Science.gov

Sample records for agr-1 triso-coated particles

  1. Identification of Silver and Palladium in Irradiated TRISO Coated Particles of the AGR-1 Experiment

    SciTech Connect

    van Rooyen, Y. J.; Lillo, T. M.; Wu, Y. Q.

    2014-03-01

    Evidence of the release of certain metallic fission product through intact tristructural isotropic (TRISO) particles has been seen for decades around the world, as well as in the recent AGR-1 experiment at Idaho National Laboratory (INL). However, understanding the basic mechanism of transport is still lacking. This understanding is important because the TRISO coating is part of the high temperature gas reactor functional containment and critical for the safety strategy for licensing purposes. Our approach to identify fission products in irradiated AGR-1 TRISO fuel using scanning transmission electron microscopy (STEM), Electron Energy Loss Spectroscopy (EELS) and Energy Filtered TEM (EFTEM), has led to first-of-a-kind data at the nano-scale indicating the presence of silver at triple points and grain boundaries of the SiC layer in the TRISO particle. Cadmium was also found in the triple junctions. In this initial study, the silver was only identified in SiC grain boundaries and triple points on the edge of the SiC-IPyC interface up to a depth of approximately 0.5 um. Palladium was identified as the main constituent of micron-sized precipitates present at the SiC grain boundaries. Additionally spherical nano-sized palladium rich precipitates were found inside the SiC grains. These nano-sized Pd precipitates were distributed up to a depth of 5 um away from the SiC-IPyC interlayer. No silver was found in the center of the micron-sized fission product precipitates using these techniques, although silver was found on the outer edge of one of the Pd-U-Si containing precipitates which was facing the IPyC layer. Only Pd-U containing precipitates were identified in the IPyC layer and no silver was identified in the IPyC layer. The identification of silver alongside the grain boundaries and the findings of Pd alongside grain boundaries as well as inside the grains, provide significant knowledge for understanding silver and palladium transport in TIRSO fuel, which has been

  2. Microstructure of TRISO Coated Particles from the AGR-1 Experiment I: SiC Grain Size and Grain Boundary Character

    SciTech Connect

    Rita Kirchhofer; John D, Hunn; Paul A. Demkowicz; James I. Cole; Brian P. Gorman

    2013-01-01

    Pre-irradiation SiC microstructures in TRISO coated fuel particles from the AGR-1 experiment were quantitatively characterized using electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). From EBSD it was determined that only the cubic polymorph of as-deposited SiC was present and the SiC had a high fraction of CSL S3 grain boundaries. Additionally, the local area misorientation (LAM), which is a qualitative measurement of strain in the SiC lattice, was mapped for each fuel variant. The morphology of the SiC / IPyC interfaces were characterized by TEM following site-specific focused ion beam (FIB) specimen preparation. It was determined that the SiC layer had a heavily faulted microstructure typical of CVD deposited SiC and that the average grain diameter increased from the SiC/IPyC interface for all the fuel variants, except V3 that showed a constant grain size across the layer.

  3. Electron microscopic evaluation and fission product identification of irradiated TRISO coated particles from the AGR-1 experiment: A preliminary Study

    SciTech Connect

    I J van Rooyen; D E Janney; B D Miller; J L Riesterer; P A Demkowicz

    2012-10-01

    ABSTRACT Post-irradiation examination of coated particle fuel from the AGR-1 experiment is in progress at Idaho National Laboratory and Oak Ridge National Laboratory. In this presentation a brief summary of results from characterization of microstructures in the coating layers of selected irradiated fuel particles with burnup of 11.3% and 19.3% FIMA will be given. The main objective of the characterization were to study irradiation effects, fuel kernel porosity, layer debonding, layer degradation or corrosion, fission-product precipitation, grain sizes, and transport of fission products from the kernels across the TRISO layers. Characterization techniques such as scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, and wavelength dispersive spectroscopy were used. A new approach to microscopic quantification of fission-product precipitates is also briefly demonstrated. The characterization emphasized fission-product precipitates in the SiC-IPyC interface, SiC layer and the fuel-buffer interlayer, and provided significant new insights into mechanisms of fission-product transport. Although Pd-rich precipitates were identified at the SiC-IPyC interlayer, no significant SiC-layer thinning was observed for the particles investigated. Characterization of these precipitates highlighted the difficulty of measuring low concentration Ag in precipitates with significantly higher concentrations of contain Pd and U. Different approaches to resolving this problem are discussed. Possible microstructural differences between particles with high and low releases of Ag particles are also briefly discussed, and an initial hypothesis is provided to explain fission-product precipitate compositions and locations. No SiC phase transformations or debonding of the SiC-IPyC interlayer as a result of irradiation were observed. Lessons learned from the post-irradiation examination are described and future actions are recommended.

  4. Electron Microscopic Evaluation and Fission Product Identification of Irradiated TRISO Coated Particles from the AGR-1 Experiment: A Preliminary Review

    SciTech Connect

    IJ van Rooyen; DE Janney; BD Miller; PA DEmkowicz; J Riesterer

    2014-05-01

    Post-irradiation examination of coated particle fuel from the AGR-1 experiment is in progress at Idaho National Laboratory and Oak Ridge National Laboratory. In this paper a brief summary of results from characterization of microstructures in the coating layers of selected irradiated fuel particles with burnup of 11.3% and 19.3% FIMA will be given. The main objectives of the characterization were to study irradiation effects, fuel kernel porosity, layer debonding, layer degradation or corrosion, fission-product precipitation, grain sizes, and transport of fission products from the kernels across the TRISO layers. Characterization techniques such as scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, and wavelength dispersive spectroscopy were used. A new approach to microscopic quantification of fission-product precipitates is also briefly demonstrated. Microstructural characterization focused on fission-product precipitates in the SiC-IPyC interface, the SiC layer and the fuel-buffer interlayer. The results provide significant new insights into mechanisms of fission-product transport. Although Pd-rich precipitates were identified at the SiC-IPyC interlayer, no significant SiC-layer thinning was observed for the particles investigated. Characterization of these precipitates highlighted the difficulty of measuring low concentrations of Ag in precipitates with significantly higher concentrations of Pd and U. Different approaches to resolving this problem are discussed. An initial hypothesis is provided to explain fission-product precipitate compositions and locations. No SiC phase transformations were observed and no debonding of the SiC-IPyC interlayer as a result of irradiation was observed for the samples investigated. Lessons learned from the post-irradiation examination are described and future actions are recommended.

  5. Advanced electron microscopic techniques applied to the characterization of irradiation effects and fission product identification of irradiated TRISO coated particles from the AGR-1 experiment

    SciTech Connect

    Rooyen, I.J. van; Lillo, T.M.; Trowbridge, T.L.; Madden, J.M.; Wu, Y.Q.; Goran, D.

    2013-07-01

    Preliminary electron microscopy of coated fuel particles from the AGR-1 experiment was conducted using characterization techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and wavelength dispersive spectroscopy (WDS). Microscopic quantification of fission-product precipitates was performed. Although numerous micro- and nano-sized precipitates observed in the coating layers during initial SEM characterization of the cross-sections, and in subsequent TEM diffraction patterns, were indexed as UPd{sub 2}Si{sub 2}, no Ag was conclusively found. Additionally, characterization of these precipitates highlighted the difficulty of measuring low concentrations of Ag in precipitates in the presence of significantly higher concentrations of Pd and U. The electron microscopy team followed a multi-directional and phased approach in the identification of fission products in irradiated TRISO fuel. The advanced electron microscopy techniques discussed in this paper, not only demonstrate the usefulness of the equipment (methods) as relevant research tools, but also provide relevant scientific results which increase the knowledge about TRISO fuel particles microstructure and fission products transport.

  6. Progress in Solving the Elusive Ag Transport Mechanism in TRISO Coated Particles: What is new?

    SciTech Connect

    Isabella Van Rooyen

    2014-10-01

    The TRISO particle for HTRs has been developed to an advanced state where the coating withstands internal gas pressures and retains fission products during irradiation and under postulated accidents. However, one exception is Ag that has been found to be released from high quality TRISO coated particles when irradiated and can also during high temperature accident heating tests. Although out- of- pile laboratory tests have never hither to been able to demonstrate a diffusion process of Ag in SiC, effective diffusion coefficients have been derived to successfully reproduce measured Ag-110m releases from irradiated HTR fuel elements, compacts and TRISO particles It was found that silver transport through SiC does not proceed via bulk volume diffusion. Presently grain boundary diffusion that may be irradiation enhanced either by neutron bombardment or by the presence of fission products such as Pd, are being investigated. Recent studies of irradiated AGR-1 TRISO fuel using scanning transmission electron microscopy (STEM), transmission kukuchi diffraction (TKD) patterns and high resolution transmission electron microscopy (HRTEM) have been used to further the understanding of Ag transport through TRISO particles. No silver was observed in SiC grains, but Ag was identified at triple-points and grain boundaries of the SiC layer in the TRISO particle. Cadmium was also found in some of the very same triple junctions, but this could be related to silver behavior as Ag-110m decays to Cd-110. Palladium was identified as the main constituent of micron-sized precipitates present at the SiC grain boundaries and in most SiC grain boundaries and the potential role of Pd in the transport of Ag will be discussed.

  7. Microscopic analysis of irradiated AGR-1 coated particle fuel compacts

    SciTech Connect

    Scott A. Ploger; Paul A. Demkowicz; John D. Hunn; Jay S. Kehn

    2014-05-01

    The AGR-1 experiment involved irradiation of 72 TRISO-coated particle fuel compacts to a peak compact-average burnup of 19.5% FIMA with no in-pile failures observed out of 3 x 105 total particles. Irradiated AGR-1 fuel compacts have been cross-sectioned and analyzed with optical microscopy to characterize kernel, buffer, and coating behavior. Six compacts have been examined, spanning a range of irradiation conditions (burnup, fast fluence, and irradiation temperature) and including all four TRISO coating variations irradiated in the AGR-1 experiment. The cylindrical specimens were sectioned both transversely and longitudinally, then polished to expose from 36 to 79 individual particles near midplane on each mount. The analysis focused primarily on kernel swelling and porosity, buffer densification and fracturing, buffer–IPyC debonding, and fractures in the IPyC and SiC layers. Characteristic morphologies have been identified, 981 particles have been classified, and spatial distributions of particle types have been mapped. No significant spatial patterns were discovered in these cross sections. However, some trends were found between morphological types and certain behavioral aspects. Buffer fractures were found in 23% of the particles, and these fractures often resulted in unconstrained kernel protrusion into the open cavities. Fractured buffers and buffers that stayed bonded to IPyC layers appear related to larger pore size in kernels. Buffer–IPyC interface integrity evidently factored into initiation of rare IPyC fractures. Fractures through part of the SiC layer were found in only four classified particles, all in conjunction with IPyC–SiC debonding. Compiled results suggest that the deliberate coating fabrication variations influenced the frequencies of IPyC fractures and IPyC–SiC debonds.

  8. Microscopic analysis of irradiated AGR-1 coated particle fuel compacts

    SciTech Connect

    Scott Ploger; Paul Demkowicz; John Hunn; Robert Morris

    2012-10-01

    The AGR-1 experiment involved irradiation of 72 TRISO-coated particle fuel compacts to a peak burnup of 19.5% FIMA with no in-pile failures observed out of 3×105 total particles. Irradiated AGR-1 fuel compacts have been cross-sectioned and analyzed with optical microscopy to characterize kernel, buffer, and coating behavior. Five compacts have been examined so far, spanning a range of irradiation conditions (burnup, fast fluence, and irradiation temperature) and including all four TRISO coating variations irradiated in the AGR-1 experiment. The cylindrical specimens were sectioned both transversely and longitudinally, then polished to expose between approximately 40-80 individual particles on each mount. The analysis focused primarily on kernel swelling and porosity, buffer densification and fracturing, buffer-IPyC debonding, and fractures in the IPyC and SiC layers. Characteristic morphologies have been identified, over 800 particles have been classified, and spatial distributions of particle types have been mapped. No significant spatial patterns were discovered in these cross sections. However, some trends were found between morphological types and certain behavioral aspects. Buffer fractures were found in approximately 23% of the particles, and these fractures often resulted in unconstrained kernel swelling into the open cavities. Fractured buffers and buffers that stayed bonded to IPyC layers appear related to larger pore size in kernels. Buffer-IPyC interface integrity evidently factored into initiation of rare IPyC fractures. Fractures through part of the SiC layer were found in only three particles, all in conjunction with IPyC-SiC debonding. Compiled results suggest that the deliberate coating fabrication variations influenced the frequencies of IPyC fractures, IPyC-SiC debonds, and SiC fractures.

  9. Performance of HTGR biso- and triso-coated fertile particles irradiated in capsule HT-34

    SciTech Connect

    Long, E.L. Jr.; Tiegs, T.N.; Robbins, J.M.; Kania, M.J.

    1981-08-01

    Experiment HT-34, irradiated in the target region of the High Flux Isotope Reactor (HFIR), was designed to correlate HTGR Biso- and Triso-coated particle performance with fabrication parameters. Gamma analysis of the irradiated Triso-coated ThO/sub 2/ particles showed that the SiC deposited at the highest coating rate apparently had the best cesium-retention properties. Results of a similar analysis of the irradiated Biso-coated ThO/sub 2/ particles showed no differences in performance that could be related to coating conditions, but all the particles showed a significant loss of cesium (> 50%) at the higher temperatures. Pressure-vessel failures occurred with a significant number of particles; however, fission-gas-content measurements made at room temperature showed that the intact Biso particles from all batches except one became permeable during irradiation.

  10. The Challenges Associated with High Burnup and High Temperature for UO2 TRISO-Coated Particle Fuel

    SciTech Connect

    David Petti; John Maki

    2005-02-01

    The fuel service conditions for the DOE Next Generation Nuclear Plant (NGNP) will be challenging. All major fuel related design parameters (burnup, temperature, fast neutron fluence, power density, particle packing fraction) exceed the values that were qualified in the successful German UO2 TRISO-coated particle fuel development program in the 1980s. While TRISO-coated particle fuel has been irradiated at NGNP relevant levels for two or three of the design parameters, no data exist for TRISO-coated particle fuel for all five parameters simultaneously. Of particular concern are the high burnup and high temperatures expected in the NGNP. In this paper, where possible, we evaluate the challenges associated with high burnup and high temperature quantitatively by examining the performance of the fuel in terms of different known failure mechanisms. Potential design solutions to ameliorate the negative effects of high burnup and high temperature are also discussed.

  11. Silver (Ag) Transport Mechanisms in TRISO coated particles: A Critical Review

    SciTech Connect

    I J van Rooyen; J H Neethling; J A A Engelbrecht; P M van Rooyen; G Strydom

    2012-10-01

    Transport of 110mAg in the intact SiC layer of TRISO coated particles has been studied for approximately 30 years without arriving at a satisfactory explanation of the transport mechanism. In this paper the possible mechanisms postulated in previous experimental studies, both in-reactor and out-of reactor research environment studies are critically reviewed and of particular interest are relevance to very high temperature gas reactor operating and accident conditions. Among the factors thought to influence Ag transport are grain boundary stoichiometry, SiC grain size and shape, the presence of free silicon, nano-cracks, thermal decomposition, palladium attack, transmutation products, layer thinning and coated particle shape. Additionally new insight to nature and location of fission products has been gained via recent post irradiation electron microscopy examination of TRISO coated particles from the DOE’s fuel development program. The combined effect of critical review and new analyses indicates a direction for investigating possible the Ag transport mechanism including the confidence level with which these mechanisms may be experimentally verified.

  12. Evaluation of design parameters for TRISO-coated fuel particles to establish manufacturing critical limits using PARFUME

    SciTech Connect

    Skerjanc, William F.; Maki, John T.; Collin, Blaise P.; Petti, David A.

    2015-12-02

    The success of modular high temperature gas-cooled reactors is highly dependent on the performance of the tristructural-isotopic (TRISO) coated fuel particle and the quality to which it can be manufactured. During irradiation, TRISO-coated fuel particles act as a pressure vessel to contain fission gas and mitigate the diffusion of fission products to the coolant boundary. The fuel specifications place limits on key attributes to minimize fuel particle failure under irradiation and postulated accident conditions. PARFUME (an integrated mechanistic coated particle fuel performance code developed at the Idaho National Laboratory) was used to calculate fuel particle failure probabilities. By systematically varying key TRISO-coated particle attributes, failure probability functions were developed to understand how each attribute contributes to fuel particle failure. Critical manufacturing limits were calculated for the key attributes of a low enriched TRISO-coated nuclear fuel particle with a kernel diameter of 425 μm. As a result, these critical manufacturing limits identify ranges beyond where an increase in fuel particle failure probability is expected to occur.

  13. Evaluation of design parameters for TRISO-coated fuel particles to establish manufacturing critical limits using PARFUME

    DOE PAGES

    Skerjanc, William F.; Maki, John T.; Collin, Blaise P.; Petti, David A.

    2015-12-02

    The success of modular high temperature gas-cooled reactors is highly dependent on the performance of the tristructural-isotopic (TRISO) coated fuel particle and the quality to which it can be manufactured. During irradiation, TRISO-coated fuel particles act as a pressure vessel to contain fission gas and mitigate the diffusion of fission products to the coolant boundary. The fuel specifications place limits on key attributes to minimize fuel particle failure under irradiation and postulated accident conditions. PARFUME (an integrated mechanistic coated particle fuel performance code developed at the Idaho National Laboratory) was used to calculate fuel particle failure probabilities. By systematically varyingmore » key TRISO-coated particle attributes, failure probability functions were developed to understand how each attribute contributes to fuel particle failure. Critical manufacturing limits were calculated for the key attributes of a low enriched TRISO-coated nuclear fuel particle with a kernel diameter of 425 μm. As a result, these critical manufacturing limits identify ranges beyond where an increase in fuel particle failure probability is expected to occur.« less

  14. Evaluation of design parameters for TRISO-coated fuel particles to establish manufacturing critical limits using PARFUME

    NASA Astrophysics Data System (ADS)

    Skerjanc, William F.; Maki, John T.; Collin, Blaise P.; Petti, David A.

    2016-02-01

    The success of modular high temperature gas-cooled reactors is highly dependent on the performance of the tristructural-isotopic (TRISO) coated fuel particle and the quality to which it can be manufactured. During irradiation, TRISO-coated fuel particles act as a pressure vessel to contain fission gas and mitigate the diffusion of fission products to the coolant boundary. The fuel specifications place limits on key attributes to minimize fuel particle failure under irradiation and postulated accident conditions. PARFUME (an integrated mechanistic coated particle fuel performance code developed at the Idaho National Laboratory) was used to calculate fuel particle failure probabilities. By systematically varying key TRISO-coated particle attributes, failure probability functions were developed to understand how each attribute contributes to fuel particle failure. Critical manufacturing limits were calculated for the key attributes of a low enriched TRISO-coated nuclear fuel particle with a kernel diameter of 425 μm. These critical manufacturing limits identify ranges beyond where an increase in fuel particle failure probability is expected to occur.

  15. Development of an Integrated Performance Model for TRISO-Coated Gas Reactor Particle Fuel

    SciTech Connect

    Petti, David Andrew; Miller, Gregory Kent; Martin, David George; Maki, John Thomas

    2005-05-01

    The success of gas reactors depends upon the safety and quality of the coated particle fuel. The understanding and evaluation of this fuel requires development of an integrated mechanistic fuel performance model that fully describes the mechanical and physico-chemical behavior of the fuel particle under irradiation. Such a model, called PARFUME (PARticle Fuel ModEl), is being developed at the Idaho National Engineering and Environmental Laboratory. PARFUME is based on multi-dimensional finite element modeling of TRISO-coated gas reactor fuel. The goal is to represent all potential failure mechanisms and to incorporate the statistical nature of the fuel. The model is currently focused on carbide, oxide nd oxycarbide uranium fuel kernels, while the coating layers are the classical IPyC/SiC/OPyC. This paper reviews the current status of the mechanical aspects of the model and presents results of calculations for irradiations from the New Production Modular High Temperature Gas Reactor program.

  16. Method of evaluating the integrity of the outer carbon layer of triso-coated reactor fuel particles

    DOEpatents

    Caputo, Anthony J.; Costanzo, Dante A.; Lackey, Jr., Walter J.; Layton, Frank L.; Stinton, David P.

    1980-01-01

    This invention relates to a method for determining defective final layers of carbon on triso-coated fuel particles and the like. Samples of the particles are subjected to a high temperature treatment with gaseous chlorine and thereafter radiographed. The chlorine penetrates through any defective carbon layer and reacts with the underlying silicon carbide resulting in the volatilization of the silicon as SiCl.sub.4 leaving carbon as a porous layer. This porous carbon layer is easily detected by the radiography.

  17. Calculating Failure Probabilities for TRISO-coated Fuel Particles using an Integral Formulation

    SciTech Connect

    Gregory K. Miller; John T. maki; Darrell L. Knudsen; David A. Petti

    2010-04-01

    The fundamental design for a gas-cooled reactor relies on the safe behavior of the coated particle fuel. The coating layers surrounding the fuel kernels in these spherical particles, termed the TRISO coating, act as a pressure vessel that retains fission products. The quality of the fuel reflects the number of particle failures that occur during reactor operation, where failed particles become a source for fission products that can then diffuse through the fuel element matrix. The failure probability for any batch of particles, which has traditionally been calculated using the Monte Carlo method, depends on statistical variations in design parameters and on variations in the strengths of coating layers among particles in the batch. An alternative approach to calculating failure probabilities is developed herein that uses direct numerical integration of a failure probability integral. Because this is a multiple integral where the statistically varying parameters become integration variables, a fast numerical integration approach is also developed. In sample cases analyzed involving multiple failure mechanisms, results from the integration methods agree closely with Monte Carlo results. Additionally, the fast integration approach, particularly, is shown to significantly improve efficiency of failure probability calculations. These integration methods have been implemented in the PARFUME fuel performance code along with the Monte Carlo method, where each serves to verify accuracy of the others.

  18. Uranium extraction from TRISO-coated fuel particles using supercritical CO2 containing tri-n-butyl phosphate.

    PubMed

    Zhu, Liyang; Duan, Wuhua; Xu, Jingming; Zhu, Yongjun

    2012-11-30

    High-temperature gas-cooled reactors (HTGRs) are advanced nuclear systems that will receive heavy use in the future. It is important to develop spent nuclear fuel reprocessing technologies for HTGR. A new method for recovering uranium from tristructural-isotropic (TRISO-) coated fuel particles with supercritical CO(2) containing tri-n-butyl phosphate (TBP) as a complexing agent was investigated. TRISO-coated fuel particles from HTGR fuel elements were first crushed to expose UO(2) pellet fuel kernels. The crushed TRISO-coated fuel particles were then treated under O(2) stream at 750°C, resulting in a mixture of U(3)O(8) powder and SiC shells. The conversion of U(3)O(8) into solid uranyl nitrate by its reaction with liquid N(2)O(4) in the presence of a small amount of water was carried out. Complete conversion was achieved after 60 min of reaction at 80°C, whereas the SiC shells were not converted by N(2)O(4). Uranyl nitrate in the converted mixture was extracted with supercritical CO(2) containing TBP. The cumulative extraction efficiency was above 98% after 20 min of online extraction at 50°C and 25 MPa, whereas the SiC shells were not extracted by TBP. The results suggest an attractive strategy for reprocessing spent nuclear fuel from HTGR to minimize the generation of secondary radioactive waste.

  19. AGR-1 Safety Test Predictions using the PARFUME code

    SciTech Connect

    Blaise Collin

    2012-05-01

    The PARFUME modeling code was used to predict failure probability of TRISO-coated fuel particles and diffusion of fission products through these particles during safety tests following the first irradiation test of the Advanced Gas Reactor program (AGR-1). These calculations support the AGR-1 Safety Testing Experiment, which is part of the PIE effort on AGR-1. Modeling of the AGR-1 Safety Test Predictions includes a 620-day irradiation followed by a 300-hour heat-up phase of selected AGR-1 compacts. Results include fuel failure probability, palladium penetration, and fractional release of fission products. Results show that no particle failure is predicted during irradiation or heat-up, and that fractional release of fission products is limited during irradiation but that it significantly increases during heat-up.

  20. Fission-product behaviour in irradiated TRISO-coated particles: Results of the HFR-EU1bis experiment and their interpretation

    NASA Astrophysics Data System (ADS)

    Barrachin, M.; Dubourg, R.; de Groot, S.; Kissane, M. P.; Bakker, K.

    2011-08-01

    It is important to understand fission-product (FP) and kernel micro-structure evolution in TRISO-coated fuel particles. FP behaviour, while central to severe-accident evaluation, impacts: evolution of the kernel oxygen potential governing in turn carbon oxidation (amoeba effect and pressurization); particle pressurization through fission-gas release from the kernel; and coating mechanical resistance via reaction with some FPs (Pd, Cs, Sr). The HFR-Eu1bis experiment irradiated five HTR fuel pebbles containing TRISO-coated UO 2 particles and went beyond current HTR specifications (e.g., central temperature of 1523 K). This study presents ceramographic and EPMA examinations of irradiated urania kernels and coatings. Significant evolutions of the kernel (grain structure, porosity, metallic-inclusion size, intergranular bubbles) as a function of temperature are shown. Results concerning FP migration are presented, e.g., significant xenon, caesium and palladium release from the kernel, molybdenum and ruthenium mainly present in metallic precipitates. The observed FP and micro-structural evolutions are interpreted and explanations proposed. The effect of high flux rate and high temperature on fission-gas behaviour, grain-size evolution and kernel swelling is discussed. Furthermore, Cs, Mo and Zr behaviour is interpreted in connection with oxygen-potential. This paper shows that combining state-of-the-art post-irradiation examination and state-of-the-art modelling fundamentally improves understanding of HTR fuel behaviour.

  1. Key Differences in the Fabrication, Irradiation, and Safety Testing of U.S. and German TRISO-coated Particle Fuel and Their Implications on Fuel Performance

    SciTech Connect

    Petti, David Andrew; Maki, John Thomas; Buongiorno, Jacopo; Hobbins, Richard Redfield

    2002-06-01

    High temperature gas reactor technology is achieving a renaissance around the world. This technology relies on high quality production and performance of coated particle fuel. Historically, the irradiation performance of TRISO-coated gas reactor particle fuel in Germany has been superior to that in the United States. German fuel generally displayed in-pile gas release values that were three orders of magnitude lower than U.S. fuel. Thus, we have critically examined the TRISO-coated fuel fabrication processes in the U.S. and Germany and the associated irradiation database with a goal of understanding why the German fuel behaves acceptably, why the U.S. fuel has not faired as well, and what process/ production parameters impart the reliable performance to this fuel form. The postirradiation examination results are also reviewed to identify failure mechanisms that may be the cause of the poorer U.S. irradiation performance. This comparison will help determine the roles that particle fuel process/product attributes and irradiation conditions (burnup, fast neutron fluence, temperature, and degree of acceleration) have on the behavior of the fuel during irradiation and provide a more quantitative linkage between acceptable processing parameters, as-fabricated fuel properties and subsequent in-reactor performance.

  2. Fission Product Monitoring of TRISO Coated Fuel For The Advanced Gas Reactor -1 Experiment

    SciTech Connect

    Dawn M. Scates; John K. Hartwell; John b. Walter

    2010-10-01

    The US Department of Energy has embarked on a series of tests of TRISO-coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burn up of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B’s) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  3. Fission Product Monitoring of TRISO Coated Fuel For The Advanced Gas Reactor -1 Experiment

    SciTech Connect

    Dawn M. Scates; John K Hartwell; John B. Walter

    2008-09-01

    The US Department of Energy has embarked on a series of tests of TRISO-coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burn up of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B’s) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  4. SiC layer microstructure in AGR-1 and AGR-2 TRISO fuel particles and the influence of its variation on the effective diffusion of key fission products

    DOE PAGES

    Gerczak, Tyler J.; Hunn, John D.; Lowden, Richard A.; Allen, Todd R.

    2016-08-15

    Tristructural isotropic (TRISO) coated particle fuel is a promising fuel form for advanced reactor concepts such as high temperature gas-cooled reactors (HTGR) and is being developed domestically under the US Department of Energy’s Nuclear Reactor Technologies Initiative in support of Advanced Reactor Technologies. The fuel development and qualification plan includes a series of fuel irradiations to demonstrate fuel performance from the laboratory to commercial scale. The first irradiation campaign, AGR-1, included four separate TRISO fuel variants composed of multiple, laboratory-scale coater batches. The second irradiation campaign, AGR-2, included TRISO fuel particles fabricated by BWX Technologies with a larger coater representativemore » of an industrial-scale system. The SiC layers of as-fabricated particles from the AGR-1 and AGR-2 irradiation campaigns have been investigated by electron backscatter diffraction (EBSD) to provide key information about the microstructural features relevant to fuel performance. The results of a comprehensive study of multiple particles from all constituent batches are reported. The observations indicate that there were microstructural differences between variants and among constituent batches in a single variant. Finally, insights on the influence of microstructure on the effective diffusivity of key fission products in the SiC layer are also discussed.« less

  5. SiC layer microstructure in AGR-1 and AGR-2 TRISO fuel particles and the influence of its variation on the effective diffusion of key fission products

    NASA Astrophysics Data System (ADS)

    Gerczak, Tyler J.; Hunn, John D.; Lowden, Richard A.; Allen, Todd R.

    2016-11-01

    Tristructural isotropic (TRISO) coated particle fuel is a promising fuel form for advanced reactor concepts such as high temperature gas-cooled reactors (HTGR) and is being developed domestically under the US Department of Energy's Nuclear Reactor Technologies Initiative in support of Advanced Reactor Technologies. The fuel development and qualification plan includes a series of fuel irradiations to demonstrate fuel performance from the laboratory to commercial scale. The first irradiation campaign, AGR-1, included four separate TRISO fuel variants composed of multiple, laboratory-scale coater batches. The second irradiation campaign, AGR-2, included TRISO fuel particles fabricated by BWX Technologies with a larger coater representative of an industrial-scale system. The SiC layers of as-fabricated particles from the AGR-1 and AGR-2 irradiation campaigns have been investigated by electron backscatter diffraction (EBSD) to provide key information about the microstructural features relevant to fuel performance. The results of a comprehensive study of multiple particles from all constituent batches are reported. The observations indicate that there were microstructural differences between variants and among constituent batches in a single variant. Insights on the influence of microstructure on the effective diffusivity of key fission products in the SiC layer are also discussed.

  6. On Techniques to Characterize and Correlate Grain Size, Grain Boundary Orientation and the Strength of the SiC Layer of TRISO Coated Particles: A Preliminary Study

    SciTech Connect

    I.J.van Rooyen; J.L. Dunzik Gougar; T. Trowbridge; Philip M van Rooyen

    2012-10-01

    The mechanical properties of the silicon carbide (SiC) layer of the TRi-ISOtropic (TRISO) coated particle (CP) for high temperature gas reactors (HTGR) are performance parameters that have not yet been standardized by the international HTR community. Presented in this paper are the results of characterizing coated particles to reveal the effect of annealing temperature (1000 to 2100°C) on the strength and grain size of unirradiated coated particles. This work was further expanded to include possible relationships between the grain size and strength values. The comparative results of two strength measurement techniques and grain size measured by the Lineal intercept method are included. Preliminary grain boundary characterization results determined by electron backscatter diffraction (EBSD) are included. These results are also important for future fission product transport studies, as grain boundary diffusion is identified as a possible mechanism by which 110mAg, one of the fission activation products, might be released through intact SiC layers. Temperature is a parameter known to influence the grain size of SiC and therefore it is important to investigate the effect of high temperature annealing on the SiC grain size. Recommendations and future work will also be briefly discussed.

  7. Fracture strength and principal stress fields during crush testing of the SiC layer in TRISO-coated fuel particles

    NASA Astrophysics Data System (ADS)

    Davis, Brian C.; Ward, Logan; Butt, Darryl P.; Fillery, Brent; Reimanis, Ivar

    2016-08-01

    Diametrical compression testing is an important technique to evaluate fracture properties of the SiC layer in TRISO-coated nuclear fuel particles. This study was conducted to expand the understanding and improve the methodology of the test. An analytic solution and multiple FEA models are used to determine the development of the principal stress fields in the SiC shell during a crush test. An ideal fracture condition where the diametrical compression test best mimics in-service internal pressurization conditions was discovered. For a small set of empirical data points, results from different analysis methodologies were input to an iterative Weibull equation set to determine characteristic strength (332.9 MPa) and Weibull modulus (3.80). These results correlate well with published research. It is shown that SiC shell asphericity is currently the limiting factor of greatest concern to obtaining repeatable results. Improvements to the FEA are the only apparent method for incorporating asphericity and improving accuracy.

  8. Data Compilation for AGR-1 Variant 3 Compact Lot LEU01-49T-Z

    SciTech Connect

    Hunn, John D; Montgomery, Fred C; Pappano, Peter J

    2006-08-01

    This document is a compilation of characterization data for the AGR-1 vriant 3 fuel compact lot LEU01-49T-Z. The compacts were produced by ORNL for the Advanced Gas Reactor Fuel Development and Qualification (AGR) program for the first AGR irradiation test train (AGR-1). This compact lot was fabricated using particle composite LEU01-49T, which was a composite of three batches of TRISO-coated 350 {micro}m diameter 19.7% low enrichment uranium oxide/uranium carbide kernels (LEUCO). The AGR-1 TRISO-coated particles consist of a spherical kernel coated with an {approx} 50% dense carbon buffer layer (100 {micro}m nominal thickness), followed by a dense inner pyrocarbon layer (40 {micro}m nominal thickness), followed by a SiC layer (35 {micro}m nominal thickness), followed by another dense outer pyrocarbon layer (40 {micro}m nominal thickness). The kernels were obtained from BWXT and identified as composite G73D-20-69302. The BWXT kernel lot G73D-20-69302 was riffled into sublots for characterization and coating by ORNL and identified as LEU01-?? (where ?? is a series of integers beginning with 01). A data compilation for the AGR-1 variant 3 coated particle composite LEU01-49t CAN BE FOUND IN ornl/tm-2006/022.

  9. AGR-1 Post Irradiation Examination Final Report

    SciTech Connect

    Demkowicz, Paul Andrew

    2015-08-01

    The post-irradiation examination (PIE) of the Advanced Gas Reactor (AGR)-1 experiment was a multi-year, collaborative effort between Idaho National Laboratory (INL) and Oak Ridge National Laboratory (ORNL) to study the performance of UCO (uranium carbide, uranium oxide) tristructural isotropic (TRISO) coated particle fuel fabricated in the U.S. and irradiated at the Advanced Test Reactor at INL to a peak burnup of 19.6% fissions per initial metal atom. This work involved a broad array of experiments and analyses to evaluate the level of fission product retention by the fuel particles and compacts (both during irradiation and during post-irradiation heating tests to simulate reactor accident conditions), investigate the kernel and coating layer morphology evolution and the causes of coating failure, and explore the migration of fission products through the coating layers. The results have generally confirmed the excellent performance of the AGR-1 fuel, first indicated during the irradiation by the observation of zero TRISO coated particle failures out of 298,000 particles in the experiment. Overall release of fission products was determined by PIE to have been relatively low during the irradiation. A significant finding was the extremely low levels of cesium released through intact coatings. This was true both during the irradiation and during post-irradiation heating tests to temperatures as high as 1800°C. Post-irradiation safety test fuel performance was generally excellent. Silver release from the particles and compacts during irradiation was often very high. Extensive microanalysis of fuel particles was performed after irradiation and after high-temperature safety testing. The results of particle microanalysis indicate that the UCO fuel is effective at controlling the oxygen partial pressure within the particle and limiting kernel migration. Post-irradiation examination has provided the final body of data that speaks to the quality of the AGR-1 fuel, building

  10. TRISO-Coated Fuel Durability Under Extreme Conditions

    SciTech Connect

    Reimanis, Ivar; Gorman, Brian; Butt, Darryl

    2014-03-30

    The PIs propose to examine TRISO-coated particles (SiC and ZrC coatings) in an integrated two-part study. In the first part, experiments will be performed to assess the reaction kinetics of the carbides under CO-CO2 environments at temperatures up to 1800 degree C. Kinetic model will be applied to describe the degradation. Scanning and transmission electron microscopy will be employed to establish the chemical and microstructure evolution under the imposed environmental conditions. The second part of the proposed work focuses on establishing the role of the high temperature, environmental exposure described above on the mechanical behavior of TRISO-coated particles. Electron microscopy and other advanced techniques will be subsequently performed to evaluate failure mechanisms. The work is expected to reveal relationships between corrosion reactions, starting material characteristics (polytype of SiC, impurity concentration, flaw distribution), flaw healing behavior, and crack growth.

  11. The measurement of silver diffusivity in zirconium carbide to study the release behavior of 110mAg in the ZrC TRISO-coated nuclear fuel particle

    NASA Astrophysics Data System (ADS)

    Yang, Young-Ki; Allen, Todd R.

    2016-03-01

    The tri-structural isotropic (TRISO) coated particle fuel has been developed and used for high temperature gas-cooled reactors (HTGRs). It provides a unique robustness of the first barrier for the fission products. The TRISO fuel particle has typically consisted of a UO2 or UCO kernel, surrounded by successive layers of porous carbon, dense inner pyrocarbon, silicon carbide, and dense outer pyrocarbon. During operation, however, the SiC layer has been known to release radioactive silver 110mAg which makes maintenance more difficult and thus costly. Zirconium carbide has been considered as a promising alternative to the SiC fission product barrier. ZrC exhibits high temperature stability and possibly possesses superior Pd resistance, while the retention properties especially for silver have not been adequately studied. To help elucidate the diffusive behavior of silver in the ZrC coating of the TRISO-coated particle, a new diffusion experimental technique, called the encapsulating source method, has been developed by constructing a constant source diffusion couple between ZrC and Ag gas originated from Zr-Ag solid solution. Scanning electron microscopy (SEM), wavelength-dispersive X-ray spectroscopy (WDS), electron backscatter diffraction (EBSD) and optical methods were used to analyze the diffusion couple annealed at 1500 °C. The resultant diffusion coefficient of Ag in single-crystalline ZrC0.84 at 1500 °C was experimentally determined to be about 2.8 (±1.2) × 10-17 m2/s.

  12. Ceramographic Examinations of Irradiated AGR-1 Fuel Compacts

    SciTech Connect

    Paul Demkowicz; Scott Ploger; John Hunn

    2012-05-01

    The AGR 1 experiment involved irradiating 72 cylindrical fuel compacts containing tri-structural isotropic (TRISO)-coated particles to a peak burnup of 19.5% fissions per initial metal atom with no in-pile failures observed out of almost 300,000 particles. Five irradiated AGR 1 fuel compacts were selected for microscopy that span a range of irradiation conditions (temperature, burnup, and fast fluence). These five compacts also included all four TRISO coating variations irradiated in the AGR experiment. The five compacts were cross-sectioned both transversely and longitudinally, mounted, ground, and polished after development of careful techniques for preserving particle structures against preparation damage. Approximately 40 to 80 particles within each cross section were exposed near enough to mid-plane for optical microscopy of kernel, buffer, and coating behavior. The microstructural analysis focused on kernel swelling and porosity, buffer densification and fracture, debonding between the buffer and inner pyrolytic carbon (IPyC) layers, and fractures in the IPyC and SiC layers. Three basic particle morphologies were established according to the extent of bonding between the buffer and IPyC layers: complete debonding along the interface (Type A), no debonding along the interface (Type B), and partial debonding (Type AB). These basic morphologies were subdivided according to whether the buffer stayed intact or fractured. The resulting six characteristic morphologies were used to classify particles within each cross section, but no spatial patterns were clearly observed in any of the cross-sectional morphology maps. Although positions of particle types appeared random within compacts, examining a total of 830 classified particles allowed other relationships among morphological types to be established.

  13. Ceramographic Examinations of Irradiated AGR-1 Fuel Compacts

    SciTech Connect

    Paul Demkowicz; Scott Ploger; John Hunn; Jay S. Kehn

    2012-09-01

    The AGR 1 experiment involved irradiating 72 cylindrical fuel compacts containing tri-structural isotropic (TRISO)-coated particles to a peak burnup of 19.5% fissions per initial metal atom with no in-pile failures observed out of almost 300,000 particles. Six irradiated AGR 1 fuel compacts were selected for microscopy that span a range of irradiation conditions (temperature, burnup, and fast fluence). These six compacts also included all four TRISO coating variations irradiated in the AGR experiment. The six compacts were cross-sectioned both transversely and longitudinally, mounted, ground, and polished after development of careful techniques for preserving particle structures against preparation damage. From 36 to 79 particles within each cross section were exposed near enough to midplane for optical microscopy of kernel, buffer, and coating behavior. The microstructural analysis focused on kernel swelling and porosity, buffer densification and fracture, debonding between the buffer and inner pyrolytic carbon (IPyC) layers, and fractures in the IPyC and SiC layers. Three basic particle morphologies were established according to the extent of bonding between the buffer and IPyC layers: complete debonding along the interface (Type A), no debonding along the interface (Type B), and partial debonding (Type AB). These basic morphologies were subdivided according to whether the buffer stayed intact or fractured. The resulting six characteristic morphologies were used to classify particles within each cross section, but no spatial patterns were clearly observed in any of the cross-sectional morphology maps. Although positions of particle types appeared random within compacts, examining a total of 931 classified particles allowed other relationships among morphological types to be established.

  14. RESULTS OF TESTS TO DEMONSTRATE A SIX-INCH DIAMETER COATER FOR PRODUCTION OF TRISO-COATED PARTICLES FOR ADVANCED GAS REACTOR EXPERIMENTS

    SciTech Connect

    Douglas W. Marshall

    2008-09-01

    The Next Generation Nuclear Plant (NGNP)/Advanced Gas Reactor (AGR) Fuel Development and Qualification Program includes a series of irradiation experiments in Idaho National Laboratory's (INL's) Advanced Test Reactor. TRISOcoated particles for the first AGR experiment, AGR-1, were produced at Oak Ridge National Laboratory (ORNL) in a twoinch diameter coater. A requirement of the NGNP/AGR Program is to produce coated particles for later experiments in coaters more representative of industrial scale. Toward this end, tests have been performed by Babcock and Wilcox (B&W) in a six-inch diameter coater. These tests are expected to lead to successful fabrication of particles for the second AGR experiment, AGR-2. While a thorough study of how coating parameters affect particle properties was not the goal of these tests, the test data obtained provides insight into process parameter/coated particle property relationships. Most relationships for the six-inch diameter coater followed trends found with the ORNL two-inch coater, in spite of differences in coater design and bed hydrodynamics. For example the key coating parameters affecting pyrocarbon anisotropy were coater temperature, coating gas fraction, total gas flow rate and kernel charge size. Anisotropy of the outer pyrolytic carbon (OPyC) layer also strongly correlates with coater differential pressure. In an effort to reduce the total particle fabrication run time, silicon carbide (SiC) was deposited with methyltrichlorosilane (MTS) concentrations up to 3 mol %. Using only hydrogen as the fluidizing gas, the high concentration MTS tests resulted in particles with lower than desired SiC densities. However when hydrogen was partially replaced with argon, high SiC densities were achieved with the high MTS gas fraction.

  15. RESULTS OF TESTS TO DEMONSTRATE A SIX-INCH-DIAMETER COATER FOR PRODUCTION OF TRISO-COATED PARTICLES FOR ADVANCED GAS REACTOR EXPERIMENTS

    SciTech Connect

    Charles M Barnes

    2008-09-01

    The Next Generation Nuclear Plant (NGNP)/Advanced Gas Reactor (AGR) Fuel Development and Qualification Program includes a series of irradiation experiments in Idaho National Laboratory’s (INL’s) Advanced Test Reactor. TRISOcoated particles for the first AGR experiment, AGR-1, were produced at Oak Ridge National Laboratory (ORNL) in a two inch diameter coater. A requirement of the NGNP/AGR Program is to produce coated particles for later experiments in coaters more representative of industrial scale. Toward this end, tests have been performed by Babcock and Wilcox (B&W) in a six-inch diameter coater. These tests are expected to lead to successful fabrication of particles for the second AGR experiment, AGR-2. While a thorough study of how coating parameters affect particle properties was not the goal of these tests, the test data obtained provides insight into process parameter/coated particle property relationships. Most relationships for the six-inch diameter coater followed trends found with the ORNL two-inch coater, in spite of differences in coater design and bed hydrodynamics. For example the key coating parameters affecting pyrocarbon anisotropy were coater temperature, coating gas fraction, total gas flow rate and kernel charge size. Anisotropy of the outer pyrolytic carbon (OPyC) layer also strongly correlates with coater differential pressure. In an effort to reduce the total particle fabrication run time, silicon carbide (SiC) was deposited with methyltrichlorosilane (MTS) concentrations up to 3 mol %. Using only hydrogen as the fluidizing gas, the high concentration MTS tests resulted in particles with lower than desired SiC densities. However when hydrogen was partially replaced with argon, high SiC densities were achieved with the high MTS gas fraction.

  16. Validation of the Physics Analysis used to Characterize the AGR-1 TRISO Fuel Irradiation Test

    SciTech Connect

    Sterbentz, James W.; Harp, Jason M.; Demkowicz, Paul A.; Hawkes, Grant L.; Chang, Gray S.

    2015-05-01

    The results of a detailed physics depletion calculation used to characterize the AGR-1 TRISO-coated particle fuel test irradiated in the Advanced Test Reactor (ATR) at the Idaho National Laboratory are compared to measured data for the purpose of validation. The particle fuel was irradiated for 13 ATR power cycles over three calendar years. The physics analysis predicts compact burnups ranging from 11.30-19.56% FIMA and cumulative neutron fast fluence from 2.21?4.39E+25 n/m2 under simulated high-temperature gas-cooled reactor conditions in the ATR. The physics depletion calculation can provide a full characterization of all 72 irradiated TRISO-coated particle compacts during and post-irradiation, so validation of this physics calculation was a top priority. The validation of the physics analysis was done through comparisons with available measured experimental data which included: 1) high-resolution gamma scans for compact activity and burnup, 2) mass spectrometry for compact burnup, 3) flux wires for cumulative fast fluence, and 4) mass spectrometry for individual actinide and fission product concentrations. The measured data are generally in very good agreement with the calculated results, and therefore provide an adequate validation of the physics analysis and the results used to characterize the irradiated AGR-1 TRISO fuel.

  17. Detection and analysis of particles with failed SiC in AGR-1 fuel compacts

    DOE PAGES

    Hunn, John D.; Baldwin, Charles A.; Gerczak, Tyler J.; Montgomery, Fred C.; Morris, Robert N.; Silva, Chinthaka M.; Demkowicz, Paul A.; Harp, Jason M.; Ploger, Scott A.

    2016-04-06

    As the primary barrier to release of radioactive isotopes emitted from the fuel kernel, retention performance of the SiC layer in tristructural isotropic (TRISO) coated particles is critical to the overall safety of reactors that utilize this fuel design. Most isotopes are well-retained by intact SiC coatings, so pathways through this layer due to cracking, structural defects, or chemical attack can significantly contribute to radioisotope release. In the US TRISO fuel development effort, release of 134Cs and 137Cs are used to detect SiC failure during fuel compact irradiation and safety testing because the amount of cesium released by a compactmore » containing one particle with failed SiC is typically ten or more times higher than that released by compacts without failed SiC. Compacts with particles that released cesium during irradiation testing or post-irradiation safety testing at 1600–1800 °C were identified, and individual particles with abnormally low cesium retention were sorted out with the Oak Ridge National Laboratory (ORNL) Irradiated Microsphere Gamma Analyzer (IMGA). X-ray tomography was used for three-dimensional imaging of the internal coating structure to locate low-density pathways through the SiC layer and guide subsequent materialography by optical and scanning electron microscopy. In addition, all three cesium-releasing particles recovered from as-irradiated compacts showed a region where the inner pyrocarbon (IPyC) had cracked due to radiation-induced dimensional changes in the shrinking buffer and the exposed SiC had experienced concentrated attack by palladium; SiC failures observed in particles subjected to safety testing were related to either fabrication defects or showed extensive Pd corrosion through the SiC where it had been exposed by similar IPyC cracking.« less

  18. Data Compilation for AGR-1 Pre-Production Test: NUCO350-75T-Z

    SciTech Connect

    Hunn, John D; Lowden, Richard Andrew; Pappano, Peter J

    2006-03-01

    This document is a compilation of characterization data for compact lot NUCO350-75T-Z. This compact lot was fabricated using particle composite NUCO350-75T, which was a composite of three batches of TRISO-coated 350 m natural uranium oxide/uranium carbide kernels (NUCO). The compacts and coated particles were produced as part of a development effort at ORNL for the Advanced Gas Reactor Fuel Development and Qualification (AGR) program. The kernels were obtained from BWXT and were identified as composite G73B-NU-69300. The BWXT kernel lot G73B-NU-69300 was riffled into sublots for characterization and coating. The ORNL identification for these kernel sublots was NUCO350-## (where ## were a series of integers beginning with 01). NUCO350-75T-Z was produced as part of the ORNL AGR development effort and is not fully representative of a final product. This compact lot was the first run through of the entire ORNL AGR-1 irradiation test fuel production process involving coating, characterization, and compacting of TRISO-coated 350 m NUCO. The results of this exercise were used to fine tune the irradiation test fuel production process and as a basis for the decision to proceed with the production of the baseline fuel for the AGR-1 irradiation test.

  19. Data Compilation for AGR-1 Variant 1 Compact Lot LEU01-47T-Z

    SciTech Connect

    Hunn, John D; Montgomery, Fred C; Pappano, Peter J

    2006-08-01

    This document is a compilation of characterization data for the AGR-1 variant 1 compact lot LEU01-47T-Z. The compacts were produced by ORNL for the ADvanced Gas Reactor Fuel Development and Qualification (AGR) program for the first AGR irradiation test train (AGR-1). This compact lot was fabricated using particle composite LEU01-47T, which was a composite of three batches of TRISO-coated 350 {micro}m diameter 19.7% low enrichment uranium oxide/uranium carbide kernels (LEUCO). The AGR-1 TRISO-coated particles consist of a spherical kernel coated with an {approx} 50% dense carbon buffer layer (100 {micro}m nominal thickness), followed by a dense inner pyrocarbon layer (40 {micro}m nominal thickness), followed by a SiC layer (35 {micro}m nominal thickness), followed by another dense outer pyrcoarbon layer (40 {micro}m nominal thickness). The kernels were obtained from BWXT and identified as composite G73D-20-69302. The BWXT kernel lot G73D-20-69302 was riffled into sublots for characterization and coating by ORNL and identified at LEU01-?? (where ?? is a series of integers beginning with 01). A data compilation for the AGR-1 variant 1 coated particle composite LEU01-47T can be found in ORNL/TM-2006/020. The AGR-1 Fuel Product Specification and Characterization Guidance (INL EDF-4380) provides the requirements necessary for acceptance of the fuel manufactured for the AGR-1 irradiation test. Section 6.2 of EDF-4380 provides the property requirements for the heat treated compacts. The Statistical Sampling Plan for AGR Fuel Materials (INL EDF-4542) provides additional guidance regarding statistical methods for product acceptance and recommended sample sizes. The procedures for characterizing and qualifying the compacts are outlined in ORNL product inspection plan AGR-CHAR-PIP-05. The inspection report forms generated by this product inspection plan document the product acceptance for the property requirements listed in section 6.2 of EDF-4380.

  20. Data Compilation for AGR-1 Variant 2 Compact Lot LEU01-48T-Z

    SciTech Connect

    Hunn, John D; Montgomery, Fred C; Pappano, Peter J

    2006-08-01

    This document is a compilation of characterization data for the AGR-1 variant 2 compact lot LEU01-48T-Z. The compacts were produced by ORNL for the Advanced Gas Reactor Fuel Development and Qualification (AGR) program for the first AGR irradiation test train (AGR-1). This compact lot was fabricated using particle composite LEU01-48T, which was a composite of three batches of TRISO-coated 350 {micro}m diameter 19.7% low enrichment uranium oxide/uranium carbide kernels (LEUCO). The AGR-1 TRISO-coated particles consist of a spherical kernel coated with an {approx} 50% dense carbon buffer layer (100 {micro}m nominal thickness), followed by a dense inner pyrocarbon layer (40 {micro}m nominal thickness), followed by a SiC layer (35 {micro}m nominal thickness), followed by another dense outer pyrocarbon layer (40 {micro}m nominal thickness). The kernels were obtained from BWXT and identified as composite G73D-20-69302. The BWXT kernel lot G73D-20-69302 was riffled into sublots for characterization and coating by ORNL and identified as LEU01-?? (where ?? is a series of integers beginning with 01). A data compilation for the AGR-1 variant 2 coated particle composite LEU01-48T can be found in ORNL/TM-2006/021. The AGR-1 Fuel Product Specification and Characterization Guidance (INL EDF-4380) provides the requirements necessary for acceptance of the fuel manufactured for the AGR-1 irradiation test. Section 6.2 of EDF-4380 provides the property requirements for the heat treated compacts. The Statistical Sampling Plan for AGR Fuel materials (INL EDF-4542) provides additional guidance regarding statistical methods for product acceptance and recommended sample sizes. The procedures for characterizing and qualifying the compacts are outlined in ORNL product inspection plan AGR-CHAR-PIP-05. The inspection report forms generated by this product inspection plan document the product acceptance for the property requirements listed in section 6.2 of EDF-4380.

  1. Data Compilation for AGR-1 Baseline Compact Lot LEU01-46T-Z

    SciTech Connect

    Hunn, John D; Montgomery, Fred C; Pappano, Peter J

    2006-08-01

    This document is a compilation of characterization data for the AGR-1 baseline compact lot LEU01-46T-Z. The compacts were produced by ORNL for the Advanced Gas Reactor Fuel Development and Qualification (AGR) program for the first AGR irradiation test train (AGR-1). This compact lot was fabricated using particle composite LEU01-46T, which was a composite of four batches of TRISO-coated 350 {micro}m diameter 19.7% low enrichment uranium oxide/uranium carbide kernels (LEUCO). The AGR-1 TRISO-coated particles consist of a spherical kernel coated with an {approx} 50% dense carbon buffer layer (100 {micro}m nominal thickness), followed by a dense inner pyrocarbon layer (40 {micro}m nominal thickness), followed by a SiC layer (35 {micro}m nominal thickness), followed by another dense outer pyrocarbon layer (40 {micro}m nominal thickness). The kernels were obtained from BWXT and identified as composite G73D-20-69302. The BWXT kernel lot G73D-20-69302 was riffled into sublots for characterization and coating by ORNL and identified as LEU01-?? (where ?? is a series of integers beginning with 01). A data compilation for the AGR-1 baseline coated particle composite LEU01-46T can be found in ORNL/TM-2006/019. The AGR-1 Fuel product Specification and Characterization Guidance (INL EDF-4380) provides the requirements necessary for acceptance of the fuel manufactured for the AGR-1 irradiation test. Section 6.2 of EDF-4380 provides the property requirements for the heat treated compacts. The Statistical Sampling Plan for AGR Fuel materials (INL EDF-4542) provides additional guidance regarding statistical methods for product acceptance and recommended sample sizes. The procedures for characterizing and qualifying the compacts are outlined in ORNL product inspection plan AGR-CHAR-PIP-05. the inspection report forms generated by this product inspection plan document the product acceptance for the property requirements listed in section 6.2 of EDF-4380.

  2. HTR 2014 Paper - Comparison of fission product release predictions using PARFUME with results from the AGR-1 safety tests

    SciTech Connect

    Blaise P. Collin

    2001-10-01

    Safety tests were conducted on fourteen fuel compacts from AGR-1, the first irradiation experiment of the Advanced Gas Reactor (AGR) Fuel Development and Qualification program, at temperatures ranging from 1600 to 1800°C to determine fission product release at temperatures that bound reactor accident conditions. The PARFUME (PARticle FUel ModEl) code was used to predict the release of fission products silver, cesium, strontium, and krypton from fuel compacts containing tristructural isotropic (TRISO) coated particles during the safety tests, and the predicted values were compared with experimental results. Preliminary comparisons between PARFUME predictions and post-irradiation examination (PIE) results of the safety tests show an overall over-prediction of the fractional release of these fission products, which is largely attributed to an over-estimation of the diffusivities used in the modeling of fission product transport in TRISO-coated particles. Correction factors to these diffusivities were assessed for silver and cesium in order to enable a better match between the modeling predictions and the safety testing results. In the case of strontium, correction factors could not be assessed because potential release during the safety tests could not be distinguished from matrix content released during irradiation. In the case of krypton, all the coating layers are partly retentive and the available data did not allow to determine their respective retention powers, hence preventing to derive any correction factors.

  3. PIE on Safety-Tested AGR-1 Compact 5-1-1

    SciTech Connect

    Hunn, John D.; Morris, Robert Noel; Baldwin, Charles A.; Montgomery, Fred C.; Gerczak, Tyler J.

    2015-08-01

    Post-irradiation examination (PIE) is being performed in support of tristructural isotropic (TRISO) coated particle fuel development and qualification for High-Temperature Gas-cooled Reactors (HTGRs). AGR-1 was the first in a series of TRISO fuel irradiation experiments initiated in 2006 under the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program; this work continues to be funded by the Department of Energy's Office of Nuclear Energy as part of the Advanced Reactor Technologies (ART) initiative. AGR-1 fuel compacts were fabricated at Oak Ridge National Laboratory (ORNL) in 2006 and irradiated for three years in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR) to demonstrate and evaluate fuel performance under HTGR irradiation conditions. PIE is being performed at INL and ORNL to study how the fuel behaved during irradiation, and to examine fuel performance during exposure to elevated temperatures at or above temperatures that could occur during a depressurized conduction cooldown event. This report summarizes safety testing of irradiated AGR-1 Compact 5-1-1 in the ORNL Core Conduction Cooldown Test Facility (CCCTF) and post-safety testing PIE.

  4. Irradiation performance of AGR-1 high temperature reactor fuel

    SciTech Connect

    Demkowicz, Paul A.; Hunn, John D.; Ploger, Scott A.; Morris, Robert N.; Baldwin, Charles A.; Harp, Jason M.; Winston, Philip L.; Gerczak, Tyler J.; van Rooyen, Isabella J.; Montgomery, Fred C.; Silva, Chinthaka M.

    2015-10-23

    The AGR-1 experiment contained 72 low-enriched uranium oxide/uranium carbide TRISO coated particle fuel compacts in six capsules irradiated to burnups of 11.2 to 19.6% FIMA, with zero TRISO coating failures detected during the irradiation. The irradiation performance of the fuel including the extent of fission product release and the evolution of kernel and coating microstructures was evaluated based on detailed examination of the irradiation capsules, the fuel compacts, and individual particles. Fractional release of 110mAg from the fuel compacts was often significant, with capsule-average values ranging from 0.01 to 0.38. Analysis of silver release from individual compacts indicated that it was primarily dependent on fuel temperature history. Europium and strontium were released in small amounts through intact coatings, but were found to be significantly retained in the outer pyrocarbon and compact matrix. The capsule-average fractional release from the compacts was 1 × 10–4 to 5 × 10–4 for 154Eu and 8 × 10–7 to 3 × 10–5 for 90Sr. The average 134Cs fractional release from compacts was <3 × 10–6 when all particles maintained intact SiC. An estimated four particles out of 2.98 × 105 in the experiment experienced partial cesium release due to SiC failure during the irradiation, driving 134Cs fractional release in two capsules to approximately 10–5. Identification and characterization of these particles has provided unprecedented insight into the nature and causes of SiC coating failure in high-quality TRISO fuel. In general, changes in coating morphology were found to be dominated by the behavior of the buffer and inner pyrolytic carbon (IPyC), and infrequently observed SiC layer damage was usually related to cracks in the IPyC. Palladium attack of the SiC layer was relatively minor, except for the particles that

  5. Irradiation performance of AGR-1 high temperature reactor fuel

    SciTech Connect

    Paul A. Demkowicz; John D. Hunn; Robert N. Morris; Charles A. Baldwin; Philip L. Winston; Jason M. Harp; Scott A. Ploger; Tyler Gerczak; Isabella J. van Rooyen; Fred C. Montgomery; Chinthaka M. Silva

    2014-10-01

    The AGR-1 experiment contained 72 low-enriched uranium oxide/uranium carbide TRISO-coated particle fuel compacts in six capsules irradiated to burnups of 11.2 to 19.5% FIMA, with zero TRISO coating failures detected during the irradiation. The irradiation performance of the fuel–including the extent of fission product release and the evolution of kernel and coating microstructures–was evaluated based on detailed examination of the irradiation capsules, the fuel compacts, and individual particles. Fractional release of 110mAg from the fuel compacts was often significant, with capsule-average values ranging from 0.01 to 0.38. Analysis of silver release from individual compacts indicated that it was primarily dependent on fuel temperature history. Europium and strontium were released in small amounts through intact coatings, but were found to be significantly retained in the outer pyrocrabon and compact matrix. The capsule-average fractional release from the compacts was 1×10 4 to 5×10 4 for 154Eu and 8×10 7 to 3×10 5 for 90Sr. The average 134Cs release from compacts was <3×10 6 when all particles maintained intact SiC. An estimated four particles out of 2.98×105 experienced partial cesium release due to SiC failure during the irradiation, driving 134Cs release in two capsules to approximately 10 5. Identification and characterization of these particles has provided unprecedented insight into the nature and causes of SiC coating failure in high-quality TRISO fuel. In general, changes in coating morphology were found to be dominated by the behavior of the buffer and inner pyrolytic carbon (IPyC), and infrequently observed SiC layer damage was usually related to cracks in the IPyC. Palladium attack of the SiC layer was relatively minor, except for the particles that released cesium during irradiation, where SiC corrosion was found adjacent to IPyC cracks. Palladium, silver, and uranium were found in the SiC layer of irradiated particles, and characterization

  6. Irradiation performance of AGR-1 high temperature reactor fuel

    DOE PAGES

    Demkowicz, Paul A.; Hunn, John D.; Ploger, Scott A.; Morris, Robert N.; Baldwin, Charles A.; Harp, Jason M.; Winston, Philip L.; Gerczak, Tyler J.; van Rooyen, Isabella J.; Montgomery, Fred C.; et al

    2015-10-23

    The AGR-1 experiment contained 72 low-enriched uranium oxide/uranium carbide TRISO coated particle fuel compacts in six capsules irradiated to burnups of 11.2 to 19.6% FIMA, with zero TRISO coating failures detected during the irradiation. The irradiation performance of the fuel including the extent of fission product release and the evolution of kernel and coating microstructures was evaluated based on detailed examination of the irradiation capsules, the fuel compacts, and individual particles. Fractional release of 110mAg from the fuel compacts was often significant, with capsule-average values ranging from 0.01 to 0.38. Analysis of silver release from individual compacts indicated that itmore » was primarily dependent on fuel temperature history. Europium and strontium were released in small amounts through intact coatings, but were found to be significantly retained in the outer pyrocarbon and compact matrix. The capsule-average fractional release from the compacts was 1 × 10–4 to 5 × 10–4 for 154Eu and 8 × 10–7 to 3 × 10–5 for 90Sr. The average 134Cs fractional release from compacts was <3 × 10–6 when all particles maintained intact SiC. An estimated four particles out of 2.98 × 105 in the experiment experienced partial cesium release due to SiC failure during the irradiation, driving 134Cs fractional release in two capsules to approximately 10–5. Identification and characterization of these particles has provided unprecedented insight into the nature and causes of SiC coating failure in high-quality TRISO fuel. In general, changes in coating morphology were found to be dominated by the behavior of the buffer and inner pyrolytic carbon (IPyC), and infrequently observed SiC layer damage was usually related to cracks in the IPyC. Palladium attack of the SiC layer was relatively minor, except for the particles that released cesium during irradiation, where SiC corrosion was found adjacent to IPyC cracks. In conclusion, palladium, silver, and

  7. Post-irradiation Examination of the AGR-1 Experiment: Plans and Preliminary Results

    SciTech Connect

    Paul Demkowicz

    2001-10-01

    Abstract – The AGR-1 irradiation experiment contains seventy-two individual cylindrical fuel compacts (25 mm long x 12.5 mm diameter) each containing approximately 4100 TRISO-coated uranium oxycarbide fuel particles. The experiment accumulated 620 effective full power days in the Advanced Test Reactor at the Idaho National Laboratory with peak burnups exceeding 19% FIMA. An extensive post-irradiation examination campaign will be performed on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature accident testing. PIE experiments will include dimensional measurements of fuel and irradiated graphite, burnup measurements, assessment of fission metals release during irradiation, evaluation of coating integrity using the leach-burn-leach technique, microscopic examination of kernel and coating microstructures, and accident testing of the fuel in helium at temperatures up to 1800°C. Activities completed to date include opening of the irradiated capsules, measurement of fuel dimensions, and gamma spectrometry of selected fuel compacts.

  8. Comparison of fission product release predictions using PARFUME with results from the AGR-1 safety tests

    DOE PAGES

    Collin, Blaise P.; Petti, David A.; Demkowicz, Paul A.; Maki, John T.

    2016-04-07

    Safety tests were conducted on fuel compacts from AGR-1, the first irradiation experiment of the Advanced Gas Reactor (AGR) Fuel Development and Qualification program, at temperatures ranging from 1600 to 1800 °C to determine fission product release at temperatures that bound reactor accident conditions. The PARFUME (PARticle FUel ModEl) code was used to predict the release of fission products silver, cesium, strontium, and krypton from fuel compacts containing tristructural isotropic (TRISO) coated particles during 15 of these safety tests. Comparisons between PARFUME predictions and post-irradiation examination results of the safety tests were conducted on two types of AGR-1 compacts: compactsmore » containing only intact particles and compacts containing one or more particles whose SiC layers failed during safety testing. In both cases, PARFUME globally over-predicted the experimental release fractions by several orders of magnitude: more than three (intact) and two (failed SiC) orders of magnitude for silver, more than three and up to two orders of magnitude for strontium, and up to two and more than one orders of magnitude for krypton. The release of cesium from intact particles was also largely over-predicted (by up to five orders of magnitude) but its release from particles with failed SiC was only over-predicted by a factor of about 3. These over-predictions can be largely attributed to an over-estimation of the diffusivities used in the modeling of fission product transport in TRISO-coated particles. The integral release nature of the data makes it difficult to estimate the individual over-estimations in the kernel or each coating layer. Nevertheless, a tentative assessment of correction factors to these diffusivities was performed to enable a better match between the modeling predictions and the safety testing results. The method could only be successfully applied to silver and cesium. In the case of strontium, correction factors could not be assessed

  9. Shear Properties at the PyC/SiC Interface of TRISO-Coating

    SciTech Connect

    Nozawa, Takashi; Snead, Lance Lewis; Katoh, Yutai; Miller, James Henry

    2007-01-01

    The fracture behavior of TRISO-coated fuel particles depends significantly on the shear strength at the interface between the inner pyrolytic carbon (PyC) and silicon carbide (SiC) coatings. In this study, a micro-indentation fiber push-out test was applied to evaluate the interfacial shear properties of a model TRISO-coated tube. Specifically, a non-linear shear-lag model for a transversely isotropic composite material was developed because the existing isotropic models often overestimate the results. In the model, the effects of thermal residual stresses and the roughness-induced clamping stress were considered because of a particular importance. The rigorous model proposed in this study provides more reasonable data on two important interfacial shear parameters: an interfacial debond shear strength and an interfacial friction stress. The modified model gives the interfacial debond shear strength of 180 40 MPa. Such an unusually high interfacial strength, even though the value was comparably lower than that obtained by the existing isotropic model (~280 MPa), could allow significant loads to be transferred between the inner PyC and SiC in application, potentially leading to failure of the SiC layer. On the other hand, the interfacial friction stress of 120 30 MPa was measured. The considerably high friction stress is attributed primarily to the roughness at the cracked interface rather than the thermal effect. PACS: 68.35.Ct; 68.35.Gy; 81.05.Je; 81.70.Bt

  10. First elevated-temperature performance testing of coated particle fuel compacts from the AGR-1 irradiation experiment

    SciTech Connect

    Charles A. Baldwin; John D. Hunn; Robert N. Morris; Fred C. Montgomery; Chinthaka M. Silva; Paul A. Demkowicz

    2014-05-01

    In the AGR-1 irradiation experiment, 72 coated-particle fuel compacts were taken to a peak burnup of 19.5% fissions per initial metal atom with no in-pile failures. This paper discusses the first post-irradiation test of these mixed uranium oxide/uranium carbide fuel compacts at elevated temperature to examine the fuel performance under a simulated depressurized conduction cooldown event. A compact was heated for 400 h at 1600 degrees C. Release of 85Kr was monitored throughout the furnace test as an indicator of coating failure, while other fission product releases from the compact were periodically measured by capturing them on exchangeable, water-cooled deposition cups. No coating failure was detected during the furnace test, and this result was verified by subsequent electrolytic deconsolidation and acid leaching of the compact, which showed that all SiC layers were still intact. However, the deposition cups recovered significant quantities of silver, europium, and strontium. Based on comparison of calculated compact inventories at the end of irradiation versus analysis of these fission products released to the deposition cups and furnace internals, the minimum estimated fractional losses from the compact during the furnace test were 1.9 x 10-2 for silver, 1.4 x 10-3 for europium, and 1.1 x 10-5 for strontium. Other post-irradiation examination of AGR-1 compacts indicates that similar fractions of europium and silver may have already been released by the intact coated particles during irradiation, and it is therefore likely that the detected fission products released from the compact in this 1600 degrees C furnace test were from residual fission products in the matrix. Gamma analysis of coated particles deconsolidated from the compact after the heating test revealed that silver content within each particle varied considerably; a result that is probably not related to the furnace test, because it has also been observed in other as-irradiated AGR-1 compacts. X

  11. HTR-2014 Paper Comparison of fission product release predictions using PARFUME with results from the AGR-1 irradiation experiment

    SciTech Connect

    Blaise Collin

    2001-10-01

    The PARFUME (PARticle FUel ModEl) code was used to predict fission product release from tristructural isotropic (TRISO) coated fuel particles and compacts during the first irradiation experiment (AGR-1) of the Advanced Gas Reactor Fuel Development and Qualification program. The PARFUME model for the AGR-1 experiment used the fuel compact volume average temperature for each of the 620 days of irradiation to calculate the release of fission products silver, cesium, and strontium from a representative particle for a select number of AGR-1 compacts. Post-irradiation examination (PIE) measurements provided data on release of fission products from fuel compacts and fuel particles, and retention of fission products in the compacts outside of the SiC layer. PARFUME-predicted fractional release of these fission products was determined and compared to the PIE measurements. Results show an overall over-prediction of the fractional release of cesium by PARFUME. For particles with failed silicon carbide (SiC) layers, the over-prediction is by a factor of about two, corresponding to an over-estimation of the diffusivity in uranium oxycarbide (UCO) by a factor of about 100. For intact particles, whose release is much lower, the over-prediction is by an average of about an order of magnitude, which could additionally be attributed to an over-estimated diffusivity in SiC by about 30%. The release of strontium from intact particles is also over-estimated by PARFUME, which also points towards an over-estimated diffusivity of strontium in either SiC or UCO, or possibly both. The measured strontium fractional release from intact particles varied considerably from compact to compact, making it difficult to assess the effective over-estimation of the diffusivities. Furthermore, the release of strontium from particles with failed SiC is difficult to observe experimentally due to the release from intact particles, preventing any conclusions to be made on the accuracy or validity of the

  12. Comparison of fission product release predictions using PARFUME with results from the AGR-1 safety tests

    SciTech Connect

    Blaise Collin

    2014-09-01

    Safety tests were conducted on fourteen fuel compacts from AGR-1, the first irradiation experiment of the Advanced Gas Reactor (AGR) Fuel Development and Qualification program, at temperatures ranging from 1600 to 1800°C to determine fission product release at temperatures that bound reactor accident conditions. The PARFUME (PARticle FUel ModEl) code was used to predict the release of fission products silver, cesium, strontium, and krypton from fuel compacts containing tristructural isotropic (TRISO) coated particles during the safety tests, and the predicted values were compared with experimental results. Preliminary comparisons between PARFUME predictions and post-irradiation examination (PIE) results of the safety tests show different trends in the prediction of the fractional release depending on the species, and it leads to different conclusions regarding the diffusivities used in the modeling of fission product transport in TRISO-coated particles: • For silver, the diffusivity in silicon carbide (SiC) might be over-estimated by a factor of at least 102 to 103 at 1600°C and 1700°C, and at least 10 to 102 at 1800°C. The diffusivity of silver in uranium oxy-carbide (UCO) might also be over-estimated, but the available data are insufficient to allow definitive conclusions to be drawn. • For cesium, the diffusivity in UCO might be over-estimated by a factor of at least 102 to 103 at 1600°C, 105 at 1700°C, and 103 at 1800°C. The diffusivity of cesium in SiC might also over-estimated, by a factor of 10 at 1600°C and 103 at 1700°C, based upon the comparisons between calculated and measured release fractions from intact particles. There is no available estimate at 1800°C since all the compacts heated up at 1800°C contain particles with failed SiC layers whose release dominates the release from intact particles. • For strontium, the diffusivity in SiC might be over-estimated by a factor of 10 to 102 at 1600 and 1700°C, and 102 to 103 at 1800°C. These

  13. Comparison of fission product release predictions using PARFUME with results from the AGR-1 irradiation experiment

    SciTech Connect

    Blaise Collin

    2014-09-01

    This report documents comparisons between post-irradiation examination measurements and model predictions of silver (Ag), cesium (Cs), and strontium (Sr) release from selected tristructural isotropic (TRISO) fuel particles and compacts during the first irradiation test of the Advanced Gas Reactor program that occurred from December 2006 to November 2009 in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). The modeling was performed using the particle fuel model computer code PARFUME (PARticle FUel ModEl) developed at INL. PARFUME is an advanced gas-cooled reactor fuel performance modeling and analysis code (Miller 2009). It has been developed as an integrated mechanistic code that evaluates the thermal, mechanical, and physico-chemical behavior of fuel particles during irradiation to determine the failure probability of a population of fuel particles given the particle-to-particle statistical variations in physical dimensions and material properties that arise from the fuel fabrication process, accounting for all viable mechanisms that can lead to particle failure. The code also determines the diffusion of fission products from the fuel through the particle coating layers, and through the fuel matrix to the coolant boundary. The subsequent release of fission products is calculated at the compact level (release of fission products from the compact) but it can be assessed at the particle level by adjusting the diffusivity in the fuel matrix to very high values. Furthermore, the diffusivity of each layer can be individually set to a high value (typically 10-6 m2/s) to simulate a failed layer with no capability of fission product retention. In this study, the comparison to PIE focused on fission product release and because of the lack of failure in the irradiation, the probability of particle failure was not calculated. During the AGR-1 irradiation campaign, the fuel kernel produced and released fission products, which migrated through the successive

  14. Performance of AGR-1 high-temperature reactor fuel during post-irradiation heating tests

    DOE PAGES

    Morris, Robert N.; Baldwin, Charles A.; Demkowicz, Paul A.; Hunn, John D.; Reber, Edward L.

    2016-05-18

    The fission product retention of irradiated low-enriched uranium oxide/uranium carbide tri-structural isotropic (TRISO) fuel compacts from the Advanced Gas-Cooled Reactor 1 (AGR-1) experiment has been evaluated at temperatures of 1600–1800 °C during post-irradiation safety tests. Fourteen compacts (a total of ~58,000 particles) with a burnup ranging from 13.4% to 19.1% fissions per initial metal atom (FIMA) have been tested using dedicated furnace systems at Idaho National Laboratory and Oak Ridge National Laboratory. The release of fission products 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr was monitored while heating the fuel specimens in flowing helium. The behavior of silver, europium,more » and strontium appears to be dominated by inventory that was originally released through intact SiC coating layers during irradiation, but was retained in the compact at the end of irradiation and subsequently released during the safety tests. However, at a test temperature of 1800 °C, the data suggest that release of these elements through intact coatings may become significant after ~100 h. Cesium was very well retained by intact SiC layers, with a fractional release <5 × 10–6 after 300 h at 1600 °C or 100 h at 1800 °C. However, it was rapidly released from individual particles if the SiC layer failed, and therefore the overall cesium release fraction was dominated by the SiC defect and failure fractions in the fuel compacts. No complete TRISO coating layer failures were observed after 300 h at 1600 or 1700 °C, and 85Kr release was very low during the tests (particles with failed SiC, but intact outer pyrocarbon, retained most of their krypton). Krypton release from TRISO failures was only observed after ~210 h at 1800 °C in one compact. As a result, post-safety-test examination of fuel compacts and particles has focused on identifying specific particles from each compact with notable fission product release and detailed analysis of the coating layers

  15. Performance of AGR-1 High-Temperature Reactor Fuel During Post-Irradiation Heating Tests

    SciTech Connect

    Morris, Robert Noel; Baldwin, Charles A; Hunn, John D; Demkowicz, Paul; Reber, Edward

    2014-01-01

    The fission product retention of irradiated low-enriched uranium oxide/uranium carbide TRISO fuel compacts from the AGR-1 experiment has been evaluated at temperatures of 1600 1800 C during post-irradiation safety tests. Fourteen compacts (a total of ~58,000 particles) with a burnup ranging from 13.4 to 19.1% FIMA have been tested using dedicated furnace systems at Idaho National Laboratory and Oak Ridge National Laboratory. The release of fission products 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr was monitored while heating the fuel specimens in flowing helium. The behavior of silver, europium, and strontium appears to be dominated by inventory that was originally released through intact SiC coating layers during irradiation, but was retained in the compact at the end of irradiation and subsequently released during the safety tests. However, at a test temperature of 1800 C, the data suggest that release of these elements through intact coatings may become significant after ~100 h. Cesium was very well retained by intact SiC layers, with a fractional release <5 10-6 after 300 h at 1600 C or 100 h at 1800 C. However, it was rapidly released from individual particles if the SiC layer failed, and therefore the overall cesium release fraction was dominated by the SiC defect and failure fractions in the fuel compacts. No complete TRISO coating layer failures were observed after 300 h at 1600 or 1700 C, and 85Kr release was very low during the tests (particles with breached SiC, but intact outer pyrocarbon, retained most of their krypton). Krypton release from TRISO failures was only observed after ~210 h at 1800 C in one compact. Post-safety-test examination of fuel compacts and particles has focused on identifying specific particles from each compact with notable fission product release and detailed analysis of the coating layers to understand particle behavior.

  16. STEM-EDS analysis of fission products in neutron-irradiated TRISO fuel particles from AGR-1 experiment

    NASA Astrophysics Data System (ADS)

    Leng, B.; van Rooyen, I. J.; Wu, Y. Q.; Szlufarska, I.; Sridharan, K.

    2016-07-01

    Historic and recent post-irradiation-examination from the German AVR and Advanced Gas Reactor Fuel Development and Qualification Project have shown that 110 m Ag is released from intact tristructural isotropic (TRISO) fuel. Although TRISO fuel particle research has been performed over the last few decades, little is known about how metallic fission products are transported through the SiC layer, and it was not until March 2013 that Ag was first identified in the SiC layer of a neutron-irradiated TRISO fuel particle. The existence of Pd- and Ag-rich grain boundary precipitates, triple junction precipitates, and Pd nano-sized intragranular precipitates in neutron-irradiated TRISO particle coatings was investigated using Scanning Transmission Electron Microscopy and Energy Dispersive Spectroscopy analysis to obtain more information on the chemical composition of the fission product precipitates. A U-rich fission product honeycomb shape precipitate network was found near a micron-sized precipitate in a SiC grain about ∼5 μm from the SiC-inner pyrolytic carbon interlayer, indicating a possible intragranular transport path for uranium. A single Ag-Pd nano-sized precipitate was found inside a SiC grain, and this is the first research showing such finding in irradiated SiC. This finding may possibly suggest a possible Pd-assisted intragranular transport mechanism for Ag and may be related to void or dislocation networks inside SiC grains. Preliminary semi-quantitative analysis indicated the micron-sized precipitates to be Pd2Si2U with carbon existing inside these precipitates. However, the results of such analysis for nano-sized precipitates may be influenced by the SiC matrix. The results reported in this paper confirm the co-existence of Cd with Ag in triple points reported previously.

  17. Completion of the first NGNP Advanced Gas Reactor Fuel Irradiation Experiment, AGR-1, in the Advanced Test Reactor

    SciTech Connect

    Blaine Grover; John Maki; David Petti

    2010-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and completed a very successful irradiation in early November 2009. The design of AGR-1 test train and support systems used to monitor and control the experiment during

  18. AGR-1 Thermocouple Data Analysis

    SciTech Connect

    Jeff Einerson

    2012-05-01

    This report documents an effort to analyze measured and simulated data obtained in the Advanced Gas Reactor (AGR) fuel irradiation test program conducted in the INL's Advanced Test Reactor (ATR) to support the Next Generation Nuclear Plant (NGNP) R&D program. The work follows up on a previous study (Pham and Einerson, 2010), in which statistical analysis methods were applied for AGR-1 thermocouple data qualification. The present work exercises the idea that, while recognizing uncertainties inherent in physics and thermal simulations of the AGR-1 test, results of the numerical simulations can be used in combination with the statistical analysis methods to further improve qualification of measured data. Additionally, the combined analysis of measured and simulation data can generate insights about simulation model uncertainty that can be useful for model improvement. This report also describes an experimental control procedure to maintain fuel target temperature in the future AGR tests using regression relationships that include simulation results. The report is organized into four chapters. Chapter 1 introduces the AGR Fuel Development and Qualification program, AGR-1 test configuration and test procedure, overview of AGR-1 measured data, and overview of physics and thermal simulation, including modeling assumptions and uncertainties. A brief summary of statistical analysis methods developed in (Pham and Einerson 2010) for AGR-1 measured data qualification within NGNP Data Management and Analysis System (NDMAS) is also included for completeness. Chapters 2-3 describe and discuss cases, in which the combined use of experimental and simulation data is realized. A set of issues associated with measurement and modeling uncertainties resulted from the combined analysis are identified. This includes demonstration that such a combined analysis led to important insights for reducing uncertainty in presentation of AGR-1 measured data (Chapter 2) and interpretation of

  19. AGR-1 Data Qualification Report

    SciTech Connect

    Michael Abbott

    2010-03-01

    ABSTRACT Projects for the very high temperature reactor (VHTR) Technology Development Office (TDO) program provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are (1) qualified for use, (2) stored in a readily accessible electronic form, and (3) analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the data streams associated with the first Advanced Gas Reactor experiment (AGR-1), the processing of these data within NDMAS, and reports the qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. They include: (1) capture testing, to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing, to confirm that the data are an accurate representation of the system or object being measured, and (3) documentation that the data were collected under an NQA-1 or equivalent quality assurance program. The NDMAS database processing and qualification status of the following five data streams is reported in this document: 1. Fuel fabrication data. All data have been processed into the NDMAS database and qualified (1,819 records). 2. Fuel irradiation data. Data from all 13 AGR-1 reactor cycles have been processed into the NDMAS database and tested. Of these, 85% have been qualified and 15% have failed NDMAS accuracy testing. 3. FPMS data. Reprocessed (January 2010) data from all 13 AGR-1 reactor cycles have been processed into the database and capture tested. Final qualification of these data will be recorded after QA approval of an Engineering Calculations and Analysis Report

  20. Fission Product Transport in Triso-Coated Particle Fuels: Multi-Scale Modeling and Experiment

    SciTech Connect

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2011-08-31

    The goal of this project is to determine diffusion rates of Ag through SiC and test the hypothesis that diffusion along grain boundaries is responsible for the integral release rates seen in experiments.

  1. AGR-1 Irradiation Experiment Test Plan

    SciTech Connect

    John T. Maki

    2009-10-01

    This document presents the current state of planning for the AGR-1 irradiation experiment, the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment will be irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). The test will contain six independently controlled and monitored capsules. Each capsule will contain a single type, or variant, of the AGR coated fuel. The irradiation is planned for about 700 effective full power days (approximately 2.4 calendar years) with a time-averaged, volume-average temperature of approximately 1050 °C. Average fuel burnup, for the entire test, will be greater than 17.7 % FIMA, and the fuel will experience fast neutron fluences between 2.4 and 4.5 x 1025 n/m2 (E>0.18 MeV).

  2. AGR-1 Data Qualification Interim Report

    SciTech Connect

    Machael Abbott

    2009-08-01

    Projects for the very-high-temperature reactor (VHTR) program provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR Program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are (1) qualified for use, (2) stored in a readily accessible electronic form, and (3) analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the data streams associated with the first Advanced Gas Reactor (AGR-1) experiment, the processing of these data within NDMAS, and reports the interim FY09 qualification status of the AGR-1 data to date. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category, which is assigned by the data generator, and include: (1) capture testing, to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing, to confirm that the data are an accurate representation of the system or object being measured, and (3) documentation that the data were collected under an NQA-1 or equivalent QA program. The interim qualification status of the following four data streams is reported in this document: (1) fuel fabrication data, (2) fuel irradiation data, (3) fission product monitoring system (FPMS) data, and (4) Advanced Test Reactor (ATR) operating conditions data. A final report giving the NDMAS qualification status of all AGR-1 data (including cycle 145A) is planned for February 2010.

  3. AGR-1 Irradiation Test Final As-Run Report

    SciTech Connect

    Blaise P. Collin

    2012-06-01

    This document presents the as-run analysis of the AGR-1 irradiation experiment. AGR-1 is the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the US Department of Energy (DOE) as part of the Next-Generation Nuclear Plant (NGNP) project. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment was irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) for a total duration of 620 effective full power days of irradiation. Irradiation began on December 24, 2006 and ended on November 6, 2009 spanning 13 ATR cycles and approximately three calendar years. The test contained six independently controlled and monitored capsules. Each capsule contained 12 compacts of a single type, or variant, of the AGR coated fuel. No fuel particles failed during the AGR-1 irradiation. Final burnup values on a per compact basis ranged from 11.5 to 19.6 %FIMA, while fast fluence values ranged from 2.21 to 4.39 ?1025 n/m2 (E >0.18 MeV). We’ll say something here about temperatures once thermal recalc is done. Thermocouples performed well, failing at a lower rate than expected. At the end of the irradiation, nine of the originally-planned 19 TCs were considered functional. Fission product release-to-birth (R/B) ratios were quite low. In most capsules, R/B values at the end of the irradiation were at or below 10-7 with only one

  4. Uncertainty Quantification of Calculated Temperatures for the AGR-1 Experiment

    SciTech Connect

    Binh T. Pham; Jeffrey J. Einerson; Grant L. Hawkes

    2012-04-01

    This report documents an effort to quantify the uncertainty of the calculated temperature data for the first Advanced Gas Reactor (AGR-1) fuel irradiation experiment conducted in the INL's Advanced Test Reactor (ATR) in support of the Next Generation Nuclear Plant (NGNP) R&D program. Recognizing uncertainties inherent in physics and thermal simulations of the AGR-1 test, the results of the numerical simulations can be used in combination with the statistical analysis methods to improve qualification of measured data. Additionally, the temperature simulation data for AGR tests can be used for validation of the fuel transport and fuel performance simulation models. The crucial roles of the calculated fuel temperatures in ensuring achievement of the AGR experimental program objectives require accurate determination of the model temperature uncertainties. The report is organized into three chapters. Chapter 1 introduces the AGR Fuel Development and Qualification program and provides overviews of AGR-1 measured data, AGR-1 test configuration and test procedure, and thermal simulation. Chapters 2 describes the uncertainty quantification procedure for temperature simulation data of the AGR-1 experiment, namely, (i) identify and quantify uncertainty sources; (ii) perform sensitivity analysis for several thermal test conditions; (iii) use uncertainty propagation to quantify overall response temperature uncertainty. A set of issues associated with modeling uncertainties resulting from the expert assessments are identified. This also includes the experimental design to estimate the main effects and interactions of the important thermal model parameters. Chapter 3 presents the overall uncertainty results for the six AGR-1 capsules. This includes uncertainties for the daily volume-average and peak fuel temperatures, daily average temperatures at TC locations, and time-average volume-average and time-average peak fuel temperatures.

  5. Uncertainty Quantification of Calculated Temperatures for the AGR-1 Experiment

    SciTech Connect

    Binh T. Pham; Jeffrey J. Einerson; Grant L. Hawkes

    2013-03-01

    This report documents an effort to quantify the uncertainty of the calculated temperature data for the first Advanced Gas Reactor (AGR-1) fuel irradiation experiment conducted in the INL’s Advanced Test Reactor (ATR) in support of the Next Generation Nuclear Plant (NGNP) R&D program. Recognizing uncertainties inherent in physics and thermal simulations of the AGR-1 test, the results of the numerical simulations can be used in combination with the statistical analysis methods to improve qualification of measured data. Additionally, the temperature simulation data for AGR tests can be used for validation of the fuel transport and fuel performance simulation models. The crucial roles of the calculated fuel temperatures in ensuring achievement of the AGR experimental program objectives require accurate determination of the model temperature uncertainties. The report is organized into three chapters. Chapter 1 introduces the AGR Fuel Development and Qualification program and provides overviews of AGR-1 measured data, AGR-1 test configuration and test procedure, and thermal simulation. Chapters 2 describes the uncertainty quantification procedure for temperature simulation data of the AGR-1 experiment, namely, (i) identify and quantify uncertainty sources; (ii) perform sensitivity analysis for several thermal test conditions; (iii) use uncertainty propagation to quantify overall response temperature uncertainty. A set of issues associated with modeling uncertainties resulting from the expert assessments are identified. This also includes the experimental design to estimate the main effects and interactions of the important thermal model parameters. Chapter 3 presents the overall uncertainty results for the six AGR-1 capsules. This includes uncertainties for the daily volume-average and peak fuel temperatures, daily average temperatures at TC locations, and time-average volume-average and time-average peak fuel temperatures.

  6. Production of Depleted UO2Kernels for the Advanced Gas-Cooled Reactor Program for Use in TRISO Coating Development

    SciTech Connect

    Collins, J.L.

    2004-12-02

    The main objective of the Depleted UO{sub 2} Kernels Production Task at Oak Ridge National Laboratory (ORNL) was to conduct two small-scale production campaigns to produce 2 kg of UO{sub 2} kernels with diameters of 500 {+-} 20 {micro}m and 3.5 kg of UO{sub 2} kernels with diameters of 350 {+-} 10 {micro}m for the U.S. Department of Energy Advanced Fuel Cycle Initiative Program. The final acceptance requirements for the UO{sub 2} kernels are provided in the first section of this report. The kernels were prepared for use by the ORNL Metals and Ceramics Division in a development study to perfect the triisotropic (TRISO) coating process. It was important that the kernels be strong and near theoretical density, with excellent sphericity, minimal surface roughness, and no cracking. This report gives a detailed description of the production efforts and results as well as an in-depth description of the internal gelation process and its chemistry. It describes the laboratory-scale gel-forming apparatus, optimum broth formulation and operating conditions, preparation of the acid-deficient uranyl nitrate stock solution, the system used to provide uniform broth droplet formation and control, and the process of calcining and sintering UO{sub 3} {center_dot} 2H{sub 2}O microspheres to form dense UO{sub 2} kernels. The report also describes improvements and best past practices for uranium kernel formation via the internal gelation process, which utilizes hexamethylenetetramine and urea. Improvements were made in broth formulation and broth droplet formation and control that made it possible in many of the runs in the campaign to produce the desired 350 {+-} 10-{micro}m-diameter kernels, and to obtain very high yields.

  7. Multidimensional multiphysics simulation of TRISO particle fuel

    NASA Astrophysics Data System (ADS)

    Hales, J. D.; Williamson, R. L.; Novascone, S. R.; Perez, D. M.; Spencer, B. W.; Pastore, G.

    2013-11-01

    Multidimensional multiphysics analysis of TRISO-coated particle fuel using the BISON finite element nuclear fuels code is described. The governing equations and material models applicable to particle fuel and implemented in BISON are outlined. Code verification based on a recent IAEA benchmarking exercise is described, and excellent comparisons are reported. Multiple TRISO-coated particles of increasing geometric complexity are considered. The code's ability to use the same algorithms and models to solve problems of varying dimensionality from 1D through 3D is demonstrated. The code provides rapid solutions of 1D spherically symmetric and 2D axially symmetric models, and its scalable parallel processing capability allows for solutions of large, complex 3D models. Additionally, the flexibility to easily include new physical and material models and straightforward ability to couple to lower length scale simulations makes BISON a powerful tool for simulation of coated-particle fuel. Future code development activities and potential applications are identified.

  8. Multidimensional Multiphysics Simulation of TRISO Particle Fuel

    SciTech Connect

    J. D. Hales; R. L. Williamson; S. R. Novascone; D. M. Perez; B. W. Spencer; G. Pastore

    2013-11-01

    Multidimensional multiphysics analysis of TRISO-coated particle fuel using the BISON finite-element based nuclear fuels code is described. The governing equations and material models applicable to particle fuel and implemented in BISON are outlined. Code verification based on a recent IAEA benchmarking exercise is described, and excellant comparisons are reported. Multiple TRISO-coated particles of increasing geometric complexity are considered. It is shown that the code's ability to perform large-scale parallel computations permits application to complex 3D phenomena while very efficient solutions for either 1D spherically symmetric or 2D axisymmetric geometries are straightforward. Additionally, the flexibility to easily include new physical and material models and uncomplicated ability to couple to lower length scale simulations makes BISON a powerful tool for simulation of coated-particle fuel. Future code development activities and potential applications are identified.

  9. Post-irradiation Examination and Fission Product Inventory Analysis of AGR-1 Irradiation Capsules

    SciTech Connect

    J M Harp; P D Demkowicz; S A Ploger

    2012-10-01

    The AGR-1 experiment was the first in a series of Advanced Gas Reactor (AGR) experiments designed to test TRISO fuel under High Temperature Gas Reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post-irradiation examination (PIE) at INL’s Materials and Fuels Complex (MFC). The inventory and distribution of fission products, especially Ag-110m, was assessed and analyzed for all the components of the AGR-1 capsules. This data should help inform the study of fission product migration in coated particle fuel. Gamma spectrometry was used to measure the activity of various different fission products in the different components of the AGR-1 test train. Each capsule contained: 12 fuel compacts, a graphite holder that kept the fuel compacts in place, graphite spacers that were above and below the graphite holders and fuel compacts, gas lines through which a helium neon gas mixture flowed in and out of each capsule, and the stainless steel shell that contained the experiment. Gamma spectrometry results and the experimental techniques used to capture these results will be presented for all the capsule components. The components were assayed to determine the total activity of different fission products present in or on them. These totals are compared to the total expected activity of a particular fission product in the capsule based on predictions from physics simulation. Based on this metric, a significant fraction of the Ag-110m was detected outside the fuel compacts, but the amount varied highly between the 6 capsules. Very small fractions of Cs-137 (<2E-5), Cs-134 (<1e-5), and Eu-154 (<4e-4) were detected outside of the fuel compacts. Additionally, the distribution of select fission products in some of the components including the fuel compacts and the graphite holders were measured and will be discussed.

  10. AGR-1 Fuel Compact 6-3-2 Post-Irradiation Examination Results

    SciTech Connect

    Paul demkowicz; jason Harp; Scott Ploger

    2012-12-01

    Destructive post-irradiation examination was performed on fuel Compact 6-3-2, which was irradiated in the AGR-1 experiment to a final compact average burnup of 11.3% FIMA and a time-average, volume-average temperature of 1070°C. The analysis of this compact was focused on characterizing the extent of fission product release from the particles and examining particles to determine the condition of the kernels and coating layers. The work included deconsolidation of the compact and leach-burn-leach analysis, visual inspection and gamma counting of individual particles, measurement of fuel burnup by several methods, metallurgical preparation of selected particles, and examination of particle cross-sections with optical microscopy. A single particle with a defective SiC layer was identified during deconsolidation-leach-burn-leach analysis, which is in agreement with previous measurements showing elevated cesium in the Capsule 6 graphite fuel holder associated with this fuel compact. The fraction of the compact europium inventory released from the particles and retained in the matrix was relatively high (approximately 6E-3), indicating release from intact particle coatings. The Ag-110m inventory in individual particles exhibited a very broad distribution, with some particles retaining =80% of the predicted inventory and others retaining less than 25%. The average degree of Ag-110m retention in 60 gamma counted particles was approximately 50%. This elevated silver release is in agreement with analysis of silver on the Capsule 6 components, which indicated an average release of 38% of the Capsule 6 inventory from the fuel compacts. In spite of the relatively high degree of silver release from the particles, virtually none of the Ag-110m released was found in the compact matrix, and presumably migrated out of the compact and was deposited on the irradiation capsule components. Release of all other fission products from the particles appears to be less than a single

  11. AGR-1 Irradiation Test Final As-Run Report, Rev. 3

    SciTech Connect

    Collin, Blaise P.

    2015-01-01

    This document presents the as-run analysis of the AGR-1 irradiation experiment. AGR-1 is the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the US Department of Energy (DOE) as part of the Next-Generation Nuclear Plant (NGNP) project. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment was irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) for a total duration of 620 effective full power days of irradiation. Irradiation began on December 24, 2006 and ended on November 6, 2009 spanning 13 ATR cycles and approximately three calendar years. The test contained six independently controlled and monitored capsules. Each capsule contained 12 compacts of a single type, or variant, of the AGR coated fuel. No fuel particles failed during the AGR-1 irradiation. Final burnup values on a per compact basis ranged from 11.5 to 19.6 %FIMA, while fast fluence values ranged from 2.21 to 4.39 x 1025 n/m2 (E >0.18 MeV). We’ll say something here about temperatures once thermal recalc is done. Thermocouples performed well, failing at a lower rate than expected. At the end of the irradiation, nine of the originally-planned 19 TCs were considered functional. Fission product release-to-birth (R/B) ratios were quite low. In most capsules, R/B values at the end of the irradiation were at or below

  12. Design and Expected Performance of the AGR-1 Fission Product Monitoring System (FPMS)

    SciTech Connect

    John K. Hartwell; Dawn M. Scates

    2005-09-01

    The effluent from each test capsule of the AGR-1 experiment will be monitored by a detector system consisting of a gamma-ray spectrometer and a gross radiation detector. This collection of radiation measurement systems will be known as the AGR-1 Fission Product Monitoring System (FPMS). Proper design and functioning of the FPMS is critical to the success of the AGR-1 fuel test experiment.This document describes the AGR-1 FPMS and presents calculations indicating that this design will meet the pertinent test requirements.

  13. Preliminary results of post-irradiation examination of the AGR-1 TRISO fuel compacts

    SciTech Connect

    Paul Demkowicz; John Hunn; Robert Morris; Jason Harp; Philip Winston; Charles Baldwin; Fred Montgomery; Scott Ploger; Isabella van Rooyen

    2012-10-01

    Five irradiated fuel compacts from the AGR-1 experiment have been examined in detail in order to assess in-pile fission product release behavior. Compacts were electrolytically deconsolidated and analyzed using the leach-burn-leach technique to measure fission product inventory in the compact matrix and identify any particles with a defective SiC layer. Loose particles were then gamma counted to measure the fission product inventory. One particle with a defective SiC layer was found in the five compacts examined. The fractional release of Ag 110m from the particles was significant. The total fraction of silver released from all the particles within a compact ranged from 0-0.63 and individual particles within a single compact often exhibited a very wide range of silver release. The average fractional release of Eu-154 from all particles in a compact was 2.4×10-4—1.3×10-2, which is indicative of release through intact coatings. The fractional Cs-134 inventory in the compact matrix was <2×10-5 when all coatings remained intact, indicating good cesium retention. Approximately 1% of the palladium inventory was found in the compact matrix for two of the compacts, indicating significant release through intact coatings.

  14. The effect of birthrate granularity on the release-to-birth ratio for the AGR-1 in-core experiment

    SciTech Connect

    D. M. Scates; J. B. Walter; J. T. Maki; J. W. Sterbentz; J. R. Parry

    2014-05-01

    The AGR-1 Advanced Gas Reactor (AGR) tristructural-isotropic-particle fuel experiment underwent 13 irradiation intervals from December 2006 until November 2009 within the Idaho National Laboratory Advanced Test Reactor in support of the Next Generation Nuclear Power Plant program. During this multi-year experiment, release-to-birth rate ratios were computed at the end of each operating interval to provide information about fuel performance. Fission products released during irradiation were tracked daily by the Fission Product Monitoring System using 8-h measurements. Birth rate calculated by MCNP with ORIGEN for as-run conditions were computed at the end of each irradiation interval. Each time step in MCNP provided neutron flux, reaction rates and AGR-1 compact composition, which were used to determine birth rate using ORIGEN. The initial birth-rate data, consisting of four values for each irradiation interval at the beginning, end, and two intermediate times, were interpolated to obtain values for each 8-h activity. The problem with this method is that any daily changes in heat rates or perturbations, such as shim control movement or core/lobe power fluctuations, would not be reflected in the interpolated data and a true picture of the system would not be presented. At the conclusion of the AGR-1 experiment, great efforts were put forth to compute daily birthrates, which were reprocessed with the 8-h release activity. The results of this study are presented in this paper.

  15. The Effect of Birthrate Granularity on the Release- to- Birth Ratio for the AGR-1 In-core Experiment

    SciTech Connect

    Dawn Scates; John Walter

    2012-10-01

    The AGR-1 Advanced Gas Reactor (AGR) tristructural-isotropic-particle fuel experiment underwent 13 irradiation intervals from December 2006 until November 2009 within the Idaho National Laboratory Advanced Test Reactor in support of the Next Generation Nuclear Power Plant program. During this multi-year experiment, release-to-birth rate ratios were computed at the end of each operating interval to provide information about fuel performance. Fission products released during irradiation were tracked daily by the Fission Product Monitoring System using 8-hour measurements. Birth rates calculated by MCNP with ORIGEN for as-run conditions were computed at the end of each irradiation interval. Each time step in MCNP provided neutron flux, reaction rates and AGR-1 compact composition, which were used to determine birth rates using ORIGEN. The initial birth-rate data, consisting of four values for each irradiation interval at the beginning, end, and two intermediate times, were interpolated to obtain values for each 8-hour activity. The problem with this method is that any daily changes in heat rates or perturbations, such as shim control movement or core/lobe power fluctuations, would not be reflected in the interpolated data and a true picture of the system would not be presented. At the conclusion of the AGR-1 experiment, great efforts were put forth to compute daily birthrates, which were reprocessed with the 8-hour release activity. The results of this study are presented in this paper.

  16. Analysis of Fission Products on the AGR-1 Capsule Components

    SciTech Connect

    Paul A. Demkowicz; Jason M. Harp; Philip L. Winston; Scott A. Ploger

    2013-03-01

    The components of the AGR-1 irradiation capsules were analyzed to determine the retained inventory of fission products in order to determine the extent of in-pile fission product release from the fuel compacts. This includes analysis of (i) the metal capsule components, (ii) the graphite fuel holders, (iii) the graphite spacers, and (iv) the gas exit lines. The fission products most prevalent in the components were Ag-110m, Cs 134, Cs 137, Eu-154, and Sr 90, and the most common location was the metal capsule components and the graphite fuel holders. Gamma scanning of the graphite fuel holders was also performed to determine spatial distribution of Ag-110m and radiocesium. Silver was released from the fuel components in significant fractions. The total Ag-110m inventory found in the capsules ranged from 1.2×10 2 (Capsule 3) to 3.8×10 1 (Capsule 6). Ag-110m was not distributed evenly in the graphite fuel holders, but tended to concentrate at the axial ends of the graphite holders in Capsules 1 and 6 (located at the top and bottom of the test train) and near the axial center in Capsules 2, 3, and 5 (in the center of the test train). The Ag-110m further tended to be concentrated around fuel stacks 1 and 3, the two stacks facing the ATR reactor core and location of higher burnup, neutron fluence, and temperatures compared with Stack 2. Detailed correlation of silver release with fuel type and irradiation temperatures is problematic at the capsule level due to the large range of temperatures experienced by individual fuel compacts in each capsule. A comprehensive Ag 110m mass balance for the capsules was performed using measured inventories of individual compacts and the inventory on the capsule components. For most capsules, the mass balance was within 11% of the predicted inventory. The Ag-110m release from individual compacts often exhibited a very large range within a particular capsule.

  17. Comparison of silver, cesium, and strontium release predictions using PARFUME with results from the AGR-1 irradiation experiment

    SciTech Connect

    Collin, Blaise P.; Petti, David A.; Demkowicz, Paul A.; Maki, John T.

    2015-08-22

    The PARFUME (PARticle FUel ModEl) code was used to predict the release of fission products silver, cesium, and strontium from tristructural isotropic coated fuel particles and compacts during the first irradiation experiment (AGR-1) of the Advanced Gas Reactor Fuel Development and Qualification program. The PARFUME model for the AGR-1 experiment used the fuel compact volume average temperature for each of the 620 days of irradiation to calculate the release of silver, cesium, and strontium from a representative particle for a select number of AGR-1 compacts. Post-irradiation examination measurements provided data on release of these fission products from fuel compacts and fuel particles, and retention of silver in the compacts outside of the silicon carbide (SiC) layer. PARFUME-predicted fractional release of silver, cesium, and strontium was determined and compared to the PIE measurements. For silver, comparisons show a trend of over-prediction at low burnup and under-prediction at high burnup. PARFUME has limitations in the modeling of the temporal and spatial distributions of the temperature and burnup across the compacts, which affects the accuracy of its predictions. Nevertheless, the comparisons on silver release lie in the same order of magnitude. Results show an overall over-prediction of the fractional release of cesium by PARFUME. For particles with failed SiC layers, the over-prediction is by a factor of up to 3, corresponding to a potential over-estimation of the diffusivity in uranium oxycarbide (UCO) by a factor of up to 250. For intact particles, whose release is much lower, the over-prediction is by a factor of up to 100, which could be attributed to an over-estimated diffusivity in SiC by about 40% on average. The release of strontium from intact particles is also over-predicted by PARFUME, which also points towards an over-estimated diffusivity of strontium in either SiC or UCO, or possibly both. The measured strontium fractional release from

  18. Comparison of silver, cesium, and strontium release predictions using PARFUME with results from the AGR-1 irradiation experiment

    DOE PAGES

    Collin, Blaise P.; Petti, David A.; Demkowicz, Paul A.; Maki, John T.

    2015-08-22

    The PARFUME (PARticle FUel ModEl) code was used to predict the release of fission products silver, cesium, and strontium from tristructural isotropic coated fuel particles and compacts during the first irradiation experiment (AGR-1) of the Advanced Gas Reactor Fuel Development and Qualification program. The PARFUME model for the AGR-1 experiment used the fuel compact volume average temperature for each of the 620 days of irradiation to calculate the release of silver, cesium, and strontium from a representative particle for a select number of AGR-1 compacts. Post-irradiation examination measurements provided data on release of these fission products from fuel compacts andmore » fuel particles, and retention of silver in the compacts outside of the silicon carbide (SiC) layer. PARFUME-predicted fractional release of silver, cesium, and strontium was determined and compared to the PIE measurements. For silver, comparisons show a trend of over-prediction at low burnup and under-prediction at high burnup. PARFUME has limitations in the modeling of the temporal and spatial distributions of the temperature and burnup across the compacts, which affects the accuracy of its predictions. Nevertheless, the comparisons on silver release lie in the same order of magnitude. Results show an overall over-prediction of the fractional release of cesium by PARFUME. For particles with failed SiC layers, the over-prediction is by a factor of up to 3, corresponding to a potential over-estimation of the diffusivity in uranium oxycarbide (UCO) by a factor of up to 250. For intact particles, whose release is much lower, the over-prediction is by a factor of up to 100, which could be attributed to an over-estimated diffusivity in SiC by about 40% on average. The release of strontium from intact particles is also over-predicted by PARFUME, which also points towards an over-estimated diffusivity of strontium in either SiC or UCO, or possibly both. The measured strontium fractional release

  19. Comparison of silver, cesium, and strontium release predictions using PARFUME with results from the AGR-1 irradiation experiment

    NASA Astrophysics Data System (ADS)

    Collin, Blaise P.; Petti, David A.; Demkowicz, Paul A.; Maki, John T.

    2015-11-01

    The PARFUME (PARticle FUel ModEl) code was used to predict the release of fission products silver, cesium, and strontium from tristructural isotropic coated fuel particles and compacts during the first irradiation experiment (AGR-1) of the Advanced Gas Reactor Fuel Development and Qualification program. The PARFUME model for the AGR-1 experiment used the fuel compact volume average temperature for each of the 620 days of irradiation to calculate the release of silver, cesium, and strontium from a representative particle for a select number of AGR-1 compacts. Post-irradiation examination (PIE) measurements provided data on release of these fission products from fuel compacts and fuel particles, and retention of silver in the compacts outside of the silicon carbide (SiC) layer. PARFUME-predicted fractional release of silver, cesium, and strontium was determined and compared to the PIE measurements. For silver, comparisons show a trend of over-prediction at low burnup and under-prediction at high burnup. PARFUME has limitations in the modeling of the temporal and spatial distributions of the temperature and burnup across the compacts, which affects the accuracy of its predictions. Nevertheless, the comparisons on silver release lie in the same order of magnitude. Results show an overall over-prediction of the fractional release of cesium by PARFUME. For particles with failed SiC layers, the over-prediction is by a factor of up to 3, corresponding to a potential over-estimation of the diffusivity in uranium oxycarbide (UCO) by a factor of up to 250. For intact particles, whose release is much lower, the over-prediction is by a factor of up to 100, which could be attributed to an over-estimated diffusivity in SiC by about 40% on average. The release of strontium from intact particles is also over-predicted by PARFUME, which also points towards an over-estimated diffusivity of strontium in either SiC or UCO, or possibly both. The measured strontium fractional release

  20. M3FT-15OR0202237: Submit Report on Results From Initial Coating Layer Development For UN TRISO Particles

    SciTech Connect

    Jolly, Brian C.; Lindemer, Terrence; Terrani, Kurt A.

    2015-02-01

    In support of fully ceramic matrix (FCM) fuel development, coating development work has begun at the Oak Ridge National Laboratory (ORNL) to produce tri-isotropic (TRISO) coated fuel particles with UN kernels. The nitride kernels are used to increase heavy metal density in these SiC-matrix fuel pellets with details described elsewhere. The advanced gas reactor (AGR) program at ORNL used fluidized bed chemical vapor deposition (FBCVD) techniques for TRISO coating of UCO (two phase mixture of UO2 and UCx) kernels. Similar techniques were employed for coating of the UN kernels, however significant changes in processing conditions were required to maintain acceptable coating properties due to physical property and dimensional differences between the UCO and UN kernels.

  1. Safety testing of AGR-2 UO2 compacts 3-3-2 and 3-4-2

    SciTech Connect

    Hunn, John D.; Morris, Robert Noel; Baldwin, Charles A.; Montgomery, Fred C.

    2015-09-01

    Post-irradiation examination (PIE) is in progress on tristructural-isotropic (TRISO) coated-particle fuel compacts from the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program second irradiation experiment (AGR-2) [Collin 2014]. The AGR-2 PIE will build upon new information and understanding acquired throughout the recently-concluded six-year AGR-1 PIE campaign [Demkowicz et al. 2015] and establish a database for the different AGR-2 fuel designs.

  2. First high temperature safety tests of AGR-1 TRISO fuel with the Fuel Accident Condition Simulator (FACS) furnace

    SciTech Connect

    Demkowicz, Paul A.; Reber, Edward L.; Scates, Dawn M.; Scott, Les; Collin, Blaise P.

    2015-09-01

    Three TRISO fuel compacts from the AGR-1 irradiation experiment were subjected to safety tests at 1600 and 1800 °C for approximately 300 h to evaluate the fission product retention characteristics. Silver behavior was dominated by rapid release of an appreciable fraction of the compact inventory (3–34%) at the beginning of the tests, believed to be from inventory residing in the compact matrix and outer pyrocarbon (OPyC) prior to the safety test. Measurable release of silver from intact particles appears to become apparent only after ~60 h at 1800 °C. The release rate for europium and strontium was nearly constant for 300 h at 1600 °C (reaching maximum values of approximately 2×10⁻³ and 8×10⁻⁴ respectively), and at this temperature the release may be mostly limited to inventory in the compact matrix and OPyC prior to the safety test. The release rate for both elements increased after approximately 120 h at 1800 °C, possibly indicating additional measurable release through the intact particle coatings. Cesium fractional release from particles with intact coatings was <10⁻⁶ after 300 h at 1600 °C or 100 h at 1800 °C, but release from the rare particles that experienced SiC failure during the test could be significant. However, Kr release was still very low for 300 h 1600 °C (<2 × 10⁻⁶). At 1800 °C, krypton release increased noticeably after SiC failure, reflecting transport through the intact outer pyrocarbon layer. Nonetheless, the krypton and cesium release fractions remained less than approximately 10⁻³ after 277 h at 1800 °C.

  3. First high temperature safety tests of AGR-1 TRISO fuel with the Fuel Accident Condition Simulator (FACS) furnace

    NASA Astrophysics Data System (ADS)

    Demkowicz, Paul A.; Reber, Edward L.; Scates, Dawn M.; Scott, Les; Collin, Blaise P.

    2015-09-01

    Three TRISO fuel compacts from the AGR-1 irradiation experiment were subjected to safety tests at 1600 and 1800 °C for approximately 300 h to evaluate the fission product retention characteristics. Silver behavior was dominated by rapid release of an appreciable fraction of the compact inventory (3-34%) at the beginning of the tests, believed to be from inventory residing in the compact matrix and outer pyrocarbon (OPyC) prior to the safety test. Measurable release of silver from intact particles appears to become apparent only after ∼60 h at 1800 °C. The release rate for europium and strontium was nearly constant for 300 h at 1600 °C (reaching maximum values of approximately 2 × 10-3 and 8 × 10-4 respectively), and at this temperature the release may be mostly limited to inventory in the compact matrix and OPyC prior to the safety test. The release rate for both elements increased after approximately 120 h at 1800 °C, possibly indicating additional measurable release through the intact particle coatings. Cesium fractional release from particles with intact coatings was <10-6 after 300 h at 1600 °C or 100 h at 1800 °C, but release from the rare particles that experienced SiC failure during the test could be significant. However, Kr release was still very low for 300 h 1600 °C (<2 × 10-6). At 1800 °C, krypton release increased noticeably after SiC failure, reflecting transport through the intact outer pyrocarbon layer. Nonetheless, the krypton and cesium release fractions remained less than approximately 10-3 after 277 h at 1800 °C.

  4. An improved design of TRISO particle with porous SiC inner layer by fluidized bed-chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liu, Rongzheng; Liu, Malin; Chang, Jiaxing; Shao, Youlin; Liu, Bing

    2015-12-01

    Tristructural-isotropic (TRISO) particle has been successful in high temperature gas cooled reactor (HTGR), but an improved design is required for future development. In this paper, the coating layers are reconsidered, and an improved design of TRISO particle with porous SiC inner layer is proposed. Three methods of preparing the porous SiC layer, called high methyltrichlorosilane (MTS) concentration method, high Ar concentration method and hexamethyldisilane (HMDS) method, are experimentally studied. It is indicated that porous SiC layer can be successfully prepared and the density of SiC layer can be adjusted by tuning the preparation parameters. Microstructure and characterization of the improved TRISO coated particle are given based on scanning electron microscope (SEM), X-ray diffraction (XRD), Raman scattering and energy dispersive X-ray (EDX) analysis. It can be found that the improved TRISO coated particle with porous SiC layer can be mass produced successfully. The formation mechanisms of porous SiC layer are also discussed based on the fluidized bed-chemical vapor deposition principle.

  5. AGR-1 Irradiated Test Train Preliminary Inspection and Disassembly First Look

    SciTech Connect

    Paul Demkowicz; Lance Cole; Scott Ploger; Philip Winston; Binh Pham; Michael Abbott

    2011-01-01

    The AGR-1 irradiation experiment ended on November 6, 2009, after 620 effective full power days in the Advanced Test Reactor, achieving a peak burnup of 19.6% FIMA. The test train was shipped to the Materials and Fuels Complex in March 2010 for post-irradiation examination. The first PIE activities included non-destructive examination of the test train, followed by disassembly of the test train and individual capsules and detailed inspection of the capsule contents, including the fuel compacts and the graphite fuel holders. Dimensional measurements of the compacts, graphite holders, and steel capsules shells were performed using a custom vision measurement system (for outer diameters and lengths) and conventional bore gauges (for inner diameters). Gamma spectrometry of the intact test train gave a preliminary look at the condition of the interior components. No evidence of damage to compacts or graphite components was evident from the isotopic and gross gamma scans. Neutron radiography of the intact Capsule 2 showed a high degree of detail of interior components and confirmed the observation that there was no major damage to the capsule. Disassembly of the capsules was initiated using procedures qualified during out-of-cell mockup testing. Difficulties were encountered during capsule disassembly due to irradiation-induced changes in some of the capsule components’ properties, including embrittled niobium and molybdenum parts that were susceptible to fracture and swelling of the graphite fuel holders that affected their removal from the capsule shells. This required various improvised modifications to the disassembly procedure to avoid damage to the fuel compacts. Ultimately the capsule disassembly was successful and only one compact from Capsule 4 (out of 72 total in the test train) sustained damage during the disassembly process, along with the associated graphite holder. The compacts were generally in very good condition upon removal. Only relatively minor

  6. Complex regulation of Arabidopsis AGR1/PIN2-mediated root gravitropic response and basipetal auxin transport by cantharidin-sensitive protein phosphatases

    NASA Technical Reports Server (NTRS)

    Shin, Heungsop; Shin, Hwa-Soo; Guo, Zibiao; Blancaflor, Elison B.; Masson, Patrick H.; Chen, Rujin

    2005-01-01

    Polar auxin transport, mediated by two distinct plasma membrane-localized auxin influx and efflux carrier proteins/complexes, plays an important role in many plant growth and developmental processes including tropic responses to gravity and light, development of lateral roots and patterning in embryogenesis. We have previously shown that the Arabidopsis AGRAVITROPIC 1/PIN2 gene encodes an auxin efflux component regulating root gravitropism and basipetal auxin transport. However, the regulatory mechanism underlying the function of AGR1/PIN2 is largely unknown. Recently, protein phosphorylation and dephosphorylation mediated by protein kinases and phosphatases, respectively, have been implicated in regulating polar auxin transport and root gravitropism. Here, we examined the effects of chemical inhibitors of protein phosphatases on root gravitropism and basipetal auxin transport, as well as the expression pattern of AGR1/PIN2 gene and the localization of AGR1/PIN2 protein. We also examined the effects of inhibitors of vesicle trafficking and protein kinases. Our data suggest that protein phosphatases, sensitive to cantharidin and okadaic acid, are likely involved in regulating AGR1/PIN2-mediated root basipetal auxin transport and gravitropism, as well as auxin response in the root central elongation zone (CEZ). BFA-sensitive vesicle trafficking may be required for the cycling of AGR1/PIN2 between plasma membrane and the BFA compartment, but not for the AGR1/PIN2-mediated root basipetal auxin transport and auxin response in CEZ cells.

  7. Sensitivity Evaluation of the Daily Thermal Predictions of the AGR-1 Experiment in the Advanced Test Reactor

    SciTech Connect

    Grant Hawkes; James Sterbentz; John Maki

    2011-05-01

    A temperature sensitivity evaluation has been performed for the AGR-1 fuel experiment on an individual capsule. A series of cases were compared to a base case by varying different input parameters into the ABAQUS finite element thermal model. These input parameters were varied by ±10% to show the temperature sensitivity to each parameter. The most sensitive parameters are the outer control gap distance, heat rate in the fuel compacts, and neon gas fraction. Thermal conductivity of the compacts and graphite holder were in the middle of the list for sensitivity. The smallest effects were for the emissivities of the stainless steel, graphite, and thru tubes. Sensitivity calculations were also performed varying with fluence. These calculations showed a general temperature rise with an increase in fluence. This is a result of the thermal conductivity of the fuel compacts and graphite holder decreasing with fluence.

  8. Performance of HTGR fertile particles irradiated in HFIR capsule HT-32

    SciTech Connect

    Long, E.L. Jr.; Robbins, J.M.; Tiegs, T.N.; Kania, M.J.

    1980-04-01

    The HT-32 experiment was an uninstrumented capsule irradiated for four cycles in the target position of the High-Flux Isotope Reactor (HFIR). The experiment was designed to: provide supplemental simulated fuel rods for thermal transport and expansion measurements; test fertile kernels with Al/sub 2/O/sub 3/ and SiO/sub 2/ additives for improved fission product retention; study the stability and permeability of low-temperature isotropic (LTI) pyrocarbon coatings; test Biso- and Triso-coatings derived in a large (0.24-m-dia) coating furnace with a frit distributor; investigate the performance of particles with an outer layer of SiC both as loose particles and as resin-bonded fuel rods; and evaluate high-density alumina as a potential high-temperature thermometry sheathing material.

  9. Fabrication and Comparison of Fuels for Advanced Gas Reactor Irradiation Tests

    SciTech Connect

    Jeffrey Phillips; Charles Barnes; John Hunn

    2010-10-01

    As part of the program to demonstrate TRISO-coated fuel for the Next Generation Nuclear Plant, a series of irradiation tests of Advanced Gas Reactor (AGR) fuel are being performed in the Advanced Test Reactor (ATR) at the Idaho National Laboratory. In the first test, called “AGR-1,” graphite compacts containing approximately 300,000 coated particles were irradiated from December 2006 until November 2009. Development of AGR-1 fuel sought to replicate the properties of German TRISO-coated particles. No particle failures were seen in the nearly 3-year irradiation to a burn up of 19%. The AGR-1 particles were coated in a two-inch diameter coater. Following fabrication of AGR-1 fuel, process improvements and changes were made in each of the fabrication processes. Changes in the kernel fabrication process included replacing the carbon black powder feed with a surface-modified carbon slurry and shortening the sintering schedule. AGR-2 TRISO particles were produced in a six-inch diameter coater using a change size about twenty-one times that of the two-inch diameter coater used to coat AGR-1 particles. Changes were also made in the compacting process, including increasing the temperature and pressure of pressing and using a different type of press. Irradiation of AGR-2 fuel began in late spring 2010. Properties of AGR-2 fuel compare favorably with AGR-1 and historic German fuel. Kernels are more homogeneous in shape, chemistry and density. TRISO-particle sphericity, layer thickness standard deviations, and defect fractions are also comparable. In a sample of 317,000 particles from deconsolidated AGR-2 compacts, 3 exposed kernels were found in a leach test. No SiC defects were found in a sample of 250,000 deconsolidated particles, and no IPyC defects in a sample of 64,000 particles. The primary difference in properties between AGR-1 and AGR-2 compacts is that AGR-2 compacts have a higher matrix density, 1.6 g/cm3 compared to about 1.3 g/cm3 for AGR-1 compacts. Based on

  10. MINING PROCESS AND PRODUCT INFORMATION FROM PRESSURE FLUCTUATIONS WITHIN A FUEL PARTICLE COATER

    SciTech Connect

    Douglas W. Marshall; Charles M. Barnes

    2008-09-01

    The Next Generation Nuclear Power (NGNP) Fuel Development and Qualification Program included the design, installation, and testing of a 6-inch diameter nuclear fuel particle coater to demonstrate quality TRISO fuel production on a small industrial scale. Scale-up from the laboratory-scale coater faced challenges associated with an increase in the kernel charge mass, kernel diameter, and a redesign of the gas distributor to achieve adequate fluidization throughout the deposition of the four TRISO coating layers. TRISO coatings are applied at very high temperatures in atmospheres of dense particulate clouds, corrosive gases, and hydrogen concentrations over 45% by volume. The severe environment, stringent product and process requirements, and the fragility of partially-formed coatings limit the insertion of probes or instruments into the coater vessel during operation. Pressure instrumentation were installed on the gas inlet line and exhaust line of the 6-inch coater to monitor the bed differential pressure and internal pressure fluctuations emanating from the fuel bed as a result of bed and gas “bubble” movement. These instruments are external to the particle bed and provide a glimpse into the dynamics of fuel particle bed during the coating process and data that could be used to help ascertain the adequacy of fluidization and, potentially, the dominant fluidization regimes. Pressure fluctuation and differential pressure data are not presently useful as process control instruments, but data suggest a link between the pressure signal structure and some measurable product attributes that could be exploited to get an early estimate of the attribute values.

  11. DESIGN OF AN ON-LINE, MULTI-SPECTROMETER FISSION PRODUCT MONITORING SYSTEM (FPMS) TO SUPPORT ADVANCED GAS REACTOR (AGR) FUEL TESTING AND QUALIFICATION IN THE ADVANCED TEST REACTOR

    SciTech Connect

    J. K. Hartwell; D. M. Scates; M. W. Drigert

    2005-11-01

    The US Department of Energy (DOE) is embarking on a series of tests of coated-particle reactor fuel for the Advanced Gas Reactor (AGR). As one part of this fuel development program a series of eight (8) fuel irradiation tests are planned for the Idaho National Laboratory’s (INL’s) Advanced Test Reactor (ATR). The first test in this series (AGR-1) will incorporate six separate “capsules” irradiated simultaneously, each containing about 51,000 TRISO-coated fuel particles supported in a graphite matrix and continuously swept with inert gas during irradiation. The effluent gas from each of the six capsules must be independently monitored in near real time and the activity of various fission gas nuclides determined and reported. A set of seven heavily-shielded high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based total radiation detectors have been designed, and are being configured and tested for use during the AGR-1 experiment. The AGR-1 test specification requires that the AGR-1 fission product measurement system (FPMS) have sufficient sensitivity to detect the failure of a single coated fuel particle and sufficient range to allow it to “count” multiple (up to 250) successive particle failures. This paper describes the design and expected performance of the AGR-1 FPMS.

  12. Treating asphericity in fuel particle pressure vessel modeling

    NASA Astrophysics Data System (ADS)

    Miller, Gregory K.; Wadsworth, Derek C.

    1994-07-01

    The prototypical nuclear fuel of the New Production Modular High Temperature Gas-Cooled Reactor (NP-MHTGR) consists of spherical TRISO-coated particles suspended in graphite cylinders. The coating layers surrounding the fuel kernels in these particles consist of pyrolytic carbon layers and a silicon carbide layer. These coating layers act as a pressure vessel which retains fission product gases. In the operating conditions of the NP-MHTGR, a small percentage of these particles (pressure vessels) are expected to fail due to the pressure loading. The fuel particles of the NP-MHTGR deviate to some degree from a true spherical shape, which may have some effect on the failure percentages. A method is presented that treats the asphericity of the particles in predicting failure probabilities for particle samples. It utilizes a combination of finite element analysis and Monte Carlo sampling and is based on the Weibull statistical theory. The method is used here to assess the effects of asphericity in particles of two common geometric shapes, i.e. faceted particles and ellipsoidal particles. The method presented could be used to treat particle anomalies other than asphericity.

  13. An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques

    DOE PAGES

    Harp, Jason M.; Demkowicz, Paul A.; Winston, Philip L.; Sterbentz, James W.

    2014-09-03

    AGR 1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR 1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR 1 experiment. Two methodsmore » for evaluating burnup by gamma spectrometry were developed, one based on the Cs 137 activity and the other based on the ratio of Cs 134 and Cs 137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma spectrometry burnup evaluations and the expected burnup from simulation. For all four compacts analyzed by mass spectrometry, the maximum range in the three experimentally determined values and the predicted value was 6% or less. Furthermore, the results confirm the accuracy of the nondestructive burnup evaluation from gamma

  14. An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques

    SciTech Connect

    Harp, Jason M.; Demkowicz, Paul A.; Winston, Philip L.; Sterbentz, James W.

    2014-09-03

    AGR 1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR 1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR 1 experiment. Two methods for evaluating burnup by gamma spectrometry were developed, one based on the Cs 137 activity and the other based on the ratio of Cs 134 and Cs 137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma spectrometry burnup evaluations and the expected burnup from simulation. For all four compacts analyzed by mass spectrometry, the maximum range in the three experimentally determined values and the predicted value was 6% or less. Furthermore, the results confirm the accuracy of the nondestructive burnup evaluation from gamma spectrometry

  15. Summary Report for the Initiation of Compact Development for Particles with 425-micron Kernels

    SciTech Connect

    Pappano, Peter J

    2007-09-01

    The purpose of this research was the initiation of overcoating TRISO particles with 425 {micro}m kernels. In the AGR-1 task, the overcoating process was optimized for particles with an outer diameter (OD) of 780 {micro}m and a 350 {micro}m kernel. Therefore it needed to be determined how well the overcoating process used to fabricate AGR-1 compacts would perform on particles with an 855 {micro}m OD and a 425 {micro}m kernel. The matrix properties and overcoating procedures were altered from the AGR-1 processes in order to attempt to optimize the overcoating of TRISO particles with 425 {micro}m kernels. This report summarizes the changes that were made to the matrix and the overcoating process in order to achieve successful overcoating of the larger particles.

  16. Encapsulation of TRISO particle fuel in durable soda-lime-silicate glasses

    NASA Astrophysics Data System (ADS)

    Heath, Paul G.; Corkhill, Claire L.; Stennett, Martin C.; Hand, Russell J.; Meyer, Willem C. H. M.; Hyatt, Neil C.

    2013-05-01

    Tri-Structural Isotropic (TRISO) coated particle-fuel is a key component in designs for future high temperature nuclear reactors. This study investigated the suitability of three soda lime silicate glass compositions, for the encapsulation of simulant TRISO particle fuel. A cold press and sinter (CPS) methodology was employed to produce TRISO particle-glass composites. Composites produced were determined to have an aqueous durability, fracture toughness and Vickers' hardness comparable to glasses currently employed for the disposal of high level nuclear wastes. Sintering at 700 °C for 30 min was found to remove all interconnected porosity from the composite bodies and oxidation of the outer pyrolytic carbon layer during sintering was prevented by processing under a 5% H2/N2 atmosphere. However, the outer pyrolytic carbon layer was not effectively wetted by the encapsulating glass matrix. The aqueous durability of the TRISO particle-glass composites was investigated using PCT and MCC-1 tests combined with geochemical modelling. It was found that durability was dependent on silicate and calcium solution saturation. This study provides significant advancements in the preparation of TRISO particle encapsulant waste forms. The potential for the use of non-borosilicate sintered glass composites for TRISO particle encapsulation has been confirmed, although further refinements are required.

  17. Aqueous alteration of VHTR fuels particles under simulated geological conditions

    NASA Astrophysics Data System (ADS)

    Ait Chaou, Abdelouahed; Abdelouas, Abdesselam; Karakurt, Gökhan; Grambow, Bernd

    2014-05-01

    Very High Temperature Reactor (VHTR) fuels consist of the bistructural-isotropic (BISO) or tristructural-isotropic (TRISO)-coated particles embedded in a graphite matrix. Management of the spent fuel generated during VHTR operation would most likely be through deep geological disposal. In this framework we investigated the alteration of BISO (with pyrolytic carbon) and TRISO (with SiC) particles under geological conditions simulated by temperatures of 50 and 90 °C and in the presence of synthetic groundwater. Solid state (scanning electron microscopy (SEM), micro-Raman spectroscopy, electron probe microanalyses (EPMA) and X-ray photoelectron spectroscopy (XPS)) and solution analyses (ICP-MS, ionique chromatography (IC)) showed oxidation of both pyrolytic carbon and SiC at 90 °C. Under air this led to the formation of SiO2 and a clay-like Mg-silicate, while under reducing conditions (H2/N2 atmosphere) SiC and pyrolytic carbon were highly stable after a few months of alteration. At 50 °C, in the presence and absence of air, the alteration of the coatings was minor. In conclusion, due to their high stability in reducing conditions, HTR fuel disposal in reducing deep geological environments may constitute a viable solution for their long-term management.

  18. Conceptual design of quadriso particles with europium burnable absorber in HTRS.

    SciTech Connect

    Talamo, A.; Nuclear Engineering Division

    2010-05-18

    In High Temperature Reactors, burnable absorbers are utilized to manage the excess reactivity at the early stage of the fuel cycle. In this study QUADRISO particles are proposed to manage the initial xcess reactivity of High Temperature Reactors. The QUADRISO concept synergistically couples the decrease of the burnable poison with the decrease of the fissile materials at the fuel particle level. This echanism is set up by introducing a burnable poison layer around the fuel kernel in ordinary TRISO particles or by mixing the burnable poison with any of the TRISO coated layers. At the beginning of life, the nitial excess reactivity is small because some neutrons are absorbed in the burnable poison and they are prevented from entering the fuel kernel. At the end of life, when the absorber is almost depleted, ore eutrons stream into the fuel kernel of QUADRISO particles causing fission reactions. The mechanism has been applied to a prismatic High Temperature Reactor with europium or erbium burnable absorbers, showing a significant reduction in the initial excess reactivity of the core.

  19. A novel concept of QUADRISO particles. Part II: Utilization for excess reactivity control.

    SciTech Connect

    Talamo, A.

    2010-07-01

    In high temperature reactors, burnable absorbers are utilized to manage the excess reactivity at the early stage of the fuel cycle. In this paper QUADRISO particles are proposed to manage the initial excess reactivity of high temperature reactors. The QUADRISO concept synergistically couples the decrease of the burnable poison with the decrease of the fissile materials at the fuel particle level. This mechanism is set up by introducing a burnable poison layer around the fuel kernel in ordinary TRISO particles or by mixing the burnable poison with any of the TRISO coated layers. At the beginning of life, the initial excess reactivity is small because some neutrons are absorbed in the burnable poison and they are prevented from entering the fuel kernel. At the end of life, when the absorber is almost depleted, more neutrons stream into the fuel kernel of QUADRISO particles causing fission reactions. The mechanism has been applied to a prismatic high temperature reactor with europium or erbium burnable absorbers, showing a significant reduction in the initial excess reactivity of the core.

  20. A novel concept of QUADRISO particles : Part II Utilization for excess reactivity control.

    SciTech Connect

    Talamo, A.

    2011-01-01

    In high temperature reactors, burnable absorbers are utilized to manage the excess reactivity at the early stage of the fuel cycle. In this paper QUADRISO particles are proposed to manage the initial excess reactivity of high temperature reactors. The QUADRISO concept synergistically couples the decrease of the burnable poison with the decrease of the fissile materials at the fuel particle level. This mechanism is set up by introducing a burnable poison layer around the fuel kernel in ordinary TRISO particles or by mixing the burnable poison with any of the TRISO coated layers. At the beginning of life, the initial excess reactivity is small because some neutrons are absorbed in the burnable poison and they are prevented from entering the fuel kernel. At the end of life, when the absorber is almost depleted, more neutrons stream into the fuel kernel of QUADRISO particles causing fission reactions. The mechanism has been applied to a prismatic high temperature reactor with europium or erbium burnable absorbers, showing a significant reduction in the initial excess reactivity of the core.

  1. Optical Anisotropy Measurements of TRISO Nuclear Fuel Particle Cross-Sections: The Method

    SciTech Connect

    Jellison Jr, Gerald Earle; Hunn, John D

    2008-01-01

    The analysis of two-modulator generalized ellipsometry microscope (2-MGEM) data to extract information on the optical anisotropy of coated particle fuel layers is discussed. Using a high resolution modification to the 2-MGEM, it is possible to obtain generalized ellipsometry images of coating layer cross-sections with a pixel size of 2.5 m and an optical resolution of ~ 4 m. The most important parameter that can be extracted from these ellipsometry images is the diattenuation, which can be directly related to the optical anisotropy factor (OAF or OPTAF) used in previous characterization studies of tristructural isotropic (TRISO) coated particles. Because high resolution images can be obtained, the data for each coating layer contains >6,000 points, allowing considerable statistical analysis. This analysis has revealed that the diattenuation of the inner pyrocarbon (IPyC) and outer pyrocarbon (OPyC) coatings varies significantly throughout the layer. The 2-MGEM data can also be used to determine the principal axis angle of the pyrocarbon layers, which is nearly perpendicular to the TRISO radius (i.e., growth direction) and corresponds to the average orientation of the graphine planes.

  2. Interaction of fission products and SiC in TRISO fuel particles: a limiting HTGR design parameter

    SciTech Connect

    Stansfield, O.M.; Homan, F.J.; Simon, W.A.; Turner, R.F.

    1983-09-01

    The fuel particle system for the steam cycle cogeneration HTGR being developed in the US consists of 20% enriched UC/sub 0/./sub 3/O/sub 1/./sub 7/ and ThO/sub 2/ kernels with TRISO coatings. The reaction of fission products with the SiC coating is the limiting thermochemical coating failure mechanism affecting performance. The attack of the SiC by palladium (Pd) is considered the controlling reaction with systems of either oxide or carbide fuels. The lanthanides, such as cerium, neodymium, and praseodymium, also attack SiC in carbide fuel particles. In reactor design, the time-temperature relationships at local points in the core are used to calculate the depth of SiC-Pd reaction. The depth of penetration into the SiC during service varies with core power density, power distribution, outlet gas temperature, and fuel residence time. These parameters are adjusted in specifying the core design to avoid SiC coating failure.

  3. ALD Produced B{sub 2}O{sub 3}, Al{sub 2}O{sub 3} and TiO{sub 2} Coatings on Gd{sub 2}O{sub 3} Burnable Poison Nanoparticles and Carbonaceous TRISO Coating Layers

    SciTech Connect

    Weimer, Alan

    2012-11-26

    This project will demonstrate the feasibility of using atomic layer deposition (ALD) to apply ultrathin neutron-absorbing, corrosion-resistant layers consisting of ceramics, metals, or combinations thereof, on particles for enhanced nuclear fuel pellets. Current pellet coating technology utilizes chemical vapor deposition (CVD) in a fluidized bed reactor to deposit thick, porous layers of C (or PyC) and SiC. These graphitic/carbide materials degrade over time owing to fission product bombardment, active oxidation, thermal management issues, and long-term irradiation effects. ALD can be used to deposit potential ceramic barrier materials of interest, including ZrO{sub 2}, Y{sub 2}O{sub 3}:ZrO{sub 2} (YSZ), Al{sub 2}O{sub 3}, and TiO{sub 2}, or neutron-absorbing materials, namely B (in BN or B{sub 2}O{sub 3}) and Gd (in Gd{sub 2}O{sub 3}). This project consists of a two-pronged approach to integrate ALD into the next-generation nuclear plant (NGNP) fuel pellet manufacturing process:

  4. FABRICATION OF URANIUM OXYCARBIDE KERNELS AND COMPACTS FOR HTR FUEL

    SciTech Connect

    Dr. Jeffrey A. Phillips; Eric L. Shaber; Scott G. Nagley

    2012-10-01

    As part of the program to demonstrate tristructural isotropic (TRISO)-coated fuel for the Next Generation Nuclear Plant (NGNP), Advanced Gas Reactor (AGR) fuel is being irradiation tested in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). This testing has led to improved kernel fabrication techniques, the formation of TRISO fuel particles, and upgrades to the overcoating, compaction, and heat treatment processes. Combined, these improvements provide a fuel manufacturing process that meets the stringent requirements associated with testing in the AGR experimentation program. Researchers at Idaho National Laboratory (INL) are working in conjunction with a team from Babcock and Wilcox (B&W) and Oak Ridge National Laboratory (ORNL) to (a) improve the quality of uranium oxycarbide (UCO) fuel kernels, (b) deposit TRISO layers to produce a fuel that meets or exceeds the standard developed by German researches in the 1980s, and (c) develop a process to overcoat TRISO particles with the same matrix material, but applies it with water using equipment previously and successfully employed in the pharmaceutical industry. A primary goal of this work is to simplify the process, making it more robust and repeatable while relying less on operator technique than prior overcoating efforts. A secondary goal is to improve first-pass yields to greater than 95% through the use of established technology and equipment. In the first test, called “AGR-1,” graphite compacts containing approximately 300,000 coated particles were irradiated from December 2006 to November 2009. The AGR-1 fuel was designed to closely replicate many of the properties of German TRISO-coated particles, thought to be important for good fuel performance. No release of gaseous fission product, indicative of particle coating failure, was detected in the nearly 3-year irradiation to a peak burn up of 19.6% at a time-average temperature of 1038–1121°C. Before fabricating AGR-2 fuel, each

  5. Fission-product retention in HTGR fuels

    SciTech Connect

    Homan, F.J.; Kania, M.J.; Tiegs, T.N.

    1982-01-01

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed.

  6. Microstructure evolution of a ZrC coating layer in TRISO particles during high-temperature annealing

    NASA Astrophysics Data System (ADS)

    Kim, Daejong; Chun, Young Bum; Ko, Myeong Jin; Lee, Hyeon-Geun; Cho, Moon-Sung; Park, Ji Yeon; Kim, Weon-Ju

    2016-10-01

    The influence of high-temperature annealing on the microstructure of zirconium carbide (ZrC) was investigated in relation to its application as a coating layer of a nuclear fuel in a very high temperature gas cooled reactor. ZrC was deposited as a constituent coating layer of TRISO coated particles by a fluidized bed chemical vapor deposition method using a ZrCl4-CH4-Ar-H2 system. The grain growth of ZrC during high-temperature annealing was strongly influenced by the co-deposition of free carbon. Sub-stoichiometric ZrC coatings have experienced a significant grain growth during high-temperature annealing at 1800 °C and 1900 °C for 1 h. On the other hand, a dual phase of stoichiometric ZrC and free carbon experienced little grain growth. It was revealed that the free carbon of the as-deposited ZrC was primarily distributed within the ZrC grains but was redistributed to the grain boundaries after annealing. Consequently, carbon at the grain boundary retarded the grain growth of ZrC. Electron backscatter diffraction (EBSD) results showed that as-deposited ZrC had (001) a preferred orientation that kept its favored direction after significant grain growth during annealing. The hardness slightly decreased as the grain growth progressed.

  7. TRISO-Coated Fuel Processing to Support High Temperature Gas-Cooled Reactors

    SciTech Connect

    Del Cul, G.D.

    2002-10-01

    The initial objective of the work described herein was to identify potential methods and technologies needed to disassemble and dissolve graphite-encapsulated, ceramic-coated gas-cooled-reactor spent fuels so that the oxide fuel components can be separated by means of chemical processing. The purpose of this processing is to recover (1) unburned fuel for recycle, (2) long-lived actinides and fission products for transmutation, and (3) other fission products for disposal in acceptable waste forms. Follow-on objectives were to identify and select the most promising candidate flow sheets for experimental evaluation and demonstration and to address the needs to reduce technical risks of the selected technologies. High-temperature gas-cooled reactors (HTGRs) may be deployed in the next -20 years to (1) enable the use of highly efficient gas turbines for producing electricity and (2) provide high-temperature process heat for use in chemical processes, such as the production of hydrogen for use as clean-burning transportation fuel. Also, HTGR fuels are capable of significantly higher burn-up than light-water-reactor (LWR) fuels or fast-reactor (FR) fuels; thus, the HTGR fuels can be used efficiently for transmutation of fissile materials and long-lived actinides and fission products, thereby reducing the inventory of such hazardous and proliferation-prone materials. The ''deep-burn'' concept, described in this report, is an example of this capability. Processing of spent graphite-encapsulated, ceramic-coated fuels presents challenges different from those of processing spent LWR fuels. LWR fuels are processed commercially in Europe and Japan; however, similar infrastructure is not available for processing of the HTGR fuels. Laboratory studies on the processing of HTGR fuels were performed in the United States in the 1960s and 1970s, but no engineering-scale processes were demonstrated. Currently, new regulations concerning emissions will impact the technologies used in processing the fuel. Potential processing methods will be identified both by a review of the literature regarding the processing of similar fuels and by a reliance on the experience and innovation of the authors. The objective is not to generate an exhaustive list of options but rather to identify a number of potentially practical processing options. These options necessarily take into consideration the chemical characteristics of the entire fuel element and its component parts. Once the practical options are identified, a qualitative assessment of the technical merit and maturity, relative costs, and relative quantity of waste generation will be used to rank the various options. Through this form of analysis, a base-case flow sheet will be identified for further study and development. A fallback flow sheet will also be selected to reduce the overall technical risk of the development plan. To support the base-case flow sheet, a technical development plan will be used to identify the key issues for the highest-rated option(s). In this effort the technical uncertainties will be more fully articulated, and research and development activities will be recommended to reduce the technical risks.

  8. The Fuel Accident Condition Simulator (FACS) furnace system for high temperature performance testing of VHTR fuel

    SciTech Connect

    Paul A. Demkowicz; David V. Laug; Dawn M. Scates; Edward L. Reber; Lyle G. Roybal; John B. Walter; Jason M. Harp; Robert N. Morris

    2012-10-01

    The AGR-1 irradiation of TRISO-coated particle fuel specimens was recently completed and represents the most successful such irradiation in US history, reaching peak burnups of greater than 19% FIMA with zero failures out of 300,000 particles. An extensive post-irradiation examination (PIE) campaign will be conducted on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature safety testing. A new furnace system has been designed, built, and tested to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000 degrees C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, and Eu), iodine, and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator furnace system and the associated fission gas monitoring system, as well as preliminary system calibration results.

  9. Reactor Physics Parametric and Depletion Studies in Support of TRISO Particle Fuel Specification for the Next Generation Nuclear Plant

    SciTech Connect

    James W. Sterbentz; Bren Phillips; Robert L. Sant; Gray S. Chang; Paul D. Bayless

    2003-09-01

    Reactor physics calculations were initiated to answer several major questions related to the proposed TRISO-coated particle fuel that is to be used in the prismatic Very High Temperature Reactor (VHTR) or the Next Generation Nuclear Plant (NGNP). These preliminary design evaluation calculations help ensure that the upcoming fuel irradiation tests will test appropriate size and type of fuel particles for a future NGNP reactor design. Conclusions from these calculations are expected to confirm and suggest possible modifications to the current particle fuel parameters specified in the evolving Fuel Specification. Calculated results dispel the need for a binary fuel particle system, which is proposed in the General Atomics GT-MHR concept. The GT-MHR binary system is composed of both a fissile and fertile particle with 350- and 500- micron kernel diameters, respectively. For the NGNP reactor, a single fissile particle system (single UCO kernel size) can meet the reactivity and power cycle length requirements demanded of the NGNP. At the same time, it will provide substantial programmatic cost savings by eliminating the need for dual particle fabrication process lines and dual fuel particle irradiation tests required of a binary system. Use of a larger 425-micron kernel diameter single fissile particle (proposed here), as opposed to the 350-micron GT-MHR fissile particle size, helps alleviate current compact particle packing fractions fabrication limitations (<35%), improves fuel block loading for higher n-batch reload options, and tracks the historical correlation between particle size and enrichment (10 and 14 wt% U-235 particle enrichments are proposed for the NGNP). Overall, the use of the slightly larger kernel significantly broadens the NGNP reactor core design envelope and provides increased design margin to accommodate the (as yet) unknown final NGNP reactor design. Maximum power-peaking factors are calculated for both the initial and equilibrium NGNP cores

  10. Thermo-Mechanical Analysis of Coated Particle Fuel Experiencing a Fast Control Rod Ejection Transient

    SciTech Connect

    Ortensi, J.; Brian Boer; Abderrafi M. Ougouag

    2010-10-01

    A rapid increase of the temperature and the mechanical stress is expected in TRISO coated particle fuel that experiences a fast Total Control Rod Ejection (CRE) transient event. During this event the reactor power in the pebble bed core increases significantly for a short time interval. The power is deposited instantly and locally in the fuel kernel. This could result in a rapid increase of the pressure in the buffer layer of the coated fuel particle and, consequently, in an increase of the coating stresses. These stresses determine the mechanical failure probability of the coatings, which serve as the containment of radioactive fission products in the Pebble Bed Reactor (PBR). A new calculation procedure has been implemented at the Idaho National Laboratory (INL), which analyzes the transient fuel performance behavior of TRISO fuel particles in PBRs. This early capability can easily be extended to prismatic designs, given the availability of neutronic and thermal-fluid solvers. The full-core coupled neutronic and thermal-fluid analysis has been modeled with CYNOD-THERMIX. The temperature fields for the fuel kernel and the particle coatings, as well as the gas pressures in the buffer layer, are calculated with the THETRIS module explicitly during the transient calculation. Results from this module are part of the feedback loop within the neutronic-thermal fluid iterations performed for each time step. The temperature and internal pressure values for each pebble type in each region of the core are then input to the PArticle STress Analysis (PASTA) code, which determines the particle coating stresses and the fraction of failed particles. This paper presents an investigation of a Total Control Rod Ejection (TCRE) incident in the 400 MWth Pebble Bed Modular reactor design using the above described calculation procedure. The transient corresponds to a reactivity insertion of $3 (~2000 pcm) reaching 35 times the nominal power in 0.5 seconds. For each position in the core

  11. Status of the NGNP fuel experiment AGR-2 irradiated in the advanced test reactor

    SciTech Connect

    S. Blaine Grover; David A. Petti

    2014-05-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also undergo on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and sup

  12. Status of the NGNP Fuel Experiment AGR-2 Irradiated in the Advanced Test Reactor

    SciTech Connect

    Blaine Grover

    2012-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and support systems will be briefly discussed, followed by the progress and status of the experiment to date.

  13. Quantity of 135I released from the AGR-1, AGR-2, and AGR-3/4 experiments and discovery of 131I at the FPMS traps during the AGR-3/4 experiment

    SciTech Connect

    Scates, Dawn M.

    2014-09-01

    A series of three Advanced Gas Reactor (AGR) experiments have been conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). From 2006 through 2014, these experiments supported the development and qualification of the new U.S. tristructural isotropic (TRISO) particle fuel for Very High Temperature Reactors (VHTR). Each AGR experiment consisted of multiple fueled capsules, each plumbed for independent temperature control using a mix of helium and neon gases. The gas leaving a capsule was routed to individual Fission Product Monitor (FPM) detectors. For intact fuel particles, the TRISO particle coatings provide a substantial barrier to fission product release. However, particles with failed coatings, whether because of a minute percentage of initially defective particles, those which fail during irradiation, or those designed to fail (DTF) particles, can release fission products to the flowing gas stream. Because reactive fission product elements like iodine and cesium quickly deposit on cooler capsule components and piping structures as the effluent gas leaves the reactor core, only the noble fission gas isotopes of Kr and Xe tend to reach FPM detectors. The FPM system utilizes High Purity Germanium (HPGe) detectors coupled with a thallium activated sodium iodide NaI(Tl) scintillator. The HPGe detector provides individual isotopic information, while the NaI(Tl) scintillator is used as a gross count rate meter. During irradiation, the 135mXe concentration reaching the FPM detectors is from both direct fission and by decay of the accumulated 135I. About 2.5 hours after irradiation (ten 15.3 minute 135mXe half lives) the directly produced 135mXe has decayed and only the longer lived 135I remains as a source. Decay systematics dictate that 135mXe will be in secular equilibrium with its 135I parent, such that its production rate very nearly equals the decay rate of the

  14. FABRICATION PROCESS AND PRODUCT QUALITY IMPROVEMENTS IN ADVANCED GAS REACTOR UCO KERNELS

    SciTech Connect

    Charles M Barnes

    2008-09-01

    A major element of the Advanced Gas Reactor (AGR) program is developing fuel fabrication processes to produce high quality uranium-containing kernels, TRISO-coated particles and fuel compacts needed for planned irradiation tests. The goals of the AGR program also include developing the fabrication technology to mass produce this fuel at low cost. Kernels for the first AGR test (“AGR-1) consisted of uranium oxycarbide (UCO) microspheres that werre produced by an internal gelation process followed by high temperature steps tot convert the UO3 + C “green” microspheres to first UO2 + C and then UO2 + UCx. The high temperature steps also densified the kernels. Babcock and Wilcox (B&W) fabricated UCO kernels for the AGR-1 irradiation experiment, which went into the Advance Test Reactor (ATR) at Idaho National Laboratory in December 2006. An evaluation of the kernel process following AGR-1 kernel production led to several recommendations to improve the fabrication process. These recommendations included testing alternative methods of dispersing carbon during broth preparation, evaluating the method of broth mixing, optimizing the broth chemistry, optimizing sintering conditions, and demonstrating fabrication of larger diameter UCO kernels needed for the second AGR irradiation test. Based on these recommendations and requirements, a test program was defined and performed. Certain portions of the test program were performed by Oak Ridge National Laboratory (ORNL), while tests at larger scale were performed by B&W. The tests at B&W have demonstrated improvements in both kernel properties and process operation. Changes in the form of carbon black used and the method of mixing the carbon prior to forming kernels led to improvements in the phase distribution in the sintered kernels, greater consistency in kernel properties, a reduction in forming run time, and simplifications to the forming process. Process parameter variation tests in both forming and sintering steps led

  15. Distribution of Pd, Ag & U in the SiC Layer of an Irradiated TRISO Fuel Particle

    SciTech Connect

    Thomas M. Lillo; Isabella J. van Rooyen

    2014-08-01

    The distribution of silver, uranium and palladium in the silicon carbide (SiC) layer of an irradiated TRISO fuel particle was studied using samples extracted from the SiC layer using focused ion beam (FIB) techniques. Transmission electron microscopy in conjunction with energy dispersive x-ray spectroscopy was used to identify the presence of the specific elements of interest at grain boundaries, triple junctions and precipitates in the interior of SiC grains. Details on sample fabrication, errors associated with measurements of elemental migration distances and the distances migrated by silver, palladium and uranium in the SiC layer of an irradiated TRISO particle from the AGR-1 program are reported.

  16. HTGR Technology Family Assessment for a Range of Fuel Cycle Missions

    SciTech Connect

    Steven J. Piet; Samuel E. Bays; Nick Soelberg

    2010-08-01

    This report examines how the HTGR technology family can provide options for the once through, modified open cycle (MOC), or full recycle fuel cycle strategies. The HTGR can serve all the fuel cycle missions that an LWR can; both are thermal reactors. Additional analyses are warranted to determine if HTGR “full recycle” service could provide improved consumption of transuranic (TRU) material than LWRs (as expected), to analyze the unique proliferation resistance issues associated with the “pebble bed” approach, and to further test and analyze methods to separate TRISO-coated fuel particles from graphite and/or to separate used HTGR fuel meat from its TRISO coating. The feasibility of these two separation issues is not in doubt, but further R&D could clarify and reduce the cost and enable options not adequately explored at present. The analyses here and the now-demonstrated higher fuel burnup tests (after the illustrative designs studied here) should enable future MOC and full recycle HTGR concepts to more rapidly consume TRU, thereby offering waste management advantages. Interest in “limited separation” or “minimum fuel treatment” separation approaches motivates study of impurity-tolerant fuel fabrication. Several issues are outside the scope of this report, including the following: thorium fuel cycles, gas-cooled fast reactors, the reliability of TRISO-coated particles (billions in a reactor), and how soon any new reactor or fuel type could be licensed and then deployed and therefore impact fuel cycle performance measures.

  17. Implications of Results from the Advanced Gas Reactor Fuel Development and Qualification Program on Licensing of Modular HTGRs

    SciTech Connect

    David Petti

    2001-10-01

    The high level of safety of modular high temperature gas-cooled reactor (HTGR) designs is achieved by passively maintaining core temperatures below fission product release thresholds under all envisioned accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude relative to other reactor types but is predicated on exceptionally high coated-particle fuel fabrication quality and excellent fuel performance under normal operation and accident conditions. The Advanced Gas Reactor Fuel Development and Qualification (AGR) Program decided to qualify for uranium oxide/uranium carbide (UCO) TRISO coated-particle fuel in an operating envelope that would bound both pebble bed and prismatic modular HTGR options. By using a mixture of uranium oxide and uranium carbide, the kernel composition is engineered to minimize CO formation and fuel kernel migration, which is key to maintain to fuel integrity at the higher burnups, temperatures, and temperature gradients anticipated in prismatic HTGRs. Fuel fabrication conducted at both laboratory and engineering scale has demonstrated the ability to fabricate high quality UCO TRISO fuel with very low defects. The first irradiation (AGR 1) exposed about 300,000 TRISO fuel particles to a peak burnup of 19.6% FIMA, a peak fast-neutron fluence of about 4.3 × 1025 n/m2, and a maximum time-averaged fuel temperature of about 1,200°C without a single particle failure. The very low release of key metallic fission products (except silver) measured in post-irradiation examination (PIE) confirms the excellent performance measured under irradiation. Very low releases have been measured in accident simulation heatup testing (''safety testing'') after hundreds of hours at 1600 and 1700°C and no particle failures (no noble gas release measured) have been observed. Even after hundreds of hours at 1800°C, the releases are still very low

  18. Rare particles

    SciTech Connect

    Kutschera, W.

    1984-01-01

    The use of Accelerator Mass Spectrometry (AMS) to search for hypothetical particles and known particles of rare processes is discussed. The hypothetical particles considered include fractionally charged particles, anomalously heavy isotopes, and superheavy elements. The known particles produced in rare processes discussed include doubly-charged negative ions, counting neutrino-produced atoms in detectors for solar neutrino detection, and the spontaneous emission of /sup 14/C from /sup 223/Ra. 35 references. (WHK)

  19. Particle separation

    NASA Technical Reports Server (NTRS)

    Moosmuller, Hans (Inventor); Chakrabarty, Rajan K. (Inventor); Arnott, W. Patrick (Inventor)

    2011-01-01

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  20. Particle separation

    DOEpatents

    Moosmuller, Hans; Chakrabarty, Rajan K.; Arnott, W. Patrick

    2011-04-26

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  1. Particle generator

    DOEpatents

    Hess, Wayne P.; Joly, Alan G.; Gerrity, Daniel P.; Beck, Kenneth M.; Sushko, Peter V.; Shlyuger, Alexander L.

    2005-06-28

    Energy tunable solid state sources of neutral particles are described. In a disclosed embodiment, a halogen particle source includes a solid halide sample, a photon source positioned to deliver photons to a surface of the halide, and a collimating means positioned to accept a spatially defined plume of hyperthermal halogen particles emitted from the sample surface.

  2. Particle therapy

    SciTech Connect

    Raju, M.R.

    1993-09-01

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics.

  3. Particle astrophysics

    NASA Technical Reports Server (NTRS)

    Sadoulet, Bernard; Cronin, James; Aprile, Elena; Barish, Barry C.; Beier, Eugene W.; Brandenberger, Robert; Cabrera, Blas; Caldwell, David; Cassiday, George; Cline, David B.

    1991-01-01

    The following scientific areas are reviewed: (1) cosmology and particle physics (particle physics and the early universe, dark matter, and other relics); (2) stellar physics and particles (solar neutrinos, supernovae, and unconventional particle physics); (3) high energy gamma ray and neutrino astronomy; (4) cosmic rays (space and ground observations). Highest scientific priorities for the next decade include implementation of the current program, new initiatives, and longer-term programs. Essential technological developments, such as cryogenic detectors of particles, new solar neutrino techniques, and new extensive air shower detectors, are discussed. Also a certain number of institutional issues (the funding of particle astrophysics, recommended funding mechanisms, recommended facilities, international collaborations, and education and technology) which will become critical in the coming decade are presented.

  4. Status of the Combined Third and Fourth NGNP Fuel Irradiations In the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover; David A. Petti; Michael E. Davenport

    2013-07-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and is currently scheduled to be completed in September 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. Since the purpose of this combined experiment is to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment is

  5. Design and Status of the NGNP Fuel Experiment AGR-3/4 Irradiated in the Advanced Test Reactor

    SciTech Connect

    Blaine Grover

    2012-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in November 2013. Since the purpose of this experiment is to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment is

  6. Magnetic particles

    NASA Technical Reports Server (NTRS)

    Chang, Manchium (Inventor); Colvin, Michael S. (Inventor)

    1989-01-01

    Magnetic polymer particles are formed by swelling porous, polymer particles and impregnating the particles with an aqueous solution of precursor magnetic metal salt such as an equimolar mixture of ferrous chloride and ferric chloride. On addition of a basic reagent such as dilute sodium hydroxide, the metal salts are converted to crystals of magnetite which are uniformly contained througout the pores of the polymer particle. The magnetite content can be increased and neutral buoyancy achieved by repetition of the impregnaton and neutralization steps to adjust the magnetite content to a desired level.

  7. Particle preconcentrator

    SciTech Connect

    Linker, K.L.; Conrad, F.J.; Custer, C.A.; Rhykerd, C.L. Jr

    2000-07-11

    An apparatus and method are disclosed for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a previous screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.

  8. Particle preconcentrator

    DOEpatents

    Linker, Kevin L.; Conrad, Frank J.; Custer, Chad A.; Rhykerd, Jr., Charles L.

    1998-01-01

    An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.

  9. Particle preconcentrator

    DOEpatents

    Linker, Kevin L.; Conrad, Frank J.; Custer, Chad A.; Rhykerd, Jr., Charles L.

    2000-01-01

    An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.

  10. Particle preconcentrator

    DOEpatents

    Linker, Kevin L.; Conrad, Frank J.; Custer, Chad A.; Rhykerd, Jr., Charles L.

    2005-09-20

    An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.

  11. Particle preconcentrator

    DOEpatents

    Linker, K.L.; Conrad, F.J.; Custer, C.A.; Rhykerd, C.L. Jr.

    1998-12-29

    An apparatus and method are disclosed for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents. 3 figs.

  12. Magnetic particles

    NASA Technical Reports Server (NTRS)

    Chang, Manchium (Inventor); Colvin, Michael S. (Inventor); Rembaum, Alan (Inventor); Richards, Gil F. (Inventor)

    1987-01-01

    Metal oxide containing polymers and particularly styrene, acrylic or protein polymers containing fine, magnetic iron oxide particles are formed by combining a NO.sub.2 -substituted polymer with an acid such as hydrochloric acid in the presence of metal, particularly iron particles. The iron is oxidized to fine, black Fe.sub.3 O.sub.4 particles which deposit selectively on the polymer particles. Nitrated polymers are formed by reacting functionally substituted, nitrated organic compounds such as trinitrobenzene sulfonate or dinitrofluoro benzene with a functionally coreactive polymer such as an amine modified acrylic polymer or a protein. Other transition metals such as cobalt can also be incorporated into polymers using this method.

  13. Auroral particles

    NASA Technical Reports Server (NTRS)

    Evans, David S.

    1987-01-01

    The problems concerning the aurora posed prior to the war are now either solved in principle or were restated in a more fundamental form. The pre-war hypothesis concerning the nature of the auroral particles and their energies was fully confirmed, with the exception that helium and oxygen ions were identified as participating in the auroral particle precipitation in addition to the protons. The nature of the near-Earth energization processes affecting auroral particles was clarified. Charged particle trajectories in various electric field geometries were modeled. The physical problems have now moved from determining the nature and geometry of the electric fields, which accelerate charged particles near the Earth, to accounting for the existence of these electric fields as a natural consequence of the solar wind's interaction with Earth. Ultimately the reward in continuing the work in auroral and magnetospheric particle dynamics will be a deeper understanding of the subtleties of classical electricity and magnetism as applied to situations not blessed with well-defined and invariant geometries.

  14. Particle Sizer

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Microspheres are tiny plastic beads that represent the first commercial products manufactured in orbit. An example of how they are used is a new aerodynamic particle sizer designated APS 33B produced by TSI Incorporated. TSI purchased the microspheres from the National Bureau of Standards which certified their exact size and the company uses them in calibration of the APS 33B* instrument, latest in a line of TSI systems for generating counting and weighing minute particles of submicron size. Instruments are used for evaluating air pollution control devices, quantifying environments, meteorological research, testing filters, inhalation, toxicology and other areas where generation or analysis of small airborne particles is required. * The APS 33B is no longer being manufactured. An improved version, APS 3320, is now being manufactured. 2/28/97

  15. Carbon particles

    DOEpatents

    Hunt, Arlon J.

    1984-01-01

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  16. Particle blender

    DOEpatents

    Willey, Melvin G.

    1981-01-01

    An infinite blender that achieves a homogeneous mixture of fuel microspheres is provided. Blending is accomplished by directing respective groups of desired particles onto the apex of a stationary coaxial cone. The particles progress downward over the cone surface and deposit in a space at the base of the cone that is described by a flexible band provided with a wide portion traversing and in continuous contact with the circumference of the cone base and extending upwardly therefrom. The band, being attached to the cone at a narrow inner end thereof, causes the cone to rotate on its arbor when the band is subsequently pulled onto a take-up spool. As a point at the end of the wide portion of the band passes the point where it is tangent to the cone, the blended particles are released into a delivery tube leading directly into a mold, and a plate mounted on the lower portion of the cone and positioned between the end of the wide portion of the band and the cone assures release of the particles only at the tangent point.

  17. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  18. Daily thermal predictions of the AGR-1 experiment with gas gaps varying with time

    SciTech Connect

    Hawkes, G.; Sterbentz, J.; Maki, J.; Pham, B.

    2012-07-01

    A new daily as-run thermal analysis was performed at the Idaho National Laboratory on the Advanced Gas Reactor (AGR) test experiment number one at the Advanced Test Reactor (ATR). This thermal analysis incorporates gas gaps changing with time during the irradiation experiment. The purpose of this analysis was to calculate the daily average temperatures of each compact to compare with experimental results. Post irradiation examination (PIE) measurements of the graphite holder and fuel compacts showed the gas gaps changed from the beginning of life. The control temperature gas gap and the fuel compact - graphite holder gas gaps were modeled with a linear change from the original fabrication gap dimensions to the end of irradiation measurements. A steady-state thermal analysis was performed for each daily calculation with the commercial finite element heat transfer code ABAQUS. These new thermal predictions more closely match the experimental data taken during the experiment than previous analyses. Results are presented comparing normalized compact average temperatures to normalized log(R/B) Kr-85m. The R/B term is the measured release rate divided by the predicted birth rate for the isotope Kr-85m. Correlations between these two normalized values are presented. (authors)

  19. Daily Thermal Predictions of the AGR-1 Experiment with Gas Gaps Varying with Time

    SciTech Connect

    Grant Hawkes; James Sterbentz; John Maki; Binh Pham

    2012-06-01

    A new daily as-run thermal analysis was performed at the Idaho National Laboratory on the Advanced Gas Reactor (AGR) test experiment number one at the Advanced Test Reactor (ATR). This thermal analysis incorporates gas gaps changing with time during the irradiation experiment. The purpose of this analysis was to calculate the daily average temperatures of each compact to compare with experimental results. Post irradiation examination (PIE) measurements of the graphite holder and fuel compacts showed the gas gaps varying from the beginning of life. The control temperature gas gap and the fuel compact – graphite holder gas gaps were linearly changed from the original fabrication dimensions, to the end of irradiation measurements. A steady-state thermal analysis was performed for each daily calculation. These new thermal predictions more closely match the experimental data taken during the experiment than previous analyses. Results are presented comparing normalized compact average temperatures to normalized log(R/B) Kr-85m. The R/B term is the measured release rate divided by the predicted birth rate for the isotope Kr-85m. Correlations between these two normalized values are presented.

  20. Postirradiation examination of capsule GF-4. [HTGR

    SciTech Connect

    Kovacs, W.J.; Sedlak, B.J.

    1980-10-01

    The GF-4 capsule test was irradiated in the SILOE reactor at Grenoble, France between April 8, 1975 and July 26, 1976. High-enriched uranium (HEU) UC/sub 2/ and weak acid resin (WAR) UC/sub x/O/sub y/ fissile and ThO/sub 2/ fertile particles were tested. Postirradiation examination of cured-in-place fuel rods showed no fuel rod/graphite element interaction. In addition, all rods exhibited adequate structural integrity. Irradiation-induced dimensional changes for rods containing all TRISO-coated fuel were consistent with model predictions; however, rods containing BISO-coated fuel exhibited greater volumetric contractions than predicted.

  1. Microfabricated particle focusing device

    DOEpatents

    Ravula, Surendra K.; Arrington, Christian L.; Sigman, Jennifer K.; Branch, Darren W.; Brener, Igal; Clem, Paul G.; James, Conrad D.; Hill, Martyn; Boltryk, Rosemary June

    2013-04-23

    A microfabricated particle focusing device comprises an acoustic portion to preconcentrate particles over large spatial dimensions into particle streams and a dielectrophoretic portion for finer particle focusing into single-file columns. The device can be used for high throughput assays for which it is necessary to isolate and investigate small bundles of particles and single particles.

  2. Coating parameters of zirconium carbide on advanced TRISO fuels

    NASA Astrophysics Data System (ADS)

    Dulude, Michael C.

    The feasibility of using very high temperature reactors (VHTR) as part of the next generation of nuclear reactors greatly depends on the tri-structural isotropic (TRISO) fuel particles reliability to retain both gaseous and metallic fission products created in irradiated UO2. Most research devoted to TRISO fuel particles has focused on the characteristics and retention ability of silicon carbide as the main barrier against metallic fission products. This work investigates the deposition parameters necessary to create advanced TRISO particles consisting of the standard SiC TRISO coatings with an additional layer of ZrC applied directly to the UO2 fuel kernel. The additional ZrC layer will act as an oxygen getter to prevent failure mechanisms experienced in TRISO particles. Two failure mechanisms that are of the most concern are the over pressurization of the particles and kernel migration within the TRISO particles. In this study successful ZrC coatings were created and the deposition characteristics were analyzed via optical and SEM microscopy techniques. The ZrC layer was confirmed through XRD analysis. This investigation also reduced U3O8 microspheres to UO2 in an argon atmosphere. The oxygen to metal ratio from the reduced U3O8 was back calculated from oxidation analysis performed with a TGA machine. Once consistent repeatability is shown with coating surrogate zirconia kernels, advanced TRISO coatings will be deposited on the UO2 fuel kernels.

  3. Particle Tracks in Aerogel

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In an experiment using a special air gun, particles are shot into aerogel at high velocities. Closeup of particles that have been captured in aerogel are shown here. The particles leave a carrot-shaped trail in the aerogel. Aerogel was used on the Stardust spacecraft to capture comet particles from Comet Wild 2.

  4. Particle capture device

    DOEpatents

    Jayne, John T.; Worsnop, Douglas R.

    2016-02-23

    In example embodiments, particle collection efficiency in aerosol analyzers and other particle measuring instruments is improved by a particle capture device that employs multiple collisions to decrease momentum of particles until the particles are collected (e.g., vaporized or come to rest). The particle collection device includes an aperture through which a focused particle beam enters. A collection enclosure is coupled to the aperture and has one or more internal surfaces against which particles of the focused beam collide. One or more features are employed in the collection enclosure to promote particles to collide multiple times within the enclosure, and thereby be vaporized or come to rest, rather than escape through the aperture.

  5. Laser particle sorter

    DOEpatents

    Martin, J.C.; Buican, T.N.

    1987-11-30

    Method and apparatus are provided for sorting particles, such as biological particles. A first laser is used to define an optical path having an intensity gradient which is effective to propel the particles along the path but which is sufficiently weak that the particles are not trapped in an axial direction. A probe laser beam is provided for interrogating the particles to identify predetermined phenotypical characteristics of the particles. A second laser beam is provided to intersect the driving first laser beam, wherein the second laser beam is activated by an output signal indicative of a predetermined characteristic. The second laser beam is switchable between a first intensity and a second intensity, where the first intensity is effective to displace selected particles from the driving laser beam and the second intensity is effective to propel selected particles along the deflection laser beam. The selected particles may then be propelled by the deflection beam to a location effective for further analysis. 2 figs.

  6. Laser particle sorter

    DOEpatents

    Martin, John C.; Buican, Tudor N.

    1989-01-01

    Method and apparatus for sorting particles, such as biological particles. A first laser defines an optical path having an intensity gradient which is effective to propel the particles along the path but which is sufficiently weak that the particles are not trapped in an axial direction. A probe laser beam interrogates the particles to identify predetermined phenotypical characteristics of the particles. A second laser beam intersects the driving first laser beam, wherein the second laser beam is activated by an output signal indicative of a predetermined characteristic. The second laser beam is switchable between a first intensity and a second intensity, where the first intensity is effective to displace selected particles from the driving laser beam and the second intensity is effective to propel selected particles along the deflection laser beam. The selected particles may then be propelled by the deflection beam to a location effective for further analysis.

  7. Composite powder particles

    NASA Technical Reports Server (NTRS)

    Parker, Donald S. (Inventor); MacDowell, Louis G. (Inventor)

    2009-01-01

    A liquid coating composition including a coating vehicle and composite powder particles disposed within the coating vehicle. Each composite powder particle may include a magnesium component, a zinc component, and an indium component.

  8. Solar Neutral Particles

    NASA Video Gallery

    This animation shows a neutral solar particle's path leaving the sun, following the magnetic field lines out to the heliosheath. The solar particle hits a hydrogen atom, stealing its electron, and ...

  9. Acoustic particle separation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. (Inventor)

    1985-01-01

    A method is described which uses acoustic energy to separate particles of different sizes, densities, or the like. The method includes applying acoustic energy resonant to a chamber containing a liquid of gaseous medium to set up a standing wave pattern that includes a force potential well wherein particles within the well are urged towards the center, or position of minimum force potential. A group of particles to be separated is placed in the chamber, while a non-acoustic force such as gravity is applied, so that the particles separate with the larger or denser particles moving away from the center of the well to a position near its edge and progressively smaller lighter particles moving progressively closer to the center of the well. Particles are removed from different positions within the well, so that particles are separated according to the positions they occupy in the well.

  10. Particle exposures and infections

    EPA Science Inventory

    Particle exposures increase the risk for human infections. Particles can deposit in the nose, pharynx, larynx, trachea, bronchi, and distal lung and, accordingly, the respiratory tract is the system most frequently infected after such exposure; however, meningitis also occurs. Ci...

  11. Classical confined particles

    NASA Technical Reports Server (NTRS)

    Horzela, Andrzej; Kapuscik, Edward

    1993-01-01

    An alternative picture of classical many body mechanics is proposed. In this picture particles possess individual kinematics but are deprived from individual dynamics. Dynamics exists only for the many particle system as a whole. The theory is complete and allows to determine the trajectories of each particle. It is proposed to use our picture as a classical prototype for a realistic theory of confined particles.

  12. When is a Particle?

    ERIC Educational Resources Information Center

    Drell, Sidney D.

    1978-01-01

    Gives a new definition for the concept of the elementary particle in nuclear physics. Explains why the existance of the quark as an elementary particle could be an accepted fact even though it lacks what traditionally identifies a particle. Compares this with the development which took place during the discovery of the neutrino in the early…

  13. Particle charge spectrometer

    NASA Technical Reports Server (NTRS)

    Fuerstenau, Stephen D. (Inventor)

    2004-01-01

    An airflow through a tube is used to guide a charged particle through the tube. A detector may be used to detect charge passing through the tube on the particle. The movement of the particle through the tube may be used to both detect its charge and size.

  14. Review of particle properties

    SciTech Connect

    Wohl; Cahn, R.N.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Porter, F.; Hernandez, J.J.; Montanet, L.; Hendrick, R.E.; Crawford, R.L.

    1984-04-01

    This review of the properties of leptons, mesons, and baryons is an updating of the Review of Particle Properties, Particle Data Group (Phys. Lett. 111B (1982)). Data are evaluated, listed, averaged, and summarized in tables. Numerous tables, figures, and formulae of interest to particle physicists are also included. A data booklet is available.

  15. High energy particle astronomy.

    NASA Technical Reports Server (NTRS)

    Buffington, A.; Muller, R. A.; Smith, L. H.; Smoot, G. F.

    1972-01-01

    Discussion of techniques currently used in high energy particle astronomy for measuring charged and neutral cosmic rays and their isotope and momentum distribution. Derived from methods developed for accelerator experiments in particle physics, these techniques help perform important particle astronomy experiments pertaining to nuclear cosmic ray and gamma ray research, electron and position probes, and antimatter searches.

  16. Anatomy of Particle Diffusion

    ERIC Educational Resources Information Center

    Bringuier, E.

    2009-01-01

    The paper analyses particle diffusion from a thermodynamic standpoint. The main goal of the paper is to highlight the conceptual connection between particle diffusion, which belongs to non-equilibrium statistical physics, and mechanics, which deals with particle motion, at the level of third-year university courses. We start out from the fact…

  17. HTGR Technology Family Assessment for a Range of Fuel Cycle Missions

    SciTech Connect

    Steven J. Piet; Samuel E. Bays; Nick R. Soelberg

    2010-11-01

    This report examines how the HTGR technology family can provide options for the once through, modified open cycle (MOC), or full recycle fuel cycle strategies. The HTGR can serve all the fuel cycle missions that an LWR can; both are thermal reactors. Additional analyses are warranted to determine if HTGR “full recycle” service could provide improved consumption of transuranic (TRU) material than LWRs (as expected), to analyze the unique proliferation resistance issues associated with the “pebble bed” approach, and to further test and analyze methods to separate TRISO-coated fuel particles from graphite and/or to separate used HTGR fuel meat from its TRISO coating. The feasibility of these two separation issues is not in doubt, but further R&D could clarify and reduce the cost and enable options not adequately explored at present. The analyses here and the now-demonstrated higher fuel burnup tests (after the illustrative designs studied here) should enable future MOC and full recycle HTGR concepts to more rapidly consume TRU, thereby offering waste management advantages. Interest in “limited separation” or “minimum fuel treatment” separation approaches motivates study of impurity-tolerant fuel fabrication.

  18. Primordial Particles; Collisions of Inelastic Particles

    NASA Astrophysics Data System (ADS)

    Sagi, George

    2011-03-01

    Three-dimensional matter is not defined by Euclidian or Cartesian geometries. Newton's and Einstein's laws are related to the motions of elastic masses. The study of collisions of inelastic particles opens up new vistas in physics. The present article reveals how such particles create clusters composed of various numbers of particles. The Probability of each formation, duplets, triplets, etc. can be calculated. The particles are held together by a binding force, and depending upon the angles of collisions they may also rotate around their center of geometry. Because of these unique properties such inelastic particles are referred to as primordial particles, Pp. When a given density of Pp per cubic space is given, then random collisions create a field. The calculation of the properties of such primordial field is very complex and beyond the present study. However, the angles of collisions are infinite in principle, but the probabilities of various cluster sizes are quantum dependent. Consequently, field calculations will require new complex mathematical methods to be discovered yet.

  19. Adhesive particle shielding

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John; Walton, Christopher; Folta, James

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  20. Fuzzy Logic Particle Tracking

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A new all-electronic Particle Image Velocimetry technique that can efficiently map high speed gas flows has been developed in-house at the NASA Lewis Research Center. Particle Image Velocimetry is an optical technique for measuring the instantaneous two component velocity field across a planar region of a seeded flow field. A pulsed laser light sheet is used to illuminate the seed particles entrained in the flow field at two instances in time. One or more charged coupled device (CCD) cameras can be used to record the instantaneous positions of particles. Using the time between light sheet pulses and determining either the individual particle displacements or the average displacement of particles over a small subregion of the recorded image enables the calculation of the fluid velocity. Fuzzy logic minimizes the required operator intervention in identifying particles and computing velocity. Using two cameras that have the same view of the illumination plane yields two single exposure image frames. Two competing techniques that yield unambiguous velocity vector direction information have been widely used for reducing the single-exposure, multiple image frame data: (1) cross-correlation and (2) particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. For the correlation technique, the correlation peak corresponding to the average displacement of particles across the subregion must be identified. Noise on the images and particle dropout result in misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work, fuzzy logic techniques are used to determine the true

  1. Precision gap particle separator

    DOEpatents

    Benett, William J.; Miles, Robin; Jones, II., Leslie M.; Stockton, Cheryl

    2004-06-08

    A system for separating particles entrained in a fluid includes a base with a first channel and a second channel. A precision gap connects the first channel and the second channel. The precision gap is of a size that allows small particles to pass from the first channel into the second channel and prevents large particles from the first channel into the second channel. A cover is positioned over the base unit, the first channel, the precision gap, and the second channel. An port directs the fluid containing the entrained particles into the first channel. An output port directs the large particles out of the first channel. A port connected to the second channel directs the small particles out of the second channel.

  2. CLASHING BEAM PARTICLE ACCELERATOR

    DOEpatents

    Burleigh, R.J.

    1961-04-11

    A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.

  3. Methods for forming particles

    DOEpatents

    Fox, Robert V.; Zhang, Fengyan; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin

    2016-06-21

    Single source precursors or pre-copolymers of single source precursors are subjected to microwave radiation to form particles of a I-III-VI.sub.2 material. Such particles may be formed in a wurtzite phase and may be converted to a chalcopyrite phase by, for example, exposure to heat. The particles in the wurtzite phase may have a substantially hexagonal shape that enables stacking into ordered layers. The particles in the wurtzite phase may be mixed with particles in the chalcopyrite phase (i.e., chalcopyrite nanoparticles) that may fill voids within the ordered layers of the particles in the wurtzite phase thus produce films with good coverage. In some embodiments, the methods are used to form layers of semiconductor materials comprising a I-III-VI.sub.2 material. Devices such as, for example, thin-film solar cells may be fabricated using such methods.

  4. Particle Swarm Optimization

    NASA Technical Reports Server (NTRS)

    Venter, Gerhard; Sobieszczanski-Sobieski Jaroslaw

    2002-01-01

    The purpose of this paper is to show how the search algorithm known as particle swarm optimization performs. Here, particle swarm optimization is applied to structural design problems, but the method has a much wider range of possible applications. The paper's new contributions are improvements to the particle swarm optimization algorithm and conclusions and recommendations as to the utility of the algorithm, Results of numerical experiments for both continuous and discrete applications are presented in the paper. The results indicate that the particle swarm optimization algorithm does locate the constrained minimum design in continuous applications with very good precision, albeit at a much higher computational cost than that of a typical gradient based optimizer. However, the true potential of particle swarm optimization is primarily in applications with discrete and/or discontinuous functions and variables. Additionally, particle swarm optimization has the potential of efficient computation with very large numbers of concurrently operating processors.

  5. The Sisyphus particle detector

    NASA Technical Reports Server (NTRS)

    Soberman, R. K.

    1974-01-01

    The particle measurement subsystem planned for the MJS 77 mission is described. Scientific objectives with respect to Saturn's rings are as follows: (1) measure particles outside the visible rings, including particulates orbiting in more distant rings and particles scattered out of visible rings, (2) measure meteoroid environment in vicinity of Saturn, and (3) develop an understanding of the dynamics of the rings with respect to their collisional interaction with the environment.

  6. Clickable Janus Particles.

    PubMed

    Bradley, Laura C; Stebe, Kathleen J; Lee, Daeyeon

    2016-09-14

    Janus particles are colloidal analogues of molecular amphiphiles that can self-assemble to form diverse suprastructures, exhibit motility under appropriate catalytic reactions, and strongly adsorb to fluid-fluid interfaces to stabilize multiphasic fluid mixtures. The chemistry of Janus particles is the fundamental parameter that controls their behavior and utility as colloid surfactants in bulk solution and at fluid interfaces. To enable their widespread utilization, scalable methods that allow for the synthesis of Janus particles with diverse chemical compositions and shapes are highly desirable. Here, we develop clickable Janus particles that can be modified through thiol-yne click reactions with commercially available thiols. Janus particles are modified to be amphiphilic by introducing either carboxyl, hydroxyl, or amine moieties. We also demonstrate that regulating the extent of the modification can be used to control the particle morphology, and thus the type of emulsion stabilized, as well as to fabricate composite Janus particles through sequential click reactions. Modifying Janus particles through thiol-yne click chemistry provides a fast-reacting, scalable synthesis method for the fabrication of diverse Janus particles. PMID:27548642

  7. Review of Particle Physics

    NASA Astrophysics Data System (ADS)

    Beringer, J.; Arguin, J.-F.; Barnett, R. M.; Copic, K.; Dahl, O.; Groom, D. E.; Lin, C.-J.; Lys, J.; Murayama, H.; Wohl, C. G.; Yao, W.-M.; Zyla, P. A.; Amsler, C.; Antonelli, M.; Asner, D. M.; Baer, H.; Band, H. R.; Basaglia, T.; Bauer, C. W.; Beatty, J. J.; Belousov, V. I.; Bergren, E.; Bernardi, G.; Bertl, W.; Bethke, S.; Bichsel, H.; Biebel, O.; Blucher, E.; Blusk, S.; Brooijmans, G.; Buchmueller, O.; Cahn, R. N.; Carena, M.; Ceccucci, A.; Chakraborty, D.; Chen, M.-C.; Chivukula, R. S.; Cowan, G.; D'Ambrosio, G.; Damour, T.; de Florian, D.; de Gouvêa, A.; DeGrand, T.; de Jong, P.; Dissertori, G.; Dobrescu, B.; Doser, M.; Drees, M.; Edwards, D. A.; Eidelman, S.; Erler, J.; Ezhela, V. V.; Fetscher, W.; Fields, B. D.; Foster, B.; Gaisser, T. K.; Garren, L.; Gerber, H.-J.; Gerbier, G.; Gherghetta, T.; Golwala, S.; Goodman, M.; Grab, C.; Gritsan, A. V.; Grivaz, J.-F.; Grünewald, M.; Gurtu, A.; Gutsche, T.; Haber, H. E.; Hagiwara, K.; Hagmann, C.; Hanhart, C.; Hashimoto, S.; Hayes, K. G.; Heffner, M.; Heltsley, B.; Hernández-Rey, J. J.; Hikasa, K.; Höcker, A.; Holder, J.; Holtkamp, A.; Huston, J.; Jackson, J. D.; Johnson, K. F.; Junk, T.; Karlen, D.; Kirkby, D.; Klein, S. R.; Klempt, E.; Kowalewski, R. V.; Krauss, F.; Kreps, M.; Krusche, B.; Kuyanov, Yu. V.; Kwon, Y.; Lahav, O.; Laiho, J.; Langacker, P.; Liddle, A.; Ligeti, Z.; Liss, T. M.; Littenberg, L.; Lugovsky, K. S.; Lugovsky, S. B.; Mannel, T.; Manohar, A. V.; Marciano, W. J.; Martin, A. D.; Masoni, A.; Matthews, J.; Milstead, D.; Miquel, R.; Mönig, K.; Moortgat, F.; Nakamura, K.; Narain, M.; Nason, P.; Navas, S.; Neubert, M.; Nevski, P.; Nir, Y.; Olive, K. A.; Pape, L.; Parsons, J.; Patrignani, C.; Peacock, J. A.; Petcov, S. T.; Piepke, A.; Pomarol, A.; Punzi, G.; Quadt, A.; Raby, S.; Raffelt, G.; Ratcliff, B. N.; Richardson, P.; Roesler, S.; Rolli, S.; Romaniouk, A.; Rosenberg, L. J.; Rosner, J. L.; Sachrajda, C. T.; Sakai, Y.; Salam, G. P.; Sarkar, S.; Sauli, F.; Schneider, O.; Scholberg, K.; Scott, D.; Seligman, W. G.; Shaevitz, M. H.; Sharpe, S. R.; Silari, M.; Sjöstrand, T.; Skands, P.; Smith, J. G.; Smoot, G. F.; Spanier, S.; Spieler, H.; Stahl, A.; Stanev, T.; Stone, S. L.; Sumiyoshi, T.; Syphers, M. J.; Takahashi, F.; Tanabashi, M.; Terning, J.; Titov, M.; Tkachenko, N. P.; Törnqvist, N. A.; Tovey, D.; Valencia, G.; van Bibber, K.; Venanzoni, G.; Vincter, M. G.; Vogel, P.; Vogt, A.; Walkowiak, W.; Walter, C. W.; Ward, D. R.; Watari, T.; Weiglein, G.; Weinberg, E. J.; Wiencke, L. R.; Wolfenstein, L.; Womersley, J.; Woody, C. L.; Workman, R. L.; Yamamoto, A.; Zeller, G. P.; Zenin, O. V.; Zhang, J.; Zhu, R.-Y.; Harper, G.; Lugovsky, V. S.; Schaffner, P.

    2012-07-01

    This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2658 new measurements from 644 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 112 reviews are many that are new or heavily revised including those on Heavy-Quark and Soft-Collinear Effective Theory, Neutrino Cross Section Measurements, Monte Carlo Event Generators, Lattice QCD, Heavy Quarkonium Spectroscopy, Top Quark, Dark Matter, Vcb & Vub, Quantum Chromodynamics, High-Energy Collider Parameters, Astrophysical Constants, Cosmological Parameters, and Dark Matter.A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.lbl.gov/.The 2012 edition of Review of Particle Physics is published for the Particle Data Group as article 010001 in volume 86 of Physical Review D.This edition should be cited as: J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012).

  8. Bioactivation of particles

    DOEpatents

    Pinaud, Fabien; King, David; Weiss, Shimon

    2011-08-16

    Particles are bioactivated by attaching bioactivation peptides to the particle surface. The bioactivation peptides are peptide-based compounds that impart one or more biologically important functions to the particles. Each bioactivation peptide includes a molecular or surface recognition part that binds with the surface of the particle and one or more functional parts. The surface recognition part includes an amino-end and a carboxy-end and is composed of one or more hydrophobic spacers and one or more binding clusters. The functional part(s) is attached to the surface recognition part at the amino-end and/or said carboxy-end.

  9. TRISO-Fuel Element Performance Modeling for the Hybrid LIFE Engine with Pu Fuel Blanket

    SciTech Connect

    DeMange, P; Marian, J; Caro, M; Caro, A

    2010-02-18

    A TRISO-coated fuel thermo-mechanical performance study is performed for the hybrid LIFE engine to test the viability of TRISO particles to achieve ultra-high burnup of a weapons-grade Pu blanket. Our methodology includes full elastic anisotropy, time and temperature varying material properties for all TRISO layers, and a procedure to remap the elastic solutions in order to achieve fast fluences up to 30 x 10{sup 25} n {center_dot} m{sup -2} (E > 0.18 MeV). In order to model fast fluences in the range of {approx} 7 {approx} 30 x 10{sup 25} n {center_dot} m{sup -2}, for which no data exist, careful scalings and extrapolations of the known TRISO material properties are carried out under a number of potential scenarios. A number of findings can be extracted from our study. First, failure of the internal pyrolytic carbon (PyC) layer occurs within the first two months of operation. Then, the particles behave as BISO-coated particles, with the internal pressure being withstood directly by the SiC layer. Later, after 1.6 years, the remaining PyC crumbles due to void swelling and the fuel particle becomes a single-SiC-layer particle. Unrestrained by the PyC layers, and at the temperatures and fluences in the LIFE engine, the SiC layer maintains reasonably-low tensile stresses until the end-of-life. Second, the PyC creep constant, K, has a striking influence on the fuel performance of TRISO-coated particles, whose stresses scale almost inversely proportional to K. Obtaining more reliable measurements, especially at higher fluences, is an imperative for the fidelity of our models. Finally, varying the geometry of the TRISO-coated fuel particles results in little differences in the scope of fuel performance. The mechanical integrity of 2-cm graphite pebbles that act as fuel matrix has also been studied and it is concluded that they can reliable serve the entire LIFE burnup cycle without failure.

  10. Dielectrophoretic particle-particle interaction under AC electrohydrodynamic flow conditions.

    PubMed

    Lee, Doh-Hyoung; Yu, Chengjie; Papazoglou, Elisabeth; Farouk, Bakhtier; Noh, Hongseok M

    2011-09-01

    We used the Maxwell stress tensor method to understand dielectrophoretic particle-particle interactions and applied the results to the interpretation of particle behaviors under alternating current (AC) electrohydrodynamic conditions such as AC electroosmosis (ACEO) and electrothermal flow (ETF). Distinct particle behaviors were observed under ACEO and ETF. Diverse particle-particle interactions observed in experiments such as particle clustering, particles keeping a certain distance from each other, chain and disc formation and their rotation, are explained based on the numerical simulation data. The improved understanding of particle behaviors in AC electrohydrodynamic flows presented here will enable researchers to design better particle manipulation strategies for lab-on-a-chip applications. PMID:21823132

  11. Pileup per particle identification

    SciTech Connect

    Bertolini, Daniele; Harris, Philip; Low, Matthew; Tran, Nhan

    2014-10-09

    We propose a new method for pileup mitigation by implementing “pileup per particle identification” (PUPPI). For each particle we first define a local shape α which probes the collinear versus soft diffuse structure in the neighborhood of the particle. The former is indicative of particles originating from the hard scatter and the latter of particles originating from pileup interactions. The distribution of α for charged pileup, assumed as a proxy for all pileup, is used on an event-by-event basis to calculate a weight for each particle. The weights describe the degree to which particles are pileup-like and are used to rescale their four-momenta, superseding the need for jet-based corrections. Furthermore, the algorithm flexibly allows combination with other, possibly experimental, probabilistic information associated with particles such as vertexing and timing performance. We demonstrate the algorithm improves over existing methods by looking at jet pT and jet mass. As a result, we also find an improvement on non-jet quantities like missing transverse energy.

  12. RESEARCH IN PARTICLE PHYSICS

    SciTech Connect

    Kearns, Edward

    2013-07-12

    This is the final report for the Department of Energy Grant to Principal Investigators in Experimental and Theoretical Particle Physics at Boston University. The research performed was in the Energy Frontier at the LHC, the Intensity Frontier at Super-Kamiokande and T2K, the Cosmic Frontier and detector R&D in dark matter detector development, and in particle theory.

  13. Pileup per particle identification

    DOE PAGES

    Bertolini, Daniele; Harris, Philip; Low, Matthew; Tran, Nhan

    2014-10-09

    We propose a new method for pileup mitigation by implementing “pileup per particle identification” (PUPPI). For each particle we first define a local shape α which probes the collinear versus soft diffuse structure in the neighborhood of the particle. The former is indicative of particles originating from the hard scatter and the latter of particles originating from pileup interactions. The distribution of α for charged pileup, assumed as a proxy for all pileup, is used on an event-by-event basis to calculate a weight for each particle. The weights describe the degree to which particles are pileup-like and are used tomore » rescale their four-momenta, superseding the need for jet-based corrections. Furthermore, the algorithm flexibly allows combination with other, possibly experimental, probabilistic information associated with particles such as vertexing and timing performance. We demonstrate the algorithm improves over existing methods by looking at jet pT and jet mass. As a result, we also find an improvement on non-jet quantities like missing transverse energy.« less

  14. Particle impact location detector

    NASA Technical Reports Server (NTRS)

    Auer, S. O.

    1974-01-01

    Detector includes delay lines connected to each detector surface strip. When several particles strike different strips simultaneously, pulses generated by each strip are time delayed by certain intervals. Delay time for each strip is known. By observing time delay in pulse, it is possible to locate strip that is struck by particle.

  15. Charged particle radiography.

    PubMed

    Morris, C L; King, N S P; Kwiatkowski, K; Mariam, F G; Merrill, F E; Saunders, A

    2013-04-01

    New applications of charged particle radiography have been developed over the past two decades that extend the range of radiographic techniques providing high-speed sequences of radiographs of thicker objects with higher effective dose than can be obtained with conventional radiographic techniques. In this paper, we review the motivation and the development of flash radiography and in particular, charged particle radiography. PMID:23481477

  16. Charged particle radiography

    NASA Astrophysics Data System (ADS)

    Morris, C. L.; King, N. S. P.; Kwiatkowski, K.; Mariam, F. G.; Merrill, F. E.; Saunders, A.

    2013-04-01

    New applications of charged particle radiography have been developed over the past two decades that extend the range of radiographic techniques providing high-speed sequences of radiographs of thicker objects with higher effective dose than can be obtained with conventional radiographic techniques. In this paper, we review the motivation and the development of flash radiography and in particular, charged particle radiography.

  17. Fine particle separation apparatus

    SciTech Connect

    Berriman, L.P.; Paul, D.G.

    1981-07-21

    An apparatus is claimed for separating almost all fine particles, including particles less than 10 microns in diameter, from a gas stream, which requires the input of only a small amount of water and which discharges a correspondingly small amount of particle-water slurry. The apparatus includes a vertical cylindrical chamber having a relatively wide upstream portion that gradually narrows in a transition portion into an elongated throat portion. A central core member extends axially along the throat portion and forms an elongated annular passage. A high velocity gas stream containing fine particles is generally tangentially introduced into the wide upstream portion of the conduit to provide a circulatory flow. Water is introduced through a plurality of parts in the transition portion downstream therefrom, to provide a thin layer of water along the outer walls of the throat. The high velocity circulatory flow of the particle-laden gas along the annular throat region causes fine particles to migrate radially outwardly under high centrifugal forces into the water layer. The water-particle slurry is discharged through a slot in the outer wall of the lower portion of the throat region. The substantially particle-free gas passes through a radial diffuser section therebelow.

  18. Ambient Tropospheric Particles

    EPA Science Inventory

    Atmospheric particulate matter (PM) is a complex mixture of solid and liquid particles suspended in ambient air (also known as the atmospheric aerosol). Ambient PM arises from a wide-range of sources and/or processes, and consists of particles of different shapes, sizes, and com...

  19. Interactive Terascale Particle Visualization

    NASA Technical Reports Server (NTRS)

    Ellsworth, David; Green, Bryan; Moran, Patrick

    2004-01-01

    This paper describes the methods used to produce an interactive visualization of a 2 TB computational fluid dynamics (CFD) data set using particle tracing (streaklines). We use the method introduced by Bruckschen et al. [2001] that pre-computes a large number of particles, stores them on disk using a space-filling curve ordering that minimizes seeks, and then retrieves and displays the particles according to the user's command. We describe how the particle computation can be performed using a PC cluster, how the algorithm can be adapted to work with a multi-block curvilinear mesh, and how the out-of-core visualization can be scaled to 296 billion particles while still achieving interactive performance on PG hardware. Compared to the earlier work, our data set size and total number of particles are an order of magnitude larger. We also describe a new compression technique that allows the lossless compression of the particles by 41% and speeds the particle retrieval by about 30%.

  20. HIGH ENERGY PARTICLE ACCELERATOR

    DOEpatents

    Courant, E.D.; Livingston, M.S.; Snyder, H.S.

    1959-04-14

    An improved apparatus is presented for focusing charged particles in an accelerator. In essence, the invention includes means for establishing a magnetic field in discrete sectors along the path of moving charged particles, the magnetic field varying in each sector in accordance with the relation. B = B/ sub 0/ STAln (r-r/sub 0/)/r/sub 0/!, where B/sub 0/ is the value of the magnetic field at the equilibrium orbit of radius r/sub 0/ of the path of the particles, B equals the magnetic field at the radius r of the chamber and n equals the magnetic field gradient index, the polarity of n being abruptly reversed a plurality of times as the particles travel along their arcuate path. With this arrangement, the particles are alternately converged towards the axis of their equillbrium orbit and diverged therefrom in successive sectors with a resultant focusing effect.

  1. Particle Analysis Pitfalls

    NASA Technical Reports Server (NTRS)

    Hughes, David; Dazzo, Tony

    2007-01-01

    This viewgraph presentation reviews the use of particle analysis to assist in preparing for the 4th Hubble Space Telescope (HST) Servicing mission. During this mission the Space Telescope Imaging Spectrograph (STIS) will be repaired. The particle analysis consisted of Finite element mesh creation, Black-body viewfactors generated using I-DEAS TMG Thermal Analysis, Grey-body viewfactors calculated using Markov method, Particle distribution modeled using an iterative Monte Carlo process, (time-consuming); in house software called MASTRAM, Differential analysis performed in Excel, and Visualization provided by Tecplot and I-DEAS. Several tests were performed and are reviewed: Conformal Coat Particle Study, Card Extraction Study, Cover Fastener Removal Particle Generation Study, and E-Graf Vibration Particulate Study. The lessons learned during this analysis are also reviewed.

  2. DEM Particle Fracture Model

    SciTech Connect

    Zhang, Boning; Herbold, Eric B.; Homel, Michael A.; Regueiro, Richard A.

    2015-12-01

    An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.

  3. Imaging alpha particle detector

    DOEpatents

    Anderson, D.F.

    1980-10-29

    A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  4. Imaging alpha particle detector

    DOEpatents

    Anderson, David F.

    1985-01-01

    A method and apparatus for detecting and imaging alpha particles sources is described. A conducting coated high voltage electrode (1) and a tungsten wire grid (2) constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source (3) to be quantitatively or qualitatively analyzed. A thin polyester film window (4) allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  5. General defocusing particle tracking.

    PubMed

    Barnkob, Rune; Kähler, Christian J; Rossi, Massimiliano

    2015-09-01

    A General Defocusing Particle Tracking (GDPT) method is proposed for tracking the three-dimensional motion of particles in Lab-on-a-chip systems based on a set of calibration images and the normalized cross-correlation function. In comparison with other single-camera defocusing particle-tracking techniques, GDPT possesses a series of key advantages: it is applicable to particle images of arbitrary shapes, it is intuitive and easy to use, it can be used without advanced knowledge of optics and velocimetry theory, it is robust against outliers and overlapping particle images, and it requires only equipment which is standard in microfluidic laboratories. We demonstrate the method by tracking the three-dimensional motion of 2 μm spherical particles in a microfluidic channel using three different optical arrangements. The position of the particles was measured with an estimated uncertainty of 0.1 μm in the in-plane direction and 2 μm in the depth direction for a measurement volume of 1510 × 1270 × 160 μm(3). A ready-to-use GUI implementation of the method can be acquired on . PMID:26201498

  6. Review of Particle Physics

    NASA Astrophysics Data System (ADS)

    Amsler, C.; Doser, M.; Antonelli, M.; Asner, D. M.; Babu, K. S.; Baer, H.; Band, H. R.; Barnett, R. M.; Bergren, E.; Beringer, J.; Bernardi, G.; Bertl, W.; Bichsel, H.; Biebel, O.; Bloch, P.; Blucher, E.; Blusk, S.; Cahn, R. N.; Carena, M.; Caso, C.; Ceccucci, A.; Chakraborty, D.; Chen, M.-C.; Chivukula, R. S.; Cowan, G.; Dahl, O.; D'Ambrosio, G.; Damour, T.; de Gouvêa, A.; DeGrand, T.; Dobrescu, B.; Drees, M.; Edwards, D. A.; Eidelman, S.; Elvira, V. D.; Erler, J.; Ezhela, V. V.; Feng, J. L.; Fetscher, W.; Fields, B. D.; Foster, B.; Gaisser, T. K.; Garren, L.; Gerber, H.-J.; Gerbier, G.; Gherghetta, T.; Giudice, G. F.; Goodman, M.; Grab, C.; Gritsan, A. V.; Grivaz, J.-F.; Groom, D. E.; Grünewald, M.; Gurtu, A.; Gutsche, T.; Haber, H. E.; Hagiwara, K.; Hagmann, C.; Hayes, K. G.; Hernández-Rey, J. J.; Hikasa, K.; Hinchliffe, I.; Höcker, A.; Huston, J.; Igo-Kemenes, P.; Jackson, J. D.; Johnson, K. F.; Junk, T.; Karlen, D.; Kayser, B.; Kirkby, D.; Klein, S. R.; Knowles, I. G.; Kolda, C.; Kowalewski, R. V.; Kreitz, P.; Krusche, B.; Kuyanov, Yu. V.; Kwon, Y.; Lahav, O.; Langacker, P.; Liddle, A.; Ligeti, Z.; Lin, C.-J.; Liss, T. M.; Littenberg, L.; Liu, J. C.; Lugovsky, K. S.; Lugovsky, S. B.; Mahlke, H.; Mangano, M. L.; Mannel, T.; Manohar, A. V.; Marciano, W. J.; Martin, A. D.; Masoni, A.; Milstead, D.; Miquel, R.; Mönig, K.; Murayama, H.; Nakamura, K.; Narain, M.; Nason, P.; Navas, S.; Nevski, P.; Nir, Y.; Olive, K. A.; Pape, L.; Patrignani, C.; Peacock, J. A.; Piepke, A.; Punzi, G.; Quadt, A.; Raby, S.; Raffelt, G.; Ratcliff, B. N.; Renk, B.; Richardson, P.; Roesler, S.; Rolli, S.; Romaniouk, A.; Rosenberg, L. J.; Rosner, J. L.; Sachrajda, C. T.; Sakai, Y.; Sarkar, S.; Sauli, F.; Schneider, O.; Scott, D.; Seligman, W. G.; Shaevitz, M. H.; Sjöstrand, T.; Smith, J. G.; Smoot, G. F.; Spanier, S.; Spieler, H.; Stahl, A.; Stanev, T.; Stone, S. L.; Sumiyoshi, T.; Tanabashi, M.; Terning, J.; Titov, M.; Tkachenko, N. P.; Törnqvist, N. A.; Tovey, D.; Trilling, G. H.; Trippe, T. G.; Valencia, G.; van Bibber, K.; Vincter, M. G.; Vogel, P.; Ward, D. R.; Watari, T.; Webber, B. R.; Weiglein, G.; Wells, J. D.; Whalley, M.; Wheeler, A.; Wohl, C. G.; Wolfenstein, L.; Womersley, J.; Woody, C. L.; Workman, R. L.; Yamamoto, A.; Yao, W.-M.; Zenin, O. V.; Zhang, J.; Zhu, R.-Y.; Zyla, P. A.; Harper, G.; Lugovsky, V. S.; Schaffner, P.; Particle Data Group

    2008-09-01

    This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2778 new measurements from 645 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 108 reviews are many that are new or heavily revised including those on CKM quark-mixing matrix, V ud & V us, V cb & V ub, top quark, muon anomalous magnetic moment, extra dimensions, particle detectors, cosmic background radiation, dark matter, cosmological parameters, and big bang cosmology. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.lbl.gov.

  7. Particle exposures and infections.

    PubMed

    Ghio, A J

    2014-06-01

    Particle exposures increase the risk for human infections. Particles can deposit in the nose, pharynx, larynx, trachea, bronchi, and distal lung and, accordingly, the respiratory tract is the system most frequently infected after such exposure; however, meningitis also occurs. Cigarette smoking, burning of biomass, dust storms, mining, agricultural work, environmental tobacco smoke (ETS), wood stoves, traffic-related emissions, gas stoves, and ambient air pollution are all particle-related exposures associated with an increased risk for respiratory infections. In addition, cigarette smoking, burning of biomass, dust storms, mining, and ETS can result in an elevated risk for tuberculosis, atypical mycobacterial infections, and meningitis. One of the mechanisms for particle-related infections includes an accumulation of iron by surface functional groups of particulate matter (PM). Since elevations in metal availability are common to every particle exposure, all PM potentially contributes to these infections. Therefore, exposures to wood stove emissions, diesel exhaust, and air pollution particles are predicted to increase the incidence and prevalence of tuberculosis, atypical mycobacterial infections, and meningitis, albeit these elevations are likely to be small and detectable only in large population studies. Since iron accumulation correlates with the presence of surface functional groups and dependent metal coordination by the PM, the risk for infection continues as long as the particle is retained. Subsequently, it is expected that the cessation of exposure will diminish, but not totally reverse, the elevated risk for infection.

  8. Apparatus for measuring particle properties

    DOEpatents

    Rader, D.J.; Castaneda, J.N.; Grasser, T.W.; Brockmann, J.E.

    1998-08-11

    An apparatus is described for determining particle properties from detected light scattered by the particles. The apparatus uses a light beam with novel intensity characteristics to discriminate between particles that pass through the beam and those that pass through an edge of the beam. The apparatus can also discriminate between light scattered by one particle and light scattered by multiple particles. The particle`s size can be determined from the intensity of the light scattered. The particle`s velocity can be determined from the elapsed time between various intensities of the light scattered. 11 figs.

  9. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  10. Biomimetic Particles as Therapeutics

    PubMed Central

    Green, Jordan J.

    2015-01-01

    In recent years, there have been major advances in the development of novel nanoparticle and microparticle-based therapeutics. An emerging paradigm is the incorporation of biomimetic features into these synthetic therapeutic constructs to enable them to better interface with biological systems. Through the control of size, shape, and material consistency, particle cores have been generated that better mimic natural cells and viruses. In addition, there have been significant advances in biomimetic surface functionalization of particles through the integration of bio-inspired artificial cell membranes and naturally derived cell membranes. Biomimetic technologies enable therapeutic particles to have increased potency to benefit human health. PMID:26277289

  11. Particle radiation therapy.

    PubMed

    Parker, R G

    1985-05-01

    Current interest in attempting to identify any therapeutic advantages of beams of heavy particles (heavier than electrons) over photons is based on differences in physical absorption and radiobiologic interactions. The article discusses: dose distributions in tissue, which are markedly different for particles than for high energy photons and so may be clinically advantageous for the former; differences in radiobiologic responses, which could lead to increased tumor cell killing and a possible increase in the therapeutic ratio for particles; clinical experience to date; directions for and impediments to future research. PMID:2983877

  12. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-09-02

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  13. Particle separation by dielectrophoresis

    PubMed Central

    Gascoyne, Peter R. C.; Vykoukal, Jody

    2009-01-01

    The application of dielectrophoresis to particle discrimination, separation, and fractionation is reviewed, some advantages and disadvantages of currently available approaches are considered, and some caveats are noted. PMID:12210248

  14. Particle Physics Masterclass

    ScienceCinema

    Helio Takai

    2016-07-12

    Students from six local high schools -- Farmingdale, Sachem East, Shoreham, Smithtown East, Ward Melville, and William Floyd -- came to Brookhaven National Laboratory to experience research with particle physicist Helio Takai. They were among more than 6,

  15. JSC Particle Telescope

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.

    2003-01-01

    This paper presents a detailed description of the Johnson Space Center's Particle Telescope. Schematic diagrams of the telescope geometry and an electronic block diagram of the detector telescopes' components are also described.

  16. Gas particle radiator

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1987-01-01

    The performance of a new space radiator concept, the gas particle radiator (GPR), is studied. The GPR uses a gas containing submicron particles as the radiating medium contained between the radiator's emitting surface and a transparent window. For a modest volume fraction of submicron particles and gas thickness, it is found that the emissivity is determined by the window transmittance. The window must have a high transmittance in the infrared and be structurally strong enough to contain the gas-particle mixture. When the GPR is compared to a proposed titanium wall, potassium heat pipe radiator, with both radiators operating at a power level of 1.01 MW at 775 K, it is found that the GPR mass is 31 percent lower than that of the heat pipe radiator.

  17. Accelerating Particles with Plasma

    SciTech Connect

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  18. Unstable particles near threshold

    NASA Astrophysics Data System (ADS)

    Chway, Dongjin; Jung, Tae Hyun; Kim, Hyung Do

    2016-07-01

    We explore the physics of unstable particles when the mother particle's mass is approximately the sum of the masses of its daughter particles. In this case, the conventional wave function renormalization factor used for the narrow width approximation is ill-defined. We propose a simple resolution of the problem that allows the use of the narrow width approximation by defining the wave function renormalization factor and the branching ratio in terms of the spectral density. We test new definitions by calculating the cross section in the Higgs portal model and a significant improvement is obtained. Meanwhile, no single decay width can be assigned to the unstable particles and non-exponential decay occurs at all time scales.

  19. The packing of particles

    SciTech Connect

    Cumberland, D.J.; Crawford, R.J.

    1987-01-01

    The wide range of information currently available on the packing of particles is brought together in this monograph. The authors' interest in the subject was initially aroused by the question of whether there is an optimum particle size distribution which would maximise the packing density of particles - a question which has attracted the interest of scientists and engineers for centuries. The densification of a powder mass is of relevance in a great many industries, among them the pharmaceutical, ceramic, powder metallurgy and civil engineering industries. In addition, the packing of regular - or irregular - shaped particles is also of relevance to a surprisingly large number of other industries and subject areas, i.e. the foundry industry, nuclear engineering, chemical engineering, crystallography, geology, biology, telecommunications, and so on. Accordingly, this book is written for a wide audience.

  20. Magnetic Particle Imaging

    SciTech Connect

    Minard, Kevin R.

    2010-02-01

    Rapid advances in the synthesis of superparamagnetic nanoparticles has stimulated widespread interest in their use as contrast agents for visualizing biological processes with Magnetic Resonance Imaging (MRI). With this approach, strong particle magnetism alters the MRI signal from nearby water protons and this, in turn, affects observed image contrast. Magnetic particle detection with MRI is therefore indirect and suffers from several associated problems, including poor quantification and tissuedependent performance. Magnetic Particle Imaging (MPI) overcomes these by directly measuring the amount of superparamagnetic material at each location. Mass sensitivity, spatial resolution, and imaging time is also comparable to or better than that achieved with MRI. Moreover, MPI is relatively inexpensive, meets all current safety guidelines, is quantitative, provides unambiguous contrast with tissue-independent performance, and can detect lower particle concentrations. Here, the basic principles behind MPI are described, factors affecting sensitivity and resolution are discussed, and potential utility for biomedical use is examined.

  1. Elementary particle physics

    NASA Technical Reports Server (NTRS)

    Perkins, D. H.

    1986-01-01

    Elementary particle physics is discussed. Status of the Standard Model of electroweak and strong interactions; phenomena beyond the Standard Model; new accelerator projects; and possible contributions from non-accelerator experiments are examined.

  2. Electromagnetic particle simulation codes

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.

    1985-01-01

    Electromagnetic particle simulations solve the full set of Maxwell's equations. They thus include the effects of self-consistent electric and magnetic fields, magnetic induction, and electromagnetic radiation. The algorithms for an electromagnetic code which works directly with the electric and magnetic fields are described. The fields and current are separated into transverse and longitudinal components. The transverse E and B fields are integrated in time using a leapfrog scheme applied to the Fourier components. The particle pushing is performed via the relativistic Lorentz force equation for the particle momentum. As an example, simulation results are presented for the electron cyclotron maser instability which illustrate the importance of relativistic effects on the wave-particle resonance condition and on wave dispersion.

  3. Particle Physics Masterclass

    SciTech Connect

    Helio Takai

    2009-04-10

    Students from six local high schools -- Farmingdale, Sachem East, Shoreham, Smithtown East, Ward Melville, and William Floyd -- came to Brookhaven National Laboratory to experience research with particle physicist Helio Takai. They were among more than 6,

  4. Elementary particle theory

    SciTech Connect

    Marciano, W.J.

    1984-12-01

    The present state of the art in elementary particle theory is reviewed. Topics include quantum electrodynamics, weak interactions, electroweak unification, quantum chromodynamics, and grand unified theories. 113 references. (WHK)

  5. Particle Size Analysis.

    ERIC Educational Resources Information Center

    Barth, Howard G.; Sun, Shao-Tang

    1989-01-01

    Presents a review of research focusing on scattering, elution techniques, electrozone sensing, filtration, centrifugation, comparison of techniques, data analysis, and particle size standards. The review covers the period 1986-1988. (MVL)

  6. Research in particle theory

    SciTech Connect

    Mansouri, F.; Suranyi, P; Wijewardhana, L.C.R.

    1991-10-01

    In the test particle approximation, the scattering amplitude for two-particle scattering in (2+1)-dimensional Chern-Simons-Witten gravity and supergravity was computed and compared to the corresponding metric solutions. The formalism was then extended to the exact gauge theoretic treatment of the two-particle scattering problem and compared to 't Hooft's results from the metric approach. We have studied dynamical symmetry breaking in 2+1 dimensional field theories. We have analyzed strong Extended Technicolor (ETC) models where the ETC coupling is close to a critical value. There are effective scalar fields in each of the theories. We have worked our how such scalar particles can be produced and how they decay. The {phi}{sup 4} field theory was investigated in the Schrodinger representation. The critical behavior was extracted in an arbitrary number of dimensions in second order of a systematic truncation approximation. The correlation exponent agrees with known values within a few percent.

  7. Particle chemistry impactor experiment

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Snetsinger, K. G.; Ferry, G. V.; Goodman, J. K.; Verma, S.

    1990-01-01

    Polar stratospheric cloud (PSC) particles are collected on impactors and studied with regard to physical and chemical properties to help explain the importance of heterogeneous chemical reactions for stratospheric ozone depletion. The nitric, hydrochloric, and sulfuric acid content of stratospheric aerosol particles collected at 18 km altitude was determined. It is suggested that nitric acid is a component of polar stratospheric clouds. This is important for two reasons: (1) it proves that chlorine activation takes place at the surface of PSC particles by converting chemically inert chlorine nitrate to chlorine radicals that can react with ozone; and (2) if the PSC particles are large enough to settle out from the stratosphere, the possibility of nitric acid removal can result in the denitrification of the stratosphere.

  8. Fine particle pollution

    Atmospheric Science Data Center

    2013-01-10

    ...   Satellites Track Human Exposure to Fine Particle Pollution   St. Louis, Missouri Alaskan Wildfires ... provides a good test region for satellite observations of pollution. ( Full St. Louis article ) MISR ...

  9. Big Bang Day: 5 Particles - 5. The Next Particle

    ScienceCinema

    None

    2016-07-12

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 5. The Next Particle The "sparticle" - a super symmetric partner to all the known particles could be the answer to uniting all the known particles and their interactions under one grand theoretical pattern of activity. But how do researchers know where to look for such phenomena and how do they know if they find them? Simon Singh reviews the next particle that physicists would like to find if the current particle theories are to ring true.

  10. Big Bang Day: 5 Particles - 5. The Next Particle

    SciTech Connect

    2009-10-08

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 5. The Next Particle The "sparticle" - a super symmetric partner to all the known particles could be the answer to uniting all the known particles and their interactions under one grand theoretical pattern of activity. But how do researchers know where to look for such phenomena and how do they know if they find them? Simon Singh reviews the next particle that physicists would like to find if the current particle theories are to ring true.

  11. PARTICLES OF DIFFERENCE.

    SciTech Connect

    SCHWARTZ,S.E.

    2000-09-21

    It is no longer appropriate, if it ever was, to think of atmospheric aerosols as homogeneous spheres of uniform composition and size. Within the United States, and even more globally, not only the mass loading but also the composition, morphology, and size distribution of atmospheric aerosols are highly variable, as a function of location, and at a given location as a function of time. Particles of a given aerodynamic size may differ from one another, and even within individual particles material may be inhomogeneously distributed, as for example, carbon spherules imbedded in much larger sulfate particles. Some of the particulate matter is primary, that is, introduced into the atmosphere directly as particles, such as carbon particles in diesel exhaust. Some is secondary, that is, formed in the atmosphere by gas-to-particle conversion. Much of the material is inorganic, mainly sulfates and nitrates resulting mainly from energy-related emissions. Some of the material is carbonaceous, in part primary, in part secondary, and of this material some is anthropogenic and some biogenic. While the heterogeneity of atmospheric aerosols complicates the problem of understanding their loading and distribution, it may well be the key to its solution. By detailed examination of the materials comprising aerosols it is possible to infer the sources of these materials. It may be possible as well to identify specific health impairing agents. The heterogeneity of aerosol particles is thus the key to identifying their sources, to understanding the processes that govern their loading and properties, and to devising control strategies that are both effective and efficient. Future research must therefore take cognizance of differences among aerosol particles and use these differences to advantage.

  12. Mass Formulae for Particles

    NASA Astrophysics Data System (ADS)

    Turu, Michi

    2003-07-01

    May we say?, the distribution of all particle masses are "Random" or "Chaos" or "Fractal" or "Bushing" as a whole. We can say perfectly, it is "Bushing". It's looks like a relationship among the masses of galaxy, sun, earth, moon, lunar orbiter. And also like the structure of contents(section, paragraph, item) in books. Generally, mass structures have the power of it's interaction constants. I state a fundamental formulae about particle masses in this purview.

  13. The Least Particle Theory

    NASA Astrophysics Data System (ADS)

    Hartsock, Robert

    2011-10-01

    The Least Particle Theory states that the universe was cast as a great sea of energy. MaX Planck declared a quantum of energy to be the least value in the universe. We declare the quantum of energy to be the least particle in the universe. Stephen Hawking declared quantum mechanics to be of no value in todays gross mechanics. That's like saying the number 1 has no place in mathematics.

  14. Safe biodegradable fluorescent particles

    DOEpatents

    Martin, Sue I.; Fergenson, David P.; Srivastava, Abneesh; Bogan, Michael J.; Riot, Vincent J.; Frank, Matthias

    2010-08-24

    A human-safe fluorescence particle that can be used for fluorescence detection instruments or act as a safe simulant for mimicking the fluorescence properties of microorganisms. The particle comprises a non-biological carrier and natural fluorophores encapsulated in the non-biological carrier. By doping biodegradable-polymer drug delivery microspheres with natural or synthetic fluorophores, the desired fluorescence can be attained or biological organisms can be simulated without the associated risks and logistical difficulties of live microorganisms.

  15. ELEMENTARY PARTICLE INTERACTIONS

    SciTech Connect

    EFREMENKO, YURI; HANDLER, THOMAS; KAMYSHKOV, YURI; SIOPSIS, GEORGE; SPANIER, STEFAN

    2013-07-30

    The High-Energy Elementary Particle Interactions group at UT during the last three years worked on the following directions and projects: Collider-based Particle Physics; Neutrino Physics, particularly participation in “NOνA”, “Double Chooz”, and “KamLAND” neutrino experiments; and Theory, including Scattering amplitudes, Quark-gluon plasma; Holographic cosmology; Holographic superconductors; Charge density waves; Striped superconductors; and Holographic FFLO states.

  16. Statistics of indistinguishable particles.

    PubMed

    Wittig, Curt

    2009-07-01

    The wave function of a system containing identical particles takes into account the relationship between a particle's intrinsic spin and its statistical property. Specifically, the exchange of two identical particles having odd-half-integer spin results in the wave function changing sign, whereas the exchange of two identical particles having integer spin is accompanied by no such sign change. This is embodied in a term (-1)(2s), which has the value +1 for integer s (bosons), and -1 for odd-half-integer s (fermions), where s is the particle spin. All of this is well-known. In the nonrelativistic limit, a detailed consideration of the exchange of two identical particles shows that exchange is accompanied by a 2pi reorientation that yields the (-1)(2s) term. The same bookkeeping is applicable to the relativistic case described by the proper orthochronous Lorentz group, because any proper orthochronous Lorentz transformation can be expressed as the product of spatial rotations and a boost along the direction of motion. PMID:19552474

  17. On Characterizing Particle Shape

    NASA Technical Reports Server (NTRS)

    Ennis, Bryan J.; Rickman, Douglas; Rollins, A. Brent; Ennis, Brandon

    2014-01-01

    It is well known that particle shape affects flow characteristics of granular materials, as well as a variety of other solids processing issues such as compaction, rheology, filtration and other two-phase flow problems. The impact of shape crosses many diverse and commercially important applications, including pharmaceuticals, civil engineering, metallurgy, health, and food processing. Two applications studied here include the dry solids flow of lunar simulants (e.g. JSC-1, NU-LHT-2M, OB-1), and the flow properties of wet concrete, including final compressive strength. A multi-dimensional generalized, engineering method to quantitatively characterize particle shapes has been developed, applicable to both single particle orientation and multi-particle assemblies. The two-dimension, three dimension inversion problem is also treated, and the application of these methods to DEM model particles will be discussed. In the case of lunar simulants, flow properties of six lunar simulants have been measured, and the impact of particle shape on flowability - as characterized by the shape method developed here -- is discussed, especially in the context of three simulants of similar size range. In the context of concrete processing, concrete construction is a major contributor to greenhouse gas production, of which the major contributor is cement binding loading. Any optimization in concrete rheology and packing that can reduce cement loading and improve strength loading can also reduce currently required construction safety factors. The characterization approach here is also demonstrated for the impact of rock aggregate shape on concrete slump rheology and dry compressive strength.

  18. Mutagenicity of airborne particles.

    PubMed

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles.

  19. Particle Accelerators Test Cosmological Theory.

    ERIC Educational Resources Information Center

    Schramm, David N.; Steigman, Gary

    1988-01-01

    Discusses the symbiotic relationship of cosmology and elementary-particle physics. Presents a brief overview of particle physics. Explains how cosmological considerations set limits on the number of types of elementary particles. (RT)

  20. Particle acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Forman, M. A.

    1987-01-01

    The most direct signatures of particle acceleration in flares are energetic particles detected in interplanetary space and in the Earth atmosphere, and gamma rays, neutrons, hard X-rays, and radio emissions produced by the energetic particles in the solar atmosphere. The stochastic and shock acceleration theories in flares are reviewed and the implications of observations on particle energy spectra, particle confinement and escape, multiple acceleration phases, particle anistropies, and solar atmospheric abundances are discussed.

  1. Proton: The Particle

    SciTech Connect

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10{sup 80}. Protons were created at 10{sup −6} –1 second after the Big Bang at ≈1.37 × 10{sup 10} years beforethe present. Proton life span has been experimentally determined to be ≥10{sup 34} years; that is, the age of the universe is 10{sup −24}th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W{sup +}, W{sup −}, Z{sup 0}, and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter.

  2. Particle-Charge Spectrometer

    NASA Technical Reports Server (NTRS)

    Fuerstenau, Stephen; Wilson, Gregory R.

    2008-01-01

    An instrument for rapidly measuring the electric charges and sizes (from approximately 1 to approximately 100 micrometers) of airborne particles is undergoing development. Conceived for monitoring atmospheric dust particles on Mars, instruments like this one could also be used on Earth to monitor natural and artificial aerosols in diverse indoor and outdoor settings for example, volcanic regions, clean rooms, powder-processing machinery, and spray-coating facilities. The instrument incorporates a commercially available, low-noise, ultrasensitive charge-sensing preamplifier circuit. The input terminal of this circuit--the gate of a field-effect transistor--is connected to a Faraday-cage cylindrical electrode. The charged particles of interest are suspended in air or other suitable gas that is made to flow along the axis of the cylindrical electrode without touching the electrode. The flow can be channeled and generated by any of several alternative means; in the prototype of this instrument, the gas is drawn along a glass capillary tube (see upper part of figure) coaxial with the electrode. The size of a particle affects its rate of acceleration in the flow and thus affects the timing and shape of the corresponding signal peak generated by the charge-sensing amplifier. The charge affects the magnitude (and thus also the shape) of the signal peak. Thus, the signal peak (see figure) conveys information on both the size and electric charge of a sensed particle. In experiments thus far, the instrument has been found to be capable of measuring individual aerosol particle charges of magnitude greater than 350 e (where e is the fundamental unit of electric charge) with a precision of +/- 150 e. The instrument can sample particles at a rate as high as several thousand per second.

  3. Proton: the particle.

    PubMed

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10(80). Protons were created at 10(-6) -1 second after the Big Bang at ≈1.37 × 10(10) years beforethe present. Proton life span has been experimentally determined to be ≥10(34) years; that is, the age of the universe is 10(-24)th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W(+), W(-), Z(0), and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter.

  4. Proton: the particle.

    PubMed

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10(80). Protons were created at 10(-6) -1 second after the Big Bang at ≈1.37 × 10(10) years beforethe present. Proton life span has been experimentally determined to be ≥10(34) years; that is, the age of the universe is 10(-24)th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W(+), W(-), Z(0), and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter. PMID:24074929

  5. Particles causing lung disease.

    PubMed Central

    Kilburn, K H

    1984-01-01

    The lung has a limited number of patterns of reaction to inhaled particles. The disease observed depends upon the location: conducting airways, terminal bronchioles and alveoli, and upon the nature of inflammation induced: acute, subacute or chronic. Many different agents cause narrowing of conducting airways (asthma) and some of these cause permanent distortion or obliteration of airways as well. Terminal bronchioles appear to be particularly susceptible to particles which cause goblet cell metaplasia, mucous plugging and ultimately peribronchiolar fibrosis. Cancer is the last outcome at the bronchial level and appears to depend upon continuous exposure to or retention of an agent in the airway and failure of the affected cells to be exfoliated which may be due to squamous metaplasia. Alveoli are populated by endothelial cells, Type I or pavement epithelial cells and metabolically active cuboidal Type II cells that produce the lungs specific surfactant, dipalmytol lecithin. Disturbances of surfactant lead to edema in distal lung while laryngeal edema due to anaphylaxis or fumes may produce asphyxia. Physical retention of indigestible particles or retention by immune memory responses may provoke hyaline membranes, stimulate alveolar lipoproteinosis and finally fibrosis. This later exuberant deposition of connective tissue has been best studied in the occupational pneumoconioses especially silicosis and asbestosis. In contrast emphysema a catabolic response, appears frequently to result from leakage or release of lysosomal proteases into the lung during processing of cigarette smoke particles. The insidious and probably most important human lung disease due to particles is bronchiolar obstruction and obliteration, producing progressive impairment of air flow. The responsible particle is the complex combination of poorly digestive lipids and complex carbohydrates with active chemicals which we call cigarette smoke. More research is needed to perfect, correct and

  6. Review of Particle Physics

    NASA Astrophysics Data System (ADS)

    Olive, K. A.; Particle Data Group; et al.

    2016-10-01

    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,062 new measurements from 721 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 117 reviews are many that are new or heavily revised, including those on Pentaquarks and Inflation. The complete Review is published online in a journal and on the website of the Particle Data Group (http://pdg.lbl.gov). The printed PDG Book contains the Summary Tables and all review articles but no longer includes the detailed tables from the Particle Listings. A Booklet with the Summary Tables and abbreviated versions of some of the review articles is also available. Contents Abstract, Contributors, Highlights and Table of ContentsAcrobat PDF (150 KB) IntroductionAcrobat PDF (456 KB) Particle Physics Summary Tables Gauge and Higgs bosonsAcrobat PDF (155 KB) LeptonsAcrobat PDF (134 KB) QuarksAcrobat PDF (84 KB) MesonsAcrobat PDF (871 KB) BaryonsAcrobat PDF (300 KB) Searches (Supersymmetry, Compositeness, etc.)Acrobat PDF (91 KB) Tests of conservation lawsAcrobat PDF (330 KB) Reviews, Tables, and Plots Detailed contents for this sectionAcrobat PDF (37 KB) Constants, Units, Atomic and Nuclear PropertiesAcrobat PDF (278 KB) Standard Model and Related TopicsAcrobat PDF (7.3 MB) Astrophysics and CosmologyAcrobat PDF (2.7 MB) Experimental Methods and CollidersAcrobat PDF (3.8 MB) Mathematical Tools or Statistics, Monte Carlo, Group

  7. Lorentz force particle analyzer

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Thess, André; Moreau, René; Tan, Yanqing; Dai, Shangjun; Tao, Zhen; Yang, Wenzhi; Wang, Bo

    2016-07-01

    A new contactless technique is presented for the detection of micron-sized insulating particles in the flow of an electrically conducting fluid. A transverse magnetic field brakes this flow and tends to become entrained in the flow direction by a Lorentz force, whose reaction force on the magnetic-field-generating system can be measured. The presence of insulating particles suspended in the fluid produce changes in this Lorentz force, generating pulses in it; these pulses enable the particles to be counted and sized. A two-dimensional numerical model that employs a moving mesh method demonstrates the measurement principle when such a particle is present. Two prototypes and a three-dimensional numerical model are used to demonstrate the feasibility of a Lorentz force particle analyzer (LFPA). The findings of this study conclude that such an LFPA, which offers contactless and on-line quantitative measurements, can be applied to an extensive range of applications. These applications include measurements of the cleanliness of high-temperature and aggressive molten metal, such as aluminum and steel alloys, and the clean manufacturing of semiconductors.

  8. Plasma Particle Lofting

    NASA Astrophysics Data System (ADS)

    Heijmans, Lucas; Nijdam, Sander

    2015-09-01

    In plasma particle lofting, macroscopic particles are picked up from a surface by an electric force. This force originates from a plasma that charges both the surface and any particle on it, leading to an electric force that pushes particles off the surface. This process has been suggested as a novel cleaning technique in modern high-tech applications, because it has intrinsic advantages over more traditional methods. Its development is, however, limited by a lack of knowledge of the underlying physics. Although the lofting has been demonstrated before, there are neither numerical nor experimental quantitative measures of it. Especially determining the charge deposited by a plasma on a particle on a surface proves difficult. We have developed a novel experimental method using a ``probe force.'' This allows us to, for the first time, quantitatively measure the plasma lofting force. By applying this method to different plasma conditions we can identify the important plasma parameters, allowing us to tailor a plasma for specific cleaning applications. Additionally, the quantitative result can help in the development of new models for the electron and ion currents through a plasma sheath.

  9. New particle searches

    SciTech Connect

    Derrick, M.

    1985-01-01

    The Standard Model is a remarkable result of decades of work in particle physics, but it is clearly an incomplete representation of the world. Exploring possibilities beyond the Standard Model is a major preoccupation of both theorists and experimentalists. Despite the many suggestions that are extant about the missing links within the Standard Model as well as extensions beyond it, no hard experimental evidence exists. In particular, in more than five years of experimentation both at PETRA and PEP no new particles have been found that would indicate new physics. Several reasons are possible for these negative results: the particles may be too heavy; the experiments may not be looking in the proper way; the cross sections may be too small or finally the particles may not exist. A continuing PEP program, at high luminosity will ensure that the second and third reason continue to be addressed. The higher energy e/sup +/e/sup -/ storage rings such as TRISTAN and LEP will extend the mass limits. High mass particles can also be produced at the CERN collider and soon with the Tevatron collider. A concise summary of the mass limits from the PETRA experiments has been given in a recent Mark J publication. The results shown provide a convenient yardstick against which to measure future search experiments.

  10. Large Particle Titanate Sorbents

    SciTech Connect

    Taylor-Pashow, K.

    2015-10-08

    This research project was aimed at developing a synthesis technique for producing large particle size monosodium titanate (MST) to benefit high level waste (HLW) processing at the Savannah River Site (SRS). Two applications were targeted, first increasing the size of the powdered MST used in batch contact processing to improve the filtration performance of the material, and second preparing a form of MST suitable for deployment in a column configuration. Increasing the particle size should lead to improvements in filtration flux, and decreased frequency of filter cleaning leading to improved throughput. Deployment of MST in a column configuration would allow for movement from a batch process to a more continuous process. Modifications to the typical MST synthesis led to an increase in the average particle size. Filtration testing on dead-end filters showed improved filtration rates with the larger particle material; however, no improvement in filtration rate was realized on a crossflow filter. In order to produce materials suitable for column deployment several approaches were examined. First, attempts were made to coat zirconium oxide microspheres (196 µm) with a layer of MST. This proved largely unsuccessful. An alternate approach was then taken synthesizing a porous monolith of MST which could be used as a column. Several parameters were tested, and conditions were found that were able to produce a continuous structure versus an agglomeration of particles. This monolith material showed Sr uptake comparable to that of previously evaluated samples of engineered MST in batch contact testing.

  11. Particle physics and cosmology

    SciTech Connect

    Kolb, E.W.

    1986-10-01

    This series of lectures is about the role of particle physics in physical processes that occurred in the very early stages of the bug gang. Of particular interest is the role of particle physics in determining the evolution of the early Universe, and the effect of particle physics on the present structure of the Universe. The use of the big bang as a laboratory for placing limits on new particle physics theories will also be discussed. Section 1 reviews the standard cosmology, including primordial nucleosynthesis. Section 2 reviews the decoupling of weakly interacting particles in the early Universe, and discusses neutrino cosmology and the resulting limits that may be placed on the mass and lifetime of massive neutrinos. Section 3 discusses the evolution of the vacuum through phase transitions in the early Universe and the formation of topological defects in the transitions. Section 4 covers recent work on the generation of the baryon asymmetry by baryon-number violating reactions in Grand Unified Theories, and mentions some recent work on baryon number violation effects at the electroweak transition. Section 5 is devoted to theories of cosmic inflation. Finally, Section 6 is a discussion of the role of extra spatial dimensions in the evolution of the early Universe. 78 refs., 32 figs., 6 tabs.

  12. Cosmology and Particle Physics

    NASA Astrophysics Data System (ADS)

    Steigman, G.

    1982-01-01

    The cosmic connections between physics on the very largest and very smallest scales are reviewed with an emphasis on the symbiotic relation between elementary particle physics and cosmology. After a review of the early Universe as a cosmic accelerator, various cosmological and astrophysical constraints on models of particle physics are outlined. To illustrate this approach to particle physics via cosmology, reference is made to several areas of current research: baryon non-conservation and baryon asymmetry; free quarks, heavy hadrons and other exotic relics; primordial nucleosynthesis and neutrino masses. In the last few years we have witnessed the birth and growth to healthy adolescence of a new collaboration between astrophysicists and particle physicists. The most notable success of this cooperative effort has been to provide the framework for understanding, within the context of GUTs and the hot big-bang cosmology, the universal baryon asymmetry. The most exciting new predictions this effort has spawned are that exotic relics may exist in detectable abundances. In particular, we may live in a neutrino-dominated Universe. In the next few years, accummulating laboratory data (for example proton decay, neutrino masses and oscillations) coupled with theoritical work in particle physics and cosmology will ensure the growth to maturity of this joint effort.

  13. RESONATOR PARTICLE SEPARATOR

    DOEpatents

    Blewett, J.P.

    1962-01-01

    A wave guide resonator structure is described for use in separating particles of equal momentum but differing in mass and having energies exceeding one billion electron volts. The particles are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high-energy accelerator. In this wave guide construction, the particles undergo preferential deflection as a result of the presence of an electric field. The boundary conditions established in the resonator are such as to eliminate an interfering magnetic component, and to otherwise phase the electric field to obtain a traveling wave such as one which moves at the same speed as the unwanted particle. The latter undergoes continuous deflection over the whole length of the device and is, therefore, eliminated while the wanted particle is deflected in opposite directions over the length of the resonator and is thus able to enter an exit aperture. (AEC)

  14. A relationship between maximum packing of particles and particle size

    NASA Technical Reports Server (NTRS)

    Fedors, R. F.

    1979-01-01

    Experimental data indicate that the volume fraction of particles in a packed bed (i.e. maximum packing) depends on particle size. One explanation for this is based on the idea that particle adhesion is the primary factor. In this paper, however, it is shown that entrainment and immobilization of liquid by the particles can also account for the facts.

  15. Big Bang Day: 5 Particles - 3. The Anti-particle

    SciTech Connect

    2009-10-07

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existence be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.

  16. Big Bang Day: 5 Particles - 3. The Anti-particle

    ScienceCinema

    None

    2016-07-12

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existence be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.

  17. Carbon-particle generator

    DOEpatents

    Hunt, A.J.

    1982-09-29

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  18. Biological particle identification apparatus

    DOEpatents

    Salzman, Gary C.; Gregg, Charles T.; Grace, W. Kevin; Hiebert, Richard D.

    1989-01-01

    An apparatus and method for making multiparameter light scattering measurements from suspensions of biological particles is described. Fourteen of the sixteen Mueller matrix elements describing the particles under investigation can be substantially individually determined as a function of scattering angle and probing radiations wavelength, eight elements simultaneously for each of two apparatus configurations using an apparatus which incluees, in its simplest form, two polarization modulators each operating at a chosen frequency, one polarizer, a source of monochromatic electromagnetic radiation, a detector sensitive to the wavelength of radiation employed, eight phase-sensitive detectors, and appropriate electronics. A database of known biological particle suspensions can be assembled, and unknown samples can be quickly identified once measurements are performed on it according to the teachings of the subject invention, and a comparison is made with the database.

  19. Charged particle accelerator grating

    DOEpatents

    Palmer, R.B.

    1985-09-09

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  20. Precision wood particle feedstocks

    DOEpatents

    Dooley, James H; Lanning, David N

    2013-07-30

    Wood particles having fibers aligned in a grain, wherein: the wood particles are characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L; the L.times.H dimensions define two side surfaces characterized by substantially intact longitudinally arrayed fibers; the W.times.H dimensions define two cross-grain end surfaces characterized individually as aligned either normal to the grain or oblique to the grain; the L.times.W dimensions define two substantially parallel top and bottom surfaces; and, a majority of the W.times.H surfaces in the mixture of wood particles have end checking.

  1. On particle track detectors

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Gruhn, T. A.; Andrus, C. H.

    1973-01-01

    Aqueous sodium hydroxide is widely used to develop charged particle tracks in polycarbonate film, particularly Lexan. The chemical nature of the etching process for this system has been determined. A method employing ultra-violet absorbance was developed for monitoring the concentration of the etch products in solution. Using this method it was possible to study the formation of the etching solution saturated in etch products. It was found that the system super-saturates to a significant extent before precipitation occurs. It was also learned that the system approaches its equilibrium state rather slowly. It is felt that both these phenomena may be due to the presence of surfactant in the solution. In light of these findings, suggestions are given regarding the preparation and maintenance of the saturated etch solution. Two additional research projects, involving automated techniques for particle track analysis and particle identification using AgCl crystals, are briefly summarized.

  2. Electrostatic particle precipitator

    SciTech Connect

    Uchiya, T.; Hikizi, S.; Yabuta, H.

    1984-04-03

    An electrostatic particle precipitator for removing dust particles from a flue gas. The precipitator includes a plurality of collecting electrodes in the shape of plates mounted on endless chains and moving between a first region through which flue gas to be treated flows and a second region where the flow of gas is extremely scarce. A dust removal mechanism is positioned in the second region to remove dust which accumulates on the electrode plates. The moving speed of the collecting electrodes is controlled within a certain range to maintain a prescribed thickness of dust on the electrodes whereby the ocurrence of reverse ionization phenomenon is prevented.

  3. Particle image cinematograph velocimetry

    NASA Astrophysics Data System (ADS)

    Ma, Guangyun; Shen, Gongxin

    1993-01-01

    Particle image cinematograph velocimetry (PICV), a new method based on 2D velocity field with time history measurements for unsteady flows, is presented here. Using mechanical chopping light pulses of the Aron ion laser, which are matched synchronously with moving action of a cinematograph, a series of double or multiple exposure images of particles which are seeded in fluid could be recorded in the films sequentially. The recording films are scanned by an auto-interrogation system, a series of instantaneous 2D-velocity distribution maps with time history are obtained. Some application results for a starting vortex flow around a backward step are presented.

  4. Review of Particle Physics

    NASA Astrophysics Data System (ADS)

    Olive, K. A.; Particle Data Group

    2014-08-01

    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosynthesis, Astrophysical Constants and Cosmological Parameters. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.lbl.gov. Contents Abstract, Contributors, Highlights and Table of ContentsAcrobat PDF (4.4 MB) IntroductionAcrobat PDF (595 KB) Particle Physics Summary Tables Gauge and Higgs bosonsAcrobat PDF (204 KB) LeptonsAcrobat PDF (167 KB) QuarksAcrobat PDF (115 KB) MesonsAcrobat PDF (976 KB) BaryonsAcrobat PDF (384 KB) Searches (Supersymmetry, Compositeness, etc.)Acrobat PDF (120 KB) Tests of conservation lawsAcrobat PDF (383 KB) Reviews, Tables, and Plots Detailed contents for this sectionAcrobat PDF (73 KB) Constants, Units, Atomic and Nuclear PropertiesAcrobat PDF (395 KB) Standard Model and Related TopicsAcrobat PDF (8.37 MB) Astrophysics and CosmologyAcrobat PDF (3.79 MB) Experimental Methods and CollidersAcrobat PDF (3.82 MB) Mathematical Tools of Statistics, Monte Carlo, Group Theory Acrobat

  5. Particles, space, and time

    NASA Astrophysics Data System (ADS)

    Icke, Vincent

    1996-03-01

    Our Universe consistes of particles, space and time. Ever since Descartes we have known that true emptiness cannot exist; ever since Einstein we have known that space and time are part of the stuff of our world. Efforts to determine the structure of particles go in parallel with the search for the structure of spacetime. Einstein gave us a geometrical answer regarding the structure of spacetime: a distance recipe (Lorentz-Minkowski) suffices. The theory boils down to a patching together of local Lorentz frames into a global whole, which gives it the form of a gauge field theory based on local Lorentz symmetry. On large scales, the Einstein Equation seems to work well. The structure of particles is described by a gauge field. too. On small scales the ‘Standard Model’ seems to work very well. However, we know from Newtonian gravity that the presence of particles must be related to the structure of spacetime. Einstein made a conjecture for the form of this connection using the Newtonian limit of small speeds and weak fields. The right hand side of his equation for the bulk theory of matter (the energy-momentum tensor), is equated to the Einstein tensor from non-Euclidian geometry. But that connection is wrong. The structure of spacetime cannot be equated to the density of particles if we include the Standard Model in the matter tensor. In field theory a potential is not something that can be freely changed by adding an arbitrary scalar term; due to the local (as opposed to global) character of the fields, a potential becomes an entity in itself. Einstein's conjecture runs into profound trouble because the reality of potentials implies that the zero point energy of the vacuum must be included in the Einstein equation. The net result is the appearance of a term equivalent to a cosmological constant A of stupendous size, some 10118 times the critical cosmic density. The crisis due to the zero point fluctuations in the energy-momentum tensor is a clash of titans

  6. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  7. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  8. Apparatus for measuring particle properties

    DOEpatents

    Rader, Daniel J.; Castaneda, Jaime N.; Grasser, Thomas W.; Brockmann, John E.

    1998-01-01

    An apparatus for determining particle properties from detected light scattered by the particles. The apparatus uses a light beam with novel intensity characteristics to discriminate between particles that pass through the beam and those that pass through an edge of the beam. The apparatus can also discriminate between light scattered by one particle and light scattered by multiple particles. The particle's size can be determined from the intensity of the light scattered. The particle's velocity can be determined from the elapsed time between various intensities of the light scattered.

  9. Particle concentration in exhaled breath

    SciTech Connect

    Fairchild, C.I.; Stampfer, J.F.

    1987-11-01

    Measurements were made of the number of concentration of particles in exhaled breath under various conditions of exercise. A laser light scattering particle spectrometer was used to count particles exhaled by test subjects wearing respirators in a challenge environment of clean, dry air. Precautions were taken to ensure that particles were not generated by the respirators and that no extraneous water or other particles were produced in the humid exhaled air. The number of particles detected in exhales air varied over a range from <0.10 to approx. 4 particles/cm/sup 3/ depending upon the test subject and his activity. Subjects at rest exhaled the lowest concentration of particles, whereas exercises producing a faster respiration rate caused increased exhalation of particles. Exhaled particle concentration can limit the usefulness of nondiscriminating, ambient challenge aerosols for the fit testing of highly protective respirators.

  10. Elementary Particles and Forces.

    ERIC Educational Resources Information Center

    Quigg, Chris

    1985-01-01

    Discusses subatomic particles (quarks, leptons, and others) revealed by higher accelerator energies. A connection between forces at this subatomic level has been established, and prospects are good for a description of forces that encompass binding atomic nuclei. Colors, fundamental interactions, screening, camouflage, electroweak symmetry, and…

  11. Particles causing lung disease

    SciTech Connect

    Kilburn, K.H.

    1984-04-01

    The lung has a limited number of patterns of reaction to inhaled particles. The disease observed depends upon the location: conducting airways, terminal bronchioles and alveoli, and upon the nature of inflammation induced: acute, subacute or chronic. Many different agents cause narrowing of conducting airways (asthma) and some of these cause permanent distortion or obliteration of airways as well. Terminal bronchioles appear to be particularly susceptible to particles which cause goblet cell metaplasia, mucous plugging and ultimately peribronchiolar fibrosis. Cancer is the last outcome at the bronchial level and appears to depend upon continuous exposure to or retention of an agent in the airway and failure of the affected cells to be exfoliated which may be due to squamous metaplasia. Alveoli are populated by endothelial cells, Type I or pavement epithelial cells and metabolically active cuboidal Type II cells that produce the lungs specific surfactant, dipalmytol lecithin. Disturbances of surfactant lead to edema in distal lung while laryngeal edema due to anaphylaxis or fumes may produce asphyxia. Physical retention of indigestible particles or retention by immune memory responses may provoke hyaline membranes, stimulate alveolar lipoproteinosis and finally fibrosis. This later exuberant deposition of connective tissue has been best studied in the occupational pneumoconioses especially silicosis and asbestosis. In contrast emphysema a catabolic response appears frequently to result from leakage or release of lysosomal proteases into the lung during processing of cigarette smoke particles. 164 references, 1 figure, 2 tables.

  12. Battery Particle Simulation

    SciTech Connect

    2014-09-15

    Two simulations show the differences between a battery being drained at a slower rate, over a full hour, versus a faster rate, only six minutes (a tenth of an hour). In both cases battery particles go from being fully charged (green) to fully drained (red), but there are significant differences in the patterns of discharge based on the rate.

  13. Particle-Size Analysis

    SciTech Connect

    Gee, Glendon W. ); Or, Dani; J.H. Dane and G.C. Topp

    2002-11-01

    Book Chapter describing methods of particle-size analysis for soils. Includes a variety of classification schemes. Standard methods for size distributions using pipet and hydrometer techniques are described. New laser-light scattering and related techniques are discussed. Complete with updated references.

  14. Supertwistors and massive particles

    SciTech Connect

    Mezincescu, Luca; Routh, Alasdair J.; Townsend, Paul K.

    2014-07-15

    In the (super)twistor formulation of massless (super)particle mechanics, the mass-shell constraint is replaced by a “spin-shell” constraint from which the spin content can be read off. We extend this formalism to massive (super)particles (with N-extended space–time supersymmetry) in three and four space–time dimensions, explaining how the spin-shell constraints are related to spin, and we use it to prove equivalence of the massive N=1 and BPS-saturated N=2 superparticle actions. We also find the supertwistor form of the action for “spinning particles” with N-extended worldline supersymmetry, massless in four dimensions and massive in three dimensions, and we show how this simplifies special features of the N=2 case. -- Highlights: •Spin-shell constraints are related to Poincaré Casimirs. •Twistor form of 4D spinning particle for spin N/2. •Twistor proof of scalar/antisymmetric tensor equivalence for 4D spin 0. •Twistor form of 3D particle with arbitrary spin. •Proof of equivalence of N=1 and N=2 BPS massive 4D superparticles.

  15. RESONATOR PARTICLE SEPARATOR

    DOEpatents

    Blewett, J.P.; Kiesling, J.D.

    1963-06-11

    A wave-guide resonator structure is designed for use in separating particles of equal momentum but differing in mass, having energies exceeding one billion eiectron volts. The particles referred to are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high energy accelerator. In the resonator a travelling electric wave is produced which travels at the same rate of speed as the unwanted particle which is thus deflected continuously over the length of the resonator. The wanted particle is slightly out of phase with the travelling wave so that over the whole length of the resonator it has a net deflection of substantially zero. The travelling wave is established in a wave guide of rectangular cross section in which stubs are provided to store magnetic wave energy leaving the electric wave energy in the main structure to obtain the desired travelling wave and deflection. The stubs are of such shape and spacing to establish a critical mathemitical relationship. (AEC)

  16. Particle Acceleration in Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi

    2005-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma ray burst (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments.

  17. Elementary particle interactions

    SciTech Connect

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Ward, B.F.L.; Close, F.E.; Christophorou, L.G.

    1990-10-01

    This report discusses freon bubble chamber experiments exposed to {mu}{sup +} and neutrinos, photon-proton interactions; shower counter simulations; SLD detectors at the Stanford Linear Collider, and the detectors at the Superconducting Super Collider; elementary particle interactions; physical properties of dielectric materials used in High Energy Physics detectors; and Nuclear Physics. (LSP)

  18. Lunar Soil Particle Separator

    NASA Technical Reports Server (NTRS)

    Berggren, Mark

    2010-01-01

    The Lunar Soil Particle Separator (LSPS) beneficiates soil prior to in situ resource utilization (ISRU). It can improve ISRU oxygen yield by boosting the concentration of ilmenite, or other iron-oxide-bearing materials found in lunar soils, which can substantially reduce hydrogen reduction reactor size, as well as drastically decreasing the power input required for soil heating

  19. Magnetic particle characterization-magnetophoretic mobility and particle size.

    PubMed

    Zhou, Chen; Boland, Eugene D; Todd, Paul W; Hanley, Thomas R

    2016-06-01

    Quantitative characterization of magnetic particles is useful for analysis and separation of labeled cells and magnetic particles. A particle velocimeter is used to directly measure the magnetophoretic mobility, size, and other parameters of magnetic particle suspensions. The instrument provides quantitative video analysis of particles and their motion. The trajectories of magnetic particles in an isodynamic magnetic field are recorded using a high-definition camera/microscope system for image collection. Image analysis software then converts the image data to the parameters of interest. The distribution of magnetophoretic mobility is determined by combining fast image analysis with velocimetry measurements. Particle size distributions have been characterized to provide a better understanding of sample quality. The results have been used in the development and operation of analyzer protocols for counting particle concentrations accurately and measuring magnetic susceptibility and size for simultaneous display for routine application to particle suspensions and magnetically labeled biological cells. © 2016 International Society for Advancement of Cytometry.

  20. Influence of particle wall adhesion on particle electrification in mixers.

    PubMed

    Zhu, Kewu; Tan, Reginald B H; Chen, Fengxi; Ong, Kunn Hadinoto; Heng, Paul W S

    2007-01-01

    In this work, particle electrification in the Turbula and horizontally oscillating mixers were investigated for adipic acid, microcrystalline cellulose (MCC), and glycine particles. MCC and glycine particles acquired positive electrostatic charges, while adipic acid particles attained negative charges in both mixers. Adipic acid (of sieved size larger than 500 microm), MCC, and glycine particles were monotonically charged to saturated values, and had negligible wall adhesion. On the contrary, the adipic acid particles, both unsieved and sieved but of smaller sieved size fraction, exhibited very different charging kinetics in the horizontally oscillating mixer. These adipic acid particles firstly acquired charges up to a maximum value, and then the charges slowly reduced to a lower saturated value with increasing mixing time. Furthermore, these particles were found to adhere to the inner wall of the mixer, and the adhesion increased with mixing time. Surface specific charge densities for adipic acid particles were estimated based on particle size distribution, and were found to increase with particle mean diameters under the conditions investigated. The results obtained from the current work suggested that electrostatic force enhanced particle-wall adhesion, and the adhered particles can have a significant impact on particle electrification. PMID:16930881

  1. Particle Swarm Optimization Toolbox

    NASA Technical Reports Server (NTRS)

    Grant, Michael J.

    2010-01-01

    The Particle Swarm Optimization Toolbox is a library of evolutionary optimization tools developed in the MATLAB environment. The algorithms contained in the library include a genetic algorithm (GA), a single-objective particle swarm optimizer (SOPSO), and a multi-objective particle swarm optimizer (MOPSO). Development focused on both the SOPSO and MOPSO. A GA was included mainly for comparison purposes, and the particle swarm optimizers appeared to perform better for a wide variety of optimization problems. All algorithms are capable of performing unconstrained and constrained optimization. The particle swarm optimizers are capable of performing single and multi-objective optimization. The SOPSO and MOPSO algorithms are based on swarming theory and bird-flocking patterns to search the trade space for the optimal solution or optimal trade in competing objectives. The MOPSO generates Pareto fronts for objectives that are in competition. A GA, based on Darwin evolutionary theory, is also included in the library. The GA consists of individuals that form a population in the design space. The population mates to form offspring at new locations in the design space. These offspring contain traits from both of the parents. The algorithm is based on this combination of traits from parents to hopefully provide an improved solution than either of the original parents. As the algorithm progresses, individuals that hold these optimal traits will emerge as the optimal solutions. Due to the generic design of all optimization algorithms, each algorithm interfaces with a user-supplied objective function. This function serves as a "black-box" to the optimizers in which the only purpose of this function is to evaluate solutions provided by the optimizers. Hence, the user-supplied function can be numerical simulations, analytical functions, etc., since the specific detail of this function is of no concern to the optimizer. These algorithms were originally developed to support entry

  2. Movement of particles using sequentially activated dielectrophoretic particle trapping

    DOEpatents

    Miles, Robin R.

    2004-02-03

    Manipulation of DNA and cells/spores using dielectrophoretic (DEP) forces to perform sample preparation protocols for polymerized chain reaction (PCR) based assays for various applications. This is accomplished by movement of particles using sequentially activated dielectrophoretic particle trapping. DEP forces induce a dipole in particles, and these particles can be trapped in non-uniform fields. The particles can be trapped in the high field strength region of one set of electrodes. By switching off this field and switching on an adjacent electrodes, particles can be moved down a channel with little or no flow.

  3. Particle analyzing method and apparatus

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Griffin, C. E.; Norris, D. D.; Friedlander, S. K. (Inventor)

    1980-01-01

    The rapid chemical analysis of particles in aerosols can be accomplished using an apparatus which produces a controlled stream of individual particles from an environment, and another apparatus which vaporizes and ionizes the particles moving in free flight, for analysis by a mass spectrometer. The device for producing the stream of particles includes a capillary tube through which the air with suspended particles moves, a skimmer with a small opening spaced from an end of the capillary tube to receive particles passing through the tube, and a vacuum pump which removes air from between the tube and skimmer and creates an inflow of air and particles through the tube. The particles passing through the skimmer opening can be simultaneously vaporized and ionized while in free flight, by a laser beam of sufficient intensity that is directed across the path of the free flying particles.

  4. Magnetic flocculation of paramagnetic particles

    SciTech Connect

    Tsouris, C.; Scott, T.C.

    1994-09-01

    An experimental apparatus has been assembled for the flocculation study of paramagnetic particles under the influence of a strong magnetic field. A magnetic field of strength up to 6 T is generated by a cryogenic magnet operating near liquid helium temperatures. Experimental information is obtained from fluctuation and intensity measurements of light passing through a particle suspension located in a uniform magnetic field. Particle flocculation is described by a Brownian flocculation model in which hydrodynamic, van der Waals, double-layer, and magnetic forces are incorporated for the estimation of the particle flocculation rate. A population-balance model is employed in conjunction with the flocculation model to predict the evolution of the particle size and composition or magnetic susceptibility with time. The effects of magnetic-field strength, magnetic susceptibility of the particles, particle size, and zeta potential are investigated. Results show that particle size and magnetic susceptibility each play an important role in the selective flocculation of particles of different properties.

  5. Experimental Particle Physics

    SciTech Connect

    Rosenfeld, Carl; Mishra, Sanjib R.; Petti, Roberto; Purohit, Milind V.

    2014-08-31

    The high energy physics group at the University of South Carolina, under the leadership of Profs. S.R. Mishra, R. Petti, M.V. Purohit, J.R. Wilson (co-PI's), and C. Rosenfeld (PI), engaged in studies in "Experimental Particle Physics." The group collaborated with similar groups at other universities and at national laboratories to conduct experimental studies of elementary particle properties. We utilized the particle accelerators at the Fermi National Accelerator Laboratory (Fermilab) in Illinois, the Stanford Linear Accelerator Center (SLAC) in California, and the European Center for Nuclear Research (CERN) in Switzerland. Mishra, Rosenfeld, and Petti worked predominantly on neutrino experiments. Experiments conducted in the last fifteen years that used cosmic rays and the core of the sun as a source of neutrinos showed conclusively that, contrary to the former conventional wisdom, the "flavor" of a neutrino is not immutable. A neutrino of flavor "e," "mu," or "tau," as determined from its provenance, may swap its identity with one of the other flavors -- in our jargon, they "oscillate." The oscillation phenomenon is extraordinarily difficult to study because neutrino interactions with our instruments are exceedingly rare -- they travel through the earth mostly unimpeded -- and because they must travel great distances before a substantial proportion have made the identity swap. Three of the experiments that we worked on, MINOS, NOvA, and LBNE utilize a beam of neutrinos from an accelerator at Fermilab to determine the parameters governing the oscillation. Two other experiments that we worked on, NOMAD and MIPP, provide measurements supportive of the oscillation experiments. Good measurements of the neutrino oscillation parameters may constitute a "low energy window" on related phenomena that are otherwise unobservable because they would occur only at energies way above the reach of conceivable accelerators. Purohit and Wilson participated in the BaBar experiment

  6. Particle nonuniformity effects on particle cloud flames in low gravity

    NASA Technical Reports Server (NTRS)

    Berlad, A. L.; Tangirala, V.; Seshadri, K.; Facca, L. T.; Ogrin, J.; Ross, H.

    1991-01-01

    Experimental and analytical studies of particle cloud combustion at reduced gravity reveal the substantial roles that particle cloud nonuniformities may play in particle cloud combustion. Macroscopically uniform, quiescent particle cloud systems (at very low gravitational levels and above) sustain processes which can render them nonuniform on both macroscopic and microscopic scales. It is found that a given macroscopically uniform, quiescent particle cloud flame system can display a range of microscopically nonuniform features which lead to a range of combustion features. Microscopically nonuniform particle cloud distributions are difficult experimentally to detect and characterize. A uniformly distributed lycopodium cloud of particle-enriched microscopic nonuniformities in reduced gravity displays a range of burning velocities for any given overall stoichiometry. The range of observed and calculated burning velocities corresponds to the range of particle enriched concentrations within a characteristic microscopic nonuniformity. Sedimentation effects (even in reduced gravity) are also examined.

  7. Particle processing technology

    NASA Astrophysics Data System (ADS)

    Sakka, Yoshio

    2014-02-01

    In recent years, there has been strong demand for the development of novel devices and equipment that support advanced industries including IT/semiconductors, the environment, energy and aerospace along with the achievement of higher efficiency and reduced environmental impact. Many studies have been conducted on the fabrication of innovative inorganic materials with novel individual properties and/or multifunctional properties including electrical, dielectric, thermal, optical, chemical and mechanical properties through the development of particle processing. The fundamental technologies that are key to realizing such materials are (i) the synthesis of nanoparticles with uniform composition and controlled crystallite size, (ii) the arrangement/assembly and controlled dispersion of nanoparticles with controlled particle size, (iii) the precise structural control at all levels from micrometer to nanometer order and (iv) the nanostructural design based on theoretical/experimental studies of the correlation between the local structure and the functions of interest. In particular, it is now understood that the application of an external stimulus, such as magnetic energy, electrical energy and/or stress, to a reaction field is effective in realizing advanced particle processing [1-3]. This special issue comprises 12 papers including three review papers. Among them, seven papers are concerned with phosphor particles, such as silicon, metals, Si3N4-related nitrides, rare-earth oxides, garnet oxides, rare-earth sulfur oxides and rare-earth hydroxides. In these papers, the effects of particle size, morphology, dispersion, surface states, dopant concentration and other factors on the optical properties of phosphor particles and their applications are discussed. These nanoparticles are classified as zero-dimensional materials. Carbon nanotubes (CNT) and graphene are well-known one-dimensional (1D) and two-dimensional (2D) materials, respectively. This special issue also

  8. Particle detector spatial resolution

    DOEpatents

    Perez-Mendez, Victor

    1992-01-01

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector.

  9. Particle detector spatial resolution

    DOEpatents

    Perez-Mendez, V.

    1992-12-15

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs.

  10. Multicolor particle shadow accelerometry

    NASA Astrophysics Data System (ADS)

    McPhail, M. J.; Krane, M. H.; Fontaine, A. A.; Goss, L.; Crafton, J.

    2015-04-01

    This paper describes the extension of multicolor particle shadow velocimetry (CPSV) to the measurement of local acceleration in an Eulerian frame of reference. A validation experiment was conducted on a pendulous disk undergoing unsteady rigid body rotation. Angular velocity and acceleration profiles by CPSA are presented along with a comparison to recordings by an accelerometer mounted on the pendulum. CPSA is also demonstrated in a fully-developed turbulent pipe flow. Profiles of standard deviation of the local acceleration in the near wall region ≤ft(0<~{{y}+}<75\\right) are compared to similar measurements by Christensen and Adrian. A favorable comparison is found between CPSA and particle image accelerometry (PIA). The effect of acceleration time delay, or the time between two velocity estimates, on local acceleration estimates is discussed.

  11. Aviation Particle Emissions Workshop

    NASA Technical Reports Server (NTRS)

    Wey, Chowen C. (Editor)

    2004-01-01

    The Aviation Particle Emissions Workshop was held on November 18 19, 2003, in Cleveland, Ohio. It was sponsored by the National Aeronautic and Space Administration (NASA) under the Vehicle Systems Program (VSP) and the Ultra- Efficient Engine Technology (UEET) Project. The objectives were to build a sound foundation for a comprehensive particulate research roadmap and to provide a forum for discussion among U.S. stakeholders and researchers. Presentations included perspectives from the Federal Aviation Administration, the U.S. Environmental Protection Agency, NASA, and United States airports. There were five interactive technical sessions: sampling methodology, measurement methodology, particle modeling, database, inventory and test venue, and air quality. Each group presented technical issues which generated excellent discussion. The five session leads collaborated with their members to present summaries and conclusions to each content area.

  12. Research in particle physics

    SciTech Connect

    Not Available

    1993-08-01

    This proposal presents the research accomplishments and ongoing activities of Boston University researchers in high energy physics. Some changes have been made in the structure of the program from the previous arrangement of tasks. Task B, Accelerator Design Physics, is being submitted as a separate proposal for an independent grant; this will be consistent with the nature of the research and the source of funding. We are active in seven principal areas which will be discussed in this report: Colliding Beams - physics of e{sup +}e{sup {minus}} and {bar p}p collisions; MACRO Experiment - search for magnetic monopoles and study of cosmic rays; Proton Decay - search for nucleon instability and study of neutrino interactions; Particle Theory - theoretical high energy particle physics, including two Outstanding Junior Investigator awards; Muon G-2 - measurement of the anomalous magnetic moment of the muon; SSCintcal - calorimetry for the GEM Experiment; and Muon detectors for the GEM Experiment.

  13. Cosmology and particle physics

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1988-01-01

    The interplay between cosmology and elementary particle physics is discussed. The standard cosmology is reviewed, concentrating on primordial nucleosynthesis and discussing how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is discussed, showing how a scenario in which the B-, C-, and CP-violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and for the present baryon-to-photon ratio. It is shown how the very early dynamical evolution of a very weakly coupled scalar field which is initially displaced from the minimum of its potential may explain a handful of very fundamental cosmological facts which are not explained by the standard cosmology.

  14. Particle-mesh techniques

    NASA Technical Reports Server (NTRS)

    Macneice, Peter

    1995-01-01

    This is an introduction to numerical Particle-Mesh techniques, which are commonly used to model plasmas, gravitational N-body systems, and both compressible and incompressible fluids. The theory behind this approach is presented, and its practical implementation, both for serial and parallel machines, is discussed. This document is based on a four-hour lecture course presented by the author at the NASA Summer School for High Performance Computational Physics, held at Goddard Space Flight Center.

  15. PARTICLE BEAM TRACKING CIRCUIT

    DOEpatents

    Anderson, O.A.

    1959-05-01

    >A particle-beam tracking and correcting circuit is described. Beam induction electrodes are placed on either side of the beam, and potentials induced by the beam are compared in a voltage comparator or discriminator. This comparison produces an error signal which modifies the fm curve at the voltage applied to the drift tube, thereby returning the orbit to the preferred position. The arrangement serves also to synchronize accelerating frequency and magnetic field growth. (T.R.H.)

  16. Dynamic radioactive particle source

    DOEpatents

    Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

    2012-06-26

    A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

  17. Universality of particle multiplicities

    SciTech Connect

    Goulianos, K. |

    1994-09-01

    We discuss the scaling properties and universality aspects of the rapidity and multiplicity distributions of particles produced in high energy hadronic and e{sup +}e{sup {minus}} interactions. This paper is based on material presented in three lectures on pomeron phenomenology, which included a review of traditional soft pomeron physics and selected topics on hard diffraction processes probing the structure function of the pomeron.

  18. Radiation in Particle Simulations

    SciTech Connect

    More, R; Graziani, F; Glosli, J; Surh, M

    2010-11-19

    Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of megabars to thousands of gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present four methods that attempt a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The first method applies the Lienard-Weichert solution of Maxwell's equations for a classical particle whose motion is assumed to be known. The second method expands the electromagnetic field in normal modes (planewaves in a box with periodic boundary-conditions) and solves the equation for wave amplitudes coupled to the particle motion. The third method is a hybrid molecular dynamics/Monte Carlo (MD/MC) method which calculates radiation emitted or absorbed by electron-ion pairs during close collisions. The fourth method is a generalization of the third method to include small clusters of particles emitting radiation during close encounters: one electron simultaneously hitting two ions, two electrons simultaneously hitting one ion, etc. This approach is inspired by the virial expansion method of equilibrium statistical mechanics. Using a combination of these methods we believe it is possible to do atomic-scale particle simulations of

  19. Particle sensor array

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor); Lieneweg, Udo (Inventor)

    1994-01-01

    A particle sensor array which in a preferred embodiment comprises a static random access memory having a plurality of ion-sensitive memory cells, each such cell comprising at least one pull-down field effect transistor having a sensitive drain surface area (such as by bloating) and at least one pull-up field effect transistor having a source connected to an offset voltage. The sensitive drain surface area and the offset voltage are selected for memory cell upset by incident ions such as alpha-particles. The static random access memory of the present invention provides a means for selectively biasing the memory cells into the same state in which each of the sensitive drain surface areas is reverse biased and then selectively reducing the reversed bias on these sensitive drain surface areas for increasing the upset sensitivity of the cells to ions. The resulting selectively sensitive memory cells can be used in a number of applications. By way of example, the present invention can be used for measuring the linear energy transfer of ion particles, as well as a device for assessing the resistance of CMOS latches to Cosmic Ray induced single event upsets. The sensor of the present invention can also be used to determine the uniformity of an ion beam.

  20. Cosmology with decaying particles

    SciTech Connect

    Turner, M.S.

    1984-09-01

    We consider a cosmological model in which an unstable massive relic particle species (denoted by X) has an initial mass density relative to baryons ..beta../sup -1/ identically equal rho/sub X//rho/sub B/ >> 1, and then decays recently (redshift z less than or equal to 1000) into particles which are still relativistic today (denoted by R). We write down and solve the coupled equations for the cosmic scale factor a(t), the energy density in the various components (rho/sub X/, rho/sub R/, rho/sub B/), and the growth of linear density perturbations (delta rho/rho). The solutions form a one parameter (..beta..) family of solutions; physically ..beta../sup -1/ approx. = (..cap omega../sub R//..cap omega../sub NR/) x (1 + z/sub D/) = (ratio today of energy density of relativistic to nonrelativistic particles) x (1 + redshift of (decay)). We discuss the observational implications of such a cosmological model and compare our results to earlier results computed in the simultaneous decay approximation. In an appendix we briefly consider the case where one of the decay products of the X is massive and becomes nonrelativistic by the present epoch. 21 references.

  1. Statistical Physics of Particles

    NASA Astrophysics Data System (ADS)

    Kardar, Mehran

    2006-06-01

    Statistical physics has its origins in attempts to describe the thermal properties of matter in terms of its constituent particles, and has played a fundamental role in the development of quantum mechanics. Based on lectures for a course in statistical mechanics taught by Professor Kardar at Massachusetts Institute of Technology, this textbook introduces the central concepts and tools of statistical physics. It contains a chapter on probability and related issues such as the central limit theorem and information theory, and covers interacting particles, with an extensive description of the van der Waals equation and its derivation by mean field approximation. It also contains an integrated set of problems, with solutions to selected problems at the end of the book. It will be invaluable for graduate and advanced undergraduate courses in statistical physics. A complete set of solutions is available to lecturers on a password protected website at www.cambridge.org/9780521873420. Based on lecture notes from a course on Statistical Mechanics taught by the author at MIT Contains 89 exercises, with solutions to selected problems Contains chapters on probability and interacting particles Ideal for graduate courses in Statistical Mechanics

  2. Particle Velocity Measuring System

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor)

    1998-01-01

    Method and apparatus are provided for determining the velocity of individual food particles within a liquid/solid food mixture that is cooked by an aseptic cooking method whereby the food mixture is heated as it flows through a flowline. At least one upstream and at least one downstream microwave transducer are provided to determine the minimum possible travel time of the fastest food particle through the flowline. In one embodiment, the upstream detector is not required. In another embodiment, a plurality of small dipole antenna markers are secured to a plurality of food particles to provide a plurality of signals as the markers pass the upstream and downstream transducers. The dipole antenna markers may also include a non-linear element to reradiate a harmonic frequency of a transmitter frequency. Upstream and downstream transducers include dipole antennas that are matched to the impedance of the food slurry and a signal transmission cable by various impedance matching means including unbalanced feed to the antennas.

  3. New particles and interactions

    SciTech Connect

    Gilman, F.J.; Grannis, P.D.

    1984-04-01

    The Working Group on New Particles and Interactions met as a whole at the beginning and at the end of the Workshop. However, much of what was accomplished was done in five subgroups. These were devoted to: (1) new quarks and leptons; (2) technicolor; (3) supersymmetry; (4) rare decays and CP; and (5) substructure of quarks and leptons. Other aspects of new particles, e.g., Higgs, W', Z', fell to the Electroweak Working Group to consider. The central question of this Workshop of comparing anti pp (with L = 10/sup 32//cm/sup 2/-sec) with pp (with L = 10/sup 33//cm/sup 2/-sec) colliders carried through to all these subgroups. In addition there were several other aspects of hadron colliders which were considered: what does an increase in ..sqrt..s gain in cross section and resultant sensitivity to new physics versus an increase in luminosity; will polarized beams or the use of asymmetries be essential in finding new interactions; where and at what level do rate limitations due to triggering or detection systems play a role; and how and where will the detection of particles with short, but detectable, lifetimes be important. 25 references.

  4. Alpha Particle Diagnostic

    SciTech Connect

    Fisher, Ray, K.

    2009-05-13

    The study of burning plasmas is the next frontier in fusion energy research, and will be a major objective of the U.S. fusion program through U.S. collaboration with our international partners on the ITER Project. For DT magnetic fusion to be useful for energy production, it is essential that the energetic alpha particles produced by the fusion reactions be confined long enough to deposit a significant fraction of their initial ~3.5 MeV energy in the plasma before they are lost. Development of diagnostics to study the behavior of energetic confined alpha particles is a very important if not essential part of burning plasma research. Despite the clear need for these measurements, development of diagnostics to study confined the fast confined alphas to date has proven extremely difficult, and the available techniques remain for the most part unproven and with significant uncertainties. Research under this grant had the goal of developing diagnostics of fast confined alphas, primarily based on measurements of the neutron and ion tails resulting from alpha particle knock-on collisions with the plasma deuterium and tritium fuel ions. One of the strengths of this approach is the ability to measure the alphas in the hot plasma core where the interesting ignition physics will occur.

  5. Particle Theory & Cosmology

    SciTech Connect

    Shafi, Qaisar; Barr, Steven; Gaisser, Thomas; Stanev, Todor

    2015-03-31

    1. Executive Summary (April 1, 2012 - March 31, 2015) Title: Particle Theory, Particle Astrophysics and Cosmology Qaisar Shafi University of Delaware (Principal Investigator) Stephen M. Barr, University of Delaware (Co-Principal Investigator) Thomas K. Gaisser, University of Delaware (Co-Principal Investigator) Todor Stanev, University of Delaware (Co-Principal Investigator) The proposed research was carried out at the Bartol Research included Professors Qaisar Shafi Stephen Barr, Thomas K. Gaisser, and Todor Stanev, two postdoctoral fellows (Ilia Gogoladze and Liucheng Wang), and several graduate students. Five students of Qaisar Shafi completed their PhD during the period August 2011 - August 2014. Measures of the group’s high caliber performance during the 2012-2015 funding cycle included pub- lications in excellent refereed journals, contributions to working groups as well as white papers, and conference activities, which together provide an exceptional record of both individual performance as well as overall strength. Another important indicator of success is the outstanding quality of the past and current cohort of graduate students. The PhD students under our supervision regularly win the top departmental and university awards, and their publications records show excellence both in terms of quality and quantity. The topics covered under this grant cover the frontline research areas in today’s High Energy Theory & Phenomenology. For Professors Shafi and Barr they include LHC related topics including supersymmetry, collider physics, fl vor physics, dark matter physics, Higgs boson and seesaw physics, grand unifi and neutrino physics. The LHC two years ago discovered the Standard Model Higgs boson, thereby at least partially unlocking the secrets behind electroweak symmetry breaking. We remain optimistic that new and exciting physics will be found at LHC 14, which explain our focus on physics beyond the Standard Model. Professors Shafi continued his

  6. Summary of Alpha Particle Transport

    SciTech Connect

    Medley, S.S.; White, R.B.; Zweben, S.J.

    1998-08-19

    This paper summarizes the talks on alpha particle transport which were presented at the 5th International Atomic Energy Agency's Technical Committee Meeting on "Alpha Particles in Fusion Research" held at the Joint European Torus, England in September 1997.

  7. AGR-2 and AGR-3/4 Release-to-Birth Ratio Data Analysis

    SciTech Connect

    Pham, Binh T.; Einerson, Jeffrey J.; Scates, Dawn M.; Maki, John T.; Petti, David A.

    2014-09-01

    A series of Advanced Gas Reactor (AGR) irradiation tests is being conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) in support of development and qualification of tristructural isotropic (TRISO) low enriched fuel used in the High Temperature Gas-cooled Reactor (HTGR). Each AGR test consists of multiple independently controlled and monitored capsules containing fuel compacts placed in a graphite cylinder shrouded by a steel shell. These capsules are instrumented with thermocouples embedded in the graphite enabling temperature control. AGR configuration and irradiation conditions are based on prismatic HTGR technology that is distinguished primarily through use of helium coolant, a low-power-density ceramic core capable of withstanding very high temperatures, and TRISO coated particle fuel. Thus, these tests provide valuable irradiation performance data to support fuel process development, qualify fuel for normal operating conditions, and support development and validation of fuel performance and fission product transport models and codes.

  8. The nuclear battery

    NASA Astrophysics Data System (ADS)

    Kozier, K. S.; Rosinger, H. E.

    The evolution and present status of an Atomic Energy of Canada Limited program to develop a small, solid-state, passively cooled reactor power supply known as the Nuclear Battery is reviewed. Key technical features of the Nuclear Battery reactor core include a heat-pipe primary heat transport system, graphite neutron moderator, low-enriched uranium TRISO coated-particle fuel and the use of burnable poisons for long-term reactivity control. An external secondary heat transport system extracts useful heat energy, which may be converted into electricity in an organic Rankine cycle engine or used to produce high-pressure steam. The present reference design is capable of producing about 2400 kW(t) (about 600 kW(e) net) for 15 full-power years. Technical and safety features are described along with recent progress in component hardware development programs and market assessment work.

  9. Observations of Ag diffusion in ion implanted SiC

    NASA Astrophysics Data System (ADS)

    Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; Hunter, Jerry L.; Giordani, Andrew J.; Allen, Todd R.

    2015-06-01

    The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500-1625 °C, were investigated by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated, including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.

  10. Palladium and ruthenium supported silver migration in 3C-silicon carbide

    NASA Astrophysics Data System (ADS)

    O'Connell, Jacques Herman; Neethling, Johannes Henoch

    2015-01-01

    Surrogate TRISO particles were infiltrated with a Pd Ag mixture and heat treated at 1000 °C to investigate the effect of Pd on Ag transport through current state of the art TRISO coatings for use in HTGRs. The experiment was repeated with Ru instead of Pd because of the similarities in the reaction between Pd and Ru with SiC. It was found that both Pd and Ru form their respective silicides after heat treatment together with the simultaneous precipitation of graphite. In both cases Ag was concentrated along the leading edge of the reaction zone which itself was concentrated along grain boundaries. However, the effect of Pd was much more pronounced than that of Ru making Ru at most a secondary contributor to Ag migration through SiC in TRISO fuel.

  11. Observations of Ag diffusion in ion implanted SiC

    SciTech Connect

    Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; Jerry L. Hunter, Jr.; Giordani, Andrew J.; Allen, Todd R.

    2015-03-17

    The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500–1625°C, were investigated in this study by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated, including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Lastly, estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.

  12. Microscale Heat Conduction Models and Doppler Feedback

    SciTech Connect

    Hawari, Ayman I.; Ougouag, Abderrafi

    2015-01-22

    The objective of this project is to establish an approach for providing the fundamental input that is needed to estimate the magnitude and time-dependence of the Doppler feedback mechanism in Very High Temperature reactors. This mechanism is the foremost contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic (TRISO) coated particles. Therefore, its correct prediction is essential to the conduct of safety analyses for these reactors. Since the effect is directly dependent on the actual temperature reached by the fuel during transients, the underlying phenomena of heat deposition, heat transfer and temperature rise must be correctly predicted. To achieve the above objective, this project will explore an approach that accounts for lattice effects as well as local temperature variations and the correct definition of temperature and related local effects.

  13. The DOE advanced gas reactor fuel development and qualification program

    NASA Astrophysics Data System (ADS)

    Petti, David; Maki, John; Hunn, John; Pappano, Pete; Barnes, Charles; Saurwein, John; Nagley, Scott; Kendall, Jim; Hobbins, Richard

    2010-09-01

    The high outlet temperatures and high thermal-energy conversion efficiency of modular high-temperature gas-cooled reactors (HTGRs) enable an efficient and cost-effective integration of the reactor system with non-electricity-generation applications, such as process heat and/or hydrogen production, for the many petrochemical and other industrial processes that require temperatures between 300°C and 900°C. The U.S. Department of Energy (DOE) has selected the HTGR concept for the Next Generation Nuclear Plant (NGNP) Project as a transformative application of nuclear energy that will demonstrate emissions-free nuclear-assisted electricity, process heat, and hydrogen production, thereby reducing greenhouse-gas emissions and enhancing energy security. The objective of the DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification program is to qualify tristructural isotropic (TRISO)-coated particle fuel for use in HTGRs. An overview of the program and recent progress is presented.

  14. Particle detection on flat surfaces

    NASA Astrophysics Data System (ADS)

    van der Donck, Jacques; Snel, Rob; Stortelder, Jetske; Abutan, Alfred; Oostrom, Sjoerd; van Reek, Sander; van der Zwan, Bert; van der Walle, Peter

    2011-04-01

    Since 2006 EUV Lithographic tools have been available for testing purposes giving a boost to the development of fab infrastructure for EUV masks. The absence of a pellicle makes the EUV reticles extremely vulnerable to particles. Therefore, the fab infrastructure for masks must meet very strict particle requirements. It is expected that all new equipment must be qualified on particles before it can be put into operation. This qualification requirement increases the need for a low cost method for particle detection on mask substrates. TNO developed its fourth generation particle scanner, the Rapid Nano. This scanner is capable of detecting nanometer sized particles on flat surfaces. The particle detection is based on dark field imaging techniques and fast image processing. The tool was designed for detection of a single added particle in a handling experiment over a reticle sized substrate. Therefore, the Rapid Nano is very suitable for the validation of particle cleanliness of equipment. During the measurement, the substrate is protected against particle contamination by placing it in a protective environment. This environment shields the substrate from all possible contamination source in the Nano Rapid (stages, elevator, cabling). The imaging takes place through a window in the protective cover. The geometry of the protective environment enables large flexibility in substrate shape and size. Particles can be detected on substrates varying from 152 x 152 mm mask substrates to wafers up to 200 mm. PSL particles of 50 nm were detected with signal noise ratio of 26. Larger particles had higher signal noise ratios. By individually linking particles in two measurements the addition of particles can be detected. These results show that the Rapid Nano is capable of detecting particles of 50 nm and larger of a full reticle substrate.

  15. Particle-free microchip processing

    DOEpatents

    Geller, Anthony S.; Rader, Daniel J.

    1996-01-01

    Method and apparatus for reducing particulate contamination in microchip processing are disclosed. The method and apparatus comprise means to reduce particle velocity toward the wafer before the particles can be deposited on the wafer surface. A reactor using electric fields to reduce particle velocity and prevent particulate contamination is disclosed. A reactor using a porous showerhead to reduce particle velocities and prevent particulate contamination is disclosed.

  16. Particle-free microchip processing

    DOEpatents

    Geller, A.S.; Rader, D.J.

    1996-06-04

    Method and apparatus for reducing particulate contamination in microchip processing are disclosed. The method and apparatus comprise means to reduce particle velocity toward the wafer before the particles can be deposited on the wafer surface. A reactor using electric fields to reduce particle velocity and prevent particulate contamination is disclosed. A reactor using a porous showerhead to reduce particle velocities and prevent particulate contamination is disclosed. 5 figs.

  17. Amps particle accelerator definition study

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.

    1975-01-01

    The Particle Accelerator System of the AMPS (Atmospheric, Magnetospheric, and Plasmas in Space) payload is a series of charged particle accelerators to be flown with the Space Transportation System Shuttle on Spacelab missions. In the configuration presented, the total particle accelerator system consists of an energetic electron beam, an energetic ion accelerator, and both low voltage and high voltage plasma acceleration devices. The Orbiter is illustrated with such a particle accelerator system.

  18. Polarization correlations of Dirac particles

    SciTech Connect

    Caban, Pawel; Dziegielewska, Agnieszka; Karmazyn, Anna; Okrasa, Malgorzata

    2010-03-15

    We calculate the polarization correlation function in the Einstein-Podolsky-Rosen-type experiments with relativistic spin-1/2 particles. This function depends monotonically on the particle momenta. Moreover, we also show that the polarization correlation function violates the Clauser-Horn-Shimony-Holt inequality and the degree of this violation can depend on the particle momenta and the motion of observers.

  19. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    SciTech Connect

    Kaduchak, Gregory; Ward, Michael D

    2014-10-21

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  20. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    SciTech Connect

    Kaduchak, Gregory; Ward, Michael D.

    2011-12-27

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  1. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOEpatents

    Kaduchak, Gregory; Ward, Michael D

    2016-05-17

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  2. Hadron particle theory

    SciTech Connect

    Alonso, J.R.

    1995-05-01

    Radiation therapy with ``hadrons`` (protons, neutrons, pions, ions) has accrued a 55-year track record, with by now over 30,000 patients having received treatments with one of these particles. Very good, and in some cases spectacular results are leading to growth in the field in specific well-defined directions. The most noted contributor to success has been the ability to better define and control the radiation field produced with these particles, to increase the dose delivered to the treatment volume while achieving a high degree of sparing of normal tissue. An additional benefit is the highly-ionizing, character of certain beams, leading to creater cell-killing potential for tumor lines that have historically been very resistant to radiation treatments. Until recently these treatments have been delivered in laboratories and research centers whose primary, or original mission was physics research. With maturity in the field has come both the desire to provide beam facilities more accessible to the clinical setting, of a hospital, as well as achieving, highly-efficient, reliable and economical accelerator and beam-delivery systems that can make maximum advantage of the physical characteristics of these particle beams. Considerable work in technology development is now leading, to the implementation of many of these ideas, and a new generation of clinically-oriented facilities is beginning to appear. We will discuss both the physical, clinical and technological considerations that are driving these designs, as well as highlighting, specific examples of new facilities that are either now treating, patients or that will be doing so in the near future.

  3. Radiation in Particle Simulations

    SciTech Connect

    More, R M; Graziani, F R; Glosli, J; Surh, M

    2009-06-15

    Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of Megabars to thousands of Gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present four methods that attempt a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The first method applies the Lienard-Weichert solution of Maxwell's equations for a classical particle whose motion is assumed to be known (section 3). The second method expands the electromagnetic field in normal modes (plane-waves in a box with periodic boundary-conditions) and solves the equation for wave amplitudes coupled to the particle motion (section 4). The third method is a hybrid MD/MC (molecular dynamics/Monte Carlo) method which calculates radiation emitted or absorbed by electron-ion pairs during close collisions (section 5). The fourth method is a generalization of the third method to include small clusters of particles emitting radiation during close encounters: one electron simultaneously hitting two ions, two electrons simultaneously hitting one ion, etc.(section 6). This approach is inspired by the Virial expansion method of equilibrium statistical mechanics.

  4. Solar Energetic Particle Variations

    NASA Technical Reports Server (NTRS)

    Reames, D. V.

    2003-01-01

    In the largest solar energetic-particle (SEP) events, acceleration occurs at shock waves driven out from the Sun by coronal mass ejections (CMEs). In fact, the highest proton intensities directly measured near Earth at energies up to approximately 1 GeV occur at the time of passage of shocks, which arrive about a day after the CMEs leave the Sun. CME-driven shocks expanding across magnetic fields can fill over half of the heliosphere with SEPs. Proton-generated Alfven waves trap particles near the shock for efficient acceleration but also throttle the intensities at Earth to the streaming limit early in the events. At high energies, particles begin to leak from the shock and the spectrum rolls downward to form an energy-spectral 'knee' that can vary in energy from approximately 1 MeV to approximately 1 GeV in different events. All of these factors affect the radiation dose as a function of depth and latitude in the Earth's atmosphere and the risk to astronauts and equipment in space. SEP ionization of the polar atmosphere produces nitrates that precipitate to become trapped in the polar ice. Observations of nitrate deposits in ice cores reveal individual large SEP events and extend back approximately 400 years. Unlike sunspots, SEP events follow the approximately 80-100-year Gleissberg cycle rather faithfully and are now at a minimum in that cycle. The largest SEP event in the last 400 years appears to be related to the flare observed by Carrington in 1859, but the probability of SEP events with such large fluences falls off sharply because of the streaming limit.

  5. Particle Beam Radiography

    NASA Astrophysics Data System (ADS)

    Peach, Ken; Ekdahl, Carl

    2014-02-01

    Particle beam radiography, which uses a variety of particle probes (neutrons, protons, electrons, gammas and potentially other particles) to study the structure of materials and objects noninvasively, is reviewed, largely from an accelerator perspective, although the use of cosmic rays (mainly muons but potentially also high-energy neutrinos) is briefly reviewed. Tomography is a form of radiography which uses multiple views to reconstruct a three-dimensional density map of an object. There is a very wide range of applications of radiography and tomography, from medicine to engineering and security, and advances in instrumentation, specifically the development of electronic detectors, allow rapid analysis of the resultant radiographs. Flash radiography is a diagnostic technique for large high-explosive-driven hydrodynamic experiments that is used at many laboratories. The bremsstrahlung radiation pulse from an intense relativistic electron beam incident onto a high-Z target is the source of these radiographs. The challenge is to provide radiation sources intense enough to penetrate hundreds of g/cm2 of material, in pulses short enough to stop the motion of high-speed hydrodynamic shocks, and with source spots small enough to resolve fine details. The challenge has been met with a wide variety of accelerator technologies, including pulsed-power-driven diodes, air-core pulsed betatrons and high-current linear induction accelerators. Accelerator technology has also evolved to accommodate the experimenters' continuing quest for multiple images in time and space. Linear induction accelerators have had a major role in these advances, especially in providing multiple-time radiographs of the largest hydrodynamic experiments.

  6. The Auroral Particles experiment

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An instrument for the detection of particles in the energy range of 0.1 ev to 80 Kev was designed, built, tested, calibrated, and flown onboard the spacecraft ATS-6. Data from this instrument generated the following research: intensive studies of the plasma in the vicinity of the spacecraft; global variations of plasmas; correlative studies using either other spacecraft or ground based measurements; and studies of spacecraft interactions with ambient plasmas including charging, local electric fields due to differential charging, and active control of spacecraft potential. Results from this research are presented.

  7. Particle acceleration in flares

    NASA Technical Reports Server (NTRS)

    Benz, Arnold O.; Kosugi, Takeo; Aschwanden, Markus J.; Benka, Steve G.; Chupp, Edward L.; Enome, Shinzo; Garcia, Howard; Holman, Gordon D.; Kurt, Victoria G.; Sakao, Taro

    1994-01-01

    Particle acceleration is intrinsic to the primary energy release in the impulsive phase of solar flares, and we cannot understand flares without understanding acceleration. New observations in soft and hard X-rays, gamma-rays and coherent radio emissions are presented, suggesting flare fragmentation in time and space. X-ray and radio measurements exhibit at least five different time scales in flares. In addition, some new observations of delayed acceleration signatures are also presented. The theory of acceleration by parallel electric fields is used to model the spectral shape and evolution of hard X-rays. The possibility of the appearance of double layers is further investigated.

  8. Microgravity Particle Dynamics

    NASA Technical Reports Server (NTRS)

    Clark, Ivan O.; Johnson, Edward J.

    1996-01-01

    This research seeks to identify the experiment design parameters for future flight experiments to better resolve the effects of thermal and velocity gradients on gas-solid flows. By exploiting the reduced body forces and minimized thermal convection current of reduced gravity experiments, features of gas-solid flow normally masked by gravitationally induced effects can be studied using flow regimes unattainable under unigravity. This paper assesses the physical scales of velocity, length, time, thermal gradient magnitude, and velocity gradient magnitude likely to be involved in laminar gas-solid multiphase flight experiments for 1-100 micro-m particles.

  9. Particle bed reactor modeling

    NASA Technical Reports Server (NTRS)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    1993-01-01

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  10. Physics of windblown particles

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Leach, Rodman; Marshall, John R.; White, Bruce; Iversen, James D.; Nickling, William G.; Gillette, Dale; Sorensen, Michael

    1987-01-01

    A laboratory facility proposed for the Space Station to investigate fundamental aspects of windblown particles is described. The experiments would take advantage of the environment afforded in earth orbit and would be an extension of research currently being conducted on the geology and physics of windblown sediments on earth, Mars, and Venus. Aeolian (wind) processes are reviewed in the planetary context, the scientific rational is given for specific experiments to be conducted, the experiment apparatus (the Carousel Wind Tunnel, or CWT) is described, and a plan presented for implementing the proposed research program.

  11. Small Particle Pollutants

    NASA Technical Reports Server (NTRS)

    1976-01-01

    NASA and the EPA are cooperating to measure particle size of all elements in aerosols from airports, coal-fired power stations, municipal waste incinerators, and other combustion aerosol sources. Langley intends to sample the air using its proton-induced x-ray emission technique initially developed to determine aerosols in jet-engine exhaust. Proton technique is important because no other rapid, nondestructive method now exists for measuring trace element compositions of massive amounts of air. Method can also analyze human tissue and hair samples to determine exposure to toxic elements.

  12. Particle data reduction in Japan

    NASA Technical Reports Server (NTRS)

    Nakayama, Mitsushige

    1987-01-01

    The characterization of atomized particles generated by various atomizer and the mechanics of their evaporation and combustion processes were studied. The need existed for visualizing the internal structure of flames including evaporation and combustion processes as well as for a better way of understanding spray particle generation mechanisms and internal structures. A particle sizer based on Fraunhofer diffraction for detecting particle size and in-line Fraunhofer holograms for observation of local spray particles were used. A novel visualizing technique based on Computer Technology was developed and is discussed.

  13. Apparatus for blending small particles

    DOEpatents

    Bradley, R.A.; Reese, C.R.; Sease, J.D.

    1975-08-26

    An apparatus is described for blending small particles and uniformly loading the blended particles in a receptacle. Measured volumes of various particles are simultaneously fed into a funnel to accomplish radial blending and then directed onto the apex of a conical splitter which collects the blended particles in a multiplicity of equal subvolumes. Thereafter the apparatus sequentially discharges the subvolumes for loading in a receptacle. A system for blending nuclear fuel particles and loading them into fuel rod molds is described in a preferred embodiment. (auth)

  14. Synthesis of Biofunctional Janus Particles.

    PubMed

    Li, Binghui; Wang, Man; Chen, Kui; Cheng, Zhifeng; Chen, Gaojian; Zhang, Zexin

    2015-06-01

    Janus particles with anisotropic biofunctionalities are perfect models to mimic anisotropic architectures and directional interactions that occur in nature. It is therefore highly desirable to develop reliable and efficient methods to synthesize biofunctional Janus particles. Herein, a facile method combining seeded-emulsion polymerization and thiol-click chemistry has been developed to synthesize Janus particles with glucose moieties on one side. These biofunctional Janus particles show region-selective binding of protein, which represents a big step toward biomimicry, and demonstrates the potential of the bioJanus particles for targeted drug delivery and binding.

  15. Dusty-Plasma Particle Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the

  16. Radiation emission from small particles

    NASA Astrophysics Data System (ADS)

    Egan, W. G.; Hilgeman, T. W.

    1984-04-01

    Measurements have been made of the IR radiation from monodisperse optically absorbing spherical particles of di-2-ethylhexyl sebacate. The purpose was to validate the Mie emission theory for particles that are small compared with the radiation wavelength. In contradiction to the Mie theory, McGregor has theoretically concluded that radiation absorption or emission is not possible at wavelengths longer than pi times the square root of 2 times the particle diameter for spherical particles. The present results on monodisperse spherical particles of 3, 1, and 0.5 microns emitting at a wavelength of 3.4 microns support the Mie theory predictions.

  17. Synthesis of Biofunctional Janus Particles.

    PubMed

    Li, Binghui; Wang, Man; Chen, Kui; Cheng, Zhifeng; Chen, Gaojian; Zhang, Zexin

    2015-06-01

    Janus particles with anisotropic biofunctionalities are perfect models to mimic anisotropic architectures and directional interactions that occur in nature. It is therefore highly desirable to develop reliable and efficient methods to synthesize biofunctional Janus particles. Herein, a facile method combining seeded-emulsion polymerization and thiol-click chemistry has been developed to synthesize Janus particles with glucose moieties on one side. These biofunctional Janus particles show region-selective binding of protein, which represents a big step toward biomimicry, and demonstrates the potential of the bioJanus particles for targeted drug delivery and binding. PMID:25858757

  18. Interaction of Burning Metal Particles

    NASA Technical Reports Server (NTRS)

    Dreizin, Edward L.; Berman, Charles H.; Hoffmann, Vern K.

    1999-01-01

    Physical characteristics of the combustion of metal particle groups have been addressed in this research. The combustion behavior and interaction effects of multiple metal particles has been studied using a microgravity environment, which presents a unique opportunity to create an "aerosol" consisting of relatively large particles, i.e., 50-300 micrometer diameter. Combustion behavior of such an aerosol could be examined using methods adopted from well-developed single particle combustion research. The experiment included fluidizing relatively large (order of 100 micrometer diameter) uniform metal particles under microgravity and igniting such an "aerosol" using a hot wire igniter. The flame propagation and details of individual particle combustion and particle interaction have been studied using a high speed movie and video-imaging with cameras coupled with microscope lenses to resolve individual particles. Interference filters were used to separate characteristic metal and metal oxide radiation bands form the thermal black body radiation. Recorded flame images were digitized and employed to understand the processes occurring in the burning aerosol. The development of individual particle flames, merging or separation, and extinguishing as well as induced particle motion have been analyzed to identify the mechanisms governing these processes. Size distribution, morphology, and elemental compositions of combustion products were characterized and used to link the observed in this project aerosol combustion phenomena with the recently expanded mechanism of single metal particle combustion.

  19. Interaction of Burning Metal Particles

    NASA Technical Reports Server (NTRS)

    Dreizin, Edward L.; Berman, Charles H.; Hoffmann, Vern K.

    1999-01-01

    Physical characteristics of the combustion of metal particle groups have been addressed in this research. The combustion behavior and interaction effects of multiple metal particles has been studied using a microgravity environment, which presents a unique opportunity to create an "aerosol" consisting of relatively large particles, i.e., 50-300 m diameter. Combustion behavior of such an aerosol could be examined using methods adopted from well-developed single particle combustion research. The experiment included fluidizing relatively large (order of 100 m diameter) uniform metal particles under microgravity and igniting such an "aerosol" using a hot wire igniter. The flame propagation and details of individual particle combustion and particle interaction have been studied using a high speed movie and video-imaging with cameras coupled with microscope lenses to resolve individual particles. Interference filters were used to separate characteristic metal and metal oxide radiation bands from the thermal black body radiation. Recorded flame images were digitized and various image processing techniques including flame position tracking, color separation, and pixel by pixel image comparison were employed to understand the processes occurring in the burning aerosol. The development of individual particle flames, merging or separation, and extinguishment as well as induced particle motion have been analyzed to identify the mechanisms governing these processes. Size distribution, morphology, and elemental compositions of combustion products were characterized and used to link the observed in this project aerosol combustion phenomena with the recently expanded mechanism of single metal particle combustion.

  20. Classification of Volatile Engine Particles

    SciTech Connect

    Cheng, Mengdawn

    2013-01-01

    Volatile particles cannot be detected at the engine exhaust by an aerosol detector. They are formed when the exhaust is mixed with ambient air downstream. Lack of a precise definition of volatile engine particles has been an impediment to engine manufacturers and regulatory agencies involved in the development of an effective control strategy. It is beyond doubt that volatile particles from combustion sources contribute to the atmospheric particulate burden, and the effect of that contribution is a critical issue in the ongoing research in the areas of air quality and climate change. A new instrument, called volatile particle separator (VPS), has been developed. It utilizes a proprietary microporous metallic membrane to separate particles from vapors. VPS data were used in the development of a two-parameter function to quantitatively classify, for the first time, the volatilization behavior of engine particles. The value of parameter A describes the volatilization potential of an aerosol. A nonvolatile particle has a larger A-value than a volatile one. The value of parameter k, an effective evaporation energy barrier, is found to be much smaller for small engine particles than that for large engine particles. The VPS instrument provides a means beyond just being a volatile particle remover; it enables a numerical definition to characterize volatile engine particles.

  1. Gyrokinetic particle simulation model

    SciTech Connect

    Lee, W.W.

    1986-07-01

    A new type of particle simulation model based on the gyrophase-averaged Vlasov and Poisson equations is presented. The reduced system, in which particle gyrations are removed from the equations of motion while the finite Larmor radius effects are still preserved, is most suitable for studying low frequency microinstabilities in magnetized plasmas. It is feasible to simulate an elongated system (L/sub parallel/ >> L/sub perpendicular/) with a three-dimensional grid using the present model without resorting to the usual mode expansion technique, since there is essentially no restriction on the size of ..delta..x/sub parallel/ in a gyrokinetic plasma. The new approach also enables us to further separate the time and spatial scales of the simulation from those associated with global transport through the use of multiple spatial scale expansion. Thus, the model can be a very efficient tool for studying anomalous transport problems related to steady-state drift-wave turbulence in magnetic confinement devices. It can also be applied to other areas of plasma physics.

  2. Particle physics -- Future directions

    SciTech Connect

    Chris Quigg

    2001-11-29

    Wonderful opportunities await particle physics over the next decade, with the coming of the Large Hadron Collider at CERN to explore the 1-TeV scale (extending efforts at LEP and the Tevatron to unravel the nature of electroweak symmetry breaking) and many initiatives to develop our understanding of the problem of identity: what makes a neutrino a neutrino and a top quark a top quark. Here I have in mind the work of the B factories and the Tevatron collider on CP violation and the weak interactions of the b quark; the wonderfully sensitive experiments at Brookhaven, CERN, Fermilab, and Frascati on CP violation and rare decays of kaons; the prospect of definitive accelerator experiments on neutrino oscillations and the nature of the neutrinos; and a host of new experiments on the sensitivity frontier. We might even learn to read experiment for clues about the dimensionality of spacetime. If we are inventive enough, we may be able to follow this rich menu with the physics opportunities offered by a linear collider and a (muon storage ring) neutrino factory. I expect a remarkable flowering of experimental particle physics, and of theoretical physics that engages with experiment. I describe some of the great questions before us and the challenges of providing the instruments that will be needed to define them more fully and eventually to answer them.

  3. Particle physics---Experimental

    SciTech Connect

    Lord, J.J.; Boynton, P.E.; Burnett, T.H.; Wilkes, R.J.

    1991-08-21

    We are continuing a research program in particle astrophysics and high energy experimental particle physics. We have joined the DUMAND Collaboration, which is constructing a deep undersea astrophysical neutrino detector near Hawaii. Studies of high energy hadronic interactions using emulsion chamber techniques were also continued, using balloon flight exposures to ultra-high cosmic ray nuclei (JACEE) and accelerator beams. As members of the DUMAND Collaboration, we have responsibility for development a construction of critical components for the deep undersea neutrino detector facility. We have designed and developed the acoustical positioning system required to permit reconstruction of muon tracks with sufficient precision to meet the astrophysical goals of the experiment. In addition, we are making significant contributions to the design of the database and triggering system to be used. Work has been continuing in other aspects of the study of multiparticle production processes in nuclei. We are participants in a joint US/Japan program to study nuclear interactions at energies two orders of magnitude greater than those of existing accelerators, using balloon-borne emulsion chambers. On one of the flights we found two nuclear interactions of multiplicity over 1000 -- one with a multiplicity of over 2000 and pseudorapidity density {approximately} 800 in the central region. At the statistical level of the JACEE experiment, the frequency of occurrence of such events is orders of magnitude too large. We have continued our ongoing program to study hadronic interactions in emulsions exposed to high energy accelerator beams.

  4. Holographic particle detection

    NASA Technical Reports Server (NTRS)

    Bowen, Theodore

    1988-01-01

    The feasibility was studied of developing a novel particle track detector based on the detection of 1p-1s emission radiation from electron bubbles in liquid helium. The principles, design, construction, and initial testing of the detection system have been described in previous reports. The main obstacle encountered was the construction of the liquid-helium tight infrared windows. Despite numerous efforts in testing and redesigning the windows, the problem of window leakage at low temperature persisted. Due to limited time and resources, attention was switched to investigating the possibility of using room-temperature liquid as the detection medium. A possible mechanism was the detection of de-excitation radiation emitted from localized electrons in common liquids where electrons exhibit low mobilities, as suggested in the previous report. The purity of the liquid is critical in this method as the dissolved impurities (such as oxygen), even in trace amounts, will act as scavengers of electrons. Another mechanism is discussed whereby the formation of the superoxide ions by electron scavenging behavior of dissolved oxygen is exploited to detect the track of ionizing particles. An experiment to measure the ionization current produced in a liquid by a pulsed X-ray beam in order to study propertiies of the ions is also reported.

  5. Energetic particles at Uranus

    NASA Technical Reports Server (NTRS)

    Cheng, Andrew F.; Krimigis, S. M.; Lanzerotti, L. J.

    1991-01-01

    The energetic particle measurements by the low-energy charged-particle and cosmic-ray instruments on the Voyager 2 spacecraft in the magnetosphere of Uranus are reviewed. Upstream events were observed outside the Uranian bow shock, probably produced by ion escape from the magnetosphere. Evidence of earthlike substorm activity was discovered within the Uranian magnetosphere. A proton injection event was observed within the orbit of Umbriel and proton events were observed in the magnetotail plasma-sheet boundary layer that are diagnostic of earthlike substorms. The magnetospheric composition is totally dominated by protons, with only a trace abundance of H(2+) and no evidence for He or heavy ions; the Uranian atmophere is argued to be the principal plasma source. Phase-space densities of medium energy protons show inward radial diffusion and are quantitatively similar to those observed at the earth, Jupiter, and Saturn. These findings and plasma wave data suggest the existence of structures analogous to the earth's plasmasphere and plasmapause.

  6. Particle therapy for noncancer diseases

    SciTech Connect

    Bert, Christoph; Engenhart-Cabillic, Rita; Durante, Marco

    2012-04-15

    Radiation therapy using high-energy charged particles is generally acknowledged as a powerful new technique in cancer treatment. However, particle therapy in oncology is still controversial, specifically because it is unclear whether the putative clinical advantages justify the high additional costs. However, particle therapy can find important applications in the management of noncancer diseases, especially in radiosurgery. Extension to other diseases and targets (both cranial and extracranial) may widen the applications of the technique and decrease the cost/benefit ratio of the accelerator facilities. Future challenges in this field include the use of different particles and energies, motion management in particle body radiotherapy and extension to new targets currently treated by catheter ablation (atrial fibrillation and renal denervation) or stereotactic radiation therapy (trigeminal neuralgia, epilepsy, and macular degeneration). Particle body radiosurgery could be a future key application of accelerator-based particle therapy facilities in 10 years from today.

  7. Echo particle image velocimetry.

    PubMed

    DeMarchi, Nicholas; White, Christopher

    2012-12-27

    The transport of mass, momentum, and energy in fluid flows is ultimately determined by spatiotemporal distributions of the fluid velocity field.(1) Consequently, a prerequisite for understanding, predicting, and controlling fluid flows is the capability to measure the velocity field with adequate spatial and temporal resolution.(2) For velocity measurements in optically opaque fluids or through optically opaque geometries, echo particle image velocimetry (EPIV) is an attractive diagnostic technique to generate "instantaneous" two-dimensional fields of velocity.(3,4,5,6) In this paper, the operating protocol for an EPIV system built by integrating a commercial medical ultrasound machine(7) with a PC running commercial particle image velocimetry (PIV) software(8) is described, and validation measurements in Hagen-Poiseuille (i.e., laminar pipe) flow are reported. For the EPIV measurements, a phased array probe connected to the medical ultrasound machine is used to generate a two-dimensional ultrasound image by pulsing the piezoelectric probe elements at different times. Each probe element transmits an ultrasound pulse into the fluid, and tracer particles in the fluid (either naturally occurring or seeded) reflect ultrasound echoes back to the probe where they are recorded. The amplitude of the reflected ultrasound waves and their time delay relative to transmission are used to create what is known as B-mode (brightness mode) two-dimensional ultrasound images. Specifically, the time delay is used to determine the position of the scatterer in the fluid and the amplitude is used to assign intensity to the scatterer. The time required to obtain a single B-mode image, t, is determined by the time it take to pulse all the elements of the phased array probe. For acquiring multiple B-mode images, the frame rate of the system in frames per second (fps) = 1/δt. (See 9 for a review of ultrasound imaging.) For a typical EPIV experiment, the frame rate is between 20-60 fps

  8. Analysis of particle kinematics in spheronization via particle image velocimetry.

    PubMed

    Koester, Martin; Thommes, Markus

    2013-02-01

    Spheronization is a wide spread technique in pellet production for many pharmaceutical applications. Pellets produced by spheronization are characterized by a particularly spherical shape and narrow size distribution. The particle kinematic during spheronization is currently not well-understood. Therefore, particle image velocimetry (PIV) was implemented in the spheronization process to visualize the particle movement and to identify flow patterns, in order to explain the influence of various process parameters. The spheronization process of a common formulation was recorded with a high-speed camera, and the images were processed using particle image velocimetry software. A crosscorrelation approach was chosen to determine the particle velocity at the surface of the pellet bulk. Formulation and process parameters were varied systematically, and their influence on the particle velocity was investigated. The particle stream shows a torus-like shape with a twisted rope-like motion. It is remarkable that the overall particle velocity is approximately 10-fold lower than the tip speed of the friction plate. The velocity of the particle stream can be correlated to the water content of the pellets and the load of the spheronizer, while the rotation speed was not relevant. In conclusion, PIV was successfully applied to the spheronization process, and new insights into the particle velocity were obtained.

  9. Interaction of Burning Metal Particles

    NASA Technical Reports Server (NTRS)

    Dreizin, Edward L.

    1997-01-01

    Multiple particle/droplet flames are ubiquitous in practical combustion systems, and thus the flame interaction processes are of great practical importance. This explains the strong current interest in interactive combustion phenomena. This research is aimed at the investigation of combustion parameters of microgravity model aerosols: relatively large uniform metal particles aerosolized in microgravity environment. An experiment consisting of creation and ignition of a metal multiparticle system in microgravity and high-speed video-recording of the combustion events will produce visual records of the development of individual particle flames, their interactions and the particle motion they induce simultaneously with the observation of the entire aerosol combustion process. Frame by frame analysis of the video-images taken using a high-speed movie camera will allow one to determine particle brightness temperatures and the decrease in particle diameter during combustion. Analysis of the experimental results and comparison with the results of single metal particle combustion experiments, conducted under similar microgravity conditions in the framework of a parallel program, will establish the relationship between single and multiple particle burning rates and combustion temperatures, concentrations at which the flame substructure forms rather than individual particle flames, efficiency of radiative heat transfer in metal aerosol combustion, what is the role of electrostatic forces in structuring the flame and the effect of that structure on the flame propagation rate. Although some details of fine particle aerosol clouds, such as the kinetics limited burning rate, radiative heat transfer in a system with a high specific surface, particle induced turbulence, etc., will probably not be very well simulated in the planned experiments, they are relatively well understood and can be accounted for using an adequate individual particle combustion model. On the other hand, the

  10. Particle resuspension via human activity

    NASA Astrophysics Data System (ADS)

    Qian, Jing

    This dissertation consists of three correlated parts that are related to particle resuspension from floorings in indoor environment. The term resuspension in this dissertation refers the re-entrainment of deposited particles into atmosphere via mechanic disturbances by human activity indoors, except where it is specified. The first part reviews the literature related to particle resuspension. Fundamental concepts and kinetics of resuspension of particles were extracted from previous studies. Suggestions for future research on indoor particle resuspension have been given based on the literature reviews and the findings of part 2 and part 3. The second part involved 54 resuspension experiments conducted in a room-scale environmental chamber. Three floorings types and two ventilation configurations were tested. Air exchange rate were fixed during the experiments, and the temperature/RH were monitored. The airborne particle concentration was measured by an array of optical particle counters (OPCs) in the chamber. Resuspension rates were estimated in size ranges of 0.8--1, 1.0--2.0, 2.0--5.0, and 5.0--10 mum ranging from 10-5--10 -2 hr-1, with higher resuspension rates associated with larger particles. Resuspension via walking activity varied from experiment to experiment. A "heavy and fast" walking style was associated with a higher resuspension rate than a less active style. Given the same floor loading of the test particles, resuspension rates for the carpeted floor were on the same order of magnitude but significantly higher than those for the hard floor. In the third part, an image analysis method (IAM) was adapted to characterize the particle distribution on fabric floorings. The IAM results showed the variability of particles loading on various carpets. The dust particles on fibers from ten carpets vary in sizes. The normal dust loading varies from house to house from 3.6x106 particles/cm2 to 8.2x106 particles/cm2. The dust particle number distribution for size

  11. Anomalous dispersions of `hedgehog' particles

    NASA Astrophysics Data System (ADS)

    Bahng, Joong Hwan; Yeom, Bongjun; Wang, Yichun; Tung, Siu On; Hoff, J. Damon; Kotov, Nicholas

    2015-01-01

    Hydrophobic particles in water and hydrophilic particles in oil aggregate, but can form colloidal dispersions if their surfaces are chemically camouflaged with surfactants, organic tethers, adsorbed polymers or other particles that impart affinity for the solvent and increase interparticle repulsion. A different strategy for modulating the interaction between a solid and a liquid uses surface corrugation, which gives rise to unique wetting behaviour. Here we show that this topographical effect can also be used to disperse particles in a wide range of solvents without recourse to chemicals to camouflage the particles' surfaces: we produce micrometre-sized particles that are coated with stiff, nanoscale spikes and exhibit long-term colloidal stability in both hydrophilic and hydrophobic media. We find that these `hedgehog' particles do not interpenetrate each other with their spikes, which markedly decreases the contact area between the particles and, therefore, the attractive forces between them. The trapping of air in aqueous dispersions, solvent autoionization at highly developed interfaces, and long-range electrostatic repulsion in organic media also contribute to the colloidal stability of our particles. The unusual dispersion behaviour of our hedgehog particles, overturning the notion that like dissolves like, might help to mitigate adverse environmental effects of the use of surfactants and volatile organic solvents, and deepens our understanding of interparticle interactions and nanoscale colloidal chemistry.

  12. The Particle Cleanliness Validation System

    SciTech Connect

    Stowers, I.F.; Ravizza, D.L.

    2001-12-21

    The Particle Cleanliness Validation System (PCVS) is a combination of a surface particle collection tool and a microscope based data, reduction system for determining the particle cleanliness of mechanical and optical surfaces at LLNL. Livermore is currently constructing the National Ignition Facility (NIF), a large 192 beam laser system for studying fusion physics. The laser is entirely enclosed. in aluminum and stainless steel vessels containing several environments; air, argon, and vacuum. It contains uncoated optics as well as hard dielectric coated and softer solgel coated optics which are, to varying degrees, sensitive to opaque particles, translucent particles, and molecular contamination. To quantify the particulate matter on structural surfaces during vendor cleaning and installation, a novel instrument has been developed to-both collect surface particles and to quantify the number and size distribution of these particles. The particles are collected on membrane filter paper which is ''swiped'' on a test surface for a proscribed distance to collect sufficient particles to significantly exceed the cleanliness of the filter paper. The swipe paper is then placed into a cassette for protection from further. contamination and transported to a microscope with x-y motorized stage and image analysis software, The surface of the swipe paper is scanned to determine both the background particle level of the paper, the cassette cover, and the portion of the paper which made contact with the test surface. The cumulative size distribution of the collected particles are displayed in size bins from 5 to 200 {micro}m. The quantity of particles exceeding 5 {micro}m is used to compute the IEST-STD-1246D cleanliness Level. Eight image analysis microscopes have been constructed for use with several dozen particle collection tools. About 30,000 cleanliness measurements have been taken to assure the clean construction and operation of the NIF laser system.

  13. Ultrafine particles in cities.

    PubMed

    Kumar, Prashant; Morawska, Lidia; Birmili, Wolfram; Paasonen, Pauli; Hu, Min; Kulmala, Markku; Harrison, Roy M; Norford, Leslie; Britter, Rex

    2014-05-01

    Ultrafine particles (UFPs; diameter less than 100 nm) are ubiquitous in urban air, and an acknowledged risk to human health. Globally, the major source for urban outdoor UFP concentrations is motor traffic. Ongoing trends towards urbanisation and expansion of road traffic are anticipated to further increase population exposure to UFPs. Numerous experimental studies have characterised UFPs in individual cities, but an integrated evaluation of emissions and population exposure is still lacking. Our analysis suggests that the average exposure to outdoor UFPs in Asian cities is about four-times larger than that in European cities but impacts on human health are largely unknown. This article reviews some fundamental drivers of UFP emissions and dispersion, and highlights unresolved challenges, as well as recommendations to ensure sustainable urban development whilst minimising any possible adverse health impacts. PMID:24503484

  14. Particle beam injection system

    DOEpatents

    Jassby, Daniel L.; Kulsrud, Russell M.

    1977-01-01

    This invention provides a poloidal divertor for stacking counterstreaming ion beams to provide high intensity colliding beams. To this end, method and apparatus are provided that inject high energy, high velocity, ordered, atomic deuterium and tritium beams into a lower energy, toroidal, thermal equilibrium, neutral, target plasma column that is magnetically confined along an endless magnetic axis in a strong restoring force magnetic field having helical field lines to produce counterstreaming deuteron and triton beams that are received bent, stacked and transported along the endless axis, while a poloidal divertor removes thermal ions and electrons all along the axis to increase the density of the counterstreaming ion beams and the reaction products resulting therefrom. By balancing the stacking and removal, colliding, strong focused particle beams, reaction products and reactions are produced that convert one form of energy into another form of energy.

  15. Cooled particle accelerator target

    DOEpatents

    Degtiarenko, Pavel V.

    2005-06-14

    A novel particle beam target comprising: a rotating target disc mounted on a retainer and thermally coupled to a first array of spaced-apart parallel plate fins that extend radially inwardly from the retainer and mesh without physical contact with a second array of spaced-apart parallel plate fins that extend radially outwardly from and are thermally coupled to a cooling mechanism capable of removing heat from said second array of spaced-apart fins and located within the first array of spaced-apart parallel fins. Radiant thermal exchange between the two arrays of parallel plate fins provides removal of heat from the rotating disc. A method of cooling the rotating target is also described.

  16. Ultrafine particles in cities.

    PubMed

    Kumar, Prashant; Morawska, Lidia; Birmili, Wolfram; Paasonen, Pauli; Hu, Min; Kulmala, Markku; Harrison, Roy M; Norford, Leslie; Britter, Rex

    2014-05-01

    Ultrafine particles (UFPs; diameter less than 100 nm) are ubiquitous in urban air, and an acknowledged risk to human health. Globally, the major source for urban outdoor UFP concentrations is motor traffic. Ongoing trends towards urbanisation and expansion of road traffic are anticipated to further increase population exposure to UFPs. Numerous experimental studies have characterised UFPs in individual cities, but an integrated evaluation of emissions and population exposure is still lacking. Our analysis suggests that the average exposure to outdoor UFPs in Asian cities is about four-times larger than that in European cities but impacts on human health are largely unknown. This article reviews some fundamental drivers of UFP emissions and dispersion, and highlights unresolved challenges, as well as recommendations to ensure sustainable urban development whilst minimising any possible adverse health impacts.

  17. Theoretical Particle Astrophysics

    SciTech Connect

    Kamionkowski, Marc

    2013-08-07

    Abstract: Theoretical Particle Astrophysics The research carried out under this grant encompassed work on the early Universe, dark matter, and dark energy. We developed CMB probes for primordial baryon inhomogeneities, primordial non-Gaussianity, cosmic birefringence, gravitational lensing by density perturbations and gravitational waves, and departures from statistical isotropy. We studied the detectability of wiggles in the inflation potential in string-inspired inflation models. We studied novel dark-matter candidates and their phenomenology. This work helped advance the DoE's Cosmic Frontier (and also Energy and Intensity Frontiers) by finding synergies between a variety of different experimental efforts, by developing new searches, science targets, and analyses for existing/forthcoming experiments, and by generating ideas for new next-generation experiments.

  18. Mitochondria-targeting particles

    PubMed Central

    Wongrakpanich, Amaraporn; Geary, Sean M; Joiner, Mei-ling A; Anderson, Mark E; Salem, Aliasger K

    2015-01-01

    Mitochondria are a promising therapeutic target for the detection, prevention and treatment of various human diseases such as cancer, neurodegenerative diseases, ischemia-reperfusion injury, diabetes and obesity. To reach mitochondria, therapeutic molecules need to not only gain access to specific organs, but also to overcome multiple barriers such as the cell membrane and the outer and inner mitochondrial membranes. Cellular and mitochondrial barriers can be potentially overcome through the design of mitochondriotropic particulate carriers capable of transporting drug molecules selectively to mitochondria. These particulate carriers or vectors can be made from lipids (liposomes), biodegradable polymers, or metals, protecting the drug cargo from rapid elimination and degradation in vivo. Many formulations can be tailored to target mitochondria by the incorporation of mitochondriotropic agents onto the surface and can be manufactured to desired sizes and molecular charge. Here, we summarize recently reported strategies for delivering therapeutic molecules to mitochondria using various particle-based formulations. PMID:25490424

  19. Particle processing technology

    NASA Astrophysics Data System (ADS)

    Sakka, Yoshio

    2014-02-01

    In recent years, there has been strong demand for the development of novel devices and equipment that support advanced industries including IT/semiconductors, the environment, energy and aerospace along with the achievement of higher efficiency and reduced environmental impact. Many studies have been conducted on the fabrication of innovative inorganic materials with novel individual properties and/or multifunctional properties including electrical, dielectric, thermal, optical, chemical and mechanical properties through the development of particle processing. The fundamental technologies that are key to realizing such materials are (i) the synthesis of nanoparticles with uniform composition and controlled crystallite size, (ii) the arrangement/assembly and controlled dispersion of nanoparticles with controlled particle size, (iii) the precise structural control at all levels from micrometer to nanometer order and (iv) the nanostructural design based on theoretical/experimental studies of the correlation between the local structure and the functions of interest. In particular, it is now understood that the application of an external stimulus, such as magnetic energy, electrical energy and/or stress, to a reaction field is effective in realizing advanced particle processing [1-3]. This special issue comprises 12 papers including three review papers. Among them, seven papers are concerned with phosphor particles, such as silicon, metals, Si3N4-related nitrides, rare-earth oxides, garnet oxides, rare-earth sulfur oxides and rare-earth hydroxides. In these papers, the effects of particle size, morphology, dispersion, surface states, dopant concentration and other factors on the optical properties of phosphor particles and their applications are discussed. These nanoparticles are classified as zero-dimensional materials. Carbon nanotubes (CNT) and graphene are well-known one-dimensional (1D) and two-dimensional (2D) materials, respectively. This special issue also

  20. Crystallography of ribosomal particles

    NASA Astrophysics Data System (ADS)

    Yonath, A.; Frolow, F.; Shoham, M.; Müssig, J.; Makowski, I.; Glotz, C.; Jahn, W.; Weinstein, S.; Wittmann, H. G.

    1988-07-01

    Several forms of three-dimensional crystals and two-dimensional sheets of intact ribosomes and their subunits have been obtained as a result of: (a) an extensive systematic investigation of the parameters involved in crystallization, (b) a development of an experimental procedure for controlling the volumes of the crystallization droplets, (c) a study of the nucleation process, and (d) introducing a delicate seeding procedure coupled with variations in the ratios of mono- and divalent ions in the crystallization medium. In all cases only biologically active particles could be crystallized, and the crystalline material retains its integrity and activity. Crystallographic data have been collected from crystals of 50S ribosomal subunits, using synchrotron radiation at temperatures between + 19 and - 180°C. Although at 4°C the higher resolution reflections decay within minutes in the synchrotron beam, at cryo-temperature there was hardly any radiation damage, and a complete set of data to about 6Åresolution could be collected from a single crystal. Heavy-atom clusters were used for soaking as well as for specific binding to the surface of the ribosomal subunits prior to crystallization. The 50S ribosomal subunits from a mutant of B. stearothermophilus which lacks the ribosomal protein BL11 crystallize isomorphously with in the native ones. Models, aimed to be used for low resolution phasing, have been reconstructed from two-dimensional sheets of 70S ribosomes and 50S subunits at 47 and 30Å, respectively. These models show the overall structure of these particles, the contact areas between the large and small subunits, the space where protein synthesis might take place and a tunnel which may provide the path for the nascent protein chain.

  1. Morphological details in bloodstain particles.

    PubMed

    De Wael, K; Lepot, L

    2015-01-01

    During the commission of crimes blood can be transferred to the clothing of the offender or on other crime related objects. Bloodstain particles are sub-millimetre sized flakes that are lost from dried bloodstains. The nature of these red particles is easily confirmed using spectroscopic methods. In casework, bloodstain particles showing highly detailed morphological features were observed. These provided a rationale for a series of experiments described in this work. It was found that the "largest" particles are shed from blood deposited on polyester and polyamide woven fabrics. No particles are lost from the stains made on absorbent fabrics and from those made on knitted fabrics. The morphological features observed in bloodstain particles can provide important information on the substrates from which they were lost. PMID:25437904

  2. Nanocarpets for Trapping Microscopic Particles

    NASA Technical Reports Server (NTRS)

    Noca, Flavio; Chen, Fei; Hunt, Brian; Bronikowski, Michael; Hoenk, Michael; Kowalczyk, Robert; Choi, Daniel

    2004-01-01

    Nanocarpets that is, carpets of carbon nanotubes are undergoing development as means of trapping microscopic particles for scientific analysis. Examples of such particles include inorganic particles, pollen, bacteria, and spores. Nanocarpets can be characterized as scaled-down versions of ordinary macroscopic floor carpets, which trap dust and other particulate matter, albeit not purposefully. Nanocarpets can also be characterized as mimicking both the structure and the particle-trapping behavior of ciliated lung epithelia, the carbon nanotubes being analogous to cilia. Carbon nanotubes can easily be chemically functionalized for selective trapping of specific particles of interest. One could, alternatively, use such other three-dimensionally-structured materials as aerogels and activated carbon for the purposeful trapping of microscopic particles. However, nanocarpets offer important advantages over these alternative materials: (1) Nanocarpets are amenable to nonintrusive probing by optical means; and (2) Nanocarpets offer greater surface-to-volume ratios.

  3. Fuzzy logic particle tracking velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1993-01-01

    Fuzzy logic has proven to be a simple and robust method for process control. Instead of requiring a complex model of the system, a user defined rule base is used to control the process. In this paper the principles of fuzzy logic control are applied to Particle Tracking Velocimetry (PTV). Two frames of digitally recorded, single exposure particle imagery are used as input. The fuzzy processor uses the local particle displacement information to determine the correct particle tracks. Fuzzy PTV is an improvement over traditional PTV techniques which typically require a sequence (greater than 2) of image frames for accurately tracking particles. The fuzzy processor executes in software on a PC without the use of specialized array or fuzzy logic processors. A pair of sample input images with roughly 300 particle images each, results in more than 200 velocity vectors in under 8 seconds of processing time.

  4. Simulating Ice Particle Melting using Smooth Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Kuo, Kwo-Sen; Pelissier, Craig

    2015-04-01

    To measure precipitation from space requires an accurate estimation of the collective scattering properties of particles suspended in a precipitating column. It is well known that the complicated and typically unknowable shapes of the solid precipitation particles cause much uncertainty in the retrievals involving such particles. This remote-sensing problem becomes even more difficult with the "melting layer" containing partially melted ice particles, where both the geometric shape and liquid-solid fraction of the hydrometeors are variables.. For the scattering properties of these particles depend not only on their shapes, but also their melt-water fraction,and the spatial distribution of liquid and ice within. To obtain an accurate estimation thus requires a set of "realistic" particle geometries and a method to determine the melt-water distribution at various stages in the melting process. Once this is achieved, a suitable method can be used to compute the scattering properties. In previous work, the growth of a set of astoundingly realistic ice particles has been simulated using the "Snowfake" algorithm of Gravner and Griffeath. To simulate the melting process of these particles, the method of Smooth Particle Hydrodynamics (SPH) is used. SPH is a mesh-less particle-based approach where kinematic and thermal dynamics is controlled entirely through two-body interactions between neighboring SPH particles. An important property of SPH is that the interaction at boundaries between air/ice/water is implicitly taken care of. This is crucial for this work since those boundaries are complex and vary throughout the melting process. We present the SPH implementation and a simulation, using highly parallel Graphic Processing Units (GPUs), with ~1 million SPH particles to represent one of the generated ice particle geometries. We plan to use this method, especially its parallelized version, to simulate the melting of all the "Snowfake" particles (~10,000 of them) in our

  5. Particle dynamics and particle-cell interaction in microfluidic systems

    NASA Astrophysics Data System (ADS)

    Stamm, Matthew T.

    Particle-laden flow in a microchannel resulting in aggregation of microparticles was investigated to determine the dependence of the cluster growth rate on the following parameters: suspension void fraction, shear strain rate, and channel-height to particle-diameter ratio. The growth rate of an average cluster was found to increase linearly with suspension void fraction, and to obey a power-law relationships with shear strain rate as S 0.9 and channel-height to particle-diameter ratio as (h/d )--3.5. Ceramic liposomal nanoparticles and silica microparticles were functionalized with antibodies that act as targeting ligands. The bio-functionality and physical integrity of the cerasomes were characterized. Surface functionalization allows cerasomes to deliver drugs with selectivity and specificity that is not possible using standard liposomes. The functionalized particle-target cell binding process was characterized using BT-20 breast cancer cells. Two microfluidic systems were used; one with both species in suspension, the other with cells immobilized inside a microchannel and particle suspension as the mobile phase. Effects of incubation time, particle concentration, and shear strain rate on particle-cell binding were investigated. With both species in suspension, the particle-cell binding process was found to be reasonably well-described by a first-order model. Particle desorption and cellular loss of binding affinity in time were found to be negligible; cell-particle-cell interaction was identified as the limiting mechanism in particle-cell binding. Findings suggest that separation of a bound particle from a cell may be detrimental to cellular binding affinity. Cell-particle-cell interactions were prevented by immobilizing cells inside a microchannel. The initial stage of particle-cell binding was investigated and was again found to be reasonably well-described by a first-order model. For both systems, the time constant was found to be inversely proportional to

  6. Particle cloud mixing in microgravity

    NASA Technical Reports Server (NTRS)

    Ross, H.; Facca, L.; Tangirala, V.; Berlad, A. L.

    1989-01-01

    Quasi-steady flame propagation through clouds of combustible particles requires quasi-steady transport properties and quasi-steady particle number density. Microgravity conditions may be employed to help achieve the conditions of quiescent, uniform clouds needed for such combustion studies. Joint experimental and theoretical NASA-UCSD studies were concerned with the use of acoustic, electrostatic, and other methods of dispersion of fuel particulates. Results of these studies are presented for particle clouds in long cylindrical tubes.

  7. Quark matter or new particles?

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis

    1988-01-01

    It has been argued that compression of nuclear matter to somewhat higher densities may lead to the formation of stable quark matter. A plausible alternative, which leads to radically new astrophysical scenarios, is that the stability of quark matter simply represents the stability of new particles compounded of quarks. A specific example is the SU(3)-symmetric version of the alpha particle, composed of spin-zero pairs of each of the baryon octet (an 'octet' particle).

  8. Quantitative wave-particle duality

    NASA Astrophysics Data System (ADS)

    Qureshi, Tabish

    2016-07-01

    The complementary wave and particle character of quantum objects (or quantons) was pointed out by Niels Bohr. This wave-particle duality, in the context of the two-slit experiment, is here described not just as two extreme cases of wave and particle characteristics, but in terms of quantitative measures of these characteristics, known to follow a duality relation. A very simple and intuitive derivation of a closely related duality relation is presented, which should be understandable to the introductory student.

  9. Photocatalytic/Magnetic Composite Particles

    NASA Technical Reports Server (NTRS)

    Wu, Chang-Yu; Goswami, Yogi; Garretson, Charles; Andino, Jean; Mazyck, David

    2007-01-01

    Photocatalytic/magnetic composite particles have been invented as improved means of exploiting established methods of photocatalysis for removal of chemical and biological pollutants from air and water. The photocatalytic components of the composite particles are formulated for high levels of photocatalytic activity, while the magnetic components make it possible to control the movements of the particles through the application of magnetic fields. The combination of photocatalytic and magnetic properties can be exploited in designing improved air- and water treatment reactors.

  10. Particle plasmons: Why shape matters

    NASA Astrophysics Data System (ADS)

    Barnes, William L.

    2016-08-01

    Simple analytic expressions for the polarizability of metallic nanoparticles are in wide use in the field of plasmonics, but their origins are not obvious. In this article, expressions for the polarizability of a particle are derived in the quasistatic limit in a manner that allows the physical origin of the terms to be clearly seen. The discussion is tutorial in nature, with particular attention given to the role of particle shape since this is a controlling factor in particle plasmon resonances.

  11. Trajectory dependent particle response for anisotropic mono domain particles in magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Graeser, M.; Bente, K.; Neumann, A.; Buzug, T. M.

    2016-02-01

    In magnetic particle imaging, scanners use different spatial sampling techniques to cover the field of view (FOV). As spatial encoding is realized by a selective low field region (a field-free-point, or field-free-line), this region has to be moved through the FOV on specific sampling trajectories. To achieve these trajectories complex time dependent magnetic fields are necessary. Due to the superposition of the selection field and the homogeneous time dependent fields, particles at different spatial positions experience different field sequences. As a result, the dynamic behaviour of those particles can be strongly spatially dependent. So far, simulation studies that determined the trajectory quality have used the Langevin function to model the particle response. This however, neglects the dynamic relaxation of the particles, which is highly affected by magnetic anisotropy. More sophisticated models based on stochastic differential equations that include these effects were only used for one dimensional excitation. In this work, a model based on stochastic differential equations is applied to two-dimensional trajectory field sequences, and the effects of these field sequences on the particle response are investigated. The results show that the signal of anisotropic particles is not based on particle parameters such as size and shape alone, but is also determined by the field sequence that a particle ensemble experiences at its spatial position. It is concluded, that the particle parameters can be optimized in terms of the used trajectory.

  12. Air agglomeration of hydrophobic particles

    SciTech Connect

    Drzymala, J.; Wheelock, T.D.

    1995-12-31

    The agglomeration of hydrophobic particles in an aqueous suspension was accomplished by introducing small amounts of air into the suspension while it was agitated vigorously. The extent of aggregation was proportional both to the air to solids ratio and to the hydrophobicity of the solids. For a given air/solids ratio, the extent of aggregation of different materials increased in the following order: graphite, gilsonite, coal coated with heptane, and Teflon. The structure of agglomerates produced from coarse Teflon particles differed noticeably from the structure of bubble-particle aggregates produced from smaller, less hydrophobic particles.

  13. In Situ Solid Particle Generator

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Vijayakumar, R.

    2013-01-01

    Particle seeding is a key diagnostic component of filter testing and flow imaging techniques. Typical particle generators rely on pressurized air or gas sources to propel the particles into the flow field. Other techniques involve liquid droplet atomizers. These conventional techniques have drawbacks that include challenging access to the flow field, flow and pressure disturbances to the investigated flow, and they are prohibitive in high-temperature, non-standard, extreme, and closed-system flow conditions and environments. In this concept, the particles are supplied directly within a flow environment. A particle sample cartridge containing the particles is positioned somewhere inside the flow field. The particles are ejected into the flow by mechanical brush/wiper feeding and sieving that takes place within the cartridge chamber. Some aspects of this concept are based on established material handling techniques, but they have not been used previously in the current configuration, in combination with flow seeding concepts, and in the current operational mode. Unlike other particle generation methods, this concept has control over the particle size range ejected, breaks up agglomerates, and is gravity-independent. This makes this device useful for testing in microgravity environments.

  14. High field gradient particle accelerator

    DOEpatents

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  15. High field gradient particle accelerator

    DOEpatents

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  16. Continuous flow dielectrophoretic particle concentrator

    DOEpatents

    Cummings, Eric B.

    2007-04-17

    A continuous-flow filter/concentrator for separating and/or concentrating particles in a fluid is disclosed. The filter is a three-port device an inlet port, an filter port and a concentrate port. The filter separates particles into two streams by the ratio of their dielectrophoretic mobility to their electrokinetic, advective, or diffusive mobility if the dominant transport mechanism is electrokinesis, advection, or diffusion, respectively.Also disclosed is a device for separating and/or concentrating particles by dielectrophoretic trapping of the particles.

  17. Aging fingerprints in combustion particles

    NASA Astrophysics Data System (ADS)

    Zelenay, V.; Mooser, R.; Tritscher, T.; Křepelová, A.; Heringa, M. F.; Chirico, R.; Prévôt, A. S. H.; Weingartner, E.; Baltensperger, U.; Dommen, J.; Watts, B.; Raabe, J.; Huthwelker, T.; Ammann, M.

    2011-05-01

    Soot particles can significantly influence the Earth's climate by absorbing and scattering solar radiation as well as by acting as cloud condensation nuclei. However, despite their environmental (as well as economic and political) importance, the way these properties are affected by atmospheric processing is still a subject of discussion. In this work, soot particles emitted from two different cars, a EURO 2 transporter, a EURO 3 passenger vehicle, and a wood stove were investigated on a single-particle basis. The emitted exhaust, including the particulate and the gas phase, was processed in a smog chamber with artificial solar radiation. Single particle specimens of both unprocessed and aged soot were characterized using x-ray absorption spectroscopy and scanning electron microscopy. Comparison of the spectra from the unprocessed and aged soot particles revealed changes in the carbon functional group content, such as that of carboxylic carbon, which can be ascribed to both the condensation of secondary organic compounds on the soot particles and oxidation of primary soot particles upon photochemical aging. Changes in the morphology and size of the single soot particles were also observed upon aging. Furthermore, we show that the soot particles take up water in humid environments and that their water uptake capacity increases with photochemical aging.

  18. Fiber Optic Particle Concentration Sensor

    NASA Astrophysics Data System (ADS)

    Boiarski, Anthony A.

    1986-01-01

    A particle concentration sensor would be useful in many industrial process monitoring applications where in situ measurements are required. These applications include determination of butterfat content of milk, percent insolubles in engine oil, and cell concentration in a bioreactor. A fiber optic probe was designed to measure particle concentration by monitoring the scattered light from the particle-light interaction at the end of a fiber-optic-based probe tip. Linear output was obtained from the sensor over a large range of particle loading for a suspension of 1.7 μm polystyrene microspheres in water and E. coli bacteria in a fermenter.

  19. Interplanetary Dust Particles

    NASA Astrophysics Data System (ADS)

    Bradley, J. P.

    2003-12-01

    micrometeorites) containing layer silicates indicative of parent-body aqueous alteration and the more distant anhydrous P and D asteroids exhibiting no evidence of (aqueous) alteration (Gradie and Tedesco, 1982). This gradation in spectral properties presumably extends several hundred AU out to the Kuiper belt, the source region of most short-period comets, where the distinction between comets and outer asteroids may simply be one of the orbital parameters ( Luu, 1993; Brownlee, 1994; Jessberger et al., 2001). The mineralogy and petrography of meteorites provides direct confirmation of aqueous alteration, melting, fractionation, and thermal metamorphism among the inner asteroids ( Zolensky and McSween, 1988; Farinella et al., 1993; Brearley and Jones, 1998). Because the most common grains in the ISM (silicates and carbonaceous matter) are not as refractory as those found in meteorites, it is unlikely that they have survived in significant quantities in meteorites. Despite a prolonged search, not a single presolar silicate grain has yet been identified in any meteorite.Interplanetary dust particles (IDPs) are the smallest and most fine-grained meteoritic objects available for laboratory investigation (Figure 1). In contrast to meteorites, IDPs are derived from a broad range of dust-producing bodies extending from the inner main belt of the asteroids to the Kuiper belt (Flynn, 1996, 1990; Dermott et al., 1994; Liou et al., 1996). After release from their asteroidal or cometary parent bodies the orbits of IDPs evolve by Poynting-Robertson (PR) drag (the combined influence of light pressure and radiation drag) ( Dermott et al., 2001). Irrespective of the location of their parent bodies nearly all IDPs under the influence of PR drag can eventually reach Earth-crossing orbits. IDPs are collected in the stratosphere at 20-25 km altitude using NASA ER2 aircraft ( Sandford, 1987; Warren and Zolensky, 1994). Laboratory measurements of implanted rare gases, solar flare tracks ( Figure 2

  20. Particle splitting in smoothed particle hydrodynamics based on Voronoi diagram

    NASA Astrophysics Data System (ADS)

    Chiaki, Gen; Yoshida, Naoki

    2015-08-01

    We present a novel method for particle splitting in smoothed particle hydrodynamics simulations. Our method utilizes the Voronoi diagram for a given particle set to determine the position of fine daughter particles. We perform several test simulations to compare our method with a conventional splitting method in which the daughter particles are placed isotropically over the local smoothing length. We show that, with our method, the density deviation after splitting is reduced by a factor of about 2 compared with the conventional method. Splitting would smooth out the anisotropic density structure if the daughters are distributed isotropically, but our scheme allows the daughter particles to trace the original density distribution with length-scales of the mean separation of their parent. We apply the particle splitting to simulations of the primordial gas cloud collapse. The thermal evolution is accurately followed to the hydrogen number density of 1012 cm-3. With the effective mass resolution of ˜10-4 M⊙ after the multistep particle splitting, the protostellar disc structure is well resolved. We conclude that the method offers an efficient way to simulate the evolution of an interstellar gas and the formation of stars.

  1. Particle transport and deposition: basic physics of particle kinetics

    PubMed Central

    Tsuda, Akira; Henry, Frank S.; Butler, James P.

    2015-01-01

    The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. Whereas the particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drug. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this chapter. A large portion of this chapter deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: 1) the physical characteristics of particles, 2) particle behavior in gas flow, and 3) gas flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The chapter concludes with a summary and a brief discussion of areas of future research. PMID:24265235

  2. Particle transport and deposition: basic physics of particle kinetics.

    PubMed

    Tsuda, Akira; Henry, Frank S; Butler, James P

    2013-10-01

    The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. The particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic. Conversely, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drugs. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this article. A large portion of this article deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: (i) the physical characteristics of particles, (ii) particle behavior in gas flow, and (iii) gas-flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The article concludes with a summary and a brief discussion of areas of future research.

  3. Multiswarm Particle Swarm Optimization with Transfer of the Best Particle

    PubMed Central

    Wei, Xiao-peng; Zhang, Jian-xia; Zhou, Dong-sheng; Zhang, Qiang

    2015-01-01

    We propose an improved algorithm, for a multiswarm particle swarm optimization with transfer of the best particle called BMPSO. In the proposed algorithm, we introduce parasitism into the standard particle swarm algorithm (PSO) in order to balance exploration and exploitation, as well as enhancing the capacity for global search to solve nonlinear optimization problems. First, the best particle guides other particles to prevent them from being trapped by local optima. We provide a detailed description of BMPSO. We also present a diversity analysis of the proposed BMPSO, which is explained based on the Sphere function. Finally, we tested the performance of the proposed algorithm with six standard test functions and an engineering problem. Compared with some other algorithms, the results showed that the proposed BMPSO performed better when applied to the test functions and the engineering problem. Furthermore, the proposed BMPSO can be applied to other nonlinear optimization problems. PMID:26345200

  4. Particle deposition in ventilation ducts

    SciTech Connect

    Sippola, Mark R.

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 {micro}m were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on

  5. Single Particle Difraction at FLASH

    SciTech Connect

    Bogan, M.; Boutet, S.; Starodub, Dmitri; Decorwin-Martin, Philippe; Chapman, H.; Bajt, S.; Schulz, J.; Hajdu, Janos; Seibert, M.M.; Iwan, Bianca; Timneanu, Nicusor; Marchesini, Stefano; Barty, Anton; Benner, W.Henry; Frank, Matthias; Hau-Riege, Stefan P.; Woods, Bruce; Rohner, Urs; /Tofwerk AG, Thun

    2010-06-11

    Single-pulse coherent diffraction patterns have been collected from randomly injected single particles with a soft X-ray free-electron laser (FEL). The intense focused FEL pulse gives a high-resolution low-noise coherent diffraction pattern of the object before that object turns into a plasma and explodes. A diffraction pattern of a single particle will only be recorded when the particle arrival into the FEL interaction region coincides with FEL pulse arrival and detector integration. The properties of the experimental apparatus coinciding with these three events set the data acquisition rate. For our single particle FLASH diffraction imaging experiments: (1) an aerodynamic lens stack prepared a particle beam that consisted of particles moving at 150-200 m/s positioned randomly in space and time, (2) the 10 fs long FEL pulses were delivered at a fixed rate, and (3) the detector was set to integrate and readout once every two seconds. The effect of these experimental parameters on the rate of data acquisition using randomly injected particles will be discussed. Overall, the ultrashort FEL pulses do not set the limit of the data acquisition, more important is the effective interaction time of the particle crossing the FEL focus, the pulse sequence structure and the detector readout rate. Example diffraction patterns of randomly injected ellipsoidal iron oxide nanoparticles in different orientations are presented. This is the first single particle diffraction data set of identical particles in different orientations collected on a shot-to-shot basis. This data set will be used to test algorithms for recovering 3D structure from single particle diffraction.

  6. The Particle Theory of Matter

    ERIC Educational Resources Information Center

    Widick, Paul R.

    1969-01-01

    Described are activities that are designed to help elementary children understand the possibility of the particle theory of matter. Children work with beads, marbles, B-B shot and sand; by mixing these materials and others they are led to see that it is highly possible for the existence of particles which are not visible. (BR)

  7. Janus molecularly imprinted polymer particles.

    PubMed

    Huang, Chuixiu; Shen, Xiantao

    2014-03-11

    By combining the specific molecular recognition capability of MIPs and the asymmetric structure of Janus particles, the Janus MIP particles which were synthesized via a wax-water Pickering emulsion showed attractive capabilities as self-propelled transporters for controlled drug delivery. PMID:24469062

  8. Janus molecularly imprinted polymer particles.

    PubMed

    Huang, Chuixiu; Shen, Xiantao

    2014-03-11

    By combining the specific molecular recognition capability of MIPs and the asymmetric structure of Janus particles, the Janus MIP particles which were synthesized via a wax-water Pickering emulsion showed attractive capabilities as self-propelled transporters for controlled drug delivery.

  9. Particle acceleration by the sun

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1986-01-01

    A review is given of the analysis of new observations of energetic particles and energetic secondary emissions obtained over the solar maxium (approx. 1980) by the Solar Maximum mission, Hinotori, the international Sun-Earth Explorer, Helios, Explorer satellites, and Voyager spacecraft. Solar energetic particle events observed in space, He(3)- rich events, solar gamma rays and neutrons, and solar neutrinos are discussed.

  10. Genotoxicity of poorly soluble particles.

    PubMed

    Schins, Roel P F; Knaapen, Ad M

    2007-01-01

    Poorly soluble particles such as TiO2, carbon black, and diesel exhaust particles have been evaluated for their genotoxicity using both in vitro and in vivo assays, since inhalation of these compounds by rats at high concentrations has been found to lead to tumor formation. Two principle modes of genotoxic action can be considered for particles, referred to as primary and secondary genotoxicity. Primary genotoxicity is defined as genetic damage elicited by particles in the absence of pulmonary inflammation, whereas secondary genotoxicity implies a pathway of genetic damage resulting from the oxidative DNA attack by reactive oxygen/nitrogen species (ROS/RNS), generated during particle-elicited inflammation. Conceptually, primary genotoxicity might operate via various mechanisms, such as the actions of ROS (e.g., as generated from reactive particle surfaces), or DNA-adduct formation by reactive metabolites of particle-associated organic compounds (e.g., polycyclic aromatic hydrocarbons). Currently available literature data, however, merely indicate that the tumorigenesis of poorly soluble particles involves a mechanism of secondary genotoxicity. However, further research is urgently required, since (1) causality between pulmonary inflammation and genotoxicity has not yet been established, and (2) effects of inflammation on fundamental DNA damage responses that orchestrate mutagenesis and carcinogenic outcome,that is, cell cycle arrest, DNA repair, proliferation, and apoptosis, are currently poorly understood. PMID:17886067

  11. Build Your Own Particle Sensor

    EPA Science Inventory

    This is an information packet explaining an educational outreach activity, where the participant does some simple electronics with low cost components to build a particle sensor that can turn one to three small lights on based upon the detected concentration of particles.

  12. Particle pressures in fluidized beds

    SciTech Connect

    Campbell, C.S.; Rahman, K.; Hu, X.; Jin, C.; Potapov, A.V.

    1992-01-01

    This is an experimental project to make detailed measurements of the particle pressures generated in fluidized beds. The focus lies in two principle areas: (1) the particle pressure distribution around single bubbles rising in a two-dimensional gas-fluidized bed and (2) the particle pressures measured in liquid-fluidized beds. This first year has largely been to constructing the experiments The design of the particle pressure probe has been improved and tested. A two-dimensional gas-fluidized bed has been constructed in order to measure the particle pressure generated around injected bubbles. The probe is also being adapted to work in a liquid fluidized bed. Finally, a two-dimensional liquid fluidized bed is also under construction. Preliminary measurements show that the majority of the particle pressures are generated in the wake of a bubble. However, the particle pressures generated in the liquid bed appear to be extremely small. Finally, while not directly associated with the particle pressure studies, some NERSC supercomputer time was granted alongside this project. This is being used to make large scale computer simulation of the flow of granular materials in hoppers.

  13. The Particle--Motion Problem.

    ERIC Educational Resources Information Center

    Demana, Franklin; Waits, Bert K.

    1993-01-01

    Discusses solutions to real-world linear particle-motion problems using graphing calculators to simulate the motion and traditional analytic methods of calculus. Applications include (1) changing circular or curvilinear motion into linear motion and (2) linear particle accelerators in physics. (MDH)

  14. Fluorescent Particles For Flow Testing

    NASA Technical Reports Server (NTRS)

    Bonnell, Jeremy L.; Stern, Susan M.; Torkelson, Jan R.

    1995-01-01

    Small alumina spheres coated with fluorescent dye used in flow testing of transparent plastic model of check valve. Entrained fluroescent particles make flows visible. After completion of flow test, particles remaining in valve easily detectable and removed for measurement of their sizes.

  15. Particle impingement in SRM nozzles

    NASA Astrophysics Data System (ADS)

    Ikeda, Hirohide; Tanno, Haruhito; Tokudome, Shinichiro; Kohno, Masahiro

    It is experimentally shown that an improved two-phase flow program can well predict the alumina particle impingement location in small rocket motor nozzles as well as motor performance. The size distribution of particles in the nozzle flow is well characterized by a log-normal distribution. The program has achieved sufficient accuracy of prediction to be an effective nozzle contouring design tool.

  16. Research in particles and fields

    NASA Technical Reports Server (NTRS)

    Vogt, R. E.; Buffington, A.; Davis, L., Jr.; Stone, E. C.

    1980-01-01

    The astrophysical aspects of cosmic and gamma rays and the radiation environment of the Earth and other planets investigated by means of energetic particle detector systems flown on spacecraft and balloons are discussed. The theory of particles and fields in space is also addressed with particular emphasis on models of Saturn's magnetic field.

  17. High spatial resolution particle detectors

    DOEpatents

    Boatner, Lynn A.; Mihalczo, John T.

    2015-10-13

    Disclosed below are representative embodiments of methods, apparatus, and systems for detecting particles, such as radiation or charged particles. One exemplary embodiment disclosed herein is particle detector comprising an optical fiber with a first end and second end opposite the first end. The optical fiber of this embodiment further comprises a doped region at the first end and a non-doped region adjacent to the doped region. The doped region of the optical fiber is configured to scintillate upon interaction with a target particle, thereby generating one or more photons that propagate through the optical fiber and to the second end. Embodiments of the disclosed technology can be used in a variety of applications, including associated particle imaging and cold neutron scattering.

  18. High spatial resolution particle detectors

    DOEpatents

    Boatner, Lynn A.; Mihalczo, John T.

    2012-09-04

    Disclosed below are representative embodiments of methods, apparatus, and systems for detecting particles, such as radiation or charged particles. One exemplary embodiment disclosed herein is particle detector comprising an optical fiber with a first end and second end opposite the first end. The optical fiber of this embodiment further comprises a doped region at the first end and a non-doped region adjacent to the doped region. The doped region of the optical fiber is configured to scintillate upon interaction with a target particle, thereby generating one or more photons that propagate through the optical fiber and to the second end. Embodiments of the disclosed technology can be used in a variety of applications, including associated particle imaging and cold neutron scattering.

  19. Particle sizer and DNA sequencer

    DOEpatents

    Olivares, Jose A.; Stark, Peter C.

    2005-09-13

    An electrophoretic device separates and detects particles such as DNA fragments, proteins, and the like. The device has a capillary which is coated with a coating with a low refractive index such as Teflon.RTM. AF. A sample of particles is fluorescently labeled and injected into the capillary. The capillary is filled with an electrolyte buffer solution. An electrical field is applied across the capillary causing the particles to migrate from a first end of the capillary to a second end of the capillary. A detector light beam is then scanned along the length of the capillary to detect the location of the separated particles. The device is amenable to a high throughput system by providing additional capillaries. The device can also be used to determine the actual size of the particles and for DNA sequencing.

  20. Selective encapsulation by Janus particles

    SciTech Connect

    Li, Wei; Ruth, Donovan; Gunton, James D.; Rickman, Jeffrey M.

    2015-06-28

    We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored, as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.

  1. Particle manipulation using vibrating cilia

    NASA Astrophysics Data System (ADS)

    Tallapragada, Phanindra; Kelly, Scott

    2012-11-01

    The ability to manipulate small particles suspended in fluids has many practical applications, ranging from the mechanical testing of macromolecules like DNA to the controlled abrasion of brittle surfaces for precision polishing. A natural method is non-contact manipulation of particles through boundary excitations. Particle-manipulation via a vibrating cilia to establish controlled fluid flows with desired patterns of transport is one such bioinspired method. We show experimental results on the clustering and transport of finite-sized particles in the streaming flow set up by the oscillating cilia. We further show computations to explain the effects of hyperbolic structures in the four dimensional phase space of the dynamics of finite-sized particles.

  2. Superconducting transmission line particle detector

    DOEpatents

    Gray, K.E.

    1988-07-28

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

  3. Superconducting transmission line particle detector

    DOEpatents

    Gray, Kenneth E.

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  4. Discharge Property of Resin Particles Refined by Silica Particles

    NASA Astrophysics Data System (ADS)

    Makabe, Akira; Narita, Miyuki; Makino, Kazutaka; Hamada, Fumio

    2001-12-01

    The discharge property in the solid state has been utilized for ceramics processing and printer technology. The charge of particles has to be controlled in these fields because it affects the particle filling process in ceramics processing and the print quality of a printer. Fine silica particles are used to refine ceramics or resin particles for optimization of flowability, the discharge ability and the wettability. However, it is difficult to understand these properties, because critical factors “affecting” for these properties have not been elucidated yet. For example, the discharge property has not been examined in connection with the surface chemical structure of particles. In this study, we report the electron accepting or electron donating ability of chemicals and find that the discharge property is significantly influenced by that ability. Work function values are measured for polystyrene resin particles covered by different kinds of silica particles. In addition, we suggest a simple evaluation method for solid discharge through the measuring of pH in solution form. The relationships among the discharge, pH and work function values are examined. As a result, we arrive at some results to elucidate these phenomena.

  5. Research in particle theory

    SciTech Connect

    Mansouri, F.; Suranyi, P.; Wijewardhana, L.C.R.

    1992-10-01

    Dynamics of 2+1 dimensional gravity is analyzed by coupling matter to Chern Simons Witten action in two ways and obtaining the exact gravity Hamiltonian for each case. 't Hoot's Hamiltonian is obtained as an approximation. The notion of space-time emerges in the very end as a broken phase of the gauge theory. We have studied the patterns of discrete and continuous symmetry breaking in 2+1 dimensional field theories. We formulate our analysis in terms of effective composite scalar field theories. Point-like sources in the Chern-Simons theory of gravity in 2+1 dimensions are described by their Poincare' charges. We have obtained exact solutions of the constraints of Chern-Simons theory with an arbitrary number of isolated point sources in relative motion. We then showed how the space-time metric is constructed. A reorganized perturbation expansion with a propagator of soft infrared behavior has been used to study the critical behavior of the mass gap. The condition of relativistic covariance fixes the form of the soft propagator. Approximants to the correlation critical exponent were obtained in two loop order for the two and three dimensional theories. We proposed a new model of QED exhibiting two phases and a Majorana mass spectrum of single particle states. The model has a new source of coupling constant renormalization which opposes screening and suggests the model may confine. Assuming that the bound states of e{sup +}e{sup {minus}} essentially obey a Majorana spectrum, we obtained a consistent fit of the GSI peaks as well as predicting new peaks and their spin assignments.

  6. Two-dimensional particle displacement tracking in particle imaging velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1991-01-01

    A new particle imaging velocimetry data acquisition and analysis system, which is an order of magnitude faster than any previously proposed system, has been constructed and tested. The new particle displacement tracking (PDT) system is an all electronic technique employing a video camera and a large memory buffer frame-grabber board. Using a simple encoding scheme, a time sequence of single exposure images is time-coded into a single image and then processed to track particle displacements and determine two-dimensional velocity vectors. Use of the PDT technique in a counterrotating vortex flow produced over 1100 velocity vectors in 110 s when processed on an 80386 PC.

  7. Focusing particle concentrator with application to ultrafine particles

    DOEpatents

    Hering, Susanne; Lewis, Gregory; Spielman, Steven R.

    2013-06-11

    Technology is presented for the high efficiency concentration of fine and ultrafine airborne particles into a small fraction of the sampled airflow by condensational enlargement, aerodynamic focusing and flow separation. A nozzle concentrator structure including an acceleration nozzle with a flow extraction structure may be coupled to a containment vessel. The containment vessel may include a water condensation growth tube to facilitate the concentration of ultrafine particles. The containment vessel may further include a separate carrier flow introduced at the center of the sampled flow, upstream of the acceleration nozzle of the nozzle concentrator to facilitate the separation of particle and vapor constituents.

  8. Electrostatic wire stabilizing a charged particle beam

    DOEpatents

    Prono, D.S.; Caporaso, G.J.; Briggs, R.J.

    1983-03-21

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  9. Sampling of respirable isocyanate particles.

    PubMed

    Gylestam, Daniel; Gustavsson, Marcus; Karlsson, Daniel; Dalene, Marianne; Skarping, Gunnar

    2014-04-01

    An advanced design of a denuder impactor (DI) sampler has been developed for characterization of possible airborne isocyanate exposure in different particle size fractions. The sampler is equipped with 12 different parallel denuder tubes, 4 impaction stages with the cut-off values (d50) of: 9.5, 4, 2.5 and 1 µm, and an end filter that collects particles < 1 µm. All collecting parts were impregnated with di-n-butylamine DBA as the reagent in a mixture with acetic acid. The performance of the DI sampler was studied on a standard atmosphere containing gas and particulate isocyanates. The isocyanate atmosphere was generated by liquid permeation of 2,4-, 2,6-Toluene Diisocyanate (TDI), 1,6-Hexamethylene Diisocyanate (HDI) and Isophorone Diisocyanate (IPDI). 4,4'-Methylene Diphenyl Diisocyanate (MDI) particles were generated by heating of technical MDI and condensing the mixture of gas and particle-borne MDI in an atmosphere containing mixed salt particles. The study was performed in a 0.85 m3 environmental chamber with stainless steel walls. With the advancement of the DI sampler it is now possible to collect isocyanate particle samples for up to 320 min. The performance of the DI sampler is essentially unaffected by the humidity. The DI sampler and the ASSET EZ4-NCO sampler (Sigma-Aldrich/Supelco, Bellefonte, PA, USA) gave similar results. Sample losses within the DI sampler are low. In the environmental chamber it was observed that the particle distribution may be affected by the humidity and ageing. A scanning mobility particle sizer (SMPS) was used to separate a flow of selected fractions containing MDI particles from mixed MDI and salt particles. The particle-size distribution had a maximum at about 300 nm, but later in the environmental chamber 1 µm dominated. The distribution was very different as compared to with only NaCl or MDI present. The biological relevance for studying isocyanate nano particles is significant as these have the possibility to reach the

  10. Negative Numbers and Antimatter Particles

    NASA Astrophysics Data System (ADS)

    Tsan, Ung Chan

    Dirac's equation states that an electron implies the existence of an antielectron with the same mass (more generally same arithmetic properties) and opposite charge (more generally opposite algebraic properties). Subsequent observation of antielectron validated this concept. This statement can be extended to all matter particles; observation of antiproton, antineutron, antideuton … is in complete agreement with this view. Recently antihypertriton was observed and 38 atoms of antihydrogen were trapped. This opens the path for use in precise testing of nature's fundamental symmetries. The symmetric properties of a matter particle and its mirror antimatter particle seem to be well established. Interactions operate on matter particles and antimatter particles as well. Conservation of matter parallels addition operating on positive and negative numbers. Without antimatter particles, interactions of the Standard Model (electromagnetism, strong interaction and weak interaction) cannot have the structure of group. Antimatter particles are characterized by negative baryonic number A or/and negative leptonic number L. Materialization and annihilation obey conservation of A and L (associated to all known interactions), explaining why from pure energy (A = 0, L = 0) one can only obtain a pair of matter particle antimatter particle — electron antielectron, proton and antiproton — via materialization where the mass of a pair of particle antiparticle gives back to pure energy with annihilation. These two mechanisms cannot change the difference in the number of matter particles and antimatter particles. Thus from pure energy only a perfectly symmetric (in number) universe could be generated as proposed by Dirac but observation showed that our universe is not symmetric, it is a matter universe which is nevertheless neutral. Fall of reflection symmetries shattered the prejudice that there is no way to define in an absolute way right and left or matter and antimatter

  11. Detector for Particle Surface Contamination

    NASA Technical Reports Server (NTRS)

    Mogan, Paul A. (Inventor); Schwindt, Christian J. (Inventor); Mattson, Carl B. (Inventor)

    1999-01-01

    A system and method for detecting and quantizing particle fallout contamination particles which are collected on a transparent disk or other surface employs an optical detector, such as a CCD camera, to obtain images of the disk and a computer for analyzing the images. From the images, the computer detects, counts and sizes particles collected on the disk The computer also determines, through comparison to previously analyzed images, the particle fallout rate, and generates an alarm or other indication if the rate exceeds a maximum allowable value. The detector and disk are disposed in a housing having an aperture formed therein for defining the area on the surface of the disk which is exposed to the particle fallout. A light source is provided for evenly illuminating the disk. A first drive motor slowly rotates the disk to increase the amount of its surface area which is exposed through the aperture to the particle fallout. A second motor is also provided for incrementally scanning the disk in a radial direction back and forth over the camera so that the camera eventually obtains images of the entire surface of the disk which is exposed to the particle fallout.

  12. Surgical smoke and ultrafine particles

    PubMed Central

    Brüske-Hohlfeld, Irene; Preissler, Gerhard; Jauch, Karl-Walter; Pitz, Mike; Nowak, Dennis; Peters, Annette; Wichmann, H-Erich

    2008-01-01

    Background Electrocautery, laser tissue ablation, and ultrasonic scalpel tissue dissection all generate a 'surgical smoke' containing ultrafine (<100 nm) and accumulation mode particles (< 1 μm). Epidemiological and toxicological studies have shown that exposure to particulate air pollution is associated with adverse cardiovascular and respiratory health effects. Methods To measure the amount of generated particulates in 'surgical smoke' during different surgical procedures and to quantify the particle number concentration for operation room personnel a condensation particle counter (CPC, model 3007, TSI Inc.) was applied. Results Electro-cauterization and argon plasma tissue coagulation induced the production of very high number concentration (> 100000 cm-3) of particles in the diameter range of 10 nm to 1 μm. The peak concentration was confined to the immediate local surrounding of the production side. In the presence of a very efficient air conditioning system the increment and decrement of ultrafine particle occurrence was a matter of seconds, with accumulation of lower particle number concentrations in the operation room for only a few minutes. Conclusion Our investigation showed a short term very high exposure to ultrafine particles for surgeons and close assisting operating personnel – alternating with longer periods of low exposure. PMID:19055750

  13. Vortex Cores of Inertial Particles.

    PubMed

    Günther, Tobias; Theisel, Holger

    2014-12-01

    The cores of massless, swirling particle motion are an indicator for vortex-like behavior in vector fields and to this end, a number of coreline extractors have been proposed in the literature. Though, many practical applications go beyond the study of the vector field. Instead, engineers seek to understand the behavior of inertial particles moving therein, for instance in sediment transport, helicopter brownout and pulverized coal combustion. In this paper, we present two strategies for the extraction of the corelines that inertial particles swirl around, which depend on particle density, particle diameter, fluid viscosity and gravity. The first is to deduce the local swirling behavior from the autonomous inertial motion ODE, which eventually reduces to a parallel vectors operation. For the second strategy, we use a particle density estimation to locate inertial attractors. With this, we are able to extract the cores of swirling inertial particle motion for both steady and unsteady 3D vector fields. We demonstrate our techniques in a number of benchmark data sets, and elaborate on the relation to traditional massless corelines. PMID:26356967

  14. HZE particle effects in space

    NASA Astrophysics Data System (ADS)

    Horneck, Gerda

    Among the various particulate components of ionizing radiation in space, heavy ions (the so-called HZE particles) have been of special concern to radiobiologists. To understand the ways by which HZE particles of cosmic radiation interact with biological systems, methods have been developed to precisely localize the trajectory of an HZE particle relative to the biological object and to correlate the physical data of the particle with the biological effects observed along its path. In a variety of test systems, injuries were traced back to the traversal of a single HZE particle, such as somatic mutations and chromosomal aberrations in plant seeds, development disturbances and malformations in insect and salt shrimp embryos, or cell death in bacterial spores. In the latter case, a long-ranging killing effect around the particle's track was observed. Whereas, from spaceflight experiments, substantial information has been accumulated on single HZE particle effects in resting systems and in a few embryonic systems, there is a paucity of data on cosmic radiation effects in whole tissues or animals, especially mammalians.

  15. Solar flares and energetic particles.

    PubMed

    Vilmer, Nicole

    2012-07-13

    Solar flares are now observed at all wavelengths from γ-rays to decametre radio waves. They are commonly associated with efficient production of energetic particles at all energies. These particles play a major role in the active Sun because they contain a large amount of the energy released during flares. Energetic electrons and ions interact with the solar atmosphere and produce high-energy X-rays and γ-rays. Energetic particles can also escape to the corona and interplanetary medium, produce radio emissions (electrons) and may eventually reach the Earth's orbit. I shall review here the available information on energetic particles provided by X-ray/γ-ray observations, with particular emphasis on the results obtained recently by the mission Reuven Ramaty High-Energy Solar Spectroscopic Imager. I shall also illustrate how radio observations contribute to our understanding of the electron acceleration sites and to our knowledge on the origin and propagation of energetic particles in the interplanetary medium. I shall finally briefly review some recent progress in the theories of particle acceleration in solar flares and comment on the still challenging issue of connecting particle acceleration processes to the topology of the complex magnetic structures present in the corona.

  16. Vortex Cores of Inertial Particles.

    PubMed

    Günther, Tobias; Theisel, Holger

    2014-12-01

    The cores of massless, swirling particle motion are an indicator for vortex-like behavior in vector fields and to this end, a number of coreline extractors have been proposed in the literature. Though, many practical applications go beyond the study of the vector field. Instead, engineers seek to understand the behavior of inertial particles moving therein, for instance in sediment transport, helicopter brownout and pulverized coal combustion. In this paper, we present two strategies for the extraction of the corelines that inertial particles swirl around, which depend on particle density, particle diameter, fluid viscosity and gravity. The first is to deduce the local swirling behavior from the autonomous inertial motion ODE, which eventually reduces to a parallel vectors operation. For the second strategy, we use a particle density estimation to locate inertial attractors. With this, we are able to extract the cores of swirling inertial particle motion for both steady and unsteady 3D vector fields. We demonstrate our techniques in a number of benchmark data sets, and elaborate on the relation to traditional massless corelines.

  17. HZE particle effects in space.

    PubMed

    Horneck, G

    1994-11-01

    Among the various particulate components of ionizing radiation in space, heavy ions (the so-called HZE particles) have been of special concern to radiobiologists. To understand the ways by which HZE particles of cosmic radiation interact with biological systems, methods have been developed to precisely localize the trajectory of an HZE particle relative to the biological object and to correlate the physical data of the particle with the biological effects observed along its path. In a variety of test systems, injuries were traced back to the traversal of a single HZE particle, such as somatic mutations, and chromosomal aberrations in plant seeds, development disturbances and malformations in insect and salt shrimp embryos, or cell death in bacterial spores. In the latter case, a long-ranging killing effect around the particle's track was observed. Whereas, from spaceflight experiments, substantial infomation has been accumulated on single HZE particle effects in resting systems and in a few embryonic systems, there is a paucity of data on cosmic radiation effects in whole tissues or animals, especially mammalians. PMID:11538453

  18. Particle Detectors Subatomic Bomb Squad

    SciTech Connect

    Lincoln, Don

    2014-08-29

    The manner in which particle physicists investigate collisions in particle accelerators is a puzzling process. Using vaguely-defined “detectors,” scientists are able to somehow reconstruct the collisions and convert that information into physics measurements. In this video, Fermilab’s Dr. Don Lincoln sheds light on this mysterious technique. In a surprising analogy, he draws a parallel between experimental particle physics and bomb squad investigators and uses an explosive example to illustrate his points. Be sure to watch this video… it’s totally the bomb.

  19. Particle displacement tracking for PIV

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1990-01-01

    A new Particle Imaging Velocimetry (PIV) data acquisition and analysis system, which is an order of magnitude faster than any previously proposed system has been constructed and tested. The new Particle Displacement Tracing (PDT) system is an all electronic technique employing a video camera and a large memory buffer frame-grabber board. Using a simple encoding scheme, a time sequence of single exposure images are time coded into a single image and then processed to track particle displacements and determine velocity vectors. Application of the PDT technique to a counter-rotating vortex flow produced over 1100 velocity vectors in 110 seconds when processed on an 80386 PC.

  20. Particle diffusion in a spheromak

    SciTech Connect

    Meyerhofer, D.D.; Levinton, F.M.; Yamada, M.

    1988-01-01

    The local carbon particle diffusion coefficient was measured in the Proto S-1/C spheromak using a test particle injection scheme. When the plasma was not in a force-free Taylor state, and when there were pressure gradients in the plasma, the particle diffusion was five times that predicted by Bohm and was consistent with collisional drift wave diffusion. The diffusion appears to be driven by correlations of the fluctuating electric field and density. During the decay phase of the discharge when the plasma was in the Taylor state, the diffusion coefficient of the carbon was classical. 23 refs., 4 figs.

  1. Fog dispersion. [charged particle technique

    NASA Technical Reports Server (NTRS)

    Christensen, L. S.; Frost, W.

    1980-01-01

    The concept of using the charged particle technique to disperse warm fog at airports is investigated and compared with other techniques. The charged particle technique shows potential for warm fog dispersal, but experimental verification of several significant parameters, such as particle mobility and charge density, is needed. Seeding and helicopter downwash techniques are also effective for warm fog disperals, but presently are not believed to be viable techniques for routine airport operations. Thermal systems are currently used at a few overseas airports; however, they are expensive and pose potential environmental problems.

  2. Particle Detectors Subatomic Bomb Squad

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The manner in which particle physicists investigate collisions in particle accelerators is a puzzling process. Using vaguely-defined “detectors,” scientists are able to somehow reconstruct the collisions and convert that information into physics measurements. In this video, Fermilab’s Dr. Don Lincoln sheds light on this mysterious technique. In a surprising analogy, he draws a parallel between experimental particle physics and bomb squad investigators and uses an explosive example to illustrate his points. Be sure to watch this video… it’s totally the bomb.

  3. Electron microscopy of atmospheric particles

    NASA Astrophysics Data System (ADS)

    Huang, Po-Fu

    Electron microscopy coupled with energy dispersive spectrometry (EM/EDS) is a powerful tool for single particle analysis. However, the accuracy with which atmospheric particle compositions can be quantitatively determined by EDS is often hampered by substrate-particle interactions, volatilization losses in the low pressure microscope chamber, electron beam irradiation and use of inaccurate quantitation factors. A pseudo-analytical solution was derived to calculate the temperature rise due to the dissipation of the electron energy on a particle-substrate system. Evaporative mass loss for a spherical cap-shaped sulfuric acid particle resting on a thin film supported by a TEM grid during electron beam impingement has been studied. Measured volatilization rates were found to be in very good agreement with theoretical predictions. The method proposed can also be used to estimate the vapor pressure of a species by measuring the decay of X-ray intensities. Several types of substrates were studied. We found that silver-coated silicon monoxide substrates give carbon detection limits comparable to commercially available substrates. An advantage of these substrates is that the high thermal conductivity of the silver reduces heating due to electron beam impingement. In addition, exposure of sulfuric acid samples to ammonia overnight substantially reduces sulfur loss in the electron beam. Use of size-dependent k-factors determined from particles of known compositions shows promise for improving the accuracy of atmospheric particle compositions measured by EM/EDS. Knowledge accumulated during the course of this thesis has been used to analyze atmospheric particles (Minneapolis, MN) selected by the TDMA and collected by an aerodynamic focusing impactor. 'Less' hygroscopic particles, which do not grow to any measurable extent when humidified to ~90% relative humidity, included chain agglomerates, spheres, flakes, and irregular shapes. Carbon was the predominant element detected in

  4. Particle Physics Implications for Astrophysics

    NASA Astrophysics Data System (ADS)

    Stochaj, Steve

    2012-10-01

    New Mexico State University's involvement in the measurement of cosmic rays (space borne energetic particles) dates back to the 1970's. Measurements of these particles can contribute to our understanding of the most energetic processes in the Universe. The talk will cover the contributions of NMSU to the measurements of the antimatter components of the cosmic radiation and the study of solar energetic particles with PAMELA, Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics. PAMELA was launched on a Russian Resurs-DK1 spacecraft into a polar orbit in June 2006 and remains operational to date. A summary of the PAMELA results and their connection to astrophysics will be given.

  5. Colloids exposed to random potential energy landscapes: From particle number density to particle-potential and particle-particle interactions.

    PubMed

    Bewerunge, Jörg; Sengupta, Ankush; Capellmann, Ronja F; Platten, Florian; Sengupta, Surajit; Egelhaaf, Stefan U

    2016-07-28

    Colloidal particles were exposed to a random potential energy landscape that has been created optically via a speckle pattern. The mean particle density as well as the potential roughness, i.e., the disorder strength, were varied. The local probability density of the particles as well as its main characteristics were determined. For the first time, the disorder-averaged pair density correlation function g((1))(r) and an analogue of the Edwards-Anderson order parameter g((2))(r), which quantifies the correlation of the mean local density among disorder realisations, were measured experimentally and shown to be consistent with replica liquid state theory results.

  6. Matter and Interactions: A Particle Physics Perspective

    ERIC Educational Resources Information Center

    Organtini, Giovanni

    2011-01-01

    In classical mechanics, matter and fields are completely separated; matter interacts with fields. For particle physicists this is not the case; both matter and fields are represented by particles. Fundamental interactions are mediated by particles exchanged between matter particles. In this article we explain why particle physicists believe in…

  7. Inclusive Focus Particles in English and Korean

    ERIC Educational Resources Information Center

    Kang, Sang-gu

    2011-01-01

    When discussing focus particles, it has been common practice to rely on the dichotomy of inclusive vs. exclusive particles, "a la" Konig (1991). Inclusive focus particles are often further divided into scalar particles, such as "also", "too", and "either", and non-scalar particles, such as "even". In this thesis, I advance a comparative analysis…

  8. Hydrodynamic enhanced dielectrophoretic particle trapping

    DOEpatents

    Miles, Robin R.

    2003-12-09

    Hydrodynamic enhanced dielectrophoretic particle trapping carried out by introducing a side stream into the main stream to squeeze the fluid containing particles close to the electrodes producing the dielelectrophoretic forces. The region of most effective or the strongest forces in the manipulating fields of the electrodes producing the dielectrophoretic forces is close to the electrodes, within 100 .mu.m from the electrodes. The particle trapping arrangement uses a series of electrodes with an AC field placed between pairs of electrodes, which causes trapping of particles along the edges of the electrodes. By forcing an incoming flow stream containing cells and DNA, for example, close to the electrodes using another flow stream improves the efficiency of the DNA trapping.

  9. Particles trajectories in magnetic filaments

    SciTech Connect

    Bret, A.

    2015-07-15

    The motion of a particle in a spatially harmonic magnetic field is a basic problem involved, for example, in the mechanism of formation of a collisionless shock. In such settings, it is generally reasoned that particles entering a Weibel generated turbulence are trapped inside it, provided their Larmor radius in the peak field is smaller than the field coherence length. The goal of this work is to put this heuristic conclusion on firm ground by studying, both analytically and numerically, such motion. A toy model is analyzed, consisting of a relativistic particle entering a region of space occupied by a spatially harmonic field. The particle penetrates the magnetic structure in a direction aligned with the magnetic filaments. Although the conclusions are not trivial, the main result is confirmed.

  10. Coaxial charged particle energy analyzer

    NASA Technical Reports Server (NTRS)

    Kelly, Michael A. (Inventor); Bryson, III, Charles E. (Inventor); Wu, Warren (Inventor)

    2011-01-01

    A non-dispersive electrostatic energy analyzer for electrons and other charged particles having a generally coaxial structure of a sequentially arranged sections of an electrostatic lens to focus the beam through an iris and preferably including an ellipsoidally shaped input grid for collimating a wide acceptance beam from a charged-particle source, an electrostatic high-pass filter including a planar exit grid, and an electrostatic low-pass filter. The low-pass filter is configured to reflect low-energy particles back towards a charged particle detector located within the low-pass filter. Each section comprises multiple tubular or conical electrodes arranged about the central axis. The voltages on the lens are scanned to place a selected energy band of the accepted beam at a selected energy at the iris. Voltages on the high-pass and low-pass filters remain substantially fixed during the scan.

  11. Study of heavy flavored particles

    SciTech Connect

    Nemati, Bijan

    1991-01-01

    This report discusses progress on the following topics: time-of- flight system; charmed baryon production and decays; D decays to baryons; measurement of sigma plus particles magnetic moments; and strong interaction coupling. (LSP)

  12. Lunar Regolith Particle Shape Analysis

    NASA Technical Reports Server (NTRS)

    Kiekhaefer, Rebecca; Hardy, Sandra; Rickman, Douglas; Edmunson, Jennifer

    2013-01-01

    Future engineering of structures and equipment on the lunar surface requires significant understanding of particle characteristics of the lunar regolith. Nearly all sediment characteristics are influenced by particle shape; therefore a method of quantifying particle shape is useful both in lunar and terrestrial applications. We have created a method to quantify particle shape, specifically for lunar regolith, using image processing. Photomicrographs of thin sections of lunar core material were obtained under reflected light. Three photomicrographs were analyzed using ImageJ and MATLAB. From the image analysis measurements for area, perimeter, Feret diameter, orthogonal Feret diameter, Heywood factor, aspect ratio, sieve diameter, and sieve number were recorded. Probability distribution functions were created from the measurements of Heywood factor and aspect ratio.

  13. Particle detection systems and methods

    DOEpatents

    Morris, Christopher L.; Makela, Mark F.

    2010-05-11

    Techniques, apparatus and systems for detecting particles such as muons and neutrons. In one implementation, a particle detection system employs a plurality of drift cells, which can be for example sealed gas-filled drift tubes, arranged on sides of a volume to be scanned to track incoming and outgoing charged particles, such as cosmic ray-produced muons. The drift cells can include a neutron sensitive medium to enable concurrent counting of neutrons. The system can selectively detect devices or materials, such as iron, lead, gold, uranium, plutonium, and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can concurrently detect any unshielded neutron sources occupying the volume from neutrons emitted therefrom. If necessary, the drift cells can be used to also detect gamma rays. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

  14. Particle adhesion in powder coating

    SciTech Connect

    Mazumder, M.K.; Wankum, D.L.; Knutson, M.; Williams, S.; Banerjee, S.

    1996-12-31

    Electrostatic powder coating is a widely used industrial painting process. It has three major advantages: (1) it provides high quality durable finish, (2) the process is environmentally friendly and does not require the use of organic solvents, and (3) it is economically competitive. The adhesion of electrostatically deposited polymer paint particles on the grounded conducting substrate depends upon many parameters: (a) particle size and shape distributions, (b) electrostatic charge distributions, (c) electrical resistivity, (d) dielectric strength of the particles, (e) thickness of the powder film, (f) presence and severity of the back corona, and (g) the conductivity and surface properties of the substrate. The authors present a model on the forces of deposition and adhesion of corona charged particles on conducting substrates.

  15. Progress in smooth particle hydrodynamics

    SciTech Connect

    Wingate, C.A.; Dilts, G.A.; Mandell, D.A.; Crotzer, L.A.; Knapp, C.E.

    1998-07-01

    Smooth Particle Hydrodynamics (SPH) is a meshless, Lagrangian numerical method for hydrodynamics calculations where calculational elements are fuzzy particles which move according to the hydrodynamic equations of motion. Each particle carries local values of density, temperature, pressure and other hydrodynamic parameters. A major advantage of SPH is that it is meshless, thus large deformation calculations can be easily done with no connectivity complications. Interface positions are known and there are no problems with advecting quantities through a mesh that typical Eulerian codes have. These underlying SPH features make fracture physics easy and natural and in fact, much of the applications work revolves around simulating fracture. Debris particles from impacts can be easily transported across large voids with SPH. While SPH has considerable promise, there are some problems inherent in the technique that have so far limited its usefulness. The most serious problem is the well known instability in tension leading to particle clumping and numerical fracture. Another problem is that the SPH interpolation is only correct when particles are uniformly spaced a half particle apart leading to incorrect strain rates, accelerations and other quantities for general particle distributions. SPH calculations are also sensitive to particle locations. The standard artificial viscosity treatment in SPH leads to spurious viscosity in shear flows. This paper will demonstrate solutions for these problems that they and others have been developing. The most promising is to replace the SPH interpolant with the moving least squares (MLS) interpolant invented by Lancaster and Salkauskas in 1981. SPH and MLS are closely related with MLS being essentially SPH with corrected particle volumes. When formulated correctly, JLS is conservative, stable in both compression and tension, does not have the SPH boundary problems and is not sensitive to particle placement. The other approach to

  16. Dye Sensitization of Semiconductor Particles

    SciTech Connect

    Hartland, G. V.

    2003-01-13

    In this project electron transfer at semiconductor liquid interfaces was examined by ultrafast time-resolved and steady-state optical techniques. The experiments primarily yielded information about the electron transfer from titanium dioxide semiconductor particles to absorbed molecules. The results show that the rate of electron transfer depends on the structure of the molecule, and the crystalline phase of the particle. These results can be qualitatively explained by Marcus theory for electron transfer.

  17. Long range alpha particle detector

    DOEpatents

    MacArthur, D.W.; Wolf, M.A.; McAtee, J.L.; Unruh, W.P.; Cucchiara, A.L.; Huchton, R.L.

    1993-02-02

    An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

  18. Microelectrophoresis of selected mineral particles

    NASA Technical Reports Server (NTRS)

    Herren, B. J.; Tipps, R. W.; Alexander, K. D.

    1982-01-01

    Particle mobilities of ilmenite, labradorite plagioclase, enstatite pyroxene, and olivine were measured with a Rank microelectrophoresis system to evaluate indicated mineral separability. Sodium bicarbonate buffer suspension media with and without additives (0.0001 M DTAB and 5 percent v/v ethylene glycol) were used to determine differential adsorption by mineral particles and modification of relative mobilities. Good separability between some minerals was indicated; additives did not enhance separability.

  19. Hybrid particles and associated methods

    DOEpatents

    Fox, Robert V; Rodriguez, Rene; Pak, Joshua J; Sun, Chivin

    2015-02-10

    Hybrid particles that comprise a coating surrounding a chalcopyrite material, the coating comprising a metal, a semiconductive material, or a polymer; a core comprising a chalcopyrite material and a shell comprising a functionalized chalcopyrite material, the shell enveloping the core; or a reaction product of a chalcopyrite material and at least one of a reagent, heat, and radiation. Methods of forming the hybrid particles are also disclosed.

  20. Primordial nucleosynthesis with generic particles

    NASA Technical Reports Server (NTRS)

    Walker, T. P.; Kolb, E. W.; Turner, M. S.

    1986-01-01

    A revision of the standard model for Big Bang nucleosynthesis is discussed which allows for the presence of generic particle species. The primordial production of He-4 and D + He-3 is calculated as a function of the mass, spin degrees of freedom, and spin statistics of the generic particle for masses in the range 0.01-100 times the electron mass. The particular case of the Gelmini and Roncadelli majoron model for massive neutrinos is discussed.

  1. Helium in interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Nier, A. O.; Schlutter, D. J.

    1993-01-01

    Helium and neon were extracted from fragments of individual stratosphere-collected interplanetary dust particles (IDP's) by subjecting them to increasing temperature by applying short-duration pulses of power in increasing amounts to the ovens containing the fragments. The experiment was designed to see whether differences in release temperatures could be observed which might provide clues as to the asteroidal or cometary origin of the particles. Variations were observed which show promise for elucidating the problem.

  2. Long range alpha particle detector

    DOEpatents

    MacArthur, Duncan W.; Wolf, Michael A.; McAtee, James L.; Unruh, Wesley P.; Cucchiara, Alfred L.; Huchton, Roger L.

    1993-01-01

    An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

  3. Particle hydrodynamics with tessellation techniques

    NASA Astrophysics Data System (ADS)

    Heß, Steffen; Springel, Volker

    2010-08-01

    Lagrangian smoothed particle hydrodynamics (SPH) is a well-established approach to model fluids in astrophysical problems, thanks to its geometric flexibility and ability to automatically adjust the spatial resolution to the clumping of matter. However, a number of recent studies have emphasized inaccuracies of SPH in the treatment of fluid instabilities. The origin of these numerical problems can be traced back to spurious surface effects across contact discontinuities, and to SPH's inherent prevention of mixing at the particle level. We here investigate a new fluid particle model where the density estimate is carried out with the help of an auxiliary mesh constructed as the Voronoi tessellation of the simulation particles instead of an adaptive smoothing kernel. This Voronoi-based approach improves the ability of the scheme to represent sharp contact discontinuities. We show that this eliminates spurious surface tension effects present in SPH and that play a role in suppressing certain fluid instabilities. We find that the new `Voronoi Particle Hydrodynamics' (VPH) described here produces comparable results to SPH in shocks, and better ones in turbulent regimes of pure hydrodynamical simulations. We also discuss formulations of the artificial viscosity needed in this scheme and how judiciously chosen correction forces can be derived in order to maintain a high degree of particle order and hence a regular Voronoi mesh. This is especially helpful in simulating self-gravitating fluids with existing gravity solvers used for N-body simulations.

  4. Microscope Image of Scavenged Particles

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from NASA's Phoenix Mars Lander's Optical Microscope shows a strongly magnetic surface which has scavenged particles from within the microscope enclosure before a sample delivery from the lander's Robotic Arm. The particles correspond to the larger grains seen in fine orange material that makes up most of the soil at the Phoenix site. They vary in color, but are of similar size, about one-tenth of a millimeter.

    As the microscope's sample wheel moved during operation, these particles also shifted, clearing a thin layer of the finer orange particles that have also been collected. Together with the previous image, this shows that the larger grains are much more magnetic than the fine orange particles with a much larger volume of the grains being collected by the magnet. The image is 2 milimeters across.

    It is speculated that the orange material particles are a weathering product from the larger grains, with the weathering process both causing a color change and a loss of magnetism.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  5. Two-color particle velocimetry

    NASA Astrophysics Data System (ADS)

    Goss, Larry P.; Post, M. E.; Sarka, B.; Trump, D. D.

    1990-11-01

    A novel method for determining two-dimensional velocity flowfields has been developed. The technique, two-color particle-image velocimetry (PIV), is similar to existing PIV techniques except that two different-color laser sources are used to form the light sheets required for exposing the position of particles in a seeded flowfield. A green-colored laser sheet (formed by a doubled Nd:YAG laser) and a red-colored laser sheet (formed by Nd:YAG-pumped dye laser) are employed sequentially to expose the particle positions which are recorded on 35-mm color film. Analysis of the resulting images involves digitizing the exposed film with color filters to separate the green- and red-particle image fields and processing the digitized images with velocity-displacement software. The two-color PIV technique has the advantage that direction, as well as particle displacement, is uniquely determined because the green-particle image occurs before the red one by a known time increment. Velocity measurements utilizing the two-color PIV technique on a propane jet diffusion flame have been made and are discussed.

  6. Two-color particle velocimetry

    NASA Astrophysics Data System (ADS)

    Goss, L. P.; Post, M. E.; Trump, D. D.; Sarka, B.

    A novel method for determining two-dimensional velocity flowfields has been developed. The technique, two-color particle-image velocimetry (PIV), is similar to existing PIV techniques except that two different-color laser sources are used to form the light sheets required for exposing the position of particles in a seeded flowfield. A green-colored laser sheet (formed by a doubled Nd:YAG laser) and a red-colored laser sheet (formed by Nd:YAG-pumped dye laser) are employed sequentially to expose the particle positions which are recorded on 35-mm color film. Analysis of the resulting images involves digitizing the exposed film with color filters to separate the green- and red-particle image fields and processing the digitized images with velocity-displacement software. The two-color PIV technique has the advantage that direction, as well as particle displacement, is uniquely determined because the green-particle image occurs before the red one by a known time increment. Velocity measurements utilizing the two-color PIV technique on a propane jet diffusion flame have been made and are discussed.

  7. Simulation of halo particles with Simpsons

    NASA Astrophysics Data System (ADS)

    Machida, Shinji

    2003-12-01

    Recent code improvements and some simulation results of halo particles with Simpsons will be presented. We tried to identify resonance behavior of halo particles by looking at tune evolution of individual macro particle.

  8. Exotic particles with four or more quarks

    SciTech Connect

    Olsen, Stephen Lars

    2014-09-01

    The familiar denizens of the particle zoo are made of two or three quarks, but particle theory allows for states comprising any number of those fundamental particles. Finally, after decades of searching, tetraquarks seem to have been spotted.

  9. Measuring momentum for charged particle tomography

    DOEpatents

    Morris, Christopher; Fraser, Andrew Mcleod; Schultz, Larry Joe; Borozdin, Konstantin N.; Klimenko, Alexei Vasilievich; Sossong, Michael James; Blanpied, Gary

    2010-11-23

    Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.

  10. Particle analysis in an acoustic cytometer

    DOEpatents

    Kaduchak, Gregory; Ward, Michael D

    2012-09-18

    The present invention is a method and apparatus for acoustically manipulating one or more particles. Acoustically manipulated particles may be separated by size. The particles may be flowed in a flow stream and acoustic radiation pressure, which may be radial, may be applied to the flow stream. This application of acoustic radiation pressure may separate the particles. In one embodiment, the particles may be separated by size, and as a further example, the larger particles may be transported to a central axis.

  11. Particle accelerators test cosmological theory

    SciTech Connect

    Schramm, D.N.; Steigman, G.

    1988-06-01

    Over the past decade two subfields of science, cosmology and elementary-particle physics, have become married in a symbiotic relationship that has produced a number of exciting offspring. These offspring are beginning to yield insights on the creation of spacetime and matter at epochs as early as 10 to the minus 43 to 10 to the minus 35 second after the birth of the universe in the primordial explosion known as the big bang. Important clues to the nature of the big bang itself may even come from a theory currently under development, known as the ultimate theory of everything (T.E.O.). A T.E.O. would describe all the interactions among the fundamental particles in a single bold stroke. Now that cosmology ahs begun to make predictions about elementary-particle physics, it has become conceivable that those cosmological predictions could be checked with carefully controlled accelerator experiments. It has taken more than 10 years for accelerators to reach the point where they can do the appropriate experiments, but the experiments are now in fact in progress. The preliminary results confirm the predictions of cosmology. The cosmological prediction the authors have been concerned with pertains to setting limits on the number of fundamental particles of matter. It appears that there are 12 fundamental particles, as well as their corresponding antiparticles. Six of the fundamental particles are quarks. The other six are leptons. The 12 particles are grouped in three families, each family consisting of four members. Cosmology suggests there must be a finite number of families and, further limits the possible range of to small values: only three or at most four families exist. 7 figs.

  12. Dissipative particle dynamics with attractive and repulsive particle-particle interactions

    SciTech Connect

    Paul Meakin; Moubin Liu; Hai Huang

    2006-01-01

    In molecular dynamics simulations, a combination of short-range repulsive and long-range attractive interactions allows the behavior of gases, liquids, solids, and multiphase systems to be simulated. We demonstrate that dissipative particle dynamics (DPD) simulations with similar pairwise particle-particle interactions can also be used to simulate the dynamics of multiphase fluids. In these simulations, the positive, short-range, repulsive part of the interaction potentials were represented by polynomial spline functions such as those used as smoothing functions in smoothed particle hydrodynamics, and the negative long-range part of the interaction has the same form but a different range and amplitude. If a single spline function corresponding to a purely repulsive interaction is used, the DPD fluid is a gas, and we show that the Poiseuille flow of this gas can be described accurately by the Navier-Stokes equation at low Reynolds numbers. In a two-component system in which the purely repulsive interactions between different components are substantially larger than the purely repulsive intracomponent interactions, separation into two gas phases occurs, in agreement with results obtained using DPD simulations with standard repulsive particle-particle interactions. Finally, we show that a combination of short-range repulsive interactions and long-range attractive interactions can be used to simulate the behavior of liquid drops surrounded by a gas. Similar models can be used to simulate a wide range of processes such as multiphase fluid flow through fractures and porous media with complex geometries and wetting behaviors.

  13. Schwarzschild black hole as particle accelerator of spinning particles

    NASA Astrophysics Data System (ADS)

    Zaslavskii, O. B.

    2016-05-01

    It is shown that in the Schwarzschild background there exists a direct counterpart of the Bañados-Silk-West effect for spinning particles. This means that if two particles collide near the black-hole horizon, their energy in the centre-of-mass frame can grow unbounded. In doing so, the crucial role is played by the so-called near-critical trajectories when the particle parameters are almost fine-tuned. A direct scenario of the collision under discussion is possible with restriction on the energy-to-mass ratio E/m<\\frac{1}{2\\sqrt{3}} only. However, if one takes into account multiple scattering, this becomes possible for E≥ m as well.

  14. Laser and Particle Guiding Micro-Elements for Particle Accelerators

    SciTech Connect

    Plettner, T.; Gaume, R.; Wisdom, J.; Spencer, J.; /SLAC

    2005-06-07

    Laser driven particle accelerators require sub-micron control of the laser field as well as precise electron-beam guiding so fabrication techniques that allow integrating both elements into an accelerator-on-chip format become critical for the success of such next generation machines. Micromachining technology for silicon has been shown to be one such feasible technology in PAC2003[1] but with a variety of complications on the laser side. However, fabrication of transparent ceramics has become an interesting technology that could be applied for laser-particle accelerators in several ways. We discuss the advantages such as the range of materials available and ways to implement them followed by some different test examples we been considered. One important goal is an integrated system that avoids having to inject either laser or particle pulses into these structures.

  15. Particle Image Velocimetry Applications Using Fluorescent Dye-Doped Particles

    NASA Technical Reports Server (NTRS)

    Petrosky, Brian J.; Maisto, Pietro; Lowe, K. Todd; Andre, Matthieu A.; Bardet, Philippe M.; Tiemsin, Patsy I.; Wohl, Christopher J.; Danehy, Paul M.

    2015-01-01

    Polystyrene latex sphere particles are widely used to seed flows for velocimetry techniques such as Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV). These particles may be doped with fluorescent dyes such that signals spectrally shifted from the incident laser wavelength may be detected via Laser Induced Fluorescence (LIF). An attractive application of the LIF signal is achieving velocimetry in the presence of strong interference from laser scatter, opening up new research possibilities very near solid surfaces or at liquid/gas interfaces. Additionally, LIF signals can be used to tag different fluid streams to study mixing. While fluorescence-based PIV has been performed by many researchers for particles dispersed in water flows, the current work is among the first in applying the technique to micron-scale particles dispersed in a gas. A key requirement for such an application is addressing potential health hazards from fluorescent dyes; successful doping of Kiton Red 620 (KR620) has enabled the use of this relatively safe dye for fluorescence PIV for the first time. In this paper, basic applications proving the concept of PIV using the LIF signal from KR620-doped particles are exhibited for a free jet and a twophase flow apparatus. Results indicate that while the fluorescence PIV techniques are roughly 2 orders of magnitude weaker than Mie scattering, they provide a viable method for obtaining data in flow regions previously inaccessible via standard PIV. These techniques have the potential to also complement Mie scattering signals, for example in multi-stream and/or multi-phase experiments.

  16. Virtual Energetic Particle Observatory (VEPO)

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.; Lal, N.; McGuire, R. E.; Szabo, A.; Narock, T. W.; Armstrong, T. P.; Manweiler, J. W.; Patterson, J. D.; Hill, M. E.; Vandergriff, J. D.; McKibben, R. B.; Lopate, C.; Tranquille, C.

    2008-12-01

    The Virtual Energetic Particle Observatory (VEPO) focuses on improved discovery, access, and usability of heliospheric energetic particle and ancillary data products from selected spacecraft and sub-orbital instruments of the heliophysics data environment. The energy range of interest extends over the full range of particle acceleration from keV energies of suprathermal seed particles to GeV energies of galactic cosmic ray particles. Present spatial coverage is for operational and legacy spacecraft operating from the inner to the outer heliosphere, e.g. from measurements by the two Helios spacecraft to 0.3 AU to the inner heliosheath region now being traversed by the two Voyager spacecraft. This coverage will eventually be extended inward to ten solar radii by the planned NASA solar probe mission and at the same time beyond the heliopause into the outer heliosheath by continued Voyager operations. The geospace fleet of spacecraft providing near-Earth interplanetary measurements, selected magnetospheric spacecraft providing direct measurements of penetrating interplanetary energetic particles, and interplanetary cruise measurements from planetary spacecraft missions further extend VEPO resources to the domain of geospace and planetary interactions. Ground-based (e.g., neutron monitor) and high-altitude suborbital measurements can expand coverage to the highest energies of galactic cosmic rays affected by heliospheric interaction and of solar energetic particles. Science applications include investigation of solar flare and coronal mass ejection events, acceleration and transport of interplanetary particles within the inner heliosphere, cosmic ray interactions with planetary surfaces and atmospheres, sources of suprathermal and anomalous cosmic ray ions in the outer heliosphere, and solar cycle modulation of galactic cosmic rays. Robotic and human exploration, and eventual habitation, of planetary and space environments beyond the Earth require knowledge of radiation

  17. Virtual Energetic Particle Observatory (VEPO)

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Lal, Nand; McGuire, Robert E.; Szabo, Adam; Narock, Thomas W.; Armstrong, Thomas P.; Manweiler, Jerry W.; Patterson, J. Douglas; Hill, Matthew E.; Vandergriff, Jon D.; McKibben, Robert B.; Lopate, Clifford; Tranquille, Cecil

    2008-01-01

    The Virtual Energetic Particle Observatory (VEPO) focuses on improved discovery, access, and usability of heliospheric energetic particle and ancillary data products from selected spacecraft and sub-orbital instruments of the heliophysics data environment. The energy range of interest extends over the full range of particle acceleration from keV energies of suprathermal seed particles to GeV energies of galactic cosmic ray particles. Present spatial coverage is for operational and legacy spacecraft operating from the inner to the outer heliosphere, e.g. from measurements by the two Helios spacecraft to 0.3 AU to the inner heliosheath region now being traversed by the two Voyager spacecraft. This coverage will eventually be extended inward to ten solar radii by the planned NASA solar probe mission and at the same time beyond the heliopause into the outer heliosheath by continued Voyager operations. The geospace fleet of spacecraft providing near-Earth interplanetary measurements, selected magnetospheric spacecraft providing direct measurements of penetrating interplanetary energetic particles, and interplanetary cruise measurements from planetary spacecraft missions further extend VEPO resources to the domain of geospace and planetary interactions. Ground-based (e.g., neutron monitor) and high-altitude suborbital measurements can expand coverage to the highest energies of galactic cosmic rays affected by heliospheric interaction and of solar energetic particles. Science applications include investigation of solar flare and coronal mass ejection events. acceleration and transport of interplanetary particles within the inner heliosphere, cosmic ray interactions with planetary surfaces and atmospheres, sources of suprathermal and anomalous cosmic ray ions in the outer heliosphere, and solar cycle modulation of galactic cosmic rays. Robotic and human exploration, and eventual habitation, of planetary and space environments beyond the Earth require knowledge of radiation

  18. Extracting entanglement from identical particles.

    PubMed

    Killoran, N; Cramer, M; Plenio, M B

    2014-04-18

    Identical particles and entanglement are both fundamental components of quantum mechanics. However, when identical particles are condensed in a single spatial mode, the standard notions of entanglement, based on clearly identifiable subsystems, break down. This has led many to conclude that such systems have limited value for quantum information tasks, compared to distinguishable particle systems. To the contrary, we show that any entanglement formally appearing amongst the identical particles, including entanglement due purely to symmetrization, can be extracted into an entangled state of independent modes, which can then be applied to any task. In fact, the entanglement of the mode system is in one-to-one correspondence with the entanglement between the inaccessible identical particles. This settles the long-standing debate about the resource capabilities of such states, in particular spin-squeezed states of Bose-Einstein condensates, while also revealing a new perspective on how and when entanglement is generated in passive optical networks. Our results thus reveal new fundamental connections between entanglement, squeezing, and indistinguishability.

  19. Particle fallout/activity sensor

    NASA Astrophysics Data System (ADS)

    Curtis, Ihlefeld M.; Youngquist, Robert C.; Moerk, John S.; Rose, Kenneth A., III

    1995-05-01

    A particle fallout/activity sensor measures relative amounts of dust or other particles which collect on a mirror in an area to be monitored. The sensor includes a sensor module and a data acquisition module, both of which can be operated independently of one another or in combination with one another. The sensor module includes a housing containing the mirror, an LED assembly for illuminating the mirror and an optical detector assembly for detecting light scattered off of the mirror by dust or other particles collected thereon. A microprocessor controls operation of the sensor module's components and displays results of a measurement on an LCD display mounted on the housing. A push button switch is also mounted on the housing which permits manual initiation of a measurement. The housing is constructed of light absorbing material, such as black delrin, which minimizes detection of light by the optical detector assembly other than that scattered by dust or particles on the mirror. The data acquisition module can be connected to the sensor module and includes its own microprocessor, a timekeeper and other digital circuitry for causing the sensor module to make a measurement periodically and send the measurement data to the data acquisition module for display and storage in memory for later retrieval and transfer to a separate computer. The time tagged measurement data can also be used to determine the relative level of activity in the monitored area since this level is directly related to the amount of dust or particle fallout in the area.

  20. Engineered plant biomass feedstock particles

    DOEpatents

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2011-10-18

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  1. Acoustic detection of melt particles

    SciTech Connect

    Costley, R.D. Jr.

    1988-01-01

    The Reactor Safety Research Department at Sandia National Laboratories is investigating a type of Loss of Coolant Accident (LOCA). In this particular type of accident, core meltdown occurs while the pressure within the reactor pressure vessel (RPV) is high. If one of the instrument tube penetrations in the lower head fails, melt particles stream through the cavity and into the containment vessel. This experiment, which simulates this type accident, was performed in the Surtsev Direct Heating Test Facility which is approximately a 1:10 linear scaling of a large dry containment volume. A 1:10 linear scale model of the reactor cavity was placed near the bottom of the Surtsey vessel so that the exit of the cavity was at the vertical centerline of the vessel. A pressure vessel used to create the simulated molten core debris was located at the scaled height of the RPV. In order to better understand how the melt leaves the cavity and streams into the containment an array of five acoustic sensors was placed directly in the path of the melt particles about 30 feet from the exit of the sealed cavity. Highly damped, broadband sensors were chosen to minimize ringing so that individual particle hits could be detected. The goal was to count the signals produced by the individual particle hits to get some idea of how the melt particles left the cavity. This document presents some of the results of the experiment. 9 figs.

  2. Intact capture of hypervelocity particles

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Brownlee, D. E.; Albee, A. L.

    1986-01-01

    Knowledge of the phase, structure, and crystallography of cosmic particles, as well as their elemental and isotopic compositions, would be very valuable information toward understanding the nature of our solar system. This information can be obtained from the intact capture of large mineral grains of cosmic particles from hypervelocity impacts. Hypervelocity experiments of intact capture in underdense media have indicated realistic potential in this endeaver. The recovery of the thermal blankets and louvers from the Solar Max spacecraft have independently verified this potential in the unintended capture of cosmic materials from hypervelocity impacts. Passive underdense media will permit relatively simple and inexpensive missions to capture cosmic particles intact, either by going to a planetary body or by waiting for the particles to come to the Shuttle or the Space Station. Experiments to explore the potential of using various underdense media for an intact comet sample capture up to 6.7 km/s were performed at NASA Ames Research Center Vertical Gun Range. Explorative hypervelocity experiments up to 7.9 km/s were also made at the Ernst Mach Institute. These experiments have proven that capturing intact particles at hypervelocity impacts is definitely possible. Further research is being conducted to achieve higher capture ratios at even higher hypervelocities for even smaller projectiles.

  3. Particle cosmology comes of age

    SciTech Connect

    Turner, M.S.

    1987-12-01

    The application of modern ideas in particle physics to astrophysical and cosmological settings is a continuation of a fruitful tradition in astrophysics which began with the application of atomic physics, and then nuclear physics. In the past decade particle cosmology and particle astrophysics have been recognized as 'legitimate activities' by both particle physicists and astrophysicists and astronomers. During this time there has been a high level of theoretical activity producing much speculation about the earliest history of the Universe, as well as important and interesting astrophysical and cosmological constraints to particle physics theories. This period of intense theoretical activity has produced a number of ideas most worthy of careful consideration and scrutiny, and even more importantly, amenable to experimental/observational test. Among the ideas which are likely to be tested in the next decade are: the cosmological bound to the number of neutrino flavors, inflation, relic WIMPs as the dark matter, and MSW neutrino oscillations as a solution to the solar neutrino problems. 94 refs.

  4. Cosmic censorship and test particles

    SciTech Connect

    Needham, T.

    1980-08-15

    In this paper one unambiguous prediction of cosmic censorship is put to the test, namely that it should be impossible to destroy a black hole (i.e. eliminate its horizon) by injecting test particles into it. Several authors have treated this problem and have not found their conclusions in contradiction with the prediction. Here we prove that if a general charged spinning particle (with parameters very much smaller than the respective hole parameters) is injected in an arbitrary manner into an extreme Kerr-Newman black hole, then cosmic censorship is upheld. As a by-product of the analysis a natural proof is given of the Christodoulou-Ruffini conditions on the injection of a spinless particle which yield a reversible black-hole transformation. Finally we consider the injection of particles with parameters that are not small compared with those of the hole, for which cosmic censorship is apparently violated. By assuming the validity of cosmic censorship we are led to a few conjectures concerning the extent of the particle's interaction with the hole while approaching it.

  5. Health Benefits of Particle Filtration

    SciTech Connect

    Fisk, William J.

    2013-10-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also, reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percent age improvement in health outcomes is typically modest, for example, 7percent to 25percent. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air.

  6. Health Benefits of Particle Filtration

    SciTech Connect

    Fisk, William J.

    2013-10-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percentage improvement in health outcomes is typically modest, e.g., 7percent to 25percent. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air.

  7. Particle injector for fluid systems

    DOEpatents

    Ruch, Jeffrey F.

    1997-01-01

    A particle injector device provides injection of particles into a liquid eam. The device includes a funnel portion comprising a conical member having side walls tapering from a top opening (which receives the particles) down to a relatively smaller exit opening. A funnel inlet receives a portion of the liquid stream and the latter is directed onto the side walls of the conical member so as to create a cushion of liquid against which the particles impact. A main section of the device includes an inlet port in communication with the exit opening of the funnel portion. A main liquid inlet receives the main portion of the liquid stream at high pressure and low velocity and a throat region located downstream of the main liquid inlet accelerates liquid received by this inlet from the low velocity to a higher velocity so as to create a low pressure area at the exit opening of the funnel portion. An outlet opening of the main section enables the particles and liquid stream to exit from the injector device.

  8. Intact capture of hypervelocity particles

    NASA Astrophysics Data System (ADS)

    Tsou, P.; Brownlee, D. E.; Albee, A. L.

    Knowledge of the phase, structure, and crystallography of cosmic particles, as well as their elemental and isotopic compositions, would be very valuable information toward understanding the nature of our solar system. This information can be obtained from the intact capture of large mineral grains of cosmic particles from hypervelocity impacts. Hypervelocity experiments of intact capture in underdense media have indicated realistic potential in this endeaver. The recovery of the thermal blankets and louvers from the Solar Max spacecraft have independently verified this potential in the unintended capture of cosmic materials from hypervelocity impacts. Passive underdense media will permit relatively simple and inexpensive missions to capture cosmic particles intact, either by going to a planetary body or by waiting for the particles to come to the Shuttle or the Space Station. Experiments to explore the potential of using various underdense media for an intact comet sample capture up to 6.7 km/s were performed at NASA Ames Research Center Vertical Gun Range. Explorative hypervelocity experiments up to 7.9 km/s were also made at the Ernst Mach Institute. These experiments have proven that capturing intact particles at hypervelocity impacts is definitely possible. Further research is being conducted to achieve higher capture ratios at even higher hypervelocities for even smaller projectiles.

  9. Particle motion in crystalline beams

    SciTech Connect

    Haffmans, A.F.; Maletic, D.; Ruggiero, A.G.

    1994-04-20

    Studying the possibility of storing a low emittance (or ``cooled``) beam of charged particles in a storage ring, the authors are faced with the effect of space charge by which particles are repelled and influence each others` motion. The correct evaluation of the space-charge effects is important to determine the attainment and properties of Crystalline Beams, a phase transition which intense beams of ions can undergo when cooling is applied. In this report they derive the equations of motion of a particle moving under the action of external resorting forces generated by the magnets of the storage ring, and of the electromagnetic fields generated by the other particles. The motion in every direction is investigated: in the longitudinal, as well as vertical and horizontal direction. The external forces are assumed to be linear with the particle displacement from the reference orbit. The space-charge forces are comparable in magnitude to the external focusing forces. The equations of motion so derived are then used to determine confinement and stability conditions for the attainment of Crystalline Beams, using transfer matrices.

  10. Electrophoresis of diffuse soft particles.

    PubMed

    Duval, Jérôme F L; Ohshima, Hiroyuki

    2006-04-11

    A theory is presented for the electrophoresis of diffuse soft particles in a steady dc electric field. The particles investigated consist of an uncharged impenetrable core and a charged diffuse polyelectrolytic shell, which is to some extent permeable to ions and solvent molecules. The diffuse character of the shell is defined by a gradual distribution of the density of polymer segments in the interspatial region separating the core from the bulk electrolyte solution. The hydrodynamic impact of the polymer chains on the electrophoretic motion of the particle is accounted for by a distribution of Stokes resistance centers. The numerical treatment of the electrostatics includes the possibility of partial dissociation of the hydrodynamically immobile ionogenic groups distributed throughout the shell as well as specific interaction between those sites with ions from the background electrolyte other than charge-determining ions. Electrophoretic mobilities are computed on the basis of an original numerical scheme allowing rigorous evaluation of the governing transport and electrostatic equations derived following the strategy reported by Ohshima, albeit within the restricted context of a discontinuous chain distribution. Attention is particularly paid to the influence of the type of distribution adopted on the electrophoretic mobility of the particle as a function of its size, charge, degree of permeability, and solution composition. The results are systematically compared with those obtained with a discontinuous representation of the interface. The theory constitutes a basis for interpreting electrophoretic mobilities of heterogeneous systems such as environmental or biological colloids or swollen/deswollen microgel particles.

  11. Solar Energetic Particle Spectrometer (SEPS)

    NASA Technical Reports Server (NTRS)

    Christl, Mark J.

    2009-01-01

    An outstanding problem of solar and heliospheric physics is the transport of solar energetic particles. The more energetic particles arriving early in the event can be used to probe the transport processes. The arrival direction distribution of these particles carries information about scattering during their propagation to Earth that can be used to test models of interplanetary transport. Also, of considerable importance to crewed space missions is the level of ionizing radiation in the interplanetary medium, and the dose that the crew experiences during an intense solar particle event, as well as the risk to space systems. A recent study concludes that 90% of the absorbed dose results from particles in the energy range 20-550 MeV. We will describe a new compact instrument concept, SEPS, that can cover the energy range from 50-600 MeV with a single compact detector. This energy range has been difficult to cover. There are only limited data, generally available only in broad energy bins, from a few past and present instruments outside Earth s magnetosphere. The SEPS concept can provide improved measurements for this energy range and its simple light-weight design could be easily accommodated on future missions.

  12. Particle transport in plasma reactors

    SciTech Connect

    Rader, D.J.; Geller, A.S.; Choi, Seung J.; Kushner, M.J.

    1995-01-01

    SEMATECH and the Department of Energy have established a Contamination Free Manufacturing Research Center (CFMRC) located at Sandia National Laboratories. One of the programs underway at the CFMRC is directed towards defect reduction in semiconductor process reactors by the application of computational modeling. The goal is to use fluid, thermal, plasma, and particle transport models to identify process conditions and tool designs that reduce the deposition rate of particles on wafers. The program is directed toward defect reduction in specific manufacturing tools, although some model development is undertaken when needed. The need to produce quantifiable improvements in tool defect performance requires the close cooperation among Sandia, universities, SEMATECH, SEMATECH member companies, and equipment manufacturers. Currently, both plasma (e.g., etch, PECVD) and nonplasma tools (e.g., LPCVD, rinse tanks) are being worked on under this program. In this paper the authors summarize their recent efforts to reduce particle deposition on wafers during plasma-based semiconductor manufacturing.

  13. Magnetotail particle dynamics and transport

    NASA Technical Reports Server (NTRS)

    Speiser, Theodore W.

    1995-01-01

    The main thrust of our research is to study the consequences of particle dynamics in the current sheet region of the magnetotail. The importance of understanding particle dynamics, in and near current sheets, cannot be over estimated, especially in light of NASA's recent interest in developing global circulation models to predict space weather. We have embarked on a long-term study to investigate the electrical resistance due to chaotic behavior, compare this resistance to inertial effects, and relate it to that resistance required in MHD modeling for reconnection to proceed. Using a single-particle model and observations, we have also found that a neutral line region can be remotely sensed. We plan to evaluate other cases of satellite observations near times of substorm onset to elucidate the relationship between the temporal development of a near-Earth neutral line and onset.

  14. Naked singularities as particle accelerators

    SciTech Connect

    Patil, Mandar; Joshi, Pankaj S.

    2010-11-15

    We investigate here the particle acceleration by naked singularities to arbitrarily high center of mass energies. Recently it has been suggested that black holes could be used as particle accelerators to probe the Planck scale physics. We show that the naked singularities serve the same purpose and probably would do better than their black hole counterparts. We focus on the scenario of a self-similar gravitational collapse starting from a regular initial data, leading to the formation of a globally naked singularity. It is seen that when particles moving along timelike geodesics interact and collide near the Cauchy horizon, the energy of collision in the center of mass frame will be arbitrarily high, thus offering a window to Planck scale physics.

  15. Interplanetary Dust Particles and Asrobiology

    NASA Astrophysics Data System (ADS)

    Molster, F. J.

    2004-07-01

    Interplanetary Dust Particles are amongst the most pristine materials of the Solar System that can be studied gore on Earth. The study of these primitive particles gives a lot of information about the evolution or our solar system and about the delivery of (pre-)biothic material on Earth. Although the sample size of IDP's is small, typically 10-9 gram, this does not prevent the study of them and several techniques are available. At the moment the possibilities fro detailed astrobiology research are limited. But with the present day evolution of the different instruments, the time for detailed astrobiology research are limited. But with the present day evolution of the different instruments, the time for detailed astrobiology research of interplanetary dust particles is near.

  16. Particle Acceleration in Solar Flares

    NASA Astrophysics Data System (ADS)

    Petrosian, V.

    Several new observations notably high spatial and spectral X-ray observations of impulsive phase of solar flares by YOHKOH and RHESSI, and Solar Energetic Particle (SEP) spectra by ACE have provided strong evidence in favor of stochastic acceleration of electrons, protons and other ions by plasma waves or turbulence. Theoretical arguments also favor such a model if the seed particles come from the background thermal plasma. I will describe these evidences and the theoretical framework for evaluation of the accelerated particle spectra, their transport and radiation. The predictions of the models will be compared with several features of the observations with specific emphasize on heating vs acceleration by turbulence, thermal vs nonthermal electron spectra, looptop vs footpoint emission fro flaring loops, electron vs proton acceleration rates and 3He vs 4He (and other ion) abundances in SEPs.

  17. Fermi acceleration of auroral particles.

    NASA Technical Reports Server (NTRS)

    Sharber, J. R.; Heikkila, W. J.

    1972-01-01

    Review of a number of nighttime acceleration mechanisms proposed in the literature for the role of producing the keV nighttime auroral-particle fluxes. Parallel electric fields are rejected for several reasons, but particularly because of the observed simultaneous precipitation of electrons and protons. Acceleration in the neutral sheet is inadequate for producing the particle energies, the observed field-aligned pitch-angle distribution at high latitudes, and the spectral hardening toward lower latitudes. Neutral point mechanisms, although often suggested in principle, have never been demonstrated satisfactorily in theory or in practice. Pitch-angle scattering from a trapped population produced by transverse adiabatic compression is also incapable of producing the field-aligned distribution. It is therefore suggested that longitudinal or Fermi acceleration, which results from the known magnetospheric convection, is the main nighttime auroral acceleration mechanism. The argument is supported by data obtained with the soft-particle spectrometer on Isis 1.

  18. Search for fractionally charged particles

    SciTech Connect

    Lackner, K.S.; Zweig, G.

    1982-01-01

    Quarks, the constituents of hadrons and fermion fields of quantum chromodynamics, have fractional charges -1/3e and 2/3e. All charges are integral multiples of 1/3e and not e, as was previously believed. Therefore it is natural to ask if isolated particles of fractional charge exist, either as an intrinsic part of matter, or as particles that can be produced at high energy accelerators. This question can only be answered by experiment, and remains interesting even if quantum chromodynamics turns out to be an absolutely confining theory of quarks. For example, small deviations from the standard version of quantum chromodynamics, or the incorporation of quantum chromodynamics into a more comprehensive theory, could require the existence of free fractionally charged particles.

  19. Particle relabelling transformations in elastodynamics

    NASA Astrophysics Data System (ADS)

    Al-Attar, David; Crawford, Ophelia

    2016-04-01

    The motion of a self-gravitating hyperelastic body is described through a time-dependent mapping from a reference body into physical space, and its material properties are determined by a referential density and strain-energy function defined relative to the reference body. Points within the reference body do not have a direct physical meaning, but instead act as particle labels that could be assigned in different ways. We use Hamilton's principle to determine how the referential density and strain-energy functions transform when the particle labels are changed, and describe an associated `particle relabelling symmetry'. We apply these results to linearized elastic wave propagation and discuss their implications for seismological inverse problems. In particular, we show that the effects of boundary topography on elastic wave propagation can be mapped exactly into volumetric heterogeneity while preserving the form of the equations of motion. Several numerical calculations are presented to illustrate our results.

  20. Particle acceleration in pulsar magnetospheres

    NASA Technical Reports Server (NTRS)

    Baker, K. B.

    1978-01-01

    The structure of pulsar magnetospheres and the acceleration mechanism for charged particles in the magnetosphere was studied using a pulsar model which required large acceleration of the particles near the surface of the star. A theorem was developed which showed that particle acceleration cannot be expected when the angle between the magnetic field lines and the rotation axis is constant (e.g. radial field lines). If this angle is not constant, however, acceleration must occur. The more realistic model of an axisymmetric neutron star with a strong dipole magnetic field aligned with the rotation axis was investigated. In this case, acceleration occurred at large distances from the surface of the star. The magnitude of the current can be determined using the model presented. In the case of nonaxisymmetric systems, the acceleration is expected to occur nearer to the surface of the star.

  1. Electrodynamics of massless charged particles

    SciTech Connect

    Lechner, Kurt

    2015-02-15

    We derive the classical dynamics of massless charged particles in a rigorous way from first principles. Since due to ultraviolet divergences this dynamics does not follow from an action principle, we rely on (a) Maxwell’s equations, (b) Lorentz- and reparameterization-invariance, and (c) local conservation of energy and momentum. Despite the presence of pronounced singularities of the electromagnetic field along Dirac-like strings, we give a constructive proof of the existence of a unique distribution-valued energy-momentum tensor. Its conservation requires the particles to obey standard Lorentz equations and they experience, hence, no radiation reaction. Correspondingly, the dynamics of interacting classical massless charged particles can be consistently defined, although they do not emit bremsstrahlung end experience no self-interaction.

  2. Electromagnetic moments of quasistable particle

    SciTech Connect

    Ledwig, Tim; Pascalutsa, Vladimir; Vanderhaeghen, Marc

    2010-11-01

    We deal with the problem of assigning electromagnetic moments to a quasistable particle (i.e., a particle with mass located at the particle's decay threshold). In this case, an application of a small external electromagnetic field changes the energy in a nonanalytic way, which makes it difficult to assign definitive moments. On the example of a spin-1/2 field with mass M{sub *} interacting with two fields of masses M and m, we show how a conventionally defined magnetic dipole moment diverges at M{sub *}=M+m. We then show that the conventional definition makes sense only when the values of the applied magnetic field B satisfy |eB|/2M{sub *}<<|M{sub *}-M-m|. We discuss implications of these results to existing studies in electroweak theory, chiral effective-field theory, and lattice QCD.

  3. Particle interactions in microemulsion systems

    SciTech Connect

    Brouwer, W.M.; Nieuwenhuis, E.A.; Kops-Werkhoven, M.M.

    1983-03-01

    This study obtains information about the type of interactions between microemulsion particles as a function of their composition using time averaged and dynamic light scattering and sedimentation measurements and checks the consistency of the experimental data with respect to the generalized Einstein relation. Interactions between microemulsion particles are affected by the flexibility of the soap chains. The more flexible the soap chains, the lesser the attraction forces between the particles. The lack of consistency in the interaction behavior as obtained from different experimental techniques is an important observation, which leads to the conclusion that care should be taken in the determination of the interaction behavior in microemulsion systems from one or 2 experimental techniques. 24 referernces.

  4. Particle production at collider energies

    SciTech Connect

    Geich-Gimbel, C. )

    1989-01-01

    High energy particle physics, which has been trying to understand and to devise new laws governing nature at per particle energies far beyond everyday energies, has entered a new episode. Having surpassed the low energy regime, where (s channel) resonance production dominantly projects onto the final state, very interesting features of the strong interaction arose at c.m. energies in the tens of GEV range, as found at the CERN Intersecting Storage Rings (ISR). One recalls the onset of hard scattering processes, which was understood as a scattering between constituents of the nucleon, hence supporting the Quark Parton Model (QPM). Surprisingly enough the total cross section started to rise again, when it was initially believed to have reached a constant value, suggesting an asymptotia. Furthermore correlations among the final state particles produced were observed, and especially long range correlations, which must reflect dynamical laws.

  5. CORSAIR Solar Energetic Particle Model

    NASA Astrophysics Data System (ADS)

    Sandroos, A.

    2013-05-01

    Acceleration of particles in coronal mass ejection (CME) driven shock waves is the most commonly accepted and best developed theory of the genesis of gradual solar energetic particle (SEP) events. The underlying acceleration mechanism is the diffusive shock acceleration (DSA). According to DSA, particles scatter from fluctuations present in the ambient magnetic field, which causes some particles to encounter the shock front repeatedly and to gain energy during each crossing. Currently STEREO and near-Earth spacecraft are providing valuable multi-point information on how SEP properties, such as composition and energy spectra, vary in longitude. Initial results have shown that longitude distributions of large CME-associated SEP events are much wider than reported in earlier studies. These findings have important consequences on SEP modeling. It is important to extend the present models into two or three spatial coordinates to properly take into account the effects of coronal and interplanetary (IP) magnetic geometry, and evolution of the CME and the associated shock, on the acceleration and transport of SEPs. We give a status update on CORSAIR project, which is an effort to develop a new self-consistent (total energy conserving) DSA acceleration model that is capable of modeling energetic particle acceleration and transport in IP space in two or three spatial dimensions. In the new model particles are propagated using guiding center approximation. Waves are modeled as (Lagrangian) wave packets propagating (anti)parallel to ambient magnetic field. Diffusion coefficients related to scattering from the waves are calculated using quasilinear theory. State of ambient plasma is obtained from an MHD simulation or by using idealized analytic models. CORSAIR is an extension to our earlier efforts to model the effects of magnetic geometry on SEP acceleration (Sandroos & Vainio, 2007,2009).

  6. An investigation of particles suspension using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Pazouki, Arman; Negrut, Dan

    2013-11-01

    This contribution outlines a method for the direct numerical simulation of rigid body suspensions in a Lagrangian-Lagrangian framework using extended Smoothed Particle Hydrodynamics (XSPH) method. The dynamics of the arbitrarily shaped rigid bodies is fully resolved via Boundary Condition Enforcing (BCE) markers and updated according to the general Newton-Euler equations of motion. The simulation tool, refered to herien as Chrono::Fluid, relies on a parallel implementation that runs on Graphics Processing Unit (GPU) cards. The simulation results obtained for transient Poiseuille flow, migration of cylinder and sphere in Poiseuille flow, and distribution of particles at different cross sections of the laminar flow of dilute suspension were respectively within 0.1%, 1%, and 5% confidence interval of analytical and experimental results reported in the literature. It was shown that at low Reynolds number, Re = O(1), the radial migration (a) behaves non-monotonically as the particles relative distance (distance over diameter) increases from zero to two; and (b) decreases as the particle skewness and size increases. The scaling of Chrono::Fluid was demonstrated in conjunction with a suspension dynamics analysis in which the number of ellipsoids went up to 3e4. Financial support was provided in part by National Science Foundation grant NSF CMMI-084044.

  7. Particle bursts from thunderclouds: Natural particle accelerators above our heads

    SciTech Connect

    Chilingarian, Ashot; Hovsepyan, Gagik; Hovhannisyan, Armen

    2011-03-15

    Strong electrical fields inside thunderclouds give rise to fluxes of high-energy electrons and, consequently, gamma rays and neutrons. Gamma rays and electrons are currently detected by the facilities of low orbiting satellites and by networks of surface particle detectors. During intensive particle fluxes, coinciding with thunderstorms, series of particle bursts were detected by the particle detectors of Aragats Space Environmental Center at an altitude of 3250 m. We classify the thunderstorm ground enhancements in 2 categories, one lasting microseconds, and the other lasting tens of minutes. Both types of events can occur at the same time, coinciding with a large negative electric field between the cloud and the ground and negative intracloud lightning. Statistical analysis of the short thunderstorm ground enhancement bursts sample suggests the duration is less than 50 {mu}s and spatial extension is larger than 1000 m{sup 2}. We discuss the origin of thunderstorm ground enhancements and its connection to the terrestrial gamma flashes detected by orbiting gamma-ray observatories.

  8. Particle size effects in particle-particle triboelectric charging studied with an integrated fluidized bed and electrostatic separator system

    SciTech Connect

    Bilici, Mihai A.; Toth, Joseph R.; Sankaran, R. Mohan; Lacks, Daniel J.

    2014-10-15

    Fundamental studies of triboelectric charging of granular materials via particle-particle contact are challenging to control and interpret because of foreign material surfaces that are difficult to avoid during contacting and measurement. The measurement of particle charge itself can also induce charging, altering results. Here, we introduce a completely integrated fluidized bed and electrostatic separator system that charges particles solely by interparticle interactions and characterizes their charge on line. Particles are contacted in a free-surface fluidized bed (no reactor walls) with a well-controlled fountain-like flow to regulate particle-particle contact. The charged particles in the fountain are transferred by a pulsed jet of air to the top of a vertically-oriented electrostatic separator consisting of two electrodes at oppositely biased high voltage. The free-falling particles migrate towards the electrodes of opposite charge and are collected by an array of cups where their charge and size can be determined. We carried out experiments on a bidisperse size mixture of soda lime glass particles with systematically varying ratios of concentration. Results show that larger particles fall close to the negative electrode and smaller particles fall close to the positive electrode, consistent with theory and prior experiments that larger particles charge positively and smaller particles charge negatively. The segregation of particles by charge for one of the size components is strongest when its collisions are mostly with particles of the other size component; thus, small particles segregate most strongly to the negative sample when their concentration in the mixture is small (and analogous results occur for the large particles). Furthermore, we find additional size segregation due to granular flow, whereby the fountain becomes enriched in larger particles as the smaller particles are preferentially expelled from the fountain.

  9. Detecting weakly interacting massive particles.

    NASA Astrophysics Data System (ADS)

    Drukier, A. K.; Gelmini, G. B.

    The growing synergy between astrophysics, particle physics, and low background experiments strengthens the possibility of detecting astrophysical non-baryonic matter. The idea of direct detection is that an incident, massive weakly interacting particle could collide with a nucleus and transfer an energy that could be measured. The present low levels of background achieved by the PNL/USC Ge detector represent a new technology which yields interesting bounds on Galactic cold dark matter and on light bosons emitted from the Sun. Further improvements require the development of cryogenic detectors. The authors analyse the practicality of such detectors, their optimalization and background suppression using the "annual modulation effect".

  10. The Fermilab Particle Astrophysics Center

    SciTech Connect

    Not Available

    2004-11-01

    The Particle Astrophysics Center was established in fall of 2004. Fermilab director Michael S. Witherell has named Fermilab cosmologist Edward ''Rocky'' Kolb as its first director. The Center will function as an intellectual focus for particle astrophysics at Fermilab, bringing together the Theoretical and Experimental Astrophysics Groups. It also encompasses existing astrophysics projects, including the Sloan Digital Sky Survey, the Cryogenic Dark Matter Search, and the Pierre Auger Cosmic Ray Observatory, as well as proposed projects, including the SuperNova Acceleration Probe to study dark energy as part of the Joint Dark Energy Mission, and the ground-based Dark Energy Survey aimed at measuring the dark energy equation of state.

  11. Patchy Particle Model for Vitrimers

    NASA Astrophysics Data System (ADS)

    Smallenburg, Frank; Leibler, Ludwik; Sciortino, Francesco

    2013-11-01

    Vitrimers—a recently invented new class of polymers—consist of covalent networks that can rearrange their topology via a bond shuffling mechanism, preserving the total number of network links. We introduce a patchy particle model whose dynamics directly mimic the bond exchange mechanism and reproduce the observed glass-forming ability. We calculate the free energy of this model in the limit of strong (chemical) bonds between the particles, both via the Wertheim thermodynamic perturbation theory and using computer simulations. The system exhibits an entropy-driven phase separation between a network phase and a dilute cluster gas, bringing new insight into the swelling behavior of vitrimers in solvents.

  12. Alpha-particle spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Bjorkholm, P.

    1972-01-01

    Mapping the radon emanation of the moon was studied to find potential areas of high activity by detection of radon isotopes and their daughter products. It was felt that based on observation of regions overflown by Apollo spacecraft and within the field of view of the alpha-particle spectrometer, a radon map could be constructed, identifying and locating lunar areas of outgassing. The basic theory of radon migration from natural concentrations of uranium and thorium is discussed in terms of radon decay and the production of alpha particles. The preliminary analysis of the results indicates no significant alpha emission.

  13. Nuclear physics and particle therapy

    NASA Astrophysics Data System (ADS)

    Battistoni, G.

    2016-05-01

    The use of charged particles and nuclei in cancer therapy is one of the most successful cases of application of nuclear physics to medicine. The physical advantages in terms of precision and selectivity, combined with the biological properties of densely ionizing radiation, make charged particle approach an elective choice in a number of cases. Hadron therapy is in continuous development and nuclear physicists can give important contributions to this discipline. In this work some of the relevant aspects in nuclear physics will be reviewed, summarizing the most important directions of research and development.

  14. Elementary Particles and Weak Interactions

    DOE R&D Accomplishments Database

    Lee, T. D.; Yang, C. N.

    1957-01-01

    Some general patterns of interactions between various elementary particles are reviewed and some general questions concerning the symmetry properties of these particles are studied. Topics are included on the theta-tau puzzle, experimental limits on the validity of parity conservation, some general discussions on the consequences due to possible non-invariance under P, C, and T, various possible experimental tests on invariance under P, C, and T, a two-component theory of the neutrino, a possible law of conservation of leptons and the universal Fermi interactions, and time reversal invariance and Mach's principle. (M.H.R.)

  15. AEROSOL PARTICLE COLLECTOR DESIGN STUDY

    SciTech Connect

    Lee, S; Richard Dimenna, R

    2007-09-27

    A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

  16. Interstellar Flight by Particle Beam

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2001-01-01

    Two difficulties with the use of laser-propelled lightsails for interstellar propulsion are the extremely low energy efficiency, and the extremely large lenses required. Both the energy efficiency and the required lens size may be greatly improved by use of a particle beam, rather than a light beam. The particle beam is reflected by a magnetic field on the spacecraft, for example, by a magnetic sail or a mini-magnetosphere inflated by a plasma current. This results in a net force on the sail with no expenditure of propellant, allowing extremely high delta-V missions, such as an interstellar probe, to be accomplished.

  17. The particles in town air

    PubMed Central

    Ellison, J. McK.

    1965-01-01

    Particles constitute an important part of air pollution, and their behaviour when suspended in air is very different from that of gas molecules: in particular, the mechanisms by which they become deposited on surfaces are different, and consequently the methods normally used for removing particles from the air, either for sampling or for cleaning it, rely mainly on mechanisms that do not enter into the behaviour of gas molecules. These mechanisms are described, and the ways in which they affect the problems of air pollution and its measurement are discussed. ImagesFIG. 8 PMID:14315713

  18. Charged particle mobility refrigerant analyzer

    DOEpatents

    Allman, Steve L.; Chen, Chung-Hsuan; Chen, Fang C.

    1993-01-01

    A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.

  19. Charged particle mobility refrigerant analyzer

    DOEpatents

    Allman, S.L.; Chunghsuan Chen; Chen, F.C.

    1993-02-02

    A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.

  20. The wave-particle duality

    NASA Astrophysics Data System (ADS)

    Slavnov, D. A.

    2015-07-01

    The problem of wave-particle duality is considered within the framework of the algebraic approach. Contrary to the widespread belief, we demonstrate that wave-particle duality can be reconciled with the assumption that there exists some local physical reality determining the results of local measurements. A number of quantum experiments—double-slit electron scattering, Wheeler's delayed choice experiment, the past of photons passed through the interferometer—are discussed using the concept of locality. A clear physical interpretation of these experiments that does not contradict classical concepts is provided.

  1. Collectors Of Airborne And Spaceborne Particles

    NASA Technical Reports Server (NTRS)

    Frazer, Robert E.

    1991-01-01

    Brushlike collectors capture samples of dust and other particles in space vacuum or air for optical, scanning-electron-microscope, and/or x-ray analysis. Gently decelerates particles without damaging them, minimizing tendency of some particles to rebound. Depending on design of specific collector of this type, it captures particles ranging upward in size from fractions of micrometer to few micrometers.

  2. Laser-Assisted Analysis of Aerosol Particles

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Giffin, C. E.; Norris, D. D.; Friedlander, S. K.

    1985-01-01

    Proposed instrument makes rapid mass-spectrometric analyses of individual particles in aerosols. Each particle vaporized and ionized by intense laser pulse, which creates ions of minimum complexity. Ability to analyze single aerosol particles continuously makes technique suitable for detection of toxic aerosol particles on real-time basis and for identification of their sources.

  3. The Physical Principles of Particle Detectors.

    ERIC Educational Resources Information Center

    Jones, Goronwy Tudor

    1991-01-01

    Describes the use of a particle detector, an instrument that records the passage of particles through it, to determine the mass of a particle by measuring the particles momentum, speed, and kinetic energy. An appendix discusses the limits on the impact parameter. (MDH)

  4. Gantry for medical particle therapy facility

    DOEpatents

    Trbojevic, Dejan

    2012-05-08

    A particle therapy gantry for delivering a particle beam to a patient includes a beam tube having a curvature defining a particle beam path and a plurality of fixed field magnets sequentially arranged along the beam tube for guiding the particle beam along the particle path. In a method for delivering a particle beam to a patient through a gantry, a particle beam is guided by a plurality of fixed field magnets sequentially arranged along a beam tube of the gantry and the beam is alternately focused and defocused with alternately arranged focusing and defocusing fixed field magnets.

  5. Gantry for medical particle therapy facility

    DOEpatents

    Trbojevic, Dejan

    2013-04-23

    A particle therapy gantry for delivering a particle beam to a patient includes a beam tube having a curvature defining a particle beam path and a plurality of superconducting, variable field magnets sequentially arranged along the beam tube for guiding the particle beam along the particle path. In a method for delivering a particle beam to a patient through a gantry, a particle beam is guided by a plurality of variable field magnets sequentially arranged along a beam tube of the gantry and the beam is alternately focused and defocused with alternately arranged focusing and defocusing variable field magnets.

  6. Method of identifying defective particle coatings

    DOEpatents

    Cohen, Mark E.; Whiting, Carlton D.

    1986-01-01

    A method for identifying coated particles having defective coatings desig to retain therewithin a build-up of gaseous materials including: (a) Pulling a vacuum on the particles; (b) Backfilling the particles at atmospheric pressure with a liquid capable of wetting the exterior surface of the coated particles, said liquid being a compound which includes an element having an atomic number higher than the highest atomic number of any element in the composition which forms the exterior surface of the particle coating; (c) Drying the particles; and (d) Radiographing the particles. By television monitoring, examination of the radiographs is substantially enhanced.

  7. Dielectric particle injector for material processing

    NASA Technical Reports Server (NTRS)

    Leung, Philip L. (Inventor)

    1992-01-01

    A device for use as an electrostatic particle or droplet injector is disclosed which is capable of injecting dielectric particles or droplets. The device operates by first charging the dielectric particles or droplets using ultraviolet light induced photoelectrons from a low work function material plate supporting the dielectric particles or droplets, and then ejecting the charged particles or droplets from the plate by utilizing an electrostatic force. The ejected particles or droplets are mostly negatively charged in the preferred embodiment; however, in an alternate embodiment, an ion source is used instead of ultraviolet light to eject positively charged dielectric particles or droplets.

  8. Particle astronomy and particle physics from the moon - The particle observatory

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.

    1990-01-01

    Promising experiments from the moon using particle detectors are discussed, noting the advantage of the large flux collecting power Pc offered by the remote, stable environment of a lunar base. An observatory class of particle experiments is presented, based upon proposals at NASA's recent Stanford workshop. They vary from neutrino astronomy, particle astrophysics, and cosmic ray experiments to space physics and fundamental physics experiments such as proton decay and 'table-top' arrays. This research is background-limited on earth, and it is awkward and unrealistic in earth orbit, but is particularly suited for the moon where Pc can be quite large and the instrumentation is not subject to atmospheric erosion as it is (for large t) in low earth orbit.

  9. Hollow sphere ceramic particles for abradable coatings

    SciTech Connect

    Longo, F.N.; Bader, N.F. III; Dorfman, M.R.

    1984-05-22

    A hollow sphere ceramic flame spray powder is disclosed. The desired constituents are first formed into agglomerated particles in a spray drier. Then the agglomerated particles are introduced into a plasma flame which is adjusted so that the particles collected are substantially hollow. The hollow sphere ceramic particles are suitable for flame spraying a porous and abradable coating. The hollow particles may be selected from the group consisting of zirconium oxide and magnesium zirconate.

  10. Ignition of Aluminum Particles and Clouds

    SciTech Connect

    Kuhl, A L; Boiko, V M

    2010-04-07

    Here we review experimental data and models of the ignition of aluminum (Al) particles and clouds in explosion fields. The review considers: (i) ignition temperatures measured for single Al particles in torch experiments; (ii) thermal explosion models of the ignition of single Al particles; and (iii) the unsteady ignition Al particles clouds in reflected shock environments. These are used to develop an empirical ignition model appropriate for numerical simulations of Al particle combustion in shock dispersed fuel explosions.

  11. Airborne dust particle counting techniques.

    PubMed

    Sharma, S G; Prasad, B D

    2006-03-01

    The paper briefly describes an electro-optical system for counting of dust particles, which is based on the scattering phenomena. Utilizing the scattering of light by various size particles present in the environment, various particle counting techniques have been developed in order to measure the scattered intensity of light. Light scatters in all directions but much more in the so-called near forward direction 17( composite function) off axis, at 163( composite function) from the light source in the visible range. On the basis of two techniques, the right angle and forward angle scattering, opto-mechanical systems have been developed which measure scattered intensity and particulate matter. The forward scattering Nephelometer is more sensitive and therefore is more suitable for pollution monitoring than the right angle scattering Nephelometer. Whereas the right angle scattering Nephelometer has the utility in extremely low concentration in ppb level owing to the excellent light trap efficiency in comparison to forward scattering Nephelometer. In this paper measurement techniques and measurement results associated with design and development of a real time particle analyser are also discussed.

  12. Health benefits of particle filtration

    EPA Science Inventory

    This product was developed under an interagency agreement between the U.S. EPA and the U.S. Department of Energy - Lawrence Berkeley National Laboratory (LBNL). The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews o...

  13. Entanglement - From Particles to Consciousness

    NASA Astrophysics Data System (ADS)

    Teodorani, M.

    2007-06-01

    This book, which is entirely devoted to the description and discussion of the mechanism of quantum entanglement, is divided into three main parts: a) canonical entanglement in the realm of elementary particles; b) entanglement in the biological environment (DNA and microtubules); c) entanglement in the psychic realm. Cosmological entanglement and non-local SETI are discussed as well.

  14. Diffusion in jammed particle packs

    NASA Astrophysics Data System (ADS)

    Bolintineanu, Dan S.; Silbert, Leonardo E.; Grest, Gary S.; Lechman, Jeremy B.

    2015-03-01

    Diffusive transport in jammed particle packs is of interest for a number of applications, as well as being a potential indicator of structural properties near the jamming point. To this end, we report stochastic simulations of equilibrium diffusion through monodisperse sphere packs near the jamming point in the limit of a perfectly insulating surrounding medium. The time dependence of various diffusion properties is resolved over several orders of magnitude. Two time regimes of expected Fickian diffusion are observed, separated by an intermediate regime of anomalous diffusion. This intermediate regime grows as the particle volume fraction approaches the critical jamming transition. The diffusion behavior is fully controlled by the extent of the contacts between neighboring particles, which in turn depend on proximity to the jamming point. In particular, the mean first passage time associated with the escape of random walkers between neighboring particles is shown to control both the time to recover Fickian diffusion and the long time diffusivity. Scaling laws are established that relate these quantities to the difference between the actual and critical jamming volume fractions. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE- AC04-94AL85000.

  15. Engineered plant biomass feedstock particles

    DOEpatents

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2011-10-11

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  16. Light as a Fundamental Particle

    ERIC Educational Resources Information Center

    Weinberg, Steven

    1975-01-01

    Presents two arguments concerning the role of the photon. One states that the photon is just another particle distinguished by a particular value of charge, spin, mass, lifetime, and interaction properties. The second states that the photon plays a fundamental role with a deep relation to ultimate formulas of physics. (GS)

  17. Particle size and particle-particle interactions on tensile properties and reinforcement of corn flour particles in natural rubber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Renewable corn flour has a significant reinforcement effect in natural rubber. The corn flour was hydrolyzed and microfluidized to reduce its particle size. Greater than 90% of the hydrolyzed corn flour had an average size of ~300 nm, a reduction of 33 times compared to unhydrolyzed corn flour. Comp...

  18. Migrational Instabilities in Particle Suspensions

    NASA Technical Reports Server (NTRS)

    Goddard, Joe D.

    1996-01-01

    This work deals with an instability arising from the shear-induced migration of particles in dense suspensions coupled with a dependence of viscosity on particle concentration. The analysis summarized here treats the inertialess (Re = O) linear stability of homogeneous simple shear flows for a Stokesian suspension model of the type proposed by Leighton and Acrivos (1987). Depending on the importance of shear-induced migration relative to concentration-driven diffusion, this model admits short-wave instability arising from wave-vector stretching by the base flow and evolving into particle-depleted shear bands. Moreover, this instability in the time-dependent problem corresponds to loss of ellipticity in the associated static problem (Re = O, Pe = O). While the isotropic version of the Leighton-Acrivos model is found to be stable with their experimentally determined parameters for simple shear, it is known that the stable model does not give a good quantitative description of particle clustering in the core of pipe flow (Nott and Brady 1994). This leads to the conjecture that an appropriate variant on the above model could explain such clustering as a two-phase bifurcation in the base flow.

  19. Light Scattering by Nonspherical Particles

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Travis, Larry D.; Hovenier, Joop W.

    1998-01-01

    Improved understanding of electromagnetic scattering by nonspherical particles is important to many science and engineering disciplines and was the subject of the Conference on Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications. The conference was held 29 September-1 October 1998 at the Goddard Institute for Space Studies in New York City and brought together 115 participants from 18 countries. The main objective of the conference was to highlight and summarize the rapid advancements in the field, including numerical methods for computing the single and multiple scattering of electromagnetic radiation by nonspherical and heterogeneous particles, measurement approaches, knowledge of characteristic features in scattering patterns, retrieval and remote sensing techniques, nonspherical particle sizing, and various practical applications. The conference consisted of twelve oral and one poster sessions. The presentations were loosely grouped based on broad topical categories. In each of these categories invited review talks highlighted and summarized specific active areas of research. To ensure a high-quality conference, all abstracts submitted had been reviewed by members of the Scientific Organizing Committee for technical merit and content. The conference program was published in the June 1998 issue of the Bulletin of the American Meteorological Society and is available on the World Wide Web at http://www.giss.nasa.gov/-crmim/conference/program.html. Authors of accepted papers and review presentations contributed to a volume of preprints published by the American Meteorological Society' and distributed to participants at the conference.

  20. Alpha particle emitters in medicine

    SciTech Connect

    Fisher, D.R.

    1989-09-01

    Radiation-induced cancer of bone, liver and lung has been a prominent harmful side-effect of medical applications of alpha emitters. In recent years, however, the potential use of antibodies labeled with alpha emitting radionuclides against cancer has seemed promising because alpha particles are highly effective in cell killing. High dose rates at high LET, effectiveness under hypoxic conditions, and minimal expectancy of repair are additional advantages of alpha emitters over antibodies labeled with beta emitting radionuclides for cancer therapy. Cyclotron-produced astatine-211 ({sup 211}At) and natural bismuth-212 ({sup 212}Bi) have been proposed and are under extensive study in the United States and Europe. Radium-223 ({sup 223}Ra) also has favorable properties as a potential alpha emitting label, including a short-lived daughter chain with four alpha emissions. The radiation dosimetry of internal alpha emitters is complex due to nonuniformly distributed sources, short particle tracks, and high relative specific ionization. The variations in dose at the cellular level may be extreme. Alpha-particle radiation dosimetry, therefore, must involve analysis of statistical energy deposition probabilities for cellular level targets. It must also account fully for nonuniform distributions of sources in tissues, source-target geometries, and particle-track physics. 18 refs., 4 figs.