojinensis iron-regulated transporter 1 (Mx IRT1) is a highly effective inducible iron transporter in the iron efficient plant Malus xiaojinensis. As a multi-pass integral plasma membrane (PM) protein, Mx IRT1 is predicted to consist of eight transmembrane domains, with a putative N-terminal signal peptide (SP) of 1–29 amino acids. To explore the role of the putative SP, constructs expressing Mx IRT1 (with an intact SP) and Mx DsIRT1 (with a deleted SP) were prepared for expression in Arabidopsis and in yeast. Mx IRT1 could rescue the iron-deficiency phenotype of an Arabidopsis irt1 mutant, and complement the iron-limited growth defect of the yeast mutant DEY 1453 (fet3fet4). Furthermore, fluorescence analysis indicated that a chimeric Mx IRT1-eGFP (enhanced Green Fluorescent Protein) construct was translocated into the ER (Endoplasmic reticulum) for the PM sorting pathway. In contrast, the SP-deleted Mx DsIRT1 could not rescue either of the mutant phenotypes, nor direct transport of the GFP signal into the ER. Interestingly, immunoblot analysis indicated that the SP was not cleaved from the mature protein following transport into the ER. Taken together, data presented here provides strong evidence that an uncleaved SP determines ER-targeting of Mx IRT1 during the initial sorting stage, thereby enabling the subsequent transport and integration of this protein into the PM for its crucial role in iron uptake. PMID:25387073

  8. The Inorganic Side of NGF: Copper(II) and Zinc(II) Affect the NGF Mimicking Signaling of the N-Terminus Peptides Encompassing the Recognition Domain of TrkA Receptor

    PubMed Central

    Pandini, Giuseppe; Satriano, Cristina; Pietropaolo, Adriana; Gianì, Fiorenza; Travaglia, Alessio; La Mendola, Diego; Nicoletti, Vincenzo G.; Rizzarelli, Enrico

    2016-01-01

    The nerve growth factor (NGF) N-terminus peptide, NGF(1–14), and its acetylated form, Ac-NGF(1–14), were investigated to scrutinize the ability of this neurotrophin domain to mimic the whole protein. Theoretical calculations demonstrated that non-covalent forces assist the molecular recognition of TrkA receptor by both peptides. Combined parallel tempering/docking simulations discriminated the effect of the N-terminal acetylation on the recognition of NGF(1–14) by the domain 5 of TrkA (TrkA-D5). Experimental findings demonstrated that both NGF(1–14) and Ac-NGF(1–14) activate TrkA signaling pathways essential for neuronal survival. The NGF-induced TrkA internalization was slightly inhibited in the presence of Cu2+ and Zn2+ ions, whereas the metal ions elicited the NGF(1–14)-induced internalization of TrkA and no significant differences were found in the weak Ac-NGF(1–14)-induced receptor internalization. The crucial role of the metals was confirmed by experiments with the metal-chelator bathocuproine disulfonic acid, which showed different inhibitory effects in the signaling cascade, due to different metal affinity of NGF, NGF(1–14) and Ac-NGF(1–14). The NGF signaling cascade, activated by the two peptides, induced CREB phosphorylation, but the copper addition further stimulated the Akt, ERK and CREB phosphorylation in the presence of NGF and NGF(1–14) only. A dynamic and quick influx of both peptides into PC12 cells was tracked by live cell imaging with confocal microscopy. A significant role of copper ions was found in the modulation of peptide sub-cellular localization, especially at the nuclear level. Furthermore, a strong copper ionophoric ability of NGF(1–14) was measured. The Ac-NGF(1–14) peptide, which binds copper ions with a lower stability constant than NGF(1–14), exhibited a lower nuclear localization with respect to the total cellular uptake. These findings were correlated to the metal-induced increase of CREB and BDNF

  9. Perception of the Arabidopsis Danger Signal Peptide 1 Involves the Pattern Recognition Receptor AtPEPR1 and Its Close Homologue AtPEPR2*

    PubMed Central

    Krol, Elzbieta; Mentzel, Tobias; Chinchilla, Delphine; Boller, Thomas; Felix, Georg; Kemmerling, Birgit; Postel, Sandra; Arents, Michael; Jeworutzki, Elena; Al-Rasheid, Khaled A. S.; Becker, Dirk; Hedrich, Rainer

    2010-01-01

    Plasma membrane-borne pattern recognition receptors, which recognize microbe-associated molecular patterns and endogenous damage-associated molecular patterns, provide the first line of defense in innate immunity. In plants, leucine-rich repeat receptor kinases fulfill this role, as exemplified by FLS2 and EFR, the receptors for the microbe-associated molecular patterns flagellin and elongation factor Tu. Here we examined the perception of the damage-associated molecular pattern peptide 1 (AtPep1), an endogenous peptide of Arabidopsis identified earlier and shown to be perceived by the leucine-rich repeat protein kinase PEPR1. Using seedling growth inhibition, elicitation of an oxidative burst and induction of ethylene biosynthesis, we show that wild type plants and the pepr1 and pepr2 mutants, affected in PEPR1 and in its homologue PEPR2, are sensitive to AtPep1, but that the double mutant pepr1/pepr2 is completely insensitive. As a central body of our study, we provide electrophysiological evidence that at the level of the plasma membrane, AtPep1 triggers a receptor-dependent transient depolarization through activation of plasma membrane anion channels, and that this effect is absent in the double mutant pepr1/pepr2. The double mutant also fails to respond to AtPep2 and AtPep3, two distant homologues of AtPep1 on the basis of homology screening, implying that the PEPR1 and PEPR2 are responsible for their perception too. Our findings provide a basic framework to study the biological role of AtPep1-related danger signals and their cognate receptors. PMID:20200150

  10. The natriuretic peptides.

    PubMed

    Baxter, Gary F

    2004-03-01

    The natriuretic peptides are a family of widely distributed, but evolutionarily conserved, polypeptide mediators that exert a range of actions throughout the body. In cardiovascular homeostasis, the endocrine roles of the cardiac-derived atrial and B-type natriuretic peptide (ANP and BNP) in regulating central fluid volume and blood pressure have been recognised for two decades. However, there is a growing realisation that natriuretic peptide actions go far beyond their volume regulating effects. These pleiotropic actions include local (autocrine/paracrine) regulatory actions of ANP and BNP within the heart, and of another natriuretic peptide, CNP, within the vessel wall. Effects on function and growth of the local tissue environment are likely to be of great importance, especially in disease states where tissue and circulating levels of ANP and BNP rise markedly. At present, the relevance of other natriuretic peptides (notably uroguanylin and DNP) to human physiology and pathology remain uncertain. Other articles in this issue of Basic Research in Cardiology review the molecular physiology of natriuretic peptide signalling, with a particular emphasis on the lessons from genetically targetted mice; the vascular activity of natriuretic peptides; the regulation and roles of natriuretic peptides in ischaemic myocardium; and the diagnostic, prognostic and therapeutic roles of natriuretic peptides in heart failure.

  11. Dose dependent effect of C-type natriuretic peptide signaling in glycosaminoglycan synthesis during TGF-β1 induced chondrogenic differentiation of mesenchymal stem cells.

    PubMed

    Tezcan, Berna; Serter, Sema; Kiter, Esat; Tufan, A Cevik

    2010-10-01

    Recent investigations credited important roles to C-type natriuretic peptide (CNP) signaling during chondrogenesis. This study investigated the putative role of CNP in transforming growth factor (TGF)-β1 induced in vitro chondrogenic differentiation of mesenchymal stem cells (MSCs) in pellet culture. MSCs were derived from human trabecular bone and were characterized on the basis of their cell surface antigens and adipogenic, osteogenic, and chondrogenic differentiation potential. TGF-β1 induced chondrogenic differentiation and glycosaminoglycan (GAG) synthesis was analyzed on the basis of basic histology, collagen type II, Sox 9 and aggrecan expressions, and Alcian blue staining. Results revealed that human trabecular bone-derived MSCs express CNP and NPR-B analyzed on the basis of RT-PCR and immunohistochemistry. In pellet cultures of MSCs TGF-β1 successfully induced chondrogenic differentiation and GAG synthesis. RT-PCR analyses of both CNP and NPR-B during this process revealed an activation of this signaling pathway in response to TGF-β1. Similar cultures induced with TGF-β1 and treated with different doses of CNP showed that CNP supplementation at 10(-8) and 10(-7) M concentrations significantly increased GAG synthesis in a dose dependent manner, whereas at 10(-6) M concentration this stimulatory effect was diminished. In conclusion, CNP/NPR-B signaling pathway is activated during TGF-β1 induced chondrogenic differentiation of human trabecular bone-derived MSCs and may strongly be involved in GAG synthesis during this process. This effect is likely to be a dose-dependent effect.

  12. The shrimp IKK-NF-κB signaling pathway regulates antimicrobial peptide expression and may be subverted by white spot syndrome virus to facilitate viral gene expression.

    PubMed

    Wang, Pei-Hui; Gu, Zhi-Hua; Wan, Ding-Hui; Liu, Bo-Du; Huang, Xian-De; Weng, Shao-Ping; Yu, Xiao-Qiang; He, Jian-Guo

    2013-09-01

    The IκB kinases IKKα and IKKβ and the IKK-related kinases TANK-binding kinase 1 (TBK1) and IKKε are the master regulators of the NF-κB signaling pathway. Although this pathway has been extensively studied in mammals, less attention has been paid in crustaceans, which have significant economic value. Here, we report the cloning and functional studies of two IKK homologs, LvIKKβ and LvIKKε, from Pacific white shrimp, Litopenaeus vannamei. LvIKKβ and LvIKKε mRNAs are widely expressed in different tissues and are responsive to white spot syndrome virus (WSSV) infection. When overexpressed in Drosophila S2 cells, LvIKKβ but not LvIKKε activates the promoters of NF-κB pathway-controlled antimicrobial peptide genes (AMPs), such as the Penaeidins (PENs). In HEK 293T cells, both LvIKKβ and LvIKKε activate an NF-κB reporter. The silencing of LvIKKβ or LvIKKε using double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) decreases the expression of L. vannamei AMPs, including PENs, lysozyme and crustins. Intriguingly, LvIKKβ- or LvIKKε-silenced L. vannamei are resistant to WSSV infection. We hypothesized that successful infection with WSSV requires the activation of the IKK-NF-κB signaling pathway to modulate viral gene expression. We constructed luciferase reporters for 147 WSSV genes. By screening, we found that the WSV051, WSV059, WSV069, WSV083, WSV090, WSV107, WSV244, WSV303, WSV371 and WSV445 promoters can be activated by LvIKKβ or LvIKKε in Drosophila S2 cells. Taken together, our results reveal that LvIKKβ and LvIKKε may participate in the regulation of shrimp AMPs and that WSSV may subvert the L. vannamei IKK-NF-κB signaling pathway to facilitate viral gene expression.

  13. Interplay between signaling via the formyl peptide receptor (FPR) and chemokine receptor 3 (CCR3) in human eosinophils.

    PubMed

    Svensson, Lena; Redvall, Elin; Johnsson, Marianne; Stenfeldt, Anna-Lena; Dahlgren, Claes; Wennerås, Christine

    2009-08-01

    Eosinophils express the chemoattractant receptors CCR3 and FPR. CCR3 binds several agonists such as eotaxin-1, -2, and -3 and RANTES, whereas the FPR binds the formylated tripeptide fMLP and a host of other ligands. The aim of this study was to investigate if there is interplay between these two receptors regarding the elicitation of migration and respiratory burst in human blood-derived eosinophils. Inhibition of the FPR with the antagonists CyH and boc-MLP abrogated the migration of eosinophils toward all of the CCR3 agonists. Similar results were seen when the FPR was desensitized with its cognate ligand, fMLP. In contrast, the respiratory burst triggered by eotaxin-1 was not inhibited by CyH. Thus, signals evoked via the FPR caused unidirectional down-regulation of CCR3-mediated chemotaxis but not respiratory burst in human eosinophils. The underlying mechanism was neither reduced ability of the CCR3 ligand eotaxin-1 to bind to CCR3 nor down-regulation of CCR3 from the cell surface. Finally, confocal microscopy and adFRET analysis ruled out homo- or heterodimer formation between FPR and/or CCR3 as an explanation for the reduction in chemotaxis via CCR3. Pharmacologic inhibition of signal transduction molecules showed that the release of free oxygen radicals in response to eotaxin-1 compared with fMLP is relatively more dependent on the p38 MAPK pathway.

  14. Cilostazol Modulates Autophagic Degradation of β-Amyloid Peptide via SIRT1-Coupled LKB1/AMPKα Signaling in Neuronal Cells

    PubMed Central

    Lee, Won Suk; Shin, Hwa Kyoung; Kim, Hye Young; Hong, Ki Whan; Kim, Chi Dae

    2016-01-01

    A neuroprotective role of autophagy mediates the degradation of β-amyloid peptide (Aβ) in Alzheimer’s disease (AD). The previous study showed cilostazol modulates autophagy by increasing beclin1, Atg5 and LC3-II expressions, and depletes intracellular Aβ accumulation. This study elucidated the mechanisms through which cilostazol modulates the autophagic degradation of Aβ in neurons. In N2a cells, cilostazol (10–30 μM), significantly increased the expression of P-AMPKα (Thr 172) and downstream P-ACC (acetyl-CoA carboxylase) (Ser 79) as did resveratrol (SIRT1 activator), or AICAR (AMPK activator), which were blocked by KT5720, compound C (AMPK inhibitor), or sirtinol. Furthermore, phosphorylated-mTOR (Ser 2448) and phosphorylated-P70S6K (Thr 389) expressions were suppressed, and LC3-II levels were elevated in association with decreased P62/Sqstm1 by cilostazol. Cilostazol increased cathepsin B activity and decreased p62/SQSTM 1, consequently decreased accumulation of Aβ1–42 in the activated N2aSwe cells, and these results were blocked by sirtinol, compound C and bafilomycin A1 (autophagosome blocker), suggesting enhanced autophagosome formation by cilostazol. In SIRT1 gene-silenced N2a cells, cilostazol failed to increase the expressions of P-LKB1 (Ser 428) and P-AMPKα, which contrasted with its effect in negative control cells transfected with scrambled siRNA duplex. Further, N2a cells transfected with expression vectors encoding pcDNA SIRT1 showed increased P-AMPKα expression, which mimicked the effect of cilostazol in N2a cells; suggesting cilostazol-stimulated expressions of P-LKB1 and P-AMPKα were SIRT1-dependent. Unlike their effects in N2a cells, in HeLa cells, which lack LKB1, cilostazol and resveratrol did not elevate SIRT1 or P-AMPKα expression, indicating cilostazol and resveratrol-stimulated expressions of SIRT1 and P-AMPKα are LKB1-dependent. In conclusion, cilostazol upregulates autophagy by activating SIRT1-coupled P-LKB1/P-AMPKα and

  15. Callosal axon arbors in the limb representations of the somatosensory cortex (SI) in the agouti (Dasyprocta primnolopha).

    PubMed

    Rocha, E G; Santiago, L F; Freire, M A M; Gomes-Leal, W; Dias, I A; Lent, R; Houzel, J C; Franca, J G; Pereira, A; Picanço-Diniz, C W

    2007-01-10

    The present report compares the morphology of callosal axon arbors projecting from and to the hind- or forelimb representations in the primary somatosensory cortex (SI) of the agouti (Dasyprocta primnolopha), a large, lisencephlic Brazilian rodent that uses forelimb coordination for feeding. Callosal axons were labeled after single pressure (n = 6) or iontophoretic injections (n = 2) of the neuronal tracer biotinylated dextran amine (BDA, 10 kD), either into the hind- (n = 4) or forelimb (n = 4) representations of SI, as identified by electrophysiological recording. Sixty-nine labeled axon fragments located across all layers of contralateral SI representations of the hindlimb (n = 35) and forelimb (n = 34) were analyzed. Quantitative morphometric features such as densities of branching points and boutons, segments length, branching angles, and terminal field areas were measured. Cluster analysis of these values revealed the existence of two types of axon terminals: Type I (46.4%), less branched and more widespread, and Type II (53.6%), more branched and compact. Both axon types were asymmetrically distributed; Type I axonal fragments being more frequent in hindlimb (71.9%) vs. forelimb (28.13%) representation, while most of Type II axonal arbors were found in the forelimb representation (67.56%). We concluded that the sets of callosal axon connecting fore- and hindlimb regions in SI are morphometrically distinct from each other. As callosal projections in somatosensory and motor cortices seem to be essential for bimanual interaction, we suggest that the morphological specialization of callosal axons in SI of the agouti may be correlated with this particular function.

  16. Secretory expression of thermostable alkaline protease from Bacillus stearothermophilus FI by using native signal peptide and α-factor secretion signal in Pichia pastoris.

    PubMed

    Latiffi, Amaliawati Ahmad; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Raja Abd; Oslan, Siti Nurbaya; Basri, Mahiran

    2013-01-01

    The thermostable alkaline protease from Bacillus stearothermophilus F1 has high potential for industrial applications, and attempt to produce the enzyme in yeast for higher yield was undertaken. Secretory expression of F1 protease through yeast system could improve enzyme's capability, thus simplifying the purification steps. Mature and full genes of F1 protease were cloned into Pichia pastoris expression vectors (pGAPZαB and pPICZαB) and transformed into P. pastoris strains (GS115 and SMD1168H) via electroporation method. Recombinant F1 protease under regulation constitutive GAP promoter revealed that the highest expression was achieved after 72 h cultivation. While inducible AOX promoter showed that 0.5% (v/v) methanol was the best to induce expression. It was proven that constitutive expression strategy was better than inducible system. The α-secretion signal from the plasmid demonstrated higher secretory expression level of F1 protease as compared to native Open Reading Frame (ORF) in GS115 strain (GE6GS). Production medium YPTD was found to be the best for F1 protease expression with the highest yield of 4.13 U/mL. The protein was expressed as His-tagged fusion protein with a size about 34 kDa.

  17. The effects of orbital spaceflight on bone histomorphometry and messenger ribonucleic acid levels for bone matrix proteins and skeletal signaling peptides in ovariectomized growing rats

    NASA Technical Reports Server (NTRS)

    Cavolina, J. M.; Evans, G. L.; Harris, S. A.; Zhang, M.; Westerlind, K. C.; Turner, R. T.

    1997-01-01

    A 14-day orbital spaceflight was performed using ovariectomized Fisher 344 rats to determine the combined effects of estrogen deficiency and near weightlessness on tibia radial bone growth and cancellous bone turnover. Twelve ovariectomized rats with established cancellous osteopenia were flown aboard the space shuttle Columbia (STS-62). Thirty ovariectomized rats were housed on earth as ground controls: 12 in animal enclosure modules, 12 in vivarium cages, and 6 killed the day of launch for baseline measurements. An additional 18 ovary-intact rats were housed in vivarium cages as ground controls: 8 rats were killed as baseline controls and the remaining 10 rats were killed 14 days later. Ovariectomy increased periosteal bone formation at the tibia-fibula synostosis; cancellous bone resorption and formation in the secondary spongiosa of the proximal tibial metaphysis; and messenger RNA (mRNA) levels for the prepro-alpha2(1) subunit of type 1 collagen, osteocalcin, transforming growth factor-beta, and insulin-like growth factor I in the contralateral proximal tibial metaphysis and for the collagen subunit in periosteum pooled from tibiae and femora and decreased cancellous bone area. Compared to ovariectomized weight-bearing rats, the flight group experienced decreases in periosteal bone formation, collagen subunit mRNA levels, and cancellous bone area. The flight rats had a small decrease in the cancellous mineral apposition rate, but no change in the calculated bone formation rate. Also, spaceflight had no effect on cancellous osteoblast and osteoclast perimeters or on mRNA levels for bone matrix proteins and signaling peptides. On the other hand, spaceflight resulted in an increase in bone resorption, as ascertained from the diminished retention of a preflight fluorochrome label. This latter finding suggests that osteoclast activity was increased. In a follow-up ground-based experiment, unilateral sciatic neurotomy of ovariectomized rats resulted in cancellous

  18. A cleavable signal peptide enhances cell surface delivery and heterodimerization of Cerulean-tagged angiotensin II AT1 and bradykinin B2 receptor

    SciTech Connect

    Quitterer, Ursula; Pohl, Armin; Langer, Andreas; Koller, Samuel; AbdAlla, Said

    2011-06-10

    Highlights: {yields} A new FRET-based method detects AT1/B2 receptor heterodimerization. {yields} First time application of AT1-Cerulean as a FRET donor. {yields} Method relies on signal peptide-enhanced cell surface delivery of AT1-Cerulean. {yields} A high FRET efficiency revealed efficient heterodimerization of AT1/B2R proteins. {yields} AT1/B2R heterodimers were functionally coupled to desensitization mechanisms. -- Abstract: Heterodimerization of the angiotensin II AT1 receptor with the receptor for the vasodepressor bradykinin, B2R, is known to sensitize the AT1-stimulated response of hypertensive individuals in vivo. To analyze features of that prototypic receptor heterodimer in vitro, we established a new method that uses fluorescence resonance energy transfer (FRET) and applies for the first time AT1-Cerulean as a FRET donor. The Cerulean variant of the green fluorescent protein as donor fluorophore was fused to the C-terminus of AT1, and the enhanced yellow fluorescent protein (EYFP) as acceptor fluorophore was fused to B2R. In contrast to AT1-EGFP, the AT1-Cerulean fusion protein was retained intracellularly. To facilitate cell surface delivery of AT1-Cerulean, a cleavable signal sequence was fused to the receptor's amino terminus. The plasma membrane-localized AT1-Cerulean resembled the native AT1 receptor regarding ligand binding and receptor activation. A high FRET efficiency of 24.7% between membrane-localized AT1-Cerulean and B2R-EYFP was observed with intact, non-stimulated cells. Confocal FRET microscopy further revealed that the AT1/B2 receptor heterodimer was functionally coupled to receptor desensitization mechanisms because activation of the AT1-Cerulean/B2R-EYFP heterodimer with a single agonist triggered the co-internalization of AT1/B2R. Receptor co-internalization was sensitive to inhibition of G protein-coupled receptor kinases, GRKs, as evidenced by a GRK-specific peptide inhibitor. In agreement with efficient AT1/B2R heterodimerization

  19. Treatment of mice with the suppressor of cytokine signaling-1 mimetic peptide, tyrosine kinase inhibitor peptide, prevents development of the acute form of experimental allergic encephalomyelitis and induces stable remission in the chronic relapsing/remitting form.

    PubMed

    Mujtaba, Mustafa G; Flowers, Lawrence O; Patel, Chintak B; Patel, Ravi A; Haider, Mohammad I; Johnson, Howard M

    2005-10-15

    We have previously characterized a novel tyrosine kinase inhibitor peptide (Tkip) that is a mimetic of suppressor of cytokine signaling 1 (SOCS-1) and inhibits JAK2 phosphorylation of the transcription factor STAT1alpha. We show in this study that Tkip protects mice against experimental allergic encephalomyelitis (EAE), an animal model for multiple sclerosis. Mice are immunized with myelin basic protein (MBP) for induction of disease. Tkip (63 mug) administered every other day suppressed the development of acute EAE in 75% of New Zealand White (NZW) mice. Furthermore, Tkip completely protected SJL/J mice, which where induced to get the relapsing/remitting form of EAE, against relapses compared with control groups in which >70% of the mice relapsed after primary incidence of disease. Protection of mice by Tkip was similar to that seen with the type I IFN, IFN-tau. Protection of mice correlated with lower MBP Ab titers in Tkip-treated groups as well as suppression of MBP-induced proliferation of splenocytes taken from EAE-afflicted mice. Cessation of Tkip and IFN-tau administration resulted in SJL/J mice relapsing back into disease. Prolonged treatment of mice with Tkip produced no evidence of cellular toxicity or weight loss. Consistent with its JAK2 inhibitory function, Tkip also inhibited the activity of the inflammatory cytokine TNF-alpha, which uses the STAT1alpha transcription factor. The data presented in this study show that Tkip, like the type I IFN, IFN-tau, inhibits both the autoreactive cellular and humoral responses in EAE and ameliorates both the acute and chronic relapsing/remitting forms of EAE.

  20. Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels

    PubMed Central

    Qi, Zhi; Verma, Rajeev; Gehring, Chris; Yamaguchi, Yube; Zhao, Yichen; Ryan, Clarence A.; Berkowitz, Gerald A.

    2010-01-01

    A family of peptide signaling molecules (AtPeps) and their plasma membrane receptor AtPepR1 are known to act in pathogen-defense signaling cascades in plants. Little is currently known about the molecular mechanisms that link these signaling peptides and their receptor, a leucine-rich repeat receptor-like kinase, to downstream pathogen-defense responses. We identify some cellular activities of these molecules that provide the context for a model for their action in signaling cascades. AtPeps activate plasma membrane inwardly conducting Ca2+ permeable channels in mesophyll cells, resulting in cytosolic Ca2+ elevation. This activity is dependent on their receptor as well as a cyclic nucleotide-gated channel (CNGC2). We also show that the leucine-rich repeat receptor-like kinase receptor AtPepR1 has guanylyl cyclase activity, generating cGMP from GTP, and that cGMP can activate CNGC2-dependent cytosolic Ca2+ elevation. AtPep-dependent expression of pathogen-defense genes (PDF1.2, MPK3, and WRKY33) is mediated by the Ca2+ signaling pathway associated with AtPep peptides and their receptor. The work presented here indicates that extracellular AtPeps, which can act as danger-associated molecular patterns, signal by interaction with their receptor, AtPepR1, a plasma membrane protein that can generate cGMP. Downstream from AtPep and AtPepR1 in a signaling cascade, the cGMP-activated channel CNGC2 is involved in AtPep- and AtPepR1-dependent inward Ca2+ conductance and resulting cytosolic Ca2+ elevation. The signaling cascade initiated by AtPeps leads to expression of pathogen-defense genes in a Ca2+-dependent manner. PMID:21088220

  1. cGMP and NHR Signaling Co-regulate Expression of Insulin-Like Peptides and Developmental Activation of Infective Larvae in Strongyloides stercoralis

    PubMed Central

    Stoltzfus, Jonathan D.; Bart, Stephen M.; Lok, James B.

    2014-01-01

    The infectious form of the parasitic nematode Strongyloides stercoralis is a developmentally arrested third-stage larva (L3i), which is morphologically similar to the developmentally arrested dauer larva in the free-living nematode Caenorhabditis elegans. We hypothesize that the molecular pathways regulating C. elegans dauer development also control L3i arrest and activation in S. stercoralis. This study aimed to determine the factors that regulate L3i activation, with a focus on G protein-coupled receptor-mediated regulation of cyclic guanosine monophosphate (cGMP) pathway signaling, including its modulation of the insulin/IGF-1-like signaling (IIS) pathway. We found that application of the membrane-permeable cGMP analog 8-bromo-cGMP potently activated development of S. stercoralis L3i, as measured by resumption of feeding, with 85.1±2.2% of L3i feeding in 200 µM 8-bromo-cGMP in comparison to 0.6±0.3% in the buffer diluent. Utilizing RNAseq, we examined L3i stimulated with DMEM, 8-bromo-cGMP, or the DAF-12 nuclear hormone receptor (NHR) ligand Δ7-dafachronic acid (DA)—a signaling pathway downstream of IIS in C. elegans. L3i stimulated with 8-bromo-cGMP up-regulated transcripts of the putative agonistic insulin-like peptide (ILP) -encoding genes Ss-ilp-1 (20-fold) and Ss-ilp-6 (11-fold) in comparison to controls without stimulation. Surprisingly, we found that Δ7-DA similarly modulated transcript levels of ILP-encoding genes. Using the phosphatidylinositol-4,5-bisphosphate 3-kinase inhibitor LY294002, we demonstrated that 400 nM Δ7-DA-mediated activation (93.3±1.1% L3i feeding) can be blocked using this IIS inhibitor at 100 µM (7.6±1.6% L3i feeding). To determine the tissues where promoters of ILP-encoding genes are active, we expressed promoter::egfp reporter constructs in transgenic S. stercoralis post-free-living larvae. Ss-ilp-1 and Ss-ilp-6 promoters are active in the hypodermis and neurons and the Ss-ilp-7 promoter is active in the intestine and a

  2. Curcumin Improves Amyloid β-Peptide (1-42) Induced Spatial Memory Deficits through BDNF-ERK Signaling Pathway.

    PubMed

    Zhang, Lu; Fang, Yu; Xu, Yuming; Lian, Yajun; Xie, Nanchang; Wu, Tianwen; Zhang, Haifeng; Sun, Limin; Zhang, Ruifang; Wang, Zhenhua

    2015-01-01

    Curcumin, the most active component of turmeric, has various beneficial properties, such as antioxidant, anti-inflammatory, and antitumor effects. Previous studies have suggested that curcumin reduces the levels of amyloid and oxidized proteins and prevents memory deficits and thus is beneficial to patients with Alzheimer's disease (AD). However, the molecular mechanisms underlying curcumin's effect on cognitive functions are not well-understood. In the present study, we examined the working memory and spatial reference memory in rats that received a ventricular injection of amyloid-β1-42 (Aβ1-42), representing a rodent model of Alzheimer's disease (AD). The rats treated with Aβ1-42 exhibited obvious cognitive deficits in behavioral tasks. Chronic (seven consecutive days, once per day) but not acute (once a day) curcumin treatments (50, 100, and 200 mg/kg) improved the cognitive functions in a dose-dependent manner. In addition, the beneficial effect of curcumin is accompanied by increased BDNF levels and elevated levels of phosphorylated ERK in the hippocampus. Furthermore, the cognition enhancement effect of curcumin could be mimicked by the overexpression of BDNF in the hippocampus and blocked by either bilateral hippocampal injections with lentiviruses that express BDNF shRNA or a microinjection of ERK inhibitor. These findings suggest that chronic curcumin ameliorates AD-related cognitive deficits and that upregulated BDNF-ERK signaling in the hippocampus may underlie the cognitive improvement produced by curcumin.

  3. Insulin/IGF signaling in Drosophila and other insects: factors that regulate production, release and post-release action of the insulin-like peptides.

    PubMed

    Nässel, Dick R; Vanden Broeck, Jozef

    2016-01-01

    Insulin, insulin-like growth factors (IGFs) and insulin-like peptides (ILPs) are important regulators of metabolism, growth, reproduction and lifespan, and mechanisms of insulin/IGF signaling (IIS) have been well conserved over evolution. In insects, between one and 38 ILPs have been identified in each species. Relatively few insect species have been investigated in depth with respect to ILP functions, and therefore we focus mainly on the well-studied fruitfly Drosophila melanogaster. In Drosophila eight ILPs (DILP1-8), but only two receptors (dInR and Lgr3) are known. DILP2, 3 and 5 are produced by a set of neurosecretory cells (IPCs) in the brain and their biosynthesis and release are controlled by a number of mechanisms differing between larvae and adults. Adult IPCs display cell-autonomous sensing of circulating glucose, coupled to evolutionarily conserved mechanisms for DILP release. The glucose-mediated DILP secretion is modulated by neurotransmitters and neuropeptides, as well as by factors released from the intestine and adipocytes. Larval IPCs, however, are indirectly regulated by glucose-sensing endocrine cells producing adipokinetic hormone, or by circulating factors from the intestine and fat body. Furthermore, IIS is situated within a complex physiological regulatory network that also encompasses the lipophilic hormones, 20-hydroxyecdysone and juvenile hormone. After release from IPCs, the ILP action can be modulated by circulating proteins that act either as protective carriers (binding proteins), or competitive inhibitors. Some of these proteins appear to have additional functions that are independent of ILPs. Taken together, the signaling with multiple ILPs is under complex control, ensuring tightly regulated IIS in the organism.

  4. Suppressor of cytokine signaling 2 (SOCS2) negatively regulates the expression of antimicrobial peptides by affecting the Stat transcriptional activity in shrimp Marsupenaeus japonicus.

    PubMed

    Sun, Jie-Jie; Lan, Jiang-Feng; Xu, Ji-Dong; Niu, Guo-Juan; Wang, Jin-Xing

    2016-09-01

    The suppressor of cytokine signaling (SOCS) family is a kind of negative regulators in the Janus kinase/signal transducer and activator of transcription (Jak/Stat) pathway in mammals and Drosophila. In kuruma shrimp, Marsupenaeus japonicus, SOCS2 is identified and its expression can be stimulated by peptidoglycan and polycytidylic acid. However, if SOCS2 participates in regulating Jak/Stat pathway in shrimp still needs further study. In this study, SOCS2 with Src homology 2 domain and SOCS box was identified in kuruma shrimp, M. japonicus. SOCS2 existed in hemocytes, heart, hepatopancreas, gills, stomach, and intestine, the expression of SOCS2 was upregulated significantly in the hemocytes and intestine of shrimp challenged with Vibrio anguillarum at 6 h. To analyze SOCS2 function in shrimp immunity, bacterial clearance and survival rate were analyzed after knockdown of SOCS2 in shrimp challenged with V. anguillarum. Results showed that bacterial clearance increased, and the survival rate improved significantly comparing with controls. The SOCS2 was expressed in Escherichia coli and the recombinant SOCS2 was injected into shrimp, and Stat phosphorylation and translocation were analyzed. The result showed that "overexpression" of SOCS2 declined Stat phosphorylation level and inhibited Stat translocation into the nucleus. After knockdown of SOCS2 in shrimp prior to V. anguillarum infection, the expression level of antimicrobial peptides, including anti-lipopolysaccharide factors C1, C2 and D1, and Crustin I was upregulated significantly, and the expression of the AMPs was declined after recombinant SOCS2 injection. The SOCS2 expression was also decreased in Stat-knockdown shrimp challenged by V. anguillarum at 6 and 12 h. Therefore, SOCS2 negatively regulates the AMP expression by inhibiting Stat phosphorylation and translocation into nucleus in shrimp, meanwhile, SOCS2 expression was also regulated by Jak/Stat pathway.

  5. Reverse genetics generation of chimeric infectious Junin/Lassa virus is dependent on interaction of homologous glycoprotein stable signal peptide and G2 cytoplasmic domains.

    PubMed

    Albariño, César G; Bird, Brian H; Chakrabarti, Ayan K; Dodd, Kimberly A; White, David M; Bergeron, Eric; Shrivastava-Ranjan, Punya; Nichol, Stuart T

    2011-01-01

    The Arenaviridae are a diverse and globally distributed collection of viruses that are maintained primarily by rodent reservoirs. Junin virus (JUNV) and Lassa virus (LASV) can both cause significant outbreaks of severe and often fatal human disease throughout their respective areas of endemicity. In an effort to improve upon the existing live attenuated JUNV Candid1 vaccine, we generated a genetically homogenous stock of this virus from cDNA copies of the virus S and L segments by using a reverse genetics system. Further, these cDNAs were used in combination with LASV cDNAs to successfully generate two recombinant Candid1 JUNV/LASV chimeric viruses (via envelope glycoprotein [GPC] exchange). It was found that while the GPC extravirion domains were readily exchangeable, homologous stable signal peptide (SSP) and G2 transmembrane and cytoplasmic tail domains were essential for correct GPC maturation and production of infectious chimeric viruses. The switching of the JUNV and LASV G1/G2 ectodomains within the Candid1 vaccine background did not alter the attenuated phenotype of the vaccine strain in a lethal mouse model. These recombinant chimeric viruses shed light on the fundamental requirements of arenavirus GPC maturation and may serve as a strategy for the development of bivalent JUNV and LASV vaccine candidates.

  6. Mouse Mammary Tumor Virus Signal Peptide Uses a Novel p97-Dependent and Derlin-Independent Retrotranslocation Mechanism To Escape Proteasomal Degradation

    PubMed Central

    Byun, Hyewon; Das, Poulami; Yu, Houqing; Aleman, Alejandro; Lozano, Mary M.; Matouschek, Andreas

    2017-01-01

    ABSTRACT Multiple pathogens, including viruses and bacteria, manipulate endoplasmic reticulum-associated degradation (ERAD) to avoid the host immune response and promote their replication. The betaretrovirus mouse mammary tumor virus (MMTV) encodes Rem, which is a precursor protein that is cleaved into a 98-amino-acid signal peptide (SP) and a C-terminal protein (Rem-CT). SP uses retrotranslocation for ER membrane extraction and yet avoids ERAD by an unknown mechanism to enter the nucleus and function as a Rev-like protein. To determine how SP escapes ERAD, we used a ubiquitin-activated interaction trap (UBAIT) screen to trap and identify transient protein interactions with SP, including the ERAD-associated p97 ATPase, but not E3 ligases or Derlin proteins linked to retrotranslocation, polyubiquitylation, and proteasomal degradation of extracted proteins. A dominant negative p97 ATPase inhibited both Rem and SP function. Immunoprecipitation experiments indicated that Rem, but not SP, is polyubiquitylated. Using both yeast and mammalian expression systems, linkage of a ubiquitin-like domain (UbL) to SP or Rem induced degradation by the proteasome, whereas SP was stable in the absence of the UbL. ERAD-associated Derlin proteins were not required for SP activity. Together, these results suggested that Rem uses a novel p97-dependent, Derlin-independent retrotranslocation mechanism distinct from other pathogens to avoid SP ubiquitylation and proteasomal degradation. PMID:28351922

  7. A conserved type IV pilin signal peptide H-domain is critical for the post-translational regulation of flagella-dependent motility.

    PubMed

    Esquivel, Rianne N; Pohlschroder, Mechthild

    2014-08-01

    In many bacteria and archaea, type IV pili facilitate surface adhesion, the initial step in biofilm formation. Haloferax volcanii has a specific set of adhesion pilins (PilA1-A6) that, although diverse, contain an absolutely conserved signal peptide hydrophobic (H) domain. Data presented here demonstrate that these pilins (PilA1-A6) also play an important role in regulating flagella-dependent motility, which allows cells to rapidly transition between planktonic and sessile states. Cells lacking adhesion pilins exhibit a severe motility defect, however, expression of any one of the adhesion pilins in trans can rescue the motility and adhesion. Conversely, while deleting pilB3-C3, genes required for PilA pilus biosynthesis, results in cells lacking pili and having an adhesion defect, it does not affect motility, indicating that motility regulation requires the presence of pilins, but not assembled pili. Mutagenesis studies revealed that the pilin-dependent motility regulatory mechanism does not require the diverse C-terminal region of the PilA pilins but specifically involves the conserved H-domain. This novel post-translational regulatory mechanism, which employs components that promote biofilm formation to inhibit motility, can provide a rapid response to changing environmental conditions. A model for this regulatory mechanism, which may also be present in other prokaryotes, is discussed.

  8. Insulinotropic toxins as molecular probes for analysis of glucagon-like peptide-1 receptor-mediated signal transduction in pancreatic β-cells

    PubMed Central

    Holz, George G.; Leech, Colin A.; Habener, Joel F.

    2010-01-01

    Cholera toxin, pertussis toxin, mastoparan, maitotoxin, and α-latrotoxin are complex protein or polyether-based toxins of bacterial, insect, or phytoplankton origin that act with high potency at the endocrine pancreas to stimulate secretion of insulin from β-cells located in the islets of Langerhans. The remarkable insulinotropic properties of these toxins have attracted considerable attention by virtue of their use as selective molecular probes for analyses of β-cell stimulus-secretion coupling. Targets of the toxins include heptahelical cell surface receptors, GTP-binding proteins, ion channels, Ca2+ stores, and the exocytotic secretory apparatus. Here we review the value of insulinotropic toxins from the perspective of their established use in the study of signal transduction pathways activated by the blood glucose-lowering hormone glucagon-like peptide-1 (GLP-1). Our analysis of one insulinotropic toxin (α-latrotoxin) leads us to conclude that there exists a process of molecular mimicry whereby the ‘lock and key’analogy inherent to hormone-receptor interactions is reproduced by a toxin related in structure to GLP-1. PMID:11086221

  9. Synthetic Human TLR9-LRR11 Peptide Attenuates TLR9 Signaling by Binding to and thus Decreasing Internalization of CpG Oligodeoxynucleotides.

    PubMed

    Pan, Xichun; Li, Bin; Kuang, Mei; Liu, Xin; Cen, Yanyan; Qin, Rongxin; Ding, Guofu; Zheng, Jiang; Zhou, Hong

    2016-02-22

    Toll-like receptor (TLR) 9 is an endosomal receptor recognizing bacterial DNA/CpG-containing oligodeoxynucleotides (CpG ODN). Blocking CpG ODN/TLR9 activity represents a strategy for therapeutic prevention of immune system overactivation. Herein, we report that a synthetic peptide (SP) representing the leucine-rich repeat 11 subdomain of the human TLR9 extracellular domain could attenuate CpG ODN/TLR9 activity in RAW264.7 cells by binding to CpG ODN and decreasing its internalization. Our results demonstrate that preincubation with SP specifically inhibited CpG ODN- but not lipopolysaccharide (LPS)- and lipopeptide (PAM3CSK4)-stimulated TNF-α and IL-6 release. Preincubation of SP with CpG ODN dose-dependently decreased TLR9-driven phosphorylation of IκBα and ERK and activation of NF-κB/p65. Moreover, SP dose-dependently decreased FAM-labeled CpG ODN internalization, whereas non-labeled CpG ODN reversed the inhibition. The KD value of SP-CpG ODN binding was within the micromolar range. Our results demonstrated that SP was a specific inhibitor of CpG ODN/TLR9 activity via binding to CpG ODN, leading to reduced ODN internalization and decreased activation of subsequent pathways within cells. Thus, SP could be used as a potential CpG ODN antagonist to block TLR9 signaling.

  10. Spinal neurons that contain gastrin-releasing peptide seldom express Fos or phosphorylate extracellular signal-regulated kinases in response to intradermal chloroquine

    PubMed Central

    Gutierrez-Mecinas, Maria; Polgár, Erika; Todd, Andrew J

    2016-01-01

    Background Gastrin-releasing peptide (GRP) is thought to play a role in the itch evoked by intradermal injection of chloroquine. Although some early studies suggested that GRP was expressed in pruriceptive primary afferents, it is now thought that GRP in the spinal cord is derived mainly from a population of excitatory interneurons in lamina II, and it has been suggested that these are involved in the itch pathway. To test this hypothesis, we used the transcription factor Fos and phosphorylation of extracellular signal-regulated kinases (ERK) to look for evidence that interneurons expressing GRP were activated following intradermal injection of chloroquine into the calf, in mice that express enhanced green fluorescent protein (EGFP) in these cells. Results Injection of chloroquine resulted in numerous Fos- or phospho-ERK (pERK) positive cells in the somatotopically appropriate part of the superficial dorsal horn. The proportion of all neurons in this region that showed Fos or pERK was 18% and 21%, respectively. However, among the GRP–EGFP, only 7% were Fos-positive and 3% were pERK-positive. As such, GRP–EGFP cells were significantly less likely than other neurons to express Fos or to phosphorylate ERK. Conclusions Both expression of Fos and phosphorylation of ERK can be used to identify dorsal horn neurons activated by chloroquine injection. However, these results do not support the hypothesis that interneurons expressing GRP are critical components in the itch pathway. PMID:27270268

  11. Effect of culture conditions and signal peptide on production of human recombinant N-acetylgalactosamine-6-sulfate sulfatase in Escherichia coli BL21.

    PubMed

    Hernández, Alejandra; Velásquez, Olga; Leonardi, Felice; Soto, Carlos; Rodríguez, Alexander; Lizaraso, Lina; Mosquera, Ángela; Bohórquez, Jorge; Coronado, Alejandra; Espejo, Ángela; Sierra, Rocio; Sánchez, Oscar F; Alméciga-Díaz, Carlos J; Barrera, Luis A

    2013-05-01

    The production and characterization of an active recombinant N-acetylgalactosamine-6-sulfate sulfatase (GALNS) in Escherichia coli BL21(DE3) has been previously reported. In this study, the effect of the signal peptide (SP), inducer concentration, process scale, and operational mode (batch and semi-continuous) on GALNS production were evaluated. When native SP was presented, higher enzyme activity levels were observed in both soluble and inclusion bodies fractions, and its removal had a significant impact on enzyme activation. At shake scale, the optimal IPTG concentrations were 0.5 and 1.5 mM for the strains with and without SP, respectively, whereas at bench scale, the highest enzyme activities were observed with 1.5 mM IPTG for both strains. Noteworthy, enzyme activity in the culture media was only detected when SP was presented and the culture was carried out under semi-continuous mode. We showed for the first time that the mechanism that in prokaryotes recognizes the SP to mediate sulfatase activation can also recognize a eukaryotic SP, favoring the activation of the enzyme, and could also favor the secretion of the recombinant protein. These results offer significant information for scaling-up the production of human sulfatases in E. coli.

  12. An intact signal peptide on dengue virus E protein enhances immunogenicity for CD8(+) T cells and antibody when expressed from modified vaccinia Ankara.

    PubMed

    Quinan, Bárbara R; Flesch, Inge E A; Pinho, Tânia M G; Coelho, Fabiana M; Tscharke, David C; da Fonseca, Flávio G

    2014-05-23

    Dengue is a global public health concern and this is aggravated by a lack of vaccines or antiviral therapies. Despite the well-known role of CD8(+) T cells in the immunopathogenesis of Dengue virus (DENV), only recent studies have highlighted the importance of this arm of the immune response in protection against the disease. Thus, the majority of DENV vaccine candidates are designed to achieve protective titers of neutralizing antibodies, with less regard for cellular responses. Here, we used a mouse model to investigate CD8(+) T cell and humoral responses to a set of potential DENV vaccines based on recombinant modified vaccinia virus Ankara (rMVA). To enable this study, we identified two CD8(+) T cell epitopes in the DENV-3 E protein in C57BL/6 mice. Using these we found that all the rMVA vaccines elicited DENV-specific CD8(+) T cells that were cytotoxic in vivo and polyfunctional in vitro. Moreover, vaccines expressing the E protein with an intact signal peptide sequence elicited more DENV-specific CD8(+) T cells than those expressing E proteins in the cytoplasm. Significantly, it was these same ER-targeted E protein vaccines that elicited antibody responses. Our results support the further development of rMVA vaccines expressing DENV E proteins and add to the tools available for dengue vaccine development.

  13. Linkage disequilibria between polymorphisms of the apolipoprotein B gene signal peptide Ag(al/d) and Ag(c/g) in the Singapore Chinese

    SciTech Connect

    Heng, C.K.; Saha, N.; Tay, J.S.H.

    1994-09-01

    Three polymorphisms [insertion/deletion polymorphisms of signal peptides (ins/del), Ag(al/d) and Ag(c/g)] were studied in one hundred and ninety-five healthy Singaporean Chinese of both sexes. The respective regions of the apoB gene were amplified by polymerase chain reactions. The amplified products of Ag(al/d) and Ag(c/g) were digested by restriction enzymes AluI and ApaLI, respectively. Their DNA fragments were subsequently separated and visualized on a 2% agarose gel. Ins/del polymorphism could be typed directly on 4% agarose gel without any digestion. Computation of the chi-square and delta value revealed linkage disequilibria between ins/del and Ag(c/g) [{chi}{sup 2}=43.24, {triangle}=0.31, P<0.00001], ins/del and Ag(al/d) [{chi}{sup 2}=22.28, {triangle}=0.32, P<0.001], Ag(c/g) and Ag(al/d) [{chi}{sup 2}=106.01, {triangle}=0.63, P<0.00001].

  14. Natriuretic peptide metabolism, clearance and degradation.

    PubMed

    Potter, Lincoln R

    2011-06-01

    Atrial natriuretic peptide, B-type natriuretic peptide and C-type natriuretic peptide constitute a family of three structurally related, but genetically distinct, signaling molecules that regulate the cardiovascular, skeletal, nervous, reproductive and other systems by activating transmembrane guanylyl cyclases and elevating intracellular cGMP concentrations. This review broadly discusses the general characteristics of natriuretic peptides and their cognate signaling receptors, and then specifically discusses the tissue-specific metabolism of natriuretic peptides and their degradation by neprilysin, insulin-degrading enzyme, and natriuretic peptide receptor-C.

  15. RovS and Its Associated Signaling Peptide Form a Cell-To-Cell Communication System Required for Streptococcus agalactiae Pathogenesis

    PubMed Central

    Gaudu, Philippe; Fleuchot, Betty; Besset, Colette; Rosinski-Chupin, Isabelle; Guillot, Alain; Monnet, Véronique; Gardan, Rozenn

    2015-01-01

    ABSTRACT  Bacteria can communicate with each other to coordinate their biological functions at the population level. In a previous study, we described a cell-to-cell communication system in streptococci that involves a transcriptional regulator belonging to the Rgg family and short hydrophobic peptides (SHPs) that act as signaling molecules. Streptococcus agalactiae, an opportunistic pathogenic bacterium responsible for fatal infections in neonates and immunocompromised adults, has one copy of the shp/rgg locus. The SHP-associated Rgg is called RovS in S. agalactiae. In this study, we found that the SHP/RovS cell-to-cell communication system is active in the strain NEM316 of S. agalactiae, and we identified different partners that are involved in this system, such as the Eep peptidase, the PptAB, and the OppA1-F oligopeptide transporters. We also identified a new target gene controlled by this system and reexamined the regulation of a previously proposed target gene, fbsA, in the context of the SHP-associated RovS system. Furthermore, our results are the first to indicate the SHP/RovS system specificity to host liver and spleen using a murine model, which demonstrates its implication in streptococci virulence. Finally, we observed that SHP/RovS regulation influences S. agalactiae’s ability to adhere to and invade HepG2 hepatic cells. Hence, the SHP/RovS cell-to-cell communication system appears to be an essential mechanism that regulates pathogenicity in S. agalactiae and represents an attractive target for the development of new therapeutic strategies. Importance  Rgg regulators and their cognate pheromones, called small hydrophobic peptides (SHPs), are present in nearly all streptococcal species. The general pathways of the cell-to-cell communication system in which Rgg and SHP take part are well understood. However, many other players remain unidentified, and the direct targets of the system, as well as its link to virulence, remain unclear. Here, we

  16. An Essential Role for (p)ppGpp in the Integration of Stress Tolerance, Peptide Signaling, and Competence Development in Streptococcus mutans

    PubMed Central

    Kaspar, Justin; Kim, Jeong N.; Ahn, Sang-Joon; Burne, Robert A.

    2016-01-01

    The microbes that inhabit the human oral cavity are subjected to constant fluctuations in their environment. To overcome these challenges and gain a competitive advantage, oral streptococci employ numerous adaptive strategies, many of which appear to be intertwined with the development of genetic competence. Here, we demonstrate that the regulatory circuits that control development of competence in Streptococcus mutans, a primary etiological agent of human dental caries, are integrated with key stress tolerance pathways by the molecular alarmone (p)ppGpp. We first observed that the growth of a strain that does not produce (p)ppGpp (ΔrelAPQ, (p)ppGpp0) is not sensitive to growth inhibition by comX inducing peptide (XIP), unlike the wild-type strain UA159, even though XIP-dependent activation of the alternative sigma factor comX by the ComRS pathway is not impaired in the (p)ppGpp0 strain. Overexpression of a (p)ppGpp synthase gene (relP) in the (p)ppGpp0 mutant restored growth inhibition by XIP. We also demonstrate that exposure to micromolar concentrations of XIP elicited changes in (p)ppGpp accumulation in UA159. Loss of the RelA/SpoT homolog (RSH) enzyme, RelA, lead to higher basal levels of (p)ppGpp accumulation, but to decreased sensitivity to XIP and to decreases in comR promoter activity and ComX protein levels. By introducing single amino acid substitutions into the RelA enzyme, the hydrolase activity of the enzyme was shown to be crucial for full com gene induction and transformation by XIP. Finally, loss of relA resulted in phenotypic changes to ΔrcrR mutants, highlighted by restoration of transformation and ComX protein production in the otherwise non-transformable ΔrcrR-NP mutant. Thus, RelA activity and its influence on (p)ppGpp pools appears to modulate competence signaling and development through RcrRPQ and the peptide effectors encoded within rcrQ. Collectively, this study provides new insights into the molecular mechanisms that integrate

  17. Bioinformatic identification of plant peptides.

    PubMed

    Lease, Kevin A; Walker, John C

    2010-01-01

    Plant peptides play a number of important roles in defence, development and many other aspects of plant physiology. Identifying additional peptide sequences provides the starting point to investigate their function using molecular, genetic or biochemical techniques. Due to their small size, identifying peptide sequences may not succeed using the default bioinformatic approaches that work well for average-sized proteins. There are two general scenarios related to bioinformatic identification of peptides to be discussed in this paper. In the first scenario, one already has the sequence of a plant peptide and is trying to find more plant peptides with some sequence similarity to the starting peptide. To do this, the Basic Local Alignment Search Tool (BLAST) is employed, with the parameters adjusted to be more favourable for identifying potential peptide matches. A second scenario involves trying to identify plant peptides without using sequence similarity searches to known plant peptides. In this approach, features such as protein size and the presence of a cleavable amino-terminal signal peptide are used to screen annotated proteins. A variation of this method can be used to screen for unannotated peptides from genomic sequences. Bioinformatic resources related to Arabidopsis thaliana will be used to illustrate these approaches.

  18. The morphology of the pineal gland of the yellow-toothed cavy (Galea Spixii Wagler, 1831) and red-rumped agouti (Dasyprocta leporina linnaeus, 1758).

    PubMed

    Câmara, Felipe Venceslau; Lopes, Igor Renno Guimarães; de Oliveira, Gleidson Benevides; Bezerra, Ferdinando Vinicius Fernandes; de Oliveira, Radan Elvis Matias; Oliveira Júnior, Carlos Magno; Silva, Alexandre Rodrigues; de Oliveira, Moacir Franco

    2015-08-01

    The pineal gland is an endocrine gland found in all mammals. This article describes the morphology of this important gland in two species of Caviideae, namely the yellow-toothed cavy and the red-rumped agouti. Ten adult animals of the two species used in current analysis were retrieved from the Center for the Multiplication of Wild Animals (CEMAS/UFERSA) and euthanized. The glands were removed and photographed in situ and ex situ. They were fixed in a paraformaldehyde solution 4% or glutaraldehyde 2.5% solution and submitted to routine histological techniques respectively for light and scanning electron microscopy. Macroscopically, the pineal gland with its elongated structure may be found between the cerebral hemispheres facing the rostral colliculi. Microscopically, pinealocytes and some glia cells were predominant. Contrastingly, to the cavy's pineal gland, a capsule covered the organ in the agouti, with the emission of incomplete septa to the interior, which divided it into two lobules. Light and scanning electron microscopes failed to show calcareous concretions in the pineal gland. Based on the topography of the cavy's and agouti's pineal gland, it may be classified as supra-callosum and ABC type.

  19. Transcriptional and Functional Classification of the GOLVEN/ROOT GROWTH FACTOR/CLE-Like Signaling Peptides Reveals Their Role in Lateral Root and Hair Formation1[W][OA

    PubMed Central

    Fernandez, Ana; Drozdzecki, Andrzej; Hoogewijs, Kurt; Nguyen, Anh; Beeckman, Tom; Madder, Annemieke; Hilson, Pierre

    2013-01-01

    The GOLVEN (GLV)/ROOT GROWTH FACTORS/CLE-Like small signaling peptide family is encoded by 11 genes in Arabidopsis (Arabidopsis thaliana). Some of them have already been shown to control root meristem maintenance, auxin fluxes, and gravitropic responses. As a basis for the detailed analysis of their function, we determined the expression domains for each of the 11 GLV genes with promoter-reporter lines. Although they are collectively active in all examined plant parts, GLV genes have highly specific transcription patterns, generally restricted to very few cells or cell types in the root and shoot and in vegetative and reproductive tissues. GLV functions were further investigated with the comparative analysis of root phenotypes induced by gain- and loss-of-function mutants or in treatments with GLV-derived synthetic peptides. We identified functional classes that relate to the gene expression domains in the primary root and suggest that different GLV signals trigger distinct downstream pathways. Interestingly, GLV genes transcribed at the early stages of lateral root development strongly inhibited root branching when overexpressed. Furthermore, transcription patterns together with mutant phenotypes pointed to the involvement of GLV4 and GLV8 in root hair formation. Overall, our data suggest that nine GLV genes form three subgroups according to their expression and function within the root and offer a comprehensive framework to study the role of the GLV signaling peptides in plant development. PMID:23370719

  20. Kefir peptides prevent high-fructose corn syrup-induced non-alcoholic fatty liver disease in a murine model by modulation of inflammation and the JAK2 signaling pathway

    PubMed Central

    Chen, H L; Tsai, T C; Tsai, Y C; Liao, J W; Yen, C C; Chen, C M

    2016-01-01

    , inflammatory reaction and the formation of fatty liver by activating JAK2 signal transduction through the JAK2/STAT3 and JAK2/AMPK pathways in the high-fructose-induced fatty liver animal model. Therefore, kefir peptides may have the potential for clinical application for the prevention or treatment of clinical metabolic syndrome. PMID:27941940

  1. Amyloid β-peptide 1-42 modulates the proliferation of mouse neural stem cells: upregulation of fucosyltransferase IX and notch signaling.

    PubMed

    Itokazu, Yutaka; Yu, Robert K

    2014-08-01

    Amyloid β-peptides (Aβs) aggregate to form amyloid plaques, also known as senile plaques, which are a major pathological hallmark of Alzheimer's disease (AD). Aβs are reported to possess proliferation effects on neural stem cells (NSCs); however, this effect remains controversial. Thus, clarification of their physiological function is an important topic. We have systematically evaluated the effects of several putative bioactive Aβs (Aβ1-40, Aβ1-42, and Aβ25-35) on NSC proliferation. Treatment of NSCs with Aβ1-42 significantly increased the number of those cells (149 ± 10 %). This was not observed with Aβ1-40 which did not have any effects on the proliferative property of NSC. Aβ25-35, on the other hand, exhibited inhibitory effects on cellular proliferation. Since cell surface glycoconjugates, such as glycolipids, glycoproteins, and proteoglycans, are known to be important for maintaining cell fate determination, including cellular proliferation, in NSCs and they undergo dramatic changes during differentiation, we examined the effect of Aβs on a number of key glycoconjugate metabolizing enzymes. Significantly, we found for the first time that Aβ1-42 altered the expression of several key glycosyltransferases and glycosidases, including fucosyltransferase IX (FUT9), sialyltransferase III (ST-III), glucosylceramide ceramidase (GLCC), and mitochondrial sialidase (Neu4). FUT9 is a key enzyme for the synthesis of the Lewis X carbohydrate epitope, which is known to be expressed in stem cells. Aβ1-42 also stimulated the Notch1 intracellular domain (NICD) by upregulation of the expression of Musashi-1 and the paired box protein, Pax6. Thus, Aβ1-42 upregulates NSC proliferation by modulating the expression of several glycogenes involved in Notch signaling.

  2. Signal peptide peptidase-mediated nuclear localization of heme oxygenase-1 promotes cancer cell proliferation and invasion independent of its enzymatic activity.

    PubMed

    Hsu, F-F; Yeh, C-T; Sun, Y-J; Chiang, M-T; Lan, W-M; Li, F-A; Lee, W-H; Chau, L-Y

    2015-04-30

    Heme oxygenase-1 (HO-1) is a heme-degrading enzyme anchored in the endoplasmic reticulum by a carboxyl-terminal transmembrane segment (TMS). HO-1 is highly expressed in various cancers and its nuclear localization is associated with the progression of some cancers. Nevertheless, the mechanism underlying HO-1 nuclear translocation and its pathological significance remain elusive. Here we show that the signal peptide peptidase (SPP) catalyzes the intramembrane cleavage of HO-1. Coexpression of HO-1 with wild-type SPP, but not a dominant-negative SPP, promoted the nuclear localization of HO-1 in cells. Mass spectrometry analysis of cytosolic HO-1 isolated from HeLa cells overexpressing HO-1 and SPP revealed two adjacent intramembrane cleavage sites located after S275 and F276 within the TMS. Mutations of S275F276 to A275L276 significantly hindered SPP-mediated HO-1 cleavage and nuclear localization. Nuclear HO-1 was detected in A549 and DU145 cancer cell lines expressing high levels of endogenous HO-1 and SPP. SPP knockdown or inhibition significantly reduced nuclear HO-1 localization in A549 and DU145 cells. The positive nuclear HO-1 stain was also evident in lung cancer tissues expressing high levels of HO-1 and SPP. Overexpression of a truncated HO-1 (t-HO-1) lacking the TMS in HeLa and H1299 cells promoted cell proliferation and migration/invasion. The effect of t-HO-1 was not affected by a mutation in the catalytic site. However, blockade of t-HO-1 nuclear localization abolished t-HO-1-mediated effect. The tumorigenic effect of t-HO-1 was also demonstrated in the mouse model. These findings disclose that SPP-mediated intramembrane cleavage of HO-1 promotes HO-1 nuclear localization and cancer progression independent of HO-1 enzymatic activity.

  3. Hippocampal Injections of Oligomeric Amyloid β-peptide (1–42) Induce Selective Working Memory Deficits and Long-lasting Alterations of ERK Signaling Pathway

    PubMed Central

    Faucher, Pierre; Mons, Nicole; Micheau, Jacques; Louis, Caroline; Beracochea, Daniel J.

    2016-01-01

    Increasing evidence suggests that abnormal brain accumulation of soluble rather than aggregated amyloid-β1–42 oligomers (Aβo(1–42)) plays a causal role in Alzheimer’s disease (AD). However, as yet, animal’s models of AD based on oligomeric amyloid-β1–42 injections in the brain have not investigated their long-lasting impacts on molecular and cognitive functions. In addition, the injections have been most often performed in ventricles, but not in the hippocampus, in spite of the fact that the hippocampus is importantly involved in memory processes and is strongly and precociously affected during the early stages of AD. Thus, in the present study, we investigated the long-lasting impacts of intra-hippocampal injections of oligomeric forms of Aβo(1–42) on working and spatial memory and on the related activation of ERK1/2. Indeed, the extracellular signal-regulated kinase (ERK) which is involved in memory function had been found to be activated by amyloid peptides. We found that repeated bilateral injections (1injection/day over 4 successive days) of oligomeric forms of Aβo(1–42) into the dorsal hippocampus lead to long-lasting impairments in two working memory tasks, these deficits being observed 7 days after the last injection, while spatial memory remained unaffected. Moreover, the working memory deficits were correlated with sustained impairments of ERK1/2 activation in the medial prefrontal cortex (mPFC) and the septum, two brain areas tightly connected with the hippocampus and involved in working memory. Thus, our study is first to evidence that sub-chronic injections of oligomeric forms of Aβo(1–42) into the dorsal hippocampus produces the main sign of cognitive impairments corresponding to the early stages of AD, via long-lasting alterations of an ERK/MAPK pathway in an interconnected brain networks. PMID:26793098

  4. Secretome Analysis Identifies Novel Signal Peptide Peptidase-Like 3 (SPPL3) Substrates and Reveals a Role of SPPL3 in Multiple Golgi Glycosylation Pathways*

    PubMed Central

    Kuhn, Peer-Hendrik; Voss, Matthias; Haug-Kröper, Martina; Schröder, Bernd; Schepers, Ute; Bräse, Stefan; Haass, Christian; Lichtenthaler, Stefan F.; Fluhrer, Regina

    2015-01-01

    Signal peptide peptidase-like 3 (SPPL3) is a Golgi-resident intramembrane-cleaving protease that is highly conserved among multicellular eukaryotes pointing to pivotal physiological functions in the Golgi network which are only beginning to emerge. Recently, SPPL3 was shown to control protein N-glycosylation, when the key branching enzyme N-acetylglucosaminyltransferase V (GnT-V) and other medial/trans Golgi glycosyltransferases were identified as first physiological SPPL3 substrates. SPPL3-mediated endoproteolysis releases the catalytic ectodomains of these enzymes from their type II membrane anchors. Protein glycosylation is a multistep process involving numerous type II membrane-bound enzymes, but it remains unclear whether only few of them are SPPL3 substrates or whether SPPL3 cleaves many of them and thereby controls protein glycosylation at multiple levels. Therefore, to systematically identify SPPL3 substrates we used Sppl3-deficient and SPPL3-overexpression cell culture models and analyzed them for changes in secreted membrane protein ectodomains using the proteomics “secretome protein enrichment with click sugars (SPECS)” method. SPECS analysis identified numerous additional new SPPL3 candidate glycoprotein substrates, several of which were biochemically validated as SPPL3 substrates. All novel SPPL3 substrates adopt a type II topology. The majority localizes to the Golgi network and is implicated in Golgi functions. Importantly, most of the novel SPPL3 substrates catalyze the modification of N-linked glycans. Others contribute to O-glycan and in particular glycosaminoglycan biosynthesis, suggesting that SPPL3 function is not restricted to N-glycosylation, but also functions in other forms of protein glycosylation. Hence, SPPL3 emerges as a crucial player of Golgi function and the newly identified SPPL3 substrates will be instrumental to investigate the molecular mechanisms underlying the physiological function of SPPL3 in the Golgi network and in vivo

  5. Can signal peptide-CUB-EGF domain-containing protein (SCUBE) levels be a marker of angiogenesis in patients with psoriasis?

    PubMed

    Capkin, Arzu Aydın; Demir, Selim; Mentese, Ahmet; Bulut, Çağlar; Ayar, Ahmet

    2017-04-01

    Angiogenesis is an important process being involved in the pathogenesis of psoriasis and promises new potential parameter for diagnosis and screening of treatment. This study investigated the levels of signal peptide-CUB-EGF (epidermal growth factor-like protein) family domain-containing protein (SCUBE) 1 and 3. Potential value as a novel marker of angiogenesis in patients with psoriasis is also evaluated by assessing possible relation of SCUBE-1 and 3 with disease activity in conjunction with vascular endothelial growth factor (VEGF) levels, as an established marker of angiogenesis. Forty-eight patients with psoriasis (aged >18 years) and 48 age- and gender-matched healthy controls were included. Detailed information was obtained through history and physical examination. Psoriasis area and severity index (PASI) scores were calculated. Blood SCUBE 1 and 3, and VEGF levels were measured by enzyme-linked immunosorbent assay. The mean PASI score of the patients was 6.7 ± 4.1. Patients' serum SCUBE 1 and 3 and VEGF levels were significantly higher than those of the controls (P = 0.001). The sensitivity and specificity were calculated as 83 and 62% for the 0.67 ng/ml cut-off level of SCUBE 1, and 63 and 71% for the 2.57 ng/ml cut-off level of SCUBE 3, respectively. A cut-off VEGF level of 310 ng/mL predicted the presence of psoriasis with a sensitivity of 50% and specificity of 77%. The results of this pioneering study indicate that SCUBE protein family appears to have a probable role in the pathogenesis and angiogenesis development in psoriasis and SCUBE 1 and 3 may be novel markers of angiogenesis in psoriasis.

  6. GABAergic signaling by AgRP neurons prevents anorexia via a melanocortin-independent mechanism

    PubMed Central

    Wu, Qi; Palmiter, Richard D.

    2011-01-01

    The hypothalamic arcuate nucleus contains two anatomically and functionally distinct populations of neurons – the agouti-related peptide (AgRP)- and pro-opiomelanocortin (POMC)-expressing neurons that integrate various nutritional, hormonal, and neuronal signals to regulate food intake and energy expenditure, and thereby help achieve energy homeostasis. AgRP neurons, also co-release neuropeptide Y and γ-aminobutyric acid (GABA) to promote feeding and inhibit metabolism through at least three possible mechanisms: (1) suppression of the melanocortin signaling system through competitive binding of AgRP with the melanocortin 4 receptors; (2) neuropeptide Y-mediated inhibition of post-synaptic neurons that reside in hypothalamic nuclei; (3) GABAergic inhibition of POMC neurons in their post-synaptic targets including the parabrachial nucleus (parabrachial nucleus), a brainstem structure that relays gustatory and visceral sensory information. Acute ablation of AgRP neurons in adult mice by the action of diphtheria toxin (DT) results in precipitous reduction of food intake, and eventually leads to starvation within 6 days of DT treatment. Chronic delivery of bretazenil, a GABAA receptor partial agonist, into the parabrachial nucleus is sufficient to restore feeding and body weight when AgRP neurons are ablated, whereas chronic blockade of melanocortin 4 receptor signaling is inadequate. This review summarizes the physiological roles of a neural circuitry regulated by AgRP neurons in control of feeding behavior with particular emphasis of the GABA output to the parabrachial nucleus. We also describe a compensatory mechanism that is gradually engaged after ablation of AgRP neurons that allows mice to continue eating without them. PMID:21211531

  7. [The influence of hyperleptinemia during pregnancy on fetal weight and obesity development in progeny mice with agouti yellow mutation].

    PubMed

    Makarova, E N; Syracheva, M S; Bazhan, N M

    2014-03-01

    Maternal obesity increases the risk of obesity in the offspring, and obesity is accompanied by an increase in blood leptin levels. Leptin can influence the progeny metabolism via its influence on fetal growth and, possibly, via its action on AgRP expression in placenta. The "yellow" mutation at the mouse agouti locus (A(y)) evokes obesity and increases blood leptin levels in pregnant mice. The aim was to examine the influence of A(y) mutation in pregnant mice on fetal weight, placental expression of AgRP gene and food intake and obesity development in progeny. A(y) pregnant females as compared to control ones had increased circulating leptin levels on days 13 and 18 of pregnancy. Both fetal weight and placental expression of AgRP gene were increased on day 13 of pregnancy and decreased on day 18 of pregnancy in A(y) females as compared to control ones. Both control (a/a) and obesity prone (A(y)/a) male young born to A(y) mothers had lowered body weight and enhanced food intake between 5 and 11 weeks of age as compared to male progeny of control mothers. The enhanced leptin levels during pregnancy in mice are associated with retardation of obesity development in obesity prone male offspring and with changes in fetal weight and AgRP gene expression in placenta.

  8. Antitumor Peptides from Marine Organisms

    PubMed Central

    Zheng, Lan-Hong; Wang, Yue-Jun; Sheng, Jun; Wang, Fang; Zheng, Yuan; Lin, Xiu-Kun; Sun, Mi

    2011-01-01

    The biodiversity of the marine environment and the associated chemical diversity constitute a practically unlimited resource of new antitumor agents in the field of the development of marine bioactive substances. In this review, the progress on studies of antitumor peptides from marine sources is provided. The biological properties and mechanisms of action of different marine peptides are described; information about their molecular diversity is also presented. Novel peptides that induce apoptosis signal pathway, affect the tubulin-microtubule equilibrium and inhibit angiogenesis are presented in association with their pharmacological properties. It is intended to provide useful information for further research in the fields of marine antitumor peptides. PMID:22072999

  9. Antitumor peptides from marine organisms.

    PubMed

    Zheng, Lan-Hong; Wang, Yue-Jun; Sheng, Jun; Wang, Fang; Zheng, Yuan; Lin, Xiu-Kun; Sun, Mi

    2011-01-01

    The biodiversity of the marine environment and the associated chemical diversity constitute a practically unlimited resource of new antitumor agents in the field of the development of marine bioactive substances. In this review, the progress on studies of antitumor peptides from marine sources is provided. The biological properties and mechanisms of action of different marine peptides are described; information about their molecular diversity is also presented. Novel peptides that induce apoptosis signal pathway, affect the tubulin-microtubule equilibrium and inhibit angiogenesis are presented in association with their pharmacological properties. It is intended to provide useful information for further research in the fields of marine antitumor peptides.

  10. Small-Molecule Fusion Inhibitors Bind the pH-Sensing Stable Signal Peptide-GP2 Subunit Interface of the Lassa Virus Envelope Glycoprotein

    PubMed Central

    Shankar, Sundaresh; Whitby, Landon R.; Casquilho-Gray, Hedi E.; York, Joanne; Boger, Dale L.

    2016-01-01

    ABSTRACT Arenavirus species are responsible for severe life-threatening hemorrhagic fevers in western Africa and South America. Without effective antiviral therapies or vaccines, these viruses pose serious public health and biodefense concerns. Chemically distinct small-molecule inhibitors of arenavirus entry have recently been identified and shown to act on the arenavirus envelope glycoprotein (GPC) to prevent membrane fusion. In the tripartite GPC complex, pH-dependent membrane fusion is triggered through a poorly understood interaction between the stable signal peptide (SSP) and the transmembrane fusion subunit GP2, and our genetic studies have suggested that these small-molecule inhibitors act at this interface to antagonize fusion activation. Here, we have designed and synthesized photoaffinity derivatives of the 4-acyl-1,6-dialkylpiperazin-2-one class of fusion inhibitors and demonstrate specific labeling of both the SSP and GP2 subunits in a native-like Lassa virus (LASV) GPC trimer expressed in insect cells. Photoaddition is competed by the parental inhibitor and other chemically distinct compounds active against LASV, but not those specific to New World arenaviruses. These studies provide direct physical evidence that these inhibitors bind at the SSP-GP2 interface. We also find that GPC containing the uncleaved GP1-GP2 precursor is not susceptible to photo-cross-linking, suggesting that proteolytic maturation is accompanied by conformational changes at this site. Detailed mapping of residues modified by the photoaffinity adducts may provide insight to guide the further development of these promising lead compounds as potential therapeutic agents to treat Lassa hemorrhagic fever. IMPORTANCE Hemorrhagic fever arenaviruses cause lethal infections in humans and, in the absence of licensed vaccines or specific antiviral therapies, are recognized to pose significant threats to public health and biodefense. Lead small-molecule inhibitors that target the

  11. Peptide Optical waveguides.

    PubMed

    Handelman, Amir; Apter, Boris; Shostak, Tamar; Rosenman, Gil

    2017-02-01

    Small-scale optical devices, designed and fabricated onto one dielectric substrate, create integrated optical chip like their microelectronic analogues. These photonic circuits, based on diverse physical phenomena such as light-matter interaction, propagation of electromagnetic waves in a thin dielectric material, nonlinear and electro-optical effects, allow transmission, distribution, modulation, and processing of optical signals in optical communication systems, chemical and biological sensors, and more. The key component of these optical circuits providing both optical processing and photonic interconnections is light waveguides. Optical confinement and transmitting of the optical waves inside the waveguide material are possible due to the higher refractive index of the waveguides in comparison with their surroundings. In this work, we propose a novel field of bionanophotonics based on a new concept of optical waveguiding in synthetic elongated peptide nanostructures composed of ordered peptide dipole biomolecules. New technology of controllable deposition of peptide optical waveguiding structures by nanofountain pen technique is developed. Experimental studies of refractive index, optical transparency, and linear and nonlinear waveguiding in out-of-plane and in-plane diphenylalanine peptide nanotubes have been conducted. Optical waveguiding phenomena in peptide structures are simulated by the finite difference time domain method. The advantages of this new class of bio-optical waveguides are high refractive index contrast, wide spectral range of optical transparency, large optical nonlinearity, and electro-optical effect, making them promising for new applications in integrated multifunctional photonic circuits. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  12. Cathelicidin Antimicrobial Peptides with Reduced Activation of Toll-Like Receptor Signaling Have Potent Bactericidal Activity against Colistin-Resistant Bacteria

    PubMed Central

    Lin, Xiaoyan; Yi, Guanghui; Zhang, Yunliang; Rowe-Magnus, Dean A.; Bush, Karen

    2016-01-01

    ABSTRACT The world is at the precipice of a postantibiotic era in which medical procedures and minor injuries can result in bacterial infections that are no longer effectively treated by antibiotics. Cathelicidins are peptides produced by animals to combat bacterial infections and to regulate innate immune responses. However, cathelicidins are potent activators of the inflammatory response. Cathelicidins with reduced proinflammatory activity and potent bactericidal activity in the low micromolar range against Gram-negative bacteria have been identified. Motifs in cathelicidins that impact bactericidal activity and cytotoxicity to human cells have been elucidated and used to generate peptides that have reduced activation of proinflammatory cytokine production and reduced cytotoxicity to human cells. The resultant peptides have bactericidal activities comparable to that of colistin and can kill colistin-resistant bacteria. PMID:27651360

  13. Acute and long-term effects of a single dose of MDMA on aggression in Dark Agouti rats.

    PubMed

    Kirilly, Eszter; Benko, Anita; Ferrington, Linda; Ando, Romeo D; Kelly, Paul A T; Bagdy, Gyorgy

    2006-02-01

    MDMA causes selective depletion of serotonergic terminals in experimental animals and the consequent decrease in synaptic 5-HT may, inter alia, increase impulsivity. To study the effects of MDMA upon brain function, the behaviour of male Dark Agouti rats exposed to MDMA (15 mg/kg i.p.), two 5-HT1B agonists (CGS-12066A and CP-94,253, both 5 mg/kg i.p.) or saline were investigated in the resident-intruder test. Studies were performed in drug-naive rats and also in rats exposed to MDMA (15 mg/kg i.p.) 21 d earlier. In parallel experiments the functional neuroanatomy of MDMA effects were assessed using 2-deoxyglucose imaging of local cerebral metabolic rate of glucose utilization (LCMRGlu) and neurotoxicity was assessed by measuring [3H]paroxetine binding. There was no significant difference in aggressive behaviour (biting, boxing, wrestling and their latencies) between drug-naive rats and rats previously exposed to MDMA 21 d earlier, despite reduced social behaviour, decreased LCMRGlu in several brain areas involved in aggression, and reductions in paroxetine binding by 30-60% in the forebrain. CGS-12066A, CP-94,253 and acute MDMA produced marked decreases in aggressive behaviours, especially in biting, boxing and kicking found in drug-naive rats. In animals previously exposed to the drug, acute anti-aggressive effects of MDMA were, in general, preserved as were MDMA-induced increases in LCMRGlu. Our studies provide evidence that in the resident-intruder test, where social isolation is a requirement, aggressive behaviour and acute anti-aggressive effects of MDMA and 5-HT1B receptor agonists remain intact 3 wk after a single dose of the drug despite significant damage to the serotonergic system.

  14. Organogenesis and foetal haemodynamics during the normal gestation of healthy black-rumped agoutis (Dasyprocta prymnolopha, Wagler, 1831) bred in captivity.

    PubMed

    Sousa, Fca; Pessoa, G T; Moura, L S; Araújo, J R; Rodrigues, Rps; Barbosa, Maps; Diniz, A N; Souza, A B; Silva, E G; Lucena, L U; Sanches, M P; Silva-Filho, O F; Guerra, P C; Sousa, J M; Neves, W C; Alves, F R

    2017-02-01

    The objective of this study was to define the patterns of organogenesis and foetal haemodynamics during the normal gestation of healthy agoutis (Dasyprocta prymnolopha) kept in captivity. Thirty pregnant agoutis that ranged in size from small to medium and weighed between 2.5 and 3 kg underwent B-mode and Doppler ultrasonography for the biometric evaluation of the foetal organs. The foetal aortic blood flow proved to be predominantly systolic, and the measured flow velocity was 78.89 ± 2.95 cm/s, with a maximum pressure gradient of 2.12 ± 0.27 mmHg. The liver was characterized by its large volume, occupying the entire cranial aspect of the abdominal cavity, and it was associated cranially with the diaphragm and caudally with the stomach. The flow velocity in the portal vein was estimated to equal 12.17 ± 2.37 cm/s, with a resistivity index of 0.82 ± 0.05. The gallbladder was centrally located and protruded cranially towards the diaphragm. The spleen was visualized as an elongated structure with tapered cranial and caudal extremities, and the foetal kidneys were visualized bilaterally in the retroperitoneal region, with the right kidney positioned slightly more cranially than the left. The morphological characterization and hemodynamic analysis of the foetal organs of black-rumped agoutis via B-mode and Doppler ultrasonography allow determination of the vascular network and of reference values for the blood flow required for perfusing the anatomical elements essential for maintaining the viability of foetuses at different gestational ages.

  15. Rapid development of semistarvation-induced hyperactivity in Dark Agouti rats. Excessive wheel running and effect of 3,4-methylenedioxymethamphetamine (MDMA).

    PubMed

    Vidal, Pedro; Pérez-Padilla, Ángeles; Pellón, Ricardo

    2013-02-01

    Clinical studies have found that patients with anorexia develop high activity levels. These data suggest a possible implication of activity in the aetiology of anorexia and are in line with findings obtained in animals during experimental procedures to model interactions between activity and weight loss. Activity-based anorexia (ABA) and semistarvation-induced hyperactivity (SIH) develop when laboratory rats have food access restricted to a single period in the day and are given free access to an activity wheel. This experiment sought to show the effect on weight loss of the excessive activity normally seen in Dark Agouti rats and of hyperactivity induced by 3,4-methylenedioxymethamphetamine (MDMA). To this end, 32 female rats of the Dark Agouti strain were selected and divided into four groups in accordance with a 2 × 2 factorial design, in which one factor was treatment (saline or MDMA) and the other was access or lack of access to an activity wheel. Animals with wheel running access displayed a marked increase in running combined with accelerated weight loss. Although pharmacological treatment resulted in no observable effect on weight loss, rats treated with 12.5mg/kg MDMA generally registered more wheel running than did those treated with saline. Analysis of data on the temporal distribution of wheel running revealed an alteration in circadian activity patterns as a consequence of MDMA. These results, by showing a general high level of wheel running in Dark Agouti rats, once again emphasise the close relationship between activity and weight loss in the development of SIH and related phenomena such as ABA.

  16. Impaired ghrelin signaling is associated with gastrointestinal dysmotility in rats with gastroesophageal reflux disease.

    PubMed

    Nahata, Miwa; Muto, Shuichi; Oridate, Nobuhiko; Ohnishi, Shunsuke; Nakagawa, Koji; Sadakane, Chiharu; Saegusa, Yayoi; Hattori, Tomohisa; Asaka, Masahiro; Takeda, Hiroshi

    2012-07-01

    Gastroesophageal reflux disease (GERD) is often associated with decreased upper gastrointestinal motility, and ghrelin is an appetite-stimulating hormone known to increase gastrointestinal motility. We investigated whether ghrelin signaling is impaired in rats with GERD and studied its involvement in upper gastrointestinal motility. GERD was induced surgically in Wistar rats. Rats were injected intravenously with ghrelin (3 nmol/rat), after which gastric emptying, food intake, gastroduodenal motility, and growth hormone (GH) release were investigated. Furthermore, plasma ghrelin levels and the expression of ghrelin-related genes in the stomach and hypothalamus were examined. In addition, we administered ghrelin to GERD rats treated with rikkunshito, a Kampo medicine, and examined its effects on gastroduodenal motility. GERD rats showed a considerable decrease in gastric emptying, food intake, and antral motility. Ghrelin administration significantly increased gastric emptying, food intake, and antral and duodenal motility in sham-operated rats, but not in GERD rats. The effect of ghrelin on GH release was also attenuated in GERD rats, which had significantly increased plasma ghrelin levels and expression of orexigenic neuropeptide Y/agouti-related peptide mRNA in the hypothalamus. The number of ghrelin-positive cells in the gastric body decreased in GERD rats, but the expression of gastric preproghrelin and GH secretagogue receptor mRNA was not affected. However, when ghrelin was exogenously administered to GERD rats treated with rikkunshito, a significant increase in antral motility was observed. These results suggest that gastrointestinal dysmotility is associated with impaired ghrelin signaling in GERD rats and that rikkunshito restores gastrointestinal motility by improving the ghrelin response.

  17. Effect of desacyl ghrelin, obestatin and related peptides on triglyceride storage, metabolism and GHSR signaling in 3T3-L1 adipocytes.

    PubMed

    Miegueu, Pierre; St Pierre, David; Broglio, Fabio; Cianflone, Katherine

    2011-02-01

    Acyl-ghrelin (AG), desacyl-ghrelin (DAG) and obestatin are all derived from the same gene transcript; however their plasma levels do not necessarily change in parallel. The influence of these peptides towards the development of obesity and their direct effects on adipocyte physiology has not been thoroughly investigated. This study was designed to evaluate the direct effects of peptides of the ghrelin family on preadipocyte proliferation, differentiation and adipocyte lipid and glucose metabolism in 3T3-L1 cells. 3T3 cells were treated with physiological peptide concentrations for 1 h to 9 days, and the relevant assays measured. In preadipocytes, AG, GHRP-6 and DAG stimulated proliferation, measured as (3)H-thymidine incorporation (up to 200%, P < 0.05), while all peptides stimulated differentiation (up to 300%, P < 0.01) as compared to standard differentiation conditions. In adipocytes, FA uptake was increased in a concentration-dependent manner especially with obestatin (three- to fourfold, P < 0.001) and DAG (three- to fivefold, P < 0.001). By contrast, glucose transport was unchanged. DAG and obestatin significantly decreased lipolysis measured as non-esterified fatty acid and glycerol release by 50%, P < 0.05-0.01 and 51%, P < 0.01, respectively. Interestingly, DAG stimulation of FA uptake was blocked with GHSR1 antagonist (D-lys(3))-GHRP-6 (P < 0.05), phospholipase C inhibitor U73122 and phosphatidylinositol-3-kinase inhibitor wortmannin (P < 0.001). Finally, in omental but not subcutaneous human adipose tissue, GHSR1 correlated with BMI (r = 0.549, P < 0.05) and insulin (r = 0.681, P < 0.01). Taken together, these results suggest that ghrelin-related peptides may directly affect adipose tissue metabolism.

  18. The contribution of serotonin 5-HT2C and melanocortin-4 receptors to the satiety signaling of glucagon-like peptide 1 and liraglutide, a glucagon-like peptide 1 receptor agonist, in mice.

    PubMed

    Nonogaki, Katsunori; Suzuki, Marina; Sanuki, Marin; Wakameda, Mamoru; Tamari, Tomohiro

    2011-07-29

    Glucagon-like peptide 1 (GLP-1), an insulinotropic gastrointestinal peptide produced mainly from intestinal endocrine L-cells, and liraglutide, a GLP-1 receptor (GLP-1R) agonist, induce satiety. The serotonin 5-HT2C receptor (5-HT2CR) and melanoroctin-4 receptor (MC4R) are involved in the regulation of food intake. Here we show that systemic administration of GLP-1 (50 and 200μg/kg)-induced anorexia was blunted in mice with a 5HT2CR null mutation, and was attenuated in mice with a heterozygous MC4R mutation. On the other hand, systemic administration of liraglutide (50 and 100μg/kg) suppressed food intake in mice lacking 5-HT2CR, mice with a heterozygous mutation of MC4R and wild-type mice matched for age. Moreover, once-daily consecutive intraperitoneal administration of liraglutide (100μg/kg) over 3days significantly suppressed daily food intake and body weight in mice with a heterozygous mutation of MC4R as well as wild-type mice. These findings suggest that GLP-1 and liraglutide induce anorexia via different central pathways.

  19. Analysis of the V2 Vasopressin Receptor (V2R) Mutations Causing Partial Nephrogenic Diabetes Insipidus Highlights a Sustainable Signaling by a Non-peptide V2R Agonist.

    PubMed

    Makita, Noriko; Sato, Tomohiko; Yajima-Shoji, Yuki; Sato, Junichiro; Manaka, Katsunori; Eda-Hashimoto, Makiko; Ootaki, Masanori; Matsumoto, Naoki; Nangaku, Masaomi; Iiri, Taroh

    2016-10-21

    Disease-causing mutations in G protein-coupled receptor (GPCR) genes, including the V2 vasopressin receptor (V2R) gene, often cause misfolded receptors, leading to a defect in plasma membrane trafficking. A novel V2R mutation, T273M, identified in a boy with partial nephrogenic diabetes insipidus (NDI), shows intracellular localization and partial defects similar to the two mutants we described previously (10). Although non-peptide V2R antagonists have been shown to rescue the membrane localization of V2R mutants, their level of functional rescue is weak. Interestingly, it has been reported that a non-peptide agonist, OPC51803, activates misfolded V2R mutants intracellularly without degradation, thus potentially serving as a therapeutic agent against NDI (14). In our current experiments, however, a peptide antagonist blocked arginine vasopressin (AVP)- or OPC51803-stimulated cAMP accumulation both in COS-7 and MDCK cells, suggesting that OPC51803 mainly stimulates cell surface V2R mutants. In addition, our analyses revealed that OPC51803 works not only as a non-peptide agonist that causes activation/β-arrestin-dependent desensitization of V2R mutants expressed at the plasma membrane but also as a pharmacochaperone that promotes the endoplasmic reticulum-retained mutant maturation and trafficking to the plasma membrane. The ratio of the pharmacochaperone effect to the desensitization effect likely correlates negatively with the residual function of the tested mutants, suggesting that OPC5 has a more favorable effect on the V2R mutants with a less residual function. We speculated that the canceling of the desensitization effect of OPC51803 by the pharmacochaperone effect after long-term treatment may produce sustainable signaling, and thus pharmacochaperone agonists such as OPC51803 may serve as promising therapeutics for NDI caused by misfolded V2R mutants.

  20. Investigating Endogenous Peptides and Peptidases using Peptidomics

    PubMed Central

    Tinoco, Arthur D.; Saghatelian, Alan

    2012-01-01

    Rather than simply being protein degradation products, peptides have proven to be important bioactive molecules. Bioactive peptides act as hormones, neurotransmitters and antimicrobial agents in vivo. The dysregulation of bioactive peptide signaling is also known to be involved in disease, and targeting peptide hormone pathways has been successful strategy in the development of novel therapeutics. The importance of bioactive peptides in biology has spurred research to elucidate the function and regulation of these molecules. Classical methods for peptide analysis have relied on targeted immunoassays, but certain scientific questions necessitated a broader and more detailed view of the peptidome–all the peptides in a cell, tissue or organism. In this review we discuss how peptidomics has emerged to fill this need through the application of advanced liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods that provide unique insights into peptide activity and regulation. PMID:21786763

  1. Electroacupuncture Improves Insulin Resistance by Reducing Neuroprotein Y/Agouti-Related Protein Levels and Inhibiting Expression of Protein Tyrosine Phosphatase 1B in Diet-induced Obese Rats.

    PubMed

    Liu, Xia; He, Jun-Feng; Qu, Ya-Ting; Liu, Zhi-Jun; Pu, Qing-Yang; Guo, Sheng-Tong; Du, Jia; Jiang, Peng-Fei

    2016-04-01

    Electroacupuncture (EA) has been shown to exert beneficial effects on obesity, but the mechanism is unclear. This study investigated the effects of EA on diet-induced obese (DIO) rats. Fifty male Sprague-Dawley rats were randomly divided into low-fat diet (LFD, 10 rats) and high-fat diet (HFD, 40 rats) groups. After the DIO models had been established, successful model rats were randomly divided into HFD, EA, and orlistat (OLST) groups. The EA group received EA at Zusanli (ST36) and Quchi (LI11) for 20 minutes once per day for 28 days. The OLST group was treated with orlistat by gavage. The body weight, homeostasis model assessment-insulin resistance index, adipocyte diameters, and neuroprotein Y/agouti-related protein and protein tyrosine phosphatase 1B levels were significantly lower in the EA group than in the HFD group. The rats of the OLST group showed watery stools and yellow hairs whereas those of the EA group had regular stools and sleek coats. The effect of EA on weight loss may be related to improved insulin resistance caused by changes in the adipocyte size and by reductions in the expressions of neuroprotein Y/agouti-related protein and protein tyrosine phosphatase 1B. This study indicates that EA may be a better method of alternative therapy for treating obesity and other metabolic diseases.

  2. Peptide identification

    DOEpatents

    Jarman, Kristin H [Richland, WA; Cannon, William R [Richland, WA; Jarman, Kenneth D [Richland, WA; Heredia-Langner, Alejandro [Richland, WA

    2011-07-12

    Peptides are identified from a list of candidates using collision-induced dissociation tandem mass spectrometry data. A probabilistic model for the occurrence of spectral peaks corresponding to frequently observed partial peptide fragment ions is applied. As part of the identification procedure, a probability score is produced that indicates the likelihood of any given candidate being the correct match. The statistical significance of the score is known without necessarily having reference to the actual identity of the peptide. In one form of the invention, a genetic algorithm is applied to candidate peptides using an objective function that takes into account the number of shifted peaks appearing in the candidate spectrum relative to the test spectrum.

  3. SacRALF1, a peptide signal from the grass sugarcane (Saccharum spp.), is potentially involved in the regulation of tissue expansion.

    PubMed

    Mingossi, Fabiana B; Matos, Juliana L; Rizzato, Ana Paula; Medeiros, Ane H; Falco, Maria C; Silva-Filho, Marcio C; Moura, Daniel S

    2010-06-01

    Rapid alkalinization factor (RALF) is part of a growing family of small peptides with hormone characteristics in plants. Initially isolated from leaves of tobacco plants, RALF peptides can be found throughout the plant kingdom and they are expressed ubiquitously in plants. We took advantage of the small gene family size of RALF genes in sugarcane and the ordered cellular growth of the grass sugarcane leaves to gain information about the function of RALF peptides in plants. Here we report the isolation of two RALF peptides from leaves of sugarcane plants using the alkalinization assay. SacRALF1 was the most abundant and, when added to culture media, inhibited growth of microcalli derived from cell suspension cultures at concentrations as low as 0.1 microM. Microcalli exposed to exogenous SacRALF1 for 5 days showed a reduced number of elongated cells. Only four copies of SacRALF genes were found in sugarcane plants. All four SacRALF genes are highly expressed in young and expanding leaves and show a low or undetectable level of expression in expanded leaves. In half-emerged leaf blades, SacRALF transcripts were found at high levels at the basal portion of the leaf and at low levels at the apical portion. Gene expression analyzes localize SacRALF genes in elongation zones of roots and leaves. Mature leaves, which are devoid of expanding cells, do not show considerable expression of SacRALF genes. Our findings are consistent with SacRALF genes playing a role in plant development potentially regulating tissue expansion.

  4. The high glycemic index diet was an independent predictor to explain changes in agouti-related protein in obese adolescents.

    PubMed

    Dal Molin Netto, Bárbara; Landi Masquio, Deborah Cristina; Da Silveira Campos, Raquel Munhoz; De Lima Sanches, Priscila; Campos Corgosinho, Flavia; Tock, Lian; Missae Oyama, Lila; Túlio de Mello, Marco; Tufik, Sergio; Dâmaso, Ana Raimunda

    2014-02-01

    La Dieta de alto índice glucémico es un predictor independiente para explicar los cambios en la proteína relacionada al agouti en adolescentes obesos. Introducción y objetivos: El papel de la dieta de índice glucémico (GI) en el control de los factores orexigénicos y anorexígenos del balance de energía todavía no está claro. El presente estudio tuvo como objetivo evaluar si la dieta habitual, de acuerdo con diferentes alimentos con IG, ejerce influencia sobre la regulación de los marcadores del balance de energía y los efectos de la intervención interdisciplinaria en adolescentes obesos. Métodos: Un total de 55 adolescentes obesos, con edades de 14 a 19 años, han sido sometidos a un año de tratamiento interdisciplinario y se dividieron en dos grupos, de acuerdo al patrón de dieta predominante de la ingesta de alimentos: el grupo IG alto (H-GI; n = 29) y GI moderada/bajo grupo (M/L-GI, n = 26). Resultados: La concentración de orexigenic factor de AgRP (p < 0,01), la grasa visceral (p = 0,04) y la relación visceral/ subcutánea (p = 0,03) fueron mayores en el grupo de HGI en comparación con el grupo M/L-GI. Por otra parte, el consumo habitual de alimentos H-GI fue un predictor independiente para explicar los cambios en las concentraciones de AgRP. Después de un año de tratamiento interdisciplinario, los adolescentes presentan una reducción significativa en el peso corporal, la grasa corporal total (%), visceral y la grasa subcutánea y el HOMA-IR, así como un aumento significativo de la masa libre de grasa (%). Conclusiones: Nuestros resultados pueden sugerir que la dieta H-GI habitual podría upregulate vías orexigénicos, contribuyendo al círculo vicioso entre las dietas indeseables, desregula el equilibrio energético y predisponen a la obesidad. Uno por otro lado, un año de tratamiento interdisciplinario puede perfil metabólico mejora significativa y la obesidad central en los adolescentes.

  5. Ethanol-Induced Increase of Agouti-Related Protein (AgRP) Immunoreactivity in the Arcuate Nucleus of the Hypothalamus of C57BL/6J, but not 129/SvJ, Inbred Mice

    PubMed Central

    Cubero, Inmaculada; Navarro, Montserrat; Carvajal, Francisca; Lerma-Cabrera, Jose Manuel; Thiele, Todd E.

    2011-01-01

    Background The melanocortin (MC) system is composed of peptides that are cleaved from the polypeptide precursor, pro-opiomelanocortin (POMC). Previous research has shown that MC receptor (MCR) agonists reduce, and MCR antagonists increase, ethanol consumption in rats and mice. Consistently, genetic deletion of the endogenous MCR antagonist, agouti-related protein (AgRP), causes reductions of ethanol-reinforced lever pressing and binge-like ethanol drinking in C57BL/6J mice. Ethanol also has direct effects on the central MC system, as chronic exposure to an ethanol-containing diet causes significant reductions of α-melanocyte stimulating hormone (α-MSH) immunoreactivity in specific brain regions of Sprague-Dawley rats. Together, these observations suggest that the central MC system modulates neurobiological responses to ethanol. To further characterize the role of the MC system in responses to ethanol, here we compared AgRP and α-MSH immunoreactivity in response to an acute injection of saline or ethanol between high ethanol drinking C57BL/6J mice and moderate ethanol drinking 129/SvJ mice. Methods Mice received an intraperitoneal (i.p.) injection of ethanol (1.5 g/kg or 3.5 g/kg; mixed in 0.9% saline) or an equivolume of 0.9% saline. Two hours after injection, animals were sacrificed and their brains were processed for AgRP and α-MSH immunoreactivity. Results Results indicated that acute ethanol administration triggered a dose-dependent increase in AgRP immunoreactivity in the arcuate (ARC) of C57BL/6J mice, an effect that was not evident in the 129/SvJ strain. Although acute administration of ethanol did not influence α-MSH immunoreactivity, C57BL/6J mice had significantly greater overall α-MSH immunoreactivity in the ARC, dorsomedial, and lateral regions of the hypothalamus relative to the 129/SvJ strain. In contrast, C57BL/6J mice displayed significantly lower α-MSH immunoreactivity in the medial amygdala. Conclusions The results show that acute ethanol

  6. Measurement of cytoplasmic free Ca2+ concentration in rabbit aorta using the photoprotein, aequorin. Effect of atrial natriuretic peptide on agonist-induced Ca2+ signal generation.

    PubMed Central

    Takuwa, Y; Rasmussen, H

    1987-01-01

    Addition of norepinephrine, angiotensin II, or histamine leads to a transient rise in the cytoplasmic Ca2+ concentration ([Ca2+]i), as measured with aequorin, in rabbit aortic strips. Each induces a [Ca2+]i transient which peaks in 2 min and then falls either back to baseline (angiotensin II) or to a plateau (norepinephrine and histamine). The [Ca2+]i transient is due to the mobilization of Ca2+ from a caffeine-sensitive, intracellular pool. An elevation of [K+] to 35 mM leads to a monotonic sustained rise in [Ca2+]i which depends entirely on extracellular Ca2+, but an increase to 100 mM leads to a [Ca2+]i transient from the mobilization of intracellular Ca2+. Atrial natriuretic peptide does not alter basal [Ca2+]i nor inhibit the [Ca2+]i transient induced by either histamine or angiotensin II, but blocks that induced by norepinephrine, and blocks the plateau phase induced by either histamine or norepinephrine. The peptide inhibits the contractile response to all three agonists and to K+. PMID:2439545

  7. Glucagon-like peptide 1 interacts with ghrelin and leptin to regulate glucose metabolism and food intake through vagal afferent neuron signaling.

    PubMed

    Ronveaux, Charlotte C; Tomé, Daniel; Raybould, Helen E

    2015-04-01

    Emerging evidence has suggested a possible physiologic role for peripheral glucagon-like peptide 1 (GLP-1) in regulating glucose metabolism and food intake. The likely site of action of GLP-1 is on vagal afferent neurons (VANs). The vagal afferent pathway is the major neural pathway by which information about ingested nutrients reaches the central nervous system and influences feeding behavior. Peripheral GLP-1 acts on VANs to inhibit food intake. The mechanism of the GLP-1 receptor (GLP-1R) is unlike other gut-derived receptors; GLP-1Rs change their cellular localization according to feeding status rather than their protein concentrations. It is possible that several gut peptides are involved in mediating GLP-1R translocation. The mechanism of peripheral GLP-1R translocation still needs to be elucidated. We review data supporting the role of peripheral GLP-1 acting on VANs in influencing glucose homeostasis and feeding behavior. We highlight evidence demonstrating that GLP-1 interacts with ghrelin and leptin to induce satiation. Our aim was to understand the mechanism of peripheral GLP-1 in the development of noninvasive antiobesity treatments.

  8. A synthetic mechano-growth factor E peptide promotes rat tenocyte migration by lessening cell stiffness and increasing F-actin formation via the FAK-ERK1/2 signaling pathway

    SciTech Connect

    Zhang, Bingyu; Luo, Qing; Mao, Xinjian; Xu, Baiyao; Yang, Li; Ju, Yang; Song, Guanbin

    2014-03-10

    Tendon injuries are common in sports and are frequent reasons for orthopedic consultations. The management of damaged tendons is one of the most challenging problems in orthopedics. Mechano-growth factor (MGF), a recently discovered growth repair factor, plays positive roles in tissue repair through the improvement of cell proliferation and migration and the protection of cells against injury-induced apoptosis. However, it remains unclear whether MGF has the potential to accelerate tendon repair. We used a scratch wound assay in this study to demonstrate that MGF-C25E (a synthetic mechano-growth factor E peptide) promotes the migration of rat tenocytes and that this promotion is accompanied by an elevation in the expression of the following signaling molecules: focal adhesion kinase (FAK) and extracellular signal regulated kinase1/2 (ERK1/2). Inhibitors of the FAK and ERK1/2 pathways inhibited the MGF-C25E-induced tenocyte migration, indicating that MGF-C25E promotes tenocyte migration through the FAK-ERK1/2 signaling pathway. The analysis of the mechanical properties showed that the Young's modulus of tenocytes was decreased through treatment of MGF-C25E, and an obvious formation of pseudopodia and F-actin was observed in MGF-C25E-treated tenocytes. The inhibition of the FAK or ERK1/2 signals restored the decrease in Young's modulus and inhibited the formation of pseudopodia and F-actin. Overall, our study demonstrated that MGF-C25E promotes rat tenocyte migration by lessening cell stiffness and increasing pseudopodia formation via the FAK-ERK1/2 signaling pathway. - Highlights: • Mechano-growth factor E peptide (MGF-C25E) promotes migration of rat tenocytes. • MGF-C25E activates the FAK-ERK1/2 pathway in rat tenocytes. • MGF-C25E induces the actin remodeling and the formation of pseudopodia, and decreases the stiffness in rat tenocytes. • MGF-C25E promotes tenocyte migration via altering stiffness and forming pseudopodia by the activation of the FAK-ERK1

  9. The First Salamander Defensin Antimicrobial Peptide

    PubMed Central

    Jiang, Ke; Rong, Mingqiang; Lai, Ren

    2013-01-01

    Antimicrobial peptides have been widely identified from amphibian skins except salamanders. A novel antimicrobial peptide (CFBD) was isolated and characterized from skin secretions of the salamander, Cynops fudingensis. The cDNA encoding CFBD precursor was cloned from the skin cDNA library of C. fudingensis. The precursor was composed of three domains: signal peptide of 17 residues, mature peptide of 41 residues and intervening propeptide of 3 residues. There are six cysteines in the sequence of mature CFBD peptide, which possibly form three disulfide-bridges. CFBD showed antimicrobial activities against Staphylococcus aureus, Bacillus subtilis, Candida albicans and Escherichia coli. This peptide could be classified into family of β-defensin based on its seqeuence similarity with β-defensins from other vertebrates. Evolution analysis indicated that CFBD was close to fish β-defensin. As far as we know, CFBD is the first β-defensin antimicrobial peptide from salamanders. PMID:24386139

  10. The first salamander defensin antimicrobial peptide.

    PubMed

    Meng, Ping; Yang, Shilong; Shen, Chuanbin; Jiang, Ke; Rong, Mingqiang; Lai, Ren

    2013-01-01

    Antimicrobial peptides have been widely identified from amphibian skins except salamanders. A novel antimicrobial peptide (CFBD) was isolated and characterized from skin secretions of the salamander, Cynops fudingensis. The cDNA encoding CFBD precursor was cloned from the skin cDNA library of C. fudingensis. The precursor was composed of three domains: signal peptide of 17 residues, mature peptide of 41 residues and intervening propeptide of 3 residues. There are six cysteines in the sequence of mature CFBD peptide, which possibly form three disulfide-bridges. CFBD showed antimicrobial activities against Staphylococcus aureus, Bacillus subtilis, Candida albicans and Escherichia coli. This peptide could be classified into family of β-defensin based on its sequence similarity with β-defensins from other vertebrates. Evolution analysis indicated that CFBD was close to fish β-defensin. As far as we know, CFBD is the first β-defensin antimicrobial peptide from salamanders.

  11. Lysosomal and cytosolic sialic acid 9-O-acetylesterase activities can Be encoded by one gene via differential usage of a signal peptide-encoding exon at the N terminus.

    PubMed

    Takematsu, H; Diaz, S; Stoddart, A; Zhang, Y; Varki, A

    1999-09-03

    9-O-Acetylation is one of the most common modifications of sialic acids, and it can affect several sialic acid-mediated recognition phenomena. We previously reported a cDNA encoding a lysosomal sialic acid-specific 9-O-acetylesterase, which traverses the endoplasmic reticulum-Golgi pathway and localizes primarily to lysosomes and endosomes. In this study, we report a variant cDNA derived from the same gene that contains a different 5' region. This cDNA has a putative open reading frame lacking a signal peptide-encoding sequence and is thus a candidate for the previously described cytosolic sialic acid 9-O-acetylesterase activity. Epitope-tagged constructs confirm that the new sequence causes the protein product to be targeted to the cytosol and has esterase activity. Using reverse transcription-polymerase chain reaction to distinguish the two forms of message, we show that although the lysosomal sialic acid-specific 9-O-acetylesterase message has a widespread pattern of expression in adult mouse tissues, this cytosolic sialic acid 9-O-acetylesterase form has a rather restricted distribution, with the strongest expression in the liver, ovary, and brain. Using a polyclonal antibody directed against the 69-amino acid region common to both proteins, we confirmed that the expression of glycosylated and nonglycosylated polypeptides occurred in appropriate subcellular fractions of normal mouse tissues. Rodent liver polypeptides reacting to the antibody also co-purify with previously described lysosomal sialic acid esterase activity and at least a portion of the cytosolic activity. Thus, two sialic acid 9-O-acetylesterases found in very different subcellular compartments can be encoded by a single gene by differential usage of a signal peptide-encoding exon at the N terminus. The 5'-rapid amplification of cDNA ends results and the differences in tissue-specific expression suggest that expression of these two products may be differentially regulated by independent promoters.

  12. Somato-Dendritic Localization and Signaling by Leptin Receptors in Hypothalamic POMC and AgRP Neurons

    PubMed Central

    Ha, Sangdeuk; Baver, Scott; Huo, Lihong; Gata, Adriana; Hairston, Joyce; Huntoon, Nicholas; Li, Wenjing; Zhang, Thompson; Benecchi, Elizabeth J.; Ericsson, Maria; Hentges, Shane T.; Bjørbæk, Christian

    2013-01-01

    Leptin acts via neuronal leptin receptors to control energy balance. Hypothalamic pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP)/Neuropeptide Y (NPY)/GABA neurons produce anorexigenic and orexigenic neuropeptides and neurotransmitters, and express the long signaling form of the leptin receptor (LepRb). Despite progress in the understanding of LepRb signaling and function, the sub-cellular localization of LepRb in target neurons has not been determined, primarily due to lack of sensitive anti-LepRb antibodies. Here we applied light microscopy (LM), confocal-laser scanning microscopy (CLSM), and electron microscopy (EM) to investigate LepRb localization and signaling in mice expressing a HA-tagged LepRb selectively in POMC or AgRP/NPY/GABA neurons. We report that LepRb receptors exhibit a somato-dendritic expression pattern. We further show that LepRb activates STAT3 phosphorylation in neuronal fibers within several hypothalamic and hindbrain nuclei of wild-type mice and rats, and specifically in dendrites of arcuate POMC and AgRP/NPY/GABA neurons of Leprb+/+ mice and in Leprbdb/db mice expressing HA-LepRb in a neuron specific manner. We did not find evidence of LepRb localization or STAT3-signaling in axon-fibers or nerve-terminals of POMC and AgRP/NPY/GABA neurons. Three-dimensional serial EM-reconstruction of dendritic segments from POMC and AgRP/NPY/GABA neurons indicates a high density of shaft synapses. In addition, we found that the leptin activates STAT3 signaling in proximity to synapses on POMC and AgRP/NPY/GABA dendritic shafts. Taken together, these data suggest that the signaling-form of the leptin receptor exhibits a somato-dendritic expression pattern in POMC and AgRP/NPY/GABA neurons. Dendritic LepRb signaling may therefore play an important role in leptin’s central effects on energy balance, possibly through modulation of synaptic activity via post-synaptic mechanisms. PMID:24204898

  13. Antimicrobial Peptides

    PubMed Central

    Bahar, Ali Adem; Ren, Dacheng

    2013-01-01

    The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill “superbugs” emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs), a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes) and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics). PMID:24287494

  14. Lipopolysaccharide-deficient Acinetobacter baumannii shows altered signaling through host Toll-like receptors and increased susceptibility to the host antimicrobial peptide LL-37.

    PubMed

    Moffatt, Jennifer H; Harper, Marina; Mansell, Ashley; Crane, Bethany; Fitzsimons, Timothy C; Nation, Roger L; Li, Jian; Adler, Ben; Boyce, John D

    2013-03-01

    Infections caused by multidrug-resistant Acinetobacter baumannii have emerged as a serious global health problem. We have shown previously that A. baumannii can become resistant to the last-line antibiotic colistin via the loss of lipopolysaccharide (LPS), including the lipid A anchor, from the outer membrane (J. H. Moffatt, M. Harper, P. Harrison, J. D. Hale, E. Vinogradov, T. Seemann, R. Henry, B. Crane, F. St. Michael, A. D. Cox, B. Adler, R. L. Nation, J. Li, and J. D. Boyce, Antimicrob. Agents Chemother. 54:4971-4977, 2010). Here, we show how these LPS-deficient bacteria interact with components of the host innate immune system. LPS-deficient A. baumannii stimulated 2- to 4-fold lower levels of NF-κB activation and tumor necrosis factor alpha (TNF-α) secretion from immortalized murine macrophages, but it still elicited low levels of TNF-α secretion via a Toll-like receptor 2-dependent mechanism. Furthermore, we show that while LPS-deficient A. baumannii was not altered in its resistance to human serum, it showed increased susceptibility to the human antimicrobial peptide LL-37. Thus, LPS-deficient, colistin-resistant A. baumannii shows significantly altered activation of the host innate immune inflammatory response.

  15. Post-blast treatment with Nociceptin/Orphanin FQ peptide (NOP) receptor antagonist reduces brain injury-induced hypoxia and signaling proteins in vestibulomotor-related brain regions.

    PubMed

    Awwad, Hibah O; Durand, Cindy D; Gonzalez, Larry P; Tompkins, Paul; Zhang, Yong; Lerner, Megan R; Brackett, Daniel J; Sherry, David M; Awasthi, Vibhudutta; Standifer, Kelly M

    2016-10-25

    Mild traumatic brain injury (mTBI) diagnoses have increased due to aggressive sports and blast-related injuries, but the cellular mechanisms and pathology underlying mTBI are not completely understood. Previous reports indicate that Nociceptin Orphanin/FQ (N/OFQ), an endogenous neuropeptide, contributes to post-injury ischemia following mechanical brain injury, yet its specific role in cerebral hypoxia, vestibulomotor function and injury marker expression following blast-induced TBI is not known. This study is the first to identify a direct association of N/OFQ and its N/OFQ peptide (NOP) receptor with TBI-induced changes following a single 80psi head blast exposure in male rats. N/OFQ and NOP receptor expression increased in brain tissue and plasma following TBI, concurrent with vestibular dysfunction but preceding hypoxia and appearance of injury markers compared to sham rats. A single post-blast treatment with the NOP receptor antagonist, SB-612111, transiently improved acute vestibulomotor performance. It also prevented increases in markers of TBI-induced hypoxia, pro-apoptotic proteins and injury seen 8-10days post-blast. This study reveals an apparent role for the N/OFQ-NOP receptor system in blast TBI and suggests potential therapeutic utility of NOP receptor antagonists for mTBI.

  16. A role for glucocorticoid-signaling in depression-like behavior of gastrin-releasing peptide receptor knock-out mice.

    PubMed

    Monje, Francisco J; Kim, Eun-Jung; Cabatic, Maureen; Lubec, Gert; Herkner, Kurt R; Pollak, Daniela D

    2011-08-01

    Abstract Background. The gastrin-releasing peptide receptor (GRPR) is highly expressed in the limbic system, where it importantly regulates emotional functions and in the suprachiasmatic nucleus, where it is central for the photic resetting of the circadian clock. Mice lacking GRPR presented with deficient light-induced phase shift in activity as well altered emotional learning and amygdala function. The effect of GRPR deletion on depression-like behavior and its molecular signature in the amygdala, however, has not yet been evaluated. Methods. GRPR knock-out mice (GRPR-KO) were tested in the forced-swim test and the sucrose preference test for depression-like behavior. Gene expression in the basolateral nucleus of the amygdala was evaluated by micorarray analysis subsequent to laser-capture microdissection-assisted extraction of mRNA. The expression of selected genes was confirmed by RT-PCR. Results. GRPR-KO mice were found to present with increased depression-like behavior. Microarray analysis revealed down-regulation of several glucocorticoid-responsive genes in the basolateral amygdala. Acute administration of dexamethasone reversed the behavioral phenotype and alterations in gene expression. Discussion. We propose that deletion of GRPR leads to the induction of depression-like behavior which is paralleled by dysregulation of amygdala gene expression, potentially resulting from deficient light-induced corticosterone release in GRPR-KO.

  17. NEMO-Binding Domain Peptide Attenuates Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting the NF-κB Signaling Pathway

    PubMed Central

    Huang, Jianhua; Li, Li; Yuan, Weifeng; Zheng, Linxin

    2016-01-01

    The aim of the present study is to investigate the protective effects and relevant mechanisms exerted by NEMO-binding domain peptide (NBD) against lipopolysaccharide- (LPS-) induced acute lung injury (ALI) in mice. The ALI model was induced by intratracheally administered atomized LPS (5 mg/kg) to BABL/c mice. Half an hour before LPS administration, we treated the mice with increasing concentrations of intratracheally administered NBD or saline aerosol. Two hours after LPS administration, each group of mice was sacrificed. We observed that NBD pretreatment significantly attenuated LPS-induced lung histopathological injury in a dose-dependent manner. Western blotting established that NBD pretreatment obviously attenuated LPS-induced IκB-α and NF-κBp65 activation and NOX1, NOX2, and NOX4 overexpression. Furthermore, NBD pretreatment increased SOD and T-AOC activity and decreased MDA levels in lung tissue. In addition, NBD also inhibited TNF-α and IL-1β secretion in BALF after LPS challenge. In conclusion, NBD protects against LPS-induced ALI in mice. PMID:27956761

  18. Fine-Tuning Development Through Antagonistic Peptides: An Emerging Theme.

    PubMed

    Lee, Jin Suk; De Smet, Ive

    2016-12-01

    Peptide ligand-receptor kinase interactions have emerged as a key component of plant growth and development. Now, highly related small signaling peptides have been shown to act antagonistically on the same receptor kinase, providing new insights into how plants optimize developmental processes using competitive peptides.

  19. Peptide regulation of Maize defense reponses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ZmPEP1 is a peptide signal encoded by a previously uncharacterized maize gene that we have named ZmPROPEP1. The ZmPROPEP1 gene was identified by homology to the Arabidopsis AtPROPEP1 gene that encodes the precursor protein to the peptide signal AtPEP1. Together with its receptors, AtPEPR1 and AtPEP...

  20. Zebrafish scube1 (Signal Peptide-CUB (Complement Protein C1r/C1s, Uegf, and Bmp1)-EGF (Epidermal Growth Factor) Domain-containing Protein 1) Is Involved in Primitive Hematopoiesis*

    PubMed Central

    Tsao, Ku-Chi; Tu, Cheng-Fen; Lee, Shyh-Jye; Yang, Ruey-Bing

    2013-01-01

    scube1 (signal peptide-CUB (complement protein C1r/C1s, Uegf, and Bmp1)-EGF domain-containing protein 1), the founding member of a novel secreted and cell surface SCUBE protein family, is expressed predominantly in various developing tissues in mice. However, its function in primitive hematopoiesis remains unknown. In this study, we identified and characterized zebrafish scube1 and analyzed its function by injecting antisense morpholino-oligonucleotide into embryos. Whole-mount in situ hybridization revealed that zebrafish scube1 mRNA is maternally expressed and widely distributed during early embryonic development. Knockdown of scube1 by morpholino-oligonucleotide down-regulated the expression of marker genes associated with early primitive hematopoietic precursors (scl) and erythroid (gata1 and hbbe1), as well as early (pu.1) and late (mpo and l-plastin) myelomonocytic lineages. However, the expression of an early endothelial marker fli1a and vascular morphogenesis appeared normal in scube1 morphants. Overexpression of bone morphogenetic protein (bmp) rescued the expression of scl in the posterior lateral mesoderm during early primitive hematopoiesis in scube1 morphants. Biochemical and molecular analysis revealed that Scube1 could be a BMP co-receptor to augment BMP signaling. Our results suggest that scube1 is critical for and functions at the top of the regulatory hierarchy of primitive hematopoiesis by modulating BMP activity during zebrafish embryogenesis. PMID:23271740

  1. A-raf and B-raf are dispensable for normal endochondral bone development, and parathyroid hormone-related peptide suppresses extracellular signal-regulated kinase activation in hypertrophic chondrocytes.

    PubMed

    Provot, Sylvain; Nachtrab, Gregory; Paruch, Jennifer; Chen, Adele Pin; Silva, Alcino; Kronenberg, Henry M

    2008-01-01

    Parathyroid hormone-related peptide (PTHrP) and the parathyroid hormone-PTHrP receptor increase chondrocyte proliferation and delay chondrocyte maturation in endochondral bone development at least partly through cyclic AMP (cAMP)-dependent signaling pathways. Because data suggest that the ability of cAMP to stimulate cell proliferation involves the mitogen-activated protein kinase kinase kinase B-Raf, we hypothesized that B-Raf might mediate the proliferative action of PTHrP in chondrocytes. Though B-Raf is expressed in proliferative chondrocytes, its conditional removal from cartilage did not affect chondrocyte proliferation and maturation or PTHrP-induced chondrocyte proliferation and PTHrP-delayed maturation. Similar results were obtained by conditionally removing B-Raf from osteoblasts. Because A-raf and B-raf are expressed similarly in cartilage, we speculated that they may fulfill redundant functions in this tissue. Surprisingly, mice with chondrocytes deficient in both A-Raf and B-Raf exhibited normal endochondral bone development. Activated extracellular signal-regulated kinase (ERK) was detected primarily in hypertrophic chondrocytes, where C-raf is expressed, and the suppression of ERK activation in these cells by PTHrP or a MEK inhibitor coincided with a delay in chondrocyte maturation. Taken together, these results demonstrate that B-Raf and A-Raf are dispensable for endochondral bone development and they indicate that the main role of ERK in cartilage is to stimulate not cell proliferation, but rather chondrocyte maturation.

  2. Role of topical peptides in preventing or treating aged skin.

    PubMed

    Gorouhi, F; Maibach, H I

    2009-10-01

    Ageing, a basic biological process seen in all living creatures, is not preventable. Surgical and topical modalities have been invented and substances were applied topically to alter the ageing process. Peptides and proteins, frequently used for this purpose, were categorized into four groups: signal peptides, enzyme-inhibitor peptides, neurotransmitter-inhibitor peptides and carrier peptides. We comprehensively review eligible studies -including controlled ex vivo or in vivo efficacy studies on any topical peptide or protein that has been administered to treat signs and symptoms of ageing.

  3. A pilot study examining the relationship among Crohn disease activity, glucagon-like peptide-2 signalling and intestinal function in pediatric patients

    PubMed Central

    Sigalet, David L; Kravarusic, Dragan; Butzner, Decker; Hartmann, Bolette; Holst, Jens J; Meddings, Jon

    2013-01-01

    BACKGROUND/OBJECTIVES: The relationship between the enteroendocrine hormone glucagon-like peptide 2 (GLP-2) and intestinal inflammation is unclear. GLP-2 promotes mucosal growth, decreases permeability and reduces inflammation in the intestine; physiological stimulation of GLP-2 release is triggered by nutrient contact. The authors hypothesized that ileal Crohn disease (CD) affects GLP-2 release. METHODS: With ethics board approval, pediatric patients hospitalized with CD were studied; controls were recruited from local schools. Inclusion criteria were endoscopy-confirmed CD (primarily of the small intestine) with a disease activity index >150. Fasting and post-prandial GLP-2 levels and quantitative urinary recovery of orally administered 3-O-methyl-glucose (active transport) and lactulose/mannitol (passive) were quantified during the acute and remission phases. RESULTS: Seven patients (mean [± SD] age 15.3±1.3 years) and 10 controls (10.3±1.6 years) were studied. In patients with active disease, fasting levels of GLP-2 remained stable but postprandial levels were reduced. Patients with active disease exhibited reduced glucose absorption and increased lactulose/mannitol recovery; all normalized with disease remission. The change in the lactulose/mannitol ratio was due to both reduced lactulose and increased mannitol absorption. CONCLUSIONS: These findings suggest that pediatric patients with acute ileal CD have decreased postprandial GLP-2 release, reduced glucose absorption and increased intestinal permeability. Healing of CD resulted in normalization of postprandial GLP-2 release and mucosal functioning (nutrient absorption and permeability), the latter due to an increase in mucosal surface area. These findings have implications for the use of GLP-2 and feeding strategies as a therapy in CD patients; further studies of the effects of inflammation and the GLP-2 axis are recommended. PMID:24106731

  4. IL-1F5, -F6, -F8, and -F9: a novel IL-1 family signaling system that is active in psoriasis and promotes keratinocyte antimicrobial peptide expression.

    PubMed

    Johnston, Andrew; Xing, Xianying; Guzman, Andrew M; Riblett, MaryBeth; Loyd, Candace M; Ward, Nicole L; Wohn, Christian; Prens, Errol P; Wang, Frank; Maier, Lisa E; Kang, Sewon; Voorhees, John J; Elder, James T; Gudjonsson, Johann E

    2011-02-15

    IL-1F6, IL-1F8, and IL-1F9 and the IL-1R6(RP2) receptor antagonist IL-1F5 constitute a novel IL-1 signaling system that is poorly characterized in skin. To further characterize these cytokines in healthy and inflamed skin, we studied their expression in healthy control, uninvolved psoriasis, and psoriasis plaque skin using quantitative RT-PCR and immunohistochemistry. Expression of IL-1F5, -1F6, -1F8, and -1F9 were increased 2 to 3 orders of magnitude in psoriasis plaque versus uninvolved psoriasis skin, which was supported immunohistologically. Moreover, treatment of psoriasis with etanercept led to significantly decreased IL-1F5, -1F6, -1F8, and -1F9 mRNAs, concomitant with clinical improvement. Similarly increased expression of IL-1F5, -1F6, -1F8, and -1F9 was seen in the involved skin of two mouse models of psoriasis. Suggestive of their importance in inflamed epithelia, IL-1α and TNF-α induced IL-1F5, -1F6, -1F8, and -1F9 transcript expression by normal human keratinocytes. Microarray analysis revealed that these cytokines induce the expression of antimicrobial peptides and matrix metalloproteinases by reconstituted human epidermis. In particular, IL-1F8 increased mRNA expression of human β-defensin (HBD)-2, HBD-3, and CAMP and protein secretion of HBD-2 and HBD-3. Collectively, our data suggest important roles for these novel cytokines in inflammatory skin diseases and identify these peptides as potential targets for antipsoriatic therapies.

  5. In Vitro Studies on the Antimicrobial Peptide Human Beta-Defensin 9 (HBD9): Signalling Pathways and Pathogen-Related Response (An American Ophthalmological Society Thesis)

    PubMed Central

    Dua, Harminder S.; Otri, Ahmad Muneer; Hopkinson, Andrew; Mohammed, Imran

    2014-01-01

    Purpose: Human β-defensins (HBDs) are an important part of the innate immune host defense at the ocular surface. Unlike other defensins, expression of HBD9 at the ocular surface is reduced during microbial infection, but activation of toll-like receptor 2 (TLR2) in corneal epithelial cells has been shown to up-regulate HBD9. Our purpose was to test the hypothesis that TLR2 has a key role in the signalling pathway(s) involved in the overexpression or underexpression of HBD9, and accordingly, different pathogens would induce a different expression pattern of HBD9. Methods: The in vitro RNAi silencing method and response to dexamethasone were used to determine key molecules involved in signalling pathways of HBD9 in immortalized human corneal epithelial cells. The techniques included cell culture with exposure to specific transcription factor inhibitors and bacteria, RNA extraction and cDNA synthesis, quantitative real-time polymerase chain reaction, and immunohistology. Results: This study demonstrates that TLR2 induces HBD9 mRNA and protein expression in a time- and dose-dependent manner. Transforming growth factor-β–activated kinase 1 (TAK1) plays a central role in HBD9 induction by TLR2, and transcription factors c-JUN and activating transcription factor 2 are also involved. Dexamethasone reduces TLR2-mediated up-regulation of HBD9 mRNA and protein levels in mitogen-activated protein kinase phosphatase 1 (MKP1)-dependent and c-JUN-independent manner. HBD9 expression differs with gram-negative and gram-positive bacteria. Conclusions: TLR2-mediated MKPs and nuclear factor-κB signalling pathways are involved in HBD9 expression. TAK-1 is a key molecule. These molecules can be potentially targeted to modulate HBD9 expression. Differential expression of HBD9 with different bacteria could be related to differences in pathogen-associated molecular patterns of these organisms. PMID:25646028

  6. Description of a new species of Ixodes Latreille, 1795 (Acari: Ixodidae) and redescription of I. lasallei Méndez & Ortiz, 1958, parasites of agoutis and pacas (Rodentia: Dasyproctidae, Cuniculidae) in Central and South America.

    PubMed

    Apanaskevich, Dmitry A; Bermúdez, Sergio E

    2017-05-01

    Ixodes bocatorensis n. sp. (Acari: Ixodidae), is described based on adults ex agoutis (Rodentia: Dasyproctidae), pacas (Rodentia: Cuniculidae) and "tapir and sloth" (Perissodactyla: Tapiridae and Pilosa) from Colombia, Panama and Venezuela. Adults of I. bocatorensis n. sp. are similar to those of I. lasallei Méndez & Ortiz, 1958 but can be distinguished by the scutum dimensions, punctation pattern, gnathosoma and palpi measurements and their ratios, basis capituli anterior angle and shape of the spur of palpal segment I ventrally. For comparative purposes the female of I. lasallei is redescribed and the true male of this species is described for the first time. Studied adults of I. lasallei were found on agoutis, pacas and ocelot (Carnivora: Felidae) in Colombia, Peru and Venezuela.

  7. A Small Peptide Modeled after the NRAGE Repeat Domain Inhibits XIAP-TAB1-TAK1 Signaling for NF-κB Activation and Apoptosis in P19 Cells

    PubMed Central

    Rochira, Jennifer A.; Matluk, Nicholas N.; Adams, Tamara L.; Karaczyn, Aldona A.; Oxburgh, Leif; Hess, Samuel T.; Verdi, Joseph M.

    2011-01-01

    In normal growth and development, apoptosis is necessary to shape the central nervous system and to eliminate excess neurons which are not required for innervation. In some diseases, however, apoptosis can be either overactive as in some neurodegenerative disorders or severely attenuated as in the spread of certain cancers. Bone morphogenetic proteins (BMPs) transmit signals for regulating cell growth, differentiation, and apoptosis. Responding to BMP receptors stimulated from BMP ligands, neurotrophin receptor-mediated MAGE homolog (NRAGE) binds and functions with the XIAP-TAK1-TAB1 complex to activate p38MAPK and induces apoptosis in cortical neural progenitors. NRAGE contains a unique repeat domain that is only found in human, mouse, and rat homologs that we theorize is pivotal in its BMP MAPK role. Previously, we showed that deletion of the repeat domain inhibits apoptosis, p38MAPK phosphorylation, and caspase-3 cleavage in P19 neural progenitor cells. We also showed that the XIAP-TAB1-TAK1 complex is dependent on NRAGE for IKK-α/β phosphorylation and NF-κB activation. XIAP is a major inhibitor of caspases, the main executioners of apoptosis. Although it has been shown previously that NRAGE binds to the RING domain of XIAP, it has not been determined which NRAGE domain binds to XIAP. Here, we used fluorescence resonance energy transfer (FRET) to determine that there is a strong likelihood of a direct interaction between NRAGE and XIAP occurring at NRAGE's unique repeat domain which we also attribute to be the domain responsible for downstream signaling of NF-κB and activating IKK subunits. From these results, we designed a small peptide modeled after the NRAGE repeat domain which we have determined inhibits NF-κB activation and apoptosis in P19 cells. These intriguing results illustrate that the paradigm of the NRAGE repeat domain may hold promising therapeutic strategies in developing pharmaceutical solutions for combating harmful diseases involving

  8. JAK2/STAT5/Bcl-xL signalling is essential for erythropoietin-mediated protection against apoptosis induced in PC12 cells by the amyloid β−peptide Aβ25–35

    PubMed Central

    Ma, Rong; Hu, Jing; Huang, Chengfang; Wang, Min; Xiang, Jizhou; Li, Gang

    2014-01-01

    BACKGROUND AND PURPOSE Erythropoietin (EPO) exerts neuroprotective actions in the CNS, including protection against apoptosis induced by the amyloid β−peptide Aβ25–35. However, it remains unclear which signalling pathway activated by EPO is involved in this neuroprotection. Here, we have investigated whether JAK2/STAT5/Bcl-xL and ERK1/2 signalling pathways are essential for EPO-mediated protection against apoptosis induced by Aβ25–35. EXPERIMENTAL APPROACH EPO was added to cultures of PC12 cells, 1 h before Aβ25–35. For kinase inhibitor studies, AG490 and PD98059 were added to PC12 cells, 0.5 h before the addition of EPO. Transfection with siRNA was used to knockdown STAT5. Activation of JAK2/STAT5/Bcl-xL and ERK1/2 signalling pathways were investigated by Western blotting. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl-tetrazolium bromide assay and apoptosis was detected by TUNEL and acridine orange–ethidium bromide double staining. KEY RESULTS EPO increased phosphorylation of JAK2 and STAT5 in PC12 cells treated with Aβ25–35. Furthermore, EPO modulated the nuclear translocation of phospho-STAT5, which increased expression of Bcl-xL and decreased levels of caspase-3. These beneficial effects were blocked by the JAK2 inhibitor, AG490 or STAT5 knockdown. However, the ERK1/2 pathway did not play a crucial role in our model. CONCLUSIONS AND IMPLICATIONS EPO protected PC12 cells against Aβ25–35-induced neurotoxicity. Activation of JAK2/STAT5/Bcl-xL pathway was important in EPO-mediated neuroprotection. EPO may serve as a novel protective agent against Aβ25–35-induced cytotoxicity in, for instance, Alzheimer's disease. PMID:24597613

  9. Cryptic bioactivity capacitated by synthetic hybrid plant peptides.

    PubMed

    Hirakawa, Yuki; Shinohara, Hidefumi; Welke, Kai; Irle, Stephan; Matsubayashi, Yoshikatsu; Torii, Keiko U; Uchida, Naoyuki

    2017-02-06

    Evolution often diversifies a peptide hormone family into multiple subfamilies, which exert distinct activities by exclusive interaction with specific receptors. Here we show that systematic swapping of pre-existing variation in a subfamily of plant CLE peptide hormones leads to a synthetic bifunctional peptide that exerts activities beyond the original subfamily by interacting with multiple receptors. This approach provides new insights into the complexity and specificity of peptide signalling.

  10. Cryptic bioactivity capacitated by synthetic hybrid plant peptides

    PubMed Central

    Hirakawa, Yuki; Shinohara, Hidefumi; Welke, Kai; Irle, Stephan; Matsubayashi, Yoshikatsu; Torii, Keiko U.; Uchida, Naoyuki

    2017-01-01

    Evolution often diversifies a peptide hormone family into multiple subfamilies, which exert distinct activities by exclusive interaction with specific receptors. Here we show that systematic swapping of pre-existing variation in a subfamily of plant CLE peptide hormones leads to a synthetic bifunctional peptide that exerts activities beyond the original subfamily by interacting with multiple receptors. This approach provides new insights into the complexity and specificity of peptide signalling. PMID:28165456

  11. Central Sirt1 regulates body weight and energy expenditure along with the POMC-derived peptide α-MSH and the processing enzyme CPE production in diet-induced obese male rats.

    PubMed

    Cyr, Nicole E; Steger, Jennifer S; Toorie, Anika M; Yang, Jonathan Z; Stuart, Ronald; Nillni, Eduardo A

    2014-07-01

    In the periphery, the nutrient-sensing enzyme Sirtuin 1 (silent mating type information regulation 2 homolog 1 [Sirt1]) reduces body weight in diet-induced obese (DIO) rodents. However, the role of Sirt1 in the brain, particularly the hypothalamus, in body weight and energy balance regulation is debated. Among the first studies to reveal that central Sirt1 regulates body weight came from experiments in our laboratory using Sprague Dawley rats. In that study, central inhibition of Sirt1 decreased body weight and food intake as a result of a Forkhead box protein O1 (FoxO1)-mediated increase in the anorexigenic proopiomelanocortin (POMC) and decrease in the orexigenic Agouti-related peptide in the hypothalamic arcuate nucleus. Here, we demonstrate that central inhibition of Sirt1 in DIO decreased body weight and increased energy expenditure at higher levels as compared with the lean counterpart. Brain Sirt1 inhibition in DIO increased acetylated FoxO1, which, in turn, increased phosphorylated FoxO1 via improved insulin/pAKT signaling. Elevated acetylated FoxO1 and phosphorylated FoxO1 increased POMC along with the α-MSH maturation enzyme carboxypeptidase E, which resulted in more of the bioactive POMC product α-MSH released into the paraventricular nucleus. Increased in α-MSH led to augmented TRH levels and circulating T3 levels (thyroid hormone). These results indicate that inhibiting hypothalamic Sirt1 in DIO enhances the activity of the hypothalamic-pituitary-thyroid axis, which stimulates energy expenditure. Because we show that blocking central Sirt1 causes physiological changes that promote a negative energy balance in an obese individual, our results support brain Sirt1 as a significant target for weight loss therapeutics.

  12. Central Sirt1 regulates body weight and energy expenditure along with the POMC-derived peptide α-MSH and the processing enzyme CPE production in diet-induced obese male rats.

    PubMed

    Cyr, Nicole E; Steger, Jennifer S; Toorie, Anika M; Yang, Jonathan Z; Stuart, Ronald; Nillni, Eduardo A

    2015-03-01

    In the periphery, the nutrient-sensing enzyme Sirtuin 1 (silent mating type information regulation 2 homolog 1 [Sirt1]) reduces body weight in diet-induced obese (DIO) rodents. However, the role of hypothalamic Sirt1 in body weight and energy balance regulation is debated. The first studies to reveal that central Sirt1 regulates body weight came from experiments in our laboratory using Sprague-Dawley rats. Central inhibition of Sirt1 decreased body weight and food intake as a result of a forkhead box protein O1 (FoxO1)-mediated increase in the anorexigenic proopiomelanocortin (POMC) and decrease in the orexigenic Agouti-related peptide in the hypothalamic arcuate nucleus. Here, we demonstrate that central inhibition of Sirt1 in DIO decreased body weight and increased energy expenditure at higher levels as compared with the lean counterpart. Brain Sirt1 inhibition in DIO increased acetylated FoxO1, which in turn increased phosphorylated FoxO1 via improved insulin/phosphorylated AKT signaling. Elevated acetylated FoxO1 and phosphorylated FoxO1 increased POMC along with the α-melanocyte-stimulating hormone (α-MSH) maturation enzyme carboxypeptidase E, which resulted in more of the bioactive POMC product α-MSH released into the paraventricular nucleus. Increased in α-MSH led to augmented TRH levels and circulating T3 levels (triiodothyronine, thyroid hormone). These results indicate that inhibiting hypothalamic Sirt1 in DIO enhances the activity of the hypothalamic-pituitary-thyroid axis, which stimulates energy expenditure. Because we show that blocking central Sirt1 causes physiological changes that promote a negative energy balance in an obese individual, our results support brain Sirt1 as a significant target for weight loss therapeutics.

  13. Evidence that Processing of the Severe Fever with Thrombocytopenia Syndrome Virus Gn/Gc Polyprotein Is Critical for Viral Infectivity and Requires an Internal Gc Signal Peptide

    PubMed Central

    Plegge, Teresa; Hofmann-Winkler, Heike; Spiegel, Martin

    2016-01-01

    The severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging, highly pathogenic bunyavirus against which neither antivirals nor vaccines are available. The SFTSV glycoproteins, Gn and Gc, facilitate viral entry into host cells. Gn and Gc are generated from a precursor protein, Gn/Gc, but it is currently unknown how the precursor is converted into the single proteins and whether this process is required for viral infectivity. Employing a rhabdoviral pseudotyping system, we demonstrate that a predicted signal sequence at the N-terminus of Gc is required for Gn/Gc processing and viral infectivity while potential proprotein convertase cleavage sites in Gc are dispensable. Moreover, we show that expression of Gn or Gc alone is not sufficient for host cell entry while particles bearing both proteins are infectious, and we provide evidence that Gn facilitates Golgi transport and virion incorporation of Gc. Collectively, these results suggest that signal peptidase liberates mature Gc from the Gn/Gc precursor and that this process is essential for viral infectivity and thus constitutes a potential target for antiviral intervention. PMID:27855227

  14. Phospholipase C Signaling via the Parathyroid Hormone (PTH)/PTH-Related Peptide Receptor Is Essential for Normal Bone Responses to PTH

    PubMed Central

    Guo, Jun; Liu, Minlin; Yang, Dehong; Bouxsein, Mary L.; Thomas, Clare C.; Schipani, Ernestina; Bringhurst, F. Richard; Kronenberg, Henry M.

    2010-01-01

    We have previously shown that differentiation of hypertrophic chondrocytes is delayed in mice expressing a mutated PTH/PTHrP receptor (PTHR) (called DSEL here) that stimulates adenylyl cyclase normally but fails to activate phospholipase C (PLC). To better understand the role of PLC signaling via the PTHR in skeletal and mineral homeostasis, we examined these mice fed a normal or calcium-deficient diet. On a standard diet, DSEL mice displayed a modest decrease in bone mass. Remarkably, when fed a low-calcium diet or infused with PTH, DSEL mice exhibited strikingly curtailed peritrabecular stromal cell responses and attenuated new bone formation when compared with Wt mice. Attenuated in vitro colony formation was also observed in bone marrow cells derived from DSEL mice fed a low-calcium diet. Furthermore, PTH stimulated proliferation and increased mRNAs encoding cyclin D1 in primary osteoblasts derived from Wt but not from DSEL mice. Our data indicate that PLC signaling through the PTHR is required for skeletal homeostasis. PMID:20501677

  15. Phospholipase C signaling via the parathyroid hormone (PTH)/PTH-related peptide receptor is essential for normal bone responses to PTH.

    PubMed

    Guo, Jun; Liu, Minlin; Yang, Dehong; Bouxsein, Mary L; Thomas, Clare C; Schipani, Ernestina; Bringhurst, F Richard; Kronenberg, Henry M

    2010-08-01

    We have previously shown that differentiation of hypertrophic chondrocytes is delayed in mice expressing a mutated PTH/PTHrP receptor (PTHR) (called DSEL here) that stimulates adenylyl cyclase normally but fails to activate phospholipase C (PLC). To better understand the role of PLC signaling via the PTHR in skeletal and mineral homeostasis, we examined these mice fed a normal or calcium-deficient diet. On a standard diet, DSEL mice displayed a modest decrease in bone mass. Remarkably, when fed a low-calcium diet or infused with PTH, DSEL mice exhibited strikingly curtailed peritrabecular stromal cell responses and attenuated new bone formation when compared with Wt mice. Attenuated in vitro colony formation was also observed in bone marrow cells derived from DSEL mice fed a low-calcium diet. Furthermore, PTH stimulated proliferation and increased mRNAs encoding cyclin D1 in primary osteoblasts derived from Wt but not from DSEL mice. Our data indicate that PLC signaling through the PTHR is required for skeletal homeostasis.

  16. Cytochrome P450 dependent metabolism of the new designer drug 1-(3-trifluoromethylphenyl)piperazine (TFMPP). In vivo studies in Wistar and Dark Agouti rats as well as in vitro studies in human liver microsomes.

    PubMed

    Staack, Roland F; Paul, Liane D; Springer, Dietmar; Kraemer, Thomas; Maurer, Hans H

    2004-01-15

    1-(3-Trifluoromethylphenyl)piperazine (TFMPP) is a designer drug with serotonergic properties. Previous studies with male Wistar rats (WI) had shown, that TFMPP was metabolized mainly by aromatic hydroxylation. In the current study, it was examined whether this reaction may be catalyzed by cytochrome P450 (CYP)2D6 by comparing TFMPP vs. hydroxy TFMPP ratios in urine from female Dark Agouti rats, a model of the human CYP2D6 poor metabolizer phenotype (PM), male Dark Agouti rats, an intermediate model, and WI, a model of the human CYP2D6 extensive metabolizer phenotype. Furthermore, the human hepatic CYPs involved in TFMPP hydroxylation were identified using cDNA-expressed CYPs and human liver microsomes. Finally, TFMPP plasma levels in the above mentioned rats were compared. The urine studies suggested that TFMPP hydroxylation might be catalyzed by CYP2D6 in humans. Studies using human CYPs showed that CYP1A2, CYP2D6 and CYP3A4 catalyzed TFMPP hydroxylation, with CYP2D6 being the most important enzyme accounting for about 81% of the net intrinsic clearance, calculated using the relative activity factor approach. The hydroxylation was significantly inhibited by quinidine (77%) and metabolite formation in poor metabolizer genotype human liver microsomes was significantly lower (63%) compared to pooled human liver microsomes. Analysis of the plasma samples showed that female Dark Agouti rats exhibited significantly higher TFMPP plasma levels compared to those of male Dark Agouti rats and WI. Furthermore, pretreatment of WI with the CYP2D inhibitor quinine resulted in significantly higher TFMPP plasma levels. In conclusion, the presented data give hints for possible differences in pharmacokinetics in human PM and human CYP2D6 extensive metabolizer phenotype subjects relevant for risk assessment.

  17. C-Peptide Test

    MedlinePlus

    ... vital for the body to use its main energy source, glucose . Since C-peptide and insulin are produced ... these cases, C-peptide measurement is a useful alternative to testing for insulin. C-peptide measurements can ...

  18. Galanin-like peptide (GALP) neurone-specific phosphoinositide 3-kinase signalling regulates GALP mRNA levels in the hypothalamus of males and luteinising hormone levels in both sexes.

    PubMed

    Aziz, R; Beymer, M; Negrón, A L; Newshan, A; Yu, G; Rosati, B; McKinnon, D; Fukuda, M; Lin, R Z; Mayer, C; Boehm, U; Acosta-Martínez, M

    2014-07-01

    Galanin-like peptide (GALP) neurones participate in the metabolic control of reproduction and are targets of insulin and leptin regulation. Phosphoinositide 3-kinase (PI3K) is common to the signalling pathways utilised by both insulin and leptin. Therefore, we investigated whether PI3K signalling in neurones expressing GALP plays a role in the transcriptional regulation of the GALP gene and in the metabolic control of luteinising hormone (LH) release. Accordingly, we deleted PI3K catalytic subunits p110α and p110β via conditional gene targeting (cKO) in mice (GALP-p110α/β cKO). To monitor PI3K signalling in GALP neurones, these animals were also crossed with Cre-dependent FoxO1GFP reporter mice. Compared to insulin-infused control animals, the PI3K-Akt-dependent FoxO1GFP nuclear exclusion in GALP neurones was abolished in GALP-p110α/β cKO mice. We next used food deprivation to investigate whether the GALP-neurone specific ablation of PI3K activity affected the susceptibility of the gonadotrophic axis to negative energy balance. Treatment did not affect LH levels in either sex. However, a significant genotype effect on LH levels was observed in females. By contrast, no genotype effect on LH levels was observed in males. A sex-specific genotype effect on hypothalamic GALP mRNA was observed, with fed and fasted GALP-p110α/β cKO males having lower GALP mRNA expression compared to wild-type fed males. Finally, the effects of gonadectomy and steroid hormone replacement on GALP mRNA levels were investigated. Compared to vehicle-treated mice, steroid hormone replacement reduced mediobasal hypothalamus GALP expression in wild-type and GALP-p110α/β cKO animals. In addition, within the castrated and vehicle-treated group and compared to wild-type mice, LH levels were lower in GALP-p110α/β cKO males. Double immunofluorescence using GALP-Cre/R26-YFP mice showed androgen and oestrogen receptor co-localisation within GALP neurones. Our data demonstrate that GALP

  19. Curcumin Ameliorates the Reduction Effect of PGE2 on Fibrillar β-Amyloid Peptide (1-42)-Induced Microglial Phagocytosis through the Inhibition of EP2-PKA Signaling in N9 Microglial Cells.

    PubMed

    He, Gen-Lin; Luo, Zhen; Yang, Ju; Shen, Ting-Ting; Chen, Yi; Yang, Xue-Sen

    2016-01-01

    Inflammatory activation of microglia and β amyloid (Aβ) deposition are considered to work both independently and synergistically to contribute to the increased risk of Alzheimer's disease (AD). Recent studies indicate that long-term use of phenolic compounds provides protection against AD, primarily due to their anti-inflammatory actions. We previously suggested that phenolic compound curcumin ameliorated phagocytosis possibly through its anti-inflammatory effects rather than direct regulation of phagocytic function in electromagnetic field-exposed N9 microglial cells (N9 cells). Here, we explored the prostaglandin-E2 (PGE2)-related signaling pathway that involved in curcumin-mediated phagocytosis in fibrillar β-amyloid peptide (1-42) (fAβ42)-stimulated N9 cells. Treatment with fAβ42 increased phagocytosis of fluorescent-labeled latex beads in N9 cells. This increase was attenuated in a dose-dependent manner by endogenous and exogenous PGE2, as well as a selective EP2 or protein kinase A (PKA) agonist, but not by an EP4 agonist. We also found that an antagonist of EP2, but not EP4, abolished the reduction effect of PGE2 on fAβ42-induced microglial phagocytosis. Additionally, the increased expression of endogenous PGE2, EP2, and cyclic adenosine monophosphate (AMP), and activation of vasodilator-stimulated phosphoprotein, cyclic AMP responsive element-binding protein, and PKA were depressed by curcumin administration. This reduction led to the amelioration of the phagocytic abilities of PGE2-stimulated N9 cells. Taken together, these data suggested that curcumin restored the attenuating effect of PGE2 on fAβ42-induced microglial phagocytosis via a signaling mechanism involving EP2 and PKA. Moreover, due to its immune modulatory effects, curcumin may be a promising pharmacological candidate for neurodegenerative diseases.

  20. Curcumin Ameliorates the Reduction Effect of PGE2 on Fibrillar β-Amyloid Peptide (1-42)-Induced Microglial Phagocytosis through the Inhibition of EP2-PKA Signaling in N9 Microglial Cells

    PubMed Central

    Yang, Ju; Shen, Ting-ting; Chen, Yi; Yang, Xue-Sen

    2016-01-01

    Inflammatory activation of microglia and β amyloid (Aβ) deposition are considered to work both independently and synergistically to contribute to the increased risk of Alzheimer’s disease (AD). Recent studies indicate that long-term use of phenolic compounds provides protection against AD, primarily due to their anti-inflammatory actions. We previously suggested that phenolic compound curcumin ameliorated phagocytosis possibly through its anti-inflammatory effects rather than direct regulation of phagocytic function in electromagnetic field-exposed N9 microglial cells (N9 cells). Here, we explored the prostaglandin-E2 (PGE2)-related signaling pathway that involved in curcumin-mediated phagocytosis in fibrillar β-amyloid peptide (1–42) (fAβ42)-stimulated N9 cells. Treatment with fAβ42 increased phagocytosis of fluorescent-labeled latex beads in N9 cells. This increase was attenuated in a dose-dependent manner by endogenous and exogenous PGE2, as well as a selective EP2 or protein kinase A (PKA) agonist, but not by an EP4 agonist. We also found that an antagonist of EP2, but not EP4, abolished the reduction effect of PGE2 on fAβ42-induced microglial phagocytosis. Additionally, the increased expression of endogenous PGE2, EP2, and cyclic adenosine monophosphate (AMP), and activation of vasodilator-stimulated phosphoprotein, cyclic AMP responsive element-binding protein, and PKA were depressed by curcumin administration. This reduction led to the amelioration of the phagocytic abilities of PGE2-stimulated N9 cells. Taken together, these data suggested that curcumin restored the attenuating effect of PGE2 on fAβ42-induced microglial phagocytosis via a signaling mechanism involving EP2 and PKA. Moreover, due to its immune modulatory effects, curcumin may be a promising pharmacological candidate for neurodegenerative diseases. PMID:26824354

  1. A quantum mechanical study on phosphotyrosyl peptide binding to the SH2 domain of p56lck tyrosine kinase with insights into the biochemistry of intracellular signal transduction events.

    PubMed

    Pichierri, Fabio

    2004-05-01

    A study on the interaction between a phosphotyrosyl peptide with the SH2 domain of Lck kinase has been undertaken with the aid of semiempirical linear-scaling quantum mechanical methods. The structure of this complex has been solved at atomic resolution and, hence, it represents the ideal candidate for studying the charge deformation effects induced by the phosphopeptide on the binding site. Substantial changes in the charge of amino acid residues located in the binding pocket of the protein are observed upon ligand binding. More specifically, our quantum chemical calculations indicate that H-bonds involving charged side-chains are subject to consistent charge deformation effects whereas those forming salt bridges are unaffected by ligand binding. Furthermore, ligand binding has the effect of changing both the magnitude and direction of the protein's macrodipole, which rotates approximately 150 degrees with respect that of the unliganded protein. This suggests that a change in the polarization state of the protein might acts as a switch during the transmission of intracellular signals. The binding energy calculated with the aid of the COSMO solvation model corresponds to about -200 kcal/mol, most of which is attributed to the interaction of the phosphotyrosine head with the amino acid chains located in the binding site of the SH2 domain.

  2. Peptide insertions in domain 4 of hbeta(c), the shared signalling receptor subunit for GM-CSF, IL3 and IL5, induce ligand-independent activation.

    PubMed

    Jones, K L; Bagley, C J; Butcher, C; Barry, S C; Vadas, M A; D'Andrea, R J

    2001-06-21

    A mutant form of the common beta-subunit of the GM-CSF, interleukin-3 (IL3) and IL5 receptors is activated by a 37 residue duplicated segment which includes the WSXWS motif and an adjacent, highly conserved, aliphatic/basic element. Haemopoietic expression of this mutant, hbeta(c)FIDelta, in mice leads to myeloproliferative disease. To examine the mechanism of activation of this mutant we targetted the two conserved motifs in each repeat for mutagenesis. Here we show that this mutant exhibits constitutive activity in BaF-B03 cells in the presence of mouse or human GM-CSF receptor alpha-subunit (GMRalpha) and this activity is disrupted by mutations of the conserved motifs in the first repeat. In the presence of these mutations the receptor reverts to an alternative conformation which retains responsiveness to human IL3 in a CTLL cell line co-expressing the human IL3 receptor alpha-subunit (hIL3Ralpha). Remarkably, the activated conformation is maintained in the presence of substitutions, deletions or replacement of the second repeat. This suggests that activation occurs due to insertion of extra sequence after the WSXWS motif and is not dependent on the length or specific sequence of the insertion. Thus hbeta(c) displays an ability to fold into functional receptor conformations given insertion of up to 37 residues in the membrane-proximal region. Constitutive activation most likely results from a specific conformational change which alters a dormant, inactive receptor complex, permitting functional association with GMRalpha and ligand-independent mitogenic signalling.

  3. Paeoniflorin attenuates amyloid-beta peptide-induced neurotoxicity by ameliorating oxidative stress and regulating the NGF-mediated signaling in rats.

    PubMed

    Lan, Zhou; Chen, Lvyi; Fu, Qiang; Ji, Weiwei; Wang, Shuyuan; Liang, Zhaohui; Qu, Rong; Kong, Lingyi; Ma, Shiping

    2013-03-01

    Paeoniflorin is a monoterpene glycoside isolated from the aqueous extract of the dry root of Paeonia. It has been identified to exhibit many pharmacological effects including enhancing the cognitive ability, producing anti-depressant-like effect and reducing the MTPT-induced toxicity. In our previous study, it has shown that paeoniflorin improved the cognitive ability and attenuated the oxidative stress in the Aβ(1-42)-treated rats. In order to further elucidate the possible molecular mechanisms of paeoniflorin on the cognitive ability, rats were injected with Aβ(1-42) (1 μg/μL) and later with paeoniflorin (15 mg/kg and 30 mg/kg, i.p.) and donepezil hydrochloride (2mg/kg, i.p.) daily for 20 days in this study. The results showed that the long-term treatment of paeoniflorin or donepezil enhanced the cognitive performances in the Morris water maze test, restored the decreased activities of superoxide dismutase and catalase and the increased level of malondialdehyde, and reversed the alterations of matrix metallopeptidase-9 and tissue-inhibitor of metalloproteinase-1 in the hippocampus of Aβ(1-42)-treated rats. Paeoniflorin also up-regulated the activity of choline acetyltrasferase and the expression of tyrosine kinase A receptor, and down-regulated the activity of acetylcholine esterase in the hippocampus of Aβ(1-42)-treated rats. These results demonstrate that paeoniflorin ameliorates the spatial learning and memory deficits by attenuating oxidative stress and regulating the nerve growth factor-mediated signaling to reinforce cholinergic functions in the hippocampus of the Aβ(1-42)-treated rats.

  4. Molecular and genetic characterization of a radiation-induced structural rearrangement in mouse chromosome 2 causing mutations at the limb deformity and agouti loci.

    PubMed

    Woychik, R P; Generoso, W M; Russell, L B; Cain, K T; Cacheiro, N L; Bultman, S J; Selby, P B; Dickinson, M E; Hogan, B L; Rutledge, J C

    1990-04-01

    Molecular characterization of mutations in the mouse, particularly those involving agent-induced major structural alterations, is proving to be useful for correlating the structure and expression of individual genes with their function in the whole organism. Here we present the characterization of a radiation-induced mutation that simultaneously generated distinct alleles of both the limb deformity (ld) and agouti (a) loci, two developmentally important regions of chromosome 2 normally separated by 20 centimorgans. Cytogenetic analysis revealed that an interstitial segment of chromosome 17 (17B- 17C; or, possibly, 17A2-17B) had been translocated into the distal end of chromosome 2, resulting in a smaller-than-normal chromosome 17 (designated 17del) and a larger form of chromosome 2 (designated 2(17). Additionally, a large interstitial segment of the 2(17) chromosome, immediately adjacent and proximal to the insertion site, did not match bands 2E4-2H1 at corresponding positions on a normal chromosome 2. Molecular analysis detected a DNA rearrangement in which a portion of the ld locus was joined to sequences normally tightly linked to the a locus. This result, along with the genetic and cytogenetic data, suggests that the alleles of ld and a in this radiation-induced mutation, designated ldIn2 and ajIn2, were associated with DNA breaks caused by an inversion of an interstitial segment in the 2(17) chromosome.

  5. Black agouti (ACI) rats show greater drug- and cue-induced reinstatement of methamphetamine-seeking behavior than Fischer 344 and Lewis rats.

    PubMed

    Xi, Jinlei; Kruzich, Paul J

    2007-05-01

    Fischer 344 (F344) and Lewis (LEW) rats differ in methamphetamine self-administration (SA) and methamphetamine-induced reinstatement of previously extinguished behavior. We sought to determine whether genetic background also influences methamphetamine reinforcement efficacy, conditioned reinstatement, and methamphetamine-primed reinstatement of responding in F344, LEW, and Black Agouti (ACI) rats. We implanted rats with jugular catheters and trained them to self-administer methamphetamine (0.06 mg/kg/infusion) under a progressive ratio (PR) schedule of reinforcement during daily 2-h SA sessions. A compound stimulus (light+tone; LT) was paired with each infusion. Dose-dependent intake was determined for each rat. Rats then entered the extinction phase of the experiment where responding resulted in no programmed consequences. Following extinction sessions, rats underwent conditioned reinstatement testing. For conditioned reinstatement, rats received response-contingent presentations of the LT and no methamphetamine. Last, methamphetamine-primed reinstatement test sessions where conducted where subjects received experimenter delivered infusions of methamphetamine (0.06, 0.12, or 0.24 mg/kg). The strains did not differ in PR responding across the doses tested. The ACI rats demonstrated the highest behavioral output during extinction training, conditioned- and methamphetamine-primed reinstatement of previously extinguished behavior compared to the other strains. These data suggest that genetic background differentially influences extinction, conditioned reinstatement and methamphetamine-primed reinstatement in rats.

  6. Mice with an N-Ethyl-N-Nitrosourea (ENU) Induced Tyr209Asn Mutation in Natriuretic Peptide Receptor 3 (NPR3) Provide a Model for Kyphosis Associated with Activation of the MAPK Signaling Pathway

    PubMed Central

    Nesbit, M. Andrew; Loh, Nellie Y.; Thomas, Gethin; Croucher, Peter I.; Brown, Matthew A.; Brown, Steve D. M.; Cox, Roger D.; Thakker, Rajesh V.

    2016-01-01

    Non-syndromic kyphosis is a common disorder that is associated with significant morbidity and has a strong genetic involvement; however, the causative genes remain to be identified, as such studies are hampered by genetic heterogeneity, small families and various modes of inheritance. To overcome these limitations, we investigated 12 week old progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) using phenotypic assessments including dysmorphology, radiography, and dual-energy X-ray absorptiometry. This identified a mouse with autosomal recessive kyphosis (KYLB). KYLB mice, when compared to unaffected littermates, had: thoraco-lumbar kyphosis, larger vertebrae, and increased body length and increased bone area. In addition, female KYLB mice had increases in bone mineral content and plasma alkaline phosphatase activity. Recombination mapping localized the Kylb locus to a 5.5Mb region on chromosome 15A1, which contained 51 genes, including the natriuretic peptide receptor 3 (Npr3) gene. DNA sequence analysis of Npr3 identified a missense mutation, Tyr209Asn, which introduced an N-linked glycosylation consensus sequence. Expression of wild-type NPR3 and the KYLB-associated Tyr209Asn NPR3 mutant in COS-7 cells demonstrated the mutant to be associated with abnormal N-linked glycosylation and retention in the endoplasmic reticulum that resulted in its absence from the plasma membrane. NPR3 is a decoy receptor for C-type natriuretic peptide (CNP), which also binds to NPR2 and stimulates mitogen-activated protein kinase (MAPK) signaling, thereby increasing the number and size of hypertrophic chondrocytes. Histomorphometric analysis of KYLB vertebrae and tibiae showed delayed endochondral ossification and expansion of the hypertrophic zones of the growth plates, and immunohistochemistry revealed increased p38 MAPK phosphorylation throughout the growth plates of KYLB vertebrae. Thus, we established a model of kyphosis due to a novel NPR3 mutation, in

  7. [Effect of vasoactive intestinal peptide on defecation and VIP-cAMP-PKA-AQP3 signaling pathway 
in rats with constipation].

    PubMed

    Zhou, Yongxue; Wang, Yujin; Zhang, Hong; Yan, Shuguang; Wang, Bin; Xie, Pei

    2016-11-28

    目的:观察血管活性肠肽(vasoactive intestinal peptide,VIP)对便秘大鼠肠道水液代谢、环磷酸腺苷-蛋白激酶A信号通路(cyclic AMP protein kinase A signaling pathway,cAMP-PKA)和水通道蛋白3(water channel protein 3,AQP3)的影响,探讨VIP治疗便秘的作用及机制。方法:45只健康成年Sprague-Dawley大鼠随机分为空白对照组、模型组、模型+
VIP组。给药4周后,墨汁灌胃法检测大鼠首粒黑便排出时间;根据大鼠粪便干湿重计算粪便含水率;HE染色观察各组大鼠结肠组织形态学变化;Western 印迹检测各组大鼠结肠组织中 VIP和AQP3蛋白表达水平;定量即时聚合酶链锁反应(quantitative real time polymerase chain reaction,qPCR)检测各组大鼠结肠组织中cAMP,PKA和AQP3 mRNA的表达水平。结果:与空白对照组比较,模型组大鼠首粒黑便出现时间延长,粪便含水率明显减少(均P<0.01);结肠黏膜上皮部分破坏,杯状细胞体积减小,数量明显减少;结肠组织中VIP和AQP3蛋白含量明显减少,AQP3,cAMP和PKA mRNA相对表达水平均有所降低(均P<0.05)。与模型组比较,模型+VIP组大鼠首粒黑便出现时间缩短,粪便含水率明显增加(均P<0.05);结肠黏膜上皮完整性明显改善,杯状细胞体积增大,数量增多;结肠组织中VIP和 AQP3蛋白含量增多,CAMP,PKA和AQP3 mRNA相对表达水平升高(均P<0.05)。结论:VIP静脉注射能够调节肠道水液代谢,改善大鼠便秘症状,其机制可能与调节VIP-cAMP-PKA-AQP3信号通路有关。.

  8. [SYNTHETIC PEPTIDE VACCINES].

    PubMed

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested.

  9. Supramolecular Nanofibers of Peptide Amphiphiles for Medicine

    PubMed Central

    Webber, Matthew J.; Berns, Eric J.; Stupp, Samuel I.

    2014-01-01

    Peptide nanostructures are an exciting class of supramolecular systems that can be designed for novel therapies with great potential in advanced medicine. This paper reviews progress on nanostructures based on peptide amphiphiles capable of forming one-dimensional assemblies that emulate in structure the nanofibers present in extracellular matrices. These systems are highly tunable using supramolecular chemistry, and can be designed to signal cells directly with bioactive peptides. Peptide amphiphile nanofibers can also be used to multiplex functions through co-assembly and designed to deliver proteins, nucleic acids, drugs, or cells. We illustrate here the functionality of these systems describing their use in regenerative medicine of bone, cartilage, the nervous system, the cardiovascular system, and other tissues. In addition, we highlight recent work on the use of peptide amphiphile assemblies to create hierarchical biomimetic structures with order beyond the nanoscale, and also discuss the future prospects of these supramolecular systems. PMID:24532851

  10. Biologically Active and Antimicrobial Peptides from Plants

    PubMed Central

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  11. Biologically active and antimicrobial peptides from plants.

    PubMed

    Salas, Carlos E; Badillo-Corona, Jesus A; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.

  12. Design and structure of stapled peptides binding to estrogen receptors.

    PubMed

    Phillips, Chris; Roberts, Lee R; Schade, Markus; Bazin, Richard; Bent, Andrew; Davies, Nichola L; Moore, Rob; Pannifer, Andrew D; Pickford, Andrew R; Prior, Stephen H; Read, Christopher M; Scott, Andrew; Brown, David G; Xu, Bin; Irving, Stephen L

    2011-06-29

    Synthetic peptides that specifically bind nuclear hormone receptors offer an alternative approach to small molecules for the modulation of receptor signaling and subsequent gene expression. Here we describe the design of a series of novel stapled peptides that bind the coactivator peptide site of estrogen receptors. Using a number of biophysical techniques, including crystal structure analysis of receptor-stapled peptide complexes, we describe in detail the molecular interactions and demonstrate that all-hydrocarbon staples modulate molecular recognition events. The findings have implications for the design of stapled peptides in general.

  13. Physiological effects and therapeutic potential of proinsulin C-peptide

    PubMed Central

    Maric-Bilkan, Christine; Luppi, Patrizia; Wahren, John

    2014-01-01

    Connecting Peptide, or C-peptide, is a product of the insulin prohormone, and is released with and in amounts equimolar to those of insulin. While it was once thought that C-peptide was biologically inert and had little biological significance beyond its role in the proper folding of insulin, it is now known that C-peptide binds specifically to the cell membranes of a variety of tissues and initiates specific intracellular signaling cascades that are pertussis toxin sensitive. Although it is now clear that C-peptide is a biologically active molecule, controversy still remains as to the physiological significance of the peptide. Interestingly, C-peptide appears to reverse the deleterious effects of high glucose in some tissues, including the kidney, the peripheral nerves, and the vasculature. C-peptide is thus a potential therapeutic agent for the treatment of diabetes-associated long-term complications. This review addresses the possible physiologically relevant roles of C-peptide in both normal and disease states and discusses the effects of the peptide on sensory nerve, renal, and vascular function. Furthermore, we highlight the intracellular effects of the peptide and present novel strategies for the determination of the C-peptide receptor(s). Finally, a hypothesis is offered concerning the relationship between C-peptide and the development of microvascular complications of diabetes. PMID:25249503

  14. Changes in mRNA expression of arcuate nucleus appetite-regulating peptides during lactation in rats.

    PubMed

    Suzuki, Yoshihiro; Nakahara, Keiko; Maruyama, Keisuke; Okame, Rieko; Ensho, Takuya; Inoue, Yoshiyuki; Murakami, Noboru

    2014-04-01

    The contribution of hypothalamic appetite-regulating peptides to further hyperphagia accompanying the course of lactation in rats was investigated by using PCR array and real-time PCR. Furthermore, changes in the mRNA expression for appetite-regulating peptides in the hypothalamic arcuate nucleus (ARC) were analyzed at all stages of pregnancy and lactation, and also after weaning. Food intake was significantly higher during pregnancy, lactation, and after weaning than during non-lactation periods. During lactation, ARC expression of mRNAs for agouti-related protein (AgRP) and peptide YY was increased, whereas that of mRNAs for proopiomelanocortin (POMC) and cholecystokinin (CCK) was decreased, in comparison with non-lactation periods. The increase in AgRP mRNA expression during lactation was especially marked. The plasma level of leptin was significantly decreased during the course of lactation, whereas that of acyl-ghrelin was unchanged. In addition, food intake was negatively correlated with the plasma leptin level during lactation. This study has clarified synchronous changes in the expression of many appetite-regulating peptides in ARC of rats during lactation. Our results suggest that hyperphagia during lactation in rats is caused by decreases in POMC and CCK expression and increases in AgRP expression in ARC, the latter being most notable. Together with the decrease in the blood leptin level, such changes in mRNA expression may explain the further hyperphagia accompanying the course of lactation.

  15. Cell Surface Expression of the Major Amyloid-β Peptide (Aβ)-degrading Enzyme, Neprilysin, Depends on Phosphorylation by Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase Kinase (MEK) and Dephosphorylation by Protein Phosphatase 1a*

    PubMed Central

    Kakiya, Naomasa; Saito, Takashi; Nilsson, Per; Matsuba, Yukio; Tsubuki, Satoshi; Takei, Nobuyuki; Nawa, Hiroyuki; Saido, Takaomi C.

    2012-01-01

    Neprilysin is one of the major amyloid-β peptide (Aβ)-degrading enzymes, the expression of which declines in the brain during aging. The decrease in neprilysin leads to a metabolic Aβ imbalance, which can induce the amyloidosis underlying Alzheimer disease. Pharmacological activation of neprilysin during aging therefore represents a potential strategy to prevent the development of Alzheimer disease. However, the regulatory mechanisms mediating neprilysin activity in the brain remain unclear. To address this issue, we screened for pharmacological regulators of neprilysin activity and found that the neurotrophic factors brain-derived neurotrophic factor, nerve growth factor, and neurotrophins 3 and 4 reduce cell surface neprilysin activity. This decrease was mediated by MEK/ERK signaling, which enhanced phosphorylation at serine 6 in the neprilysin intracellular domain (S6-NEP-ICD). Increased phosphorylation of S6-NEP-ICD in primary neurons reduced the levels of cell surface neprilysin and led to a subsequent increase in extracellular Aβ levels. Furthermore, a specific inhibitor of protein phosphatase-1a, tautomycetin, induced extensive phosphorylation of the S6-NEP-ICD, resulting in reduced cell surface neprilysin activity. In contrast, activation of protein phosphatase-1a increased cell surface neprilysin activity and lowered Aβ levels. Taken together, these results indicate that the phosphorylation status of S6-NEP-ICD influences the localization of neprilysin and affects extracellular Aβ levels. Therefore, maintaining S6-NEP-ICD in a dephosphorylated state, either by inhibition of protein kinases involved in its phosphorylation or by activation of phosphatases catalyzing its dephosphorylation, may represent a new approach to prevent reduction of cell surface neprilysin activity during aging and to maintain physiological levels of Aβ in the brain. PMID:22767595

  16. The Effects of Glucagon-like Peptide-2 on the Tight Junction and Barrier Function in IPEC-J2 Cells through Phosphatidylinositol 3-kinase–Protein Kinase B–Mammalian Target of Rapamycin Signaling Pathway

    PubMed Central

    Yu, Changsong; Jia, Gang; Deng, Qiuhong; Zhao, Hua; Chen, Xiaoling; Liu, Guangmang; Wang, Kangning

    2016-01-01

    Glucagon-like peptide-2 (GLP-2) is important for intestinal barrier function and regulation of tight junction (TJ) proteins, but the intracellular mechanisms of action remain undefined. The purpose of this research was to determine the protective effect of GLP-2 mediated TJ and transepithelial electrical resistance (TER) in lipopolysaccharide (LPS) stressed IPEC-J2 cells and to test the hypothesis that GLP-2 regulate TJ and TER through the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling pathway in IPEC-J2 cells. Wortmannin and LY294002 are specific inhibitors of PI3K. The results showed that 100 μg/mL LPS stress decreased TER and TJ proteins occludin, claudin-1 and zonula occludens protein 1 (ZO-1) mRNA, proteins expressions (p<0.01) respectively. GLP-2 (100 nmol/L) promote TER and TJ proteins occludin, claudin-1, and zo-1 mRNA, proteins expressions in LPS stressed and normal IPEC-J2 cells (p<0.01) respectively. In normal cells, both wortmannin and LY294002, PI3K inhibitors, prevented the mRNA and protein expressions of Akt and mTOR increase induced by GLP-2 (p<0.01) following with the significant decreasing of occludin, claudin-1, ZO-1 mRNA and proteins expressions and TER (p<0.01). In conclusion, these results indicated that GLP-2 can promote TJ’s expression and TER in LPS stressed and normal IPEC-J2 cells and GLP-2 could regulate TJ and TER through the PI3K/Akt/mTOR pathway. PMID:26954146

  17. Peroxisome proliferator-activated receptor γ controls ingestive behavior, agouti-related protein, and neuropeptide Y mRNA in the arcuate hypothalamus.

    PubMed

    Garretson, John T; Teubner, Brett J W; Grove, Kevin L; Vazdarjanova, Almira; Ryu, Vitaly; Bartness, Timothy J

    2015-03-18

    Peroxisome proliferator-activated receptor γ (PPARγ) is clinically targeted for type II diabetes treatment; however, rosiglitazone (ROSI), a PPARγ agonist, increases food intake and body/fat mass as side-effects. Mechanisms for these effects and the role of PPARγ in feeding are not understood. Therefore, we tested this role in Siberian hamsters, a model of human energy balance, and C57BL/6 mice. We tested the following: (1) how ROSI and/or GW9662 (2-chloro-5-nitro-N-phenylbenzamide; PPARγ antagonist) injected intraperitoneally or into the third ventricle (3V) affected Siberian hamster feeding behaviors; (2) whether food deprivation (FD) co-increases agouti-related protein (AgRP) and PPARγ mRNA expression in Siberian hamsters and mice; (3) whether intraperitoneally administered ROSI increases AgRP and NPY in ad libitum-fed animals; (4) whether intraperitoneally administered PPARγ antagonism blocks FD-induced increases in AgRP and NPY; and finally, (5) whether intraperitoneally administered PPARγ modulation affects plasma ghrelin. Third ventricular and intraperitoneally administered ROSI increased food hoarding and intake for 7 d, an effect attenuated by 3V GW9662, and also prevented (intraperitoneal) FD-induced feeding. FD hamsters and mice increased AgRP within the arcuate hypothalamic nucleus with concomitant increases in PPARγ exclusively within AgRP/NPY neurons. ROSI increased AgRP and NPY similarly to FD, and GW9662 prevented FD-induced increases in AgRP and NPY in both species. Neither ROSI nor GW9662 affected plasma ghrelin. Thus, we demonstrated that PPARγ activation is sufficient to trigger food hoarding/intake, increase AgRP/NPY, and possibly is necessary for FD-induced increases in feeding and AgRP/NPY. These findings provide initial evidence that FD-induced increases in AgRP/NPY may be a direct PPARγ-dependent process that controls ingestive behaviors.

  18. Strain differences in cytochrome P450 mRNA and protein expression, and enzymatic activity among Sprague Dawley, Wistar, Brown Norway and Dark Agouti rats.

    PubMed

    Nishiyama, Yoshihiro; Nakayama, Shouta M M; Watanabe, Kensuke P; Kawai, Yusuke K; Ohno, Marumi; Ikenaka, Yoshinori; Ishizuka, Mayumi

    2016-05-03

    Rat cytochrome P450 (CYP) exhibits inter-strain differences, but their analysis has been scattered across studies under different conditions. To identify these strain differences in CYP more comprehensively, mRNA expression, protein expression and metabolic activity among Wistar (WI), Sprague Dawley (SD), Dark Agouti (DA) and Brown Norway (BN) rats were compared. The mRNA level and enzymatic activity of CYP1A1 were highest in SD rats. The rank order of Cyp3a2 mRNA expression mirrored its protein expression, i.e., DA>BN>SD>WI, and was similar to the CYP3A2-dependent warfarin metabolic activity, i.e., DA>SD>BN>WI. These results suggest that the strain differences in CYP3A2 enzymatic activity are caused by differences in mRNA expression. Cyp2b1 mRNA levels, which were higher in DA rats, did not correlate with its protein expression or enzymatic activity. This suggests that the strain differences in enzymatic activity are not related to Cyp2b1 mRNA expression. In conclusion, WI rats tended to have the lowest CYP1A1, 2B1 and 3A2 mRNA expression, protein expression and enzymatic activity among the strains. In addition, SD rats had the highest CYP1A1 mRNA expression and activity, while DA rats had higher CYP2B1 and CYP3A2 mRNA and protein expression. These inter-strain differences in CYP could influence pharmacokinetic considerations in preclinical toxicological studies.

  19. Optimal conditions for opening of membrane pore by amphiphilic peptides

    NASA Astrophysics Data System (ADS)

    Kabelka, Ivo; Vácha, Robert

    <