Science.gov

Sample records for agreements geothermal resources

  1. California's geothermal resource potential

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.

    1978-01-01

    According to a U.S. Geological Survey estimate, recoverable hydrothermal energy in California may amount to 19,000 MW of electric power for a 30-year period. At present, a geothermal installation in the Geysers region of the state provides 502 MWe of capacity; an additional 1500 MWe of electric generating capacity is scheduled to be in operation in geothermal fields by 1985. In addition to hydrothermal energy sources, hot-igneous and conduction-dominated resources are under investigation for possible development. Land-use conflicts, environmental concerns and lack of risk capital may limit this development.

  2. Geothermal resources of Utah, 1980

    SciTech Connect

    Not Available

    1980-01-01

    This map shows heat flow, Known Geothermal Resources Areas, thermal springs and wells, and areas of low-temperature geothermal waters. Also shown are Indian reservations, military reservation, national or state forests, and parks, wildlife refuges, wilderness areas, etc. (MHR)

  3. Geothermal resources of Montana

    SciTech Connect

    Metesh, J.

    1994-06-01

    The Montana Bureau of Mines and Geology has updated its inventory of low and moderate temperature resources for the state and has assisted the Oregon Institute of Technology - GeoHeat Center and the University of Utah Research Institute in prioritizing and collocating important geothermal resource areas. The database compiled for this assessment contains information on location, flow, water chemistry, and estimated reservoir temperatures for 267 geothermal well and springs in Montana. For this assessment, the minimum temperature for low-temperature resource is defined as 10{degree} C above the mean annual air temperature at the surface. The maximum temperature for a moderate-temperature resource is defined as greater than 50{degree} C. Approximately 12% of the wells and springs in the database have temperatures above 50{degree} C, 17% are between 30{degree} and 50{degree} C, 29% are between 20{degree} and 30{degree}C, and 42% are between 10{degree} and 20{degree} C. Low and moderate temperature wells and springs can be found in nearly all areas of Montana, but most are in the western third of the state. Information sources for the current database include the MBMG Ground Water Information Center, the USGS statewide database, the USGS GEOTHERM database, and new information collected as part of this program. Five areas of Montana were identified for consideration in future investigations of geothermal development. The areas identified are those near Bozeman, Ennis, Butte, Boulder, and Camas Prairie. These areas were chosen based on the potential of the resource and its proximity to population centers.

  4. UWC geothermal resource exploration

    SciTech Connect

    1996-04-01

    A program was developed to explore the strength of the geothermal and hot dry rock (HDR) resource at the Montezuma Hot Springs at the United World College (UWC). The purpose of the UWC {number_sign}1 well is to obtain hydrologic, geologic, and temperature information for ongoing geothermal evaluation of the Montezuma Hot Springs area. If sufficient fluids are encountered, the hole will be cased with a 4 1/2 inch production casing and re-permitted as a geothermal low-temperature well. If no fluid is encountered, the well will be abandoned per Oil Conservation Division regulation. The objectives of the exploration are to evaluate the resource potential to provide space heating for the entire campus of the United World College, determine the effect of a well on the Hot Springs outflow, accurately measure the UWC heating loads versus time, evaluate the potential to support local thermal industry development, assess the feasibility of HDR development, and create an educational program from the collection of data derived from the research effort.

  5. Geothermal resource data base: Arizona

    SciTech Connect

    Witcher, J.C.

    1995-09-01

    This report provides a compilation of geothermal well and spring information in Arizona up to 1993. This report and data base are a part of a larger congressionally-funded national effort to encourage and assist geothermal direct-use. In 1991, the US Department of Energy, Geothermal Division (DOE/GD) began a Low-Temperature Geothermal Resources and Technology Transfer Program. Phase 1 of this program includes updating the inventory of wells and springs of ten western states and placing these data into a digital format that is universally accessible to the PC. The Oregon Institute of Technology GeoHeat Center (OIT) administers the program and the University of Utah Earth Sciences and Resources Institute (ESRI) provides technical direction. In recent years, the primary growth in geothermal use in Arizona has occurred in aquaculture. Other uses include minor space heating and supply of warm mineral waters for health spas.

  6. South Dakota geothermal resources

    SciTech Connect

    Lund, J.W.

    1997-12-01

    South Dakota is normally not thought of as a geothermal state. However, geothermal direct use is probably one of the best kept secrets outside the state. At present there are two geothermal district heating systems in place and operating successfully, a resort community using the water in a large swimming pool, a hospital being supplied with part of its heat, numerous geothermal heat pumps, and many individual uses by ranchers, especially in the winter months for heating residences, barns and other outbuildings, and for stock watering.

  7. Geothermal Resources Assessment in Hawaii

    SciTech Connect

    Thomas, D.M.

    1984-10-01

    The Hawaii Geothermal Resources Assessment Program was initiated in 1978. The preliminary phase of this effort identified 20 Potential Geothermal Resource Areas (PGRA's) using available geological, geochemical and geophysical data. The second phase of the Assessment Program undertook a series of field studies, utilizing a variety of geothermal exploration techniques, in an effort to confirm the presence of thermal anomalies in the identified PGRA's and, if confirmed, to more completely characterize them. A total of 15 PGRA's on four of the five major islands in the Hawaiian chain were subject to at least a preliminary field analysis. The remaining five were not considered to have sufficient resource potential to warrant study under the personnel and budget constraints of the program. The island of Kauai was not studied during the current phase of investigation. Geothermal field studies were not considered to be warranted due to the absence of significant geochemical or geophysical indications of a geothermal resource. The great age of volcanism on this island would further suggest that should a thermal resource be present, it would be of low temperature. The geothermal field studies conducted on Oahu focused on the caldera complexes of the two volcanic systems which form the island: Waianae volcano and Koolau volcano. The results of these studies and the interpreted probability for a resource are presented.

  8. Geothermal resource of Sumatra

    SciTech Connect

    Hochstein, M.P. . Geothermal Inst.); Sudarman, Sayogi . Geothermal Section)

    1993-06-01

    There are at least 30 high temperatures systems (with inferred reservoir temperatures > 200 C) along the active Sumatra Arc that transfer heat from crustal intrusions to the surface. These systems, together with eleven active volcanoes, five degassing volcanoes and one caldera volcano (Lake Toba), are controlled by the Sumatra Fault Zone, an active mega shear zone that follows the median axis of the arc. At least half of the active and degassing volcanoes are associated with volcanic geothermal reservoirs containing magmatic gases and acid fluids. Large, low temperature resources exist in the Tertiary sedimentary basins of east Sumatra (back-arc region), where anomalously higher thermal gradients (up to 8 C/100 m) have been measured. Volcanic activity was not continuous during the Cenozoic; subduction and arc volcanism probably decreased after the Eocene as a result of a clockwise rotation of Sumatra. In the Late Miocene, subduction started again, and andesitic volcanism reached a new peak of intensity in the Pliocene and has been continuous ever since. Rhyolitic volcanism, which has produced voluminous ignimbrite flows, began later (Pliocene/Pleistocene). All known rhyolitic centers associated with ignimbrite flows appear to lie along the Sumatra Fault Zone.

  9. Leasing of federal geothermal resources

    NASA Technical Reports Server (NTRS)

    Stone, R. T.

    1974-01-01

    Pursuant to the Geothermal Steam Act of 1970 and the regulations published on December 21, 1973, the first Federal geothermal competitive lease sale was held on January 22, 1974, by the Department of the Interior, offering 33 tracts totalling over 50,000 acres in three Known Geothermal Resource Areas in California. On January 1, 1974, Federal lands outside Known Geothermal Resource Areas were opened to noncompetitive lease applications, of which, 3,763 had been received by June 1, 1974. During fiscal year 1974, a total of 22 competitive leases had been issued in California and Oregon. The principal components in the Department involved in the leasing program are the Geological Survey and the Bureau of Land Management. The former has jurisdiction over drilling and production operations and other activities in the immediate area of operations. The latter receives applications and issues leases and is responsible for managing leased lands under its jurisdiction outside the area of operations. The interrelationships of the above agencies and the procedures in the leasing program are discussed.

  10. A corrosivity classification system for geothermal resources

    SciTech Connect

    Conover, Marshall F.

    1982-10-08

    The most important difference between traditional steam systems and those that utilize geothermal fluids is the potential for corrosion of metals. The recently developed sourcebook ''Materials Selection Guidelines for Geothermal Energy Utilization Systems'' is expected to facilitate corrosion engineering decision making and reduce the cost of geothermal systems where new resources are similar to those presented by the corrosivity classification system.

  11. Geothermal resources of southern Idaho

    SciTech Connect

    Mabey, D.R.

    1983-01-01

    The geothermal resource of southern Idaho as assessed by the U.S. Geological Survey in 1978 is large. Most of the known hydrothermal systems in southern Idaho have calculated reservoir temperatures of less than 150 C. Water from many of these systems is valuable for direct heat applications. A majority of the known and inferred geothermal resources of southern Idaho underlie the Snake River Plain. However, major uncertainties exist concerning the geology and temperatures beneath the plain. The largest hydrothermal system in Idaho is in the Bruneau-Grang View area of the western Snake River Plain with a calculated reservoir temperature of 107 C and an energy of 4.5 x 10 to the 20th power joules. No evidence of higher temperature water associated with this system was found. Although the geology of the eastern Snake River Plain suggests that a large thermal anomaly may underlie this area of the plain, direct evidence of high temperatures was not found. Large volumes of water at temperatures between 90 and 150 C probably exist along the margins of the Snake River Plain and in local areas north and south of the plain.

  12. Resource assessment for geothermal direct use applications

    SciTech Connect

    Beer, C.; Hederman, W.F. Jr.; Dolenc, M.R.; Allman, D.W.

    1984-04-01

    This report discusses the topic geothermal resource assessment and its importance to laymen and investors for finding geothermal resources for direct-use applications. These are applications where the heat from lower-temperature geothermal fluids, 120 to 200/sup 0/F, are used directly rather than for generating electricity. The temperatures required for various applications are listed and the various types of geothermal resources are described. Sources of existing resource data are indicated, and the types and suitability of tests to develop more data are described. Potential development problems are indicated and guidance is given on how to decrease technical and financial risk and how to use technical consultants effectively. The objectives of this report are to provide: (1) an introduction low-temperature geothermal resource assessment; (2) experience from a series of recent direct-use projects; and (3) references to additional information.

  13. Low-temperature geothermal resources of Washington

    SciTech Connect

    Schuster, J.E. ); Bloomquist, R.G. )

    1994-11-01

    USDOE awarded a contract, by way of the University of Utah Research Institute and the Oregon Institute of Technology Geo-Heat Center, to the Division of Geology and Earth Resources (DGER) to update the geothermal database for Washington. DGER with the Washington State Energy Office (WSEO) now assess and encourage geothermal energy uses, especially in the Columbia River basin where shallow geothermal sources are abundant. DGER and WSEO recommend developing existing thermal wells, do further exploration, and institute a long term effort to inform the public of the advantages economic value of utilizing geothermal resources over fossil fuels.

  14. Human Resources in Geothermal Development

    SciTech Connect

    Fridleifsson, I.B.

    1995-01-01

    Some 80 countries are potentially interested in geothermal energy development, and about 50 have quantifiable geothermal utilization at present. Electricity is produced from geothermal in 21 countries (total 38 TWh/a) and direct application is recorded in 35 countries (34 TWh/a). Geothermal electricity production is equally common in industrialized and developing countries, but plays a more important role in the developing countries. Apart from China, direct use is mainly in the industrialized countries and Central and East Europe. There is a surplus of trained geothermal manpower in many industrialized countries. Most of the developing countries as well as Central and East Europe countries still lack trained manpower. The Philippines (PNOC) have demonstrated how a nation can build up a strong geothermal workforce in an exemplary way. Data from Iceland shows how the geothermal manpower needs of a country gradually change from the exploration and field development to monitoring and operations.

  15. FIJI geothermal resource assessment and development programme

    SciTech Connect

    Autar, Rohit K.

    1996-01-24

    The Fiji Department of Energy (DOE) has a comprehensive resource assessment programme which assesses and promotes the use of local renewable energy resources where they are economically viable. DOE is currently involved in the investigation of the extent of geothermal resources for future energy planning and supply purposes. The aim is to determine (a) whether exploitable geothermal fields exist in the Savusavu or Labasa areas. the two geothermal fields with the greatest potential, (b) the cost of exploiting these fields for electricity generation/process heat on Vanua Levu. (c) the comparative cost per mega-watt-hour (MWh) of geothermal electricity generation with other generating options on Vanua Levu, and. (d) to promote the development of the geothermal resource by inviting BOO/BOOT schemes. Results to date have indicated that prospects for using geothermal resource for generating electricity lies in Savusavu only - whereas the Labasa resource can only provide process heat. All geophysical surveys have been completed and the next stage is deep drilling to verify the theoretical findings and subsequent development.

  16. Geothermal resource assessment of the United States

    USGS Publications Warehouse

    Muffler, L.J.P.; Christiansen, R.L.

    1978-01-01

    Geothermal resource assessment is the broadly based appraisal of the quantities of heat that might be extracted from the earth and used economically at some reasonable future time. In the United States, the Geological Survey is responsible for preparing geothermal assessments based on the best available data and interpretations. Updates are required every few years owing to increasing knowledge, enlarging data base, improving technology, and changing economics. Because geothermal understanding is incomplete and rapidly evolving, the USGS complements its assessments with a broad program of geothermal research that includes (1) study of geothermal processes on crustal and local scales, (2) regional evaluations, (3) intensive study of type systems before and during exploitation (4) improvement of exploration techniques, and (5) investigation of geoenvironmental constraints. ?? 1978 Birkha??user Verlag.

  17. Geothermal -- The Energy Under Our Feet: Geothermal Resource Estimates for the United States

    SciTech Connect

    Green, B. D.; Nix, R. G.

    2006-11-01

    On May 16, 2006, the National Renewable Energy Laboratory (NREL) in Golden, Colorado hosted a geothermal resources workshop with experts from the geothermal community. The purpose of the workshop was to re-examine domestic geothermal resource estimates. The participating experts were organized into five working groups based on their primary area of expertise in the following types of geothermal resource or application: (1) Hydrothermal, (2) Deep Geothermal Systems, (3) Direct Use, (4) Geothermal Heat Pumps (GHPs), and (5) Co-Produced and Geopressured. The workshop found that the domestic geothermal resource is very large, with significant benefits.

  18. Geothermal resources assessment in Hawaii. Final report

    SciTech Connect

    Thomas, D.M.

    1984-02-21

    The Hawaii Geothermal Resources Assessment Program was initiated in 1978. The preliminary phase of this effort identified 20 Potential Geothermal Resource Areas (PGRA's) using available geological, geochemical and geophysical data. The second phase of the Assessment Program undertook a series of field studies, utilizing a variety of geothermal exploration techniques, in an effort to confirm the presence of thermal anomalies in the identified PGRA's and, if confirmed, to more completely characterize them. A total of 15 PGRA's on four of the five major islands in the Hawaiian chain were subject to at least a preliminary field analysis. The remaining five were not considered to have sufficient resource potential to warrant study under the personnel and budget constraints of the program.

  19. Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity

    SciTech Connect

    Dan Wendt; Greg Mines

    2014-09-01

    Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.

  20. A geothermal resource data base: New Mexico

    SciTech Connect

    Witcher, J.C.

    1995-07-01

    This report provides a compilation of geothermal well and spring information in New Mexico up to 1993. Economically important geothermal direct-use development in New Mexico and the widespread use of personal computers (PC) in recent years attest to the need for an easily used and accessible data base of geothermal data in a digital format suitable for the PC. This report and data base are a part of a larger congressionally-funded national effort to encourage and assist geothermal direct-use. In 1991, the US Department of Energy, Geothermal Division (DOE/GD) began a Low Temperature Geothermal Resources and Technology Transfer Program. Phase 1 of this program includes updating the inventory of wells and springs of ten western states and placing these data into a digital format that is universally accessible to the PC. The Oregon Institute of Technology GeoHeat Center (OIT) administers the program and the University of Utah Earth Sciences and Resources Institute (ESRI) provides technical direction.

  1. Low-Temperature Geothermal Resources, Geothermal Technologies Program (GTP) (Fact Sheet)

    SciTech Connect

    Not Available

    2010-05-01

    This document highlights the applications of low-temperature geothermal resources and the potential for future uses as well as current Geothermal Technologies Program-funded projects related to low-temperature resources.

  2. 30 CFR 1202.351 - Royalties on geothermal resources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INTERIOR Natural Resources Revenue ROYALTIES Geothermal Resources § 1202.351 Royalties on geothermal... Interior temporarily waives, suspends, or reduces that rate(s). Royalties are determined under 30 CFR part 1206, subpart H. (2) Fees in lieu of royalties on geothermal resources are prescribed in 30 CFR...

  3. Water Intensity of Electricity from Geothermal Resources

    NASA Astrophysics Data System (ADS)

    Mishra, G. S.; Glassley, W. E.

    2010-12-01

    BACKGROUND Electricity from geothermal resources could play a significant role in the United States over the next few decades; a 2006 study by MIT expects a capacity of 100GWe by 2050 as feasible; approximately 10% of total electricity generating capacity up from less than 1% today. However, there is limited research on the water requirements and impacts of generating electricity from geothermal resources - conventional as well as enhanced. To the best of our knowledge, there is no baseline exists for water requirements of geothermal electricity. Water is primarily required for cooling and dissipation of waste heat in the power plants, and to account for fluid losses during heat mining of enhanced geothermal resources. MODEL DESCRIPTION We have developed a model to assess and characterize water requirements of electricity from hydrothermal resources and enhanced geothermal resources (EGS). Our model also considers a host of factors that influence cooling water requirements ; these include the temperature and chemical composition of geothermal resource; installed power generation technology - flash, organic rankine cycle and the various configurations of these technologies; cooling technologies including air cooled condensers, wet recirculating cooling, and hybrid cooling; and finally water treatment and recycling installations. We expect to identify critical factors and technologies. Requirements for freshwater, degraded water and geothermal fluid are separately estimated. METHODOLOGY We have adopted a lifecycle analysis perspective that estimates water consumption at the goethermal field and power plant, and accounts for transmission and distribution losses before reaching the end user. Our model depends upon an extensive literature review to determine various relationships necessary to determine water usage - for example relationship between thermal efficiency and temperature of a binary power plant, or differences in efficiency between various ORC configurations

  4. Hot-dry-rock geothermal resource 1980

    SciTech Connect

    Heiken, G.; Goff, F.; Cremer, G.

    1982-04-01

    The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

  5. 30 CFR 1202.351 - Royalties on geothermal resources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 1202.351 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE ROYALTIES Geothermal Resources § 1202.351 Royalties on geothermal resources. (a)(1... temporarily waives, suspends, or reduces that rate(s). Royalties are determined under 30 CFR part...

  6. 30 CFR 1202.351 - Royalties on geothermal resources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 1202.351 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE ROYALTIES Geothermal Resources § 1202.351 Royalties on geothermal resources. (a)(1... temporarily waives, suspends, or reduces that rate(s). Royalties are determined under 30 CFR part...

  7. 30 CFR 1202.351 - Royalties on geothermal resources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 1202.351 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE ROYALTIES Geothermal Resources § 1202.351 Royalties on geothermal resources. (a)(1... temporarily waives, suspends, or reduces that rate(s). Royalties are determined under 30 CFR part...

  8. Classification of geothermal resources by potential

    NASA Astrophysics Data System (ADS)

    Rybach, L.

    2015-03-01

    When considering and reporting resources, the term "geothermal potential" is often used without clearly stating what kind of potential is meant. For renewable energy resources it is nowadays common to use different potentials: theoretical, technical, economic, sustainable, developable - decreasing successively in size. In such a sequence, the potentials are progressively realizable and more and more rewarding financially. The theoretical potential describes the physically present energy, the technical potential the fraction of this energy that can be used by currently available technology and the economic potential the time- and location-dependent fraction of the previous category; the sustainable potential constrains the fraction of the economic potential that can be utilized in the long term; the developable potential is the fraction of the economic resource which can be developed under realistic conditions. In converting theoretical to technical potential, the recovery factor (the ratio extractable heat/heat present at depth) is of key importance. An example (global geothermal resources) is given, with numerical values of the various potentials. The proposed classification could and should be used as a kind of general template for future geothermal energy resources reporting.

  9. 2014 Low-Temperature and Coproduced Geothermal Resources Fact Sheet

    SciTech Connect

    Tim Reinhardt, Program Manager

    2014-09-01

    As a growing sector of geothermal energy development, the Low-Temperature Program supports innovative technologies that enable electricity production and cascaded uses from geothermal resources below 300° Fahrenheit.

  10. Overview of Resources for Geothermal Absorption Cooling for Buildings

    SciTech Connect

    Liu, Xiaobing; Gluesenkamp, Kyle R; Mehdizadeh Momen, Ayyoub

    2015-06-01

    This report summarizes the results of a literature review in three areas: available low-temperature/coproduced geothermal resources in the United States, energy use for space conditioning in commercial buildings, and state of the art of geothermal absorption cooling.

  11. Geothermal resource assessment, South Dakota: Final report

    SciTech Connect

    Gosnold, W.D. Jr.

    1987-07-01

    Seven geothermal aquifers in South Dakota contain an accessible resource base of about 11,207 x 10/sup 18/ J. The potentially productive geothermal aquifers are: Deadwood Formation (Cambrian), Winnipeg Formation + Red River Formation + Englewood Limestone (Ordovician through Devonian), Madison Limestone (Mississippian), Minnelusa Formation (Mississippian-Permian), Inyan Kara Group (Cretaceous), and Newcastle Sandstone (Cretaceous). The resource estimate was obtained by first using heat flow, thermal conductivity, temperature gradient, and stratigraphic data to estimate aquifer temperatures. The heat content of each aquifer was determined from the product of the volumetric heat capacity, aquifer volume, and temperature difference between the aquifer and the mean annual temperature for a 14 x 14 grid of 240 km/sup 2/ cells. Geothermal fluid temperatures range from about 120/sup 0/C in the Deadwood Formation in the Williston Basin to about 30/sup 0/C for the Newcastle Sandstone in south-central South Dakota. The area containing the resource lies largely west of the Missouri River. About 10,000 km/sup 2/ of the resource area is characterized by anomalously high heat flow values greater than 100 mW m/sup -2/.

  12. Assessment of geothermal resources of Caliente, Nevada

    SciTech Connect

    Trexler, D.T.; Flynn, T.; Koenig, B.A.; Bruce, J.

    1980-03-01

    An assessment of the geothermal resources of Caliente, Nevada was made to provide information on resource characteristics and to site 2 (two) 500 ft (152 m) test wells to confirm the resource. The strategy used in the resource assessment employed a logical sequence of work elements that included 1) baseline data collection, 2) field investigations, 3) laboratory analyses and 4) data interpretation and synthesis. Airphoto interpretation indicated that a series of normal faults produced a stepped arrangement in the canyon walls on the west side of Meadow Valley Wash north of downtown Caiente. This area coincides with the area of known geothermal occurrences. Temperature measurements in existing wells indicate a rapid cooling of the geothermal waters as they mix with cold groundwater flows in Meadow Valley Wash. Soil mercury analyses range from 15 ppB to as high as 120 ppB. Trends in soil mercury content may indicate the presence of buried faults. Temperature measured in 2-meter deep auger holes indicated temperatures as high as 40/sup 0/C in an area north of the Lincoln County Medical Facility. Interpretation of chemical analyses, both major and minor, of waters collected from wells and streams in the area failed to conclusively show any mechanisms for the mixing of thermal and nonthermal waters. The selection of sites for the 2 (two) 500 ft (152 m) reservoir confirmation wells was made using the results of temperature surveys, geologic structure and historic observations.

  13. 43 CFR 3280.3 - What is BLM's general policy regarding the formation of unit agreements?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) GEOTHERMAL RESOURCES UNIT AGREEMENTS Geothermal Resources Unit Agreements-General § 3280.3 What is BLM's... natural resources of any geothermal reservoir, field, or like area, or any part thereof, lessees and...

  14. Tapping the earth's geothermal resources: Hydrothermal today, magma tomorrow

    SciTech Connect

    Kukacka, L.E.

    1986-12-17

    The paper discusses geothermal resources, what it is, where it is, and how to extract energy from it. The materials research activities at Brookhaven National Laboratory related to geothermal energy extraction are discussed. These include high-temperature, light-weight polymer cements, elastomers, biochemical waste processing techniques, and non-metallic heat exchanger tubing. The economics of geothermal energy is also discussed. (ACR)

  15. Low-temperature geothermal resources of Washington

    SciTech Connect

    Schuster, J.E.; Bloomquist, R.G.

    1994-06-01

    This report presents information on the location, physical characteristics, and water chemistry of low-temperature geothermal resources in Washington. The database includes 941 thermal (>20C or 68F) wells, 34 thermal springs, lakes, and fumaroles, and 238 chemical analyses. Most thermal springs occur in the Cascade Range, and many are associated with stratovolcanoes. In contrast, 97 percent of thermal wells are located in the Columbia Basin of southeastern Washington. Some 83.5 percent are located in Adams, Benton, Franklin, Grant, Walla Walla, and Yakima Counties. Yakima County, with 259 thermal wells, has the most. Thermal wells do not seem to owe their origin to local sources of heat, such as cooling magma in the Earth`s upper crust, but to moderate to deep circulation of ground water in extensive aquifers of the Columbia River Basalt Group and interflow sedimentary deposits, under the influence of a moderately elevated (41C/km) average geothermal gradient.

  16. Geothermal energy development in the eastern United States. Papers presented: Geothermal Resources Council Annual Meeting

    NASA Astrophysics Data System (ADS)

    1980-10-01

    Topic areas covered include: technical assistance (hydrothermal resource application in the eastern United States); GRITS - a computer model for economic evaluation of direct-uses of geothermal energy; geothermal market penetration in the residential sector - capital stock impediments and compensatory incentives; an analysis of benefits and costs of accelerated market penetration by a geothermal community heating system.

  17. Geothermal-resource verification for Air Force bases

    SciTech Connect

    Grant, P.R. Jr.

    1981-06-01

    This report summarizes the various types of geothermal energy reviews some legal uncertainties of the resource and then describes a methodology to evaluate geothermal resources for applications to US Air Force bases. Estimates suggest that exploration costs will be $50,000 to $300,000, which, if favorable, would lead to drilling a $500,000 exploration well. Successful identification and development of a geothermal resource could provide all base, fixed system needs with an inexpensive, renewable energy source.

  18. Deep geothermal resources and energy: Current research and developments

    NASA Astrophysics Data System (ADS)

    Manzella, A.; Milsch, H.; Hahne, B.; van Wees, J. D.; Bruhn, D.

    2012-04-01

    Energy from deep geothermal resources plays an increasing role in many European countries in their efforts to increase the proportion of renewables in their energy portfolio. Deep geothermal heat and electric power have a high load factor, are sustainable and environmentally friendly. However, the safe, sustainable, and economic development of deep geothermal resources, also in less favourable regions, faces a number of issues requiring substantial research efforts: (1) The probability of finding an unknown geothermal reservoir has to be improved. (2) Drilling methods have to be better adapted and developed to the specific needs of geothermal development. (3) The assessment of the geothermal potential should provide more reliable and clear guidelines for the development. (4) Stimulation methods for enhanced geothermal systems (EGS) have to be refined to increase the success rate and reduce the risk associated with induced seismicity. (5) Operation and maintenance in aggressive geothermal environments require specific solutions for corrosion and scaling problems. (6) Last but not least, emerging activities to harness energy from supercritical reservoirs would make significant progress with qualified input from research. In particular, sedimentary basins like e.g. the North German and Polish Basin, the Pannonian Basin, the Po Valley, the Bavarian Molasse Basin or the Upper Rhine Graben have a high geothermal potential, even if geothermal gradients are moderate. We will highlight projects that aim at optimizing exploration, characterization, and modeling prior to drilling and at a better understanding of physical, hydraulic and chemical processes during operation of a geothermal power plant. This includes geophysical, geological and geochemical investigations regarding potential geothermal reservoirs in sedimentary basins, as well as modelling of geothermally relevant reservoir parameters that influence the potential performance and long-term behavior of a future

  19. Geothermal energy: a proven resource with costly potential

    SciTech Connect

    Not Available

    1980-08-01

    The commercial use of geothermal energy to generate electricity has been spreading across the country since the California Geyser site was developed in 1960. Petroleum companies see geothermal power generation as a way to broaden their own base. The binary-cycle technology to use hydrothermal resources will be ready by 1985. Power generation from geothermal heat will be costly even though the resource itself is free and renewable; but the economics will improve as fossil-fuel prices increase. (DCK)

  20. Geothermal resource evaluation of the Yuma area

    SciTech Connect

    Poluianov, E.W.; Mancini, F.P.

    1985-11-29

    This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

  1. Prioritizing High-Temperature Geothermal Resources in Utah

    USGS Publications Warehouse

    Blackett, R.E.; Brill, T.C.; Sowards, G.M.

    2002-01-01

    The Utah Geological Survey and the Utah Energy Office recently released geothermal resource information for Utah as a "digital atlas." We are now expanding this project to include economic analyses of selected geothermal sites and previously unavailable resource information. The enhancements to the digital atlas will include new resource, demographic, regulatory, economic, and other information to allow analyses of economic factors for comparing and ranking geothermal resource sites in Utah for potential electric power development. New resource information includes temperature gradient and fluid chemistry data, which was previously proprietary. Economic analyses are based upon a project evaluation model to assess capital and operating expenses for a variety of geothermal powerplant configuration scenarios. A review of legal and institutional issues regarding geothermal development coupled with water development will also be included.

  2. Quantifying the undiscovered geothermal resources of the United States

    USGS Publications Warehouse

    Williams, Colin F.; Reed, Marshall J.; DeAngelo, Jacob; Galanis, S. Peter, Jr.

    2009-01-01

    In 2008, the U.S. Geological Survey (USGS) released summary results of an assessment of the electric power production potential from the moderate- and high-temperature geothermal resources of the United States (Williams et al., 2008a; USGS Fact Sheet 2008-3082; http://pubs.usgs.gov/fs/2008/3082). In the assessment, the estimated mean power production potential from undiscovered geothermal resources is 30,033 Megawatts-electric (MWe), more than three times the estimated mean potential from identified geothermal systems: 9057 MWe. The presence of significant undiscovered geothermal resources has major implications for future exploration and development activities by both the government and private industry. Previous reports summarize the results of techniques applied by the USGS and others to map the spatial distribution of undiscovered resources. This paper describes the approach applied in developing estimates of the magnitude of the undiscovered geothermal resource, as well as the manner in which that resource is likely to be distributed among geothermal systems of varying volume and temperature. A number of key issues constrain the overall estimate. One is the degree to which characteristics of the undiscovered resources correspond to those observed among identified geothermal systems. Another is the evaluation of exploration history, including both the spatial distribution of geothermal exploration activities relative to the postulated spatial distribution of undiscovered resources and the probability of successful discoveries from the application of standard geothermal exploration techniques. Also significant are the physical, chemical, and geological constraints on the formation and longevity of geothermal systems. Important observations from this study include the following. (1) Some of the largest identified geothermal systems, such as The Geysers vapor-dominated system in northern California and the diverse geothermal manifestations found in Yellowstone

  3. Classification of public lands valuable for geothermal steam and associated geothermal resources

    USGS Publications Warehouse

    Godwin, Larry H.; Haigler, L.B.; Rioux, R.L.; White, D.E.; Muffler, L.J.; Wayland, R.G.

    1971-01-01

    The Organic Act of 1879 (43 U.S.C. 31) that established the U.S. Geological Survey provided, among other things, for the classification of the public lands and for the examination of the geological structure, mineral sources, and products of the national domain. In order to provide uniform executive action in classifying public lands, standards for determining which lands are valuable for mineral resources, for example, leasable mineral lands, or for other products are prepared by the U.S. Geological Survey. This report presents the classification standards for determining which Federal lands are classifiable as geothermal steam and associated geothermal resources lands under the Geothermal Steam Act of 1970 (84 Star. 1566). The concept of a geothermal resources province is established for classification of lands for the purpose of retention in Federal ownership of rights to geothermal resources upon disposal of Federal lands. A geothermal resources province is defined as an area in which higher than normal temperatures are likely to occur with depth and in which there is a reasonable possibility of finding reservoir rocks that will yield steam or heated fluids to wells. The determination of a 'known geothermal resources area' is made after careful evaluation of the available geologic, geochemical, and geophysical data and any evidence derived from nearby discoveries, competitive interests, and other indicia. The initial classification required by the Geothermal Steam Act of 1970 is presented.

  4. Research and Development Program Plan for Geopressure-Geothermal Resources

    SciTech Connect

    1980-12-01

    The objective of the Geopressure-Geothermal Program of the Division of Geothermal Energy, U.S. Department of Energy, is to determine by the end of FY86 the magnitude and economic potential of the geopressure-geothermal resources. This Program Plan describes how the Department of Energy proposes to achieve this objective. The main purposes of the current program are to narrow the range of uncertainty on the potential recovery of energy from the geopressure-geothermal resources and to ensure the timely development of these resources as the potential is demonstrated. For these purposes, the Division of Geothermal Energy has established the following objectives: (1) Define the magnitude, potential, and economics of the resources. (2) Conduct supporting research on reservoir and fluid characteristics. (3) Adapt or develop downhole, surface, and disposal technology. (4) Identify and mitigate adverse environmental, legal, and institutional issues in order to promote commercialization.

  5. Geothermal Energy: Evaluation of a Resource

    ERIC Educational Resources Information Center

    Bockemuehl, H. W.

    1976-01-01

    This article suggests the use of geothermal energy for producing electricity, using as an example the development at Wairakei, New Zealand. Other geothermal areas are identified, and economic and environmental co sts of additional development are explored. (Author/AV)

  6. Geothermal resources and reserves in Indonesia: an updated revision

    NASA Astrophysics Data System (ADS)

    Fauzi, A.

    2015-02-01

    More than 300 high- to low-enthalpy geothermal sources have been identified throughout Indonesia. From the early 1980s until the late 1990s, the geothermal potential for power production in Indonesia was estimated to be about 20 000 MWe. The most recent estimate exceeds 29 000 MWe derived from the 300 sites (Geological Agency, December 2013). This resource estimate has been obtained by adding all of the estimated geothermal potential resources and reserves classified as "speculative", "hypothetical", "possible", "probable", and "proven" from all sites where such information is available. However, this approach to estimating the geothermal potential is flawed because it includes double counting of some reserve estimates as resource estimates, thus giving an inflated figure for the total national geothermal potential. This paper describes an updated revision of the geothermal resource estimate in Indonesia using a more realistic methodology. The methodology proposes that the preliminary "Speculative Resource" category should cover the full potential of a geothermal area and form the base reference figure for the resource of the area. Further investigation of this resource may improve the level of confidence of the category of reserves but will not necessarily increase the figure of the "preliminary resource estimate" as a whole, unless the result of the investigation is higher. A previous paper (Fauzi, 2013a, b) redefined and revised the geothermal resource estimate for Indonesia. The methodology, adopted from Fauzi (2013a, b), will be fully described in this paper. As a result of using the revised methodology, the potential geothermal resources and reserves for Indonesia are estimated to be about 24 000 MWe, some 5000 MWe less than the 2013 national estimate.

  7. West Texas geothermal resource assessment. Part II. Preliminary utilization assessment of the Trans-Pecos geothermal resource. Final report

    SciTech Connect

    Gilliland, M.W.; Fenner, L.B.

    1980-01-01

    The utilization potential of geothermal resources in Trans-Pecos, Texas was assessed. The potential for both direct use and electric power generation were examined. As with the resource assessment work, the focus was on the Hueco Tanks area in northeastern El Paso County and the Presidio Bolson area in Presidio County. Suitable users of the Hueco Tanks and Presidio Bolson resource areas were identified by matching postulated temperature characteristics of the geothermal resource to the need characteristics of existing users in each resource area. The amount of geothermal energy required and the amount of fossil fuel that geothermal energy would replace were calculated for each of the users identified as suitable. Current data indicate that temperatures in the Hueco Tanks resource area are not high enough for electric power generation, but in at least part of the Presidio Bolson resource area, they may be high enough for electric power generation.

  8. Nevada low-temperaure geothermal resource assessment: 1994. Final report

    SciTech Connect

    Garside, L.J.

    1994-12-31

    Data compilation for the low-temperature program is being done by State Teams in two western states. Final products of the study include: a geothermal database, in hardcopy and as digital data (diskette) listing information on all known low- and moderate- temperature springs and wells in Nevada; a 1:1,000,000-scale map displaying these geothermal localities, and a bibliography of references on Nevada geothermal resources.

  9. Final Technical Report; Geothermal Resource Evaluation and Definitioni (GRED) Program-Phases I, II, and III for the Animas Valley, NM Geothermal Resource

    SciTech Connect

    Cunniff, Roy A.; Bowers, Roger L.

    2005-08-01

    This report contains a detailed summary of a methodical and comprehensive assessment of the potential of the Animas Valley, New Mexico geothermal resource leasehold owned by Lightning Dock Geothermal, Inc. Work described herein was completed under the auspices of the Department of Energy (DOE) Cooperative Agreement DE-FC04-00AL66977, Geothermal Resource Evaluation and Definition (GRED) Program, and the work covers the time span from June 2001 through June 2004. Included in this new report are detailed results from the GRED Program, including: geophysical and geochemical surveys, reflection seismic surveys, aeromagnetic surveys, gravity and electrical resistivity surveys, soil thermal ion and soil carbon dioxide flux surveys, four temperature gradient holes, and one deep exploratory well.

  10. Inventory of geothermal resources in Nebraska. Final report

    SciTech Connect

    Gosnold, W.D.; Eversoll, D.A.

    1983-06-30

    The goal of the State Coupled Resource Assessment Program is to identify and evaluate geothermal resources in the state, particularly low-temperature potential. Eight tasks were identified and documented in this report as follows: bottom-hole temperature survey, heat flow and temperature gradient survey, data translation studies, gravity data, substate regions, information dissemination, state geothermal map, and reports. The project had three major products: (1) a map, Geothermal Resources of Nebraska; (2) a significant amount of thermal data collected and documented within the state; and (3) a series of publications, presentations and meetings (documented as an Appendix).

  11. Representative well models for eight geothermal-resource areas

    SciTech Connect

    Carson, C.C.; Lin, Y.T.; Livesay, B.J.

    1983-02-01

    Representative well models have been constructed for eight major geothermal-resource areas. The models define representative times and costs associated with the individual operations that can be expected during drilling and completion of geothermal wells. The models were made for and have been used to evaluate the impacts of potential new technologies. The nature, construction, and validation of the models are presented.

  12. Harnessing the geothermal resources of sedimentary basins for electricity production

    NASA Astrophysics Data System (ADS)

    Alkhasov, A. B.; Alkhasova, D. A.

    2011-02-01

    Use of geothermal resources for generating electricity is briefly analyzed. Results obtained from optimization of the thermodynamic cycle implemented in the secondary coolant circuit of a binary geothermal power station and the parameters of its primary heat carrier circuit are presented.

  13. Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada

    SciTech Connect

    David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

    2003-08-14

    Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

  14. Analysis of Low-Temperature Utilization of Geothermal Resources

    SciTech Connect

    Anderson, Brian

    2015-06-30

    Full realization of the potential of what might be considered “low-grade” geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects. The objectives of this project were: 1) to perform a techno-economic analysis of the integration and utilization potential of low-temperature geothermal sources. Innovative uses of low-enthalpy geothermal water were designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. 2) To perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. These processes included electricity generation using biomass and district heating systems. 3) To scale up and generalize the results of three case study locations to develop a regionalized model of the utilization of low-temperature geothermal resources. A national-level, GIS-based, low-temperature geothermal resource supply model was developed and used to develop a series of national supply curves. We performed an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. The final products of this study include 17 publications, an updated version of the cost estimation software GEOPHIRES, and direct-use supply curves for low-temperature utilization of geothermal resources. The supply curves for direct use geothermal include utilization from known hydrothermal, undiscovered hydrothermal, and near-hydrothermal EGS resources and presented these results at the Stanford

  15. Enhanced Geothermal Systems (EGS) R&D Program: US Geothermal Resources Review and Needs Assessment

    SciTech Connect

    Entingh, Dan; McLarty, Lynn

    2000-11-30

    The purpose of this report is to lay the groundwork for an emerging process to assess U.S. geothermal resources that might be suitable for development as Enhanced Geothermal Systems (EGS). Interviews of leading geothermists indicate that doing that will be intertwined with updating assessments of U.S. higher-quality hydrothermal resources and reviewing methods for discovering ''hidden'' hydrothermal and EGS resources. The report reviews the history and status of assessment of high-temperature geothermal resources in the United States. Hydrothermal, Enhanced, and Hot Dry Rock resources are addressed. Geopressured geothermal resources are not. There are three main uses of geothermal resource assessments: (1) They inform industry and other interest parties of reasonable estimates of the amounts and likely locations of known and prospective geothermal resources. This provides a basis for private-sector decisions whether or not to enter the geothermal energy business at all, and for where to look for useful resources. (2) They inform government agencies (Federal, State, local) of the same kinds of information. This can inform strategic decisions, such as whether to continue to invest in creating and stimulating a geothermal industry--e.g., through research or financial incentives. And it informs certain agencies, e.g., Department of Interior, about what kinds of tactical operations might be required to support such activities as exploration and leasing. (3) They help the experts who are performing the assessment(s) to clarify their procedures and data, and in turn, provide the other two kinds of users with a more accurate interpretation of what the resulting estimates mean. The process of conducting this assessment brings a spotlight to bear on what has been accomplished in the domain of detecting and understanding reservoirs, in the period since the last major assessment was conducted.

  16. The Preston Geothermal Resources; Renewed Interest in a Known Geothermal Resource Area

    SciTech Connect

    Wood, Thomas R.; Worthing, Wade; Cannon, Cody; Palmer, Carl; Neupane, Ghanashyam; McLing, Travis L; Mattson, Earl; Dobson, Patric; Conrad, Mark

    2015-01-01

    The Preston Geothermal prospect is located in northern Cache Valley approximately 8 kilometers north of the city of Preston, in southeast Idaho. The Cache Valley is a structural graben of the northern portion of the Basin and Range Province, just south of the border with the Eastern Snake River Plain (ESRP). This is a known geothermal resource area (KGRA) that was evaluated in the 1970's by the State of Idaho Department of Water Resources (IDWR) and by exploratory wells drilled by Sunedco Energy Development. The resource is poorly defined but current interpretations suggest that it is associated with the Cache Valley structural graben. Thermal waters moving upward along steeply dipping northwest trending basin and range faults emanate in numerous hot springs in the area. Springs reach temperatures as hot as 84° C. Traditional geothermometry models estimated reservoir temperatures of approximately 125° C in the 1970’s study. In January of 2014, interest was renewed in the areas when a water well drilled to 79 m (260 ft) yielded a bottom hole temperature of 104° C (217° F). The well was sampled in June of 2014 to investigate the chemical composition of the water for modeling geothermometry reservoir temperature. Traditional magnesium corrected Na-K-Ca geothermometry estimates this new well to be tapping water from a thermal reservoir of 227° C (440° F). Even without the application of improved predictive methods, the results indicate much higher temperatures present at much shallower depths than previously thought. This new data provides strong support for further investigation and sampling of wells and springs in the Northern Cache Valley, proposed for the summer of 2015. The results of the water will be analyzed utilizing a new multicomponent equilibrium geothermometry (MEG) tool called Reservoir Temperature Estimate (RTEst) to obtain an improved estimate of the reservoir temperature. The new data suggest that other KGRAs and overlooked areas may need to be

  17. Assessment of Geothermal Data Resources and Requirements

    SciTech Connect

    none,

    2008-09-01

    This paper is a review of Geothermal Technologies Program activities and archives related to data collection and analysis. It includes an assessment of the current state of geothermal data, future program and stakeholder data needs, existence of and access to critical data, and high-level direction and prioritization of next steps to meet the Program’s data needs.

  18. Geothermal resource requirements for an energy self-sufficient spaceport

    SciTech Connect

    Kruger, P.; Fioravanti, M.; Duchane, D.; Vaughan, A.

    1997-01-01

    Geothermal resources in the southwestern United States provide an opportunity for development of isolated spaceports with local energy self-sufficiency. Geothermal resources can provide both thermal energy and electrical energy for the spaceport facility infrastructure and production of hydrogen fuel for the space vehicles. In contrast to hydrothermal resources by which electric power is generated for sale to utilities, hot dry rock (HDR) geothermal resources are more wide-spread and can be more readily developed at desired spaceport locations. This paper reviews a dynamic model used to quantify the HDR resources requirements for a generic spaceport and estimate the necessary reservoir size and heat extraction rate. The paper reviews the distribution of HDR resources in southern California and southern New Mexico, two regions where a first developmental spaceport is likely to be located. Finally, the paper discusses the design of a HDR facility for the generic spaceport and estimates the cost of the locally produced power.

  19. Geothermal resource area 11, Clark County area development plan

    SciTech Connect

    Pugsley, M.

    1981-01-01

    Geothermal Resource Area 11 includes all of the land in Clark County, Nevada. Within this area are nine geothermal anomalies: Moapa Area, Las Vegas Valley, Black Canyon, Virgin River Narrows, Roger's Springs, Indian Springs, White Rock Springs, Brown's Spring, and Ash Creek Spring. All of the geothermal resources in Clark County have relatively low temperatures. The highest recorded temperature is 145{sup 0}F at Black Canyon. The temperatures of the other resources range from 70 to 90{sup 0}F. Because of the low temperature of the resources and, for the most part, the distance of the resources from any population base, the potential for the development of the resources are considered to be somewhat limited.

  20. Geologic controls on supercritical geothermal resources above magmatic intrusions

    PubMed Central

    Scott, Samuel; Driesner, Thomas; Weis, Philipp

    2015-01-01

    A new and economically attractive type of geothermal resource was recently discovered in the Krafla volcanic system, Iceland, consisting of supercritical water at 450 °C immediately above a 2-km deep magma body. Although utilizing such supercritical resources could multiply power production from geothermal wells, the abundance, location and size of similar resources are undefined. Here we present the first numerical simulations of supercritical geothermal resource formation, showing that they are an integral part of magma-driven geothermal systems. Potentially exploitable resources form in rocks with a brittle–ductile transition temperature higher than 450 °C, such as basalt. Water temperatures and enthalpies can exceed 400 °C and 3 MJ kg−1, depending on host rock permeability. Conventional high-enthalpy resources result from mixing of ascending supercritical and cooler surrounding water. Our models reproduce the measured thermal conditions of the resource discovered at Krafla. Similar resources may be widespread below conventional high-enthalpy geothermal systems. PMID:26211617

  1. Geologic controls on supercritical geothermal resources above magmatic intrusions.

    PubMed

    Scott, Samuel; Driesner, Thomas; Weis, Philipp

    2015-01-01

    A new and economically attractive type of geothermal resource was recently discovered in the Krafla volcanic system, Iceland, consisting of supercritical water at 450 °C immediately above a 2-km deep magma body. Although utilizing such supercritical resources could multiply power production from geothermal wells, the abundance, location and size of similar resources are undefined. Here we present the first numerical simulations of supercritical geothermal resource formation, showing that they are an integral part of magma-driven geothermal systems. Potentially exploitable resources form in rocks with a brittle-ductile transition temperature higher than 450 °C, such as basalt. Water temperatures and enthalpies can exceed 400 °C and 3 MJ kg(-1), depending on host rock permeability. Conventional high-enthalpy resources result from mixing of ascending supercritical and cooler surrounding water. Our models reproduce the measured thermal conditions of the resource discovered at Krafla. Similar resources may be widespread below conventional high-enthalpy geothermal systems. PMID:26211617

  2. Spatial data analysis for exploration of regional scale geothermal resources

    NASA Astrophysics Data System (ADS)

    Moghaddam, Majid Kiavarz; Noorollahi, Younes; Samadzadegan, Farhad; Sharifi, Mohammad Ali; Itoi, Ryuichi

    2013-10-01

    Defining a comprehensive conceptual model of the resources sought is one of the most important steps in geothermal potential mapping. In this study, Fry analysis as a spatial distribution method and 5% well existence, distance distribution, weights of evidence (WofE), and evidential belief function (EBFs) methods as spatial association methods were applied comparatively to known geothermal occurrences, and to publicly-available regional-scale geoscience data in Akita and Iwate provinces within the Tohoku volcanic arc, in northern Japan. Fry analysis and rose diagrams revealed similar directional patterns of geothermal wells and volcanoes, NNW-, NNE-, NE-trending faults, hotsprings and fumaroles. Among the spatial association methods, WofE defined a conceptual model correspondent with the real world situations, approved with the aid of expert opinion. The results of the spatial association analyses quantitatively indicated that the known geothermal occurrences are strongly spatially-associated with geological features such as volcanoes, craters, NNW-, NNE-, NE-direction faults and geochemical features such as hotsprings, hydrothermal alteration zones and fumaroles. Geophysical data contains temperature gradients over 100 °C/km and heat flow over 100 mW/m2. In general, geochemical and geophysical data were better evidence layers than geological data for exploring geothermal resources. The spatial analyses of the case study area suggested that quantitative knowledge from hydrothermal geothermal resources was significantly useful for further exploration and for geothermal potential mapping in the case study region. The results can also be extended to the regions with nearly similar characteristics.

  3. California low-temperature geothermal resources update: 1993

    SciTech Connect

    Youngs, L.G.

    1994-12-31

    The US Department of Energy -- Geothermal Division (DOE/GD) recently sponsored the Low-Temperature Geothermal Resources and Technology Transfer Program to bring the inventory of the nation`s low- and moderate-temperature geothermal resources up to date and to encourage development of the resources. The Oregon Institute of Technology, Geo-Heat Center (OIT/GHC) and the University of Utah Research Institute (UURI) established subcontracts and coordinated the project with the state resource teams from the western states that participated in the program. The California Department of Conservation, Division of Mines and Geology (DMG) entered into contract numbered 1092--023(R) with the OIT/GHC to provide the California data for the program. This report is submitted in fulfillment of that contract.

  4. Philippine geothermal resources: General geological setting and development

    SciTech Connect

    Datuin, R.T.; Troncales, A.C.

    1986-01-01

    The Phillippine Archipelago has a composite geologic structure arising from the multi-stage development of volcanic-tectonic events evidenced by volcanism and seismic activity occurring along the active blocks of the major structural lines which traverse most of the major islands of the Phillipines. The widespread volcanic activity located along the active tectonic block has generated regions of high heat flow, where a vast number of potential rich geothermal resources could be exploited as an alternative source of energy. As part of a systematic geothermal development program launched by the Philippine government after the successful pilot study at the Tiwi geothermal field in 1967 by the Commission on Volcanology (now called the Philippine Institute of Volcanology-PIV), the Philippines developed four geothermal fields in the period 1972-84. These four areas, Tiwi in Albay, Mak-Ban in Laguna, Tongonan in Leyte, and Palinpinon in Southern Negros, have already contributed 891 MW installed capacity to the total electrical power supply of the country, which is mainly dependent on oil resources. The Philippines envisaged that, with its accelerated geothermal energy programme, it would be able to achieve its target of reducing the country's dependence on imported fossil fuel by about 20% within the next decade through the utilization of its vast geothermal energy resources.

  5. Water Resource Assessment of Geothermal Resources and Water Use in Geopressured Geothermal Systems

    SciTech Connect

    Clark, C. E.; Harto, C. B.; Troppe, W. A.

    2011-09-01

    This technical report from Argonne National Laboratory presents an assessment of fresh water demand for future growth in utility-scale geothermal power generation and an analysis of fresh water use in low-temperature geopressured geothermal power generation systems.

  6. Stratabound geothermal resources in North Dakota and South Dakota

    SciTech Connect

    Gosnold, W.D. Jr.

    1991-08-01

    Analysis of all geothermal aquifers in North Dakota and South Dakota indicates an accessible resource base of approximately 21.25 exajoules (10{sup 18} J = 1 exajoule, 10{sup 18} J{approximately}10{sup 15} Btu=1 quad) in North Dakota and approximately 12.25 exajoules in South Dakota. Resource temperatures range from 40{degree}C at depths of about 700 m to 150{degree}C at 4500 m. This resource assessment increases the identified accessible resource base by 31% over the previous assessments. These results imply that the total stratabound geothermal resource in conduction-dominated systems in the United States is two-to-three times greater than some current estimates. The large increase in the identified accessible resource base is primarily due to inclusion of all potential geothermal aquifers in the resource assessment and secondarily due to the expanded data base compiled in this study. These factors were interdependent in that the extensive data base provided the means for inclusion of all potential geothermal aquifers in the analysis. Previous assessments included only well-known aquifer systems and were limited by the amount of available data. 40 refs., 16 figs., 8 tabs.

  7. The Geopressured-Geothermal Resource, research and use

    SciTech Connect

    Negus-de Wys, J.

    1990-01-01

    The Geopressured-Geothermal Resource has an estimated accessible resource base of 5700 quads of gas and 11,000 quads of thermal energy in the onshore Texas and Louisiana Gulf Coast area alone. After 15 years the program is now beginning a transition to commercialization. The program presently has three geopressured- geothermal wells in Texas and Louisiana. Supporting research in the Geopressured Program includes research on rock mechanics, logging, geologic studies, reservoir modeling, and co-location of brine and heavy oil, environmental monitoring, geologic studies, hydrocarbons associated with the geopressured brines and development of a pH monitor for harsh environments, research support in prediction of reservoir behavior, thermal enhanced oil recovery, direct use, hydraulic and thermal conversion, and use of supercritical processes and pyrolysis in detoxification. The on-going research and well operations are preparing the way to commercialization of the Geopressured-Geothermal Resource is covered in this report. 12 refs., 8 figs., 1 tab.

  8. Geothermal resource area 9: Nye County. Area development plan

    SciTech Connect

    Pugsley, M.

    1981-01-01

    Geothermal Resource area 9 encompasses all of Nye County, Nevada. Within this area there are many different known geothermal sites ranging in temperature from 70/sup 0/ to over 265/sup 0/ F. Fifteen of the more major sites have been selected for evaluation in this Area Development Plan. Various potential uses of the energy found at each of the resource sites discussed in this Area Development Plan were determined after evaluating the area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities, and comparing those with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 15 geothermal sites considered in this Area Development Plan are summarized.

  9. The 1980-1982 Geothermal Resource Assessment Program in Washington

    SciTech Connect

    Korosec, Michael A.; Phillips, William M.; Schuster, J.Eric

    1983-08-01

    Since 1978, the Division of Geology and Earth Resources of the Washington Department of Natural Resources has participated in the U.S. Department of Energy's (USDOE) State-Coupled Geothermal Resource Program. Federal and state funds have been used to investigate and evaluate the potential for geothermal resources, on both a reconnaissance and area-specific level. Preliminary results and progress reports for the period up through mid-1980 have already been released as a Division Open File Report (Korosec, Schuster, and others, 1981). Preliminary results and progress summaries of work carried out from mid-1980 through the end of 1982 are presented in this report. Only one other summary report dealing with geothermal resource investigations in the state has been published. An Information Circular released by the Division (Schuster and others, 1978) compiled the geology, geochemistry, and heat flow drilling results from a project in the Indian Heaven area in the south Cascades. The previous progress report for the geothermal program (Korosec, Schuster, and others, 1981) included information on temperature gradients measured throughout the state, heat flow drilling in the southern Cascades, gravity surveys for the southern Cascades, thermal and mineral spring investigations, geologic mapping for the White Pass-Tumac Mountain area, and area specific studies for the Camas area of Clark County and Mount St. Helens. This work, along with some additional studies, led to the compilation of the Geothermal Resources of Washington map (Korosec, Kaler, and others, 1981). The map is principally a nontechnical presentation based on all available geothermal information, presented as data points, tables, and text on a map with a scale of 1:500,000.

  10. Natural resource economic implications of geothermal area use

    SciTech Connect

    Darby, d'E Charles

    1993-01-28

    Large-scale use of geothermal energy is likely to result in depletion of natural resources that support both biodiversity and other human uses. Most of the problems could be averted with competent planning and adherence to agreed conditions, but they commonly develop because they are not perceived to be directly geothermal in origin and hence are not taken into account adequately. Some of the implications of such issues are discussed below, with particular reference to countries where all or most resources are held under traditional principals of custom ownership.

  11. Geothermal resources of Sao Miguel Island, Azores, Portugal

    SciTech Connect

    Duffield, W.A.; Muffler, L.J.P.

    1984-01-01

    Geothermal studies were carried out on the island of Sao Miguel, Azores to characterize the nature of the resource, to estimate its magnitude, and to identify target areas toward which exploration and developmental drilling might be directed. The main geothermal resource areas are Furnas, Agua de Pau, and Sete Cidades, three Quaternary silicic volcanic centers characterized by summit calderas beneath which magmatic heat sources provide thermal energy to overlying hydrothermal convection systems. For each of the systems, the studies have defined the size of the system, the subsurface temperature, the thermodynamic state of fluid in the system, the chemical composition of the fluid, and permeable parts of the system. 8 figs. (ACR)

  12. Geothermal brines and sludges: a new resource

    SciTech Connect

    Premuzic, E.T.; Lin, M.S.; Lian, H.; Miltenberger, R.P.

    1996-10-01

    Development of cost efficient biochemical processes for the treatment of geothermal brines and sludges is the main thrust of a major R&D effort at Brookhaven National Laboratory (BNL). This effort has led to the design of an environmentally acceptable, technically and economically feasible new technology which converts geothermal wastes into products with significant commercial potential. These include valuable metals recovery with a metal extraction and recovery efficiency of better then 80% over short periods of time (5-25 hours). The new technology also yields valuable salts, such as potassium chloride and generates high quality pigment free silica. The basic technology is versatile and can, with slight modifications, be used in the treatment of hypersaline as well as low salinity brines and sludges. Concurrently traces of toxic metals, including radium are removed to levels which are within regulatory limits. The current status of the new biochemical technology will be discussed in this paper.

  13. Geothermal energy resource assessment of parts of Alaska. Final report

    SciTech Connect

    Wescott, E.M.; Turner, D.L.; Kienle, J.

    1982-08-01

    The central Seward Peninsula was the subject of a geological, geophysical and geochemical reconnaissance survey during a 30-day period in the summer of 1980. The survey was designed to investigate the geothermal energy resource potential of this region of Alaska. A continental rift system model was proposed to explain many of the Late Tertiary-to-Quaternary topographic, structural, volcanic and geothermal features of the region. Geologic evidence for the model includes normal faults, extensive fields of young alkalic basalts, alignment of volcanic vents, graben valleys and other features consistent with a rift system active from late Miocene time to the present. Five traverses crossing segments of the proposed rift system were run to look for evidence of structure and geothermal resources not evident from surface manifestation. Gravity, helium and mercury soil concentrations were measured along the traverses. Seismic, resistivity, and VLF studies are presented.

  14. Southern New Mexico low temperature geothermal resource economic analysis

    SciTech Connect

    Fischer, C.L.; Whittier, J.; Witcher, J.C.; Schoenmackers, R.

    1990-08-01

    This report presents an overview of geothermal resource development for three-low temperature (i.e, <200{degree}F) sites in southern New Mexico: the Lower Animas Valley, the Las Cruces East Mesa, and Truth or Consequences. This report is intended to provide potential geothermal developers with detailed information on each site for planning and decision making purposes. Included in the overview for each site is both a full site characterization and an economic analysis of development costs associated with the construction and operation of both geothermal and fresh water systems at each of the three locations. The economic analysis focuses on providing utility services to a commercial greenhouse because greenhouse operations are among the most likely candidates for use of the resource base. 9 tabs., 8 figs.

  15. Water Efficient Energy Production for Geothermal Resources

    SciTech Connect

    GTO

    2015-06-01

    Water consumption in geothermal energy development occurs at several stages along the life cycle of the plant, during construction of the wells, piping, and plant; during hydroshearing and testing of the reservoir (for EGS); and during operation of the plant. These stages are highlighted in the illustration above. For more information about actual water use during these stages, please see the back of this sheet..

  16. Hawaii Geothermal Project annotated bibliography: Biological resources of the geothermal subzones, the transmission corridors and the Puna District, Island of Hawaii

    SciTech Connect

    Miller, S.E.; Burgett, J.M.

    1993-10-01

    Task 1 of the Hawaii Geothermal Project Interagency Agreement between the Fish and Wildlife Service and the Department of Energy-Oak Ridge National Laboratory (DOE) includes an annotated bibliography of published and unpublished documents that cover biological issues related to the lowland rain forest in Puna, adjacent areas, transmission corridors, and in the proposed Hawaii Geothermal Project (HGP). The 51 documents reviewed in this report cover the main body of biological information for these projects. The full table of contents and bibliography for each document is included along with two copies (as requested in the Interagency Agreement) of the biological sections of each document. The documents are reviewed in five main categories: (1) geothermal subzones (29 documents); (2) transmission cable routes (8 documents); (3) commercial satellite launching facility (Spaceport; 1 document); (4) manganese nodule processing facility (2 documents); (5) water resource development (1 document); and (6) ecosystem stability and introduced species (11 documents).

  17. 30 CFR 202.351 - Royalties on geothermal resources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., suspends, or reduces that rate(s). Royalties are determined under 30 CFR part 206, subpart H. (2) Fees in lieu of royalties on geothermal resources are prescribed in 30 CFR part 206, subpart H. (3) Except for...,” and “Class III lease” have the same meanings prescribed in 30 CFR 206.351. (i) For Class I leases,...

  18. Geothermal resources of the Southern Powder River Basin, Wyoming

    SciTech Connect

    Heasler, H.P.; Buelow, K.L.; Hinckley, B.S.

    1985-06-13

    This report describes the geothermal resources of the Southern Powder River Basin. The report contains a discussion of the hydrology as it relates to the movement of heated water, a description and interpretation of the thermal regime, and four maps: a generalized geological map, a structure contour map, a thermal gradient contour map, and a ground water temperature map. 10 figs. (ACR)

  19. Geothermal Energy: Resource and Utilization. A Teaching Module.

    ERIC Educational Resources Information Center

    Nguyen, Van Thanh

    The search for new energy resources as alternatives to fossil fuels have generated new interest in the heat of the earth itself. New geothermal areas with a variety of characteristics are being explored, as are new ways of extracting work from naturally heated steam and hot water. Some of this effort is discussed in this three-part module. Five…

  20. 1979-1980 Geothermal Resource Assessment Program in Washington

    SciTech Connect

    Korosec, M.A.; Schuster, J.E.

    1980-01-01

    Separate abstracts were prepared for seven papers. Also included are a bibliography of geothermal resource information for the State of Washington, well temperature information and locations in the State of Washington, and a map of the geology of the White Pass-Tumac Mountain Area, Washington. (MHR)

  1. Hawaii Energy Resource Overviews. Volume 4. Impact of geothermal resource development in Hawaii (including air and water quality)

    SciTech Connect

    Siegel, S.M.; Siegel, B.Z.

    1980-06-01

    The environmental consequences of natural processes in a volcanic-fumerolic region and of geothermal resource development are presented. These include acute ecological effects, toxic gas emissions during non-eruptive periods, the HGP-A geothermal well as a site-specific model, and the geothermal resources potential of Hawaii. (MHR)

  2. Evaluation of Baltazor known geothermal resources area, Nevada

    USGS Publications Warehouse

    Isherwood, W.F.; Mabey, D.R.

    1978-01-01

    By virtue of the Geothermal Steam Act of 1970, the U.S. Geological Survey is required to appraise geothermal resources of the United States prior to competitive lease sales. This appraisal involves coordinated input from a variety of disciplines, starting with reconnaissance geology and geophysics. This paper describes how the results of several geophysical methods used in KGRA evaluation were interpreted by the authors, two geophysicists, involved with both the Evaluation Committee and the research program responsible for obtaining and interpreting the geophysical data to be used by the committee. ?? 1979.

  3. Economic review of the geopressured-geothermal resource with recommendations

    SciTech Connect

    Plum, M.M.; Negus-de Wys, J.; Faulder, D.D.; Lunis, B.C.

    1989-11-01

    This report presents the results of an economic study conducted by the INEL under DOE Contract No. AC07-76ID01570 to evaluate the breakeven price to market energy from a geopressured-geothermal resource. A breakeven price is a minimum, per unit charge required for the developer to recover all direct and indirect costs and a rate of return sufficient to compensate the developer for depreciation, the time value of money, and the risk of failure. The DOE Geopressured-Geothermal Research Program and the DOE well testing and operations at three locations in the Gulf Coast region provide the bulk of resource and economic characteristics for this study. A menu-driven model was developed in LOTUS-123 to calculate the breakeven price to market gas and electricity from a geopressured-geothermal resource. This model was developed using the present value methodology and conservative assumptions. Assuming present well constraints and current off-the-shelf conversion technology, the breakeven price for electricity is about $0.26/kWh using only the thermal energy from a Hulin-type resource. Assuming identical resource and technology constraints, the breakeven price is reduced to about $0.15/kWh when using all available energy forms (methane, hydraulic, and thermal). Assuming the use of available advanced technologies, the breakeven price is reduced to about $0.10/kWh. Assuming the higher quality resource (with higher temperature and gas content) in the South Texas cases, the breakeven cost is about $0.095/kWh. Using advanced technology, this cost is further reduced to about $0.05/kWh. Both costs are within program goals. The results of this study suggest that the future direction of the Geopressured-Geothermal Program emphasize (a) selection of higher quality resource, (b) advanced energy conversion technology, and (c) total energy utilization.

  4. Utilization of geothermal resources at United States Air Force bases

    SciTech Connect

    Grogger, P.K.

    1980-09-01

    The Air Force installations on the continental United States as well as Alaska and Hawaii, were evaluated as to the possibility of utilizing geothermal energy to develop electricity, produce process steam, or heat and/or cool buildings. Twenty-five bases have suspected geothermal resources available. Because of either need or available technology seven installations were rated priority I, six were rated priority II and priority III and IV totaled ten. Geological and geophysical data indicated further investigation of the priority I installations, Saylor Creek Range, Idaho, Ellsworth AFB, South Dakota, Charleston AFB, South Carolina, Kirkland AFB, New Mexico, Vandenberg AFB, California, Luke AFB, Arizona, and Williams AFB, Arizona, should be accomplished as soon as possible. The use of geothermal energy will decrease the need for fossil fuels by the USAF and during times of short supply allow such fuels to be used for the Air Force's primary mission, military defense.

  5. National forecast for geothermal resource exploration and development with techniques for policy analysis and resource assessment

    SciTech Connect

    Cassel, T.A.V.; Shimamoto, G.T.; Amundsen, C.B.; Blair, P.D.; Finan, W.F.; Smith, M.R.; Edeistein, R.H.

    1982-03-31

    The backgrund, structure and use of modern forecasting methods for estimating the future development of geothermal energy in the United States are documented. The forecasting instrument may be divided into two sequential submodels. The first predicts the timing and quality of future geothermal resource discoveries from an underlying resource base. This resource base represents an expansion of the widely-publicized USGS Circular 790. The second submodel forecasts the rate and extent of utilization of geothermal resource discoveries. It is based on the joint investment behavior of resource developers and potential users as statistically determined from extensive industry interviews. It is concluded that geothermal resource development, especially for electric power development, will play an increasingly significant role in meeting US energy demands over the next 2 decades. Depending on the extent of R and D achievements in related areas of geosciences and technology, expected geothermal power development will reach between 7700 and 17300 Mwe by the year 2000. This represents between 8 and 18% of the expected electric energy demand (GWh) in western and northwestern states.

  6. Future for geopressured-geothermal resources

    SciTech Connect

    Ramsthaler, J.; Plum, M.

    1988-01-01

    The geopressured-geothermal production technologies for recompleting the Hulin Well and design and operation of surface facilities appear to be well in hand. A preliminary capital cost estimate indicates $4.45 million is required to recomplete and prepare the Hulin Well for production testing. The planned recompletion of the production well, surface facilities, and disposal well will have the capability to handle 24,000 barrels per day (bpd) of brine. If the reservoir can produce this design flow of brine saturated with gas, and the gas can be sold for $1.30/thousand cubic feet (mcf), DOE should have a positive cash flow about $530 per day for the first year. If gas zones are located above the brine as indicated by logs, the positive cash flow could reach $4130 per day or higher. The principal uncertainties are the gas content of the brine and the reservoir performance, both initially and long term. A private developer would need a market price for natural gas of from $1.38 to $4.60 per mcf for a reasonable return on investment depending on the reservoir performance and whether or not zones of excess gas are actually encountered. 7 refs., 6 figs.

  7. Geothermal resource area 3: Elko County. Area development plan

    SciTech Connect

    Pugsley, M.

    1981-01-01

    Geothermal Resource Area 3 includes all of the land in Elko County, Nevada. There are in excess of 50 known thermal anomalies in this area. Several of the more major resources have been selected for detailed description and evaluation in this Area Development Plan. The other resources are considered too small, too low in temperature, or too remote to be considered for development in the near future. Various potential uses of the energy found at each of the studied resource sites in Elko County were determined after evaluating the area's physical characteristics; the land ownership and land use patterns; existing population and projected growth rates; transportation facilities and energy requirements. These factors were then compared with resource site specific data to determine the most likely uses of the resource. The uses considered in this evaluation were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories several subdivisions were considered separately. It was determined that several of the geothermal resources evaluated in the Area Development Plan could be commercially developed. The potential for development for the seven sites considered in this study is summarized.

  8. Reconnaissance geothermal resource assessment of 40 sites in California

    SciTech Connect

    Leivas, E.; Martin, R.C.; Higgins, C.T.; Bezore, S.P.

    1981-01-01

    Results are set forth for a continuing reconnaissance-level assessment of promising geothermal sites scattered through California. The studies involve acquisition of new data based upon field observations, compilation of data from published and unpublished sources, and evaluation of the data to identify areas suitable for more intensive area-specific studies. Forty sites were chosen for reporting on the basis of their relative potential for development as a significant resource. The name and location of each site is given, and after a brief synopsis, the geothermal features, chemistry, geology, and history of the site are reported. Three sites are recommended for more detailed study on the basis of potential for use by a large number of consumers, large volume of water, and the likelihood that the resource underlies a large area. (LEW)

  9. Geothermal resources of the Washakie and Great Divide basins, Wyoming

    SciTech Connect

    Heasler, H.P.; Buelow, K.L.

    1985-01-01

    The geothermal resources of the Great Divide and Washakie Basins of southern Wyoming are described. Oil well bottomhole temperatures, thermal logs of wells, and heat flow data were interpreted within a framework of geologic and hydrologic constraints. It was concluded large areas in Wyoming are underlain by water hotter than 120{sup 0}F. Isolated areas with high temperature gradients exist within each basin. 68 refs., 8 figs., 7 tabs. (ACR)

  10. Geothermal resources of the Wind River Basin, Wyoming

    SciTech Connect

    Hinckley, B.S.; Heasler, H.P.

    1985-01-01

    The geothermal resources of the Wind River Basin were investigated. Oil-well bottom-hole temperatures, thermal logs of wells, and heat flow data have been interpreted within a framework of geologic and hydrologic constraints. Basic thermal data, which includes the background thermal gradient and the highest recorded temperature and corresponding depth for each basin, is tabulated. Background heat flow in the Wind River Basin is generally insufficient to produce high conductive gradients. Only where hydrologic systems re-distribute heat through mass movement of water will high temperatures occur at shallow depths. Aquifers which may have the confinement and structural characteristics necessary to create such geothermal systems are the Lance/Fort Union, Mesa Verde, Frontier, Muddy, Cloverly, Sundance, Nugget, Park City, Tensleep, Amsden, Madison, Bighorn, and Flathead Formations. Of these the Tensleep Sandstone and Madison Limestone are the most attractive in terms of both productivity and water quality. Most of the identified geothermal anomalies in the Wind River Basin occur along complex structures in the southwest and south. The most attractive geothermal prospects identified are anomalous Areas 2 and 3 north of Lander, Sweetwater Station Springs west of Jeffrey City, and the thermal springs southwest of Dubois. Even in these areas, it is unlikely temperatures in excess of 130 to 150/sup 0/F can be developed. 16 refs., 7 figs., 7 tabs. (ACR)

  11. Geothermal resources and energy complex use in Russia

    NASA Astrophysics Data System (ADS)

    Svalova, V.

    2009-04-01

    Geothermal energy use is the perspective way to clean sustainable development of the world. Russia has rich high and low temperature geothermal resources and makes good steps in their use. In Russia the geothermal resources are used predominantly for heat supply both heating of several cities and settlements on Northern Caucasus and Kamchatka with a total number of the population 500000. Besides in some regions of country the deep heat is used for greenhouses of common area 465000 m2. Most active the hydrothermal resources are used in Krasnodar territory, Dagestan and on Kamchatka. The approximately half of extracted resources is applied for heat supply of habitation and industrial puttings, third - to a heating of greenhouses, and about 13 % - for industrial processes. Besides the thermal waters are used approximately on 150 health resorts and 40 factories on bottling mineral water. The most perspective direction of usage of low temperature geothermal resources is the use of heat pumps. This way is optimal for many regions of Russia - in its European part, on Ural and others. The electricity is generated by some geothermal power plants (GeoPP) only in the Kamchatka Peninsula and Kuril Islands. At present three stations work in Kamchatka: Pauzhetka GeoPP (11MW e installed capacity) and two Severo-Mutnovka GeoPP ( 12 and 50 MWe). Moreover, another GeoPP of 100 MVe is now under preparation in the same place. Two small GeoPP are in operation in Kuril's Kunashir Isl, and Iturup Isl, with installed capacity of 2,б MWe and 6 MWe respectively. There are two possible uses of geothermal resources depending on structure and properties of thermal waters: heat/power and mineral extraction. The heat/power direction is preferable for low mineralized waters when valuable components in industrial concentration are absent, and the general mineralization does not interfere with normal operation of system. When high potential geothermal waters are characterized by the high

  12. Active and passive seismic studies of geothermal resources in New Mexico and investigations of earthquake hazards to geothermal development

    SciTech Connect

    Morgan, P.; Daggett, P.H.

    1980-01-01

    Seismic data were collected in southwestern New Mexico to investigate the sources of the geothermal anomalies and to investigate the potential earthquake hazards of geothermal development. No major crustal structure anomalies have been located related to known geothermal resources, and no areas of continual seismicity have been identified, which is interpreted to indicate a lack of active, or recently active crustal intrusions in southwestern New Mexico. Without a magnetic heat source, the geothermal potential of the known anomalies is probably limited to intermediate and low temperature applications (<180/sup 0/C). The lack of continual seismicity indicates low seismic hazard in the area directly related to geothermal development, although the historic and geologically recent tectonic activity should be taken into consideration during any development in the area. A model of forced groundwater convection is presented to explain the geothermal anomalies in southwestern New Mexico, which is consistent with all available geological and geophysical data from the area.

  13. National projects on direct utilization of geothermal resources in Japan

    SciTech Connect

    Sekioka, M.; Fujitomi, M.

    1981-10-01

    The two national projects on direct utilization of geothermal resources are mentioned. The merit of the projects is to utilize geothermal water which discharges, with team, from existing production wells of the geothermal power plants before injection underground. The two power plants, Kakkonda (50 MW), Iwate, and Onuma (10 MW), Akita, supply 1000 t/h of 150/sup 0/C and 400 t/h of 94/sup 0/C of thermal water to heat-exchange with fresh water and send 800 t/h of 115/sup 0/C and 150 t/h of 70/sup 0/C of fresh-heated water to Shizukuishi, Iwate, and Kazuno, Akita, respectively. Financial supports of 4.5 billion and 1.6 billion yen are offered to the Iwate and the Kazuno projects, respectively, by the Agency of Natural Resources and Energy, the Ministry of International Trade and Industry, for drilling of injection wells, constructing of heat exchangers and laying of transportation pipelines.

  14. Geothermal resource assessment of Idaho Springs, Colorado. Resource series 16

    NASA Astrophysics Data System (ADS)

    Repplier, F. N.; Zacharakis, T. G.; Ringrose, C. D.

    Geothermal springs and wells were assessed for hydrothermal conditions. The temperature of these waters ranges from a low of 680 F to a high of 1270 F. The hydrothermal conditions of the Idaho Springs region in 1980 were defined by electrical geophysical, soil mercury geochemical, and reconnaissance geological and hydrogeological surveys. The investigation was limited to the immediate area surrounding the thermal springs at the Indian Springs Resort. It is found that bedrock of the region is faulted and fractured metamorphosed Precambrian gneisses and schists, locally intruded by Tertiary age plutons and dikes. It is shown that the thermal waters most likely are fault controlled and the thermal area does not have a large areal extent.

  15. Constraints to leasing and development of federal resources: OCS oil and gas and geothermal. Final report

    SciTech Connect

    Not Available

    1982-01-01

    Chapter I identifies possible technological, economic, and environmental constraints to geothermal resource development. Chapter II discusses constraints relative to outer continental shelf and geothermal resources. General leasing information for each resource is detailed. Chapter III summarizes the major studies relating to development constraints. 37 refs. (PSB)

  16. Assessment of Moderate- and High-Temperature Geothermal Resources of the United States

    USGS Publications Warehouse

    Williams, Colin F.; Reed, Marshall J.; Mariner, Robert H.; DeAngelo, Jacob; Galanis, S. Peter

    2008-01-01

    Scientists with the U.S. Geological Survey (USGS) recently completed an assessment of our Nation's geothermal resources. Geothermal power plants are currently operating in six states: Alaska, California, Hawaii, Idaho, Nevada, and Utah. The assessment indicates that the electric power generation potential from identified geothermal systems is 9,057 Megawatts-electric (MWe), distributed over 13 states. The mean estimated power production potential from undiscovered geothermal resources is 30,033 MWe. Additionally, another estimated 517,800 MWe could be generated through implementation of technology for creating geothermal reservoirs in regions characterized by high temperature, but low permeability, rock formations.

  17. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  18. Geothermal energy resource investigations at Mt. Spurr, Alaska

    SciTech Connect

    Turner, D.L.; Wescott, E.M.

    1986-12-01

    Spurr volcano is a composite Quaternary cone of largely andesitic composition located on the west side of Cook Inlet about 80 miles west of Anchorage and about 40 miles from the Beluga electrical transmission line. Geologic mapping (Plate 1-1) shows that the present summit depression was produced by a Mt. St. Helens-type sector collapse, rather than by a caldera collapse. Geochronologic and previous tephrachronologic studies show that there has been an active magmatic system at Spurr volcano during the late Pleistocene-to-Holocene time interval that is of critical interest for geothermal energy resource assessment. Major effort was devoted to geochemical and geophysical surveys of the accessible area south of Mt. Spurr, in addition to geologic mapping and geochronologic studies. Many coincident mercury and helium anomalies were found, suggesting the presence of geothermal systems at depth. Extremely large electrical self-potential anomalies were also found, together with extensive zones of low resistivity discovered by our controlled-source audiomagnetotelluric survey. The juxtaposition of all of these different types of anomalies at certain areas on the south slope of Crater Peak indicates the presence of a geothermal system which should be accessible by drilling to about 2000 ft depth. It is also evident that there is a strong volcanic hazard to be evaluated in considering any development on the south side of Mt. Spurr. This hazardous situation may require angle drilling of production wells from safer areas and placement of power generation facilities at a considerable distance from hazardous areas.

  19. Geothermal resource assessment in Honduras: How we got to Platanares

    SciTech Connect

    Laughlin, A.W.; Frank, J.A.; Flores, W.

    1988-01-01

    The initial phase of a geothermal resource assessment of Honduras is essentially complete. Reconnaissance scale geological and geochemical investigations were performed at six previously identified sites to determine relative potentials for electricity generation or direct heat use. Two of the six sites were eliminated because of low potential for the production of electricity and detailed geological and geochemical work was concentrated at the remaining four sites. After an evaluation of new data, two sites (Platanares and San Ignacio) were selected for detailed geophysical surveys and one (Platanares) for gradient drilling. Very encouraging results were obtained from the drilling and it is apparent that a feasibility phase investigation is warranted at Platanares.

  20. Auxiliary Heating of Geothermally Preheated Water or CO2 - A Potential Solution for Low- to Moderate-Temperature Geothermal Resources

    NASA Astrophysics Data System (ADS)

    Kong, X.; Garapati, N.; Adams, B. M.; Randolph, J.; Kuehn, T. H.; Saar, M. O.

    2015-12-01

    Typically, low- to moderate-temperature geothermal resources are more effectively used for direct heat energy applications. However, due to high thermal losses during transport, direct use requires that the heat resource is located near the user. Alternatively, we show here that if such a low-temperature geothermal resource is combined with an additional or secondary energy resource, the power production is increased compared to the sum from two separate (geothermal and secondary fuel) power plants (DiPippo et al. 1978) and the thermal losses are minimized because the thermal energy is utilized where it is produced. Since Adams et al. (2015) found that using CO2 as a subsurface working fluid produces more net power than brine at low- to moderate-temperature geothermal resource conditions, we compare over a range of parameters the net power and efficiencies of hybrid geothermal power plants that use brine or CO2 as the subsurface working fluid, that are then heated further with a secondary energy source that is unspecified here. Parameters varied include the subsurface working fluid (brine vs. CO2), geothermal reservoir depth (2.5-4.5 km), and turbine inlet temperature (200-600°C) after auxiliary heating. The hybrid power plant is numerically modeled using an iterative coupling approach of TOUGH2-ECO2N/ECO2H (Pruess, 2004) for simulation of the subsurface reservoir and Engineering Equation Solver for well bore fluid flow and surface power plant performance. We find that hybrid power plants that are CO2-based (subsurface) systems have higher thermal efficiencies than the brine based systems at low turbine inlet temperatures. Specifically, our results indicate that geothermal hybrid plants that are CO2-based are more efficient than brine-based systems when the contribution of the geothermal resource energy is higher than 48%.

  1. Review of water resource potential for developing geothermal resource sites in the western United States

    SciTech Connect

    Sonnichsen, J.C. Jr.

    1980-07-01

    Water resources at 28 known geothermal resource areas (KGRAs) in the western United States are reviewed. Primary emphasis is placed upon examination of the waer resources, both surface and ground, that exist in the vicinity of the KGRAs located in the southwestern states of California, Arizona, Utah, Nevada, and New Mexico. In most of these regions water has been in short supply for many years and consequently a discussion of competing demands is included to provide an appropriate perspective on overall usage. A discussion of the water resources in the vicinity of KGRAs in the States of Montana, Idaho, Oregon, and Washington are also included.

  2. Tables of co-located geothermal-resource sites and BLM Wilderness Study Areas

    SciTech Connect

    Foley, D.; Dorscher, M.

    1982-11-01

    Matched pairs of known geothermal wells and springs with BLM proposed Wilderness Study Areas (WSAs) were identified by inspection of WSA and Geothermal resource maps for the states of Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington and Wyoming. A total of 3952 matches, for geothermal sites within 25 miles of a WSA, were identified. Of these, only 71 (1.8%) of the geothermal sites are within one mile of a WSA, and only an additional 100 (2.5%) are within one to three miles. Approximately three-fourths of the matches are at distances greater than ten miles. Only 12 of the geothermal sites within one mile of a WSA have surface temperatures reported above 50/sup 0/C. It thus appears that the geothermal potential of WSAs overall is minimal, but that evaluation of geothermal resources should be considered in more detail for some areas prior to their designation as Wilderness.

  3. Reconnaissance of geothermal resources of Los Angeles County, California

    SciTech Connect

    Higgins, C.T.

    1981-01-01

    Thermal waters produced from large oil fields are currently the most important geothermal resources in Los Angeles County. Otherwise, the County does not appear to have any large, near-surface geothermal resources. The oil fields produce thermal water because of both the moderate depths of production and normal to above-normal geothermal gradients. Gradients are about 3.0-3.5/sup 0/C/100 meters in the Ventura Basin and range from that up to about 5.5-6.0/sup 0/C/100 meters in the Los Angeles Basin. The hottest fields in the County are west of the Newport-Inglewood Structural Zone. The Los Angeles Basin has substantially more potential for uses of heat from oil fields than does the Ventura Basin because of its large fields and dense urban development. Produced fluid temperatures there range from ambient air to boiling, but most are in the 100-150/sup 0/F range. Daily water production ranges from only a few barrels at some fields to over a million barrels at Wilmington Oil Field; nearly all fields produce less than 50,000 barrels/day. Water salinity generally ranges from about 15,000-35,000 mg/liter NaCl. Fields with the most promise as sources of heat for outside applications are Wilmington, Torrance, Venice Beach, and Lawndale. The centralized treatment facilities are the most favorable sites for extraction of heat within the oil fields. Because of the poor water quality heat exchangers will likely be required rather than direct circulation of the field water to users. The best sites for applications are commercial-industrial areas and possibly institutional structures occupied by large numbers of people.

  4. 43 CFR 3210.16 - How must I prevent drainage of geothermal resources from my lease?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How must I prevent drainage of geothermal resources from my lease? 3210.16 Section 3210.16 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Additional...

  5. 43 CFR 3275.13 - How must the facility operator measure the geothermal resources?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How must the facility operator measure the geothermal resources? 3275.13 Section 3275.13 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Conducting...

  6. 43 CFR 3275.20 - What will BLM do if I waste geothermal resources?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What will BLM do if I waste geothermal... LEASING Conducting Utilization Operations § 3275.20 What will BLM do if I waste geothermal resources? We will determine the amount of any resources you have lost through waste. If you did not take...

  7. 43 CFR 3275.20 - What will BLM do if I waste geothermal resources?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What will BLM do if I waste geothermal... LEASING Conducting Utilization Operations § 3275.20 What will BLM do if I waste geothermal resources? We will determine the amount of any resources you have lost through waste. If you did not take...

  8. 43 CFR 3275.20 - What will BLM do if I waste geothermal resources?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What will BLM do if I waste geothermal... LEASING Conducting Utilization Operations § 3275.20 What will BLM do if I waste geothermal resources? We will determine the amount of any resources you have lost through waste. If you did not take...

  9. 43 CFR 3275.20 - What will BLM do if I waste geothermal resources?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What will BLM do if I waste geothermal... LEASING Conducting Utilization Operations § 3275.20 What will BLM do if I waste geothermal resources? We will determine the amount of any resources you have lost through waste. If you did not take...

  10. 43 CFR 3211.19 - What is the royalty rate on byproducts derived from geothermal resources produced from or...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 CFR 3211.10(b) (2004). ... derived from geothermal resources produced from or attributable to my lease? 3211.19 Section 3211.19..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Filing and Processing...

  11. Cooperative efforts by industry and government to develop geothermal resources

    NASA Technical Reports Server (NTRS)

    Butler, D. R.

    1974-01-01

    The Federal government's current plans for participation in the geothermal field appear to affect four major areas of interest: (1) resources exploration and assessment, (2) resources utilization projects, (3) advanced research and technology, and (4) environmental, legal, and institutional research. Private industry is also actively involved in these same areas of interest. Because of lack of coordination and communication between the private and public sector, it appears that there will be considerable duplication of effort, and, in some cases, serious conflict. It is also likely that this lack of coordination and communication may result in lack of effort in some key areas. Close coordination and communication between government and industry may resolve some of the major problems that are clearly evident.

  12. Outstanding Issues in the Assessment of Enhanced Geothermal Systems Resources

    NASA Astrophysics Data System (ADS)

    Williams, C.; Deangelo, J.

    2010-12-01

    The successful implementation of Enhanced Geothermal Systems (EGS) technology has the potential to dramatically expand both the magnitude and spatial extent of geothermal energy production, and the U.S. Geological Survey (USGS) has been working to develop a comprehensive EGS resource assessment for the United States. However, a number of outstanding scientific and technical issues must be resolved in order to ensure the accuracy and reliability of this assessment. Among these are determining those conditions under which it is possible to replicate the high average permeability (approximately 10-15 to 10-13 m2) characteristic of natural hydrothermal reservoirs, evaluating the likely heterogeneity of fracture permeability within EGS reservoirs and its influence on the geothermal recovery factor, Rg, which is defined as the ratio of produced thermal energy to the thermal energy contained in the stimulated volume comprising the reservoir, and improving estimates of temperature in the upper crust to better quantify the thermal energy available at those depths viable for EGS reservoir creation. Models for the development of fracture permeability from the shear slip along pre-existing natural fractures induced by hydraulic stimulation indicate that production from EGS reservoirs will be sensitive to the influence of effective stress and rock properties on the processes of shear fracture formation and closure. Calibration of model parameters with results from EGS field experiments and demonstration projects suggests that sufficient permeability may be difficult to attain through shear stimulation at depths greater than approximately 6 km, particularly in regions characterized by high normal stress on pre-existing faults and fractures. In addition, the expected heterogeneity of fracture permeability within EGS reservoirs may limit Rg to values on the order of 0.05 to 0.1, which is at the lower end of the observed range for producing natural geothermal reservoirs. Although

  13. Geothermal resource assessment of the Animas Valley, Colorado. Resource Series 17

    SciTech Connect

    McCarthy, K.P.; Zacharakis, T.G.; Ringrose, C.D.

    1982-01-01

    The Colorado Geological Survey, has been engaged in assessing the nature and extent of Colorado's geothermal resources. The program has included geologic and hydrogeologic reconnaissance, and geophysical and geochemical surveys. In the Animas Valley, in southwestern Colorado, two groups of thermal springs exist: Pinkerton Springs to the north, and Tripp-Trimble-Stratten Springs about 5 miles (8.1 Km) south of Pinkerton. The geothermal resources of the Animas Valley were studied. Due to terrain problems in the narrow valley, a soil mercury survey was conducted only at Tripp-Trimble Stratten, while an electrical D.C. resistivity survey was limited to the vicinity of Pinkerton. Although higher mercury values tended to be near a previously mapped fault, the small extent of the survey ruled out conclusive results. Consistent low resistivity zones interpreted from the geophysical data were mapped as faults near Pinkerton, and compared well with aerial photo work and spring locations. This new information was added to reconnaissance geology and hydrogeology to provide several clues regarding the geothermal potential of the valley. Hydrothermal minerals found in faults in the study area are very similar to ore mined in a very young mountain range, nearby. Groundwater would not need to circulate very deeply along faults to attain the estimated subsurface temperatures present in the valley. The water chemistry of each area is unique. Although previously incompletely manned, faulting in the area is extensive. The geothermal resources in the Animas Valley are fault controlled. Pinkerton and Tripp-Trimble-Stratten are probably not directly connected systems, but may have the same source at distance. Recharge to the geothermal system comes from the needle and La Plata Mountains, and the latter may also be a heat source. Movement of the thermal water is probably primarily horizontal, via the Leadville Limestone aquifer.

  14. New attempts on increasing economic gains in the development of geothermal resources in Beijing, China

    SciTech Connect

    Zheng, K.

    1997-12-31

    The development of geothermal resources in the city of Beijing and its surrounding suburbs has been made possible by investments from companies in the surrounding Provinces of China. The development of these geothermal deposits has created a market for hot spring real estate. The real estate has been developed into comprehensive projects for recreation and vacation resorts, in addition to, heath care centers and greenhouse farming. This new attempt to develop these geothermal resources has increased the economic growth of the area and interest in geothermal expansion.

  15. Geothermal Power Development Resource Evaluation Aspects for Kyushu Electric Power Co., Inc., Fukuoka, Japan

    SciTech Connect

    1980-10-30

    This report is a limited review of and presents comments on the geothermal resource exploration program of Kyushu Electric Power Company (KEPCO). This program is for developing geothermal resources to generate electric power on Kyushu Island, Japan. Many organizations in Japan and in particular Kyushu Electric Power Co., Inc. are actively exploring for and developing geothermal resources on Kyushu Island. KEPCO has already demonstrated an ability and expertise to explore for geothermal resources by their successful exploration and subsequent development of several fields (Hatchobaru and Otake) on the island of Kyushu for electric power generation. The review and comments are made relative to the geothermal resource aspects of Kyushu Electric Power Company's geothermal exploration program, and within the time, budget, and scope of the Rogers Engineering's effort under the existing contract. Rogers and its consultants have had a wide variety of geothermal exploration experience and have used such experience in the analysis of what has been presented by KEPCO. The remainder of the introduction section develops general knowledge concerning geothermal power development with particular emphasis on the resource exploration. The data received section describes the information available to perform the project work. There are no interpretative parts to the data received section. The philosophy section relates our understanding of the KEPCO thinking and conditions surrounding current geothermal resource development in Japan. The survey and methods sections presents three important items about each study KEPCO has performed in the resource exploration program. These three aspects are: what should be obtained from the method, what data was obtained and presented, and what is a review and analysis of where the KEPCO exploration program is currently in terms of progress and successful location of reservoirs. The final section presents recommendations on the many aspects of the

  16. Transportation study for the Geysers Geothermal Resource Area

    SciTech Connect

    Not Available

    1981-12-01

    Potential cumulative impacts on the transportation system are assessed and recommendations are made as to options for handling future transportation development. The area is served by state highways, county roads, and an internal network of private roads. Access into the area is limited, and the roads must handle a variety of traffic including an unusually high percentage of heavy trucks transporting construction equipment and materials, hazardous chemicals, and toxic wastes. In conducting the transportation study public documents on geothermal power plant developments were researched and field trips to inspect the transportation facilities were made. People who have a special interest in the transportation system were also interviewed. In addition, traffic, accident, and road data were analyzed. Traffic forecasts based on projected geothermal resource develpoment were made. All access roads are of substandard design and efficient in structural adequacy. With projected traffic at 40% above the current level for most of the next six years, it is expected that cumulative impacts will cause accelerated degradation of the existing roads.

  17. Geothermal resource assessment of western San Luis Valley, Colorado

    SciTech Connect

    Zacharakis, Ted G.; Pearl, Richard Howard; Ringrose, Charles D.

    1983-01-01

    The Colorado Geological Survey initiated and carried out a fully integrated assessment program of the geothermal resource potential of the western San Luis Valley during 1979 and 1980. The San Luis Valley is a large intermontane basin located in southcentral Colorado. While thermal springs and wells are found throughout the Valley, the only thermal waters found along the western part of the Valley are found at Shaw Warm Springs which is a relatively unused spring located approximately 6 miles (9.66 km) north of Del Norte, Colorado. The waters at Shaws Warm Spring have a temperature of 86 F (30 C), a discharge of 40 gallons per minute and contain approximately 408 mg/l of total dissolved solids. The assessment program carried out din the western San Luis Valley consisted of: soil mercury geochemical surveys; geothermal gradient drilling; and dipole-dipole electrical resistivity traverses, Schlumberger soundings, Audio-magnetotelluric surveys, telluric surveys, and time-domain electro-magnetic soundings and seismic surveys. Shaw Warm Springs appears to be the only source of thermal waters along the western side of the Valley. From the various investigations conducted the springs appear to be fault controlled and is very limited in extent. Based on best evidence presently available estimates are presented on the size and extent of Shaw Warm Springs thermal system. It is estimated that this could have an areal extent of 0.63 sq. miles (1.62 sq. km) and contain 0.0148 Q's of heat energy.

  18. The xerolithic geothermal (``hot dry rock``) energy resource of the United States: An update

    SciTech Connect

    Nunz, G.J.

    1993-07-01

    This report presents revised estimates, based upon the most current geothermal gradient data, of the xerolithic geothermal (``hot dry rock`` or HDR) energy resources of the United States. State-by-state tabular listings are provided of the HDR energy resource base, the accessible resource base, and the potentially useful resource base. The latter further subdivided into components with potential for electricity generation, process heat, and space heat. Comparisons are made with present estimates of fossil fuel reserves. A full-sized geothermal gradient contour map is provided as a supplement in a pocket inside the back cover of the report.

  19. Geothermal resource assessment of Ranger Warm Spring, Colorado, Resources Series 24

    NASA Astrophysics Data System (ADS)

    Zacharakis, T. G.; Pearl, R. H.; Ringrose, C. D.

    The delineation of the geological features controlling the occurrence of geothermal resources in Colorado are discussed. The program consists of literature search, reconnaissance geological and hydrogeologic mapping and geophysical and geochemistry surveys. During 1980 and 1981 geothermal resource assessment were conducted in the Cement Creek Valley south of Crested Butte. In this valley are two warm springs, Cement Creek and Ranger. The temperature of both springs is 77 to 790F and the discharge ranges from 60 to 195 gallons per minute. Electrical resistivity and soil mercury surveys were conducted at Ranger Warm Springs. The bedrock of the area consists of sedimentary rocks ranging in age from precambrian to recent. Several faults with displacements of up to 3000 ft are found and one of these faults passes close to the Ranger Warm Springs. The electrical resistivity survey indicates that the water of Ranger Warm Springs are moving up along a buried fault which parallels Cement Creek.

  20. WESTERN ENERGY RESOURCES AND THE ENVIRONMENT: GEOTHERMAL ENERGY

    EPA Science Inventory

    Geothermal energy--from subsurface heat sources created by the underlying geologic configuration of the earth--is addressed, from an environmental research and development perspective. The report covers various geothermal energy systems, which serve as present or potential energy...

  1. Integrating CO₂ storage with geothermal resources for dispatchable renewable electricity

    SciTech Connect

    Buscheck, Thomas A.; Bielicki, Jeffrey M.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Edmunds, Thomas A.; Saar, Martin O.; Randolph, Jimmy B.

    2014-12-31

    We present an approach that uses the huge fluid and thermal storage capacity of the subsurface, together with geologic CO₂ storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources, as well as energy from electrical grids. Captured CO₂ is injected into saline aquifers to store pressure, generate artesian flow of brine, and provide an additional working fluid for efficient heat extraction and power conversion. Concentric rings of injection and production wells are used to create a hydraulic divide to store pressure, CO₂, and thermal energy. Such storage can take excess power from the grid and excess/waste thermal energy, and dispatch that energy when it is demanded, enabling increased penetration of variable renewables. Stored CO₂ functions as a cushion gas to provide enormous pressure-storage capacity and displaces large quantities of brine, which can be desalinated and/or treated for a variety of beneficial uses.

  2. Integrating CO₂ storage with geothermal resources for dispatchable renewable electricity

    DOE PAGESBeta

    Buscheck, Thomas A.; Bielicki, Jeffrey M.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Edmunds, Thomas A.; Saar, Martin O.; Randolph, Jimmy B.

    2014-12-31

    We present an approach that uses the huge fluid and thermal storage capacity of the subsurface, together with geologic CO₂ storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources, as well as energy from electrical grids. Captured CO₂ is injected into saline aquifers to store pressure, generate artesian flow of brine, and provide an additional working fluid for efficient heat extraction and power conversion. Concentric rings of injection and production wells are used to create a hydraulic divide to store pressure, CO₂, and thermal energy. Such storage can take excess power frommore » the grid and excess/waste thermal energy, and dispatch that energy when it is demanded, enabling increased penetration of variable renewables. Stored CO₂ functions as a cushion gas to provide enormous pressure-storage capacity and displaces large quantities of brine, which can be desalinated and/or treated for a variety of beneficial uses.« less

  3. Geothermal energy in the United States; Part II, Assessment of resources

    USGS Publications Warehouse

    Williams, D.L.

    1976-01-01

    Geothermal energy-from heat deep inside the Earth- is a vast potential source of power. This article is the second part of a series on geothermal energy, the first part of which was in volume 8, number 1, of the Earthquake Information Bulletin (January-February 1976). Part 1 of this series described the categories of the geothermal resource base. 

  4. Geothermal resources in Arizona: a bibliography. Circular 23

    SciTech Connect

    Calvo, S.S.

    1982-01-01

    This bibliography references all reports and maps generated by the Arizona Bureau of Geology and Mineral Technology and the Arizona Geothermal Commercialization Team of the Department of Chemical Engineering, University of Arizona. To provide a more comprehensive listing of geothermal energy in Arizona, all available geothermal papers from other sources have been included. A total of 224 references are presented. (MHR)

  5. Geothermal resources in Arizona: a bibliography. Circular 23

    SciTech Connect

    Calvo, S.S.

    1982-01-01

    All reports and maps generated by the Geothermal Project of the Arizona Bureau of Geology and Mineral Technology and the Arizona Geothermal Commercialization Team of the University of Arizona are listed. In order to provide a more comprehensive listing of geothermal papers from other sources have been included. There are 224 references in the bibliography. (MHR)

  6. Proceedings of the Conference on Research for the Development of Geothermal Energy Resources

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The proceedings of a conference on the development of geothermal energy resources are presented. The purpose of the conference was to acquaint potential user groups with the Federal and National Science Foundation geothermal programs and the method by which the users and other interested members can participate in the program. Among the subjects discussed are: (1) resources exploration and assessment, (2) environmental, legal, and institutional research, (3) resource utilization projects, and (4) advanced research and technology.

  7. Market study for direct utilization of geothermal resources by selected sectors of economy

    SciTech Connect

    Not Available

    1980-08-01

    A comprehensive analysis is presented of industrial markets potential for direct use of geothermal energy by a total of six industry sectors: food and kindred products; tobacco manufactures; textile mill products; lumber and wood products (except furniture); chemicals and allied products; and leather and leather products. A brief statement is presented regarding sectors of the economy and major manufacturing processes which can readily utilize direct geothermal energy. Previous studies on plant location determinants are summarized and appropriate empirical data provided on plant locations. Location determinants and potential for direct use of geothermal resources are presented. The data was gathered through interviews with 30 senior executives in the six sectors of economy selected for study. Probable locations of plants in geothermal resource areas and recommendations for geothermal resource marketing are presented. Appendix A presents factors which impact on industry location decisions. Appendix B presents industry executives interviewed during the course of this study. (MHR)

  8. The NSF/RANN FY 1975 program for geothermal resources research and technology

    NASA Technical Reports Server (NTRS)

    Kruger, P.

    1974-01-01

    The specific goal of the NSF geothermal program is the rapid development by industry of the nation's geothermal resources that can be demonstrated to be commercially, environmentally and socially acceptable as alternate energy sources. NSF, as the lead agency for the federal geothermal energy research program, is expediting a program which encompasses the objectives necessary for significant utilization. These include: acceleration of exploration and assessment methods to identify commercial geothermal resources; development of innovative and improved technology to achieve economic feasibility; evaluation of policy options to resolve environmental, legal, and institutional problems; and support of experimental research facilities for each type of geothermal resource. Specific projects in each of these four objective areas are part of the NSF program for fiscal year 1975.

  9. Measuring Impact of U.S. DOE Geothermal Technologies Office Funding: Considerations for Development of a Geothermal Resource Reporting Metric

    SciTech Connect

    Young, Katherine R.; Wall, Anna M.; Dobson, Patrick F.; Bennett, Mitchell; Segneri, Brittany

    2015-04-25

    This paper reviews existing methodologies and reporting codes used to describe extracted energy resources such as coal and oil and describes a comparable proposed methodology to describe geothermal resources. The goal is to provide the U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) with a consistent and comprehensible means of assessing the impacts of its funding programs. This framework will allow for GTO to assess the effectiveness of research, development, and deployment (RD&D) funding, prioritize funding requests, and demonstrate the value of RD&D programs to the U.S. Congress. Standards and reporting codes used in other countries and energy sectors provide guidance to inform development of a geothermal methodology, but industry feedback and our analysis suggest that the existing models have drawbacks that should be addressed. In order to formulate a comprehensive metric for use by GTO, we analyzed existing resource assessments and reporting methodologies for the geothermal, mining, and oil and gas industries, and we sought input from industry, investors, academia, national labs, and other government agencies. Using this background research as a guide, we describe a methodology for assessing and reporting on GTO funding according to resource knowledge and resource grade (or quality). This methodology would allow GTO to target funding or measure impact by progression of projects or geological potential for development.

  10. Tectonic and hydrologic control of the nature and distribution of geothermal resources

    SciTech Connect

    Muffler, L.J.P. )

    1993-11-01

    A broad overview of the geologic controls of the nature and distribution of geothermal resources is presented. Under forseeable economics and technology, extraction of geothermal resources is limited to the upper few kilometres of the earth's crust. At these depths, the global distribution of geothermal resources is primarily controlled by plate-tectonic features. Geothermal resources related to igneous intrusions in the upper crust occur along spreading ridges, subduction zones, inter-arc basins, and melting anomalies. Geothermal resources unrelated to igneous intrusions in the upper crust occur most commonly in porous sedimentary rocks near convergent or divergent plate boundaries where regional heat flow is high. Geothermal reservoirs at pressures well in excess of hydrostatic occur commonly in young tectonic basins characterized by high rates of sedimentation and subsidence; these reservoirs are commonly termed [open quotes]geopressured.[close quotes] The hydrologic properties of crustal rocks are very important in determining location, size, and type of geothermal resource. Hot dry rock can result from solidification of a young intrusive body or from conductive heating of impermeable rock around such a body. Convective hydrothermal systems result either from convection of meteoric water around young intrusive bodies or from deep circulation of meteoric water along fracture zones. Geopressured reservoirs are formed in deep sedimentary basins when escape of connate water and water produced by the thermal dehydration of clays is impeded by sediments of low permeability.

  11. Direct application of West Coast geothermal resources in a wet-corn-milling plant. Final report

    SciTech Connect

    Not Available

    1981-03-01

    The engineering and economic feasibility of using the geothermal resources in East Mesa, California, in a new corn processing plant is evaluated. Institutional barriers were also identified and evaluated. Several alternative plant designs which used geothermal energy were developed. A capital cost estimate and rate of return type of economic analysis were performed to evaluate each alternative. (MHR)

  12. Assessment of Geothermal Resources for Electric Generation in the Pacific Northwest, Draft Issue Paper for the Northwest Power Planning Council

    SciTech Connect

    Geyer, John D.; Kellerman, L.M.; Bloomquist, R.G.

    1989-09-26

    This document reviews the geothermal history, technology, costs, and Pacific Northwest potentials. The report discusses geothermal generation, geothermal resources in the Pacific Northwest, cost and operating characteristics of geothermal power plants, environmental effects of geothermal generation, and prospects for development in the Pacific Northwest. This report was prepared expressly for use by the Northwest Power Planning Council. The report contains numerous references at the end of the document. [DJE-2005

  13. Accelerated Geothermal Resource Development in the Great Basin Through Enhanced Public Awareness and Outreach to Shareholders.

    SciTech Connect

    Taranik, James V.; Oppliger, Gary; Sawatsky, Don

    2002-04-10

    The Great Basin Center for Geothermal Energy conducted work encompassing two main tasks. We (1) produced a web-based, stakeholder geothermal information system for Nevada geothermal data relevant to assessing and developing geothermal resources, and (2) we held informational stakeholder workshops (both as part of GeoPowering the West Initiative). The objective of this grant was to conduct workshops and fund database and web development activities. This grant funds salaries for web and database developers and part of the administrative assistant who helps to coordinate and organize workshops, and maintain selected databases.

  14. A Resource Assessment Of Geothermal Energy Resources For Converting Deep Gas Wells In Carbonate Strata Into Geothermal Extraction Wells: A Permian Basin Evaluation

    SciTech Connect

    Erdlac, Richard J., Jr.

    2006-10-12

    Previously conducted preliminary investigations within the deep Delaware and Val Verde sub-basins of the Permian Basin complex documented bottom hole temperatures from oil and gas wells that reach the 120-180C temperature range, and occasionally beyond. With large abundances of subsurface brine water, and known porosity and permeability, the deep carbonate strata of the region possess a good potential for future geothermal power development. This work was designed as a 3-year project to investigate a new, undeveloped geographic region for establishing geothermal energy production focused on electric power generation. Identifying optimum geologic and geographic sites for converting depleted deep gas wells and fields within a carbonate environment into geothermal energy extraction wells was part of the project goals. The importance of this work was to affect the three factors limiting the expansion of geothermal development: distribution, field size and accompanying resource availability, and cost. Historically, power production from geothermal energy has been relegated to shallow heat plumes near active volcanic or geyser activity, or in areas where volcanic rocks still retain heat from their formation. Thus geothermal development is spatially variable and site specific. Additionally, existing geothermal fields are only a few 10’s of square km in size, controlled by the extent of the heat plume and the availability of water for heat movement. This plume radiates heat both vertically as well as laterally into the enclosing country rock. Heat withdrawal at too rapid a rate eventually results in a decrease in electrical power generation as the thermal energy is “mined”. The depletion rate of subsurface heat directly controls the lifetime of geothermal energy production. Finally, the cost of developing deep (greater than 4 km) reservoirs of geothermal energy is perceived as being too costly to justify corporate investment. Thus further development opportunities

  15. Geothermal direct heat program: roundup technical conference proceedings. Volume II. Bibliography of publications. State-coupled geothermal resource assessment program

    SciTech Connect

    Ruscetta, C.A.

    1982-07-01

    Lists of publications are presented for the Geothermal Resource Assessment Program for the Utah Earth Science Laboratory and the following states: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Kansas, Montana, Nebraska, Nevada, New Mexico, New York, North Dakota, Oregon, Texas, Utah, and Washington.

  16. ENERGY FROM THE WEST: ENERGY RESOURCE DEVELOPMENT SYSTEMS REPORT. VOLUME VI: GEOTHERMAL

    EPA Science Inventory

    This report describes the technologies likely to be used for development of geothermal resources in eight western states (Arizona, Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming). It provides information on input materials and labor requirements, out...

  17. State-coupled low temperature geothermal resource assessment program, fiscal year 1982. Final Technical Report

    SciTech Connect

    Icerman, Larry

    1983-08-01

    This report summarizes the results of low-temperature geothermal energy resource assessment efforts in New Mexico during the period from June 15, 1981 through September 30, 1983, under the sponsorship of the US Department of Energy (Contract DE-AS07-78ID01717). The report is divided into four chapters which correspond to the tasks delineated in the contract. Chapter 5 is a brief summary of the tasks performed under this contract during the period October 1, 1978, through June 30, 1983. This work extends the knowledge of low-temperature geothermal reservoirs with the potential for direct heating applications in New Mexico. The research effort focused on compiling basic geothermal data throughout selected areas in New Mexico in a format suitable for direct transfer to the US Geological Survey for inclusion in the GEOTHERM data file and to the National Oceanic and Atmospheric Administration for use with New Mexico geothermal resources maps.

  18. Distribution of high-temperature (>150 °C) geothermal resources in California

    USGS Publications Warehouse

    Sass, John H.; Priest, Susan S.

    2002-01-01

    California contains, by far, the greatest geothermal generating capacity in the United States, and with the possible exception of Alaska, the greatest potential for the development of additional resources. California has nearly 2/3 of the US geothermal electrical installed capacity of over 3,000 MW. Depending on assumptions regarding reservoir characteristics and future market conditions, additional resources of between 2,000 and 10,000 MWe might be developed (see e.g., Muffler, 1979).

  19. Geothermal energy and the land resource: conflicts and constraints in The Geysers-Calistoga KGRA

    SciTech Connect

    O'Banion, K.; Hall, C.

    1980-07-14

    This study of potential land-related impacts of geothermal power development in The Geysers region focuses on Lake County because it has most of the undeveloped resource and the least regulatory capability. First, the land resource is characterized in terms of its ecological, hydrological, agricultural, and recreational value; intrinsic natural hazards; and the adequacy of roads and utility systems. Based on those factors, the potential land-use conflicts and constraints that geothermal development may encounter in the region are identified and the availability and relative suitability of land for such development is determined. A brief review of laws and powers germane to geothermal land-use regulation is included.

  20. Geothermal resources of Kyushu, southwest Japan with special focus on the Kuju volcanic region

    SciTech Connect

    Ehara, S.

    1995-12-31

    Tectonic and geothermal backgrounds of Kyushu Island, are described to understand the thermal regime of Kuju volcano. A model for the geothermal system beneath Kuju volcano is presented based on thermal, isotopic and structural data. Based on the model, the geothermal resources beneath Kuju volcano are classified into five categories and are estimated by a volume method. The volcano energy stored beneath Kuju volcano is one of very promising potential resources in Japan. It would seem more reasonable to develop technologies to utilize volcano energy step by step.

  1. Geothermal Resource Reporting Metric (GRRM) Developed for the U.S. Department of Energy's Geothermal Technologies Office

    SciTech Connect

    Young, Katherine R.; Wall, Anna M.; Dobson, Patrick F.

    2015-09-02

    This paper reviews a methodology being developed for reporting geothermal resources and project progress. The goal is to provide the U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) with a consistent and comprehensible means of evaluating the impacts of its funding programs. This framework will allow the GTO to assess the effectiveness of research, development, and deployment (RD&D) funding, prioritize funding requests, and demonstrate the value of RD&D programs to the U.S. Congress and the public. Standards and reporting codes used in other countries and energy sectors provide guidance to develop the relevant geothermal methodology, but industry feedback and our analysis suggest that the existing models have drawbacks that should be addressed. In order to formulate a comprehensive metric for use by the GTO, we analyzed existing resource assessments and reporting methodologies for the geothermal, mining, and oil and gas industries, and sought input from industry, investors, academia, national labs, and other government agencies. Using this background research as a guide, we describe a methodology for evaluating and reporting on GTO funding according to resource grade (geological, technical and socio-economic) and project progress. This methodology would allow GTO to target funding, measure impact by monitoring the progression of projects, or assess geological potential of targeted areas for development.

  2. Assessment of the geothermal resources of Kansas. Final report

    SciTech Connect

    Steeples, D.W.; Stavnes, S.A.

    1982-06-01

    The following regional geological and geophysical studies are reported: establishment of a geothermal gradient data base from approximately 45,000 bottom hole temperatures recorded from well logs and interpretation of this data in terms of regional geology and establishment and interpretation of a second data base of geothermal gradients from thermal logging data from 144 holes of opportunity in the state. (MHR)

  3. Geothermal investigations in Idaho: Geothermal resource analysis in Twin Falls County, Idaho:

    SciTech Connect

    Street, L.V.; DeTar, R.E.

    1987-07-01

    Increased utilization of the geothermal resource in the Twin Falls - Banbury area of southern Idaho has resulted in noticeable declines in the artesian head of the system. In order to determine the nature of the declines, a network of wells was identified for monitoring shut-in pressures and temperatures. In addition, a compilation of data and reconnaissance of the areal geology was undertaken in order to better understand the geologic framework and its relationship to the occurrence of the thermal waters in the system. The results of the monitoring indicate that while water temperatures have remained constant, the system shows a gradual overall decline in artesian pressure superimposed on fluctuations caused by seasonal use of the system. Well testing and the similarity of hydrographs resulting from well monitoring throughout the area suggest that there are no major hydrologic barriers to thermal water movement in the system and that wells are affected by increases and decreases in utilization of nearby wells. 46 refs., 13 figs., 1 tab.

  4. Prediction and discovery of new geothermal resources in the Great Basin: Multiple evidence of a large undiscovered resource base

    USGS Publications Warehouse

    Coolbaugh, M.F.; Raines, G.L.; Zehner, R.E.; Shevenell, L.; Williams, C.F.

    2006-01-01

    Geothermal potential maps by themselves cannot directly be used to estimate undiscovered resources. To address the undiscovered resource base in the Great Basin, a new and relatively quantitative methodology is presented. The methodology involves three steps, the first being the construction of a data-driven probabilistic model of the location of known geothermal systems using weights of evidence. The second step is the construction of a degree-of-exploration model. This degree-of-exploration model uses expert judgment in a fuzzy logic context to estimate how well each spot in the state has been explored, using as constraints digital maps of the depth to the water table, presence of the carbonate aquifer, and the location, depth, and type of drill-holes. Finally, the exploration model and the data-driven occurrence model are combined together quantitatively using area-weighted modifications to the weights-of-evidence equations. Using this methodology in the state of Nevada, the number of undiscovered geothermal systems with reservoir temperatures ???100??C is estimated at 157, which is 3.2 times greater than the 69 known systems. Currently, nine of the 69 known systems are producing electricity. If it is conservatively assumed that an additional nine for a total of 18 of the known systems will eventually produce electricity, then the model predicts 59 known and undiscovered geothermal systems are capable of producing electricity under current economic conditions in the state, a figure that is more than six times higher than the current number. Many additional geothermal systems could potentially become economic under improved economic conditions or with improved methods of reservoir stimulation (Enhanced Geothermal Systems).This large predicted geothermal resource base appears corroborated by recent grass-roots geothermal discoveries in the state of Nevada. At least two and possibly three newly recognized geothermal systems with estimated reservoir temperatures

  5. Assessment of geothermal resources of the United States, 1975

    USGS Publications Warehouse

    White, Donald Edward, (Edited By); Williams, David L.

    1975-01-01

    This assessment of geothermal resources of the United States consists of two major parts: (1) estimates of total heat in the ground to a depth of 10 km and (2) estimates of the part of this total heat that is recoverable with present technology, regardless of price. No attempt has been made to consider most aspects of the legal, environmental, and institutional limitations in exploiting these resouces. In general, the average heat content of rocks is considerably higher in the Western United States than in the East. This also helps to explain why the most favorable hydrothermal convection systems and the hot young igneous systems occur in the West. Resources of the most attractive identified convection systems (excluding national parks) with predicted reservoir temperatures above 150 deg C have an estimated electrical production potential of about 8,000 megawatt century, or about 26,000 megawatt for 30 years. Assumptions in this conversion are: (1) one-half of the volume of the heat reservoirs is porous and permeable, (2) one-half of the heat of the porous, permeable parts is recoverable in fluids at the wellheads, and (3) the conversion efficiency of heat in wellhead fluids to electricity ranges from about 8 to 20 percent , depending on temperature and kind of fluid (hot water or steam). The estimated overall efficiency of conversion of heat in the ground to electrical energy generally ranges from less than 2 to 5 percent, depending on type of system and reservoir temperature. (See also W77-07477) (Woodard-USGS)

  6. Geothermal-resource assessment of Ranger Warm Spring, Colorado. Resources Series 24

    SciTech Connect

    Zacharakis, T.G.; Pearl, R.H.; Ringrose, C.D.

    1983-01-01

    In 1977 a program was initiated to delineate the geological features controlling the occurrence of geothermal resources in Colorado. This program consisted of literature search, reconnaissance geologic and hydrogeologic mapping and geophysical and geochemical surveys. During 1980 and 1981 geothermal resource assessment efforts were conducted in the Cement Creek Valley south of Crested Butte. In this valley are two warm springs, Cement Creek and Ranger, about 4 mi (6.4 km) apart. The temperature of both springs is 77 to 79/sup 0/F (25 to 26/sup 0/C) and the discharge ranges from 60 to 195 gallons per minute. Due to access problems no work was conducted in the Cement Creek Warm Springs area. At Ranger Warm Springs electrical resistivity and soil mercury surveys were conducted. The warm springs are located in the Elk Mountains of west central Colorado. The bedrock of the area consists of sedimentary rocks ranging in age from Precambrian to Recent. Several faults with displacements of up to 3000 ft (194 m) are found in the area. One of these faults passes close to the Ranger Warm Springs. The electrical resistivity survey indicated that the waters of Ranger Warm Springs are moving up along a buried fault which parallels Cement Creek.

  7. Geothermal Resource Area 6: Lander and Eureka Counties. Area development plan

    SciTech Connect

    Robinson, S.; Pugsley, M.

    1981-01-01

    Geothermal Resource Area 6 includes Lander and Eureka Counties. There are several different geothermal resources ranging in temperature from 70/sup 0/F to in excess of 400/sup 0/F within this two county area. Eleven of these resources are considered major and have been selected for evaluation in this area development plan. The various potential uses of the energy found at each of the 11 resource sites were determined after evaluating the study area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities. These were then compared with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the geothermal sites considered are summarized.

  8. Institutional and environmental problems in geothermal resource development

    NASA Technical Reports Server (NTRS)

    Maslan, F.; Gordon, T. J.; Deitch, L.

    1974-01-01

    A number of regulatory and institutional impediments to the development of geothermal energy exist. None of these seem likely to prevent the development of this energy source, but in the aggregate they will pace its growth as certainly as the technological issues. The issues are associated with the encouragement of exploration and development, assuring a market for geothermal steam or hot water, and accomplishing the required research and development in a timely manner. The development of geothermal energy in the United States at a high level is apt to cause both favorable and unfavorable, though manageable, impacts in eight major areas, which are discussed.

  9. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners

    SciTech Connect

    Not Available

    1991-09-01

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

  10. Course An Introduction to Geothermal Resources - Well Completion Production Equipment

    SciTech Connect

    Ascuaga, John; Garrett, B.D.

    1987-10-01

    A course to introduce geothermal energy held in Sparks, Nevada on October 1987. Topics included well draining and well computation production equipment. There is much technical detail and some cost detail. [DJE-2005

  11. GIS model for geothermal resource exploration in Akita and Iwate prefectures, northern Japan

    NASA Astrophysics Data System (ADS)

    Noorollahi, Younes; Itoi, Ryuichi; Fujii, Hikari; Tanaka, Toshiaki

    2007-08-01

    In this study, a Geographic Information System (GIS) is used as a decision-making tool to target potential regional-scale geothermal resources in the Akita and Iwate prefectures of northern Japan. The aims of the study are to determine the relationships between geothermal wells and geological, geochemical, and thermal data layers within the GIS and to use these relationships to identify promising areas for geothermal exploration. We calculated the distances from existing productive geothermal wells to Quaternary volcanic rocks, calderas and craters, faults, hot springs, fumaroles, and hydrothermal alteration zones. The dominant distances were then defined for each evidence layer. We used ArcMap to develop a GIS Model for Geothermal Resource Exploration (GM-GRE) consisting of geoprocessing tools and a modelbuilder. Areas of geothermal potential were defined and prioritized by assigning a weighted overlying selection query for geological, geochemical, and thermal data layers. The result shows that 97% of currently productive geothermal wells in Akita and Iwate prefectures are located within the first priority zone selected by the GM-GRE.

  12. Geothermal resource assessment of the Yucca Mountain Area, Nye County, Nevada. Final report

    SciTech Connect

    Flynn, T.; Buchanan, P.; Trexler, D.; Shevenell, L., Garside, L.

    1995-12-01

    An assessment of the geothermal resources within a fifty-mile radius of the Yucca Mountain Project area was conducted to determine the potential for commercial development. The assessment includes collection, evaluation, and quantification of existing geological, geochemical, hydrological, and geophysical data within the Yucca Mountain area as they pertain to geothermal phenomena. Selected geologic, geochemical, and geophysical data were reduced to a set of common-scale digital maps using Geographic Information Systems (GIS) for systematic analysis and evaluation. Available data from the Yucca Mountain area were compared to similar data from developed and undeveloped geothermal areas in other parts of the Great Basin to assess the resource potential for future geothermal development at Yucca Mountain. This information will be used in the Yucca Mountain Site Characterization Project to determine the potential suitability of the site as a permanent underground repository for high-level nuclear waste.

  13. Geothermal resource areas database for monitoring the progress of development in the United States

    SciTech Connect

    Lawrence, J.D.; Lepman, S.R.; Leung, K.; Phillips, S.L.

    1981-01-01

    The Geothermal Resource Areas Database (GRAD) and associated data system provide broad coverage of information on the development of geothermal resources in the United States. The system is designed to serve the information requirements of the National Progress Monitoring System. GRAD covers development from the initial exploratory phase through plant construction and operation. Emphasis is on actual facts or events rather than projections and scenarios. The selection and organization of data are based on a model of geothermal development. Subjects in GRAD include: names and addresses, leases, area descriptions, geothermal wells, power plants, direct use facilities, and environmental and regulatory aspects of development. Data collected in the various subject areas are critically evaluated, and then entered into an on-line interactive computer system. The system is publically available for retrieval and use. The background of the project, conceptual development, software development, and data collection are described here. Appendices describe the structure of the database in detail.

  14. Geothermal resource areas database for monitoring the progress of development in the United States

    NASA Astrophysics Data System (ADS)

    Lawrence, J. D.; Lepman, S. R.; Leung, K. N.; Phillips, S. L.

    1981-01-01

    The Geothermal Resource Areas Database (GRAD) and associated data system provide broad coverage of information on the development of geothermal resources in the United States. The system is designed to serve the information requirements of the National Progress Monitoring System. GRAD covers development from the initial exploratory phase through plant construction and operation. Emphasis is on actual facts or events rather than projections and scenarios. The selection and organization of data are based on a model of geothermal development. Subjects in GRAD include: names and addresses, leases, area descriptions, geothermal wells, power plants, direct use facilities, and environmental and regulatory aspects of development. Data collected in the various subject areas are critically evaluated, and then entered into an on-line interactive computer system. The system is publically available for retrieval and use. The background of the project, conceptual development, software development, and data collection are described as well as the structure of the database.

  15. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    SciTech Connect

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    1980-03-01

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  16. Residential heating costs: a comparison of geothermal, solar and conventional resources

    SciTech Connect

    Bloomster, C.H.; Garrett-Price, B.A.; Fassbender, L.L.

    1980-08-01

    The costs of residential heating throughout the United States using conventional, solar, and geothermal energy were determined under current and projected conditions. These costs are very sensitive to location - being dependent on the local prices of conventional energy supplies, local solar insolation, cimate, and the proximity and temperature of potential geothermal resources. The sharp price increases in imported fuels during 1979 and the planned decontrol of domestic oil and natural gas prices have set the stage for geothermal and solar market penetration in the 1980's.

  17. Revisiting the 'Buy versus Build' Decision for Publicly Owned Utilities in California Considering Wind and Geothermal Resources

    SciTech Connect

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2001-12-11

    The last two decades have seen a dramatic increase in the market share of independent, nonutility generators (NUGs) relative to traditional, utility-owned generation assets. Accordingly, the ''buy versus build'' decision facing utilities--i.e., whether a utility should sign a power purchase agreement (PPA) with a NUG, or develop and own the generation capacity itself--has gained prominence in the industry. Very little of this debate, however, has focused specifically on publicly owned electric utilities, and with few exceptions, renewable sources of supply have received similarly scant attention. Contrary to historical treatment, however, the buy versus build debate is quite relevant to publicly owned utilities and renewables because publicly owned utilities are able to take advantage of some renewable energy incentives only in a ''buy'' situation, while others accrue only in a ''build'' situation. In particular, possible economic advantages of public utility ownership include: (1) the tax-free status of publicly owned utilities and the availability of low-cost debt, and (2) the renewable energy production incentive (REPI) available only to publicly owned utilities. Possible economic advantages to entering into a PPA with a NUG include: (1) the availability of federal tax credits and accelerated depreciation schedules for certain forms of NUG-owned renewable energy, and (2) the California state production incentives available to NUGs but not utilities. This article looks at a publicly owned utility's decision to buy or build new renewable energy capacity--specifically wind and geothermal power--in California. To examine the economic aspects of this decision, we used a 20-year financial cash-flow model to assess the levelized cost of electricity under four supply options: (1) public utility ownership of new geothermal capacity, (2) public utility ownership of new wind capacity, (3) a PPA for new geothermal capacity, and (4) a PPA for new wind capacity. We focus on

  18. State-coupled low-temperature geothermal-resource assessment program, Fiscal Year 1979. Final technical report

    SciTech Connect

    Icerman, L.; Starkey, A.; Trentman, N.

    1980-10-01

    The results of low-temperature geothermal energy resource assessment efforts in New Mexico during the period from 1 October 1978 to 30 June 1980 are summarized. The results of the efforts to extend the inventory of geothermal energy resources in New Mexico to low-temperature geothermal reservoirs with the potential for direct heating applications are given. These efforts focused on compiling basic geothermal data and new hydrology and temperature gradient data throughout New Mexico in a format suitable for direct transfer to the US Geological Survey and the National Oceanic and Atmospheric Administration for inclusion in the GEOTHERM data file and for preparation of New Mexico low-temperature geothermal resources maps. The results of geothermal reservoir confirmation studies are presented. (MHR)

  19. Analysis of requirements for accelerating the development of geothermal energy resources in California

    NASA Technical Reports Server (NTRS)

    Fredrickson, C. D.

    1978-01-01

    Various resource data are presented showing that geothermal energy has the potential of satisfying a singificant part of California's increasing energy needs. General factors slowing the development of geothermal energy in California are discussed and required actions to accelerate its progress are presented. Finally, scenarios for developing the most promising prospects in the state directed at timely on-line power are given. Specific actions required to realize each of these individual scenarios are identified.

  20. Recent exploration and development of geothermal energy resources in the Escalante desert region, Southwestern Utah

    USGS Publications Warehouse

    Blackett, Robert E.; Ross, Howard P.

    1994-01-01

    Development of geothermal resources in southwest Utah's Sevier thermal area continued in the early 1990s with expansion of existing power-generation facilities. Completion of the Bud L. Bonnett geothermal power plant at the Cove Fort-Sulphurdale geothermal area brought total power generation capacity of the facility to 13.5 MWe (gross). At Cove Fort-Sulphurdate, recent declines in steam pressures within the shallow, vapor-dominated part of the resource prompted field developers to complete additional geothermal supply wells into the deeper, liquid-dominated portion of the resource. At Roosevelt Hot Springs near Milford, Intermountain Geothermal Company completed an additional supply well for Utah Power and Light Company's single-flash, Blundell plant. with the increased geothermal fluid supply from the new well, the Blundell plant now produces about 26 MWe (gross). The authors conducted several geothermal resource studies in undeveloped thermal areas in southwest Utah. Previous studies at Newcastle revealed a well-defined, self-potential minimum coincident with the intersection of major faults and the center of the heatflow anomaly. A detailed self-potential survey at Wood's Ranch, an area in northwest Iron County where thermal water was encountered in shallow wells, revealed a large (5,900 ?? 2,950 feet [1,800 ?? 900 m]) northeast-oriented self-potential anomaly which possibly results from the flow of shallow thermal fluid. Chemical geothermometry applied to Wood's Ranch water samples suggest reservoir temperatures between 230 and 248??F (110 and 120??C). At the Thermo Hot Springs geothermal area near Minersville, detailed self-potential surveys have also revealed an interesting 100 mV negative anomaly possibly related to the upward flow of hydrothermal fluid.

  1. Effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area, Montana, on the thermal features of Yellowstone National Park. Water Resources Investigation

    SciTech Connect

    Sorey, M.L.

    1991-01-01

    A two-year study by the U.S. Geological Survey, in collaboration with the National Park Service, Argonne National Laboratory, and Los Alamos National Laboratory was initiated in 1988 to determine the effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area (KGRA), Montana, on the thermal features of Yellowstone National Park. The study addressed three principal issues: (1) the sources of thermal water in the hot springs at Mammoth, La Duke, and Bear Creek; (2) the degree of subsurface connection between these areas; and (3) the effects of geothermal development in the Corwin Springs KGRA on the Park's thermal features. The authors investigations included, but were not limited to, geologic mapping, electrical geophysical surveys, chemical sampling and analyses of waters and rocks, determinations of the rates of discharge of various thermal springs, and hydrologic tracer tests.

  2. Coupling geophysical investigation with hydrothermal modeling to constrain the enthalpy classification of a potential geothermal resource

    NASA Astrophysics Data System (ADS)

    White, J. T.; Karakhanian, A.; Connor, C. B.; Connor, L.; Hughes, J. D.; Malservisi, R.; Wetmore, P.

    2015-06-01

    An appreciable challenge in volcanology and geothermal resource development is to understand the relationships between volcanic systems and low-enthalpy geothermal resources. The enthalpy of an undeveloped geothermal resource in the Karckar region of Armenia is investigated by coupling geophysical and hydrothermal modeling. The results of 3-dimensional inversion of gravity data provide key inputs into a hydrothermal circulation model of the system and associated hot springs, which is used to evaluate possible geothermal system configurations. Hydraulic and thermal properties are specified using maximum a priori estimates. Limited constraints provided by temperature data collected from an existing down-gradient borehole indicate that the geothermal system can most likely be classified as low-enthalpy and liquid dominated. We find the heat source for the system is likely cooling quartz monzonite intrusions in the shallow subsurface and that meteoric recharge in the pull-apart basin circulates to depth, rises along basin-bounding faults and discharges at the hot springs. While other combinations of subsurface properties and geothermal system configurations may fit the temperature distribution equally well, we demonstrate that the low-enthalpy system is reasonably explained based largely on interpretation of surface geophysical data and relatively simple models.

  3. Coupling geophysical investigation with hydrothermal modeling to constrain the enthalpy classification of a potential geothermal resource.

    USGS Publications Warehouse

    White, Jeremy T.; Karakhanian, Arkadi; Connor, Chuck; Connor, Laura; Hughes, Joseph D.; Malservisi, Rocco; Wetmore, Paul

    2015-01-01

    An appreciable challenge in volcanology and geothermal resource development is to understand the relationships between volcanic systems and low-enthalpy geothermal resources. The enthalpy of an undeveloped geothermal resource in the Karckar region of Armenia is investigated by coupling geophysical and hydrothermal modeling. The results of 3-dimensional inversion of gravity data provide key inputs into a hydrothermal circulation model of the system and associated hot springs, which is used to evaluate possible geothermal system configurations. Hydraulic and thermal properties are specified using maximum a priori estimates. Limited constraints provided by temperature data collected from an existing down-gradient borehole indicate that the geothermal system can most likely be classified as low-enthalpy and liquid dominated. We find the heat source for the system is likely cooling quartz monzonite intrusions in the shallow subsurface and that meteoric recharge in the pull-apart basin circulates to depth, rises along basin-bounding faults and discharges at the hot springs. While other combinations of subsurface properties and geothermal system configurations may fit the temperature distribution equally well, we demonstrate that the low-enthalpy system is reasonably explained based largely on interpretation of surface geophysical data and relatively simple models.

  4. Assessment of the geothermal resources of Illinois based on existing geologic data

    SciTech Connect

    Vaught, T.L.

    1980-12-01

    Geothermal resources are not known to exist in Illinois. However, from the data presented on heat flow, thermal gradients, depth to basement, seismic activity, and low-conductivity sediments, inferences are drawn about the possible presence of resources in the state. (MHR)

  5. Geothermal resource base of the world: a revision of the Electric Power Research Institute's estimate

    SciTech Connect

    Aldrich, M.J.; Laughlin, A.W.; Gambill, D.T.

    1981-04-01

    Review of the Electric Power Research Institute's (EPRI) method for calculating the geothermal resource base of a country shows that modifications are needed for several of the assumptions used in the calculation. These modifications include: (1) separating geothermal belts into volcanic types with a geothermal gradient of 50{sup 0}C/km and complex types in which 80% of the area has a temperature gradient of 30{sup 0}C/km and 20% has a gradient of 45{sup 0}C/km, (2) using the actual mean annual temperature of a country rather than an assumed 15{sup 0}C average ambient temperature, and (3) making separate calculations for the resource stored in water/brine and that stored in rock. Comparison of this method (Revised EPRI) for calculating a geothermal resource base with other resource base estimates made from a heat flow map of Europe indicates that the technique yields reasonable values. The calculated geothermal resource bases, stored in water and rock to a depth of 5 km, for each country in the world are given. Approximately five times as much energy is stored in rock as is stored in water.

  6. Map showing geothermal resources of The Lake City-Surprise Valley Known Geothermal Resource Area, Modoc County, California

    SciTech Connect

    Not Available

    1981-01-01

    Geothermal data are summarized from published and unpublished geophysical, geochemical, and geologic reports on Surprise Valley prepared during the past 26 years. Particular emphasis is placed on a comprehensive structural interpretation of the west half of the valley that is based on map compilation of concealed faults that have been inferred from geophysical methods and exposed faults that can be seen in the field and/or on aerial photographs. The faults apparently control the location of modern geothermal activity.

  7. Using Facilities And Potential Of Geothermal Resources In The Canakkale Province - NW Turkey

    NASA Astrophysics Data System (ADS)

    Deniz, Ozan; Acar Deniz, Zahide

    2016-04-01

    Turkey, due to its geological location, has a rich potential in point of geothermal resources. Çanakkale province is located northwestern (NW) part of Turkey and it has important geothermal fields in terms of geothermal energy potential. Geothermal resources reach to the surface both effects of past volcanic activity and extensions of fault zones associated with complex tectonic systems in the region. The aim of this study is to summarize hydrogeochemical characteristics, using facilities and potential of hot springs and spas located in the Çanakkale province. There are 13 geothermal fields in the region and the surface temperatures of hot springs are ranging between 28 centigrade degree and 175 centigrade degree. Hydrogeochemical compositions of thermal water display variable chemical compositions. Na, Ca, SO4, HCO3 and Cl are the dominant ions in these waters. Thermal waters of Tuzla and Kestanbol geothermal fields which is located the near coastal area can be noted NaCl type. Because these two geothermal waters have high TDS values, scaling problems are seen around the hot springs and pipelines. Geothermal waters in the province are meteoric origin according to oxygen-18, deuterium and tritium isotopes data. Long underground residence times of these waters and its temperatures have caused both more water - rock interaction and low tritium values. Geothermal energy is utilized in many areas in Turkey today. It is generally used for space heating, balneotherapy and electricity generation. Explorations of geothermal resources and investments in geothermal energy sector have risen rapidly in the recent years particularly in western Turkey. High-temperature geothermal fields are generally located in this region related to the Aegean Graben System and the North Anotalian Fault Zone. All geothermal power plants in Turkey are located in this region. Considering the Çanakkale province, most geothermal fields are suitable for multipurpose usage but many of them have

  8. Environmental overview for the development of geothermal resources in the State of New Mexico. Final report

    SciTech Connect

    Bryant, M.; Starkey, A.H.; Dick-Peddie, W.A.

    1980-06-01

    A brief overview of the present day geothermal applications for hydrothermal electrical generation and direct heat use and their environmental implications is provided. Technologies and environmental impacts are considered at all points on the pathway of development resource exploration; well field, plant and transmission line construction; and plant operation. The technologies for electrical generation-direct, dry steam conversion; separated steam conversion; single-flash conversion, separated-steam/single-flash conversion and binary cycle conversion and the technologies for direct heat use - direct use of geothermal waters, surface heat exhanger, down-the hole heat exchanger and heat pump are described. A summary of the geothermal technologies planned or in operation within New Mexico geothermal areas is provided. A review of regulations that affect geothermal development and its related environmental impact in New Mexico is presented. The regulatory pathway, both state and federal, of geothermal exploration after the securing of appropriate leases, development, and construction and implementation of a geothermal facility are described. Six categories (Geophysical, Water, Air, Noise, Biota and Socioeconomics) were selected for environmental assessment. The data available is described.

  9. Application analysis of Monte Carlo to estimate the capacity of geothermal resources in Lawu Mount

    SciTech Connect

    Supriyadi; Srigutomo, Wahyu; Munandar, Arif

    2014-03-24

    Monte Carlo analysis has been applied in calculation of geothermal resource capacity based on volumetric method issued by Standar Nasional Indonesia (SNI). A deterministic formula is converted into a stochastic formula to take into account the nature of uncertainties in input parameters. The method yields a range of potential power probability stored beneath Lawu Mount geothermal area. For 10,000 iterations, the capacity of geothermal resources is in the range of 139.30-218.24 MWe with the most likely value is 177.77 MWe. The risk of resource capacity above 196.19 MWe is less than 10%. The power density of the prospect area covering 17 km{sup 2} is 9.41 MWe/km{sup 2} with probability 80%.

  10. Characterization of the geothermal resource at Lackland AFB, San Antonio, Texas. Phase I report

    SciTech Connect

    Lawford, T.W.; Malone, C.R.; Allman, D.W.; Zeisloft, J.; Foley, D.

    1983-06-01

    The geothermal resource under Lackland Air Force Base (AFB), San Antonio, Texas was studied. It is the conclusion of the investigators that a geothermal well drilled at the site recommended by this study has a high probability of delivering geothermal fluids in sufficient quantity and at adequate temperatures to support a projected space and domestic hot water heating system. An exploratory production well location is recommended in the southwest sector of the base, based upon geologic conditions and the availability of sufficient open space to support the drilling operation. It is projected that a production well drilled at the recommended location would produce geothermal fluid of 130 to 145/sup 0/F at a rate of approximately 1000 gpm with reasonable fluid drawdowns. The Environmental Assessment for the drilling portion of the project has been completed, and no irreversible or irretrievable impacts are anticipated as a result of this drilling program. The permitting process is proceeding smoothly.

  11. Electromagnetic soundings for geothermal resources in Dixie Valley, Nevada

    SciTech Connect

    Wilt, M.J.; Goldstein, N.E.

    1985-03-01

    An electromagnetic (EM) sounding survey was performed over a region encompassing the Dixie Valley geothermal field to map the subsurface resistivity in the geothermal field and the surrounding area. The EM survey, consisting of 19 frequency-domain depth soundings made with the LBL EM-60 system, was undertaken to explore a narrow region adjacent to the Stillwater Range to a depth of 2 to 3 km. Lithologic and well log resistivity information from well 66-21 show that for EM interpretation the section can be reduced to a three-layer model consisting of moderately resistive alluvial sediments, low resistivity lacustrine sediments, and high resistivity Tertiary volcanics and older rocks. This three layer model was used as a starting point in interpreting EM sounding data. Variations in resistivity and thickness provided structural information and clues to the accumulation of geothermal fluids. The interpreted soundings reveal a 1 to 1.5-km-deep low-resistivity zone spatially associated with the geothermal field. The shallow depth suggests that the zone detected is either fluid leakage or hydrothermal alteration, rather than high-temperature reservoir fluids. The position of the low-resistivity zone also conforms to changes in depth to the high resistivity basal layer, suggesting that faulting is a control on the location of productive intervals. 10 refs., 7 figs.

  12. Papers Presented - Geothermal Resources Council 1980 Annual Meeting

    SciTech Connect

    1980-10-01

    This report contains preprints of papers pertaining to geothermal energy development in the Eastern United States written by members of the Center for Metropolitan Planning and Research (Metro Center) and by the Applied Physics Laboratory (APL) both of The Johns Hopkins University.

  13. Gulf Coast geopressured-geothermal program summary report compilation. Volume 3: Applied and direct uses, resource feasibility, economics

    SciTech Connect

    John, C.J.; Maciasz, G.; Harder, B.J.

    1998-06-01

    The US Department of Energy established a geopressured-geothermal energy program in the mid 1970`s as one response to America`s need to develop alternate energy resources in view of the increasing dependence on imported fossil fuel energy. This program continued for 17 years and approximately two hundred million dollars were expended for various types of research and well testing to thoroughly investigate this alternative energy source. This volume describes the following studies: Geopressured-geothermal hybrid cycle power plant: design, testing, and operation summary; Feasibility of hydraulic energy recovery from geopressured-geothermal resources: economic analysis of the Pelton turbine; Brine production as an exploration tool for water drive gas reservoirs; Study of supercritical Rankine cycles; Application of the geopressured-geothermal resource to pyrolytic conversion or decomposition/detoxification processes; Conclusions on wet air oxidation, pyrolytic conversion, decomposition/detoxification process; Co-location of medium to heavy oil reservoirs with geopressured-geothermal resources and the feasibility of oil recovery using geopressured-geothermal fluids; Economic analysis; Application of geopressured-geothermal resources to direct uses; Industrial consortium for the utilization of the geopressured-geothermal resource; Power generation; Industrial desalination, gas use and sales, pollutant removal, thermal EOR, sulfur frasching, oil and natural gas pipelining, coal desulfurization and preparation, lumber and concrete products kilning; Agriculture and aquaculture applications; Paper and cane sugar industries; Chemical processing; Environmental considerations for geopressured-geothermal development. 27 figs., 25 tabs.

  14. HIGH-TEMPERATURE GEOTHERMAL RESOURCES IN HYDROTHERMAL CONVECTION SYSTEMS IN THE UNITED STATES.

    USGS Publications Warehouse

    Nathenson, Manuel

    1983-01-01

    The calculation of high-temperature geothermal resources ( greater than 150 degree C) in the United States has been done by estimating the temperature, area, and thickness of each identified system. These data, along with a general model for recoverability of geothermal energy and a calculation that takes account of the conversion of thermal energy to electricity, yielded an estimate of 23,000 MW//e for 30 years. The undiscovered component was estimated based on multipliers of the identified resource as either 72,000 or 127,000 MW//e for 30 years depending on the model chosen for the distribution of undiscovered energy as a function of temperature.

  15. ASSESSMENT OF HIGH-TEMPERATURE GEOTHERMAL RESOURCES IN HYDROTHERMAL CONVECTION SYSTEMS IN THE UNITED STATES.

    USGS Publications Warehouse

    Nathenson, Manuel

    1984-01-01

    The amount of thermal energy in high-temperature geothermal systems (>150 degree C) in the United States has been calculated by estimating the temperature, area, and thickness of each identified system. These data, along with a general model for recoverability of geothermal energy and a calculation that takes account of the conversion of thermal energy to electricity, yield a resource estimate of 23,000 MWe for 30 years. The undiscovered component was estimated based on multipliers of the identified resource as either 72,000 or 127,000 MWe for 30 years depending on the model chosen for the distribution of undiscovered energy as a function of temperature.

  16. Geopressured geothermal resource of the Texas and Louisiana Gulf Coast: a technology characterization and environmental assessment

    SciTech Connect

    Usibelli, A.; Deibler, P.; Sathaye, J.

    1980-12-01

    Two aspects of the Texas and Louisiana Gulf Coast geopressured geothermal resource: (1) the technological requirements for well drilling, completion, and energy conversion, and, (2) the environmental impacts of resource exploitation are examined. The information comes from the literature on geopressured geothermal research and from interviews and discussions with experts. The technology characterization section emphasizes those areas in which uncertainty exists and in which further research and development is needed. The environmental assessment section discusses all anticipated environmental impacts and focuses on the two largest potential problems: (a) subsidence and (b) brine disposal.

  17. Estimating the Prospectivity of Geothermal Resources Using the Concept of Hydrogeologic Windows

    NASA Astrophysics Data System (ADS)

    Bielicki, Jeffrey; Blackwell, David; Harp, Dylan; Karra, Satish; Kelley, Richard; Kelley, Shari; Middleton, Richard; Person, Mark; Sutula, Glenn; Witcher, James

    2016-04-01

    In this Geothermal Play Fairways Analysis project we sought to develop new ways to analyze geologic, geochemical, and geophysical data to reduce the risk and increase the prospects of successful geothermal exploration and development. We collected, organized, and analyzed data from southwest New Mexico in the context of an integrated framework that combines the data for various signatures of a geothermal resource into a cohesive analysis of the presence of heat, fluid, and permeability. We incorporated data on structural characteristics (earthquakes, geophysical logs, fault location and age, basement depth), topographic and water table elevations, conservative ion concentrations, and thermal information (heat flow, bottom hole temperature, discharge temperature, and basement heat generation). These data were combined to create maps that indicate structural analysis, slope, geothermometry, and heat. We also mapped discharge areas (to constrain elevations where groundwater may be discharged through modern thermal springs or paleo-thermal springs) and subcrops: possible erosionally- or structurally-controlled breaches in regional-scale aquitards that form the basis of our hydrogeologic windows concept. These two maps were particularly useful in identifying known geothermal systems and narrowing the search for unknown geothermal prospects. We further refined the "prospectivity" of the areas within the subcrops and discharge areas by developing and applying a new method for spatial association analysis to data on known and inferred faults, earthquakes, geochemical thermometers, and heat flow. This new methodology determines the relationships of the location and magnitudes of observations of these data with known geothermal sites. The results of each of the six spatial association analyses were weighted between 0 and 1 and summed to produce a prospectivity score between 0 and 6, with 6 indicating highest geothermal potential. The mean value of prospectivity for all

  18. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance for Geothermal Resource Evaluation Projects

    SciTech Connect

    Robert P. Breckenridge; Thomas R. Wood; Joel Renner

    2010-09-01

    The purpose of this document is to report on the evaluation of geothermal resource potential on and around three different United States (U. S.) Air Force Bases (AFBs): Nellis AFB and Air Force Range (AFR) in the State of Nevada (see maps 1 and 5), Holloman AFB in the State of New Mexico (see map 2), and Mountain Home AFB in the State of Idaho (see map 3). All three sites are located in semi-arid parts of the western U. S. The U. S. Air Force, through its Air Combat Command (ACC) located at Langley AFB in the State of Virginia, asked the Federal Energy Management Program (FEMP) for technical assistance to conduct technical and feasibility evaluations for the potential to identify viable geothermal resources on or around three different AFBs. Idaho National Laboratory (INL) is supporting FEMP in providing technical assistance to a number of different Federal Agencies. For this report, the three different AFBs are considered one project because they all deal with potential geothermal resource evaluations. The three AFBs will be evaluated primarily for their opportunity to develop a geothermal resource of high enough quality grade (i.e., temperature, productivity, depth, etc.) to consider the possibility for generation of electricity through a power plant. Secondarily, if the resource for the three AFBs is found to be not sufficient enough for electricity generation, then they will be described in enough detail to allow the base energy managers to evaluate if the resource is suitable for direct heating or cooling. Site visits and meetings by INL personnel with the staff at each AFB were held in late FY-2009 and FY-2010. This report provides a technical evaluation of the opportunities and challenges for developing geothermal resources on and around the AFBs. An extensive amount of literature and geographic information was evaluated as a part of this assessment. Resource potential maps were developed for each of the AFBs.

  19. A hybrid geothermal energy conversion technology: Auxiliary heating of geothermally preheated water or CO2 - a potential solution for low-temperature resources

    NASA Astrophysics Data System (ADS)

    Saar, Martin; Garapati, Nagasree; Adams, Benjamin; Randolph, Jimmy; Kuehn, Thomas

    2016-04-01

    Safe, sustainable, and economic development of deep geothermal resources, particularly in less favourable regions, often requires employment of unconventional geothermal energy extraction and utilization methods. Often "unconventional geothermal methods" is synonymously and solely used as meaning enhanced geothermal systems, where the permeability of hot, dry rock with naturally low permeability at greater depths (4-6 km), is enhanced. Here we present an alternative unconventional geothermal energy utilization approach that uses low-temperature regions that are shallower, thereby drastically reducing drilling costs. While not a pure geothermal energy system, this hybrid approach may enable utilization of geothermal energy in many regions worldwide that can otherwise not be used for geothermal electricity generation, thereby increasing the global geothermal resource base. Moreover, in some realizations of this hybrid approach that generate carbon dioxide (CO2), the technology may be combined with carbon dioxide capture and storage (CCS) and CO2-based geothermal energy utilization, resulting in a high-efficiency (hybrid) geothermal power plant with a negative carbon footprint. Typically, low- to moderate-temperature geothermal resources are more effectively used for direct heat energy applications. However, due to high thermal losses during transport, direct use requires that the heat resource is located near the user. Alternatively, we show here that if such a low-temperature geothermal resource is combined with an additional or secondary energy resource, the power production is increased compared to the sum from two separate (geothermal and secondary fuel) power plants (DiPippo et al. 1978) and the thermal losses are minimized because the thermal energy is utilized where it is produced. Since Adams et al. (2015) found that using CO2 as a subsurface working fluid produces more net power than brine at low- to moderate-temperature geothermal resource conditions, we

  20. Expanding Geothermal Resource Utilization through Directed Research, Education, and Public Outreach

    SciTech Connect

    Calvin, Wendy

    2015-06-29

    The Great Basin Center for Geothermal Energy (GBCGE or the Center) was established at the University of Nevada, Reno (UNR) in May 2000 to promote research and utilization of geothermal resources. The Center received funding through this grant to promote increased geothermal development in the Great Basin, with most of the funding used for peerreviewed research. Funding to the Center and work under the contract were initiated in March 2002, with supplemental funding in subsequent years. The Center monitored the research projects that were competitively awarded in a series of proposal calls between 2002 and 2007. Peer-reviewed research promoted identification and utilization of geothermal resources in Nevada. Projects used geology, geochemistry, geophysics, remote sensing, and the synthesis of multi-disciplinary information to produce new models of geothermal systems in the Western U.S. and worldwide. Funds were also used to support graduate student research and training. Part of the grant was used to support public outreach activities, including webpages, online maps and data resources, and informational workshops for stakeholders.

  1. Heat flow and hot dry rock geothermal resources of the Clearlake Region, northern California

    SciTech Connect

    Burns, K.L.

    1996-08-01

    The Geysers-Clear Lake geothermal anomaly is an area of high heat flow in northern California. The anomaly is caused by abnormally high heat flows generated by asthenospheric uplift and basaltic magmatic underplating at a slabless window created by passage of the Mendocino Triple Junction. The Clear Lake volcanic field is underlain by magmatic igneous bodies in the form of a stack of sill-form intrusions with silicic bodies generally at the top and basic magmas at the bottom. The tabular shape and wide areal extent of the heat sources results in linear temperature gradients and near-horizontal isotherms in a broad region at the center of the geothermal anomaly. The Hot Dry Rock (HDR) portion of The Geysers-Clear Lake geothermal field is that part of the geothermal anomaly that is external to the steamfield, bounded by geothermal gradients of 167 mW/m2 (4 heat flow units-hfu) and 335 mW/m2 (8 hfu). The HDR resources, to a depth of 5 km, were estimated by piece-wise linear summation based on a sketch map of the heat flow. Approximately, the geothermal {open_quotes}accessible resource base{close_quotes} (Qa) is 1.68E+21 J; the {open_quotes}HDR resource base{close_quotes} (Qha) is 1.39E+21 J; and the {open_quotes}HDR power production resource{close_quotes} (Qhp) is 1.01E+21 J. The HDR power production resource (Qhp) is equivalent to 2.78E+ 11 Mwht (megawatt hours thermal), or 1.72E+11 bbls of oil.

  2. Seismic methods for resource exploration in enhanced geothermal systems

    SciTech Connect

    Gritto, Roland; Majer, Ernest L.

    2002-06-12

    A finite-difference modeling study of seismic wave propagation was conducted to determine how to best investigate subsurface faults and fracture zones in geothermal areas. The numerical model was created based on results from a previous seismic reflection experiment. A suite of fault models was investigated including blind faults and faults with surface expressions. The seismic data suggest that blind faults can be detected by a sudden attenuation of seismic wave amplitudes, as long the fault is located below the receiver array. Additionally, a conversion from P- to S-waves indicates the reflection and refraction of the P-waves while propagating across the fault. The drop in amplitudes and the excitation of S-waves can be used to estimate the location of the fault at depth. The accuracy of the numerical modeling depends on the availability of a priori in situ information (velocity and density) from borehole experiments in the geothermal area.

  3. A groundwater convection model for Rio Grande rift geothermal resources

    NASA Technical Reports Server (NTRS)

    Morgan, P.; Harder, V.; Daggett, P. H.; Swanberg, C. A.

    1981-01-01

    It has been proposed that forced convection, driven by normal groundwater flow through the interconnected basins of the Rio Grande rift is the primary source mechanism for the numerous geothermal anomalies along the rift. A test of this concept using an analytical model indicates that significant forced convection must occur in the basins even if permeabilities are as low as 50-200 millidarcies at a depth of 2 km. Where groundwater flow is constricted at the discharge areas of the basins forced convection can locally increase the gradient to a level where free convection also occurs, generating surface heat flow anomalies 5-15 times background. A compilation of groundwater data for the rift basins shows a strong correlation between constrictions in groundwater flow and hot springs and geothermal anomalies, giving strong circumstantial support to the convection model.

  4. Geothermal energy resources of wadi Al-Lith, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Lashin, A.; Chandrasekharam, D.; Al Arifi, N.; Al Bassam, A.; Varun, C.

    2014-09-01

    The entire western Arabian shield is the domain of both hydrothermal and enhanced geothermal systems associated with volcanic centres (Harrats) and high heat generating granites. The most prominent sites of hydrothermal systems are located around Al-Lith and Jizan. The hydrothermal system in Al Lith is controlled by high heat generating (∼11 μW/m3) post orogenic granites. The high heat flow value of >80 mW/m2 across Al-Lith coast is due to such granite intrusives, presence of dike swarms that intrude into the granites as well as position of Moho at shallow level. Although the thermal waters are chloride rich, Red Sea involvement is not observed. Long residence time and water rock interaction with granites are the main processes responsible for chloride enrichment in the thermal waters. Oxygen isotope shift indicates presence of high temperature geothermal system in the area. The tritium values indicate that the circulating waters are >75 years old.

  5. Integrated exploration for low-temperature geothermal resources in the Honey Lake basin, California

    SciTech Connect

    Schimschal, U. )

    1991-02-01

    An integrated exploration study is presented to locate low-temperature geothermal reservoirs in the Honey Lake area of northern California. Regional studies to locate the geothermal resources included gravity, infrared, water-temperature, and water-quality analyses. Five anomalies were mapped from resistivity surveys. Additional study of three anomalies by temperature-gradient and seismic methods was undertaken to define structure and potential of the geothermal resource. The gravity data show a graben structure in the area. Seismic reflection data, indicate faults associated with surface-resistivity and temperature-gradient data. The data support the interpretation that the shallow reservoirs are replenished along the fault zones by deeply circulating heated meteoric waters.

  6. Integrated exploration for low-temperature geothermal resources in the Honey Lake Basin, California

    USGS Publications Warehouse

    Schimschal, U.

    1991-01-01

    An integrated exploration study is presented to locate low-temperature geothermal reservoirs in the Honey Lake area of northern California. Regional studies to locate the geothermal resources included gravity, infra-red, water-temperature, and water-quality analyses. Five anomalies were mapped from resistivity surveys. Additional study of three anomalies by temperature-gradient and seismic methods was undertaken to define structure and potential of the geothermal resource. The gravity data show a graben structure in the area. Seismic reflection data indicate faults associated with surface-resistivity and temperature-gradient data. The data support the interpretation that the shallow reservoirs are replenished along the fault zones by deeply circulating heated meteoric waters. -Author

  7. Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation)

    SciTech Connect

    Esposito, A.; Augustine, C.

    2012-04-01

    Geopressured geothermal reservoirs are characterized by high temperatures and high pressures with correspondingly large quantities of dissolved methane. Due to these characteristics, the reservoirs provide two sources of energy: chemical energy from the recovered methane, and thermal energy from the recovered fluid at temperatures high enough to operate a binary power plant for electricity production. Formations with the greatest potential for recoverable energy are located in the gulf coastal region of Texas and Louisiana where significantly overpressured and hot formations are abundant. This study estimates the total recoverable onshore geopressured geothermal resource for identified sites in Texas and Louisiana. In this study a geopressured geothermal resource is defined as a brine reservoir with fluid temperature greater than 212 degrees F and a pressure gradient greater than 0.7 psi/ft.

  8. Preliminary direct heat geothermal resource assessment of the Tennessee Valley region

    SciTech Connect

    Staub, W.P.

    1980-01-01

    A preliminary appraisal of the direct heat geothermal energy resources of the Tennessee Valley region has been completed. This region includes Kentucky, Tennessee and parts of adjacent states. Intermediate and deep aquifers were selected for study. Basement and Top-of-Knox structure and temperature maps were compiled from oil and gas well data on file at various state geological survey offices. Results of this study indicate that the New Madrid seismic zone is the only area within the region that possesses potential for direct heat utilization. In other areas geothermal energy is either too deep for economical extraction or it will not be able to compete with other local energy resources. The only anomalously high temperature well outside the New Madrid seismic zone was located in the Rome Trough and near the central part of the eastern Kentucky coal basin. Geothermal energy in that region would face strong competition from coal, oil and natural gas.

  9. 76 FR 20372 - Notice of Lodging of Consent Decree and Settlement Agreement Regarding Natural Resource Damage...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-12

    ... of Lodging of Consent Decree and Settlement Agreement Regarding Natural Resource Damage Claims... St. Regis Mohawk Tribe. The NRD Settlement Agreement resolves claims for natural resource damages and... Diamond Alkali Superfund Site in New Jersey; 4. The General Motors Bedford Site in Indiana; and 5....

  10. 75 FR 16173 - Renewal of Agency Information Collection for Tribal Energy Resource Agreements; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... Bureau of Indian Affairs Renewal of Agency Information Collection for Tribal Energy Resource Agreements... Energy and Economic Development (IEED), in the Office of the Assistant Secretary--Indian Affairs, is submitting the information collection titled ``Tribal Energy Resource Agreements (TERAs)'' to the Office...

  11. Geothermal and heavy-oil resources in Texas

    SciTech Connect

    Seni, S.J.; Walter, T.G.

    1994-01-01

    In a five-county area of South Texas, geopressured-geothermal reservoirs in the Paleocene-Eocene Wilcox Group lie below medium- to heavy-oil reservoirs in the Eocene Jackson Group. This fortuitous association suggests the use of geothermal fluids for thermally enhanced oil recovery (TEOR). Geothermal fairways are formed where thick deltaic sandstones are compartmentalized by growth faults. Wilcox geothermal reservoirs in South Texas are present at depths of 11,000 to 15,000 ft (3,350 to 4,570 m) in laterally continuous sandstones 100 to 200 ft (30 to 60 m) thick. Permeability is generally low (typically 1 md), porosity ranges from 12 to 24 percent, and temperature exceeds 250{degrees}F (121{degrees}C). Reservoirs containing medium (20{degrees} to 25{degrees} API gravity) to heavy (10{degrees} to 20{degrees} API gravity) oil are concentrated along the Texas Coastal Plain in the Jackson-Yegua Barrier/Strandplain (Mirando Trend), Cap Rock, and Piercement Salt Dome plays and in the East Texas Basin in Woodbine Fluvial/Deltaic Strandplain and Paluxy Fault Line plays. Injection of hot, moderately fresh to saline brines will improve oil recovery by lowering viscosity and decreasing residual oil saturation. Smectite clay matrix could swell and clog pore throats if injected waters have low salinity. The high temperature of injected fluids will collapse some of the interlayer clays, thus increasing porosity and permeability. Reservoir heterogeneity resulting from facies variation and diagenesis must be considered when siting production and injection wells within the heavy-oil reservoir. The ability of abandoned gas wells to produce sufficient volumes of hot water over the long term will also affect the economics of TEOR.

  12. Power from the hot-dry-rock geothermal resource

    SciTech Connect

    Becker, N.M.; Pettitt, R.A.; Hendron, R.H.

    1981-01-01

    The history of the development of the first HDR reservoir at the Fenton Hill site is presented. Particulars on the surface piping and data collection system are described, as well as a brief historical account of the individual experiments. Field research results at Fenton Hill are described. From the research, it has been learned that the geothermal reservoir growth is due in large part to pressurization and thermophysical effects. The impedance to flow along the fractures within the reservoir decreases as thermal contraction and pressurization of the reservoir continue to open natural joints. Minimal environmental effects have been noted as a result of closed-system circulation; and the chemical quality of the geothermal fluid has been good, in contrast to the corrosive geothermal fluids in many hydrothermal systems. Some of the general as well as site-specific problems at the Fenton Hill site are discussed. In-spite of these problems, an HDR system is operational, and is being used to answer questions raised by the theoretical research. The types and options of power generation available are addressed. A binary-fluid cycle that can use nonaqueous working fluids is an alternative to single- or multiple-flash systems. These nonaqueous fluids may fall within a large range of hydrocarbon, fluorocarbon, and organic fluids. R-114 was tested in binary cycle at Fenton Hill and was chosen largely for its heat-transfer characteristics and previous industrial experience.

  13. Spatial Analysis of Geothermal Resource Potential in New York and Pennsylvania: A Stratified Kriging Approach

    NASA Astrophysics Data System (ADS)

    Smith, J. D.; Whealton, C. A.; Stedinger, J. R.

    2014-12-01

    Resource assessments for low-grade geothermal applications employ available well temperature measurements to determine if the resource potential is sufficient for supporting district heating opportunities. This study used a compilation of bottomhole temperature (BHT) data from recent unconventional shale oil and gas wells, along with legacy oil, gas, and storage wells, in Pennsylvania (PA) and New York (NY). Our study's goal was to predict the geothermal resource potential and associated uncertainty for the NY-PA region using kriging interpolation. The dataset was scanned for outliers, and some observations were removed. Because these wells were drilled for reasons other than geothermal resource assessment, their spatial density varied widely. An exploratory spatial statistical analysis revealed differences in the spatial structure of the geothermal gradient data (the kriging semi-variogram and its nugget variance, shape, sill, and the degree of anisotropy). As a result, a stratified kriging procedure was adopted to better capture the statistical structure of the data, to generate an interpolated surface, and to quantify the uncertainty of the computed surface. The area was stratified reflecting different physiographic provinces in NY and PA that have geologic properties likely related to variations in the value of the geothermal gradient. The kriging prediction and the variance-of-prediction were determined for each province by the generation of a semi-variogram using only the wells that were located within that province. A leave-one-out cross validation (LOOCV) was conducted as a diagnostic tool. The results of stratified kriging were compared to kriging using the whole region to determine the impact of stratification. The two approaches provided similar predictions of the geothermal gradient. However, the variance-of-prediction was different. The stratified approach is recommended because it gave a more appropriate site-specific characterization of uncertainty

  14. Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources

    SciTech Connect

    Hays, Lance G

    2014-07-07

    A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator – on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapor leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.

  15. Investigation of Low-Temperature Geothermal Resources in the Sonoma Valley Area, California

    SciTech Connect

    Youngs, Leslie G.; Chapman, Rodger H.; Chase, Gordon W.; Bezore, Stephen P.; Majmundar, Hasu H.

    1983-01-01

    The Sonoma Valley area contains low-temperature geothermal resources (20 C {le} T {le} 90 C) having the potential for useful development. Sonoma Valley residents, local governments and institutions, private developers, and manufacturers may be able to utilize the geothermal resources as an alternate energy source. Historically, there have been at least six geothermal spring areas developed in the Sonoma Valley. Four of these (Boyes Hot Springs, Fetter's Hot Springs, Agua Caliente Springs, and the Sonoma State Hospital warm spring) lie on a linear trend extending northwestward from the City of Sonoma. Detailed geophysical surveys delineated a major fault trace along the east side of the Sonoma Valley in association with the historic geothermal areas. Other fault traces were also delineated revealing a general northwest-trending structural faulting fabric underlying the valley. Water wells located near the ''east side'' fault have relatively high boron concentrations. Geochemical evidence may suggest the ''east side'' fault presents a barrier to lateral fluid migration but is a conduit for ascending fluids. Fifteen of the twenty-nine geothermal wells or springs located from literature research or field surveys are located along or east of this major fault in a 10 km (6.2 miles) long, narrow zone. The highest recorded water temperature in the valley appears to be 62.7 C (145 F) at 137.2 meters (450 feet) in a well at Boyes Hot Springs. This is consistent with the geothermal reservoir temperature range of 52-77 C (126-171 F) indicated by geothermometry calculations performed on data from wells in the area. Interpretation of data indicates a low-temperature geothermal fluid upwelling or ''plume'', along the ''east side'' fault with subsequent migration into permeable aquifers predominantly within volcanic strata. It is quite likely other geothermal fluid ''plumes'' in association with faulting are present within the Sonoma Valley area. A 5.8 km{sup 2} geothermal zone

  16. A Review of Methods Applied by the U.S. Geological Survey in the Assessment of Identified Geothermal Resources

    USGS Publications Warehouse

    Williams, Colin F.; Reed, Marshall J.; Mariner, Robert H.

    2008-01-01

    The U. S. Geological Survey (USGS) is conducting an updated assessment of geothermal resources in the United States. The primary method applied in assessments of identified geothermal systems by the USGS and other organizations is the volume method, in which the recoverable heat is estimated from the thermal energy available in a reservoir. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. The new assessment will incorporate some changes in the models for temperature and depth ranges for electric power production, preferred chemical geothermometers for estimates of reservoir temperatures, estimates of reservoir volumes, and geothermal energy recovery factors. Monte Carlo simulations are used to characterize uncertainties in the estimates of electric power generation. These new models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of natural geothermal reservoirs.

  17. Using Geothermal Play Types as an Analogue for Estimating Potential Resource Size

    SciTech Connect

    Terry, Rachel; Young, Katherine

    2015-09-02

    Blind geothermal systems are becoming increasingly common as more geothermal fields are developed. Geothermal development is known to have high risk in the early stages of a project development because reservoir characteristics are relatively unknown until wells are drilled. Play types (or occurrence models) categorize potential geothermal fields into groups based on geologic characteristics. To aid in lowering exploration risk, these groups' reservoir characteristics can be used as analogues in new site exploration. The play type schemes used in this paper were Moeck and Beardsmore play types (Moeck et al. 2014) and Brophy occurrence models (Brophy et al. 2011). Operating geothermal fields throughout the world were classified based on their associated play type, and then reservoir characteristics data were catalogued. The distributions of these characteristics were plotted in histograms to develop probability density functions for each individual characteristic. The probability density functions can be used as input analogues in Monte Carlo estimations of resource potential for similar play types in early exploration phases. A spreadsheet model was created to estimate resource potential in undeveloped fields. The user can choose to input their own values for each reservoir characteristic or choose to use the probability distribution functions provided from the selected play type. This paper also addresses the United States Geological Survey's 1978 and 2008 assessment of geothermal resources by comparing their estimated values to reported values from post-site development. Information from the collected data was used in the comparison for thirty developed sites in the United States. No significant trends or suggestions for methodologies could be made by the comparison.

  18. Characterization of the geothermal resources of southeastern Idaho

    SciTech Connect

    Sherman, F.B.; Ruscetta, C.A.

    1982-07-01

    Much of southeastern Idaho displays the complex geology of the overthrust belt and the Basin and Range geomorphic province. Thrust and normal faults are important in controlling groundwater movement, however, the thrust faults do not appear to create layers of either significantly higher or lower permeability. The hottest thermal discharges in the region are associated with deep normal faults. The hottest waters in the area have Na and Cl as the dominant ions, while lower temperature hydrothermal waters are characteristically Ca/Mg and HCO/sub 3/ waters. Limited data from deep drill holes in the area do not indicate a high geothermal gradient.

  19. Evaluation of the St. Lucia geothermal resource: macroeconomic models

    SciTech Connect

    Burris, A.E.; Trocki, L.K.; Yeamans, M.K.; Kolstad, C.D.

    1984-08-01

    A macroeconometric model describing the St. Lucian economy was developed using 1970 to 1982 economic data. Results of macroeconometric forecasts for the period 1983 through 1985 show an increase in gross domestic product (GDP) for 1983 and 1984 with a decline in 1985. The rate of population growth is expected to exceed GDP growth so that a small decline in per capita GDP will occur. We forecast that garment exports will increase, providing needed employment and foreign exchange. To obtain a longer-term but more general outlook on St. Lucia's economy, and to evaluate the benefit of geothermal energy development, we applied a nonlinear programming model. The model maximizes discounted cumulative consumption.

  20. Long-term predictions of minewater geothermal systems heat resources

    NASA Astrophysics Data System (ADS)

    Harcout-Menou, Virginie; de ridder, fjo; laenen, ben; ferket, helga

    2014-05-01

    Abandoned underground mines usually flood due to the natural rise of the water table. In most cases the process is relatively slow giving the mine water time to equilibrate thermally with the the surrounding rock massif. Typical mine water temperature is too low to be used for direct heating, but is well suited to be combined with heat pumps. For example, heat extracted from the mine can be used during winter for space heating, while the process could be reversed during summer to provide space cooling. Altough not yet widely spread, the use of low temperature geothermal energy from abandoned mines has already been implemented in the Netherlands, Spain, USA, Germany and the UK. Reliable reservoir modelling is crucial to predict how geothermal minewater systems will react to predefined exploitation schemes and to define the energy potential and development strategy of a large-scale geothermal - cold/heat storage mine water systems. However, most numerical reservoir modelling software are developed for typical environments, such as porous media (a.o. many codes developed for petroleum reservoirs or groundwater formations) and cannot be applied to mine systems. Indeed, mines are atypical environments that encompass different types of flow, namely porous media flow, fracture flow and open pipe flow usually described with different modelling codes. Ideally, 3D models accounting for the subsurface geometry, geology, hydrogeology, thermal aspects and flooding history of the mine as well as long-term effects of heat extraction should be used. A new modelling approach is proposed here to predict the long-term behaviour of Minewater geothermal systems in a reactive and reliable manner. The simulation method integrates concepts for heat and mass transport through various media (e.g., back-filled areas, fractured rock, fault zones). As a base, the standard software EPANET2 (Rossman 1999; 2000) was used. Additional equations for describing heat flow through the mine (both

  1. Preliminary Assessment of Geothermal Resource Potential at the UTTR

    SciTech Connect

    Richard P. Smith, PhD., PG; Robert P. Breckenridge, PhD.; Thomas R. Wood, PhD.

    2011-06-01

    The purpose of this report is to summarize the current state of geologic knowledge concerning potential high-temperature geothermal development on the lands controlled by Hill Air Force Base (HAFB) at the Utah Testing and Training Range (UTTR) and the lands encompassed by the Dugway Proving Grounds (Dugway). This report is based on currently available published and publically available information. Most of the information presented here is purely geologic in nature. Therefore, the logistical issues (such as military exclusion areas, proximity to electrical infrastructure, and access) are additional considerations that are being addressed in a separate report that will be issued to HAFB by the SES corporation.

  2. Electricity Generation from Geothermal Resources on the Fort Peck Reservation in Northeast Montana

    SciTech Connect

    Carlson, Garry J.; Birkby, Jeff

    2015-05-12

    Tribal lands owned by Assiniboine and Sioux Tribes on the Fort Peck Indian Reservation, located in Northeastern Montana, overlie large volumes of deep, hot, saline water. Our study area included all the Fort Peck Reservation occupying roughly 1,456 sq miles. The geothermal water present in the Fort Peck Reservation is located in the western part of the Williston Basin in the Madison Group complex ranging in depths of 5500 to 7500 feet. Although no surface hot springs exist on the Reservation, water temperatures within oil wells that intercept these geothermal resources in the Madison Formation range from 150 to 278 degrees F.

  3. The Role of Cost Shared R&D in the Development of Geothermal Resources

    SciTech Connect

    1995-03-16

    This U.S. Department of Energy Geothermal Program Review starts with two interesting pieces on industries outlook about market conditions. Dr. Allan Jelacics introductory talk includes the statistics on the impacts of the Industry Coupled Drilling Program (late-1970's) on geothermal power projects in Nevada and Utah (about 140 MWe of power stimulated). Most of the papers in these Proceedings are in a technical report format, with results. Sessions included: Exploration, The Geysers, Reservoir Engineering, Drilling, Energy Conversion (including demonstration of a BiPhase Turbine Separator), Energy Partnerships (including the Lake County effluent pipeline to The Geysers), and Technology Transfer (Biochemical processing of brines, modeling of chemistry, HDR, the OIT low-temperature assessment of collocation of resources with population, and geothermal heat pumps). There were no industry reviews at this meeting.

  4. Prospects of development of highly mineralized high-temperature resources of the Tarumovskoye geothermal field

    NASA Astrophysics Data System (ADS)

    Alkhasov, A. B.; Alkhasova, D. A.; Ramazanov, A. Sh.; Kasparova, M. A.

    2016-06-01

    The promising nature of integrated processing of high-temperature geothermal brines of the Tarumovskoye geothermal field is shown. Thermal energy of a geothermal brine can be converted to the electric power at a binary geothermal power plant (GPP) based on low-boiling working substance. The thermodynamic Rankine cycles are considered which are implemented in the GPP secondary loop at different evaporation temperatures of the working substance―isobutane. Among them, the most efficient cycle from the standpoint of attaining a maximum power is the supercritical one which is close to the so-called triangular cycle with an evaporation pressure of p e = 5.0 MPa. The used low-temperature brine is supplied from the GPP to a chemical plant, where main chemical components (lithium carbonate, burnt magnesia, calcium carbonate, and sodium chloride) are extracted from it according to the developed technology of comprehensive utilization of geothermal brines of chloride-sodium type. The waste water is delivered to the geotechnological complex and other consumers. For producing valuable inorganic materials, the electric power generated at the GPP is used. Owing to this, the total self-sufficiency of production and independence from external conditions is achieved. The advantages of the proposed geotechnological complex are the full utilization of the heat potential and the extraction of main chemical components of multiparameter geothermal resources. In this case, there is no need for reverse pumping, which eliminates the significant capital costs for building injection wells and a pumping station and the operating costs for their service. A characteristic of the modern state of the field and estimated figures of the integrated processing of high-temperature brines of well no. 6 are given, from which it follows that the proposed technology has a high efficiency. The comprehensive development of the field resources will make it possible to improve the economic structure of the

  5. Evaluation of Sensitivity and Robustness of Geothermal Resource Parameters Using Detailed and Approximate Stratigraphy

    NASA Astrophysics Data System (ADS)

    Whealton, C.; Jordan, T. E.; Frone, Z. S.; Smith, J. D.; Horowitz, F. G.; Stedinger, J. R.

    2015-12-01

    Accurate assessment of the spatial variation of geothermal heat is key to distinguishing among locations for geothermal project development. Resource assessment over large areas can be accelerated by using existing subsurface data collected for other purposes, such as petroleum industry bottom-hole temperature (BHT) datasets. BHT data are notoriously noisy but in many sedimentary basins their abundance offsets the potential low quality of an individual BHT measurement. Analysis requires description of conductivity stratigraphy, which for thousands of wells with BHT values is daunting. For regional assessment, a streamlined method is to approximate the thickness and conductivity of each formation using a set of standard columns rescaled to the sediment thickness at a location. Surface heat flow and related geothermal resource metrics are estimated from these and additional parameters. This study uses Monte Carlo techniques to compare the accuracy and precision of thermal predictions at single locations by the streamlined approach to well-specific conductivity stratigraphy. For 77 wells distributed across the Appalachian Basin of NY, PA, and WV, local geological experts made available detailed information on unit thicknesses . For the streamlined method we used the Correlation of Stratigraphic Units of North America (COSUNA) columns. For both data sets, we described thermal conductivity of the strata using generic values or values from the geologically similar Anadarko Basin. The well-specific surface heat flow and temperature-at-depth were evaluated using a one-dimensional conductive heat flow model. This research addresses the sensitivity of the estimated geothermal output to the model inputs (BHT, thermal conductivity) and the robustness of the approximate stratigraphic column assumptions when estimating the geothermal output. This research was conducted as part of the Dept. of Energy Geothermal Play Fairway Analysis program.

  6. High-potential geothermal energy resource areas of Nigeria and their geologic and geophysical assessment

    SciTech Connect

    Babalola, O.O.

    1984-04-01

    The widespread occurrence of geothermal manifestations in Nigeria is significant because the wide applicability and relative ease of exploitation of geothermal energy is of vital importance to an industrializing nation like Nigeria. There are two known geothermal resource areas (KGRAs) in Nigeria: the Ikogosi Warm Springs of Ondo State and the Wikki Warm Springs of Bauchi State. These surficial effusions result from the circulation of water to great depths through faults in the basement complex rocks of the area. Within sedimentary areas, high geothermal gradient trends are identified in the Lagos subbasin, the Okitipupa ridge, the Auchi-Agbede are of the Benin flank/hinge line, and the Abakaliki anticlinorium. The deeper Cretaceous and Tertiary sequences of the Niger delta are geopressured geothermal horizons. In the Benue foldbelt, extending from the Abalaliki anticlinorium to the Keana anticline and the Zambuk ridge, several magmatic intrusions emplaced during the Late Cretaceous line the axis of the Benue trough. Positive Bouguer gravity anomalies also parallel this trough and are interpreted to indicate shallow mantle. Parts of this belt and the Ikom, the Jos plateau, Bauchi plateau, and the Adamawa areas, experienced Cenozoic volcanism and magmatism.

  7. 43 CFR 3275.18 - May BLM require me to test for byproducts associated with geothermal resource production?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false May BLM require me to test for byproducts associated with geothermal resource production? 3275.18 Section 3275.18 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL...

  8. Evaluation and targeting of geothermal energy resources in the southeastern United States. Final report, May 1, 1976-June 30, 1982

    SciTech Connect

    Costain, J.K.; Glover, L. III

    1982-01-01

    The objectives of the geothermal program have been to develop and apply geological and geophysical targeting procedures for the discovery of low-temperature geothermal resources related to heat-producing granite. Separate abstracts have been prepared for individual papers comprising the report. (ACR)

  9. Hawaii Energy Resource Overviews. Volume II. Impact of geothermal development on the geology and hydrology of the Hawaiian Islands

    SciTech Connect

    Feldman, C.; Siegel, B.Z.

    1980-06-01

    The following topics are discussed: the geological setting of the Hawaiian Islands, regional geology of the major islands, geohydrology of the Hawaiian Islands, Hawaiis' geothermal resources, and potential geological/hydrological problems associated with geothermal development. Souces of information on the geology of Hawaii are presented. (MHR)

  10. Geothermometric evaluation of geothermal resources in southeastern Idaho

    NASA Astrophysics Data System (ADS)

    Neupane, G.; Mattson, E. D.; McLing, T. L.; Palmer, C. D.; Smith, R. W.; Wood, T. R.; Podgorney, R. K.

    2016-01-01

    Southeastern Idaho exhibits numerous warm springs, warm water from shallow wells, and hot water from oil and gas test wells that indicate a potential for geothermal development in the area. We have estimated reservoir temperatures from chemical composition of thermal waters in southeastern Idaho using an inverse geochemical modeling technique (Reservoir Temperature Estimator, RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. The temperature estimates in the region varied from moderately warm (59 °C) to over 175 °C. Specifically, hot springs near Preston, Idaho, resulted in the highest reservoir temperature estimates in the region.

  11. Resource assessment of low- and moderate-temperature geothermal waters in Calistoga, Napa County, California. Report of the second year, 1979-1980

    SciTech Connect

    Youngs, L.G.; Bacon, C.F.; Chapman, R.H.; Chase, G.W.; Higgins, C.T.; Majmundar, H.H.; Taylor, G.C.

    1980-11-10

    Phase I studies included updating and completing the USGS GEOTHERM file for California and compiling all data needed for a California Geothermal Resources Map. Phase II studies included a program to assess the geothermal resource at Calistoga, Napa County, California. The Calistoga effort was comprised of a series of studies involving different disciplines, including geologic, hydrologic, geochemical and geophysical studies.

  12. 78 FR 37567 - Renewal of Agency Information Collection for Tribal Energy Resource Agreements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... Development Office (IEED) authorized by OMB Control Number 1076-0167. This information collection expires June... Number: 1076-0167. Title: Tribal Energy Resource Agreements, 25 CFR 224. Brief Description of...

  13. Exploration of Geothermal Natural Resources from Menengai Caldera at Naruku, Kenya

    NASA Astrophysics Data System (ADS)

    Patlan, E.; Wamalwa, A.; Thompson, L. E.; Kaip, G.; Velasco, A. A.

    2011-12-01

    The Menengai Caldera, a large, dormant volcano, lies near the city of Naruku, Kenya (0.20°S, 36.07°E) and presents a significant natural geothermal energy resource that will benefit local communities. Kenya continues to explore and exploit its only major energy resource: geothermal energy. The Geothermal Development Company (GDC) of Kenya and University of Texas at El Paso (UTEP) have initially deployed seven seismic stations to address the volcanic hazards and associated processes that occurs through the analysis of data collection from seismic sensors that record ground motion. Seven more sensors are planned to be deployed in Aug. 2011. In general, the internal state and activity of the caldera is an important component to the understanding of porosity of the fault system, which is derived from the magma movement of the hot spot, and for the exploitation of geothermal energy. We analyze data from March to May 2011 to investigate the role of earthquakes and faults in controlling the caldera processes, and we find 15 events occurred within the caldera. We will utilize the double difference earthquake location algorithm (HypoDD) to analyze the local events in order to find active faulting of the caldera and the possible location of the magma chamber. For future work, we will combine the exiting data with the new seismic station to image the location of the caldera magma chamber.

  14. Geothermal Resource Area 5, Churchill, Douglas, Lyon and Storey Counties area development plan

    SciTech Connect

    Pugsley, M.

    1981-01-01

    Within this four county area there are many known geothermal resources ranging in temperature from 70 to over 350{sup 0}F. Thirteen of these resources are considered major and have been selected for evaluation. Various potential uses of the energy found were determined after evaluating the study area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities. These factors were then compared with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation; space heating; recreation; industrial process heat; and agriculture.

  15. Characterization of deep geothermal energy resources using Electro-Magnetic methods, Belgium

    NASA Astrophysics Data System (ADS)

    Loveless, Sian; Harcout-Menou, Virginie; De Ridder, Fjo; Claessens, Bert; Laenen, Ben

    2014-05-01

    Sedimentary basins in Northwest Europe have significant potential for low to medium enthalpy, deep geothermal energy resources. These resources are currently assessed using standard exploration techniques (seismic investigations followed by drilling of a borehole). This has enabled identification of geothermal resources but such techniques are extremely costly. The high cost of exploration remains one of the main barriers to geothermal project development due to the lack of capital in the geothermal industry. We will test the possibility of using the Electro-Magnetic (EM) methods to aid identification of geothermal resources in conjunction with more traditional exploration methods. An EM campaign could cost a third of a seismic campaign and is also often a passive technology, resulting in smaller environmental impacts than seismic surveys or drilling. EM methods image changes in the resistivity of the earth's sub-surface using natural or induced frequency dependant variations of electric and magnetic fields. Changes in resistivity can be interpreted as representing different subsurface properties including changes in rock type, chemistry, temperature and/or hydraulic transmissivity. While EM techniques have proven to be useful in geothermal exploration in high enthalpy areas in the last 2-3 years only a handful of studies assess their applicability in low enthalpy sedimentary basins. Challenges include identifying which sub-surface features cause changes in electrical resistivity as low enthalpy reservoirs are unlikely to exhibit the hydrothermally altered clay layer above the geothermal aquifer that is typical for high enthalpy reservoirs. Yet a principal challenge is likely to be the high levels of industrialisation in the areas of interest. Infrastructure such as train tracks and power cables can create a high level of background noise that can obfuscate the relevant signal. We present our plans for an EM campaign in the Flemish region of Belgium. Field

  16. Geothermal resource assessment of Canon City, Colorado Area

    SciTech Connect

    Zacharakis, Ted G.; Pearl, Richard Howard

    1982-01-01

    In 1979 a program was initiated to fully define the geothermal conditions of an area east of Canon City, bounded by the mountains on the north and west, the Arkansas River on the south and Colorado Highway 115 on the east. Within this area are a number of thermal springs and wells in two distinct groups. The eastern group consists of 5 thermal artesian wells located within one mile of Colorado Highway 115 from Penrose on the north to the Arkansas river on the south. The western group, located in and adjacent to Canon City, consists of one thermal spring on the south bank of the Arkansas River on the west side of Canon City, a thermal well in the northeast corner of Canon City, another well along the banks of Four Mile Creek east of Canon City and a well north of Canon City on Four Mile Creek. All the thermal waters in the Canon City Embayment, of which the study area is part of, are found in the study area. The thermal waters unlike the cold ground waters of the Canon City Embayment, are a calcium-bicarbonate type and range in temperature from 79 F (26 C) to a high of 108 F (42 C). The total combined surface discharge o fall the thermal water in the study area is in excess of 532 acre feet (A.F.) per year.

  17. Geothermal resource analysis in Twin Falls County, Idaho

    SciTech Connect

    Baker, S.J.; Castelin, P.M.

    1990-10-01

    Thermal water is prevalent throughout central Twin Falls County. Most wells and springs that occur in the area produce thermal water from fractures in the Idavada Volcanics. However, in an area east of Hollister, thermal water issues from fractures in the Paleozoic rocks. In an attempt to explain the hydrothermal relationship between these two reservoir rocks, one composite model for the entire geothermal system in the area is proposed. As with other conceptual models of the system, available geologic, hydrologic, and geochemical data were used to develop the model. The chemistry of the thermal water appears to be strongly governed by the chemical composition of the rocks that it comes in contact with and the length of time that it is exposed to them. The shorter flow paths to the south appear to occur entirely within the Paleozoic rocks, according to the calcium bicarbonate chemistry of the thermal water. As the flow paths become progressively longer toward the north, the thermal waters apparently encounter the silicic volcanics during their ascent. The chemistries of the thermal waters gradually equilibrate to the new host rock conditions and lose their Paleozoic signatures as exposure time increases. Ultimately, the chemistry of the thermal water changes to a sodium bicarbonate type.

  18. Electric power generation using geothermal brine resources for a proof of concept facility

    NASA Technical Reports Server (NTRS)

    Hankin, J. W.

    1974-01-01

    An exploratory systems study of a geothermal proof-of-concept facility is being conducted. This study is the initial phase (Phase 0) of a project to establish the technical and economic feasibility of using hot brine resources for electric power production and other industrial applications. Phase 0 includes the conceptual design of an experimental test-bed facility and a 10-MWe power generating facility.

  19. Potential for a Low-Temperature Geothermal Resource Near Mackay, Idaho

    SciTech Connect

    Sibbett, Bruce S.; Capuano, Regina M.

    1984-10-01

    Four water samples were collected from springs in the Mackay, Idaho area to investigate the potential for a direct-heat geothermal resource. The maximum measured temperature was 22 C for a spring south of Mackay. Calculation of the mineral equilibrium relationships in the calcium-bicarbonate water samples indicates that these samples equilibrated with the carbonate reservoir rocks. The temperatures of equilibration suggest that the subsurface temperatures of these water samples are probably no higher than measured surface temperatures.

  20. Loss of Shallow Geothermal Resources in Urban Environment Due to the Absence of Thermal Management Policies

    NASA Astrophysics Data System (ADS)

    García-Gil, A.; Vázquez-Suñé, E.; Sánchez-Navarro, J. A.

    2014-12-01

    Shallow geothermal energy resources are of interest worldwide for the development of strategies against climate change. The current regulative framework for the sustainable implementation of the technologies exploiting this resources is facing several barriers. In the case of groundwater heat pumps, the thermal interference between exploitations may be endangering their feasibility in urban environments. Uncertainty in prediction of the sustainability of shallow geothermal energy development in urban groundwater bodies stems from the absence of a scientific-based legal regulatory framework which protects stakeholders from thermal interferences between existent exploitations systems. The present work consists of a numerical study aimed at understanding and predicting the thermal interference between groundwater heat pumps where several induced heat plumes in an urban ground water body coalesce, thus generating a heat island effect. A transient groundwater flow and heat transport model was developed to reproduce complex high-resolution data obtained from local monitoring specifically designed to control the aquifer respond to geothermal exploitation. The model aims to reproduce the groundwater flow and heat transport processes in a shallow alluvial aquifer exploited by 27 groundwater heat pumps and influenced by a river-aquifer relationship dominated by flood events mainly occurring in winter when the surface temperature is between 3 and 10 ºC. The results from the simulations have quantified the time-space thermal interference between exploitation systems and the consequences of river-aquifer thermal exchange. The results obtained showed the complexity of thermal management of the aquifer due to the transient activity of exploitations over space and time. With the actual exploitation regime of shallow geothermal resources in the investigated area the model predicts a temperature rising tendency in the production wells until 2019 which can compromise the coefficient

  1. Engineering Sedimentary Geothermal Resources for Large-Scale Dispatchable Renewable Electricity

    NASA Astrophysics Data System (ADS)

    Bielicki, Jeffrey; Buscheck, Thomas; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Saar, Martin; Randolph, Jimmy

    2014-05-01

    Mitigating climate change requires substantial penetration of renewable energy and economically viable options for CO2 capture and storage (CCS). We present an approach using CO2 and N2 in sedimentary basin geothermal resources that (1) generates baseload and dispatchable power, (2) efficiently stores large amounts of energy, and (3) enables seasonal storage of solar energy, all which (5) increase the value of CO2 and render CCS commercially viable. Unlike the variability of solar and wind resources, geothermal heat is a constant source of renewable energy. Using CO2 as a supplemental geothermal working fluid, in addition to brine, reduces the parasitic load necessary to recirculate fluids. Adding N2 is beneficial because it is cheaper, will not react with materials and subsurface formations, and enables bulk energy storage. The high coefficients of thermal expansion of CO2 and N2 (a) augment reservoir pressure, (b) generate artesian flow at the production wells, and (c) produce self-convecting thermosiphons that directly convert reservoir heat to mechanical energy for fluid recirculation. Stored pressure drives fluid production and responds faster than conventional brine-based geothermal systems. Our design uses concentric rings of horizontal wells to create a hydraulic divide that stores supplemental fluids and pressure. Production and injection wells are controlled to schedule power delivery and time-shift the parasitic power necessary to separate N2 from air and compress it for injection. The parasitic load can be scheduled during minimum power demand or when there is excess electricity from wind or solar. Net power output can nearly equal gross power output during peak demand, and energy storage is almost 100% efficient because it is achieved by the time-shift. Further, per-well production rates can take advantage of the large productivity of horizontal wells, with greater leveraging of well costs, which often constitute a major portion of capital costs for

  2. 30 CFR 206.355 - How do I calculate royalty due on geothermal resources I sell at arm's length to a purchaser for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... multiplied by the royalty rate in your lease or that BLM prescribes under 43 CFR 3211.18. See § 206.361 for... resources I sell at arm's length to a purchaser for direct use? 206.355 Section 206.355 Mineral Resources... Geothermal Resources § 206.355 How do I calculate royalty due on geothermal resources I sell at arm's...

  3. Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource. Volume 1

    SciTech Connect

    Negus-deWys, J.

    1990-03-01

    The Geopressured-Geothermal Program, now in its fifteenth year, is entering the transition period to commercial use. The industry cost-shared proposals to the consortium, represented in the presentations included in these proceedings, attest to the interest developing in the industrial community in utilizing the geopressured-geothermal resource. Sixty-five participants attended these sessions, two-thirds of whom represented industry. The areas represented by cost-shared proposals include (1) thermal enhanced oil recovery, (2) direct process use of thermal energy, e.g., aquaculture and agriculture, (3) conversion of thermal energy to electricity, (4) environment related technologies, e.g., use of supercritical processes, and (5) operational proposals, e.g., a field manual for scale inhibitors. It is hoped that from this array of potential use projects, some will persist and be successful in proving the viability of using the geopressured-geothermal resource. Such industrial use of an alternative and relatively clean energy resource will benefit our nation and its people.

  4. Reconnaissance of geothermal resources near US naval facilities in the San Diego area, California

    SciTech Connect

    Youngs, L.G.

    1984-01-01

    A reconnaissance study has found little evidence of potential geothermal resources useful at naval facilities in the greater San Diego metropolitan area. However, there is a zone of modest elevated water well temperatures and slightly elevated thermal gradients that may include the eastern portion of the Imperial Beach Naval Air Station south of San Diego Bay. An increase of 0.3/sup 0/ to 0.4/sup 0/F/100 ft over the regional thermal gradient of 1.56/sup 0/F/100 ft was conservatively calculated for this zone. The thermal gradient can be used to predict 150/sup 0/F temperatures at a depth of approximately 4000 ft. This zone of greatest potential for a viable geothermal resource lies within a negative gravity anomaly thought to be caused by a tensionally developed graben, approximately centered over the San Diego Bay. Water well production in this zone is good to high, with 300 gpm often quoted as common for wells in this area. The concentration of total dissolved solids (TDS) in the deeper wells in this zone is relatively high due to intrusion of sea water. Productive geothermal wells may have to be drilled to depths economically infeasible for development of the resource in the area of discussion.

  5. Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource. Volume 2

    SciTech Connect

    Negus-deWys, J.

    1990-03-01

    The Geopressured-Geothermal Program, now in its fifteenth year, is entering the transition period to commercial use. The industry cost-shared proposals to the consortium, represented in the presentations included in these proceedings, attest to the interest developing in the industrial community in utilizing the geopressured-geothermal resource. Sixty-five participants attended these sessions, two-thirds of whom represented industry. The areas represented by cost-shared proposals include (1) thermal enhanced oil recovery, (2) direct process use of thermal energy, e.g., aquaculture and agriculture, (3) conversion of thermal energy to electricity, (4) environment related technologies, e.g., use of supercritical processes, and (5) operational proposals, e.g., a field manual for scale inhibitors. It is hoped that from this array of potential use projects, some will persist and be successful in proving the viability of using the geopressured-geothermal resource. Such industrial use of an alternative and relatively clean energy resource will benefit our nation and its people.

  6. Final Scientific / Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California

    SciTech Connect

    Layman Energy Associates, Inc.

    2006-08-15

    With financial support from the U.S. Department of Energy (DOE), Layman Energy Associates, Inc. (LEA) has completed a program of geothermal exploration at the Truckhaven area in Imperial County, California. The exploratory work conducted by LEA included the following activities: compilation of public domain resource data (wells, seismic data, geologic maps); detailed field geologic mapping at the project site; acquisition and interpretation of remote sensing imagery such as aerial and satellite photographs; acquisition, quality control and interpretation of gravity data; and acquisition, quality control and interpretation of resistivity data using state of the art magnetotelluric (MT) methods. The results of this exploratory program have allowed LEA to develop a structural and hydrologic interpretation of the Truckhaven geothermal resource which can be used to guide subsequent exploratory drilling and resource development. Of primary significance, is the identification of an 8 kilometer-long, WNW-trending zone of low resistivity associated with geothermal activity in nearby wells. The long axis of this low resistivity zone is inferred to mark a zone of faulting which likely provides the primary control on the distribution of geothermal resources in the Truckhaven area. Abundant cross-faults cutting the main WNW-trending zone in its western half may indicate elevated fracture permeability in this region, possibly associated with thermal upwelling and higher resource temperatures. Regional groundwater flow is inferred to push thermal fluids from west to east along the trend of the main low resistivity zone, with resource temperatures likely declining from west to east away from the inferred upwelling zone. Resistivity mapping and well data have also shown that within the WNW-trending low resistivity zone, the thickness of the Plio-Pleistocene sedimentary section above granite basement ranges from 1,900–2,600 meters. Well data indicates the lower part of this

  7. Analyses of mixed-hydrocarbon binary thermodynamic cycles for moderate-temperature geothermal resources

    SciTech Connect

    Demuth, O.J.

    1981-02-01

    A number of binary geothermal cycles utilizing mixed hydrocarbon working fluids were analyzed with the overall objective of finding a working fluid which can produce low-cost electrical energy using a moderately-low temperature geothermal resource. Both boiling and supercritical shell-and-tube cycles were considered. The performance of a dual-boiling isobutane cycle supplied by a 280/sup 0/F hydrothermal resource (corresponding to the 5 MW pilot plant at the Raft River site in Idaho) was selected as a reference. To investigate the effect of resource temperature on the choice of working fluid, several analyses were conducted for a 360/sup 0/F hydrothermal resource, which is representative of the Heber resource in California. The hydrocarbon working fluids analyzed included methane, ethane, propane, isobutane, isopentane, hexane, heptane, and mixtures of those pure hydrocarbons. For comparison, two fluorocarbon refrigerants were also analyzed. These fluorocarbons, R-115 and R-22, were suggested as resulting in high values of net plant geofluid effectiveness (watt-hr/lbm geofluid) at the two resource temperatures chosen for the study. Preliminary estimates of relative heat exchanger size (product of overall heat transfer coefficient times heater surface area) were made for a number of the better performing cycles.

  8. Scaling Laws for the Distribution of Gold, Geothermal, and Gas Resources

    NASA Astrophysics Data System (ADS)

    Blenkinsop, Thomas

    2015-07-01

    Mass dimensions of natural resources have important implications for ore-forming processes and resource estimation and exploration. The mass dimension is established from a power law scaling relationship between numbers of resources and distance from an origin. The relation between the total quantity of resource and distance, measured by the mass-radius scaling exponent, may be even more useful. Lode gold deposits, geothermal wells and volcanoes, and conventional and unconventional gas wells are examined in this study. Mass dimensions and scaling exponents generally increase from the lode gold through geothermal wells to gas data sets, reflecting decreasing degrees of clustering. Mass dimensions are similar to or slightly less than the mass-radius scaling exponents, and could be used as estimates of the minimum scaling exponent in the common case that data are not available for the latter. All the resources in this study are formed by fluid fluxes in the crust, and, therefore, percolation theory is an appropriate unifying framework to understand their significance. The mass dimensions indicate that none of the percolation networks that formed the deposits reached the percolation threshold.

  9. Surveys of arthropod and gastropod diversity in the geothermal resource subzones, Puna, Hawaii

    SciTech Connect

    Miller, S.E.; Burgett, J.; Bruegmann, M.

    1995-04-01

    The invertebrate surveys reported here were carried out as part of ecological studies funded by the Department of Energy in support of their environmental impact statement (EIS) for the Hawaii Geothermal Project. Currently, preparation of the EIS has been suspended, and all supporting information is being archived and made available to the public. The invertebrate surveys reported here assessed diversity and abundance of the arthropod and gastropod fauna in forested habitat and lava tubes in or near the three geothermal resource subzones. Recommendations for conservation of these organisms are given in this report. Surveys were conducted along three 100-m transect lines at each of the six forested locations. Malaise traps, baited pitfall traps, yellow pan traps, baited sponge lures, and visual examination of vegetation were used to assess invertebrate diversity along each transect line. Three of these locations were adjacent to roads, and three were adjacent to lava flows. Two of these lava-forest locations (Keauohana Forest Reserve and Pu`u O`o) were relatively remote from direct human impacts. The third location (Southeast Kula) was near a low-density residential area. Two lava tubes were surveyed. The forest over one of these tubes (Keokea tube) had recently been burned away. This tube was used to assess the effects of loss of forest habitat on the subterranean fauna. An undisturbed tube (Pahoa tube) was used as a control. Recommendations offered in this report direct geothermal development away from areas of high endemic diversity and abundance, and toward areas where natural Hawaiian biotic communities have already been greatly disturbed. These disturbed areas are mainly found in the lower half of the Kamaili (middle) geothermal subzone and throughout most of the Kapoho (lower) geothermal subzone. These recommendation may also generally apply to other development projects in the Puna District.

  10. Assessment of the geothermal resources of the Socialist Republic of Vietnam

    SciTech Connect

    Flynn, T.; Tien, Phan Cu; Schochert, D.; Quy, Hoang Huu

    1997-12-31

    More than 125 thermal springs, with temperatures greater than 30{degrees}C have been identified and catalogued by the General Department of Geology of Vietnam. Subsurface data are limited and fewer than 10 areas have been identified, on the basis of chemical geothermometers, as capable of supporting electric power production. Six sites in south-central Vietnam have recently been selected for exploration to determine their development potential for electrical power generation. Selected criteria included surface features, chemical geothermometers, proximity to regional faults trends, and regional requirements for electric power. Site visits were conducted to a total of eight areas in south central Vietnam where collateral economic developments suggest the need for a local, reliable source of electricity. Physical and visual information on geothermal springs and wells in Vietnam was compared to Nevada`s geothermal resources. Surface geothermal manifestations in Vietnam appear remarkably similar to those in Nevada. Outcrops adjacent to the geothermal areas indicate that Mesozoic-age granites are the most likely basement rocks. Quaternary basalts mapped throughout the study area may be responsible for the thermal anomaly. Initial exploration efforts will focus on three of the six sites, which together may be able to produce 40 to 60 MWe. A cooperative research program with selected Vietnamese governmental agencies includes geologic mapping, surface geophysical and geochemical surveys, and a graduated schedule of drilling programs, ranging in depth from 100 to 1,000 m. Results will be used to define a detailed, deep drilling and testing program at the three prime sites. Development of geothermal power in this region will boost local economic recovery and add stability to the national electric grid.

  11. Exploration and assessment of the geothermal resources in the Hammam Faraun hot spring, Sinai Peninsula, Egypt

    NASA Astrophysics Data System (ADS)

    Zaher, Mohamed Abdel; Saibi, Hakim; Nishijima, Jun; Fujimitsu, Yasuhiro; Mesbah, Hany; Ehara, Sachio

    2012-02-01

    The tectonic position of Egypt in the northeastern corner of the African continent suggests that it may possess significant geothermal resources, especially along its eastern margin. The most promising areas for geothermal development in the northwest Red Sea-Gulf of Suez rift system are located where the eastern shore of the Gulf of Suez is characterized by superficial thermal manifestations, including a cluster of hot springs with varied temperatures. Magnetotelluric and gravity-reconnaissance surveys were carried out over the geothermal region of Hammam Faraun to determine the subsurface electric resistivity and the densities that are related to rock units. These surveys were conducted along profiles. One-dimensional (1D) and two-dimensional (2D) inversion model techniques were applied on the MT data, integrating the 2D inversion of gravity data. The objectives of these surveys were to determine and parameterize the subsurface source of the Hammam Faraun hot spring and to determine the origin of this spring. Based on this data, a conceptual model and numerical simulation were made of the geothermal area of Hammam Faraun. The numerical simulation succeeded in determining the characteristics of the heat sources beneath the Hammam Faraun hot spring and showed that the hot spring originates from a high heat flow and deep ground water circulation in the subsurface reservoir that are controlled by faults. These studies were followed by an assessment of the geothermal potential for electric generation from the Hammam Faraun hot spring. The value of the estimated potential is 28.34 MW, as the reservoir is assumed to be only 500 m thick. This value would be enough for the desalination of water for both human and agricultural consumption.

  12. Geothermal Energy.

    ERIC Educational Resources Information Center

    Bufe, Charles Glenn

    1983-01-01

    Major activities, programs, and conferences in geothermal energy during 1982 are highlighted. These include first comprehensive national assessment of U.S. low-temperature geothermal resources (conducted by U.S. Geological Survey and Department of Energy), map production by U.S. Geological Survey, geothermal plant production, and others. (JN)

  13. Methodology of determining the uncertainty in the accessible geothermal resource base of identified hydrothermal convection systems

    USGS Publications Warehouse

    Nathenson, Manuel

    1978-01-01

    In order to quantify the uncertainty of estimates of the geothermal resource base in identified hydrothermal convection systems, a methodology is presented for combining estimates with uncertainties for temperature, area, and thickness of a geothermal reservoir into an estimate of the stored energy with uncertainty. Probability density functions for temperature, area, and thickness are assumed to be triangular in form. In order to calculate the probability distribution function for the stored energy in a single system or in many systems, a computer program for aggregating the input distribution functions using the Monte-Carlo method has been developed. To calculate the probability distribution of stored energy in a single system, an analytical expression is also obtained that is useful for calibrating the Monte Carlo approximation. For the probability distributions of stored energy in a single and in many systems, the central limit approximation is shown to give results ranging from good to poor.

  14. Low-temperature geothermal resource and stratigraphy of portions of Yakima County, Washington

    SciTech Connect

    Biggane, J.

    1982-07-30

    The low-temperature geothermal resource of portions of Yakima County, south-central Washington, is defined by several least squares linear regression analyses of bottom-hole temperature and depth data. Intra-borehole flow prevents the use of borehole temperature gradients for geothermal resource assessment. Bottom-hole temperature and depth data were separated into fourteen well data groups based on geographic proximity, land slope azimuth, and position within the regional ground-water flow system. The regression analyses of these well data groups indicate that the projected land-surface temperature and geothermal gradient range from 10.6 to 14.0/sup 0/C and from 24.9 to 52.2/sup 0/C/km, respectively. The depth to the 20/sup 0/C isotherm ranges from 142 to 346m. The average projected land-surface temperature and geothermal gradient are approximately 11.3/sup 0/C and 43.0/sup 0/C/km, respectively. The average depth to the 20/sup 0/C isoterm is approximately 202m. The projected land-surface temperature appears to decrease and the depth to the 20/sup 0/C isotherm appears to increase as the land-surface elevation of the well dat group increases. Stratigraphic correlation diagrams developed from borehole geophysical and lithologic logs are given for localities within the lower Yakima, Black Rock, Moxee, Ahtanum, Cowiche, and Naches valleys. These correlation diagrams are combined with their respective borehole temperatue logs and well data group predicted temperature curves to assess the validity of the regression analyses and to determine aquifer locations, temperatures, and directions of intra-borehole flow.

  15. Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii

    SciTech Connect

    Sorey, M.L.; Colvard, E.M.

    1994-07-01

    This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

  16. Heat flow, radioactivity, gravity, and geothermal resources in northern Colorado and southern Wyoming

    SciTech Connect

    Decker, E.R.; Buelow, K.L.

    1981-12-01

    The surface heat flow values in the Sierra Madre-Medicine Bow-Laramie Mountains region are in the range 0.6 to 1.5 HFU. When the heat from local bedrock radioactivity is considered, the reduced flux in these mountains is low to normal (0.6 to 1.2 HFU). These data and the low to normal gradients (10 to 25/sup 0/C/km) in the studied drill holes strongly suggest that the resource potential of the Southern Rockies in Wyoming is low. The geothermal resource potential of the sedimentary basins in Wyoming that border these mountains also appears to be low because preliminary estimates for the flux in these areas are less than or equal to 1.5 HFU and the average gradients in analyzed drill holes are generally less than or equal to 30/sup 0/C/km. In contrast to southern Wyoming, the high surface and reduced heat flows strongly suggest that the Park areas and other parts of the Southern Rockies in northern Colorado are potentially valuable geothermal resource areas. The narrow northerly borders (less than or equal to 50 km) of these positive anomalies suggest that some of the resources could be shallow, as does the evidence for regional igneous and tectonic activity in the late Cenozoic. The small number of combined heat flow and radioactivity stations precludes detailed site-specific evaluations in these regions, but a few generalizations are made.

  17. Mountain Home Air Force Base, Idaho Geothermal Resource Assessment and Future Recommendations

    SciTech Connect

    Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson; John W. Shervais; Thomas R. Wood

    2013-03-01

    The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base in early 2011 near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The team identified several possible sources of funding for this well—the most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140°C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home Air Force Base. In conclusion, Recommendation for follow-up efforts include the following:

  18. Reference book on geothermal direct use

    SciTech Connect

    Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

    1994-08-01

    This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

  19. CS2 and COS in soil gases of the Roosevelt Hot Springs Known Geothermal Resource Area, Beaver County, Utah

    USGS Publications Warehouse

    Hinkle, Margaret E.; Harms, Thelma F.

    1978-01-01

    Soil-gas samples were collected in two parallel traverses across the Dome fault zone of the Roosevelt Hot Springs Known Geothermal Resource Area. Gas chromatographic analyses of the samples showed anomalous concentrations of CS3 and COS east of the Dome fault; higher concentrations of CS2 and COS also occurred over an area in which the hydrothermal system is close to the surface. Measurement of these gases may be useful in exploration for new geothermal sources.

  20. Up-to-date state and prospects for the development of geothermal resources of the North Caucasus region

    NASA Astrophysics Data System (ADS)

    Alkhasov, A. B.; Alkhasova, D. A.

    2014-06-01

    The modern state of production and use of geothermal resources of the region is evaluated and the low efficiency of their development is shown. Promising developmental technologies of hydrogeothermal resources of various energy potentials with attachment to concrete geothermal deposits are presented. Technologies on the complex development of hydrogeothermal resources with the use of water for drinking or industrial water supply, the thermal potential for various energy needs, and the extraction of the gas and mineral components dissolved in water are highly efficient technologies, which make it possible to solve important environmental, economical, and social problems of the region.

  1. Geothermal tomorrow 2008

    SciTech Connect

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  2. Governmental policies of the County of Lassen toward the utilization of geothermal resources

    SciTech Connect

    Totten, M.A.

    1981-05-01

    The interim geothermal policy adopted is presented. The environmental impacts of the Honey Lake hybrid geothermal power plant are discussed. A partial listing of the governmental organizations which must have input into geothermal decisions is given.

  3. Case studies for utilizing groundwater-source and low-enthalpy geothermal resources in Korea

    NASA Astrophysics Data System (ADS)

    Kim, K.-H.; Shin, J.; Lee, K.-K.; Lee, T. J.

    2012-04-01

    As one of the top 10 oil-consuming countries in the world, Korea recently has had a great interest in extending the ways to utilize renewable energy. In this regard, geothermal energy resource is attracting more concerns from both of the government and the research field. Korea has neither active volcanic sites nor areas with abnormally higher heat flow. In spite of these natural conditions, many efforts have been exerted to utilize geothermal energy. Here, we introduce two case studies of using groundwater-source geothermal energy with relatively low-enthalpy: One is a riverbank filtration facility, which has been using some of its riverbank filtrate water for the indoor air-conditioning. The other is the first EGS plant planning site, where a few fault-related artesian wells reaching 70C were discovered lately. Numerical simulations to predict the temperature evolution of the two sites, which is dominated by several hydrogeologic factors, were carried out and compared. Simulation of temperature profile of riverbank filtrate water using HydroGeoSphere shows that the primary factor in determining filtrate water temperature is the pumping rate. It also shows that maintaining the facility operation with present pumping rate for the next 30 years will not cause any significant change of water temperature. However, following the new plan of the facility to install additional 37 wells with 6 times higher pumping rate than the current rate might cause about 2C decrease in filtrate water temperature in 10 years after the extension. Simulation for the temperature evolution in a faulted geothermal reservoir in EGS planning site under the supposed injection-extraction operating conditions were carried out using TOUGH2. A MINC model including a hydraulic discontinuity, which reflected the analysis from several geophysical explorations, was generated. Temperature distribution calculated from the simulation shows a rise of relatively hot geothermal water along the fault plane

  4. Study of Shallow Low-Enthalpy Geothermal Resources Using Integrated Geophysical Methods

    NASA Astrophysics Data System (ADS)

    Giorgi, Lara De; Leucci, Giovanni

    2015-02-01

    The paper is focused on low enthalpy geothermal exploration performed in south Italy and provides an integrated presentation of geological, hydrogeological, and geophysical surveys carried out in the area of municipality of Lecce. Geological and hydrogeological models were performed using the stratigraphical data from 51 wells. A ground-water flow (direction and velocity) model was obtained. Using the same wells data, the ground-water annual temperature was modeled. Furthermore, the ground surface temperature records from ten meteorological stations were studied. This allowed us to obtain a model related to the variations of the temperature at different depths in the subsoil. Integrated geophysical surveys were carried out in order to explore the low-enthalpy geothermal fluids and to evaluate the results of the model. Electrical resistivity tomography (ERT) and self-potential (SP) methods were used. The results obtained upon integrating the geophysical data with the models show a low-enthalpy geothermal resource constituted by a shallow ground-water system

  5. Study of shallow low-enthalpy geothermal resources using integrated geophysical methods

    NASA Astrophysics Data System (ADS)

    De Giorgi, Lara; Leucci, Giovanni

    2014-11-01

    The paper is focused on low enthalpy geothermal exploration performed in south Italy and provides an integrated presentation of geological, hydrogeological, and geophysical surveys carried out in the area of municipality of Lecce. Geological and hydrogeological models were performed using the stratigraphical data from 51 wells. A ground-water flow (direction and velocity) model was obtained. Using the same wells data, the ground-water annual temperature was modeled. Furthermore, the ground surface temperature records from ten meteorological stations were studied. This allowed us to obtain a model related to the variations of the temperature at different depths in the subsoil. Integrated geophysical surveys were carried out in order to explore the low-enthalpy geothermal fluids and to evaluate the results of the model. Electrical resistivity tomography (ERT) and self-potential (SP) methods were used. The results obtained upon integrating the geophysical data with the models show a low-enthalpy geothermal resource constituted by a shallow ground-water system.

  6. Learning Agreements and Socially Responsible Approaches to Professional and Human Resource Development in the United Kingdom

    ERIC Educational Resources Information Center

    Wallis, Emma

    2008-01-01

    This article draws upon original qualitative data to present an initial assessment of the significance of learning agreements for the development of socially responsible approaches to professional and human resource development within the workplace. The article suggests that the adoption of a partnership-based approach to learning is more…

  7. 77 FR 56860 - Notice of Proposed Settlement Agreement Under the Park System Resource Protection Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-14

    ... DREAMS regarding claims for response costs and damages ] under the Park System Resource Protection Act, 16 U.S.C. 19jj. The United States' claims arise from the grounding of the vessel COCKTAIL AND DREAMS... DREAMS, DJ No. 90-5-1-1-10656. The proposed settlement agreement may be examined at the Dry...

  8. Enhancement of existing geothermal resource utilization by cascading to intensive aquaculture

    SciTech Connect

    Zachritz, W.H., II; Polka, R.; Schoenmackers

    1996-04-01

    A demonstration high rate aquaculture production system utilizing a cascaded geothermal resource was designed, constructed and operated to fulfill the objectives of this project. Analysis of the energy and water balances for the system indicated that the addition of an Aquaculture Facility expanded the use of the existing resource. This expanded use in no way affected the up- stream processes. Analysis of the system`s energy and water requirements indicated that the present resource was under-utilized and could be expanded. Energy requirements appeared more limiting than water use, but the existing system could be expanded to a culture volume of 72,000 gal. This system would have a potential production capacity of 93,600 lb/yr with a potential market value of $280,00/yr. Based on the results of this study, the heat remaining in the geothermal fluid from one square foot of operating greenhouse is sufficient to support six gallons of culture water for a high density aquaculture facility. Thus, the over 1.5M ft{sup 2} of existing greenhouse space in New Mexico, has the potential to create an aquaculture industry of nearly 9M gal. This translates to an annual production potential of 11.7M lb with a market value of $35.lM.

  9. Geothermal resource assessment for the state of Texas: status of progress, November 1980. Final report

    SciTech Connect

    Woodruff, C.M. Jr.; Caran, S.C.; Gever, C.; Henry, C.D.; Macpherson, G.L.; McBride, M.W.

    1982-03-01

    Data pertaining to wells and thermal aquifers and data interpretation methods are presented. Findings from a program of field measurements of water temperatures (mainly in South-Central Texas) and an assessment of hydrologic properties of three Cretaceous aquifers (in North-Central Texas) are included. Landsat lineaments and their pertinance to the localization of low-temperature geothermal resources are emphasized. Lineament data were compared to structural and stratigraphic features along the Balcones/Ouachita trend in Central Texas to test for correlations. (MHR)

  10. Ethiopian Geothermal Resources Inferred from Electromagnetic (AMT/MT, TEM) Data and Seismic Noise Interferometry

    NASA Astrophysics Data System (ADS)

    Lindsey, N. J.; Whaler, K. A.; Johnson, N.; Baptie, B.; Lemma, Y.; Desissa, M.; Ebinger, C. J.; Belachew, M.; Keir, D.; Fisseha, S.; Dawes, G.; Hautot, S.

    2012-12-01

    In Ethiopia, modern energy (hydroelectricity and foreign petroleum) is expensive and unpredictable, yet energy access is key to sustainable development. Active volcanoes and hot springs located in the slow-spreading rift zone of the Afar Depression suggest an abundant geothermal energy resource; however, before this energy can be utilized subsurface geophysical analysis is needed to study the geothermal system, its potential and identify drilling targets. The aim of this project is to use geophysical data (audio-magnetotelluric (AMT), magnetotelluric (MT), transient-electromagnetic (TEM) and passive seismic data), recently recorded in the Northern Tendaho Graben of Afar, Ethiopia, to constrain geothermal system parameters (i.e. geology, temperature, fluid properties, etc.). Recovery of these parameters enables the understanding of reservoir heat flow, geothermal energy potential, economic viability and development of an optimal drilling strategy. The AMT/MT data were recorded at 28 sites along two parallel profiles oriented perpendicular to regional geologic strike. Two-dimensional joint inversion of the TE and TM modes from all sites identifies two very strong conducting layers (~1 Ohm-m), at <500 m and 5-10 km, separated by a more resistive layer (~50 Ohm-m). This model is strongly correlated with borehole information. The deeper high conductivity anomaly shallows toward the center of the profile, at the location of highest recorded fluid temperature from early drilling operations. MT impedance tensor decomposition, phase tensor analysis and induction vector calculations, as well as forward modelling of the inversion results are mutually consistent. Two-dimensional surface wave tomography results from seismic noise interferometry add another layer of geophysical information to this interdisciplinary study, complementing the AMT/MT survey. This project was funded by the US-UK Fulbright Commission and the University of Edinburgh, and benefited from strong

  11. Characterization of medium enthalpy geothermal system in the Campania region (southern Italy): from geological data to resource modelling

    NASA Astrophysics Data System (ADS)

    Montegrossi, G.; Inversi, B.; Scrocca, D.; Livani, M.; Petracchini, L.

    2012-04-01

    Within the framework of the VIGOR project, a characterization of medium enthalpy geothermal resources have been carried out in the Campania region (southern Italy), with a focus on the "Guardia dei Lombardi" area (province of Avellino). The VIGOR project began on the basis of an agreement between the Ministry of Economic Development and the Italian National Research Council, and it deal with the exploitation of innovative uses of geothermal energy in the so-called "regions of convergence"(Campania, Calabria, Puglia and Sicilia). Thanks to the intense hydrocarbon exploration, carried out particularly during the 1956-1996 period, an extensive data set made up by deep wells and seismic reflection profiles exist in the study area. The previous exploration demonstrated the presence of a fractured carbonate reservoir, mainly belonging to the Cretaceous section of the Apulian shallow water carbonate platform (e.g. Scrocca 2010 and references therein), which is deformed to shape a buried antiformal stack. The culmination of the uppermost thrust unit reaches a depth of about 200 m SSL (i.e., about 1100 m below the ground level). The reservoir fluids are made up by a CO2 gas cap, which rests above an accumulation of fresh water in the central and upper part of the culmination of the deep carbonatic acquifer (e.g., Monte Forcuso 1 and 2 wells), and a saline water along the flank of the buried anticline (e.g., Bonito 1 Dir, Ciccone 1 wells). Medium enthalpy geothermal resources with a reservoir fluid temperature up to 100°C have been estimated in previous assessments at depth of 2000 m below ground level (ENEL 1987; 1994). However, the presence of thermal springs (e.g. Terme di S. Teodoro) in the area suggests the presence of an active hydraulic circuit and provide further constraints about the geochemical characteristics of the reservoir waters, and the geothermometers investigation (Duchi et al. 1995) give a possible reservoir fluid temperature up to about 124 °C. In this

  12. The Efficacy and Potential of Renewable Energy from Carbon Dioxide that is Sequestered in Sedimentary Basin Geothermal Resources

    NASA Astrophysics Data System (ADS)

    Bielicki, J. M.; Adams, B. M.; Choi, H.; Saar, M. O.; Taff, S. J.; Jamiyansuren, B.; Buscheck, T. A.; Ogland-Hand, J.

    2015-12-01

    Mitigating climate change requires increasing the amount of electricity that is generated from renewable energy technologies and while simultaneously reducing the amount of carbon dioxide (CO2) that is emitted to the atmosphere from present energy and industrial facilities. We investigated the efficacy of generating electricity using renewable geothermal heat that is extracted by CO2 that is sequestered in sedimentary basins. To determine the efficacy of CO2-Geothermal power production in the United States, we conducted a geospatial resource assessment of the combination of subsurface CO2 storage capacity and heat flow in sedimentary basins and developed an integrated systems model that combines reservoir modeling with power plant modeling and economic costs. The geospatial resource assessment estimates the potential resource base for CO2-Geothermal power plants, and the integrated systems model estimates the physical (e.g., net power) and economic (e.g., levelized cost of electricity, capital cost) performance of an individual CO2-Geothermal power plant for a range of reservoir characteristics (permeability, depth, geothermal temperature gradient). Using coupled inverted five-spot injection patterns that are common in CO2-enhanced oil recovery operations, we determined the well pattern size that best leveraged physical and economic economies of scale for the integrated system. Our results indicate that CO2-Geothermal plants can be cost-effectively deployed in a much larger region of the United States than typical approaches to geothermal electricity production. These cost-effective CO2-Geothermal electricity facilities can also be capacity-competitive with many existing baseload and renewable energy technologies over a range of reservoir parameters. For example, our results suggest that, given the right combination of reservoir parameters, LCOEs can be as low as $25/MWh and capacities can be as high as a few hundred MW.

  13. Direct utilization of geothermal energy resources in food processing. Final report, May 17, 1978-May 31, 1982

    SciTech Connect

    Austin, J.C.

    1982-05-01

    In early 1978 financial assistance was granted for a project to utilize geothermal energy at Ore-Ida Foods, Inc.'s food processing plant in Ontario, Oregon. Specifically, the project included exploring, testing, and developing the potential geothermal resource; retrofitting the existing gas/oil-fired steam system; utilizing the geothermal resource for food processing, space heating, and hot potable water; and injecting the spent geothermal water back into a disposal well. Based on preliminary investigations which indicated the presence of a local geothermal resource, drilling began in August 1979. Although the anticipated resource temperature of 380/sup 0/F was reached at total well depth (10,054 feet), adequate flow to meet processing requirements could not be obtained. Subsequent well testing and stimulation techniques also failed to produce the necessary flow, and the project was eventually abandoned. However, throughout the duration of the project, all activities were carefully monitored and recorded to ensure the program's value for future evaluation. This report presents a culmination of data collected during the Ore-Ida project.

  14. Discovery of a concealed geothermal resource in the Alturas Basin, and its implications for further exploration in northeastern California

    SciTech Connect

    Bohm, B.; Juncal, R.W.

    1995-12-31

    In 1988 a so far unknown geothermal resource was drilled into under the City of Alturas in northeastern California. A fracture was tapped below 2300 feet, in cemented fine-grained tuffs and mudflows, producing 182{degrees}F water. The well has been used since 1990 to heat the local high school. A second well was drilled in 1991, producing about 250 gpm 182{degrees}F water from a fracture below 1893 ft. Well productivities and artesian pressures are variable, depending on distance from a major fault zone and local hydrologic regime. It appears as if the wells produce from deep reaching fractures in a caprock, that may conceal a 300 to 400{degrees}F resource between 4000 and 6000 feet depth. The results have important implications for geothermal exploration in northeastern California, i.e. just because there are no surface manifestations in a basin, it does not necessarily mean there is no geothermal resource at depth.

  15. Prospects of electromagnetic methods application for evaluation of deep geothermal resources of intraplate regions

    NASA Astrophysics Data System (ADS)

    Pushkarev, P.; Khmelevskoy, V.; Golubtsova, N.

    2013-12-01

    Due to increase of demand for energy resources and development of technologies of their extraction, the number of regions, where geothermal resources are used, is growing. These resources were used in the areas with surface indications of geothermal activity, but now geothermal energy is exploited in the regions with no such indications and, which is more important, where deep temperatures are lower in most cases. Hereafter, usage of the Earth's deep heat may become effective everywhere, including intraplate regions and, in particular, cratons. However, here the depth of boreholes, required to reach temperatures 250 - 350 0C, making electricity production possible, should be about 10 km. Geothermal resources can be divided to hydrothermal and petrothermal. The former are connected with thermal groundwater. As soon as some groundwater deposits were depleted, recharge of reservoirs using reinjection boreholes was applied. Petrothermal resources are connected with deep hot dry rocks of intraplate regions, for their exploitation closed-loop petrothermal circulation systems (PCS) can be used. In such a system water is pumped into injecting well(s), gets hot in the reservoir, created by means of hydrofracturing, and is pumped out from exploitation well(s). When choosing a location for a PCS, the main criterion is proximity to a consumer of energy and, especially, of hot water for heating. However, efficiency of choice depends on structure, state and thermal regime of the interiors and can be increased by application of geophysical methods, including electromagnetic (EM). In general, application of EM methods is possible at three stages: 1) Regional studies, when zones of probable increase of deep temperatures are revealed; 2) Detailed explorations, near-surface and deep, in the area, selected for PCS construction; 3) Monitoring, for imaging of the reservoir during its creation and exploitation. Here we will concentrate on the first stage. The depth range of our interest

  16. Geothermal Resource/Reservoir Investigations Based on Heat Flow and Thermal Gradient Data for the United States

    SciTech Connect

    D. D. Blackwell; K. W. Wisian; M. C. Richards; J. L. Steele

    2000-04-01

    Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of the use and applications of the database are described. The database and results are available on the world wide web. In this report numerical models are used to establish basic qualitative relationships between structure, heat input, and permeability distribution, and the resulting geothermal system. A series of steady state, two-dimensional numerical models evaluate the effect of permeability and structural variations on an idealized, generic Basin and Range geothermal system and the results are described.

  17. "Assistance to States on Geothermal Energy"

    SciTech Connect

    Linda Sikkema; Jennifer DeCesaro

    2006-07-10

    This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energy—Contract Number DE-FG03-01SF22367—with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreach to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the NGC

  18. Evaluation of the geothermal resource in the area of Albuquerque, New Mexico

    SciTech Connect

    Jiracek, G.R.; Swanberg, C.A.; Morgan, P.; Parker, M.D.

    1983-07-01

    Factors indicating a potential geothermal resource near Albuquerque are: (1) nearby volcanoes active as recently as 120,000 years ago, (2) gravity interpretation indicating a potential reservoir averaging 1.5 km thickness, (3) high heat flow near the city, (4) warm waters (>30/sup 0/C) in municipal wells, (5) recent seismicity indicating active faulting, thereby, allowing the possibility of deep hydrothermal circulation, (6) high shallow (<30 m) temperature gradients (>100/sup 0/C/km) discovered in our drillholes, (7) deeper (<500 m) gradients from water wells exceeding 80/sup 0/C/km, and (8) chemical analyses of 88 groundwater samples yielding estimated base reservoir temperatures as high as 190/sup 0/C. An area of elevated shallow temperature gradients (less than or equal to 140/sup 0/C/km) was discovered a few kilometers west of Albuquerque by our 69 hole drilling program. Resistivity, magnetic, and gravity measurements combined with computer modeling suggests that heated ground water is forced closer to the surface here by flow over a buried ridge. A well drilled nearby yielded the highest recorded temperature in the Albuquerque area at its maximum depth (32.8/sup 0/C at 364 m). The deep gradient is 35/sup 0/C/km. An oil test well close by reported large volumes of water at 1 km; therefore, the possibility of a low temperature (>50/sup 0/C) geothermal resource exists west of Albuquerque at less than 1 km depth.

  19. 43 CFR 3211.17 - What is the royalty rate on geothermal resources produced from or attributable to my lease that...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... arm's-length sale of the geothermal resources under applicable MMS rules at 30 CFR part 206, subpart H... derived from the arm's-length sale of the geothermal resources under applicable MMS rules at 30 CFR part... paragraph to the gross proceeds derived from the sale of electricity under applicable MMS rules at 30...

  20. 43 CFR 3211.17 - What is the royalty rate on geothermal resources produced from or attributable to my lease that...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... arm's-length sale of the geothermal resources under applicable MMS rules at 30 CFR part 206, subpart H... derived from the arm's-length sale of the geothermal resources under applicable MMS rules at 30 CFR part... paragraph to the gross proceeds derived from the sale of electricity under applicable MMS rules at 30...

  1. 43 CFR 3211.17 - What is the royalty rate on geothermal resources produced from or attributable to my lease that...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... arm's-length sale of the geothermal resources under applicable MMS rules at 30 CFR part 206, subpart H... derived from the arm's-length sale of the geothermal resources under applicable MMS rules at 30 CFR part... paragraph to the gross proceeds derived from the sale of electricity under applicable MMS rules at 30...

  2. Alaska geothermal bibliography

    SciTech Connect

    Liss, S.A.; Motyka, R.J.; Nye, C.J.

    1987-05-01

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  3. Geothermal resource, engineering and economic feasibility study for the City of Ouray, Colorado. Final report

    SciTech Connect

    Meyer, R.T.; Raskin, R.; Zocholl, J.R.

    1982-07-31

    A geothermal energy feasibility study has been performed for the City of Ouray, Colorado, to determine the potential economic development opportunities to the City. The resource assessment indicates the resource to be associated with the Ouray fault zone, the Leadville limestone formation, the high thermal gradient in the area of the San Juan mountains, and the recharge from precipitation in the adjacent mountains. Four engineering designs of alternative sizes, costs, applications, and years of start-up have been defined to offer the City a range of development scales. Life cycle cost analyses have been conducted for cases of both public and private ownership. All systems are found to be feasible on both economic and technical grounds. 49 refs., 8 figs.

  4. Design and testing of fish drier system utilizing geothermal energy resource in Ie Suum, Aceh Besar

    NASA Astrophysics Data System (ADS)

    Mubarak, Amir Zaki; Maulana, M. Ilham; Syuhada, Ahmad

    2016-03-01

    In an effort to increase the value of fish produced by the community in Krueng Raya Sub-district, it has been designed and tested a fish drier system utilizing geothermal energy resource in IeSuum Village, Krueng Raya Sub-district, Aceh Besar District. The geothermal energy is in the form of hot water with the temperature range is between 86 and 86.4 °C. Based on the design consideration, it is used a terraced rack type drier system. The drier system consists of a heat exchanger, drying chamber, and a blower to blow the air. Hot water from the geothermal source is passed into the heat exchanger to increase the air temperature outside it. The air is then blown into the drying chamber. Based on the design analysis is obtained that to dry 200 kg of fish in 24 hour, it is required a drying chamber with 1m long, 1 m width and 0.4 m high, the temperature of hot water entering the exchanger is 80 °C and the temperature of the air entering the drying chamber is maintained at 60°C. The average time required to dry fish till 10% of water level is 18-20 jam. The research is then continued by developing and testing the drying system with three layer rack to put in the fish. From the experimental result is obtained that the average water temperature flows out of the chamber is in the range of 76-78 °C and the temperature in the chamber is in the range of 57-62 °C. In addition, the weight of the fish, which initially is 20 kg, becomes12 kg in average after 18 hours drying process.

  5. Geophysical investigation and assessment of the Rye Patch Known Geothermal Resource Area, Rye Patch, Nevada

    NASA Astrophysics Data System (ADS)

    McDonald, Mark Richmond

    A gravity and ground-based magnetic survey was conducted at the Rye Patch Known Geothermal Resource Area located at Rye Patch, Nevada. The purpose of the study was to attempt to further delineate the geothermal reservoir and/or to identify potential drilling targets. The survey consisted of collecting data at 264 new stations to augment data from 203 stations collected in 2008. Information from previous seismic, aeromagnetic and geochemical investigations was also examined and incorporated. Filtering methods including removal of a polynomial trend surface and wavelength filtering were utilized on the gravity data to remove the strong regional overprint caused by the large density contrast between the low density alluvium within the valley versus the near-surface higher density rock in the higher elevations. After filtering, the Rye Patch Fault, the Range Front Fault, an east-west trending feature at the location of "southeast" fault, and another possible fault at the southern end of the study area are observable in the Rye Patch geothermal anomaly area. In the Humboldt House anomaly area, the northeast trending features identified by MacNight et al. (2005) and Ellis (2011) are not discernable although there is a significant gravity low in this area. Based on estimates arrived at by using 2nd derivative methods, fault dip angles are on the order of 80° and are consistent with previous conceptual models of the site. Computer modeling indicates that the fault blocks may also be rotated back to the east. Due to errors in collecting diurnal information, the ground-based magnetic information was of limited use. Anomalies identified with the magnetic data do however correlate with the locations of anomalies identified using gravity and aeromagnetic surveys. Results indicate that gravity methods can be an effective method of defining approximate fault locations, lengths, and approximate trends and dip angles.

  6. Low-temperature geothermal resource and stratigraphy of portions of Yakima County, Washington

    SciTech Connect

    Biggane, J.

    1982-07-30

    The low-temperature geothermal resource of portions of Yakima County, south-central Washington, is defined by several least squares linear regression analyses of bottom-hole temperature and depth data. Bottom-hole temperature and depth data were separated into fourteen well data groups based on geographic proximity, land slope azimuth, and position within the regional ground-water flow system. The depths of these wells range from over 50m to almost 600m. The regression analyses of these well data groups indicate that the projected land-surface temperature and geothermal gradient range from 10.6 to 14.0/sup 0/C and from 24.9 to 52.2/sup 0/C/km, respectively. Stratigraphic correlation diagrams developed from borehole geophysical and lithologic logs are given for localities within the lower Yakima, Black Rock, Moxee, Ahtanum, Cowiche, and Naches valleys. These correlation diagrams are combined with their respective borehole temperature logs and well data group predicted temperature curves to assess the validity of the regression analyses and to determine aquifer locations, temperatures, and directions of intra-borehole flow. A regression analysis of data from wells of south-central Washington with bottom-hole depths of over 700m to almost 3km suggests that the projected land-surface temperature and geothermal gradient of this depth interval are 21.8/sup 0/C and 31.3/sup 0/C/km, respectively. The depth to the 100/sup 0/C isotherm is approximately 2513m.

  7. Diffuse Helium and Hydrogen Degassing to Reveal Hidden Geothermal Resources in Oceanic Volcanic Islands: The Canarian Archipelago Case Study

    NASA Astrophysics Data System (ADS)

    Rodríguez, Fátima; Pérez, Nemesio M.; Padrón, Eleazar; Melián, Gladys; Hernández, Pedro A.; Asensio-Ramos, María; Dionis, Samara; López, Gabriel; Marrero, Rayco; Padilla, Germán D.; Barrancos, José; Hidalgo, Raúl

    2015-05-01

    We report herein the results of soil gas geochemistry studies, focused mainly on nonreactive and/or highly mobile gases such as He and H2, in five mining licenses at Tenerife and Gran Canaria, Canary Islands, Spain, during 2011-2014. The primary objective was to sort the possible geothermal potential of these five mining licenses, thus reducing the uncertainty inherent to the selection of the areas with highest geothermal potential for future exploration works. By combining the overall information obtained by the statistical-graphical analysis of the soil He and H2 data, the spatial distribution of soil gas concentrations and the analysis of selected chemical ratios of the soil gas to evaluate the influence of deep-seating degassing, two of the five mining licenses ( Garehagua and Abeque, both located in Tenerife Island) seemed to show the highest geothermal potential. These results will be useful for future implementation and development of geothermal energy in the Canaries, the only Spanish territory with potential high-enthalpy geothermal resources, thus the most promising area for high-enthalpy geothermal installations.

  8. Symposium in the field of geothermal energy

    SciTech Connect

    Ramirez, Miguel; Mock, John E.

    1989-04-01

    Mexico and the US are nations with abundant sources of geothermal energy, and both countries have progressed rapidly in developing their more accessible resources. For example, Mexico has developed over 600 MWe at Cerro Prieto, while US developers have brought in over 2000 MWe at the Geysers. These successes, however, are only a prologue to an exciting future. All forms of energy face technical and economic barriers that must be overcome if the resources are to play a significant role in satisfying national energy needs. Geothermal energy--except for the very highest grade resources--face a number of barriers, which must be surmounted through research and development. Sharing a common interest in solving the problems that impede the rapid utilization of geothermal energy, Mexico and the US agreed to exchange information and participate in joint research. An excellent example of this close and continuing collaboration is the geothermal research program conducted under the auspices of the 3-year agreement signed on April 7, 1986 by the US DOE and the Mexican Comision Federal de Electricidad (CFE). The major objectives of this bilateral agreement are: (1) to achieve a thorough understanding of the nature of geothermal reservoirs in sedimentary and fractured igneous rocks; (2) to investigate how the geothermal resources of both nations can best be explored and utilized; and (3) to exchange information on geothermal topics of mutual interest.

  9. Development of a geothermal resource in a fractured volcanic formation: Case study of the Sumikawa Geothermal Field, Japan

    SciTech Connect

    Garg, S.K.; Pritchett, J.W.; Stevens, J.L.; Luu, L.; Combs, J.

    1996-11-01

    The principal purpose of this case study of the Sumikawa Geothermal Field is to document and to evaluate the use of drilling logs, surface and downhole geophysical measurements, chemical analyses, and pressure transient data for the assessment of a high temperature volcanic geothermal field. The work accomplished during Year 1 of this ongoing program is described in the present report. A brief overview of the Sumikawa Geothermal Field is given. The drilling information and downhole pressure, temperature, and spinner surveys are used to determine feedzone locations, pressures and temperatures. Available injection and production data from both slim holes and large-diameter wells are analyzed to evaluate injectivity/productivity indices and to investigate the variation of discharge rate with borehole diameter. Finally, plans for future work are outlined.

  10. ADVANCES IN HYDROGEOCHEMICAL INDICATORS FOR THE DISCOVERY OF NEW GEOTHERMAL RESOURCES IN THE GREAT BASIN, USA

    SciTech Connect

    Simmons, Stuart F; Spycher, Nicolas; Sonnenthal, Eric; Dobson, Patrick

    2013-05-20

    This report summarizes the results of Phase I work for a go/no go decision on Phase II funding. In the first objective, we assessed the extent to which fluid-mineral equilibria controlled deep water compositions in geothermal systems across the Great Basin. Six systems were evaluated: Beowawe; Desert Peak; Dixie Valley; Mammoth; Raft River; Roosevelt. These represent a geographic spread of geothermal resources, in different geological settings and with a wide range of fluid compositions. The results were used for calibration/reformulation of chemical geothermometers that reflect the reservoir temperatures in producing reservoirs. In the second objective, we developed a reactive -transport model of the Desert Peak hydrothermal system to evaluate the processes that affect reservoir fluid geochemistry and its effect on solute geothermometry. This included testing geothermometry on “reacted” thermal water originating from different lithologies and from near-surface locations where the temperature is known from the simulation. The integrated multi-component geothermometer (GeoT, relying on computed mineral saturation indices) was tested against the model results and also on the systems studied in the first objective.

  11. Geopressured Geothermal Resource and Recoverable Energy Estimate for the Wilcox and Frio Formations, Texas (Presentation)

    SciTech Connect

    Esposito, A.; Augustine, C.

    2011-10-01

    An estimate of the total and recoverable geopressured geothermal resource of the fairways in the Wilcox and Frio formations is made using the current data available. The flow rate of water and methane for wells located in the geopressured geothermal fairways is simulated over a 20-year period utilizing the TOUGH2 Reservoir Simulator and research data. The model incorporates relative permeability, capillary pressure, rock compressibility, and leakage from the bounding shale layers. The simulations show that permeability, porosity, pressure, sandstone thickness, well spacing, and gas saturation in the sandstone have a significant impact on the percent of energy recovered. The results also predict lower average well production flow rates and a significantly higher production of natural gas relative to water than in previous studies done from 1975 to 1980. Previous studies underestimate the amount of methane produced with hot brine. Based on the work completed in this study, multiphase flow processes and reservoir boundary conditions greatly influence the total quantity of the fluid produced as well as the ratio of gas and water in the produced fluid.

  12. Three-dimensional Q -1 model of the Coso Hot Springs Known Geothermal Resource Area

    NASA Astrophysics Data System (ADS)

    Young, Chi-Yuh; Ward, Ronald W.

    1980-05-01

    Observations of teleseismic P waves above geothermal systems exhibit travel time delays and anomalously high seismic attenuation, which is extremely useful in estimating the thermal regime and the potential of the system. A regional telemetered network of sixteen stations was operated by the U.S. Geological Survey in the Coso Hot Springs Known Geothermal Resources Area (KGRA) for such studies from September 1975 to October 1976. Subsequently, they deployed a portable Centipede array of 26 three-component stations near the center of the anomaly. The seismograms of 44 events recorded by the telemetered array and nine events by the Centipede array were analyzed using the reduced spectral ratio technique to determine the differential attenuation factor δt* for the events recorded with the highest signal-to-noise ratio. The δt* variation observed across the Coso Hot Springs KGRA were small (<0.2 s). A three-dimensional generalized linear inversion of the δt* observations was performed using a three-layer model. A shallow zone of high attenuation exists within the upper 5 km in a region bounded by Coso Hot Springs, Devils Kitchen, and Sugarloaf Mountain probably corresponding to a shallow vapor liquid mixture or `lossy' near surface lithology. No zones of significantly high attenuation occur between 5- and 12- km depth. Between the depth of 12-20 km a thick zone of high attenuation (Q <50) exists, offset toward the east from the surface anomaly.

  13. Finding Hidden Geothermal Resources in the Basin and Range Using Electrical Survey Techniques: A Computational Feasibility Study

    SciTech Connect

    J. W. Pritchett; not used on publication

    2004-12-01

    For many years, there has been speculation about "hidden" or "blind" geothermal systems—reservoirs that lack an obvious overlying surface fluid outlet. At present, it is simply not known whether "hidden" geothermal reservoirs are rare or common. An approach to identifying promising drilling targets using methods that are cheaper than drilling is needed. These methods should be regarded as reconnaissance tools, whose primary purpose is to locate high-probability targets for subsequent deep confirmation drilling. The purpose of this study was to appraise the feasibility of finding "hidden" geothermal reservoirs in the Basin and Range using electrical survey techniques, and of adequately locating promising targets for deep exploratory drilling based on the survey results. The approach was purely theoretical. A geothermal reservoir simulator was used to carry out a lengthy calculation of the evolution of a synthetic but generic Great Basin-type geothermal reservoir to a quasi-steady "natural state". Postprocessors were used to try to estimate what a suite of geophysical surveys of the prospect would see. Based on these results, the different survey techniques were compared and evaluated in terms of their ability to identify suitable drilling targets. This process was completed for eight different "reservoir models". Of the eight cases considered, four were "hidden" systems, so that the survey techniques could be appraised in terms of their ability to detect and characterize such resources and to distinguish them from more conventionally situated geothermal reservoirs. It is concluded that the best way to find "hidden" basin and range geothermal resources of this general type is to carry out simultaneous SP and low-frequency MT surveys, and then to combine the results of both surveys with other pertinent information using mathematical "inversion" techniques to characterize the subsurface quantitatively. Many such surveys and accompanying analyses can be carried out

  14. 43 CFR 3251.12 - What action will BLM take on my Notice of Intent to Conduct Geothermal Resource Exploration...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What action will BLM take on my Notice of Intent to Conduct Geothermal Resource Exploration Operations? 3251.12 Section 3251.12 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000)...

  15. 43 CFR 3251.11 - What information is in a complete Notice of Intent to Conduct Geothermal Resource Exploration...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What information is in a complete Notice of Intent to Conduct Geothermal Resource Exploration Operations application? 3251.11 Section 3251.11 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT...

  16. 30 CFR 1206.352 - How do I calculate the royalty due on geothermal resources used for commercial production or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in your lease; or (2) The royalty rate that BLM prescribes or calculates under 43 CFR 3211.17. See... CFR 3211.17. See § 1206.361 for additional provisions applicable to determining gross proceeds under... geothermal resources used for commercial production or generation of electricity? 1206.352 Section...

  17. 30 CFR 206.352 - How do I calculate the royalty due on geothermal resources used for commercial production or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; or (2) The royalty rate that BLM prescribes or calculates under 43 CFR 3211.17. See § 206.361 for... multiplied by the royalty rate BLM prescribed for your lease under 43 CFR 3211.17. See § 206.361 for... geothermal resources used for commercial production or generation of electricity? 206.352 Section...

  18. Mineral and geothermal resource potential of Wild Cattle Mountain and Heart Lake roadless areas Plumas, Shasta, and Tehama Counties, California

    SciTech Connect

    Muffler, L.J.P.; Clynne, M.A.; Cook, A.L.

    1982-01-01

    The results of geological, geochemical, and geophysical surveys in Wild Cattle Mountain and Heart Lake Roadless Areas indicate no potential for metallic or non-metallic mineral resources in the areas and no potential for coal or petroleum energy resources. However, Wild Cattle Mountain Roadless Area and part of Heart Lake Roadless Area lie in Lassen Known Geothermal Resources Area, and much of the rest of Heart Lake Roadless Area is subject to non-competitive geothermal lease applications. Both areas are adjacent to Lassen Volcanic National Park, which contains extensive areas of fumaroles, hot springs, and hydrothermally altered rock; voluminous silicic volcanism occurred here during late Pleistocene and Holocene time. Geochemical data and geological interpretation indicate that the thermal manifestations in the Park and at Morgan and Growler Hot Springs (immediately west of Wild Cattle Mountain Roadless Area) are part of the same large geothermal system. Consequently, substantial geothermal resources are likely to be discovered in Wild Cattle Mountain Roadless Area and cannot be ruled out for Heart Lake Roadless Area.

  19. Geological, geochemical, and geophysical survey of the geothermal resources at Hot Springs Bay Valley, Akutan Island, Alaska

    SciTech Connect

    Motyka, R.J.; Wescott, E.M.; Turner, D.L.; Swanson, S.E.; Romick, J.D.; Moorman, M.A.; Poreda, R.J.; Witte, W.; Petzinger, B.; Allely, R.D.

    1985-01-01

    An extensive survey was conducted of the geothermal resource potential of Hot Springs Bay Valley on Akutan Island. A topographic base map was constructed, geologic mapping, geophysical and geochemical surveys were conducted, and the thermal waters and fumarolic gases were analyzed for major and minor element species and stable isotope composition. (ACR)

  20. Geothermal resource assessment for the state of Texas: status of progress, November 1980. Final report. Appendices E through H

    SciTech Connect

    Woodruff, C.M. Jr.; Caran, S.C.; Gever, C.; Henry, C.D.; Macpherson, G.L.; McBride, M.W.

    1982-03-01

    These appendices include: a folio of maps showing lineaments perceived across the state; an index and critique of the Landsat images used in perceiving the lineaments; a selected bibliography on lineaments; and a discussion of area-specific assessments of geothermal resources near military bases in Bexar, Travis, and Val Verde Counties. (MHR)

  1. Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho

    SciTech Connect

    Glaspey, Douglas J.

    2008-01-30

    Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

  2. Flora of the Mayacmas Mountains. [Listing of 679 species in the Geysers Geothermal Resource area

    SciTech Connect

    Neilson, J.A.

    1981-09-01

    This flora describes the plants that occur within the Mayacmas Mountain Range of northern California. It is the result of ten years of environmental assessment by the author in the Geysers Geothermal Resource area, located in the center of the Mayacmas Range. The flora includes notes on plant communities and ecology of the area, as well as habitat and collection data for most of the 679 species covered. Altogether 74 families, 299 genera and 679 species are included in the flora. The work is divided into eight subdivisions: trees; shrubs; ferns and fern allies; aquatic plants; tules, sedges, and rushes; lilies and related plants; dicot herbs; and grasses. Within each subdivision, family, genera and species are listed alphabetically. Keys are provided at the beginning of each subdivision. A unique combination of physical, environmental and geologic factors have resulted in a rich and diverse flora in the Mayacmas. Maps have been provided indicating known locations for species of rare or limited occurrence.

  3. 43 CFR 3280.3 - What is BLM's general policy regarding the formation of unit agreements?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... natural resources of any geothermal reservoir, field, or like area, or any part thereof, lessees and their... operating under a unit agreement for the reservoir, field, or like area, or any part thereof,...

  4. The geothermal resource in Dominica : from the class room to the fieldwork

    NASA Astrophysics Data System (ADS)

    Olivia, Urity

    2014-05-01

    In Martinique and more generally in the Caribbean area, the Global warming is not only a topic you can read about in a scientific article but a true issue in the everyday life of the inhabitants. Many effects of the increase of the sea level or the erosion can be observed in the environment. For example, beaches are being destroyed, frightening buildings built on the seafront. This is not only an environmental issue but a touristic and economical one. By the way it is a problem to give a new home to these inhabitants who are now losing their houses. So, with their limited territory and their economy depending on tourism, the islands of the Lesser Antilles have a big challenge which is to find some solutions to minimize the effects of the Global warming on their populations. Anyway, anthropic activities and particularly the using of fossil fuels are named to be responsible for a big part of the climate changes. Knowing this allows us to understand that the Caribbean countries have to develop renewable energies. Guadeloupe and Dominica are two good examples of these islands, where the politicians have already decided to use sustainable energies. They use geothermal energy and hydroelectricity to provide to the families' needs. In this way, the Dominican government, with finances from The European Union, Guadeloupe and Martinique decided to explore the geothermal resource in the island and to build a plant in the area of Roseau Valley. Therefore the students and I, we have decided to study the geology of Dominica in order to find the origin of the geothermal resource and to get more information about the geothermal power plant project. Furthermore, we wanted to understand how this resource is used by the locals and to determine the impact of the presence of the future plant in the chosen sites. In the poster to come, I have chosen to introduce the "journey in Dominica" and the fieldwork that I have realized with my students of upper sixth form. The poster will focus

  5. Diffuse helium and hydrogen degassing to reveal hidden geothermal resources in oceanic volcanic islands: The Canarian archipelago case study

    NASA Astrophysics Data System (ADS)

    Rodríguez, Fátima; Pérez, Nemesio M.; Padrón, Eleazar; Dionis, Samara; López, Gabriel; Melián, Gladys V.; Asensio-Ramos, María; Hernández, Pedro A.; Padilla, German; Barrancos, José; Marrero, Rayco; Hidalgo, Raúl

    2015-04-01

    During geothermal exploration, the geochemical methods are extensively used and play a major role in both exploration and exploitation phases. They are particularly useful to assess the subsurface temperatures in the reservoir, the origin of the fluid, and flow directions within the reservoir. The geochemical exploration is based on the assumption that fluids on the surface reflect physico-chemical and thermal conditions in the geothermal reservoir at depth. However, in many occasions there is not any evidence of endogenous fluids manifestations at surface, that traditionally evidence the presence of an active geothermal system. Discovery of new geothermal systems will therefore require exploration of areas where the resources are either hidden or lie at great depths. Geochemical methods for geothermal exploration at these areas must include soil gas surveys, based on the detection of anomalously high concentrations of some hydrothermal gases in the soil atmosphere, generally between 40 cm and 1 meter depth from the surface. Among soil gases, particularly interest has been addressed to non-reactive and/or highly mobile gases. They offer important advantages for the detection of vertical permeability structures, because their interaction with the surrounding rocks or fluids during the ascent toward the surface is minimum. This is the case of helium (He) and hydrogen (H2), that have unique characteristics as a geochemical tracer, owing to their chemical and physical characteristics. Enrichments of He and H2 observed in the soil atmosphere can be attributed almost exclusively to migration of deep-seated gas toward the surface. In this work we show the results of soil gas geochemistry studies, focused mainly in non-reactive and/or highly mobile gases as He and H2, in five minning grids at Tenerife and Gran Canaria, Canay Islands, Spain, during 2011-2014. The primary objective was to use different geochemical evidences of deep-seated gas emission to sort the possible

  6. An inventory of Geothermal Resources in Nebraska: State-Coupled Program between US Department of Energy and The University of Nebraska. Final report, June 30, 1983

    SciTech Connect

    Gosnold, William D.; Eversoll, Duane, A.; Messenger, Karen A.; Carlson, Marvin P.

    1983-06-30

    The goal of the State Coupled Resource Assessment Program is to identify and evaluate geothermal resources in the state, particularly low-temperature potential. Eight tasks were identified and documented in this report as follows: (1) Bottom-hole Temperature Survey; (2) Heat Flow and Temperature Gradient Survey; (3) Data Translation studies; (4) Gravity Data; (5) Substate Regions; (6) Information Dissemination; (7) State Geothermal Map; (8) Reports. The project had three major products: (1) a map ''Geothermal Resources of Nebraska''; (2) a significant amount of thermal data collected and documented within the state; and (3) a series of publications, presentations and meetings.

  7. Geophysical studies of the Crump Geyser known geothermal resource area, Oregon, in 1975

    USGS Publications Warehouse

    Plouff, Donald

    2006-01-01

    The U.S. Geological Survey (USGS) conducted geophysical studies in support of the resource appraisal of the Crump Geyser Known Geothermal Resource Area (KGRA). This area was designated as a KGRA by the USGS, and this designation became effective on December 24, 1970. The land classification standards for a KGRA were established by the Geothermal Steam Act of 1970 (Public Law 91-581). Federal lands so classified required competitive leasing for the development of geothermal resources. The author presented an administrative report of USGS geophysical studies entitled 'Geophysical background of the Crump Geyser area, Oregon, KGRA' to a USGS resource committee on June 17, 1975. This report, which essentially was a description of geophysical data and a preliminary interpretation without discussion of resource appraisal, is in Appendix 1. Reduction of sheets or plates in the original administrative report to page-size figures, which are listed and appended to the back of the text in Appendix 1, did not seem to significantly degrade legibility. Bold print in the text indicates where minor changes were made. A colored page-size index and tectonic map, which also show regional geology not shown in figure 2, was substituted for original figure 1. Detailed descriptions for the geologic units referenced in the text and shown on figures 1 and 2 were separately defined by Walker and Repenning (1965) and presumably were discussed in other reports to the committee. Heavy dashed lines on figures 1 and 2 indicate the approximate KGRA boundary. One of the principal results of the geophysical studies was to obtain a gravity map (Appendix 1, fig. 10; Plouff, and Conradi, 1975, pl. 9), which reflects the fault-bounded steepness of the west edge of sediments and locates the maximum thickness of valley sediments at about 10 kilometers south of Crump Geyser. Based on the indicated regional-gravity profile and density-contrast assumptions for the two-dimensional profile, the maximum

  8. Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Volume I.

    SciTech Connect

    Bloomquist, R. Gordon

    1985-06-01

    The objective was to consolidate and evaluate all geologic, environmental, and legal and institutional information in existing records and files, and to apply a uniform methodology to the evaluation and ranking of sites to allow the making of creditable forecasts of the supply of geothermal energy which could be available in the region over a 20 year planning horizon. A total of 1265 potential geothermal resource sites were identified from existing literature. Site selection was based upon the presence of thermal and mineral springs or wells and/or areas of recent volcanic activity and high heat flow. 250 sites were selected for detailed analysis. A methodology to rank the sites by energy potential, degree of developability, and cost of energy was developed. Resource developability was ranked by a method based on a weighted variable evaluation of resource favorability. Sites were ranked using an integration of values determined through the cost and developability analysis. 75 figs., 63 tabs.

  9. 30 CFR 1206.355 - How do I calculate royalty due on geothermal resources I sell at arm's length to a purchaser for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...'s-length purchaser multiplied by the royalty rate in your lease or that BLM prescribes under 43 CFR... resources I sell at arm's length to a purchaser for direct use? 1206.355 Section 1206.355 Mineral Resources... resources I sell at arm's length to a purchaser for direct use? If you sell geothermal resources...

  10. 30 CFR 1206.355 - How do I calculate royalty due on geothermal resources I sell at arm's length to a purchaser for...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT... resource is the gross proceeds accruing to you from the sale of the geothermal resource to the arm's-length purchaser multiplied by the royalty rate in your lease or that BLM prescribes under 43 CFR 3211.18....

  11. 30 CFR 1206.355 - How do I calculate royalty due on geothermal resources I sell at arm's length to a purchaser for...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT... resource is the gross proceeds accruing to you from the sale of the geothermal resource to the arm's-length purchaser multiplied by the royalty rate in your lease or that BLM prescribes under 43 CFR 3211.18....

  12. 30 CFR 1206.355 - How do I calculate royalty due on geothermal resources I sell at arm's length to a purchaser for...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT... resource is the gross proceeds accruing to you from the sale of the geothermal resource to the arm's-length purchaser multiplied by the royalty rate in your lease or that BLM prescribes under 43 CFR 3211.18....

  13. Resource assessment of low- and moderate-temperature geothermal waters in Calistoga, Napa County, California. Report of the second year, 1979 to 1980 of the US Department of Energy-California State-Coupled Program for reservoir assessment and confirmation

    SciTech Connect

    Youngs, L.G.; Bacon, C.F.; Chapman, R.H.; Chase, G.W.; Higgins, C.T.; Majmundar, H.H.; Taylor, G.C.

    1980-11-10

    Statewide assessment studies included updating and completing the USGS GEOTHERM File for California and compiling all data needed for a California Geothermal Resources Map. Site specific assessment studies included a program to assess the geothermal resource at Calistoga, Napa County, California. The Calistoga effort was comprised of a series of studies involving different disciplines, including geologic, hydrologic, geochemical and geophysical studies.

  14. Exploration of the Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada

    SciTech Connect

    Dick Benoit; David Blackwell

    2006-01-01

    three thermometers closely agree gives the predictions added credibility. Unfortunately, the final result of this exploration is that a moderate temperature geothermal resource has been clearly identified but it appears to be restricted to a relatively small area that would be difficult to develop.

  15. Exploration of the Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada

    SciTech Connect

    Dick Benoit; David Blackwell

    2005-10-31

    three thermometers closely agree gives the predictions added credibility. Unfortunately, the final result of this exploration is that a moderate temperature geothermal resource has been clearly identified but it appears to be restricted to a relatively small area that would be difficult to develop.

  16. The feasibility of applying geopressured-geothermal resources to direct uses

    NASA Astrophysics Data System (ADS)

    Lunis, Ben C.; Dewys, Jane Negus; Plum, Martin M.; Lienau, Paul J.; Spencer, F. J.; Nitschke, George F.

    1991-09-01

    This study concludes that direct use technologies, especially desalinated water production, can contribute significantly to the value added process and the overall economic viability in developing a geopressured resource. Although agriculture and aquaculture applications are marginal projects when they are the only use of a geopressured well, the small margin of profitability can contribute to improving the overall economics of the direct use development. The added complexity from a technical and management aspect may add to the overall risk and unpredictability of the project. Six combinations of direct uses received economic evaluation that resulted in 15 percent discounted payback periods ranging from 4 to over 10 years. Many other combinations are possible depending on the resource and market variables. Selection of appropriate technologies and sizes of applications will be established by the developer that engages in geopressured resource utilization. Currently, many areas of the country where geopressured resources are located also have surplus electrical capacity and generation; thus power utilities have been selling power for less than two cents per kWH, well below a reasonable breakeven value for geopressured produced electricity. However, when the energy demand of the integrated geopressured facility is large enough to install power generation equipment, operating expenses can be reduced by not paying the 10 to 12 cents per kWH utility rate. The study includes an analysis of a geothermal turbine unit installed with a desalination and an agriculture/aquaculture facility, taking advantage of the cascading energy values. Results suggest that this scenario becomes profitable only where the market price for electricity exceeds five cents per kWH.

  17. The feasibility of applying geopressured-geothermal resources to direct uses

    SciTech Connect

    Lunis, B.C.; Negus-de Wys, J.; Plum, M.M. ); Lienau, P.J. . Geo-Heat Center); Spencer, F.J. ); Nitschke, G.F. )

    1991-09-01

    This study concludes that direct use technologies, especially desalinated water production, can contribute significantly to the value added process and the overall economic viability in developing a geopressured resource. Although agriculture and aquaculture applications are marginal projects when they are the only use of a geopressured well, the small margin of profitability can contribute to improving the overall economics of the direct use development. The added complexity from a technical and management aspect may add to the overall risk and unpredictability of the project. Six combination of direct uses received economic evaluation that resulted in 15% discounted payback periods ranging from 4 to over 10 years. Many other combinations are possible depending on the resource and market variables. Selection of appropriate technologies and sizes of applications will be established by the developer that engages in geopressured resource utilization. Currently, many areas of the country where geopressured resources are located also have surplus electrical capacity and generation, thus power utilities have been selling power for less than 2 cents per kWH, well below a reasonable breakeven value for geopressured produced electricity. However, when the energy demand of the integrated geopressured facility is large enough to install power generation equipment, operating expenses can be reduced by not paying the 10 to 12 cents per kWH utility rate. The study includes an analysis of a geothermal turbine unit installed with a desalination and an agriculture/aquaculture facility, taking advantage of the cascading energy values. Results suggest that this scenario becomes profitable only where the market price for electricity exceeds five cents per kWH.

  18. Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States (Presentation)

    SciTech Connect

    Esposito, A.; Porro, C.; Augustine, C.; Roberts, B.

    2012-09-01

    Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties such as depth to basement and formation thickness are well known. The availability of this data reduces exploration risk and allows development of geologic exploration models for each basin. This study estimates the magnitude of recoverable geothermal energy from 15 major known U.S. sedimentary basins and ranks these basins relative to their potential. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by (Muffler, 1979). A qualitative recovery factor was determined for each basin based on data on flow volume, hydrothermal recharge, and vertical and horizontal permeability. Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient information was gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data were insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission databases. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size, temperature distribution, and a probable quantitative recovery factor.

  19. Estimate of Geothermal Energy Resource in Major U.S. Sedimentary Basins (Presentation)

    SciTech Connect

    Porro, C.; Augustine, C.

    2012-04-01

    This study estimates the magnitude of geothermal energy from fifteen major known US sedimentary basins and ranks these basins relative to their potential. Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties are known. This reduces exploration risk and allows development of geologic exploration models for each basin as well as a relative assessment of geologic risk elements for each play. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by Muffler (USGS). Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient Information were gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data was insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission websites. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size and temperature distribution, and to qualitatively assess reservoir productivity.

  20. Heat flow in Railroad Valley, Nevada and implications for geothermal resources in the south-central Great Basin

    USGS Publications Warehouse

    Williams, C.F.; Sass, J.H.

    2006-01-01

    The Great Basin is a province of high average heat flow (approximately 90 mW m-2), with higher values characteristic of some areas and relatively low heat flow (<60 mW m-2) characteristic of an area in south-central Nevada known as the Eureka Low. There is hydrologie and thermal evidence that the Eureka Low results from a relatively shallow, hydrologically controlled heat sink associated with interbasin water flow in the Paleozoic carbonate aquifers. Evaluating this hypothesis and investigating the thermal state of the Eureka Low at depth is a high priority for the US Geological Survey as it prepares a new national geothermal resource assessment. Part of this investigation is focused on Railroad Valley, the site of the largest petroleum reservoirs in Nevada and one of the few locations within the Eureka Low with a known geothermal system. Temperature and thermal conductivity data have been acquired from wells in Railroad Valley in order to determine heat flow in the basin. The results reveal a complex interaction of cooling due to shallow ground-water flow, relatively low (49 to 76 mW m-2) conductive heat flow at depth in most of the basin, and high (up to 234 mW m-2) heat flow associated with the 125??C geothermal system that encompasses the Bacon Flat and Grant Canyon oil fields. The presence of the Railroad Valley geothermal resource within the Eureka Low may be reflect the absence of deep ground-water flow sweeping heat out of the basin. If true, this suggests that other areas in the carbonate aquifer province may contain deep geothermal resources that are masked by ground-water flow.

  1. Geothermal Outreach and Project Financing

    SciTech Connect

    Elizabeth Battocletti

    2006-04-06

    The ?Geothermal Outreach and Project Financing? project substantially added to the understanding of geothermal resources, technology, and small business development by both the general public as well as those in the geothermal community.

  2. GEOGRAPHIC INFORMATION SYSTEMS IN MANAGING OF TERRITORIAL RESOURCES: AN EXAMPLE FOR THE SABATINI GEOTHERMAL SYSTEM (CENTRAL ITALY)

    NASA Astrophysics Data System (ADS)

    Procesi, M.; Cinti, D.; Poncia, P.; de Rita, D.

    2009-12-01

    Geographic Information System (GIS) is very important tool in managing the interdisciplinary researches and territorial resources. GIS integrates data for capturing, managing, analyzing, and displaying all forms of geographically referenced information. They can represent a scientific and social benefit. Here we present an application of GIS to a potentially exploitable geothermal area. The geothermal resource can be used either indirectly or directly. In the first case electricity is produced from high enthalpy systems. In second case heating and cooling systems are obtained from medium or low enthalpy systems. Italian geothermal resources employment is still poorly developed in direct use sector, despite the great geothermal potentials suitable for this purpuse. Often this limited application is due mainly to a inadequate territory knowledge and sometimes by difficulties in obtaining required information. In this case the creation of a geo-database can be extremely helpful. The studied area is located in Central Italy, just north of Rome, and comprise the western part of the Sabatini Volcanic District, Tolfa Mountains, extending up to Civitavecchia. Exploration surveys investigated this area during 70’s-90’s for geothermal purpose, but the area still results unexploited. The presence of thermal waters and of anomalous heat flow, together with demographical growing of the last years, make this site a suitable location for direct applications of the geothermal resource. Previews work and new data about geological, structural, hydrogeological, geochemical features have been processed to be recorded in a geo-database . Further, social data about demographical trend and available scientific record concerning the studied area fulfill the database. The majority of available geological information date back to early 90’s; an important part of the work consisted in the digitalization and updating of pre-existent data. The final product is a WEB-GIS that can

  3. Geologic, geophysical, and geochemical aspects of site-specific studies of the geopressured-geothermal energy resource of southern Louisiana. Final report

    SciTech Connect

    Pilger, R.H. Jr.

    1985-01-01

    The report consists of four sections dealing with progress in evaluating geologic, geochemical, and geophysical aspects of geopressured-geothermal energy resources in Louisiana. Separate abstracts have been prepared for the individual sections. (ACR)

  4. Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.

    SciTech Connect

    Goranson, Colin

    2005-03-01

    Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in volcanic settings.

  5. CO/sub 2/ and carbonate chemistry applied to geothermal engineering. Guidance for interpreting and using chemical data about geothermal resources

    SciTech Connect

    Michels, D.E.

    1981-01-01

    The chemistry of high-HCO/sub 3/ resources is emphasized because they present special complications about data interpretation, development of vapor, and potential for scale deposition. Solubility of CO/sub 2/ and its exsolution from liquids is treated according to the unique context presented by geothermal resources. Contrasts between this approach and the treatment of CO/sub 2/ solubility in physical chemistry and other geochemical contexts are presented. Dimensional units for solubility coefficients different from those of physical chemists are presented to favor engineering application. The effects of CO/sub 2/ on wellbore flow, initiation of flashing, and depth of the 2-phase zone are described and illustrated with examples. To aid the understanding of fluid behavior and the interplay with the design process, specially constructed charts - chemical maps - are presented, examples given for their use, and directions given for their construction.

  6. Subsurface geology and geopressured/geothermal resource evaluation of the Lirette-Chauvin-Lake Boudreaux area, Terrebonne Parish, Louisiana

    SciTech Connect

    Lyons, W.S.

    1982-12-01

    The geology of a 125 square mile area located about 85 miles southeast of Baton Rouge and about 12 miles southeast of Houma, Louisiana, has been studied to evaluate its potential for geopressured/geothermal energy resources. Structure, stratigraphy, and sedimentation were studied in conjunction with pressure and temperature distributions over a broad area to locate and identify reservoirs that may be prospective. Recommendations concerning future site specific studies within the current area are proposed based on these findings.

  7. Commission decision on the Department of Water Resources' Application for Certification for the Bottle Rock Geothermal Project

    SciTech Connect

    Not Available

    1980-11-01

    The Application for Certification for the construction of a 55 MW geothermal power plant and related facilities in Lake County was approved subject to terms identified in the Final Decision. The following are covered: findings on compliance with statutory site-certification requirements; final environmental impact report; procedural steps; evidentiary bases; need, environmental resources; public health and safety; plant and site safety and reliability; socioeconomic, land use, and cultural concerns, and transmission tap line. (MHR)

  8. The variable pressure supercritical Rankine cycle for integrated natural gas and power production from the geopressured geothermal resource

    NASA Astrophysics Data System (ADS)

    Goldsberry, F. L.

    1982-03-01

    A small-scale power plant cycle that utilizes both a variable pressure vaporizer (heater) and a floating pressure (and temperature) air-cooled condenser is described. Further, it defends this choice on the basis of classical thermodynamics and minimum capital cost by supporting these conclusions with actual comparative examples. The application suggested is for the geopressured geothermal resource. The arguments cited in this application apply to any process (petrochemical, nuclear, etc.) involving waste heat recovery.

  9. Mineral and geothermal resource potential of the Mount Hood Wilderness, Clackamas and Hood River Counties, Oregon. Summary report and map

    SciTech Connect

    Keith, T.E.C.; Causey, J.D.

    1982-01-01

    The potential for near-surface mineral resources in the Mount Hood Wilderness is low. Geochemical data suggest two areas of weak epithermal mineralization in the Zigzag Mountain part of the wilderness: (1) the Lost Creek-Burnt Lake-Cast Creek-Short Creek area on the north side of Zigzag Mountain where vein-type lead-zinc-silver mineralization occurs; and (2) the Lady Creek-Laurel Hill area on the south side of Zigzag Mountain where the upper part of a quartz diorite pluton has associated propylitic alteration resulting in some porphyry-type copper, gold, silver, lead, and zinc mineralization. Geothermal-resource potential for low- to intermediate-temperature (less than 248/sup 0/F, 120/sup 0/C) hot-water systems in the wilderness is moderate to high. Part of the wilderness is classified as a Known Geothermal Resources Area (KGRA) and two parts have been included in geothermal lease areas. Rock and gravel sources are present within the wilderness; however, quantities of similar and more accessible deposits are available outside the wilderness. Deposits outside the wilderness are large enough to supply local demand in the foreseeable future.

  10. Geothermal energy in Nevada

    SciTech Connect

    Not Available

    1980-01-01

    The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

  11. 33 CFR 155.4045 - Required agreements or contracts with the salvage and marine firefighting resource providers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with the salvage and marine firefighting resource providers. 155.4045 Section 155.4045 Navigation and... MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS Salvage and Marine Firefighting § 155.4045 Required agreements or contracts with the salvage and marine firefighting resource providers. (a) You may only...

  12. 33 CFR 155.4045 - Required agreements or contracts with the salvage and marine firefighting resource providers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with the salvage and marine firefighting resource providers. 155.4045 Section 155.4045 Navigation and... MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS Salvage and Marine Firefighting § 155.4045 Required agreements or contracts with the salvage and marine firefighting resource providers. (a) You may only...

  13. 77 FR 33000 - Solicitation for a Cooperative Agreement: Resources for NIC's Web Site on Data Collection and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ... National Institute of Corrections Solicitation for a Cooperative Agreement: Resources for NIC's Web Site on... Corrections (NIC) is seeking applications for the development of resources for NIC's Web site on data..., documents or other information sources (i.e. spreadsheets, Web sites) that provide examples of policy...

  14. Geothermal resources in the Banbury Hot Springs area, Twin Falls County, Idaho

    USGS Publications Warehouse

    Lewis, R.E.; Young, Harold William

    1982-01-01

    Thermal water 30.0 degrees to 72.0 degrees Celsius is produced from 26 wells and 2 springs in the vicinity of Banbury Hot Springs near Buhl, Idaho. Thermal water is used for residence heating, catfish and tropical fish production, greenhouse operation, swimming pools, and therapeutic baths. In 1979, 10,300 acre-feet of thermal water was utilized; heat discharged convectively from the geothermal system was about 1.1 x 107 calories per second. Decline in artesian head and discharge apparent in recorder charts from two wells may represent seasonal fluctuations or may reflect reservoir response to development of the resource. The thermal waters sampled are sodium carbonate or bicarbonate in character and slightly alkaline. Mixing of hot (72 degrees Celsius) water with local cooler ground water can be shown from various relations among stable isotopes, chloride, and enthalpy. On the basis of concentration of tritium, the age of most of the water sampled is at least 100 years and perhaps more than 1,000 years. Some water (33 degrees Celsius) may be as young as 29 years. On the basis of silica, sodium-potassium-calcium, and sulfate-water geothermometers, the best estimate of the maximum reservoir temperature for the thermal water is between 70 degrees and 100 degrees Celsius.

  15. Geothermal resources in the Banbury Hot Springs area, Twin Falls County, Idaho

    USGS Publications Warehouse

    Lewis, R.E.; Young, H.W.

    1980-01-01

    Thermal water (30.0 to 72.0 degrees Celsius) is produced from 26 wells and 2 springs in the vicinity of Banbury Hot Springs near Buhl, Idaho. Thermal water is used for space heating of private residences, catfish and tropical fish production, greenhouse operation, swimming pools, and therapeutic baths. In 1979, 10 ,300 acre-feet of thermal water was utilized; heat discharged convectively from the geothermal system was about 1.09 x 10 to the 7th power calories per second. Decline in artesian head and discharge apparent in recorder charts from two wells may represent seasonal fluctuations or may reflect aquifer response to development of the resource. Thermal waters sampled are sodium bicarbonate in character and slightly alkaline. Mixing of a hot (72 degrees Celsius) water with local, cooler ground water can be shown from various relations between stable isotopes, chloride, and enthalpy. On the basis of concentration of trituim , age of the waters sampled is at least 100 years an perhaps more than 1,000 years. One water (33 degress Celsius) may be as young as 29 years. On the basis of silica, sodium-potassium-calcium, and sulfate-water geothermometers, best estimate of the maximum reservoir temperature for the thermal waters is between about 70 and 100 degrees Celsius. (USGS)

  16. Geothermal energy in Nevada: development and utilization

    SciTech Connect

    Not Available

    1982-01-01

    The nature of geothermal resources in Nevada and resource applications are discussed. The social and economic advantages of using geothermal energy are outlined. Federal and state programs established to foster the development of geothermal energy are discussed. (MHR)

  17. Geothermal energy: a brief assessment

    SciTech Connect

    Lunis, B.C.; Blackett, R.; Foley, D.

    1982-07-01

    This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

  18. Direct utilization of geothermal resources field experiments at Monroe, Utah. Final report, July 14, 1978-July 13, 1981

    SciTech Connect

    Blair, C.K.; Owen, L.B.

    1982-12-01

    The City of Monroe, Utah undertook a project to demonstrate the economic and technical viability of utilizing a low temperature geothermal resource to provide space and hot water heating to commercial, municipal, and domestic users within the community. During the course of the project, resource development and assessment, including drilling of a production well, was successfully completed. Upon completion of the field development and assessment phase of the program and of a preliminary design of the district heating system, it was determined that the project as proposed was not economically viable. This was due to: (1) a significant increase in estimated capital equipment costs resulting from the general inflation in construction costs, the large area/low population density in Monroe, and a more remote fluid disposal well site than planned, could not balance increased construction costs, (2) a lower temperature resource than predicted, and (3) due to predicted higher pumping and operating costs. After a thorough investigation of alternatives for utilizing the resource, further project activities were cancelled because the project was no longer economical and an alternative application for the resource could not be found within the constraints of the project. The City of Monroe, Utah is still seeking a beneficial use for the 600 gpm, 164/sup 0/F geothermal well. A summary of project activities included.

  19. Environmental assessment of the proposed nonelectric application of geothermal resources at Desert Hot Springs, California

    NASA Technical Reports Server (NTRS)

    Rosenberg, L.

    1978-01-01

    The paper presents an environmental analysis performed in evaluating various proposed geothermal demonstration projects at Desert Hot Springs. These are categorized in two ways: (1) indirect, or (2) direct uses. Among the former are greenhouses, industrial complexes, and car washes. The latter include aquaculture, a cascaded agribusiness system, and a mobile home park. Major categories of environmental impact covered are: (1) site, (2) construction of projects, and (3) the use of the geothermal source. Attention is also given to the disposal of the geothermal fluid after use. Finally, it is concluded that there are no major problems forseen for each project, and future objectives are discussed.

  20. Drilling Addendum to Resource Assessment of Low- and Moderate-Temperature Geothermal Waters in Calistoga, Napa County, California

    SciTech Connect

    Taylor, Gary C.; Bacon, C. Forrest; Chapman, Rodger H.; Chase, Gordon W.; Majmundar, Hasmukhrai H.

    1981-05-01

    This addendum report presents the results of the California Division of Mines and Geology (CDMG) drilling program at Calistoga, California, which was the final geothermal-resource assessment investigation performed under terms of the second year contract (1979-80) between the U.S. Department of Energy (DOE) and the CDMG under the State Coupled Program. This report is intended to supplement information presented in CDMG's technical report for the project year, ''Resource Assessment of Low- and Moderate-Temperature Geothermal Waters in Calistoga, Napa County, California''. During the investigative phase of the CDMG's Geothermal Project, over 200 well-driller's reports were obtained from the Department of Water Resources (DWR). It was hoped that the interpretation and correlation of these logs would reveal the subsurface geology of the Upper Napa Valley and also provide a check for the various geophysical surveys that were performed in the course of the study. However, these DWR driller logs proved to be inadequate due to the brief, non-technical, and erroneous descriptions contained on the logs. As a result of the lack of useable drill-hole data, and because information was desired from,deeper horizons, it became evident that drilling some exploratory holes would be necessary in order to obtain physical evidence of the stratigraphy and aquifers in the immediate Calistoga area. Pursuant to this objective, a total of twelve sites were selected--four under jurisdiction of Napa County and eight under jurisdiction of the City of Calistoga. A moratorium is currently in existence within Napa County on most geothermal drilling, and environmental and time constraints precluded CDMG from obtaining the necessary site permits within the county. However, a variance was applied for and obtained from the City of Calistoga to allow CDMG to drill within the city limits. With this areal constraint and also funding limits in mind, six drilling sites were selected on the basis of (1

  1. New Zealand geothermal: Wairakei -- 40 years

    SciTech Connect

    1998-09-01

    This quarterly bulletin highlights the geothermal developments in New Zealand with the following articles: A brief history of the Wairakei geothermal power project; Geothermal resources in New Zealand -- An overview; Domestic and commercial heating and bathing -- Rotorua area; Kawerau geothermal development: A case study; Timber drying at Kawerau; Geothermal greenhouses at Kawerau; Drying of fibrous crops using geothermal steam and hot water at the Taupo Lucerne Company; Prawn Park -- Taupo, New Zealand; Geothermal orchids; Miranda hot springs; and Geothermal pipeline.

  2. Enhancement of existing geothermal resource utilization by cascading to intensive aquaculture

    SciTech Connect

    Zachritz, W.H. II; Polka, R.; Schoenmackers, R.

    1995-12-04

    Aquaculture, the farming and husbandry of freshwater and marine organisms, is the newest and fastest growing US agricultural sector. In New Mexico, low winter temperatures and limited freshwater sources narrow culture production possibilities; however, it has long been recognized that the state has abundant supplies of both saline and geothermal ground waters. The purpose of this project was to demonstrate the achievable energy savings and value enhancement of the byproduct geothermal energy by cascading fluids for the production of commercial aquaculture species. Specifically the project involved evaluating the heating systems performance in terms of heating budget for the geothermal assist, determine the total quantity of water used for culture and heating, amount of geothermal byproduct heat extracted, and ability of the system to maintain culture water temperatures during critical heating periods of the year. In addition, an analysis was conducted to determine the compatibility of this new system with existing greenhouse heating requirements.

  3. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer

    Schroeder, Jenna N.

    2013-08-31

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  4. Cooperative Research and Development Agreement between the California Air Resources Board and Lockheed Martin Idaho Technologies Company. Final report

    SciTech Connect

    Cole, G.H.

    1998-04-01

    This report summarizes the activities under a Cooperative Research and Development Agreement (CRADA) between Lockheed-Martin Idaho Technologies Company (LMITCO) and the California Air Resources Board (CARB). The activities were performed at the Idaho National Engineering and Environmental Laboratory (INEEL) between June 1995 and December 1997. Work under this agreement was concentrated in two task areas as defined in the California Air Resources Board`s contract number 94-908 having an approval date of June 9, 1995: Task 1--EV and HEV Vehicle Testing and Assessment and Task 4--Advanced Battery Testing.

  5. Beowawe geothermal-resource assessment. Final report. Shallow-hole temperature survey geophysics and deep test hole Collins 76-17

    SciTech Connect

    Jones, N.O.

    1983-03-01

    Geothermal resource investigation field efforts in the Beowawe Geysers Area, Eureka County, Nevada are described. The objectives included acquisition of geotechnical data for understanding the nature and extent of the geothermal resource boundaries south of the known resource area. Fourteen shallow (<500 feet) temperature-gradient holes plus geophysics were used to select the site for a deep exploratory well, the Collins 76-17, which was completed to a total depth of 9005 feet. Maximum downhole recorded temperature was 311/sup 0/F, but no flow could be induced.

  6. Consolidation of geologic studies of geopressured-geothermal resources in Texas. 1990 Annual report

    SciTech Connect

    Raney, J.A.; Seni, S.J.; DuBar, J.R.; Walter, T.G.

    1991-03-01

    In a five-county area of South Texas, geopressured-geothermal reservoirs in the upper Wilcox Group colocated with heavy-oil reservoirs in the overlying Jackson Group. In 1990, research at the Bureau of Economic Geology concentrated on evaluating the potential of using geopressured-geothermal water for hot-water flooding of heavy-oil reservoirs. Favorable geothermal reservoirs are defined by thick deltaic sandstones and growth-fault-bounded compartments. Potential geothermal reservoirs are present at a depth of 11,000 ft (3,350 m) to 15,000 ft (4,570 m) and contain water at temperatures of 350 F (177 C) to 383 F (195 C) in Fandango field, Zapata County. One potential geothermal reservoir sandstone in the upper Wilcox (R sandstone) is composed of a continuous sand body 100 ft (30 m) to greater than 200 ft (>61 m) thick. Fault blocks average 2 to 4 mi{sup 2} (5.2 to 10.4 km{sup 2}) in area.

  7. Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation Phase III Report

    SciTech Connect

    Noel, Donna

    2013-12-01

    This project integrated state-of-the-art exploration technologies with a geologic framework and reservoir modeling to ultimately determine the efficacy of future geothermal production within the PLPT reservation. The information gained during this study should help the PLPT to make informed decisions regarding construction of a geothermal power plant. Additional benefits included the transfer of new technologies and geothermal data to the geothermal industry and it created and/or preserved nearly three dozen jobs accordance with the American Recovery and Reinvestment Act of 2009. A variety of tasks were conducted to achieve the above stated objectives. The following are the tasks completed within the project: 1. Permitting 2. Shallow temperature survey 3. Seismic data collection and analysis 4. Fracture stress analysis 5. Phase I reporting Permitting 7. Shallow temperature survey 8. Seismic data collection and analysis 9. Fracture stress analysis 10. Phase I reporting 11. Drilling two new wells 12. Borehole geophysics 13. Phase II reporting 14. Well testing and geochemical analysis 15. Three-dimensional geologic model 16. Three-dimensional reservoir analysis 17. Reservation wide geothermal potential analysis 18. Phase III reporting Phase I consisted of tasks 1 – 5, Phase II tasks 6 – 8, and Phase III tasks 9 – 13. This report details the results of Phase III tasks. Reports are available for Phase I, and II as separate documents.

  8. Advection and dispersion heat transport mechanisms in the quantification of shallow geothermal resources and associated environmental impacts.

    PubMed

    Alcaraz, Mar; García-Gil, Alejandro; Vázquez-Suñé, Enric; Velasco, Violeta

    2016-02-01

    Borehole Heat Exchangers (BHEs) are increasingly being used to exploit shallow geothermal energy. This paper presents a new methodology to provide a response to the need for a regional quantification of the geothermal potential that can be extracted by BHEs and the associated environmental impacts. A set of analytical solutions facilitates accurate calculation of the heat exchange of BHEs with the ground and its environmental impacts. For the first time, advection and dispersion heat transport mechanisms and the temporal evolution from the start of operation of the BHE are taken into account in the regional estimation of shallow geothermal resources. This methodology is integrated in a GIS environment, which facilitates the management of input and output data at a regional scale. An example of the methodology's application is presented for Barcelona, in Spain. As a result of the application, it is possible to show the strengths and improvements of this methodology in the development of potential maps of low temperature geothermal energy as well as maps of environmental impacts. The minimum and maximum energy potential values for the study site are 50 and 1800 W/m(2) for a drilled depth of 100 m, proportionally to Darcy velocity. Regarding to thermal impacts, the higher the groundwater velocity and the energy potential, the higher the size of the thermal plume after 6 months of exploitation, whose length ranges from 10 to 27 m long. A sensitivity analysis was carried out in the calculation of heat exchange rate and its impacts for different scenarios and for a wide range of Darcy velocities. The results of this analysis lead to the conclusion that the consideration of dispersion effects and temporal evolution of the exploitation prevent significant differences up to a factor 2.5 in the heat exchange rate accuracy and up to several orders of magnitude in the impacts generated. PMID:26605833

  9. 43 CFR 3137.28 - What oil and gas resources of committed tracts does the unit agreement include?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What oil and gas resources of committed tracts does the unit agreement include? 3137.28 Section 3137.28 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING:...

  10. Exploration for geothermal resources in the Capital District of New York. Final report

    SciTech Connect

    Sneeringer, M.R.; Dunn, J.R.

    1981-11-01

    Water chemistry, gas analyses, and geophysical methods including gravity and magnetic surveys, microseismic monitoring, and temperature gradient measurements were used in the Capital District area to evaluate the potential for a hydrothermal geothermal system. Water and gas chemistries provided indirect indicators, and temperature gradients provided direct indications of a geothermal system. Gravity results were supportive of gradient and chemistry data, but seismic and magnetic work have thus far provided little information on the potential system. Gradients throughout the area ranged from an average background value of about 10/sup 0/C/km to a high of roughly 44/sup 0/C/km. The highest gradient values, the most unusual water chemistries and largest carbon dioxide exhalations occur along the Saratoga and McGregor faults between Saratoga Springs and Schenectady, and indicate a good potential for a usable hydrothermal geothermal system at depth.

  11. Exploration for geothermal resources in the Capital District of New York. Volume 1. Final report

    SciTech Connect

    Not Available

    1981-11-01

    Water chemistry, gas analyses, and geophysical methods including gravity and magnetic surveys, microseismic monitoring, and temperature gradient measurements were used in the Capital District area to evaluate the potential for a hydrothermal geothermal system. Water and gas chemistries provided indirect indicators, and temperature gradients provided direct indications of a geothermal system. Gravity results were supportive of gradient and chemistry data, but seismic and magnetic work have thus far provided little information on the potential system. Gradients throughout the area ranged from an average background value of about 10/sup 0/C/km to a high of roughly 44/sup 0/C/km. The highest gradient values, the most unusual water chemistries and largest carbon dioxide exhalations occur along the Saratoga and McGregor faults between Saratoga Springs and Schenectady, and indicate a good potential for a usable hydrothermal geothermal system at depth.

  12. Hawaii Energy Resource Overviews. Volume 1. Potential noise issues with geothermal development in Hawaii

    SciTech Connect

    Burgess, J.C.

    1980-06-01

    This report concerns primarily the environmental noise expected to arise from construction and operation at HGP-A. A brief discussion of expected noise effects if the geothermal field is developed is included. Some of this discussion is applicable to noise problems that may arise if other geothermal fields are found and developed, but site-specific discussion of other fields can be formulated only when exact locations are identified. There is information concerning noise at other geothermal fields, especially the Geysers. This report includes only second-hand references to such information. No measurements of ambient sound levels near the HGP-A are available, no reliable and carefully checked sound level measurements from the HGP-A well operation are available.

  13. Summary of technical information and agreements from Nuclear Management and Resources Council industry reports addressing license renewal

    SciTech Connect

    Regan, C.; Lee, S.; Chopra, O.K.; Ma, D.C.; Shack, W.J.

    1996-10-01

    In about 1990, the Nuclear Management and Resources Council (NUMARC) submitted for NRC review ten industry reports (IRs) addressing aging issues associated with specific structures and components of nuclear power plants ad one IR addressing the screening methodology for integrated plant assessment. The NRC staff had been reviewing the ten NUMARC IRs; their comments on each IR and NUMARC responses to the comments have been compiled as public documents. This report provides a brief summary of the technical information and NUMARC/NRC agreements from the ten IRs, except for the Cable License Renewal IR. The technical information and agreements documented herein represent the status of the NRC staffs review when the NRC staff and industry resources were redirected to address rule implementation issues. The NRC staff plans to incorporate appropriate technical information and agreements into the draft standard review plan for license renewal.

  14. Resource engineering and economic studies for direct application of geothermal energy. Draft final report

    SciTech Connect

    Not Available

    1981-12-01

    The feasibility of utilizing geothermal energy at a selected plant in New York State was studied. Existing oil and gas records suggests that geothermal fluid is available in the target area and based on this potential. Friendship Dairies, Inc., Friendship, NY, was selected as a potential user of geothermal energy. Currently natural gas and electricity are used as its primary energy sources. Six geothermal system configurations were analyzed based on replacement of gas or oil-fired systems for producing process heat. Each system was evaluated in terms of Internal Rate of Return on Investment (IRR), and simple payback. Six system configurations and two replaced fuels, representative of a range of situations found in the state, are analyzed. Based on the potential geothermal reserves at Friendship, each of the six system configurations are shown to be economically viable, compared to continued gas or oil-firing. The Computed IRR's are all far in excess of projected average interest rates for long term borrowings: approximately 15% for guarantee backed loans or as high as 20% for conventional financing. IRR is computed based on the total investment (equity plus debt) and cash flows before financing costs, i.e., before interest expense, but after the tax benefit of the interest deduction. The base case application for the Friendship analysis is case B/20 yr-gas which produces an IRR of 28.5% and payback of 3.4 years. Even better returns could be realized in the cases of oil-avoidance and where greater use of geothermal energy can be made as shown in the other cases considered.

  15. Problem definition study of subsidence caused by geopressured geothermal resource development

    SciTech Connect

    Not Available

    1980-12-01

    The environmental and socio-economic settings of four environmentally representative Gulf Coast geopressured geothermal fairways were inventoried. Subsidence predictions were prepared using feasible development scenarios for the four representative subsidence sites. Based on the results of the subsidence estimates, an assessment of the associated potential environmental and socioeconomic impacts was prepared. An inventory of mitigation measures was also compiled. Results of the subsidence estimates and impact assessments are presented, as well as conclusions as to what are the major uncertainties, problems, and issues concerning the future study of geopressured geothermal subsidence.

  16. Geothermal Steam Act Amendments of 1987. Hearing before the Subcommittee on Mineral Resources Development and Production of the Committee on Energy and Natural Resources, United States Senate, One Hundredth Congress, First Session on S. 1006, July 14, 1987

    SciTech Connect

    Not Available

    1988-01-01

    The US Geological Survey estimates that it has identified recoverable geothermal energy which could be readily used to generate electricity in about 440 quadrillion BTUs, equivalent to about 40 billion barrels of oil. However, there are concerns regarding the impact of geothermal development and significant geothermal features with national parks and monuments. As important as geothermal energy is, we cannot allow it to be developed at the expense of nationally significant features, such as Old Faithful, the geyser basin in Yellowstone National Park. In accordance with Public Law No. 99-591, DOI issues a list of significant thermal features within national parks to be protected against adverse impacts of geothermal leasing. Witnesses here testified as to the adequacy of the list as well as to concerns that geothermal development on private lands may be affecting thermal features within the parks. Witnesses included officials from geothermal development companies, resource companies with geothermal interests, National Parks and Conservation Ass'n., Department of Interior, and US Senators and Congressmen. Appendices include (1) responses to additional committee questions, and (2) additional material submitted for the record.

  17. Hawaii geothermal project

    NASA Technical Reports Server (NTRS)

    Kamins, R. M.

    1974-01-01

    Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.

  18. Geothermal energy development

    SciTech Connect

    Butler, E.W.; Pick, J.B.

    1983-01-01

    This book studies the impact of geothermal energy development in Imperial County, California. An integrated assessment model for public policy is presented. Geothermal energy resources in Imperial County are identified. Population and employment studies project the impact of geothermal on demography and population movement in the county. A public opinion, and a leadership opinion survey indicate support for well-regulated geothermal development. Actual development events are updated. Finally, research conclusions and policy recommendations are presented.

  19. Geothermal district G1

    SciTech Connect

    Not Available

    1988-12-01

    Geothermal District G1 includes 37 northeastern California counties and six geothermal fields: Lake City, Susanville, Litchfield, Wendel, Amedee, and Casa Diablo. Electrical generation from geothermal resources occurs in three of the fields: Wendel, Amedee, and Casa Diablo. Low-temperature geothermal projects are underway throughout the district and are described in a road log format. The ten projects described are located at Big Bend, Glass Mountain, Bieber, Alturas, Cedarville, Lake City, Honey Lake Valley, Greenville, and in Sierra and Mono Counties.

  20. Geothermal exploration in Indonesia

    SciTech Connect

    Radja, V.T.

    1984-03-01

    Indonesia is blessed with geothermal resources. This fortunate aspect is directly related to the fact that the archipelago is an island arc created by a subduction zone. Evidence of geothermal activity is common throughout the Islands. Among the islands' many active volcanos are numerous geothermal phenomena. Almost half of the volcanic centers in Indonesia (88 out of 177 centers) contain fumarole and sulfatare features. A brief history of the exploration for geothermal energy in Indonesia is presented.

  1. What is an Enhanced Geothermal System (EGS)? Fact Sheet

    SciTech Connect

    U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

    2012-09-14

    This Geothermal Technologies Office fact sheet explains how engineered geothermal reservoirs called Enhanced Geothermal Systems are used to produce energy from geothermal resources that are otherwise not economical due to a lack of fluid and/or permeability.

  2. Characterization of mudstone, clayey rock and argillite towards stabilisation of boreholes by developing new drilling strategies for geothermal resources exploration

    NASA Astrophysics Data System (ADS)

    Witthaus, M.; Lempp, Ch.; Röckel, Th.; Hecht, Ch.; Herold, M.

    2009-04-01

    In this study, relating to the BMU Project „ borehole stabilisation as an important factor for the utilization of deep geothermal resources" (Project No. 0327594), sediment rocks with comparable lithology to the pelite beds of the Upper Rhine zone were investigated by a number of geomechanical tests. The investigation will provide detailed information on the geomechanical behaviour (brittle and ductile deformation) of clay stone formations in order to find out critical reasons for the instability of boreholes at a depth of about 2000 m. The main aspect of the study is to develop improved technical options in order to increase borehole stability. Many geothermal energy projects started near the Upper Rhine Rift in order to produce electricity, as the geothermal gradient rises there to about 150° C at 3 - 4 km depth. For these enhanced geothermal systems it is necessary to drill deep boreholes to install geothermal heat exchangers, so that the injected cold water conducts the high temperature of the rocks (Hot Dry Rock-Technology). The drillings have to be intersected through different rock layers that are influenced by varying regional stress fields respective to their depth. Between depths of 1500 to 2000 m within the Upper Rhine zone some of the drilled boreholes were in some parts very unstable, especially in formations where mud- and clay stones were dominant, as well as in interbedded strata with sandstones. As the maximum load capacity of these clays is very low and due to their ductile as well as brittle deformation behaviour, borehole convergence and borehole breakouts are detected. These changes were also caused by deep injection of drilling fluid into the rock formation, increasing the pore pressure there, so that hydraulic tension cracks were induced (hydraulic fracturing). This occurred mainly during drilling and it is the reason why there is an imminent risk of the stability of geothermal boreholes in geological formations composed of mudstones, clay

  3. Hawaii Energy Resource Overviews. Volume 5. Social and economic impacts of geothermal development in Hawaii

    SciTech Connect

    Canon, P.

    1980-06-01

    The overview statement of the socio-economic effects of developing geothermal energy in the State of Hawaii is presented. The following functions are presented: (1) identification of key social and economic issues, (2) inventory of all available pertinent data, (3) analysis and assessment of available data, and (4) identification of what additional information is required for adequate assessment.

  4. Advanced InSAR techniques for the management and characterization of geothermal resources

    NASA Astrophysics Data System (ADS)

    Bellotti, F.; Falorni, G.; Morgan, J.; Rucci, A.; Ferretti, A.

    2012-04-01

    InSAR is a remote sensing tool that has applications in both geothermal exploitation and in the management of producing fields. The technique has developed rapidly in recent years and the most evolved algorithms, now capable of providing precise ground movement measurements with unprecedented spatial density over large areas, allow the monitoring of the effects of fluid injection and extraction on surface deformation and the detection of active faults. Multi-interferogram approaches have been used at several geothermal sites in different stages of development. SqueeSAR™, which represents the latest breakthrough in InSAR technology, provides a significant increase in the spatial density of measurement points by exploiting signal returns from both point-like and distributed scatterers. Furthermore, recent satellite radar sensors have a higher spatial resolution (down to 1 m), as well as a higher temporal frequency of image acquisitions (down to a few days). The coupling of the new algorithm with this new generation of satellites provides a valuable tool for monitoring the different phases of geothermal production and in support of the decision making process. Some examples from the US are presented here: the first case study involves the use of InSAR within a suite of tools for exploration of the San Emidio geothermal field in Nevada. This project aimed to develop geophysical techniques to identify and map large aperture fractures for the placement of new production/exploration wells. The second and third examples examine two zones in California: the Salton Sea area, where multi-interferogram InSAR provided an overview of surface deformation at a producing geothermal reservoir. Surface deformation in this area was complex, and the added detail provided insight into the interplay of tectonics and production activities. Additional InSAR studies have also been carried out at the Geysers field in order to evaluate the behavior of an Enhanced Geothermal System (EGS) in

  5. Feasibility study: Application of the geopressured-geothermal resource to pyrolytic conversion or decomposition/detoxification processes

    SciTech Connect

    Propp, W.A.; Grey, A.E.; Negus-de Wys, J.; Plum, M.M.; Haefner, D.R.

    1991-09-01

    This study presents a preliminary evaluation of the technical and economic feasibility of selected conceptual processes for pyrolytic conversion of organic feedstocks or the decomposition/detoxification of hazardous wastes by coupling the process to the geopressured-geothermal resource. The report presents a detailed discussion of the resource and of each process selected for evaluation including the technical evaluation of each. A separate section presents the economic methodology used and the evaluation of the technically viable process. A final section presents conclusions and recommendations. Three separate processes were selected for evaluation. These are pyrolytic conversion of biomass to petroleum like fluids, wet air oxidation (WAO) at subcritical conditions for destruction of hazardous waste, and supercritical water oxidation (SCWO) also for the destruction of hazardous waste. The scientific feasibility of all three processes has been previously established by various bench-scale and pilot-scale studies. For a variety of reasons detailed in the report the SCWO process is the only one deemed to be technically feasible, although the effects of the high solids content of the geothermal brine need further study. This technology shows tremendous promise for contributing to solving the nation's energy and hazardous waste problems. However, the current economic analysis suggests that it is uneconomical at this time. 50 refs., 5 figs., 7 tabs.

  6. Low- to moderate-temperature geothermal resource assessment for Nevada: area specific studies, Pumpernickel Valley, Carlin and Moana. Final report June 1, 1981-July 31, 1982

    SciTech Connect

    Trexler, D.T.; Flynn, T.; Koenig, B.A.; Bell, E.J.; Ghusn, G. Jr.

    1982-01-01

    Geological, geophysical and geochemical surveys were used in conjunction with temperature gradient hole drilling to assess the geothermal resources in Pumpernickel Valley and Carlin, Nevada. This program is based on a statewide assessment of geothermal resources that was completed in 1979. The exploration techniques are based on previous federally-funded assessment programs that were completed in six other areas in Nevada and include: literature search and compilation of existing data, geologic reconnaissance, chemical sampling of thermal and non-thermal fluids, interpretation of satellite imagery, interpretation of low-sun angle aerial photographs, two-meter depth temperature probe survey, gravity survey, seismic survey, soil-mercury survey, and temperature gradient drilling.

  7. Geothermal energy

    NASA Astrophysics Data System (ADS)

    Manzella, A.

    2015-08-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  8. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    SciTech Connect

    Clark, Corrie E.; Harto, Christopher B.; Schroeder, Jenna N.; Martino, Louis E.; Horner, Robert M.

    2013-11-05

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2

  9. State-government workshop on barriers and incentives of geothermal energy resources (geothermal project). Annual report, March 1, 1979-February 29, 1980

    SciTech Connect

    Not Available

    1980-05-01

    The activities of the National Conference of State Legislatures' Geothermal Project are summarized. The following are covered: project objective and method of operation, state selection and development of state work plans, program elements, summary of state actions affecting geothermal development, and evaluation of project activities. (MHR)

  10. A CO2-Silica Geothermometer for Low Temperature Geothermal Resource Assessment, with Application to Resources in the Safford Basin, Arizona

    SciTech Connect

    Witcher, James C.; Stone, Claudia

    1983-11-01

    Geothermics is the study of the earth's heat energy, it's affect on subsurface temperature distribution, it's physical and chemical sources, and it's role in dynamic geologic processes. The term, geothermometry, is applied to the determination of equilibrium temperatures of natural chemical systems, including rock, mineral, and liquid phases. An assemblage of minerals or a chemical system whose phase composition is a function of temperature and pressure can be used as a geothermometer. Thus a geothermometer is useful to determine the formation temperature of rock or the last equilibrium temperature of a flowing aqueous solution such as ground water and hydrothermal fluids.

  11. Rotation-Enabled 7-Degree of Freedom Seismometer for Geothermal Resource Development. Phase 1 Final Report

    SciTech Connect

    Pierson, Bob; Laughlin, Darren

    2013-10-29

    Under this Department of Energy (DOE) grant, A-Tech Corporation d.b.a. Applied Technology Associates (ATA), seeks to develop a seven-degree-of-freedom (7-DOF) seismic measurement tool for high-temperature geothermal applications. The Rotational-Enabled 7-DOF Seismometer includes a conventional tri-axial accelerometer, a conventional pressure sensor or hydrophone, and a tri-axial rotational sensor. The rotational sensing capability is novel, based upon ATA's innovative research in rotational sensing technologies. The geothermal industry requires tools for high-precision seismic monitoring of crack formation associated with Enhanced Geothermal System (EGS) stimulation activity. Currently, microseismic monitoring is conducted by deploying many seismic tools at different depth levels along a 'string' within drilled observation wells. Costs per string can be hundreds of thousands of dollars. Processing data from the spatial arrays of linear seismometers allows back-projection of seismic wave states. In contrast, a Rotational-Enabled 7-DOF Seismometer would simultaneously measure p-wave velocity, s-wave velocity, and incident seismic wave direction all from a single point measurement. In addition, the Rotational-Enabled 7-DOF Seismometer will, by its nature, separate p- and s-waves into different data streams, simplifying signal processing and facilitating analysis of seismic source signatures and geological characterization. By adding measurements of three additional degrees-of-freedom at each level and leveraging the information from this new seismic observable, it is likely that an equally accurate picture of subsurface seismic activity could be garnered with fewer levels per hole. The key cost savings would come from better siting of the well due to increased information content and a decrease in the number of confirmation wells drilled, also due to the increase in information per well. Improved seismic tools may also increase knowledge, understanding, and confidence

  12. Geology and surface geochemistry of the Roosevelt Springs Known Geothermal Resource Area, Utah

    SciTech Connect

    Lovell, J.S.; Meyer, W.T.; Atkinson, D.J.

    1980-01-01

    Available data on the Roosevelt area were synthesized to determine the spatial arrangement of the rocks, and the patterns of mass and energy flow within them. The resulting model lead to a new interpretation of the geothermal system, and provided ground truth for evaluating the application of soil geochemistry to exploration for concealed geothermal fields. Preliminary geochemical studies comparing the surface microlayer to conventional soil sampling methods indicated both practical and chemical advantages for the surface microlayer technique, which was particularly evident in the case of As, Sb and Cs. Subsequent multi-element analyses of surface microlayer samples collected over an area of 100 square miles were processed to produce single element contour maps for 41 chemical parameters. Computer manipulation of the multi-element data using R-mode factor analysis provided the optimum method of interpretation of the surface microlayer data. A trace element association of As, Sb and Cs in the surface microlayer provided the best indication of the leakage of geothermal solutions to the surface, while regional mercury trends may reflect the presence of a mercury vapour anomaly above a concealed heat source.

  13. GEOTHERM Data Set

    DOE Data Explorer

    DeAngelo, Jacob

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  14. Preliminary Report on the Feasibility of Using Synthetic Aperture Radar Interferometry to Image Localized Strain as a Discriminator of Geothermal Resources

    SciTech Connect

    Foxall, W

    2005-06-15

    Most producing geothermal fields and known geothermal resources in the Basin and Range province are associated with Quaternary active fault systems, within which hydrothermal fluids are presumed to circulate from depth to relatively shallow production levels through high permeability fractures. Research at the Dixie Valley field by Barton et al. (1997) indicates that hydraulically conductive fractures within the Stillwater fault zone are those that have orientations such that the fractures are critically stressed for normal shear failure under the regional tectonic stress field. In general, therefore, we might expect geothermal resources to occur in areas of high inter-seismic strain accumulation, and where faults are favorably oriented with respect to the regional strain tensor; in the case of Basin and Range normal faults, these would generally be faults striking normal to the direction of maximum extension. Expanding this hypothesis, Blewitt et al. (2003), based on preliminary, broad-scale analysis of regional strain and average fault strike in the northwestern Basin and Range, have proposed that geothermal resources occur in areas where fault-normal extension associated with shear strain is the greatest. Caskey and Wesnousky (2000) presented evidence that the Dixie Valley field occupies a 10 km-long gap between prehistoric Holocene ruptures of the fault segments on either side. Modeled maximum shear and Coulomb failure stress are high within the gap owing to the stress concentrations at the ends of the ruptures. These results suggest that a major contributing factor to the enhanced permeability at fault-hosted geothermal systems may be localized stress and strain concentrations within fault zone segments. This notion is generally consistent with the common occurrence of geothermal fields within fault offsets (pull-aparts) along strike-slip fault systems, where the local strain field has a large extensional component (e.g., Salton Sea and Coso). Blewitt et al

  15. Geothermal resources in Martinique (Lesser Antilles): new insight of geochemical isotopic tools

    NASA Astrophysics Data System (ADS)

    Gadalia, A.; Rad, S.; Braibant, G.; Brach, M.; Millot, R.; Traineau, H.

    2012-12-01

    Geothermal exploration of Martinique Island started in 1967 but was interrupted successively at 3 times. Additional geothermal exploration program was conducted by BRGM, in 2001-2003 and recently in areas known for their geothermal interest: Mount Pelée volcano and Diamant. A complementary exploration is now proceed with new sites of interest such as "Pitons du Carbet" massif after recent dating (Germa et al., 2011). A conceptual model of reservoir was established for Mount Pelée volcano and on the Piton du Carbet massif, but the extension of these greenfield remains unknown. We propose new approach through geochemistry by the integration to the prospection of chemical compositions of river waters adding to hot springs and well waters. Rivers catchment in Lesser Antilles and their hydrothermal impact have been studied in order to quantify and identify the magmatic contribution into the river (Rad et al., 2011). Chemical analyses and new isotopic tools such as Lithium isotopes 7Li/6Li (expressed as δ7Li) are measured in river waters. Among these multi chemical parameters, isotopic in particular (H, Li, C, O, Sr…) the Li isotopic signature appear to be conservative and allows to identify new target with high temperature water-rock interactions or in case of high fractionation, reflecting low temperature water-rock interactions, to avoid an extended zone. These new technique was applied to the Mount Pelée and confirm the pre-existent model established in previous exploration campaign. For Pitons du Carbet massif all the river catchment of the massif have been sampled, first results show a potential western extension of the reservoir, confirm by an important gas leak of hydrothermal origin. For tropical volcanic environment with sharp relief, dense vegetation, and high precipitation, chemical and isotopic analyses, particularly lithium isotopes, in river waters, allow to identify zone of interest. To conclude, river catchment studies dedicate to geothermal

  16. 77 FR 47095 - Notice of Proposed Settlement Agreement Under the Park System Resource Protection Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... U.S.C. 19jj. The United States' claims arise from the grounding of the vessel F.G. Walton Smith in Biscayne National Park on October 13, 2007. The grounding injured Park resources. Pursuant to the...

  17. Three-dimensional Q/sup -1/ model of the Coso Hot Springs known geothermal resource area

    SciTech Connect

    Young, C.; Ward, R.W.

    1980-05-10

    Observations of teleseismic P waves above geothermal systems exhibit travel time delays and anomalously high seismic attenuation, which is extremely useful in estimating the thermal regime and the potential of the system. A regional telemetered network of sixteen stations was operated by the U.S. Geological Survey in the Coso Hot Springs Known Geothermal Resources Area (KGRA) for such studies from September 1975 to October 1976. Subsequently, they deployed a portable Centipede array of 26 three-component stations near the center of anomaly. The seismograms of 44 events recorded by the telemetered array and nine events by the Centipede array were analyzed using the reduced spectral ratio technique to determine the differential attenuation factordeltat* for the events recorded with the highest signal-to-noise ratio. The deltat* variation observed across the Coso Hot Springs KGRA were small (<0.2 s). A three-dimensional generalized linear inversion of the deltat* observations was performed using a three-layer model. A shallow zone of high attenuation exists within the upper 5 km in a region bounded by Coso Hot Springs, Devils Kitchen, and Sugarloaf Mountain probably corresponding to a shallow vapor liquid mixture or 'lossy' near surface lithology. No zones of significantly high attenuation occur between 5- and 12-km depth. Between the depth of 12--20 km a thick zone of high attenuation (Q<50) exists, offset toward the east from the surface anomaly.

  18. 43 CFR 3211.17 - What is the royalty rate on geothermal resources produced from or attributable to my lease that...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... paragraph to the gross proceeds derived from the sale of electricity under applicable MMS rules at 30 CFR... establishes to the gross proceeds derived from the sale of electricity under applicable MMS rules at 30 CFR... arm's-length sale of the geothermal resources under applicable MMS rules at 30 CFR part 206, subpart...

  19. Exploring for geothermal resource in a dormant volcanic system: The Haleakala Southwest Rift Zone, Maui, Hawai'i

    NASA Astrophysics Data System (ADS)

    Martini, B. A.; Lewicki, J. L.; Kennedy, B. M.; Lide, C.; Oppliger, G.; Drakos, P. S.

    2011-12-01

    Suites of new geophysical and geochemical surveys provide compelling evidence for geothermal resource at the Haleakala Southwest Rift Zone (HSWRZ) on Maui Island, Hawai'i. Ground-based gravity (~400 stations) coupled with heli-borne magnetics (~1500 line kilometers) define both deep and shallow fractures/faults while also delineating potentially widespread subsurface hydrothermal alteration on the lower flanks (below approximately 1800 feet a.s.l.). Multi-level, upward continuation calculations and 2-D gravity and magnetic modeling provide information on source depths, but lack of lithologic information leaves ambiguity in the estimates. Lithology and physical property data from future drilling will improve these interpretations. Additionally, several well-defined gravity lows (possibly vent zones) lie coincident with magnetic highs suggesting the presence of dike intrusions at depth; a potentially young source of heat for a modern geothermal system. Soil CO2 fluxes were measured along transects across geophysically-defined faults and fractures as well as young cinder cones along the HSWRZ; a weak anomalous flux signal was observed at one young cinder cone location. Dissolved inorganic carbon concentrations and δ13C compositions and 3He/4He values measured in several shallow groundwater samples indicate addition of magmatic CO2 and He to the groundwater system. The general lack of observed magmatic surface CO2 signals on the HSWRZ is therefore likely due to a combination of groundwater 'scrubbing' of CO2 and relatively high biogenic surface CO2 fluxes that mask magmatic CO2. Similar surveys at the Puna geothermal field on the Kilauea Lower East Rift Zone (KLERZ) also showed a lack of surface CO2 flux signals attributed to a magmatic source, while aqueous geochemistry indicated contribution of magmatic CO2 and He to shallow groundwaters at both Maui and Puna. As magma has been intercepted in geothermal drilling at the Puna field, the lack of measured surface CO2

  20. Geothermal energy program summary

    SciTech Connect

    Not Available

    1990-01-01

    This document reviews Geothermal Energy Technology and the steps necessary to place it into service. Specific topics covered are: four types of geothermal resources; putting the resource to work; power generation; FY 1989 accomplishments; hard rock penetration; conversion technology; and geopressured brine research. 16 figs. (FSD)

  1. Geothermal monitor report

    NASA Astrophysics Data System (ADS)

    1982-06-01

    Geothermal Progress Monitor Report No. 6 presents a state-by-state summary of the status of geothermal leasing, exploration, and development in major physiographic regions where geothermal resource potential has been identified. Recent state-specific activities are reported at the end of each state status report, while recent activities of a more general nature are summarized briefly in Part 2 of the report. A list of recent publications of potential interest to the geothermal community and a directory of contributors to the geothermal progress monitoring system are also included.

  2. Geothermal energy: 1992 program overview

    SciTech Connect

    Not Available

    1993-04-01

    Geothermal energy is described in general terms with drawings illustrating the technology. A map of known and potential geothermal resources in the US is included. The 1992 program activities are described briefly. (MHR)

  3. Why geothermal energy? Geothermal utilization in the Philippines

    SciTech Connect

    Gazo, F.M.

    1997-12-31

    This paper discusses the advantages of choosing geothermal energy as a resource option in the Philippine energy program. The government mandates the full-scale development of geothermal energy resources to meet increased power demand brought by rapid industrialization and economic growth, and to reduce fossil fuel importation. It also aims to realize these additional geothermal capacities by tapping private sector investments in the exploration, development, exploitation, construction, operation and management of various geothermal areas in the country.

  4. Environmental impact of geopressure - geothermal cogeneration facility on wetland resources and socioeconomic characteristics in Louisiana Gulf Coast region. Final report, October 10, 1983-September 31, 1984

    SciTech Connect

    Smalley, A.M.; Saleh, F.M.S.; Fontenot, M.

    1984-08-01

    Baseline data relevant to air quality are presented. The following are also included: geology and resource assessment, design well prospects in southwestern Louisiana, water quality monitoring, chemical analysis subsidence, microseismicity, geopressure-geothermal subsidence modeling, models of compaction and subsidence, sampling handling and preparation, brine chemistry, wetland resources, socioeconomic characteristics, impacts on wetlands, salinity, toxic metals, non-metal toxicants, temperature, subsidence, and socioeconomic impacts. (MHR)

  5. Geothermal Field Developments in Japan

    SciTech Connect

    Hirakawa, Seiichi

    1983-12-15

    The present situation of the geothermal field developments in Japan is such that eight geothermal power stations are being operated, while there are sill many geothermal areas to be explored. Up to this day, the target of geothermal exploration has mainly been the areas by surface geological survey and the existing geothermal reservoirs are located not deeper than 1,500m depth. Recent geothermal energy development shows a trend from the study on vapor dominated of liquid dominated hydrothermal resources in shallow zones to that on hydrothermal resources in deeper zones. Exploration wells of 3,000m depth class have been drilled in Japan.

  6. 3D Extended Logging for Geothermal Resources: Field Trials with the Geo-Bilt System

    SciTech Connect

    Mallan, R; Wilt, M; Kirkendall, B; Kasameyer, P

    2002-05-29

    Geo-BILT (Geothermal Borehole Induction Logging Tool) is an extended induction logging tool designed for 3D resistivity imaging around a single borehole. The tool was developed for deployment in high temperature geothermal wells under a joint program funded by the California Energy Commission, Electromagnetic Instruments (EMI) and the U.S. Department of Energy. EM1 was responsible for tool design and manufacture, and numerical modeling efforts were being addressed at Lawrence Livermore Laboratory (LLNL) and other contractors. The field deployment was done by EM1 and LLNL. The tool operates at frequencies from 2 to 42 kHz, and its design features a series of three-component magnetic sensors offset at 2 and 5 meters from a three-component magnetic source. The combined package makes it possible to do 3D resistivity imaging, deep into the formation, from a single well. The manufacture and testing of the tool was completed in spring of 2001, and the initial deployment of Geo-BILT occurred in May 2001 at the Lost Hills oil field in southern California at leases operated by Chevron USA. This site was chosen for the initial field test because of the favorable geological conditions and the availability of a number of wells suitable for tool deployment. The second deployment occurred in April 2002 at the Dixie Valley geothermal field, operated by Caithness Power LLC, in central Nevada. This constituted the first test in a high temperature environment. The Chevron site features a fiberglass-cased observation well in the vicinity of a water injector. The injected water, which is used for pressure maintenance and for secondary sweep of the heavy oil formation, has a much lower resistivity than the oil bearing formation. This, in addition to the non-uniform flow of this water, creates a 3D resistivity structure, which is analogous to conditions produced from flowing fractures adjacent to geothermal boreholes. Therefore, it is an excellent site for testing the 3D capability of

  7. National Geothermal Academy. Geo-Heat Center Quarterly Bulletin, Vol. 31 No. 2 (Complete Bulletin). A Quarterly Progress and Development Report on the Direct Utilization of Geothermal Resources

    SciTech Connect

    Boyd, Tonya; Maddi, Phillip

    2012-08-01

    The National Geothermal Academy (NGA) is an intensive 8-week overview of the different aspects involved in developing a geothermal project, hosted at University of Nevada, Reno. The class of 2012 was the second graduating class from the academy and included 21 students from nine states, as well as Saudi Arabia, Dominica, India, Trinidad, Mexico. The class consisted of people from a wide range of scholastic abilities from students pursuing a Bachelor’s or Master’s degrees, to entrepreneurs and professionals looking to improve their knowledge in the geothermal field. Students earned 6 credits, either undergraduate or graduate, in engineering or geology. Overall, the students of the NGA, although having diverse backgrounds in engineering, geology, finance, and other sciences, came together with a common passion to learn more about geothermal.

  8. 75 FR 48365 - Solicitation for a Cooperative Agreement-NIC Cost Containment Online Resource Center Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... organizational capacity to complete the project tasks? Are the proposed project management and staffing plans realistic and sufficient to complete the project within the 18-month timeframe? Project Management... Resource Center Project AGENCY: National Institute of Corrections, U.S. Department of Justice....

  9. Consolidation of geologic studies of geopressured geothermal resources in Texas. 1982 annual report

    SciTech Connect

    Morton, R.A.; Ewing, T.E.; Kaiser, W.R.; Finley, R.J.

    1983-03-01

    Detailed structural mapping at several horizons in selected study areas within the Frio growth-fault trend demonstrates a pronounced variability in structural style. At Sarita in South Texas, shale mobilization produced one or more shale ridges, one of which localized a low-angle growth fault trapping a wedge of deltaic sediments. At Corpus Christi, shale mobilization produced a series of large growth faults, shale-cored domed anticlines, and shale-withdrawal basins, which become progressively younger basinward. At Blessing, major growth faults trapped sands of the Greta/Carancahua barrier system with little progradation. At Pleasant Bayou, a major early growth-fault pattern was overprinted by later salt tectonics - the intrusion of Danbury Dome and the development of a salt-withdrawal basin. At Port Arthur, low-displacement, long-lived faults formed on a sand-poor shelf margin contemporaneously with broad salt uplifts and basins. Variability in styles is related to the nature and extent of Frio sedimentation and shelf-margin progradation and to the presence or absence of salt. Structural styles that are conducive to the development of large geothermal reservoirs include blocks between widely spaced growth faults having dip reversal, salt-withdrawal basins, and shale-withdrawal basins. These styles are widespread on the Texas Gulf Coast. However, actually finding a large reservoir depends on demonstrating the existence of sufficient sandstone with adequate quality to support geopressured geothermal energy production.

  10. State Water Resources Control Board, California Agreement in Principle 1995 summary report

    SciTech Connect

    Laudon, L.

    1996-03-01

    The Agreement in Principle (AIP) was established as part of the Secretary of Energy`s Ten-Point Initiative which was announced in 1989. One of the Secretary`s goals was to integrate the Department of Energy`s (DOE) national security mission with their environmental restoration and compliance responsibilities. In an effort to accomplish this goal, DOE increased the role of the states in the oversight of DOE`s monitoring programs through AIPs. The State of California and DOE negotiated the California AIP beginning in 1989 and signed the Agreement in September 1990. The AIP identified six DOE facilities to be evaluated under the program. The six facilities evaluated by the AIP program were: (1) Lawrence Livermore National Laboratory (LLNL) including LLNL`s Site 300; (2) Sandia National Laboratories, California (SNL/CA); (3) Lawrence Berkeley Laboratory (LBL); (4) Stanford Linear Accelerator Center (SLAC); (5) Energy Technology Engineering Center (ETEC); and (6) Laboratory for Energy-Related Health Research (LEHR).

  11. Revisiting the 'Buy versus Build' decision for publicly owned utilities in California considering wind and geothermal resources

    SciTech Connect

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2001-10-01

    The last two decades have seen a dramatic increase in the market share of independent, non-utility generators (NUGs) relative to traditional, utility-owned generation assets. Accordingly, the ''buy versus build'' decision facing utilities--i.e., whether a utility should sign a power purchase agreement (PPA) with a NUG, or develop and own the generation capacity itself--has gained prominence in the industry. Specific debates have revolved around the relative advantages of, the types of risk created by, and the regulatory incentives favoring each approach. Very little of this discussion has focused specifically on publicly owned electric utilities, however, perhaps due to the belief that public power's tax-free financing status leaves little space in which NUGs can compete. With few exceptions (Wiser and Kahn 1996), renewable sources of supply have received similarly scant attention in the buy versus build debate. In this report, we revive the ''buy versus build'' debate and apply it to the two sectors of the industry traditionally underrepresented in the discussion: publicly owned utilities and renewable energy. Contrary to historical treatment, this debate is quite relevant to public utilities and renewables because publicly owned utilities are able to take advantage of some renewable energy incentives only in a ''buy'' situation, while others accrue only in a ''build'' situation. In particular, possible economic advantages of public utility ownership include: (1) the tax-free status of publicly owned utilities and the availability of low-cost debt, and (2) the renewable energy production incentive (REPI) available only to publicly owned utilities. Possible economic advantages to entering into a PPA with a NUG include: (1) the availability of federal tax credits and accelerated depreciation schedules for certain forms of NUG-owned renewable energy, and (2) the California state production incentives available to NUGs but not utilities. This report looks at a

  12. Geothermal pipeline

    SciTech Connect

    Not Available

    1992-12-01

    A number of new ideas for geothermal power development and use have been proposed or initiated. British engineers have proposed using North Sea oil rigs as geothermal power stations. These stations would use the low temperature heat from the water that now occupies the former oil reservoirs to generate electricity. NASA recently retrofitted its engine test facility to enable it to use warm water from an underground aquifer as source water in a heat pump. A major policy guideline regarding electricity is issued by the California Energy Commission (CEC) every two years. This year, CEC appears to be revising its method for determining the total societal cost of various electricity supply options. The change may impact geothermal energy usage in a positive way. Virtually untapped geothermal resources in Preston, Idaho will be utilized for warm water catfish farming. Stockton State College in New Jersey will be the site of one of the nation's largest geothermal projects when it is completed in 1993. It is designed to satisfy the college's energy requirements at an estimated cost savings of $300,000 per year. Aquaculture projects using thermal springs are under consideration in Utah and Washington State. Utah may be the site of an alligator farm and Washington State is being considered for raising golden tilapia, a food fish.

  13. Selected administrative, land, and resource data for known geothermal resources areas in Arizona, California, Idaho, Nevada, Oregon, and Washington

    SciTech Connect

    Burkhardt, H.E.; Brook, C.A.; Smith, F.W.

    1980-01-01

    The data are compiled from published and unpublished classification, lease-scale evaluation, and resources assessment documents prepared by the Geological Survey and are current to December 1980. The KGRA's are listed alphabetically for each state.

  14. State-coupled low-temperature geothermal-resource-assessment program, Fiscal Year 1980. Final technical report

    SciTech Connect

    Icerman, L.; Starkey, A.; Trentman, N.

    1981-08-01

    Magnetic, gravity, seismic-refraction, and seismic-reflection profiles across the Las Alturas Geothermal Anomaly, New Mexico, are presented. Studies in the Socorro area include the following: seismic measurements of the tertiary fill in the Rio Grande Depression west of Socorro, geothermal data availability for computer simulation in the Socorro Peak KGRA, and ground water circulation in the Socorro Geothermal Area. Regional geothermal exploration in the Truth or Consequences Area includes: geological mapping of the Mud Springs Mountains, hydrogeology of the thermal aquifer, and electrical-resistivity investigation of the geothermal potential. Other studies included are: geothermal exploration with electrical methods near Vado, Chamberino, and Mesquite; a heat-flow study of Dona Ana County; preliminary heat-flow assessment of Southeast Luna County; active fault analysis and radiometric dating of young basalts in southern New Mexico; and evaluation of the geothermal potential of the San Juan Basin in northwestern New Mexico.

  15. Geothermal Energy Resources can also be Tourist Resources: Lessons from Wairakei and Rotorua-Whakarewarewa, New Zealand

    SciTech Connect

    Donaldson, Ian G.

    1980-12-16

    To date we have tended t o dedicate our geothermal systems to a single use; i.e. either as an energy source, as is the case with The Geysers field in California, or as a tourist reserve, as with Yellowstone National Park. With increased energy demand on a local scale we may wish to extract some energy i n some areas but at the same time retain the tourist attractions that these areas have. This is already the case in the Whakarewarewa-Rotorua area in New Zealand. The questions currently being asked of us with regard to that area are: "Is such combined use possible?" "How much energy will be available (or what are the energy costs of the retention of the tourist features)?" and What are the costs i n terms of the t o u r i s t f 11 e a t u r e s of various levels of energy extraction?" As these questions are almost certain to be asked elsewhere in the future it is relevant t o introduce and discuss them here. In this attempt at some answers, I will look first at our experience in the Wairakei, New Zealand, area and then discuss the Whakarewarewa- Xotorua case.

  16. Geothermal direct-heat utilization assistance

    NASA Astrophysics Data System (ADS)

    The report summarizes activities of the Geo-Heat Center (GHC) at Oregon Institute of Technology for the first quarter of Fiscal Year 1995. It describes contacts with parties during this period related to assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research is also being conducted on geothermal energy cost evaluation, low-temperature geothermal resource assessment, use of silica waste from the Cerro Prieto geothermal field as construction materials and geothermal heat pumps. Outreach activities include the publication of a quarterly bulletin on direct heat applications and dissemination of information on low-temperature geothermal resources and utilization.

  17. Agreement Between Cardiovascular Disease Risk Scores in Resource-Limited Settings: Evidence from 5 Peruvian Sites

    PubMed Central

    Bazo-Alvarez, Juan Carlos; Quispe, Renato; Peralta, Frank; Poterico, Julio A.; Valle, Giancarlo A.; Burroughs, Melissa; Pillay, Timesh; Gilman, Robert H.; Checkley, William; Malaga, Germán; Smeeth, Liam; Bernabé-Ortiz, Antonio

    2015-01-01

    It is unclear how well currently available risk scores predict cardiovascular disease (CVD) risk in low-income and middle-income countries. We aim to compare the American College of Cardiology/American Heart Association (ACC/AHA) Pooled Cohort risk equations (ACC/AHA model) with 6 other CVD risk tools to assess the concordance of predicted CVD risk in a random sample from 5 geographically diverse Peruvian populations. We used data from 2 Peruvian, age and sex-matched, population-based studies across 5 geographical sites. The ACC/AHA model were compared with 6 other CVD risk prediction tools: laboratory Framingham risk score for CVD, non-laboratory Framingham risk score for CVD, Reynolds risk score, systematic coronary risk evaluation, World Health Organization risk charts, and the Lancet chronic diseases risk charts. Main outcome was in agreement with predicted CVD risk using Lin’s concordance correlation coefficient. Two thousand one hundred and eighty-three subjects, mean age 54.3 (SD ± 5.6) years, were included in the analysis. Overall, we found poor agreement between different scores when compared with ACC/AHA model. When each of the risk scores was used with cut-offs specified in guidelines, ACC/AHA model depicted the highest proportion of people at high CVD risk predicted at 10 years, with a prevalence of 29.0% (95% confidence interval, 26.9–31.0%), whereas prevalence with World Health Organization risk charts was 0.6% (95% confidence interval, 0.2–8.6%). In conclusion, poor concordance between current CVD risk scores demonstrates the uncertainty of choosing any of them for public health and clinical interventions in Latin American populations. There is a need to improve the evidence base of risk scores for CVD in low-income and middle-income countries. PMID:26102017

  18. Agreement Between Cardiovascular Disease Risk Scores in Resource-Limited Settings: Evidence from 5 Peruvian Sites.

    PubMed

    Bazo-Alvarez, Juan Carlos; Quispe, Renato; Peralta, Frank; Poterico, Julio A; Valle, Giancarlo A; Burroughs, Melissa; Pillay, Timesh; Gilman, Robert H; Checkley, William; Malaga, Germán; Smeeth, Liam; Bernabé-Ortiz, Antonio; Miranda, J Jaime

    2015-06-01

    It is unclear how well currently available risk scores predict cardiovascular disease (CVD) risk in low-income and middle-income countries. We aim to compare the American College of Cardiology/American Heart Association (ACC/AHA) Pooled Cohort risk equations (ACC/AHA model) with 6 other CVD risk tools to assess the concordance of predicted CVD risk in a random sample from 5 geographically diverse Peruvian populations. We used data from 2 Peruvian, age and sex-matched, population-based studies across 5 geographical sites. The ACC/AHA model were compared with 6 other CVD risk prediction tools: laboratory Framingham risk score for CVD, non-laboratory Framingham risk score for CVD, Reynolds risk score, systematic coronary risk evaluation, World Health Organization risk charts, and the Lancet chronic diseases risk charts. Main outcome was in agreement with predicted CVD risk using Lin's concordance correlation coefficient. Two thousand one hundred and eighty-three subjects, mean age 54.3 (SD ± 5.6) years, were included in the analysis. Overall, we found poor agreement between different scores when compared with ACC/AHA model. When each of the risk scores was used with cut-offs specified in guidelines, ACC/AHA model depicted the highest proportion of people at high CVD risk predicted at 10 years, with a prevalence of 29.0% (95% confidence interval, 26.9-31.0%), whereas prevalence with World Health Organization risk charts was 0.6% (95% confidence interval, 0.2-8.6%). In conclusion, poor concordance between current CVD risk scores demonstrates the uncertainty of choosing any of them for public health and clinical interventions in Latin American populations. There is a need to improve the evidence base of risk scores for CVD in low-income and middle-income countries. PMID:26102017

  19. Historical impacts of geothermal resources on the people of North America

    SciTech Connect

    Lund, J.W.

    1995-10-01

    The Indians of North America considered hot springs as a sacred place where the {open_quotes}Great Spirit{close_quotes} lived, and thus were great believers in the miraculous healing powers of the heat and mineral waters. These areas were also known as neutral ground; where warriors could travel to and rest unmolested by other tribes. Even though archeological finds date Native American presence at hot springs for over 10,000 years, there is no recorded history prior to the arrival of the Europeans in the 1500`s. Many legends concerning geothermal activities are part of the Native American oral history, such as about Madame Pele, the Hawaiian goddess of volcanic fire, and the story of the battle between Skell and Llao describing the eruptions of Mt. Mazama (Crater Lake) and Mt. Shasta. Obsidian was one of the prized volcanic trading items used by the Indians for tools and weapons.

  20. Geopressured geothermal resource potential of Miocene Bayou Hebert Prospect, Vermilion and Iberia parishes, Louisiana

    SciTech Connect

    McCulloh, R.P.; Pino, M.A.; Bebout, D.G.; Bachman, A.L.

    1981-01-01

    The Bayou Hebert prospect is a fault-bounded block of lower Miocene shale and sandstone which covers a 75-square-mile area in southeastern Vermilion and southwestern Iberia parishes, southwestern Louisiana. The average depth to the top of the geopressured zone is 12,500 feet. Detailed correlation of shale resistivity patterns on well logs from this area has delineated faults, local unconformities, and changes in thickness and facies of lithologic units. Most faults revealed by this method are associated with the boundary fault zones, but the few delineated in the interior of the prospect could reduce the volume of potential reservoir units. Cross sections show that the lower Miocene section thickens across growth faults by addition of new units as well as by expansion. Of the parameters of reservoir volume, salinity, temperature, and permeability, reservoir volume shows the most significant variation and indicates that the eastern fourth of the prospect has the most geopressured geothermal potential.

  1. Reservoir engineering studies of the Gladys McCall geopressured-geothermal resource; Final report

    SciTech Connect

    Chen-Min; Less, K.; Miller, M.A.

    1994-01-01

    Transient pressure analysis techniques have been used to evaluate the performance of the Gladys McCall geopressured-geothermal reservoir. A fault-controlled aquifer influx model has also been developed to account for pressure support observed during both reservoir depletion and recovery phases. The Gladys McCall No. 1 well was drilled and completed in the lower Miocene geopressured sandstones under the US Department of Energy geopressured-geothermal research program. The well was shut in October 1987 after producing over 27 MMstb of brine and 676 MMscf gas since October 1983. Eight pressure transient tests were conducted in the well. Analysis of transient pressure data provided a quantitative evaluation of reservoir characteristics, including: (a) formation transmissibility and skin, (b) the size and possible shape of the main producing reservoir, and (c) characteristics of the pressure support mechanism. The pressure behavior of 1983 Reservoir Limits Test (RLT) suggested that the Gladys McCall reservoir might have a long narrow shape with the well located off-center. An elongated numerical model developed accordingly was able to reproduce the pressure characteristics shown in the test. During both the reservoir production and shut-in periods, pressure buildup tests indicated some degree of external pressure support. Aquifer recharging was believed to be the main source. Based on reservoir material-balance calculations, an aquifer influx model was derived from a conceptual model of water leakage through a partially sealing fault into the reservoir under steady-state conditions. Moreover, a match of the pressure history required that the conductivity of the fault be a function of the pressure difference between the supporting aquifer and the reservoir.

  2. Reservoir engineering studies of the Gladys McCall geopressured-geothermal resource. Final report

    SciTech Connect

    Lea, C.M.; Lee, K.; Miller, M.A.

    1993-09-01

    Transient pressure analysis techniques have been used to evaluate the performance of the Gladys McCall geopressured-geothermal reservoir. A fault-controlled aquifer influx model has also been developed to account for pressure support observed during both reservoir depletion and recovery phases. The Gladys McCall No. 1 well was drilled and completed in the lower Miocene geopressured sandstones under the US Department of energy geopressured-geothermal research program. The well was shut in october 1987 after producing over 27 MMstb of brine and 676 MMscf gas since October 1983. Eight pressure transient tests were conducted in the well. Analysis of transient pressure data provided a quantitative evaluation of reservoir characteristics, including: (a) formation transmissibility and skin, (b) the size and possible shape of the main producing reservoir, (c) characteristics of the pressure support mechanism. The pressure behavior of 1983 Reservoir Limits Test (RLT) suggested that the Gladys McCall reservoir might have a long narrow shape with the well located off-center. An elongated numerical model developed accordingly was able to reproduce the pressure characteristics show in the test. During both the reservoir production and shut-in periods, pressure buildup tests indicated some degree of external pressure support. Aquifer recharging was believed to be the main source. Based on reservoir material-balance calculations, an aquifer influx model was derived from a conceptual model of water leakage through a partially sealing fault into the reservoir under steady-state conditions. Moreover, a match of the pressure history required that the conductivity of the fault be a function of the pressure difference between the supporting aquifer and the reservoir.

  3. Amending the Geothermal Steam Act of 1970. Hearing before the Subcommittee on Public Lands and Reserved Water of the Committee on Energy and Natural Resources, United States Senate, Ninety-Seventh Congress, First Session on S. 669; S. 1516

    SciTech Connect

    Not Available

    1982-01-01

    The subcommittee met in Casper, Wyoming to hear testimony on geothermal resources in Yellowstone National Park and other park systems and to consider S. 1516 and S. 669, which would help to expedite geothermal development. The lack of information on potential environmental damage, the quality of monitoring, and the poor record of damage from geothermal operations were of major concern. The testimony of 12 witnesses includes that of private and government geologists, environmental groups, and the Park Superintendent, who described the unique features of Yellowstone's Old Faithful Geyser and the importance of incorporating provisions into geothermal-leasing arrangements to protect the park. (DCK)

  4. Resource investigation of low- and moderate-temperature geothermal areas in San Bernardino, California. Part of the third year report, 1980-81, of the US Department of Energy-California State-Coupled Program for Reservoir Assessment and Confirmation

    SciTech Connect

    Youngs, L.G.; Bezore, S.P.; Chapman, R.H.; Chase, G.W.

    1981-08-01

    Ninety-seven geothermal wells and springs were identified and plotted on a compiled geologic map of the 40-square-mile study area. These wells and springs were concentrated in three distinguishable resource areas: Arrowhead Hot Springs; South San Bernardino; and Harlem Hot Springs - in each of which detailed geophysical, geochemical, and geological surveys were conducted. The Arrowhead Hot Springs geothermal area lies just north of the City of San Bernardino in the San Bernardino Mountains astride a shear zone (offshoot of the San Andreas fault) in pre-Cambrian gneiss and schist. The Harlem Hot Springs geothermal area, on the east side of the City, and the south San Bernardino geothermal area, on the south side, have geothermal reservoirs in Quaternary alluvial material which overlies a moderately deep sedimentary basin bound on the southwest by the San Jacinto fault (a ground water barrier). Geothermometry calculations suggest that the Arrowhead Hot Springs geothermal area, with a maximum reservoir temperature of 142/sup 0/C, may have the highest maximum reservoir temperature of the three geothermal areas. The maximum temperature recorded by CDMG in the south San Bernardino geothermal area was 56/sup 0/C from an artesian well, while the maximum temperature recorded in the Harlem Hot Springs geothermal area was 49.5/sup 0/C at 174 meters (570 feet) in an abandoned water well. The geophysical and geological surveys delineated fault traces in association with all three of the designated geothermal areas.

  5. Geothermal Today - 2001

    SciTech Connect

    2001-08-01

    U.S. Department of Energy Geothermal Energy Program Highlights Partnering with Industry A New Power Source for Nevada Drilling Research Finding Geothermal Resources Small-Scale Geothermal Power Plants The Heat Beneath Your Feet R&D 100 Award Program in Review Milestones January 2000 The U.S. Department of Energy GeoPowering the West initiative was launched. February 2000 Grants totaling $4.8 million were awarded in six western states, primarily for development of reservoir exploration, character

  6. Direct utilization of geothermal resources at Warm Springs State Hospital, Warm Springs, Montana. Final report, January 31, 1979-June 30, 1983

    SciTech Connect

    Not Available

    1984-01-01

    Several decades ago the water from a natural hot spring was piped to the Warm Springs State Hospital barn and greenhouse and eventually into the domestic water supply for showers. The Montana Department of Natural Resources and Conservation (DNRC) funded a feasibility study on potential development of the geothermal resource from monies originating from coal severence taxes. The results of the feasibility study were subsequently utilized in obtaining a $721,122 award from the Department of Energy Program Opportunity Notice (PON) program to identify and develop the geothermal resource at Warm Springs. The study included environmental and legal considerations, geophysical surveys, and the subsequent development of the resource. The well produces 60 to 64 gpm of 154/sup 0/F geothermal water which is utilized in a heat exchanger to heat domestic water. The system became fully operational on January 13, 1983 and the calculated yearly energy savings represent approximately 17.6 million cubic feet of natural gas which is equivalent to $77,000, based on current prices.

  7. Geothermal Energy Program overview

    SciTech Connect

    Not Available

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program.

  8. Geothermal energy program overview

    NASA Astrophysics Data System (ADS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained within the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost-effective heat and electricity for our nation's energy needs. Geothermal energy - the heat of the Earth - is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40 percent of the total U.S. energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The U.S. Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma (the four types of geothermal energy), still depends on the technical advancements sought by DOE's Geothermal Energy Program.

  9. Geothermal pipeline: Progress and development update from the geothermal progress monitor

    SciTech Connect

    1995-10-01

    This document is a Progress and Development Update from the Geothermal Progress Monitor. It contains brief descriptions of progress made on varying projects involving the use of geothermal resources or research about geothermal systems. This article describes the following projects: Conversion of waste water to geothermal energy in Northern California, Hydrogen sulfide study in Hawaii, a new program at the Cerro Prieto geothermal resource in Mexico, geothermal heating of a Nevadan school, development of a geothermal fluid standard, and the broadcasting of geothermal teleconferences.

  10. Geothermal induced seismicity program plan

    SciTech Connect

    Not Available

    1981-03-01

    A plan for a National Geothermal Induced Seismicity Program has been prepared in consultation with a panel of experts from industry, academia, and government. The program calls for baseline seismic monitoring in regions of known future geothermal development, continued seismic monitoring and characterization of earthquakes in zones of geothermal fluid production and injection, modeling of the earthquake-inducing mechanism, and in situ measurement of stresses in the geothermal development. The Geothermal Induced Seismicity Program (GISP) will have as its objectives the evaluation of the seismic hazard, if any, associated with geothermal resource exploitation and the devising of a technology which, when properly utilized, will control or mitigate such hazards.

  11. Resource investigation of low- and moderate-temperature geothermal areas in Paso Robles, California

    SciTech Connect

    Campion, L.F.; Chapman, R.H.; Chase, G.W.; Youngs, L.G.

    1983-01-01

    Ninety-eight geothermal wells and springs were identified and plotted, and a geologic map and cross sections were compiled. Detailed geophysical, geochemical, and geological surveys were conducted. The geological and geophysical work delineated the basement highs and trough-like depressions that can exercise control on the occurrence of the thermal waters. The Rinconada fault was also evident. Cross sections drawn from oil well logs show the sediments conforming against these basement highs and filling the depressions. It is along the locations where the sediments meet the basement highs that three natural warm springs in the area occur. Deep circulation of meteoric waters along faults seems to be a reasonable source for the warm water. The Santa Margarita, Pancho Rico, and Paso Robles Formations would be the first permeable zones that abut the faults through which water would enter. Temperatures and interpretation of well logs indicate the warmest aquifer at the base of the Paso Robles Formation. Warm water may be entering higher up in the section, but mixing with water from cooler zones seems to be evident. Geothermometry indicates reservoir temperatures could be as high as 91/sup 0/C (196/sup 0/F).

  12. The Domuyo volcanic system: An enormous geothermal resource in Argentine Patagonia

    NASA Astrophysics Data System (ADS)

    Chiodini, Giovanni; Liccioli, Caterina; Vaselli, Orlando; Calabrese, Sergio; Tassi, Franco; Caliro, Stefano; Caselli, Alberto; Agusto, Mariano; D'Alessandro, Walter

    2014-03-01

    A geochemical survey of the main thermal waters discharging in the southwestern part of the Domuyo volcanic complex (Argentina), where the latest volcanic activity dates to 0.11 Ma, has highlighted the extraordinarily high heat loss from this remote site in Patagonia. The thermal water discharges are mostly Na-Cl in composition and have TDS values up to 3.78 g L- 1 (El Humazo). A simple hydrogeochemical approach shows that 1,100 to 1,300 kg s- 1 of boiling waters, which have been affected by shallow steam separation, flow into the main drainage of the area (Rio Varvarco). A dramatic increase of the most conservative species such as Na, Cl and Li from the Rio Varvarco from upstream to downstream was observed and related solely to the contribution of hydrothermal fluids. The equilibrium temperatures of the discharging thermal fluids, calculated on the basis of the Na-K-Mg geothermometer, are between 190 °C and 230 °C. If we refer to a liquid originally at 220 °C (enthalpy = 944 J g- 1), the thermal energy release can be estimated as high as 1.1 ± 0.2 GW, a value that is much higher than the natural release of heat in other important geothermal fields worldwide, e.g., Mutnovsky (Russia), Wairakei (New Zealand) and Lassen Peak (USA). This value is the second highest measured advective heat flux from any hydrothermal system on Earth after Yellowstone.

  13. G.R.I.P.S activities in the development of direct use of geothermal resources and small scale geothermal power development

    NASA Astrophysics Data System (ADS)

    1981-10-01

    The activities of the geothermal research information and planning services (G.R.I.P.S.) in the four Geysers-Calistoga KGRA counties (i.e., Lake, Mendocino, Napa, Sonoma) in California are reported. Activities in the G.R.I.P.S. information and outreach program, workshop presentations, pilot project development, permit processing improvements and Department of Energy reporting are described.

  14. Development of a geothermal resource in a fractured volcanic formation: Case study of the Sumikawa Geothermal Field, Japan. Final report, May 1, 1995--November 30, 1997

    SciTech Connect

    Garg, S.K.; Combs, J.; Pritchett, J.W.

    1997-07-01

    The principal purpose of this case study of the Sumikawa Geothermal Field is to document and to evaluate the use of drilling logs, surface and downhole geophysical measurements, chemical analyses and pressure transient data for the assessment of a high temperature volcanic geothermal field. This comprehensive report describes the work accomplished during FY 1993-1996. A brief review of the geological and geophysical surveys at the Sumikawa Geothermal Field is presented (Section 2). Chemical data, consisting of analyses of steam and water from Sumikawa wells, are described and interpreted to indicate compositions and temperatures of reservoir fluids (Section 3). The drilling information and downhole pressure, temperature and spinner surveys are used to determine feedzone locations, pressures and temperatures (Section 4). Available injection and production data from both slim holes and large-diameter wells are analyzed to evaluate injectivity/productivity indices and to investigate the variation of discharge rate with borehole diameter (Section 5). New interpretations of pressure transient data from several wells are discussed (Section 6). The available data have been synthesized to formulate a conceptual model for the Sumikawa Geothermal Field (Section 7).

  15. Geothermal pipeline - progress and development update, geothermal progress monitor

    SciTech Connect

    1996-08-01

    This document is a progress and development update and geothermal progress monitor prepared by the Geo-Heat Center at the Oregon Institute of Technology in Klamath Falls, Oregon. Several upcoming meetings in the field of geothermal energy and resource development are announced. Proposed and past geothermal activities within the Glass Mountain Known Geothermal Resource Area are also discussed. As of this date, there has been limited geothermal exploration in this area, however, two projects located in the near vicinity have been proposed within the last two years.

  16. Navy Geothermal Plan

    SciTech Connect

    Not Available

    1984-12-01

    Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.

  17. Leyte `A` geothermal project optimization: Review of improved resource performance and power generation strategies for the greater Tongonan field. Export trade information

    SciTech Connect

    1992-11-01

    The Consultant Team (the team) visited the Philippines the weeks of October 24 and November 9, 1992, in order to review and discuss the resource and power generation optimization work underway for the Greater Tongonan Geothermal field on the island of Leyte being developed by the Philippine National Oil Company - Energy Development Corporation (PNOC-EDC). The team`s work is managed by PNOC-EDC and funded by the United States Trade and Development Program (USTDP).

  18. Feasibility study for a 10 MM GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume II. Geothermal resource, agricultural feedstock, markets and economic viability

    SciTech Connect

    Not Available

    1980-09-01

    The issues of the geothermal resource at Brady's Hot Springs are dealt with: the prospective supply of feedstocks to the ethanol plant, the markets for the spent grain by-products of the plant, the storage, handling and transshipment requirements for the feedstocks and by-products from a rail siding facility at Fernley, the probable market for fuel ethanol in the region, and an assessment of the economic viability of the entire undertaking.

  19. The industrial consortium for the utilization of the geopressured-geothermal resource

    SciTech Connect

    Negus-de Wys, J.

    1991-02-15

    Four feasibility studies have been developed by the INEL on thermal enhanced oil recovery (TEOR) Use of Supercritical Fluid processes for Detoxification of Pollutants, and Hydraulic Conversion to Electricity, and Direct Use. The studies provide information bases for potential industrial partners in the resource utilization. A joint proposal from Los Alamos National Laboratory (LANL) and INEL on supercritical fluid processes in going forward. Western Resources Technology has begun development of a dozen geopressured well projects. An hydraulic turbine test will be conducted at Pleasant Bayou in Summer of 1991. Dr. Wayne Steele of Anglewood, TX, a retired medical doctor, is proposing to raise fresh water Australian lobsters in the Pleasant Bayou Well fire water pond. Additional projects such as catfish farming, crayfish, desalintion plant and agricultural greenhouse use of the resource heat are waiting in the wings'' for the DOE wells to become available for pilot use projects. 2 figs.

  20. Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey, PSInSAR and Kinematic Structural Analysis

    SciTech Connect

    Teplow, William J.; Warren, Ian

    2015-08-12

    The DOE cost-share program applied innovative and cutting edge seismic surveying and processing, permanent scatter interferometry-synthetic aperture radar (PSInSAR) and structural kinematics to the exploration problem of locating and mapping largeaperture fractures (LAFs) for the purpose of targeting geothermal production wells. The San Emidio geothermal resource area, which is under lease to USG, contains production wells that have encountered and currently produce from LAFs in the southern half of the resource area (Figure 2). The USG lease block, incorporating the northern extension of the San Emidio geothermal resource, extends 3 miles north of the operating wellfield. The northern lease block was known to contain shallow thermal waters but was previously unexplored by deep drilling. Results of the Phase 1 exploration program are described in detail in the Phase 1 Final Report (Teplow et al., 2011). The DOE cost shared program was completed as planned on September 30, 2014. This report summarizes results from all of Phase 1 and 2 activities.

  1. South Dakota Geothermal Energy Handbook

    SciTech Connect

    Not Available

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are detailed. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resources are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized.

  2. Accelerating Geothermal Research (Fact Sheet)

    SciTech Connect

    Not Available

    2014-05-01

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  3. Final Scientific/Technical Report – DE-EE0002960 Recovery Act. Detachment faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation of Pearl Hot Spring, Nevada

    SciTech Connect

    Stockli, Daniel F.

    2015-11-30

    The Pearl Host Spring Geothermal Project funded by the DoE Geothermal Program was a joint academic (KU/UT & OU) and industry collaboration (Sierra and Ram Power) to investigate structural controls and the importance of low-angle normal faults on geothermal fluid flow through a multifaceted geological, geophysical, and geochemical investigation in west-central Nevada. The study clearly showed that the geothermal resources in Clayton Valley are controlled by the interplay between low-angle normal faults and active deformation related to the Walker Lane. The study not only identified potentially feasible blind geothermal resource plays in eastern Clayton Valley, but also provide a transportable template for exploration in the area of west-central Nevada and other regional and actively-deforming releasing fault bends. The study showed that deep-seated low-angle normal faults likely act as crustal scale permeability boundaries and could play an important role in geothermal circulation and funneling geothermal fluid into active fault zones. Not unique to this study, active deformation is viewed as an important gradient to rejuvenated fracture permeability aiding the long-term viability of blind geothermal resources. The technical approach for Phase I included the following components, (1) Structural and geological analysis of Pearl Hot Spring Resource, (2) (U-Th)/He thermochronometry and geothermometry, (3) detailed gravity data and modeling (plus some magnetic and resistivity), (4) Reflection and Refraction Seismic (Active Source), (5) Integration with existing and new geological/geophysical data, and (6) 3-D Earth Model, combining all data in an innovative approach combining classic work with new geochemical and geophysical methodology to detect blind geothermal resources in a cost-effective fashion.

  4. Gulf Coast geopressured-geothermal program summary report compilation. Volume 2-A: Resource description, program history, wells tested, university and company based research, site restoration

    SciTech Connect

    John, C.J.; Maciasz, G.; Harder, B.J.

    1998-06-01

    The US Department of Energy established a geopressured-geothermal energy program in the mid 1970`s as one response to America`s need to develop alternate energy resources in view of the increasing dependence on imported fossil fuel energy. This program continued for 17 years and approximately two hundred million dollars were expended for various types of research and well testing to thoroughly investigate this alternative energy source. This volume describes the following studies: Geopressured-geothermal resource description; Resource origin and sediment type; Gulf Coast resource extent; Resource estimates; Project history; Authorizing legislation; Program objectives; Perceived constraints; Program activities and structure; Well testing; Program management; Program cost summary; Funding history; Resource characterization; Wells of opportunity; Edna Delcambre No. 1 well; Edna Delcambre well recompletion; Fairfax Foster Sutter No. 2 well; Beulah Simon No. 2 well; P.E. Girouard No. 1 well; Prairie Canal No. 1 well; Crown Zellerbach No. 2 well; Alice C. Plantation No. 2 well; Tenneco Fee N No. 1 well; Pauline Kraft No. 1 well; Saldana well No. 2; G.M. Koelemay well No. 1; Willis Hulin No. 1 well; Investigations of other wells of opportunity; Clovis A. Kennedy No. 1 well; Watkins-Miller No. 1 well; Lucien J. Richard et al No. 1 well; and the C and K-Frank A. Godchaux, III, well No. 1.

  5. Quantitative analysis of the hydrothermal system in Lassen Volcanic National Park and Lassen Known Geothermal Resource Area

    SciTech Connect

    Sorey, M.L.; Ingebritsen, S.E.

    1984-01-01

    The Lassen hydrothermal system is in the southern Cascade Range, approximately 70 kilometers east-southeast of Redding, California. The conceptual model of the Lassen system is termed a liquid-dominated hydrothermal system with a parasitic vapor-dominated zone. The essential feature of this model is that steam and steam-heated discharge at relatively high elevations in Lassen Volcanic National Park (LVNP) and liquid discharge with high chloride concentrations at relatively low elevations outside LVNP in the Lassen Known Geothermal Resource Area (KGRA) are both fed by an upflow of high-enthalpy, two-phase fluid within the Park. Liquid flows laterally away from the upflow area towards the areas of high-chloride discharge, and steam rises through a vapor-dominated zone to feed the steam and steam-heated features. The geometric model corresponds to an areally restricted flow regime that connects the Bumpass Hell area in LVNP with regions of chloride hot springs in the Mill Creek canyon in the KGRA south of LVNP. Simulations of thermal fluid withdrawal in the Mill Creek Canyon were carried out in order to determine the effects of such withdrawal on portions of the hydrothermal system within the Park. 19 refs., 17 figs., 4 tabs.

  6. Fault Imaging with High-Resolution Seismic Reflection for Earthquake Hazard and Geothermal Resource Assessment in Reno, Nevada

    SciTech Connect

    Frary, Roxanna

    2012-05-05

    The Truckee Meadows basin is situated adjacent to the Sierra Nevada microplate, on the western boundary of the Walker Lane. Being in the transition zone between a range-front normal fault on the west and northwest-striking right-lateral strike slip faults to the east, there is no absence of faulting in this basin. The Reno- Sparks metropolitan area is located in this basin, and with a signi cant population living here, it is important to know where these faults are. High-resolution seismic reflection surveys are used for the imaging of these faults along the Truckee River, across which only one fault was previously mapped, and in southern Reno near and along Manzanita Lane, where a swarm of short faults has been mapped. The reflection profiles constrain the geometries of these faults, and suggest additional faults not seen before. Used in conjunction with depth to bedrock calculations and gravity measurements, the seismic reflection surveys provide de nitive locations of faults, as well as their orientations. O sets on these faults indicate how active they are, and this in turn has implications for seismic hazard in the area. In addition to seismic hazard, the faults imaged here tell us something about the conduits for geothermal fluid resources in Reno.

  7. Sustaining the National Geothermal Data System: Considerations for a System Wide Approach and Node Maintenance, Geothermal Resources Council 37th Annual Meeting, Las Vegas, Nevada, September 29-October 2, 2013

    SciTech Connect

    Allison, Lee; Chickering, Cathy; Anderson, Arlene; Richard, Stephen M.

    2013-09-23

    Since the 2009 American Recovery and Reinvestment Act the U.S. Department of Energy’s Geothermal Technologies Office has funded $33.7 million for multiple data digitization and aggregation projects focused on making vast amounts of geothermal relevant data available to industry for advancing geothermal exploration. These projects are collectively part of the National Geothermal Data System (NGDS), a distributed, networked system for maintaining, sharing, and accessing data in an effort to lower the levelized cost of electricity (LCOE). Determining “who owns” and “who maintains” the NGDS and its data nodes (repositories in the distributed system) is yet to be determined. However, the invest- ment in building and populating the NGDS has been substantial, both in terms of dollars and time; it is critical that this investment be protected by ensuring sustainability of the data, the software and systems, and the accessibility of the data. Only then, will the benefits be fully realized. To keep this operational system sustainable will require four core elements: continued serving of data and applications; maintenance of system operations; a governance structure; and an effective business model. Each of these presents a number of challenges. Data being added to the NGDS are not strictly geothermal but data considered relevant to geothermal exploration and develop- ment, including vast amounts of oil and gas and groundwater wells, among other data. These are relevant to a broader base of users. By diversifying the client base to other users and other fields, the cost of maintaining core infrastructure can be spread across an array of stakeholders and clients. It is presumed that NGDS will continue to provide free and open access to its data resources. The next-phase NGDS operation should be structured to eventually pursue revenue streams to help off-set sustainability expenses as necessary and appropriate, potentially including income from: grants and contracts

  8. Geothermal development in the Pacific rim. Transactions, Volume 20

    SciTech Connect

    1996-12-31

    This document entitled Geothermal Development in the Pacific Rim contains the Transactions, Volume 20 of the Geothermal Resources Council, 1996 Annual Meeting. Topics of the presentations include: Air quality assessment and mitigation, District heating and other direct-uses of geothermal energy, Environmental permitting in the Pacific Rim, Geothermal exploration strategies, tools and techniques, and Focus of IEA Geothermal programs. Geothermal resources and resource development in the USA, Indonesia, Mexico, Japan, and the Philippines are highlighted. Also included is a section on Geothermal power plant design, construction, and operation, and Geothermal reservoir assessment, the key to international financing.

  9. Seasat-satellite investigation of the structure of western Nebraska and its application to the evaluation of geothermal resources

    SciTech Connect

    Stix, J.

    1982-03-01

    Seasat synthetic aperture radar (SAR) satellite imagery was used to interpret the structural framework and, indirectly, the geothermal potential of an area in western Nebraska. Lineaments were mapped from the imagery and then compared to known structure. It was found that Seasat does record surface manifestations of subtle basement structures, particularly faults and joints. Furthermore, two areas with hot dry rock geothermal potential were delineated using Seasat and other data. It is stressed that more subsurface geology and geophysical data are needed before a final evaluation of the geothermal potential can be made. Seasat imagery is a useful reconnaissance exploration tool in the interpretation of regional structure within areas of little topographic relief.

  10. Seasat satellite investigation of the structure of western Nebraska and its application to the evaluation of geothermal resources

    SciTech Connect

    Stix, J.

    1981-01-01

    Seasat synthetic aperture radar (SAR) satellite imagery was used to interpret the structural framework and, indirectly, the geothermal potential of an area in western Nebraska. Lineaments were mapped from the imagery and then compared to known structure. It was found that Seasat does record surface manifestations of subtle basement structures, particularly faulting. Furthermore, four areas with geothermal potential were delineated using Seasat and other data. It is stressed that more subsurface geology and geophysical data are needed before a final evaluation of the geothermal potential can be made. Seasat imagery is a useful reconnaissance exploration tool in the interpretation of regional structure within areas of little topographic relief.

  11. Resources

    MedlinePlus

    ... palate - resources Colon cancer - resources Cystic fibrosis - resources Depression - resources Diabetes - resources Digestive disease - resources Drug abuse - resources Eating disorders - resources Elder care - resources Epilepsy - resources Family troubles - ...

  12. The economic value of remote sensing of earth resources from space: An ERTS overview and the value of continuity of service. Volume 7: Nonreplenishable natural resources: Minerals, fossil fuels and geothermal energy sources

    NASA Technical Reports Server (NTRS)

    Lietzke, K. R.

    1974-01-01

    The application of remotely-sensed information to the mineral, fossil fuel, and geothermal energy extraction industry is investigated. Public and private cost savings are documented in geologic mapping activities. Benefits and capabilities accruing to the ERS system are assessed. It is shown that remote sensing aids in resource extraction, as well as the monitoring of several dynamic phenomena, including disturbed lands, reclamation, erosion, glaciation, and volcanic and seismic activity.

  13. Geothermal Energy.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    An introduction to geothermal energy is provided in this discussion of: (1) how a geothermal reservoir works; (2) how to find geothermal energy; (3) where it is located; (4) electric power generation using geothermal energy; (5) use of geothermal energy as a direct source of heat; (6) geopressured reservoirs; (7) environmental effects; (8)…

  14. Geothermal resource assessment for the state of Texas: status of progress, November 1980. Final report. Appendices A through D

    SciTech Connect

    Woodruff, C.M. Jr.; Caran, S.C.; Gever, C.; Henry, C.D.; Macpherson, G.L.; McBride, M.W.

    1982-03-01

    These appendices include: a folio of county maps showing locations of well data across the state; a computerized tabulation of the wells depicted; an explanation of the computer coding procedures; and a selected bibliography on heat flow and geothermics. (MHR)

  15. Annotated bibliography of the hydrology, geology, and geothermal resources of the Jemez Mountains and vicinity, north-central New Mexico

    USGS Publications Warehouse

    Abeyta, Cynthia G.; Delaney, B.M.

    1986-01-01

    The Jemez Mountains volcanic complex, located in north-central New Mexico at the intersection of the Rio Grande rift and Jemez lineament, is a potential location for geothermal energy exploration. This bibliography lists selected papers pertaining to the geology, hydrology, geochemistry, geothermometry, geophysics, ecology, and geothermal and hydrologic modeling aspects of the Jemez region. The bibliography is composed of 795 citations with annotations and a subject and author index. (USGS)

  16. The Iceland Deep Drilling Project, a 5 km Deep Drillhole Underway to Investigate Deep Geothermal Resources on the Mid-Atlantic Ridge.

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Pope, E. C.; Freedman, A. J.; Schiffmann, P.; Zierenberg, R. A.; Reed, M. H.; Palandri, J.

    2005-12-01

    geothermal resource. Coring below 4.0 km is designed to penetrate into supercritical fluids which couple black smoker hydrothermal systems with their magmatic heat sources. Supercritical fluids have greatly enhanced rates of mass transfer and chemical reaction. Such environments have never before been available for comprehensive direct study and sampling. These investigations will be a very important contribution to global science and have clear connections to the studies of ridge-hotspot interactions by the Integrated Ocean Drilling Program. The broader implications of the IDDP are twofold; scientifically it will permit a quantum leap in our understanding of active hydrothermal processes that are important on a global scale, and secondly, if the industrial aims are successful, the resulting technology could have a major impact on improving the economics of high-temperature geothermal resources worldwide. The IDDP has welcomed participation by an international group of scientists that will investigate and test models of the coupling of hydrothermal and magmatic processes. The status of the project is reported at http://www.iddp.is.

  17. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report

    SciTech Connect

    Wendt, Daniel; Mines, Greg; Turchi, Craig; Zhu, Guangdong

    2015-11-01

    are subject to decreasing productivity manifested in the form of decreasing production fluid temperature, flow rate, or both during the life span of the associated power generation project. The impacts of geothermal production fluid temperature decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant efficiency. The impact of resource productivity decline on power generation project economics can be equally detrimental. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below a specified default level. While the magnitude of PPA penalties varies on a case-by-case basis, it is not unrealistic for these penalties to be on the order of the value of the deficit power sales such that the utility may purchase the power elsewhere. This report evaluates the use of geothermal/solar-thermal hybrid plant technology for mitigation of resource productivity decline, which has not been a primary topic of investigation in previous analyses in the open literature.

  18. Assessment of the petroleum, coal, and geothermal resources of the economic community of West African states (ECOWAS) region

    SciTech Connect

    Mattick, R.E.

    1982-01-01

    Approximately 85 percent of the land area of the ECOWAS (Economic Community of West African States) region is covered by basement rocks (igneous and highly metamorphosed rocks) or relatively thin layers of Paleozoic, Upper Precambrian, and Continental Intercalaire sedimentary rocks. These areas have little or no petroleum potential. The ECOWAS region can be divided into 13 sedimentary basins on the basis of analysis of the geologic framework of Africa. These 13 basins can be further grouped into 8 categories on the basis of similarities in stratigraphy, geologic history, and probable hydrocarbon potential. The author has attempted to summarize the petroleum potential within the geologic framework of the region. The coal discoveries can be summarized as follows: the Carboniferous section in the Niger Basin; the Paleocene-Maestrichtian, Maestrichtian, and Eocene sections in the Niger Delta and Benin; the Maestrichtian section in the Senegal Basin; and the Pleistocene section in Sierra Leone. The only proved commercial deposits are the Paleocene-Maestrichtian and Maestrichtian subbituminous coal beds of the Niger Delta. Some of the lignite deposits of the Niger Delta and Senegal Basin, however, may be exploitable in the future. Published literature contains limited data on heat-flow values in the ECOWAS region. It is inferred, however, from the few values available and the regional geology that the development of geothermal resources, in general, would be uneconomical. Exceptions may include a geopressured zone in the Niger Delta and areas of recent tectonic activity in the Benue Trough and Cameroon. Development of the latter areas under present economic conditions is not feasible.

  19. Geothermal: Energy for development - The World Bank and geothermal development

    SciTech Connect

    Bertelsmeier, W.

    1986-01-01

    The World Bank views geothermal energy as one of a variety of natural resources which can be developed to supply the energy needs of a country. Since the World Bank Group finances projects in developing countries. This paper discusses geothermal energy only in that context. Geothermal power is generated in nine developing countries today, which represent nearly 40% of worldwide geothermal generating capacity. The World Bank has helped finance geothermal investments in six of these countries-the Phillippines, Mexico, El Salvador, Nicaragua, Indonesia and Kenya.

  20. Volcanology and geothermal energy

    SciTech Connect

    Wohletz, K.; Heiken, G.

    1992-01-01

    The aim of this book is to demonstrate how volcanological concepts can be applied to the evaluation and exploration of geothermal energy resources. In regard to the geothermal content of the book, some of the information comes from the first-hand experience gained during the authors' exploration work in Middle America and with the Los Alamos Hot Dry Rock program. Other cases discussed come from classic geothermal systems in many regions and settings. The book begins with a summary of recent practical advances in volcanology, and then moves on to describe the considerable importance of pyroclastic rocks as a took to evaluate geothermal systems, including an in-depth treatment of hydrovolcanism. Following chapters deal with surface manifestations of geothermal systems, and systems associated with calderas, silicic lava domes, and basaltic volcanoes. The last chapter is on geothermal systems in maturing composite volcanoes. The Appendices include a broad overview of field methods in volcanic regions, volcanic rock classifications and properties, thermodynamic properties of water vapor (steam tables), and the use of cuttings in geothermal well logs. A two-dimensional heat flow code used for estimating geothermal resources is also given. The book makes two significant contributions: first, in its treatment of eruption dynamics, focusing on quantitative and theoretical analysis of volcanic processes, and second, in its comprehensive treatment of the fundamentals of hydrovolcanism, including fuel-coolant interactions and hydrofracturing.

  1. Resources

    MedlinePlus

    ... Diabetes - resources Digestive disease - resources Drug abuse - resources Eating disorders - resources Elder care - resources Epilepsy - resources Family troubles - resources Gastrointestinal disorders - resources Hearing impairment - resources ...

  2. National Geothermal Data System (NGDS)

    DOE Data Explorer

    The National Geothermal Data System (NGDS) is a DOE-funded distributed network of databases and data sites. Much of the risk of geothermal energy development is associated with exploring for, confirming and characterizing the available geothermal resources. The overriding purpose of the NGDS is to help mitigate this up-front risk by serving as a central gateway for geothermal and relevant related data as well as a link to distributed data sources. Assessing and categorizing the nation's geothermal resources and consolidating all geothermal data through a publicly accessible data system will support research, stimulate public interest, promote market acceptance and investment, and, in turn, the growth of the geothermal industry. Major participants in the NGDS to date include universities, laboratories, the Arizona Geological Survey and Association of American State Geologists (Arizona Geological Survey, lead), the Geothermal Resources Council, and the U.S. Geological Survey. The Geothermal Energy Association is collaborating with the NGDS to insure that it meets the needs of the geothermal industry.

  3. Strategic plan for the geothermal energy program

    SciTech Connect

    1998-06-01

    Geothermal energy (natural heat in the Earth`s crust) represents a truly enormous amount of energy. The heat content of domestic geothermal resources is estimated to be 70,000,000 quads, equivalent to a 750,000-year supply of energy for the entire Nation at current rates of consumption. World geothermal resources (exclusive of resources under the oceans) may be as much as 20 times larger than those of the US. While industry has focused on hydrothermal resources (those containing hot water and/or steam), the long-term future of geothermal energy lies in developing technology to enable use of the full range of geothermal resources. In the foreseeable future, heat may be extracted directly from very hot rocks or from molten rocks, if suitable technology can be developed. The US Department of Energy`s Office of Geothermal Technologies (OGT) endorses a vision of the future in which geothermal energy will be the preferred alternative to polluting energy sources. The mission of the Program is to work in partnership with US industry to establish geothermal energy as a sustainable, environmentally sound, economically competitive contributor to the US and world energy supply. In executing its mission and achieving its long-term vision for geothermal energy, the Program has identified five strategic goals: electric power generation; direct use applications and geothermal heat pumps; international geothermal development; science and technology; and future geothermal resources. This report discusses the objectives of these five goals.

  4. CO/sub 2/-silica geothermometer for low temperature geothermal resource assessment, with application to resources in the Safford Basin, Arizona

    SciTech Connect

    Witcher, J.C.; Stone, C.

    1983-11-01

    This study investigates silica-water reactions in low-temperature geothermal water in areas near Safford, southeastern Arizona, and derives a pCO2 correction for conductive silica geothermometers. Use and limitations of the technique are also discussed. Data collection, interpretation approach, and basic geochemistry, as it applies to this study, are outlined. In addition, the geology, thermal regime, geohydrology, and gross geochemistry of the Safford area are reviewed. Finally, geothermal potential, as indicated by this study and previous studies is discussed.

  5. Geothermal District Heating Economics

    1995-07-12

    GEOCITY is a large-scale simulation model which combines both engineering and economic submodels to systematically calculate the cost of geothermal district heating systems for space heating, hot-water heating, and process heating based upon hydrothermal geothermal resources. The GEOCITY program simulates the entire production, distribution, and waste disposal process for geothermal district heating systems, but does not include the cost of radiators, convectors, or other in-house heating systems. GEOCITY calculates the cost of district heating basedmore » on the climate, population, and heat demand of the district; characteristics of the geothermal resource and distance from the distribution center; well-drilling costs; design of the distribution system; tax rates; and financial conditions.« less

  6. Development of concepts for the management of shallow geothermal resources in urban areas - Experience gained from the Basel and Zaragoza case studies

    NASA Astrophysics Data System (ADS)

    García-Gil, Alejandro; Epting, Jannis; Mueller, Matthias H.; Huggenberger, Peter; Vázquez-Suñé, Enric

    2015-04-01

    In urban areas the shallow subsurface often is used as a heat resource (shallow geothermal energy), i.e. for the installation and operation of a broad variety of geothermal systems. Increasingly, groundwater is used as a low-cost heat sink, e.g. for building acclimatization. Together with other shallow geothermal exploitation systems significantly increased groundwater temperatures have been observed in many urban areas (urban heat island effect). The experience obtained from two selected case study cities in Basel (CH) and Zaragoza (ES) has allowed developing concepts and methods for the management of thermal resources in urban areas. Both case study cities already have a comprehensive monitoring network operating (hydraulics and temperature) as well as calibrated high-resolution numerical groundwater flow and heat-transport models. The existing datasets and models have allowed to compile and compare the different hydraulic and thermal boundary conditions for both groundwater bodies, including: (1) River boundaries (River Rhine and Ebro), (2) Regional hydraulic and thermal settings, (3) Interaction with the atmosphere under consideration of urbanization and (4) Anthropogenic quantitative and thermal groundwater use. The potential natural states of the considered groundwater bodies also have been investigated for different urban settings and varying processes concerning groundwater flow and thermal regimes. Moreover, concepts for the management of thermal resources in urban areas and the transferability of the applied methods to other urban areas are discussed. The methods used provide an appropriate selection of parameters (spatiotemporal resolution) that have to be measured for representative interpretations of groundwater flow and thermal regimes of specific groundwater bodies. From the experience acquired from the case studies it is shown that understanding the variable influences of the specific geological and hydrogeological as well as hydraulic and thermal

  7. Geothermal Energy Technology: a current-awareness bulletin

    SciTech Connect

    Smith, L.B.

    1983-01-15

    This bulletin announces on a semimonthly basis the current worldwide information available on the technology required for economic recovery of geothermal energy and its use either directly or for production of electric power. The subject content encompasses: resource status and assessment, geology and hydrology of geothermal systems, geothermal exploration, legal and institutional aspects, economic and final aspects, environmental aspects and waste disposal, by-products, geothermal power plants, geothermal engineering, direct energy utilization, and geothermal data and theory.

  8. Geothermal reservoir simulation

    NASA Technical Reports Server (NTRS)

    Mercer, J. W., Jr.; Faust, C.; Pinder, G. F.

    1974-01-01

    The prediction of long-term geothermal reservoir performance and the environmental impact of exploiting this resource are two important problems associated with the utilization of geothermal energy for power production. Our research effort addresses these problems through numerical simulation. Computer codes based on the solution of partial-differential equations using finite-element techniques are being prepared to simulate multiphase energy transport, energy transport in fractured porous reservoirs, well bore phenomena, and subsidence.

  9. Geothermal Energy; (USA)

    SciTech Connect

    Raridon, M.H.; Hicks, S.C.

    1991-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal article, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

  10. Hydrogeochemical evaluation of conventional and hot dry rock geothermal resource potential in the Clear Lake region, California

    SciTech Connect

    Goff, F.; Adams, A.I.; Trujillo, P.E.; Counce, D.

    1993-05-01

    Chemistry, stable isotope, and tritium contents of thermal/mineral waters in the Clear Lake region were used to evaluate conventional and hot dry rock (HDR) geothermal potential for electrical generation. Thermal/mineral waters of the Clear Lake region are broadly classified as thermal meteoric and connate types based on chemical and isotopic criteria. Ratios of conservative components such as B/Cl are extremely different among all thermal/mineral waters of the Clear Lake region except for clusters of waters emerging from specific areas such as the Wilbur Springs district and the Agricultural Park area south of Mt. Konocti. In contrast ratios of conservative components in large, homogeneous geothermal reservoirs are constant. Stable isotope values of Clear Lake region waters show a mixing trend between thermal meteoric and connate (generic) end-members. The latter end-member has enriched {delta}D as well as enriched {delta}{sup 18}O, from typical high-temperature geothermal reservoir waters. Tritium data indicate most Clear Lake region waters are mixtures of old and young fluid components. Subsurface equilibration temperature of most thermal/mineral waters of the Clear Lake region is {le}150{degree}C based on chemical geothermometers but it is recognized that Clear Lake region waters are not typical geothermal fluids and that they violate rules of application of many geothermometers. The combined data indicate that no large geothermal reservoir underlies the Clear Lake region and that small localized reservoirs have equilibration temperatures {le}150{degree}C (except for Sulphur Bank mine). HDR technologies are probably the best way to commercially exploit the known high-temperatures existing beneath the Clear Lake region particularly within and near the main Clear Lake volcanic field.

  11. Geothermal development plan: Yuma county

    SciTech Connect

    White, D.H.

    1981-01-01

    One hot spring and 33 wells drilled in the county discharge water at temperatures sufficient for direct-use geothermal applications such as process heat and space heating and cooling. Currently, one industry within the county has been identified which may be able to use geothermal energy for its process heat requirements. Also, a computer simulation model was used to predict geothermal energy on line as a function of time under both private and city-owned utility development of the resource.

  12. GEOTHERMAL ENVIRONMENTAL IMPACT ASSESSMENT: GROUND WATER MONITORING GUIDELINES FOR GEOTHERMAL DEVELOPMENT

    EPA Science Inventory

    This report discusses potential ground water pollution from geothermal resource development, conversion, and waste disposal, and proposes guidelines for developing a ground water monitoring plan for any such development. Geothermal processes, borehole logging, and injection well ...

  13. Advanced Geothermal Turbodrill

    SciTech Connect

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  14. Geothermal development plan: Yuma County

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The Yuma County Area Development Plan evaluated the county-wide market potential for utilizing geothermal energy. The study identified four potential geothermal resource areas with temperatures less than 90/sup 0/C (194/sup 0/F), and in addition, two areas are inferred to contain geothermal resources with intermediate (90/sup 0/C to 150/sup 0/C, 194/sup 0/F to 300/sup 0/F) temperature potential. The resource areas are isolated, although one resource area is located near Yuma, Arizona. One resource site is inferred to contain a hot dry rock resource. Anticipated population growth in the county is expected to be 2 percent per year over the next 40 years. The primary employment sector is agriculture, though some light industry is located in the county. Water supplies are found to be adequate to support future growth without advese affect on agriculture. Six firms were found in Yuma County which may be able to utilize geothermal energy for process heat needs. In addition, several agricultural processors were found, concentrated in citrus processing and livestock raising. Geothermal energy utilization projections suggest that by the year 2000, geothermal energy may economically provide the energy equivalent of 53,000 barrels of oil per year to the industrial sector if developed privately. Geothermal utilization projections increase to 132,000 barrels of oil per year by 2000 if a municipal utility developed the resource.

  15. Assessment of Geothermal Resource Potential at a High-Priority Area on the Utah Testing and Training Range–South (UTTR–S)

    SciTech Connect

    Richard P. Smith, PhD., PG; Robert P. Breckenridge, PhD.; Thomas R. Wood, PhD.

    2012-04-01

    the graben in areas with temperatures as high as 140 C (284 F). In conclusion, all of the field data collected during 2011 and documented in the Appendices of this report indicate that there is reasonable potential for a viable geothermal resource along faults that bound the Wendover graben. Prospects for a system capable of binary electrical generation are especially good, and the possibility of a flash steam system is also within reason. The next steps should focus on securing the necessary funding for detailed geophysical surveys and for drilling a set of temperature gradient wells to further evaluate the resource, and to focus deep exploration efforts in the most promising areas.

  16. Geothermal systems: Principles and case histories

    NASA Astrophysics Data System (ADS)

    Rybach, L.; Muffler, L. J. P.

    The classification of geothermal systems is considered along with the geophysical and geochemical signatures of geothermal systems, aspects of conductive heat transfer and regional heat flow, and geothermal anomalies and their plate tectonic framework. An investigation of convective heat and mass transfer in hydrothermal systems is conducted, taking into account the mathematical modelling of hydrothermal systems, aspects of idealized convective heat and mass transport, plausible models of geothermal reservoirs, and preproduction models of hydrothermal systems. Attention is given to the prospecting for geothermal resources, the application of water geochemistry to geothermal exploration and reservoir engineering, heat extraction from geothermal reservoirs, questions of geothermal resource assessment, and environmental aspects of geothermal energy development. A description is presented of a number of case histories, taking into account the low enthalpy geothermal resource of the Pannonian Basin in Hungary, the Krafla geothermal field in Northeast Iceland, the geothermal system of the Jemez Mountains in New Mexico, and extraction-reinjection at the Ahuachapan geothermal field in El Salvador.

  17. Access and benefits sharing of genetic resources and associated traditional knowledge in northern Canada: understanding the legal environment and creating effective research agreements

    PubMed Central

    Geary, Janis; Jardine, Cynthia G.; Guebert, Jenilee; Bubela, Tania

    2013-01-01

    Background Research in northern Canada focused on Aboriginal peoples has historically benefited academia with little consideration for the people being researched or their traditional knowledge (TK). Although this attitude is changing, the complexity of TK makes it difficult to develop mechanisms to preserve and protect it. Protecting TK becomes even more important when outside groups become interested in using TK or materials with associated TK. In the latter category are genetic resources, which may have commercial value and are the focus of this article. Objective This article addresses access to and use of genetic resources and associated TK in the context of the historical power-imbalances in research relationships in Canadian north. Design Review. Results Research involving genetic resources and TK is becoming increasingly relevant in northern Canada. The legal framework related to genetic resources and the cultural shift of universities towards commercial goals in research influence the environment for negotiating research agreements. Current guidelines for research agreements do not offer appropriate guidelines to achieve mutual benefit, reflect unequal bargaining power or take the relationship between parties into account. Conclusions Relational contract theory may be a useful framework to address the social, cultural and legal hurdles inherent in creating research agreements. PMID:23986896

  18. The effects of urgency to reach agreement on the process and outcome of multi-party natural resource negotiations

    USGS Publications Warehouse

    Lamb, B.L.; Taylor, J.G.; Burkardt, N.; Gillette, S.C.

    2005-01-01

    We studied seven hydropower license consultations to examine the role of a sense of urgency to reach agreement. Hydropower licensing consultations were studied because the statutory requirement for consultation encourages negotiation, all such consultations are similar, and a negotiated settlement is not a foregone result. Cases selected for analysis met screening criteria. Structured interviews were conducted with participants after the negotiations had been concluded. Respondent recollections were checked against the documentary record. A sense of urgency to reach agreement was a significant factor in the completion of these negotiations; where there was no shared sense of urgency, purposeful delay adversely affected the negotiations. Although a sense of urgency was experienced by at least one party in each case, only a shared sense of urgency at the end of the process proved significant. Delay did not prevent ultimate agreement but a shared sense of urgency brought speedier agreement and greater satisfaction with the negotiation.

  19. Geothermal pipeline

    SciTech Connect

    1997-08-01

    The Geothermal Pipeline is a progress and development update from the Geothermal Progress Monitor and includes brief descriptions of various geothermal projects around the world. The following topics are covered: The retirement of Geo-Heat Center Director Paul Lienau, announcement of two upcoming geothermal meetings, and a proposed geothermal power plant project in the Medicine Lake/Glass Mountain area of California. Also included is an article about the Bonneville Power Administration`s settlements with two California companies who had agreed to build geothermal power plants on the federal agency`s behalf, geothermal space heating projects and use of geothermal energy for raising red crayfish in Oregon, and some updates on geothermal projects in Minnesota, Pennsylvania, and China.

  20. Utilization of geothermal energy in the Philippines

    SciTech Connect

    Rivero, L.U.; De La Salle Univ, M.

    1981-01-01

    A history of the exploration of the geothermal resources as well as the construction of the geothermal power plants in the Philippines is given. The cost and the viability of such plants under Philippine conditions are presented. The necessity of a planned development around the geothermal plant, such as heat-consuming industries, is stressed. 15 refs.

  1. Geobotanical Remote Sensing Applied to Targeting New Geothermal Resource Locations in the U.S. Basin and Range with a Focus on Dixie Meadows, NV

    SciTech Connect

    Pickles, W. L.; Nash, G. D.; Calvin, W. M.; Martini, B. A.; Cocks, P. A.; Kenedy-Bowdoin, T.; Mac Knight, R. B.; Silver, E. A.; Potts, D. C.; Foxall, W.; Kasameyer, P.; Waibel, A. F.

    2003-01-01

    This paper presents an overview of the work our collaboration is doing to increase the detailed mapped resource base for geothermal exploration in the Western US. We are imaging several large areas in the western US with high resolution airborne hyperspectral and satellite multispectral sensors. We have now entered the phase where the remote sensing techniques and tools we are developing are mature enough to be combined with other geothermal exploration techniques such as aeromagnetic, seismic, well logging and coring data. The imaging sensors and analysis techniques we have developed have the ability to map visible faults, surface effluents, altered minerals, subtle hidden faults. Large regions are being imaged at reasonable costs. The technique of geobotanical remote sensing for geothermal signatures is based on recent successes in mapping hidden faults, high temperature altered mineralization, clays, hot and cold springs and CO2 effluents the Long Valley Caldera and Mammoth Mountain in California. The areas that have been imaged include Mammoth Mountain and the Long Valley Caldera, Dixie Meadows NV, Fish Lake Valley NV, and Brady Hot Springs. Areas that are being imaged in the summer of 2003 are the south moat of the Long Valley Caldera, Mammoth Mountain western Pickles, Nash, Kasameyer, Foxall, Martini, Cocks, Kennedy-Bowdoin, McKnight, Silver, Potts, flanks, Mono Inyo chain north of Mammoth Mountain in CA, and the Humboldt Block in NV. This paper focuses on presenting the overview of the high-resolution airborne hyperspectral image acquisition that was done at Dixie Meadows NV in August 2002. This new imagery is currently being analyzed and combined with other field data by all of the authors on this paper. Results of their work up until the time of the conference will be presented in papers in the remote sensing session.

  2. DOE geothermal R&D program focused on facilitating long-term, cost-effective private resource development

    SciTech Connect

    Mock, John E.

    1992-01-01

    Analyses conducted in support of the National Energy Strategy projected that as much as 22,000 megawatts of cost-effective, moderate-temperature geothermal energy are available to the U.S. over the long-term, or to the year 2030. Thus, the primary hydrothermal technology research goal of the Department's Geothermal Division is to facilitate the ability of the private sector to exploit competitively this large source of energy up to that capacity level or greater. The primary mechanism for implementing this goal is an R&D core program cost-shared with industry focused on major cost-sensitive technology areas: exploration technology, reservoir engineering and management, and drilling. The NES analyses also indicated that electricity generated with energy derived from hot dry rock could be a geographically dispersed, logical follow-on to hydrothermal electricity in the longer term. In order to demonstrate whether energy at useful temperatures can be extracted over extended periods at competitive energy prices, a long-term flow test of an experimental HDR system will be conducted. This paper describes DOE's current participation in R&D activities leading to the development of ''cutting edge'' technology that will serve the geothermal industry's interest well into the next century.

  3. Geothermal resources of the western arm of the Black Rock Desert, northwestern Nevada. Part I. Geology and geophysics

    SciTech Connect

    Schaefer, D.H.; Welch, A.H.; Maurer, D.K.

    1983-01-01

    Studies of the geothermal potential of the western arm of the Black Rock Desert in northwestern Nevada included a compilation of existing geologic data on a detailed map, a temperature survey at 1-meter depth, a thermal-scanner survey, and gravity and seismic surveys to determine basin geometry. The temperature survey showed the effects of heating at shallow depths due to rising geothermal fluids near the known hot spring areas. Lower temperatures were noted in areas of probable near-surface ground-water movement. The thermal-scanner survey verified the known geothermal areas and showed relatively high-temperature areas of standing water and ground-water discharge. The upland areas of the desert were found to be distinctly warmer than the playa area, probably due to the low thermal diffusivity of upland areas caused by low moisture content. Surface geophysical surveys indicated that the maximum thickness of valley-fill deposits in the desert is about 3200 meters. Gravity data further showed that changes in the trend of the desert axis occurred near thermal areas. 53 refs., 8 figs., 3 tabs.

  4. Geothermal resources of the western arm of the Black Rock Desert, northwestern Nevada; Part I, geology and geophysics

    USGS Publications Warehouse

    Schaefer, Donald H.; Welch, Alan H.; Mauzer, Douglas K.

    1983-01-01

    Studies of the geothermal potential of the western arm of the Black Rock Desert in northwestern Nevada included a compilation of existing geologic data on a detailed map, a temperature survey at 1-meter depth, a thermal-scanner survey, and gravity and seismic surveys to determine basin geometry. The temperature survey showed the effects of heating at shallow depths due to rising geothermal fluids near the known hot spring areas. Lower temperatures were noted in areas of probable near-surface ground-water movement. The thermal-scanner survey verified the known geothermal areas and showed relatively high-temperature areas of standing water and ground-water discharge. The upland areas of the desert were found to be distinctly warmer than the playa area, probably due to low thermal diffusivity resulting from low moisture content. The surface geophysical surveys indicated that the maximum thickness of valley-fill deposits in the desert is about 3,200 meters. Gravity data further showed that changes in the trend of the desert axis occurred near thermal areas. (USGS)

  5. Geochronology and magmatic evolution of the Dieng Volcanic Complex, Central Java, Indonesia and their relationships to geothermal resources

    NASA Astrophysics Data System (ADS)

    Harijoko, Agung; Uruma, Ryusuke; Wibowo, Haryo Edi; Setijadji, Lucas Doni; Imai, Akira; Yonezu, Kotaro; Watanabe, Koichiro

    2016-01-01

    We analyzed new radiometric dating and petrological data of DVC in an attempt to reconstruct volcanic history as groundwork to understand magmatic temporal and spatial evolution. The magma of DVC can be divided on the basis of mineral composition into three types: olivine bearing basalt-basaltic andesite, pyroxene basaltic andesite-andesite, and biotite andesite-dacite, which coincide with three volcanic episodes of DVC: pre-caldera, second, and youngest episode, respectively. The pre-caldera episode was active no later than 1 Ma, the second episode occurred between 0.3 and 0.4 Ma, and the youngest occurred after 0.27 Ma. Plots of CaO, K2O, Al2O3, and Rb/Sr against FeO*/MgO and/or MgO suggest that each volcanic episode has distinct differentiation trends, indicating the presence of multiple shallow magma chambers. The close spatial relationship between the geothermal manifestation, geophysical anomalies, geothermal production zones and volcanic edifices supports the presence of multiple shallow magma chambers beneath DVC, which act as a heat source for the existing geothermal system.

  6. Geothermal Energy: Prospects and Problems

    ERIC Educational Resources Information Center

    Ritter, William W.

    1973-01-01

    An examination of geothermal energy as a means of increasing the United States power resources with minimal pollution problems. Developed and planned geothermal-electric power installations around the world, capacities, installation dates, etc., are reviewed. Environmental impact, problems, etc. are discussed. (LK)

  7. Direct application of geothermal energy

    SciTech Connect

    Reistad, G.M.

    1980-01-01

    An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

  8. Gulf Coast geopressured-geothermal program summary report compilation. Volume 2-B: Resource description, program history, wells tested, university and company based research, site restoration

    SciTech Connect

    John, C.J.; Maciasz, G.; Harder, B.J.

    1998-06-01

    The US Department of Energy established a geopressured-geothermal energy program in the mid 1970`s as one response to America`s need to develop alternate energy resources in view of the increasing dependence on imported fossil fuel energy. This program continued for 17 years and approximately two hundred million dollars were expended for various types of research and well testing to thoroughly investigate this alternative energy source. This volume describes the following studies: Design well program; LaFourche Crossing; MG-T/DOE Amoco Fee No. 1 (Sweet Lake); Environmental monitoring at Sweet Lake; Air quality; Water quality; Microseismic monitoring; Subsidence; Dow/DOE L.R. Sweezy No. 1 well; Reservoir testing; Environmental monitoring at Parcperdue; Air monitoring; Water runoff; Groundwater; Microseismic events; Subsidence; Environmental consideration at site; Gladys McCall No. 1 well; Test results of Gladys McCall; Hydrocarbons in production gas and brine; Environmental monitoring at the Gladys McCall site; Pleasant Bayou No. 2 well; Pleasant Bayou hybrid power system; Environmental monitoring at Pleasant Bayou; and Plug abandonment and well site restoration of three geopressured-geothermal test sites. 197 figs., 64 tabs.

  9. The Oregon Geothermal Planning Conference

    SciTech Connect

    1980-10-02

    Oregon's geothermal resources represent a large portion of the nation's total geothermal potential. The State's resources are substantial in size, widespread in location, and presently in various stages of discovery and utilization. The exploration for, and development of, geothermal is presently dependent upon a mixture of engineering, economic, environmental, and legal factors. In response to the State's significant geothermal energy potential, and the emerging impediments and incentives for its development, the State of Oregon has begun a planning program intended to accelerate the environmentally prudent utilization of geothermal, while conserving the resource's long-term productivity. The program, which is based upon preliminary work performed by the Oregon Institute of Technology's Geo-Heat Center, will be managed by the Oregon Department of Energy, with the assistance of the Departments of Economic Development, Geology and Mineral Industries, and Water Resources. Funding support for the program is being provided by the US Department of Energy. The first six-month phase of the program, beginning in July 1980, will include the following five primary tasks: (1) coordination of state and local agency projects and information, in order to keep geothermal personnel abreast of the rapidly expanding resource literature, resource discoveries, technological advances, and each agency's projects. (2) Analysis of resource commercialization impediments and recommendations of incentives for accelerating resource utilization. (3) Compilation and dissemination of Oregon geothermal information, in order to create public and potential user awareness, and to publicize technical assistance programs and financial incentives. (4) Resource planning assistance for local governments in order to create local expertise and action; including a statewide workshop for local officials, and the formulation of two specific community resource development plans. (5) Formulation and

  10. Direct use of geothermal resources. Hearing before the Subcommittee on Environment of the Committee on Science, Space, and Technology, U.S. House of Representatives, One Hundred Second Congress, Second Session, July 30, 1992

    SciTech Connect

    1992-12-31

    The hearing addresses an alternative energy form derived from the Earth`s natural heat. Direct use of geothermal resources in the United States is recognized as an alternative energy source that has proven itself technically and is both economically feasible and cost-effective. Statements of government and industry officials are included along with documents submitted for the record.

  11. Geothermal Energy

    SciTech Connect

    Steele, B.C.; Harman, G.; Pitsenbarger, J.

    1996-02-01

    Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

  12. Geothermal Energy.

    ERIC Educational Resources Information Center

    Reed, Marshall J.

    1979-01-01

    During 1978, exploration for geothermal energy continued at the same moderately low level of the past few years in most countries. The U.S. is the only country where the development of geothermal energy depends on private industry. (BB)

  13. Geothermal Energy Development in China

    SciTech Connect

    Kuide, Xin; Qilong, Yang

    1983-12-15

    China's geothermal resources are mainly of low - medium temperature. More than 30 geothermal areas have been or are being explorated. According to the geology, economy and technology of geothermal energy development main efforts are concentrated in some places with better conditions and can be exploited effectively in the near future, such as low temperature geothermal fields in Beijing and Tianjin, Yangbajain and Dengchong high temperature geothermal fields respectively in Tibet and Ynnan province. In Beijing and Tianjin the geothermal water is used for space heating, bathing, medical treatment, greenhouse, raising tropical fish, industry and so on. In Beijing now more than 200 thousand sq. m. of indoor floor is being heated with geothermal water and about 50 thousand persons per day use it to take bath. In future, the low temperature geothermal water utilization in these big citites would flourish. In 1970 the first experimental geothermal power plant using the flashing method was built in Dengwu, Guangdong province. In 1977 one MW experimental wet steam power plant was built in Yangbajain, Tibet, a 6 MW power plant in 1981, and another 3 MW generator is expected to complete in 1985. This paper is intended to summarize some important results of exploration, particularly in the geothermal reservoir engineering.

  14. Geothermal systems

    NASA Technical Reports Server (NTRS)

    Mohl, C.

    1978-01-01

    Several tasks of JPL related to geothermal energy are discussed. The major task is the procurement and test and evaluation of a helical screw drive (wellhead unit). A general review of geothermal energy systems is given. The presentation focuses attention on geothermal reservoirs in California, with graphs and charts to support the discussion. Included are discussions on cost analysis, systems maintenance, and a comparison of geothermal and conventional heating and cooling systems.

  15. Advanced geothermal technologies

    SciTech Connect

    Whetten, J.T.; Murphy, H.D.; Hanold, R.J.; Myers, C.W.; Dunn, J.C.

    1988-01-01

    Research and development in advanced technologies for geothermal energy production continue to increase the energy production options for the Nation. The high-risk investment over the past few years by the US Department of Energy in geopressured, hot dry rock, and magma energy resources is producing new means to lower production costs and to take advantage of these resources. The Nation has far larger and more regionally extensive geothermal resources than heretofore realized. At the end of a short 30-day closed-loop flow test, the manmade hot dry rock reservoir at Fenton Hill, New Mexico, was producing 10 MW thermal - and still climbing - proving the technical feasibility of this new technology. The scientific feasibility of magma energy extraction has been demonstrated, and new field tests to evaluate this technology are planned. Analysis and field tests confirm the viability of geopressured-geothermal energy and the prospect that many dry-hole or depleted petroleum wells can be turned into producing geopressured-geothermal wells. Technological advances achieved through hot dry rock, magma, geopressured, and other geothermal research are making these resources and conventional hydrothermal resources more competitive. Noteworthy among these technological advances are techniques in computer simulation of geothermal reservoirs, new means for well stimulation, new high-temperature logging tools and packers, new hard-rock penetration techniques, and new methods for mapping fracture flow paths across large underground areas in reservoirs. In addition, many of these same technological advances can be applied by the petroleum industry to help lower production costs in domestic oil and gas fields. 5 refs., 4 figs.

  16. Assessment of the geothermal resources of Carson-Eagle valleys and Big Smoky Valley, Nevada. First annual report, May 1, 1979-May 30, 1980

    SciTech Connect

    Trexler, D.T.; Koenig, B.A.; Flynn, T.; Bruce, J.L.

    1980-01-01

    Two geothermal investigations were completed in three Nevada locations. The regions studied were selected from areas outlined as having direct utilization potential (Trexler and others, 1979) and included the Carson-Eagle Valley, Bis Smoky Valley and Caliente. Studies were organized around the completion of a group of tasks in each area. These tasks included: geologic reconnaissance, gravity surveys, aerial photography, fluid sampling and analysis, shallow depth temperature probe surveys, soil mercury surveys, shallow electrical resistivity measurements, and temperature gradient hole drilling. Goals of the project were to provide regional information about the nature and extent of the resources and to offer a critical evaluation of the techniques employed. Results from the work in the Carson-Eagle Valley and Big Smoky Valley are presented. (MHR)

  17. A modeling approach of the hydro-thermal and chemical processes for managing the deep geothermal resource of the Val de Marne (Paris Basin, France).

    NASA Astrophysics Data System (ADS)

    Hamm, Virginie; Le Brun, Morgane; Lopez, Simon; Castillo, Christelle; Azaroual, Mohamed

    2010-05-01

    The exploitation of the geothermal resource of the Dogger formation in Paris Basin (between 1500 m and 2000 m depth) for district heating started in the early 1970's with 110 geothermal wells drilled between 1970 and 1985. Technically, exploitations are referred as "doublet operation" the pair of wells involved in the geothermal loop. The warm water is pumped from a production well to the district heating plant where fluid heat is extracted through a heat exchanger to a district heating network. Then, the cooled brine is re-injected in a second well. Inside the reservoir, the wells are open-hole and lie around 1 km apart to protect the producer from the cold front growing around the injector. The reinjection allows the stabilization of the reservoir pressure and protects the surface from brines containing high concentrations of dissolved chemical components (Cl-, SO42-, Fe2+, H2S, CO2) allowing salinities between 5 to 35 g/l. With the current geothermal revival of the Paris Basin, the exploitation of the resource of the Dogger aquifer is facing new challenges: • New doublets are implemented and their location must be optimized with regards to the interferences with the existing operations. • Most of the wells still operating are next to 30 years old. They would need to be restored or shut down for scaling and/or corrosion problems, implying the drilling of new ones. • Geochemical modeling highlighted that the scaling risk is increasing with time due to the thermodynamic disequilibrium induced by the temperature variation during the heat production. For instance, Iron sulfide (Mackinawite and Pyrite), carbonate and sulfate (Calcite, Siderite, Anhydrite), silica (Chalcedony) and some clay minerals have tendency to precipitate. Mackinawite, Calcite and Siderite are clearly identified in some well scales. • The resource has been cooled by the 30 years of reinjection. The temperature at the production well is expected to decrease in the coming years as well as

  18. Geology and geothermal resources of the Santiam Pass area of the Oregon Cascade Range, Deschutes, Jefferson and Linn Counties, Oregon

    SciTech Connect

    Hill, B.E.

    1992-10-01

    This open-file report presents the results of the Santiam Pass drilling program. The first phase of this program was to compile all available geological, geophysical and geothermal data for the Santiam Pass area and select a drill site on the basis of these data (see Priest and others, 1987a), A summary of the drilling operations and costs associated with the project are presented in chapter 1 by Hill and Benoit. An Overview of the geology of the Santiam Pass area is presented by Hill and Priest in chapter 2. Geologic mapping and isotopic age determinations in the Santiam Pass-Mount Jefferson area completed since 1987 are summarized in chapter 2. One of the more important conclusions reached in chapter 2 is that a minimum of 2 km vertical displacement has occurred in the High Cascade graben in the Santiam Pass area. The petrology of the Santiam Pass drill core is presented by Hill in chapter 3. Most of the major volcanic units in the core have been analyzed for major, minor, and trace element abundances and have been studied petrographically. Three K-Ar ages are interpreted in conjunction with the magnetostratigraphy of the core to show that the oldest rocks in the core are approximately 1.8 Ma. Geothermal and geophysical data collected from the Santiam Pass well are presented by Blackwell in chapter 4. The Santiam Pass well failed to penetrate beneath the zone of lateral groundwater flow associated with highly permeable Quaternary volcanic rocks. Calculated geothermal gradients range from about 50[degree]C/km at depth 700-900 m, to roughly 110[degree]C/km from 900 m to the bottom of the well at 929 m. Heat-flow values for the bottom part of the hole bracket the regional average for the High Cascades. Blackwell concludes that heat flow along the High Cascades axis is equal to or higher than along the western edge of the High Cascades.

  19. Geothermal institutional handbook for the State of Wyoming: a user's guide of agencies regulations, permits and aids for geothermal development

    SciTech Connect

    Aspinwall, C.; Caplan, J.; James, R.; Marcotte, K.

    1980-05-01

    The agencies involved in geothermal development are listed and individually described. A summary of existing geothermal resource laws and their statute numbers are given followed by a discussion on the problems associated with them. The local agencies and their regulations of geothermal development are discussed. The local, state, and federal agencies directly involved in geothermal development and their permitting requirements are tabulated. Some step-by-step instructions for determining what permits are necessary for developing a specific geothermal resource are given. A list of selected references and a list of additional resources for geothermal information and referral are included. (MHR)

  20. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1995--September 1995

    SciTech Connect

    Lienau, P.

    1995-12-01

    The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-95. It describes 80 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal energy cost evaluation and marketing strategy for geothermal district heating. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  1. A preliminary assessment of a medium-enthalpy geothermal resource in Nagu (Tibet) people's republic of China

    SciTech Connect

    Battistelli, A.; Rivera, R.J.; D'Amore, F.; Wu, F.; Rossi, R.; Luzi, .

    1991-01-01

    The Nagqu geothermal field is a single-phase, liquid-dominated system at reservoir conditions, having a high gas content. This field is located at an elevation of about 4,500 m (asl), in the vicinity of the City of Nagqu, which is one of the most important cities of Tibet.The reservoir rock is made of a highly fractured, low-permeability sedimentary sequence. During the implementation of the study described in this paper, fluid production was mainly obtained from two out of four possible productive wells. The main fault systems are located in a NE-SW and E-W directions, which seem to control fluid movement at depth. The geothermal field is restricted to a small area where hydrothermal manifestations are located. Reservoir temperature is 114 C, gas content is in the range of 0.5 to 0.6% by mass, being mainly CO{sub 2}. Reservoir transmissivity in the area of the wells is very high. Reservoir response to changes in flow rate in any of the producing wells could be detected almost immediately in the observation wells, which were distant between 300 to 900 m, depending on the production-observation well arrangement. Calcium carbonate scaling was present in all producing wells. This deposition was controlled by the CO{sub 2} partial pressure. Description of well testing results is provided, as well as the thermodynamics and geochemistry of reservoir fluids.

  2. Geothermal resources of the Western Arm of the Black Rock Desert, northwestern Nevada; Part II, Aqueous geochemistry and hydrology

    USGS Publications Warehouse

    Welch, A.H.; Preissler, A.M.

    1990-01-01

    The western arm of the Black Rock Desert, Nevada, includes several distinct hydrothermal systems, some of which exceed 150 C and may exceed 200 C at depth, determined on the basis of chemical geothermometry. The cation composition of the thermal water appears to be controlled by aluminosilicate minerals that are common in other active geothermal systems. Estimates of the equilibrium temperatures at which some mineral pairs are stable, when compared with the more commonly applied geothermometer estimates, indicate that thermodynamic data may be useful for estimating deep aquifer temperatures. Thermal water at Great Boiling and Mud Springs, which has a chloride concentration of about 2,000 mg/L and a total dissolved-solids concentration of 4 ,500 mg/L, appears to have been affected by shallow evapotranspiration in an adjacent playa prior to deep circulation. This model of recharge within the basin floor is distinctly different from models proposed for most other geothermal systems in the northern Great Basin. (USGS)

  3. 30 CFR 1206.352 - How do I calculate the royalty due on geothermal resources used for commercial production or...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES...; or (2) The royalty rate that BLM prescribes or calculates under 43 CFR 3211.17. See § 1206.361 for... electricity multiplied by the royalty rate BLM prescribed for your lease under 43 CFR 3211.17. See §...

  4. 30 CFR 1206.352 - How do I calculate the royalty due on geothermal resources used for commercial production or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES...; or (2) The royalty rate that BLM prescribes or calculates under 43 CFR 3211.17. See § 1206.361 for... electricity multiplied by the royalty rate BLM prescribed for your lease under 43 CFR 3211.17. See §...

  5. 30 CFR 1206.352 - How do I calculate the royalty due on geothermal resources used for commercial production or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES...; or (2) The royalty rate that BLM prescribes or calculates under 43 CFR 3211.17. See § 1206.361 for... electricity multiplied by the royalty rate BLM prescribed for your lease under 43 CFR 3211.17. See §...

  6. Utilization of geothermal energy in the mining and processing of tungsten ore. Final report

    SciTech Connect

    Erickson, M.V.; Lacy, S.B.; Lowe, G.D.; Nussbaum, A.M.; Walter, K.M.; Willens, C.A.

    1981-01-01

    The engineering, economic, and environmental feasibility of the use of low and moderate temperature geothermal heat in the mining and processing of tungsten ore is explored. The following are covered: general engineering evaluation, design of a geothermal energy system, economics, the geothermal resource, the institutional barriers assessment, environmental factors, an alternate geothermal energy source, and alternates to geothermal development. (MHR)

  7. The National Geothermal Energy Research Program

    NASA Technical Reports Server (NTRS)

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  8. Enhanced Geothermal Systems (EGS) R&D Program, Status Report: Foreign Research on Enhanced Geothermal Systems

    SciTech Connect

    McLarty, Lynn; Entingh, Daniel

    2000-09-29

    This report reviews enhanced geothermal systems (EGS) research outside the United States. The term ''enhanced geothermal systems'' refers to the use of advanced technology to extract heat energy from underground in areas with higher than average heat flow but where the natural permeability or fluid content is limited. EGS covers the spectrum of geothermal resources from low permeability hydrothermal to hot dry rock.

  9. Geothermal energy: tomorrow's alternative today. A handbook for geothermal-energy development in Delaware

    SciTech Connect

    Mancus, J.; Perrone, E.

    1982-08-01

    This is a general procedure guide to various technical, economic, and institutional aspects of geothermal development in Delaware. The following are covered: geothermal as an alternative, resource characteristics, geology, well mechanics and pumping systems, fluid disposal, direct heat utilization-feasibility, environmental and legal issues, permits and regulations, finance and taxation, and steps necessary for geothermal development. (MHR)

  10. 43 CFR 3281.7 - What documents must a unit operator submit to BLM before we will approve a unit agreement?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What documents must a unit operator submit to BLM before we will approve a unit agreement? 3281.7 Section 3281.7 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCES...

  11. Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Volume II.

    SciTech Connect

    Bloomquist, R. Gordon

    1985-06-01

    This volume contains appendices on: (1) resource assessment - electrical generation computer results; (2) resource assessment summary - direct use computer results; (3) electrical generation (high temperature) resource assessment computer program listing; (4) direct utilization (low temperature) resource assessment computer program listing; (5) electrical generation computer program CENTPLANT and related documentation; (6) electrical generation computer program WELLHEAD and related documentation; (7) direct utilization computer program HEATPLAN and related documentation; (8) electrical generation ranking computer program GEORANK and related documentation; (9) direct utilization ranking computer program GEORANK and related documentation; and (10) life cycle cost analysis computer program and related documentation. (ACR)

  12. Making geothermal power competitive

    NASA Astrophysics Data System (ADS)

    Fassbender, L. L.; Bloomster, C. H.

    The near-term supply curve for the electrical applications of geothermal energy is presented, and the impacts of technological improvements are illustrated. The curve is derived using the subsurface temperature, reservoir thickness, and heat content estimates made by the U.S. Geological Survey for the identified high-temperature and intermediate-temperature hydrothermal resources of the western U.S. Each step in the curve is composed of one or more geothermal resources identified by the USGS. Both high- and intermediate-temperature resources were included up to an arbitrary cost ceiling of 100 mills/kWh. Curves are drawn to show the impacts of combinations of technological advances expected to be achieved by 1982 and 1985. It is shown that most of the identified hydrothermal resources could become competitive with conventional energy sources for electrical power production by 1985.

  13. Geothermal Power/Oil & Gas Coproduction Opportunity

    SciTech Connect

    DOE

    2012-02-01

    Coproduced geothermal resources can deliver near-term energy savings, diminish greenhouse gas emissions, extend the economic life of oil and gas fields, and profitably utilize oil and gas field infrastructure. This two-pager provides an overview of geothermal coproduced resources.

  14. Environmental overview of geothermal development: northern Nevada

    SciTech Connect

    Slemmons, D.B.; Stroh, J.M.; Whitney, R.A.

    1980-08-01

    Regional environmental problems and issues associated with geothermal development in northern Nevada are studied to facilitate environmental assessment of potential geothermal resources. The various issues discussed are: environmental geology, seismicity of northern Nevada, hydrology and water quality, air quality, Nevada ecosystems, noise effects, socio-economic impacts, and cultural resources and archeological values. (MHR)

  15. Geothermal energy projects - Planning and management

    SciTech Connect

    Goodman, L.J.; Love, R.N.

    1980-01-01

    A presentation is made of management requirements for the development of geothermal resources by citing three major, and successful, projects: the Wairakei geothermal power project of New Zealand, the Hawaii geothermal project of the United States, and the Tiwi geothermal project of the Philippines. The three case studies are presented according to a format in which the history of each project falls into four phases: (1) planning, appraisal and design (2) section, approval and activation (3) operation, control and handover and (4) evaluation and refinement. Each case study furnishes extensive performance and economic figures, along with consideration of such related issues as geothermal effluent chemical content, infrastructural requirements, and environmental impact.

  16. Geothermal Progress Monitor: Report No. 14

    SciTech Connect

    Not Available

    1992-12-01

    This issue of the Geothermal Progress Monitor, the 14th since its inception in 1980, highlights the anticipated rapid growth in the use of geothermal heat pumps and documents the continued growth in the use of geothermal energy for power generation, both in this country and abroad. In countries with a relatively large demand for new generation capacity, geothermal, if available, is being called on as a preferable alternative to the use of domestic or imported oil. On the other hand, in this country where current demand for new capacity is less, geothermal energy is commonly being put to use in small power generation units operating on the hot water resource.

  17. Geothermal progress monitor report No. 6

    SciTech Connect

    Not Available

    1982-06-01

    Geothermal Progress Monitor Report No. 6 presents a state-by-state summary of the status of geothermal leasing, exploration, and development in major physiographic regions where geothermal resource potential has been identified. Recent state-specific activities are reported at the end of each state status report, while recent activities of a more general nature are summarized briefly in Part II of the report. A list of recent publications of potential interest to the geothermal community and a directory of contributors to the geothermal progress monitoring system are also included.

  18. Colorado Geothermal Commercialization Program

    SciTech Connect

    Healy, F.C.

    1980-04-01

    Chaffee County, located in central Colorado, has immense potential for geothermal development. This report has been prepared to assist residents and developers in and outside the area to develop the hydrothermal resources of the county. Data has been collected and interpreted from numerous sources in order to introduce a general description of the area, estimate energy requirements, describe the resources and postulate a development plan. Electric power generation and direct heat application potential for the region are described.

  19. Geothermal heating for Caliente, Nevada

    SciTech Connect

    Wallis, F.; Schaper, J.

    1981-02-01

    Utilization of geothermal resources in the town of Caliente, Nevada (population 600) has been the objective of two grants. The first grant was awarded to Ferg Wallis, part-owner and operator of the Agua Caliente Trailer Park, to assess the potential of hot geothermal water for heating the 53 trailers in his park. The results from test wells indicate sustainable temperatures of 140/sup 0/ to 160/sup 0/F. Three wells were drilled to supply all 53 trailers with domestic hot water heating, 11 trailers with space heating and hot water for the laundry from the geothermal resource. System payback in terms of energy cost-savings is estimated at less than two years. The second grant was awarded to Grover C. Dils Medical Center in Caliente to drill a geothermal well and pipe the hot water through a heat exchanger to preheat air for space heating. This geothermal preheater served to convert the existing forced air electric furnace to a booster system. It is estimated that the hospital will save an average of $5300 in electric bills per year, at the current rate of $.0275/KWH. This represents a payback of approximately two years. Subsequent studies on the geothermal resource base in Caliente and on the economics of district heating indicate that geothermal may represent the most effective supply of energy for Caliente. Two of these studies are included as appendices.

  20. Doubling Geothermal Generation Capacity by 2020. A Strategic Analysis

    SciTech Connect

    Wall, Anna; Young, Katherine

    2016-01-01

    This report identifies the potential of U.S. geothermal resource and the current market to add an additional 3 GW of geothermal by 2020, in order to meet the goal set forth in the Climate Action Plan.

  1. Geothermal power development in Hawaii. Volume II. Infrastructure and community-services requirements, Island of Hawaii

    SciTech Connect

    Chapman, G.A.; Buevens, W.R.

    1982-06-01

    The requirements of infrastructure and community services necessary to accommodate the development of geothermal energy on the Island of Hawaii for electricity production are identified. The following aspects are covered: Puna District-1981, labor resources, geothermal development scenarios, geothermal land use, the impact of geothermal development on Puna, labor resource requirments, and the requirements for government activity.

  2. 43 CFR 3200.7 - What regulations apply to geothermal leases issued before August 8, 2005?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... on August 8, 2005 (43 CFR parts 3200 and 3280 (2004)), with regard to regulatory provisions relating... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What regulations apply to geothermal...) GEOTHERMAL RESOURCE LEASING Geothermal Resource Leasing § 3200.7 What regulations apply to geothermal...

  3. Computerized international geothermal information systems

    SciTech Connect

    Phillips, S.L.; Lawrence, J.D.; Lepman, S.R.

    1980-03-01

    The computerized international geothermal energy information system is reviewed. The review covers establishment of the Italy - United States linked data centers by the NATO Committee on Challenges of Modern Society, through a bilateral agreement, and up to the present time. The result of the information exchange project is given as the bibliographic and numerical data available from the data centers. Recommendations for the exchange of computerized geothermal information at the international level are discussed.

  4. Geothermal development in the Philippines

    SciTech Connect

    Elizagaque, R.F.; Tolentino, B.S.

    1982-06-01

    The development of geothermal resources and energy in the Philippines is discussed. Philippine National Oil Company-Energy Development Corporation initiated the first semi-commercial generation of geothermal power in July 1977 with the installation of a 3MWe plant. By 1980 the country had 440 MWe on line at Mak-Ban and Tiwi. This placed the Philippines second after the US among countries using geothermal energy for power generation. Before the end of 1981, PNOC-EDC added 6 additional MWe of geothermal power generating capacity to increase the total to 446 MWe. As part of the five-year National Energy Development Programme covering the period 1981-1985, additional power plants will be installed in various project areas to increase the share of geothermal power generation from the present 9.8% to 18.6% of the nationwide power-generation total, or the equivalent of 16.6 million barrels of oil per year. (MJF)

  5. Environmental Assessment Lakeview Geothermal Project

    SciTech Connect

    Treis, Tania

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternatives considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.

  6. Geothermal program overview: Fiscal years 1993--1994

    SciTech Connect

    1995-11-01

    The DOE Geothermal Energy Program is involved in three main areas of research: finding and tapping the resource; power generation; and direct use of geothermal energy. This publication summarizes research accomplishments for FY 1993 and 1994 for the following: geophysical and geochemical technologies; slimhole drilling for exploration; resource assessment; lost circulation control; rock penetration mechanics; instrumentation; Geothermal Drilling Organization; reservoir analysis; brine injection; hot dry rock; The Geysers; Geothermal Technology Organization; heat cycle research; advanced heat rejection; materials development; and advanced brine chemistry.

  7. Subsidence in geopressured geothermal resource test sites: Monitoring assessment combining geodetic leveling and tidal control stations in southwestern Louisiana

    SciTech Connect

    Ramsey, K.E.; John, C.J. ); Trahan, D.B. )

    1989-09-01

    The Louisiana Geological Survey has an ongoing environmental monitoring program, sponsored by the US Department of Energy, at geopressured geothermal prospect well sites in southwestern Louisiana. This paper presents the results from monitoring subsidence at some of these reservoir sites. Over 1,000 km of first-order surveys and data from several NOAA and US Army Corps of Engineers tidal control stations were examined to determine regional trends. Tidal records were used to examine the history of sea level with respect to the land surface. Relative rates of land subsidence can be determined by comparing rates of water level rise over time with rates of rise from a stable craton. Regional subsidence ranges from 3 to 5 mm/year. First-order bench-mark networks established at Parcperdue, Sweet Lake, and Gladys McCall prospects were used to determine local trends of subsidence. Repeated leveling surveys before, during, and after fluid withdrawal from Parcperdue and Gladys McCall indicate that an increase in subsidence was observed during the drilling of the wells. Data suggest subsidence was possibly due to surface loading by heavy drilling equipment. Historical leveling in the Sweet Lake region indicates differential compaction between sediments as a possible cause for subsidence. However, in all cases, virtually no increase in subsidence was observed during and after times of fluid withdrawal.

  8. National Geothermal Data System

    NASA Astrophysics Data System (ADS)

    Anderson, A. F.; Cuyler, D.; Snyder, W. S.; Allison, M. L.; Blackwell, D. D.; Williams, C. F.

    2011-12-01

    The goal of the U.S. Department of Energy's National Geothermal Data System is to design, build, implement, deploy and populate a national, sustainable, distributed, interoperable network of data and service (application) providers. These providers will develop, collect, serve, and maintain geothermal-relevant data that operates as an integral component of NGDS. As a result the geothermal industry, the public, and policy makers will have access to consistent and reliable data, which in turn, reduces the amount of staff time devoted to finding, retrieving, integrating, and verifying information. With easier access to information, the high cost and risk of geothermal power projects (especially exploration drilling) is reduced. Five separate NGDS projects provide the data support, acquisition, and access to cyber infrastructure necessary to reduce cost and risk of the nation's geothermal energy strategy and US DOE program goals focused on the production and utilization of geothermal energy. The U.S DOE Office of Energy Efficiency and Renewable Energy Geothermal Technologies Program is developing the knowledge and data foundation necessary for discovery and development of large-scale energy production while the Buildings Technology Program is focused on other practical applications such as direct use and residential/commercial ground source heat pumps. The NGDS provides expanded reference and resource data for research and development activities (a subset of the US DOE goals) and includes data from across all fifty states and the nation's leading academic geothermal centers. Thus, the project incorporates not only high-temperature potential but also moderate and low-temperature locations incorporating US DOE's goal of adding more geothermal electricity to the grid. The program, through its development of data integration cyberinfrastructure, will help lead to innovative exploration technologies through increased data availability on geothermal energy capacity. Finally

  9. Geotherm: the U.S. geological survey geothermal information system

    USGS Publications Warehouse

    Bliss, J.D.; Rapport, A.

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey. Information in the system is available to the public on request. ?? 1983.

  10. Geotherm: the U.S. geological survey geothermal information system

    NASA Astrophysics Data System (ADS)

    Bliss, J. D.; Rapport, A.

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey. Information in the system is available to the public on request.

  11. Geothermal energy program summary

    SciTech Connect

    Not Available

    1990-01-01

    The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

  12. Geothermal reservoir engineering research

    NASA Technical Reports Server (NTRS)

    Ramey, H. J., Jr.; Kruger, P.; Brigham, W. E.; London, A. L.

    1974-01-01

    The Stanford University research program on the study of stimulation and reservoir engineering of geothermal resources commenced as an interdisciplinary program in September, 1972. The broad objectives of this program have been: (1) the development of experimental and computational data to evaluate the optimum performance of fracture-stimulated geothermal reservoirs; (2) the development of a geothermal reservoir model to evaluate important thermophysical, hydrodynamic, and chemical parameters based on fluid-energy-volume balances as part of standard reservoir engineering practice; and (3) the construction of a laboratory model of an explosion-produced chimney to obtain experimental data on the processes of in-place boiling, moving flash fronts, and two-phase flow in porous and fractured hydrothermal reservoirs.

  13. Optimizing Sustainable Geothermal Heat Extraction

    NASA Astrophysics Data System (ADS)

    Patel, Iti; Bielicki, Jeffrey; Buscheck, Thomas

    2016-04-01

    Geothermal heat, though renewable, can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal. As such, the sustainability of a geothermal resource is typically viewed as preserving the energy of the reservoir by weighing heat extraction against renewability. But heat that is extracted from a geothermal reservoir is used to provide a service to society and an economic gain to the provider of that service. For heat extraction used for market commodities, sustainability entails balancing the rate at which the reservoir temperature renews with the rate at which heat is extracted and converted into economic profit. We present a model for managing geothermal resources that combines simulations of geothermal reservoir performance with natural resource economics in order to develop optimal heat mining strategies. Similar optimal control approaches have been developed for managing other renewable resources, like fisheries and forests. We used the Non-isothermal Unsaturated-saturated Flow and Transport (NUFT) model to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are integrated into the optimization model to determine the extraction path over time that maximizes the net present profit given the performance of the geothermal resource. Results suggest that the discount rate that is used to calculate the net present value of economic gain is a major determinant of the optimal extraction path, particularly for shallower and cooler reservoirs, where the regeneration of energy due to the natural geothermal heat flux is a smaller percentage of the amount of energy that is extracted from the reservoir.

  14. World Geothermal Congress WGC-2015

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.

    2016-08-01

    This article discusses materials and results of the World Geothermal Congress that was held in Melbourne (Australia) from April 19 to April 25, 2015. Information on the extent and technological features of utilization of geothermal resources for heat supply and power production, as well as in other economic areas, is given. A stable growth in the capacity and number of geothermal power systems that is determined by ecological cleanliness, economic efficiency, and the highest (among renewable energy sources) indicators of installed capacity utilization is shown. It was noted that combined schemes of geothermal power plants (GPPs), such as turbine units of different type (binary units, units with one or two separation pressures, etc.), have become more frequently used to increase the efficiency of utilization of geothermal heat carrier. Actual data determining room heating systems with the total worldwide capacity of nearly 50000 MW thermal (MWt) as the most currently significant segment of consumption of geothermal waters are given. In addition, geothermal resources are also utilized in soil pumps, balneological and sports basins, greenhouse complexes, and other manufactures. It was noted that geological studies were carried out in more than 40 countries, with the development of methods of simulation of tanks for the existing and new geothermal fields. Trends of development and the role of geothermal power engineering in the energy supply of many countries are shown. It was shown that prospects for the development of geothermal power generation are significantly associated with utilization of low-temperature geothermal sources in binary power generating units, as well as with the increase in installed capacity of operating geothermal power plants (GPPs) without drilling additional wells, i.e., by using waste geothermal heat carrier in binary-cycle or combined-cycle power plants. The article provides data on a pilot binary power unit at Pauzhetka GPP and on a

  15. Health impacts of geothermal energy

    SciTech Connect

    Layton, D.W.; Anspaugh, L.R.

    1981-06-15

    The focus is on electric power production using geothermal resources greater than 150/sup 0/C because this form of geothermal energy utilization has the most serious health-related consequences. Based on measurements and experience at existing geothermal power plants, atmospheric emissions of noncondensing gases such as hydrogen sulfide and benzene pose the greatest hazards to public health. Surface and ground waters contaminated by discharges of spent geothermal fluids constitute another health hazard. It is shown that hydrogen sulfide emissions from most geothermal power plants are apt to cause odor annoyances among members of the exposed public - some of whom can detect this gas at concentrations as low as 0.002 parts per million by volume. A risk assessment model is used to estimate the lifetime risk of incurring leukemia from atmospheric benzene caused by 2000 MW(e) of geothermal development in California's Imperial Valley. The risk of skin cancer due to the ingestion of river water in New Zealand that is contaminated by waste geothermal fluids containing arsenic is also assessed. Finally, data on the occurrence of occupational disease in the geothermal industry are summarized briefly.

  16. National Geothermal Data System (NGDS) Geothermal Data: Community Requirements and Information Engineering

    SciTech Connect

    Anderson, Arlene; Blackwell, David; Chickering, Cathy; Boyd, Toni; Horne, Roland; MacKenzie, Matthew; Moore, Joseph; Nickull, Duane; Richard, Stephen; Shevenell, Lisa A.

    2013-10-01

    To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is investing in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to supply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are discussed. In particular, this paper addresses the various types of data required to effectively assess geothermal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS includes a work plan that addresses data assets and resources of interest to users, a survey of data providers, data content models, and how data will be exchanged and promoted, as well as lessons learned within the geothermal community.

  17. Geothermal Energy

    SciTech Connect

    Steele, B.C.; Pichiarella, L.S.; Kane, L.S.; Henline, D.M.

    1995-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  18. Geothermal Energy.

    ERIC Educational Resources Information Center

    Nemzer, Marilyn; Page, Deborah

    This curriculum unit describes geothermal energy in the context of the world's energy needs. It addresses renewable and nonrenewable energy sources with an in-depth study of geothermal energy--its geology, its history, and its many uses. Included are integrated activities involving science, as well as math, social studies, and language arts.…

  19. Geothermal development plan: Pima County

    NASA Astrophysics Data System (ADS)

    White, D. H.; Goldstone, L. A.

    1982-08-01

    The Pima County Area Development evaluated the county-wide market potential for utilizing geothermal energy. Four potential geothermal resource areas with temperatures less than 1000 C (2120 F) were identified. In addition, one area is identified as having a temperature of 1470 F (2970 F). Geothermal resources are found to occur in Tecson where average population growth rates of two to three percent per year are expected over the next 40 years. Rapid growth in the manufacturing sector and the existence of major copper mines provide opportunities for the direct utilization of geothermal energy. However, available water supplies are identified as a major constraing to projected growth. A regional energy analysis, future predictions for energy consumption, and energy prices are given. Potential geothermal users in Pima County are identified and projections of maximum economic geothermal utilization are given. One hundred fifteen firms in 32 industrial classes have some potential for geothermal use are identified. In addition, 26 agribusiness firms were found in the county.

  20. Geothermal direct-heat utilization assistance: Quarterly project progress report, January--March 1995

    SciTech Connect

    1995-05-01

    The report summarizes geothermal activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-95. It describes 92 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research activities are summarized on geothermal energy cost evaluation, low temperature resource assessment and ground-source heat pump case studies and utility programs. Outreach activities include the publication of a geothermal direct heat Bulletin, dissemination of information, geothermal library, and progress monitor reports on geothermal resources and utilization.