Science.gov

Sample records for agp silica monolith

  1. Selective oxidation of cyclohexene through gold functionalized silica monolith microreactors

    NASA Astrophysics Data System (ADS)

    Alotaibi, Mohammed T.; Taylor, Martin J.; Liu, Dan; Beaumont, Simon K.; Kyriakou, Georgios

    2016-04-01

    Two simple, reproducible methods of preparing evenly distributed Au nanoparticle containing mesoporous silica monoliths are investigated. These Au nanoparticle containing monoliths are subsequently investigated as flow reactors for the selective oxidation of cyclohexene. In the first strategy, the silica monolith was directly impregnated with Au nanoparticles during the formation of the monolith. The second approach was to pre-functionalize the monolith with thiol groups tethered within the silica mesostructure. These can act as evenly distributed anchors for the Au nanoparticles to be incorporated by flowing a Au nanoparticle solution through the thiol functionalized monolith. Both methods led to successfully achieving even distribution of Au nanoparticles along the length of the monolith as demonstrated by ICP-OES. However, the impregnation method led to strong agglomeration of the Au nanoparticles during subsequent heating steps while the thiol anchoring procedure maintained the nanoparticles in the range of 6.8 ± 1.4 nm. Both Au nanoparticle containing monoliths as well as samples with no Au incorporated were tested for the selective oxidation of cyclohexene under constant flow at 30 °C. The Au free materials were found to be catalytically inactive with Au being the minimum necessary requirement for the reaction to proceed. The impregnated Au-containing monolith was found to be less active than the thiol functionalized Au-containing material, attributable to the low metal surface area of the Au nanoparticles. The reaction on the thiol functionalized Au-containing monolith was found to depend strongly on the type of oxidant used: tert-butyl hydroperoxide (TBHP) was more active than H2O2, likely due to the thiol induced hydrophobicity in the monolith.

  2. Allyl-silica Hybrid Monoliths For Chromatographic Application

    NASA Astrophysics Data System (ADS)

    Guo, Wenjuan

    Column technology continues to be the most investigated topics in the separation world, since the column is the place where the chromatographic separation happens, making it the heart of the separation system. Allyl-silica hybrid monolithic material has been exploited as support material and potential stationary phases for liquid chromatography; the stationary phase anchored to the silica surface by Si-C bond, which is more pH stable than traditional stationary phase. First, nuclear magnetic resonance spectroscopy has been used to study the sol in the synthesis of allyl-silica hybrid monoliths. Allyl-trimethoxysilane (allyl-TrMOS), dimethyldimethoxysilane (DMDMOS) and tetramethoxysilane (TMOS) have been served as co-precursors in the sol-gel synthesis of organo-silica hybrid monolithic columns for liquid chromatography (LC). 29Si nuclear magnetic resonance (NMR) and 1H NMR spectroscopy were employed to monitor reaction profiles for the acid-catalyzed hydrolysis and initial condensation reactions of the individual precursor and the hybrid system. 29Si-NMR has also been used to identify different silane species formed during the reactions. The overall hydrolysis rate has been found to follow the trend DMDMOS > allyl-TrMOS > TMOS, if each precursor is reacted individually (homo-polymerization). Precursors show different hydrolysis rate when reacted together in the hybrid system than they are reacted individually. Cross-condensation products of TMOS and DMDMOS (QD) arise about 10 minutes of initiation of the reaction. The allyl-silica monolithic columns for capillary liquid chromatography can only be prepared in capillaries with 50 im internal diameter with acceptable performance. One of the most prominent problems related to the synthesis of silica monolithic structures is the volume shrinkage. The synthesis of allylfunctionalized silica hybrid monolithic structures has been studied in an attempt to reduce the volume shrinkage during aging, drying and heat treatment

  3. Assessing the performance of curtain flow first generation silica monoliths.

    PubMed

    Soliven, Arianne; Foley, Dominic; Pereira, Luisa; Dennis, Gary R; Shalliker, R Andrew; Cabrera, Karin; Ritchie, Harald; Edge, Tony

    2014-07-18

    Analytical scale active flow technology first generation silica monolithic columns kitted out in curtain flow mode of operation were studied for the first time. A series of tests were undertaken assessing the column efficiency, peak asymmetry and detection sensitivity. Two curtain flow columns were tested, one with a fixed outlet ratio of 10% through the central exit port, the other with 30%. Tests were carried out using a wide range in inlet flow segmentation ratios. The performance of the curtain flow columns were compared to a conventional monolithic column. The gain in theoretical plates achieved in the curtain flow mode of operation was as much as 130%, with almost Gaussian bands being obtained. Detection sensitivity increased by as much as 250% under optimal detection conditions. The permeability advantage of the monolithic structure together with the active flow technology makes it a priceless tool for high throughput, sensitive, low detection volume analyses. PMID:24906299

  4. The Advanced Virgo monolithic fused silica suspension

    NASA Astrophysics Data System (ADS)

    Aisa, D.; Aisa, S.; Campeggi, C.; Colombini, M.; Conte, A.; Farnesini, L.; Majorana, E.; Mezzani, F.; Montani, M.; Naticchioni, L.; Perciballi, M.; Piergiovanni, F.; Piluso, A.; Puppo, P.; Rapagnani, P.; Travasso, F.; Vicerè, A.; Vocca, H.

    2016-07-01

    The detection of gravitational waves is one of the most challenging prospects faced by experimental physicists. Suspension thermal noise is an important noise source at operating frequencies between approximately 10 and 30 Hz, and represents a limit to the sensitivity of the ground based interferometric gravitational wave detectors. Its effects can be reduced by minimizing the losses and by optimizing the geometry of the suspension fiber as well as its attachment system. In this proceeding we will describe the mirrors double stage monolithic suspension system to be used in the Advanced Virgo (AdV) detector. We also present the results of the thermal noise study, performed with the help of a finite elements model, taking into account the precise geometry of the fibers attachment systems on the suspension elements. We shall demonstrate the suitability of this suspension for installation in AdV.

  5. Preparing Silica Aerogel Monoliths via a Rapid Supercritical Extraction Method

    PubMed Central

    Gorka, Caroline A.

    2014-01-01

    A procedure for the fabrication of monolithic silica aerogels in eight hours or less via a rapid supercritical extraction process is described. The procedure requires 15-20 min of preparation time, during which a liquid precursor mixture is prepared and poured into wells of a metal mold that is placed between the platens of a hydraulic hot press, followed by several hours of processing within the hot press. The precursor solution consists of a 1.0:12.0:3.6:3.5 x 10-3 molar ratio of tetramethylorthosilicate (TMOS):methanol:water:ammonia. In each well of the mold, a porous silica sol-gel matrix forms. As the temperature of the mold and its contents is increased, the pressure within the mold rises. After the temperature/pressure conditions surpass the supercritical point for the solvent within the pores of the matrix (in this case, a methanol/water mixture), the supercritical fluid is released, and monolithic aerogel remains within the wells of the mold. With the mold used in this procedure, cylindrical monoliths of 2.2 cm diameter and 1.9 cm height are produced. Aerogels formed by this rapid method have comparable properties (low bulk and skeletal density, high surface area, mesoporous morphology) to those prepared by other methods that involve either additional reaction steps or solvent extractions (lengthier processes that generate more chemical waste).The rapid supercritical extraction method can also be applied to the fabrication of aerogels based on other precursor recipes. PMID:24637334

  6. Preparing silica aerogel monoliths via a rapid supercritical extraction method.

    PubMed

    Carroll, Mary K; Anderson, Ann M; Gorka, Caroline A

    2014-01-01

    A procedure for the fabrication of monolithic silica aerogels in eight hours or less via a rapid supercritical extraction process is described. The procedure requires 15-20 min of preparation time, during which a liquid precursor mixture is prepared and poured into wells of a metal mold that is placed between the platens of a hydraulic hot press, followed by several hours of processing within the hot press. The precursor solution consists of a 1.0:12.0:3.6:3.5 x 10(-3) molar ratio of tetramethylorthosilicate (TMOS):methanol:water:ammonia. In each well of the mold, a porous silica sol-gel matrix forms. As the temperature of the mold and its contents is increased, the pressure within the mold rises. After the temperature/pressure conditions surpass the supercritical point for the solvent within the pores of the matrix (in this case, a methanol/water mixture), the supercritical fluid is released, and monolithic aerogel remains within the wells of the mold. With the mold used in this procedure, cylindrical monoliths of 2.2 cm diameter and 1.9 cm height are produced. Aerogels formed by this rapid method have comparable properties (low bulk and skeletal density, high surface area, mesoporous morphology) to those prepared by other methods that involve either additional reaction steps or solvent extractions (lengthier processes that generate more chemical waste).The rapid supercritical extraction method can also be applied to the fabrication of aerogels based on other precursor recipes. PMID:24637334

  7. Exploring the pressure resistance limits of monolithic silica capillary columns.

    PubMed

    Hara, Takeshi; Eeltink, Sebastiaan; Desmet, Gert

    2016-05-13

    We report on an experimental approach to measure the pressure stability and mechanical strength of monolithic silica capillary columns with different diameters (50 and 100μm i.d.) and considering two different domain sizes, typical for the second generation monoliths or smaller. The approach consists of exposing the capillaries to ultra-high pressures (gradually stepwise increased from 20 to 80MPa), with intermediate measurements of the column efficiency, permeability and retention factors to check the mechanical stability of the bed. It was observed that all tested columns withstood the imposed pressure stress, i.e., all the tested parameters remained unaffected up till the maximal test pressure of 80MPa. The applied pressure gradient corresponded to 320MPa/m. The two 100μm i.d.-capillary columns were also exposed to pressures between 80 and 90MPa for a prolonged time (8h), and this did not cause any damage either. PMID:27086284

  8. Monolithic Cylindrical Fused Silica Resonators with High Q Factors.

    PubMed

    Pan, Yao; Wang, Dongya; Wang, Yanyan; Liu, Jianping; Wu, Suyong; Qu, Tianliang; Yang, Kaiyong; Luo, Hui

    2016-01-01

    The cylindrical resonator gyroscope (CRG) is a typical Coriolis vibratory gyroscope whose performance is determined by the Q factor and frequency mismatch of the cylindrical resonator. Enhancing the Q factor is crucial for improving the rate sensitivity and noise performance of the CRG. In this paper, for the first time, a monolithic cylindrical fused silica resonator with a Q factor approaching 8 × 10⁵ (ring-down time over 1 min) is reported. The resonator is made of fused silica with low internal friction and high isotropy, with a diameter of 25 mm and a center frequency of 3974.35 Hz. The structure of the resonator is first briefly introduced, and then the experimental non-contact characterization method is presented. In addition, the post-fabrication experimental procedure of Q factor improvement, including chemical and thermal treatment, is demonstrated. The Q factor improvement by both treatments is compared and the primary loss mechanism is analyzed. To the best of our knowledge, the work presented in this paper represents the highest reported Q factor for a cylindrical resonator. The proposed monolithic cylindrical fused silica resonator may enable high performance inertial sensing with standard manufacturing process and simple post-fabrication treatment. PMID:27483263

  9. Recent Progress in Monolithic Silica Columns for High-Speed and High-Selectivity Separations

    NASA Astrophysics Data System (ADS)

    Ikegami, Tohru; Tanaka, Nobuo

    2016-06-01

    Monolithic silica columns have greater (through-pore size)/(skeleton size) ratios than particulate columns and fixed support structures in a column for chemical modification, resulting in high-efficiency columns and stationary phases. This review looks at how the size range of monolithic silica columns has been expanded, how high-efficiency monolithic silica columns have been realized, and how various methods of silica surface functionalization, leading to selective stationary phases, have been developed on monolithic silica supports, and provides information on the current status of these columns. Also discussed are the practical aspects of monolithic silica columns, including how their versatility can be improved by the preparation of small-sized structural features (sub-micron) and columns (1 mm ID or smaller) and by optimizing reaction conditions for in situ chemical modification with various restrictions, with an emphasis on recent research results for both topics.

  10. Recent Progress in Monolithic Silica Columns for High-Speed and High-Selectivity Separations.

    PubMed

    Ikegami, Tohru; Tanaka, Nobuo

    2016-06-12

    Monolithic silica columns have greater (through-pore size)/(skeleton size) ratios than particulate columns and fixed support structures in a column for chemical modification, resulting in high-efficiency columns and stationary phases. This review looks at how the size range of monolithic silica columns has been expanded, how high-efficiency monolithic silica columns have been realized, and how various methods of silica surface functionalization, leading to selective stationary phases, have been developed on monolithic silica supports, and provides information on the current status of these columns. Also discussed are the practical aspects of monolithic silica columns, including how their versatility can be improved by the preparation of small-sized structural features (sub-micron) and columns (1 mm ID or smaller) and by optimizing reaction conditions for in situ chemical modification with various restrictions, with an emphasis on recent research results for both topics. PMID:27306311

  11. Formation of bimodal porous silica-titania monoliths by sol-gel route

    NASA Astrophysics Data System (ADS)

    Ruzimuradov, O. N.

    2011-10-01

    Silica-titania monoliths with micrometer-scale macroporous and nanometer-scale mesoporous structure and high titania contents are prepared by sol-gel process and phase separation. Titanium alkoxide precursor was not effective in the preparation of high titania content composites because of strong decrease in phase separation tendency. Bimodal porous gels with high titania content were obtained by using inorganic salt precursors such as titanium sulfate and titanium chloride. Various characterization techniques, including SEM, XRD, Hg porosimetry and N2 adsorption have been carried out to investigate the formation process and physical-chemical properties of silica-titania monoliths. The characterization results show that the silica-titania monoliths possess a bimodal porous structure with well-dispersed titania inside silica network. The addition of titania in silica improves the thermal stability of both macroporous and mesoporous structures.

  12. Silica-based polypeptide-monolithic stationary phase for hydrophilic chromatography and chiral separation.

    PubMed

    Zhao, Licong; Yang, Limin; Wang, Qiuquan

    2016-05-13

    Glutathione (GSH)-, somatostatin acetate (ST)- and ovomucoid (OV)-functionalized silica-monolithic stationary phases were designed and synthesized for HILIC and chiral separation using capillary electrochromatography (CEC). GSH, ST and OV were covalently incorporated into the silica skeleton via the epoxy ring-opening reaction between their amino groups and the glycidyl moiety in γ-glycidoxypropyltrimethoxysilane (GPTMS) together with polycondensation and copolymerization of tetramethyloxysilane and GPTMS. Not only could the direction and electroosmotic flow magnitude on the prepared GSH-, ST- and OV-silica hybrid monolithic stationary phases be controlled by the pH of the mobile phase, but also a typical HILIC behavior was observed so that the nucleotides and HPLC peptide standard mixture could be baseline separated using an aqueous mobile phase without any acetonitrile during CEC. Moreover, the prepared monolithic columns had a chiral separation ability to separate dl-amino acids. The OV-silica hybrid monolithic column was most effective in chiral separation and could separate dl-glutamic acid (Glu) (the resolution R=1.07), dl-tyrosine (Tyr) (1.57) and dl-histidine (His) (1.06). Importantly, the chiral separation ability of the GSH-silica hybrid monolithic column could be remarkably enhanced when using gold nanoparticles (AuNPs) to fabricate an AuNP-mediated GSH-AuNP-GSH-silica hybrid monolithic column. The R of dl-Glu, dl-Tyr and dl-His reached 1.19, 1.60 and 2.03. This monolithic column was thus applied to separate drug enantiomers, and quantitative separation of all four R/S drug enantiomers were achieved with R ranging from 4.36 to 5.64. These peptide- and protein-silica monolithic stationary phases with typical HILIC separation behavior and chiral separation ability implied their promise for the analysis of not only the future metabolic studies, but also drug enantiomers recognition. PMID:27083263

  13. Feasibility of the preparation of silica monoliths for gas chromatography: fast separation of light hydrocarbons.

    PubMed

    Azzouz, Imadeddine; Essoussi, Anouar; Fleury, Joachim; Haudebourg, Raphael; Thiebaut, Didier; Vial, Jerome

    2015-02-27

    The preparation conditions of silica monoliths for gas chromatography were investigated. Silica-based monolithic capillary columns based on sol-gel process were tested in the course of high-speed gas chromatographic separations of light hydrocarbons mixture (C1-C4). The impact of modifying the amount of porogen and/or catalyst on the monolith properties were studied. At the best precursor/catalyst/porogen ratio evaluated, a column efficiency of about 6500 theoretical plates per meter was reached with a very good resolution (4.3) for very light compounds (C1-C2). The test mixture was baseline separated on a 70cm column. To our knowledge for the first time a silica-based monolithic capillary column was able to separate light hydrocarbons from methane to n-butane at room temperature with a back pressure in the range of gas chromatography facilities (under 4.1bar). PMID:25622518

  14. Positron detection in silica monoliths for miniaturised quality control of PET radiotracers.

    PubMed

    Tarn, Mark D; Maneuski, Dzmitry; Alexander, Richard; Brown, Nathaniel J; O'Shea, Val; Pimlott, Sally L; Pamme, Nicole; Archibald, Stephen J

    2016-06-01

    We demonstrate the use of the miniaturised Medipix positron sensor for detection of the clinical PET radiotracer, [(68)Ga]gallium-citrate, on a silica-based monolith, towards microfluidic quality control. The system achieved a far superior signal-to-noise ratio compared to conventional sodium iodide-based radio-HPLC detection and allowed real-time visualisation of positrons in the monolith. PMID:27029282

  15. Immobilized β-cyclodextrin-based silica vs polymer monoliths for chiral nano liquid chromatographic separation of racemates.

    PubMed

    Ghanem, Ashraf; Ahmed, Marwa; Ishii, Hideaki; Ikegami, Tohru

    2015-01-01

    The enantioselectivity of immobilized β-cyclodextrin phenyl carbamate-based silica monolithic capillary columns was compared to our previously described polymer counterpart. 2,3,6-Tris(phenylcarbamoyl)-β-cyclodextrin-6-methacrylate was used as a functional monomer for the preparation of β-cyclodextrin (β-CD)-based silica and polymer monoliths. The silica monoliths were prepared via the sol-gel technique in fused silica capillary followed by modification of the bare silica monoliths with an anchor group prior to polymerization with β-CD methacrylate using either 2,2'-azobis(isobutyronitrile) or benzoylperoxide as radical initiators. On the other hand, the polymer monoliths were prepared via the copolymerization of β-CD methacrylate and ethylene glycol dimethacrylate in different ratios in situ in fused silica capillary. The prepared silica/polymer monoliths were investigated for the chiral separation of different classes of pharmaceuticals namely; α- and β-blockers, anti-inflammatory drugs, antifungal drugs, dopamine antagonists, norepinephrine-dopamine reuptake inhibitors, catecholamines, sedative hypnotics, diuretics, antihistaminics, anticancer drugs and antiarrhythmic drugs. Baseline separation was achieved for alprenolol, bufuralol, carbuterol, cizolertine, desmethylcizolertine, eticlopride, ifosfamide, 1-indanol, propranolol, tebuconazole, tertatolol and o-methoxymandelic acid under reversed phase conditions using mobile phase composed of methanol and water. The silica-based monoliths showed a comparative enantioselectivity to the polymer monoliths. PMID:25476312

  16. Monolithic stationary phases with incorporated fumed silica nanoparticles. Part I. Polymethacrylate-based monolithic column with incorporated bare fumed silica nanoparticles for hydrophilic interaction liquid chromatography.

    PubMed

    Aydoğan, Cemil; El Rassi, Ziad

    2016-05-01

    Fumed silica nanoparticles (FSNPs), were incorporated for the first time into a polymethacrylate monolithic column containing glyceryl monomethacrylate (GMM) and ethylene dimethacrylate (EDMA) in order to develop a new monolithic column for hydrophilic interaction high performance liquid chromatography (HILIC). When compared to poly(GMM-EDMA) monolithic column without FSNPs, the same monolithic column with incorporated FSNPs yielded important effects on HILIC separations. The effects of monomers and FSNPs content of the polymerization mixture on the performance of the monolithic column were examined in details, and the optimized stationary phase was investigated over a wide range of mobile phase composition with polar acidic, weakly basic and neutral analytes including hydroxy benzoic acids, nucleotides, nucleosides, dimethylformamide, formamide and thiourea. The retention of these analytes was mainly controlled by hydrophilic interactions with the FSNPs and electrostatic repulsion from the negatively charged silica surface in the case of hydroxy benzoic acids and nucleotides. The electrostatic repulsion was minimized by decreasing the pH of the aqueous component of the mobile phase, which in turn enhanced the retention of acidic solutes. Nucleotides were best separated using step gradient elution at decreasing pH as well as ACN concentration in the mobile phase. Improved peak shape and faster analysis of nucleosides were attained by a fast linear gradient elution with a shallow decrease in the ACN content of the ACN-rich mobile phase. The run-to-run and column-to-column reproducibility were satisfactory. The percent relative standard deviations (%RSDs) for the retention times of tested solutes were lower than 2.5% under isocratic conditions and lower than 3.5 under gradient conditions. PMID:27059399

  17. Monolithic stationary phases with incorporated fumed silica nanoparticles. Part II. Polymethacrylate-based monolithic column with "covalently" incorporated modified octadecyl fumed silica nanoparticles for reversed-phase chromatography.

    PubMed

    Aydoğan, Cemil; El Rassi, Ziad

    2016-05-01

    This study is concerned with the incorporation of surface modified fumed silica nanoparticles (FSNPs) into polymethacrylate based monolithic columns for use in reversed phase chromatography (RPC) of small solutes and proteins. First, FSNPs were modified with 3-(trimethoxysilyl)propylmethacrylate (TMSPM) to yield the "hybrid" methacryloyl fumed silica nanoparticle (MFSNP) monomer. The resulting MFSNP was then mixed with glyceryl monomethacrylate (GMM) and ethylene dimethacrylate (EDMA) in a binary porogenic solvent composed of cyclohexanol and dodecanol, and the in situ copolymerization of MFSNP, GMM and EDMA was performed in a stainless steel column of 4.6 mm i.d. The silanol groups of the hybrid monolith thus obtained were grafted with octadecyl ligands by perfusing the hybrid monolithic column with a solution of 4% w/v of dimethyloctadecylchlorosilane (DODCS) in toluene while the column was maintained at 110°C for 6h (in a heated HPLC oven). One of the originalities of this study was to demonstrate MFSNP as a novel derivatized "hybrid monomer" in making RPC monolithic columns with surface bound octadecyl ligands. In this respect, the RPC behavior of the monolithic column with "covalently" incorporated FNSPs having surface grafted octadecyl ligands was evaluated with alkylbenzenes, aniline derivatives and phenolic compounds. The results showed that the hybrid poly(GMA-EDMA-MFSNP) having surface bound octadecyl ligands exhibited hydrophobic interactions under reversed phase elution conditions. Furthermore, six standard proteins were baseline separated on the column using a 10min linear gradient elution at increasing ACN concentration in the mobile phase at a flow rate of 1.0mL/min using a 10 cm×4.6mm i.d. column. The relative standard deviations (RSDs) for the retention times of the tested solutes were lower than 2.1% and 2.4% under isocratic elution and gradient elution conditions, respectively. PMID:27059396

  18. Preparation and photoluminescence of monolithic silica glass doped with Tb3+ ions using SiO2-PVA nanocomposite

    NASA Astrophysics Data System (ADS)

    Ikeda, Hiroshi; Murata, Takahiro; Fujino, Shigeru

    2014-05-01

    The monolithic silica glass doped with Tb3+ ions was fabricated using the SiO2-PVA nanocomposite as the glass precursor. In order to dope Tb3+ ions in the monolithic silica glass, the mesoporous SiO2-PVA nanocomposite was immersed in the Tb3+ ions contained solution and subsequently sintered at 1100 °C in air. Consequently the monolithic transparent silica glass was obtained, exhibiting green fluorescence attributed to 5D4 → 7F5 main transitions under UV excitation. The Tb concentration in the sintered glass could be controlled by immersion time of the nanocomposite in the solution.

  19. Incorporation of antimicrobial compounds in mesoporous silica film monolith.

    PubMed

    Izquierdo-Barba, Isabel; Vallet-Regí, María; Kupferschmidt, Natalia; Terasaki, Osamu; Schmidtchen, Artur; Malmsten, Martin

    2009-10-01

    Incorporation of the antimicrobial peptide LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES), as well as low molecular weight antimicrobial chlorhexidine, into mesoporous silica was obtained using an EISA one-pot synthesis method. FTIR confirmed efficient encapsulation of both LL-37 and chlorhexidine into mesoporous silica, while XRD and TEM showed that antimicrobial agent incorporation can be achieved without greatly affecting the structure of the mesoporous silica. The modified mesoporous silica released LL-37 and chlorhexidine slowly, reaching maximum release after about 200 h. The release rate could also be controlled through incorporation of SH groups in the pore walls, adding to pore hydrophobicity and reducing the release rate by about 50% compared to the unmodified mesoporous silica. Mesoporous silica containing either LL-37 or chlorhexidine displayed potent bactericidal properties against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. While chlorhexidine-loaded mesoporous silica displayed an accompanying high toxicity, as judged from hemolysis, LDH release, and MTT assay, the corresponding material containing LL-37 showed very low toxicity by all these assays, comparable to that observed for mesoporous silica in the absence of antibacterial drug, as well as to the negative controls in the respective assays. Mesoporous silica containing LL-37 therefore holds potential as an implantable material or a surface coating for such materials, as it combines potent bactericidal action with low toxicity, important features for controlling implant-related infections, e.g., for multi-resistant pathogens or for cases where access to the infection site of systemically administered antibiotics is limited due to collagen capsule formation or other factors. PMID:19628277

  20. Facile preparation of organic-silica hybrid monolith for capillary hydrophilic liquid chromatography based on "thiol-ene" click chemistry.

    PubMed

    Chen, Ming-Luan; Zhang, Jun; Zhang, Zheng; Yuan, Bi-Feng; Yu, Qiong-Wei; Feng, Yu-Qi

    2013-04-01

    In this work, a one-step approach to facile preparation of organic-inorganic hybrid monoliths was successfully developed. After vinyl-end organic monomers and azobisisobutyronitrile (AIBN) were mixed with hydrolyzed tetramethoxysilane (TMOS) and 3-mercaptopropyltrimethoxysilane (MPTMS), the homogeneous mixture was introduced into a fused-silica capillary for simultaneous polycondensation and "thiol-ene" click reaction to form the organic-silica hybrid monoliths. By employing this strategy, two types of organic-silica hybrid monoliths with positively charged quaternary ammonium and amide groups were prepared, respectively. The functional groups were successfully introduced onto the monoliths during the sol-gel process with "thiol-ene" click reaction, which was demonstrated by ζ-potential assessment, energy dispersive X-ray spectroscopy (EDX), and Fourier transform infrared (FT-IR) spectroscopy. The porous structure of the prepared monolithic columns was examined by scanning electron microscopy (SEM), nitrogen adsorption-desorption measurement, and mercury intrusion porosimetry. These results indicate the prepared organic-silica hybrid monoliths possess homogeneous column bed, large specific surface area, good mechanical stability, and excellent permeability. The prepared monolithic columns were then applied for anion-exchange/hydrophilic interaction liquid chromatography. Different types of analytes, including benzoic acids, inorganic ions, nucleosides, and nucleotides, were well separated with high column efficiency around 80,000-130,000 plates/m. Taken together, we present a facile and universal strategy to prepare organic-silica hybrid monoliths with a variety of organic monomers using one-step approach. PMID:23434082

  1. Dipyridyl-immobilized ionic liquid type hybrid silica monolith for hydrophilic interaction electrochromatography.

    PubMed

    Wang, Xiao; Zheng, Na; Huang, Yifang; Wang, Jiabin; Lin, Xucong; Xie, Zenghong

    2013-11-01

    A pyridinium-based immobilized ionic liquid type multifunctional hybrid silica monolith was prepared by the in situ polymerization of 3-chloropropyl-silica matrix and 4,4'-dipyridyl for hydrophilic interaction CEC. The obtained hybrid monolith possessed of high stable skeletal microstructures with obviously hydrophilic retention mechanism under ACN content >50% in the mobile phase. Strong and stable anodic EOF could be observed under a broad pH range from pH 3.0 to 9.0. Due to the immobilized dipyridyl groups bonded to the silica matrix surface, the resulting hydrophilic hybrid monolith possessed multiple separation interactions including hydrogen bond, π-π, and anion exchange. Excellent separations of various polar analytes including electroneutral phenols, charged acid nucleotides, and basic analytes were successfully achieved. The highest column efficiencies up to 120,000, 164,000, and 106,000 plates/m were obtained for nucleotides, nucleic acid bases, and nucleosides and nicotines, respectively. These results demonstrated that the dipyridyl-immobilized ionic liquid functionalized hybrid monolith possessed highly mechanical stability and good chromatographic performance for hydrophilic interaction electrochromatography. PMID:23925897

  2. Combination of porous silica monolith and gold thin films for electrode material of supercapacitor

    NASA Astrophysics Data System (ADS)

    Pastre, A.; Cristini-Robbe, O.; Boé, A.; Raulin, K.; Branzea, D.; El Hamzaoui, H.; Kinowski, C.; Rolland, N.; Bernard, R.

    2015-12-01

    An all-solid electrical double layer supercapacitor was prepared, starting from a porous silica matrix coated with a gold thin-film. The metallization of the silica xerogel was performed by an original wet chemical process, based on the controlled growth of gold nanoparticles on two opposite faces of the silica monolith as a seed layer, followed by an electroless deposition of a continuous gold thin film. The thickness of the metallic thin film was assessed to be 700 nm. The silica plays two major roles: (1) it is used as a porous matrix for the gold electrode, creating a large specific surface area, and (2) it acts as a separator (non-metallized part of the silica). The silica monolith was soaked in a polyvinyl alcohol and phosphoric acid mixture which is used as polymer electrolyte. Capacitance effect was demonstrated by cyclic voltammetry experiments. The specific capacitance was found to be equal to 0.95 mF cm- 2 (9.5 F g-1). No major degradation occurs within more than 3000 cycles.

  3. Monolithic composites of silica aerogels by reactive supercritical deposition of hydroxy-terminated poly(dimethylsiloxane).

    PubMed

    Sanli, D; Erkey, C

    2013-11-27

    Monolithic composites of silica aerogels with hydroxyl-terminated poly(dimethylsiloxane) (PDMS(OH)) were developed with a novel reactive supercritical deposition technique. The method involves dissolution of PDMS(OH) in supercritical CO2 (scCO2) and then exposure of the aerogel samples to this single phase mixture of PDMS(OH)-CO2. The demixing pressures of the PDMS(OH)-CO2 binary mixtures determined in this study indicated that PDMS(OH) forms miscible mixtures with CO2 at a wide composition range at easily accessible pressures. Upon supercritical deposition, the polymer molecules were discovered to react with the hydroxyl groups on the silica aerogel surface and form a conformal coating on the surface. The chemical attachment of the polymer molecules on the aerogel surface were verified by prolonged extraction with pure scCO2, simultaneous deposition with superhydrophobic and hydrophilic silica aerogel samples and ATR-FTIR analysis. All of the deposited silica aerogel samples were obtained as monoliths and retained their transparency up to around 30 wt % of mass uptake. PDMS(OH) molecules were found to penetrate all the way to the center of the monoliths and were distributed homogenously throughout the cylindrical aerogel samples. Polymer loadings as high as 75.4 wt % of the aerogel mass could be attained. It was shown that the polymer uptake increases with increasing exposure time, as well as the initial polymer concentration in the vessel. PMID:24168319

  4. One-pot synthesis of a new high vinyl content hybrid silica monolith dedicated to nanoliquid chromatography.

    PubMed

    Racha, El-Debs; Gay, Pauline; Dugas, Vincent; Demesmay, Claire

    2016-03-01

    A new vinyltrimethoxysilane-based hybrid silica monolith was developed and used as a reversed-phase capillary column. The synthesis of this rich vinyl hybrid macroporous monolith, by cocondensation of vinyltrimethoxysilane with tetramethoxysilane, was investigated using an unconventional (formamide, nitric acid) porogen/catalyst system. A macroporous hybrid silica monolith with 80% in mass of vinyltrimethoxysilane in the feeding silane solution was obtained and compared to a more conventional low vinyl content hybrid monolith with only of 20% vinyltrimethoxysilane. Monoliths were characterized by scanning electron microscopy, (29) Si nuclear magnetic resonance spectroscopy and N2 adsorption-desorption. About 80% of the vinyl precursor was incorporated in the final materials, leading to 15.9 and 61.5% of Si atoms bonded to vinyl groups for 20% vinyltrimethoxysilane and 80% vinyltrimethoxysilane, respectively. The 80% vinyltrimethoxysilane monolith presents a lower surface area than 20% vinyltrimethoxysilane (159 versus 551 m(2) /g), which is nevertheless compensated by a higher vinyl surface density. Chromatographic properties were evaluated in reversed-phase mode. Plots of ln(k) versus percentage of organic modifier were used to assess the reversed-phase mechanism. Its high content of organic groups leads to high retention properties. Column efficiencies of 170 000 plates/m were measured for this 80% vinyltrimethoxysilane hybrid silica monolith. Long capillary monolithic columns (90 cm) were successfully synthesized (N = 120 000). PMID:26719150

  5. Silica-particle-supported zwitterionic polymer monolith for microcolumn liquid chromatography.

    PubMed

    An, Ran; Weng, Qianfeng; Li, Jinxiang

    2014-10-01

    A silica-particle-supported zwitterionic polymeric monolithic column, shortened as supported column (S-column), was prepared by the in situ polymerization of methacrylic acid, ethylene dimethacrylate, and 2-(dimethylamino)ethyl methacrylate in the presence of a ternary porogenic solvent containing water, methanol, and cyclohexanol in a 250 μm id fused-silica capillary prepacked with 5 μm bare silica particles. In the S-column, a thin layer of the polymers was formed around the silica particles in the form of nanoglobules, leaving the interstitial spaces between the particles free for liquid flow. The effects of the preparation conditions on the morphology of the monolith were investigated by scanning electron microscopy and backpressure measurements. The selected volumetric ratio of porogens, monomer concentration, polymerization time, and temperature are 1:1:8 (water/methanol/cyclohexanol), 25% v/v, 5 h, and 60°C, respectively. The S-column was evaluated by comparison with its conventional organic counterpart in terms of morphology, mechanical stability, permeability, swelling-shrinking behavior, capacity, and efficiency. The results demonstrate that the S-column is superior to its counterpart in all the terms with the exception of permeability. The above merits and zwitterionic property of the S-column were further confirmed by separate separations of four inorganic anions and three organic cations. PMID:25044794

  6. Preparation and characterization of mixed-mode monolithic silica column for capillary electrochromatography.

    PubMed

    Ye, Fanggui; Wang, Shun; Zhao, Shulin

    2009-12-18

    A silica-based monolithic stationary phase with mixed-mode of reversed phase (RP) and weak anion-exchange (WAX) for capillary electrochromatography (CEC) has been prepared. The mixed-mode monolithic silica column was prepared using the sol-gel technique and followed by a post-modification with hexadecyltrimethoxysilane (HDTMS) and aminopropyltrimethoxysilane (APTMS). The amino groups on the surface of the stationary phase were used to generate a substantial anodic EOF as well as to provide electrostatic interaction sites for charged compounds at low pH. A cathodic EOF was observed at pH above 7.3 due to the full ionization of residual silanol groups and the suppression in the ionization of amino groups. A variety of analytes were used to evaluate the electrochromatographic characterization and column performance. The monolithic stationary phase exhibited RP chromatographic behavior toward neutral solutes. The model anionic solutes were separated by the mixed-mode mechanism, which comprised RP interaction, WAX, and electrophoresis. Symmetrical peaks can be obtained for basic solutes because positively charged amino groups can effectively minimize the adsorption of positively charged analytes to the stationary phase. PMID:19913231

  7. Effect of polyethylene glycol on pore structure and separation efficiency of silica-based monolithic capillary columns.

    PubMed

    Hara, Takeshi; Desmet, Gert; Baron, Gino V; Minakuchi, Hiroyoshi; Eeltink, Sebastiaan

    2016-04-15

    Monolithic silica materials (first unclad monolith rods, then monolithic capillary columns) were prepared using various amounts of polyethylene glycols (PEGs) with different molecular weight (MW). The monolith rods were used to examine the mesoporosity by argon physisorption technique, and the macroporosity by mercury intrusion porosimetry. Subsequently, silica-based monolithic capillary columns with an inner diameter of 100 μm were produced using the same preparation conditions as used for the rods. The results obtained with the monolith rods showed the following important findings: (1) it is feasible to fabricate monolithic silica rods possessing macropore size of 0.5-1.4 μm by tuning the amount of PEGs (independently of the MW), whereas the macropore volume and the mesoporosity remain similar. (2) the smallest macropore size (0.5 μm) rod prepared with PEG having a MW=20,000g/mol provided a narrower macropore size distribution than with PEG with MW=10,000g/mol. The monolithic capillary columns produced with the different PEG type showed similar retention factors for hexylbenzene (k=2.3-2.4) and similar t0-based column permeability (Kv0=2.3-2.4×10(-14)m(2)) in 20:80% (v/v) water:methanol, as expected from the results obtained with the monolith rods. The column prepared with PEG of MW=20,000g/mol gave a plate height of H=4.0 μm for hexylbenzene at an optimal linear velocity of u0=2.6mm/s in 20:80% (v/v) water containing 0.1% formic acid:acetonitrile. To the best of our knowledge, this is the lowest plate height ever recorded for a monolithic column. Comparing the kinetic performance at 30MPa shows that the best monolithic silica column obtained in the present study performs better than the second-generation monolithic silica columns developed up till now in the practically most relevant range of plate numbers (N≤40,000). In this range, the performance is now similar to that of 2.7 μm core-shell particle columns. PMID:26976349

  8. Preparation of monolithic silica-chitin composite under extreme biomimetic conditions.

    PubMed

    Bazhenov, Vasilii V; Wysokowski, Marcin; Petrenko, Iaroslav; Stawski, Dawid; Sapozhnikov, Philipp; Born, René; Stelling, Allison L; Kaiser, Sabine; Jesionowski, Teofil

    2015-05-01

    Chitin is a widespread renewable biopolymer that is extensively distributed in the natural world. The high thermal stability of chitin provides an opportunity to develop novel inorganic-organic composites under hydrothermal synthesis conditions in vitro. For the first time, in this work we prepared monolithic silica-chitin composite under extreme biomimetic conditions (80°C and pH 1.5) using three dimensional chitinous matrices isolated from the marine sponge Aplysina cauliformis. The resulting material was studied using light and fluorescence microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy. A mechanism for the silica-chitin interaction after exposure to these hydrothermal conditions is proposed and discussed. PMID:25701776

  9. Morphological Analysis of Physically Reconstructed Silica Monoliths with Submicrometer Macropores: Effect of Decreasing Domain Size on Structural Homogeneity.

    PubMed

    Stoeckel, Daniela; Kübel, Christian; Loeh, Marc O; Smarsly, Bernd M; Tallarek, Ulrich

    2015-07-01

    Silica monoliths are increasingly used as fixed-bed supports in separation and catalysis because their bimodal pore space architecture combines excellent mass transport properties with a large surface area. To optimize their performance, a quantitative relationship between morphology and transport characteristics has to be established, and synthesis conditions that lead to a desired morphology optimized for a targeted application must be identified. However, the effects of specific synthesis parameters on the structural properties of silica monoliths are still poorly understood. An important question is how far the macropore and domain size can be reduced without compromising the structural homogeneity. We address this question with quantitative morphological data derived for a set of eight macroporous-mesoporous silica monoliths with an average macropore size (d(macro)) of between 3.7 and 0.1 μm, prepared following an established route involving the sol-gel transition and phase separation. The macropore space of the silica monolith samples is reconstructed using focused ion beam scanning electron microscopy followed by a quantitative assessment of geometrical and topological properties based on chord length distributions (CLDs) and branch-node analysis of the pore network, respectively. We observe a significant increase in structural heterogeneity, indicated by a decrease in the parameter k derived from fitting a k-gamma function to the CLDs, when d(macro) reaches the submicrometer range. The compromised structural homogeneity of silica monoliths with submicrometer macropores could possibly originate from early structural freezing during the competitive processes of sol-gel transition and phase separation. It is therefore questionable if the common approach of reducing the morphological features of silica monoliths into the submicrometer regime by changing the point of sol-gel transition can be successful. Alternative strategies and a better understanding of the

  10. Atomic layer deposition of ZnO on ultra-low-density nanoporous silica aerogel monoliths

    SciTech Connect

    Kucheyev, S O; Biener, J; Wang, Y M; Baumann, T F; Wu, K J; van Buuren, T; Hamza, A V; Elam, J W; Pellin, M J

    2004-09-02

    We report on atomic layer deposition of an {approx} 2-nm-thick ZnO layer on the inner surface of ultralow-density ({approx} 0.5% of the full density) nanoporous silica aerogel monoliths with an extremely large effective aspect ratio of {approx} 10{sup 5} (defined as the ratio of the monolith thickness to the average pore size). The resultant monoliths are formed by amorphous-SiO{sub 2}/wurtzite-ZnO nanoparticles which are randomly oriented and interconnected into an open-cell network with an apparent density of {approx} 3% and a surface area of {approx} 100 m{sup 2} g{sup -1}. Secondary ion mass spectrometry and high-resolution transmission electron microscopy imaging reveal excellent uniformity and crystallinity of ZnO coating. Oxygen K-edge and Zn L{sub 3}-edge soft x-ray absorption near-edge structure spectroscopy shows broadened O 2p- as well as Zn 4s-, 5s-, and 3d-projected densities of states in the conduction band.

  11. Preparation and complex characterization of silica holmium sol-gel monoliths.

    PubMed

    Cacaina, D; Areva, S; Laaksonen, H; Simon, S; Ylänen, H

    2011-01-01

    Amorphous, sol-gel derived SiO(2) are known to biocompatible and bioresorbable materials. Biodegradable and inert materials containing radioactive isotopes have potential application as delivery vehicles of the beta radiation to the cancer tumors inside the body. Incorporation of holmium in the sol-gel derived SiO(2) could lead to the formation of a biodegradable material which could be used as carrier biomaterial for the radiation of radioactive holmium to the various cancer sites. The homogeneity of the prepared sol-gel silica holmium monoliths was investigated by Back Scattered Electron Imaging of Scanning Electron Microscope equipped with Energy Dispersive X-ray Analysis, X-ray Induced Photoelectron Spectroscopy and Nuclear Magnetic Resonance Spectroscopy. The biodegradation of the monoliths was investigated in Simulated Body Fluid and TRIS (Trizma pre-set Crystals) solution. The results show that by suitable tailoring of the sol-gel processing parameters holmium can be homogeneously incorporated in the silica matrix with a controlled biodegradation rate. PMID:21132520

  12. Monolithic octadecylsilyl-silica gel column for the high-speed ion chromatographic determination of acidity.

    PubMed

    Xu, Qun; Tanaka, Kazuhiko; Mori, Masanobu; Helaleh, Murad I H; Hu, Wenzhi; Hasebe, Kiyoshi; Toada, Hiroshi

    2003-05-16

    A monolithic ODS-silica gel column modified by saturating it with lithium dodecylsulfate (Li-DS) was used to demonstrate the high-speed separation of H+ from other mono- and divalent cations, such as Na+, NH4+, K+, Mg2+ and Ca2+ using ion chromatography (IC). Using a 5 mM EDTA-2K solution containing 0.10 mM Li-DS (pH 4.80) as eluent, H+ was eluted with a sharp and symmetrical peak within 1.0 min before other cations at a flow-rate of 1.5 ml min(-1). The rapid elution of H+ and its conductimetric detection could be attributed to the presence of EDTA (HY2-), which can convert H+ ions as anions. i.e. H(+) + H2Y(2-) --> H3Y(-). The acidity of rainwater and deionized water samples was determined using this IC system with satisfactory results. PMID:12830891

  13. Damping and tuning of the fibre violin modes in monolithic silica suspensions

    NASA Astrophysics Data System (ADS)

    Goßler, S.; Cagnoli, G.; Crooks, D. R. M.; Lück, H.; Rowan, S.; Smith, J. R.; Strain, K. A.; Hough, J.; Danzmann, K.

    2004-03-01

    High Q mirror suspensions are a key element of the advanced interferometric gravitational-wave detectors. In December 2002 the last of the final interferometer optics of GEO 600 were monolithically suspended, using fused silica fibres. The violin modes of the suspension fibres can have Q greater than 108 and can therefore interfere with the interferometer length control servo. Hence, the violin modes need to be damped, without degrading the pendulum Q itself. Furthermore, the frequency spread of the fibres used has to be small to allow for high Q notch filtering in the length control servo. The requirements for the violin modes of the two GEO 600 inboard suspensions are Q < 3 × 106 for the fundamental and Q < 2 × 106 for the first harmonic mode, respectively. The frequency spread should not exceed 10% within one mode. To accomplish that, two sections of the fibres were coated with amorphous Teflon. By applying the coating, the Q of the relevant modes can be degraded to the desired values and furthermore, the frequencies of these modes can be tuned almost independently with a good accuracy over a wide range. After welding the fibres in the monolithic suspension, a corrective coating was applied to some fibres, to compensate for the frequency spread due to the tension spread of the four fibres within a suspension. We present the method and the results achieved.

  14. Aptamer-based organic-silica hybrid affinity monolith prepared via "thiol-ene" click reaction for extraction of thrombin.

    PubMed

    Wang, Zheng; Zhao, Jin-cheng; Lian, Hong-zhen; Chen, Hong-yuan

    2015-06-01

    A novel strategy for preparing aptamer-based organic-silica hybrid monolithic column was developed via "thiol-ene" click chemistry. Due to the large specific surface area of the hybrid matrix and the simplicity, rapidness and high efficiency of "thiol-ene" click reaction, the average coverage density of aptamer on the organic-silica hybrid monolith reached 420 pmol μL(-1). Human α-thrombin can be captured on the prepared affinity monolithic column with high specificity and eluted by NaClO4 solution. N-p-tosyl-Gly-Pro-Arg p-nitroanilide acetate was used as the sensitive chromogenic substrate of thrombin. The thrombin enriched by this affinity column was detected with a detection of limit of 0.01 μM by spectrophotometry. Furthermore, the extraction recovery of thrombin at 0.15 μM in human serum was 91.8% with a relative standard deviation of 4.0%. These results indicated that "thiol-ene" click chemistry provided a promising technique to immobilize aptamer on organic-inorganic hybrid monolith and the easily-assembled affinity monolithic material could be used to realize highly selective recognition of trace proteins. PMID:25863371

  15. Enhancing the separation performance of the first-generation silica monolith using active flow technology: parallel segmented flow mode of operation.

    PubMed

    Soliven, Arianne; Foley, Dominic; Pereira, Luisa; Dennis, Gary R; Shalliker, R Andrew; Cabrera, Karin; Ritchie, Harald; Edge, Tony

    2014-03-21

    Active flow technology (AFT) columns are designed to minimise inefficient flow processes associated with the column wall and radial heterogeneity of the stationary phase bed. This study is the first to investigate AFT on an analytical scale 4.6mm internal diameter first-generation silica monolith. The performance was compared to a conventional first-generation silica monolith and it was observed that the AFT monolith had an increase in efficiency values that ranged from 15 to 111%; the trend demonstrating efficiency gains increasing as the volumetric flow to the detector was decreased, but with no loss in sensitivity. PMID:24565232

  16. Hybrid silica monolith for microextraction by packed sorbent to determine drugs from plasma samples by liquid chromatography-tandem mass spectrometry.

    PubMed

    de Souza, Israel D; Domingues, Diego S; Queiroz, Maria E C

    2015-08-01

    The present study (1) reports on the synthesis of two hybrid silica monoliths functionalized with aminopropyl or cyanopropyl groups by the sol-gel process; (2) evaluates these monoliths as selective stationary phase for microextraction by packed sorbent (MEPS) to determine drugs in plasma samples via liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the multiple reactions monitoring (MRM) mode; and (3) discusses important factors related to the optimization of MEPS efficiency as well as the carryover effect. The prepared hybrid silica monoliths consisted of a uniform, porous, and continuous silica monolithic network. The structure of the aminopropyl hybrid silica monolith was more compact than the structure of the cyanopropyl hybrid silica monolith. The Fourier-transform infrared spectroscopy (FTIR) spectra of the hybrid silica monoliths displayed readily identifiable peaks, characteristic of the cyanopropyl and aminopropyl groups. Compared with the aminopropyl hybrid silica phase, the cyanopropyl hybrid silica phase exhibited higher binding capacity for most of the target drugs. The developed method afforded adequate linearity at concentrations ranging from the lower limit of quantification (0.05-1.00 ng mL(-1)) to the upper limit of quantification (40-10,500 ng mL(-1)); the coefficients of determination (r(2)) were higher than 0.9955. The precision of the method presented coefficients of variation (CV) lower than 14%; the relative standard error (RSE) of the accuracy ranged from -12% to 14%. The developed method allowed for simultaneous analysis of five antipsychotics (olanzapine, quetiapine, clozapine, haloperidol, and chlorpromazine) in combination with seven antidepressants (mirtazapine, paroxetine, citalopram, sertraline, imipramine, clomipramine, fluoxetine), two anticonvulsants (carbamazepine and lamotrigine), and two anxiolytics (diazepam and clonazepam) in plasma samples from schizophrenic patients, which should be valuable for therapeutic drug

  17. Behavior of short silica monolithic columns in high pressure gas chromatography.

    PubMed

    Maniquet, Adrien; Bruyer, Nicolas; Raffin, Guy; Baco-Antoniali, Franck; Demesmay, Claire; Dugas, Vincent; Randon, Jérôme

    2016-08-19

    In order to analyze light hydrocarbons mixtures with silica monolithic columns, a conventional gas chromatograph was modified to work with carrier gas pressure as high as 60bar. To understand hydrodynamic flow and retention with short columns (less than 30cm), special attention was required due to the temperature difference between the oven area and the FID detector which contain a significant length of the column. Efficiency and selectivity using various carrier gases (helium, nitrogen and carbon dioxide) at different inlet pressure for different oven temperature were studied. Carrier gas nature was a very significant parameter: on one side, linked to adsorption mechanism for gases like nitrogen and carbon dioxide onto the stationary phase modifying retention and selectivity, on the other side in relation to the minimum theoretical plate height which was as low as 15μm (66 000 platem(-1)) using carbon dioxide as carrier gas. The chromatographic system was then used to separate methane, ethane, ethylene, acetylene, propane, cyclopropane, and butane in less than 30s. PMID:27432790

  18. Antibody-coupled monolithic silica microtips for highthroughput molecular profiling of circulating exosomes

    PubMed Central

    Ueda, Koji; Ishikawa, Nobuhisa; Tatsuguchi, Ayako; Saichi, Naomi; Fujii, Risa; Nakagawa, Hidewaki

    2014-01-01

    Exosome-mediated signal transportation plays a variety of critical roles in cancer progression and metastasis. From the aspect of cancer diagnosis, circulating exosomes are ideal resources of biomarkers because molecular features of tumor cells are transcribed on them. However, isolating pure exosomes from body fluids is time-consuming and still major challenge to be addressed for comprehensive profiling of exosomal proteins and miRNAs. Here we constructed anti-CD9 antibody-coupled highly porous monolithic silica microtips which allowed automated rapid and reproducible exosome extraction from multiple clinical samples. We applied these tips to explore lung cancer biomarker proteins on exosomes by analyzing 46 serum samples. The mass spectrometric quantification of 1,369 exosomal proteins identified CD91 as a lung adenocarcinoma specific antigen on exosomes, which was further validated with CD9-CD91 exosome sandwich ELISA measuring 212 samples. Our simple device can promote not only biomarker discovery studies but also wide range of omics researches about exosomes. PMID:25167841

  19. Fabrication and characterization of transparent monolithic nanocomposites between YVO4:Bi3+,Eu3+ nanophosphor and TMAS-derived silica

    NASA Astrophysics Data System (ADS)

    Iso, Yoshiki; Takeshita, Satoru; Isobe, Tetsuhiko

    2014-01-01

    We fabricate monolithic nanocomposites of silica containing YVO4:Bi3+,Eu3+ nanoparticles, which are synthesized by co-precipitation method via a citrate precursor. A basic aqueous solution of tetramethylammonium silicate is chosen as a silica source, since the YVO4:Bi3+,Eu3+ nanoparticles can be well-dispersed in this solution. The fabricated nanocomposites are transparent to the naked eye under white light and emit red light under near-UV light excitation through an interband transition of the nanoparticles followed by energy transfer to Eu3+. The net optical density at 365.0 nm for the nanocomposite is proportional to its thickness. Furthermore, its net photoluminescence intensity at 619.5 nm is proportional to the net optical density. Both proportional relationships are attributed to negligibly low light scattering intensity of the nanoparticles because of their well-dispersion in silica.

  20. Enantiomeric separation by capillary electrochromatography on a sulfated poly β-cyclodextrin modified silica-based monolith.

    PubMed

    Yuan, Ruijuan; Wang, Yan; Ding, Guosheng

    2010-01-01

    A sulfated poly β-cyclodextrin (SPCD) modified silica-based monolithic column was prepared for enantiomeric separation. First, 2-hydroxy-3-allyloxy-propyl-β-cyclodextrin (allyl-β-CD) was bonded onto a bifunctional reagent 3-(methacryloxy)propyltriethoxysilane (γ-MAPS) modified silica-based monolith through radical polymerization; the column was then sulfated with chlorosulfonic acid. The SPCD chiral stationary phase resolved the boring problem associated with desalting when sulfated CDs were synthesized to act as chiral additives. The inorganic salt in the column introduced during the sulfating process could be easily removed by washing the column with water for some time. Chiral compounds investigated were successfully resolved into their enantiomers on the SPCD modified monolith in the capillary electrochromatography (CEC) mode. Due to the existence of the -SO(3)H group, electrosmotic flow (EOF) was obviously increased, and all of the separations could be carried out in 20 min with only a minor loss in the column efficiency and resolution. PMID:20834124

  1. Chemistry of cobalt(II) confined in the pores of ordered silica monoliths: from the formation of the monolith to the CoFe Prussian blue analogue nanocomposite.

    PubMed

    Aouadi, Merwen; Fornasieri, Giulia; Briois, Valérie; Durand, Pierrick; Bleuzen, Anne

    2012-02-27

    Recently we conceived of an original strategy that allows the precipitation of Prussian blue analogues (PBAs) in the ordered pores of silica monoliths to lead to photomagnetic CoFe PBA-silica nanocomposites. To determine the critical parameters and fully control the synthesis of the photoactive CoFe PBA in the pores of the silica matrix, X-ray absorption spectroscopy was performed at the cobalt K-edge. This study showed that cobalt cation chemistry is the keystone of the entire process. The local environment and the electronic structure of the cobalt cation undergo several modifications during the formation process: first the incorporation of the cation as an octahedral complex into the ordered block copolymer phase, then the deprotonation by thermohydrolysis to give a fourfold-coordinated deprotonated lowly condensed species and finally the formation of the 3D coordination network of CoFe PBA in acidic conditions through a rapid reprotonation followed by nucleophilic substitution accompanied by the electronic transfer, thus leading to the photomagnetic Co(III)(LS)-Fe(II)(LS) (LS=low spin) pairs. PMID:22278956

  2. Textural characterization of native and n-alky-bonded silica monoliths by mercury intrusion/extrusion, inverse size exclusion chromatography and nitrogen adsorption.

    PubMed

    Thommes, M; Skudas, R; Unger, K K; Lubda, D

    2008-05-16

    Native and n-alkyl-bonded (n-octadecyl) monolithic silica rods with mesopores in the range between 10 and 25 nm and macropores in the range between 1.8 and 6.0 microm were examined by mercury intrusion/extrusion, inverse size exclusion chromatography (ISEC) and nitrogen sorption. Our results reveal very good agreement for the mesopore size distribution obtained from nitrogen adsorption (in combination with an advanced NLDFT analysis) and ISEC. Our studies highlight the importance of mercury porosimetry for the assessment of the macropore size distribution and show that mercury porosimetry is the only method which allows obtaining a combined and comprehensive structural characterization of macroporous/mesoporous silica monoliths. Our data clearly confirm that mercury porosimetry hysteresis and entrapment have different origin, and indicate the intrinsic nature of mercury porosimetry hysteresis in these silica monoliths. Within this context some silica monoliths show the remarkable result of no entrapment of mercury after extrusion from the mesopore system (i.e. for the first intrusion/extrusion cycle). The results of a systematic study of the mercury intrusion/extrusion behavior into native silica monoliths and monoliths with bonded n-alkyl groups reveals that the macro (through) pore structure, which controls the mass transfer to and from the mesopores, here mainly controls the entrapment behavior. Our data suggest that mercury intrusion/extrusion porosimetry does not only allow to obtain a comprehensive pore structure analysis, but can also serve as a tool to estimate the mass transport properties of silica monoliths to be employed in liquid-phase separation processes. PMID:18423477

  3. Spectroscopic Characterization of Structural Changes in Membrane Scaffold Proteins Entrapped within Mesoporous Silica Gel Monoliths.

    PubMed

    Zeno, Wade F; Hilt, Silvia; Risbud, Subhash H; Voss, John C; Longo, Marjorie L

    2015-04-29

    The changes in the orientation and conformation of three different membrane scaffold proteins (MSPs) upon entrapment in sol-gel-derived mesoporous silica monoliths were investigated. MSPs were examined in either a lipid-free or a lipid-bound conformation, where the proteins were associated with lipids to form nanolipoprotein particles (NLPs). NLPs are water-soluble, disk-shaped patches of a lipid bilayer that have amphiphilic MSPs shielding the hydrophobic lipid tails. The NLPs in this work had an average thickness of 5 nm and diameters of 9.2, 9.7, and 14.8 nm. We have previously demonstrated that NLPs are more suitable lipid-based structures for silica gel entrapment than liposomes because of their size compatibility with the mesoporous network (2-50 nm) and minimally altered structure after encapsulation. Here we further elaborate on that work by using a variety of spectroscopic techniques to elucidate whether or not different MSPs maintain their protein-lipid interactions after encapsulation. Fluorescence spectroscopy and quenching of the tryptophan residues with acrylamide, 5-DOXYL-stearic acid, and 16-DOXYL-stearic acid were used to determine the MSP orientation. We also utilized fluorescence anisotropy of tryptophans to measure the relative size of the NLPs and MSP aggregates after entrapment. Finally, circular dichroism spectroscopy was used to examine the secondary structure of the MSPs. Our results showed that, after entrapment, all of the lipid-bound MSPs maintained orientations that were minimally changed and indicative of association with lipids in NLPs. The tryptophan residues appeared to remain buried within the hydrophobic core of the lipid tails in the NLPs and appropriately spaced from the bilayer center. Also, after entrapment, lipid-bound MSPs maintained a high degree of α-helical content, a secondary structure associated with protein-lipid interactions. These findings demonstrate that NLPs are capable of serving as viable hosts for functional

  4. Chip electrochromatographic systems: Novel vertically aligned carbon nanotube and silica monoliths based separations

    NASA Astrophysics Data System (ADS)

    Goswami, Shubhodeep

    2009-12-01

    Miniaturized chemical analysis systems, also know as 'lab-on-a-chip' devices have been rapidly developing over the last decade. Capillary electrochromatography (CEC), a multidimensional separation technique combining capillary electrophoresis (CE) and liquid chromatography (LC) has been of great interest for chip based applications. Preliminary work has been undertaken to develop vertically aligned carbon nanotubes and photopolymerizable silica solgel as novel stationary phase materials for 'chip CEC' separations. Patterned growth of CNTs in a specific location of the channel has been carried out using a solid phase Fe-Al catalyst as well as a vapor deposited ferrocene catalyst. Characterization of the CNT "forests" was achieved using optical microscopy, secondary electron microscopy, high resolution tunneling electron microscopy and Raman spectroscopy. Proof-of-concept applications were demonstrated using reversed phase CEC separations as well as solid phase extraction of a glycosylated protein using concanavilin A immobilized onto the CNT bed. Photopolymerizable silica solgel materials were developed as stationary phase for microfluidic electrochromatographic separations in disposable polydimethylsiloxane (PDMS) chip devices. Effect on morphology and pore size of gels were studied as function of UV and solgel polymerization conditions, porogen, salt additives, geometry and hydrolyzable methoxy-ies. Structural morphologies were studied with Secondary Electron Microscopy (SEM). Pore size and pore volumes were characterized by thermal porometry, nitrogen BET adsorptions and differential scanning calorimetry. Computational fluid dynamics and confocal microscopy tools were employed to study the transport of fluids and model analytes. These investigations were directed towards evolving improved strategies for rinsing of uncrosslinked monomers to form porous monoliths as well as to effect a desired separation under a set of electrochromatograhic conditions

  5. Temperature Effects on Agrobacterium Phytochrome Agp1

    PubMed Central

    Njimona, Ibrahim; Lamparter, Tilman

    2011-01-01

    Phytochromes are widely distributed biliprotein photoreceptors with a conserved N-terminal chromophore-binding domain. Most phytochromes bear a light-regulated C-terminal His kinase or His kinase-like region. We investigated the effects of light and temperature on the His kinase activity of the phytochrome Agp1 from Agrobacterium tumefaciens. As in earlier studies, the phosphorylation activity of the holoprotein after far-red irradiation (where the red-light absorbing Pr form dominates) was stronger than that of the holoprotein after red irradiation (where the far red-absorbing Pfr form dominates). Phosphorylation activities of the apoprotein, far red-irradiated holoprotein, and red-irradiated holoprotein decreased when the temperature increased from 25°C to 35°C; at 40°C, almost no kinase activity was detected. The activity of a holoprotein sample incubated at 40°C was nearly completely restored when the temperature returned to 25°C. UV/visible spectroscopy indicated that the protein was not denatured up to 45°C. At 50°C, however, Pfr denatured faster than the dark-adapted sample containing the Pr form of Agp1. The Pr visible spectrum was unaffected by temperatures of 20–45°C, whereas irradiated samples exhibited a clear temperature effect in the 30–40°C range in which prolonged irradiation resulted in the photoconversion of Pfr into a new spectral species termed Prx. Pfr to Prx photoconversion was dependent on the His-kinase module of Agp1; normal photoconversion occurred at 40°C in the mutant Agp1-M15, which lacks the C-terminal His-kinase module, and in a domain-swap mutant in which the His-kinase module of Agp1 is replaced by the His-kinase/response regulator module of the other A. tumefaciens phytochrome, Agp2. The temperature-dependent kinase activity and spectral properties in the physiological temperature range suggest that Agp1 serves as an integrated light and temperature sensor in A. tumefaciens. PMID:22043299

  6. Histidine-modified organic-silica hybrid monolithic column for mixed-mode per aqueous and ion-exchange capillary electrochromatography.

    PubMed

    Tang, Sheng; Liu, Shujuan; Liang, Xiaojing; Tang, Xiaofen; Wu, Xingcai; Guo, Yong; Liu, Xia; Jiang, Shengxiang

    2015-06-01

    A novel organic-silica hybrid monolith was prepared through the binding of histidine onto the surface of monolithic matrix for mixed-mode per aqueous and ion-exchange capillary electrochromatography. The imidazolium and amino groups on the surface of the monolithic stationary phase were used to generate an anodic electro-osmotic flow as well as to provide electrostatic interaction sites for the charged compounds at low pH. Typical per aqueous chromatographic behavior was observed in water-rich mobile phases. Various polar and hydrophilic analytes were selected to evaluate the characteristics and chromatographic performance of the obtained monolith. Under per aqueous conditions, the mixed-mode mechanism of hydrophobic and ion-exchange interactions was observed and the resultant monolithic column proved to be very versatile for the efficient separations of these polar and hydrophilic compounds (including amides, nucleosides and nucleotide bases, benzoic acid derivatives, and amino acids) in highly aqueous mobile phases. The successful applications suggested that the histidine-modified organic-silica hybrid monolithic column could offer a wide range of retention behaviors and flexible selectivities toward polar and hydrophilic compounds. PMID:25845702

  7. Synthesis of boronate-silica hybrid affinity monolith via a one-pot process for specific capture of glycoproteins at neutral conditions.

    PubMed

    Yang, F; Mao, J; He, X W; Chen, L X; Zhang, Y K

    2013-08-01

    In this study, a boronate-silica hybrid affinity monolith was prepared for specific capture of glycoproteins at neutral pH condition. The monolith was synthesized via a facile one-pot procedure in a stainless steel column by concurrently mixing hydrolyzed alkoxysilanes tetramethoxysilane and vinyltrimethoxysilane, organic monomer 3-acrylamidophenylboronic acid and initiator 2,2'-azobisisobutyronitrile together. The polycondensation of alkoxysilanes and copolymerization of organic monomer and vinyl-silica monolith were carried out successively by reacting at different temperatures. After optimizing the preparation conditions, the resulting hybrid affinity monolith was systematically characterized and exhibited excellent affinity to both cis-diol-containing small molecules and glycoproteins at neutral and physiological pH, including adenosine, horseradish peroxidase, transferrin and ovalbumin. The binding capacity of ovalbumin on monolith was measured to be 2.5 mg g(-1) at pH 7.0. Furthermore, the hybrid affinity monolith was applied to the separation of transferrin from bovine serum sample at a physiological condition. Good repeatability was obtained and the relative standard deviations of retention time were 1.15 and 4.77 % (n = 5) for run-to-run and column-to-column, respectively. PMID:23807307

  8. Enantiomer separation of acidic chiral compounds on a quinine-silica/zirconia hybrid monolith by capillary electrochromatography.

    PubMed

    Tran, Le Ngoc; Park, Jung Hag

    2015-05-29

    A weak anion-exchanger chiral selector, quinine-incorporated silica/zirconia hybrid monolithic (QUI-S/ZHM) capillary column was prepared by sol-gel technology. The performance of the QUI-S/ZHM column was investigated for enantioresolution of a set of acidic chiral drugs and dinitrobenzoyl (DNB)-amino acids by capillary electrochromatography in aqueous organic mobile phases composed of acetonitrile (ACN) and triethylammonium acetate (TEAA) buffer. Effects of several parameters including the ACN content, concentration and pH of the mobile phase on the chiral separation were examined. Baseline resolutions of all the compounds were obtained in the mobile phase consisting of 70:30 ACN/TEAA (10mM, pH 6) under applied voltage of -10kV at 25°C within 20min. PMID:25892638

  9. Tailoring the macroporous structure of monolithic silica-based capillary columns with potential for liquid chromatography.

    PubMed

    Laschober, Stefan; Sulyok, Michael; Rosenberg, Erwin

    2007-03-01

    The present work aims at the optimisation of the synthesis of methyl-silsesquioxane monolithic capillary columns using a sol-gel based protocol. The influence of reaction conditions such as temperature, reaction mixture composition and catalyst concentration has been examined. The morphology of the products was studied by scanning electron microscopy and nitrogen adsorption. Monolithic capillary columns were obtained with a skeleton-like structure with open pores. Pore diameters vary from 0.8 to 15 microm, diameters of the xerogel network vary from 0.4 to 12 microm, respectively. Specific surface areas up to 334 m2/g have been observed, however, many materials did not possess areas above few m2/g which represents the limit of detection of the nitrogen porosimetry measurements. Excellent adhesion to the capillary wall was observed in all cases, and drying was possible at ambient conditions without the formation of cracks. PMID:17241639

  10. Continuous laser irradiation under ambient conditions: A simple way for the space-selective growth of gold nanoparticles inside a silica monolith

    SciTech Connect

    El Hamzaoui, Hicham; Bernard, Remy; Chahadih, Abdallah; Chassagneux, Fernand; Bois, Laurence; Capoen, Bruno; Bouazaoui, Mohamed

    2011-09-15

    Highlights: {yields} Visible continuous laser direct-write gold nanoparticles inside a silica monolith. {yields} The presence of the additive (Na{sub 2}CO{sub 3}) is not necessary to the growth of gold nanoparticles. {yields} A simple heat treatment leads to precipitation of gold nanoparticles inside the silica matrices with, or without, the additive. {yields} The local precipitation of gold nanoparticles by continuous photo-irradiation occurs following a photo-thermal activated mechanism. -- Abstract: Thanks to the potential and various applications of metal-dielectric nanocomposites, their syntheses constitute an interesting subject in material research. In this work, we demonstrate the achievement of gold nanocrystals growth through a visible and continuous laser irradiation. The in situ and direct space-selective generation of metallic nanoparticles is localized under the surface within transparent silica monoliths. For that purpose, the porous silica monoliths are prepared using a sol-gel route and post-doped with gold precursors before the irradiation. The presence of Au nanoparticles inside the irradiated areas was evidenced using absorption spectroscopy, X-ray diffraction analysis and transmission electron microscopy. The comparison between the results obtained after a laser irradiation and by a simple heat-treatment reveals that the local precipitation of gold nanoparticles by continuous photo-irradiation occurs following a photo-thermal activated mechanism.

  11. Metrology for AGP - Astrometric Gravitation Probe

    NASA Astrophysics Data System (ADS)

    Gai, Mario; et al.

    2015-08-01

    The Astrometric Gravitation Probe (AGP) is a concept of space mission aimed at tests of Fundamental Physics in the Solar system, using Fizeau interferometry and coronagraphy techniques to implement differential astrometry among superposed stellar fields. The main goal is verification of the General Relativity (GR) and competing gravitation theories in the weak field of the Solar System by high precision measurement of the light deflection in the vicinity of the Sun at < 10-7 and of the main and minor planet dynamics at the microarcsec/year level. The AGP payload concept is based on a single main telescope (1.15 m diameter) implementing a multi-aperture Fizeau interferometer, for simultaneous observation of four regions close to the Solar limb and in opposition; coronagraphic techniques are applied on the elementary sub-apertures. The star displacement due to light deflection is derived by differential astrometry on images taken in different deflection conditions (e.g. ON and OFF). The instrument design is focused on systematic error control through multiple field simultaneous observation and calibration. The metrology system requirements related to the science goals are discussed, and the technical aspects of possible implementations are investigated. The potential benefit of auto-collimation and cophasing techniques derives from monitoring comparably large sections of the optical system common to the stellar beams. The performance at microarcsec level is verified by simulation.

  12. Application of a Burkholderia cepacia lipase-immobilized silica monolith to batch and continuous biodiesel production with a stoichiometric mixture of methanol and crude Jatropha oil

    PubMed Central

    2011-01-01

    Background The enzymatic production of biodiesel through alcoholysis of triglycerides has become more attractive because it shows potential in overcoming the drawbacks of chemical processes. In this study, we investigate the production of biodiesel from crude, non-edible Jatropha oil and methanol to characterize Burkholderia cepacia lipase immobilized in an n-butyl-substituted hydrophobic silica monolith. We also evaluate the performance of a lipase-immobilized silica monolith bioreactor in the continuous production of biodiesel. Results The Jatropha oil used contained 18% free fatty acids, which is problematic in a base-catalyzed process. In the lipase-catalyzed reaction, the presence of free fatty acids made the reaction mixture homogeneous and allowed bioconversion to proceed to 90% biodiesel yield after a 12 hour reaction time. The optimal molar ratio of methanol to oil was 3.3 to 3.5 parts methanol to one part oil, with water content of 0.6% (w/w). Further experiments revealed that B. cepacia lipase immobilized in hydrophobic silicates was sufficiently tolerant to methanol, and glycerol adsorbed on the support disturbed the reaction to some extent in the present reaction system. The continuous production of biodiesel was performed at steady state using a lipase-immobilized silica monolith bioreactor loaded with 1.67 g of lipase. The yield of 95% was reached at a flow rate of 0.6 mL/h, although the performance of the continuous bioreactor was somewhat below that predicted from the batch reactor. The bioreactor was operated successfully for almost 50 days with 80% retention of the initial yield. Conclusions The presence of free fatty acids originally contained in Jatropha oil improved the reaction efficiency of the biodiesel production. A combination of B. cepacia lipase and its immobilization support, n-butyl-substituted silica monolith, was effective in the production of biodiesel. This procedure is easily applicable to the design of a continuous flow

  13. Synthesis of robust hierarchical silica monoliths by surface-mediated solution/precipitation reactions over different scales: designing capillary microreactors for environmental applications.

    PubMed

    García-Aguilar, J; Miguel-García, I; Berenguer-Murcia, Á; Cazorla-Amorós, D

    2014-12-24

    A synthetic procedure to prepare novel materials (surface-mediated fillings) based on robust hierarchical monoliths is reported. The methodology includes the deposition of a (micro- or mesoporous) silica thin film on the support followed by growth of a porous monolithic SiO2 structure. It has been demonstrated that this synthesis is viable for supports of different chemical nature with different inner diameters without shrinkage of the silica filling. The formation mechanism of the surface-mediated fillings is based on a solution/precipitation process and the anchoring of the silica filling to the deposited thin film. The interaction between the two SiO2 structures (monolith and thin film) depends on the porosity of the thin film and yields composite materials with different mechanical stability. By this procedure, capillary microreactors have been prepared and have been proved to be highly active and selective in the total and preferential oxidation of carbon monoxide (TOxCO and PrOxCO). PMID:25419612

  14. Hydrodynamic and dispersion behavior in a non-porous silica monolith through fluid dynamic study of a computational mimic reconstructed from sub-micro-tomographic scans.

    PubMed

    Loh, Kai-Chee; Vasudevan, Vivek

    2013-01-25

    An analysis of the transport properties of the bulk homogeneous core of a commercially available silica monolith (Chromolith(®)) is presented via direct numerical simulations in a topological model reconstructed from 3D nanotomographic scans at isotropic resolutions of 390 nm, 290 nm and 190 nm. The pore and skeleton size distributions were calculated from image analysis and a representative unit cell from each resolution was reconstructed to simulate the hydrodynamic transport properties using Computational Fluid Dynamics (CFD). A 30 μm × 30 μm × 30 μm unit cell extracted at 190 nm resolution was found to be representative of hydrodynamic permeability. Numerical peak parking simulations yielded an axial external obstruction factor (γ(e)) of 0.8. Mass transfer characteristics of a large non-penetrating molecule (BSA) were evaluated under non-retained conditions so as to elucidate the eddy dispersion contribution to total HETP. Transverse and axial dispersion length scales in the reconstructed model were resolved and related to the structural heterogeneities in the silica monolith. Deviations of simulated HETP from experimental measurements were attributed to a transcolumn dispersion contribution, which amounted to about 90% of the total HETP. The presented approach provides great scope to analyze the contributions of pore network topology to separation performance of silica monoliths (and other porous media) in HPLC applications. A significant reduction in simulation time and memory resources has been observed due to the lower scanning resolution, without significant loss in prediction accuracy. PMID:23290336

  15. Nanogold-Decorated Silica Monoliths as Highly Efficient Solid-Phase Adsorbent for Ultratrace Mercury Analysis in Natural Waters.

    PubMed

    Huber, Jessica; Heimbürger, Lars-Eric; Sonke, Jeroen E; Ziller, Sebastian; Lindén, Mika; Leopold, Kerstin

    2015-11-01

    We propose a novel analytical method for mercury (Hg) trace determination based on direct Hg preconcentration from aqueous solution onto a gold nanoparticle-decorated silica monolith (AuNP@SiO2). Detection of Hg is performed after thermal desorption by means of atomic fluorescence spectrometry. This new methodology benefits from reagent-free, time- and cost-saving procedure, due to most efficient solid-phase adsorbent and results in high sensitive quantification. The excellent analytical performance of the whole procedure is demonstrated by a limit of detection as low as 1.31 ng L(-1) for only one-min accumulation duration. A good reproducibility with standard deviations ≤5.4% is given. The feasibility of the approach in natural waters was confirmed by a recovery experiment in spiked seawater with a recovery rate of 101%. Moreover, the presented method was validated through reference analysis of a submarine groundwater discharge sample by cold vapor-atomic fluorescence spectrometry resulting in a very good agreement of the found values. Hence the novel method is a very promising new tool for low-level Hg monitoring in natural waters providing easy-handling on-site preconcentration, reagent-free stabilization as well as reagent-free, highly sensitive detection. PMID:26460188

  16. Violin mode amplitude glitch monitor for the presence of excess noise on the monolithic silica suspensions of GEO 600

    NASA Astrophysics Data System (ADS)

    Sorazu, B.; Strain, K. A.; Heng, I. S.; Kumar, R.

    2010-08-01

    Non-Gaussian features of data from gravitational wave detectors are of interest as unpredictable 'glitches' limit the sensitivity of searches for many kinds of signal. We consider events due to non-random excitations of the test masses and their suspension fibres. These events could, for example, be related to acoustic emissions in the fibres due to the presence and propagation of cracks or another type of structural perturbation, and they would generate excess noise above the Gaussian background, which matches the level expected due to thermal noise. We look for excess noise in the fundamental violin modes of the monolithic silica suspension fibres of GEO 600. We describe the algorithm used to monitor the violin mode amplitude for glitches, present our results and consider how these may be applied to advanced detectors. The conclusion of our analysis is that no excess noise above what was considered to be thermal noise was observed for several days of h(t) data analysed at the frequency of the selected violin modes.

  17. Surface modified aerogel monoliths

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas (Inventor); Johnston, James C. (Inventor); Kuczmarski, Maria A. (Inventor); Meador, Mary Ann B. (Inventor)

    2013-01-01

    This invention comprises reinforced aerogel monoliths such as silica aerogels having a polymer coating on its outer geometric surface boundary, and to the method of preparing said aerogel monoliths. The polymer coatings on the aerogel monoliths are derived from polymer precursors selected from the group consisting of isocyanates as a precursor, precursors of epoxies, and precursors of polyimides. The coated aerogel monoliths can be modified further by encapsulating the aerogel with the polymer precursor reinforced with fibers such as carbon or glass fibers to obtain mechanically reinforced composite encapsulated aerogel monoliths.

  18. C18 silica packed capillary columns with monolithic frits prepared with UV light emitting diode: usefulness in nano-liquid chromatography and capillary electrochromatography.

    PubMed

    D'Orazio, Giovanni; Fanali, Salvatore

    2012-04-01

    In this paper the potential of fused silica capillaries packed with RP18 silica particles entrapped with monolithic frits using both nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC) was investigated. Frits were prepared after removing a short part of the polyimide layer on the capillary wall and irradiating the polymerization mixture with an UV-light emitter diode (LED) at 370 nm. The capillary, was rotated during the polymerization procedure in order to obtain a homogeneous monolith. The distance of the LED from the capillary and the exposure time to UV light were studied in order to obtain frits with good porosity and high robustness. A mixture containing five alkylbenzenes was selected as sample and analyzed by both nano-LC and CEC. The standard mixture was baseline separated with good efficiency in the range 78,000-93,000 and 99,000-113,000 plates/m in nano-LC and CEC, respectively. The columns resulted to be very robust and the prepared monolithic frits allowed working with backpressure as high as 400 bar (nano-LC). In addition high voltages were applied in CEC (25-30 kV) without bubbles formation in absence of pressure assistance during runs. PMID:22189300

  19. Preparation of high efficiency and low carry-over immobilized enzymatic reactor with methacrylic acid-silica hybrid monolith as matrix for on-line protein digestion.

    PubMed

    Yuan, Huiming; Zhang, Lihua; Zhang, Yukui

    2014-12-01

    In this work, a novel kind of organic-silica hybrid monolith based immobilized enzymatic reactor (IMER) was developed. The monolithic support was prepared by a single step "one-pot" strategy via the polycondensation of tetramethoxysilane and vinyltrimethoxysilane and in situ copolymerization of methacrylic acid and vinyl group on the precondensed siloxanes with ammonium persulfate as the thermal initiator. Subsequently, the monolith was activated by N-(3-dimethylaminopropyl) - N'-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS), followed by the modification of branched polyethylenimine (PEI) to improve the hydrophilicity. Finally, after activated by EDC and NHS, trypsin was covalently immobilized onto the monolithic support. The performance of such a microreactor was evaluated by the in sequence digestion of bovine serum albumin (BSA) and myoglobin, followed by MALDI-TOF-MS analysis. Compared to those obtained by traditional in-solution digestion, not only higher sequence coverages for BSA (74±1.4% vs. 59.5±2.7%, n=6) and myoglobin (93±3% vs. 81±4.5%, n=6) were obtained, but also the digestion time was shortened from 24h to 2.5 min, demonstrating the high digestion efficiency of such an IMER. The carry-over of these two proteins on the IMER was investigated, and peptides from BSA could not be found in mass spectrum of myoglobin digests, attributed to the good hydrophilicity of our developed monolithic support. Moreover, the dynamic concentration range for protein digestion was proved to be four orders of magnitude, and the IMER could endure at least 7-day consecutive usage. Furthermore, such an IMER was coupled with nano-RPLC-ESI/MS/MS for the analysis of extracted proteins from Escherichia coli. Compared to formerly reported silica hybrid monolith based IMER and the traditional in-solution counterpart, by our developed IMER, although the identified protein number was similar, the identified distinct peptide number was improved by 7% and 25% respectively

  20. MicroSPE-nanoLC-ESI-MS/MS Using 10-μm-i.d. Silica-Based Monolithic Columns for Proteomics

    SciTech Connect

    Luo, Quanzhou; Page, Jason S.; Tang, Keqi; Smith, Richard D.

    2007-01-01

    Silica-based monolithic narrow bore capillary columns (25 cm x 10 µm i.d.) with an integrated nanoESI emitter has been developed to provide high quality and robust microSPE-nanoLC-ESI-MS analyses. The integrated nanoESI emitter adds no dead volume to the LC separation, allowing stable electrospray performance to be obtained at flow rates of ~10 nL/min. In an initial application we identified 5510 unique peptides covering 1443 distinct Shewanella oneidensis proteins from a 300 ng tryptic digest sample in a single 4-h LC-MS/MS analysis using a linear ion trap MS (LTQ). We found the use of an integrated monolithic ESI emitter provided enhanced resistance to clogging and good run-to-run reproducibility.

  1. Improvement of separation efficiencies of anion-exchange chromatography using monolithic silica capillary columns modified with polyacrylates and polymethacrylates containing tertiary amino or quaternary ammonium groups.

    PubMed

    Watanabe, Yuta; Ikegami, Tohru; Horie, Kanta; Hara, Takeshi; Jaafar, Jafariah; Tanaka, Nobuo

    2009-10-30

    Anion-exchange (AEX) columns were prepared by on-column polymerization of acrylates and methacrylates containing tertiary amino or quaternary ammonium groups on monolithic silica in a fused silica capillary modified with anchor groups. The columns provided a plate height (H) of less than 10 microm at optimum linear velocity (u) with keeping their high permeability (K=9-12 x 10(-14) m2). Among seven kinds of AEX columns, a monolithic silica column modified with poly(2-hydroxy-3-(4-methylpiperazin-1-yl)propyl methacrylates) (HMPMA) showed larger retentions and better selectivities for nucleotides and inorganic anions than the others. The HMPMA column of 410 mm length produced 42,000-55,000 theoretical plates (N) at a linear velocity of 0.97 mm/s with a backpressure of 3.8 MPa. The same column could be employed for a fast separation of inorganic anions in 1.8 min at a linear velocity of 5.3 mm/s with a backpressure of 20 MPa. In terms of van Deemter plot and separation impedance, the HMPMA column showed higher performance than a conventional particle-packed AEX column. The HMPMA column showed good recovery of a protein, trypsin inhibitor, and it was applied to the separation of proteins and tryptic digest of bovine serum albumin (BSA) in a gradient elution, to provide better separation compared to a conventional particle-packed AEX column. PMID:19683243

  2. Automated dual two-dimensional liquid chromatography approach for fast acquisition of three-dimensional data using combinations of zwitterionic polymethacrylate and silica-based monolithic columns.

    PubMed

    Hájek, Tomáš; Jandera, Pavel; Staňková, Magda; Česla, Petr

    2016-05-13

    A monolithic sulfobetaine polymethacrylate micro-column BIGDMA-MEDSA designed in our laboratory, shows dual retention mechanism: In acetonitrile-rich mobile phase, hydrophilic interactions control the retention (HILIC system), whereas in more aqueous mobile phases the column shows essentially reversed-phase behavior with major role of hydrophobic interactions. The zwitterionic polymethacrylate micro-column can be used in the first dimension of two-dimensional LC in alternating reversed-phase (RP) and HILIC modes, coupled with an alkyl-bonded core-shell or silica-based monolithic column in the second dimension, for HILIC×RP and RP×RP comprehensive two-dimensional separations. During the HILIC×RP period, a gradient of decreasing acetonitrile gradient is used for separation in the first dimension, so that at the end of the gradient the polymeric monolithic micro-column is equilibrated with a highly aqueous mobile phase and is ready for repeated sample injection, this time for separation under reversed-phase gradient conditions with increasing concentration of acetonitrile in the first dimension. The fast repeating reversed-phase gradients on a short silica-monolithic or core-shell column in the second dimension can be optimized independently of the actual running first-dimension gradient program. As the alternating HILIC and RP separations on the first-dimension zwitterionic methacrylate column are based on complementary retention mechanisms, the instrumental setup essentially represents two coupled two-dimensional systems. It is first time that such an automated dual LCxLC approach is reported. The novel system allows obtaining three-dimensional data in a relatively short time and can be applied not only to multidimensional gradient separations of flavones and related polyphenolic compounds. PMID:27083260

  3. One-pot preparation of a mixed-mode organic-silica hybrid monolithic capillary column and its application in determination of endogenous gibberellins in plant tissues.

    PubMed

    Zhang, Zheng; Hao, Yan-Hong; Ding, Jun; Xu, Sheng-Nan; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-10-16

    A newly improved one-pot method, based on "thiol-ene" click chemistry and sol-gel approach in microemulsion system, was developed for the preparation of C8/PO(OH)2-silica hybrid monolithic capillary column. The prepared monolith possesses large specific surface area, narrow mesopore size distribution and high column efficiency. The monolithic column was demonstrated to have cation exchange/reversed-phase (CX/RP) mixed-mode retention for analytes on nano-liquid chromatography (nano-LC). On the basis of the developed nano-LC system with MS detector coupled to pipette tip solid phase extraction (PT-SPE) and derivatization process, we then realized simultaneous determination of 10 gibberellins (GAs) with low limits of detection (LODs, 0.003-0.025 ng/mL). Furthermore, 6 endogenous GAs in only 5mg rice leaves (fresh weight) were successfully detected and quantified. The developed PT-SPE-nano-LC-MS strategy may offer promising applications in the determination of low abundant bioactive molecules from complex matrix. PMID:26365908

  4. Effect of the presence of an ordered micro-pillar array on the formation of silica monoliths.

    PubMed

    Detobel, Frederik; Eghbali, Hamed; De Bruyne, Selm; Terryn, Herman; Gardeniers, Han; Desmet, Gert

    2009-10-30

    We report on the synthesis of siloxane-based monoliths in the presence of a two-dimensional, perfectly ordered array of micro-pillars. Both methyltrimethoxysilane- and tetramethoxysilane-based monoliths were considered. The obtained structures were analyzed using scanning-electron microscopy and can be explained from the general theory of surface-directed phase separation in confined spaces. The formed structures are to a large extent nearly exclusively determined by the ratio between the bulk domain size of the monolith on the one hand and the distance between the micro-pillars on the other hand. When this ratio is small, the presence of the pillars has nearly no effect on the morphology of the produced monoliths. However, when the ratio approaches unity and ascends above it, some new types of monolith morphologies are induced, two of which appear to have interesting properties for use as novel chromatographic supports. One of these structures (obtained when the domain size/inter-pillar distance ratio is around unity) is a 3D network of linear interconnections between the pillars, organized such that all skeleton branches are oriented perpendicular to the micro-pillar surface. A second interesting structure is obtained at even higher values of the domain size/inter-pillar distance ratio. In this case, each individual micro-pillar is uniformly coated with a mesoporous shell. PMID:19321168

  5. Regeneration of a silica monolithic rod column using harsh methods followed by firm thermodynamic and kinetic validation.

    PubMed

    Samuelsson, Jörgen; Cavazzini, Alberto; Shalliker, Ross Andrew; Fornstedt, Torgny

    2014-04-01

    In this study, a numerical tool is introduced--based on thermodynamic and kinetic separation theory--for validating the regeneration of monolithic rod columns after cutting their inlet sections. A long-used RP-18e monolithic column was deemed to be unfit for further coffee analysis because of poor separation performance. The columns brownish inlet section was physically removed with a lathe, leaving a clean white inlet section. The original and regenerated columns were extensively analyzed and compared using numerical tools for processing adsorption data. The perturbation peak method was used to measure the adsorption isotherm of phenol on the original and regenerated monolith and the adsorption energy distributions were calculated for identifying any change in the degree of heterogeneity. Although peak shapes improved considerably after regeneration, no significant differences were found in the detailed characterization of the processed adsorption data between the original column and the regenerated one. This indicates that the removal of a section of the monolithic bed can be undertaken without damaging the column and columns in which their inlet head sections are contaminated may still function with normal adsorption behavior. In addition, the combined thermodynamic and kinetic methodology could accurately be used to evaluate any regeneration method of columns. PMID:24532492

  6. Comprehensive profiling of ribonucleosides modification by affinity zirconium oxide-silica composite monolithic column online solid-phase microextraction - Mass spectrometry analysis.

    PubMed

    Jiang, Han-Peng; Chu, Jie-Mei; Lan, Meng-Dan; Liu, Ping; Yang, Na; Zheng, Fang; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-09-01

    More than 140 modified ribonucleosides have been identified in RNA. Determination of endogenous modified ribonucleosides in biological fluids may serve as non-invasive disease diagnostic strategy. However, detection of the modified ribonucleosides in biological fluids is challenging, especially for the low abundant modified ribonucleosides due to the serious matrix interferences of biological fluids. Here, we developed a facile preparation strategy and successfully synthesized zirconium oxide-silica (ZrO2/SiO2) composite capillary monolithic column that exhibited excellent performance for the selective enrichment of cis-diol-containing compounds. Compared with the boronate-based affinity monolith, the ZrO2/SiO2 monolith showed ∼2 orders of magnitude higher extraction capacity and can be used under physiological pH (pH 6.5-7.5). Using the prepared ZrO2/SiO2 composite monolith as the trapping column and reversed-phase C18 column as the analytical column, we further established an online solid-phase microextraction (SPME) in combination with liquid chromatography-mass spectrometry (online SPME-LC-MS/MS) analysis for the comprehensive profiling of ribonucleosides modification in human urine. Our results showed that 68 cis-diol-containing ribosylated compounds were identified in human urine, which is, to the best of our knowledge, the highest numbers of cis-diol-containing compounds were determined in a single analysis. It is worth noting that four modified ribonucleosides were discovered in the human urine for the first time. In addition, the quantification results from the pooled urine samples showed that compared to healthy controls, the contents of sixteen ribose conjugates in the urine of gastric cancer, eleven in esophagus cancer and seven in lymphoma increased more than two folds. Among these ribose conjugates, four ribose conjugates increased more than two folds in both gastric cancer and esophagus cancer; three ribose conjugates increased more than two

  7. Very high Q measurements on a fused silica monolithic pendulum for use in enhanced gravity wave detectors

    PubMed

    Cagnoli; Gammaitoni; Hough; Kovalik; McIntosh; Punturo; Rowan

    2000-09-18

    We present for the first time the results of very high Q factor measurements for a 2.8 kg fused silica mass suspended by two fused quartz fibers attached by a novel technique for joining fused silica or quartz. The Q for the pendulum mode at 0.93 Hz was (2.3+/-0. 2)x10(7), the highest value demonstrated to date for a mass of this size. By employing such a new suspension system the sensitivity of the gravitational wave detectors currently under construction can be increased up to 1 order of magnitude. PMID:10978077

  8. Direct-writing of PbS nanoparticles inside transparent porous silica monoliths using pulsed femtosecond laser irradiation

    PubMed Central

    2011-01-01

    Pulsed femtosecond laser irradiation at low repetition rate, without any annealing, has been used to localize the growth of PbS nanoparticles, for the first time, inside a transparent porous silica matrix prepared by a sol-gel route. Before the irradiation, the porous silica host has been soaked within a solution containing PbS precursors. The effect of the incident laser power on the particle size was studied. X-ray diffraction was used to identify the PbS crystallites inside the irradiated areas and to estimate the average particle size. The localized laser irradiation led to PbS crystallite size ranging between 4 and 8 nm, depending on the incident femtosecond laser power. The optical properties of the obtained PbS-silica nanocomposites have been investigated using absorption and photoluminescence spectroscopies. Finally, the stability of PbS nanoparticles embedded inside the host matrices has been followed as a function of time, and it has been shown that this stability depends on the nanoparticle mean size. PMID:21970510

  9. Improved separation and quantification of neutral and polar lipid classes by HPLC-ELSD using a monolithic silica phase: application to exceptional marine lipids.

    PubMed

    Graeve, Martin; Janssen, Dieter

    2009-07-01

    An improved HPLC method is presented, which allows separation and quantification of a broad range of lipid classes of marine zooplankton with special regard to neutral lipids. Marine zooplankton species often produce high amounts of exceptional lipids, especially at high latitudes, in order to cope with the harsh environmental conditions and strong seasonality in food supply. Major neutral lipid classes are wax esters, triacylglycerols, diacylglycerol ethers, free fatty alcohols and sterols. Neutral and polar lipids were separated and identified on a monolithic silica column (Chromolith Performance-Si) using high performance liquid chromatography (HPLC) with an evaporative light scattering detector (ELSD). The method resolves a broad spectrum of lipids, varying in polarity from squalene to lysophosphatidylcholine in a single run. The total run time was 35 min including column re-equilibration. The calibration was made at levels of 0.1-60 microg lipid/injection, but a 10-15-fold greater amount can be injected if single lipid classes need to be separated, e.g. for further determination of individual fatty acids. The method was applied to representative Arctic zooplankton species (copepods, pteropods, euphausiids and ctenophores) that are known to biosynthesize in particular neutral lipids like diacylglycerol ethers and free fatty alcohols. PMID:19493709

  10. Orientational order in liquids upon condensation in nanochannels: An optical birefringence study on rodlike and disclike molecules in monolithic mesoporous silica

    NASA Astrophysics Data System (ADS)

    Wolff, Matthias; Knorr, Klaus; Huber, Patrick; Kityk, Andriy V.

    2010-12-01

    We present high-resolution optical birefringence measurements upon sequential filling of an array of parallel-aligned nanochannels (14 nm mean diameter) with rodlike (acetonitrile) and disclike (hexafluorobenzene) molecules. We will demonstrate that such birefringence isotherms, when performed simultaneously with optically isotropic and index-matched counterparts (neopentane and hexafluoromethane), allow one to characterize the orientational state of the confined liquids with a high accuracy as a function of pore filling. The pore condensates are almost bulklike, optically isotropic liquids. For both anisotropic species we find, however, a weak orientational order (of a few percent at maximum) upon film condensation in the monolithic mesoporous membrane. It occurs upon formation of the second and third adsorbed layer, only, and vanishes gradually upon onset of capillary condensation. Presumably, it originates in the breaking of the full rotational symmetry of the interaction potential at the cylindrical, free liquid-vapor interface in the film-condensed state rather than at the silica-liquid interface. This conclusion is corroborated by comparisons of our experimental results with molecular-dynamics simulations reported in the literature.

  11. More sensitive and quantitative proteomic measurements using very low flow rate porous silica monolithic LC columns with electrospray ionization-mass spectrometry

    SciTech Connect

    Luo, Quanzhou; Tang, Keqi; Yang, Feng; Elias, Ayesha; Shen, Yufeng; Moore, Ronald J.; Zhao, Rui; Hixson, Kim K.; Rossie, Sandra S.; Smith, Richard D.

    2006-05-01

    The sensitivity of proteomics measurements using liquid chromatography (LC) separations interfaced with electrospray ionization-mass spectrometry (ESI-MS) improves approximately inversely with liquid flow rate, making attractive the use of smaller inner diameter LC columns. We report the development and initial application of 10 µm i.d. silica-based monolithic LC columns providing more sensitive proteomics measurements. The implementation provides robust performance and suitability for automated proteome analyses due to integration with a micro solid phase extraction pre-column for ease of sample injection and clean-up prior to the reversed phased LC separation. Greater than 10-fold improvement in sensitivity was obtained compared to analyses using more conventional capillary LC, enabling e.g. the identification of >5000 different peptides by MS/MS from 100-ng of a Shewanella oneidensis tryptic digest using an ion trap MS. The low nL/min LC flow rates provide more uniform signal intensities for different peptides, and provided improved quantitative measurements compared to conventional separation systems without the use of internal standards or isotopic labeling. The improved sensitivity allowed LC-MS measurements of immunopurified protein phosphatase 5 that were in good agreement with quantitative western blot analyses.

  12. High performance liquid chromatographic determination of aflatoxins in chilli, peanut and rice using silica based monolithic column.

    PubMed

    Khayoon, Wejdan Shakir; Saad, Bahruddin; Lee, Tien Ping; Salleh, Baharuddin

    2012-07-15

    A simple and rapid high performance liquid chromatographic with fluorescence detection method for the determination of the aflatoxin B1, B2, G1 and G2 in peanuts, rice and chilli was developed. The sample was extracted using acetonitrile:water (90:10, v/v%) and then purified by using ISOLUTE® multimode solid phase extraction. After the pre-column derivatisation, the analytes were separated within 3.7 min using Chromolith® performance RP-18e (100-4.6mm) monolithic column. To assess the possible effects of endogenous components in the food items, matrix-matched calibration was used for the quantification and validation. The recoveries of aflatoxins that were spiked into food samples were 86.38-104.5% and RSDs were <4.4%. The method was applied to the determination of aflatoxins in peanut (9), rice (5) and chilli (10) samples. Liquid chromatography-tandem mass spectrometry analysis using triple quadruple analyser and operated in the multiple reaction monitoring modes on the contaminated samples was performed for confirmation. PMID:25683424

  13. Rapid tea catechins and caffeine determination by HPLC using microwave-assisted extraction and silica monolithic column.

    PubMed

    Rahim, A A; Nofrizal, S; Saad, Bahruddin

    2014-03-15

    A rapid reversed-phase high performance liquid chromatographic method using a monolithic column for the determination of eight catechin monomers and caffeine was developed. Using a mobile phase of water:acetonitrile:methanol (83:6:11) at a flow rate of 1.4 mL min(-1), the catechins and caffeine were isocratically separated in about 7 min. The limits of detection and quantification were in the range of 0.11-0.29 and 0.33-0.87 mg L(-1), respectively. Satisfactory recoveries were obtained (94.2-105.2 ± 1.8%) for all samples when spiked at three concentrations (5, 40 and 70 mg L(-1)). In combination with microwave-assisted extraction (MAE), the method was applied to the determination of the catechins and caffeine in eleven tea samples (6 green, 3 black and 2 oolong teas). Relatively high levels of caffeine were found in black tea, but higher levels of the catechins, especially epigallocatechin gallate (EGCG) were found in green teas. PMID:24206716

  14. Profiling of cis-diol-containing nucleosides and ribosylated metabolites by boronate-affinity organic-silica hybrid monolithic capillary liquid chromatography/mass spectrometry.

    PubMed

    Jiang, Han-Peng; Qi, Chu-Bo; Chu, Jie-Mei; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-01-01

    RNA contains a large number of modified nucleosides. In the metabolic re-exchange of RNA, modified nucleosides cannot be recycled and are thus excreted from cells into biological fluids. Determination of endogenous modified nucleosides in biological fluids may serve as non-invasive cancers diagnostic methods. Here we prepared boronate-affinity organic-silica hybrid capillary monolithic column (BOHCMC) that exhibited excellent selectivity toward the cis-diol-containing compounds. We then used the prepared BOHCMC as the on-line solid-phase microextraction (SPME) column and developed an on-line SPME-LC-MS/MS method to comprehensively profile cis-diol-containing nucleosides and ribosylated metabolites in human urine. Forty-five cis-diol-containing nucleosides and ribosylated metabolites were successfully identified in human urine. And five ribose conjugates, for the first time, were identified existence in human urine in the current study. Furthermore, the relative quantification suggested 4 cis-diol-containing compounds (5'-deoxy-5'-methylthioadensine, N(4)-acetylcytidine, 1-ribosyl-N-propionylhistamine and N(2),N(2),7-trimethylguanosine) increased more than 1.5 folds in all the 3 types of examined cancers (lung cancer, colorectal cancer, and nasopharyngeal cancer) compared to healthy controls. The on-line SPME-LC-MS/MS method demonstrates a promising method for the comprehensive profiling of cis-diol-containing ribose conjugates in human urines, which provides an efficient strategy for the identification and discovery of biomarkers and may be used for the screening of cancers. PMID:25585609

  15. Profiling of cis-Diol-containing Nucleosides and Ribosylated Metabolites by Boronate-affinity Organic-silica Hybrid Monolithic Capillary Liquid Chromatography/Mass Spectrometry

    PubMed Central

    Jiang, Han-Peng; Qi, Chu-Bo; Chu, Jie-Mei; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-01-01

    RNA contains a large number of modified nucleosides. In the metabolic re-exchange of RNA, modified nucleosides cannot be recycled and are thus excreted from cells into biological fluids. Determination of endogenous modified nucleosides in biological fluids may serve as non-invasive cancers diagnostic methods. Here we prepared boronate-affinity organic-silica hybrid capillary monolithic column (BOHCMC) that exhibited excellent selectivity toward the cis-diol-containing compounds. We then used the prepared BOHCMC as the on-line solid-phase microextraction (SPME) column and developed an on-line SPME-LC-MS/MS method to comprehensively profile cis-diol-containing nucleosides and ribosylated metabolites in human urine. Forty-five cis-diol-containing nucleosides and ribosylated metabolites were successfully identified in human urine. And five ribose conjugates, for the first time, were identified existence in human urine in the current study. Furthermore, the relative quantification suggested 4 cis-diol-containing compounds (5′-deoxy-5′-methylthioadensine, N4-acetylcytidine, 1-ribosyl-N-propionylhistamine and N2,N2,7-trimethylguanosine) increased more than 1.5 folds in all the 3 types of examined cancers (lung cancer, colorectal cancer, and nasopharyngeal cancer) compared to healthy controls. The on-line SPME-LC-MS/MS method demonstrates a promising method for the comprehensive profiling of cis-diol-containing ribose conjugates in human urines, which provides an efficient strategy for the identification and discovery of biomarkers and may be used for the screening of cancers. PMID:25585609

  16. Separation of enantiomers on chiral stationary phase based on chicken α₁-acid glycoprotein: effect of silica particle diameters on column performance.

    PubMed

    Matsunaga, Hisami; Haginaka, Jun

    2014-10-10

    The effects of silica particle diameters on performances of chicken α₁-acid glycoprotein (c-AGP)-immobilized silica particle columns were investigated. c-AGP was immobilized onto aminopropyl silica particles, whose nominal particle diameters were 5, 3 and 2.1 μm, activated with N,N'-disuccinimidyl carbonate. The retention factor (k), enantioseparation factor (α), resolution (Rs) and height equivalent to a theoretical plate (H) of solutes on three c-AGP columns were evaluated using a mixture of phosphate buffer and organic modifier as a mobile phase in LC. There were not so much differences in their k and α values among three c-AGP columns, while their Rs values were in the order of 2.1 μm>3 μm>5 μm silica particles and their H values were in the reversed order. Since three c-AGP columns gave almost the same enantioseparation factors for solutes, their highest Rs and lowest H values on a c-AGP-immobilized column prepared with 2.1-μm silica particles came from its highest column efficiency among there c-AGP columns. These results suggest that 2.1-μm silica particles could be useful for the preparation of c-AGP- or protein-based CSPs. PMID:25042436

  17. Novel bimodal porous N-(2-aminoethyl)-3-aminopropyltrimethoxysilane-silica monolithic capillary microextraction and its application to the fractionation of aluminum in rainwater and fruit juice by electrothermal vaporization inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Zheng, Fei; Hu, Bin

    2008-01-01

    A novel bimodal porous N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AAPTS)-silica monolithic capillary was prepared by sol-gel technology, and used as capillary microextraction (CME) column for aluminum fractionation by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV)-ICP-MS with the use of polytetrafluoroethylene (PTFE) slurry as fluorinating agent. The extraction behaviors of different Al species were studied and it was found that in the pH range of 4-7, labile monomeric Al (free Al 3+, Al-OH and Al-F) could be retained quantitatively on the monolithic capillary, while non-labile monomeric Al (Al-Cit and Al-EDTA) passed through the capillary directly. The labile monomeric Al retained on monolithic capillary was eluted with 10 μL 1 mol L - 1 HCl and the elution was introduced into the ETV for fluorination assisted ETV-ICP-MS determination. The total monomeric Al fraction was also determined by AAPTS-silica monolithic CME-fluorination-assisted electrothermal vaporization (FETV)-ICP-MS after the sample solution was adjusted to pH 8.8. Non-labile monomeric Al was obtained by subtracting labile monomeric Al from the total monomeric Al. Under the optimized conditions, the relative standard deviation (R.S.D) was 6.2% ( C = 1 μg L - 1 , n = 7; sample volume, 5 mL), and the limit of detection was 1.6 ng L - 1 for Al with an enrichment factor of 436 fold and a sampling frequency of 9 h - 1 . The prepared AAPTS-silica monolithic capillary showed an excellent pH tolerance and solvent stability and could be used for more than 250 times without decreasing adsorption efficiency. The developed method was applied to the fraction of Al in rainwater and fruit juice, and the results demonstrated that the established system had advantages over the existing 8-hydroxyquinoline (8-HQ) chelating system for Al fractionation such as wider pH range, higher tolerance of interference and better regeneration.

  18. AtAGP18 is localized at the plasma membrane and functions in plant growth and development.

    PubMed

    Zhang, Yizhu; Yang, Jie; Showalter, Allan M

    2011-04-01

    Arabinogalactan-proteins (AGPs) are a family of highly glycosylated hydroxyproline-rich glycoproteins (HRGPs). AtAGP17, 18 and 19 comprise the lysine-rich classical AGP subfamily in Arabidopsis. Overexpression of GFP-AtAGP17/18/19 fusion proteins in Arabidopsis revealed localization of the fusion proteins on the plant cell surface of different organs. Subcellular localization of the fusion proteins at the plasma membrane was further determined by plasmolysis of leaf trichome cells. To elucidate AtAGP17/18/19 function(s), these AGPs were expressed without the green fluorescent protein (GFP) tag under the control of 35S cauliflower mosaic virus promoter. In contrast to AtAGP17/AtAGP19 overexpressors which showed phenotypes identical to wild-type plants, AtAGP18 overexpressors displayed several phenotypes distinct from wild-type plants. Specifically, these overexpressors had smaller rosettes and shorter stems and roots, produced more branches and had less viable seeds. Moreover, these AtAGP18 overexpressors exhibited similar phenotypes to tomato LeAGP-1 overexpressors, suggesting these two AGP genes may have similar function(s) in Arabidopsis and tomato. PMID:21165646

  19. Discovery of Inhibitors for the Ether Lipid-Generating Enzyme AGPS as Anti-Cancer Agents

    PubMed Central

    Piano, Valentina; Benjamin, Daniel I; Valente, Sergio; Nenci, Simone; Mai, Antonello; Aliverti, Alessandro; Nomura, Daniel K; Mattevi, Andrea

    2015-01-01

    Dysregulated ether lipid metabolism is an important hallmark of cancer cells. Previous studies have reported that lowering ether lipid levels by genetic ablation of the ether lipid-generating enzyme alkyl-glycerone phosphate synthase (AGPS) lowers key structural and oncogenic ether lipid levels and alters fatty acid, glycerophospholipid, and eicosanoid metabolism to impair cancer pathogenicity, indicating that AGPS may be a potential therapeutic target for cancer. In this study, we have performed a small-molecule screen to identify candidate AGPS inhibitors. We have identified several lead AGPS inhibitors and have structurally characterized their interactions with the enzyme and show that these inhibitors bind to distinct portions of the active site. We further show that the lead AGPS inhibitor 1a selectively lowers ether lipid levels in several types of human cancer cells and impairs their cellular survival and migration. We provide here the first report of in situ-effective pharmacological tools for inhibiting AGPS, which may provide chemical scaffolds for future AGPS inhibitor development for cancer therapy. PMID:26322624

  20. Immunolocalization of arabinogalactan proteins (AGPs) in reproductive structures of an early-divergent angiosperm, Trithuria (Hydatellaceae)

    PubMed Central

    Costa, Mário; Pereira, Ana Marta; Rudall, Paula J.; Coimbra, Sílvia

    2013-01-01

    Background and Aims Trithuria is the sole genus of Hydatellaceae, a family of the early-divergent angiosperm lineage Nymphaeales (water-lilies). In this study different arabinogalactan protein (AGP) epitopes in T. submersa were evaluated in order to understand the diversity of these proteins and their functions in flowering plants. Methods Immunolabelling of different AGPs and pectin epitopes in reproductive structures of T. submersa at the stage of early seed development was achieved by immunofluorescence of specific antibodies. Key Results AGPs in Trithuria pistil tissues could be important as structural proteins and also as possible signalling molecules. Intense labelling was obtained with anti-AGP antibodies both in the anthers and in the intine wall, the latter associated with pollen tube emergence. Conclusions AGPs could play a significant role in Trithuria reproduction, due to their specific presence in the pollen tube pathway. The results agree with labellings obtained for Arabidopsis and confirms the importance of AGPs in angiosperm reproductive structures as essential structural components and probably important signalling molecules. PMID:23186834

  1. Monolithic Domes.

    ERIC Educational Resources Information Center

    Lanham, Carol

    2002-01-01

    Describes how the energy savings, low cost, and near-absolute protection from tornadoes provided by monolithic domes is starting to appeal to school districts for athletic and other facilities, including the Italy (Texas) Independent School District. Provides an overview of monolithic dome construction. (EV)

  2. New monolithic chromatographic supports for macromolecules immobilization: challenges and opportunities.

    PubMed

    Calleri, E; Ambrosini, S; Temporini, C; Massolini, G

    2012-10-01

    This mini-review reports on some recent advances in the field of immobilized protein employing both silica and polymer-based monoliths as supports, and their application in affinity chromatography and immobilized enzyme reactors (IMERs) developments. The major emphasis is put on some interesting challenges and opportunities related to the development of new monolithic affinity supports based on biofriendly sol-gel inorganic monoliths with entrapped proteins and on organic monolithic supports with improved hydrophilicity for IMERs development in proteomic studies. The ease of preparation of monoliths and the multitude of functionalization techniques, make monoliths interesting for an increasing number of biochemical and medical applications. PMID:22386208

  3. CsAGP1, a Gibberellin-Responsive Gene from Cucumber Hypocotyls, Encodes a Classical Arabinogalactan Protein and Is Involved in Stem Elongation

    PubMed Central

    Park, Me Hea; Suzuki, Yoshihito; Chono, Makiko; Knox, J. Paul; Yamaguchi, Isomaro

    2003-01-01

    Fluorescence differential display was used to isolate the gibberellin (GA)-responsive gene, CsAGP1, from cucumber (Cucumis sativus) hypocotyls. A sequence analysis of CsAGP1 indicated that the gene putatively encodes a “classical” arabinogalactan protein (AGP) in cucumber. Transgenic tobacco (Nicotiana tabacum) plants overexpressing CsAGP1 under the control of the cauliflower mosaic virus 35S promoter produced a Y(βGlc)3-reactive proteoglycan in addition to AGPs present in wild-type tobacco plants. Immuno-dot blotting of the product, using anti-AGP antibodies, showed that the CsAGP1 protein had the AGP epitopes common to AGP families. The transcription level of CsAGP1 in cucumber hypocotyls increased in response not only to GA but also to indole-3-acetic acid. Although CsAGP1 is expressed in most vegetative tissues of cucumber, including the shoot apices and roots, the GA treatment resulted in an increase in the mRNA level of CsAGP1 only in the upper part of the hypocotyls. Y(βGlc)3, which selectively binds AGPs, inhibited the hormone-promoted elongation of cucumber seedling hypocotyls. Transgenic plants ectopically expressing CsAGP1 showed a taller stature and earlier flowering than the wild-type plants. These observations suggest that CsAGP1 is involved in stem elongation. PMID:12644694

  4. Monolithic spectrometer

    DOEpatents

    Rajic, S.; Egert, C.M.; Kahl, W.K.; Snyder, W.B. Jr.; Evans, B.M. III; Marlar, T.A.; Cunningham, J.P.

    1998-05-19

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays. 6 figs.

  5. Monolithic spectrometer

    DOEpatents

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  6. Changes in photosynthesis and pigmentation in an agp deletion mutant of the cyanobacterium Synechocystis sp.

    PubMed

    Miao, Xiaoling; Wu, Qingyu; Wu, Guifang; Zhao, Nanming

    2003-03-01

    The agp gene encoding ADP-glucose pyrophosphorylase is involved in cyanobacterial glycogen synthesis. By in vitro DNA recombination technology, agp deletion mutant (agp-) of cyanobacterium Synechocystis sp. PCC 6803 was constructed. This mutation led to a complete absence of glycogen biosynthesis. As compared with WT (wild type), a 60% decrease in ratio of the c-phycocyanine/chlorophyll a and no significant change in the carotenoid/chlorophyll a were observed in agp- cells. The agp- mutant had 38% less photosynthetic capacity when grown in light over 600 micromol m(-2) s(-1). Under lower light intensity, the final biomass of the mutant strain was only 1.1 times of that of the WT strain under mixotrophic condition after 6 d culture. Under higher light intensity, however, the final biomass of the WT strain under mixotrophic conditions was 3 times that of the mutant strain after 6 d culture and 1.5 times under photoautotrophic conditions. The results indicate that there is a minimum requirement for glycogen synthesis for normal growth and development in cyanobacteria. PMID:12882559

  7. The Classical Arabinogalactan Protein AGP18 Mediates Megaspore Selection in Arabidopsis[W][OA

    PubMed Central

    Demesa-Arévalo, Edgar; Vielle-Calzada, Jean-Philippe

    2013-01-01

    Female gametogenesis in most flowering plants depends on the predetermined selection of a single meiotically derived cell, as the three other megaspores die without further division or differentiation. Although in Arabidopsis thaliana the formation of the functional megaspore (FM) is crucial for the establishment of the gametophytic generation, the mechanisms that determine the specification and fate of haploid cells remain unknown. Here, we show that the classical arabinogalactan protein 18 (AGP18) exerts an active regulation over the selection and survival of megaspores in Arabidopsis. During meiosis, AGP18 is expressed in integumentary cells located in the abaxial region of the ovule. Overexpression of AGP18 results in the abnormal maintenance of surviving megaspores that can acquire a FM identity but is not sufficient to induce FM differentiation before meiosis, indicating that AGP18 positively promotes the selection of viable megaspores. We also show that all four meiotically derived cells in the ovule of Arabidopsis are competent to differentiate into a gametic precursor and that the function of AGP18 is important for their selection and viability. Our results suggest an evolutionary role for arabinogalactan proteins in the acquisition of monospory and the developmental plasticity that is intrinsic to sexual reproduction in flowering plants. PMID:23572547

  8. The classical arabinogalactan protein AGP18 mediates megaspore selection in Arabidopsis.

    PubMed

    Demesa-Arévalo, Edgar; Vielle-Calzada, Jean-Philippe

    2013-04-01

    Female gametogenesis in most flowering plants depends on the predetermined selection of a single meiotically derived cell, as the three other megaspores die without further division or differentiation. Although in Arabidopsis thaliana the formation of the functional megaspore (FM) is crucial for the establishment of the gametophytic generation, the mechanisms that determine the specification and fate of haploid cells remain unknown. Here, we show that the classical arabinogalactan protein 18 (AGP18) exerts an active regulation over the selection and survival of megaspores in Arabidopsis. During meiosis, AGP18 is expressed in integumentary cells located in the abaxial region of the ovule. Overexpression of AGP18 results in the abnormal maintenance of surviving megaspores that can acquire a FM identity but is not sufficient to induce FM differentiation before meiosis, indicating that AGP18 positively promotes the selection of viable megaspores. We also show that all four meiotically derived cells in the ovule of Arabidopsis are competent to differentiate into a gametic precursor and that the function of AGP18 is important for their selection and viability. Our results suggest an evolutionary role for arabinogalactan proteins in the acquisition of monospory and the developmental plasticity that is intrinsic to sexual reproduction in flowering plants. PMID:23572547

  9. Identification of alpha-1 acid glycoprotein (AGP) as a potential marker of impaired growth in the newborn piglet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two studies were conducted to investigate the relationship between the circulating levels of the acute phase proteins haptoglobin (HP) and alpha 1 acid glycoprotein (AGP) and growth potential in neonatal pigs. In runts, the circulating level of AGP, but not HP in serum of newborn piglets was higher...

  10. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    DOEpatents

    Wang, Daojing; Yang, Peidong; Kim, Woong; Fan, Rong

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  11. Counterflow isotachophoresis in a monolithic column.

    PubMed

    Liu, Bingwen; Cong, Yongzheng; Ivory, Cornelius F

    2014-09-01

    This study describes stationary counterflow isotachophoresis (ITP) in a poly(acrylamide-co-N,N'-methylenebisacrylamide) monolithic column as a means for improving ITP processing capacity and reducing dispersion. The flow profile in the monolith was predicted using COMSOL's Brinkman Equation application mode, which revealed that the flow profile was mainly determined by monolith permeability. As monolith permeability decreases, the flow profile changes from a parabolic shape to a plug shape. An experimental monolithic column was prepared in a fused-silica capillary using an ultraviolet-initiated polymerization method. A monolithic column made from 8% (wt.) monomer was chosen for the stationary counterflow ITP experiments. Counterflow ITP in the monolithic column showed undistorted analyte zones with significantly reduced dispersion compared to the severe dispersion observed in an open capillary. Particularly, for r-phycoerythrin focused by counterflow ITP, its zone width in the monolithic column was only one-third that observed in an open capillary. These experiments demonstrate that stationary counterflow ITP in monoliths can be a robust and practical electrofocusing method. PMID:24935025

  12. Highly stable, monolithic, single-mode mid-infrared supercontinuum source based on low-loss fusion spliced silica and fluoride fibers.

    PubMed

    Yin, Ke; Zhang, Bin; Yao, Jinmei; Yang, Linyong; Chen, Shengping; Hou, Jing

    2016-03-01

    A 0.8 to 4.5 μm highly stable all-fiber spliced mid-infrared supercontinuum (SC) source was presented. The joint between the single-mode (SM) pump silica fiber and the ZBLAN fiber (ZrF4 - BaF2 - LaF3 - AlF3 - NaF, a type of fluoride fiber) was fusion spliced, which greatly improved the SC's stability. The low-loss splicing was guaranteed by the similar mode field areas of the fundamental mode LP(01) of the silica and ZBLAN fibers. At the splicing joint the ZBLAN fiber enveloped the silica fiber, thus increasing the robustness of the splice. A low splicing loss of less than 0.1 dB was calculated, which ensured that the whole SC source was very reliable. The SC had a maximal average power of 550.8 mW with a 1.5 dB spectral bandwidth ranging from 2642 to 4065 nm. In particular, the SC power for λ>3.8  μm was measured to be 116.1 mW with a power ratio of ∼21.1% of the total SC power. Perfect Gaussian beam profiles of the SC source demonstrated its SM operation. Over 12 h of continuous operation of this SC source showed its outstanding power stability with a root mean square variation of 0.59%, which also demonstrated the high quality of the fusion spliced joint. PMID:26974087

  13. Solgel-derived photosensitive germanosilicate glass monoliths.

    PubMed

    Heaney, A D; Erdogan, T

    2000-12-15

    We demonstrate volume gratings written in solgel-derived, Ge-doped silica monoliths. Glass was fabricated both with and without germanium oxygen deficient center (GODC) defects. The UV absorption and UV-induced index changes of these glasses, with and without hydrogen loading, are reported. The presence of GODC defects greatly enhances the photosensitivity of Ge-doped silica with and without the presence of hydrogen. PMID:18066337

  14. Strong Acid-Nonionic Surfactant Lyotropic Liquid-Crystalline Mesophases as Media for the Synthesis of Carbon Quantum Dots and Highly Proton Conducting Mesostructured Silica Thin Films and Monoliths.

    PubMed

    Olutaş, Elif B; Balcı, Fadime M; Dag, Ömer

    2015-09-22

    Lyotropic liquid-crystalline (LLC) materials are important in designing porous materials, and acids are as important in chemical synthesis. Combining these two important concepts will be highly beneficial to chemistry and material science. In this work, we show that a strong acid can be used as a solvent for the assembly of nonionic surfactants into various mesophases. Sulfuric acid (SA), 10-lauryl ether (C12E10), and a small amount of water form bicontinuous cubic (V1), 2D-hexagonal (H1), and micelle cubic (I1) mesophases with increasing SA/C12E10 mole ratio. A mixture of SA and C12E10 is fluidic but transforms to a highly ordered LLC mesophase by absorbing ambient water. The LLC mesophase displays high proton conductivity (1.5 to 19.0 mS/cm at room temperature) that increases with an increasing SA content up to 11 SA/C12E10 mole ratio, where the absorbed water is constant with respect to the SA amount but gradually increases from a 2.3 to 4.3 H2O/C12E10 mole ratio with increasing SA/C12E10 from 2 to 11, respectively. The mixture of SA and C12E10 slowly undergoes carbonization to produce carbon quantum dots (c-dots). The carbonization process can be controlled by simply controlling the water content of the media, and it can be almost halted by leaving the samples under ambient conditions, where the mixture slowly absorbs water to form photoluminescent c-dot-embedded mesophases. Over time the c-dots grow in size and increase in number, and the photoluminescence frequency gradually shifts to a lower frequency. The SA/C12E10 mesophase can also be used as a template to produce highly proton conducting mesostructured silica films and monoliths, as high as 19.3 mS/cm under ambient conditions. Aging the silica samples enhances the conductivity that can be even larger than for the LLC mesophase with the same amount of SA. The presence of silica has a positive effect on the proton conductivity of SA/C12E10 systems. PMID:26332603

  15. Monolithic ceramics

    NASA Technical Reports Server (NTRS)

    Herbell, Thomas P.; Sanders, William A.

    1992-01-01

    A development history and current development status evaluation are presented for SiC and Si3N4 monolithic ceramics. In the absence of widely sought improvements in these materials' toughness, and associated reliability in structural applications, uses will remain restricted to components in noncritical, nonman-rated aerospace applications such as cruise missile and drone gas turbine engine components. In such high temperature engine-section components, projected costs lie below those associated with superalloy-based short-life/expendable engines. Advancements are required in processing technology for the sake of fewer and smaller microstructural flaws.

  16. Increased thermal conductivity monolithic zeolite structures

    DOEpatents

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  17. Method for making monolithic metal oxide aerogels

    DOEpatents

    Droege, M.W.; Coronado, P.R.; Hair, L.M.

    1995-03-07

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels. 6 figs.

  18. Method for making monolithic metal oxide aerogels

    DOEpatents

    Droege, Michael W.; Coronado, Paul R.; Hair, Lucy M.

    1995-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels.

  19. Process for Preparing Epoxy-Reinforced Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B (Inventor)

    2016-01-01

    One-pot reaction process for preparing epoxy-reinforced monolithic silica aerogels comprising the reaction of at least one silicon compound selected from the group consisting of alkoxysilanes, orthosilicates and combination thereof in any ratio with effective amounts of an epoxy monomer and an aminoalkoxy silane to obtain an epoxy monomer-silica sol in solution, subsequently preparing an epoxy-monomer silica gel from said silica sol solution followed by initiating polymerization of the epoxy monomer to obtain the epoxy-reinforced monolithic silica aerogel.

  20. Process for preparing polymer reinforced silica aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Capadona, Lynn A. (Inventor)

    2011-01-01

    Process for preparing polymer-reinforced silica aerogels which comprises a one-pot reaction of at least one alkoxy silane in the presence of effective amounts of a polymer precursor to obtain a silica reaction product, the reaction product is gelled and subsequently subjected to conditions that promotes polymerization of the precursor and then supercritically dried to obtain the polymer-reinforced monolithic silica aerogels.

  1. The effect of the nature of the stationary phase on the gas chromatographic retention of sorbates in monolithic columns

    NASA Astrophysics Data System (ADS)

    Shiryaeva, V. E.; Korolev, A. A.; Popova, T. P.; Kurganov, A. A.

    2009-07-01

    Retention factors were measured on silica gel, ethylene glycol dimethacrylate, and divinylbenzene monolithic columns for five groups of sorbates with different polarities. The retention factors of sorbates did not correlate directly with the polarity of the stationary phase probably because of differences in inner surface areas of sorbates accessible to sorbates. For the ethylene glycol dimethacrylate and divinylbenzene monoliths, the “methylene” selectivity was approximately the same and appreciably higher than for the silica gel monolith when helium was used as a carrier gas and approximately the same for monoliths of all types when the carrier gas was CO2.

  2. A sepal-expressed ADP-glucose pyrophosphorylase gene (NtAGP) is required for petal expansion growth in 'Xanthi' tobacco.

    PubMed

    Kwak, Man Sup; Min, Sung Ran; Lee, Si-Myung; Kim, Kyung-Nam; Liu, Jang Ryol; Paek, Kyung-Hee; Shin, Jeong Sheop; Bae, Jung Myung

    2007-09-01

    In this study, a tobacco (Nicotiana tabacum 'Xanthi') ADP-glucose pyrophosphorylase cDNA (NtAGP) was isolated from a flower bud cDNA library and the role of NtAGP in the growth of the floral organ was characterized. The expression of NtAGP was high in the sepal, moderate in the carpel and stamen, and low in the petal tissues. NtAGP-antisense plants produced flowers with abnormal petal limbs due to the early termination of the expansion growth of the petal limbs between the corolla lobes. Microscopic observation of the limb region revealed that cell expansion was limited in NtAGP-antisense plants but that cell numbers remained unchanged. mRNA levels of NtAGP, ADP-glucose pyrophosphorylase activity, and starch content in the sepal tissues of NtAGP-antisense plants were reduced, resulting in significantly lower levels of sugars (sucrose, glucose, and fructose) in the petal limbs. The feeding of these sugars to flower buds of the NtAGP-antisense plants restored the expansion growth in the limb area between the corolla lobes. Expansion growth of the petal limb between the corolla lobes was severely arrested in 'Xanthi' flowers from which sepals were removed, indicating that sepal carbohydrates are essential for petal limb expansion growth. These results demonstrate that NtAGP plays a crucial role in the morphogenesis of petal limbs in 'Xanthi' through the synthesis of starch, which is the main carbohydrate source for expansion growth of petal limbs, in sepal tissues. PMID:17660352

  3. Monolithic exploding foil initiator

    DOEpatents

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  4. Polar monolithic capillary columns: Analysis of light hydrocarbons

    NASA Astrophysics Data System (ADS)

    Korolev, A. A.; Shiryaeva, V. E.; Popova, T. P.; Kurganov, A. A.

    2013-01-01

    The influence of the nature of the stationary phase and carrier gas (helium, hydrogen, nitrogen, carbon dioxide, or nitrous oxide) on the efficiency and separating ability of monolithic ethyleneglycol dimethacrylate (EDMA) polymer capillary columns was studied using a model mixture of light hydrocarbons C1-C4. The results were compared with the properties of silica gel and divinylbenzene (DVB) monolithic columns. For EDMA polymer monolithic columns, the effect of the carrier gas on the separating ability was markedly lower than for silica gel columns. A reduction in HETP observed in the series He > H2 > N2 > N2O > CO2 is also known for hollow capillary columns with polymer stationary phases, but the change in efficiency was ˜20-30% in this case. Under the optimum conditions, HETP was minimum for the columns when CO2 or N2O was used.

  5. Alkylglyceronephosphate synthase (AGPS) alters lipid signaling pathways and supports chemotherapy resistance of glioma and hepatic carcinoma cell lines.

    PubMed

    Zhu, Yu; Liu, Xing-Jun; Yang, Ping; Zhao, Ming; Lv, Li-Xia; Zhang, Guo-Dong; Wang, Qin; Zhang, Ling

    2014-01-01

    Chemotherapy continues to be a mainstay of cancer treatment, although drug resistance is a major obstacle. Lipid metabolism plays a critical role in cancer pathology, with elevated ether lipid levels. Recently, alkylglyceronephosphate synthase (AGPS), an enzyme that catalyzes the critical step in ether lipid synthesis, was shown to be up-regulated in multiple types of cancer cells and primary tumors. Here, we demonstrated that silencing of AGPS in chemotherapy resistance glioma U87MG/DDP and hepatic carcinoma HepG2/ADM cell lines resulted in reduced cell proliferation, increased drug sensitivity, cell cycle arrest and cell apoptosis through reducing the intracellular concentration of lysophosphatidic acid (LPA), lysophosphatidic acid-ether (LPAe) and prostaglandin E2 (PGE2), resulting in reduction of LPA receptor and EP receptors mediated PI3K/AKT signaling pathways and the expression of several multi-drug resistance genes, like MDR1, MRP1 and ABCG2. β-catenin, caspase-3/8, Bcl-2 and survivin were also found to be involved. In summary, our studies indicate that AGPS plays a role in cancer chemotherapy resistance by mediating signaling lipid metabolism in cancer cells. PMID:24815474

  6. The biliverdin chromophore binds covalently to a conserved cysteine residue in the N-terminus of Agrobacterium phytochrome Agp1.

    PubMed

    Lamparter, Tilman; Carrascal, Montserrat; Michael, Norbert; Martinez, Enriqueta; Rottwinkel, Gregor; Abian, Joaquin

    2004-03-30

    Phytochromes are widely distributed biliprotein photoreceptors. Typically, the chromophore becomes covalently linked to the protein during an autocatalytic lyase reaction. Plant and cyanobacterial phytochromes incorporate bilins with a ring A ethylidene side chain, whereas other bacterial phytochromes utilize biliverdin as chromophore, which has a vinyl ring A side chain. For Agrobacterium phytochrome Agp1, site-directed mutagenesis provided evidence that biliverdin is bound to cysteine 20. This cysteine is highly conserved within bacterial homologues, but its role as attachment site has as yet not been proven. We therefore performed mass spectrometry studies on proteolytic holopeptide fragments. For that purpose, an Agp1 expression vector was re-engineered to produce a protein with an N-terminal affinity tag. Following proteolysis, the chromophore co-purified with a ca. 5 kDa fragment during affinity chromatography, showing that the attachment site is located close to the N-terminus. Mass spectrometry analyses performed with the purified chromopeptide confirmed the role of the cysteine 20 as biliverdin attachment site. We also analyzed the role of the highly conserved histidine 250 by site-directed mutagenesis. The homologous amino acid plays an important but yet undefined role in plant phytochromes and has been proposed as chromophore attachment site of Deinococcus phytochrome. We found that in Agp1, this amino acid is dispensable for covalent attachment, but required for tight chromophore-protein interaction. PMID:15035636

  7. Flow-through immunosensors using antibody-immobilized polymer monoliths

    PubMed Central

    Liu, Jikun; Chen, Chien-Fu; Chang, Chih-Wei; DeVoe, Don L.

    2010-01-01

    High-sensitivity and rapid flow-through immunosensors based on photopolymerized surface-reactive polymer monoliths are investigated. The porous monoliths were synthesized within silica capillaries from glycidyl methacrylate and ethoxylated trimethylolpropane triacrylate precursors, providing a tortuous pore structure with high surface area for the immobilization of antibodies or other biosensing ligands. The unique morphology of the monolith ensures efficient mass transport and interactions between solvated analyte molecules and covalently immobilize antibodies anchored to the monolith surface, resulting in rapid immunorecognition. The efficacy of this approach is demonstrated through a direct immunoassay model using anti-IgG as a monolith-bound capture antibody and fluorescein-labeled IgG as an antigen. In situ antigen measurements exhibited a linear response over a concentration range between 0.1 - 50 ng/mL with 5 min assay times, while controllable injection of 1 μL volumes of antigen through the monolith elements yielded a mass detection limit of 100 pg (~700 amol). These results suggest that porous monolith supports represent a flexible and promising material for the fabrication of rapid and sensitive immunosensors suitable for integration into capillary or microfluidic devices. PMID:20598520

  8. Synthesis and characterization of hierarchically porous metal, metal oxide, and carbon monoliths with highly ordered nanostructure

    NASA Astrophysics Data System (ADS)

    Grano, Amy Janine

    Hierarchically porous materials are of great interest in such applications as catalysis, separations, fuel cells, and advanced batteries. One such way of producing these materials is through the process of nanocasting, in which a sacrificial template is replicated and then removed to form a monolithic replica. This replica consists of mesopores, which can be ordered or disordered, and bicontinuous macropores, which allow flow throughout the length of the monolith. Hierarchically porous metal oxide and carbon monoliths with an ordered mesopores system are synthesized for the first time via nanocasting. These replicas were used as supports for the deposition of silver particles and the catalytic efficiency was evaluated. The ordered silica template used in producing these monoliths was also used for an in-situ TEM study involving metal nanocasting, and an observation of the destruction of the silica template during nanocasting made. Two new methods of removing the silica template were developed and applied to the synthesis of copper, nickel oxide, and zinc oxide monoliths. Finally, hollow fiber membrane monoliths were examined via x-ray tomography in an attempt to establish the presence of this structure throughout the monolith.

  9. Preparing titania aerogel monolithic chromatography columns using supercritical carbon dioxide.

    PubMed

    Sui, Ruohong; Liu, Suya; Lajoie, Gilles A; Charpentier, Paul A

    2010-06-01

    The search for a method to fabricate monolithic inorganic columns has attracted significant recent attention due to their unique ability in separation applications of various biomolecules. Silica and polymer based monolithic columns have been prepared, but titania and other metal oxide monoliths have been elusive, primarily due to their fragility. This article describes a new approach for preparing nanostructured titania based columns, which offer better performance over conventional particle packed columns for separating a wide variety of biomolecules including phosphopeptides. TiO(2) monolithic aerogels were synthesized in separation columns using in situ sol-gel reactions in supercritical carbon dioxide (scCO(2)) followed by calcination, and compared to those prepared in heptanes. The characterization results show that scCO(2) is a better solvent for the sol-gel reactions, providing lower shrinkage with the anatase TiO(2) monolith composed of nanofibers with very high surface areas. The monolithic columns show the ability to isolate phosphopeptides with little flow resistance compared to conventional titania particle based microcolumns. PMID:20373296

  10. Pepsin-modified chiral monolithic column for affinity capillary electrochromatography.

    PubMed

    Hong, Tingting; Chi, Cuijie; Ji, Yibing

    2014-11-01

    Pepsin-modified affinity monolithic capillary electrochromatography, a novel microanalysis system, was developed by the covalent bonding of pepsin on silica monolith. The column was successfully applied in the chiral separation of (±)-nefopam. Furthermore, the electrochromatographic performance of the pepsin-functionalized monolith for enantiomeric analysis was evaluated in terms of protein content, pH of running buffer, sample volume, buffer concentration, applied voltage, and capillary temperature. The relative standard deviation (%RSD) values of retention time (intraday <0.53, n = 10; interday <0.53, n = 10; column-to-column <0.70, n = 20; and batch-to-batch <0.80, n = 20) indicated satisfactory stability of these columns. No appreciable change was observed in retention and resolution for chiral recognition of (±)-nefopam in 50 days with 100 injections. The proteolytic activity of this stationary phase was further characterized with bovine serum albumin as substrate for online protein digestion. As for monolithic immobilized enzyme reactor, successive protein injections confirmed both the operational stability and ability to reuse the bioreactor for at least 20 digestions. It implied that the affinity monolith used in this research opens a new path of exploring particularly versatile class of enzymes to develop enzyme-modified affinity capillary monolith for enantioseparation. PMID:25146884

  11. Preparation of Monolithic Capillary Chromatographic Columns Using Supercritical Fluid as a Porogen Solvent.

    PubMed

    Szumski, Michał; Buszewski, Bogusław

    2014-01-01

    Monolithic polymeric beds were synthesized in fused silica capillaries using either trimethylolpropane trimethacrylate (TRIM) or a mixture of butyl methacrylate (BMA) with ethylene glycol dimethacrylate (EDMA) as monomers. Carbon dioxide at temperature and pressure conditions above its critical values was used as a porogen solvent. The purpose of using the supercritical carbon dioxide was to have the possibility of changing the solvation power (and thus the porosity of the resulting monolith) of the porogen by pressure and temperature changes instead of changing the porogen composition. The experiments were performed using a special setup consisting of a stainless steel high-pressure reactor to which the fused silica capillary was connected. The synthesized monoliths underwent liquid chromatographic evaluation. The polyTRIM capillary monoliths were characterized by different permeability, which depended on the pressure of the synthesis. BMA/EDMA columns were applied for separation of alkylbenzenes and a model mixture of proteins. PMID:25089047

  12. dbAARD & AGP: A computational pipeline for the prediction of genes associated with age related disorders.

    PubMed

    Srivastava, Isha; Gahlot, Lokesh Kumar; Khurana, Pooja; Hasija, Yasha

    2016-04-01

    The atrocious behavioral and physiological shift with aging accelerate occurrence of deleterious disorders. Contemporary research is focused at uncovering the role of genetic associations in age-related disorders (ARDs). While the completion of the Human Genome Project and the HapMap project has generated huge amount of data on genetic variations; Genome-Wide Association Studies (GWAS) have identified genetic variations, essentially SNPs associated with several disorders including ARDs. However, a repository that houses all such ARD associations is lacking. The present work is aimed at filling this void. A database, dbAARD (database of Aging and Age Related Disorders) has been developed which hosts information on more than 3000 genetic variations significantly (p-value <0.05) associated with 51 ARDs. Furthermore, a machine learning based gene prediction tool AGP (Age Related Disorders Gene Prediction) has been constructed by employing rotation forest algorithm, to prioritize genes associated with ARDs. The tool achieved an overall accuracy in terms of precision 75%, recall 76%, F-measure 76% and AUC 0.85. Both the web resources have been made available online at http://genomeinformatics.dce.edu/dbAARD/ and http://genomeinformatics.dce.edu/AGP/ respectively for easy retrieval and usage by the scientific community. We believe that this work may facilitate the analysis of plethora of variants associated with ARDs and provide cues for deciphering the biology of aging. PMID:26836976

  13. Facile fabrication of high-quality Ag/PS coaxial nanocables based on the mixed mode of soft/hard templates.

    PubMed

    Wan, Mimi; Zhao, Wenbo; Peng, Fang; Wang, Qi; Xu, Ping; Mao, Chun; Shen, Jian

    2016-01-01

    A new kind of high-quality Ag/PS coaxial nanocables can be facilely synthesized by using soft/hard templates method. In order to effectively introduce Ag sources into porous polystyrene (PS) nanotubes which were trapped in porous anodic aluminum oxide (AAO) hard template, Pluronic F127 (F127) was used as guiding agent, soft template and reductant. Meanwhile, ethylene glycol solution was also used as solvent and co-reducing agent to assist in the formation of silver nanowires. The influences of concentration of F127 and reducing reaction time on the formation of Ag/PS coaxial nanocables were discussed. Results indicated that the high-quality Ag/PS coaxial nanocables can be obtained by the mixed mode of soft/hard templates under optimized conditions. This strategy is expected to be extended to design more metal/polymer coaxial nanocables for the benefit of creation of complex and functional nanoarchitectures and components. PMID:27477888

  14. Facile fabrication of high-quality Ag/PS coaxial nanocables based on the mixed mode of soft/hard templates

    NASA Astrophysics Data System (ADS)

    Wan, Mimi; Zhao, Wenbo; Peng, Fang; Wang, Qi; Xu, Ping; Mao, Chun; Shen, Jian

    2016-08-01

    A new kind of high-quality Ag/PS coaxial nanocables can be facilely synthesized by using soft/hard templates method. In order to effectively introduce Ag sources into porous polystyrene (PS) nanotubes which were trapped in porous anodic aluminum oxide (AAO) hard template, Pluronic F127 (F127) was used as guiding agent, soft template and reductant. Meanwhile, ethylene glycol solution was also used as solvent and co-reducing agent to assist in the formation of silver nanowires. The influences of concentration of F127 and reducing reaction time on the formation of Ag/PS coaxial nanocables were discussed. Results indicated that the high-quality Ag/PS coaxial nanocables can be obtained by the mixed mode of soft/hard templates under optimized conditions. This strategy is expected to be extended to design more metal/polymer coaxial nanocables for the benefit of creation of complex and functional nanoarchitectures and components.

  15. Facile fabrication of high-quality Ag/PS coaxial nanocables based on the mixed mode of soft/hard templates

    PubMed Central

    Wan, Mimi; Zhao, Wenbo; Peng, Fang; Wang, Qi; Xu, Ping; Mao, Chun; Shen, Jian

    2016-01-01

    A new kind of high-quality Ag/PS coaxial nanocables can be facilely synthesized by using soft/hard templates method. In order to effectively introduce Ag sources into porous polystyrene (PS) nanotubes which were trapped in porous anodic aluminum oxide (AAO) hard template, Pluronic F127 (F127) was used as guiding agent, soft template and reductant. Meanwhile, ethylene glycol solution was also used as solvent and co-reducing agent to assist in the formation of silver nanowires. The influences of concentration of F127 and reducing reaction time on the formation of Ag/PS coaxial nanocables were discussed. Results indicated that the high-quality Ag/PS coaxial nanocables can be obtained by the mixed mode of soft/hard templates under optimized conditions. This strategy is expected to be extended to design more metal/polymer coaxial nanocables for the benefit of creation of complex and functional nanoarchitectures and components. PMID:27477888

  16. Monolithic microextraction tips by emulsion photopolymerization.

    PubMed

    Liang, Shih-Shin; Chen, Shu-Hui

    2009-03-20

    Monoliths formed by photopolymerization are excellent means for fabricating functional elements in miniaturized microdevices such as microextraction tips which are becoming important for sample preparation. Various silica-based and polymer-based materials have been used to fabricate monoliths with through pores of several nm to 4 microm. However, the back pressure created by such methods is still considered to be high for microtips that use suction forces to deliver the liquid. In this study, we demonstrated that emulsion techniques such as oil-in-water can be used to form monoliths with large through pores (>20 microm), and with rigid structures on small (10 microL) and large (200 microL) pipette tips by photopolymerization. We further showed that, with minor modifications, various functionalized particles (5-20 microm) can be added to form stable emulsions and successfully encapsulated into the monoliths for qualitative and quantitative solid-phase microextractions for a diverse application. Due to high permeability and large surface area, quick equilibration can be achieved by pipetting to yield high recovery rates. Using tryptic digests of ovalbumin as the standard, we obtained a recovery yield of 90-109% (RSD: 10-16%) with a loading capacity of 3 mug for desalting tips immobilized with C18 beads. Using tryptic digests of beta-casein and alpha-casein as standards, we showed that phosphopeptides were substantially enriched by tips immobilized with immobilized metal affinity chromatography or TiO(2) materials. Using estrogenic compounds as standards, we obtained a recovery yield of 95-108% (RSD: 10-12%) and linear calibration curves ranging from 5 to 100 ng (R(2)>0.99) for Waters Oasis HLB tips immobilized with hydrophilic beads. PMID:19203757

  17. Developments Toward Monolithic Suspensions for Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Heptonstall, Alastair; Cantley, Caroline; Crooks, David; Cumming, Alan; Hough, James; Jones, Russell; Martin, Iain; Rowan, Sheila; Cagnoli, Gianpietro

    2008-09-01

    The proposed upgrades to both the LIGO and Virgo gravitational wave observatories will seek to improve detector sensitivity by reducing thermal noise. Based on technologies first implemented at the GEO600 detector, the test mass mirrors will be suspended using fused silica fibres of either circular or rectangular cross section to form monolithic suspensions. In GEO600 cylindrical fused silica fibres were produced using a hydrogen-oxygen flame based machine. Here we report on a new CO2 laser based fibre pulling system under development in Glasgow designed to achieve higher tolerances and reduce contamination of fibres. Preliminary testing of a laser welding process suitable for constructing full scale monolithic suspensions for advanced detectors is described.

  18. Less common applications of monoliths: IV. Recent developments in immobilized enzyme reactors for proteomics and biotechnology

    PubMed Central

    Krenkova, Jana; Svec, Frantisek

    2009-01-01

    Use of monolithic supports for enzyme immobilization rapidly expanded since we published the previous part in this series concerned with this topic almost three years ago. Many groups worldwide realized the benefits of applying monolith as a support and used a variety of techniques to immobilize many different enzymes. Although some of these new developments are a refinement of the methods developed previously, some notable new approaches have also been reported. This review summarizes the literature published since 2006 and demonstrates the broad variability of reactive monolith prepared from silica as well as from organic polymers in shapes of disks, columns, and capillaries. All these monoliths were prepared using direct formation from reactive precursors or activation of preformed inactive structures. Interestingly, most of the applications of monolithic enzyme reactors targets proteolytic digestion of proteins for proteomic analysis. PMID:19194973

  19. Nanoparticle-Functionalized Porous Polymer Monolith Detection Elements for Surface-Enhanced Raman Scattering

    PubMed Central

    Liu, Jikun; White, Ian; DeVoe, Don L.

    2011-01-01

    The use of porous polymer monoliths functionalized with silver nanoparticles is introduced in this work for high-sensitivity surface-enhanced Raman scattering (SERS) detection. Preparation of the SERS detection elements is a simple process comprising the synthesis of a discrete polymer monolith section within a silica capillary, followed by physically trapping silver nanoparticle aggregates within the monolith matrix. A SERS detection limit of 220 fmol for Rhodamine 6G (R6G) is demonstrated, with excellent signal stability over a 24 h period. The capability of the SERS-active monolith for label-free detection of biomolecules was demonstrated by measurements of bradykinin and cyctochrome c. The SERS-active monoliths can be readily integrated into miniaturized micro-total-analysis systems for on-line and label-free detection for a variety of biosensing, bioanalytical, and biomedical applications. PMID:21322579

  20. Embedded-monolith armor

    DOEpatents

    McElfresh, Michael W.; Groves, Scott E; Moffet, Mitchell L.; Martin, Louis P.

    2016-07-19

    A lightweight armor system utilizing a face section having a multiplicity of monoliths embedded in a matrix supported on low density foam. The face section is supported with a strong stiff backing plate. The backing plate is mounted on a spall plate.

  1. Pore volume accessibility of particulate and monolithic stationary phases.

    PubMed

    Urban, Jiří

    2015-05-29

    A chromatographic characterization of pore volume accessibility for both particulate and monolithic stationary phases is presented. Size-exclusion calibration curves have been used to determine the pore volume fraction that is accessible for six alkylbenzenes and twelve polystyrene standards in tetrahydrofuran as the mobile phase. Accessible porosity has been then correlated with the size of the pores from which individual compounds are just excluded. I have determined pore volume accessibility of commercially available columns packed with fully and superficially porous particles, as well as with silica-based monolithic stationary phase. I also have investigated pore accessibility of polymer-based monolithic stationary phases. Suggested protocol is used to characterize pore formation at the early stage of the polymerization, to evaluate an extent of hypercrosslinking during modification of pore surface, and to characterize the pore accessibility of monolithic stationary phases hypercrosslinked after an early termination of polymerization reaction. Pore volume accessibility was also correlated to column efficiency of both particulate and monolithic stationary phases. PMID:25892635

  2. Monolithic Optoelectronic Integrated Circuit

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Walters, Wayne; Gustafsen, Jerry; Bendett, Mark

    1990-01-01

    Monolithic optoelectronic integrated circuit (OEIC) receives single digitally modulated input light signal via optical fiber and converts it into 16-channel electrical output signal. Potentially useful in any system in which digital data must be transmitted serially at high rates, then decoded into and used in parallel format at destination. Applications include transmission and decoding of control signals to phase shifters in phased-array antennas and also communication of data between computers and peripheral equipment in local-area networks.

  3. Monolith electroplating process

    DOEpatents

    Agarrwal, Rajev R.

    2001-01-01

    An electroplating process for preparing a monolith metal layer over a polycrystalline base metal and the plated monolith product. A monolith layer has a variable thickness of one crystal. The process is typically carried in molten salts electrolytes, such as the halide salts under an inert atmosphere at an elevated temperature, and over deposition time periods and film thickness sufficient to sinter and recrystallize completely the nucleating metal particles into one single crystal or crystals having very large grains. In the process, a close-packed film of submicron particle (20) is formed on a suitable substrate at an elevated temperature. The temperature has the significance of annealing particles as they are formed, and substrates on which the particles can populate are desirable. As the packed bed thickens, the submicron particles develop necks (21) and as they merge into each other shrinkage (22) occurs. Then as micropores also close (23) by surface tension, metal density is reached and the film consists of unstable metal grain (24) that at high enough temperature recrystallize (25) and recrystallized grains grow into an annealed single crystal over the electroplating time span. While cadmium was used in the experimental work, other soft metals may be used.

  4. Monolithic catalytic igniters

    NASA Technical Reports Server (NTRS)

    La Ferla, R.; Tuffias, R. H.; Jang, Q.

    1993-01-01

    Catalytic igniters offer the potential for excellent reliability and simplicity for use with the diergolic bipropellant oxygen/hydrogen as well as with the monopropellant hydrazine. State-of-the-art catalyst beds - noble metal/granular pellet carriers - currently used in hydrazine engines are limited by carrier stability, which limits the hot-fire temperature, and by poor thermal response due to the large thermal mass. Moreover, questions remain with regard to longevity and reliability of these catalysts. In this work, Ultramet investigated the feasibility of fabricating monolithic catalyst beds that overcome the limitations of current catalytic igniters via a combination of chemical vapor deposition (CVD) iridium coatings and chemical vapor infiltration (CVI) refractory ceramic foams. It was found that under all flow conditions and O2:H2 mass ratios tested, a high surface area monolithic bed outperformed a Shell 405 bed. Additionally, it was found that monolithic catalytic igniters, specifically porous ceramic foams fabricated by CVD/CVI processing, can be fabricated whose catalytic performance is better than Shell 405 and with significantly lower flow restriction, from materials that can operate at 2000 C or higher.

  5. Polymer-based monolithic columns in capillary format tailored by using controlled in situ polymerization.

    PubMed

    Aoki, Hiroshi; Tanaka, Nobuo; Kubo, Takuya; Hosoya, Ken

    2009-02-01

    This review introduces to the readers our new perspectives of polymer-based monolithic column with a high performance for small solutes such as drug candidates, illustrating the fabrication of LC columns in capillary. First, we briefly reviewed the status quo of polymer-based monolithic columns, comparing with silica monoliths. The miniaturization of LC system with higher throughput (shorter analytical time) was stressed conceptually, along with a fine permeable bicontinuous monolithic structure with submicron domain size (skeletal thickness + pore size) for higher performance. Second, from these perspectives, our column preparation was described, while our specially designed porogenic solvents were introduced as a controller of the monolithic morphology via reaction-induced phase separation. Specifically, monolithic columns were exemplified in two polymer formats, that is, one monolith prepared by free radical polymerization of glycerin 1,3-dimethacrylate, GDMA, and the other prepared by stepwise polymerization of newly introduced multifunctional epoxy and diamino monomers. Both monolithic columns in capillary format demonstrated a fine bicontinuous structure, affording a good compatibility of the efficiency (H) and permeability (D). Especially, the epoxy-based column showed an excellent separation impedance, E (=H(2)/D). Our micro-HPLC data were discussed along with a prototyped wired chip device. PMID:19142909

  6. Transparent monolithic metal ion containing nanophase aerogels

    SciTech Connect

    Risen, W. M., Jr.; Hu, X.; Ji, S.; Littrell, K.

    1999-12-01

    The formation of monolithic and transparent transition metal containing aerogels has been achieved through cooperative interactions of high molecular weight functionalized carbohydrates and silica precursors, which strongly influence the kinetics of gelation. After initial gelation, subsequent modification of the ligating character of the system, coordination of the group VIII metal ions, and supercritical extraction afford the aerogels. The structures at the nanophase level have been probed by photon and electron transmission and neutron scattering techniques to help elucidate the basis for structural integrity together with the small entity sizes that permit transparency in the visible range. They also help with understanding the chemical reactivities of the metal-containing sites in these very high surface area materials. These results are discussed in connection with new reaction studies.

  7. Interconnected porous epoxy monoliths prepared by concentrated emulsion templating.

    PubMed

    Wang, Jianli; Du, Zhongjie; Li, Hangquan; Xiang, Aimin; Zhang, Chen

    2009-10-01

    Porous epoxy monoliths were prepared via a step polymerization in a concentrated emulsion stabilized by non-ionic emulsifiers and colloidal silica. A solution in 4-methyl-2-pentanon was used as the continuous phase, which contained glycidyl amino epoxy monomer (GAE), curing agent, and an emulsifier. An aqueous suspension of colloidal silica was used as the dispersed phase of the concentrated emulsion. After the continuous phase was completely polymerized, the dispersed phase was removed and a porous epoxy was obtained. An optimal HLB value of emulsifier for the GAE concentrated emulsion was determined. In addition, the morphology of the porous epoxy was observed by SEM. The effect of the colloidal silica, the emulsifier, the curing of the epoxy, and the volume fraction of the dispersed phase on the morphology of porous epoxy are systematically discussed. PMID:19595357

  8. Monolithic tandem solar cell

    DOEpatents

    Wanlass, M.W.

    1994-06-21

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. 9 figs.

  9. Monolithic tandem solar cell

    DOEpatents

    Wanlass, Mark W.

    1991-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.

  10. Monolithic microfluidic concentrators and mixers

    DOEpatents

    Frechet, Jean M.; Svec, Frantisek; Yu, Cong; Rohr, Thomas

    2005-05-03

    Microfluidic devices comprising porous monolithic polymer for concentration, extraction or mixing of fluids. A method for in situ preparation of monolithic polymers by in situ initiated polymerization of polymer precursors within microchannels of a microfluidic device and their use for solid phase extraction (SPE), preconcentration, concentration and mixing.

  11. First acidic macro-mesocellular aluminosilicate monolithic foams "SiAl(HIPE)" and their catalytic properties.

    PubMed

    Debecker, Damien P; Boissière, Cédric; Laurent, Guillaume; Huet, Stéphanie; Eliaers, Philippe; Sanchez, Clément; Backov, Rénal

    2015-09-25

    A new type of acidic macrocellular and mesoporous silica-alumina foam is obtained via a one pot alkaline sol-gel route coupled with a concentrated emulsion-based templating technique. The mixed oxide monolith exhibits high surface acidity, translating into excellent performance in the acid-catalyzed dehydration of bioethanol to ethene. PMID:26266884

  12. Silica research in Glasgow

    NASA Astrophysics Data System (ADS)

    Barr, B. W.; Cagnoli, G.; Casey, M. M.; Clubley, D.; Crooks, D. R. M.; Danzmann, K.; Elliffe, E. J.; Goßler, S.; Grant, A.; Grote, H.; Heptonstall, A.; Hough, J.; Jennrich, O.; Lück, H.; McIntosh, S. A.; Newton, G. P.; Palmer, D. A.; Plissi, M. V.; Robertson, D. I.; Robertson, N. A.; Rowan, S.; Skeldon, K. D.; Sneddon, P.; Strain, K. A.; Torrie, C. I.; Ward, H.; Willems, P. A.; Willke, B.; Winkler, W.

    2002-04-01

    The Glasgow group is involved in the construction of the GEO600 interferometer as well as in R&D activity on technology for advanced gravitational wave detectors. GEO600 will be the first GW detector using quasi-monolithic silica suspensions in order to decrease thermal noise significantly with respect to steel wire suspensions. The results concerning GEO600 suspension mounting and performance will be shown in the first section. Section 2 is devoted to the present results from the direct measurement of thermal noise in mirrors mounted in the 10 m interferometer in Glasgow which has a sensitivity limit of 4 × 10-19 m Hz-1/2 above 1 kHz. Section 3 presents results on the measurements of coating losses. R&D activity has been carried out to understand better how thermal noise in the suspensions affects the detector sensitivity, and in section 4 a discussion on the non-linear thermoelastic effect is presented.

  13. Polyurea-Based Aerogel Monoliths and Composites

    NASA Technical Reports Server (NTRS)

    Lee, Je Kyun

    2012-01-01

    aerogel insulation material was developed that will provide superior thermal insulation and inherent radiation protection for government and commercial applications. The rubbery polyureabased aerogel exhibits little dustiness, good flexibility and toughness, and durability typical of the parent polyurea polymer, yet with the low density and superior insulation properties associated with aerogels. The thermal conductivity values of polyurea-based aerogels at lower temperature under vacuum pressures are very low and better than that of silica aerogels. Flexible, rubbery polyurea-based aerogels are able to overcome the weak and brittle nature of conventional inorganic and organic aerogels, including polyisocyanurate aerogels, which are generally prepared with the one similar component to polyurethane rubber aerogels. Additionally, with higher content of hydrogen in their structures, the polyurea rubber-based aerogels will also provide inherently better radiation protection than those of inorganic and carbon aerogels. The aerogel materials also demonstrate good hydrophobicity due to their hydrocarbon molecular structure. There are several strategies to overcoming the drawbacks associated with the weakness and brittleness of silica aerogels. Development of the flexible fiber-reinforced silica aerogel composite blanket has proven to be one promising approach, providing a conveniently fielded form factor that is relatively robust in industrial environments compared to silica aerogel monoliths. However, the flexible, silica aerogel composites still have a brittle, dusty character that may be undesirable, or even intolerable, in certain application environments. Although the cross - linked organic aerogels, such as resorcinol- formaldehyde (RF), polyisocyanurate, and cellulose aerogels, show very high impact strength, they are also very brittle with little elongation (i.e., less rubbery). Also, silica and carbon aerogels are less efficient radiation shielding materials due

  14. Monolithic ballasted penetrator

    DOEpatents

    Hickerson, Jr., James P.; Zanner, Frank J.; Baldwin, Michael D.; Maguire, Michael C.

    2001-01-01

    The present invention is a monolithic ballasted penetrator capable of delivering a working payload to a hardened target, such as reinforced concrete. The invention includes a ballast made from a dense heavy material insert and a monolithic case extending along an axis and consisting of a high-strength steel alloy. The case includes a nose end containing a hollow portion in which the ballast is nearly completely surrounded so that no movement of the ballast relative to the case is possible during impact with a hard target. The case is cast around the ballast, joining the two parts together. The ballast may contain concentric grooves or protrusions that improve joint strength between the case and ballast. The case further includes a second hollow portion; between the ballast and base, which has a payload fastened within this portion. The penetrator can be used to carry instrumentation to measure the geologic character of the earth, or properties of arctic ice, as they pass through it.

  15. Monolithic THz Frequency Multipliers

    NASA Technical Reports Server (NTRS)

    Erickson, N. R.; Narayanan, G.; Grosslein, R. M.; Martin, S.; Mehdi, I.; Smith, P.; Coulomb, M.; DeMartinez, G.

    2001-01-01

    Frequency multipliers are required as local oscillator sources for frequencies up to 2.7 THz for FIRST and airborne applications. Multipliers at these frequencies have not previously been demonstrated, and the object of this work was to show whether such circuits are really practical. A practical circuit is one which not only performs as well as is required, but also can be replicated in a time that is feasible. As the frequency of circuits is increased, the difficulties in fabrication and assembly increase rapidly. Building all of the circuit on GaAs as a monolithic circuit is highly desirable to minimize the complexity of assembly, but at the highest frequencies, even a complete monolithic circuit is extremely small, and presents serious handling difficulty. This is compounded by the requirement for a very thin substrate. Assembly can become very difficult because of handling problems and critical placement. It is very desirable to make the chip big enough to that it can be seen without magnification, and strong enough that it may be picked up with tweezers. Machined blocks to house the chips present an additional challenge. Blocks with complex features are very expensive, and these also imply very critical assembly of the parts. It would be much better if the features in the block were as simple as possible and non-critical to the function of the chip. In particular, grounding and other electrical interfaces should be done in a manner that is highly reproducible.

  16. Characterization of TRIF selectivity in the AGP class of lipid A mimetics: role of secondary lipid chains.

    PubMed

    Khalaf, Juhienah K; Bowen, William S; Bazin, Hélène G; Ryter, Kendal T; Livesay, Mark T; Ward, Jon R; Evans, Jay T; Johnson, David A

    2015-02-01

    TLR4 agonists that favor TRIF-dependent signaling and the induction of type 1 interferons may have potential as vaccine adjuvants with reduced toxicity. CRX-547 (4), a member of the aminoalkyl glucosaminide 4-phosphate (AGP) class of lipid A mimetics possessing three (R)-3-decanoyloxytetradecanoyl groups and d-relative configuration in the aglycon, selectively reduces MyD88-dependent signaling resulting in TRIF-selective signaling, whereas the corresponding secondary ether lipid 6a containing (R)-3-decyloxytetradecanoyl groups does not. In order to determine which secondary acyl groups are important for the reduction in MyD88-dependent signaling activity of 4, the six possible ester/ether hybrid derivatives of 4 and 6a were synthesized and evaluated for their ability to induce NF-κB in a HEK293 cell reporter assay. An (R)-3-decanoyloxytetradecanoyl group on the 3-position of the d-glucosamine unit was found to be indispensable for maintaining low NF-κB activity irrespective of the substitutions (decyl or decanoyl) on the other two secondary positions. These results suggest that the carbonyl group of the 3-secondary lipid chain may impede homodimerization and/or conformational changes in the TLR4-MD2 complex necessary for MyD88 binding and pro-inflammatory cytokine induction. PMID:25553892

  17. Enthalpy-entropy compensation effect on adsorption of light hydrocarbons on monolithic stationary phases.

    PubMed

    Korolev, Alexander A; Shiryaeva, Valeria E; Popova, Tamara P; Kurganov, Alexander A

    2011-08-01

    Enthalpy and entropy of adsorption of light hydrocarbons C1-C4 have been measured for three monoliths of different polarity and for five different carrier gases: helium, hydrogen, nitrogen, carbon dioxide and dinitrogen oxide. Using carrier gas helium the highest values of enthalpy and entropy were observed for monolith based on ethylenedimethacrylate and the lowest values were observed for monolith based on silica, while monolith based on divinylbenzene demonstrated intermediate values. Entropy-enthalpy correlations were observed with carrier gas helium for all thee monoliths and possess similar slope indicating similar adsorption mechanism on all monoliths studied. Comparing different carrier gases entropy-enthalpy correlations within a homological series of solutes were observed for light carrier gases (He, H2 and N2) and were not observed for heavy carrier gases (CO2 and N2O). Instead, entropy-enthalpy correlations for heavy carrier gases were observed with pressure as variable and the higher the carrier gas pressure the lower the values of enthalpy and entropy observed. The observed changes in entropy-enthalpy correlations were explained by competitive adsorption of heavy carrier gas on monoliths. PMID:21595029

  18. Tunable optical reflectance using a monolithic encapsulated grating

    NASA Astrophysics Data System (ADS)

    Sang, Tian; Chen, Guoqing; Wang, Yueke; Wang, Benxin; Jiang, Wenwen; Zhao, Tianzhuo; Cai, Shaohong

    2016-09-01

    Tunable optical reflectance using a monolithic encapsulated grating in fused silica is presented based on the guided-mode resonance (GMR) effect. The resonance location can be altered by slightly varying the thickness of the top layer. For small thickness of the grating layer, the variation of the grating thickness can be tailored to create variable optical reflectance at the same operating wavelength with the filter linewidth and the reflection sidebands kept almost the same. By proper choosing the grating thickness, the novel dual functional device that combines functions of narrowband filtering and three-port beam splitting in the resonance domain can be obtained using the monolithic encapsulated grating. Multiline reflection filters can be obtained by increasing the thickness of the top layer, and tunable reflectivity for multiple operating wavelengths can be obtained by changing the grating thickness.

  19. Sol-gel synthesis of monolithic materials with hierarchical porosity.

    PubMed

    Feinle, A; Elsaesser, M S; Hüsing, N

    2016-06-13

    The development of synthetic routes to hierarchically organized porous materials containing multiple, discrete sets of pores having disparate length scales is of high interest for a wide range of applications. One possible route towards the formation of multilevel porous architectures relies on the processing of condensable, network forming precursors (sol-gel processes) in the presence of molecular porogens, lyotropic mesophases, supramolecular architectures, emulsions, organic polymers, or ice. In this review the focus is on sol-gel processing of inorganic and organic precursors with concurrently occurring microscopic and/or macroscopic phase separation for the formation of self-supporting monoliths. The potential and the limitations of the solution-based approaches is presented with special emphasis to recent examples of hierarchically organized silica, metal oxides and phosphates as well as carbon monoliths. PMID:26563577

  20. Chemically Etched Open Tubular and Monolithic Emitters for Nanoelectrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Page, Jason S.; Luo, Quanzhou; Moore, Ronald J.; Orton, Daniel J.; Tang, Keqi; Smith, Richard D.

    2006-11-15

    We have developed a new procedure for fabricating fused silica emitters for electrospray ionization-mass spectrometry (ESI-MS) in which the end of a bare fused silica capillary is immersed into aqueous hydrofluoric acid, and water is pumped through the capillary to prevent etching of the interior. Surface tension causes the etchant to climb the capillary exterior, and the etch rate in the resulting meniscus decreases as a function of distance from the bulk solution. Etching continues until the silica touching the hydrofluoric acid reservoir is completely removed, essentially stopping the etch process. The resulting emitters have no internal taper, making them much less prone to clogging compared to e.g. pulled emitters. The high aspect ratios and extremely thin walls at the orifice facilitate very low flow rate operation; stable ESI-MS signals were obtained for model analytes from 5-μm-diameter emitters at a flow rate of 5 nL/min with a high degree of inter-emitter reproducibility. In extensive evaluation, the etched emitters were found to enable approximately four times as many LC-MS analyses of proteomic samples before failing compared with conventional pulled emitters. The fabrication procedure was also employed to taper the ends of polymer monolith-containing silica capillaries for use as ESI emitters. In contrast to previous work, the monolithic material protrudes beyond the fused silica capillaries, improving the monolith-assisted electrospray process.

  1. Monolithic microchannel heatsink

    DOEpatents

    Benett, W.J.; Beach, R.J.; Ciarlo, D.R.

    1996-08-20

    A silicon wafer has slots sawn in it that allow diode laser bars to be mounted in contact with the silicon. Microchannels are etched into the back of the wafer to provide cooling of the diode bars. To facilitate getting the channels close to the diode bars, the channels are rotated from an angle perpendicular to the diode bars which allows increased penetration between the mounted diode bars. This invention enables the fabrication of monolithic silicon microchannel heatsinks for laser diodes. The heatsinks have low thermal resistance because of the close proximity of the microchannels to the laser diode being cooled. This allows high average power operation of two-dimensional laser diode arrays that have a high density of laser diode bars and therefore high optical power density. 9 figs.

  2. Monolithic microchannel heatsink

    DOEpatents

    Benett, William J.; Beach, Raymond J.; Ciarlo, Dino R.

    1996-01-01

    A silicon wafer has slots sawn in it that allow diode laser bars to be mounted in contact with the silicon. Microchannels are etched into the back of the wafer to provide cooling of the diode bars. To facilitate getting the channels close to the diode bars, the channels are rotated from an angle perpendicular to the diode bars which allows increased penetration between the mounted diode bars. This invention enables the fabrication of monolithic silicon microchannel heatsinks for laser diodes. The heatsinks have low thermal resistance because of the close proximity of the microchannels to the laser diode being cooled. This allows high average power operation of two-dimensional laser diode arrays that have a high density of laser diode bars and therefore high optical power density.

  3. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, Thomas C.

    1993-01-01

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  4. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, T.C.

    1993-03-30

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  5. Monolithic freeform element

    NASA Astrophysics Data System (ADS)

    Kiontke, Sven R.

    2015-09-01

    For 10 years there has been the asphere as one of the new products to be accepted by the market. All parts of the chain design, production and measurement needed to learn how to treat the asphere and what it is helpful for. The aspheric optical element now is established and accepted as an equal optical element between other as a fast growing part of all the optical elements. Now we are focusing onto the next new element with a lot of potential, the optical freeform surface. Manufacturing results will be shown for fully tolerance optic including manufacturing, setup and optics configurations including measurement setup. The element itself is a monolith consisting of several optical surfaces that have to be aligned properly to each other. The freeform surface is measured for surface form tolerance (irregularity, slope, Zernike, PV).

  6. Monolithically compatible impedance measurement

    DOEpatents

    Ericson, Milton Nance; Holcomb, David Eugene

    2002-01-01

    A monolithic sensor includes a reference channel and at least one sensing channel. Each sensing channel has an oscillator and a counter driven by the oscillator. The reference channel and the at least one sensing channel being formed integrally with a substrate and intimately nested with one another on the substrate. Thus, the oscillator and the counter have matched component values and temperature coefficients. A frequency determining component of the sensing oscillator is formed integrally with the substrate and has an impedance parameter which varies with an environmental parameter to be measured by the sensor. A gating control is responsive to an output signal generated by the reference channel, for terminating counting in the at least one sensing channel at an output count, whereby the output count is indicative of the environmental parameter, and successive ones of the output counts are indicative of changes in the environmental parameter.

  7. SOI monolithic pixel detector

    NASA Astrophysics Data System (ADS)

    Miyoshi, T.; Ahmed, M. I.; Arai, Y.; Fujita, Y.; Ikemoto, Y.; Takeda, A.; Tauchi, K.

    2014-05-01

    We are developing monolithic pixel detector using fully-depleted (FD) silicon-on-insulator (SOI) pixel process technology. The SOI substrate is high resistivity silicon with p-n junctions and another layer is a low resistivity silicon for SOI-CMOS circuitry. Tungsten vias are used for the connection between two silicons. Since flip-chip bump bonding process is not used, high sensor gain in a small pixel area can be obtained. In 2010 and 2011, high-resolution integration-type SOI pixel sensors, DIPIX and INTPIX5, have been developed. The characterizations by evaluating pixel-to-pixel crosstalk, quantum efficiency (QE), dark noise, and energy resolution were done. A phase-contrast imaging was demonstrated using the INTPIX5 pixel sensor for an X-ray application. The current issues and future prospect are also discussed.

  8. Constitutive Tor2 Activity Promotes Retention of the Amino Acid Transporter Agp3 at Trans-Golgi/Endosomes in Fission Yeast

    PubMed Central

    Liu, Qingbin; Ma, Yan; Zhou, Xin; Furuyashiki, Tomoyuki

    2015-01-01

    Amino acid transporters are located at specific subcellular compartments, and their localizations are regulated by the extracellular availability of amino acids. In yeast, target of rapamycin (TOR) activation induces the internalization of amino acid transporters located at the plasma membrane. However, whether and how TOR signaling regulates other amino acid transporters located at intracellular compartments remains unknown. Here, we demonstrate that in the fission yeast, the TOR inhibitor Torin–1 induces the transfer of several yellow fluorescent protein (YFP)-fused intracellular amino acid transporters, including Agp3, Isp5, Aat1, and Put4, from trans-Golgi/endosomes into the vacuoles. By contrast, the localizations of YFP-fused Can1, Fnx1, and Fnx2 transporter proteins were unaffected upon Torin–1 treatment. There are two TOR isoforms in fission yeast, Tor1 and Tor2. Whereas tor1 deletion did not affect the Torin-1-induced transfer of Agp3-YFP, Tor2 inhibition using a temperature-sensitive mutant induced the transfer of Agp3-YFP to the vacuolar lumen, similar to the effects of Torin–1 treatment. Tor2 inhibition also induced the transfer of the YFP-fused Isp5, Aat1, and Put4 transporter proteins to the vacuoles, although only partial transfer of the latter two transporters was observed. Under nitrogen depletion accompanied by reduced Tor2 activity, Agp3-YFP was transferred from the trans-Golgi/endosomes to the plasma membrane and then to the vacuoles, where it was degraded by the vacuolar proteases Isp6 and Psp3. Mutants with constitutively active Tor2 showed delayed transfer of Agp3-YFP to the plasma membrane upon nitrogen depletion. Cells lacking Tsc2, a negative regulator of Tor2, also showed a delay in this process in a Tor2-dependent manner. Taken together, these findings suggest that constitutive Tor2 activity is critical for the retention of amino acid transporters at trans-Golgi/endosomes. Moreover, nitrogen depletion suppresses Tor2 activity

  9. Monolithic microcircuit techniques and processes

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1972-01-01

    Brief discussions of the techniques used to make dielectric and metal thin film depositions for monolithic circuits are presented. Silicon nitride deposition and the properties of silicon nitride films are discussed. Deposition of dichlorosilane and thermally grown silicon dioxide are reported. The deposition and thermal densification of borosilicate, aluminosilicate, and phosphosilicate glasses are discussed. Metallization for monolithic circuits and the characteristics of thin films are also included.

  10. Optoelectronic devices toward monolithic integration

    NASA Astrophysics Data System (ADS)

    Ghergia, V.

    1992-12-01

    Starting from the present state of tl art of discrete devices up to the on going realization of monolithic semicorxtuctor integrated prototypes an overview ofoptoelectronic devices for telecom applications is given inchiding a short classification of the different kind of integrated devices. On the future perspective of IBCN distribution network some economica of hybrid and monolithic forms of integration are attempted. lnaflyashoitpresentationoftheactivitiesperformedintbefieldofmonolithic integration by EEC ESPR1T and RACE projects is reported. 1.

  11. Silica nephropathy.

    PubMed

    Ghahramani, N

    2010-07-01

    Occupational exposure to heavy metals, organic solvents and silica is associated with a variety of renal manifestations. Improved understanding of occupational renal disease provides insight into environmental renal disease, improving knowledge of disease pathogenesis. Silica (SiO2) is an abundant mineral found in sand, rock, and soil. Workers exposed to silica include sandblasters, miners, quarry workers, masons, ceramic workers and glass manufacturers. New cases of silicosis per year have been estimated in the US to be 3600-7300. Exposure to silica has been associated with tubulointerstitial disease, immune-mediated multisystem disease, chronic kidney disease and end-stage renal disease. A rare syndrome of painful, nodular skin lesions has been described in dialysis patients with excessive levels of silicon. Balkan endemic nephropathy is postulated to be due to chronic intoxication with drinking water polluted by silicates released during soil erosion. The mechanism of silica nephrotoxicity is thought to be through direct nephrotoxicity, as well as silica-induced autoimmune diseases such as scleroderma and systemic lupus erythematosus. The renal histopathology varies from focal to crescentic and necrotizing glomerulonephritis with aneurysm formation suggestive of polyarteritis nodosa. The treatment for silica nephrotoxicity is non-specific and depends on the mechanism and stage of the disease. It is quite clear that further research is needed, particularly to elucidate the pathogenesis of silica nephropathy. Considering the importance of diagnosing exposure-related renal disease at early stages, it is imperative to obtain a thorough occupational history in all patients with renal disease, with particular emphasis on exposure to silica, heavy metals, and solvents. PMID:23022796

  12. Facile preparation of SiO2/TiO2 composite monolithic capillary column and its application in enrichment of phosphopeptides.

    PubMed

    Wang, Shao-Ting; Wang, Meng-Ya; Su, Xin; Yuan, Bi-Feng; Feng, Yu-Qi

    2012-09-18

    A novel SiO(2)/TiO(2) composite monolithic capillary column was prepared by sol-gel technology and successfully applied to enrich phosphopeptides as a metal oxide affinity chromatography (MOAC) material. For the monolith preparation, tetramethoxysilane (TMOS) and tetrabutoxytitanium (TBOT) were used as silica and titania source, respectively, and glycerol was introduced to attenuate the activity of titanium precursor, which provided a mild synthetic condition. The prepared monolith was characterized by energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The results revealed an approximate 1/2 molar ratio of titanium to silica as well as an atom-scale homogeneity in the framework. The scanning electron microscopy (SEM) results demonstrated an excellent anchorage between the column and the inner capillary wall, and nitrogen adsorption-desorption experiments showed a bimodal porosity with a narrow mesopore distribution around 3.6 nm. The prepared monolith was then applied for selective enrichment of phosphopeptides from the digestion mixture of phosphoproteins and bovine serum albumin (BSA) as well as human blood serum, nonfat milk, and egg white using an in-tube solid phase microextraction (SPME) system. Our results showed that SiO(2)/TiO(2) composite monolithic capillary column could efficiently enrich the phosphopeptides from complex matrixes. To the best of our knowledge, this is the first attempt for preparing the silica-metal composite monolithic capillary column, which offers the promising application of the monolith on phosphoproteomics study. PMID:22900475

  13. Monolithic metal oxide transistors.

    PubMed

    Choi, Yongsuk; Park, Won-Yeong; Kang, Moon Sung; Yi, Gi-Ra; Lee, Jun-Young; Kim, Yong-Hoon; Cho, Jeong Ho

    2015-04-28

    We devised a simple transparent metal oxide thin film transistor architecture composed of only two component materials, an amorphous metal oxide and ion gel gate dielectric, which could be entirely assembled using room-temperature processes on a plastic substrate. The geometry cleverly takes advantage of the unique characteristics of the two components. An oxide layer is metallized upon exposure to plasma, leading to the formation of a monolithic source-channel-drain oxide layer, and the ion gel gate dielectric is used to gate the transistor channel effectively at low voltages through a coplanar gate. We confirmed that the method is generally applicable to a variety of sol-gel-processed amorphous metal oxides, including indium oxide, indium zinc oxide, and indium gallium zinc oxide. An inverter NOT logic device was assembled using the resulting devices as a proof of concept demonstration of the applicability of the devices to logic circuits. The favorable characteristics of these devices, including (i) the simplicity of the device structure with only two components, (ii) the benign fabrication processes at room temperature, (iii) the low-voltage operation under 2 V, and (iv) the excellent and stable electrical performances, together support the application of these devices to low-cost portable gadgets, i.e., cheap electronics. PMID:25777338

  14. Monolithic afocal telescope

    NASA Technical Reports Server (NTRS)

    Roberts, William T. (Inventor)

    2010-01-01

    An afocal monolithic optical element formed of a shallow cylinder of optical material (glass, polymer, etc.) with fast aspheric surfaces, nominally confocal paraboloids, configured on the front and back surfaces. The front surface is substantially planar, and this lends itself to deposition of multi-layer stacks of thin dielectric and metal films to create a filter for rejecting out-of-band light. However, an aspheric section (for example, a paraboloid) can either be ground into a small area of this surface (for a Cassegrain-type telescope) or attached to the planar surface (for a Gregorian-type telescope). This aspheric section of the surface is then silvered to create the telescope's secondary mirror. The rear surface of the cylinder is figured into a steep, convex asphere (again, a paraboloid in the examples), and also made reflective to form the telescope's primary mirror. A small section of the rear surface (approximately the size of the secondary obscuration, depending on the required field of the telescope) is ground flat to provide an unpowered surface through which the collimated light beam can exit the optical element. This portion of the rear surface is made to transmit the light concentrated by the reflective surfaces, and can support the deposition of a spectral filter.

  15. Formation of porous epoxy monolith via concentrated emulsion polymerization.

    PubMed

    Wang, Jianli; Zhang, Chen; Du, Zhongjie; Xiang, Aiming; Li, Hangquan

    2008-09-15

    Step polymerization was introduced into the concentrated emulsion templating method and was illustrated with the preparation of porous epoxy monolith. A solution of diglycidyl ether of bisphenol-A (DGEBA), its curing agent low molecular weight polyamide resin, and surfactant nonyl phenol polyoxyethylene ether in 4-methyl-2-pentanon as a solvent was used as the continuous phase, an aqueous suspension of colloidal silica as the dispersed phase of the concentrated emulsion. After the continuous phase polymerized and the dispersed phase removed, a porous material is obtained. The key point in this work is to find a compromise between the rates of curing and phase separating and thus achieve a kinetic stability of the concentrated emulsion. The effects of loading of colloidal silica, the pre-curing of the epoxy precursors, and the volume fraction of the dispersed phase were systematically investigated. PMID:18571192

  16. Tailoring the morphology of methacrylate ester-based monoliths for optimum efficiency in liquid chromatography.

    PubMed

    Eeltink, Sebastiaan; Herrero-Martinez, José Manuel; Rozing, Gerard P; Schoenmakers, Peter J; Kok, Wim Th

    2005-11-15

    Methacrylate ester-based monolithic stationary phases were prepared in situ in fused-silica capillaries and simultaneously in vials. The influence of the composition of the polymerization mixture on the morphology was studied with mercury intrusion porosimetry, scanning electron microscopy, and nitrogen adsorption measurements. A high-density porous polymeric material with a unimodal pore-size distribution was prepared with 40 wt % monomers and 60 wt % solvent in the mixture. A low-density material, prepared with a 20:80 ratio of monomers versus pore-forming solvent, showed a bimodal pore-size distribution and a much finer structure than the high-density monolith. The characteristic pore size could be controlled by changing the ratio of pore-forming solvents. With increasing solvent polarity, both the pore size and the dimension of the globules increased. The best efficiency in the CEC mode was obtained with an average pore size of 600 nm. Low-density monoliths exhibited lower A- and C-terms than high-density monoliths. With the optimal monolithic material, a minimum plate height of 5 mum could be obtained. The low-density monolith also performed better in the HPLC mode, giving a minimum plate height of 15 mum and a much higher flow permeability than that of the high-density material. PMID:16285684

  17. Method of monolithic module assembly

    DOEpatents

    Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter

    1999-01-01

    Methods for "monolithic module assembly" which translate many of the advantages of monolithic module construction of thin-film PV modules to wafered c-Si PV modules. Methods employ using back-contact solar cells positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The methods of the invention allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  18. In situ sol-gel preparation of porous alumina monoliths for chromatographic separations of adenosine phosphates.

    PubMed

    Zajickova, Zuzana; Rubi, Emir; Svec, Frantisek

    2011-06-01

    A method enabling the in situ preparation of porous alumina monoliths within 100 μm i.d. fused silica capillaries has been developed. These monoliths were prepared using the sol-gel process from a mixture consisting of an inorganic aluminum salt, a porogen, an epoxide, and a solvent. We investigated the effects of varying the preparation conditions on the physical characteristics of the monoliths with respect to their potential application in chromatographic separations. The best columns were obtained from a mixture of aluminum chloride hexahydrate, N,N-dimethylformamide, water, ethanol and propylene oxide. Adenosine phosphates were then separated in the optimized column with retention increasing according to number of phosphate functionalities. PMID:21497822

  19. Improving permeability and chromatographic performance of poly(pentaerythritol diacrylate monostearate) monolithic column via photo-induced thiol-acrylate polymerization.

    PubMed

    Wang, Hongwei; Ou, Junjie; Bai, Jingyao; Liu, Zhongshan; Yao, Yating; Chen, Lianfang; Peng, Xiaojun; Zou, Hanfa

    2016-03-01

    A simple approach was developed for rapid preparation of polymeric monolithic columns in UV-transparent fused-silica capillaries via photoinitiated thiol-acrylate polymerization of pentaerythritol diacrylate monostearate (PEDAS) and trimethylolpropane tris(3-mercaptopropionate) (TPTM) within 10min, in which the acrylate homopolymerized and copolymerized with the thiol simultaneously. The morphology, permeability and chromatographic performance of the resulting poly(PEDAS-co-TPTM) monoliths were studied. It could be observed from SEM that the morphology of poly(PEDAS-co-TPTM) monolith was rather different from that of poly(PEDAS) monolith, which was fabricated via photo-induced free radical polymerization using PEDAS as the sole monomer. Compared with poly(PEDAS) monolith, poly(PEDAS-co-TPTM) monolith possessed better permeability when they were fabricated under the same preparation conditions. By adjusting the composition of porogenic solvents, poly(PEDAS-co-TPTM) monolith exhibited lower plate heights (15.7-17.7μm) than poly(PEDAS) monolith (19.1-37.9μm) in μLC. In addition, 66 unique peptides were positively identified on poly(PEDAS-co-TPTM) monolith when tryptic digest of four proteins was separated by μLC-MS/MS, demonstrating its potential in proteome analysis. PMID:26852266

  20. Review on recent and advanced applications of monoliths and related porous polymer gels in micro-fluidic devices.

    PubMed

    Vázquez, Mercedes; Paull, Brett

    2010-06-01

    This review critically summarises recent novel and advanced achievements in the application of monolithic materials and related porous polymer gels in micro-fluidic devices appearing within the literature over the period of the last 5 years (2005-2010). The range of monolithic materials has developed rapidly over the past decade, with a diverse and highly versatile class of materials now available, with each exhibiting distinct porosities, pore sizes, and a wide variety of surface functionalities. A major advantage of these materials is their ease of preparation in micro-fluidic channels by in situ polymerisation, leading to monolithic materials being increasingly utilised for a larger variety of purposes in micro-fluidic platforms. Applications of porous polymer monoliths, silica-based monoliths and related homogeneous porous polymer gels in the preparation of separation columns, ion-permeable membranes, preconcentrators, extractors, electrospray emitters, micro-valves, electrokinetic pumps, micro-reactors and micro-mixers in micro-fluidic devices are discussed herein. Procedures used in the preparation of monolithic materials in micro-channels, as well as some practical aspects of the micro-fluidic chip fabrication are addressed. Recent analytical/bioanalytical and catalytic applications of the final micro-fluidic devices incorporating monolithic materials are also reviewed. PMID:20493286

  1. Spectroscopic Investigation on the Primary Photoreaction of Bathy Phytochrome Agp2-Pr of Agrobacterium fabrum: Isomerization in a pH-dependent H-bond Network.

    PubMed

    Singer, Patrick; Wörner, Sybille; Lamparter, Tilman; Diller, Rolf

    2016-05-01

    Bathy phytochrome Agp2 from Agrobacterium fabrum exhibits an unusually low pKa =7.6 in the Pr state in contrast to a pKa >11 in the Pfr state, indicating a pH-dependent charge distribution and H-bond network in the Pr chromophore binding pocket around neutral pH. Here, we report on ultrafast UV/Vis absorption spectroscopy of the primary Pr photoisomerization of Agp2 at pH 6 and pH 9 and upon H2 O/D2 O buffer exchange. The triexponential Pr kinetics slows down at increased pH and pronounced pH-dependent kinetic isotope effects are observed. The results on the Pr photoreaction suggest: 1) component-wise hindered dynamics on the chromophore excited-state potential energy surface at high pH and 2) proton translocation processes either via single-proton transfer or via significant reorganization of H-bond networks. Both effects reflect the interplay between the pH-dependent charge distribution in the Pr chromophore binding pocket on the one hand and chromophore excitation and its Z→E isomerization on the other hand. PMID:27075723

  2. Monolithic fiber optic sensor assembly

    SciTech Connect

    Sanders, Scott

    2015-02-10

    A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.

  3. Scaling up of continuous-flow, microwave-assisted, organic reactions by varying the size of Pd-functionalized catalytic monoliths

    PubMed Central

    He, Ping; Fletcher, Paul D I; Kelly, Stephen M; Mansfield, Andrew

    2011-01-01

    Summary A product-scalable, catalytically mediated flow system has been developed to perform Suzuki–Miyaura reactions under a microwave heating regime, in which the volumetric throughput of a Pd-supported silica monolith can be used to increase the quantity of the product without changing the optimal operating conditions. Two silica monoliths (both 3 cm long), with comparable pore diameters and surface areas, were fabricated with diameters of 3.2 and 6.4 mm to give volumetric capacities of 0.205 and 0.790 mL, respectively. The two monoliths were functionalized with a loading of 4.5 wt % Pd and then sealed in heat-shrinkable Teflon® tubing to form a monolithic flow reactor. The Pd-supported silica monolith flow reactor was then placed into the microwave cavity and connected to an HPLC pump and a backpressure regulator to minimize the formation of gas bubbles. The flow rate and microwave power were varied to optimize the reactant contact time and temperature, respectively. Under optimal reaction conditions the quantity of product could be increased from 31 mg per hour to 340 mg per hour simply by changing the volumetric capacity of the monolith. PMID:21915220

  4. In situ Fabrication of Monolithic Copper Azide

    NASA Astrophysics Data System (ADS)

    Li, Bing; Li, Mingyu; Zeng, Qingxuan; Wu, Xingyu

    2016-04-01

    Fabrication and characterization of monolithic copper azide were performed. The monolithic nanoporous copper (NPC) with interconnected pores and nanoparticles was prepared by decomposition and sintering of the ultrafine copper oxalate. The preferable monolithic NPC can be obtained through decomposition and sintering at 400°C for 30 min. Then, the available monolithic NPC was in situ reacted with the gaseous HN3 for 24 h and the monolithic NPC was transformed into monolithic copper azide. Additionally, the copper particles prepared by electrodeposition were also reacted with the gaseous HN3 under uniform conditions as a comparison. The fabricated monolithic copper azide was characterized by Fourier transform infrared (FTIR), inductively coupled plasma-optical emission spectrometry (ICP-OES), and differential scanning calorimetry (DSC).

  5. Protective Skins for Aerogel Monoliths

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Johnston, James C.; Kuczmarski, Maria A.; Meador, Ann B.

    2007-01-01

    A method of imparting relatively hard protective outer skins to aerogel monoliths has been developed. Even more than aerogel beads, aerogel monoliths are attractive as thermal-insulation materials, but the commercial utilization of aerogel monoliths in thermal-insulation panels has been inhibited by their fragility and the consequent difficulty of handling them. Therefore, there is a need to afford sufficient protection to aerogel monoliths to facilitate handling, without compromising the attractive bulk properties (low density, high porosity, low thermal conductivity, high surface area, and low permittivity) of aerogel materials. The present method was devised to satisfy this need. The essence of the present method is to coat an aerogel monolith with an outer polymeric skin, by painting or spraying. Apparently, the reason spraying and painting were not attempted until now is that it is well known in the aerogel industry that aerogels collapse in contact with liquids. In the present method, one prevents such collapse through the proper choice of coating liquid and process conditions: In particular, one uses a viscous polymer precursor liquid and (a) carefully controls the amount of liquid applied and/or (b) causes the liquid to become cured to the desired hard polymeric layer rapidly enough that there is not sufficient time for the liquid to percolate into the aerogel bulk. The method has been demonstrated by use of isocyanates, which, upon exposure to atmospheric moisture, become cured to polyurethane/polyurea-type coats. The method has also been demonstrated by use of commercial epoxy resins. The method could also be implemented by use of a variety of other resins, including polyimide precursors (for forming high-temperature-resistant protective skins) or perfluorinated monomers (for forming coats that impart hydrophobicity and some increase in strength).

  6. The Functional Property Changes of Muscular Na(v)1.4 and Cardiac Na(v)1.5 Induced by Scorpion Toxin BmK AGP-SYPU1 Mutants Y42F and Y5F.

    PubMed

    Meng, Xiangxue; Xu, Yijia; Zhao, Mingyi; Wang, Fangyang; Ma, Yuanyuan; Jin, Yao; Liu, Yanfeng; Song, Yongbo; Zhang, Jinghai

    2015-05-19

    Scorpion toxins are invaluable therapeutic leads and pharmacological tools which influence the voltage-gated sodium channels. However, the details were still unclear about the structure-function relationship of scorpion toxins on VGSC subtypes. In the previous study, we reported one α-type scorpion toxin Bmk AGP-SYPU1 and its two mutants (Y5F and Y42F) which had been demonstrated to ease pain in mice acetic acid writhing test. However, the function of Bmk AGP-SYPU1 on VGSCs is still unknown. In this study, we examined the effects of BmK AGP-SYPU1 and its two mutants (Y5F and Y42F) on hNa(v)1.4 and hNa(v)1.5 heterologously expressed CHO cell lines by using Na⁺-specialized fluorescent dye and whole-cell patch clamp. The data showed that BmK AGP-SYPU1 displayed as an activator of hNa(v)1.4 and hNa(v)1.5, which might indeed contribute to its biotoxicity to muscular and cardiac system and exhibited the functional properties of both the α-type and β-type scorpion toxin. Notably, Y5F mutant exhibited lower activatory effects on hNa(v)1.4 and hNa(v)1.5 compared with BmK AGP-SYPU1. Y42F was an enhanced activator and confirmed that the conserved Tyr42 was the key amino acid involved in bioactivity or biotoxicity. These data provided a deep insight into the structure-function relationship of BmK AGP-SYPU1, which may be the guidance for engineering α-toxin with high selectivity on VGSC subtypes. PMID:25919575

  7. Affinity monolith chromatography: A review of principles and recent analytical applications

    PubMed Central

    Pfaunmiller, Erika L.; Paulemond, Marie Laura; Dupper, Courtney M.; Hage, David S.

    2012-01-01

    Affinity monolith chromatography (AMC) is a type of liquid chromatography that uses a monolithic support and a biologically-related binding agent as a stationary phase. AMC is a powerful method for the selective separation, analysis or studies of specific target compounds in a sample. This review discusses the basic principles of AMC and recent developments or applications of this method, with particular emphasis being given to work that has appeared in the last five years. Various materials that have been used to prepare columns for AMC are examined, including organic monoliths, silica monoliths, agarose monoliths and cryogels. These supports have been used in AMC for formats that have ranged from traditional columns to disks, microcolumns and capillaries. Many binding agents have also been employed in AMC, such as antibodies, enzymes, proteins, lectins, immobilized metal-ions and dyes. Some applications that have been reported with these binding agents in AMC are bioaffinity chromatography, immunoaffinity chromatography or immunoextraction, immobilized metal-ion affinity chromatography, dye-ligand affinity chromatography, chiral separations and biointeraction studies. Examples are presented from fields that include analytical chemistry, pharmaceutical analysis, clinical testing and biotechnology. Current trends and possible future directions in AMC are also discussed. PMID:23187827

  8. Polymer monolith microextraction using poly(butyl methacrylate-co-1,6-hexanediol ethoxylate diacrylate) monolithic sorbent for determination of phenylurea herbicides in water samples.

    PubMed

    Lin, Shu-Ling; Wu, Yu-Ru; Fuh, Ming-Ren

    2016-01-15

    In this study, recently developed 1,6-hexanediol ethoxylate diacrylate (HEDA)-based polymeric monoliths were utilized as sorbents for efficient extraction of phenylurea herbicides (PUHs) from water samples. The HEDA-based monolithic sorbents were prepared in a fused silica capillary (0.7mm i.d., 4.5-cm long) for polymer monolith microextraction (PMME). The experimental parameters of PMME microextraction including sample loading speed, pH of sample solution, composition of elution solvent, and addition of salt were optimized to efficiently extract PUHs from environmental water samples. The extracted PUHs were determined using ultra-high performance liquid chromatography (UHPLC) with UV-photodiode array detection. The extraction recoveries for PUHs-spiked water samples were 91.1-108.1% with relative standard deviations lower than 5%. The linearity range was 0.025-25ngmL(-1) for each PUH and the detection limits of PUHs were estimated at 0.006-0.019ng mL(-1). In addition, good intra-day/inter-day precision (0.1-8.7%/0.2-8.9%) and accuracy (92.0-108.0%/96.5-105.2%) of the proposed method were obtained. The extraction capacity of the monolith-filled capillary was also determined to be approximately 1μg. Moreover, each monolith-filled capillary could be reused up to 8 times without carry-over. According to the European Union regulations, the allowed permissible limit of any single herbicide in drinking water is 0.1ng mL(-1). This permissible level fell in the linear range examined in this study. In addition, the proposed method provided detection limits lower than the allowed permissible level, which demonstrated the feasibility of utilizing the HEDA-based monolithic sorbent to perform PMME for determining contaminants, such as PUHs, in environmental application. PMID:26592596

  9. Monolithic-integrated microlaser encoder.

    PubMed

    Sawada, R; Higurashi, E; Ito, T; Ohguchi, O; Tsubamoto, M

    1999-11-20

    We have developed an extremely small integrated microencoder whose sides are less than 1 mm long. It is 1/100 the size of conventional encoders. This microencoder consists of a laser diode, monolithic photodiodes, and fluorinated polyimide waveguides with total internal reflection mirrors. The instrument can measure the relative displacement between a grating scale and the encoder with a resolution of the order of 0.01 microm; it can also determine the direction in which the scale is moving. By using the two beams that were emitted from the two etched mirrors of the laser diode, by monolithic integration of the waveguide and photodiodes, and by fabrication of a step at the edge of the waveguide, we were able to eliminate conventional bulky optical components such as the beam splitter, the quarter-wavelength plate, bulky mirrors, and bulky photodetectors. PMID:18324228

  10. Monolithic Fuel Fabrication Process Development

    SciTech Connect

    C. R. Clark; N. P. Hallinan; J. F. Jue; D. D. Keiser; J. M. Wight

    2006-05-01

    The pursuit of a high uranium density research reactor fuel plate has led to monolithic fuel, which possesses the greatest possible uranium density in the fuel region. Process developments in fabrication development include friction stir welding tool geometry and cooling improvements and a reduction in the length of time required to complete the transient liquid phase bonding process. Annealing effects on the microstructures of the U-10Mo foil and friction stir welded aluminum 6061 cladding are also examined.

  11. Monolithic pattern-sensitive detector

    DOEpatents

    Berger, Kurt W.

    2000-01-01

    Extreme ultraviolet light (EUV) is detected using a precisely defined reference pattern formed over a shallow junction photodiode. The reference pattern is formed in an EUV absorber preferably comprising nickel or other material having EUV- and other spectral region attenuating characteristics. An EUV-transmissive energy filter is disposed between a passivation oxide layer of the photodiode and the EUV transmissive energy filter. The device is monolithically formed to provide robustness and compactness.

  12. Characterization of polyacrylamide based monolithic columns.

    PubMed

    Plieva, Fatima M; Andersson, Jonatan; Galaev, Igor Yu; Mattiasson, Bo

    2004-07-01

    Supermacroporous monolithic polyacrylamide (pAAm)-based columns have been prepared by radical cryo-copolymerization (copolymerization in the moderately frozen system) of acrylamide with functional co-monomer, allyl glycidyl ether (AGE), and cross-linker N,N'-methylene-bis-acrylamide (MBAAm) directly in glass columns (ID 10 mm). The monolithic columns have uniform supermacroporous sponge-like structure with interconnected supermacropores of pore size 5-100 microm. The monoliths can be dried and stored in the dry state. High mechanical stability of the monoliths allowed sterilization by autoclaving. Column-to-column reproducibility of pAAm-monoliths was demonstrated on 5 monolithic columns from different batches prepared under the same cryostructuration conditions. PMID:15354560

  13. Rapid Enantiomeric Separation and Quantitation of Levetiracetam on α-Acid Glycoprotein (AGP) Chiral Stationary Phase by High-Performance Liquid Chromatography.

    PubMed

    Heydari, Rouhollah; Shamsipur, Mojtaba

    2015-01-01

    A new, simple, and rapid chiral HPLC method was developed for enantioselective analysis of levetiracetam and its enantiomer [(R)-α-ethyl-2- oxo-pyrrolidine acetamide] in a pharmaceutical formulation and bulk material. Enantiomeric separation was achieved on a chiral-α1-acid glycoprotein (AGP) column (150×4.0 mm, 5 μm) using an isocratic mobile phase of phosphate buffer (pH=7) at a flow rate of 0.7 mL/min. The UV detector was set at 210 nm. Calibration curves were linear in the range of 1-100 μg/mL and 0.4-20 μg/mL for levetiracetam and the (R)-enantiomer, respectively. LOD and LOQ for the (R)-enantiomer were 0.1 and 0.4 μg/mL, respectively. The run time of analysis was less than 5.0 min. PMID:26651564

  14. Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication.

    PubMed

    Chandrahalim, Hengky; Chen, Qiushu; Said, Ali A; Dugan, Mark; Fan, Xudong

    2015-05-21

    We designed, fabricated, and characterized a monolithically integrated optofluidic ring resonator laser that is mechanically, thermally, and chemically robust. The entire device, including the ring resonator channel and sample delivery microfluidics, was created in a block of fused-silica glass using a 3-dimensional femtosecond laser writing process. The gain medium, composed of Rhodamine 6G (R6G) dissolved in quinoline, was flowed through the ring resonator. Lasing was achieved at a pump threshold of approximately 15 μJ mm(-2). Detailed analysis shows that the Q-factor of the optofluidic ring resonator is 3.3 × 10(4), which is limited by both solvent absorption and scattering loss. In particular, a Q-factor resulting from the scattering loss can be as high as 4.2 × 10(4), suggesting the feasibility of using a femtosecond laser to create high quality optical cavities. PMID:25904381

  15. Magnetic hydrophobic nanocomposites: Silica aerogel/maghemite

    NASA Astrophysics Data System (ADS)

    Mendoza Zélis, P.; Fernández van Raap, M. B.; Socolovsky, L. M.; Leyva, A. G.; Sánchez, F. H.

    2012-08-01

    Magnetic hydrophobic aerogels (MHA) in the form of nanocomposites of silica and maghemite (γ-Fe2O3) were prepared by one step sol-gel procedure followed by supercritical solvent extraction. Silica alcogels were obtained from TEOS, MTMS, methanol and H2O, and Fe(III) nitrate as magnetic precursor. The hydrophobic property was achieved using the methytrimethoxysilane (MTMS) as co-precursor for surface modification. The so produced nanocomposite aerogels are monolithic, hydrophobic and magnetic. The interconnected porous structure hosts ∼6 nm size γ-Fe2O3 particles, has a mean pore diameter of 5 nm, and a specific surface area (SSA) of 698 m²/g. Medium range structure of MHA is determined by SAXS, which displays the typical fractal power law behavior with primary particle radius of ∼1 nm. Magnetic properties of the nanoparticle ensembles hosted in them are studied by means of dc-magnetometry.

  16. Carbon nanomaterials in silica aerogel matrices

    SciTech Connect

    Hamilton, Christopher E; Chavez, Manuel E; Duque, Juan G; Gupta, Gautam; Doorn, Stephen K; Dattelbaum, Andrew M; Obrey, Kimberly A D

    2010-01-01

    Silica aerogels are ultra low-density, high surface area materials that are extremely good thermal insulators and have numerous technical applications. However, their mechanical properties are not ideal, as they are brittle and prone to shattering. Conversely, single-walled carbon nanotubes (SWCNTs) and graphene-based materials, such as graphene oxide, have extremely high tensile strength and possess novel electronic properties. By introducing SWCNTs or graphene-based materials into aerogel matrices, it is possible to produce composites with the desirable properties of both constituents. We have successfully dispersed SWCNTs and graphene-based materials into silica gels. Subsequent supercritical drying results in monolithic low-density composites having improved mechanical properties. These nanocomposite aerogels have great potential for use in a wide range of applications.

  17. Monolithic molecularly imprinted polymeric capillary columns for isolation of aflatoxins.

    PubMed

    Szumski, Michał; Grzywiński, Damian; Prus, Wojciech; Buszewski, Bogusław

    2014-10-17

    Monolithic molecularly imprinted polymers extraction columns have been prepared in fused-silica capillaries by UV or thermal polymerization in a two-step process. First, a poly-(trimethylolpropane trimethacrylate) (polyTRIM) core monolith was synthesized either by UV or thermal polymerization. Then it was grafted with the mixture of methacrylic acid (MAA) as a functional monomer, ethylene dimethacrylate (EDMA) as a cross-linking agent, 5,7-dimethoxycoumarin (DMC) as an aflatoxin-mimicking template, toluene as a porogen solvent and 2,2-azobis-(2-methylpropionitrile) (AIBN) as an initiator of the polymerization reaction. Different thermal condition of the photografting and different concentrations of the grafting mixture were tested during polymerization. The extraction capillary columns were evaluated in the terms of their hydrodynamic and chromatographic properties. Retention coefficients for aflatoxin B1 and DMC were used for assessment of the selectivity and imprinting factor. The obtained results indicate that the temperature of photografting and concentration of the grafting mixture are key parameters that determine the quality of the prepared MIPs. From the MIP columns characterized by the highest permeability the column of the highest imprinting factor was applied for isolation of aflatoxins B1, B2, G1 and G2 from the model aqueous sample followed by on-line chromatographic separation. The process was performed using a micro-MISPE-microLC-LIF system of a novel design, which allowed for detection of the eluates from the sample preparation part as well as from the chromatographic separation. PMID:25218633

  18. Compact monolithic capacitive discharge unit

    DOEpatents

    Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.

    2007-06-26

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  19. Monolithic 20-GHz Transmitting Module

    NASA Technical Reports Server (NTRS)

    Kascak, T.; Kaelin, G.; Gupta, A.

    1986-01-01

    20-GHz monolithic microwave/millimeter-wave integrated circuit (MMIC) with amplification and phase-shift (time-delay) capabilities developed. Use of MMIC module technology promises to make feasible development of weight- and cost-effective phased-array antenna systems, identified as major factor in achieving minimum cost and efficient use of frequency and orbital resources of future generations of communication satellite systems. Use of MMIC transmitting modules provides for relatively simple method for phase-shift control of many separate radio-frequency (RF) signals required for phased-array antenna systems.

  20. Nanosecond monolithic CMOS readout cell

    DOEpatents

    Souchkov, Vitali V.

    2004-08-24

    A pulse shaper is implemented in monolithic CMOS with a delay unit formed of a unity gain buffer. The shaper is formed of a difference amplifier having one input connected directly to an input signal and a second input connected to a delayed input signal through the buffer. An elementary cell is based on the pulse shaper and a timing circuit which gates the output of an integrator connected to the pulse shaper output. A detector readout system is formed of a plurality of elementary cells, each connected to a pixel of a pixel array, or to a microstrip of a plurality of microstrips, or to a detector segment.

  1. Improved monolithic tandem solar cell

    SciTech Connect

    Wanlass, M.W.

    1991-04-23

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surf ace of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched.

  2. Monolithically integrated absolute frequency comb laser system

    DOEpatents

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  3. Comparative study on the separation behavior of monolithic columns prepared via ring-opening metathesis polymerization and via electron beam irradiation triggered free radical polymerization for proteins.

    PubMed

    Bandari, Rajendar; Knolle, Wolfgang; Buchmeiser, Michael R

    2008-05-16

    Monolithic columns have been prepared via ring-opening metathesis polymerization using different monomers and crosslinkers, i.e. norborn-2-ene, 1,4,4a,5,8,8a-hexahydro-1,4,5,8-exo,endo-dimethanonaphthalene, cyclooctene and tris(cyclooct-4-en-1-yloxy)methylsilane. 2-Propanol and toluene were used as macro- and microporogens. Alternatively, monolithic supports were realized via electron beam triggered free radical polymerization using trimethylolpropane triacrylate and ethylmethacrylate. Here, 2-propanol, 1-dodecanol and toluene were used as porogens. The three monolithic supports were structurally characterized by inverse size exclusion chromatography and investigated for their separation capabilities for a series of proteins. Separation efficiencies are discussed within the context of the different structural features of the monolithic supports and are compared to the separation data obtained on a commercial silica-based Chromolith RP-18e column. PMID:18037426

  4. Cell viability in a wet silica gel.

    PubMed

    Nieto, Alejandra; Areva, Sami; Wilson, Timothy; Viitala, Reeta; Vallet-Regi, Maria

    2009-11-01

    A modified two-step sol-gel route using silicon ethoxide (TEOS) has been used to synthesize amorphous sol-gel-derived silica, which has been successfully used as a cell encapsulation matrix for 3T3 mouse fibroblasts and CRL-2595 epithelial cells due to its non-toxicity. The sol-gel procedure comprised a first, low pH hydrolysis step, followed by a neutral condensation-gelation step. A high water-to-TEOS ratio and the addition of d-glucose as a porogen and source of nutrients were chosen to minimize silica dissolution and improve the biocompatibility of the process. Indeed, the cell integrity in the encapsulation process was preserved by alcohol removal from the starting solution. Cells were then added in a buffered medium, causing rapid gelation and entrapment of the cells within a randomly structured siloxane matrix in the shape of a monolith, which was maintained in the wet state. MTT and alamarBlue assays were used to check the cytotoxicity of the silica gels and the viability of entrapped cells at initial times in contact with silica. To improve cell attachment, cell clumping experiments - where groups of cells were formed - were designed, rendering improved viability. The obtained materials are therefore excellent candidates for designing tissue-culture scaffolds and implantable bioreactors for biomedical applications. PMID:19481618

  5. Microfluidic devices and methods including porous polymer monoliths

    DOEpatents

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  6. Microfluidic devices and methods including porous polymer monoliths

    SciTech Connect

    Hatch, Anson V.; Sommer, Gregory j.; Singh, Anup K.; Wang, Ying-Chih; Abhyankar, Vinay

    2015-12-01

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  7. Rapid preparation and characterization of methacrylate-based monoliths for chromatographic and electrophoretic separation.

    PubMed

    Fan, Li-Qun; Zhang, Yu-Ping; Gong, Wen-Jun; Qu, Ling-Bo; Lee, Kwang-Pill

    2010-01-01

    Butyl-methacrylate-based porous monoliths were rapidly prepared in the fused-silica capillary with a 10-cm stripe of polyimide removed from its exterior. The photopolymerization could be carried out in 150 s using ethylene glycol dimethacrylate as a cross-linking agent; 1-propanol, 1,4-butanediol, and water as tri-porogenic solvents; and Irgacure 1800 as a photo-initiator. The effect of different morphologies on the efficiency and retention properties was investigated using pressure-assisted CEC (p-CEC), CEC, and low pressure-assisted liquid chromatography modes (LPLC). Baseline separation of the model analytes was respectively achieved including thiourea, toluene, naphthalene, and biphenyl with the lowest theoretical height up to 8.0 microm for thiourea in the mode of p-CEC. Furthermore, the influence of the tri-porogenic solvents on the morphology of methacrylate-based monoliths was systematically studied with mercury intrusion porosimetry and scanning electron microscopy. PMID:20515536

  8. Accelerated colorimetric immunosensing using surface-modified porous monoliths and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Chuag, Shao-Hsuan; Chen, Guan-Hua; Chou, Hsin-Hao; Shen, Shu-Wei; Chen, Chien-Fu

    2013-08-01

    A rapid and sensitive immunoassay platform integrating polymerized monoliths and gold nanoparticles (AuNPs) has been developed. The porous monoliths are photopolymerized in situ within a silica capillary and serve as solid support for high-mass transport and high-density capture antibody immobilization to create a shorter diffusion length for antibody-antigen interactions, resulting in a rapid assay and low reagent consumption. AuNPs are modified with detection antibodies and are utilized as signals for colorimetric immunoassays without the need for enzyme, substrate and sophisticated equipment for quantitative measurements. This platform has been verified by performing a human IgG sandwich immunoassay with a detection limit of 0.1 ng ml-1. In addition, a single assay can be completed in 1 h, which is more efficient than traditional immunoassays that require several hours to complete.

  9. Monolithic Continuous-Flow Bioreactors

    NASA Technical Reports Server (NTRS)

    Stephanopoulos, Gregory; Kornfield, Julia A.; Voecks, Gerald A.

    1993-01-01

    Monolithic ceramic matrices containing many small flow passages useful as continuous-flow bioreactors. Ceramic matrix containing passages made by extruding and firing suitable ceramic. Pores in matrix provide attachment medium for film of cells and allow free movement of solution. Material one not toxic to micro-organisms grown in reactor. In reactor, liquid nutrients flow over, and liquid reaction products flow from, cell culture immobilized in one set of channels while oxygen flows to, and gaseous reaction products flow from, culture in adjacent set of passages. Cells live on inner surfaces containing flowing nutrient and in pores of walls of passages. Ready access to nutrients and oxygen in channels. They generate continuous high yield characteristic of immobilized cells, without large expenditure of energy otherwise incurred if necessary to pump nutrient solution through dense biomass as in bioreactors of other types.

  10. Monolithic solid electrolyte oxygen pump

    DOEpatents

    Fee, Darrell C.; Poeppel, Roger B.; Easler, Timothy E.; Dees, Dennis W.

    1989-01-01

    A multi-layer oxygen pump having a one-piece, monolithic ceramic structure affords high oxygen production per unit weight and volume and is thus particularly adapted for use as a portable oxygen supply. The oxygen pump is comprised of a large number of small cells on the order of 1-2 millimeters in diameter which form the walls of the pump and which are comprised of thin, i.e., 25-50 micrometers, ceramic layers of cell components. The cell components include an air electrode, an oxygen electrode, an electrolyte and interconnection materials. The cell walls form the passages for input air and for exhausting the oxygen which is transferred from a relatively dilute gaseous mixture to a higher concentration by applying a DC voltage across the electrodes so as to ionize the oxygen at the air electrode, whereupon the ionized oxygen travels through the electrolyte and is converted to oxygen gas at the oxygen electrode.

  11. Monolithic cells for solar fuels.

    PubMed

    Rongé, Jan; Bosserez, Tom; Martel, David; Nervi, Carlo; Boarino, Luca; Taulelle, Francis; Decher, Gero; Bordiga, Silvia; Martens, Johan A

    2014-12-01

    Hybrid energy generation models based on a variety of alternative energy supply technologies are considered the best way to cope with the depletion of fossil energy resources and to limit global warming. One of the currently missing technologies is the mimic of natural photosynthesis to convert carbon dioxide and water into chemical fuel using sunlight. This idea has been around for decades, but artificial photosynthesis of organic molecules is still far away from providing real-world solutions. The scientific challenge is to perform in an efficient way the multi-electron transfer reactions of water oxidation and carbon dioxide reduction using holes and single electrons generated in an illuminated semiconductor. In this tutorial review the design of photoelectrochemical (PEC) cells that combine solar water oxidation and CO2 reduction is discussed. In such PEC cells simultaneous transport and efficient use of light, electrons, protons and molecules has to be managed. It is explained how efficiency can be gained by compartmentalisation of the water oxidation and CO2 reduction processes by proton exchange membranes, and monolithic concepts of artificial leaves and solar membranes are presented. Besides transferring protons from the anode to the cathode compartment the membrane serves as a molecular barrier material to prevent cross-over of oxygen and fuel molecules. Innovative nano-organized multimaterials will be needed to realise practical artificial photosynthesis devices. This review provides an overview of synthesis techniques which could be used to realise monolithic multifunctional membrane-electrode assemblies, such as Layer-by-Layer (LbL) deposition, Atomic Layer Deposition (ALD), and porous silicon (porSi) engineering. Advances in modelling approaches, electrochemical techniques and in situ spectroscopies to characterise overall PEC cell performance are discussed. PMID:24526085

  12. Amine Gradient Stationary Phases on In-House Built Monolithic Columns for Liquid Chromatography.

    PubMed

    Dewoolkar, Veeren C; Jeong, Lena N; Cook, Daniel W; Ashraf, Kayesh M; Rutan, Sarah C; Collinson, Maryanne M

    2016-06-01

    Stationary phase gradients on monolithic silica columns have been successfully and reproducibly prepared and characterized with comparisons made to uniformly modified stationary phases. Stationary phase gradients hold great potential for use in liquid chromatography (LC), both in terms of simplifying analysis as well as providing novel selectivity. In this work, we demonstrate the creation of a continuous stationary phase gradient on in-house synthesized monolithic columns by infusing an aminoalkoxysilane solution through the silica monoliths via controlled rate infusion. The presence of amine and its distribution along the length of gradient and uniformly modified columns were assessed via X-ray photoelectron spectroscopy (XPS). XPS showed a clear gradient in surface coverage along the length of the column for the gradient stationary phases while a near uniform distribution on the uniformly modified stationary phases. To demonstrate the application of these gradient stationary phases, the separations of both nucleobases and weak acids/weak bases on these gradient stationary phases have been compared to uniformly modified and unmodified silica columns. Of particular note, the retention characteristics of 11 gradient columns, 5 uniformly modified columns, and 5 unmodified columns have been tested to establish the reproducibility of the synthetic procedures. Standard deviations of the retention factors were in the range from 0.06 to 0.5, depending on the analyte species. We show that selectivity is achieved with the stationary phase gradients that are significantly different from either uniformly modified amine or unmodified columns. These results indicate the significant promise of this strategy for creating novel stationary phases for LC. PMID:27203513

  13. Activated carbon monoliths for methane storage

    NASA Astrophysics Data System (ADS)

    Chada, Nagaraju; Romanos, Jimmy; Hilton, Ramsey; Suppes, Galen; Burress, Jacob; Pfeifer, Peter

    2012-02-01

    The use of adsorbent storage media for natural gas (methane) vehicles allows for the use of non-cylindrical tanks due to the decreased pressure at which the natural gas is stored. The use of carbon powder as a storage material allows for a high mass of methane stored for mass of sample, but at the cost of the tank volume. Densified carbon monoliths, however, allow for the mass of methane for volume of tank to be optimized. In this work, different activated carbon monoliths have been produced using a polymeric binder, with various synthesis parameters. The methane storage was studied using a home-built, dosing-type instrument. A monolith with optimal parameters has been fabricated. The gravimetric excess adsorption for the optimized monolith was found to be 161 g methane for kg carbon.

  14. Monolithically integrated distributed bragg reflector laser

    SciTech Connect

    Furuya, K.

    1984-08-07

    In a heterostructure distributed Bragg reflector laser, at least one multilayer waveguide substantially comprised of a silicon dielectric compound is monolithically integrated with an active semiconductor heterostructure medium. Bragg reflectors are properly disposed within the waveguide.

  15. Monolithic solid-state lasers for spaceflight

    NASA Astrophysics Data System (ADS)

    Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.

  16. Monolithic Active-Pixel Infrared Sensors

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Cunningham, Thomas J.; Krabach, Timothy N.; Staller, Craig O.

    1995-01-01

    Monolithic arrays of active-pixel junction field-effect (JFET) devices made from InGaAs proposed for use as imaging sensors sensitive to light in visible and short-wavelength infrared parts of electromagnetic spectrum. Each pixel of such array comprises photodetector monolithically integrated with JFET output-amplifier circuit of source-follower type - structure similar to charge-coupled device (CCD). Sizes of instruments reduced because large cooling systems not needed.

  17. Monolithic ceramic capacitors for high reliability applications

    NASA Technical Reports Server (NTRS)

    Thornley, E. B.

    1981-01-01

    Monolithic multi-layer ceramic dielectric capacitors are widely used in high reliability applications in spacecraft, launch vehicles, and military equipment. Their relatively low cost, wide range of values, and package styles are attractive features that result in high usage in electronic circuitry in these applications. Design and construction of monolithic ceramic dielectric capacitors, defects that can lead to failure, and methods for defect detection that are being incorporated in military specifications are discussed.

  18. A fast way to make a monolithic column for a high pressure electroosmotic pump.

    PubMed

    Wang, Rong; Zhang, Feifang; Yang, Bingcheng; Liang, Xinmiao

    2010-01-01

    A simple way was proposed to make a monolithic column for a high pressure electroosmotic pump (EOP). It is in-situ synthesized inside the silica capillary from potassium silicate solution and no frit is required. Compared with common approaches to make columns for EOP, the present method is robust and fast (<4 h). For pure water, a stand-alone EOP operated at 15 kV applied voltage is capable of generating a flow rate of 3.1 microL/min and a maximum static pressure of approximately 5.4 MPa. PMID:20702950

  19. Multifunctional mesoporous silica catalyst

    DOEpatents

    Lin, Victor Shang-Yi; Tsai, Chih-Hsiang; Chen, Hung-Ting; Pruski, Marek; Kobayashi, Takeshi

    2015-03-31

    The present invention provides bifunctional silica mesoporous materials, including mesoporous silica nanoparticles ("MSN"), having pores modified with diarylammonium triflate and perfluoroaryl moieties, that are useful for the acid-catalyzed esterification of organic acids with organic alcohols.

  20. What Is Crystalline Silica?

    MedlinePlus

    ... silica, and requires a repirator protection program until engineering controls are implemented. Additionally, OSHA has a National ... silica materials with safer substitutes, whenever possible. ■ Provide engineering or administrative controls, where feasible, such as local ...

  1. Accelerated subcritical drying of large alkoxide silica gels

    NASA Astrophysics Data System (ADS)

    Wang, Shiho; Kirkbir, Fikret; Chaudhuri, S. R.; Sarkar, Arnab

    1992-12-01

    Fracture during drying has been the key hurdle in fabrication of large monolithic silica glass from alkoxide gels. Although existing literature suggests pore enlargement, aging, chemical additives, supercritical drying and freeze drying as helpful in avoiding fracture during drying, successful accelerated sub-critical drying of large silica monoliths from alkoxide gels has not yet been reported. In the present approach, acid catalyzed sols of TEOS, ethanol and water (pH equals 2) were cast as cylindrical rods in plastic molds of 8.0 and 10.0 cm diameter with volumes of 2000 cc and 3000 cc respectively. The resultant gels were aged for about 7 days and dried in a specially designed chamber under sub-critical conditions of the pore field. We have obtained monolithic dry gels in drying times of 3 - 7 days for sizes of 2000 - 3000 cc. The dry gels have narrow unimodal pore size distributions, with average pore radius of about 20 angstroms as measured by BET. Although capillary stress during drying increases with reduction of pore size, it was found that in this approach it is easier to dry gels of smaller pore size.

  2. Silica extraction from geothermal water

    SciTech Connect

    Bourcier, William L; Bruton, Carol J

    2014-09-23

    A method of producing silica from geothermal fluid containing low concentration of the silica of less than 275 ppm includes the steps of treating the geothermal fluid containing the silica by reverse osmosis treatment thereby producing a concentrated fluid containing the silica, seasoning the concentrated fluid thereby producing a slurry having precipitated colloids containing the silica, and separating the silica from the slurry.

  3. Structure for monolithic optical circuits

    NASA Technical Reports Server (NTRS)

    Evanchuk, Vincent L. (Inventor)

    1984-01-01

    A method for making monolithic optical circuits, with related optical devices as required or desired, on a supporting surface (10) consists of coating the supporting surface with reflecting metal or cladding resin, spreading a layer of liquid radiation sensitive plastic (12) on the surface, exposing the liquid plastic with a mask (14) to cure it in a desired pattern of light conductors (16, 18, 20), washing away the unexposed liquid plastic, and coating the conductors thus formed with reflective metal or cladding resin. The index of refraction for the cladding (22) is selected to be lower than for the conductors so that light in the conductors will be reflected by the interface with the cladding. For multiple level conductors, as where one conductor must cross over another, the process may be repeated to fabricate a bridge with columns (24, 26) of conductors to the next level, and conductor (28) between the columns. For more efficient transfer of energy over the bridge, faces at 45.degree. may be formed to reflect light up and across the bridge.

  4. Monolithic capillary column based glycoproteomic reactor for high-sensitive analysis of N-glycoproteome.

    PubMed

    Liu, Jing; Wang, Fangjun; Lin, Hui; Zhu, Jun; Bian, Yangyang; Cheng, Kai; Zou, Hanfa

    2013-03-01

    Despite the importance of protein N-glycosylation in a series of biological processes, in-depth characterization of protein glycosylation is still a challenge due to the high complexity of biological samples and the lacking of highly sensitive detection technologies. We developed a monolithic capillary column based glycoproteomic reactor enabling high-sensitive mapping of N-glycosylation sites from minute amounts of sample. Unlike the conventional proteomic reactors with only strong-cation exchange or hydrophilic-interaction chromatography columns, this novel glycoproteomic reactor was composed of an 8 cm long C12 hydrophobic monolithic capillary column for protein digestion and a 6 cm long organic-silica hybrid hydrophilic monolithic capillary column for glycopeptides enrichment and deglycosylation, which could complete whole-sample preparation including protein purification/desalting, tryptic digestion, enrichment, and deglycosylation of glycopeptides within about 3 h. The developed reactor exhibited high detection sensitivity in mapping of N-glycosylation sites by detection limit of horseradish peroxidase as low as 2.5 fmol. This reactor also demonstrated the ability in complex sample analysis, and in total, 486 unique N-glycosylation sites were reliably mapped in three replicate analyses of a protein sample extracted from ∼10(4) HeLa cells. PMID:23384158

  5. Effect of Polishing Systems on Surface Roughness and Topography of Monolithic Zirconia.

    PubMed

    Goo, C L; Yap, Auj; Tan, Kbc; Fawzy, A S

    2016-01-01

    This study evaluated the effect of different chairside polishing systems on the surface roughness and topography of monolithic zirconia. Thirty-five monolithic zirconia specimens (Lava PLUS, 3M ESPE) were fabricated and divided into five groups of seven and polished with the following: Group 1 (WZ)-Dura white stone followed by Shofu zirconia polishing kit; Group 2 (SZ)-Shofu zirconia polishing kit; Group 3 (CE)-Ceramiste porcelain polishers; Group 4 (CM)-Ceramaster porcelain polishers; and Group 5 (KZ)-Komet ZR zirconia polishers. All specimens were ground with a fine-grit diamond bur prior to polishing procedures to simulate clinical finishing. Baseline and post-polishing profilometric readings were recorded and delta Ra values (difference in mean surface roughness before and after polishing) were computed and analyzed using one-way analysis of variance and Scheffe post hoc test (p<0.05). Representative scanning electron microscopy (SEM) images of the ground but unpolished and polished specimens were acquired. Delta Ra values ranged from 0.146 for CE to 0.400 for KZ. Delta Ra values for KZ, WZ, and SZ were significantly greater than for CE. Significant differences in delta Ra values were also observed between KZ and CM. The SEM images obtained were consistent with the profilometric findings. Diamond-impregnated polishing systems were more effective than silica carbide-impregnated ones in reducing the surface roughness of ground monolithic zirconia. PMID:26666390

  6. Silylation of low-density silica and bridged polysilsesquioxane aerogels

    SciTech Connect

    DeFriend, K. A.; Loy, D. A.; Salazar, K. V.; Wilson, K. V.

    2004-01-01

    Silica and bridged polysilsesquioxane aerogels are low-density materials that are attractive for applications such as thermal insulation, porous separation media or catalyst supports, adsorbents, and cometary dust capture agents. However, aerogels are notoriously weak and brittle making it difficult to handle and machine monoliths into desired forms. This complication prevents the development of many applications that would otherwise benefit from the use of the low-density materials. Here, we will describe our efforts to chemically modify and mechanically enhance silica-based aerogels using chemical vapor techniques without sacrificing their characteristic low densities. Monolithic silica and organic-bridged polysilsesquioxane aerogels were prepared by sol-gel polymerization of the respective methoxysilane monomers followed by supercritical carbon dioxide drying of the gels. Then the gels were reactively modified with silylating agents to demonstrate the viability of CVD modification of aerogels, and to determine the effects of silylation of surface silanols on the morphology, surface area, and mechanical properties of the resulting aerogels.

  7. Taking a Large Monolith to Use for Teaching Soil Morphology.

    ERIC Educational Resources Information Center

    Smith, B. R.; And Others

    1989-01-01

    Described is a technique for taking a large monolith for the purpose of teaching soil structure. Materials and procedures are detailed. A survey of 93 students indicated that the larger monolith was preferred over the commonly used narrow ones. (CW)

  8. GaAs monolithic RF modules for SARSAT distress beacons

    NASA Technical Reports Server (NTRS)

    Cauley, Michael A.

    1991-01-01

    Monolithic GaAs UHF components for use in SARSAT Emergency Distress beacons are under development by Microwave Monolithics, Inc., Simi Valley, CA. The components include a bi-phase modulator, driver amplifier, and a 5 watt power amplifier.

  9. Development of a monolithic ferrite memory array

    NASA Technical Reports Server (NTRS)

    Heckler, C. H., Jr.; Bhiwandker, N. C.

    1972-01-01

    The results of the development and testing of ferrite monolithic memory arrays are presented. This development required the synthesis of ferrite materials having special magnetic and physical characteristics and the development of special processes; (1) for making flexible sheets (laminae) of the ferrite composition, (2) for embedding conductors in ferrite, and (3) bonding ferrite laminae together to form a monolithic structure. Major problems encountered in each of these areas and their solutions are discussed. Twenty-two full-size arrays were fabricated and fired during the development of these processes. The majority of these arrays were tested for their memory characteristics as well as for their physical characteristics and the results are presented. The arrays produced during this program meet the essential goals and demonstrate the feasibility of fabricating monolithic ferrite memory arrays by the processes developed.

  10. Monolithic and mechanical multijunction space solar cells

    SciTech Connect

    Jain, R.K.; Flood, D.J. )

    1993-05-01

    High-efficiency, lightweight, radiation-resistant solar cells are essential to meet the large power requirements of future space missions. Single-junction cells are limited in efficiency. Higher cell efficiencies could be realized by developing multijunction, multibandgap solar cells. Monolithic and mechanically stacked tandem solar cells surpassing single-junction cell efficiencies have been fabricated. This article surveys the current status of monolithic and mechanically stacked multibandgap space solar cells, and outlines problems yet to be resolved. The monolithic and mechanically stacked cells each have their own problems related to size, processing, current and voltage matching, weight, and other factors. More information is needed on the effect of temperature and radiation on the cell performance. Proper reference cells and full-spectrum range simulators are also needed to measure efficiencies correctly. Cost issues are not addressed, since the two approaches are still in the developmental stage.

  11. Monolithic and mechanical multijunction space solar cells

    SciTech Connect

    Jain, R.K.; Flood, D.J.

    1992-08-01

    High-efficiency, lightweight, radiation-resistant solar cells are essential to meet the large power requirements of future space missions. Single-junction cells are limited in efficiency. Higher cell efficiencies could be realized by developing multijunction, multibandgap solar cells. Monolithic and mechanically stacked tandem solar cells surpassing single-junction cell efficiencies have been fabricated. This article surveys the current status of monolithic and mechanically stacked multibandgap space solar cells, and outlines problems yet to be resolved. The monolithic and mechanically stacked cells each have their own problems related to size, processing, current and voltage matching, weight, and other factors. More information is needed on the effect of temperature and radiation on the cell performance. Proper reference cells and full-spectrum range simulators are also needed to measure efficiencies correctly. Cost issues are not addressed, since the two approaches are still in the developmental stage.

  12. A 30 GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Mondal, J.; Contolatis, T.; Geddes, J.; Bauhahn, P.; Sokolov, V.

    1990-01-01

    The technical achievements and deliveries made during the duration of the program to develop a 30 GHz monolithic receive module for communication feed array applications and to deliver submodules and 30 GHz monolithic receive modules for experimental evaluation are discussed. Key requirements include an overall receive module noise figure of 5 dB, a 30 dB RF-to-RF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. In addition, the monolithic receive module design addresses a cost goal of less than one thousand dollars (1980 dollars) per module in unit buys of 5,000 or more, and a mechanical configuration that is applicable to a spaceborne phase array system. An additional task for the development and delivery of 32 GHz phase shifter integrated circuit (IC) for deep space communication is also described.

  13. Monolithic and mechanical multijunction space solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1992-01-01

    High-efficiency, lightweight, radiation-resistant solar cells are essential to meet the large power requirements of future space missions. Single-junction cells are limited in efficiency. Higher cell efficiencies could be realized by developing multijunction, multibandgap solar cells. Monolithic and mechanically stacked tandem solar cells surpassing single-junction cell efficiencies have been fabricated. This article surveys the current status of monolithic and mechanically stacked multibandgap space solar cells, and outlines problems yet to be resolved. The monolithic and mechanically stacked cells each have their own problems related to size, processing, current and voltage matching, weight, and other factors. More information is needed on the effect of temperature and radiation on the cell performance. Proper reference cells and full-spectrum range simulators are also needed to measure efficiencies correctly. Cost issues are not addressed, since the two approaches are still in the developmental stage.

  14. Designing Catalytic Monoliths For Closed-Cycle CO2 Lasers

    NASA Technical Reports Server (NTRS)

    Guinn, Keith; Herz, Richard K.; Goldblum, Seth; Noskowski, ED

    1992-01-01

    LASCAT (Design of Catalytic Monoliths for Closed-Cycle Carbon Dioxide Lasers) computer program aids in design of catalyst in monolith by simulating effects of design decisions on performance of laser. Provides opportunity for designer to explore tradeoffs among activity and dimensions of catalyst, dimensions of monolith, pressure drop caused by flow of gas through monolith, conversion of oxygen, and other variables. Written in FORTRAN 77.

  15. Consolidation and densification methods for fibrous monolith processing

    DOEpatents

    Sutaria, Manish P.; Rigali, Mark J.; Cipriani, Ronald A.; Artz, Gregory J.; Mulligan, Anthony C.

    2006-06-20

    Methods for consolidation and densification of fibrous monolith composite structures are provided. Consolidation and densification of two- and three-dimensional fibrous monolith components having complex geometries can be achieved by pressureless sintering. The fibrous monolith composites are formed from filaments having at least a first material composition generally surrounded by a second material composition. The composites are sintered at a pressure of no more than about 30 psi to provide consolidated and densified fibrous monolith composites.

  16. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Bauhahn, P.; Geddes, J.; Sokolov, V.; Contolatis, T.

    1988-01-01

    The fourth year progress is described on a program to develop a 27.5 to 30 GHz GaAs monolithic receive module for spaceborne-communication antenna feed array applications, and to deliver submodules for experimental evaluation. Program goals include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. Submicron gate length single and dual gate FETs are described and applied in the development of monolithic gain control amplifiers and low noise amplifiers. A two-stage monolithic gain control amplifier based on ion implanted dual gate MESFETs was designed and fabricated. The gain control amplifier has a gain of 12 dB at 29 GHz with a gain control range of over 13 dB. A two-stage monolithic low noise amplifier based on ion implanted MESFETs which provides 7 dB gain with 6.2 dB noise figure at 29 GHz was also developed. An interconnected receive module containing LNA, gain control, and phase shifter submodules was built using the LNA and gain control ICs as well as a monolithic phase shifter developed previously under this program. The design, fabrication, and evaluation of this interconnected receiver is presented. Progress in the development of an RF/IF submodule containing a unique ion implanted diode mixer diode and a broadband balanced mixer monolithic IC with on-chip IF amplifier and the initial design of circuits for the RF portion of a two submodule receiver are also discussed.

  17. Polymer network/carbon layer on monolith support and monolith catalytic reactor

    DOEpatents

    Nordquist, Andrew Francis; Wilhelm, Frederick Carl; Waller, Francis Joseph; Machado, Reinaldo Mario

    2003-08-26

    The present invention relates to an improved monolith catalytic reactor and a monolith support. The improvement in the support resides in a polymer network/carbon coating applied to the surface of a porous substrate and a catalytic metal, preferably a transition metal catalyst applied to the surface of the polymer network/carbon coating. The monolith support has from 100 to 800 cells per square inch and a polymer network/carbon coating with surface area of from 0.1 to 15 m.sup.2 /gram as measured by adsorption of N.sub.2 or Kr using the BET method.

  18. Radical-mediated step-growth: Preparation of hybrid polymer monolithic columns with fine control of nanostructural and chromatographic characteristics.

    PubMed

    Alves, Filipa; Nischang, Ivo

    2015-09-18

    chromatographic separations of small molecules across wide ranges of retention factors over at least two orders of magnitude and wide ranges of mobile phase compositions. Such experimental observation is explained by a more homogeneous energetic distribution of partition and adsorption sites. A reference analysis of normalized plate height data at varied retention was performed and set in context with data of state-of-the-art silica- and polymer-based monoliths. This analysis clearly identifies the present materials to display performance behavior clearly located in the domain of derivatized silica-based monoliths. PMID:26303255

  19. Monolithic and integrated phased array antennas

    NASA Astrophysics Data System (ADS)

    Schaubert, Daniel H.; Pozar, David M.

    Some of the problems relevant to the design of monolithic and integrated arrays are examined. In particular, attention is given to electrical and mechanical design considerations, restrictions they impose on the choice of elements and architecture of integrated arrays, and elements that can alleviate one or more of these restrictions. Monolithic array designs are compared with some multiple-layer and two-sided designs using such criteria as scan range, bandwidth, substrate size and configuration, polarization, and feed line radiation. Broadside radiating elements, such as microstrip dipoles and patches, as well as end-fire radiating slots are considered.

  20. UPDATE ON MONOLITHIC FUEL FABRICATION METHODS

    SciTech Connect

    C. R. Clark; J. F. Jue; G. A. Moore; N. P. Hallinan; B. H. Park; D. E. Burkes

    2006-10-01

    Efforts to develop a viable monolithic research reactor fuel plate have continued at Idaho National Laboratory. These efforts have concentrated on both fabrication process refinement and scale-up to produce full sized fuel plates. Progress at INL has led to fabrication of hot isostatic pressed uranium-molybdenum bearing monolithic fuel plates. These miniplates are part of the RERTR-8 miniplate irradiation test. Further progress has also been made on friction stir weld processing which has been used to fabricate full size fuel plates which will be irradiated in the ATR and OSIRIS reactors.

  1. Quest for organic polymer-based monolithic columns affording enhanced efficiency in high performance liquid chromatography separations of small molecules in isocratic mode

    PubMed Central

    Svec, Frantisek

    2011-01-01

    The separations of small molecules using columns containing porous polymer monoliths invented two decades ago went a long way from the very modest beginnings to the current capillary columns with efficiencies approaching those featured by their silica-based counterparts. This review article presents a variety of techniques that have been used to form capillary formats of monolithic columns with enhanced separation performance in isocratic elutions. The following text first describes the traditional approaches used for the preparation of efficient monoliths comprising variations in polymerization conditions including temperature as well as composition of monomers and porogenic solvents. Encouraging results of these experiments fueled research of completely new preparation methods such as polymerization to an incomplete conversion, use of single crosslinker, hypercrosslinking, and incorporation of carbon nanotubes that are described in the second part of the text. PMID:21816401

  2. Silica-Ceria Hybrid Nanostructures

    SciTech Connect

    Munusamy, Prabhakaran; Sanghavi, Shail P.; Nachimuthu, Ponnusamy; Baer, Donald R.; Thevuthasan, Suntharampillai

    2012-04-25

    A new hybrid material system that consists of ceria attached silica nanoparticles has been developed. Because of the versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and antioxidant properties of ceria nanoparticles, this material system is ideally suited for biomedical applications. The silica particles of size ~50nm were synthesized by the Stöber synthesis method and ceria nanoparticles of size ~2-3nm was attached to the silica surface using a hetrocoagulation method. The presence of silanol groups on the surface of silica particles mediated homogenous nucleation of ceria which were attached to silica surface by Si-O-Ce bonding. The formations of silica-ceria hybrid nanostructures were characterized by X-photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM). The HRTEM image confirms the formation of individual crystallites of ceria nanoparticles attached to the silica surface. The XPS analysis indicates that ceria nanoparticles are chemically bonded to surface of silica and possess mixture of +3 and +4 chemical states.

  3. Rapid "one-pot" preparation of polymeric monolith via photo-initiated thiol-acrylate polymerization for capillary liquid chromatography.

    PubMed

    Bai, Jingyao; Wang, Hongwei; Ou, Junjie; Liu, Zhongshan; Shen, Yehua; Zou, Hanfa

    2016-06-21

    A facile approach was exploited for fast preparation of polymer-based monoliths in UV-transparent fused-silica capillaries via "one-pot" photo-initiated thiol-acrylate polymerization reaction of dipentaerythritolpenta-/hexaacrylate (DPEPA) and 1-octadecanethiol (ODT) in the presence of porogenic solvents (1-butanol and ethylene glycol). Due to relative insensitivity of oxygen inhibition in thiol-ene free-radical polymerization, the polymerization could be performed within 5 min. The effects of composition of prepolymerization solution on the morphology and permeability of poly(ODT-co-DPEPA) monoliths were investigated in detail by adjusting the content of monomer and binary porogen ratio. The physical properties of poly(ODT-co-DPEPA) monoliths were characterized by Fourier transform infrared spectroscopy (FT-IR), mercury intrusion porosimetry (MIP) and nitrogen adsorption/desorption measurement. The evaluation of chromatographic performance was carried out by capillary liquid chromatography (cLC). The results indicated that the poly(ODT-co-DPEPA) monolith was homogeneous and permeable, and also possessed a typical reversed-phase retention mechanism in cLC with high efficiency (∼75,000 N m(-1)) for separation of alkylbenzenes. Eventually, the further separation of tryptic digest of proteins by cLC tandem mass spectrometry (cLC-MS/MS) demonstrated its potential in the analysis of biological samples. PMID:27188321

  4. Silazane to silica

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.

    1992-01-01

    Thin film silica and/or methyl silicone were detected on most external surfaces of the retrieved LDEF. Known sources of silicone in or on the LDEF appear inadequate to explain the ubiquitous presence of the silica and silicone films. Hexamethyldisilazane (HMDS) was used as the Challenger tile waterproofing compound for the Challenger/LDEF deployment mission. HMDS releases NH3 which depolymerizes silicone RTV's. Polyurethanes were also attacked. Much of the silica/silicone contamination of LDEF resulted from HMDS.

  5. Silazine to silica

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.

    1993-01-01

    Thin film silica and/or methyl silicone were detected on most external surfaces of the retrieved LDEF. Both solar ultraviolet radiation and atomic oxygen can convert silicones to silica. Known sources of silicone in or on the LDEF appear inadequate to explain the ubiquitous presence of the silica and silicone films. Hexamethyldisilazane (HMDS) was used as the Challenger tile waterproofing compound for the Challenger/LDEF deployment mission. HMDS is both volatile and chemically reactive at STP. In addition, HMDS releases NH3 which depolymerizes silicone RTV's. Polyurethanes are also depolymerized. Experiments are reported that indicate much of the silicone and silica contamination of LDEF resulted directly or indirectly from HMDS.

  6. Quasi-monolithic tunable optical resonator

    NASA Technical Reports Server (NTRS)

    Arbore, Mark (Inventor); Tapos, Francisc (Inventor)

    2003-01-01

    An optical resonator has a piezoelectric element attached to a quasi-monolithic structure. The quasi-monolithic structure defines an optical path. Mirrors attached to the structure deflect light along the optical path. The piezoelectric element controllably strains the quasi-monolithic structure to change a length of the optical path by about 1 micron. A first feedback loop coupled to the piezoelectric element provides fine control over the cavity length. The resonator may include a thermally actuated spacer attached to the cavity and a mirror attached to the spacer. The thermally actuated spacer adjusts the cavity length by up to about 20 microns. A second feedback loop coupled to the sensor and heater provides a coarse control over the cavity length. An alternative embodiment provides a quasi-monolithic optical parametric oscillator (OPO). This embodiment includes a non-linear optical element within the resonator cavity along the optical path. Such an OPO configuration is broadly tunable and capable of mode-hop free operation for periods of 24 hours or more.

  7. Optical coupling to monolithic integrated photonic circuits

    NASA Astrophysics Data System (ADS)

    Palen, Edward

    2007-02-01

    Methods of coupling optical fiber and light sources to monolithic integrated photonic circuits are needed to expand future photonics communications markets. Requirements are low cost, high coupling efficiencies, and scalability to high volume production rates. Key features of the different optical coupling options will be discussed along with implementation examples. Requirements for low cost optical coupling and high volume production scalability will be shared.

  8. Package Holds Five Monolithic Microwave Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Decker, D. Richard; Olson, Hilding M.

    1996-01-01

    Packages protect and hold monolithic microwave integrated circuit (MMIC) chips while providing dc and radio-frequency (RF) electrical connections for chips undergoing development. Required to be compact, lightweight, and rugged. Designed to minimize undesired resonances, reflections, losses, and impedance mismatches.

  9. Development of oxide fibrous monolith systems.

    SciTech Connect

    Goretta, K. C.

    1999-03-02

    Fibrous monolithic ceramics generally have a cellular structure that consists of a strong cell surrounded by a weaker boundary phase [1-5]. Fibrous monoliths (FMs) are produced from powders by conventional ceramic fabrication techniques, such as extrusion [1,2]. When properly engineered, they exhibit fail gracefully [3-5]. Several compositions of ceramics and cermets have been processed successfully in fibrous monolithic form [4]. The most thoroughly investigated fibrous monolith consists of Si{sub 3}N{sub 4} cells and a BN cell-boundary phase [3-5]. Through appropriate selection of initial powders and extrusion and hot-pressing parameters, very tough final products have been produced. The resultant high toughness is due primarily to delamination during fracture along textured platelike BN grains. The primary objectives of our program are to develop: (1) Oxide-based FMs, including new systems with improved properties; (2) FMs that can be pressureless sintered rather than hot-pressed; (3) Techniques for continuous extrusion of FM filaments, including solid freeform fabrication (SFF) for net-shape fabrication of FMs; (4) Predictive micromechanical models for FM design and performance; and (5) Ties with industrial producers and users of FMs.

  10. Strong, Thermally Superinsulating Biopolymer-Silica Aerogel Hybrids by Cogelation of Silicic Acid with Pectin.

    PubMed

    Zhao, Shanyu; Malfait, Wim J; Demilecamps, Arnaud; Zhang, Yucheng; Brunner, Samuel; Huber, Lukas; Tingaut, Philippe; Rigacci, Arnaud; Budtova, Tatiana; Koebel, Matthias M

    2015-11-23

    Silica aerogels are excellent thermal insulators, but their brittle nature has prevented widespread application. To overcome these mechanical limitations, silica-biopolymer hybrids are a promising alternative. A one-pot process to monolithic, superinsulating pectin-silica hybrid aerogels is presented. Their structural and physical properties can be tuned by adjusting the gelation pH and pectin concentration. Hybrid aerogels made at pH 1.5 exhibit minimal dust release and vastly improved mechanical properties while remaining excellent thermal insulators. The change in the mechanical properties is directly linked to the observed "neck-free" nanoscale network structure with thicker struts. Such a design is superior to "neck-limited", classical inorganic aerogels. This new class of materials opens up new perspectives for novel silica-biopolymer nanocomposite aerogels. PMID:26447457

  11. Friction and Wear of Monolithic and Fiber Reinforced Silicon-Ceramics Sliding Against IN-718 Alloy at 25 to 800 C in Atmospheric Air at Ambient Pressure

    NASA Technical Reports Server (NTRS)

    Deadmore, Daniel L.; Sliney, Harold E.

    1988-01-01

    The friction and wear of monolithic and fiber reinforced Si-ceramics sliding against the nickel base alloy IN-718 at 25 to 800 C was measured. The monolithic materials tested were silicon carbide (SiC), fused silica (SiO2), syalon, silicon nitride (Si3N4) with W and Mg additives, and Si3N4 with Y2O3 additive. At 25 C fused silica had the lowest friction while Si3N4 (W,Mg type) had the lowest wear. At 800 C syalon had the lowest friction while Si3N4 (W,Mg type) and syalon had the lowest wear. The SiC/IN-718 couple had the lowest total wear at 25 C. At 800 C the fused silica/IN-718 couple exhibited the least total wear. SiC fiber reinforced reaction bonded silicon nitride (RBSN) composite material with a porosity of 32 percent and a fiber content of 23 vol percent had a lower coefficient of friction and wear when sliding parallel to the fiber direction than in the perpendicular at 25 C. The coefficient of friction for the carbon fiber reinforced borosilicate composite was 0.18 at 25 C. This is the lowest of all the couples tested. Wear of this material was about two decades smaller than that of the monolithic fused silica. This illustrates the large improvement in tribological properties which can be achieved in ceramic materials by fiber reinforcement. At higher temperatures the oxidation products formed on the IN-718 alloy are transferred to the ceramic by sliding action and forms a thin, solid lubricant layer which decreases friction and wear for both the monolithic and fiber reinforced composites.

  12. Carbon Nanofiber Incorporated Silica Based Aerogels with Di-Isocyanate Cross-Linking

    NASA Technical Reports Server (NTRS)

    Vivod, Stephanie L.; Meador, Mary Ann B.; Capadona, Lynn A.; Sullivan, Roy M.; Ghosn, Louis J.; Clark, Nicholas; McCorkle, Linda

    2008-01-01

    Lightweight materials with excellent thermal insulating properties are highly sought after for a variety of aerospace and aeronautic applications. (1) Silica based aerogels with their high surface area and low relative densities are ideal for applications in extreme environments such as insulators for the Mars Rover battery. (2) However, the fragile nature of aerogel monoliths prevents their widespread use in more down to earth applications. We have shown that the fragile aerogel network can be cross-linked with a di-isocyanate via amine decorated surfaces to form a conformal coating. (3) This coating reinforces the neck regions between secondary silica particles and significantly strengthens the aerogels with only a small effect on density or porosity. Scheme 1 depicts the cross-linking reaction with the di-isocyanate and exhibits the stages that result in polymer cross-linked aerogel monoliths.

  13. Direct tandem mass spectrometric analysis of amino acids in plasma using fluorous derivatization and monolithic solid-phase purification.

    PubMed

    Tamashima, Erina; Hayama, Tadashi; Yoshida, Hideyuki; Imakyure, Osamu; Yamaguchi, Masatoshi; Nohta, Hitoshi

    2015-11-10

    In this study, we developed a novel direct tandem mass spectrometric method for rapid and accurate analysis of amino acids utilizing a fluorous derivatization and purification technique. Amino acids were perfluoroalkylated with 2H,2H,3H,3H-perfluoroundecan-1-al in the presence of 2-picoline borane via reductive amination. The derivatives were purified by perfluoroalkyl-modified silica-based monolithic solid-phase extraction (monolithic F-SPE), and directly analyzed by tandem mass spectrometry using electrospray ionization without liquid chromatographic separation. The perfluoroalkyl derivatives could be sufficiently distinguished from non-fluorous compounds, i.e. the biological matrix, due to their fluorous interaction. Thus, rapid and accurate determination of amino acids was accomplished. The method was validated with human plasma samples and applied to the analysis of amino acids in the plasma of mice with maple syrup urine disease or phenylketonuria. PMID:26222276

  14. Monoliths: special issue in a new package.

    PubMed

    Svec, Frantisek

    2013-08-01

    Regular special issues concerning monoliths have always been a stronghold of the Journal of Separation Science. Typically, we issued a call for papers, collected and processed the submitted manuscripts, and all of them were then printed in a single issue of the journal. This approach worked to a certain limit quite acceptably but there was always a longer waiting time between the early submissions and publication. This is why we decided to do it this year differently. I claimed in my 2013 New Years Editorial: "We are living in the electronic era! Why not to make an advantage of that?" And we do. As a result, all manuscript submitted for publication in the special issue Monoliths have already been published in regular issues as soon as they were accepted. The first page of these papers includes a footnote: "This paper is included in the virtual special issue Monoliths available at the Journal of Separation Science website." All papers published with this footnote were collected in a virtual special issue accessible through the internet. This concept ruled out possible delays in publication of contributions submitted early. Since we did not have any real "special issue", there was no need for any hard deadline for submission. We just collected manuscripts submitted for the special issue Monoliths published from January to July 2013 and included them in the virtual special issue. This new approach worked very well and we published 22 excellent papers that are included in the issue available now at this website: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1615-9314/homepage/virtual_special_issue__monoliths.htm. PMID:23939823

  15. Differences in porous characteristics of styrenic monoliths prepared by controlled thermal polymerization in molds of varying dimensions.

    PubMed

    Byström, Emil; Viklund, Camilla; Irgum, Knut

    2010-02-01

    Nitroxide-mediated polymerization was used as a model system for preparing styrenic monolithic materials with significant mesopore contents in different mold formats, with the aim of assessing the validity of pore characterization of capillary monoliths by analysis of parallel bulk polymerized precursor solution. Capillary monoliths were prepared in 250 microm id fused silica tubes (quadruplicate samples, in total 17 m), and the batch polymerizations were carried out in parallel in 100 microL microvials and regular 2 mL glass vials, both in quintuplicate. The monoliths recovered from the molds were characterized for their meso- and macroporous properties by nitrogen sorptiometry (three repeated runs on each sample), followed by a single analysis by mercury intrusion porosimetry. A total of 14 monolith samples were thus analyzed. A Grubbs' test identified one regular vial sample as an outlier in the sorptiometric surface area measurements, and data from this sample were consequently excluded from the pore size calculations, which are based on the same nitrogen sorption data, and also from the mercury intrusion data set. The remaining data were subjected to single factor analyses of variance analyses to test if the porous properties of the capillary monoliths were different from those of the bulk monoliths prepared in parallel. Significant differences were found between all three formats both in their meso- and macroporous properties. When the dimension was shrunk from conventional vial to capillary size, the specific surface area decreased from 52.2+/-4.7 to 34.6+/-1.7 m(2)/g. This decrease in specific surface area was accompanied by a significant shift in median diameter of the through-pores, from 310+/-3.9 to 544+/-13 nm. None of these differences were obvious from the scanning electron micrographs that were acquired for each sample type. The common practice of determining the mesopore characteristics from analysis of samples prepared by parallel bulk

  16. Some thermal and optical properties of a new transparent silica xerogel material with low density

    NASA Astrophysics Data System (ADS)

    Einarsrud, Mari-Ann; Farbrodt, Lucie E.; Haereid, Siv; Wittwer, Volker

    1992-11-01

    Monolithic silica aerogel is a transparent material with very low thermal conductivity. These properties make the material interesting for use as insulation in, for example, windows, solar collectors, and solar walls. To produce silica aerogel it is necessary to circumvent the high capillary forces working when the solvent is being removed from the gel structure during drying. Supercritical drying has successfully achieved this. However, supercritical drying with an alcohol might be a dangerous and expensive way to produce the aerogel material. In this work we have studied a new type of monolithic silica xerogels made without supercritical drying. The xerogels are produced by strengthening the gel structure before drying, and low densities in the range 0.42 - 0.73 g/cm3 have been obtained. Properties of this new type of silica xerogels have been compared to the properties of silica aerogel made by supercritical drying. Density, pore size, surface area, thermal conductivity, and optical transmittance are reported in this work and some application advantages are discussed.

  17. Epoxy Crosslinked Silica Aerogels (X-Aerogels)

    NASA Technical Reports Server (NTRS)

    fabrizio, Eve; Ilhan, Faysal; Meador, Mary Ann; Johnston, Chris; Leventis, Nicholas

    2004-01-01

    NASA is interested in the development of strong lightweight materials for the dual role of thermal insulator and structural component for space vehicles; freeing more weight for useful payloads. Aerogels are very-low density materials (0.010 to 0.5 g/cc) that, due to high porosity (meso- and microporosity), can be, depending on the chemical nature of the network, ideal thermal insulators (thermal conductivity approx. 15 mW/mK). However, aerogels are extremely fragile. For practical application of aerogels, one must increase strength without compromising the physical properties attributed to low density. This has been achieved by templated growth of an epoxy polymer layer that crosslinks the "pearl necklace" network of nanoparticles: the framework of a typical silica aerogel. The requirement for conformal accumulation of the epoxy crosslinker is reaction both with the surface of silica and with itself. After cross-linking, the strength of a typical aerogel monolith increases by a factor of 200, in the expense of only a 2-fold increase in density. Strength is increased further by coupling residual unreacted epoxides with diamine.

  18. Silica, Silicosis, and Autoimmunity

    PubMed Central

    Pollard, Kenneth Michael

    2016-01-01

    Inhalation of dust containing crystalline silica is associated with a number of acute and chronic diseases including systemic autoimmune diseases. Evidence for the link with autoimmune disease comes from epidemiological studies linking occupational exposure to crystalline silica dust with the systemic autoimmune diseases systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. Although little is known regarding the mechanism by which silica exposure leads to systemic autoimmune disease, there is a voluminous literature on silica exposure and silicosis that may help identify immune processes that precede development of autoimmunity. The pathophysiology of silicosis consists of deposition of silica particles in the alveoli of the lung. Ingestion of these particles by macrophages initiates an inflammatory response, which stimulates fibroblasts to proliferate and produce collagen. Silica particles are encased by collagen leading to fibrosis and the nodular lesions characteristic of the disease. The steps in the development of silicosis, including acute and chronic inflammation and fibrosis, have different molecular and cellular requirements, suggesting that silica-induced inflammation and fibrosis may be mechanistically separate. Significantly, it is unclear whether silica-induced inflammation and fibrosis contribute similarly to the development of autoimmunity. Nonetheless, the findings from human and animal model studies are consistent with an autoimmune pathogenesis that begins with activation of the innate immune system leading to proinflammatory cytokine production, pulmonary inflammation leading to activation of adaptive immunity, breaking of tolerance, and autoantibodies and tissue damage. The variable frequency of these immunological features following silica exposure suggests substantial genetic involvement and gene/environment interaction in silica-induced autoimmunity. However, numerous questions remain unanswered. PMID:27014276

  19. Silica, Silicosis, and Autoimmunity.

    PubMed

    Pollard, Kenneth Michael

    2016-01-01

    Inhalation of dust containing crystalline silica is associated with a number of acute and chronic diseases including systemic autoimmune diseases. Evidence for the link with autoimmune disease comes from epidemiological studies linking occupational exposure to crystalline silica dust with the systemic autoimmune diseases systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. Although little is known regarding the mechanism by which silica exposure leads to systemic autoimmune disease, there is a voluminous literature on silica exposure and silicosis that may help identify immune processes that precede development of autoimmunity. The pathophysiology of silicosis consists of deposition of silica particles in the alveoli of the lung. Ingestion of these particles by macrophages initiates an inflammatory response, which stimulates fibroblasts to proliferate and produce collagen. Silica particles are encased by collagen leading to fibrosis and the nodular lesions characteristic of the disease. The steps in the development of silicosis, including acute and chronic inflammation and fibrosis, have different molecular and cellular requirements, suggesting that silica-induced inflammation and fibrosis may be mechanistically separate. Significantly, it is unclear whether silica-induced inflammation and fibrosis contribute similarly to the development of autoimmunity. Nonetheless, the findings from human and animal model studies are consistent with an autoimmune pathogenesis that begins with activation of the innate immune system leading to proinflammatory cytokine production, pulmonary inflammation leading to activation of adaptive immunity, breaking of tolerance, and autoantibodies and tissue damage. The variable frequency of these immunological features following silica exposure suggests substantial genetic involvement and gene/environment interaction in silica-induced autoimmunity. However, numerous questions remain unanswered. PMID:27014276

  20. Quartz/fused silica chip carriers

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary objective of this research and development effort was to develop monolithic microwave integrated circuit (MMIC) packaging which will operate efficiently at millimeter-wave frequencies. The packages incorporated fused silica as the substrate material which was selected due to its favorable electrical properties and potential performance improvement over more conventional materials for Ka-band operation. The first step towards meeting this objective is to develop a package that meets standard mechanical and thermal requirements using fused silica and to be compatible with semiconductor devices operating up to at least 44 GHz. The second step is to modify the package design and add multilayer and multicavity capacity to allow for application specific integrated circuits (ASIC's) to control multiple phase shifters. The final step is to adapt the package design to a phased array module with integral radiating elements. The first task was a continuation of the SBIR Phase 1 work. Phase 1 identified fused silica as a viable substrate material by demonstrating various plating, machining, and adhesion properties. In Phase 2 Task 1, a package was designed and fabricated to validate these findings. Task 2 was to take the next step in packaging and fabricate a multilayer, multichip module (MCM). This package is the predecessor to the phased array module and demonstrates the ability to via fill, circuit print, laminate, and to form vertical interconnects. The final task was to build a phased array module. The radiating elements were to be incorporated into the package instead of connecting to it with wire or ribbon bonds.

  1. Application of silica nanoparticles for increased silica availability in maize

    NASA Astrophysics Data System (ADS)

    Suriyaprabha, R.; Karunakaran, G.; Yuvakkumar, R.; Prabu, P.; Rajendran, V.; Kannan, N.

    2013-02-01

    Silica nanoparticles were extracted from rice husk and characterised comprehensively. The synthesised silica powders were amorphous in size with 99.7% purity (20-40 nm). Nanosilica was amended with red soil at 15 kg ha-1 along with micron silica. The influence of nanoscale on silica uptake, accumulation and nutritional variations in maize roots were evaluated through the studies such as root sectioning, elemental analysis and physiological parameters (root length and silica content) and compared with micron silica and control. Nanosilica treated soil reveals enhanced silica uptake and elongated roots which make the plant to resist in stress conditions like drought.

  2. Biomimetic superelastic graphene-based cellular monoliths.

    PubMed

    Qiu, Ling; Liu, Jeffery Z; Chang, Shery L Y; Wu, Yanzhe; Li, Dan

    2012-01-01

    Many applications proposed for graphene require multiple sheets be assembled into a monolithic structure. The ability to maintain structural integrity upon large deformation is essential to ensure a macroscopic material which functions reliably. However, it has remained a great challenge to achieve high elasticity in three-dimensional graphene networks. Here we report that the marriage of graphene chemistry with ice physics can lead to the formation of ultralight and superelastic graphene-based cellular monoliths. Mimicking the hierarchical structure of natural cork, the resulting materials can sustain their structural integrity under a load of >50,000 times their own weight and can rapidly recover from >80% compression. The unique biomimetic hierarchical structure also provides this new class of elastomers with exceptionally high energy absorption capability and good electrical conductivity. The successful synthesis of such fascinating materials paves the way to explore the application of graphene in a self-supporting, structurally adaptive and 3D macroscopic form. PMID:23212370

  3. Comparison of soil-monolith extraction techniques

    NASA Astrophysics Data System (ADS)

    Meissner, R.; Rupp, H.; Weller, U.; Vogel, H.-J.

    2009-04-01

    In the international literature the term „lysimeter" is used for different objectives, e.g. suction cups, fluxmeters, etc. According to our understanding it belongs to the direct methods to measure water and solute fluxes in soil. Depending on the scientific task the shape and dimensions of the lysimeter as well as the type of filling (disturbed or undisturbed) and the specific instrumentation can be different. In any case where water dynamics or solute transport in natural soil is considered, lysimeters should be filled with 'undisturbed' monoliths which are large enough to contain the small scale heterogeneity of a site since flow and transport is highly sensitive to soil structure. Furthermore, lysimeters with vegetation should represent the natural crop inventory and the maximum root penetration depth should be taken into account. The aim of this contribution is to give an overview about different methods for obtaining undisturbed soil monoliths, in particular about i) techniques for the vertical and ii) for the horizontal extraction and iii) to evaluate the most frequently used procedures based on X-ray tomography images. Minimal disturbance of the soil monolith during extraction and subsequence filling of the lysimeter vessel is of critical importance for establishing flow and transport conditions corresponding approximately to natural field conditions. In the past, several methods were used to extract and fill lysimeter vessels vertically - including hand digging, employing sets of trihedral scaffold with lifting blocks and ballast, or using heavy duty excavators, which could shear and cut large blocks of soil. More recently, technologies have been developed to extract cylindrical soil monoliths by using ramming equipment or screw presses. One of the great disadvantages of the mentioned methods is the compaction or settling of soil that occurs during the "hammering" or "pressing". For this reason a new technology was developed, which cuts the outline of

  4. Monolithic Optical-To-Electronic Receiver

    NASA Technical Reports Server (NTRS)

    Kunath, Richard; Mactaggert, Ross

    1994-01-01

    Monolithic optoelectronic integrated circuit converts multiplexed digital optical signals into electrical signals, separates, and distributes them to intended destinations. Developed to deliver phase and amplitude commands to monolithic microwave integrated circuits (MMIC's) at elements of millimeter-wave phased-array antenna from single optical fiber driven by external array controller. Also used in distribution of high-data-rate optical communications in local-area networks (LAN's). Notable features include options for optical or electrical clock inputs; outputs for raw data, addresses, and instructions for diagnosis; and optical-signal-detection circuit used to reduce power consumption by 80 percent between data-transmission times. Chip fabricated by processes available at many major semiconductor foundries. Distribution of digital signals in aircraft, automobiles, and ships potential application.

  5. Monolithic Flexure Pre-Stressed Ultrasonic Horns

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Allen, Phillip Grant (Inventor)

    2015-01-01

    A monolithic ultrasonic horn where the horn, backing, and pre-stress structures are combined in a single monolithic piece is disclosed. Pre-stress is applied by external flexure structures. The provision of the external flexures has numerous advantages including the elimination of the need for a pre-stress bolt. The removal of the pre-stress bolt eliminates potential internal electric discharge points in the actuator. In addition, it reduces the chances of mechanical failure in the actuator stacks that result from the free surface in the hole of conventional ring stacks. In addition, the removal of the stress bolt and the corresponding reduction in the overall number of parts reduces the overall complexity of the resulting ultrasonic horn actuator and simplifies the ease of the design, fabrication and integration of the actuator of the present invention into other structures.

  6. Monolithic Flexure Pre-Stressed Ultrasonic Horns

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Allen, Phillip Grant (Inventor)

    2016-01-01

    A monolithic ultrasonic horn where the horn, backing, and pre-stress structures are combined in a single monolithic piece is disclosed. Pre-stress is applied by external flexure structures. The provision of the external flexures has numerous advantages including the elimination of the need for a pre-stress bolt. The removal of the pre-stress bolt eliminates potential internal electric discharge points in the actuator. In addition, it reduces the chances of mechanical failure in the actuator stacks that result from the free surface in the hole of conventional ring stacks. In addition, the removal of the stress bolt and the corresponding reduction in the overall number of parts reduces the overall complexity of the resulting ultrasonic horn actuator and simplifies the ease of the design, fabrication and integration of the actuator of the present invention into other structures.

  7. New antifouling silica hydrogel.

    PubMed

    Beltrán-Osuna, Ángela A; Cao, Bin; Cheng, Gang; Jana, Sadhan C; Espe, Matthew P; Lama, Bimala

    2012-06-26

    In this work, a new antifouling silica hydrogel was developed for potential biomedical applications. A zwitterionic polymer, poly(carboxybetaine methacrylate) (pCBMA), was produced via atom-transfer radical polymerization and was appended to the hydrogel network in a two-step acid-base-catalyzed sol-gel process. The pCBMA silica aerogels were obtained by drying the hydrogels under supercritical conditions using CO(2). To understand the effect of pCBMA on the gel structure, pCBMA silica aerogels with different pCBMA contents were characterized using scanning electron microscopy (SEM), nuclear magnetic resonance (NMR) spectroscopy, and the surface area from Brauner-Emmet-Teller (BET) measurements. The antifouling property of pCBMA silica hydrogel to resist protein (fibrinogen) adsorption was measured using enzyme-linked immunosorbent assay (ELISA). SEM images revealed that the particle size and porosity of the silica network decreased at low pCBMA content and increased at above 33 wt % of the polymer. The presence of pCBMA increased the surface area of the material by 91% at a polymer content of 25 wt %. NMR results confirmed that pCBMA was incorporated completely into the silica structure at a polymer content below 20 wt %. A protein adsorption test revealed a reduction in fibrinogen adsorption by 83% at 25 wt % pCBMA content in the hydrogel compared to the fibrinogen adsorption in the unmodified silica hydrogel. PMID:22607091

  8. Method for making monolithic metal oxide aerogels

    DOEpatents

    Coronado, Paul R.

    1999-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  9. Update On Monolithic Fuel Fabrication Development

    SciTech Connect

    C. R Clark; J. M. Wight; G. C. Knighton; G. A. Moore; J. F. Jue

    2005-11-01

    Efforts to develop a viable monolithic research reactor fuel plate have continued at Idaho National Laboratory. These efforts have concentrated on both fabrication process refinement and scale-up to produce full sized fuel plates. Advancements have been made in the production of U-Mo foil including full sized foils. Progress has also been made in the friction stir welding and transient liquid phase bonding fabrication processes resulting in better bonding, more stable processes and the ability to fabricate larger fuel plates.

  10. Method for making monolithic metal oxide aerogels

    SciTech Connect

    Coronado, P.R.

    1999-09-28

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  11. Fluidized Bed Steam Reformer (FBSR) monolith formation

    SciTech Connect

    Jantzen, C.M.

    2007-07-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or 'mineralized' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydro-ceramics. All but one of the nine monoliths tested met the <2 g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydro-ceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form. (authors)

  12. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    SciTech Connect

    Jantzen, C

    2006-12-22

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

  13. Monolithic 3D CMOS Using Layered Semiconductors.

    PubMed

    Sachid, Angada B; Tosun, Mahmut; Desai, Sujay B; Hsu, Ching-Yi; Lien, Der-Hsien; Madhvapathy, Surabhi R; Chen, Yu-Ze; Hettick, Mark; Kang, Jeong Seuk; Zeng, Yuping; He, Jr-Hau; Chang, Edward Yi; Chueh, Yu-Lun; Javey, Ali; Hu, Chenming

    2016-04-01

    Monolithic 3D integrated circuits using transition metal dichalcogenide materials and low-temperature processing are reported. A variety of digital and analog circuits are implemented on two sequentially integrated layers of devices. Inverter circuit operation at an ultralow supply voltage of 150 mV is achieved, paving the way to high-density, ultralow-voltage, and ultralow-power applications. PMID:26833783

  14. InP monolithically integrated coherent transmitter.

    PubMed

    Andriolli, N; Fresi, F; Bontempi, F; Malacarne, A; Meloni, G; Klamkin, J; Poti, L; Contestabile, G

    2015-04-20

    A novel InP monolithically integrated coherent transmitter has been designed, fabricated and tested. The photonic integrated circuit consists of a distributed Bragg reflector laser and a modified nested Mach-Zehnder modulator having tunable input power splitters. Back-to-back coherent transmission for PDM-QPSK signals is reported up to 10 Gbaud (40 Gb/s) using the integrated laser and up to 32Gbaud (128 Gb/s) using an external low phase noise laser. PMID:25969111

  15. Monolithic solid oxide fuel cell development

    NASA Technical Reports Server (NTRS)

    Myles, K. M.; Mcpheeters, C. C.

    1989-01-01

    The feasibility of the monolithic solid oxide fuel cell (MSOFC) concept has been proven, and the performance has been dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials have been minimized, thus allowing successful fabrication of the MSOFC with few defects. The MSOFC shows excellent promise for development into a practical power source for many applications from stationary power, to automobile propulsion, to space pulsed power.

  16. Silica Embedded Metal Hydrides

    SciTech Connect

    Heung, L.K.; Wicks, G.G.

    1998-08-01

    A method to produce silica embedded metal hydride was developed. The product is a composite in which metal hydride particles are embedded in a matrix of silica. The silica matrix is highly porous. Hydrogen gas can easily reach the embedded metal hydride particles. The pores are small so that the metal hydride particles cannot leave the matrix. The porous matrix also protects the metal hydride particles from larger and reactive molecules such as oxygen, since the larger gas molecules cannot pass through the small pores easily. Tests show that granules of this composite can absorb hydrogen readily and withstand many cycles without making fines.

  17. Oxygen configurations in silica

    SciTech Connect

    Chelikowsky, James R.; Chadi, D. J.; Binggeli, N.

    2000-07-15

    We propose a transition state for oxygen in silica. This state is produced by the insertion of an oxygen molecule into the Si-O-Si bond, i.e., it consists of producing a Si-O-O-O-Si bond. This state allows molecular oxygen diffusion in silica without breaking the molecular O{sub 2} bond and it is energetically more stable than a peroxy configuration. This configuration may allow for exchange of molecular oxygen with the oxygen in the silica framework. (c) 2000 The American Physical Society.

  18. Nanoporous Carbon Monoliths with Tunable Thermal Insulation and Mechanical Properties.

    PubMed

    Wang, Xiaopeng; Chen, Fenghua; Luo, Zhenhua; Li, Hao; Zhao, Tong

    2016-01-01

    In this work, nanoscale porous carbon monoliths, with excellent compressive strength and thermal insulation, were obtained with a simple method of carbonizing cured phenol-formaldehyde resin/poly(methyl methacrylate) blends. Apparent density, pore size and morphology of the carbon monoliths were tailored by changing the composition, curing process and carbonization temperature. The continuous nanopores played a key role in enhancing mechanical and thermal performance of the carbon materials. When PMMA concentration was 25%, apparent density and thermal conductivity of the nanoporous carbonaceous monoliths were obtained as low as 1.07 g · cm⁻³ and 0.42 W/(m · K), decreasing by 29.4% and 35.4% than that of carbonaceous monoliths obtained from pure PF; while compressive strength of the nanoporous carbonaceous monoliths was as high as 34 MPa, which was improved over five times than that of pure PF carbon monoliths. PMID:27398592

  19. Strength and toughness of monolithic and composite silicon nitrides

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.

    1990-01-01

    The strength and toughness of two composite and two monolithic silicon nitrides were measured from 25 to 1400 C. The monolithic and composite materials were made from similar starting powders. Both of the composite materials contained 30 vol percent silicon carbide whiskers. All measurements were made by four point flexure in surrounding air and humidity. The composite and monolithic materials exhibited similar fast fracture properties as a function of temperature.

  20. Less common applications of monoliths III. Gas chromatography

    PubMed Central

    Svec, Frantisek; Kurganov, Alexander A.

    2008-01-01

    Porous polymer monoliths emerged about two decades ago. Despite this short time, they are finding applications in a variety of fields. In addition to the most common and certainly best known use of this new category of porous media as stationary phases in liquid chromatography, monolithic materials also found their applications in other areas. This review article focuses on monoliths in capillaries designed for separations in gas chromatography. PMID:17645884

  1. Cellulose-silica aerogels.

    PubMed

    Demilecamps, Arnaud; Beauger, Christian; Hildenbrand, Claudia; Rigacci, Arnaud; Budtova, Tatiana

    2015-05-20

    Aerogels based on interpenetrated cellulose-silica networks were prepared and characterised. Wet coagulated cellulose was impregnated with silica phase, polyethoxydisiloxane, using two methods: (i) molecular diffusion and (ii) forced flow induced by pressure difference. The latter allowed an enormous decrease in the impregnation times, by almost three orders of magnitude, for a sample with the same geometry. In both cases, nanostructured silica gel was in situ formed inside cellulose matrix. Nitrogen adsorption analysis revealed an almost threefold increase in pores specific surface area, from cellulose aerogel alone to organic-inorganic composite. Morphology, thermal conductivity and mechanical properties under uniaxial compression were investigated. Thermal conductivity of composite aerogels was lower than that of cellulose aerogel due to the formation of superinsulating mesoporous silica inside cellulose pores. Furthermore, composite aerogels were stiffer than each of reference aerogels. PMID:25817671

  2. Consolidation and densification methods for fibrous monolith processing

    DOEpatents

    Sutaria, Manish P.; Rigali, Mark J.; Cipriani, Ronald A.; Artz, Gregory J.; Mulligan, Anthony C.

    2004-05-25

    Methods for consolidation and densification of fibrous monolith composite structures are provided. Consolidation and densification of two- and three-dimensional fibrous monolith components having complex geometries can be achieved by pressureless sintering. The fibrous monolith composites are formed from filaments having at least a first material composition generally surrounded by a second material composition. The composites are sintered in an inert gas or nitrogen gas at a pressure of no more than about 30 psi to provide consolidated and densified fibrous monolith composites.

  3. Crystalline Silica Primer

    USGS Publications Warehouse

    Staff- Branch of Industrial Minerals

    1992-01-01

    substance and will present a nontechnical overview of the techniques used to measure crystalline silica. Because this primer is meant to be a starting point for anyone interested in learning more about crystalline silica, a list of selected readings and other resources is included. The detailed glossary, which defines many terms that are beyond the scope of this publication, is designed to help the reader move from this presentation to a more technical one, the inevitable next step.

  4. Silica, hybrid silica, hydride silica and non-silica stationary phases for liquid chromatography.

    PubMed

    Borges, Endler M

    2015-04-01

    Free silanols on the surface of silica are the "villains", which are responsible for detrimental interactions of those compounds and the stationary phase (i.e., bad peak shape, low efficiency) as well as low thermal and chemical stability. For these reasons, we began this review describing new silica and hybrid silica stationary phases, which have reduced and/or shielded silanols. At present, in liquid chromatography for the majority of analyses, reversed-phase liquid chromatography is the separation mode of choice. However, the needs for increased selectivity and increased retention of hydrophilic bases have substantially increased the interest in hydrophilic interaction chromatography (HILIC). Therefore, stationary phases and this mode of separation are discussed. Then, non-silica stationary phases (i.e., zirconium oxide, titanium oxide, alumina and porous graphitized carbon), which afford increased thermal and chemical stability and also selectivity different from those obtained with silica and hybrid silica, are discussed. In addition, the use of these materials in HILIC is also reviewed. PMID:25234386

  5. Bio-inspired immobilization of metal oxides on monolithic microreactor for continuous Knoevenagel reaction.

    PubMed

    Song, Wentong; Shi, Da; Tao, Shengyang; Li, Zhaoliang; Wang, Yuchao; Yu, Yongxian; Qiu, Jieshan; Ji, Min; Wang, Xinkui

    2016-11-01

    A facile method is reported to construct monolithic microreactor with high catalytic performance for Knoevenagel reaction. The microreactor is based on hierarchically porous silica (HPS) which has interconnected macro- and mesopores. Then the HPS is surface modified by pyrogallol (PG) polymer. Al(NO3)3 and Mg(NO3)2 are loaded on the surface of HPS through coordination with -OH groups of PG. After thermal treatment, Al(NO3)3 and Mg(NO3)2 are converted Al2O3 and MgO. The as-synthesized catalytic microreactor shows a high and stable performance in Knoevenagel reaction. The microreactor possess large surface area and interconnected pore structures which are beneficial for reactions. Moreover, this economic, facile and eco-friendly surface modification method can be used in loading more metal oxides for more reactions. PMID:27459172

  6. Robust naphthyl methacrylate monolithic column for high performance liquid chromatography of a wide range of solutes.

    PubMed

    Jonnada, Murthy; El Rassi, Ziad

    2015-08-28

    An organic monolithic column based on the co-polymerization of 2-naphthyl methacrylate (NAPM) as the functional monomer and trimethylolpropane trimethacrylate (TRIM) as the crosslinker was introduced for high performance reversed-phase liquid chromatography (RPC). The co-polymerization was performed in situ in a stainless steel column of 4.6mm i.d. in the presence of a ternary porogen consisting of 1-dodecanol and cyclohexanol. This monolithic column (referred to as naphthyl methacrylate monolithic column or NMM column) showed high mechanical stability at relatively high mobile phase flow velocity indicating that the column has excellent hydrodynamic characteristics. To characterize the NMM column, different probe molecules including alkyl benzenes, and aniline, benzene, toluene and phenol derivatives were chromatographed on the column and the results in terms of k, selectivity and plate counts were compared to those obtained on an octadecyl silica (ODS) column in order to assess the presence of π-π and hydrophobic interactions on the NMM column under otherwise the same elution conditions. The NMM column offered additional π-π interactions with aromatic molecules in addition to hydrophobic interactions under RPC elution conditions. Run-to-run and column-to-column reproducibility of solute k values were evaluated, and percent relative standard deviation of <1% and ∼2-3.5%, respectively, were obtained. Six standard proteins were readily separated on the NMM column using shallow (30min at 1.0mL/min), steep (10min at 1.0mL/min) and ultra steep (1min at 3.0mL/min) linear gradient elution at increasing ACN concentration in the mobile phase using a 10cm×4.6mm i.d. column in case of shallow and steep linear gradients and a 3cm×4.6mm i.d. column for ultra steep linear gradient. PMID:26228852

  7. Tailoring Elastic Properties of Silica Aerogels Cross-Linked with Polystyrene

    NASA Technical Reports Server (NTRS)

    Nguyen, Baochau N.; Meador, Mary Ann B.; Tousley, Marissa E.; Shonkwiler, Brian; McCorkle, Linda; Scheiman, Daniel A.; Palczer, Anna

    2009-01-01

    The effect of incorporating an organic linking group, 1,6-bis(trimethoxysilyl)hexane (BTMSH), into the underlying silica structure of a styrene cross-linked silica aerogel is examined. Vinyltrimethoxysilane (VTMS) is used to provide a reactive site on the silica backbone for styrene polymerization. Replacement of up to 88 mol 1 of the silicon from tetramethoxyorthosilicate with silicon derived from BTMSH and VTMS during the making of silica gels improves the elastic behavior in some formulations of the crosslinked aerogels, as evidenced by measurement of the recovered length after compression of samples to 251 strain. This is especially true for some higher density formulations, which recover nearly 100% of their length after compression to 251 strain twice. The compressive modulus of the more elastic monoliths ranged from 0.2 to 3 MPa. Although some of these monoliths had greatly reduced surface areas, changing the solvent used to produce the gels from methanol to ethanol increased the surface area in one instance from 6 to 220 sq m2/g with little affect on the modulus, elastic recovery, porosity, or density.

  8. Processing and characterization of multi-cellular monolithic bioceramics for bone regenerative scaffolds

    NASA Astrophysics Data System (ADS)

    Ari-Wahjoedi, Bambang; Ginta, Turnad Lenggo; Parman, Setyamartana; Abustaman, Mohd Zikri Ahmad

    2014-10-01

    Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics is excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm-3 respectively, pore linear density of ±35 cm-1, linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively.

  9. Study of silica sol-gel materials for sensor development

    NASA Astrophysics Data System (ADS)

    Lei, Qiong

    in disrupting R6G/silica attraction. Similar post-grafting method was applied to highly hydrated silica hydrogel monoliths. Rhodamine 6G (R6G) and fluorescein (Fl) molecules were used as probes to monitor the surface modification inside silica hydrogel by measuring anisotropy values of doped dyes. Due to the larger pore sizes, pore surface modification inside hydrogel was more effective than in alcogel. Surface modification by chemical reactions of 3-Aminopropyltrimethoxysilane (APTS) and methyltriethoxysilane (MTES) showed dramatic effect on guest molecule mobility, whereas surface modification by physical method, that is to increase ionic strength by using 1.0 M sodium chloride or to neutralize pore surfaces by adding pH 2.0 hydrochloric acid, barely showed any effect. Charge-reversal by APTS is a more effective way to modify pore surfaces in hydrogel than hydrophobic capping from MTES. The ease of tracking surface modification inside hydrogel by simply locating R6G dye band, and the negligible pore fluid effect on R6G in modified hydrogel makes R6G a better probe than Fl to monitor the pore surface modification process in silica hydrogel monoliths. During the study of post-grafting on silica alcogel thin film, a new approach to produce stable silica hydrogel-like thin films was discovered. Homogeneous thin film hydrogel-like samples with thickness between 100 nm and 300 nm were produced, and they showed a very hydrophilic surface, high dye loading capacity, and the support of molecular diffusion. The reactive stage of starting silica gel matrix was elongated by increasing environmental humidity, the reproducibility of sample preparation was greatly improved by controlling environmental humidity, and the dye loading capacity of samples was improved more than ten times by using phosphate buffer solutions (PBS). The concentration of R6G trapped inside hydrogel-like thin film could reach as high as 900 times of its saturated aqueous solution. Dye encapsulation can

  10. Preparation of hybrid monolithic columns via "one-pot" photoinitiated thiol-acrylate polymerization for retention-independent performance in capillary liquid chromatography.

    PubMed

    Zhang, Haiyang; Ou, Junjie; Liu, Zhongshan; Wang, Hongwei; Wei, Yinmao; Zou, Hanfa

    2015-09-01

    A novel "one-pot" approach was developed for ultrarapid preparation of various hybrid monolithic columns in UV-transparent fused-silica capillaries via photoinitiated thiol-acrylate polymerization of an acrylopropyl polyhedral oligomertic silsesquioxane (acryl-POSS) and a monothiol monomer (1-octadecanethiol or sodium 3-mercapto-1-propanesulfonate) within 5 min, in which the acrylate not only homopolymerizes, but also couples with the thiol. This unique combination of two types of free-radical reaction mechanisms offers a simple way to fabricate various acrylate-based hybrid monoliths. The physical characterization, including scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and thermal gravimetric analysis was performed. The results indicated that the monothiol monomers were successfully incorporated into acryl-POSS-based hybrid monoliths. The column efficiencies for alkylbenzenes on the C18-functionalized hybrid monolithic column reached to 60 000-73 500 plates/m at the velocity of 0.33 mm/s in capillary liquid chromatography, which was far higher than that of previously reported POSS-based columns prepared via thermal-initiated free-radical polymerization without adding any thiol monomers. By plotting the plate height (H) of the alkylbenzenes versus the linear velocity (u) of the mobile phase, the results revealed a retention-independent efficient performance of small molecules in the isocratic elution. These results indicated that more homogeneous hybrid monoliths formed via photoinitiated thiol-acrylate polymerization; particularly, the use of the multifunctional cross-linker possibly prevented the generation of gel-like micropores, reducing mass transfer resistance (C-term). Another sulfonate-containing hybrid monolithic column also exhibited hydrophobicity and ion-exchange mechanism, and the dynamic binding capacity was calculated as 71.1 ng/cm (75 μm i.d.). PMID:26223285

  11. Measurement of the eddy diffusion term in chromatographic columns. I. Application to the first generation of 4.6mm I.D. monolithic columns.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2011-08-01

    The corrected heights equivalent to a theoretical plate (HETP) of three 4.6mm I.D. monolithic Onyx-C(18) columns (Onyx, Phenomenex, Torrance, CA) of different lengths (2.5, 5, and 10 cm) are reported for retained (toluene, naphthalene) and non-retained (uracil, caffeine) small molecules. The moments of the peak profiles were measured according to the accurate numerical integration method. Correction for the extra-column contributions was systematically applied. The peak parking method was used in order to measure the bulk diffusion coefficients of the sample molecules, their longitudinal diffusion terms, and the eddy diffusion term of the three monolithic columns. The experimental results demonstrate that the maximum efficiency was 60,000 plates/m for retained compounds. The column length has a large impact on the plate height of non-retained species. These observations were unambiguously explained by a large trans-column eddy diffusion term in the van Deemter HETP equation. This large trans-rod eddy diffusion term is due to the combination of a large trans-rod velocity bias (≃3%), a small radial dispersion coefficient in silica monolithic columns, and a poorly designed distribution and collection of the sample streamlets at the inlet and outlet of the monolithic rod. Improving the performance of large I.D. monolithic columns will require (1) a detailed knowledge of the actual flow distribution across and along these monolithic rod and (2) the design of appropriate inlet and outlet distributors designed to minimize the nefarious impact of the radial flow heterogeneity on band broadening. PMID:21733524

  12. Evidence for enhanced optical properties through plasmon resonance energy transfer in silver silica nanocomposites

    NASA Astrophysics Data System (ADS)

    Mol, Beena; Joy, Lija K.; Thomas, Hysen; Thomas, Vinoy; Joseph, Cyriac; Narayanan, T. N.; Al-Harthi, Salim; Unnikrishnan, N. V.; Anantharaman, M. R.

    2016-02-01

    Silver nanoparticles were dispersed in the pores of monolithic mesoporous silica prepared by a modified sol-gel method. Structural and microstructural analyses were carried out by Fourier transform infrared spectroscopy and transmission electron microscopy. X-ray photoelectron spectroscopy was employed to determine the chemical states of silver in the silica matrix. Optical absorption studies show the evolution absorption band around 300 nm for silver (Ag) in a silica matrix and it was found to be redshifted to 422 nm on annealing. Photoluminescence studies indicate the presence of various luminescent emitting centers corresponding to silver ions and silver dimers in the SiO2 matrix. The enhancement of absorption and photoluminescence properties is attributed to plasmon resonance energy transfer from Ag nanoparticles to luminescent species in the matrix.

  13. Evidence for enhanced optical properties through plasmon resonance energy transfer in silver silica nanocomposites.

    PubMed

    Mol, Beena; Joy, Lija K; Thomas, Hysen; Thomas, Vinoy; Joseph, Cyriac; Narayanan, T N; Al-Harthi, Salim; Unnikrishnan, N V; Anantharaman, M R

    2016-02-26

    Silver nanoparticles were dispersed in the pores of monolithic mesoporous silica prepared by a modified sol-gel method. Structural and microstructural analyses were carried out by Fourier transform infrared spectroscopy and transmission electron microscopy. X-ray photoelectron spectroscopy was employed to determine the chemical states of silver in the silica matrix. Optical absorption studies show the evolution absorption band around 300 nm for silver (Ag) in a silica matrix and it was found to be redshifted to 422 nm on annealing. Photoluminescence studies indicate the presence of various luminescent emitting centers corresponding to silver ions and silver dimers in the SiO2 matrix. The enhancement of absorption and photoluminescence properties is attributed to plasmon resonance energy transfer from Ag nanoparticles to luminescent species in the matrix. PMID:26808999

  14. High-Tc superconducting monolithic phase shifter

    NASA Astrophysics Data System (ADS)

    Takemoto-Kobayashi, June H.; Jackson, Charles M.; Pettiette-Hall, Claire L.; Burch, John F.

    1992-03-01

    A high temperature superconducting (HTS) X-band phase shifter using a distributed Josephson inductance (DJI) approach was designed and fabricated. Phase swings of over 60 deg were measured at 65 K and below, with measurable phase shifts at temperatures above 77 K. High quality HTS films and superconducting quantum interference devices (SQUIDs) were deposited by laser ablation. A total of 40 HTS step edge SQUIDs were successfully integrated into a monolithic HTS circuit to produce a phase shifter in a resonant configuration. The magnitude of the Josephson inductance is calculated and a lumped element model is compared to measurements.

  15. Monolithic LTCC seal frame and lid

    DOEpatents

    Krueger, Daniel S.; Peterson, Kenneth A.; Stockdale, Dave; Duncan, James Brent; Riggs, Bristen

    2016-06-21

    A method for forming a monolithic seal frame and lid for use with a substrate and electronic circuitry comprises the steps of forming a mandrel from a ceramic and glass based material, forming a seal frame and lid block from a ceramic and glass based material, creating a seal frame and lid by forming a compartment and a plurality of sidewalls in the seal frame and lid block, placing the seal frame and lid on the mandrel such that the mandrel fits within the compartment, and cofiring the seal frame and lid block.

  16. Monolithic aerogels with nanoporous crystalline phases

    NASA Astrophysics Data System (ADS)

    Daniel, Christophe; Guerra, Gaetano

    2015-05-01

    High porosity monolithic aerogels with nanoporous crystalline phases can be obtained from syndiotactic polystyrene and poly(2,6-dimethyl-1,4-phenylene)oxide thermoreversible gels by removing the solvent with supercritical CO2. The presence of crystalline nanopores in the aerogels based on these polymers allows a high uptake associated with a high selectivity of volatile organic compounds from vapor phase or aqueous solutions even at very low activities. The sorption and the fast kinetics make these materials particularly suitable as sorption medium to remove traces of pollutants from water and moist air.

  17. HPLC-MS/MS Analyses Show That the Near-Starchless aps1 and pgm Leaves Accumulate Wild Type Levels of ADPglucose: Further Evidence for the Occurrence of Important ADPglucose Biosynthetic Pathway(s) Alternative to the pPGI-pPGM-AGP Pathway

    PubMed Central

    Muñoz, Francisco José; Li, Jun; Almagro, Goizeder; Montero, Manuel; Pujol, Pablo; Galarza, Regina; Kaneko, Kentaro; Oikawa, Kazusato; Wada, Kaede; Mitsui, Toshiaki; Pozueta-Romero, Javier

    2014-01-01

    In leaves, it is widely assumed that starch is the end-product of a metabolic pathway exclusively taking place in the chloroplast that (a) involves plastidic phosphoglucomutase (pPGM), ADPglucose (ADPG) pyrophosphorylase (AGP) and starch synthase (SS), and (b) is linked to the Calvin-Benson cycle by means of the plastidic phosphoglucose isomerase (pPGI). This view also implies that AGP is the sole enzyme producing the starch precursor molecule, ADPG. However, mounting evidence has been compiled pointing to the occurrence of important sources, other than the pPGI-pPGM-AGP pathway, of ADPG. To further explore this possibility, in this work two independent laboratories have carried out HPLC-MS/MS analyses of ADPG content in leaves of the near-starchless pgm and aps1 mutants impaired in pPGM and AGP, respectively, and in leaves of double aps1/pgm mutants grown under two different culture conditions. We also measured the ADPG content in wild type (WT) and aps1 leaves expressing in the plastid two different ADPG cleaving enzymes, and in aps1 leaves expressing in the plastid GlgC, a bacterial AGP. Furthermore, we measured the ADPG content in ss3/ss4/aps1 mutants impaired in starch granule initiation and chloroplastic ADPG synthesis. We found that, irrespective of their starch contents, pgm and aps1 leaves, WT and aps1 leaves expressing in the plastid ADPG cleaving enzymes, and aps1 leaves expressing in the plastid GlgC accumulate WT ADPG content. In clear contrast, ss3/ss4/aps1 leaves accumulated ca. 300 fold-more ADPG than WT leaves. The overall data showed that, in Arabidopsis leaves, (a) there are important ADPG biosynthetic pathways, other than the pPGI-pPGM-AGP pathway, (b) pPGM and AGP are not major determinants of intracellular ADPG content, and (c) the contribution of the chloroplastic ADPG pool to the total ADPG pool is low. PMID:25133777

  18. Creating deep soil core monoliths: Beyond the solum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil monoliths serve as useful teaching aids in the study of the Earth’s critical zone where rock, soil, water, air, and organisms interact. Typical monolith preparation has so far been confined to the 1 to 2-m depth of the solum. Critical ecosystem services provided by soils include materials from ...

  19. Catalytic Ignition and Upstream Reaction Propagation in Monolith Reactors

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.

    2007-01-01

    Using numerical simulations, this work demonstrates a concept called back-end ignition for lighting-off and pre-heating a catalytic monolith in a power generation system. In this concept, a downstream heat source (e.g. a flame) or resistive heating in the downstream portion of the monolith initiates a localized catalytic reaction which subsequently propagates upstream and heats the entire monolith. The simulations used a transient numerical model of a single catalytic channel which characterizes the behavior of the entire monolith. The model treats both the gas and solid phases and includes detailed homogeneous and heterogeneous reactions. An important parameter in the model for back-end ignition is upstream heat conduction along the solid. The simulations used both dry and wet CO chemistry as a model fuel for the proof-of-concept calculations; the presence of water vapor can trigger homogenous reactions, provided that gas-phase temperatures are adequately high and there is sufficient fuel remaining after surface reactions. With sufficiently high inlet equivalence ratio, back-end ignition occurs using the thermophysical properties of both a ceramic and metal monolith (coated with platinum in both cases), with the heat-up times significantly faster for the metal monolith. For lower equivalence ratios, back-end ignition occurs without upstream propagation. Once light-off and propagation occur, the inlet equivalence ratio could be reduced significantly while still maintaining an ignited monolith as demonstrated by calculations using complete monolith heating.

  20. Design considerations for monolithic unidirectional planar ring oscillators

    NASA Astrophysics Data System (ADS)

    Li, Zhenhua; Bao, Guojun; Ge, Yi; Wang, Zhongming; He, Anzhi; Tao, Hailin

    1996-09-01

    In this paper, the characteristics of monolithic unidirectional planar ring oscillator (PROs) are analyzed, and design criteria for PROs with low thresholds and large nonreciprocities are expounded on the basis of the eigenpolarization theory of monolithic nonplanar ring oscillators. A Nd:BGO PRO is designed to take advantage of its large Verdet coefficient.

  1. Method of fabricating a monolithic solid oxide fuel cell

    DOEpatents

    Minh, Nguyen Q.; Horne, Craig R.

    1994-01-01

    In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array.

  2. Method of fabricating a monolithic solid oxide fuel cell

    DOEpatents

    Minh, N.Q.; Horne, C.R.

    1994-03-01

    In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array. 10 figures.

  3. Fibrous monoliths: Economic ceramic matrix composites from powders [Final report

    SciTech Connect

    Rigali, Mark; Sutaria, Manish; Mulligan, Anthony; Creegan, Peter; Cipriani, Ron

    1999-05-26

    The project was to develop and perform pilot-scale production of fibrous monolith composites. The principal focus of the program was to develop damage-tolerant, wear-resistant tooling for petroleum drilling applications and generate a basic mechanical properties database on fibrous monolith composites.

  4. Kinetics of silica polymerization

    SciTech Connect

    Weres, O.; Yee, A.; Tsao, L.

    1980-05-01

    The polymerization of silicic acid in geothermal brine-like aqueous solutions to produce amorphous silica in colloidal form has been studied experimentally and theoretically. A large amount of high quality experimental data has been generated over the temperature rang 23 to 100{sup 0}C. Wide ranges of dissolved silica concentration, pH, and sodium chloride concentration were covered. The catalytic effects of fluoride and the reaction inhibiting effects of aluminum and boron were studied also. Two basic processes have been separately studied: the formation of new colloidal particles by the homogeneous nucleation process and the deposition of dissolved silica on pre-existing colloidal particles. A rigorous theory of the formation of colloidal particles of amorphous silica by homogeneous nucleation was developed. This theory employs the Lothe-Pound formalism, and is embodied in the computer code SILNUC which quantitatively models the homogeneous nucleation and growth of colloidal silica particles in more than enough detail for practical application. The theory and code were extensively used in planning the experimental work and analyzing the data produced. The code is now complete and running in its final form. It is capable of reproducing most of the experimental results to within experimental error. It is also capable of extrapolation to experimentally inaccessible conditions, i.e., high temperatures, rapidly varying temperature and pH, etc.

  5. Preparation of polyhedral oligomeric silsesquioxane based imprinted monolith.

    PubMed

    Li, Fang; Chen, Xiu-Xiu; Huang, Yan-Ping; Liu, Zhao-Sheng

    2015-12-18

    Polyhedral oligomeric silsesquioxane (POSS) was successfully applied, for the first time, to prepare imprinted monolithic column with high porosity and good permeability. The imprinted monolithic column was synthesized with a mixture of PSS-(1-Propylmethacrylate)-heptaisobutyl substituted (MA 0702), naproxon (template), 4-vinylpyridine, and ethylene glycol dimethacrylate, in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4). The influence of synthesis parameters on the retention factor and imprinting effect, including the amount of MA 0702, the ratio of template to monomer, and the ratio of monomer to crosslinker, was investigated. The greatest imprinting factor on the imprinted monolithic column prepared with MA 0702 was 22, about 10 times higher than that prepared in absence of POSS. The comparisons between MIP monoliths synthesized with POSS and without POSS were made in terms of permeability, column efficiency, surface morphology and pore size distribution. In addition, thermodynamic and Van Deemter analysis were used to evaluate the POSS-based MIP monolith. PMID:26627587

  6. Isocyanate Cross-Linked Silica: Structurally Strong Aerogels

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Sotiriou-Leventis, Chariklia; Zhang, Guo-Hui; Rawashdeh, Abdel-Monem M.

    2002-01-01

    Molecular-level synergism between the silica nanoparticles of pre-formed monoliths and molecular cross-linkers inverts the relative host-guest roles in glass-polymer composites, leading to new strong low-density materials. Attempts to load gels with variable amounts of polyurethane precursors such as di-ISO and diol end-capped polybutylene adipate followed by heat treatment, washing, and supercritical drying led to opaque materials, somewhat stronger than silica but still quite brittle and much inferior to the materials described above. Direct mixing of a diisocyanate and an alcohol-free sol has been attempted recently by Yim et al. Reportedly, that procedure leads to week-long gelation times and requires an at least equally long aging period. In our attempt to add various amounts of di-ISO in a base-catalyzed sol in PC, we also noticed a week-long gelation time. The resulting aerogels were translucent but no less brittle than native silica. According to more recent studies, if propylene carbonate is replaced with acetone, it leads not only to shorter processing times, but also to much stronger gels that can tolerate loads in excess of 40 kg in the arrangement presented. We attribute that behavior to the lower viscosity of acetone, that allows faster diffusion of the di-ISO solution within the pores before di-ISO has time to react with the surface of silica. Further studies are underway to vary the chemical identity of the diisocyanate, as well as the composition and density of silica.

  7. Silica in alkaline brines

    USGS Publications Warehouse

    Jones, B.F.; Rettig, S.L.; Eugster, H.P.

    1967-01-01

    Analysis of sodium carbonate-bicarbonate brines from closed basins in volcanic terranes of Oregon and Kenya reveals silica contents of up to 2700 parts per million at pH's higher than 10. These high concentrations of SiO 2 can be attributed to reaction of waters with silicates, and subsequent evaporative concentration accompanied by a rise in pH. Supersaturation with respect to amorphous silica may occur and persist for brines that are out of contact with silicate muds and undersaturated with respect to trona; correlation of SiO2 with concentration of Na and total CO2 support this interpretation. Addition of moredilute waters to alkaline brines may lower the pH and cause inorganic precipitation of substantial amounts of silica.

  8. Monolithic Hydrogen Peroxide Catalyst Bed Development

    NASA Technical Reports Server (NTRS)

    Ponzo, J. B.

    2003-01-01

    With recent increased industry and government interest in rocket grade hydrogen peroxide as a viable propellant, significant effort has been expended to improve on earlier developments. This effort has been predominately centered in improving heterogeneous. typically catalyst beds; and homogeneous catalysts, which are typically solutions of catalytic substances. Heterogeneous catalyst beds have traditionally consisted of compressed wire screens plated with a catalytic substance, usually silver, and were used m many RCS applications (X-1, Mercury, and Centaur for example). Aerojet has devised a heterogeneous catalyst design that is monolithic (single piece), extremely compact, and has pressure drops equal to or less than traditional screen beds. The design consists of a bonded stack of very thin, photoetched metal plates, silver coated. This design leads to a high surface area per unit volume and precise flow area, resulting in high, stable, and repeatable performance. Very high throughputs have been demonstrated with 90% hydrogen peroxide. (0.60 lbm/s/sq in at 1775-175 psia) with no flooding of the catalyst bed. Bed life of over 900 seconds has also been demonstrated at throughputs of 0.60 lbm/s/sq in across varying chamber pressures. The monolithic design also exhibits good starting performance, short break-in periods, and will easily scale to various sizes.

  9. Silica Precipitation and Lithium Sorption

    SciTech Connect

    Jay Renew

    2015-09-20

    This file contains silica precipitation and lithium sorption data from the project. The silica removal data is corrected from the previous submission. The previous submission did not take into account the limit of detection of the ICP-MS procedure.

  10. Polyacrylamide-based monolithic capillary column with coating of cellulose tris(3,5-dimethylphenyl-carbamate) for enantiomer separation in capillary electrochromatography.

    PubMed

    Dong, Xiaoli; Wu, Ren'an; Dong, Jing; Wu, Minghuo; Zhu, Yan; Zou, Hanfa

    2008-02-01

    A hydrophilic chiral capillary monolithic column for enantiomer separation in CEC was prepared by coating cellulose tris(3,5-dimethylphenyl-carbamate) (CDMPC) on porous hydrophilic poly(acrylamide-co-N,N'-methylene-bisacrylamide) (poly(AA-co-MBA)) monolithic matrix with confine of a fused-silica capillary. The coating conditions were optimized to obtain a stable and reproducible chiral stationary phase for CEC. The effect of organic modifier of ACN in aqueous mobile phase for the enantiomer separation by CEC was investigated, and the significant influence of ACN on the enantioresolution and electrochromatographic retention was observed. Twelve pairs of enantiomers including acidic, neutral, and basic analytes were tested and nine pairs of them were baseline-enantioresolved with acidic and basic aqueous mobile phases. A good within-column repeatability in retention time (RSD = 2.4%) and resolution (RSD = 3.2%) was obtained by consecutive injections of a neutral compound, benzoin, on a prepared chiral monolithic column, while the between-column repeatability in retention time (RSD = 6.4%) and resolution (RSD = 9.6%) was observed by column-to-column examination. The prepared monolithic stationary phase showed good stability in either acidic or basic mobile phase. PMID:18219649

  11. 3D assembly of silica encapsulated semiconductor nanocrystals.

    PubMed

    Rengers, Christin; Voitekhovich, Sergei V; Kittler, Susann; Wolf, André; Adam, Marion; Gaponik, Nikolai; Kaskel, Stefan; Eychmüller, Alexander

    2015-08-01

    Non-ordered porous networks, so-called aerogels, can be achieved by the 3D assembly of quantum dots (QDs). These materials are well suited for photonic applications, however a certain quenching of the photoluminescence (PL) intensity is observed in these structures. This PL quenching is mainly attributed to the energy transfer mechanisms that result from the close contact of the nanoparticles in the network. Here, we demonstrate the formation of a novel aerogel material with non-quenching PL behaviour by non-classical, reversible gel formation from tetrazole capped silica encapsulated QDs. Monitoring of the gelation/degelation by optical spectroscopy showed that the optical properties of the nanocrystals could be preserved in the 3D network since no spectral shifts and lifetime shortening, which can be attributed to the coupling between QDs, are observed in the gels as compared to the original colloidal solutions. In comparison with other QD-silica monoliths, QDs in our gels are homogeneously distributed with a distinct and controllable distance. In addition we show that the silica shell is porous and allows metal ions to pass through the shell and interact with the QD core causing detectable changes of the emission properties. We further show the applicability of this gelation method to other QD materials which sets the stage for facile preparation of a variety of mixed gel structures. PMID:26154738

  12. Nucleic acid separations using superficially porous silica particles

    PubMed Central

    Close, Elizabeth D.; Nwokeoji, Alison O.; Milton, Dafydd; Cook, Ken; Hindocha, Darsha M.; Hook, Elliot C.; Wood, Helen; Dickman, Mark J.

    2016-01-01

    Ion pair reverse-phase liquid chromatography has been widely employed for nucleic acid separations. A wide range of alternative stationary phases have been utilised in conjunction with ion pair reverse-phase chromatography, including totally porous particles, non-porous particles, macroporous particles and monolithic stationary phases. In this study we have utilised superficially porous silica particles in conjunction with ion pair reverse-phase liquid chromatography for the analysis of nucleic acids. We have investigated a range of different pore-sizes and phases for the analysis of a diverse range of nucleic acids including oligonucleotides, oligoribonucleotides, phosphorothioate oligonucleotides and high molecular weight dsDNA and RNA. The pore size of the superficially porous silica particles was shown to significantly affect the resolution of the nucleic acids. Optimum separations of small oligonucleotides such as those generated in RNase mapping experiments were obtained with 80 Å pore sizes and can readily be interfaced with mass spectrometry analysis. Improved resolution of larger oligonucleotides (>19 mers) was observed with pore sizes of 150 Å. The optimum resolution for larger dsDNA/RNA molecules was achieved using superficially porous silica particles with pore sizes of 400 Å. Furthermore, we have utilised 150 Å pore size solid-core particles to separate typical impurities of a fully phosphorothioated oligonucleotide, which are often generated in the synthesis of this important class of therapeutic oligonucleotide. PMID:26948761

  13. Hydrogel coated monoliths for enzymatic hydrolysis of penicillin G

    PubMed Central

    Smeltink, M. W.; Straathof, A. J. J.; Paasman, M. A.; van de Sandt, E. J. A. X.; Kapteijn, F.; Moulijn, J. A.

    2008-01-01

    The objective of this work was to develop a hydrogel-coated monolith for the entrapment of penicillin G acylase (E. coli, PGA). After screening of different hydrogels, chitosan was chosen as the carrier material for the preparation of monolithic biocatalysts. This protocol leads to active immobilized biocatalysts for the enzymatic hydrolysis of penicillin G (PenG). The monolithic biocatalyst was tested in a monolith loop reactor (MLR) and compared with conventional reactor systems using free PGA, and a commercially available immobilized PGA. The optimal immobilization protocol was found to be 5 g l−1 PGA, 1% chitosan, 1.1% glutaraldehyde and pH 7. Final PGA loading on glass plates was 29 mg ml−1 gel. For 400 cpsi monoliths, the final PGA loading on functionalized monoliths was 36 mg ml−1 gel. The observed volumetric reaction rate in the MLR was 0.79 mol s−1 m−3monolith. Apart from an initial drop in activity due to wash out of PGA at higher ionic strength, no decrease in activity was observed after five subsequent activity test runs. The storage stability of the biocatalysts is at least a month without loss of activity. Although the monolithic biocatalyst as used in the MLR is still outperformed by the current industrial catalyst (immobilized preparation of PGA, 4.5 mol s−1 m−3catalyst), the rate per gel volume is slightly higher for monolithic catalysts. Good activity and improved mechanical strength make the monolithic bioreactor an interesting alternative that deserves further investigation for this application. Although moderate internal diffusion limitations have been observed inside the gel beads and in the gel layer on the monolith channel, this is not the main reason for the large differences in reactor performance that were observed. The pH drop over the reactor as a result of the chosen method for pH control results in a decreased performance of both the MLR and the packed bed reactor compared to the batch system. A different

  14. Epoxy Grout With Silica Thickener

    NASA Technical Reports Server (NTRS)

    Mcclung, C. E.

    1984-01-01

    Grout cures quickly, even in presence of hydraulic oil. Grout is mixture of aggregate particles, finely-divided silica, epoxy resin, and triethylenetetramine curing agent, with mixture containing about 85 percent silica and aggregate particle sand 15 percent resin and curing agent. Silica is thickening agent and keeps grout from sagging.

  15. Fabrication and evaluation of an organic monolithic column based upon the polymerisation of hexyl methacrylate with 1,6-hexanediol ethoxylate diacrylate for the separation of small molecules by capillary liquid chromatography.

    PubMed

    Alshitari, Wael; Quigley, Cristina Legido; Smith, Norman

    2015-08-15

    This paper describes the fabrication of a new porous monolith, prepared in 100μm i.d. capillaries by the co-polymerisation of hexyl methacrylate with 1,6-hexanediol ethoxylate diacrylate, poly (HMA-co-1,6 HEDA), in the presence of azobisisobutyronitrile, 1, 4-butanediol and 1-propanol were used as porogens for the monoliths; the monoliths were then used as a stationary phase for capillary liquid chromatography. Two cross linkers namely 1,6 HEDA and EDMA were utilised in order to investigate the effects of cross linker length on the separation efficiency of small molecules, and it was found that the efficiency of the separation improved tenfold when using the longer cross linker, 1,6 HEDA. This improvement is associated with the increase in number of methylene groups which resulted in an increased number of mesopores, less than 50nm. The 1,6 HEDA based monolith showed a high porosity (90%) and no evidence of swelling or shrinking with the use of organic solvents. Moreover, the 1,6 HEDA monolith demonstrated high reproducibility for the separation of the retained compounds anisole and naphthalene; these showed retention time RSDs of 1.79% and 2.74% respectively. The fabricated monolith also demonstrated high selectivity for neutral non-polar molecules, weak acids, and basic molecules. The asymmetry factors for basic molecules (nortriptyline and amitriptyline) were 1.5 and 1.3 respectively, indicating slight tailing, which is often noticeable on silica based phases due to secondary interactions between basic moieties and the hydroxyl groups of the silica. PMID:25966388

  16. Novel highly hydrophilic zwitterionic monolithic column for hydrophilic interaction chromatography.

    PubMed

    Jiang, Zhengjin; Smith, Norman W; Ferguson, Paul D; Taylor, Mark R

    2009-08-01

    A novel zwitterionic hydrophilic porous poly(SPV-co-MBA) monolithic column was prepared by thermal co-polymerisation of 1-(3-sulphopropyl)-4-vinylpyridinium-betaine (4-SPV) and N,N'-methylenebisacrylamide (MBA). An HILIC/RP dual separation mechanism was observed on this optimised poly(SPV-co-MBA) monolithic column and the composition of the mobile phase corresponding to the transition from the HILIC to the RP mode was around 30% ACN in water. Higher hydrophilicity was achieved on this novel monolithic column compared to the poly(N,N-dimethyl-N-methacryloxyethyl-N-(3-sulphopropyl)ammonium betaine-co-ethylene dimethacrylate) monolithic column. Permeability studies showed slight swelling and/or shrinking with mobile phases of different polarity. As might be anticipated, a weak electrostatic interaction for charged analytes was also observed by studying the influence of mobile phase pH and salt concentration on their retention on the poly(SPV-co-MBA) monolithic column. The final optimised poly(SPV-co-MBA) monolith showed comparable selectivities to commercial ZIC-pHILIC phases for polar test analytes. Fast separation of five pyrimidines and purines was achieved in less than 1 min due to the high permeability of the monolithic column. Additionally, baseline separation of nine benzoic acid derivatives was also observed using either a pH or ACN gradient. PMID:19606441

  17. Rapid process for producing transparent, monolithic porous glass

    DOEpatents

    Coronado, Paul R.

    2006-02-14

    A process for making transparent porous glass monoliths from gels. The glass is produced much faster and in much larger sizes than present technology for making porous glass. The process reduces the cost of making large porous glass monoliths because: 1) the process does not require solvent exchange nor additives to the gel to increase the drying rates, 2) only moderate temperatures and pressures are used so relatively inexpensive equipment is needed, an 3) net-shape glass monoliths are possible using this process. The process depends on the use of temperature to control the partial pressure of the gel solvent in a closed vessel, resulting in controlled shrinking during drying.

  18. A decoupled monolithic projection method for natural convection problems

    NASA Astrophysics Data System (ADS)

    Pan, Xiaomin; Kim, Kyoungyoun; Lee, Changhoon; Choi, Jung-Il

    2016-06-01

    We propose an efficient monolithic numerical procedure based on a projection method for solving natural convection problems. In the present monolithic method, the buoyancy, linear diffusion, and nonlinear convection terms are implicitly advanced by applying the Crank-Nicolson scheme in time. To avoid an otherwise inevitable iterative procedure in solving the monolithic discretized system, we use a linearization of the nonlinear convection terms and approximate block lower-upper (LU) decompositions along with approximate factorization. Numerical simulations demonstrate that the proposed method is more stable and computationally efficient than other semi-implicit methods, preserving temporal second-order accuracy.

  19. Monolithic fuel injector and related manufacturing method

    DOEpatents

    Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; York, William David; Stevenson, Christian Xavier

    2012-05-22

    A monolithic fuel injection head for a fuel nozzle includes a substantially hollow vesicle body formed with an upstream end face, a downstream end face and a peripheral wall extending therebetween, an internal baffle plate extending radially outwardly from a downstream end of the bore, terminating short of the peripheral wall, thereby defining upstream and downstream fuel plenums in the vesicle body, in fluid communication by way of a radial gap between the baffle plate and the peripheral wall. A plurality of integral pre-mix tubes extend axially through the upstream and downstream fuel plenums in the vesicle body and through the baffle plate, with at least one fuel injection hole extending between each of the pre-mix tubes and the upstream fuel plenum, thereby enabling fuel in the upstream plenum to be injected into the plurality of pre-mix tubes. The fuel injection head is formed by direct metal laser sintering.

  20. Monolithic cascade-type solar cells

    NASA Technical Reports Server (NTRS)

    Yamamoto, S.; Shibukawa, A.; Yamaguchi, M.

    1985-01-01

    Solar cells consist of a semiconductor base, a bottom cell with a band-gap energy of E1, and a top cell with a band-gap energy of E2, and 0.96 E1 1.36 eV and (0.80 E + 0.77) eV E2 (0.80 E1 + 0.92) eV. A monolithic cascade-type solar cell was prepared with an n(+)-type GaAs base, a GaInAs bottom solar cell, and a GaAiInAs top solar cell. The surface of the cell is coated with a SiO antireflection film. The efficiency of the cell is 32%.

  1. A monolithic bolometer array suitable for FIRST

    NASA Technical Reports Server (NTRS)

    Bock, J. J.; LeDuc, H. G.; Lange, A. E.; Zmuidzinas, J.

    1997-01-01

    The development of arrays of infrared bolometers that are suitable for use in the Far Infrared and Submillimeter Telescope (FIRST) mission is reported. The array architecture is based on the silicon nitride micromesh bolometer currently baselined for use in the case of the Planck mission. This architecture allows each pixel to be efficiently coupled to one or both polarizations and to one or more spatial models of radiation. Micromesh structures are currently being developed, coupled with transistor-edge sensors and read out by a SQUID amplifier. If these devices are successful, then the relatively large cooling power available at 300 mK may enable a SQUID-based multiplexer to be integrated on the same wafer as the array, creating a monolithic, fully multiplexed, 2D array with relatively few connections to the sub-Kelvin stage.

  2. A monolithic thin film electrochromic window

    SciTech Connect

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K. . Electro-Optics Technology Center); Wei, G. ); Yu, P.C. )

    1991-01-01

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors' institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  3. A monolithic thin film electrochromic window

    SciTech Connect

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K.; Wei, G.; Yu, P.C.

    1991-12-31

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors` institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  4. Monolithically Peltier-cooled laser diodes

    SciTech Connect

    Hava, S.; Hunsperger, R.G.; Sequeira, H.B.

    1984-04-01

    A new method of cooling a GaAs/GaAlAs laser in an optical integrated circuit or on a discrete chip, by adding an integral thermoelectric (Peltier) cooling and heat spreading device to the laser, is presented. This cooling both reduces and stabilizes the laser junction temperature to minimize such deleterious effects as wavelength drift due to heating. A unified description of the electrical and thermal properties of a monolithic semiconductor mesa structure is given. Here it is shown that an improvement in thermal characteristics is obtained by depositing a relatively thick metallic layer, and by using this layer as a part of an active Peltier structure. Experimental results reveal a 14-percent increase in emitted power (external quantum efficiency) due to passive heat spreading and a further 8-percent if its Peltier cooler is operated. Fabrication techniques used to obtain devices exhibiting the above performance characteristics are given. 21 references.

  5. Wide-bore monolithic column for electrochromatography.

    PubMed

    Yuan, Ruijuan; Ding, Guosheng; Guo, Yugao; Liu, Danning; Bao, James J

    2007-06-01

    A new wide-bore electrophoresis (WE) system adopting an inner cooling device was set up to perform electrochromatography. In this system, a quartz tube of 1.2 mm inner diameter was used as the separation channel. The Joule heat generated during electrophoresis was removed timely through the outer surface of the quartz tube and a cooling capillary inserted into the quartz tube. A proper coolant passed through the cooling capillary to further improve the cooling efficiency. In the primary research, a polyacrylamide monolithic column was successfully prepared in this quartz tube. Then it was evaluated in the electrochromatographic mode. An electric field strength as high as 625 V/cm can be applied to this system without obvious deviation of the current from the linear curve of the Ohm plot. Sample volume as high as 1 microL was injected into the WE system and reasonable efficiency was obtained for separation of the test compounds. PMID:17480039

  6. Development of 20 GHz monolithic transmit modules

    NASA Technical Reports Server (NTRS)

    Higgins, J. A.

    1988-01-01

    The history of the development of a transmit module for the band 17.7 to 20.2 GHz is presented. The module was to monolithically combine, on one chip, five bits of phase shift, a buffer amplifier and a power amplifier to produce 200 mW to the antenna element. The approach taken was MESFET ion implanted device technology. A common pinch-off voltage was decided upon for each application. The beginning of the total integration phases revealed hitherto unencountered hazards of large microwave circuit integration which were successfully overcome. Yield and customer considerations finally led to two separate chips, one containing the power amplifiers and the other containing the complete five bit phase shifter.

  7. Monolithic short wave infrared (SWIR) detector array

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A monolithic self-scanned linear detector array was developed for remote sensing in the 1.1- 2.4-micron spectral region. A high-density IRCCD test chip was fabricated to verify new design approaches required for the detector array. The driving factors in the Schottky barrier IRCCD (Pdsub2Si) process development are the attainment of detector yield, uniformity, adequate quantum efficiency, and lowest possible dark current consistent with radiometric accuracy. A dual-band module was designed that consists of two linear detector arrays. The sensor architecture places the floating diffusion output structure in the middle of the chip, away from the butt edges. A focal plane package was conceptualized and includes a polycrystalline silicon substrate carrying a two-layer, thick-film interconnecting conductor pattern and five epoxy-mounted modules. A polycrystalline silicon cover encloses the modules and bond wires, and serves as a radiation and EMI shield, thermal conductor, and contamination seal.

  8. Monolithic microwave integrated circuit water vapor radiometer

    NASA Technical Reports Server (NTRS)

    Sukamto, L. M.; Cooley, T. W.; Janssen, M. A.; Parks, G. S.

    1991-01-01

    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility.

  9. Structure-Property Relationships in Porous 3-D Nanostructures as a Function of Preparation Conditions: Isocyanate Cross-Linked Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Capadona, Lynn A.; McCorkle, Linda; Papadopoulos, Demetrios S.; Leventis, Nicholas

    2007-01-01

    Sol-gel derived silica aerogels are attractive candidates for many unique thermal, optical, catalytic, and chemical applications because of their low density and high mesoporosity. However, their inherent fragility has restricted use of aerogel monoliths to applications where they are not subject to any load. We have previously reported cross-linking the mesoporous silica structure of aerogels with di-isocyanates, styrenes or epoxies reacting with amine decorated silica surfaces. These approaches have been shown to significantly increase the strength of aerogels with only a small effect on density or porosity. Though density is a prime predictor of properties such as strength and thermal conductivity for aerogels, it is becoming clear from previous studies that varying the silica backbone and size of the polymer cross-link independently can give rise to combinations of properties which cannot be predicted from density alone. Herein, we examine the effects of four processing parameters for producing this type of polymer cross-linked aerogel on properties of the resulting monoliths. We focus on the results of 13C CP-MAS NMR which gives insight to the size and structure of polymer cross-link present in the monoliths, and relates the size of the cross-links to microstructure, mechanical properties and other characteristics of the materials obtained.

  10. Structure-Property Relationships in Porous 3-D Nanostructures as a Function of Preparation Conditions: Isocyanate Cross-Linked Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Capadona, Lynn A.; McCorkle, Linda; Padadopoulos, Demetrios S.; Leventis, Nicholas

    2007-01-01

    Sol-gel derived silica aerogels are attractive candidates for many unique thermal, optical, catalytic, and chemical applications because of their low density and high mesoporosity. However, their inherent fragility has restricted use of aerogel monoliths to applications where they are not subject to any load. We have previously reported cross-linking the mesoporous silica structure of aerogels with di-isocyanates, styrenes or epoxies reacting with amine decorated silica surfaces. These approaches have been shown to significantly increase the strength of aerogels with only a small effect on density or porosity. Though density is a prime predictor of properties such as strength and thermal conductivity for aerogels, it is becoming clear from previous studies that varying the silica backbone and size of the polymer cross-link independently can give rise to combinations of properties which cannot be predicted from density alone. Herein, we examine the effects of four processing parameters for producing this type of polymer cross-linked aerogel on properties of the resulting monoliths. We focus on the results of C-13 CP-MAS NMR which gives insight to the size and structure of polymer cross-link present in the monoliths, and relates the size of the cross-links to microstructure, mechanical properties and other characteristics of the materials obtained.

  11. Neutral, Charged and Stratified Polar Monoliths for Hydrophilic Interaction Capillary Electrochromatography

    PubMed Central

    Gunasena, Dilani N.; El Rassi, Ziad

    2013-01-01

    Novel polar monoliths were introduced for hydrophilic interaction capillary electrochromatography (HI-CEC). In one case, a neutral polar monolith resulted from the in situ polymerization of glyceryl methacrylate (GMM) and pentaerythritol triacrylate (PETA) in a ternary porogenic solvent. GMM and PETA possess hydroxyl functional groups, which impart the monolith with hydrophilic interaction sites. This monolith is designated as hydroxy monolith. Although the hydroxy monolith is neutral and void of fixed charges on the surface, a relatively strong cathodal EOF was observed due to the electric double layer formed by the adsorption of ions from the mobile phase, producing a bulk mobile phase flow. The second monolith is charged and referred to as AP-monolith that possesses amine/amide functionalities on its surface, and was prepared by the in situ polymerization of N-(3-aminopropyl) methacrylamide hydrochloride (NAPM) and ethylene dimethacrylate (EDMA) in the presence of cyclohexanol, dodecanol and methanol as porogens. Over the pH range studied a strong anodal EOF was observed. The AP-monolith was further exploited in HI-CEC by modifying its surface with neutral mono- and oligosaccharides to produce a series of the so called sugar modified AP-monoliths (SMAP-monolith), which are considered as stratified hydrophilic monoliths possessing a sub-layer of polar amine/amide groups and a top layer of sugar (a polyhydroxy top layer).The SMAP-monoliths can be viewed as a blend of both the hydroxy monolith and the AP-monolith. The polarity of the various monoliths seems to follow the order: hydroxy monolith < AP-monolith < SMAP-monolith. The novel monoliths were characterized over a wide range of elution conditions with a variety of polar solutes including phenols, substituted phenols, nucleic acid bases, nucleosides and nucleotides PMID:23972465

  12. The fabrication of monolithic capillary column based on poly (bisphenol A epoxy vinyl ester resin-co-ethylene glycol dimethacrylate) and its applications for the separation of small molecules in high performance liquid chromatography.

    PubMed

    Niu, Wenjing; Wang, Lijuan; Bai, Ligai; Yang, Gengliang

    2013-07-01

    A new polymeric monolith was synthesized in fused-silica capillary by in situ polymerization technique. In the polymerization, bisphenol A epoxy vinyl ester resin (VER) was used as the functional monomer, ethylene glycol dimethacrylate (EDMA) as the crosslinking monomer, 1,4-butanediol, 1-propanol and water as the co-porogens, and azobisisobutyronitrile (AIBN) as the initiator. The conditions of polymerization have been optimized. Morphology of the prepared poly (VER-co-EDMA) monolith was investigated by the scanning electron microscopy (SEM); pore properties were assayed by mercury porosimetry and nitrogen adsorption. The optimized poly (VER-co-EDMA) monolith showed a uniform structure, good permeability and mechanical stability. Then, the column was used as the stationary phase of high performance liquid chromatography (HPLC) to separate the mixture of benzene derivatives. The best column efficiency achieved for phenol was 235790 theoretical plates per meter. Baseline separations of benzene derivatives and halogenated benzene compounds under optimized isocratic mode conditions were achieved with high column efficiency. The column showed good reproducibility: the relative standard deviation (RSD) values based on the retention times (n=3) for run-to-run, column-to-column and batch-to-batch were less than 0.98, 1.68, 5.48%, respectively. Compared with poly (BMA-co-EDMA) monolithic column, the proposed monolith exhibited more efficiency in the separation of small molecules. PMID:23726080

  13. Hierarchical Porous Polystyrene Monoliths from PolyHIPE.

    PubMed

    Yang, Xinjia; Tan, Liangxiao; Xia, Lingling; Wood, Colin D; Tan, Bien

    2015-09-01

    Hierarchical porous polystyrene monoliths (HCP-PolyHIPE) are obtained by hypercrosslinking poly(styrene-divinylbenzene) monoliths prepared by polymerization of high internal phase emulsions (PolyHIPEs). The hypercrosslinking is achieved using an approach known as knitting which employs formaldehyde dimethyl acetal (FDA) as an external crosslinker. Scanning electron microscopy (SEM) confirms that the macroporous structure in the original monolith is retained during the knitting process. By increasing the amount of divinylbenzene (DVB) in PolyHIPE, the BET surface area and pore volume of the HCP-PolyHIPE decrease, while the micropore size increases. BET surface areas of 196-595 m(2) g(-1) are obtained. The presence of micropores, mesopores, and macropores is confirmed from the pore size distribution. With a hierarchical porous structure, the monoliths reveal comparable gas sorption properties and potential applications in oil spill clean-up. PMID:26178423

  14. 27. DETAIL VIEW OF CONCRETE MONOLITH CONSTRUCTION AT DOWNSTREAM END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. DETAIL VIEW OF CONCRETE MONOLITH CONSTRUCTION AT DOWNSTREAM END OF WEST MAIN LOCK WALL, LOOKiNG SOUTHEAST - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 26R, Alton, Madison County, IL

  15. 62. VIEW SHOWING INSTALLATION TAINTER VALVE MACHINERY MONOLITH NO. 321, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. VIEW SHOWING INSTALLATION TAINTER VALVE MACHINERY MONOLITH NO. 32-1, LOOKING WEST Photograph No. 8571. October 24, 1949 - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL

  16. 31. SPILLWAY CHANNEL WALLS REINF DETAILS; MONOLITHS E21 AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. SPILLWAY CHANNEL WALLS REINF - DETAILS; MONOLITHS E-21 AND W-21. Sheet S-45, May, 1940. File no. 342/58. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  17. 10. LOCK CONSTRUCTION PHOTO SHOWING CONCRETE MONOLITHS FOR WALLS, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. LOCK CONSTRUCTION PHOTO SHOWING CONCRETE MONOLITHS FOR WALLS, LOOKING NORTH. August 1934 - Mississippi River 9-Foot Channel Project, Lock & Dam No. 16, Upper Mississippi River, Muscatine, Muscatine County, IA

  18. 25. DETAIL VIEW OF CONCRETE MONOLITH CONSTRUCTION AT UPPER END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. DETAIL VIEW OF CONCRETE MONOLITH CONSTRUCTION AT UPPER END OF MAIN LOCK AND DAM PIERS, LOOKING SOUTHEAST (DOWNSTREAM). NOTE GANTRY CRANES - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 26R, Alton, Madison County, IL

  19. Advances in monoliths and related porous materials for microfluidics.

    PubMed

    Knob, Radim; Sahore, Vishal; Sonker, Mukul; Woolley, Adam T

    2016-05-01

    In recent years, the use of monolithic porous polymers has seen significant growth. These materials present a highly useful support for various analytical and biochemical applications. Since their introduction, various approaches have been introduced to produce monoliths in a broad range of materials. Simple preparation has enabled their easy implementation in microchannels, extending the range of applications where microfluidics can be successfully utilized. This review summarizes progress regarding monoliths and related porous materials in the field of microfluidics between 2010 and 2015. Recent developments in monolith preparation, solid-phase extraction, separations, and catalysis are critically discussed. Finally, a brief overview of the use of these porous materials for analysis of subcellular and larger structures is given. PMID:27190564

  20. 26. DETAIL VIEW OF CONCRETE MONOLITH CONSTRUCTION AT UPPER END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. DETAIL VIEW OF CONCRETE MONOLITH CONSTRUCTION AT UPPER END OF MAIN LOCK AND DAM PIERS, LOOKING SOUTHEAST (DOWNSTREAM) - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 26R, Alton, Madison County, IL

  1. 53. VIEW OF ROCK FOUNDATIONS AIR CLEANED FOR MONOLITHS 1722, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. VIEW OF ROCK FOUNDATIONS AIR CLEANED FOR MONOLITHS 17-22, INTERMEDIATE WALL, LOOKING NORTH Photograph No. 12840. September 10, 1948 - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL

  2. Preparation and characterization of macroporous monoliths imprinted with erythromycin.

    PubMed

    Vlakh, E G; Stepanova, M A; Pisarev, O A; Tennikova, T B

    2015-08-01

    The synthesis of macroporous molecularly imprinted monoliths was performed using the monomers system 2-hydroxyethyl methacrylate-ethylene glycol dimethacrylate and erythromycin as a template. The copolymerization was carried out in situ inside 50 mm × 4.6 mm i.d. stainless-steel tubing. The morphology of the monoliths was examined with scanning electron microscopy. The porous characteristics were determined both from the data of hydrodynamic permeability of monoliths and by means of mercury intrusion porosimetry. The retention parameters of target substance (erythromycin), values of calculated imprinting factors and apparent dynamic dissociation constants were obtained for monoliths prepared with the application of different amount of template (4, 8 and 12 mol%). The separations of the mixtures azithromycin/erythromycin and ciprofloxacin/erythromycin were demonstrated. Additionally, the possibility of erythromycin quantification in human blood plasma was shown. PMID:26033867

  3. Modeling vitreous silica bilayers

    NASA Astrophysics Data System (ADS)

    Kumar, Avishek; Wilson, Mark; Sherrington, David; Thorpe, Michael

    2014-03-01

    The recent synthesis and imaging of bilayers of vitreous silica has led to a wealth of new information. We have modeled the experimentally-observed bilayer using a computer assembly procedure to form a network of corner-sharing tetrahedra, which is then mirror-reflected to form a bilayer. We show that the vitreous silica bilayer has additional macroscopic degrees of freedom iff there is a symmetry plane through the center of the bilayer going through the central layer of oxygen ions that join the upper and lower monolayers. We have computer-refined the experimental coordinates to determine the density, and other structural characteristics such as the Si-Si pair distribution function, Si-O-Si bond angle distribution and the Aboav-Weaire law.

  4. Viscoelasticity of silica gels

    SciTech Connect

    Scherer, G.W.

    1995-12-01

    The response of silica gels to mechanical loads depends on the properties of the solid phase and the permeability of the network. Understanding this behavior is essential for modeling of stresses developed during drying or heating of gels. The permeability and the mechanical properties are readily determined from a simple beam-bending experiment, by measuring the load relaxation that occurs at constant deflection. Load decay results from movement of the liquid within the network; in addition, there may be viscoelastic relaxation of the network itself. Silica gel is viscoelastic in chemically aggressive media, but in inert liquids (such as ethanol or acetone) it is elastic. Experiments show that the viscoelastic relaxation time decreases as the concentration and pH of the water in the pore liquid increase. During drying, the permeability decreases and the viscosity increases, both exhibiting a power-law dependence on density of the gel network.

  5. Extended Leach Testing of Simulated LAW Cast Stone Monoliths

    SciTech Connect

    Serne, R. Jeffrey; Westsik, Joseph H.; Williams, Benjamin D.; Jung, H. B.; Wang, Guohui

    2015-07-09

    This report describes the results from long-term laboratory leach tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate the release of key constituents from monoliths of Cast Stone prepared with four simulated low-activity waste (LAW) liquid waste streams. Specific objectives of the Cast Stone long-term leach tests described in this report focused on four activities: 1. Extending the leaching times for selected ongoing EPA-1315 tests on monoliths made with LAW simulants beyond the conventional 63-day time period up to 609 days reported herein (with some tests continuing that will be documented later) in an effort to evaluate long-term leaching properties of Cast Stone to support future performance assessment activities. 2. Starting new EPA-1315 leach tests on archived Cast Stone monoliths made with four LAW simulants using two leachants (deionized water [DIW] and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water [VZP]). 3. Evaluating the impacts of varying the iodide loading (starting iodide concentrations) in one LAW simulant (7.8 M Na Hanford Tank Waste Operations Simulator (HTWOS) Average) by manufacturing new Cast Stone monoliths and repeating the EPA-1315 leach tests using DIW and the VZP leachants. 4. Evaluating the impacts of using a non-pertechnetate form of Tc that is present in some Hanford tanks. In this activity one LAW simulant (7.8 M Na HTWOS Average) was spiked with a Tc(I)-tricarbonyl gluconate species and then solidified into Cast Stone monoliths. Cured monoliths were leached using the EPA-1315 leach protocol with DIW and VZP. The leach results for the Tc-Gluconate Cast Stone monoliths were compared to Cast Stone monoliths pertechnetate.

  6. Finite element analysis of monolithic solid oxide fuel cells

    SciTech Connect

    Saigal, A. . Dept. of Mechanical Engineering); Majumdar, S. )

    1992-01-01

    This paper investigates the stress and fracture behavior of a monolithic solid oxide fuel cell (MSOFC) currently under joint development by Allied Signal Corporation and Argonne National Laboratory. The MSOFC is an all-ceramic fuel cell capable of high power density and tolerant of a variety of hydrocarbon fuels, making it potentially attractive for stationary utility and mobile transportation systems. The monolithic design eliminates inactive structural supports, increases active surface area, and lowers voltage losses caused by internal resistance.

  7. Finite element analysis of monolithic solid oxide fuel cells

    SciTech Connect

    Saigal, A.; Majumdar, S.

    1992-04-01

    This paper investigates the stress and fracture behavior of a monolithic solid oxide fuel cell (MSOFC) currently under joint development by Allied Signal Corporation and Argonne National Laboratory. The MSOFC is an all-ceramic fuel cell capable of high power density and tolerant of a variety of hydrocarbon fuels, making it potentially attractive for stationary utility and mobile transportation systems. The monolithic design eliminates inactive structural supports, increases active surface area, and lowers voltage losses caused by internal resistance.

  8. Phenylalanine functionalized zwitterionic monolith for hydrophobic interaction electrochromatography.

    PubMed

    Wang, Jiabin; Jia, Wenchao; Lin, Xucong; Wu, Xiaoping; Xie, Zenghong

    2013-12-01

    A novel phenylalanine (Phe) functionalized zwitterionic monolith for hydrophobic electrochromatography was prepared by a two-step procedure involving the synthesis of glycidyl methacrylate based polymer monolith and subsequent on-column chemical modification with Phe via ring-opening reaction of epoxides. Benefitting from the hydrophobicity of both methacrylate-based matrix and aromatic group of Phe, this monolith could exhibit good hydrophobic interaction for the separation. Typical RP chromatographic behavior was observed toward various solutes. The well-controlled cathodic or anodic EOF of the prepared column could be facilely switched by altering the pH values of running buffers. The separation mechanism of this Phe functionalized zwitterionic monolith is discussed in detail. Two mixed-mode mechanisms of RP/cation exchange and RP/anion exchange could be further realized on the same monolith in different pH condition of the mobile phase. Versatile separation capabilities of neutral, basic, and acidic analytes have been successfully achieved in this zwitterionic monolith by CEC method. PMID:24242631

  9. Characterization of methacrylate chromatographic monoliths bearing affinity ligands.

    PubMed

    Černigoj, Urh; Vidic, Urška; Nemec, Blaž; Gašperšič, Jernej; Vidič, Jana; Lendero Krajnc, Nika; Štrancar, Aleš; Podgornik, Aleš

    2016-09-16

    We investigated effect of immobilization procedure and monolith structure on chromatographic performance of methacrylate monoliths bearing affinity ligands. Monoliths of different pore size and various affinity ligands were prepared and characterized using physical and chromatographic methods. When testing protein A monoliths with different protein A ligand densities, a significant nonlinear effect of ligand density on dynamic binding capacity (DBC) for IgG was obtained and accurately described by Langmuir isotherm curve enabling estimation of protein A utilization as a function of ligand density. Maximal IgG binding capacity was found to be at least 12mg/mL exceeding theoretical monolayer adsorption value of 7.8mg/mL assuming hexagonal packing and IgG hydrodynamic diameter of 11nm. Observed discrepancy was explained by shrinkage of IgG during adsorption on protein A experimentally determined through calculated adsorbed IgG layer thickness of 5.4nm from pressure drop data. For monoliths with different pore size maximal immobilized densities of protein A as well as IgG dynamic capacity linearly correlates with monolith surface area indicating constant ligand utilization. Finally, IgGs toward different plasma proteins were immobilized via the hydrazide coupling chemistry to provide oriented immobilization. DBC was found to be flow independent and was increasing with the size of bound protein. Despite DBC was lower than IgG capacity to immobilized protein A, ligand utilization was higher. PMID:27554023

  10. Mechanically stable, hierarchically porous Cu3(btc)2 (HKUST-1) monoliths via direct conversion of copper(II) hydroxide-based monoliths.

    PubMed

    Moitra, Nirmalya; Fukumoto, Shotaro; Reboul, Julien; Sumida, Kenji; Zhu, Yang; Nakanishi, Kazuki; Furukawa, Shuhei; Kitagawa, Susumu; Kanamori, Kazuyoshi

    2015-02-28

    The synthesis of highly crystalline macro-meso-microporous monolithic Cu3(btc)2 (HKUST-1; btc(3-) = benzene-1,3,5-tricarboxylate) is demonstrated by direct conversion of Cu(OH)2-based monoliths while preserving the characteristic macroporous structure. The high mechanical strength of the monoliths is promising for possible applications to continuous flow reactors. PMID:25572361

  11. Removal of BTEX vapours from waste gas streams using silica aerogels of different hydrophobicity.

    PubMed

    Standeker, Suzana; Novak, Zoran; Knez, Zeljko

    2009-06-15

    Silica aerogels are alternative adsorbents to activated carbon (AC) for the removal and the recovery of organic vapours from gas streams. The adsorption capacity measurements of different silica aerogels were done by mini-column method. Continuous adsorption measurements show that silica aerogels are excellent adsorbents of BTEX vapours from waste gas stream. Compared to the most used adsorbents, such as AC and silica gel, aerogels exhibit capacities which enormously exceed that of both commonly used adsorbents. By increasing the degree of hydrophobicity, aerogels become less effective, but they do not adsorb water vapour from gas stream. Silica monolith aerogels with different degrees of hydrophobicity by incorporating methyltrimethoxysilane (MTMS) or trimethylethoxysilane (TMES) in standard sol-gel synthesis were prepared. Excellent properties of aerogels, obtained with the sol-gel synthesis, were preserved with supercritical drying with CO(2). The degree of hydrophobicity of the aerogels was tested by measuring the contact angle (theta) of a water droplet with the aerogel surface. The aerogels were also characterised by FTIR, nitrogen sorption and DSC/TG measurements. PMID:19095355

  12. Facile preparation of transparent and dense CdS-silica gel glass nanocomposites for optical limiting applications

    NASA Astrophysics Data System (ADS)

    Feng, Miao; Zhan, Hongbing

    2014-03-01

    To realize their practical and operable applications as a potential optical limiting (OL) material, quantum dots (QDs) need to have good processability by incorporating them into optical-quality matrices. This work reports a facile route for the room-temperature preparation of large, stable transparent monolithic CdS nanocomposites which can be easily extended to allow the introduction of acid-sensitive functional molecules/nanoparticles into a silica network by sol-gel chemistry. Our strategy involves a two-step sol-gel process (acid-catalyst hydrolysis and basic-catalyst condensation) and the co-condensation of the resulting alkoxysilane-capped CdS QDs with other alkoxysilanes, which allows the CdS QDs to become part of the silica covalent network. The degradation and agglomeration of CdS QDs were thereby effectively restrained, and large monolithic transparent CdS-silica gel glass was obtained. Using Z-scan theory and the resulting open-aperture Z-scan curves, the nonlinear extinction coefficient of the CdS-silica nanocomposite gel glass was calculated to be 1.02 × 10-14 cm W-1, comparable to that of the parent CdS QD dispersion, indicating their promise for OL applications.

  13. 21 CFR 182.1711 - Silica aerogel.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Silica aerogel. 182.1711 Section 182.1711 Food and... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1711 Silica aerogel. (a) Product. Silica aerogel as a finely powdered microcellular silica foam having a minimum silica content of...

  14. 21 CFR 582.1711 - Silica aerogel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Silica aerogel. 582.1711 Section 582.1711 Food and....1711 Silica aerogel. (a) Product. Silica aerogel as a finely powdered microcellular silica foam having a minimum silica content of 89.5 percent. (b) (c) Limitations, restrictions, or explanation....

  15. 21 CFR 582.1711 - Silica aerogel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Silica aerogel. 582.1711 Section 582.1711 Food and....1711 Silica aerogel. (a) Product. Silica aerogel as a finely powdered microcellular silica foam having a minimum silica content of 89.5 percent. (b) (c) Limitations, restrictions, or explanation....

  16. 21 CFR 182.1711 - Silica aerogel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Silica aerogel. 182.1711 Section 182.1711 Food and....1711 Silica aerogel. (a) Product. Silica aerogel as a finely powdered microcellular silica foam having a minimum silica content of 89.5 percent. (b) (c) Limitations, restrictions, or explanation....

  17. 21 CFR 582.1711 - Silica aerogel.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Silica aerogel. 582.1711 Section 582.1711 Food and....1711 Silica aerogel. (a) Product. Silica aerogel as a finely powdered microcellular silica foam having a minimum silica content of 89.5 percent. (b) (c) Limitations, restrictions, or explanation....

  18. 21 CFR 582.1711 - Silica aerogel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Silica aerogel. 582.1711 Section 582.1711 Food and....1711 Silica aerogel. (a) Product. Silica aerogel as a finely powdered microcellular silica foam having a minimum silica content of 89.5 percent. (b) (c) Limitations, restrictions, or explanation....

  19. 21 CFR 182.1711 - Silica aerogel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Silica aerogel. 182.1711 Section 182.1711 Food and....1711 Silica aerogel. (a) Product. Silica aerogel as a finely powdered microcellular silica foam having a minimum silica content of 89.5 percent. (b) (c) Limitations, restrictions, or explanation....

  20. 21 CFR 182.1711 - Silica aerogel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Silica aerogel. 182.1711 Section 182.1711 Food and....1711 Silica aerogel. (a) Product. Silica aerogel as a finely powdered microcellular silica foam having a minimum silica content of 89.5 percent. (b) (c) Limitations, restrictions, or explanation....

  1. Biasable, Balanced, Fundamental Submillimeter Monolithic Membrane Mixer

    NASA Technical Reports Server (NTRS)

    Siegel, Peter; Schlecht, Erich; Mehdi, Imran; Gill, John; Velebir, James; Tsang, Raymond; Dengler, Robert; Lin, Robert

    2010-01-01

    This device is a biasable, submillimeter-wave, balanced mixer fabricated using JPL s monolithic membrane process a simplified version of planar membrane technology. The primary target application is instrumentation used for analysis of atmospheric constituents, pressure, temperature, winds, and other physical and chemical properties of the atmospheres of planets and comets. Other applications include high-sensitivity gas detection and analysis. This innovation uses a balanced configuration of two diodes allowing the radio frequency (RF) signal and local oscillator (LO) inputs to be separated. This removes the need for external diplexers that are inherently narrowband, bulky, and require mechanical tuning to change frequency. Additionally, this mixer uses DC bias-ability to improve its performance and versatility. In order to solve problems relating to circuit size, the GaAs membrane process was created. As much of the circuitry as possible is fabricated on-chip, making the circuit monolithic. The remainder of the circuitry is precision-machined into a waveguide block that holds the GaAs circuit. The most critical alignments are performed using micron-scale semiconductor technology, enabling wide bandwidth and high operating frequencies. The balanced mixer gets superior performance with less than 2 mW of LO power. This can be provided by a simple two-stage multiplier chain following an amplifier at around 90 GHz. Further, the diodes are arranged so that they can be biased. Biasing pushes the diodes closer to their switching voltage, so that less LO power is required to switch the diodes on and off. In the photo, the diodes are at the right end of the circuit. The LO comes from the waveguide at the right into a reduced-height section containing the diodes. Because the diodes are in series to the LO signal, they are both turned on and off simultaneously once per LO cycle. Conversely, the RF signal is picked up from the RF waveguide by the probe at the left, and flows

  2. Monolithic CMOS imaging x-ray spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and

  3. Nanoscale plasticity in silica glass

    SciTech Connect

    Glosli, J.N.; Boercker, D.B.; Tesar, A.; Belak, J.

    1993-10-01

    Mechanisms of nano-scale plasticity and damage initiation in silica glass is examined using molecular dynamics simulation. Computer experiments are carried out by indenting a sharp diamond-like tool, containing 4496 atoms, into a silica slab consisting of 12288 atoms. Both elastic and plastic deformation of silica is observed during nanoindentation simulation; this transition occurs at an indentation of 1.25 nm, and the calculated hardness (15GPa for 1.5 nm indentation) agrees with experiment.

  4. Processing and characterization of multi-cellular monolithic bioceramics for bone regenerative scaffolds

    SciTech Connect

    Ari-Wahjoedi, Bambang; Ginta, Turnad Lenggo; Parman, Setyamartana; Abustaman, Mohd Zikri Ahmad

    2014-10-24

    Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics is excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm{sup −3} respectively, pore linear density of ±35 cm{sup −1}, linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively.

  5. Invited Article: CO2 laser production of fused silica fibers for use in interferometric gravitational wave detector mirror suspensions

    NASA Astrophysics Data System (ADS)

    Heptonstall, A.; Barton, M. A.; Bell, A.; Cagnoli, G.; Cantley, C. A.; Crooks, D. R. M.; Cumming, A.; Grant, A.; Hammond, G. D.; Harry, G. M.; Hough, J.; Jones, R.; Kelley, D.; Kumar, R.; Martin, I. W.; Robertson, N. A.; Rowan, S.; Strain, K. A.; Tokmakov, K.; van Veggel, M.

    2011-01-01

    In 2000 the first mirror suspensions to use a quasi-monolithic final stage were installed at the GEO600 detector site outside Hannover, pioneering the use of fused silica suspension fibers in long baseline interferometric detectors to reduce suspension thermal noise. Since that time, development of the production methods of fused silica fibers has continued. We present here a review of a novel CO_2 laser-based fiber pulling machine developed for the production of fused silica suspensions for the next generation of interferometric gravitational wave detectors and for use in experiments requiring low thermal noise suspensions. We discuss tolerances, strengths, and thermal noise performance requirements for the next generation of gravitational wave detectors. Measurements made on fibers produced using this machine show a 0.8% variation in vertical stiffness and 0.05% tolerance on length, with average strengths exceeding 4 GPa, and mechanical dissipation which meets the requirements for Advanced LIGO thermal noise performance.

  6. Invited article: CO2 laser production of fused silica fibers for use in interferometric gravitational wave detector mirror suspensions.

    PubMed

    Heptonstall, A; Barton, M A; Bell, A; Cagnoli, G; Cantley, C A; Crooks, D R M; Cumming, A; Grant, A; Hammond, G D; Harry, G M; Hough, J; Jones, R; Kelley, D; Kumar, R; Martin, I W; Robertson, N A; Rowan, S; Strain, K A; Tokmakov, K; van Veggel, M

    2011-01-01

    In 2000 the first mirror suspensions to use a quasi-monolithic final stage were installed at the GEO600 detector site outside Hannover, pioneering the use of fused silica suspension fibers in long baseline interferometric detectors to reduce suspension thermal noise. Since that time, development of the production methods of fused silica fibers has continued. We present here a review of a novel CO(2) laser-based fiber pulling machine developed for the production of fused silica suspensions for the next generation of interferometric gravitational wave detectors and for use in experiments requiring low thermal noise suspensions. We discuss tolerances, strengths, and thermal noise performance requirements for the next generation of gravitational wave detectors. Measurements made on fibers produced using this machine show a 0.8% variation in vertical stiffness and 0.05% tolerance on length, with average strengths exceeding 4 GPa, and mechanical dissipation which meets the requirements for Advanced LIGO thermal noise performance. PMID:21280809

  7. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Sokolov, V.; Geddes, J.; Bauhahn, P.

    1983-01-01

    Key requirements for a 30 GHz GaAs monolithic receive module for spaceborne communication antenna feed array applications include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five-bit phase shifter, and a maximum power consumption of 250 mW. The RF designs for each of the four submodules (low noise amplifier, some gain control, phase shifter, and RF to IF sub-module) are presented. Except for the phase shifter, high frequency, low noise FETs with sub-half micron gate lengths are employed in the submodules. For the gain control, a two stage dual gate FET amplifier is used. The phase shifter is of the passive switched line type and consists of 5-bits. It uses relatively large gate width FETs (with zero drain to source bias) as the switching elements. A 20 GHz local oscillator buffer amplifier, a FET compatible balanced mixer, and a 5-8 GHz IF amplifier constitute the RF/IF sub-module. Phase shifter fabrication using ion implantation and a self-aligned gate technique is described. Preliminary RF results obtained on such phase shifters are included.

  8. Solid oxide fuel cell with monolithic core

    DOEpatents

    McPheeters, Charles C.; Mrazek, Franklin C.

    1988-01-01

    A solid oxide fuel cell in which fuel and oxidant gases undergo an electrochemical reaction to produce an electrical output includes a monolithic core comprised of a corrugated conductive sheet disposed between upper and lower generally flat sheets. The corrugated sheet includes a plurality of spaced, parallel, elongated slots which form a series of closed, linear, first upper and second lower gas flow channels with the upper and lower sheets within which a fuel gas and an oxidant gas respectively flow. Facing ends of the fuel cell are generally V-shaped and provide for fuel and oxidant gas inlet and outlet flow, respectively, and include inlet and outlet gas flow channels which are continuous with the aforementioned upper fuel gas and lower oxidant gas flow channels. The upper and lower flat sheets and the intermediate corrugated sheet are preferably comprised of ceramic materials and are securely coupled together such as by assembly in the green state and sintering together during firing at high temperatures. A potential difference across the fuel cell, or across a stacked array of similar fuel cells, is generated when an oxidant gas such as air and a fuel such as hydrogen gas is directed through the fuel cell at high temperatures, e.g., between 700.degree. C. and 1100.degree. C.

  9. Solid oxide fuel cell with monolithic core

    DOEpatents

    McPheeters, C.C.; Mrazek, F.C.

    1988-08-02

    A solid oxide fuel cell in which fuel and oxidant gases undergo an electrochemical reaction to produce an electrical output includes a monolithic core comprised of a corrugated conductive sheet disposed between upper and lower generally flat sheets. The corrugated sheet includes a plurality of spaced, parallel, elongated slots which form a series of closed, linear, first upper and second lower gas flow channels with the upper and lower sheets within which a fuel gas and an oxidant gas respectively flow. Facing ends of the fuel cell are generally V-shaped and provide for fuel and oxidant gas inlet and outlet flow, respectively, and include inlet and outlet gas flow channels which are continuous with the aforementioned upper fuel gas and lower oxidant gas flow channels. The upper and lower flat sheets and the intermediate corrugated sheet are preferably comprised of ceramic materials and are securely coupled together such as by assembly in the green state and sintering together during firing at high temperatures. A potential difference across the fuel cell, or across a stacked array of similar fuel cells, is generated when an oxidant gas such as air and a fuel such as hydrogen gas is directed through the fuel cell at high temperatures, e.g., between 700 C and 1,100 C. 8 figs.

  10. Monolithic ceramic analysis using the SCARE program

    NASA Technical Reports Server (NTRS)

    Manderscheid, Jane M.

    1988-01-01

    The Structural Ceramics Analysis and Reliability Evaluation (SCARE) computer program calculates the fast fracture reliability of monolithic ceramic components. The code is a post-processor to the MSC/NASTRAN general purpose finite element program. The SCARE program automatically accepts the MSC/NASTRAN output necessary to compute reliability. This includes element stresses, temperatures, volumes, and areas. The SCARE program computes two-parameter Weibull strength distributions from input fracture data for both volume and surface flaws. The distributions can then be used to calculate the reliability of geometrically complex components subjected to multiaxial stress states. Several fracture criteria and flaw types are available for selection by the user, including out-of-plane crack extension theories. The theoretical basis for the reliability calculations was proposed by Batdorf. These models combine linear elastic fracture mechanics (LEFM) with Weibull statistics to provide a mechanistic failure criterion. Other fracture theories included in SCARE are the normal stress averaging technique and the principle of independent action. The objective of this presentation is to summarize these theories, including their limitations and advantages, and to provide a general description of the SCARE program, along with example problems.

  11. Monolithic integrated-optic TDLAS sensors

    NASA Astrophysics Data System (ADS)

    Frish, Michael B.; Scherer, David R.; Wainner, Richard T.; Allen, Mark G.; Shankar, Raji; Loncar, Marko

    2012-06-01

    We are developing prototype chip-scale low-power integrated-optic gas-phase chemical sensors based on infrared Tunable Diode Laser Absorption Spectroscopy (TDLAS). TDLAS is able to sense many gas phase chemicals with high sensitivity and selectivity. Using semiconductor fabrication and assembly techniques, the low-cost integrated optic TDLAS technology will permit mass production of sensors that have wide ranging industrial, medical, environmental, and consumer applications. Novel gas sensing elements using low-loss resonant photonic crystal cavities or waveguides will permit monolithic integration of a laser source, sampling elements, and detector on a semiconductor materials system substrate. Practical challenges to fabricating these devices include: a) selecting and designing the high-Q micro-resonator sensing element appropriate for the selected analyte; and b) device thermal management, especially stabilizing laser temperature with the precision needed for sensitive spectroscopic detection. In this paper, we analyze the expected sensitivity of micro-resonator-based structures for chemical sensing, and demonstrate a novel approach for exploiting laser waste heat to stabilize the laser temperature.

  12. Solid oxide fuel cell having monolithic core

    DOEpatents

    Ackerman, John P.; Young, John E.

    1984-01-01

    A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween, and each interconnect wall consists of thin layers of the cathode and anode materials sandwiching a thin layer of interconnect material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick.

  13. Solid oxide fuel cell having monolithic core

    DOEpatents

    Ackerman, J.P.; Young, J.E.

    1983-10-12

    A solid oxide fuel cell is described for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick.

  14. Biogeochemistry: Silica cycling over geologic time

    NASA Astrophysics Data System (ADS)

    Conley, Daniel J.; Carey, Joanna C.

    2015-06-01

    The Earth's long-term silica cycle is intimately linked to weathering rates and biogenic uptake. Changes in weathering rates and the retention of silica on land have altered silica availability in the oceans for hundreds of millions of years.

  15. Monolithic supports with unique geometries and enhanced mass transfer.

    SciTech Connect

    Stuecker, John Nicholas; Ferrizz, Robert Matthew; Cesarano, Joseph, III; Miller, James Edward

    2004-01-01

    The catalytic combustion of natural gas has been the topic of much research over the past decade. Interest in this technology results from a desire to decrease or eliminate the emissions of harmful nitrogen oxides (NOX) from gas turbine power plants. A low-pressure drop catalyst support, such as a ceramic monolith, is ideal for this high-temperature, high-flow application. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. 'Robocasting' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low pressure drops. This report details the mass transfer effects for novel 3-dimensional robocast monoliths, traditional honeycomb-type monoliths, and ceramic foams. The mass transfer limit is experimentally determined using the probe reaction of CO oxidation over a Pt / {gamma}-Al{sub 2}O{sub 3} catalyst, and the pressure drop is measured for each monolith sample. Conversion versus temperature data is analyzed quantitatively using well-known dimensionless mass transfer parameters. The results show that, relative to the honeycomb monolith support, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application.

  16. ZBLAN, Silica Fiber Comparison

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This graph depicts the increased signal quality possible with optical fibers made from ZBLAN, a family of heavy-metal fluoride glasses (fluorine combined zirconium, barium, lanthanum, aluminum, and sodium) as compared to silica fibers. NASA is conducting research on pulling ZBLAN fibers in the low-g environment of space to prevent crystallization that limits ZBLAN's usefulness in optical fiber-based communications. In the graph, a line closer to the black theoretical maximum line is better. Photo credit: NASA/Marshall Space Flight Center

  17. Synthesis and properties of Chitosan-silica hybrid aerogels

    SciTech Connect

    Ayers, Michael R.; Hunt, Arlon J.

    2001-06-01

    Chitosan, a polymer that is soluble in dilute aqueous acid, is derived from chitin, a natural polyglucosamide. Aquagels where the solid phase consists of both chitosan and silica can be easily prepared by using an acidic solution of chitosan to catalyze the hydrolysis and condensation of tetraethylorthosilicate. Gels with chitosan/TEOS mass ratios of 0.1-1.1 have been prepared by this method. Standard drying processes using CO{sub 2} give the corresponding aerogels. The amount of chitosan in the gel plays a role in the shrinkage of the aerogel during drying. Gels with the lowest chitosan/silica ratios show the most linear shrinkage, up to 24%, while those with the highest ratios show only a 7% linear shrinkage. Pyrolysis at 700 C under nitrogen produces a darkened aerogel due to the thermal decomposition of the chitosan, however, the aerogel retains its monolithic form. The pyrolyzed aerogels absorb slightly more infrared radiation in the 2-5 {micro}m region than the original aerogels. B.E.T. surface areas of these aerogels range from 470-750 m{sup 2}/g. Biocompatibility screening of this material shows a very high value for hemolysis, but a low value for cytotoxicity.

  18. Advanced Gasification Mercury/Trace Metal Control with Monolith Traps

    SciTech Connect

    Musich, Mark; Swanson, Michael; Dunham, Grant; Stanislowski, Joshua

    2010-10-05

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m{sup 3} (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m{sup 3} (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most

  19. ADVANCED GASIFICATION MERCURY/TRACE METAL CONTROL WITH MONOLITH TRAPS

    SciTech Connect

    Mark A. Musich; Michael L. Swanson; Grant E. Dunham; Joshua J. Stanislowski

    2010-07-31

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m3 (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m3 (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most effective arsine

  20. Silica Fillers for elastomer Reinforement

    SciTech Connect

    Kohls, D.J.; Schaefer, D.W.

    2012-09-10

    This article summarizes recent work on the structure of precipitated silica used in the reinforcement of elastomers. Silica has a unique morphology, consisting of multiple structural levels that can be controlled through processing. The ability to control and characterize the multiple structures of precipitated silica is an example of morphological engineering for reinforcement applications. In this summary of some recent research efforts using precipitated silica, small-angle scattering techniques are described and their usefulness for determining the morphology of silica in terms of primary particles, aggregates, and agglomerates are discussed. The structure of several different precipitated silica powders is shown as well as the mechanical properties of elastomers reinforced with these silica particles. The study of the mechanical properties of filled elastomer systems is a challenging and exciting topic for both fundamental science and industrial application. It is known that the addition of hard particulates to a soft elastomer matrix results in properties that do not follow a straightforward rule of mixtures. Research efforts in this area have shown that the properties of filled elastomers are influenced by the nature of both the filler and the matrix, as well as the interactions between them. Several articles have reviewed the influence of fillers like silica and carbon black on the reinforcement of elastomers. In general, the structure-property relationships developed for filled elastomers have evolved into the following major areas: Filler structure, hydrodynamic reinforcement, and interactions between fillers and elastomers.

  1. Silica Fillers for elastomer Reinforement

    SciTech Connect

    Kohls, D.J.; Schaefer, D.W.

    2009-08-26

    This article summarizes recent work on the structure of precipitated silica used in the reinforcement of elastomers. Silica has a unique morphology, consisting of multiple structural levels that can be controlled through processing. The ability to control and characterize the multiple structures of precipitated silica is an example of morphological engineering for reinforcement applications. In this summary of some recent research efforts using precipitated silica, small-angle scattering techniques are described and their usefulness for determining the morphology of silica in terms of primary particles, aggregates, and agglomerates are discussed. The structure of several different precipitated silica powders is shown as well as the mechanical properties of elastomers reinforced with these silica particles. The study of the mechanical properties of filled elastomer systems is a challenging and exciting topic for both fundamental science and industrial application. It is known that the addition of hard particulates to a soft elastomer matrix results in properties that do not follow a straightforward rule of mixtures. Research efforts in this area have shown that the properties of filled elastomers are influenced by the nature of both the filler and the matrix, as well as the interactions between them. Several articles have reviewed the influence of fillers like silica and carbon black on the reinforcement of elastomers. In general, the structure-property relationships developed for filled elastomers have evolved into the following major areas: Filler structure, hydrodynamic reinforcement, and interactions between fillers and elastomers.

  2. [Rapid determination of trace iodate using monolithic column ion-pair chromatography coupled with direct conductivity detection].

    PubMed

    Liu, Yuzhen; Yu, Hong; Li, Siwen

    2011-10-01

    A method was developed on a monolithic column for the fast determination of trace iodate (IO(3)- ) by ion-pair chromatography with direct conductivity detection. The analytes were separated using a mobile phase of tetrabutylammonium hydroxide (TBA)-phthalic acid-acetonitrile on a reversed-phase silica-based monolithic column. The effects of eluent, flow rate and column temperature on the retention of iodate were investigated. The optimized chromatographic conditions for the determination of the anion were as follows: 0. 25 mmol/L TBA-0. 18 mmol/L phthalic acid-3% acetonitrile (pH 5.5) as mobile phase, a flow rate of 4.0 mL/min and a column temperature of 30 degrees C. Under the optimal conditions, retention time of iodate was less than 0. 5 min and the baseline separation of iodate was achieved without any interference by other anions (Cl-, NO , SO4(2)-, I- ). The detection limit (S/N= 3) was 0.36 mg/L for IO(3)- . Relative standard deviation (RSD, n = 5) of chromatographic peak area and retention time were 0. 35% and 0. 28%, respectively. The proposed method was applied to the determination of trace iodate in iodized medicine. The spiked recovery of iodate was 96. 4%. The method is rapid, simple, accurate, reliable, and practical. PMID:22268363

  3. Progress on femtosecond laser-based system-materials: three-dimensional monolithic electrostatic micro-actuator for optomechanics

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Bellouard, Yves

    2016-03-01

    Femtosecond laser-dielectric interaction in a three-dimensional (3D) manner defines a capable platform for integrated 3D micro-devices fabricated out of a single piece of system-material. Here, we add a new function to femtosecond laserbased single monolith in amorphous fused silica by demonstrating a transparent 3D micro-actuator using non-ablative femtosecond laser micromachining with subsequent chemical etching. The actuation principle is based on dielectrophoresis (DEP), defined as the unbalanced electrostatic action on dielectrics, due to an induced dipole moment under a non-uniform electric field. An analytical model of this actuation scheme is proposed, which is capable of performance prediction, design parameter optimization and motion instability analysis. Furthermore, the static and dynamic performances are experimentally characterized using optical measurement methods. An actuation range of 30 μm is well attainable; resonances and the settling time in transient responses are measured; the quality factor and the bandwidth for the primary vertical resonance are also evaluated. Experimental results are in good consistence with theoretical analyses. The proposed actuation principle suppresses the need for electrodes on the mobile, non-conductive component and is particularly interesting for moving transparent elements. Thanks to the flexibility of femtosecond laser manufacturing process, this actuation scheme can be integrated in other functionalities within monolithic transparent Micro-Electro-Mechanical Systems (MEMS) for applications like resonators, adaptive lenses and integrated photonics circuits.

  4. Capillary electrochromatography-atmospheric pressure ionization mass spectrometry of pesticides using a surfactant-bound monolithic column

    PubMed Central

    Gu, Congying; Shamsi, Shahab A.

    2011-01-01

    A surfactant bound poly (11-acrylaminoundecanoic acid-ethylene dimethacrylate) (AAUA-EDMA) monolithic column was simply prepared by in-situ co-polymerization of AAUA and EDMA with 1-propanol, 1,4-butanediol and water as porogens in 100 µm id fused silica capillary in one step. This column was used in capillary electrochromatography (CEC)-atmospheric pressure photoionization (APPI)-mass spectrometry system for separation and detection of N-methylcarbamates (NMCs) pesticides. Numerous parameters are optimized for CEC-APPI-MS. After evaluation of the mobile phase composition, sheath liquid composition and the monolithic capillary outlet position, a fractional factorial design (FFD) was selected as a screening procedure to identify factors of ionization source parameters, such as sheath liquid flow rate, drying gas flow rate, drying gas temperature, nebulizing gas pressure, vaporizer temperature, and capillary voltage, which significantly influence APPI-MS sensitivity. A face-centered central composite design (CCD) was further utilized to optimize the most significant parameters and predict the best sensitivity. Under optimized conditions signal-to-noise ratios (S/N) around 78 were achieved for an injection of 100 ng/mL of each pesticide. Finally, this CEC-APPI-MS method was successfully applied to the analysis of nine NMCs in spiked apple juice sample after solid phase extraction with recoveries in the range of 65 to 109%. PMID:20349511

  5. A rapid HPLC method for determination of zolpidem and its degradation product in tablets using a monolithic column.

    PubMed

    Rezaee Zavareh, Elham; Kiani, Azin; Sheikholeslam, Zahra; Shafaati, Alireza; Tabatabai, Sayyed Abbas

    2015-01-01

    A simple, accurate reverse phase high-performance liquid chromatographic method, utilizing a monolithic silica column, for determination of zolpidem hemitartrate and its degradation product in tablet dosage form was developed. Analysis was achieved on the monolithic, C18 (100 mm, 3.9 mm) column, in isocratic mode with acetonitrile-NaH2PO4 (pH 7.0; 0.01 M; 35:65, v/v) as mobile phase and a flow rate of 2.5 mL/min at room temperature with UV detection at 245 nm. Diazepam was applied as an internal standard. The retention time of zolpidem and its degradation product was 2.14 and 1.89, respectively. Calibration curve was linear in the range of 0.12-5 µg/mL and the recovery values were found to be 97-101%. The limit of quantitation was determined 0.12 μg/mL. The relative standard deviation values of intraday and interday studies were calculated as 0.13-1.1% and 0.54-1.3%, respectively. PMID:25754693

  6. Edge chipping and flexural resistance of monolithic ceramics☆

    PubMed Central

    Zhang, Yu; Lee, James J.-W.; Srikanth, Ramanathan; Lawn, Brian R.

    2014-01-01

    Objective Test the hypothesis that monolithic ceramics can be developed with combined esthetics and superior fracture resistance to circumvent processing and performance drawbacks of traditional all-ceramic crowns and fixed-dental-prostheses consisting of a hard and strong core with an esthetic porcelain veneer. Specifically, to demonstrate that monolithic prostheses can be produced with a much reduced susceptibility to fracture. Methods Protocols were applied for quantifying resistance to chipping as well as resistance to flexural failure in two classes of dental ceramic, microstructurally-modified zirconias and lithium disilicate glass–ceramics. A sharp indenter was used to induce chips near the edges of flat-layer specimens, and the results compared with predictions from a critical load equation. The critical loads required to produce cementation surface failure in monolithic specimens bonded to dentin were computed from established flexural strength relations and the predictions validated with experimental data. Results Monolithic zirconias have superior chipping and flexural fracture resistance relative to their veneered counterparts. While they have superior esthetics, glass–ceramics exhibit lower strength but higher chip fracture resistance relative to porcelain-veneered zirconias. Significance The study suggests a promising future for new and improved monolithic ceramic restorations, with combined durability and acceptable esthetics. PMID:24139756

  7. Purification of large plasmids with methacrylate monolithic columns.

    PubMed

    Krajnc, Nika Lendero; Smrekar, Franci; Cerne, Jasmina; Raspor, Peter; Modic, Martina; Krgovic, Danijela; Strancar, Ales; Podgornik, Ales

    2009-08-01

    The rapid evolution of gene therapy and DNA vaccines results in an increasing interest in producing large quantities of pharmaceutical grade plasmid DNA. Most current clinical trials involve plasmids of 10 kb or smaller in size, however, future requirements for multigene vectors including extensive control regions may require the production of larger plasmids, e. g., 20 kb and bigger. The objective of this study was to examine certain process conditions for purification of large plasmids with the size of up to 93 kb. Since there is a lack of knowledge about production and purification of bigger plasmid DNA, cell lysis and storage conditions were investigated. The impact of chromatographic system and methacrylate monolithic column on the degradation of plasmid molecules under nonbinding conditions at different flow rates was studied. Furthermore, capacity measurements varying salt concentration in loading buffer were performed and the capacities up to 13 mg of plasmid per mL of the monolithic column were obtained. The capacity flow independence in the range from 130 to 370 cm/h was observed. Using high resolution monolithic column the separation of linear and supercoiled isoforms of large plasmids was obtained. Last but not least, since the baseline separation of RNA and pDNA was achieved, the one step purification on larger CIM DEAE 8 mL tube monolithic column was performed and the fractions were analyzed by CIM analytical monolithic columns. PMID:19598166

  8. V-band monolithic two stage HEMT amplifiers

    NASA Astrophysics Data System (ADS)

    Aust, M.; Yonaki, J.; Nakano, K.; Berenz, J.; Dow, G.

    Two different types of HEMT (high-electron-mobility transistor) monolithic low-noise amplifiers (LNAs) using AlGaAs/GaAs and pseudomorphic InGaAs/GaAs materials have been developed and have demonstrated excellent performance at 60 GHz. These monolithic LNAs have achieved noise figures of 5 dB, as well as associated gains of 11 dB. These two-stage circuits both utilize 0.2- x 60-micron HEMT devices for both bandpass and low-pass circuit topologies. Noise figures as low as 4.5 dB have been observed for single-stage MMIC- (monolithic-microwave-integrated-circuit) implemented LNAs, and gains in excess of 20 dB have been observed for three-stage versions of this amplifier with a 5-dB noise figure in the V band. This result represents the state-of-the art monolithic HEMT amplifier performance for AlGaAs and pseudomorphic InGaAs materials. This MMIC amplifier can occupy about less than one-third the size of existing MIC hybrid V-band LNAs. This represents a significant size reduction and cost saving due to repeatable circuit performance with monolithic technology. The chip sizes are both 1.6 x 2.7 mm for these two-stage amplifiers.

  9. New Graphene Form of Nanoporous Monolith for Excellent Energy Storage.

    PubMed

    Bi, Hui; Lin, Tianquan; Xu, Feng; Tang, Yufeng; Liu, Zhanqiang; Huang, Fuqiang

    2016-01-13

    Extraordinary tubular graphene cellular material of a tetrahedrally connected covalent structure was very recently discovered as a new supermaterial with ultralight, ultrastiff, superelastic, and excellent conductive characteristics, but no high specific surface area will keep it from any next-generation energy storage applications. Herein, we prepare another new graphene monolith of mesoporous graphene-filled tubes instead of hollow tubes in the reported cellular structure. This graphene nanoporous monolith is also composed of covalently bonded carbon network possessing high specific surface area of ∼1590 m(2) g(-1) and electrical conductivity of ∼32 S cm(-1), superior to graphene aerogels and porous graphene forms self-assembled by graphene oxide. This 3D graphene monolith can support over 10 000 times its own weight, significantly superior to CNT and graphene cellular materials with a similar density. Furthermore, pseudocapacitance-active functional groups are introduced into the new nanoporous graphene monolith as an electrode material in electrochemical capacitors. Surprisingly, the electrode of 3D mesoporous graphene has a specific capacitance of 303 F g(-1) and maintains over 98% retention after 10 000 cycles, belonging to the list for the best carbon-based active materials. The macroscopic mesoporous graphene monolith suggests the great potential as an electrode for supercapacitors in energy storage areas. PMID:26641709

  10. Continuous vs. discrete models of nonadiabatic monolith catalysts

    SciTech Connect

    Groppi, G.; Tronconi, E.

    1996-08-01

    Monolith catalysts are widely applied for clean up of waste gases [catalytic mufflers, volatile organic compound (VOC) incinerators, reactors for selective catalytic reduction (SCR) of NO{sub x} by NH{sub 3}] in view of their unique combination of low-pressure drops and high gas-solid interfacial areas. The crucial point in continuous heat-transfer models is the evaluation of the effective thermal conductivity coefficients, which are functions both of the physical properties of the two phases and of the monolith geometry. In this work a novel expression for calculation of the radial effective conductivity is derived. The physical consistency of the steady-state continuous model implementing such an expression is then analyzed by comparison with a discrete monolith model. In spite of the just-mentioned limitations, discrete models have been partially validated in the literature against experimental temperature profiles in heated monoliths; thus, they can be regarded as a standard in evaluating the adequacy of the continuum approach. The reference problem of pure heat transfer with constant temperature of the external monolith wall is investigated for these purposes.

  11. Surfactant-Bound Monolithic Columns for Capillary Electrochromatography

    PubMed Central

    Gu, Congying; He, Jun; Jia, Jinping; Fang, Nenghu; Shamsi, Shahab A.

    2010-01-01

    A novel anionic surfactant bound monolithic stationary phase based on 11-acrylaminoundecanoic acid (AAUA) is designed for capillary electrochromatography (CEC). The monolith possessing bonded undecanoyl groups (hydrophobic sites) and carboxyl groups (weak cationic ion-exchange sites) was evaluated as a mixed-mode stationary phase in CEC for the separation of neutral and polar solutes. Using a multivariate D-optimal design the composition of the polymerization mixture was modeled and optimized with five alkylbenzenes (ABs) and seven alkyl phenyl ketones (APKs) as test solutes. The D-optimal design indicates a strong dependence of electrochromatographic parameters on the concentration of AAUA monomer and porogen (water) in the polymerization mixture. A difference of 6%, 8% and 13% RSD between the predicted and the experimental values in terms of efficiency, resolution, and retention time, respectively, indeed confirmed that the proposed approach is practical. The physical (i.e., morphology, porosity and permeability) and chromatographic properties of the monolithic columns were thoroughly investigated. With the optimized monolithic column, high efficiency separation of N-methylcarbamates (NMCs) pesticides and positional isomers was successfully achieved. It appears that this type of mixed-mode monolith (containing both chargeable and hydrophobic sites) may have a great potential as a new generation of CEC stationary phase. PMID:19885887

  12. Preparation and characterization of grafted imprinted monolith for capillary electrochromatography.

    PubMed

    Wei, Ze-Hui; Mu, Li-Na; Pang, Qian-Qian; Huang, Yan-Ping; Liu, Zhao-Sheng

    2012-10-01

    In this paper, a molecularly imprinted polymer (MIP) coating grafted to a trimethylolpropane trimethacrylate (TRIM) core material for CEC was reported. The core monolith was prepared with a solution of 20% (w/w) TRIM in a mixture of porogen and a polymerization precursor, which can generate a stable electroosmotic flow due to the formation of ionizable groups after postpolymerization hydrolization. Graft polymerization took place on the resultant TRIM monolith with a mixture of template, methacrylic acid, and ethylene glycol dimethacrylate. Strong recognition ability (selectivity factor was 5.83) for S-amlodipine and resolution of enatiomers separation (up to 7.99) were obtained on the resulting grafted imprinted monolith in CEC mode. The influence of CEC conditions on chiral separation, including the composition of mobile phase, pH value, and the operating voltages was studied. These results suggest that the method of grafted polymerization reported here allows a rapid development of MIP monolith once core materials with desired properties are available, and is a good alternative to prepare CEC-based monolithic MIPs. PMID:22996033

  13. Recyclable functionalization of silica with alcohols via dehydrogenative addition on hydrogen silsesquioxane.

    PubMed

    Moitra, Nirmalya; Kamei, Toshiyuki; Kanamori, Kazuyoshi; Nakanishi, Kazuki; Takeda, Kazuyuki; Shimada, Toyoshi

    2013-10-01

    Synthesis of class II hybrid silica materials requires the formation of covalent linkage between organic moieties and inorganic frameworks. The requirement that organosilylating agents be present to provide the organic part limits the synthesis of functional inorganic oxides, however, due to the water sensitivity and challenges concerning purification of the silylating agents. Synthesis of hybrid materials with stable molecules such as simple alcohols, rather than with these difficult silylating agents, may therefore provide a path to unprecedented functionality. Herein, we report the novel functionalization of silica with organic alcohols for the first time. Instead of using hydrolyzable organosilylating agents, we used stable organic alcohols with a Zn(II) catalyst to modify the surface of a recently discovered highly reactive macro-mesoporous hydrogen silsesquioxane (HSQ, HSiO1.5) monolith, which was then treated with water with the catalyst to form surface-functionalized silica. These materials were comprehensively characterized with FT-IR, Raman, solid-state NMR, fluorescence spectroscopy, thermal analysis, elemental analysis, scanning electron microscopy, and nitrogen adsorption-desorption measurements. The results obtained from these measurements reveal facile immobilization of organic moieties by dehydrogenative addition onto surface silane (Si-H) at room temperature with high loading and good tolerance of functional groups. The organic moieties can also be retrieved from the monoliths for recycling and reuse, which enables cost-effective and ecological use of the introduced catalytic/reactive surface functionality. Preservation of the reactivity of as-immobilized organic alcohols has been confirmed, moreover, by successfully performing copper-catalyzed azide-alkyne cycloaddition (CuAAC) "click" reactions on the immobilized silica surfaces. PMID:23977900

  14. Monolithic Solid Oxide Fuel Cell development

    NASA Technical Reports Server (NTRS)

    Myles, K. M.; Mcpheeters, C. C.

    1989-01-01

    The Monolithic Solid Oxide Fuel Cell (MSOFC) is an oxide-ceramic structure in which appropriate electronic and ionic conductors are fabricated in a honeycomb shape similar to a block of corrugated paperboard. These electronic and ionic conductors are arranged to provide short conduction paths to minimize resistive losses. The power density achievable with the MSOFC is expected to be about 8 kW/kg or 4 kW/L, at fuel efficienceis over 50 percent, because of small cell size and low resistive losses in the materials. The MSOFC operates in the range of 700 to 1000 C, at which temperatures rapid reform of hydrocarbon fuels is expected within the nickel-YSZ fuel channels. Tape casting and hot roll calendering are used to fabricate the MSOFC structure. The performance of the MSOFC has improved significantly during the course of development. The limitation of this system, based on materials resistance alone without interfacial resistances, is 0.093 ohm-sq cm area-specific resistance (ASR). The current typical performance of MSOFC single cells is characterized by ASRs of about 0.4 to 0.5 ohm-sq cm. With further development the ASR is expected to be reduced below 0.2 ohm-sq cm, which will result in power levels greater than 1.4 W/sq cm. The feasibility of the MSOFC concept was proven, and the performance was dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials were minimized. As a result of good matching of these properties, the MSOFC structure was successfully fabricated with few defects, and the system shows excellent promise for development into a practical power source.

  15. Monolithic Solid Oxide Fuel Cell development

    NASA Astrophysics Data System (ADS)

    Myles, K. M.; McPheeters, C. C.

    1989-12-01

    The Monolithic Solid Oxide Fuel Cell (MSOFC) is an oxide-ceramic structure in which appropriate electronic and ionic conductors are fabricated in a honeycomb shape similar to a block of corrugated paperboard. These electronic and ionic conductors are arranged to provide short conduction paths to minimize resistive losses. The power density achievable with the MSOFC is expected to be about 8 kW/kg or 4 kW/L, at fuel efficienceis over 50 percent, because of small cell size and low resistive losses in the materials. The MSOFC operates in the range of 700 to 1000 C, at which temperatures rapid reform of hydrocarbon fuels is expected within the nickel-YSZ fuel channels. Tape casting and hot roll calendering are used to fabricate the MSOFC structure. The performance of the MSOFC has improved significantly during the course of development. The limitation of this system, based on materials resistance alone without interfacial resistances, is 0.093 ohm-sq cm area-specific resistance (ASR). The current typical performance of MSOFC single cells is characterized by ASRs of about 0.4 to 0.5 ohm-sq cm. With further development the ASR is expected to be reduced below 0.2 ohm-sq cm, which will result in power levels greater than 1.4 W/sq cm. The feasibility of the MSOFC concept was proven, and the performance was dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials were minimized. As a result of good matching of these properties, the MSOFC structure was successfully fabricated with few defects, and the system shows excellent promise for development into a practical power source.

  16. Preparation and characterization of poly(triallyl isocyanurate-co-trimethylolpropane triacrylate) monolith and its applications in the separation of small molecules by liquid chromatography.

    PubMed

    Zhong, Jing; Hao, Mengbei; Li, Ruo; Bai, Ligai; Yang, Gengliang

    2014-03-14

    A new polymeric monolith was prepared in stainless-steel column and fused-silica capillary, respectively, by atom transfer radical polymerization technique. In the polymerization, triallyl isocyanurate (TAIC) was used as the functional monomer; trimethylolpropane triacrylate (TMPTA) as the crosslinking agent; polyethylene glycol 200 and 1,2-propanediol as the co-porogens; carbon tetrachloride as the initiator and ferrous chloride as the catalyst. The conditions of polymerization were optimized. Morphology of the prepared poly(TAIC-co-TMPTA) monolith was investigated by scanning electron microscopy; pore properties were assayed by mercury porosimetry and nitrogen adsorption. The characterization indicated that the prepared reversed-phase monolith possessed uniform structure, good permeability and mechanical stability. The column was used as the stationary phase of reversed phase high performance liquid chromatography (RP-HPLC) and capillary liquid chromatography (CLC) to separate the mixture of aromatic compounds. The new column performed around 125,000 theoretical plates per meter. The column showed good reproducibility: the relative standard deviation values of the retention factor values for aromatic compounds were less than 1.52% (n=7, column-to-column). PMID:24556171

  17. High-Throughput and Low-Cost Analysis of Trace Volatile Phthalates in Seafood by Online Coupling of Monolithic Capillary Adsorbent with GC-MS.

    PubMed

    Insuan, Wimonrut; Khawmodjod, Phatchara; Whitlow, Harry J; Soonthondecha, Peerapong; Malem, Fairda; Chienthavorn, Orapin

    2016-04-27

    A simple, sensitive, and high-throughput method was developed for the determination of six volatile phthalate esters-dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), benzylbutyl phthalate (BBP), di(2-ethylhexyl) phthalate (DEHP), and di-n-octyl phthalate (DnOP)-in seafood samples by using monolith adsorbent in a capillary coupled to a gas chromatography-mass spectrometry (GC-MS) system. The freeze-dried samples were subjected to an ultrasonication with hexane, followed by vortex mixing. The liquid extract was quantitatively determined by a direct application to an online silica monolith capillary adsorbent coupled with a gas chromatograph with mass spectrometric detection. Method validation in seafood matrix gave recoveries of 72.8-85.4% and a detection limit of 6.8-10.0 ng g(-1) for bivalve samples. Reusability of the monolith capillary for trapping coextracted matrix was up to six times, allowing high-throughput analysis at the parts per billion level. When compared with the Food and Environment Research Agency (FERA) method, no significant difference in the result was observed, confirming the method was valid and applicable for the routine analysis of phthalates in seafood samples for food and environmental laboratories. PMID:27082024

  18. Use of contactless conductivity detection for non-invasive characterisation of monolithic stationary-phase coatings for application in capillary ion chromatography.

    PubMed

    Gillespie, Eoin; Connolly, Damian; Macka, Miroslav; Nesterenko, Pavel N; Paull, Brett

    2007-12-01

    A capacitively-coupled contactless conductivity detector (C4D) has been utilised as an on-capillary detector within a capillary ion chromatograph, incorporating a reversed-phase monolithic silica capillary column semi-permanently modified with a suitable ionic surfactant. The monolithic capillary column (150 x 0.1 mm i.d.) was modified using sodium dioctyl sulfosuccinate (DOSS), an anionic surfactant, for the separation of small inorganic and organic cations. With the use of the on-capillary conductivity detector, the longitudinal homogeneity and temporal stability of the coating were investigated. The approach allowed a detailed non-invasive observation of the nature of the ion-exchange coating over time, and an example of an application of the technique to produce a longitudinal stationary-phase charge gradient is shown. An investigation of the basis of the measured on-capillary conductivity was carried out with a counter ion study, clearly showing the on-capillary detection technique could also distinguish between chemical forms of the immobilised ion exchanger. The above method was used to produce a stable and homogeneously-modified monolithic ion-exchange capillary column, for application to the separation of inorganic alkaline earth cations and amino acids. PMID:18318285

  19. 3D assembly of silica encapsulated semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Rengers, Christin; Voitekhovich, Sergei V.; Kittler, Susann; Wolf, André; Adam, Marion; Gaponik, Nikolai; Kaskel, Stefan; Eychmüller, Alexander

    2015-07-01

    Non-ordered porous networks, so-called aerogels, can be achieved by the 3D assembly of quantum dots (QDs). These materials are well suited for photonic applications, however a certain quenching of the photoluminescence (PL) intensity is observed in these structures. This PL quenching is mainly attributed to the energy transfer mechanisms that result from the close contact of the nanoparticles in the network. Here, we demonstrate the formation of a novel aerogel material with non-quenching PL behaviour by non-classical, reversible gel formation from tetrazole capped silica encapsulated QDs. Monitoring of the gelation/degelation by optical spectroscopy showed that the optical properties of the nanocrystals could be preserved in the 3D network since no spectral shifts and lifetime shortening, which can be attributed to the coupling between QDs, are observed in the gels as compared to the original colloidal solutions. In comparison with other QD-silica monoliths, QDs in our gels are homogeneously distributed with a distinct and controllable distance. In addition we show that the silica shell is porous and allows metal ions to pass through the shell and interact with the QD core causing detectable changes of the emission properties. We further show the applicability of this gelation method to other QD materials which sets the stage for facile preparation of a variety of mixed gel structures.Non-ordered porous networks, so-called aerogels, can be achieved by the 3D assembly of quantum dots (QDs). These materials are well suited for photonic applications, however a certain quenching of the photoluminescence (PL) intensity is observed in these structures. This PL quenching is mainly attributed to the energy transfer mechanisms that result from the close contact of the nanoparticles in the network. Here, we demonstrate the formation of a novel aerogel material with non-quenching PL behaviour by non-classical, reversible gel formation from tetrazole capped silica

  20. GaAs monolithic R.F. modules for SARSAT distress beacons

    NASA Technical Reports Server (NTRS)

    Cauley, Michael A.

    1991-01-01

    Monolithic GaAs UHF components for use in SARSAT Emergency Distress beacons are under development by Microwave Monolithics, Inc., Simi Valley, CA. The components include a bi-phase modulator, driver amplifier, and a 5 watt power amplifier.

  1. Silaffins in Silica Biomineralization and Biomimetic Silica Precipitation

    PubMed Central

    Lechner, Carolin C.; Becker, Christian F. W.

    2015-01-01

    Biomineralization processes leading to complex solid structures of inorganic material in biological systems are constantly gaining attention in biotechnology and biomedical research. An outstanding example for biomineral morphogenesis is the formation of highly elaborate, nano-patterned silica shells by diatoms. Among the organic macromolecules that have been closely linked to the tightly controlled precipitation of silica in diatoms, silaffins play an extraordinary role. These peptides typically occur as complex posttranslationally modified variants and are directly involved in the silica deposition process in diatoms. However, even in vitro silaffin-based peptides alone, with and without posttranslational modifications, can efficiently mediate biomimetic silica precipitation leading to silica material with different properties as well as with encapsulated cargo molecules of a large size range. In this review, the biomineralization process of silica in diatoms is summarized with a specific focus on silaffins and their in vitro silica precipitation properties. Applications in the area of bio- and nanotechnology as well as in diagnostics and therapy are discussed. PMID:26295401

  2. Silaffins in Silica Biomineralization and Biomimetic Silica Precipitation.

    PubMed

    Lechner, Carolin C; Becker, Christian F W

    2015-08-01

    Biomineralization processes leading to complex solid structures of inorganic material in biological systems are constantly gaining attention in biotechnology and biomedical research. An outstanding example for biomineral morphogenesis is the formation of highly elaborate, nano-patterned silica shells by diatoms. Among the organic macromolecules that have been closely linked to the tightly controlled precipitation of silica in diatoms, silaffins play an extraordinary role. These peptides typically occur as complex posttranslationally modified variants and are directly involved in the silica deposition process in diatoms. However, even in vitro silaffin-based peptides alone, with and without posttranslational modifications, can efficiently mediate biomimetic silica precipitation leading to silica material with different properties as well as with encapsulated cargo molecules of a large size range. In this review, the biomineralization process of silica in diatoms is summarized with a specific focus on silaffins and their in vitro silica precipitation properties. Applications in the area of bio- and nanotechnology as well as in diagnostics and therapy are discussed. PMID:26295401

  3. MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY_

    SciTech Connect

    G. A. Moore; F. J. Rice; N. E. Woolstenhulme; J-F. Jue; B. H. Park; S. E. Steffler; N. P. Hallinan; M. D. Chapple; M. C. Marshall; B. L. Mackowiak; C. R. Clark; B. H. Rabin

    2009-11-01

    Full-size/prototypic U10Mo monolithic fuel-foils and aluminum clad fuel plates are being developed at the Idaho National Laboratory’s (INL) Materials and Fuels Complex (MFC). These efforts are focused on realizing Low Enriched Uranium (LEU) high density monolithic fuel plates for use in High Performance Research and Test Reactors. The U10Mo fuel foils under development afford a fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. An overview is provided of the ongoing monolithic UMo fuel development effort, including application of a zirconium barrier layer on fuel foils, fabrication scale-up efforts, and development of complex/graded fuel foils. Fuel plate clad bonding processes to be discussed include: Hot Isostatic Pressing (HIP) and Friction Bonding (FB).

  4. Tooth-colored CAD/CAM monolithic restorations.

    PubMed

    Reich, S

    2015-01-01

    A monolithic restoration (also known as a full contour restoration) is one that is manufactured from a single material for the fully anatomic replacement of lost tooth structure. Additional staining (followed by glaze firing if ceramic materials are used) may be performed to enhance the appearance of the restoration. For decades, monolithic restoration has been the standard for inlay and partial crown restorations manufactured by both pressing and computer-aided design and manufacturing (CAD/CAM) techniques. A limited selection of monolithic materials is now available for dental crown and bridge restorations. The IDS (2015) provided an opportunity to learn about and evaluate current trends in this field. In addition to new developments, established materials are also mentioned in this article to complete the picture. In line with the strategic focus of the IJCD, the focus here is naturally on CAD/CAM materials. PMID:26110926

  5. CHARACTERIZATION OF MONOLITHIC FUEL FOIL PROPERTIES AND BOND STRENGTH

    SciTech Connect

    D E Burkes; D D Keiser; D M Wachs; J S Larson; M D Chapple

    2007-03-01

    Understanding fuel foil mechanical properties, and fuel / cladding bond quality and strength in monolithic plates is an important area of investigation and quantification. Specifically, what constitutes an acceptable monolithic fuel – cladding bond, how are the properties of the bond measured and determined, and what is the impact of fabrication process or change in parameters on the level of bonding? Currently, non-bond areas are quantified employing ultrasonic determinations that are challenging to interpret and understand in terms of irradiation impact. Thus, determining mechanical properties of the fuel foil and what constitutes fuel / cladding non-bonds is essential to successful qualification of monolithic fuel plates. Capabilities and tests related to determination of these properties have been implemented at the INL and are discussed, along with preliminary results.

  6. A Possible Astronomically Aligned Monolith at Gardom's Edge

    NASA Astrophysics Data System (ADS)

    Brown, Daniel; Alder, Andy; Bemand, Elizabeth

    2015-05-01

    A unique triangular shaped monolith located within the Peak District National Park at Gardom's Edge could be intentionally astronomically aligned. It is set within a landscape rich in late Neolithic and Bronze Age remains. We show that the stone is most likely in its original orientation owing to its clear signs of erosion and associated to the time period of the late Neolithic. It is tilted towards south and its north side slopes at an angle equal to the maximum altitude of the Sun at mid-summer. This alignment emphasizes the changing declinations of the Sun during the seasons as well as giving an indication of mid-summers day. This functionality is achieved by an impressive display of light and shadow on the north facing side of the monolith. Together with other monuments in the close vicinity the monolith would have represented an ideal marker or social arena for seasonal gatherings for the otherwise dispersed small communities.

  7. 102 W monolithic single frequency Tm-doped fiber MOPA.

    PubMed

    Wang, Xiong; Zhou, Pu; Wang, Xiaolin; Xiao, Hu; Si, Lei

    2013-12-30

    We demonstrate a high power all-fiber single frequency Tm-doped fiber amplifier. The maximum output power reached 102 W and the central wavelength was 1.97 μm. The single frequency laser signal from a seed laser was amplified based on a monolithic master oscillator power amplifier (MOPA) configuration. The slope efficiency was about 50% against the absorbed pump power. Neither parasitic lasing nor nonlinear effect was observed in the monolithic fiber amplifier. The SBS threshold of the single frequency Tm-doped fiber amplifier was analyzed and estimated. The output power is not limited by the SBS threshold and could be further improved by increasing the pump power. To the best of our knowledge, this is the first demonstration of average power exceeding 100 W from monolithic all-fiber laser near 2 μm wavelength. PMID:24514831

  8. Synthesis of transparent nanocomposite monoliths for gamma scintillation

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Hajagos, Tibor J.; Kishpaugh, David; Jin, Yunxia; Hu, Wei; Chen, Qi; Pei, Qibing

    2015-08-01

    During the past decade, inorganic nanoparticles/polymer nanocomposites have been intensively studied to provide a low cost, high performance alternative for gamma scintillation. However, the aggregation of nanoparticles often occurs even at low nanoparticle concentrations and thus deteriorates the transparency and performance of these nanocomposite scintillators. Here we report an efficient fabrication protocol of transparent nanocomposite monoliths based on surface modified hafnium oxide nanoparticles. Using hafnium oxide nanoparticles with surface-grafted methacrylate groups, highly transparent bulk-size nanocomposite monoliths (2 mm thick, transmittance at 550 nm >75%) are fabricated with nanoparticle loadings up to 40 wt% (net hafnium wt% up to 28.5%). These nanocomposite monoliths of 1 cm diameter and 2 mm thickness are capable of producing a full energy photopeak for 662 keV gamma rays, with the best deconvoluted photopeak energy resolution reaching 8%.

  9. Cerec anterior crowns: restorative options with monolithic ceramic materials.

    PubMed

    Reich, Sven; Fiedlar, Kurt

    2013-01-01

    The aim of this article is to discuss the different types of monolithic ceramic crowns that can be placed on anterior teeth with existing shoulder preparations. Anterior crowns were indicated for the teeth 12 to 22 in the present case. The patient, a 65-year-old male, had received all-ceramic crowns 20 years earlier, which had started to develop cracks and palatal fractures over the last few years. The patient's teeth were prepared and four sets of crowns were fabricated using different monolithic ceramic materials: IPS e.max CAD, Cerec Blocs C In, VITABLOCS Real Life, and ENAMIC. Both shade characterization and crystallization firing were performed on the monolithic lithium disilicate glass ceramic crowns. The silicate ceramic crowns received glaze firing alone. The crowns made of hybrid ceramic (ENAMIC) were treated with a polymer sealant. PMID:24555406

  10. Monolithic pixel detectors in silicon on insulator technology

    NASA Astrophysics Data System (ADS)

    Bisello, Dario

    2013-05-01

    Silicon On Insulator (SOI) is becoming an attractive technology to fabricate monolithic pixel detectors. The possibility of using the depleted resistive substrate as a drift collection volume and to connect it by means of vias through the buried oxide to the pixel electronic makes this kind of approach interesting both for particle and photon detection. In this paper I report the results obtained in the development of monolithic pixel detectors in an SOI technology by a collaboration between groups from the University and INFN of Padova (Italy) and the LBNL and the SCIPP at UCSC (USA).

  11. Monolithic HTS microwave phase shifter and other devices

    NASA Astrophysics Data System (ADS)

    Jackson, Charles M.; Kobayashi, June H.; Guillory, Emery B.; Pettiette-Hall, Claire; Burch, John F.

    1992-08-01

    We describe a monolithic high-temperature superconductor (HTS) phase shifter based on the distributed Josephson inductance (DJI) design integrated monolithically into a 10-GHz microstrip line. This microwave circuit incorporates greater than 1000 HTS RF SQUIDS. Recent data demonstrate the performance of this broadband HTS circuit. We observed phase shifts greater than 150 deg in resonant structures, and 20 deg in broadband circuits. The nonlinear inductance of the superconducting transmission line can be used for other novel applications, including parametric amplification. A comparison of the DJI circuit to a series array of Josephson elements (used for pulse sharpening) will contrast these two new and exciting nonlinear transmission line circuits.

  12. A Monolithic Oxide-Based Transversal Thermoelectric Energy Harvester

    NASA Astrophysics Data System (ADS)

    Teichert, S.; Bochmann, A.; Reimann, T.; Schulz, T.; Dreßler, C.; Udich, S.; Töpfer, J.

    2016-03-01

    We report the fabrication and properties of a monolithic transversal thermoelectric energy harvester based on the combination of a thermoelectric oxide and a metal. The fabrication of the device is done with a ceramic multilayer technology using printing and co-firing processes. Five transversal devices were combined to a meander-like thermoelectric generator. Electrical measurements and finite element calculations were performed to characterize the resulting thermoelectric generator. A maximum experimental electrical power output of 30.2 mW at a temperature difference of {Δ }T = 208 K was found. The prepared monolithic thermoelectric generator provides at {Δ }T = 35 K sufficient energy to drive a simple electronic sensor application.

  13. Characterization of a Depleted Monolithic Active Pixel Sensor (DMAPS) prototype

    NASA Astrophysics Data System (ADS)

    Obermann, T.; Havranek, M.; Hemperek, T.; Hügging, F.; Kishishita, T.; Krüger, H.; Marinas, C.; Wermes, N.

    2015-03-01

    New monolithic pixel detectors integrating CMOS electronics and sensor on the same silicon substrate are currently explored for particle tracking in future HEP experiments, most notably at the LHC . The innovative concept of Depleted Monolithic Active Pixel Sensors (DMAPS) is based on high resistive silicon bulk material enabling full substrate depletion and the application of an electrical drift field for fast charge collection, while retaining full CMOS capability for the electronics. The technology (150 nm) used offers quadruple wells and allows to implement the pixel electronics with independently isolated N- and PMOS transistors. Results of initial studies on the charge collection and sensor performance are presented.

  14. Silver-coated monolithic columns for separation in radiopharmaceutical applications.

    PubMed

    Sedlacek, Ondrej; Kucka, Jan; Svec, Frantisek; Hruby, Martin

    2014-04-01

    In this study, we demonstrate the preparation of a macroporous monolithic column containing anchored silver nanoparticles and its use for the elimination of excess radioiodine from the radiolabeled pharmaceutical. The poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith was first functionalized with cystamine and the free thiol groups liberated by reaction with borohydride. In-house-prepared silver nanoparticles were then attached by interaction with the surface thiols. The deiodization process was demonstrated with the commonly used radiopharmaceutical m-iodobenzylguanidine labeled with radionuclide iodine-125. PMID:24478196

  15. Silica aerogel core waveguide.

    PubMed

    Grogan, M D W; Leon-Saval, S G; England, R; Birks, T A

    2010-10-11

    We have selectively filled the core of hollow photonic crystal fibre with silica aerogel. Light is guided in the aerogel core, with a measured attenuation of 0.2 dB/cm at 1540 nm comparable to that of bulk aerogel. The structure guides light by different mechanisms depending on the wavelength. At long wavelengths the effective index of the microstructured cladding is below the aerogel index of 1.045 and guidance is by total internal reflection. At short wavelengths, where the effective cladding index exceeds 1.045, a photonic bandgap can guide the light instead. There is a small region of crossover, where both index- and bandgap-guided modes were simultaneously observed. PMID:20941148

  16. Sensitized broadband near-infrared luminescence from bismuth-doped silicon-rich silica films.

    PubMed

    Miwa, Yuji; Sun, Hong-Tao; Imakita, Kenji; Fujii, Minoru; Teng, Yu; Qiu, Jianrong; Sakka, Yoshio; Hayashi, Shinji

    2011-11-01

    Developing Si compatible optical sources has attracted a great deal of attention owing to the potential for forming inexpensive, monolithic Si-based integrated devices. In this Letter, we show that ultra broadband near-IR (NIR) luminescence in the optical telecommunication window of silica optical fibers was obtained for Bi-doped silicon-rich silica films prepared by a co-sputtering method. Without excess Si, i.e., Bi-doped pure silica films, no luminescence was observed in the NIR range. A broad Bi-related NIR photoluminescence appears when excess Si was doped in the Bi-doped silica. The luminescence properties depended strongly on the amount of excess Si and the annealing temperature. Photoluminescence results suggest that excess Si acts as an agent to activate Bi NIR luminescence centers and also as an energy donor to transfer excitation energy to the centers. It is believed that this peculiar structure might find some important applications in Si photonics. PMID:22048371

  17. 21 CFR 584.700 - Hydrophobic silicas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Hydrophobic silicas. 584.700 Section 584.700 Food... DRINKING WATER OF ANIMALS Listing of Specific Substances Affirmed as GRAS § 584.700 Hydrophobic silicas. (a) Product. Amorphous fumed hydrophobic silica or precipitated hydrophobic silica (CAS Reg. No....

  18. 21 CFR 584.700 - Hydrophobic silicas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrophobic silicas. 584.700 Section 584.700 Food... DRINKING WATER OF ANIMALS Listing of Specific Substances Affirmed as GRAS § 584.700 Hydrophobic silicas. (a) Product. Amorphous fumed hydrophobic silica or precipitated hydrophobic silica (CAS Reg. No....

  19. 21 CFR 584.700 - Hydrophobic silicas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Hydrophobic silicas. 584.700 Section 584.700 Food... DRINKING WATER OF ANIMALS Listing of Specific Substances Affirmed as GRAS § 584.700 Hydrophobic silicas. (a) Product. Amorphous fumed hydrophobic silica or precipitated hydrophobic silica (CAS Reg. No....

  20. 21 CFR 584.700 - Hydrophobic silicas.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Hydrophobic silicas. 584.700 Section 584.700 Food... DRINKING WATER OF ANIMALS Listing of Specific Substances Affirmed as GRAS § 584.700 Hydrophobic silicas. (a) Product. Amorphous fumed hydrophobic silica or precipitated hydrophobic silica (CAS Reg. No....

  1. 21 CFR 582.1711 - Silica aerogel.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Silica aerogel. 582.1711 Section 582.1711 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1711 Silica aerogel. (a) Product. Silica aerogel as a finely powdered microcellular silica foam...

  2. 21 CFR 182.1711 - Silica aerogel.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Silica aerogel. 182.1711 Section 182.1711 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1711 Silica aerogel. (a) Product. Silica aerogel as a finely powdered microcellular silica foam...

  3. Monolithic Flexure Pre-Stressed Ultrasonic Horns

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Allen, Phillip Grant

    2011-01-01

    High-power ultrasonic actuators are generally assembled with a horn, backing, stress bolt, piezoelectric rings, and electrodes. The manufacturing process is complex, expensive, difficult, and time-consuming. The internal stress bolt needs to be insulated and presents a potential internal discharge point, which can decrease actuator life. Also, the introduction of a center hole for the bolt causes many failures, reducing the throughput of the manufactured actuators. A new design has been developed for producing ultrasonic horn actuators. This design consists of using flexures rather than stress bolts, allowing one to apply pre-load to the piezoelectric material. It also allows one to manufacture them from a single material/plate, rapid prototype them, or make an array in a plate or 3D structure. The actuator is easily assembled, and application of pre-stress greater than 25 MPa was demonstrated. The horn consists of external flexures that eliminate the need for the conventional stress bolt internal to the piezoelectric, and reduces the related complexity. The stress bolts are required in existing horns to provide prestress on piezoelectric stacks when driven at high power levels. In addition, the manufacturing process benefits from the amenability to produce horn structures with internal cavities. The removal of the pre-stress bolt removes a potential internal electric discharge point in the actuator. In addition, it significantly reduces the chances of mechanical failure in the piezoelectric stacks that result from the hole surface in conventional piezoelectric actuators. The novel features of this disclosure are: 1. A design that can be manufactured from a single piece of metal using EDM, precision machining, or rapid prototyping. 2. Increased electromechanical coupling of the horn actuator. 3. Higher energy density. 4. A monolithic structure of a horn that consists of an external flexure or flexures that can be used to pre-stress a solid piezoelectric structure

  4. Constitutive Theory Developed for Monolithic Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Janosik, Lesley A.

    1998-01-01

    with these service conditions by developing a multiaxial viscoplastic constitutive model that accounts for time-dependent hereditary material deformation (such as creep and stress relaxation) in monolithic structural ceramics. Using continuum principles of engineering mechanics, we derived the complete viscoplastic theory from a scalar dissipative potential function.

  5. A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology.

    PubMed

    Wilpers, Guido; See, Patrick; Gill, Patrick; Sinclair, Alastair G

    2012-09-01

    The coherent control of quantum-entangled states of trapped ions has led to significant advances in quantum information, quantum simulation, quantum metrology and laboratory tests of quantum mechanics and relativity. All of the basic requirements for processing quantum information with arrays of ion-based quantum bits (qubits) have been proven in principle. However, so far, no more than 14 ion-based qubits have been entangled with the ion-trap approach, so there is a clear need for arrays of ion traps that can handle a much larger number of qubits. Traps consisting of a two-dimensional electrode array have undergone significant development, but three-dimensional trap geometries can create a superior confining potential. However, existing three-dimensional approaches, as used in the most advanced experiments with trap arrays, cannot be scaled up to handle greatly increased numbers of ions. Here, we report a monolithic three-dimensional ion microtrap array etched from a silica-on-silicon wafer using conventional semiconductor fabrication technology. We have confined individual (88)Sr(+) ions and strings of up to 14 ions in a single segment of the array. We have measured motional frequencies, ion heating rates and storage times. Our results demonstrate that it should be possible to handle several tens of ion-based qubits with this approach. PMID:22820742

  6. Monolithic diphasic gels of mullite by sol-gel process under ultrasound stimulation.

    PubMed

    Vollet, D R; Donatti, D A; Domingos, R N; de Oliveira, I

    1998-06-01

    Diphasic gel in the mullite composition was prepared from a colloidal sol of boehmite mixed with a hydrolyzed tetraethoxisilane (TEOS) solution. The boehmite sol was obtained by peptization of a poorly crystallized or very small mean crystallite size (approximately 34 A) precipitate, resulting from the reaction between solutions of aluminum sulfate and sodium hydroxide. Ultrasound was utilized in the processes of the TEOS hydrolysis and the boehmite peptization, and also for complete homogenization of the mixture to gel. The wet gel is almost clear and monolithic. The gel transparency is lost on drying, when syneresis has ended, so that the interlinked pore structure starts to empty and is recovered upon water re-absorption. Cracking closely accompanies this critical drying process. Differential thermal analysis (DTA) and X-ray diffraction (XRD) show that the solid structure of the gel is composed of an amorphous silica phase, as a matrix, and a colloidal sized crystalline phase of boehmite. Upon heat treatment, the boehmite phase within the gel closely follows the same transition sequence as in pure alumina shifted towards higher temperatures. Orthorhombic mullite formation was detected at 1300 degrees C. PMID:11270341

  7. On the use of mesophase pitch for the preparation of hierarchical porous carbon monoliths by nanocasting

    NASA Astrophysics Data System (ADS)

    Adelhelm, Philipp; Cabrera, Karin; Smarsly, Bernd M.

    2012-02-01

    A detailed study is given on the synthesis of a hierarchical porous carbon, possessing both meso- and macropores, using a mesophase pitch (MP) as the carbon precursor. This carbon material is prepared by the nanocasting approach involving the replication of a porous silica monolith (hard templating). While this carbon material has already been tested in energy storage applications, various detailed aspects of its formation and structure are addressed in this study. Scanning electron microscopy (SEM), Hg porosimetry and N2 physisorption are used to characterize the morphology and porosity of the carbon replica. A novel approach for the detailed analysis of wide-angle x-ray scattering (WAXS) from non-graphitic carbons is applied to quantitatively compare the graphene microstructures of carbons prepared using MP and furfuryl alcohol (FA). This WAXS analysis underlines the importance of the carbon precursor in the synthesis of templated porous carbon materials via the nanocasting route. Our study demonstrates that a mesophase pitch is a superior precursor whenever a high-purity, low-micropore-content and well-developed graphene structure is desired.

  8. Silica/Polymer and Silica/Polymer/Fiber Composite Aerogels

    NASA Technical Reports Server (NTRS)

    Ou, Danny; Stepanian, Christopher J.; Hu, Xiangjun

    2010-01-01

    Aerogels that consist, variously, of neat silica/polymer alloys and silica/polymer alloy matrices reinforced with fibers have been developed as materials for flexible thermal-insulation blankets. In comparison with prior aerogel blankets, these aerogel blankets are more durable and less dusty. These blankets are also better able to resist and recover from compression . an important advantage in that maintenance of thickness is essential to maintenance of high thermal-insulation performance. These blankets are especially suitable as core materials for vacuum- insulated panels and vacuum-insulated boxes of advanced, nearly seamless design. (Inasmuch as heat leakage at seams is much greater than heat leakage elsewhere through such structures, advanced designs for high insulation performance should provide for minimization of the sizes and numbers of seams.) A silica/polymer aerogel of the present type could be characterized, somewhat more precisely, as consisting of multiply bonded, linear polymer reinforcements within a silica aerogel matrix. Thus far, several different polymethacrylates (PMAs) have been incorporated into aerogel networks to increase resistance to crushing and to improve other mechanical properties while minimally affecting thermal conductivity and density. The polymethacrylate phases are strongly linked into the silica aerogel networks in these materials. Unlike in other organic/inorganic blended aerogels, the inorganic and organic phases are chemically bonded to each other, by both covalent and hydrogen bonds. In the process for making a silica/polymer alloy aerogel, the covalent bonds are introduced by prepolymerization of the methacrylate monomer with trimethoxysilylpropylmethacrylate, which serves as a phase cross-linker in that it contains both organic and inorganic monomer functional groups and hence acts as a connector between the organic and inorganic phases. Hydrogen bonds are formed between the silanol groups of the inorganic phase and the

  9. A hybrid fluorous monolithic capillary column with integrated nanoelectrospray ionization emitter for determination of perfluoroalkyl acids by nano-liquid chromatography-nanoelectrospray ionization-mass spectrometry/mass spectrometry.

    PubMed

    Zhang, Haiyang; Ou, Junjie; Wei, Yinmao; Wang, Hongwei; Liu, Zhongshan; Zou, Hanfa

    2016-04-01

    A hybrid fluorous monolithic column was simply prepared via photo-initiated free radical polymerization of an acrylopropyl polyhedral oligomeric silsesquioxane (acryl-POSS) and a perfluorous monomer (2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoroheptyl acrylate) in UV-transparent fused-silica capillaries within 5min. The physical characterization of hybrid fluorous monolith, including scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, mercury intrusion porosimetry (MIP) and nitrogen adsorption/desorption measurement was performed. Chromatographic performance was also evaluated by capillary liquid chromatography (cLC). Due to the fluorous-fluorous interaction between fluorous monolith and analytes, fluorobenzenes could well be separated, and the column efficiencies reached 86,600-92,500plates/m at the velocity of 0.87mm/s for alkylbenzenes and 51,900-76,000plates/m at the velocity of 1.10mm/s for fluorobenzenes. Meanwhile, an approach to integrate nanoelectrospray ionization (ESI) emitter with hybrid fluorous monolithic column was developed for quantitative determination of perfluoroalkyl acids by nanoHPLC-ESI-MS/MS. The integration design could minimize extracolumn volume, thus excluding undesirable peak broadening and improving separation performance. PMID:26916593

  10. Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold.

    PubMed

    Fu, Jingjing; Wang, Siqun; He, Chunxia; Lu, Zexiang; Huang, Jingda; Chen, Zhilin

    2016-08-20

    Monolithic cellulose nanofibrils (CNF)-silica composite aerogels were successfully prepared by immersing CNF aerogels into a silica solution in a two-step sol-gel process (initial hydrolysis of tetraethyl orthosilicate (TEOS) followed by condensation of silica particles). Aerogels were characterized by SEM, BET surface area test, bulk density and silica content analysis, FTIR spectroscopy, and compression test. The form of SiO2 existing in the composite aerogel was the spherical individual particles coated on CNF fibrils. The pH value of condensation solution was found to have great influence on the properties of the composite aerogels. By varying the pH value of condensation atmosphere from 8 to 12, the bulk densities of composite aerogels were able to be linearly increased from 0.059gcm(-3) to 0.29gcm(-3),and the silica content in the matrix sharply jumped from 3wt% to 79wt%. The porosities of the aerogels remained very high, between 85 and 96%, and the surface area of the composite aerogel reached up to 700.1m(2)g(-1). The compression properties of the composite aerogel improved greatly compared with those of the silica aerogel, about 8-30 times higher. Moreover, the compressive strength of the composite aerogel prepared in this work greatly exceeded the conventional insulation materials found in the recent commercial market, and without substantial increases in thermal conductivity. Hence, the findings of this research offer a promising application for composite aerogels and give a theoretical basis for developing new advanced materials. PMID:27178912

  11. Integrated strong cation-exchange hybrid monolith coupled with capillary zone electrophoresis and simultaneous dynamic pH junction for large-volume proteomic analysis by mass spectrometry.

    PubMed

    Zhang, Zhenbin; Sun, Liangliang; Zhu, Guijie; Yan, Xiaojing; Dovichi, Norman J

    2015-06-01

    A sulfonate-silica hybrid strong cation-exchange (SCX) monolith was synthesized at the proximal end of a capillary zone electrophoresis column and used for on-line solid-phase extraction (SPE) sample preconcentration. Sample was prepared in an acidic buffer and deposited onto the SCX-SPE monolith and eluted using a basic buffer. Electrophoresis was performed in an acidic buffer. This combination of buffers results in formation of a dynamic pH junction, which allows use of relatively large elution buffer volume while maintaining peak efficiency and resolution. All experiments were performed with a 50 µm ID capillary, a 1cm long SCX-SPE monolith, a 60cm long separation capillary, and a electrokinetically pumped nanospray interface. The volume of the capillary is 1.1 µL. By loading 21 µL of a 1×10(-7) M angiotensin II solution, an enrichment factor of 3000 compared to standard electrokinetic injection was achieved on this platform while retaining efficient electrophoretic performance (N=44,000 plates). The loading capacity of the sulfonate SCX hybrid monolith was determined to be ~15 pmol by frontal analysis with 10(-5) M angiotensin II. The system was also applied to the analysis of a 10(-4) mg/mL bovine serum albumin tryptic digest; the protein coverage was 12% and 11 peptides were identified. Finally, by loading 5.5 µL of a 10(-3) mg/mL E. coli digest, 109 proteins and 271 peptides were identified in a 20 min separation; the median separation efficiency generated by these peptides was 25,000 theoretical plates. PMID:25863379

  12. Skin penetration of silica microparticles.

    PubMed

    Boonen, J; Baert, B; Lambert, J; De Spiegeleer, B

    2011-06-01

    Knowledge about skin penetration of nano- and microparticles is essential for the development of particle-core drug delivery systems and toxicology. A large number of studies have been devoted to metallic particle penetration. However, little work has been published about the importance of chemical material properties of the particles and the skin penetration effect of the applied formulation. Here, we investigated the penetration of 3 microm silica particles in water and in a 65% ethanolic plant extract on ex vivo human skin using scanning electron microscopy. Contrary to most other microsphere skin studies, we observed for the first time that 3 microm silica particles can penetrate the living epidermis. Moreover, when formulated in the ethanolic medium, particles even reach the dermis. The deviating chemical properties of silica compared to previously investigated microparticles (titanium dioxide, zinc oxide) and confounding effect of the formulation in which the silica microparticles are presented, is thus demonstrated. PMID:21699089

  13. Development and characterization of methacrylate-based hydrazide monoliths for oriented immobilization of antibodies.

    PubMed

    Brne, P; Lim, Y-P; Podgornik, A; Barut, M; Pihlar, B; Strancar, A

    2009-03-27

    Convective interaction media (CIM; BIA Separations) monoliths are attractive stationary phases for use in affinity chromatography because they enable fast affinity binding, which is a consequence of convectively enhanced mass transport. This work focuses on the development of novel CIM hydrazide (HZ) monoliths for the oriented immobilization of antibodies. Adipic acid dihydrazide (AADH) was covalently bound to CIM epoxy monoliths to gain hydrazide groups on the monolith surface. Two different antibodies were afterwards immobilized to hydrazide functionalized monolithic columns and prepared columns were tested for their selectivity. One column was further tested for the dynamic binding capacity. PMID:19203754

  14. A semiconductor laser with monolithically integrated dynamic polarization control.

    PubMed

    Holmes, B M; Naeem, M A; Hutchings, D C; Marsh, J H; Kelly, A E

    2012-08-27

    We report the first demonstration of a semiconductor laser monolithically integrated with an active polarization controller, which consists of a polarization mode converter followed by an active, differential phase shifter. High speed modulation of the device output polarization is demonstrated via current injection to the phase shifter section. PMID:23037101

  15. Fischer-Tropsch Synthesis on Ceramic Monolith-Structured Catalysts

    SciTech Connect

    Wang, Yong; Liu, Wei

    2009-04-19

    This paper reports recent research results about impact of different catalyst bed configurations on FT reaction product distribution. A CoRe/γ-alumina catalyst is prepared in bulk particle form and tested in the packed bed reactor at a size of 60 to 100 mesh. The same catalyst is ball milled and coated on a ceramic monolith support structure of channel size about 1mm. The monolith catalyst module is tested in two different ways, as a whole piece and as well-defined channels. Steady-state reaction conversion is measured at various temperatures under constant H2/CO feed ratio of 2 and reactor pressure of 25 bar. Detailed product analysis is performed. Significant formation of wax is evident with the packed particle bed and with the monolith catalyst that is improperly packed. By contrast, the wax formation is not detected in the liquid product by confining the reactions inside the monolith channel. This study presents an important finding about the structured catalyst/reactor system that the product distribution highly depends on the way how the structured reactor is set up. Even if the same catalyst and same reaction conditions (T, P, H2/oil ratio) are used, hydrodynamics (or flow conditions) inside a structured channel can have a significant impact on the product distribution.

  16. MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY

    SciTech Connect

    Glenn A. Moore; Francine J. Rice; Nicolas E. Woolstenhulme; W. David SwanK; DeLon C. Haggard; Jan-Fong Jue; Blair H. Park; Steven E. Steffler; N. Pat Hallinan; Michael D. Chapple; Douglas E. Burkes

    2008-10-01

    Within the Reduced Enrichment for Research and Test Reactors (RERTR) program directed by the US Department of Energy (DOE), UMo fuel-foils are being developed in an effort to realize high density monolithic fuel plates for use in high-flux research and test reactors. Namely, targeted are reactors that are not amenable to Low Enriched Uranium (LEU) fuel conversion via utilization of high density dispersion-based fuels, i.e. 8-9 gU/cc. LEU conversion of reactors having a need for >8-9 gU/cc fuel density will only be possible by way of monolithic fuel forms. The UMo fuel foils under development afford fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. Two primary challenges have been established with respect to UMo monolithic fuel development; namely, fuel element fabrication and in-reactor fuel element performance. Both issues are being addressed concurrently at the Idaho National Laboratory. An overview is provided of the ongoing monolithic UMo fuel development effort at the Idaho National Laboratory (INL); including development of complex/graded fuel foils. Fabrication processes to be discussed include: UMo alloying and casting, foil fabrication via hot rolling, fuel-clad interlayer application via co-rolling and thermal spray processes, clad bonding via Hot Isostatic Pressing (HIP) and Friction Bonding (FB), and fuel plate finishing.

  17. RF characterization of monolithic microwave and mm-wave ICs

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Ponchak, G. E.; Shalkhauser, K. A.; Bhasin, K. B.

    1986-01-01

    A number of fixturing techniques compatible with automatic network analysis are presented. The fixtures are capable of characterizing GaAs Monolithic Microwave Integrated Circuits (MMICs) at K and Ka band. Several different transitions are used to couple the RF test port to microstrip. Fixtures which provide chip level de-embedding are included. In addition, two advanced characterization techniques are assessed.

  18. Multiwavelength monolithic integrated fiber optics terminal - An update

    NASA Technical Reports Server (NTRS)

    Spear-Zino, J. D.; Rice, R. R.; Powers, J. K.; Bryan, D. A.; Hall, D. G.; Dalke, E. A.; Reed, W. R.

    1981-01-01

    This paper serves as an update for the Multiwavelength Monolithic Integrated Fiber Optic Terminal (MMIFOT) being developed by MDAC-St. Louis for NASA's Johnson Space Center. The program objective is to utilize guided wave optical technology to develop a passive optical wavelength multiplexing subsystem with a single mode optical fiber serving as the transmission medium.

  19. Single-frequency lasing of monolithic Ho,Tm:YLF

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Deyst, John P.; Storm, Mark E.

    1993-01-01

    Single-frequency lasing in monolithic crystals of holmium-thulium-doped YLF (Ho,Tm:YLF) is reported. A maximum single-frequency output power of 6 mW at a wavelength of 2.05 microns is demonstrated. Frequency tuning is also described.

  20. Translucency of monolithic and core zirconia after hydrothermal aging

    PubMed Central

    Fathy, Salma M.; El-Fallal, Abeer A.; El-Negoly, Salwa A.; El Bedawy, Abu Baker

    2015-01-01

    Abstract Objective: To evaluate the hydrothermal aging effect on the translucency of partially stabilized tetragonal zirconia with yttria (Y-TZP) used as monolithic or fully milled zirconia and of core type. Methods: Twenty disc-shaped specimens (1 and 10 mm) for each type of monolithic and core Y-TZP materials were milled and sintered according to the manufacturer’s instruction. The final specimens were divided into two groups according to the type of Y-TZP used. Translucency parameter (TP) was measured over white and black backgrounds with the diffuse reflectance method; X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to analyze the microstructure of both Y-TZP types before and after aging. Data for TP values was statistically analyzed using Student’s t-test. Results: Monolithic Y-TZP showed the highest TP mean value (16.4 ± 0.316) before aging while core Y-TZP showed the lowest TP mean value (7.05 ± 0.261) after aging. There was a significant difference between the two Y-TZP types before and after hydrothermal aging. XRD analysis showed increases in monoclinic content in both Y-TZP surfaces after aging. Conclusion: Monolithic Y-TZP has a higher chance to low-temperature degradation than core type, which may significantly affect the esthetic appearance and translucency hence durability of translucent Y-TZP. PMID:27335897

  1. A monolithically-integrated μGC chemical sensor system.

    PubMed

    Manginell, Ronald P; Bauer, Joseph M; Moorman, Matthew W; Sanchez, Lawrence J; Anderson, John M; Whiting, Joshua J; Porter, Daniel A; Copic, Davor; Achyuthan, Komandoor E

    2011-01-01

    Gas chromatography (GC) is used for organic and inorganic gas detection with a range of applications including screening for chemical warfare agents (CWA), breath analysis for diagnostics or law enforcement purposes, and air pollutants/indoor air quality monitoring of homes and commercial buildings. A field-portable, light weight, low power, rapid response, micro-gas chromatography (μGC) system is essential for such applications. We describe the design, fabrication and packaging of μGC on monolithically-integrated Si dies, comprised of a preconcentrator (PC), μGC column, detector and coatings for each of these components. An important feature of our system is that the same mechanical micro resonator design is used for the PC and detector. We demonstrate system performance by detecting four different CWA simulants within 2 min. We present theoretical analyses for cost/power comparisons of monolithic versus hybrid μGC systems. We discuss thermal isolation in monolithic systems to improve overall performance. Our monolithically-integrated μGC, relative to its hybrid cousin, will afford equal or slightly lower cost, a footprint that is 1/2 to 1/3 the size and an improved resolution of 4 to 25%. PMID:22163970

  2. Monolithic fuel cell based power source for burst power generation

    SciTech Connect

    Fee, D.C.; Blackburn, P.E.; Busch, D.E.; Dees, D.W.; Dusek, J.; Easler, T.E.; Ellingson, W.A.; Flandermeyer, B.K.; Fousek, R.J.; Heiberger, J.J.; Majumdar, S.; McPheeters, C.C.; Mrazek, F.C.; Picciolo, J.J.; Singh, J.P.; Poeppel, R.B.

    1988-01-01

    A unique fuel cell coupled with a low power nuclear reactor presents an attractive approach for SDI burst power requirements. The requisite high power, long-duration bursts appear achievable with appropriate development of the concept. A monolithic fuel cell/nuclear reactor system clearly possesses several advantages. Fabrication methods, performance advantages, and applications are discussed in this report.

  3. A Monolithically-Integrated μGC Chemical Sensor System

    PubMed Central

    Manginell, Ronald P.; Bauer, Joseph M.; Moorman, Matthew W.; Sanchez, Lawrence J.; Anderson, John M.; Whiting, Joshua J.; Porter, Daniel A.; Copic, Davor; Achyuthan, Komandoor E.

    2011-01-01

    Gas chromatography (GC) is used for organic and inorganic gas detection with a range of applications including screening for chemical warfare agents (CWA), breath analysis for diagnostics or law enforcement purposes, and air pollutants/indoor air quality monitoring of homes and commercial buildings. A field-portable, light weight, low power, rapid response, micro-gas chromatography (μGC) system is essential for such applications. We describe the design, fabrication and packaging of μGC on monolithically-integrated Si dies, comprised of a preconcentrator (PC), μGC column, detector and coatings for each of these components. An important feature of our system is that the same mechanical micro resonator design is used for the PC and detector. We demonstrate system performance by detecting four different CWA simulants within 2 min. We present theoretical analyses for cost/power comparisons of monolithic versus hybrid μGC systems. We discuss thermal isolation in monolithic systems to improve overall performance. Our monolithically-integrated μGC, relative to its hybrid cousin, will afford equal or slightly lower cost, a footprint that is 1/2 to 1/3 the size and an improved resolution of 4 to 25%. PMID:22163970

  4. Morphosynthesis of cubic silver cages on monolithic activated carbon.

    PubMed

    Wang, Fei; Zhao, Hong; Lai, Yijian; Liu, Siyu; Zhao, Binyuan; Ning, Yuesheng; Hu, Xiaobin

    2013-11-14

    Cubic silver cages were prepared on monolithic activated carbon (MAC) pre-absorbed with Cl(-), SO4(2-), or PO4(3-) anions. Silver insoluble salts served as templates for the morphosynthesis of silver cages. The silver ions were reduced by reductive functional groups on MAC micropores through a galvanic cell reaction mechanism. PMID:24080952

  5. From 1D to 3D - macroscopic nanowire aerogel monoliths.

    PubMed

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-08-01

    Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying. PMID:27389477

  6. Femtosecond carrier dynamics and modelocking in monolithic CPM lasers

    SciTech Connect

    Brorson, S.D.; Moerk, J.; Moeller-Larsen, A.; Nielsen, J.M.; Bischoff, S.

    1996-10-01

    Femtosecond pump-probe measurements of the dynamics in both forward- and reverse-biased semiconductor optical waveguides are presented. Slow (nanosecond) as well as ultrafast (femtosecond) dynamics are observed in both kinds of structures. These measurements imply that the slow saturable absorber theory of modelocking in monolithic CPM devices is incomplete.

  7. Preparation of phenylboronate affinity rigid monolith with macromolecular porogen.

    PubMed

    Li, Xiang-Jie; Jia, Man; Zhao, Yong-Xin; Liu, Zhao-Sheng; Akber Aisa, Haji

    2016-03-18

    Boronate-affinity monolithic column was first prepared via polystyrene (PS) as porogen in this work. The monolithic polymer was synthetized using 4-vinylphenylboronic acid (4-VPBA) as functional monomer, ethylene glycol dimethacrylate (EDMA) as crosslinker monomer, and a mixture of PS solution in tetrahydrofuran, the linear macromolecular porogen, and toluene as porogen. Isoquercitrin (ISO) and hyperoside (HYP), isomer diol flavonoid glycosides, can be baseline separated on the poly(VPBA-co-EDMA) monolith. The effect of polymerization variables on the selectivity factor, e.g., the ratio of monomer to crosslinker (M/C), the amount of PS and the molecular weight of macromolecular porogen was investigated. The surface properties of the monolithic polymer were characterized by scanning electron microscopy and nitrogen adsorption. The best polymerization condition was the M/C ratio of 7:3, and the PS concentration of 40 mg/ml. The poly(VPBA-co-EDMA) polymer was also applied to extract cis-diol flavonoid glycosides from the crude extraction of cotton flower. After treated by poly(VPBA-co-EDMA) for solid phase extraction, high purity ISO and HYP (>99.96%) can be obtained with recovery of 83.7% and 78.6%, respectively. PMID:26896914

  8. Cyclodextrin-Functionalized Monolithic Capillary Columns: Preparation and Chiral Applications.

    PubMed

    Adly, Frady G; Antwi, Nana Yaa; Ghanem, Ashraf

    2016-02-01

    In this review, the recently reported approaches for the preparation of cyclodextrin-functionalized capillary monolithic columns are highlighted, with few applications in chiral separations using capillary liquid chromatography (CLC) and capillary electrochromatography (CEC). Chirality 28:97-109, 2016. © 2015 Wiley Periodicals, Inc. PMID:26563470

  9. 24. SPILLWAY CHANNEL WALLS REINFORCEMENT DETAILS; MONOLITHS E1 TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. SPILLWAY CHANNEL WALLS - REINFORCEMENT DETAILS; MONOLITHS E-1 TO F-4 INCL. & NO. 34. Sheet S-11, June, 1939. File no. SA 342/24(?). - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  10. 26. SPILLWAY CHANNEL WALLS REINF. DETAILS; MONOLITHS W1 TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. SPILLWAY CHANNEL WALLS - REINF. DETAILS; MONOLITHS W-1 TO W-4 INCL. Sheet S-26, July, 1939. File no. SA 342/34. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  11. Three-dimensional developing flow model for photocatalytic monolith reactors

    SciTech Connect

    Hossain, Md.M.; Raupp, G.B.; Hay, S.O.; Obee, T.N.

    1999-06-01

    A first-principles mathematical model describes performance of a titania-coated honeycomb monolith photocatalytic oxidation (PCO) reactor for air purification. The single-channel, 3-D convection-diffusion-reaction model assumes steady-state operation, negligible axial dispersion, and negligible homogeneous reaction. The reactor model accounts rigorously for entrance effects arising from the developing fluid-flow field and uses a previously developed first-principles radiation-field submodel for the UV flux profile down the monolith length. The model requires specification of an intrinsic photocatalytic reaction rate dependent on local UV light intensity and local reactant concentration, and uses reaction-rate expressions and kinetic parameters determined independently using a flat-plate reactor. Model predictions matched experimental pilot-scale formaldehyde conversion measurements for a range of inlet formaldehyde concentrations, air humidity levels, monolith lengths, and for various monolith/lamp-bank configurations. This agreement was realized without benefit of any adjustable photocatalytic reactor model parameters, radiation-field submodel parameters, or kinetic submodel parameters. The model tends to systematically overpredict toluene conversion data by about 33%, which falls within the accepted limits of experimental kinetic parameter accuracy. With further validation, the model could be used in PCO reactor design and to develop quantitative energy utilization metrics.

  12. Mechanical monolithic horizontal sensor for low frequency seismic noise measurement.

    PubMed

    Acernese, Fausto; Giordano, Gerardo; Romano, Rocco; De Rosa, Rosario; Barone, Fabrizio

    2008-07-01

    This paper describes a mechanical monolithic horizontal sensor for geophysical applications developed at the University of Salerno. The instrument is basically a monolithic tunable folded pendulum, shaped with precision machining and electric discharge machining, that can be used both as seismometer and, in a force-feedback configuration, as accelerometer. The monolithic mechanical design and the introduction of laser interferometric techniques for the readout implementation makes it a very compact instrument, very sensitive in the low frequency seismic noise band, with a very good immunity to environmental noises. Many changes have been produced since last version (2007), mainly aimed to the improvement of the mechanics and of the optical readout of the instrument. In fact, we have developed and tested a prototype with elliptical hinges and mechanical tuning of the resonance frequency together with a laser optical lever and a new laser interferometer readout system. The theoretical sensitivity curve for both laser optical lever and laser interferometric readouts, evaluated on the basis of suitable theoretical models, shows a very good agreement with the experimental measurements. Very interesting scientific result is the measured natural resonance frequency of the instrument of 70 mHz with a Q=140 in air without thermal stabilization. This result demonstrates the feasibility of a monolithic folded pendulum sensor with a natural resonance frequency of the order of millihertz with a more refined mechanical tuning. PMID:18681722

  13. Shear bond strength of indirect composite material to monolithic zirconia

    PubMed Central

    2016-01-01

    PURPOSE This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). MATERIALS AND METHODS Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (α=.05). RESULTS Bond strength was significantly lower in untreated specimens than in sandblasted specimens (P<.05). No difference between the glaze layer and hydrofluoric acid application treated groups were observed. However, bond strength for these groups were significantly higher as compared with the other two groups (P<.05). CONCLUSION Combined use of glaze layer & hydrofluoric acid application and silanization are reliable for strong and durable bonding between indirect composite material and monolithic zirconia. PMID:27555895

  14. Molecular crowding-based imprinted monolithic column for capillary electrochromatography.

    PubMed

    Zong, Hai-Yan; Liu, Xiao; Liu, Zhao-Sheng; Huang, Yan-Ping

    2015-03-01

    Molecular crowding is a new approach to stabilizing binding sites and improving molecular recognition. In this work, the concept was applied to the preparation of imprinted monolithic columns for CEC. The imprinted monolithic column was synthesized using a mixture of d-zopiclone (d-ZOP)(template), methacrylic acid, ethylene glycol dimethacrylate, and poly(methyl methacrylate) (PMMA) (molecular crowding agent). The resulting PMMA-based imprinted capillary was able to separate ZOP enantiomers in CEC mode. The resolution of enantiomer separation achieved on the d-ZOP-imprinted monolithic column was up to 2.09. Some polymerization factors, such as template-monomer molar ratio, functional monomer-cross-linker molar ratio and the composition of the porogen, on the imprinting effect of resulting molecularly imprinted polymer (MIP) monolithic column were systematically investigated. Chromatographic parameters, including pH values, the content of acetonitrile and the salt concentration on chiral separation were also studied. The results indicated the addition of PMMA resulted in MIPs with superior retention properties and excellent selectivity for d-ZOP, as compared to the MIPs prepared without addition of the crowding-inducing agent. The results revealed that molecular crowding is an effective method for the preparation of a highly efficient MIP stationary phase for chiral separation in CEC. PMID:25404035

  15. Residual Strength Analyses of Monolithic Structures

    NASA Technical Reports Server (NTRS)

    Forth, Scott (Technical Monitor); Ambur, Damodar R. (Technical Monitor); Seshadri, B. R.; Tiwari, S. N.

    2003-01-01

    Finite-element fracture simulation methodology predicts the residual strength of damaged aircraft structures. The methodology uses the critical crack-tip-opening-angle (CTOA) fracture criterion to characterize the fracture behavior of the material. The CTOA fracture criterion assumes that stable crack growth occurs when the crack-tip angle reaches a constant critical value. The use of the CTOA criterion requires an elastic- plastic, finite-element analysis. The critical CTOA value is determined by simulating fracture behavior in laboratory specimens, such as a compact specimen, to obtain the angle that best fits the observed test behavior. The critical CTOA value appears to be independent of loading, crack length, and in-plane dimensions. However, it is a function of material thickness and local crack-front constraint. Modeling the local constraint requires either a three-dimensional analysis or a two-dimensional analysis with an approximation to account for the constraint effects. In recent times as the aircraft industry is leaning towards monolithic structures with the intention of reducing part count and manufacturing cost, there has been a consistent effort at NASA Langley to extend critical CTOA based numerical methodology in the analysis of integrally-stiffened panels.In this regard, a series of fracture tests were conducted on both flat and curved aluminum alloy integrally-stiffened panels. These flat panels were subjected to uniaxial tension and during the test, applied load-crack extension, out-of-plane displacements and local deformations around the crack tip region were measured. Compact and middle-crack tension specimens were tested to determine the critical angle (wc) using three-dimensional code (ZIP3D) and the plane-strain core height (hJ using two-dimensional code (STAGS). These values were then used in the STAGS analysis to predict the fracture behavior of the integrally-stiffened panels. The analyses modeled stable tearing, buckling, and crack

  16. Ex Situ Integration of Multifunctional Porous Polymer Monoliths into Thermoplastic Microfluidic Chips

    PubMed Central

    Kendall, Eric L.; Wienhold, Erik; Rahmanian, Omid D.; DeVoe, Don L.

    2014-01-01

    A unique method for incorporating functional porous polymer monolith elements into thermoplastic microfluidic chips is described. Monolith elements are formed in a microfabricated mold, rather than within the microchannels, and chemically functionalized off chip before insertion into solvent-softened thermoplastic microchannels during chip assembly. Because monoliths may be trimmed prior to final placement, control of their size, shape, and uniformity is greatly improved over in-situ photopolymerization methods. A characteristic trapezoidal profile facilitates rapid insertion and enables complete mechanical anchoring of the monolith periphery, eliminating the need for chemical attachment to the microchannel walls. Off-chip processing allows the parallel preparation of monoliths of differing compositions and surface chemistries in large batches. Multifunctional flow-through arrays of multiple monolith elements are demonstrated using this approach through the creation of a fluorescent immunosensor with integrated controls, and a microfluidic bubble separator comprising a combination of integrated hydrophobic and hydrophilic monolith elements. PMID:25018587

  17. Porous graphene oxide/carboxymethyl cellulose monoliths, with high metal ion adsorption.

    PubMed

    Zhang, Yongli; Liu, Yue; Wang, Xinrui; Sun, Zhiming; Ma, Junkui; Wu, Tao; Xing, Fubao; Gao, Jianping

    2014-01-30

    Orderly porous graphene oxide/carboxymethyl cellulose (GO/CMC) monoliths were prepared by a unidirectional freeze-drying method. The porous monoliths were characterized by Fourier transform infrared spectra, X-ray diffraction and scanning electron microscopy. Their properties including compressive strength and moisture adsorption were measured. The incorporation of GO changed the porous structure of the GO/CMC monoliths and significantly increased their compressive strength. The porous GO/CMC monoliths exhibited a strong ability to adsorb metal ions, and the Ni(2+) ions adsorbed on GO/CMC monolith were reduced by NaBH4 to obtain Ni GO/CMC monolith which could be used as catalyst in the reduction of 4-nitrophenol to 4-aminophenol. Since CMC is biodegradable and non-toxic, the porous GO/CMC monoliths are potential environmental adsorbents. PMID:24299788

  18. Facile fabrication of mesoporous poly(ethylene-co-vinyl alcohol)/chitosan blend monoliths.

    PubMed

    Wang, Guowei; Xin, Yuanrong; Uyama, Hiroshi

    2015-11-01

    Poly(ethylene-co-vinyl alcohol) (EVOH)/chitosan blend monoliths were fabricated by thermally-induced phase separation method. Chitosan was successfully incorporated into the polymeric monolith by selecting EVOH as the main component of the monolith. SEM images exhibit that the chitosan was located on the inner surface of the monolith. Fourier-transform infrared analysis and elemental analysis indicate the successful blend of EVOH and chitosan. BET results show that the blend monoliths had high specific surface area and uniform mesopore structure. Good adsorption ability toward various heavy metal ions was found in the blend monoliths due to the large chelation capacity of chitosan. The blend monoliths have potential application for waste water purification or bio-related applications. PMID:26256358

  19. Evaluation of translucency of monolithic zirconia and framework zirconia materials

    PubMed Central

    Tuncel, İlkin; Üşümez, Aslıhan

    2016-01-01

    PURPOSE The opacity of zirconia is an esthetic disadvantage that hinders achieving natural and shade-matched restorations. The aim of this study was to evaluate the translucency of non-colored and colored framework zirconia and monolithic zirconia. MATERIALS AND METHODS The three groups tested were: non-colored framework zirconia, colored framework zirconia with the A3 shade according to Vita Classic Scale, and monolithic zirconia (n=5). The specimens were fabricated in the dimensions of 15×12×0.5 mm. A spectrophotometer was used to measure the contrast ratio, which is indicative of translucency. Three measurements were made to obtain the contrast ratios of the materials over a white background (L*w) and a black background (L*b). The data were analyzed using the one-way analysis of variance and Tukey HSD tests. One specimen from each group was chosen for scanning electron microscope analysis. The determined areas of the SEM images were divided by the number of grains in order to calculate the mean grain size. RESULTS Statistically significant differences were observed among all groups (P<.05). Non-colored zirconia had the highest translucency with a contrast ratio of 0.75, while monolithic zirconia had the lowest translucency with a contrast ratio of 0.8. The mean grain sizes of the non-colored, colored, and monolithic zirconia were 233, 256, and 361 nm, respectively. CONCLUSION The translucency of the zirconia was affected by the coloring procedure and the grain size. Although monolithic zirconia may not be the best esthetic material for the anterior region, it may serve as an alternative in the posterior region for the bilayered zirconia restorations. PMID:27350851

  20. Reduction of absorption loss in silica-on-silicon channel waveguides fabricated by low-temperature PECVD process

    NASA Astrophysics Data System (ADS)

    Sahu, Jayanta K.; Wosinski, Lech; Fernando, Harendra

    1999-12-01

    This study is focused on the low temperature plasma enhanced chemical vapor deposition technique used for fabrication of silica based optical waveguides on silicon, utilizing nitrous oxide as an oxidant for both silane and dopant. Fabricated channel waveguide shows total insertion loss of 1.2 dB at 1.55 micrometers , and no absorption peaks associated with N-H and Si-H bonds around 1.5 micrometers have been observed in the as deposited material. This fabrication technology adds flexibility to the monolithic integration of electronic and optical components. Using this technology, a n umber of different couplers based on multimode interference technique have been investigated.

  1. Polymer-Silica Nanocomposites: A Versatile Platform for Multifunctional Materials

    NASA Astrophysics Data System (ADS)

    Chiu, Chi-Kai

    Solution sol-gel synthesis is a versatile approach to create polymer-silica nanocomposite materials. The solution-to-solid transformation results in a solid consisting of interconnected nanoporous structure in 3D space, making it the ideal material for filtration, encapsulation, optics, electronics, drug release, and biomaterials, etc. Although the pore between nano and meso size may be tunable using different reaction conditions, the intrinsic properties such as limited diffusion within pore structure, complicated interfacial interactions at the pore surfaces, shrinkage and stress-induced cracking and brittleness have limited the applications of this material. To overcome these problems, diffusion, pore size, shrinkage and stress-induced defects need further investigation. Thus, the presented thesis will address these important questions such as whether these limitations can be utilized as the novel method to create new materials and lead to new applications. First, the behaviors of polymers such as poly(ethylene glycol) inside the silica pores are examined by studying the nucleation and growth of AgCl at the surface of the porous matrix. The pore structure and the pressure induced by the shrinkage affect have been found to induce the growth of AgCl nanocrystals. When the same process is carried out at 160 °C, silver metallization is possible. Due to the shrinkage-induced stresses, the polymer tends to move into open crack spaces and exterior surfaces, forming interconnected silver structure. This interconnected silver structure is very unique because its density is not related to the size scale of nanopore structures. These findings suggest that it is possible to utilize defect surface of silica material as the template to create interconnected silver structure. When the scale is small, polymer may no longer be needed if the diffusion length of Ag is more than the size of silica particles. To validate our assumption, monoliths of sol-gel sample containing AgNO3

  2. Simulation of Peptide Binding to Silica and Silica Mineralization

    NASA Astrophysics Data System (ADS)

    Emami, F. S.; Heinz, H.; Berry, R. J.; Varshney, V.; Farmer, B. L.; Naik, R. R.; Patwardhan, S. V.; Perry, C. C.

    2009-03-01

    The purpose of this study is to identify the nature of the interaction of peptides with silica surfaces and their effect on mineralization. Classical force fields (CVFF, PCFF) have been extended for silica aiming at the computation of surface properties in quantitative agreement with experiment, taking explicitly into account water molecules, pH, and surface coverage with peptides. We focus on the interaction of five short peptides (pep1, pep4, 82-4, H4, R5) identified by biopanning with regular and amorphous silica surfaces (Q3 and Q2) to understand the relation between peptide sequence and affinity to the surface. Results of the atomistic molecular dynamics simulation indicate adsorption energies, binding constants and conformational changes upon adsorption. The comparison of NMR chemical shifts in solution and on the surface in computation and experiment further aids in understanding the mechanism of binding.

  3. Surface modification of silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Ranjan, Rajesh

    Surface modification of nanosized silica particles by polymer grafting is gaining attention. This can be attributed to the fact that it provides a unique opportunity to engineer the interfacial properties of these modified particles; at the same time the mechanical and thermal properties of the polymers can be improved. Controlled free radical polymerization is a versatile technique which affords control over molecular weight, molecular weight distribution, architecture and functionalities of the resulting polymer. Three commonly used controlled free radical polymerizations include nitroxide-mediated polymerization (NMP), atom transfer radical polymerization (ATRP) and reversible addition fragmentation transfer (RAFT) polymerization. ATRP and RAFT polymerization were explored in order to modify the silica surface with well-defined polymer brushes. A novel click-functionalized RAFT chain transfer agent (RAFT CTA) was synthesized which opened up the possibility of using RAFT polymerization and click chemistry together in surface modification. Using this RAFT CTA, the surface of silica nanoparticles was modified with polystyrene and polyacrylamide brushes via the "grafting to" approach. Both tethered polystyrene and polyacrylamide chains were found in the brush regime. The combination of ATRP and click chemistry was also explored for surface modification. A combination of RAFT polymerization and click chemistry was also studied to modify the surface via the "grafting from" approach. Our strategy included the (1) "grafting from" approach for brush formation (2) facile click reaction to immobilize the RAFT agent (3) synthesis of R-supported chain transfer agent and (4) use of the more active trithiocarbonate RAFT agent. Grafting density obtained by this method was significantly higher than reported values in the literature. Polystyrene (PS) grafted silica nanoparticles were also prepared by a tandem process that simultaneously employs reversible addition fragmentation

  4. Precipitated silica as flow regulator.

    PubMed

    Müller, Anne-Kathrin; Ruppel, Joanna; Drexel, Claus-Peter; Zimmermann, Ingfried

    2008-08-01

    Flow regulators are added to solid pharmaceutical formulations to improve the flow properties of the powder mixtures. The primary particles of the flow regulators exist in the form of huge agglomerates which are broken down into smaller aggregates during the blending process. These smaller aggregates adsorb at the surface of the solid's grains and thus diminish attractive Van-der-Waals-forces by increasing the roughness of the host's surface. In most cases amorphous silica is used as flow additive but material properties like particle size or bond strength influence the desagglomeration tendency of the agglomerates and thus the flow regulating potency of each silica. For some silica types we will show that the differences in their flow regulating potency are due to the rate and extent by which they are able to cover the surface of the host particles. Binary powder mixtures consisting of a pharmaceutical excipient and an added flow regulator were blended in a Turbula mixer for a defined period of time. As pharmaceutical excipient corn starch was used. The flow regulators were represented by a selection of amorphous silicon dioxide types like a commercial fumed silica and various types of SIPERNAT precipitated silica provided by Evonik-Degussa GmbH, Hanau, Germany. Flowability parameters of the mixtures were characterized by means of a tensile strength tester. The reduction of tensile strength with the blending time can be correlated with an increase in fragmentation of the flow regulator. PMID:18595668

  5. Preparation of sub-micron skeletal monoliths with high capacity for liquid chromatography.

    PubMed

    Yao, Chunhe; Qi, Li; Yang, Gengliang; Wang, Fuyi

    2010-03-01

    A novel kind of poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)-based monolithic column was developed for LC by directing supramolecular self-assembly of high internal phase emulsion. Mercury intrusion porosimetry characterization and scanning electron microscope pictures showed that these monoliths presented micrometer-sized throughpores, unique sub-micron skeletons and relatively large specific surface area. Additionally, porosity of monoliths could be adjusted while skeletons remained in the size range of 100.0-1000.0 nm. The new monoliths demonstrated not only better column efficiency, but also larger binding capacity. Dynamic binding capacity for protein (BSA) was evaluated to be 42.5 mg/mL, above two times higher than that of the general monoliths (19.1 mg/mL) and higher than that of commercial "Convective Interaction Media" monolithic columns (30.0 mg/mL). Moreover, their chromatographic behaviors were also evaluated in detail by chemical stability and swelling characterization of the monolithic column. Separation of proteins mixture (cytochrome c, myoglobin, ribonuclease A, lysozyme and BSA) on the monolith was achieved within 4 min at velocity of 1440.0 cm/h. Those unique properties made the novel monolithic column a promising alternative to commercially available monolithic supports in LC applications. PMID:20063358

  6. Exposure to crystalline silica in abrasive blasting operations where silica and non-silica abrasives are used.

    PubMed

    Radnoff, Diane L; Kutz, Michelle K

    2014-01-01

    Exposure to respirable crystalline silica is a hazard common to many industries in Alberta but particularly so in abrasive blasting. Alberta occupational health and safety legislation requires the consideration of silica substitutes when conducting abrasive blasting, where reasonably practicable. In this study, exposure to crystalline silica during abrasive blasting was evaluated when both silica and non-silica products were used. The crystalline silica content of non-silica abrasives was also measured. The facilities evaluated were preparing metal products for the application of coatings, so the substrate should not have had a significant contribution to worker exposure to crystalline silica. The occupational sampling results indicate that two-thirds of the workers assessed were potentially over-exposed to respirable crystalline silica. About one-third of the measurements over the exposure limit were at the work sites using silica substitutes at the time of the assessment. The use of the silica substitute, by itself, did not appear to have a large effect on the mean airborne exposure levels. There are a number of factors that may contribute to over-exposures, including the isolation of the blasting area, housekeeping, and inappropriate use of respiratory protective equipment. However, the non-silica abrasives themselves also contain silica. Bulk analysis results for non-silica abrasives commercially available in Alberta indicate that many contain crystalline silica above the legislated disclosure limit of 0.1% weight of silica per weight of product (w/w) and this information may not be accurately disclosed on the material safety data sheet for the product. The employer may still have to evaluate the potential for exposure to crystalline silica at their work site, even when silica substitutes are used. Limited tests on recycled non-silica abrasive indicated that the silica content had increased. Further study is required to evaluate the impact of product recycling

  7. Admicellar polymerization of precipated silica

    SciTech Connect

    Reynolds, J.L.; Grady, B.P.; Harwell, J.H.

    1996-10-01

    The tendency of a surfactant molecule to adsorb at a solid-liquid interface is the basis for an in situ surface modification process, termed admicellar polymerization. The four-step admicellar polymerization process includes: (1) adsorption of surfactant at the solid-liquid interface, (2) adsolubilization of monomer into the surfactant bilayer, (3) polymerization using free-radical initiators and heat, (4) removal of excess surfactant to expose the polymer modified surface. The process is used to apply polymer to precipitated silica to enhance the compatibility of the silica when added to filled rubber. The adsorption isotherms were first determined for particular surfactant/silica combinations to find the surfactant concentration that would sufficiently adsolubilize the monomer, while remaining below the critical micelle concentration. A series of experiments were then devised for the polymerization reactions in which the surfactant and monomer amounts were varied over three levels to establish the optimal combination.

  8. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    DOEpatents

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2016-03-22

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  9. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    DOEpatents

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2016-01-05

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  10. Stretchable Superhydrophobicity from Monolithic, Three-Dimensional Hierarchical Wrinkles.

    PubMed

    Lee, Won-Kyu; Jung, Woo-Bin; Nagel, Sidney R; Odom, Teri W

    2016-06-01

    We report the design of three-dimensional (3D) hierarchical wrinkle substrates that can maintain their superhydrophobicity even after being repeatedly stretched. Monolithic poly(dimethysiloxane) with multiscale features showed wetting properties characteristic of static superhydrophobicity with water contact angles (>160°) and very low contact angle hysteresis (<5°). To examine how superhydrophobicity was maintained as the substrate was stretched, we investigated the dynamic wetting behavior of bouncing and splashing upon droplet impact with the surface. On hierarchical wrinkles consisting of three different length scales, superhydrophobic bouncing was observed. The substrate remained superhydrophobic up to 100% stretching with no structural defects after 1000 cycles of stretching and releasing. Stretchable superhydrophobicity was possible because of the monolithic nature of the hierarchical wrinkles as well as partial preservation of nanoscale structures under stretching. PMID:27144774

  11. Monolithic HTS microwave phase shifter and other devices

    SciTech Connect

    Jackson, C.M.; Kobayashi, J.H.; Guillory, E.B.; Pettiette-Hall, C.; Burch, J.F. )

    1992-08-01

    We describe a monolithic high-temperature superconductor (HTS) phase shifter based on the distributed Josephson inductance (DJI) design integrated monolithically into a 10-GHz microstrip line. This microwave circuit incorporates >1000 HTS rf SQUIDS. Recent data demonstrate the performance of this broadband HTS circuit. We observed phase shifts greater than 150[degrees] in resonant structures, and 20[degrees] in broadband circuits. The nonlinear inductance of the superconducting transmission line can be used for other novel applications, including parametric amplification. A comparison of the DJI circuit to a series array of Josephson elements (used for pulse sharpening) will contrast these two new and exciting nonlinear transmission line circuits. 19 refs., 4 figs., 2 tabs.

  12. Monolithic millimeter-wave and picosecond electronic technologies

    SciTech Connect

    Talley, W.K.; Luhmann, N.C.

    1996-03-12

    Theoretical and experimental studies into monolithic millimeter-wave and picosecond electronic technologies have been undertaken as a collaborative project between the Lawrence Livermore National Laboratory (LLNL) and the University of California Department of Applied Science Coherent Millimeter-Wave Group under the auspices of the Laboratory Directed Research and Development Program at LLNL. The work involves the design and fabrication of monolithic frequency multiplier, beam control, and imaging arrays for millimeter-wave imaging and radar, as well as the development of high speed nonlinear transmission lines for ultra-wideband radar imaging, time domain materials characterization and magnetic fusion plasma applications. In addition, the Coherent Millimeter-Wave Group is involved in the fabrication of a state-of-the-art X-band ({approximately}8-11 GHz) RF photoinjector source aimed at producing psec high brightness electron bunches for advanced accelerator and coherent radiation generation studies.

  13. Highly efficient monolithic dye-sensitized solar cells.

    PubMed

    Kwon, Jeong; Park, Nam-Gyu; Lee, Jun Young; Ko, Min Jae; Park, Jong Hyeok

    2013-03-01

    Monolithic dye-sensitized solar cells (M-DSSCs) provide an effective way to reduce the fabrication cost of general DSSCs since they do not require transparent conducting oxide substrates for the counter electrode. However, conventional monolithic devices have low efficiency because of the impediments resulting from counter electrode materials and spacer layers. Here, we demonstrate highly efficient M-DSSCs featuring a highly conductive polymer combined with macroporous polymer spacer layers. With M-DSSCs based on a PEDOT/polymer spacer layer, a power conversion efficiency of 7.73% was achieved, which is, to the best of our knowledge, the highest efficiency for M-DSSCs to date. Further, PEDOT/polymer spacer layers were applied to flexible DSSCs and their cell performance was investigated. PMID:23432389

  14. A 30 GHz monolithic receive module technology assessment

    NASA Technical Reports Server (NTRS)

    Geddes, J.; Sokolov, V.; Bauhahn, P.; Contolatis, T.

    1988-01-01

    This report is a technology assessment relevant to the 30 GHz Monolithic Receive Module development. It is based on results obtained on the present NASA Contract (NAS3-23356) as well as on information gathered from literature and other industry sources. To date the on-going Honeywell program has concentrated on demonstrating the so-called interconnected receive module which consists of four monolithic chips - the low noise front-end amplifier (LNA), the five bit phase shifter (PS), the gain control amplifier (GC), and the RF to IF downconverter (RF/IF). Results on all four individual chips have been obtained and interconnection of the first three functions has been accomplished. Future work on this contract is aimed at a higher level of integration, i.e., integration of the first three functions (LNA + PS + GC) on a single GaAs chip. The report presents the status of this technology and projections of its future directions.

  15. Radially polarized cylindrical vector beams from a monolithic microchip laser

    NASA Astrophysics Data System (ADS)

    Naidoo, Darryl; Fromager, Michael; Ait-Ameur, Kamel; Forbes, Andrew

    2015-11-01

    Monolithic microchip lasers consist of a thin slice of laser crystal where the cavity mirrors are deposited directly onto the end faces. While this property makes such lasers very compact and robust, it prohibits the use of intracavity laser beam shaping techniques to produce complex light fields. We overcome this limitation and demonstrate the selection of complex light fields in the form of vector-vortex beams directly from a monolithic microchip laser. We employ pump reshaping and a thermal gradient across the crystal surface to control both the intensity and polarization profile of the output mode. In particular, we show laser oscillation on a superposition of Laguerre-Gaussian modes of zero radial and nonzero azimuthal index in both the scalar and vector regimes. Such complex light fields created directly from the source could find applications in fiber injection, materials processing and in simulating quantum processes.

  16. From 1D to 3D - macroscopic nanowire aerogel monoliths

    NASA Astrophysics Data System (ADS)

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-07-01

    Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying.Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying. Electronic supplementary information (ESI) available: Experimental details, SEM and TEM images, and digital photographs. See DOI: 10.1039/c6nr04429h

  17. Production of aligned microfibers and nanofibers and derived functional monoliths

    DOEpatents

    Hu, Michael Z.; DePaoli, David W.; Kuritz, Tanya; Omatete, Ogbemi

    2007-08-14

    The present invention comprises a method for producing microfibers and nanofibers and further fabricating derived solid monolithic materials having aligned uniform micro- or nanofibrils. A method for producing fibers ranging in diameter from micrometer-sized to nanometer-sized comprises the steps of producing an electric field and preparing a solid precipitative reaction media wherein the media comprises at least one chemical reactive precursor and a solvent having low electrical conductivity and wherein a solid precipitation reaction process for nucleation and growth of a solid phase occurs within the media. Then, subjecting the media to the electric field to induce in-situ growth of microfibers or nanofibers during the reaction process within the media causing precipitative growth of solid phase particles wherein the reaction conditions and reaction kinetics control the size, morphology and composition of the fibers. The fibers can then be wet pressed while under electric field into a solid monolith slab, dried and consolidated.

  18. Hydrogenation with monolith reactor under conditions of immiscible liquid phases

    SciTech Connect

    Nordquist, Andrew Francis; Wilhelm, Frederick Carl; Waller, Francis Joseph; Machado, Reinaldo Mario

    2002-01-01

    The present invention relates to an improved for the hydrogenation of an immiscible mixture of an organic reactant in water. The immiscible mixture can result from the generation of water by the hydrogenation reaction itself or, by the addition of, water to the reactant prior to contact with the catalyst. The improvement resides in effecting the hydrogenation reaction in a monolith catalytic reactor from 100 to 800 cpi, at a superficial velocity of from 0.1 to 2 m/second in the absence of a cosolvent for the immiscible mixture. In a preferred embodiment, the hydrogenation is carried out using a monolith support which has a polymer network/carbon coating onto which a transition metal is deposited.

  19. Design and Testing of Prototypic Elements Containing Monolithic Fuel

    SciTech Connect

    N.E. Woolstenhulme; M.K. Meyer; D.M. Wachs

    2011-10-01

    The US fuel development team has performed numerous irradiation tests on small to medium sized specimens containing low enriched uranium fuel designs. The team is now focused on qualification and demonstration of the uranium-molybdenum Base Monolithic Design and has entered the next generation of testing with the design and irradiation of prototypic elements which contain this fuel. The designs of fuel elements containing monolithic fuel, such as AFIP-7 (which is currently under irradiation) and RERTR-FE (which is currently under fabrication), are appropriate progressions relative to the technology life cycle. The culmination of this testing program will occur with the design, fabrication, and irradiation of demonstration products to include the base fuel demonstration and design demonstration experiments. Future plans show that design, fabrication, and testing activities will apply the rigor needed for a demonstration campaign.

  20. Affinity Monolith-Integrated Microchips for Protein Purification and Concentration.

    PubMed

    Gao, Changlu; Sun, Xiuhua; Wang, Huaixin; Qiao, Wei; Hu, Bo

    2016-01-01

    Affinity chromatography is a valuable method to purify and concentrate minute amount of proteins. Monoliths with epoxy groups for affinity immobilization were prepared by direct in-situ photopolymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in porogenic solvents consisting of 1-dodecanol and cyclohexanol. By integrating affinity monoliths onto a microfluidic system, targeted biomolecules can be captured and retained on affinity column, while other biomolecules having no specific interactions toward the immobilized ligands flow through the microchannel. Therefore, proteins which remain on the affinity column are purified and concentrated, and then eluted by appropriate solutions and finally, separated by microchip capillary electrophoresis. This integrated microfluidic device has been applied to the purification and separation of specific proteins (FITC-labeled human serum albumin and IgG) in a mixture. PMID:27473483

  1. Mobile monolithic polymer elements for flow control in microfluidic devices

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.

    2004-08-31

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by either fluid or gas pressure against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  2. Mobile Monolith Polymer Elements For Flow Control In Microfluidic Systems

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.; Kirby, Brian J.

    2006-01-24

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  3. Mobile monolithic polymer elements for flow control in microfluidic devices

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.; Kirby, Brian J.

    2005-11-11

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  4. 21 CFR 584.700 - Hydrophobic silicas.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...: (i) Amorphous fumed hydrophobic silica: Not less than 99.0 percent silicon dioxide after ignition... dichlorodimethylsilane. (ii) Precipated hydrophobic silica: Not less than 94.0 percent silicon dioxide after...

  5. Physisorbed Water on Silica at Mars Temperatures

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Sriwatanapongse, W.; Quinn, R.; Klug, C.; Zent, A.

    2002-01-01

    The usefulness of nuclear magnetic resonance spectroscopy in probing water interactions on silica at Mars temperatures is discussed. Results indicate that two types of water occur with silica at Mars temperatures. Additional information is contained in the original extended abstract.

  6. A virtual zero-time, monolithic systolic sorting array

    SciTech Connect

    Britton, C.L.; Ericson, M.N.; Bouldin, D.W.

    1989-01-01

    A virtual zero-time monolithic sorting chip is described. The chip has a systolic array architecture and implements the ''sinking sort'' algorithm. The basic functional module of the systolic array is detailed and development techniques employed as well as functional simulation and results are presented. Lessons learned and educational significance of the development of this chip at a university are discussed. 3 refs., 4 figs.

  7. A virtual zero-time, monolithic systolic sorting array

    SciTech Connect

    Britton, C.L. Jr.; Ericson, M.N.; Bouldin, D.W.; Tennessee Univ., Knoxville, TN )

    1990-01-01

    A virtual zero-time monolithic sorting chip is described. The chip has a systolic array architecture and implements the sinking sort'' algorithm. The basic functional module of the systolic array is detailed and development techniques employed as well as functional simulation and results are presented. Lessons learned and educational significance of the development of this chip at a university are discussed. 3 refs., 4 figs.

  8. Advanced on-chip divider for monolithic microwave VCO's

    NASA Technical Reports Server (NTRS)

    Peterson, Weddell C.

    1989-01-01

    High frequency division on a monolithic circuit is a critical technology required to significantly enhance the performance of microwave and millimeter-wave phase-locked sources. The approach used to meet this need is to apply circuit design practices which are essentially 'microwave' in nature to the basically 'digital' problem of high speed division. Following investigation of several promising circuit approaches, program phase 1 culminated in the design and layout of an 8.5 GHz (Deep Space Channel 14) divide by four circuit based on a dynamic mixing divider circuit approach. Therefore, during program phase 2, an 8.5 GHz VCO with an integral divider which provides a phase coherent 2.125 GHz reference signal for phase locking applications was fabricated and optimized. Complete phase locked operation of the monolithic GaAs devices (VCO, power splitter, and dynamic divider) was demonstrated both individually and as an integrated unit. The fully functional integrated unit in a suitable test fixture was delivered to NASA for engineering data correlation. Based on the experience gained from this 8.5 GHz super component, a monolithic GaAs millimeter-wave dynamic divider for operation with an external VCO was also designed, fabricated, and characterized. This circuit, which was also delivered to NASA, demonstrated coherent division by four at an input frequency of 24.3 GHz. The high performance monolithic microwave VCO with a coherent low frequency reference output described in this report and others based on this technology will greatly benefit advanced communications systems in both the DoD and commercial sectors. Signal processing and instrumentation systems based on phase-locking loops will also attain enhanced performance at potentially reduced cost.

  9. Monolithic AlGaAs second-harmonic nanoantennas.

    PubMed

    Gili, V F; Carletti, L; Locatelli, A; Rocco, D; Finazzi, M; Ghirardini, L; Favero, I; Gomez, C; Lemaître, A; Celebrano, M; De Angelis, C; Leo, G

    2016-07-11

    We demonstrate monolithic aluminum gallium arsenide (AlGaAs) optical nanoantennas. Using a selective oxidation technique, we fabricated epitaxial semiconductor nanocylinders on an aluminum oxide substrate. Second harmonic generation from AlGaAs nanocylinders of 400 nm height and varying radius pumped with femtosecond pulses delivered at 1554-nm wavelength has been measured, revealing a peak conversion efficiency exceeding 10-5 for nanocylinders with an optimized geometry. PMID:27410864

  10. Macroscopic Carbon Nanotube-based 3D Monoliths.

    PubMed

    Du, Ran; Zhao, Qiuchen; Zhang, Na; Zhang, Jin

    2015-07-15

    Carbon nanotubes (CNTs) are one of the most promising carbon allotropes with incredible diverse physicochemical properties, thereby enjoying continuous worldwide attention since their discovery about two decades ago. From the point of view of practical applications, assembling individual CNTs into macroscopic functional and high-performance materials is of paramount importance. For example, multiscaled CNT-based assemblies including 1D fibers, 2D films, and 3D monoliths have been developed. Among all of these, monolithic 3D CNT architectures with porous structures have attracted increasing interest in the last few years. In this form, theoretically all individual CNTs are well connected and fully expose their surfaces. These 3D architectures have huge specific surface areas, hierarchical pores, and interconnected conductive networks, resulting in enhanced mass/electron transport and countless accessible active sites for diverse applications (e.g. catalysis, capacitors, and sorption). More importantly, the monolithic form of 3D CNT assemblies can impart additional application potentials to materials, such as free-standing electrodes, sensors, and recyclable sorbents. However, scaling the properties of individual CNTs to 3D assemblies, improving use of the diverse, structure-dependent properties of CNTs, and increasing the performance-to-cost ratio are great unsolved challenges for their real commercialization. This review aims to provide a comprehensive introduction of this young and energetic field, i.e., CNT-based 3D monoliths, with a focus on the preparation principles, current synthetic methods, and typical applications. Opportunities and challenges in this field are also presented. PMID:25740457

  11. Coherent optical monolithic phased-array antenna steering system

    DOEpatents

    Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.

    1994-01-01

    An optical-based RF beam steering system for phased-array antennas comprising a photonic integrated circuit (PIC). The system is based on optical heterodyning employed to produce microwave phase shifting by a monolithic PIC constructed entirely of passive components. Microwave power and control signal distribution to the antenna is accomplished by optical fiber, permitting physical separation of the PIC and its control functions from the antenna. The system reduces size, weight, complexity, and cost of phased-array antenna systems.

  12. Clinical assessment of enamel wear caused by monolithic zirconia crowns.

    PubMed

    Stober, T; Bermejo, J L; Schwindling, F S; Schmitter, M

    2016-08-01

    The purpose of this study was to measure enamel wear caused by antagonistic monolithic zirconia crowns and to compare this with enamel wear caused by contralateral natural antagonists. Twenty monolithic zirconia full molar crowns were placed in 20 patients. Patients with high activity of the masseter muscle at night (bruxism) were excluded. For analysis of wear, vinylpolysiloxane impressions were prepared after crown incorporation and at 6-, 12-, and 24-month follow-up. Wear of the occlusal contact areas of the crowns, of their natural antagonists, and of two contralateral natural antagonists (control teeth) was measured by use of plaster replicas and a 3D laser-scanning device. Differences of wear between the zirconia crown antagonists and the control teeth were investigated by means of two-sided paired Student's t-tests and linear regression analysis. After 2 years, mean vertical loss was 46 μm for enamel opposed to zirconia, 19-26 μm for contralateral control teeth and 14 μm for zirconia crowns. Maximum vertical loss was 151 μm for enamel opposed to zirconia, 75-115 μm for control teeth and 60 μm for zirconia crowns. Statistical analysis revealed significant differences between wear of enamel by zirconia-opposed teeth and by control teeth. Gender, which significantly affected wear, was identified as a possible confounder. Monolithic zirconia crowns generated more wear of opposed enamel than did natural teeth. Because of the greater wear caused by other dental ceramics, the use of monolithic zirconia crowns may be justified. PMID:27198539

  13. Solar cells in series connection by monolithic integration

    NASA Astrophysics Data System (ADS)

    Voss, B.; Knobloch, J.; Goetzberger, A.

    Series-solar-cells by monolithic integration have been developed, using standard semiconductor technology and standard silicon wafer dimensions. The saturation open-circuit-voltage is already obtained at intensities of 0.2 - 0.4 Watt/per sq cm. These cells can be used advantageously as a voltage generator in open circuit- and optocoupler-systems because of the high reliability and longtime stability. The possibility of bifacial illumination makes such cells very suitable in combination with fluorescent collectors.

  14. Monolithic mm-wave ICs for smart weapons

    NASA Astrophysics Data System (ADS)

    Duffield, T. L.

    1988-04-01

    An approach to developing a low-cost mm-wave transceiver with application to a broad range of smart weapons systems is described. The proposed transceiver technology consists of monolithic mm-wave integrated circuits on GaAs substrates. The relevant transceiver configurations, FET material, and electron beam lithography are discussed. The types of devices to which the approach is applicable are addressed, emphasizing the use of three-terminal devices for all active elements.

  15. Monolithic microwave integrated circuits: Interconnections and packaging considerations

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.

    1984-01-01

    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.

  16. Monolithic microwave integrated circuit technology for advanced space communication

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Romanofsky, Robert R.

    1988-01-01

    Future Space Communications subsystems will utilize GaAs Monolithic Microwave Integrated Circuits (MMIC's) to reduce volume, weight, and cost and to enhance system reliability. Recent advances in GaAs MMIC technology have led to high-performance devices which show promise for insertion into these next generation systems. The status and development of a number of these devices operating from Ku through Ka band will be discussed along with anticipated potential applications.

  17. Advanced indium antimonide monolithic charge coupled infrared imaging arrays

    NASA Technical Reports Server (NTRS)

    Koch, T. L.; Merilainen, C. A.; Thom, R. D.

    1981-01-01

    The continued process development of SiO2 insulators for use in advanced InSb monolithic charge coupled infrared imaging arrays is described. Specific investigations into the use of plasma enhanced chemical vapor deposited (PECVD) SiO2 as a gate insulator for InSb charge coupled devices is discussed, as are investigations of other chemical vapor deposited SiO2 materials.

  18. Optothermal nonlinearity of silica aerogel

    NASA Astrophysics Data System (ADS)

    Braidotti, Maria Chiara; Gentilini, Silvia; Fleming, Adam; Samuels, Michiel C.; Di Falco, Andrea; Conti, Claudio

    2016-07-01

    We report on the characterization of silica aerogel thermal optical nonlinearity, obtained by z-scan technique. The results show that typical silica aerogels have nonlinear optical coefficient similar to that of glass (≃10-12 m2/W), with negligible optical nonlinear absorption. The nonlinear coefficient can be increased to values in the range of 10-10 m2/W by embedding an absorbing dye in the aerogel. This value is one order of magnitude higher than that observed in the pure dye and in typical highly nonlinear materials like liquid crystals.

  19. Silica Precursors Derived From TEOS

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H.

    1993-01-01

    Two high-char-yield polysiloxane polymers developed. Designated as TEOS-A and TEOS-B with silica char yields of 55% and 22%, respectively. These free-flowing polymers are Newtonium liquids instead of thick gels. Easily synthesized by controlled hydrolysis of inexpensive tetraethoxysilane (TEOS). Adhesive properties of TEOS-A suggest its use as binder for fabrication of ceramic articles from oxide powders. Less-viscous and more-fluid lower-molecular-weight TEOS-B used to infiltrate already-formed porous ceramic compacts to increase densities without effecting shrinkage. Also used as paint to coat substrate with silica, and to make highly pure silicate powders.

  20. In-line coupling of an aptamer based miniaturized monolithic affinity preconcentration unit with capillary electrophoresis and Laser Induced Fluorescence detection.

    PubMed

    Marechal, A; Jarrosson, F; Randon, J; Dugas, V; Demesmay, C

    2015-08-01

    A composite 30-cm capillary was prepared. The head of the capillary was a 1.5-cm original and miniaturized aptamer-based monolithic affinity support that was in-line coupled to the end of the capillary used for capillary electrophoresis (CE) with laser induced fluorescence (LIF) detection. The device was used for the preconcentration, separation and quantification of ochratoxin A (OTA) as a test solute. The 1.5-cm preconcentration unit consists of a fritless affinity monolithic bonded with 5'-SH-modified oligonucleotide aptamers. A vinyl spacer was used for thiol-ene photoclick chemistry with a 5min irradiation at 365nm. Photografting allowed to confine the binding reaction to the desired silica monolithic segment, upstream the empty section of the CE capillary using an UV mask. The photografting procedure was optimized preparing 10-cm capillary monoliths for nano-LC. The retention factors of cationic solutes in ion-exchange nano-LC allowed to follow the aptamer binding on the monolith. The reproducibility of the photografting process was satisfactory with inter-capillary variation lower than 10%. The aptamer bonding density can be increased by successive graftings of 100μM aptamer concentration solution (5pmol/cm/grafting). The optimal conditions to successfully perform the in-line coupling (preconcentration, elution and separation of OTA) with the composite capillary were adjusted depending on individual requirements of each step but also insuring compatibility. Under optimized conditions, OTA was successfully preconcentrated and quantified down to 0.1pg (percolation of 2.65μL of a 40ng/L OTA solution). A quantitative recovery of OTA (93±2%) was achieved in a single elution of 30pg percolated OTA amount. The reproducibility of the overall process was satisfactory with a relative standard deviation lower than 10% with negligible non-specific adsorption. This device was applied for the preconcentration and analysis of OTA in beer and wine at the ppb level within

  1. Removal of dissolved and colloidal silica

    DOEpatents

    Midkiff, William S.

    2002-01-01

    Small amorphous silica particles are used to provide a relatively large surface area upon which silica will preferentially adsorb, thereby preventing or substantially reducing scaling caused by deposition of silica on evaporative cooling tower components, especially heat exchange surfaces. The silica spheres are contacted by the cooling tower water in a sidestream reactor, then separated using gravity separation, microfiltration, vacuum filtration, or other suitable separation technology. Cooling tower modifications for implementing the invention process have been designed.

  2. The properties of silica-gelatin composites

    NASA Astrophysics Data System (ADS)

    Stavinskaya, O. N.; Laguta, I. V.

    2010-06-01

    Silica-gelatin composites with various silica-to-gelatin ratios were obtained. The influence of high-dispersity silica on the swelling of composites in water and desorption of pyridoxine and thiamine vitamins incorporated into the material was studied. The addition of silica to gelatin was shown to increase the time of the dissolution of the materials in aqueous medium and decelerate the desorption of vitamins.

  3. Effect of cements on fracture resistance of monolithic zirconia crowns

    PubMed Central

    Nakamura, Keisuke; Mouhat, Mathieu; Nergård, John Magnus; Lægreid, Solveig Jenssen; Kanno, Taro; Milleding, Percy; Örtengren, Ulf

    2016-01-01

    Abstract Objectives The present study investigated the effect of cements on fracture resistance of monolithic zirconia crowns in relation to their compressive strength. Materials and methods Four different cements were tested: zinc phosphate cement (ZPC), glass-ionomer cement (GIC), self-adhesive resin-based cement (SRC) and resin-based cement (RC). RC was used in both dual cure mode (RC-D) and chemical cure mode (RC-C). First, the compressive strength of each cement was tested according to a standard (ISO 9917-1:2004). Second, load-to-failure test was performed to analyze the crown fracture resistance. CAD/CAM-produced monolithic zirconia crowns with a minimal thickness of 0.5 mm were prepared and cemented to dies with each cement. The crown–die samples were loaded until fracture. Results The compressive strength of SRC, RC-D and RC-C was significantly higher than those of ZPC and GIC (p < 0.05). However, there was no significant difference in the fracture load of the crown between the groups. Conclusion The values achieved in the load-to-failure test suggest that monolithic zirconia crowns with a minimal thickness of 0.5 mm may have good resistance against fracture regardless of types of cements. PMID:27335900

  4. Advanced Gasification Mercury/Trace Metal Control with Monolith Traps

    SciTech Connect

    Michael L. Swanson; Grant E. Dunham; Mark A. Musich

    2007-02-01

    Three potential additives for controlling mercury emissions from syngas at temperatures ranging from 350 to 500 F (177 to 260 C) were developed. Current efforts are being directed at increasing the effective working temperature for these sorbents and also being able to either eliminate any potential mercury desorption or trying to engineer a trace metal removal system that can utilize the observed desorption process to repeatedly regenerate the same sorbent monolith for extended use. Project results also indicate that one of these same sorbents can also successfully be utilized for arsenic removal. Capture of the hydrogen selenide in the passivated tubing at elevated temperatures has resulted in limited results on the effective control of hydrogen selenide with these current sorbents, although lower-temperature results are promising. Preliminary economic analysis suggests that these Corning monoliths potentially could be more cost-effective than the conventional cold-gas (presulfided activated carbon beds) technology currently being utilized. Recent Hg-loading results might suggest that the annualized costs might be as high as 2.5 times the cost of the conventional technology. However, this annualized cost does not take into account the significantly improved thermal efficiency of any plant utilizing the warm-gas monolith technology currently being developed.

  5. UPDATE ON MECHANICAL ANALYSIS OF MONOLITHIC FUEL PLATES

    SciTech Connect

    D. E. Burkes; F. J. Rice; J.-F. Jue; N. P. Hallinan

    2008-03-01

    Results on the relative bond strength of the fuel-clad interface in monolithic fuel plates have been presented at previous RRFM conferences. An understanding of mechanical properties of the fuel, cladding, and fuel / cladding interface has been identified as an important area of investigation and quantification for qualification of monolithic fuel forms. Significant progress has been made in the area of mechanical analysis of the monolithic fuel plates, including mechanical property determination of fuel foils, cladding processed by both hot isostatic pressing and friction bonding, and the fuel-clad composite. In addition, mechanical analysis of fabrication induced residual stress has been initiated, along with a study to address how such stress can be relieved prior to irradiation. Results of destructive examinations and mechanical tests are presented along with analysis and supporting conclusions. A brief discussion of alternative non-destructive evaluation techniques to quantify not only bond quality, but also bond integrity and strength, will also be provided. These are all necessary steps to link out-of-pile observations as a function of fabrication with in-pile behaviours.

  6. Organic monoliths for hydrophilic interaction electrochromatography/chromatography and immunoaffinity chromatography

    PubMed Central

    Gunasena, Dilani N.; El Rassi, Ziad

    2012-01-01

    This article is aimed at providing a review of the progress made over the past decade in the preparation of polar monoliths for hydrophilic interaction liquid chromatography (HILIC)/capillary electrochromatography (HI-CEC) and in the design of immuno-monoliths for immunoaffinity chromatography (IAC) that are based on some of the polar monolith precursors used in HILIC/HI-CEC. In addition, this review article discusses some of the applications of polar monoliths by HILIC and HI-CEC, and the applications of immuno-monoliths. This article is by no means an exhaustive review of the literature; it is rather a survey of the recent progress made in the field with 83 references published in the past decade on the topics of HILIC and IAC monoliths. PMID:22147366

  7. [Preparation of a novel polymer monolith using atom transfer radical polymerization method for solid phase extraction].

    PubMed

    Shen, Ying; Qi, Li; Qiao, Juan; Mao, Lanqun; Chen, Yi

    2013-04-01

    In this study, a novel polymer monolith based solid phase extraction (SPE) material has been prepared by two-step atom transfer radical polymerization (ATRP) method. Firstly, employing ethylene glycol dimethacrylate (EDMA) as a cross-linker, a polymer monolith filled in a filter head has been in-situ prepared quickly under mild conditions. Then, the activators generated by electron transfer ATRP (ARGET ATRP) was used for the modification of poly(2-(dimethylamino)ethyl-methacrylate) (PDMAEMA) on the monolithic surface. Finally, this synthesized monolith for SPE was successfully applied in the extraction and enrichment of steroids. The results revealed that ATRP can be developed as a facile and effective method with mild reaction conditions for monolith construction and has the potential for preparing monolith in diverse devices. PMID:23898628

  8. Fabrication and characterization of aligned macroporous monolith for high-performance protein chromatography.

    PubMed

    Du, Kaifeng; Zhang, Qi; Dan, Shunmin; Yang, Min; Zhang, Yongkui; Chai, Dezhi

    2016-04-22

    In the present study, a freeze casting method combined with particle accumulation was applied to fabricate the aligned macroporous monolith for high-performance protein chromatography. For the preparation, the reactive colloids were first prepared by using glycidyl methacrylate and ethylene glycol dimethacrylate as monomers. Subsequently, these colloids accumulated regularly and polymerized into the aligned macroporous monolith. The aligned porous structure of the monolith was characterized by SEM, mercury intrusion, and flow hydrodynamics. The results revealed that the generated monolith was possessed of aligned macropores in size of about 10 μm and high column permeability. Finally, after being modified with sulfonated groups, the monolith was evaluated for its chromatographic performance. It demonstrated that the aligned macropores endowed the monolith with excellent adsorption capacity and high column efficiency. PMID:27016114

  9. Comparison of silica-core optical fibers

    NASA Astrophysics Data System (ADS)

    McCann, Brian P.

    1991-07-01

    Silica-core optical fibers have become a standard vehicle to remotely deliver high-power laser energy from surgical lasers operating between 200 and 2400 nm. The three primary types of silica-core fibers: plastic-clad; hard-clad; and silica-clad; are discussed. The performance advantages of each are addressed and actual general-surgery medical applications are provided.

  10. Monolithic poly(N-vinylcarbazole-co-1,4-divinylbenzene) capillary columns for the separation of biomolecules.

    PubMed

    Koeck, Rainer; Bakry, Rania; Tessadri, Richard; Bonn, Guenther K

    2013-09-01

    Monolithic capillary columns were prepared by thermally initiated free radical copolymerization of N-vinylcarbazole (NVC) and 1,4-divinylbenzene (DVB) within the confines of 200 and 100 μm i.d. fused silica capillaries. The reaction was carried out under the influence of inert micro-(toluene) and macroporogen (1-decanol) and α,α'-azoisobutyronitrile (AIBN) as a free radical initiator. The material proved high mechanical stability applying water and acetonitrile as mobile phases. The morphological and porous properties were studied by scanning electron microscopy (SEM), nitrogen sorption (BET) and mercury intrusion porosimetry (MIP). The homogeneity of the copolymerization process was confirmed by elemental analysis and monomer conversion measurements. The newly developed NVC/DVB monolithic supports showed high separation efficiency towards biomolecules, applying reversed-phase (RP) and ion-pair reversed-phase (IP-RP) separation modes, which is exemplified by the separations of peptides, proteins and oligonucleotides. Furthermore the maximum loading capacity was evaluated. The chromatographic performance under isocratic elution was determined in terms of theoretical plate number and plate height, where up to 41,000 plates per column and a minimum plate height value of 1.7 μm were achieved, applying oligonucleotide separations. In gradient elution mode, peak capacities of 96 and 127 were achieved within a gradient time window of 60 min for protein and oligonucleotide separations, respectively. The material proved to have high permeability, good repeatability of the fabrication process and high surface areas in the range of 120-160 m(2) g(-1). PMID:23799449

  11. Photoinitiated grafting of porous polymer monoliths and thermoplastic polymers for microfluidic devices

    DOEpatents

    Frechet, Jean M. J.; Svec, Frantisek; Rohr, Thomas

    2008-10-07

    A microfluidic device preferably made of a thermoplastic polymer that includes a channel or a multiplicity of channels whose surfaces are modified by photografting. The device further includes a porous polymer monolith prepared via UV initiated polymerization within the channel, and functionalization of the pore surface of the monolith using photografting. Processes for making such surface modifications of thermoplastic polymers and porous polymer monoliths are set forth.

  12. Application of Monolithic Zirconia Ceramics in Dental Practice: A Case History Report.

    PubMed

    Kim, Hee-Kyung; Kim, Sung-Hun; Lee, Jai-Bong; Han, Jung-Suk; Yeo, In-Sung

    2016-01-01

    Monolithic zirconia restorations increasingly have been used in dental practice in recent years and demonstrate superior mechanical performance compared with porcelain-veneered zirconia restorations. Recent advances in manufacturing technology have made possible the fabrication of translucent monolithic zirconia ceramics. This case report describes three clinical examples of monolithic zirconia fixed dental prostheses being used in the anterior and posterior regions and exhibiting acceptable esthetic results. PMID:27611758

  13. Feasibility evaluation of the monolithic braided ablative nozzle

    NASA Astrophysics Data System (ADS)

    Director, Mark N.; McPherson, Douglass J., Sr.

    1992-02-01

    The feasibility of the monolithic braided ablative nozzle was evaluated as part of an independent research and development (IR&D) program complementary to the National Aeronautics and Space Administration/Marshall Space Flight Center (NASA/MSFC) Low-Cost, High-Reliability Case, Insulation and Nozzle for Large Solid Rocket Motors (LOCCIN) Program. The monolithic braided ablative nozzle is a new concept that utilizes a continuous, ablative, monolithic flame surface that extends from the nozzle entrance, through the throat, to the exit plane. The flame surface is fabricated using a Through-the-Thickness braided carbon-fiber preform, which is impregnated with a phenolic or phenolic-like resin. During operation, the braided-carbon fiber/resin material ablates, leaving the structural backside at temperatures which are sufficiently low to preclude the need for any additional insulative materials. The monolithic braided nozzle derives its potential for low life cycle cost through the use of automated processing, one-component fabrication, low material scrap, low process scrap, inexpensive raw materials, and simplified case attachment. It also has the potential for high reliability because its construction prevents delamination, has no nozzle bondlines or leak paths along the flame surface, is amenable to simplified analysis, and is readily inspectable. In addition, the braided construction has inherent toughness and is damage-tolerant. Two static-firing tests were conducted using subscale, 1.8 - 2.0-inch throat diameter, hardware. Tests were approximately 15 seconds in duration, using a conventional 18 percent aluminum/ammonium perchlorate propellant. The first of these tests evaluated the braided ablative as an integral backside insulator and exit cone; the second test evaluated the monolithic braided ablative as an integral entrance/throat/exit cone nozzle. Both tests met their objectives. Radial ablation rates at the throat were as predicted, approximately 0.017 in

  14. Silica optical fibers: technology update

    NASA Astrophysics Data System (ADS)

    Krohn, David A.; McCann, Brian P.

    1995-05-01

    Silica-core optical fibers have long been the standard delivery medium for medical laser delivery systems. Their high strength, excellent flexibility, and low cost continue to make them the fiber of choice for systems operating from 300 to 2200 nm. An overview of the current fiber constructions available to the industry is reviewed. Silicone-clad fibers, hard- fluoropolymer clad fibers and silica-clad fibers are briefly compared in terms of mechanical and optical properties. The variety of fiber coatings available is also discussed. A significant product development of silica fiber delivery systems has been in side-firing laser delivery systems for Urology. These devices utilize silica-core fibers to project the laser energy at a substantial lateral angle to the conventional delivery system, typically 40 to 100 degrees off axis. Many unique distal tips have been designed to meet the needs of this potentially enormous application. There are three primary technologies employed in side-firing laser delivery systems: reflection off of an attached medium; reflection within an angle-polished fiber through total internal reflection; and reflection from both an angle-polished fiber and an outside medium. Each technology is presented and compared on the basis of operation modality, transmission efficiency, and power-handling performance.

  15. The Phagocytosis and Toxicity of Amorphous Silica

    PubMed Central

    Costantini, Lindsey M.; Gilberti, Renée M.; Knecht, David A.

    2011-01-01

    Background Inhalation of crystalline silica is known to cause an inflammatory reaction and chronic exposure leads to lung fibrosis and can progress into the disease, silicosis. Cultured macrophages bind crystalline silica particles, phagocytose them, and rapidly undergo apoptotic and necrotic death. The mechanism by which particles are bound and internalized and the reason particles are toxic is unclear. Amorphous silica has been considered to be a less toxic form, but this view is controversial. We compared the uptake and toxicity of amorphous silica to crystalline silica. Methodology/Principal Findings Amorphous silica particles are phagocytosed by macrophage cells and a single internalized particle is capable of killing a cell. Fluorescent dextran is released from endo-lysosomes within two hours after silica treatment and Caspase-3 activation occurs within 4 hours. Interestingly, toxicity is specific to macrophage cell lines. Other cell types are resistant to silica particle toxicity even though they internalize the particles. The large and uniform size of the spherical, amorphous silica particles allowed us to monitor them during the uptake process. In mCherry-actin transfected macrophages, actin rings began to form 1-3 minutes after silica binding and the actin coat disassembled rapidly following particle internalization. Pre-loading cells with fluorescent dextran allowed us to visualize the fusion of phagosomes with endosomes during internalization. These markers provided two new ways to visualize and quantify particle internalization. At 37°C the rate of amorphous silica internalization was very rapid regardless of particle coating. However, at room temperature, opsonized silica is internalized much faster than non-opsonized silica. Conclusions/Significance Our results indicate that amorphous and crystalline silica are both phagocytosed and both toxic to mouse alveolar macrophage (MH-S) cells. The pathway leading to apoptosis appears to be similar in both

  16. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure

    PubMed Central

    2013-01-01

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields. PMID:24093494

  17. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure.

    PubMed

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-01-01

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields. PMID:24093494

  18. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-10-01

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields.

  19. Comparison of perfusion media and monoliths for protein and virus-like particle chromatography.

    PubMed

    Wu, Yige; Abraham, Dicky; Carta, Giorgio

    2016-05-20

    Structural and performance characteristics of perfusion chromatography media (POROS HS 20 and 50) and those of a polymethacrylate monolith (CIM SO3-1 tube monolith column) are compared for protein and virus-like particle chromatography using 1mL columns. Axial flow columns are used for POROS while the monolith has a radial flow configuration, which provides comparable operating pressures. The POROS beads contain a bimodal distribution of pore sizes, some as large as 0.5μm, which allow a small fraction of the mobile phase to flow within the particles, while the monolith contains 1-2μm flow channels. For proteins (lysozyme and IgG), the dynamic binding capacity of the POROS columns is more than twice that of the monolith at longer residence times. While the DBC of the POROS HS 50 column decreases at shorter residence times, the DBC of the POROS HS 20 column for IgG remains nearly twice that of the monolith at residence times at least as low as 0.2min as a result of intraparticle convection. Protein recoveries are comparable for all three columns. For VLPs, however, the eluted peaks are broader and recovery is lower for the monolith than for the POROS columns and is dependent on the direction of flow in the monolith, which is attributed to denser layer observed by SEM at the inlet surface of the monolith that appears to trap VLPs when loading in the normal flow direction. PMID:27106397

  20. Separation of proteins by cation-exchange sequential injection chromatography using a polymeric monolithic column.

    PubMed

    Masini, Jorge Cesar

    2016-02-01

    Since sequential injection chromatography (SIC) emerged in 2003, it has been used for separation of small molecules in diverse samples, but separations of high molar mass compounds such as proteins have not yet been described. In the present work a poly(glycidyl methacrylate-co-ethylene dimethacrylate) (GMA-co-EDMA) monolithic column was prepared by free radical polymerization inside a 2.1-mm-i.d. activated fused silica-lined stainless steel tubing and modified with iminodiacetic acid (IDA). The column was prepared from a mixture of 24% GMA, 16% EDMA, 20% cyclohexanol, and 40% 1-dodecanol (all% as w/w) containing 1% of azobisisobutyronitrile (AIBN) (in relation to monomers). Polymerization was done at 60 °C for 24 h. The polymer was modified with 1.0 M IDA (in 2 M Na2CO3, pH 10.5) at 80 °C for 16 h. Separation of myoglobin, ribonuclease A, cytochrome C, and lysozyme was achieved at pH 7.0 (20 mM KH2PO4/K2HPO4) using a salt gradient (NaCl). Myoglobin was not retained, and the other proteins were separated by a gradient of NaCl created inside the holding coil (4 m of 0.8-mm-i.d. PTFE tubing) by sequential aspiration of 750 and 700 μL of 0.2 and 0.1 M NaCl, respectively. As the flow was reversed toward the column (5 μL s(-1)) the interdispersion of these solutions created a reproducible gradient which separated the proteins in 10 min, with the following order of retention: ribonuclease A < cytochrome C < lysozyme. The elution order was consistent with a cation-exchange mechanism as the retention increased with the isoelectric points. PMID:26677024