Science.gov

Sample records for agricultural biogas plants

  1. Methane emissions from digestate at an agricultural biogas plant.

    PubMed

    Baldé, Hambaliou; VanderZaag, Andrew C; Burtt, Stephen D; Wagner-Riddle, Claudia; Crolla, Anna; Desjardins, Raymond L; MacDonald, Douglas J

    2016-09-01

    Methane (CH4) emissions were measured over two years at an earthen storage containing digestate from a mesophilic biodigester in Ontario, Canada. The digester processed dairy manure and co-substrates from the food industry, and destroyed 62% of the influent volatile solids (VS). Annual average emissions were 19gCH4m(-3)d(-1) and 0.27gCH4kg(-1)VSd(-1). About 76% of annual emissions occurred from June to October. Annual cumulative emissions from digestate corresponded to 12% of the CH4 produced within the digester. A key contributor to CH4 emissions was the sludge layer in storage, which contained as much VS as the annual discharge from the digester. These findings suggest that digestate management provides an opportunity to further enhance the benefits of biogas (i.e. reducing CH4 emissions compared to undigested liquid manure, and producing renewable energy). Potential best practices for future study include complete storage emptying, solid-liquid separation, and storage covering. PMID:27323243

  2. Methane emissions from digestate at an agricultural biogas plant.

    PubMed

    Baldé, Hambaliou; VanderZaag, Andrew C; Burtt, Stephen D; Wagner-Riddle, Claudia; Crolla, Anna; Desjardins, Raymond L; MacDonald, Douglas J

    2016-09-01

    Methane (CH4) emissions were measured over two years at an earthen storage containing digestate from a mesophilic biodigester in Ontario, Canada. The digester processed dairy manure and co-substrates from the food industry, and destroyed 62% of the influent volatile solids (VS). Annual average emissions were 19gCH4m(-3)d(-1) and 0.27gCH4kg(-1)VSd(-1). About 76% of annual emissions occurred from June to October. Annual cumulative emissions from digestate corresponded to 12% of the CH4 produced within the digester. A key contributor to CH4 emissions was the sludge layer in storage, which contained as much VS as the annual discharge from the digester. These findings suggest that digestate management provides an opportunity to further enhance the benefits of biogas (i.e. reducing CH4 emissions compared to undigested liquid manure, and producing renewable energy). Potential best practices for future study include complete storage emptying, solid-liquid separation, and storage covering.

  3. The use of biogas plant fermentation residue for the stabilisation of toxic metals in agricultural soils

    NASA Astrophysics Data System (ADS)

    Geršl, Milan; Šotnar, Martin; Mareček, Jan; Vítěz, Tomáš; Koutný, Tomáš; Kleinová, Jana

    2015-04-01

    Our department has been paying attention to different methods of soil decontamination, including the in situ stabilisation. Possible reagents to control the toxic metals mobility in soils include a fermentation residue (FR) from a biogas plant. Referred to as digestate, it is a product of anaerobic decomposition taking place in such facilities. The fermentation residue is applied to soils as a fertiliser. A new way of its use is the in situ stabilisation of toxic metals in soils. Testing the stabilisation of toxic metals made use of real soil samples sourced from five agriculturally used areas of the Czech Republic with 3 soil samples taken from sites contaminated with Cu, Pb and Zn and 2 samples collected at sites of natural occurrence of Cu, Pb and Zn ores. All the samples were analysed using the sequential extraction procedure (BCR) (determine the type of Cu, Pb and Zn bonds). Stabilisation of toxic metals was tested in five soil samples by adding reagents as follows: dolomite, slaked lime, goethite, compost and fermentation residue. A single reagent was added at three different concentrations. In the wet state with the added reagents, the samples were left for seven days, shaken twice per day. After seven days, metal extraction was carried out: samples of 10 g soil were shaken for 2 h in a solution of 0.1M NH4NO3 at a 1:2.5 (g.ml-1), centrifuged for 15 min at 5,000 rpm and then filtered through PTFE 0.45 μm mesh filters. The extracts were analysed by ICP-OES. Copper The best reduction of Cu concentration in the extract was obtained at each of the tested sites by adding dolomite (10 g soil + 0.3 g dolomite). The concentration of Cu in the leachate decreased to 2.1-18.4% compare with the leachate without addition. Similar results were also shown for the addition of fermentation residue (10 g soil + 1 g FR). The Cu concentration in the leachate decreased to 16.7-26.8% compared with the leachate without addition. Lead The best results were achieved by adding

  4. Development of instrumentation systems as a base for control of digestion process stability in full-scale agricultural and industrial biogas plants.

    PubMed

    Kujawski, O; Steinmetz, H

    2009-01-01

    This article deals with the analysis of instrumentation from three modern German full-scale biogas plants with different inputs and typical process engineering concepts for German conditions. The measured results from each plant and the suitability of the instrumentation used are evaluated and assessed. Conclusions are also made about improving the use and architecture of the instrumentation. The analysis results show which benefits and optimum combination of on-line and off-line instrumentation could result for the control and automation of industrial and agricultural biogas plants.

  5. Shell structures for biogas plants

    SciTech Connect

    Sasse, L.

    1982-01-01

    The shell structures designed for biogas plants of the fixed-dome type by the Bremen Overseas Research and Development Association are described. Biogas digesters of the design described have been successfully tested in Rwanda and India without structural or contractural problems.

  6. Hygiene and Sanitation in Biogas Plants.

    PubMed

    Fröschle, Bianca; Heiermann, Monika; Lebuhn, Michael; Messelhäusser, Ute; Plöchl, Matthias

    2015-01-01

    The increasing number of agricultural biogas plants and higher amounts of digestate spread on agricultural land arouse a considerable interest in the hygiene situation of digested products. This chapter reviews the current knowledge on sanitation during anaerobic digestion and the hygienic status of digestate concerning a multitude of pathogens potentially compromising the health of humans, animals and plants. Physical, chemical and biological parameters influencing the efficiency of sanitation in anaerobic digestion are considered. The degree of germ reduction depends particularly on the resistance of the pathogen of concern, the processing conditions, the feedstock composition and the diligence of the operation management. Most scientific studies facing sanitation in biogas plants have provided data ascertaining reduction of pathogens by the biogas process. Some pathogens, however, are able to persist virtually unaffected due to the ability to build resistant permanent forms. As compared to the feedstock, the sanitary status of the digestate is thus improved or in the worst case, the sanitary quality remains almost unchanged. According to this, the spreading of digestate on agricultural area in accordance to current rules and best practice recommendations is considered to impose no additional risk for the health of humans, animals and plants.

  7. Analysis of operational methane emissions from pressure relief valves from biogas storages of biogas plants.

    PubMed

    Reinelt, Torsten; Liebetrau, Jan; Nelles, Michael

    2016-10-01

    The study presents the development of a method for the long term monitoring of methane emissions from pressure relief valves (PRV(1)) of biogas storages, which has been verified during test series at two PRVs of two agricultural biogas plants located in Germany. The determined methane emission factors are 0.12gCH4kWhel(-1) (0.06% CH4-loss, within 106days, 161 triggering events, winter season) from biogas plant A and 6.80/7.44gCH4kWhel(-1) (3.60/3.88% CH4-loss, within 66days, 452 triggering events, summer season) from biogas plant B. Besides the operational state of the biogas plant (e.g. malfunction of the combined heat and power unit), the mode of operation of the biogas flare, which can be manually or automatically operated as well as the atmospheric conditions (e.g. drop of the atmospheric pressure) can also affect the biogas emission from PRVs. PMID:26944456

  8. Model-based predictions of anaerobic digestion of agricultural substrates for biogas production.

    PubMed

    Zhou, Haidong; Löffler, Daniel; Kranert, Martin

    2011-12-01

    A modified Anaerobic Digestion Model No. 1 (ADM1), calibrated on a laboratory digester with a feeding mix of 30% weight of cow manure and 70% weight of corn silage, was implemented, showing its performances of simulation as a decision-making and planning-supporting tool for the anaerobic digestion of agricultural substrates. The virtual fermenter obtained was used to conduct simulations with different feeding compositions and loading rates of cow manure, corn silage, grass silage and rape oil. All simulations were started at the same initial state which was represented by a steady state with an organic loading rate of 2.5 kg ODM/(mdigester3∗d). The effects of the different feeding combinations on biogas composition and biogas yield were predicted reasonably, and partly verified with the available literature data. Results demonstrated that the simulations could be helpful for taking decisions on agricultural biogas plant operation or experimental set-ups, if used advisedly.

  9. Model-based predictions of anaerobic digestion of agricultural substrates for biogas production.

    PubMed

    Zhou, Haidong; Löffler, Daniel; Kranert, Martin

    2011-12-01

    A modified Anaerobic Digestion Model No. 1 (ADM1), calibrated on a laboratory digester with a feeding mix of 30% weight of cow manure and 70% weight of corn silage, was implemented, showing its performances of simulation as a decision-making and planning-supporting tool for the anaerobic digestion of agricultural substrates. The virtual fermenter obtained was used to conduct simulations with different feeding compositions and loading rates of cow manure, corn silage, grass silage and rape oil. All simulations were started at the same initial state which was represented by a steady state with an organic loading rate of 2.5 kg ODM/(mdigester3∗d). The effects of the different feeding combinations on biogas composition and biogas yield were predicted reasonably, and partly verified with the available literature data. Results demonstrated that the simulations could be helpful for taking decisions on agricultural biogas plant operation or experimental set-ups, if used advisedly. PMID:21974886

  10. Comparative life cycle assessment of biogas plant configurations for a demand oriented biogas supply for flexible power generation.

    PubMed

    Hahn, Henning; Hartmann, Kilian; Bühle, Lutz; Wachendorf, Michael

    2015-03-01

    The environmental performance of biogas plant configurations for a demand - oriented biogas supply for flexible power generation is comparatively assessed in this study. Those configurations indicate an increased energy demand to operate the operational enhancements compared to conventional biogas plants supplying biogas for baseload power generation. However, findings show that in contrast to an alternative supply of power generators with natural gas, biogas supplied on demand by adapted biogas plant configurations saves greenhouse gas emissions by 54-65 g CO(2-eq) MJ(-1) and primary energy by about 1.17 MJ MJ(-1). In this regard, configurations with flexible biogas production profit from reduced biogas storage requirements and achieve higher savings compared to configurations with continuous biogas production. Using thicker biogas storage sheeting material reduces the methane permeability of up to 6m(3) d(-1) which equals a reduction of 8% of the configuration's total methane emissions.

  11. Comparative life cycle assessment of biogas plant configurations for a demand oriented biogas supply for flexible power generation.

    PubMed

    Hahn, Henning; Hartmann, Kilian; Bühle, Lutz; Wachendorf, Michael

    2015-03-01

    The environmental performance of biogas plant configurations for a demand - oriented biogas supply for flexible power generation is comparatively assessed in this study. Those configurations indicate an increased energy demand to operate the operational enhancements compared to conventional biogas plants supplying biogas for baseload power generation. However, findings show that in contrast to an alternative supply of power generators with natural gas, biogas supplied on demand by adapted biogas plant configurations saves greenhouse gas emissions by 54-65 g CO(2-eq) MJ(-1) and primary energy by about 1.17 MJ MJ(-1). In this regard, configurations with flexible biogas production profit from reduced biogas storage requirements and achieve higher savings compared to configurations with continuous biogas production. Using thicker biogas storage sheeting material reduces the methane permeability of up to 6m(3) d(-1) which equals a reduction of 8% of the configuration's total methane emissions. PMID:25553565

  12. Metaproteomics of complex microbial communities in biogas plants

    PubMed Central

    Heyer, Robert; Kohrs, Fabian; Reichl, Udo; Benndorf, Dirk

    2015-01-01

    Production of biogas from agricultural biomass or organic wastes is an important source of renewable energy. Although thousands of biogas plants (BGPs) are operating in Germany, there is still a significant potential to improve yields, e.g. from fibrous substrates. In addition, process stability should be optimized. Besides evaluating technical measures, improving our understanding of microbial communities involved into the biogas process is considered as key issue to achieve both goals. Microscopic and genetic approaches to analyse community composition provide valuable experimental data, but fail to detect presence of enzymes and overall metabolic activity of microbial communities. Therefore, metaproteomics can significantly contribute to elucidate critical steps in the conversion of biomass to methane as it delivers combined functional and phylogenetic data. Although metaproteomics analyses are challenged by sample impurities, sample complexity and redundant protein identification, and are still limited by the availability of genome sequences, recent studies have shown promising results. In the following, the workflow and potential pitfalls for metaproteomics of samples from full-scale BGP are discussed. In addition, the value of metaproteomics to contribute to the further advancement of microbial ecology is evaluated. Finally, synergistic effects expected when metaproteomics is combined with advanced imaging techniques, metagenomics, metatranscriptomics and metabolomics are addressed. PMID:25874383

  13. Metaproteomics of complex microbial communities in biogas plants.

    PubMed

    Heyer, Robert; Kohrs, Fabian; Reichl, Udo; Benndorf, Dirk

    2015-09-01

    Production of biogas from agricultural biomass or organic wastes is an important source of renewable energy. Although thousands of biogas plants (BGPs) are operating in Germany, there is still a significant potential to improve yields, e.g. from fibrous substrates. In addition, process stability should be optimized. Besides evaluating technical measures, improving our understanding of microbial communities involved into the biogas process is considered as key issue to achieve both goals. Microscopic and genetic approaches to analyse community composition provide valuable experimental data, but fail to detect presence of enzymes and overall metabolic activity of microbial communities. Therefore, metaproteomics can significantly contribute to elucidate critical steps in the conversion of biomass to methane as it delivers combined functional and phylogenetic data. Although metaproteomics analyses are challenged by sample impurities, sample complexity and redundant protein identification, and are still limited by the availability of genome sequences, recent studies have shown promising results. In the following, the workflow and potential pitfalls for metaproteomics of samples from full-scale BGP are discussed. In addition, the value of metaproteomics to contribute to the further advancement of microbial ecology is evaluated. Finally, synergistic effects expected when metaproteomics is combined with advanced imaging techniques, metagenomics, metatranscriptomics and metabolomics are addressed.

  14. Codigestion of manure and organic wastes in centralized biogas plants: status and future trends.

    PubMed

    Angelidaki, I; Ellegaard, L

    2003-01-01

    Centralized biogas plants in Denmark codigest mainly manure, together with other organic waste such as industrial organic waste, source sorted household waste, and sewage sludge. Today 22 large-scale centralized biogas plants are in operation in Denmark, and in 2001 they treated approx 1.2 million tons of manure as well as approx 300,000 of organic industrial waste. Besides the centralized biogas plants there are a large number of smaller farm-scale plants. The long-term energy plan objective is a 10-fold increase of the 1998 level of biogas production by the year 2020. This will help to achieve a target of 12-14% of the national energy consumption being provided by renewable energy by the year 2005 and 33% by the year 2030. A major part of this increase is expected to come from new centralized biogas plants. The annual potential for biogas production from biomass resources available in Denmark is estimated to be approx 30 Peta Joule (PJ). Manure comprises about 80% of this potential. Special emphasis has been paid to establishing good sanitation and pathogen reduction of the digested material, to avoid risk of spreading pathogens when applying the digested manure as fertilizer to agricultural soils.

  15. Consequential environmental life cycle assessment of a farm-scale biogas plant.

    PubMed

    Van Stappen, Florence; Mathot, Michaël; Decruyenaere, Virginie; Loriers, Astrid; Delcour, Alice; Planchon, Viviane; Goffart, Jean-Pierre; Stilmant, Didier

    2016-06-15

    Producing biogas via anaerobic digestion is a promising technology for meeting European and regional goals on energy production from renewable sources. It offers interesting opportunities for the agricultural sector, allowing waste and by-products to be converted into bioenergy and bio-based materials. A consequential life cycle assessment (cLCA) was conducted to examine the consequences of the installation of a farm-scale biogas plant, taking account of assumptions about processes displaced by biogas plant co-products (power, heat and digestate) and the uses of the biogas plant feedstock prior to plant installation. Inventory data were collected on an existing farm-scale biogas plant. The plant inputs are maize cultivated for energy, solid cattle manure and various by-products from surrounding agro-food industries. Based on hypotheses about displaced electricity production (oil or gas) and the initial uses of the plant feedstock (animal feed, compost or incineration), six scenarios were analyzed and compared. Digested feedstock previously used in animal feed was replaced with other feed ingredients in equivalent feed diets, designed to take account of various nutritional parameters for bovine feeding. The displaced production of mineral fertilizers and field emissions due to the use of digestate as organic fertilizer was balanced against the avoided use of manure and compost. For all of the envisaged scenarios, the installation of the biogas plant led to reduced impacts on water depletion and aquatic ecotoxicity (thanks mainly to the displaced mineral fertilizer production). However, with the additional animal feed ingredients required to replace digested feedstock in the bovine diets, extra agricultural land was needed in all scenarios. Field emissions from the digestate used as organic fertilizer also had a significant impact on acidification and eutrophication. The choice of displaced marginal technologies has a huge influence on the results, as have the

  16. Design and testing of mini-size biogas plant

    NASA Astrophysics Data System (ADS)

    Randjawali, Erwin; Waris, Abdul

    2016-08-01

    Biogas is a renewable source of energy which is developed to fulfill the energy needs of the society. Two important aspects of the biogas itself is biogas plant and starter. This research aims to design a mini-sized biogas plant which can be use effectively to produce the alternative energy, and also to examine the difference quality of biogas which is produced from slurry which was given starter and slurry which was not given starter. In this study, a mini-sized biogas plant has been designed, and tested for two different types of slurry. Ratio of cow dung : water : starter of the first slurry is 3 : 2 : 0.003 (The starter which was used in this study is Green Phoskko), and for the second type of slurry, ratio of cow dung : water is 3 : 2, but in this second type, the slurry was not given a starter. Cattle dung used in this study is stored in advance for one week, two weeks, and three weeks, before use. Result of this study showed that the first type of slurry produce biogas in a faster time than the second type of slurry. Also, the amount of gas obtained from the first slurry is more than the second type of slurry. It can be seen from the length of time which is takes to burn the gas produced from the first slurry much longer than the second type of slurry.

  17. Global warming mitigation potential of biogas plants in India.

    PubMed

    Pathak, H; Jain, N; Bhatia, A; Mohanty, S; Gupta, Navindu

    2009-10-01

    Biogas technology, besides supplying energy and manure, provides an excellent opportunity for mitigation of greenhouse gas (GHG) emission and reducing global warming through substituting firewood for cooking, kerosene for lighting and cooking and chemical fertilizers. A study was undertaken to calculate (1) global warming mitigation potential (GMP) and thereby earning carbon credit of a family size biogas plant in India, (2) GMP of the existing and target biogas plants in the country and (3) atmospheric pollution reduction by a family size biogas plant. The GMP of a family size biogas plant was 9.7 t CO(2) equiv. year( - 1) and with the current price of US $10 t( - 1) CO(2) equiv., carbon credit of US $97 year( - 1) could be earned from such reduction in greenhouse gas emission under the clean development mechanism (CDM). A family size biogas plant substitutes 316 L of kerosene, 5,535 kg firewood and 4,400 kg cattle dung cake as fuels which will reduce emissions of NOx, SO(2), CO and volatile organic compounds to the atmosphere by 16.4, 11.3, 987.0 and 69.7 kg year( - 1), respectively. Presently 3.83 million biogas plants are operating in the country, which can mitigate global warming by 37 Mt CO(2) equiv. year( - 1). Government of India has a target of installing 12.34 million biogas plants by 2010. This target has a GMP of 120 Mt CO(2) equiv. year( - 1) and US $1,197 million as carbon credit under the CDM. However, if all the collectible cattle dung (225 Mt) produced in the country is used, 51.2 million family size biogas plants can be supported which will have a GMP of 496 Mt of CO(2) equiv. year( - 1) and can earn US $4,968 million as carbon credit. The reduction in global warming should encourage policy makers to promote biogas technology to combat climate change and integration of carbon revenues will help the farmers to develop biogas as a profitable activity.

  18. Screening of novel plants for biogas production in northern conditions.

    PubMed

    Seppälä, Mari; Laine, Antti; Rintala, Jukka

    2013-07-01

    The objective of this study was to screen nine annual or perennial novel plants for biogas production cultivated in years 2007-2010 in Finland. The most promising novel plants for biogas production were found to be brown knapweed, giant goldenrod and Japanese millet producing 14-27 t total solids/ha and 4000-6100 Nm(3)CH4/ha. The specific methane yields of all studied plants varied from 170 to 381 Nm(3)CH4/t volatile solids (VS), depending on harvest time and plant species. Co-digestion of brown knapweed with cow manure in continuously stirred tank reactor was investigated and the highest methane yield was 254 NL CH4/kg VS, when the share of brown knapweed was 50% in the feed VS (organic loading rate (OLR) 2 kg VS/m(3)/d). The cultivation managements and sustainability of novel plants for biogas production have to be investigated. PMID:23669072

  19. Effects of biogas digestate on soil properties and plant growth

    NASA Astrophysics Data System (ADS)

    Gulyás, Miklós; Füleky, György

    2013-04-01

    Farming methods and food industries generate large amounts manure and other useful raw materials that need safe disposal. Following the international trends great numbers of biogas plants were opened during the last few years in Hungary. However this issue presents a number of new questions, including the subsequent use of anaerobic fermentation residues. So far we have only limited information about it's agricultural applications. Farmers and authorities are very skeptic because feedstocks are very different so the endproduct will be different, too. However, this endproduct can be applied as fertilizer. The aim of our work is to determine the effects of this product in plant-soil system. Digestate contains high amount of nitrogen which is present mainly ammonium form and this form can cause root depression and lower germination rates. Pot experiments were established with different rates of nitrogen content (80 kg ha-1N, 120 kg ha-1N, 170 kg ha-1N, and control). Maximum rates were determine by the Nitrate Directive. Soil moisture was 60% of maximum of water capacity. Digestate and distilled water were homogenized and added to 200g loamy soil. Rye-grass (Lolium perenne) was applied as a test plant. Treatments were randomized design and 10 replications. Three pot from each treatment were used to observe the germination and progress of plants. We investigated the effect of the digestate on nitrate- and ammonium-ion content of soil. The amount of nitrate- and ammonium-N of soil was determine with distillation. The ammonium-N levels increased with the doses on the first day but on the sixth-seventh day this amount totally falled down, because NH4-N transformed to NO3-N. Nitrate level increased continuously untill the tenth day, later decreased as the result of the plant and microbes consumption. The increasing doses inhibited the germination and root development of the plants. We experienced fewer roots, which were different form control.

  20. LED-Absorption-QEPAS Sensor for Biogas Plants.

    PubMed

    Köhring, Michael; Böttger, Stefan; Willer, Ulrike; Schade, Wolfgang

    2015-05-22

    A new sensor for methane and carbon dioxide concentration measurements in biogas plants is presented. LEDs in the mid infrared spectral region are implemented as low cost light source. The combination of quartz-enhanced photoacoustic spectroscopy with an absorption path leads to a sensor setup suitable for the harsh application environment. The sensor system contains an electronics unit and the two gas sensors; it was designed to work as standalone device and was tested in a biogas plant for several weeks. Gas concentration dependent measurements show a precision better than 1% in a range between 40% and 60% target gas concentration for both sensors. Concentration dependent measurements with different background gases show a considerable decrease in cross sensitivity against the major components of biogas in direct comparison to common absorption based sensors.

  1. LED-Absorption-QEPAS Sensor for Biogas Plants.

    PubMed

    Köhring, Michael; Böttger, Stefan; Willer, Ulrike; Schade, Wolfgang

    2015-01-01

    A new sensor for methane and carbon dioxide concentration measurements in biogas plants is presented. LEDs in the mid infrared spectral region are implemented as low cost light source. The combination of quartz-enhanced photoacoustic spectroscopy with an absorption path leads to a sensor setup suitable for the harsh application environment. The sensor system contains an electronics unit and the two gas sensors; it was designed to work as standalone device and was tested in a biogas plant for several weeks. Gas concentration dependent measurements show a precision better than 1% in a range between 40% and 60% target gas concentration for both sensors. Concentration dependent measurements with different background gases show a considerable decrease in cross sensitivity against the major components of biogas in direct comparison to common absorption based sensors. PMID:26007746

  2. LED-Absorption-QEPAS Sensor for Biogas Plants

    PubMed Central

    Köhring, Michael; Böttger, Stefan; Willer, Ulrike; Schade, Wolfgang

    2015-01-01

    A new sensor for methane and carbon dioxide concentration measurements in biogas plants is presented. LEDs in the mid infrared spectral region are implemented as low cost light source. The combination of quartz-enhanced photoacoustic spectroscopy with an absorption path leads to a sensor setup suitable for the harsh application environment. The sensor system contains an electronics unit and the two gas sensors; it was designed to work as standalone device and was tested in a biogas plant for several weeks. Gas concentration dependent measurements show a precision better than 1% in a range between 40% and 60% target gas concentration for both sensors. Concentration dependent measurements with different background gases show a considerable decrease in cross sensitivity against the major components of biogas in direct comparison to common absorption based sensors. PMID:26007746

  3. Emergy analysis of a farm biogas project in China: A biophysical perspective of agricultural ecological engineering

    NASA Astrophysics Data System (ADS)

    Zhou, S. Y.; Zhang, B.; Cai, Z. F.

    2010-05-01

    This paper aims to present a biophysical understanding of the agricultural ecological engineering by emergy analysis for a farm biogas project in China as a representative case. Accounting for the resource inputs into and accumulation within the project, as well as the outputs to the social system, emergy analysis provides an empirical study in the biophysical dimension of the agricultural ecological engineering. Economic benefits and ecological economic benefits of the farm biogas project indicated by market value and emergy monetary value are discussed, respectively. Relative emergy-based indices such as renewability (R%), emergy yield ratio (EYR), environmental load ratio (ELR) and environmental sustainability index (ESI) are calculated to evaluate the environmental load and local sustainability of the concerned biogas project. The results show that the farm biogas project has more reliance on the local renewable resources input, less environmental pressure and higher sustainability compared with other typical agricultural systems. In addition, holistic evaluation and its policy implications for better operation and management of the biogas project are presented.

  4. Detection of pathogenic clostridia in biogas plant wastes.

    PubMed

    Neuhaus, Jürgen; Shehata, Awad A; Krüger, Monika

    2015-01-01

    As the number of biogas plants has grown rapidly in the last decade, the amount of potentially contaminated wastes with pathogenic Clostridium spp. has increased as well. This study reports the results from examining 203 biogas plant wastes (BGWs). The following Clostridium spp. with different frequencies could be isolated via a new enrichment medium (Krüne medium) and detected by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS): Clostridium perfringens (58 %) then Clostridium bifermentans (27 %), Clostridium tertium (23 %) and Clostridium butyricum (19 %), Clostridium cadaveris (15 %), Clostridium parapurificum (6 %), Clostridium glycolicum (5 %), Clostridium baratii (4 %), Clostridium sporogenes (2 %), Clostridium sordellii (1 %) and Clostridium subterminale (0.5 %). The mean most probable number (MPN) count of sulfite reducing bacteria was between 10(3) and 10(4)/mL, and the higher the MPN, the more pathogenic Clostridium spp. were present. Also, real-time PCR was used to be compared with culture method for C. perfringens, C. bifermentans, C. butyricum, C. sporogenes/Clostridium botulinum and C. sordellii. Although real-time PCR was more sensitive than the culture method, both systems improve the recovery rate but in different ways and are useful to determine pathogenic clostridia in biogas plants. In conclusion, BGWs could present a biohazard risk of clostridia for humans and animals. PMID:24984829

  5. CONTEXT MATTERS: THE IMPORTANCE OF MARKET CHARACTERISTICS IN THE VOLATILITY OF FEEDSTOCK COSTS FOR BIOGAS PLANTS.

    PubMed

    Mertens, A; Van Meensel, J; Mondelaers, K; Buysse, J

    2015-01-01

    Recently, biogas plant managers in Flanders face increased financial uncertainty. Between 2011 and 2012, 20% of the Flemish biogas plants went bankrupt. Difficulties in obtaining feedstock at stable and affordable prices is one reason why the biogas sector struggles. In literature, contracting is often proposed as a way to decrease the volatility of the feedstock costs. However, these studies generally do not consider the context in which the biogas plant manager needs to buy the feedstock. Yet, this context could be of specific importance when biogas plant managers are in competition with other users of the same biomass type. Silage maize is an example of such a feedstock, as it is both used by dairy farmers and biogas plant managers. Using a combination of qualitative research and agent-based modelling, we investigated the effect of specific characteristics of the silage maize market on the acquisition of local silage maize by biogas plant managers. This paper details the institutional arrangements of the silage maize market in Flanders and the results of a scenario analysis, simulating three different scenarios. As shown by the results, the time of entry into the market, as well as the different institutional arrangements used by the biogas plant managers as opposed to dairy farmers could explain the difficulties in obtaining a stable supply of local silage maize by biogas plants. Our findings can help to develop mitigation strategies addressing these difficulties.

  6. Hazardous organic compounds in biogas plant end products--soil burden and risk to food safety.

    PubMed

    Suominen, K; Verta, M; Marttinen, S

    2014-09-01

    The end products (digestate, solid fraction of the digestate, liquid fraction of the digestate) of ten biogas production lines in Finland were analyzed for ten hazardous organic compounds or compound groups: polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), polychlorinated biphenyls (PCB(7)), polyaromatic hydrocarbons (PAH(16)), bis-(2-ethylhexyl) phthalate (DEHP), perfluorinated alkyl compounds (PFCs), linear alkylbenzene sulfonates (LASs), nonylphenols and nonylphenol ethoxylates (NP+NPEOs), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA). Biogas plant feedstocks were divided into six groups: municipal sewage sludge, municipal biowaste, fat, food industry by-products, animal manure and others (consisting of milling by-products (husk) and raw former foodstuffs of animal origin from the retail trade). There was no clear connection between the origin of the feedstocks of a plant and the concentrations of hazardous organic compounds in the digestate. For PCDD/Fs and for DEHP, the median soil burden of the compound after a single addition of digestate was similar to the annual atmospheric deposition of the compound or compound group in Finland or other Nordic countries. For PFCs, the median soil burden was somewhat lower than the atmospheric deposition in Finland or Sweden. For NP+NPEOs, the soil burden was somewhat higher than the atmospheric deposition in Denmark. The median soil burden of PBDEs was 400 to 1000 times higher than the PBDE air deposition in Finland or in Sweden. With PBDEs, PFCs and HBCD, the impact of the use of end products should be a focus of further research. Highly persistent compounds, such as PBDE- and PFC-compounds may accumulate in agricultural soil after repeated use of organic fertilizers containing these compounds. For other compounds included in this study, agricultural use of biogas plant end products is unlikely to cause risk to food safety in Finland.

  7. Ecotoxicological assessment of residues from different biogas production plants used as fertilizer for soil.

    PubMed

    Stefaniuk, Magdalena; Bartmiński, Piotr; Różyło, Krzysztof; Dębicki, Ryszard; Oleszczuk, Patryk

    2015-11-15

    Residues from biogas production (RBP) are a relatively new materials, which may be an interesting resource for the improvement of soil fertility. Nevertheless, in spite of the potential benefits from the agricultural utilization of RBP, there is a need of comprehensive estimation of their toxicity. This information is needed to exclude potential negative environmental impacts arising from the use of RBP. Samples of RBP obtained from six biogas production plants with varied biogas production methods were analysed. The samples with and without separation on solid and liquid phases were investigated. The physicochemical properties of the RBP, heavy metals content (Cr, Cu, Ni, Cd, Pb i Zn) and toxicity on bacteria (Vibrio fischeri, MARA test - 11 different strains), collembolans (Folsomia candida) and two plant species (Lepidium sativum and Sinapis alba) was investigated. Toxicity of RBP was examined using Phytotoxkit F (root growth inhibition), collembolan test (mortality, inhibition of reproduction), Microtox® (inhibition of the luminescence of V. fischeri) and MARA test (growth of microorganisms). An especially negative effect on the tested organisms whereas was noted for the liquid phase after separation. In many cases, RBP without separation also showed unfavourable effects on the tested organisms. Liquid phase after separation and non-separated materials caused inhibition of root growth of L. sativum and S. alba at the level of 17.42-100% and 30.5-100%, respectively, as well as the inhibition of reproduction of F. candida with the range from 68.89 to 100%. In most cases, no ecotoxicological effect was observed for solid phase after separation for tested organisms. The solid phase after separation presented the most favorable properties between all investigated RBP. Therefore, it can be a potential material for the improvement of soil properties and for later use in agriculture.

  8. Innovative test method for the estimation of the foaming tendency of substrates for biogas plants.

    PubMed

    Moeller, Lucie; Eismann, Frank; Wißmann, Daniel; Nägele, Hans-Joachim; Zielonka, Simon; Müller, Roland A; Zehnsdorf, Andreas

    2015-07-01

    Excessive foaming in anaerobic digestion occurs at many biogas plants and can cause problems including plugged gas pipes. Unfortunately, the majority of biogas plant operators are unable to identify the causes of foaming in their biogas reactor. The occurrence of foaming is often related to the chemical composition of substrates fed to the reactor. The consistency of the digestate itself is also a crucial part of the foam formation process. Thus, no specific recommendations concerning substrates can be given in order to prevent foam formation in biogas plants. The safest way to avoid foaming is to test the foaming tendency of substrates on-site. A possible solution is offered by an innovative foaming test. With the help of this tool, biogas plant operators can evaluate the foaming disposition of new substrates prior to use in order to adjust the composition of substrate mixes.

  9. Anaerobic digestion foaming in full-scale biogas plants: a survey on causes and solutions.

    PubMed

    Kougias, P G; Boe, K; O-Thong, S; Kristensen, L A; Angelidaki, I

    2014-01-01

    Anaerobic digestion foaming is a common operation problem in biogas plants with negative impacts on the biogas plants economy and environment. A survey of 16 Danish full-scale biogas plants on foaming problems revealed that most of them had experienced foaming in their processes up to three times per year. Foaming incidents often lasted from one day to three weeks, causing 20-50% biogas production loss. One foaming case at Lemvig biogas plant has been investigated and the results indicated that the combination of feedstock composition and mixing pattern of the reactor was the main cause of foaming in this case. Moreover, no difference in bacterial communities between the foaming and non-foaming reactors was observed, showing that filamentous bacteria were not the main reason for foaming in this case.

  10. Ecological analysis of a typical farm-scale biogas plant in China

    NASA Astrophysics Data System (ADS)

    Duan, Na; Lin, Cong; Wang, Pingzhi; Meng, Jing; Chen, Hui; Li, Xue

    2014-09-01

    The aim of this work was to present the common anaerobic digestion technologies in a typical farm-scale biogas plant in China. The comprehensive benefits of most biogas plants in China have not been fully assessed in past decades due to the limited information of the anaerobic digestion processes in biogas plants. This paper analyzed four key aspects (i.e., operational performance, nonrenewable energy (NE) savings, CO2 emission reduction (CER) and economic benefits (EBs)) of a typical farm-scale biogas plant, where beef cattle manure was used as feedstock. Owing to the monitoring system, stable operation was achieved with a hydraulic retention time of 18-22 days and a production of 876,000 m3 of biogas and 37,960 t of digestate fertilizer annually. This could substantially substitute for the nonrenewable energy and chemical fertilizer. The total amount of NE savings and CER derived from biogas and digestate fertilizer was 2.10×107 MJ (equivalent to 749.7 tce) and 9.71×105 kg, respectively. The EBs of the biogas plant was 6.84×105 CNY·yr-1 with an outputs-to-inputs ratio of 2.37. As a result, the monitoring system was proved to contribute significantly to the sound management and quantitative assessment of the biogas plant. Biogas plants could produce biogas which could be used to substitute fossil fuels and reduce the emissions of greenhouse gases, and digestate fertilizer is also an important bio-product.

  11. Electricity from biogas

    SciTech Connect

    Augenstein, D.; Benemann, J.; Hughes, E.

    1994-12-31

    Biogas is a medium-Btu methane and carbon dioxide mix produced by bacterial decomposition of organic matter. Its sources include landfills, waste water sludges, and animal wastes. It can fuel energy applications, of which electricity generation is a frequently-preferred option. The greatest current U.S. biogas recovery and energy use is at landfills, where biogas at about 80 landfill sites fuels a total of approximately 300 MWe. Wastewater treatment plants and confined animal waste management systems support additional electric power production. Generation of electricity from biogas can present difficulties due to the generally small scale of the generating facility, variable energy content of the gas, fluctuating availability, contaminant problems, and often-demanding control needs. However, such difficulties are being successfully addressed and economics for electricity generation are often favorable as biogas can be essentially {open_quotes}free{close_quotes} fuel. Biogas recovery and use has the additional advantage of mitigating a potent greenhouse gas. Biogas from U.S. landfills alone could fuel about 1% of U.S. electrical generation while giving climate change benefit equivalent to reducing CO{sub 2} emissions in the electricity sector by more than 10%. Growth in landfill gas use will be facilitated by recent regulations, advances in equipment, and improved management techniques such as {open_quotes}controlled landfilling{close_quotes}. The potential for biogas recovery and electricity production from sewage sludges, animal wastes and other organic resources such as agricultural residues is uncertain but probably exceeds the estimate for landfills.

  12. Innovative test method for the estimation of the foaming tendency of substrates for biogas plants

    SciTech Connect

    Moeller, Lucie; Eismann, Frank; Wißmann, Daniel; Nägele, Hans-Joachim; Zielonka, Simon; Müller, Roland A.; Zehnsdorf, Andreas

    2015-07-15

    Graphical abstract: Display Omitted - Highlights: • Foaming in biogas plants depends on the interactions between substrate and digestate. • Foaming tests enable the evaluation of substrate foaming tendency in biogas plants. • Leipzig foam tester enables foaming tests of substrates prior to use. - Abstract: Excessive foaming in anaerobic digestion occurs at many biogas plants and can cause problems including plugged gas pipes. Unfortunately, the majority of biogas plant operators are unable to identify the causes of foaming in their biogas reactor. The occurrence of foaming is often related to the chemical composition of substrates fed to the reactor. The consistency of the digestate itself is also a crucial part of the foam formation process. Thus, no specific recommendations concerning substrates can be given in order to prevent foam formation in biogas plants. The safest way to avoid foaming is to test the foaming tendency of substrates on-site. A possible solution is offered by an innovative foaming test. With the help of this tool, biogas plant operators can evaluate the foaming disposition of new substrates prior to use in order to adjust the composition of substrate mixes.

  13. Determination of methane emission rates on a biogas plant using data from laser absorption spectrometry.

    PubMed

    Groth, Angela; Maurer, Claudia; Reiser, Martin; Kranert, Martin

    2015-02-01

    The aim of the work was to establish a method for emission control of biogas plants especially the observation of fugitive methane emissions. The used method is in a developmental stage but the topic is crucial to environmental and economic issues. A remote sensing measurement method was adopted to determine methane emission rates of a biogas plant in Rhineland-Palatinate, Germany. An inverse dispersion model was used to deduce emission rates. This technique required one concentration measurement with an open path tunable diode laser absorption spectrometer (TDLAS) downwind and upwind the source and basic wind information, like wind speed and direction. Different operating conditions of the biogas plant occurring on the measuring day (December 2013) could be represented roughly in the results. During undisturbed operational modes the methane emission rate averaged 2.8 g/s, which corresponds to 4% of the methane gas production rate of the biogas plant.

  14. Theoretical and experimental investigations of thermal conditions of household biogas plant

    NASA Astrophysics Data System (ADS)

    Zhelykh, Vasil; Furdas, Yura; Dzeryn, Oleksandra

    2016-06-01

    The construction of domestic continuous bioreactor is proposed. The modeling of thermal modes of household biogas plant using graph theory was done. The correction factor taking into account with the influence of variables on its value was determined. The system of balance equations for the desired thermal conditions in the bioreactor was presented. The graphical and analytical capabilities were represented that can be applied in the design of domestic biogas plants of organic waste recycling.

  15. Insights into the annotated genome sequence of Methanoculleus bourgensis MS2(T), related to dominant methanogens in biogas-producing plants.

    PubMed

    Maus, Irena; Wibberg, Daniel; Stantscheff, Robbin; Stolze, Yvonne; Blom, Jochen; Eikmeyer, Felix-Gregor; Fracowiak, Jochen; König, Helmut; Pühler, Alfred; Schlüter, Andreas

    2015-05-10

    The final step of the biogas production process, the methanogenesis, is frequently dominated by members of the genus Methanoculleus. In particular, the species Methanoculleus bourgensis was identified to play a role in different biogas reactor systems. The genome of the type strain M. bourgensis MS2(T), originally isolated from a sewage sludge digestor, was completely sequenced to analyze putative adaptive genome features conferring competitiveness within biogas reactor environments to the strain. Sequencing and assembly of the M. bourgensis MS2(T) genome yielded a chromosome with a size of 2,789,773 bp. Comparative analysis of M. bourgensis MS2(T) and Methanoculleus marisnigri JR1 revealed significant similarities. The absence of genes for a putative ammonium uptake system may indicate that M. bourgensis MS2(T) is adapted to environments rich in ammonium/ammonia. Specific genes featuring predicted functions in the context of osmolyte production were detected in the genome of M. bourgensis MS2(T). Mapping of metagenome sequences derived from a production-scale biogas plant revealed that M. bourgensis MS2(T) almost completely comprises the genetic information of dominant methanogens present in the biogas reactor analyzed. Hence, availability of the M. bourgensis MS2(T) genome sequence may be valuable regarding further research addressing the performance of Methanoculleus species in agricultural biogas plants.

  16. Biogas production from plant biomass used for phytoremediation of industrial wastes.

    PubMed

    Verma, V K; Singh, Y P; Rai, J P N

    2007-05-01

    In present study, potentials of water hyacinth (Eichhornia crassipes) and water chestnut (Trapa bispinnosa) employed for phytoremediation of toxic metal rich brass and electroplating industry effluent, were examined in terms of biogas generation. Inability of the plants to grow in undiluted effluent directed to select 20%, 40% and 60% effluent concentrations (with deionized water) for phytoremediation experiments. Slurry of both the plants used for phytoremediation produced significantly more biogas than that by the control plants grown in unpolluted water; the effect being more pronounced with plants used for phytoremediation of 20% effluent. Maximum cumulative production of biogas (2430c.c./100gdm of water hyacinth and 1940c.c./100gdm of water chest nut) and per cent methane content (63.82% for water hyacinth and 57.04% for water chestnut) was observed at 5mm particle size and 1:1 substrate/inoculum ratio, after twenty days incubation. Biogas production was quicker (maximum from 8-12days) in water hyacinth than in water chestnut (maximum from 12-16days). The qualitative and quantitative variations in biogas production were correlated with COD, C, N, C/N ratio and toxic metal contents of the slurry used. PMID:16831546

  17. Influence of DNA isolation method on the investigation of archaeal diversity and abundance in biogas plants.

    PubMed

    Theiss, Juliane; Rother, Michael; Röske, Kerstin

    2016-09-01

    Various methods are available for DNA isolation from environmental samples. Because the chemical and biological composition of samples such as soil, sludge, or plant material is different, the effectiveness of DNA isolation can vary depending on the method applied and thus, have a substantial effect on the results of downstream analysis of the microbial community. Although the process of biogas formation is being intensely investigated, a systematic evaluation of kits for DNA isolation from material of biogas plants is still lacking. Since no DNA isolation kit specifically tailored for DNA isolation from sludge of biogas plants is available, this study compares five commercially available kits regarding their influence on downstream analyses such denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR (qPCR). The results show that not all kits are equally suited for the DNA isolation from samples of different biogas plants, but highly reproducible DGGE fingerprints as well as qPCR results across the tested samples from biogas reactors using different substrate compositions could be produced using selected kits. PMID:27089887

  18. Comparative genotyping of Clostridium thermocellum strains isolated from biogas plants: genetic markers and characterization of cellulolytic potential.

    PubMed

    Koeck, Daniela E; Zverlov, Vladimir V; Liebl, Wolfgang; Schwarz, Wolfgang H

    2014-07-01

    Clostridium thermocellum is among the most prevalent of known anaerobic cellulolytic bacteria. In this study, genetic and phenotypic variations among C. thermocellum strains isolated from different biogas plants were determined and different genotyping methods were evaluated on these isolates. At least two C. thermocellum strains were isolated independently from each of nine different biogas plants via enrichment on cellulose. Various DNA-based genotyping methods such as ribotyping, RAPD (Random Amplified Polymorphic DNA) and VNTR (Variable Number of Tandem Repeats) were applied to these isolates. One novel approach - the amplification of unknown target sequences between copies of a previously discovered Random Inserted Mobile Element (RIME) - was also tested. The genotyping method with the highest discriminatory power was found to be the amplification of the sequences between the insertion elements, where isolates from each biogas plant yielded a different band pattern. Cellulolytic potentials, optimal growth conditions and substrate spectra of all isolates were characterized to help identify phenotypic variations. Irrespective of the genotyping method used, the isolates from each individual biogas plant always exhibited identical patterns. This is suggestive of a single C. thermocellum strain exhibiting dominance in each biogas plant. The genotypic groups reflect the results of the physiological characterization of the isolates like substrate diversity and cellulase activity. Conversely, strains isolated across a range of biogas plants differed in their genotyping results and physiological properties. Both strains isolated from one biogas plant had the best specific cellulose-degrading properties and might therefore achieve superior substrate utilization yields in biogas fermenters.

  19. Metaproteome analysis to determine the metabolically active part of a thermophilic microbial community producing biogas from agricultural biomass.

    PubMed

    Hanreich, Angelika; Heyer, Robert; Benndorf, Dirk; Rapp, Erdmann; Pioch, Markus; Reichl, Udo; Klocke, Michael

    2012-07-01

    Complex consortia of microorganisms are responsible for biogas production. A lot of information about the taxonomic structure and enzymatic potential of such communities has been collected by a variety of gene-based approaches, yet little is known about which of all the assumable metabolic pathways are active throughout the process of biogas formation. To tackle this problem, we established a protocol for the metaproteomic analysis of samples taken from biogas reactors fed with agricultural biomass. In contrast to previous studies where an anaerobic digester was fed with synthetic wastewater, the complex matrix in this study required the extraction of proteins with liquid phenol and the application of paper bridge loading for 2-dimensional gel electrophoresis. Proteins were subjected to nanoHPLC (high-performance liquid chromatography) coupled to tandem mass spectrometry for characterization. Several housekeeping proteins as well as methanogenesis-related enzymes were identified by a MASCOT search and de novo sequencing, which proved the feasibility of our approach. The establishment of such an approach is the basis for further metaproteomic studies of biogas-producing communities. In particular, the apparent status of metabolic activities within the communities can be monitored. The knowledge collected from such experiments could lead to further improvements of biogas production.

  20. Effects of chemical compositions and ensiling on the biogas productivity and degradation rates of agricultural and food processing by-products.

    PubMed

    Kafle, Gopi Krishna; Kim, Sang Hun

    2013-08-01

    The objective of this study was to investigate the effects of chemical compositions and ensiling on the biogas productivity and degradation rates of agricultural and food processing by-products (AFPBPs) using the biogas potential test. The AFPBPs were classified based on their chemical compositions (i.e., carbohydrate, protein and fat contents). The biogas and methane potentials of AFPBPs were calculated to range from 450 to 777 mL/g volatile solids (VS) and 260-543 mL/g VS, respectively. AFPBPs with high fat and protein contents produced significantly higher amounts of biogas than AFPBPs with high carbohydrate and low fat contents. The degradation rate was faster for AFPBPs with high carbohydrate contents compared to AFPBPs with high protein and fat contents. The lag phase and biogas production duration were lower when using ensiled AFPBPs than when using nonsilage AFPBPs. Among the four different silages tested, two silages significantly improved biogas production compared to the nonsilage AFPBPs.

  1. Detection of Clostridium botulinum in liquid manure and biogas plant wastes.

    PubMed

    Neuhaus, Jürgen; Schrödl, Wieland; Shehata, Awad A; Krüger, Monika

    2015-09-01

    Biogas plants have been considered as a source for possible amplification and distribution of pathogenic bacteria capable of causing severe infections in humans and animals. Manure and biogas wastes could be sources for spore-forming bacteria such as Clostridium botulinum. In the present study, 24 liquid manure and 84 biogas waste samples from dairies where the majority of the cows suffered from chronic botulism were investigated for the presence of botulinum neurotoxins (BoNT) and C. botulinum spores. The prevalence of BoNT/A, B, C, D, and E in biogas wastes was 16.6, 8.3, 10.7, 7.1, and 10.8 %, respectively, while in manure, the prevalence was 0.0, 0.0, 0.0, 8.3, and 4.1 %, respectively. After enrichment of samples in reinforced cultural medium, they were tested for C. botulinum BoNT/A, B, C, D, and E using ELISA (indirect C. botulinum detection). The prevalence of C. botulinum type A, B, C, D, and E samples in biogas wastes was 20.2, 15.5, 19, 10.7, and 34.8 %, respectively, while the prevalence in liquid manure was 0.0, 0.0, 0.0, 8.3, and 12.5 %, respectively. In conclusion, the occurrence of BoNT and C. botulinum spores in biogas waste of diseased animals indicates an increased and underestimated hygienic risk. Application of digestates from biogas fermentations as fertilizers could lead to an accumulation of long lifespan spores in the environment and could be a possible health hazard.

  2. Detection of Clostridium botulinum in liquid manure and biogas plant wastes.

    PubMed

    Neuhaus, Jürgen; Schrödl, Wieland; Shehata, Awad A; Krüger, Monika

    2015-09-01

    Biogas plants have been considered as a source for possible amplification and distribution of pathogenic bacteria capable of causing severe infections in humans and animals. Manure and biogas wastes could be sources for spore-forming bacteria such as Clostridium botulinum. In the present study, 24 liquid manure and 84 biogas waste samples from dairies where the majority of the cows suffered from chronic botulism were investigated for the presence of botulinum neurotoxins (BoNT) and C. botulinum spores. The prevalence of BoNT/A, B, C, D, and E in biogas wastes was 16.6, 8.3, 10.7, 7.1, and 10.8 %, respectively, while in manure, the prevalence was 0.0, 0.0, 0.0, 8.3, and 4.1 %, respectively. After enrichment of samples in reinforced cultural medium, they were tested for C. botulinum BoNT/A, B, C, D, and E using ELISA (indirect C. botulinum detection). The prevalence of C. botulinum type A, B, C, D, and E samples in biogas wastes was 20.2, 15.5, 19, 10.7, and 34.8 %, respectively, while the prevalence in liquid manure was 0.0, 0.0, 0.0, 8.3, and 12.5 %, respectively. In conclusion, the occurrence of BoNT and C. botulinum spores in biogas waste of diseased animals indicates an increased and underestimated hygienic risk. Application of digestates from biogas fermentations as fertilizers could lead to an accumulation of long lifespan spores in the environment and could be a possible health hazard. PMID:25753763

  3. The effect of electron acceptors on biogas production from tannery sludge of a Mexican wastewater plant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effluents from the leather processing plants generally are discharged into rivers or are used to irrigate farmland. The biogas production from the digestion of sludge produced could be used as alternative sources for energy and power generation. A study was carried out to examine the effects of vari...

  4. Codigestion of manure and industrial organic waste at centralized biogas plants: process imbalances and limitations.

    PubMed

    Nielsen, H B; Angelidaki, I

    2008-01-01

    The present study focuses on process imbalances in Danish centralized biogas plants treating manure in combination with industrial waste. Collection of process data from various full-scale plants along with a number of interviews showed that imbalances occur frequently. High concentrations of ammonia or long chain fatty acids is in most cases expected to be the cause of microbial inhibitions/imbalances while foaming in the prestorage tanks and digesters is the most important practical process problem at the plants. A correlation between increased residual biogas production (suboptimal process conditions) and high fractions of industrial waste in the feedstock was also observed. The process imbalances and suboptimal conditions are mainly allowed to occur due to 1) inadequate knowledge about the waste composition, 2) inadequate knowledge about the waste degradation characteristics, 3) inadequate process surveillance, especially with regard to volatile fatty acids, and 4) insufficient pre-storage capacity causing inexpedient mixing and hindering exact dosing of the different waste products.

  5. Detailed monitoring of two biogas plants and mechanical solid-liquid separation of fermentation residues.

    PubMed

    Bauer, Alexander; Mayr, Herwig; Hopfner-Sixt, Katharina; Amon, Thomas

    2009-06-01

    The Austrian "green electricity act" (Okostromgesetz) has led to an increase in biogas power plant size and consequently to an increased use of biomass. A biogas power plant with a generating capacity of 500 kW(el) consumes up to 38,000 kg of biomass per day. 260 ha of cropland is required to produce this mass. The high water content of biomass necessitates a high transport volume for energy crops and fermentation residues. The transport and application of fermentation residues to farmland is the last step in this logistic chain. The use of fermentation residues as fertilizer closes the nutrient cycle and is a central element in the efficient use of biomass for power production. Treatment of fermentation residues by separation into liquid and solid phases may be a solution to the transport problem. This paper presents detailed results from the monitoring of two biogas plants and from the analysis of the separation of fermentation residues. Furthermore, two different separator technologies for the separation of fermentation residues of biogas plants were analyzed. The examined biogas plants correspond to the current technological state of the art and have designs developed specifically for the utilization of energy crops. The hydraulic retention time ranged between 45.0 and 83.7 days. The specific methane yields were 0.40-0.43 m(3)N CH(4) per kg VS. The volume loads ranged between 3.69 and 4.00 kg VS/m(3). The degree of degradation was between 77.3% and 82.14%. The screw extractor separator was better suited for biogas slurry separation than the rotary screen separator. The screw extractor separator exhibited a high throughput and good separation efficiency. The efficiency of slurry separation depended on the dry matter content of the fermentation residue. The higher the dry matter content, the higher the proportion of solid phase after separation. In this project, we found that the fermentation residues could be divided into 79.2% fluid phase with a dry matter

  6. Milk Processing Plant Employee. Agricultural Cooperative Training. Vocational Agriculture.

    ERIC Educational Resources Information Center

    Blaschke, Nolan; Page, Foy

    This course of study is designed for the vocational agricultural student enrolled in an agricultural cooperative part-time training program in the area of milk processing occupations. The course consists of 11 units, each with 4 to 13 individual topics that milk processing plant employees should know. Subjects covered by the units are the…

  7. Estimation of potential biomass resource and biogas production from aquatic plants in Argentina

    NASA Astrophysics Data System (ADS)

    Fitzsimons, R. E.; Laurino, C. N.; Vallejos, R. H.

    1982-08-01

    The use of aquatic plants in artificial lakes as a biomass source for biogas and fertilizer production through anaerobic fermentation is evaluated, and the magnitude of this resource and the potential production of biogas and fertilizer are estimated. The specific case considered is the artificial lake that will be created by the construction of Parana Medio Hydroelectric Project on the middle Parana River in Argentina. The growth of the main aquatic plant, water hyacinth, on the middle Parana River has been measured, and its conversion to methane by anaerobic fermentation is determined. It is estimated that gross methane production may be between 1.0-4.1 x 10 to the 9th cu cm/year. The fermentation residue can be used as a soil conditioner, and it is estimated production of the residue may represent between 54,900-221,400 tons of nitrogen/year, a value which is 2-8 times the present nitrogen fertilizer demand in Argentina.

  8. Biogas production from coumarin-rich plants--inhibition by coumarin and recovery by adaptation of the bacterial community.

    PubMed

    Popp, Denny; Schrader, Steffi; Kleinsteuber, Sabine; Harms, Hauke; Sträuber, Heike

    2015-09-01

    Plants like sweet clover (Melilotus spp.) are not suitable as fodder for cattle because of harmful effects of the plant secondary metabolite coumarin. As an alternative usage, the applicability of coumarin-rich plants as substrates for biogas production was investigated. When coumarin was added to continuous fermentation processes codigesting grass silage and cow manure, it caused a strong inhibition noticeable as decrease of biogas production by 19% and increase of metabolite concentrations to an organic acids/alkalinity ratio higher than 0.3(gorganic acids) gCaCO3 (-1). Microbial communities of methanogenic archaea were dominated by the genera Methanosarcina (77%) and Methanoculleus (11%). This community composition was not influenced by coumarin addition. The bacterial community analysis unraveled a divergence caused by coumarin addition correlating with the anaerobic degradation of coumarin and the recovery of the biogas process. As a consequence, biogas production resumed similar to the coumarin-free control with a biogas yield of 0.34 LN g(volatile solids) (-1) and at initial metabolite concentrations (∼ 0.2 g(organic acids) gCaCO3 (-1)). Coumarin acts as inhibitor and as substrate during anaerobic digestion. Hence, coumarin-rich plants might be suitable for biogas production, but should only be used after adaptation of the microbial community to coumarin.

  9. Biogas production from coumarin-rich plants--inhibition by coumarin and recovery by adaptation of the bacterial community.

    PubMed

    Popp, Denny; Schrader, Steffi; Kleinsteuber, Sabine; Harms, Hauke; Sträuber, Heike

    2015-09-01

    Plants like sweet clover (Melilotus spp.) are not suitable as fodder for cattle because of harmful effects of the plant secondary metabolite coumarin. As an alternative usage, the applicability of coumarin-rich plants as substrates for biogas production was investigated. When coumarin was added to continuous fermentation processes codigesting grass silage and cow manure, it caused a strong inhibition noticeable as decrease of biogas production by 19% and increase of metabolite concentrations to an organic acids/alkalinity ratio higher than 0.3(gorganic acids) gCaCO3 (-1). Microbial communities of methanogenic archaea were dominated by the genera Methanosarcina (77%) and Methanoculleus (11%). This community composition was not influenced by coumarin addition. The bacterial community analysis unraveled a divergence caused by coumarin addition correlating with the anaerobic degradation of coumarin and the recovery of the biogas process. As a consequence, biogas production resumed similar to the coumarin-free control with a biogas yield of 0.34 LN g(volatile solids) (-1) and at initial metabolite concentrations (∼ 0.2 g(organic acids) gCaCO3 (-1)). Coumarin acts as inhibitor and as substrate during anaerobic digestion. Hence, coumarin-rich plants might be suitable for biogas production, but should only be used after adaptation of the microbial community to coumarin. PMID:26324856

  10. Conceptual design of an integrated hydrothermal liquefaction and biogas plant for sustainable bioenergy production.

    PubMed

    Hoffmann, Jessica; Rudra, Souman; Toor, Saqib S; Holm-Nielsen, Jens Bo; Rosendahl, Lasse A

    2013-02-01

    Initial process studies carried out in Aspen Plus on an integrated thermochemical conversion process are presented herein. In the simulations, a hydrothermal liquefaction (HTL) plant is combined with a biogas plant (BP), such that the digestate from the BP is converted to a biocrude in the HTL process. This biorefinery concept offers a sophisticated and sustainable way of converting organic residuals into a range of high-value biofuel streams in addition to combined heat and power (CHP) production. The primary goal of this study is to provide an initial estimate of the feasibility of such a process. By adding a diesel-quality-fuel output to the process, the product value is increased significantly compared to a conventional BP. An input of 1000 kg h(-1) manure delivers approximately 30-38 kg h(-1) fuel and 38-61 kg h(-1) biogas. The biogas can be used to upgrade the biocrude, to supply the gas grid or for CHP. An estimated 62-84% of the biomass energy can be recovered in the biofuels.

  11. A review on palm oil mill biogas plant wastewater treatment using coagulation-ozonation

    NASA Astrophysics Data System (ADS)

    Dexter, Z. D.; Joseph, C. G.; Zahrim, A. Y.

    2016-06-01

    Palm oil mill effluent (POME) generated from the palm oil industry is highly polluted and requires urgent attention for treatment due to its high organic content. Biogas plant containing anaerobic digester is capable to treat the high organic content of the POME while generating valuable biogas at the same time. This green energy from POME is environmental-friendly but the wastewater produced is still highly polluted and blackish in colour. Therefore a novel concept of combining coagulation with ozonation treatment is proposed to treat pollution of this nature. Several parameters should be taken under consideration in order to ensure the effectiveness of the hybrid treatment including ozone dosage, ozone contact time, pH of the water or wastewater, coagulant dosage, and mixing and settling time. This review paper will elucidate the importance of hybrid coagulation-ozonation treatment in producing a clear treated wastewater which is known as the main challenge in palm oil industry

  12. A dynamic model for calculating methane emissions from digestate based on co-digestion of animal manure and biogas crops in full scale German biogas plants.

    PubMed

    Muha, Ivo; Linke, Bernd; Wittum, Gabriel

    2015-02-01

    The focus of this work is the development of a model for the estimation of methane emissions for storage tanks of biogas plants. Those can be estimated depending on (i) hydraulic retention time in the digester, (ii) an arbitrary removal rate of the digestate from the storage tank and (iii) arbitrary temperature conditions in the storage tank. Furthermore, the model is capable of considering an arbitrary mixture of manure and crops in the input material. The model was validated by data from 21 full scale biogas plants in Germany digesting cow manure and crops. A realistic scenario for the removal rate and temperature conditions in the storage tank was then investigated and special emphasis was given to the effect of hydraulic retention time and proportion of crops in the mixture on the input VS methane yield from the digester and the storage tank.

  13. Plant ID. Agricultural Lesson Plans.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This lesson plan is intended for use in conducting classes on plant identification. Presented first are a series of questions and answers designed to convey general information about the scientific classification of plants. The following topics are among those discussed: main types of plants; categories of vascular plants; gymnosperms and…

  14. Energy potential and alternative usages of biogas and sludge from UASB reactors: case study of the Laboreaux wastewater treatment plant.

    PubMed

    Rosa, A P; Conesa, J A; Fullana, A; Melo, G C B; Borges, J M; Chernicharo, C A L

    2016-01-01

    This work assessed the energy potential and alternative usages of biogas and sludge generated in upflow anaerobic sludge blanket reactors at the Laboreaux sewage treatment plant (STP), Brazil. Two scenarios were considered: (i) priority use of biogas for the thermal drying of dehydrated sludge and the use of the excess biogas for electricity generation in an ICE (internal combustion engine); and (ii) priority use of biogas for electricity generation and the use of the heat of the engine exhaust gases for the thermal drying of the sludge. Scenario 1 showed that the electricity generated is able to supply 22.2% of the STP power demand, but the thermal drying process enables a greater reduction or even elimination of the final volume of sludge to be disposed. In Scenario 2, the electricity generated is able to supply 57.6% of the STP power demand; however, the heat in the exhaust gases is not enough to dry the total amount of dehydrated sludge.

  15. Plant Tissues. Agricultural Lesson Plans.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This lesson plan is intended for use in conducting classes on plant tissues. Presented first are an attention step and a series of questions and answers designed to convey general information about plant tissues and the effect of water and minerals on them. The following topics are among those discussed: reasons why water is important to plants,…

  16. Commercial Pesticides Applicator Manual: Agriculture - Plant.

    ERIC Educational Resources Information Center

    Fitzwater, W. D.; And Others

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the agriculture-plant pest control category. The text discusses identification and control of insects, diseases, nematodes, and weeds of agricultural crops. Proper use of application equipment and safety…

  17. Environmental assessment and finding of no significant impact: Biorecycling Technologies, Inc., Noble Biogas and Fertilizer Plant, Fresno County, California

    SciTech Connect

    1997-09-01

    The US Department of Energy (DOE) is considering a proposal from the California Energy Commission for partial funding up to $1,500,000 of the construction of the biorecycling Technologies, Inc., (BTI) Noble Biogas and Fertilizer Plant in Fresno County, California. BTI along with its contractors and business partners would develop the plant, which would use manure and green waste to produce biogas and a variety of organic fertilizer products. The California Energy Commission has requested funding from the DOE Commercialization Ventures program to assist in the construction of the plant, which would produce up to one megawatt of electricity by burning biogas in a cogeneration unit. The purpose of this environmental assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with funding development of the proposed project.

  18. Health risk assessment of heavy metals in soil-plant system amended with biogas slurry in Taihu basin, China.

    PubMed

    Bian, Bo; Lin, Cheng; Lv, Lin

    2016-09-01

    Biogas slurry is a product of anaerobic digestion of manure that has been widely used as a soil fertilizer. Although the use for soil fertilizer is a cost-effective solution, it has been found that repeated use of biogas slurry that contains high heavy metal contents can cause pollution to the soil-plant system and risk to human health. The objective of this study was to investigate effects of biogas slurry on the soil-plant system and the human health. We analyzed the heavy metal concentrations (including As, Pb, Cu, Zn, Cr and Cd) in 106 soil samples and 58 plant samples in a farmland amended with biogas slurry in Taihu basin, China. Based on the test results, we assessed the potential human health risk when biogas slurry containing heavy metals was used as a soil fertilizer. The test results indicated that the Cd and Pb concentrations in soils exceeded the contamination limits and Cd exhibited the highest soil-to-root migration potential. Among the 11 plants analyzed, Kalimeris indica had the highest heavy metal absorption capacity. The leafy vegetables showed higher uptake of heavy metals than non-leafy vegetables. The non-carcinogenic risks mainly resulted from As, Pb, Cd, Cu and Zn through plant ingestion exposure. The integrated carcinogenic risks were associated with Cr, As and Cd in which Cr showed the highest risk while Cd showed the lowest risk. Among all the heavy metals analyzed, As and Cd appeared to have a lifetime health threat, which thus should be attenuated during production of biogas slurry to mitigate the heavy metal contamination.

  19. Isolation and characterization of microalgae for biodiesel production from Nisargruna biogas plant effluent.

    PubMed

    Tale, Manisha; Ghosh, Sukhendu; Kapadnis, Balasaheb; Kale, Sharad

    2014-10-01

    Increasing energy demand and depleting fossil fuel sources have intensified the focus on biofuel production. Microalgae have emerged as a desirable source for biofuel production because of high biomass and lipid production from waste water source. In this study, five microalgae were isolated from effluents of Nisargruna biogas plants. These isolates were identified based on morphology and partial 18S and 23S rRNA gene sequences. Growth and lipid accumulation potential of these microalgae were investigated. One isolate, Chlorella sp. KMN3, accumulated high biomass (1.59 ± 0.05 g L(-1)) with moderate lipid content (20%), while another isolate Monoraphidium sp. KMN5 showed moderate biomass accumulation of 0.65 ± 0.05 g L(-1) with a very high (35%) lipid content. The fatty acid methyl esters mainly composed of C-16:0, C-18:0, C-18:1 and C-18:2. This observation makes these microalgae immensely potential candidate for biodiesel production using the effluent of a biogas plant as feed stock.

  20. Biogas - the calculable energy

    NASA Astrophysics Data System (ADS)

    Kith, Károly; Nagy, Orsolya; Balla, Zoltán; Tamás, András

    2015-04-01

    EU actions against climate change are rising energy prices, both have emphasized the use of renewable energy,increase investments and energy efficiency. A number of objectives formulated in the EC decree no. 29/2009 by 2020. This document is based on the share of renewable energies in energy consumption should be increased to 20% (EC, 2009). The EU average is 20% but the share of renewables vary from one member state to another. In Hungary in 2020, 14.65% renewable energy share is planned to be achieved. According to the latest Eurostat data, the share of renewable energy in energy consumption of the EU average was 14.1%, while in Hungary, this share was 9.6% in 2012. (EUROSTAT, 2014). The use of renewable energy plant level is influenced by several factors. The most important of these is the cost savings and efficiency gains. Hungarian investments in renewable energy production usually have high associated costs and the payback period is substantially more than five years, depending on the support rate. For example, the payback period is also influenced by the green electricity generated feed prices, which is one of the lowest in Hungary compared the Member States of the European Union. Consequently, it is important to increase the production of green energy. Nowadays, predictable biogas energy is an outstanding type of decentralized energy production. It follows directly that agricultural by-products can be used to produce energy and they also create jobs by the construction of a biogas plant. It is important to dispose of and destroy hazardous and noxious substances in energy production. It follows from this that the construction of biogas plants have a positive impact, in addition to green energy which is prepared to reduce the load on the environment. The production of biogas and green electricity is one of the most environment friendly forms of energy production. Biogas production also has other important ecological effects, such as the substitution of

  1. Updated guidebook on biogas development

    SciTech Connect

    Not Available

    1985-01-01

    On the practical aspects of small-scale biogas development suitable for use in rural areas of developing countries reviews biogas development throughout the ESCAP region and examines each of the steps involved in developing and operating a biogas plant. It details both the process and the microbiology of biogas fermentation and analyses the factors affecting gas plant design and operation. Also covered are the classification and design principles of plants, design, site, and site selection; starting and operating a gas plant; servicing and safety; and efficient plant performance. Also considered are the commercial uses of biogas and possible use of effluent.

  2. Determining methane emissions from biogas plants--Operational and meteorological aspects.

    PubMed

    Hrad, Marlies; Piringer, Martin; Huber-Humer, Marion

    2015-09-01

    A micrometeorological method, combining an inverse dispersion technique with path-integrated concentration measurements, was applied on an Austrian biogas plant over the period of more than one year to determine emissions of the whole plant. Measurement campaigns were conducted to characterize the emission response to operational activities (e.g. digestate management) and meteorological changes. When digestate storage tanks were filled, an average emission rate of 7.2 kg CH4/h (approx. 4% of the calculated CH4 production) was determined, while 5.4 kg CH4/h of emissions (approx. 3% of the calculated CH4 production) were quantified after the tanks had been emptied. It could be observed that besides the operation mode (e.g. filling level or agitation of the openly stored digestate, maintenance), the meteorological conditions such as wind speed and solar radiation (e.g. heat flux) can also affect the emission rate. PMID:26000833

  3. Determining methane emissions from biogas plants--Operational and meteorological aspects.

    PubMed

    Hrad, Marlies; Piringer, Martin; Huber-Humer, Marion

    2015-09-01

    A micrometeorological method, combining an inverse dispersion technique with path-integrated concentration measurements, was applied on an Austrian biogas plant over the period of more than one year to determine emissions of the whole plant. Measurement campaigns were conducted to characterize the emission response to operational activities (e.g. digestate management) and meteorological changes. When digestate storage tanks were filled, an average emission rate of 7.2 kg CH4/h (approx. 4% of the calculated CH4 production) was determined, while 5.4 kg CH4/h of emissions (approx. 3% of the calculated CH4 production) were quantified after the tanks had been emptied. It could be observed that besides the operation mode (e.g. filling level or agitation of the openly stored digestate, maintenance), the meteorological conditions such as wind speed and solar radiation (e.g. heat flux) can also affect the emission rate.

  4. Methane production and energy evaluation of a farm scaled biogas plant in cold climate area.

    PubMed

    Fjørtoft, Kristian; Morken, John; Hanssen, Jon Fredrik; Briseid, Tormod

    2014-10-01

    The aim of this study was to investigate the specific methane production and the energy balance at a small farm scaled mesophilic biogas plant in a cold climate area. The main substrate was dairy cow slurry. Fish silage was used as co-substrate for two of the three test periods. Energy production, substrate volumes and thermal and electric energy consumption was monitored. Methane production depended mainly on type and amount of substrates, while energy consumption depended mainly on the ambient temperature. During summer the main thermal energy consumption was caused by heating of new substrates, while covering for thermal energy losses from digester and pipes required most thermal energy during winter. Fish silage gave a total energy production of 1623 k Wh/m(3), while the dairy cow slurry produced 79 k Wh/m(3) slurry. Total energy demand at the plant varied between 26.9% and 88.2% of the energy produced. PMID:25033326

  5. Methane production and energy evaluation of a farm scaled biogas plant in cold climate area.

    PubMed

    Fjørtoft, Kristian; Morken, John; Hanssen, Jon Fredrik; Briseid, Tormod

    2014-10-01

    The aim of this study was to investigate the specific methane production and the energy balance at a small farm scaled mesophilic biogas plant in a cold climate area. The main substrate was dairy cow slurry. Fish silage was used as co-substrate for two of the three test periods. Energy production, substrate volumes and thermal and electric energy consumption was monitored. Methane production depended mainly on type and amount of substrates, while energy consumption depended mainly on the ambient temperature. During summer the main thermal energy consumption was caused by heating of new substrates, while covering for thermal energy losses from digester and pipes required most thermal energy during winter. Fish silage gave a total energy production of 1623 k Wh/m(3), while the dairy cow slurry produced 79 k Wh/m(3) slurry. Total energy demand at the plant varied between 26.9% and 88.2% of the energy produced.

  6. Integrated biogas systems

    NASA Astrophysics Data System (ADS)

    Amaratunga, M.

    1980-01-01

    Integrated biogas systems as alternatives to fossil fuels in Sri Lanka are considered from standpoints of population growth, land availability, and employment opportunities. Agricultural practices would be improved by use of chemical fertilizers, and health/nutrition problems be alleviated by using biogas systems. Fuel for cooking and rural industries will become more easily available; water weeds, such as water hyacinth and salvinia which pose a threat to waterways and rice paddy lands could be used for the production of biogas and fertilizers. A concept of an integrated biogas system comprising photosynthesis and anaerobic degradation processes to produce food and energy is presented.

  7. Analytical methodology for sampling and analysing eight siloxanes and trimethylsilanol in biogas from different wastewater treatment plants in Europe.

    PubMed

    Raich-Montiu, J; Ribas-Font, C; de Arespacochaga, N; Roig-Torres, E; Broto-Puig, F; Crest, M; Bouchy, L; Cortina, J L

    2014-02-17

    Siloxanes and trimethylsilanol belong to a family of organic silicone compounds that are currently used extensively in industry. Those that are prone to volatilisation become minor compounds in biogas adversely affecting energetic applications. However, non-standard analytical methodologies are available to analyse biogas-based gaseous matrixes. To this end, different sampling techniques (adsorbent tubes, impingers and tedlar bags) were compared using two different configurations: sampling directly from the biogas source or from a 200 L tedlar bag filled with biogas and homogenised. No significant differences were apparent between the two sampling configurations. The adsorbent tubes performed better than the tedlar bags and impingers, particularly for quantifying low concentrations. A method for the speciation of silicon compounds in biogas was developed using gas chromatography coupled with mass spectrometry working in dual scan/single ion monitoring mode. The optimised conditions could separate and quantify eight siloxane compounds (L2, L3, L4, L5, D3, D4, D5 and D6) and trimethylsilanol within fourteen minutes. Biogas from five waste water treatment plants located in Spain, France and England was sampled and analysed using the developed methodology. The siloxane concentrations in the biogas samples were influenced by the anaerobic digestion temperature, as well as the nature and composition of the sewage inlet. Siloxanes D4 and D5 were the most abundant, ranging in concentration from 1.5 to 10.1 and 10.8 to 124.0 mg Nm(-3), respectively, and exceeding the tolerance limit of most energy conversion systems.

  8. Improving biogas quality and methane yield via co-digestion of agricultural and urban biomass wastes.

    PubMed

    Poulsen, Tjalfe G; Adelard, Laetitia

    2016-08-01

    Impact of co-digestion versus mono-digestion on biogas and CH4 yield for a set of five biomass materials (vegetable food waste, cow dung, pig manure, grass clippings, and chicken manure) was investigated considering 95 different biomass mixes of the five materials under thermophilic conditions in bench-scale batch experiments over a period of 65days. Average biogas and CH4 yields were significantly higher during co-digestion than during mono-digestion of the same materials. This improvement was most significant for co-digestion experiments involving three biomass types, although it was independent of the specific biomasses being co-digested. Improvement in CH4 production was further more prominent early in the digestion process during co-digestion compared to mono-digestion. Co-digestion also appeared to increase the ultimate CH4/CO2 ratio of the gas produced compared to mono-digestion although this tendency was relatively weak and not statistically significant. PMID:27256782

  9. The effect of hygienic treatment on the microbial flora of biowaste at biogas plants.

    PubMed

    Bagge, Elisabeth; Sahlström, Leena; Albihn, Ann

    2005-12-01

    In Sweden, full-scale, commercial biogas plants (BGP), which process low-risk animal waste, operate a separate pre-pasteurisation at 70 degrees C for 60 min as required by EEC regulation 1774/2002. The purpose of this study was to establish if, during pasteurisation and further processing and handling in full-scale BGPs, pathogens in biowaste could be sufficiently reduced to allow its use on arable land. Four BGPs were sampled on six occasions during 1 year. Sampling was performed from six locations during biogas production. The samples being analysed quantitatively to detect indicator bacteria (Escherichia coli, Enterococcus spp. and coliforms) and spore-forming bacteria (Clostridium spp. and Bacillus spp.) and qualitatively for bacterial pathogens (salmonella, listeria, campylobacter and VTEC O157). Salmonella was the most frequently isolated pathogen before pasteurisation In general, the treatment adequatly reduced both indicator and pathogenic bacteria. Spore-forming bacteria were not reduced. However, recontamination and regrowth of bacteria in biowaste was frequently noted after pasteurisation and digestion. PMID:16297957

  10. Fractionation of biogas plant sludge material improves metaproteomic characterization to investigate metabolic activity of microbial communities.

    PubMed

    Kohrs, Fabian; Wolter, Sophie; Benndorf, Dirk; Heyer, Robert; Hoffmann, Marcus; Rapp, Erdmann; Bremges, Andreas; Sczyrba, Alexander; Schlüter, Andreas; Reichl, Udo

    2015-10-01

    With the development of high resolving mass spectrometers, metaproteomics evolved as a powerful tool to elucidate metabolic activity of microbial communities derived from full-scale biogas plants. Due to the vast complexity of these microbiomes, application of suitable fractionation methods are indispensable, but often turn out to be time and cost intense, depending on the method used for protein separation. In this study, centrifugal fractionation has been applied for fractionation of two biogas sludge samples to analyze proteins extracted from (i) crude fibers, (ii) suspended microorganisms, and (iii) secreted proteins in the supernatant using a gel-based approach followed by LC-MS/MS identification. This fast and easy method turned out to be beneficial to both the quality of SDS-PAGE and the identification of peptides and proteins compared to untreated samples. Additionally, a high functional metabolic pathway coverage was achieved by combining protein hits found exclusively in distinct fractions. Sample preparation using centrifugal fractionation influenced significantly the number and the types of proteins identified in the microbial metaproteomes. Thereby, comparing results from different proteomic or genomic studies, the impact of sample preparation should be considered. All MS data have been deposited in the ProteomeXchange with identifier PXD001508 (http://proteomecentral.proteomexchange.org/dataset/PXD001508).

  11. Determination of volatile organic compounds from biowaste and co-fermentation biogas plants by single-sorbent adsorption.

    PubMed

    Salazar Gómez, J I; Lohmann, H; Krassowski, J

    2016-06-01

    Characterisation of biogases is normally dedicated to the online monitoring of the major components methane and carbon dioxide and, to a lesser extent, to the determination of ammonia and hydrogen sulphide. For the case of Volatile Organic Compounds (VOCs), much less attention is usually paid, since such compounds are normally removed during gas conditioning and with exception of sulphur compounds and siloxanes represent a rather low risk to conventional downstream devices but could be a hindrance for fuel cells. However, there is very little information in the literature about the type of substances found in biogases generated from biowaste or co-fermentation plants and their concentration fluctuations. The main aim of this study was to provide information about the time dependencies of the VOCs in three biogas plants spread out through Germany from autumn until summer, which have different process control, in order to assess their potential as biofuels. Additionally, this study was an attempt to establish a correlation between the nature of the substrates used in the biogas plants and the composition of the VOCs present in the gas phase. Significant time-dependent variations in concentration were observed for most VOCs but only small changes in composition were observed. In general, terpenes and ketones appeared as the predominant VOCs in biogas. Although for substances such as esters, sulphur-organic compounds and siloxanes the average concentrations observed were rather low, they exhibited significant concentration peaks. The second biogas plant which operates with dry fermentation was found to contain the highest levels of VOCs. The amount of total volatile organic compounds (TVOCs) for the first, second and third biogas plants ranged from 35 to 259 mg Nm(-3), 291-1731 mg Nm(-3) and 84-528 mg Nm(-3), respectively. PMID:27010166

  12. Determination of volatile organic compounds from biowaste and co-fermentation biogas plants by single-sorbent adsorption.

    PubMed

    Salazar Gómez, J I; Lohmann, H; Krassowski, J

    2016-06-01

    Characterisation of biogases is normally dedicated to the online monitoring of the major components methane and carbon dioxide and, to a lesser extent, to the determination of ammonia and hydrogen sulphide. For the case of Volatile Organic Compounds (VOCs), much less attention is usually paid, since such compounds are normally removed during gas conditioning and with exception of sulphur compounds and siloxanes represent a rather low risk to conventional downstream devices but could be a hindrance for fuel cells. However, there is very little information in the literature about the type of substances found in biogases generated from biowaste or co-fermentation plants and their concentration fluctuations. The main aim of this study was to provide information about the time dependencies of the VOCs in three biogas plants spread out through Germany from autumn until summer, which have different process control, in order to assess their potential as biofuels. Additionally, this study was an attempt to establish a correlation between the nature of the substrates used in the biogas plants and the composition of the VOCs present in the gas phase. Significant time-dependent variations in concentration were observed for most VOCs but only small changes in composition were observed. In general, terpenes and ketones appeared as the predominant VOCs in biogas. Although for substances such as esters, sulphur-organic compounds and siloxanes the average concentrations observed were rather low, they exhibited significant concentration peaks. The second biogas plant which operates with dry fermentation was found to contain the highest levels of VOCs. The amount of total volatile organic compounds (TVOCs) for the first, second and third biogas plants ranged from 35 to 259 mg Nm(-3), 291-1731 mg Nm(-3) and 84-528 mg Nm(-3), respectively.

  13. Agricultural Plant Pest Control. Manual 93.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides for the agricultural plant pest control category. The text discusses the insect pests including caterpillars, beetles, and soil inhabiting insects; diseases and nematodes; and weeds. Consideration is given…

  14. Socioeconomic Impacts of Agricultural Processing Plants.

    ERIC Educational Resources Information Center

    Leistritz, F. Larry; Sell, Randall S.

    2001-01-01

    Studies in four North Dakota communities that had suffered economic and population decline in the 1980s examined the economic and community impacts of new agricultural processing plants in the late 1990s, including effects on residents' incomes, total and school-age population, needs for day care and community services, housing needs, public…

  15. Estimation of potential biomass resource and biogas production from aquatic plants in Argentina

    SciTech Connect

    Fitzsimons, R.E.; Laurino, C.N.; Vallejos, R.H.

    1982-01-01

    The Argentine government's Agua y Energia Electrica is planning to construct a hydroelectric power-generation facility on the middle Parana River, which is already heavily infested with aquatic weeds such as water hyacinth. These species will probably proliferate in the lakes that will be formed by the power project and perhaps seriously interfere with the facility. As a solution to this problem, Argentine biochemists propose mechanical harvesting and anaerobic fermentation of the aquatic plants to produce biogas and fertilizer. According to an evaluation of this potential resource, gross methane production could reach 37-153 billion CF (1.0-4.1 billion m/sup 3/)/yr, and the digested residue could provide 60,500-244,000 tons (54,900-221,400 metric tons)/yr of nitrogen, which represents 2-8 times Argentina's current nitrogen fertilizer demand.

  16. Biogas Potential on Long Island, New York: A Quantification Study

    SciTech Connect

    Mahajan, D.; Patel, S.; Tonjes, D.

    2011-08-25

    Biogas is the product of anaerobic digestion of waste, whether occurring spontaneously in landfills or under controlled conditions in digesters. Biogas is viewed as an important energy source in current efforts to reduce the use of fossil fuels and dependency on imported resources. Several studies on the assessment of biogas potential have been made at regional, national, and global scales. However, because it is not economically feasible to transport biogas feedstock over long distances, it is more appropriate to consider local waste sources for their potential to produce biogas. An assessment of the biogas potential on Long Island, based on the review of local landfills, wastewater treatment plants, solid waste generation and management, and agricultural waste, found that 234 x 10{sup 6} m{sup 3} of methane (CH{sub 4}) from biogas might be harvestable, although substantial barriers for complete exploitation exist. This number is equivalent to 2.52 TW-h of electricity, approximately 12% of fossil fuel power generation on Long Island. This work can serve as a template for other areas to rapidly create or approximate biogas potentials, especially for suburban U.S. locations that are not usually thought of as sources of renewable energy.

  17. Potential assessment of establishing a renewable energy plant in a rural agricultural area.

    PubMed

    Su, Ming-Chien; Kao, Nien-Hsin; Huang, Wen-Jar

    2012-06-01

    An evaluation of the green energy potential generated from biogas and solar power, using agricultural manure waste and a photovoltaic (PV) system, was conducted in a large geographical area of a rural county with low population density and low pollution. The studied area, Shoufeng Township in Hualien County, is located in eastern Taiwan, where a large amount of manure waste is generated from pig farms that are scattered throughout the county. The objective of the study is to assess the possibility of establishing an integrated manure waste treatment plant by using the generated biogas incorporated with the PV system to produce renewable energy and then feed it back to the incorporated farms. A filed investigation, geographic information system (GIS) application, empirical equations development, and RETScreen modeling were conducted in the study. The results indicate that Shoufeng Township has the highest priority in setting up an integrated treatment and renewable energy plant by using GIS mapping within a 10-km radius of the transportation range. Two scenarios were plotted in assessing the renewable energy plant and the estimated electricity generation, plus the greenhouse gas (GHG) reduction was evaluated. Under the current governmental green energy scheme and from a long-term perspective, the assessment shows great potential in establishing the plant, especially in reducing environmental pollution problems, waste treatment, and developing suitable renewable energy.

  18. Villacidro solar demo plant: Integration of small-scale CSP and biogas power plants in an industrial microgrid

    NASA Astrophysics Data System (ADS)

    Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Demontis, V.; Melis, T.; Musio, M.

    2016-05-01

    The integration of small scale concentrating solar power (CSP) in an industrial district, in order to develop a microgrid fully supplied by renewable energy sources, is presented in this paper. The plant aims to assess in real operating conditions, the performance, the effectiveness and the reliability of small-scale concentrating solar power technologies in the field of distributed generation. In particular, the potentiality of small scale CSP with thermal storage to supply dispatchable electricity to an industrial microgrid will be investigated. The microgrid will be realized in the municipal waste treatment plant of the Industrial Consortium of Villacidro, in southern Sardinia (Italy), which already includes a biogas power plant. In order to achieve the microgrid instantaneous energy balance, the analysis of the time evolution of the waste treatment plant demand and of the generation in the existing power systems has been carried out. This has allowed the design of a suitable CSP plant with thermal storage and an electrochemical storage system for supporting the proposed microgrid. At the aim of obtaining the expected energy autonomy, a specific Energy Management Strategy, which takes into account the different dynamic performances and characteristics of the demand and the generation, has been designed. In this paper, the configuration of the proposed small scale concentrating solar power (CSP) and of its thermal energy storage, based on thermocline principle, is initially described. Finally, a simulation study of the entire power system, imposing scheduled profiles based on weather forecasts, is presented.

  19. Energy potential and alternative usages of biogas and sludge from UASB reactors: case study of the Laboreaux wastewater treatment plant.

    PubMed

    Rosa, A P; Conesa, J A; Fullana, A; Melo, G C B; Borges, J M; Chernicharo, C A L

    2016-01-01

    This work assessed the energy potential and alternative usages of biogas and sludge generated in upflow anaerobic sludge blanket reactors at the Laboreaux sewage treatment plant (STP), Brazil. Two scenarios were considered: (i) priority use of biogas for the thermal drying of dehydrated sludge and the use of the excess biogas for electricity generation in an ICE (internal combustion engine); and (ii) priority use of biogas for electricity generation and the use of the heat of the engine exhaust gases for the thermal drying of the sludge. Scenario 1 showed that the electricity generated is able to supply 22.2% of the STP power demand, but the thermal drying process enables a greater reduction or even elimination of the final volume of sludge to be disposed. In Scenario 2, the electricity generated is able to supply 57.6% of the STP power demand; however, the heat in the exhaust gases is not enough to dry the total amount of dehydrated sludge. PMID:27054741

  20. Use of antibiotics in plant agriculture.

    PubMed

    Stockwell, V O; Duffy, B

    2012-04-01

    Antibiotics are essential for control of bacterial diseases of plants, especially fire blight of pear and apple and bacterial spot of peach. Streptomycin is used in several countries; the use of oxytetracycline, oxolinic acid and gentamicin is limited to only a few countries. Springtime antibiotic sprays suppress pathogen growth on flowers and leaf surfaces before infection; after infection, antibiotics are ineffective. Antibiotics are applied when disease risk is high, and consequently the majority of orchards are not treated annually. In 2009 in the United States, 16,465 kg (active ingredient) was applied to orchards, which is 0.12% of the total antibiotics used in animal agriculture. Antibiotics are active on plants for less than a week, and significant residues have not been found on harvested fruit. Antibiotics have been indispensable for crop protection in the United States for more than 50 years without reports of adverse effects on human health or persistent impacts on the environment. PMID:22849276

  1. Use of antibiotics in plant agriculture.

    PubMed

    Stockwell, V O; Duffy, B

    2012-04-01

    Antibiotics are essential for control of bacterial diseases of plants, especially fire blight of pear and apple and bacterial spot of peach. Streptomycin is used in several countries; the use of oxytetracycline, oxolinic acid and gentamicin is limited to only a few countries. Springtime antibiotic sprays suppress pathogen growth on flowers and leaf surfaces before infection; after infection, antibiotics are ineffective. Antibiotics are applied when disease risk is high, and consequently the majority of orchards are not treated annually. In 2009 in the United States, 16,465 kg (active ingredient) was applied to orchards, which is 0.12% of the total antibiotics used in animal agriculture. Antibiotics are active on plants for less than a week, and significant residues have not been found on harvested fruit. Antibiotics have been indispensable for crop protection in the United States for more than 50 years without reports of adverse effects on human health or persistent impacts on the environment.

  2. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    PubMed

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed.

  3. Searching for links in the biotic characteristics and abiotic parameters of nine different biogas plants

    PubMed Central

    Walter, Andreas; Knapp, Brigitte A.; Farbmacher, Theresa; Ebner, Christian; Insam, Heribert; Franke‐Whittle, Ingrid H.

    2012-01-01

    Summary To find links between the biotic characteristics and abiotic process parameters in anaerobic digestion systems, the microbial communities of nine full‐scale biogas plants in South Tyrol (Italy) and Vorarlberg (Austria) were investigated using molecular techniques and the physical and chemical properties were monitored. DNA from sludge samples was subjected to microarray hybridization with the ANAEROCHIP microarray and results indicated that sludge samples grouped into two main clusters, dominated either by Methanosarcina or by Methanosaeta, both aceticlastic methanogens. Hydrogenotrophic methanogens were hardly detected or if detected, gave low hybridization signals. Results obtained using denaturing gradient gel electrophoresis (DGGE) supported the findings of microarray hybridization. Real‐time PCR targeting Methanosarcina and Methanosaeta was conducted to provide quantitative data on the dominating methanogens. Correlation analysis to determine any links between the microbial communities found by microarray analysis, and the physicochemical parameters investigated was conducted. It was shown that the sludge samples dominated by the genus Methanosarcina were positively correlated with higher concentrations of acetate, whereas sludge samples dominated by representatives of the genus Methanosaeta had lower acetate concentrations. No other correlations between biotic characteristics and abiotic parameters were found. Methanogenic communities in each reactor were highly stable and resilient over the whole year. PMID:22950603

  4. Scenedesmus dimorphus (Turpin) Kützing growth with digestate from biogas plant in outdoor bag photobioreactors.

    PubMed

    Barbato, F; Venditti, A; Bianco, A; Guarcini, L; Bottari, E; Festa, M R; Cogliani, E; Pignatelli, V

    2016-01-01

    Digestate coming from an Anaerobic Digestion unit in a Biogas Plant, feeded on cow manure and vegetable waste from markets, has been used. About 8-35 L polyethylene transparent bags have been employed as cultivation container, outdoor. Different aliquots of digestate, alone or mixed with commercial liquid fertiliser, were employed to cultivate in batch Scenedesus dimorphus, a freshwater green microalga, in the ENEA facilities of Casaccia Research Center, near Rome, Italy. The cultivation period was June-July 2013. The average daily yields of dry microalgae biomass varied from 20 mg/L/d to 60 mg/L/d, mean 38.2 mg/L/d. Final dry biomass concentration varied from 0.18 to 1.29 g/L, mean 0.55 g/L. S. dimorphus proved to be very efficient in removing N and P from the culture medium. Another fact emerged from these trials is that S. dimorphus inner composition resulted to be variable in response to the tested different culture conditions.

  5. Biogas production from pear residues using sludge from a wastewater treatment plant digester. Influence of the feed delivery procedure.

    PubMed

    Arhoun, B; Bakkali, A; El Mail, R; Rodriguez-Maroto, J M; Garcia-Herruzo, F

    2013-01-01

    Clear economic advantages may be obtained from the management of seasonal fruit wastes by codigestion at existing facilities which are working throughout the year with other residues. We have explored the biomethanization of pear residues in a 5L stirred reactor loaded with sludge from the anaerobic digester of a municipal wastewater treatment plant. Different organic loading rates (OLRs) of fruit waste were tested with two delivery procedures: a discontinuous one (fed once a day) and a pseudocontinuous one. For both procedures, as the OLR increases the pH of the digester drops to acidic values and large OLRs may cause the reactor failure. Nevertheless, the pseudocontinuous delivery allows the treatment of more residue, (10.5 versus 6.0 g of volatile solids per litre of reactor and day), maintaining the specific biogas production (0.44 L of biogas per gram of volatile solids), with some improvement in methane concentration (44% vs 39%). PMID:23131648

  6. Complete genome sequence of the strain Defluviitoga tunisiensis L3, isolated from a thermophilic, production-scale biogas plant.

    PubMed

    Maus, Irena; Cibis, Katharina Gabriela; Wibberg, Daniel; Winkler, Anika; Stolze, Yvonne; König, Helmut; Pühler, Alfred; Schlüter, Andreas

    2015-06-10

    An anaerobic, thermophilic bacterium belonging to the phylum Thermotogae was isolated from a rural, thermophilic biogas plant (54°C) producing methane-rich biogas from maize silage, barley, cattle and pig manure. Here we report the first complete genome sequence of the Defluviitoga tunisiensis strain L3, an isolate from the family Thermotogaceae. The strain L3 encodes several genes predicted to be involved in utilization of a large diversity of complex carbohydrates including cellobiose and xylan for the production of acetate, hydrogen (H2) and carbon dioxide (CO2). The genome sequence of D. tunisiensis L3 provides the basis for biotechnological exploitation of genetic determinants playing an important role in thermophilic fermentation processes utilizing renewable primary products.

  7. Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process.

    PubMed

    Bacenetti, Jacopo; Negri, Marco; Fiala, Marco; González-García, Sara

    2013-10-01

    The possibility of limiting the global warming is strictly linked to the reduction of GHG emissions. Renewable energy both allows reducing emissions and permits to delay fossil fuel depletion. The anaerobic digestion of animal manure and energy crops is a promising way of reducing GHG emissions. In Italy agricultural biogas production was considerably increased; nowadays there are about 520 agricultural biogas plants. The increasing number of biogas plants, especially of those larger than 500 kW(e) (electrical power), involves a high consumption of energy crops, large transport distances of biomass and digestate and difficulties on thermal energy valorization. In this study the energetic (CED) and environmental (GHG emissions) profiles associated with the production of electricity derived from biogas have been identified. Three biogas plants located in Northern Italy have been analyzed. The study has been carried out considering a cradle-to-grave perspective and thus, special attention has been paid on the feedstock production and biogas production process. The influences on the results taking into account different plant sizes and feeding rate has been assessed in detail. Energy analysis was performed using the Cumulative Energy Demand method (CED). The climate change was calculated for a 100-year time frame based on GHG emissions indicated as CO2 equivalents (eq) and defined by the IPCC (2006). In comparison to the fossil reference system, the electricity production using biogas saves GHG emissions from 0.188 to 1.193 kg CO2eq per kWh(e). Electricity supply from biogas can also contribute to a considerable reduction of the use of fossil energy carriers (from -3.97 to 10.08 MJ(fossil) per kWh(e)). The electricity production from biogas has a big potential for energy savings and reduction of GHG emissions. Efficient utilization of the cogenerated heat can substantially improve the GHG balance of electricity production from biogas.

  8. Clostridium cluster I and their pathogenic members in a full-scale operating biogas plant.

    PubMed

    Dohrmann, Anja B; Walz, Meike; Löwen, Achim; Tebbe, Christoph C

    2015-04-01

    A biogas production plant operating with main and secondary digesters (MD, SD) was analysed for the diversity of bacteria from Clostridium cluster I and its pathogenic members. The plant was run in two parallel lines, both receiving silages, and one, in addition, cattle manure (CM). Quantitative PCR of 16S rRNA genes from directly extracted DNA indicated that cluster I represented 0.2 to 5.6 % of the total bacterial communities. Its prevalence was particularly low in CM and also in SD compared to MD, indicating its decline during fermentation. In contrast, another highly abundant clostridial group, i.e. the "faecal" cluster XIVa, remained quantitatively unaffected during fermentation. A total of 85.1 % of 581,934 rRNA gene sequences gathered by group-specific PCR from the silages, CM and digesters could be assigned to cluster I. All remaining sequences fell into other clostridial groups. The three most dominant operational taxonomic units (OTUs) introduced with CM were from cluster I, and they declined during fermentation. Fermentation with CM significantly increased OTUs of clostridia outside of cluster I but not within. The only OTUs related to pathogens were detected for Clostridium botulinum with 0.18 % of all cluster I sequences in maize silage and less than 0.01 % in the other substrates and digester materials. These OTUs could be assigned to all four established C. botulinum groups, thus, potentially covering all seven neurotoxins. Mouse lethality tests of samples with suspected presence of C. botulinum, however, indicated no toxigenic potential and, thus, no risk associated with the rare occurrence of these OTUs. PMID:25472441

  9. Microbial Consortium with High Cellulolytic Activity (MCHCA) for Enhanced Biogas Production.

    PubMed

    Poszytek, Krzysztof; Ciezkowska, Martyna; Sklodowska, Aleksandra; Drewniak, Lukasz

    2016-01-01

    The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis) of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used. The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate. Over 100 strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, 16 strains (representatives of Bacillus, Providencia, and Ochrobactrum genera) were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity) and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants. The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic MCHCA has a great potential for application on industrial scale in agricultural biogas plants.

  10. Microbial Consortium with High Cellulolytic Activity (MCHCA) for Enhanced Biogas Production.

    PubMed

    Poszytek, Krzysztof; Ciezkowska, Martyna; Sklodowska, Aleksandra; Drewniak, Lukasz

    2016-01-01

    The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis) of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used. The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate. Over 100 strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, 16 strains (representatives of Bacillus, Providencia, and Ochrobactrum genera) were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity) and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants. The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic MCHCA has a great potential for application on industrial scale in agricultural biogas plants. PMID:27014244

  11. Microbial Consortium with High Cellulolytic Activity (MCHCA) for Enhanced Biogas Production

    PubMed Central

    Poszytek, Krzysztof; Ciezkowska, Martyna; Sklodowska, Aleksandra; Drewniak, Lukasz

    2016-01-01

    The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis) of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used. The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate. Over 100 strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, 16 strains (representatives of Bacillus, Providencia, and Ochrobactrum genera) were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity) and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants. The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic MCHCA has a great potential for application on industrial scale in agricultural biogas plants. PMID:27014244

  12. Residual of 17beta-estradiol in digestion liquid generated from a biogas plant using livestock waste.

    PubMed

    Suzuki, Y; Kubota, A; Furukawa, T; Sugamoto, K; Asano, Y; Takahashi, H; Sekito, T; Dote, Y; Sugimoto, Y

    2009-06-15

    A biogas plant using livestock waste in which a methane fermentation process is applied is a useful facility for generating energy. The digestion liquid generated from the biogas plant as a residue has high potential for use as a crop fertilizer. However, high-density estrogens such as 17beta-estradiol (E2) are included in livestock waste, and there is little information on the behavior of E2 in the digestion liquid. In this study, a survey of E2 concentration at each process in a biogas plant using livestock waste was carried out. In addition, the efficiencies of E2 removal from the digestion liquid by activated carbon adsorption and soil infiltration were examined. The total concentration of E2 in raw livestock waste was reduced to 2 microg/l after treatment, and the removal efficiency of E2 was about 80% for the plant. The methane fermentation process is important not only for the generation of methane but also for the removal of E2. The proportion of E2 conjugates comprising the total E2 concentration was 10% or less in all treated samples. In the plant, there is no likelihood of an increase in estrogen activity by the cleaving of E2 conjugates. By carrying out activated carbon adsorption to remove E2 from the digestion liquid, a large portion of E2 was removed from the digestion liquid, but an E2 concentration of 0.5 microg/l still remained in the treated digestion liquid. In contrast, it was possible to purify the digestion liquid to an E2 concentration of less than 0.002-0.011 microg/l by soil infiltration. It is thus possible to utilize the digestion liquid as a fertilizer without causing aquatic environmental pollution, but factors such as application rate, soil characteristics, and the E2 concentration of digestion liquid should be considered first.

  13. Life cycle assessment of flexibly fed biogas processes for an improved demand-oriented biogas supply.

    PubMed

    Ertem, Funda Cansu; Martínez-Blanco, Julia; Finkbeiner, Matthias; Neubauer, Peter; Junne, Stefan

    2016-11-01

    This paper analyses concepts to facilitate a demand oriented biogas supply at an agricultural biogas plant of a capacity of 500kWhel, operated with the co-digestion of maize, grass, rye silage and chicken manure. In contrast to previous studies, environmental impacts of flexible and the traditional baseload operation are compared. Life Cycle Assessment (LCA) was performed to detect the environmental impacts of: (i) variety of feedstock co-digestion scenarios by substitution of maize and (ii) loading rate scenarios with a focus on flexible feedstock utilization. Demand-driven biogas production is critical for an overall balanced power supply to the electrical grid. It results in lower amounts of emissions; feedstock loading rate scenarios resulted in 48%, 20%, 11% lower global warming (GWP), acidification (AP) and eutrophication potentials, and a 16% higher cumulative energy demand. Substitution of maize with biogenic-waste regarding to feedstock substitution scenarios could create 10% lower GWP and AP. PMID:27522120

  14. Agriculture on Mars: Soils for Plant Growth

    NASA Technical Reports Server (NTRS)

    Ming, D. W.

    2016-01-01

    Robotic rovers and landers have enabled the mineralogical, chemical, and physical characterization of loose, unconsolidated materials on the surface of Mars. Planetary scientists refer to the regolith material as "soil." NASA is currently planning to send humans to Mars in the mid 2030s. Early missions may rely on the use of onsite resources to enable exploration and self-sufficient outposts on Mars. The martian "soil" and surface environment contain all essential plant growth elements. The study of martian surface materials and how they might react as agricultural soils opens a new frontier for researchers in the soil science community. Other potential applications for surface "soils" include (i) sources for extraction of essential plant-growth nutrients, (ii) sources of O2, H2, CO2, and H2O, (iii) substrates for microbial populations in the degradation of wastes, and (iv) shielding materials surrounding outpost structures to protect humans, plants, and microorganisms from radiation. There are many challenges that will have to be addressed by soil scientists prior to human exploration over the next two decades.

  15. Large size biogas-fed Solid Oxide Fuel Cell power plants with carbon dioxide management: Technical and economic optimization

    NASA Astrophysics Data System (ADS)

    Curletti, F.; Gandiglio, M.; Lanzini, A.; Santarelli, M.; Maréchal, F.

    2015-10-01

    This article investigates the techno-economic performance of large integrated biogas Solid Oxide Fuel Cell (SOFC) power plants. Both atmospheric and pressurized operation is analysed with CO2 vented or captured. The SOFC module produces a constant electrical power of 1 MWe. Sensitivity analysis and multi-objective optimization are the mathematical tools used to investigate the effects of Fuel Utilization (FU), SOFC operating temperature and pressure on the plant energy and economic performances. FU is the design variable that most affects the plant performance. Pressurized SOFC with hybridization with a gas turbine provides a notable boost in electrical efficiency. For most of the proposed plant configurations, the electrical efficiency ranges in the interval 50-62% (LHV biogas) when a trade-off of between energy and economic performances is applied based on Pareto charts obtained from multi-objective plant optimization. The hybrid SOFC is potentially able to reach an efficiency above 70% when FU is 90%. Carbon capture entails a penalty of more 10 percentage points in pressurized configurations mainly due to the extra energy burdens of captured CO2 pressurization and oxygen production and for the separate and different handling of the anode and cathode exhausts and power recovery from them.

  16. Empedobacter stercoris sp. nov., isolated from an input sample of a biogas plant.

    PubMed

    Schauss, Thorsten; Busse, Hans-Jürgen; Golke, Jan; Kämpfer, Peter; Glaeser, Stefanie P

    2015-10-01

    Two Gram-stain-negative, rod-shaped bacteria, strains 990B6_12ER2AT and 994B6_12ER2A, were isolated during microbiological analysis of a mixed manure sample which was used as input material for a German biogas plant. Phylogenetic identification based on nearly full-length 16S rRNA gene sequences placed the isolates into the family Flavobacteriaceae within the phylum Bacteroidetes. Strains 990B6_12ER2AT and 994B6_12ER2A shared identical 16S rRNA gene sequences and showed highest 16S rRNA gene sequence similarity to the type strains of Empedobacter falsenii (97.3 %) and Empedobacter brevis (96.8 %).The major cellular fatty acids of strains 990B6_12ER2AT and 994B6_12ER2A were iso-C15 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and iso-C17 : 0 3-OH.The polyamine pattern contained predominantly sym-homospermidine and the quinone system was menaquinone MK-6. Major polar lipids were phosphatidylethanolamine, one unidentified aminolipid and one unidentified polar lipid not containing an amino residue, a phosphate residue or a sugar moiety. In addition, moderate to minor amounts of several unidentified lipids were detected. The DNA G+C content was 31.7 and 29.0 mol%, for strains 990B6_12ER2AT and 994B6_12ER2A, respectively. On the basis of phylogenetic, chemotaxonomic and physiological analysis we propose a novel species of the genus Empedobacter, Empedobacter stercoris sp. nov. (type strain 990B6_12ER2AT = CIP 110833T = LMG 28501T). PMID:26228269

  17. Biogas Opportunities Roadmap Progress Report

    SciTech Connect

    None, None

    2015-12-01

    In support of the Obama Administration's Climate Action Plan, the U.S. Department of Energy, the U.S. Environmental Protection Agency, and U.S. Department of Agriculture jointly released the Biogas Opportunities Roadmap Progress Report, updating the federal government's progress to reduce methane emissions through biogas systems since the Biogas Opportunities Roadmap was completed by the three agencies in July 2014. The report highlights actions taken, outlines challenges and opportunities, and identifies next steps to the growth of a robust biogas industry.

  18. Biogas Production from Vietnamese Animal Manure, Plant Residues and Organic Waste: Influence of Biomass Composition on Methane Yield

    PubMed Central

    Cu, T. T. T.; Nguyen, T. X.; Triolo, J. M.; Pedersen, L.; Le, V. D.; Le, P. D.; Sommer, S. G.

    2015-01-01

    Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane (CH4) production to the chemical characteristics of the biomass. The biochemical methane potential (BMP) and biomass characteristics were measured. Results showed that piglet manure produced the highest CH4 yield of 443 normal litter (NL) CH4 kg−1 volatile solids (VS) compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza) was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL CH4 kg−1 VS, respectively. The BMP experiment also demonstrated that the CH4 production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square) at 0.95. This model was applied to calculate the CH4 yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam. PMID:25557826

  19. Biogas production from vietnamese animal manure, plant residues and organic waste: influence of biomass composition on methane yield.

    PubMed

    Cu, T T T; Nguyen, T X; Triolo, J M; Pedersen, L; Le, V D; Le, P D; Sommer, S G

    2015-02-01

    Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane (CH4) production to the chemical characteristics of the biomass. The biochemical methane potential (BMP) and biomass characteristics were measured. Results showed that piglet manure produced the highest CH4 yield of 443 normal litter (NL) CH4 kg(-1) volatile solids (VS) compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza) was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL CH4 kg(-1) VS, respectively. The BMP experiment also demonstrated that the CH4 production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square) at 0.95. This model was applied to calculate the CH4 yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam.

  20. Janata biogas technology and fodder production

    SciTech Connect

    Neelakantan, S.

    1981-01-01

    An effective bio-gas program leads to efficient use of cow dung for gas recovery and partial supplement to plant nutrient requirements. Bio-gas program leads to improvement in rural living including rural sanitation. The Janata biogas plant designed by the State Planning Institute, Lucknow, based on biogas technology, has proved to be efficient and economical. This book contains the various papers presented at the seminar held to review this technology. The various topics covered are: Status of Biogas Program in India; Role of Extension Agencies in Developing Program of Energy Utilization; Introduction to Drumless Biogas Plant; Principles and Application of Anaerobic Fermentation and Biogas Production, Operational System of Gobar Gas in Rural India; Complete Recycling of Cattle Shed Wastes through Biogas Plant; Chemical Composition of Cattle Excreta and Its Manurial Value; Profitability of Biogas Plant; Biogas Production from Various Organic Wastes; Performance of Janata Biogas Plant and Biogas Utilization in Appliances; Utilization of Solar Energy for Domestic Purposes; and Conservation of Forages. Plant requirements and cost estimates have been given for several units.

  1. Presence of Siloxanes in the Biogas of a Wastewater Treatment Plant Separation in Condensates and Influence of the Dose of Iron Chloride on its Elimination

    SciTech Connect

    Mariano, García; Daniel, Prats; Arturo, Trapote

    2015-12-21

    The siloxanes present in the biogas produced during anaerobic digestion damage the mechanism of cogeneration equipment and, consequently, negatively affect the energy valorization process. For this reason, the detection and elimination of these silicon-derived chemical compounds are a priority in the management of cogeneration facilities. In this regard, the objectives of this paper are, firstly, to characterize the siloxanes in the biogas and, secondly, to qualitatively evaluate the influence of the dose of iron chloride on its elimination. The research was performed at the Rincón de León Wastewater Treatment Plant (Alicante, Spain). The outflow biogas of the digesters and of the pressurized gasometers was sampled and analyzed. The results obtained made it possible to demonstrate, firstly, the absence of linear siloxanes and that, of the cyclic siloxanes, the predominant type was decamethylcyclopentasiloxane, and, secondly, that the addition of iron chloride in the digesters significantly reduces the siloxane content in the biogas. Additionally, it was demonstrated that the process of compression of the biogas, with the elimination of condensates, also produces significant reductions in the concentration of siloxanes in the biogas.

  2. Co-digestion of municipal sludge and external organic wastes for enhanced biogas production under realistic plant constraints.

    PubMed

    Tandukar, Madan; Pavlostathis, Spyros G

    2015-12-15

    A bench-scale investigation was conducted to select external organic wastes and mixing ratios for co-digestion with municipal sludge at the F. Wayne Hill Water Resources Center (FWHWRC), Gwinnett County, GA, USA to support a combined heat and power (CHP) project. External wastes were chosen and used subject to two constraints: a) digester retention time no lower than 15 d; and b) total biogas (methane) production not to exceed a specific target level based on air permit constraints on CO2 emissions. Primary sludge (PS), thickened waste activated sludge (TWAS) and digested sludge collected at the FWHWRC, industrial liquid waste obtained from a chewing gum manufacturing plant (GW) and dewatered fat-oil-grease (FOG) were used. All sludge and waste samples were characterized and their ultimate digestibility was assessed at 35 °C. The ultimate COD to methane conversion of PS, TWAS, municipal sludge (PS + TWAS; 40:60 w/w TS basis), GW and FOG was 49.2, 35.2, 40.3, 72.7, and 81.1%, respectively. Co-digestion of municipal sludge with GW, FOG or both, was evaluated using four bench-scale, mesophilic (35 °C) digesters. Biogas production increased significantly and additional degradation of the municipal sludge between 1.1 and 30.7% was observed. Biogas and methane production was very close to the target levels necessary to close the energy deficit at the FWHWRC. Co-digestion resulted in an effluent quality similar to that of the control digester fed only with the municipal sludge, indicating that co-digestion had no adverse effects. Study results prove that high methane production is achievable with the addition of concentrated external organic wastes to municipal digesters, at acceptable higher digester organic loadings and lower retention times, allowing the effective implementation of CHP programs at municipal wastewater treatment plants, with significant cost savings. PMID:25979784

  3. Co-digestion of municipal sludge and external organic wastes for enhanced biogas production under realistic plant constraints.

    PubMed

    Tandukar, Madan; Pavlostathis, Spyros G

    2015-12-15

    A bench-scale investigation was conducted to select external organic wastes and mixing ratios for co-digestion with municipal sludge at the F. Wayne Hill Water Resources Center (FWHWRC), Gwinnett County, GA, USA to support a combined heat and power (CHP) project. External wastes were chosen and used subject to two constraints: a) digester retention time no lower than 15 d; and b) total biogas (methane) production not to exceed a specific target level based on air permit constraints on CO2 emissions. Primary sludge (PS), thickened waste activated sludge (TWAS) and digested sludge collected at the FWHWRC, industrial liquid waste obtained from a chewing gum manufacturing plant (GW) and dewatered fat-oil-grease (FOG) were used. All sludge and waste samples were characterized and their ultimate digestibility was assessed at 35 °C. The ultimate COD to methane conversion of PS, TWAS, municipal sludge (PS + TWAS; 40:60 w/w TS basis), GW and FOG was 49.2, 35.2, 40.3, 72.7, and 81.1%, respectively. Co-digestion of municipal sludge with GW, FOG or both, was evaluated using four bench-scale, mesophilic (35 °C) digesters. Biogas production increased significantly and additional degradation of the municipal sludge between 1.1 and 30.7% was observed. Biogas and methane production was very close to the target levels necessary to close the energy deficit at the FWHWRC. Co-digestion resulted in an effluent quality similar to that of the control digester fed only with the municipal sludge, indicating that co-digestion had no adverse effects. Study results prove that high methane production is achievable with the addition of concentrated external organic wastes to municipal digesters, at acceptable higher digester organic loadings and lower retention times, allowing the effective implementation of CHP programs at municipal wastewater treatment plants, with significant cost savings.

  4. Effects of geographic area, feedstock, temperature, and operating time on microbial communities of six full-scale biogas plants.

    PubMed

    Fontana, Alessandra; Patrone, Vania; Puglisi, Edoardo; Morelli, Lorenzo; Bassi, Daniela; Garuti, Mirco; Rossi, Lorella; Cappa, Fabrizio

    2016-10-01

    The objective of this study was to investigate the effect of different animal feedings operated in two distinct PDO (protected designation of origin) cheese production areas (Parmigiano Reggiano and Grana Padano) on the microbiome of six full-scale biogas plants, by means of Illumina sequencing and qPCR techniques. The effects of feedstock (cattle slurry manure, energy crops, agro-industrial by-products), temperature (mesophilic/thermophilic), and operating time were also examined, as were the relationships between the predominant bacterial and archaeal taxa and process parameters. The different feedstocks and temperatures strongly affected the microbiomes. A more biodiverse archaeal population was highlighted in Parmigiano Reggiano area plants, suggesting an influence of the different animal feedings. Methanosarcina and Methanosaeta showed an opposite distribution among anaerobic plants, with the former found to be related to ammonium concentration. The Methanoculleus genus was more abundant in the thermophilic digester whereas representation of the Thermotogales order correlated with hydraulic retention time. PMID:27450128

  5. Microbial-chemical indicator for anaerobic digester performance assessment in full-scale wastewater treatment plants for biogas production.

    PubMed

    Traversi, Deborah; Romanazzi, Valeria; Degan, Raffaella; Lorenzi, Eugenio; Carraro, Elisabetta; Gilli, Giorgio

    2015-06-01

    Anaerobic digestion was introduced into wastewater treatment plants several years ago, but anaerobic digestion performance has not yet been achieved. The variability of the microbial community in digesters is poorly understood, and despite the crucial role of anaerobic digestion reactors, the microbial equilibrium that yields the best performance in these reactors has only recently been hypothesised. In this study, two full-scale continuous anaerobic reactors, placed in Torino's main wastewater treatment plant in northern Italy, were followed to develop a summary indicator for measuring anaerobic digestion performance. A total of 100 sludge samples were collected. The samples were characterised chemically and physically, and microbial groups were quantified by qRT-PCR. A chemical biological performance index strictly correlated to specific biogas production (rho=0.739, p<0.01) is proposed. This approach will produce new management tools for anaerobic digestion in wastewater treatment plants.

  6. Life-cycle energy production and emissions mitigation by comprehensive biogas-digestate utilization.

    PubMed

    Chen, Shaoqing; Chen, Bin; Song, Dan

    2012-06-01

    In the context of global energy shortages and climate change, developing biogas plants with links to agricultural system has become an important strategy for cleaner rural energy and renewable agriculture. In this study, a life-cycle energy and environmental assessment was performed for a biogas-digestate utilization system in China. The results suggest that biogas utilization (heating, illumination, and fuel) and comprehensive digestate reuse are of equal importance in the total energy production of the system, and they also play an important role in systemic greenhouse gas mitigation. Improvement can be achieved in both energy production and emissions mitigation when the ratio of the current three biogas utilization pathways is adjusted. Regarding digestate reuse, a tradeoff between energy and environmental performance can be obtained by focusing on the substitution for top-dressing, base fertilizers, and the application to seed soaking.

  7. Biogas utilization

    SciTech Connect

    Moser, M.A.

    1996-01-01

    Options for successfully using biogas depend on project scale. Almost all biogas from anaerobic digesters must first go through a gas handling system that pressurizes, meters, and filters the biogas. Additional treatment, including hydrogen sulfide-mercaptan scrubbing, gas drying, and carbon dioxide removal may be necessary for specialized uses, but these are complex and expensive processes. Thus, they can be justified only for large-scale projects that require high-quality biogas. Small-scale projects (less than 65 cfm) generally use biogas (as produced) as a boiler fuel or for fueling internal combustion engine-generators to produce electricity. If engines or boilers are selected properly, there should be no need to remove hydrogen sulfide. Small-scale combustion turbines, steam turbines, and fuel cells are not used because of their technical complexity and high capital cost. Biogas cleanup to pipeline or transportation fuel specifications is very costly, and energy economics preclude this level of treatment.

  8. Climate balance of biogas upgrading systems

    SciTech Connect

    Pertl, A.; Mostbauer, P.; Obersteiner, G.

    2010-01-15

    One of the numerous applications of renewable energy is represented by the use of upgraded biogas where needed by feeding into the gas grid. The aim of the present study was to identify an upgrading scenario featuring minimum overall GHG emissions. The study was based on a life-cycle approach taking into account also GHG emissions resulting from plant cultivation to the process of energy conversion. For anaerobic digestion two substrates have been taken into account: (1) agricultural resources and (2) municipal organic waste. The study provides results for four different upgrading technologies including the BABIU (Bottom Ash for Biogas Upgrading) method. As the transport of bottom ash is a critical factor implicated in the BABIU-method, different transport distances and means of conveyance (lorry, train) have been considered. Furthermore, aspects including biogas compression and energy conversion in a combined heat and power plant were assessed. GHG emissions from a conventional energy supply system (natural gas) have been estimated as reference scenario. The main findings obtained underlined how the overall reduction of GHG emissions may be rather limited, for example for an agricultural context in which PSA-scenarios emit only 10% less greenhouse gases than the reference scenario. The BABIU-method constitutes an efficient upgrading method capable of attaining a high reduction of GHG emission by sequestration of CO{sub 2}.

  9. Climate balance of biogas upgrading systems.

    PubMed

    Pertl, A; Mostbauer, P; Obersteiner, G

    2010-01-01

    One of the numerous applications of renewable energy is represented by the use of upgraded biogas where needed by feeding into the gas grid. The aim of the present study was to identify an upgrading scenario featuring minimum overall GHG emissions. The study was based on a life-cycle approach taking into account also GHG emissions resulting from plant cultivation to the process of energy conversion. For anaerobic digestion two substrates have been taken into account: (1) agricultural resources and (2) municipal organic waste. The study provides results for four different upgrading technologies including the BABIU (Bottom Ash for Biogas Upgrading) method. As the transport of bottom ash is a critical factor implicated in the BABIU-method, different transport distances and means of conveyance (lorry, train) have been considered. Furthermore, aspects including biogas compression and energy conversion in a combined heat and power plant were assessed. GHG emissions from a conventional energy supply system (natural gas) have been estimated as reference scenario. The main findings obtained underlined how the overall reduction of GHG emissions may be rather limited, for example for an agricultural context in which PSA-scenarios emit only 10% less greenhouse gases than the reference scenario. The BABIU-method constitutes an efficient upgrading method capable of attaining a high reduction of GHG emission by sequestration of CO(2).

  10. Foam formation in biogas plants caused by anaerobic digestion of sugar beet.

    PubMed

    Moeller, Lucie; Lehnig, Marcus; Schenk, Joachim; Zehnsdorf, Andreas

    2015-02-01

    The use of sugar beet in anaerobic digestion (AD) during biogas production can lead to process upsets such as excessive foaming in fermenters. In the present study, foam formation in sugar beet-fed digestates was studied in foaming tests. The increasing disintegration grade of sugar beet was observed to have a promoting effect on foaming in the digestate but did not affect the biogas yield. Chemical analysis of foam and digestate from sugar beet silage AD showed high concentrations of pectin, other carbohydrates and N-containing substances in the foam. Both pectin and sucrose showed little foaming in AD. Nevertheless, sucrose and calcium chloride had a promoting effect on foaming for pectin AD. Salts of divalent ions also enhanced the foam intensity in the case of sugar beet silage AD, whereas ammonium chloride and urea had a lessening effect on sugar beet-based foaming. PMID:25446785

  11. Foam formation in biogas plants caused by anaerobic digestion of sugar beet.

    PubMed

    Moeller, Lucie; Lehnig, Marcus; Schenk, Joachim; Zehnsdorf, Andreas

    2015-02-01

    The use of sugar beet in anaerobic digestion (AD) during biogas production can lead to process upsets such as excessive foaming in fermenters. In the present study, foam formation in sugar beet-fed digestates was studied in foaming tests. The increasing disintegration grade of sugar beet was observed to have a promoting effect on foaming in the digestate but did not affect the biogas yield. Chemical analysis of foam and digestate from sugar beet silage AD showed high concentrations of pectin, other carbohydrates and N-containing substances in the foam. Both pectin and sucrose showed little foaming in AD. Nevertheless, sucrose and calcium chloride had a promoting effect on foaming for pectin AD. Salts of divalent ions also enhanced the foam intensity in the case of sugar beet silage AD, whereas ammonium chloride and urea had a lessening effect on sugar beet-based foaming.

  12. Economic evaluation of biogas as energy and fertilizer in rural northeast Thailand

    SciTech Connect

    Sombuntham, S.

    1982-01-01

    In the aftermath of the 1974 oil crisis, Thailand faces a complex problem: agriculture is characterized by low productivity, and an increasing burden is now being placed on national forest reserves as the primary source of fuel. The nation is forced to choose: land for forests and fuel, or land for agriculture and food. In either case, current levels of land use are having serious environmental consequences. Biogas has been proposed as a possible remedy to alleviate these problems. In this study, three sizes of biogas plants are studied to facilitate cost estimates, and two Thai villages provide case studies of actual applications. Then a stratified random sample of 60 households is selected from the two villages, based on economic class groupings. The central question is to inquire whether biogas is feasible and profitable for villages with differing characteristics, for different income groups within those villages, and whether technological viability is affected by plant size. The results show that there are increasing returns to scale for larger biogas plants; that the poorer village obtains more benefits per unit of output than the more modernized village; that the poorest households within each village have the highest potential gains from biogas. It is recommended that Thailand implement biogas technology in those regions and for those villages where benefit-cost analysis demonstrates its economic feasibility.

  13. Sample prefractionation with liquid isoelectric focusing enables in depth microbial metaproteome analysis of mesophilic and thermophilic biogas plants.

    PubMed

    Kohrs, F; Heyer, R; Magnussen, A; Benndorf, D; Muth, T; Behne, A; Rapp, E; Kausmann, R; Heiermann, M; Klocke, M; Reichl, U

    2014-10-01

    Biogas production from energy crops and biodegradable waste is one of the major sources for renewable energies in Germany. Within a biogas plant (BGP) a complex microbial community converts biomass to biogas. Unfortunately, disturbances of the biogas process occur occasionally and cause economic losses of varying extent. Besides technical failures the microbial community itself is commonly assumed as a reason for process instability. To improve the performance and efficiency of BGP, a deeper knowledge of the composition and the metabolic state of the microbial community is required and biomarkers for monitoring of process deviations or even the prediction of process failures have to be identified. Previous work based on 2D-electrophoresis demonstrated that the analysis of the metaproteome is well suited to provide insights into the apparent metabolism of the microbial communities. Using SDS-PAGE with subsequent mass spectrometry, stable protein patterns were evaluated for a number of anaerobic digesters. Furthermore, it was shown that severe changes in process parameters such as acidification resulted in significant modifications of the metaproteome. Monitoring of changing protein patterns derived from anaerobic digesters, however, is still a challenge due to the high complexity of the metaproteome. In this study, different combinations of separation techniques to reduce the complexity of proteomic BGP samples were compared with respect to the subsequent identification of proteins by tandem mass spectrometry (MS/MS): (i) 1D: proteins were tryptically digested and the resulting peptides were separated by reversed phase chromatography prior to MS/MS. (ii) 2D: proteins were separated by GeLC-MS/MS according to proteins molecular weights before tryptic digestion, (iii) 3D: proteins were separated by gel-free fractionation using isoelectric focusing (IEF) conducted before GeLC-MS/MS. For this study, a comparison of two anaerobic digesters operated at mesophilic and at

  14. Use of digestate from a decentralized on-farm biogas plant as fertilizer in soils: An ecotoxicological study for future indicators in risk and life cycle assessment.

    PubMed

    Pivato, Alberto; Vanin, Stefano; Raga, Roberto; Lavagnolo, Maria Cristina; Barausse, Alberto; Rieple, Antonia; Laurent, Alexis; Cossu, Raffaello

    2016-03-01

    Over the last decade, the number of decentralized farm biogas plants has increased significantly in the EU. This development leads not only to an increasing amount of biogas produced, but also to a higher amount of digestate obtained. One of the most attractive options to manage the digestate is to apply it as biofertiliser to the soil, because this gives the opportunity of recovering the nutrients, primarily nitrogen and phosphorus, and of attenuating the loss of organic matter suffered by soils under agricultural exploitation. Studies have claimed that digestates can present a residual biodegradability, and contain complex organic elements, salts or pathogenic bacteria that can damage terrestrial organisms. However few ecotoxicological studies have been performed to evaluate the ecological impact of digestate application on soil. In this study, the use of digestate as biofertiliser in agriculture was assessed by a battery of ecotoxicological tests considering the potential pollutants present in the digestate as a whole by using the "matrix-based" approach (also known as "whole effluent toxicity" for eluates or wastewater effluents). The direct and indirect tests included plant bioassays with Lepidium sativum, earthworm bioassays with Eisenia fetida, aquatic organisms (Artemia sp. and Daphnia magna) and luminescent bacteria bioassays (Vibrio fischeri). Direct tests occurred to be more sensitive than indirect tests. The earthworm bioassays did not show serious negative effects for concentrations up to 15% (dry weight/dry weight percent, w/w dm) and the plant bioassays showed no negative effect, but rather a positive one for concentrations lower than 20% (w/w dm), which encourages the use of digestate as a biofertiliser in agriculture provided that proper concentrations are used. The indirect tests, on the eluate, with the using aquatic organisms and luminescent bacteria showed an LC50 value of 13.61% volume/volume percent, v/v) for D. magna and no toxicity for

  15. Asexual Plant Reproduction. Agricultural Lesson Plans.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    These lesson plans are intended for use in conducting classes on asexual plant reproduction. Presented first are an attention step/problem statement and a series of questions and answers designed to convey general information about asexual plant reproduction/propagation. The following topics are among those discussed: plant reproduction methods,…

  16. Impact of CAD-deficiency in flax on biogas production.

    PubMed

    Wróbel-Kwiatkowska, Magdalena; Jabłoński, Sławomir; Szperlik, Jakub; Dymińska, Lucyna; Łukaszewicz, Marcin; Rymowicz, Waldemar; Hanuza, Jerzy; Szopa, Jan

    2015-12-01

    Global warming and the reduction in our fossil fuel reservoir have forced humanity to look for new means of energy production. Agricultural waste remains a large source for biofuel and bioenergy production. Flax shives are a waste product obtained during the processing of flax fibers. We investigated the possibility of using low-lignin flax shives for biogas production, specifically by assessing the impact of CAD deficiency on the biochemical and structural properties of shives. The study used genetically modified flax plants with a silenced CAD gene, which encodes the key enzyme for lignin synthesis. Reducing the lignin content modified cellulose crystallinity, improved flax shive fermentation and optimized biogas production. Chemical pretreatment of the shive biomass further increased biogas production efficiency.

  17. Impact of CAD-deficiency in flax on biogas production.

    PubMed

    Wróbel-Kwiatkowska, Magdalena; Jabłoński, Sławomir; Szperlik, Jakub; Dymińska, Lucyna; Łukaszewicz, Marcin; Rymowicz, Waldemar; Hanuza, Jerzy; Szopa, Jan

    2015-12-01

    Global warming and the reduction in our fossil fuel reservoir have forced humanity to look for new means of energy production. Agricultural waste remains a large source for biofuel and bioenergy production. Flax shives are a waste product obtained during the processing of flax fibers. We investigated the possibility of using low-lignin flax shives for biogas production, specifically by assessing the impact of CAD deficiency on the biochemical and structural properties of shives. The study used genetically modified flax plants with a silenced CAD gene, which encodes the key enzyme for lignin synthesis. Reducing the lignin content modified cellulose crystallinity, improved flax shive fermentation and optimized biogas production. Chemical pretreatment of the shive biomass further increased biogas production efficiency. PMID:26178244

  18. Biogas utilization

    SciTech Connect

    Moser, M.A.

    1995-11-01

    Options for successfully using biomass depend on project scale. Almost all biogas from anaerobic digesters must first go through a gas handling system that pressurizes, meters, and filters the biogas. Additional treatment, including hydrogen sulfide-mercaptan scrubbing, gas drying, and carbon dioxide removal may be necessary for specialized uses, but these are complex and expensive processes. Thus, they can be justified only for large-scale projects that require high-quality biogas. Small-scale projects (less than 65 cfm) generally use biogas (as produced) as a boiler fuel or for fueling internal combustion engine generators to produce electricity. If engines or boilers as selected properly, there should be no need to remove hydrogen sulfide. Small-scale combustion turbines, steam turbines, and fuel cells are not used because of their technical complexity and high capital cost. Biogas cleanup to pipeline or transportation fuel specification is very costly, and energy economics preclude this level of treatment.

  19. Sexual Plant Reproduction. Agricultural Lesson Plans.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    These lesson plans are intended for use in conducting classes on sexual plant reproduction. Presented first are an attention step/problem statement and a series of questions and answers designed to convey general information about sexual plant reproduction/propagation. The following topics are among those discussed: sexual and asexual plant…

  20. Agricultural Plant Pest Control. Bulletin 763.

    ERIC Educational Resources Information Center

    French, John C.; And Others

    This manual gives general information on plant pests and pesticides. First, the life-cycle and habits of some common insect pests are given. These include caterpillars, beetles and beetle larvae, and sucking insects. Next, plant diseases such as leaf diseases, wilts, root and crown rots, stem cankers, fruit rots, seed and seedling diseases, and…

  1. Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and Ion Torrent sequencing.

    PubMed

    Luo, Gang; Angelidaki, Irini

    2014-09-01

    The present study investigated the changes of bacterial community composition including bacterial pathogens along a biogas plant, i.e. from the influent, to the biogas reactor and to the post-digester. The effects of post-digestion temperature and time on the changes of bacterial community composition and bacterial pathogens were also studied. Microbial analysis was made by Ion Torrent sequencing of the PCR amplicons from ethidium monoazide treated samples, and ethidium monoazide was used to cleave DNA from dead cells and exclude it from PCR amplification. Both similarity and taxonomic analysis showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor with time were also observed. This could be attributed to varying composition of the influent. Batch experiments showed that the methane recovery from the digested residues (obtained from biogas reactor) was mainly related with post-digestion temperature. However, post-digestion time rather than temperature had a significant effect on the changes of bacterial community composition. The changes of bacterial community composition were also reflected in the changes of relative abundance of bacterial pathogens. The richness and relative abundance of bacterial pathogens were reduced after anaerobic digestion in the biogas reactor. It was found in batch experiments that bacterial pathogens showed the highest relative abundance and richness after 30 days' post-digestion. Streptococcus bovis was found in all the samples. Our results showed that special attention should be paid to the post-digestion since the increase in relative abundance of bacterial pathogens after post-digestion might reflect regrowth of bacterial pathogens and limit biosolids disposal vectors.

  2. Genomic characterization of Defluviitoga tunisiensis L3, a key hydrolytic bacterium in a thermophilic biogas plant and its abundance as determined by metagenome fragment recruitment.

    PubMed

    Maus, Irena; Cibis, Katharina Gabriela; Bremges, Andreas; Stolze, Yvonne; Wibberg, Daniel; Tomazetto, Geizecler; Blom, Jochen; Sczyrba, Alexander; König, Helmut; Pühler, Alfred; Schlüter, Andreas

    2016-08-20

    The genome sequence of Defluviitoga tunisiensis L3 originating from a thermophilic biogas-production plant was established and recently published as Genome Announcement by our group. The circular chromosome of D. tunisiensis L3 has a size of 2,053,097bp and a mean GC content of 31.38%. To analyze the D. tunisiensis L3 genome sequence in more detail, a phylogenetic analysis of completely sequenced Thermotogae strains based on shared core genes was performed. It appeared that Petrotoga mobilis DSM 10674(T), originally isolated from a North Sea oil-production well, is the closest relative of D. tunisiensis L3. Comparative genome analyses of P. mobilis DSM 10674(T) and D. tunisiensis L3 showed moderate similarities regarding occurrence of orthologous genes. Both genomes share a common set of 1351 core genes. Reconstruction of metabolic pathways important for the biogas production process revealed that the D. tunisiensis L3 genome encodes a large set of genes predicted to facilitate utilization of a variety of complex polysaccharides including cellulose, chitin and xylan. Ethanol, acetate, hydrogen (H2) and carbon dioxide (CO2) were found as possible end-products of the fermentation process. The latter three metabolites are considered to represent substrates for methanogenic Archaea, the key organisms in the final step of the anaerobic digestion process. To determine the degree of relatedness between D. tunisiensis L3 and dominant biogas community members within the thermophilic biogas-production plant, metagenome sequences obtained from the corresponding microbial community were mapped onto the L3 genome sequence. This fragment recruitment revealed that the D. tunisiensis L3 genome is almost completely covered with metagenome sequences featuring high matching accuracy. This result indicates that strains highly related or even identical to the reference strain D. tunisiensis L3 play a dominant role within the community of the thermophilic biogas-production plant. PMID

  3. Genomic characterization of Defluviitoga tunisiensis L3, a key hydrolytic bacterium in a thermophilic biogas plant and its abundance as determined by metagenome fragment recruitment.

    PubMed

    Maus, Irena; Cibis, Katharina Gabriela; Bremges, Andreas; Stolze, Yvonne; Wibberg, Daniel; Tomazetto, Geizecler; Blom, Jochen; Sczyrba, Alexander; König, Helmut; Pühler, Alfred; Schlüter, Andreas

    2016-08-20

    The genome sequence of Defluviitoga tunisiensis L3 originating from a thermophilic biogas-production plant was established and recently published as Genome Announcement by our group. The circular chromosome of D. tunisiensis L3 has a size of 2,053,097bp and a mean GC content of 31.38%. To analyze the D. tunisiensis L3 genome sequence in more detail, a phylogenetic analysis of completely sequenced Thermotogae strains based on shared core genes was performed. It appeared that Petrotoga mobilis DSM 10674(T), originally isolated from a North Sea oil-production well, is the closest relative of D. tunisiensis L3. Comparative genome analyses of P. mobilis DSM 10674(T) and D. tunisiensis L3 showed moderate similarities regarding occurrence of orthologous genes. Both genomes share a common set of 1351 core genes. Reconstruction of metabolic pathways important for the biogas production process revealed that the D. tunisiensis L3 genome encodes a large set of genes predicted to facilitate utilization of a variety of complex polysaccharides including cellulose, chitin and xylan. Ethanol, acetate, hydrogen (H2) and carbon dioxide (CO2) were found as possible end-products of the fermentation process. The latter three metabolites are considered to represent substrates for methanogenic Archaea, the key organisms in the final step of the anaerobic digestion process. To determine the degree of relatedness between D. tunisiensis L3 and dominant biogas community members within the thermophilic biogas-production plant, metagenome sequences obtained from the corresponding microbial community were mapped onto the L3 genome sequence. This fragment recruitment revealed that the D. tunisiensis L3 genome is almost completely covered with metagenome sequences featuring high matching accuracy. This result indicates that strains highly related or even identical to the reference strain D. tunisiensis L3 play a dominant role within the community of the thermophilic biogas-production plant.

  4. Genetic Engineering of Plants. Agricultural Research Opportunities and Policy Concerns.

    ERIC Educational Resources Information Center

    Roberts, Leslie

    Plant scientists and science policymakers from government, private companies, and universities met at a convocation on the genetic engineering of plants. During the convocation, researchers described some of the ways genetic engineering may be used to address agricultural problems. Policymakers delineated and debated changes in research funding…

  5. Biogas in Nepal--Retrospects and prospects

    SciTech Connect

    Sood, D.K.

    1983-12-01

    The tremendous need and potential of biogas in Nepal, supported by a very large cattle population, seems to be primarily limited by manpower and budgetary constraints and poor planning and implementation. Besides cooking and lighting, considerable potential, particularly at the rural level exists for biogas powered agro-processing applications such as rice hulling, oil expelling and flour grinding. Experience has shown that such applications, for which equipment is easily available, can be better served by community Biogas plants. The government of Nepal, with assistance from international organizations such as the Asian Development Bank, is strengthening the Biogas Company and taking other appropriate measures to disseminate and establish biogas on a firm footing.

  6. Lunar base agriculture: Soils for plant growth

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Editor); Henninger, Donald L. (Editor)

    1989-01-01

    This work provides information on research and experimentation concerning various aspects of food production in space and particularly on the moon. Options for human settlement of the moon and Mars and strategies for a lunar base are discussed. The lunar environment, including the mineralogical and chemical properties of lunar regolith are investigated and chemical and physical considerations for a lunar-derived soil are considered. It is noted that biological considerations for such a soil include controlled-environment crop production, both hydroponic and lunar regolith-based; microorganisms and the growth of higher plants in lunar-derived soils; and the role of microbes to condition lunar regolith for plant cultivation. Current research in the controlled ecological life support system (CELSS) project is presented in detail and future research areas, such as the growth of higher research plants in CELSS are considered. Optimum plant and microbiological considerations for lunar derived soils are examined.

  7. [Agriculture microbiology and microbe interaction with plants].

    PubMed

    Caballero-Mellado, Jesús

    2006-01-01

    About the characterization and distribution of novel nitrogen-fixing Burkholderia species associated with maize and other plants and their potential use on the plant growth was presented in this symposium. The symposium included studies directed to the revegetation of eroded areas by using plant growth promoting rhizo-bacteria and mycorrizal fungi associated with desert plants, as well as studies related with the resistance of arbuscular mycorrhizal fungi to heavy metals associated with the environmental pollution. In addition, the identification and characterization of a 31-kb chromosomal fragment from Pseudomonas syringae pv. phaseolicola was presented; such a fragment, involved with the phaseolotoxin synthesis, showed characteristic features of a bacterial pathogenicity island. PMID:17578087

  8. 75 FR 62096 - Agricultural Technical Advisory Committees for Trade in Tobacco, Cotton, Peanuts and Planting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... Foreign Agricultural Service Agricultural Technical Advisory Committees for Trade in Tobacco, Cotton... the Agricultural Technical Advisory Committees (ATAC) for Trade in Tobacco, Cotton, Peanuts and... representation of the planting seeds industry from the Tobacco, Cotton, Peanuts and Planting Seeds (TCPPS)...

  9. Mass flow and energy balance plus economic analysis of a full-scale biogas plant in the rice-wine-pig system.

    PubMed

    Li, Jiang; Kong, Chuixue; Duan, Qiwu; Luo, Tao; Mei, Zili; Lei, Yunhui

    2015-10-01

    This paper presents mass flow and energy balance as well as an economic analysis for a biogas plant in a rice-wine-pig system at a practical rather than laboratory scale. Results showed feeding amount was 65.30 t d(-1) (total solid matter (TSM) 1.3%) for the normal temperature continuous stirred tank reactor (CSTR), and 16.20 t d(-1) (TSM 8.4%) for the mesophilic CSTR. The digestion produced 80.50 t d(-1) of mass, with 76.41 t d(-1) flowing into rice fields and 4.49 t d(-1) into composting. Energy consumption of this plant fluctuated with seasons, and surplus energy was 823, 221 kWh/year. Thus, biogas plant was critical for material recycling and energy transformation of this agro-ecosystem. The economic analysis showed that the payback time of the plant was 10.9 years. It also revealed application of biogas as a conventional energy replacement would be attractive for a crop-wine-livestock ecosystem with anaerobic digestion of manure.

  10. Anaerobic co-digestion plants for the revaluation of agricultural waste: Sustainable location sites from a GIS analysis.

    PubMed

    Villamar, Cristina Alejandra; Rivera, Diego; Aguayo, Mauricio

    2016-04-01

    The aim of this study was to establish sustainably feasible areas for the implementation of anaerobic co-digestion plants for agricultural wastes (cattle/swine slurries and cereal crop wastes). The methodology was based on the use of geographic information systems (GIS), the analytic hierarchy process (AHP) and map algebra generated from hedges related to environmental, social and economic constraints. The GIS model obtained was applied to a region of Chile (Bío Bío Region) as a case study showing the energy potential (205 MW-h) of agricultural wastes (swine/cattle manures and cereal crop wastes) and thereby assessing its energy contribution (3.5%) at country level (Chile). From this model, it was possible to spatially identify the influence of each factor (environmental, economic and social) when defining suitable areas for the siting of anaerobic co-digestion plants. In conclusion, GIS-based models establish appropriate areas for the location of anaerobic co-digestion plants in the revaluation of agricultural waste from the production of energy through biogas production. PMID:26862147

  11. Anaerobic co-digestion plants for the revaluation of agricultural waste: Sustainable location sites from a GIS analysis.

    PubMed

    Villamar, Cristina Alejandra; Rivera, Diego; Aguayo, Mauricio

    2016-04-01

    The aim of this study was to establish sustainably feasible areas for the implementation of anaerobic co-digestion plants for agricultural wastes (cattle/swine slurries and cereal crop wastes). The methodology was based on the use of geographic information systems (GIS), the analytic hierarchy process (AHP) and map algebra generated from hedges related to environmental, social and economic constraints. The GIS model obtained was applied to a region of Chile (Bío Bío Region) as a case study showing the energy potential (205 MW-h) of agricultural wastes (swine/cattle manures and cereal crop wastes) and thereby assessing its energy contribution (3.5%) at country level (Chile). From this model, it was possible to spatially identify the influence of each factor (environmental, economic and social) when defining suitable areas for the siting of anaerobic co-digestion plants. In conclusion, GIS-based models establish appropriate areas for the location of anaerobic co-digestion plants in the revaluation of agricultural waste from the production of energy through biogas production.

  12. The Role of Molybdenum in Agricultural Plant Production

    PubMed Central

    KAISER, BRENT N.; GRIDLEY, KATE L.; NGAIRE BRADY, JOANNE; PHILLIPS, THOMAS; TYERMAN, STEPHEN D.

    2005-01-01

    • Background The importance of molybdenum for plant growth is disproportionate with respect to the absolute amounts required by most plants. Apart from Cu, Mo is the least abundant essential micronutrient found in most plant tissues and is often set as the base from which all other nutrients are compared and measured. Molybdenum is utilized by selected enzymes to carry out redox reactions. Enzymes that require molybdenum for activity include nitrate reductase, xanthine dehydrogenase, aldehyde oxidase and sulfite oxidase. • Scope Loss of Mo-dependent enzyme activity (directly or indirectly through low internal molybdenum levels) impacts upon plant development, in particular, those processes involving nitrogen metabolism and the synthesis of the phytohormones abscisic acid and indole-3 butyric acid. Currently, there is little information on how plants access molybdate from the soil solution and redistribute it within the plant. In this review, the role of molybdenum in plants is discussed, focusing on its current constraints in some agricultural situations and where increased molybdenum nutrition may aid in agricultural plant development and yields. • Conclusions Molybdenum deficiencies are considered rare in most agricultural cropping areas; however, the phenotype is often misdiagnosed and attributed to other downstream effects associated with its role in various enzymatic redox reactions. Molybdenum fertilization through foliar sprays can effectively supplement internal molybdenum deficiencies and rescue the activity of molybdoenzymes. The current understanding on how plants access molybdate from the soil solution or later redistribute it once in the plant is still unclear; however, plants have similar physiological molybdenum transport phenotypes to those found in prokaryotic systems. Thus, careful analysis of existing prokaryotic molybdate transport mechanisms, as well as a re-examination of know anion transport mechanisms present in plants, will help to

  13. Sustainable agriculture: possible trajectories from mutualistic symbiosis and plant neodomestication.

    PubMed

    Duhamel, Marie; Vandenkoornhuyse, Philippe

    2013-11-01

    Food demand will increase concomitantly with human population. Food production therefore needs to be high enough and, at the same time, minimize damage to the environment. This equation cannot be solved with current strategies. Based on recent findings, new trajectories for agriculture and plant breeding which take into account the belowground compartment and evolution of mutualistic strategy, are proposed in this opinion article. In this context, we argue that plant breeders have the opportunity to make use of native arbuscular mycorrhizal (AM) symbiosis in an innovative ecologically intensive agriculture.

  14. Identification of different species of Bacillus isolated from Nisargruna Biogas Plant by FTIR, UV-Vis and NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ghosh, S. B.; Bhattacharya, K.; Nayak, S.; Mukherjee, P.; Salaskar, D.; Kale, S. P.

    2015-09-01

    Definitive identification of microorganisms, including pathogenic and non-pathogenic bacteria, is extremely important for a wide variety of applications including food safety, environmental studies, bio-terrorism threats, microbial forensics, criminal investigations and above all disease diagnosis. Although extremely powerful techniques such as those based on PCR and microarrays exist, they require sophisticated laboratory facilities along with elaborate sample preparation by trained researchers. Among different spectroscopic techniques, FTIR was used in the 1980s and 90s for bacterial identification. In the present study five species of Bacillus were isolated from the aerobic predigester chamber of Nisargruna Biogas Plant (NBP) and were identified to the species level by biochemical and molecular biological (16S ribosomal DNA sequence) methods. Those organisms were further checked by solid state spectroscopic absorbance measurements using a wide range of electromagnetic radiation (wavelength 200 nm to 25,000 nm) encompassing UV, visible, near Infrared and Infrared regions. UV-Vis and NIR spectroscopy was performed on dried bacterial cell suspension on silicon wafer in specular mode while FTIR was performed on KBr pellets containing the bacterial cells. Consistent and reproducible species specific spectra were obtained and sensitivity up to a level of 1000 cells was observed in FTIR with a DTGS detector. This clearly shows the potential of solid state spectroscopic techniques for simple, easy to implement, reliable and sensitive detection of bacteria from environmental samples.

  15. Vermiconversion of wastewater sludge from textile mill mixed with anaerobically digested biogas plant slurry employing Eisenia foetida.

    PubMed

    Garg, V K; Kaushik, Priya; Dilbaghi, Neeraj

    2006-11-01

    Vermicomposting is commonly used for the management of organic wastes. We have investigated the potential of an epigeic earthworm, Eisenia foetida, to transform solid textile mill sludge (STMS) spiked with anaerobically digested biogas plant slurry (BPS) into vermicompost to evaluate the feasibility of vermicomposting in industries for waste management. The growth and reproduction of E. foetida was monitored in a range of different feed mixtures for 15 weeks in laboratory under controlled experimental conditions. E. foetida did not survive in fresh STMS. But worms grew and reproduced in STMS spiked with BPS feed mixtures. A greater percentage of STMS in feed mixture affected biomass gain and cocoon production by earthworms. The maximum growth was recorded in 100% BPS. The net weight gain by E. foetida in 100% BPS was two-four-fold higher than STMS-containing feed mixtures. After 15 weeks, maximum cocoons (78) were counted in 100% BPS and minimum (26) in 60% BPS+40% STMS feed. Vermicomposting resulted in pH shift toward acidic, significant reduction in C:N ratio, and increase in nitrogen, phosphorus, and potassium contents. Microbial activity measured as dehydrogenase activity increased with time up to day 75 but decreased on day 90, indicating the exhaustion of feed and decrease in microbial activity. These experiments demonstrate that vermicomposting can be an alternate technology for the recycling and environmentally safe disposal/management of textile mill sludge using an epigeic earthworm, E. foetida, if mixed with anaerobically digested BPS in appropriate ratios.

  16. Cultivation of vancomycin-resistant enterococci and methicillin-resistant staphylococci from input and output samples of German biogas plants.

    PubMed

    Glaeser, Stefanie P; Sowinsky, Olivia; Brunner, Jana S; Dott, Wolfgang; Kämpfer, Peter

    2016-03-01

    Vancomycin-resistant enterococci (VRE) and methicillin-resistant staphylococci (MRS) were detected in two mesophilic German biogas plants (BGPs) using selective pre-enrichment methods combined with cultivation on CHROMagar media and antibiotic resistance gene screening. Genetic fingerprinting and 16S rRNA gene sequencing showed the presence of enterococci isolated by the VRE selective cultivation (67 isolates) in input and output samples of BGPs. In contrast, MRS (44 isolates) were detected in input, but in none of the output samples. Enterococcus isolates showed highest 16S rRNA gene sequence similarity (>99.8%) to E. lemanii, E. casseliflavus/E. gallinarium or E. devriesei/E. pseudoavium/E. viikkiensis and carried vanA, vanB and/or vanC1 genes. Enterococcus faecium and E. faecalis VRE were not detected, but isolates closely related to those species (>99.9% 16S rRNA gene sequence similarity) were detected by the MRS selective cultivation methods. Staphylococcus isolates shared highest 16S rRNA gene sequence similarity (>99.9%) with S. haemolyticus, S. lentus and S. sciuri and carried mecA genes. Methicillin-resistant S. aureus (MRSA) were not detected. In summary, manure from livestock husbandry contained both, VRE and MRS. VRE were also detected in output samples, indicating that enterococci with vancomycin resistance genes could be release into the environment by the application of BGP output material as biofertilizers.

  17. Enzyme research and applications in biotechnological intensification of biogas production.

    PubMed

    Parawira, Wilson

    2012-06-01

    Biogas technology provides an alternative source of energy to fossil fuels in many parts of the world. Using local resources such as agricultural crop remains, municipal solid wastes, market wastes and animal waste, energy (biogas), and manure are derived by anaerobic digestion. The hydrolysis process, where the complex insoluble organic materials are hydrolysed by extracellular enzymes, is a rate-limiting step for anaerobic digestion of high-solid organic solid wastes. Biomass pretreatment and hydrolysis are areas in need of drastic improvement for economic production of biogas from complex organic matter such as lignocellulosic material and sewage sludge. Despite development of pretreatment techniques, sugar release from complex biomass still remains an expensive and slow step, perhaps the most critical in the overall process. This paper gives an updated review of the biotechnological advances to improve biogas production by microbial enzymatic hydrolysis of different complex organic matter for converting them into fermentable structures. A number of authors have reported significant improvement in biogas production when crude and commercial enzymes are used in the pretreatment of complex organic matter. There have been studies on the improvement of biogas production from lignocellulolytic materials, one of the largest and renewable sources of energy on earth, after pretreatment with cellulases and cellulase-producing microorganisms. Lipids (characterised as oil, grease, fat, and free long chain fatty acids, LCFA) are a major organic compound in wastewater generated from the food processing industries and have been considered very difficult to convert into biogas. Improved methane yield has been reported in the literature when these lipid-rich wastewaters are pretreated with lipases and lipase-producing microorganisms. The enzymatic treatment of mixed sludge by added enzymes prior to anaerobic digestion has been shown to result in improved degradation of the

  18. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture.

    PubMed

    Bhattacharyya, P N; Jha, D K

    2012-04-01

    Plant growth-promoting rhizobacteria (PGPR) are the rhizosphere bacteria that can enhance plant growth by a wide variety of mechanisms like phosphate solubilization, siderophore production, biological nitrogen fixation, rhizosphere engineering, production of 1-Aminocyclopropane-1-carboxylate deaminase (ACC), quorum sensing (QS) signal interference and inhibition of biofilm formation, phytohormone production, exhibiting antifungal activity, production of volatile organic compounds (VOCs), induction of systemic resistance, promoting beneficial plant-microbe symbioses, interference with pathogen toxin production etc. The potentiality of PGPR in agriculture is steadily increased as it offers an attractive way to replace the use of chemical fertilizers, pesticides and other supplements. Growth promoting substances are likely to be produced in large quantities by these rhizosphere microorganisms that influence indirectly on the overall morphology of the plants. Recent progress in our understanding on the diversity of PGPR in the rhizosphere along with their colonization ability and mechanism of action should facilitate their application as a reliable component in the management of sustainable agricultural system. The progress to date in using the rhizosphere bacteria in a variety of applications related to agricultural improvement along with their mechanism of action with special reference to plant growth-promoting traits are summarized and discussed in this review.

  19. Entomopathogenic and plant pathogenic nematodes as opposing forces in agriculture.

    PubMed

    Kenney, Eric; Eleftherianos, Ioannis

    2016-01-01

    Plant-parasitic nematodes are responsible for substantial damages within the agriculture industry every year, which is a challenge that has thus far gone largely unimpeded. Chemical nematicides have been employed with varying degrees of success, but their implementation can be cumbersome, and furthermore they could potentially be neutralising an otherwise positive effect from the entomopathogenic nematodes that coexist with plant-parasitic nematodes in soil environments and provide protection for plants against insect pests. Recent research has explored the potential of employing entomopathogenic nematodes to protect plants from plant-parasitic nematodes, while providing their standard degree of protection against insects. The interactions involved are highly complex, due to both the three-organism system and the assortment of variables present in a soil environment, but a strong collection of evidence has accumulated regarding the suppressive capacity of certain entomopathogenic nematodes and their mutualistic bacteria, in the context of limiting the infectivity of plant-parasitic nematodes. Specific factors produced by certain entomopathogenic nematode complexes during the process of insect infection appear to have a selectively nematicidal, or at least repellant, effect on plant-parasitic nematodes. Using this information, an opportunity has formed to adapt this relationship to large-scale, field conditions and potentially relieve the agricultural industry of one of its most substantial burdens.

  20. Cytogenetic changes induced by aqueous ferrofluids in agricultural plants

    NASA Astrophysics Data System (ADS)

    Răcuciu, Mihaela; Creangă, Dorina

    2007-04-01

    In this paper, the authors present their results regarding the cellular division rate and the percentage of chromosomal aberrations in the root meristematic cells of agricultural plants when cultivated in the presence of different concentrations of aqueous ferrofluid, ranging between 10 and 250 μL/L. The agricultural species ( Zea mays) with a major role in the life of people was chosen for the experimental project. The water-based ferrofluid was prepared following the chemical co-precipitation method, using tetramethylammonium hydroxide as magnetite core stabilizer. Microscopic investigations (cytogenetic tests) resulted in the evaluation of the mitotic and chromosomal aberration index. They appeared to increase following ferrofluid addition.

  1. Plant genetics, sustainable agriculture and global food security.

    PubMed

    Ronald, Pamela

    2011-05-01

    The United States and the world face serious societal challenges in the areas of food, environment, energy, and health. Historically, advances in plant genetics have provided new knowledge and technologies needed to address these challenges. Plant genetics remains a key component of global food security, peace, and prosperity for the foreseeable future. Millions of lives depend upon the extent to which crop genetic improvement can keep pace with the growing global population, changing climate, and shrinking environmental resources. While there is still much to be learned about the biology of plant-environment interactions, the fundamental technologies of plant genetic improvement, including crop genetic engineering, are in place, and are expected to play crucial roles in meeting the chronic demands of global food security. However, genetically improved seed is only part of the solution. Such seed must be integrated into ecologically based farming systems and evaluated in light of their environmental, economic, and social impacts-the three pillars of sustainable agriculture. In this review, I describe some lessons learned, over the last decade, of how genetically engineered crops have been integrated into agricultural practices around the world and discuss their current and future contribution to sustainable agricultural systems.

  2. Toward Martian agriculture: responses of plants to hypobaria.

    PubMed

    Corey, Kenneth A; Barta, Daniel J; Wheeler, Raymond M

    2002-01-01

    The recent surge of interest in human missions to Mars has also generated considerable interest in the responses of plants to hypobaria (reduced atmospheric pressure), particularly among those in the advanced life support community. Potential for in situ resource utilization, challenges in meeting engineering constraints for mass and energy, the prospect of using lightweight plant growth structures on Mars, and the minimal literature on plant responses to low pressure all suggest much needed research in this area. However, the limited literature on hypobaria combined with previous findings on plant responses to atmospheric composition and established principles of mass transfer of gases suggest that some plants will be capable of tolerating and growing at pressures below 20 kPa; and for other species, perhaps as low as 5-10 kPa. In addition, normal and perhaps enhanced growth of many plants will likely occur at reduced partial pressures of oxygen (e.g., 5 kPa). Growth of plants at such low and partial pressures indicates the feasibility of cultivating plants in lightweight, transparent "greenhouses" on the surface of Mars or in other extraterrestrial or extreme environment locations. There are numerous, accessible terrestrial analogs for moderately low pressure ranges, but not for very low and extremely low atmospheric pressures. Research pertaining to very low pressures has been historically restricted to the use of vacuum chambers. Future research prospects, approaches, and priorities for plant growth experiments at low pressure are considered and discussed as they apply to prospects for Martian agriculture. PMID:11987302

  3. Toward Martian agriculture: responses of plants to hypobaria

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.; Barta, Daniel J.; Wheeler, Raymond M.

    2002-01-01

    The recent surge of interest in human missions to Mars has also generated considerable interest in the responses of plants to hypobaria (reduced atmospheric pressure), particularly among those in the advanced life support community. Potential for in situ resource utilization, challenges in meeting engineering constraints for mass and energy, the prospect of using lightweight plant growth structures on Mars, and the minimal literature on plant responses to low pressure all suggest much needed research in this area. However, the limited literature on hypobaria combined with previous findings on plant responses to atmospheric composition and established principles of mass transfer of gases suggest that some plants will be capable of tolerating and growing at pressures below 20 kPa; and for other species, perhaps as low as 5-10 kPa. In addition, normal and perhaps enhanced growth of many plants will likely occur at reduced partial pressures of oxygen (e.g., 5 kPa). Growth of plants at such low and partial pressures indicates the feasibility of cultivating plants in lightweight, transparent "greenhouses" on the surface of Mars or in other extraterrestrial or extreme environment locations. There are numerous, accessible terrestrial analogs for moderately low pressure ranges, but not for very low and extremely low atmospheric pressures. Research pertaining to very low pressures has been historically restricted to the use of vacuum chambers. Future research prospects, approaches, and priorities for plant growth experiments at low pressure are considered and discussed as they apply to prospects for Martian agriculture.

  4. Toward Martian agriculture: responses of plants to hypobaria.

    PubMed

    Corey, Kenneth A; Barta, Daniel J; Wheeler, Raymond M

    2002-01-01

    The recent surge of interest in human missions to Mars has also generated considerable interest in the responses of plants to hypobaria (reduced atmospheric pressure), particularly among those in the advanced life support community. Potential for in situ resource utilization, challenges in meeting engineering constraints for mass and energy, the prospect of using lightweight plant growth structures on Mars, and the minimal literature on plant responses to low pressure all suggest much needed research in this area. However, the limited literature on hypobaria combined with previous findings on plant responses to atmospheric composition and established principles of mass transfer of gases suggest that some plants will be capable of tolerating and growing at pressures below 20 kPa; and for other species, perhaps as low as 5-10 kPa. In addition, normal and perhaps enhanced growth of many plants will likely occur at reduced partial pressures of oxygen (e.g., 5 kPa). Growth of plants at such low and partial pressures indicates the feasibility of cultivating plants in lightweight, transparent "greenhouses" on the surface of Mars or in other extraterrestrial or extreme environment locations. There are numerous, accessible terrestrial analogs for moderately low pressure ranges, but not for very low and extremely low atmospheric pressures. Research pertaining to very low pressures has been historically restricted to the use of vacuum chambers. Future research prospects, approaches, and priorities for plant growth experiments at low pressure are considered and discussed as they apply to prospects for Martian agriculture.

  5. Demonstration of anaerobic biogas digesters in developing countries. Part III. The Philippines

    SciTech Connect

    Simpson, M.H.; Morales, E.C.

    1980-03-01

    The main theme of this series of articles is that ours is now a world-wide society, short on meeting needs for energy yet long on waste from our industrial, agricultural and human consumption processes. This is a study report about developments in the Philippines where waste management has been recognized and considered as an important practical source of energy. This is revealed by several reports of the number of biogas plants in operation in this country. According to the July 31, 1977 survey made by the Philippines Bureau of Animal Industries, 200 biogas plants were then installed and in operation of which 46 were government-owned and 154 privately-owned. More have been installed since then. This report presents some of the operating observations and developments from the joint engineering analyses project of the Philippines Bureau of Animal Industry, Man and the Biosphere Inter-Agency Committee on Ecological Studies, Bureau of Fisheries and Aquatic Resources and the National Institute of Science and Technology. The project's main objective was to show that establishing a biogas plant involves not only the production of a methane gas mixture but the integration of its other products as part of a system (i.e., using effluent water from the biogas digester for production of algae chlorell sp. for livestock and poultry feed, production of fish and fertilizing-irrigating of pasture and vegetable plots.). Housing development sewer systems with added biogas generators are also discussed.

  6. Investigations for biogas operated MHD power generators

    SciTech Connect

    Dahiya, R.P.; Chand, A.; Sharma, S.C.

    1983-12-01

    Biogas is produced from the anaerobic fermentation of the organic matter containing cellulose, such as agricultural wastes, human wastes, animal wastes, etc. It contains methane (50-70%), carbon dioxide (30-50%), and very small amounts of hydrogen and hydrogen sulphide. Adequate quantities of raw material to generate biogas are normally available in rural areas, and therefore, there is a possibility that almost all the energy requirements of the rural sector may be fulfilled by biogas. Presently in the rural sector, biogas is used mainly to provide thermal energy (for cooking, etc.), and up to a limited extent, to meet the electrical energy requirements by running electrical generators with engines powered by a mixture of oil and biogas. In this paper, the authors propose a scheme in which biogas can be used to generate electricity more efficiently by using magnetohydrodynamic (MHD) power generators. Investigations have been carried out to make feasibility studies for biogas-operated open cycle MHD power generators. Composition, temperature and electrical conductivity of the seeded (with potassium) combustion products of biogas-air/oxygen systems have been analytically investigated for different percentages of CO/sub 2/ in biogas and at various combustor pressures for a seeding ratio of 1 percent by weight. The effect of preheating and enrichment of air on temperature and electrical conductivity of the seeded combustion plasmas has also been studied.

  7. Modeling Halophytic Plants in APEX for Sustainable Water and Agriculture

    NASA Astrophysics Data System (ADS)

    DeRuyter, T.; Saito, L.; Nowak, B.; Rossi, C.; Toderich, K.

    2013-12-01

    A major problem for irrigated agricultural production is soil salinization, which can occur naturally or can be human-induced. Human-induced, or secondary salinization, is particularly a problem in arid and semi-arid regions, especially in irrigated areas. Irrigated land has more than twice the production of rainfed land, and accounts for about one third of the world's food, but nearly 20% of irrigated lands are salt-affected. Many farmers worldwide currently seasonally leach their land to reduce the soil salt content. These practices, however, create further problems such as a raised groundwater table, and salt, fertilizer, and pesticide pollution of nearby lakes and groundwater. In Uzbekistan, a combination of these management practices and a propensity to cultivate 'thirsty' crops such as cotton has also contributed to the Aral Sea shrinking nearly 90% by volume since the 1950s. Most common agricultural crops are glycophytes that have reduced yields when subjected to salt-stress. Some plants, however, are known as halophytic or 'salt-loving' plants and are capable of completing their life-cycle in higher saline soil or water environments. Halophytes may be useful for human consumption, livestock fodder, or biofuel, and may also be able to reduce or maintain salt levels in soil and water. To assess the potential for these halophytes to assist with salinity management, we are developing a model that is capable of tracking salinity under different management practices in agricultural environments. This model is interdisciplinary as it combines fields such as plant ecology, hydrology, and soil science. The US Department of Agriculture (USDA) model, Agricultural Policy/Environmental Extender (APEX), is being augmented with a salinity module that tracks salinity as separate ions across the soil-plant-water interface. The halophytes Atriplex nitens, Climacoptera lanata, and Salicornia europaea are being parameterized and added into the APEX model database. Field sites

  8. Evaluation of Mediterranean Agricultural Residues as a Potential Feedstock for the Production of Biogas via Anaerobic Fermentation.

    PubMed

    Nitsos, Christos; Matsakas, Leonidas; Triantafyllidis, Kostas; Rova, Ulrika; Christakopoulos, Paul

    2015-01-01

    Hydrothermal, dilute acid, and steam explosion pretreatment methods, were evaluated for their efficiency to improve the methane production yield of three Mediterranean agricultural lignocellulosic residues such as olive tree pruning, grapevine pruning, and almond shells. Hydrothermal and dilute acid pretreatments provided low to moderate increase in the digestibility of the biomass samples, whereas steam explosion enabled the highest methane yields to be achieved for almond shells at 232.2 ± 13.0 mL CH4/gVS and olive pruning at 315.4 ± 0.0 mL CH4/gVS. Introduction of an enzymatic prehydrolysis step moderately improved methane yields for hydrothermal and dilute acid pretreated samples but not for the steam exploded ones. PMID:26609521

  9. Evaluation of Mediterranean Agricultural Residues as a Potential Feedstock for the Production of Biogas via Anaerobic Fermentation

    PubMed Central

    Nitsos, Christos; Matsakas, Leonidas; Triantafyllidis, Kostas; Rova, Ulrika; Christakopoulos, Paul

    2015-01-01

    Hydrothermal, dilute acid, and steam explosion pretreatment methods, were evaluated for their efficiency to improve the methane production yield of three Mediterranean agricultural lignocellulosic residues such as olive tree pruning, grapevine pruning, and almond shells. Hydrothermal and dilute acid pretreatments provided low to moderate increase in the digestibility of the biomass samples, whereas steam explosion enabled the highest methane yields to be achieved for almond shells at 232.2 ± 13.0 mL CH4/gVS and olive pruning at 315.4 ± 0.0 mL CH4/gVS. Introduction of an enzymatic prehydrolysis step moderately improved methane yields for hydrothermal and dilute acid pretreated samples but not for the steam exploded ones. PMID:26609521

  10. Evaluation of Mediterranean Agricultural Residues as a Potential Feedstock for the Production of Biogas via Anaerobic Fermentation.

    PubMed

    Nitsos, Christos; Matsakas, Leonidas; Triantafyllidis, Kostas; Rova, Ulrika; Christakopoulos, Paul

    2015-01-01

    Hydrothermal, dilute acid, and steam explosion pretreatment methods, were evaluated for their efficiency to improve the methane production yield of three Mediterranean agricultural lignocellulosic residues such as olive tree pruning, grapevine pruning, and almond shells. Hydrothermal and dilute acid pretreatments provided low to moderate increase in the digestibility of the biomass samples, whereas steam explosion enabled the highest methane yields to be achieved for almond shells at 232.2 ± 13.0 mL CH4/gVS and olive pruning at 315.4 ± 0.0 mL CH4/gVS. Introduction of an enzymatic prehydrolysis step moderately improved methane yields for hydrothermal and dilute acid pretreated samples but not for the steam exploded ones.

  11. Plant Genetics, Sustainable Agriculture and Global Food Security

    PubMed Central

    Ronald, Pamela

    2011-01-01

    The United States and the world face serious societal challenges in the areas of food, environment, energy, and health. Historically, advances in plant genetics have provided new knowledge and technologies needed to address these challenges. Plant genetics remains a key component of global food security, peace, and prosperity for the foreseeable future. Millions of lives depend upon the extent to which crop genetic improvement can keep pace with the growing global population, changing climate, and shrinking environmental resources. While there is still much to be learned about the biology of plant–environment interactions, the fundamental technologies of plant genetic improvement, including crop genetic engineering, are in place, and are expected to play crucial roles in meeting the chronic demands of global food security. However, genetically improved seed is only part of the solution. Such seed must be integrated into ecologically based farming systems and evaluated in light of their environmental, economic, and social impacts—the three pillars of sustainable agriculture. In this review, I describe some lessons learned, over the last decade, of how genetically engineered crops have been integrated into agricultural practices around the world and discuss their current and future contribution to sustainable agricultural systems. PMID:21546547

  12. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production.

    PubMed

    Pérez-Montaño, F; Alías-Villegas, C; Bellogín, R A; del Cerro, P; Espuny, M R; Jiménez-Guerrero, I; López-Baena, F J; Ollero, F J; Cubo, T

    2014-01-01

    Plant growth-promoting rhizobacteria (PGPR) are free-living bacteria which actively colonize plant roots, exerting beneficial effects on plant development. The PGPR may (i) promote the plant growth either by using their own metabolism (solubilizing phosphates, producing hormones or fixing nitrogen) or directly affecting the plant metabolism (increasing the uptake of water and minerals), enhancing root development, increasing the enzymatic activity of the plant or "helping" other beneficial microorganisms to enhance their action on the plants; (ii) or may promote the plant growth by suppressing plant pathogens. These abilities are of great agriculture importance in terms of improving soil fertility and crop yield, thus reducing the negative impact of chemical fertilizers on the environment. The progress in the last decade in using PGPR in a variety of plants (maize, rice, wheat, soybean and bean) along with their mechanism of action are summarized and discussed here.

  13. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production.

    PubMed

    Pérez-Montaño, F; Alías-Villegas, C; Bellogín, R A; del Cerro, P; Espuny, M R; Jiménez-Guerrero, I; López-Baena, F J; Ollero, F J; Cubo, T

    2014-01-01

    Plant growth-promoting rhizobacteria (PGPR) are free-living bacteria which actively colonize plant roots, exerting beneficial effects on plant development. The PGPR may (i) promote the plant growth either by using their own metabolism (solubilizing phosphates, producing hormones or fixing nitrogen) or directly affecting the plant metabolism (increasing the uptake of water and minerals), enhancing root development, increasing the enzymatic activity of the plant or "helping" other beneficial microorganisms to enhance their action on the plants; (ii) or may promote the plant growth by suppressing plant pathogens. These abilities are of great agriculture importance in terms of improving soil fertility and crop yield, thus reducing the negative impact of chemical fertilizers on the environment. The progress in the last decade in using PGPR in a variety of plants (maize, rice, wheat, soybean and bean) along with their mechanism of action are summarized and discussed here. PMID:24144612

  14. Cost analysis of concepts for a demand oriented biogas supply for flexible power generation.

    PubMed

    Hahn, Henning; Ganagin, Waldemar; Hartmann, Kilian; Wachendorf, Michael

    2014-10-01

    With the share of intermittent renewable energies within the electricity system rising, balancing services from dispatchable power plants are of increasing importance. Highlighting the importance of the need to keeping fuel costs for flexible power generation to a minimum, the study aims to identify favourable biogas plant configurations, supplying biogas on demand. A cost analysis of five configurations based on biogas storing and flexible biogas production concepts has been carried out. Results show that additional flexibility costs for a biogas supply of 8h per day range between 2€ and 11€MWh(-1) and for a 72h period without biogas demand from 9€ to 19€MWh(-1). While biogas storage concepts were identified as favourable short term supply configurations, flexible biogas production concepts profit from reduced storage requirements at plants with large biogas production capacities or for periods of several hours without biogas demand.

  15. Cost analysis of concepts for a demand oriented biogas supply for flexible power generation.

    PubMed

    Hahn, Henning; Ganagin, Waldemar; Hartmann, Kilian; Wachendorf, Michael

    2014-10-01

    With the share of intermittent renewable energies within the electricity system rising, balancing services from dispatchable power plants are of increasing importance. Highlighting the importance of the need to keeping fuel costs for flexible power generation to a minimum, the study aims to identify favourable biogas plant configurations, supplying biogas on demand. A cost analysis of five configurations based on biogas storing and flexible biogas production concepts has been carried out. Results show that additional flexibility costs for a biogas supply of 8h per day range between 2€ and 11€MWh(-1) and for a 72h period without biogas demand from 9€ to 19€MWh(-1). While biogas storage concepts were identified as favourable short term supply configurations, flexible biogas production concepts profit from reduced storage requirements at plants with large biogas production capacities or for periods of several hours without biogas demand. PMID:25146313

  16. Not all GMOs are crop plants: non-plant GMO applications in agriculture.

    PubMed

    Hokanson, K E; Dawson, W O; Handler, A M; Schetelig, M F; St Leger, R J

    2014-12-01

    Since tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteria, fungi, insects, and viruses. Many of these organisms, as with crop plants, are being engineered for applications in agriculture, to control plant insect pests or diseases. This paper reviews the genetically modified non-plant organisms that have been the subject of permit approvals for environmental release by the United States Department of Agriculture/Animal and Plant Health Inspection Service since the US began regulating genetically modified organisms. This is an indication of the breadth and progress of research in the area of non-plant genetically modified organisms. This review includes three examples of promising research on non-plant genetically modified organisms for application in agriculture: (1) insects for insect pest control using improved vector systems; (2) fungal pathogens of insects to control insect pests; and (3) virus for use as transient-expression vectors for disease control in plants. PMID:24242193

  17. Not all GMOs are crop plants: non-plant GMO applications in agriculture.

    PubMed

    Hokanson, K E; Dawson, W O; Handler, A M; Schetelig, M F; St Leger, R J

    2014-12-01

    Since tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteria, fungi, insects, and viruses. Many of these organisms, as with crop plants, are being engineered for applications in agriculture, to control plant insect pests or diseases. This paper reviews the genetically modified non-plant organisms that have been the subject of permit approvals for environmental release by the United States Department of Agriculture/Animal and Plant Health Inspection Service since the US began regulating genetically modified organisms. This is an indication of the breadth and progress of research in the area of non-plant genetically modified organisms. This review includes three examples of promising research on non-plant genetically modified organisms for application in agriculture: (1) insects for insect pest control using improved vector systems; (2) fungal pathogens of insects to control insect pests; and (3) virus for use as transient-expression vectors for disease control in plants.

  18. Current challenges and future perspectives of plant and agricultural biotechnology.

    PubMed

    Moshelion, Menachem; Altman, Arie

    2015-06-01

    Advances in understanding plant biology, novel genetic resources, genome modification, and omics technologies generate new solutions for food security and novel biomaterials production under changing environmental conditions. New gene and germplasm candidates that are anticipated to lead to improved crop yields and other plant traits under stress have to pass long development phases based on trial and error using large-scale field evaluation. Therefore, quantitative, objective, and automated screening methods combined with decision-making algorithms are likely to have many advantages, enabling rapid screening of the most promising crop lines at an early stage followed by final mandatory field experiments. The combination of novel molecular tools, screening technologies, and economic evaluation should become the main goal of the plant biotechnological revolution in agriculture.

  19. Physics and agriculture: applied optics to plant fertilization and breeding

    NASA Astrophysics Data System (ADS)

    Diomandé, K.; Soro, P. A.; Zoro, G. H.; Krou, V. A.

    2011-08-01

    The economy of Côte d'Ivoire rests on the agriculture. In order to contribute to the development of this agriculture, we have oriented our research field on applied optics to agriculture. Then, our research concerns mainly the Laser Induced chlorophyll fluorescence in plants. A simple laser-induced fluorescence set up has been designed and built at the Laboratory of Crystallography and Molecular Physics (LaCPM) at the University of Cocody (Abidjan, COTE D'IVOIRE). With this home set up we first have studied the fluorescence spectra of the "chlorophyll" to characterize the potassium deficiency in oil palm (Elaeis guineensis Jacq,). However, we found that the results differed for samples along terraced plots. The study of this phenomenon called "border effect", has enabled us to realize that sampling should be done after two rows of safety in each plot. We also applied the Laser Induced chlorophyll fluorescence technique to improve the plant breeding. For this, we have characterized the rubber tree seedlings in nurseries. And so we have highlighted those sensible to drought and resistant ones.

  20. Removal of hydrogen sulfide from waste treatment plant biogas using the apollo scrubber

    SciTech Connect

    Smith, J.W.; Burrowes, P.A.; Gupta, A.; Walton, P.S.; Meffe, S.

    1996-12-31

    The removal of hydrogen sulfide and other sulphur compounds from anaerobic digester gas streams prior to their use as fuel for boilers, stationary engines, and cogeneration units minimizes corrosion problems and reduces sulfur emission loadings. A research program at the Department of Chemical Engineering and Applied Chemistry, University of Toronto in the 1980`s demonstrated the use of a modified flotation cell for the absorption of hydrogen sulfide from a gas stream and its catalytic oxidation to sulfur. The essence of the technology was a proprietary gas liquid contactor which provided very high mass transfer rates at the interface. A bench scale contactor developed at the university achieved hydrogen sulfide removal efficiencies of over 99.9% at atmospheric pressure. A demonstration unit for digester gas scrubbing applications was designed, fabricated, and then installed and evaluated at the Metropolitan Toronto Works Department - Main Treatment Plant (MTP).

  1. Estimation of potential biomass resource and biogas production from aquatic plants in Argentina

    SciTech Connect

    Fitzsimons, R.E.; Laurino, C.N.; Vallejos, R.H.

    1982-08-01

    It is expected that the future construction of the Parana Medio Hydroelectric Project on the middle Parana River in Argentina will lead to the accumulation of floating hydrophytes, mainly water hyacinth. Several problems are related to aquatic plants, and steps for efficient control of the vegetation should be taken. If mechanical control is used, the biomass must be processed, preferably in a useful way. Water hyacinth growth in the middle Parana River has been measured and its bioconversion to methane by anaerobic fermentation determined. It is estimated that gross methane production may be between 1. and 4.1 x 10/sup 9/ m/sup 3//yr. The fermentation residue production, with a potential value as soil condition, may represent between 54.9 and 221.4 x 10/sup 3/t nitrogen/year, i.e., between 2 and 8 times the present nitrogen fertilizer demand in Argentina.

  2. Soil-plant transfer of Cs-137 and Sr-90 in digestate amended agricultural soils- a lysimeter scale experiment

    NASA Astrophysics Data System (ADS)

    Mehmood, Khalid; Berns, Anne E.; Pütz, Thomas; Burauel, Peter; Vereecken, Harry; Zoriy, Myroslav; Flucht, Reinhold; Opitz, Thorsten; Hofmann, Diana

    2014-05-01

    Radiocesium and radiostrontium are among the most problematic soil contaminants following nuclear fallout due to their long half-lives and high fission yields. Their chemical resemblance to potassium, ammonium and calcium facilitates their plant uptake and thus enhances their chance to reach humans through the food-chain dramatically. The plant uptake of both radionuclides is affected by the type of soil, the amount of organic matter and the concentration of competitive ions. In the present lysimeter scale experiment, soil-plant transfer of Cs-137 and Sr-90 was investigated in an agricultural silty soil amended with digestate, a residue from a biogas plant. The liquid fraction of the digestate, liquor, was used to have higher nutrient competition. Digestate application was done in accordance with the field practice with an application rate of 34 Mg/ha and mixing it in top 5 cm soil, yielding a final concentration of 38 g digestate/Kg soil. The top 5 cm soil of the non-amended reference soil was also submitted to the same mixing procedure to account for the physical disturbance of the top soil layer. Six months after the amendment of the soil, the soil contamination was done with water-soluble chloride salts of both radionuclides, resulting in a contamination density of 66 MBq/m2 for Cs-137 and 18 MBq/m2 for Sr-90 in separate experiments. Our results show that digestate application led to a detectable difference in soil-plant transfer of the investigated radionuclides, effect was more pronounced for Cs-137. A clear difference was observed in plant uptake of different plants. Pest plants displayed higher uptake of both radionuclides compared to wheat. Furthermore, lower activity values were recorded in ears compared to stems for both radionuclides.

  3. The integrated web service and genome database for agricultural plants with biotechnology information

    PubMed Central

    Kim, ChangKug; Park, DongSuk; Seol, YoungJoo; Hahn, JangHo

    2011-01-01

    The National Agricultural Biotechnology Information Center (NABIC) constructed an agricultural biology-based infrastructure and developed a Web based relational database for agricultural plants with biotechnology information. The NABIC has concentrated on functional genomics of major agricultural plants, building an integrated biotechnology database for agro-biotech information that focuses on genomics of major agricultural resources. This genome database provides annotated genome information from 1,039,823 records mapped to rice, Arabidopsis, and Chinese cabbage. PMID:21887015

  4. Ultrasonic Sensing of Plant Water Needs for Agriculture.

    PubMed

    Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier

    2016-07-14

    Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1-1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400-900 kHz and 200-400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained.

  5. Ultrasonic Sensing of Plant Water Needs for Agriculture

    PubMed Central

    Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier

    2016-01-01

    Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1–1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400–900 kHz and 200–400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained. PMID:27428968

  6. Ultrasonic Sensing of Plant Water Needs for Agriculture.

    PubMed

    Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier

    2016-01-01

    Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1-1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400-900 kHz and 200-400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained. PMID:27428968

  7. Plant-Parasitic Nematodes in Maine Agricultural Soils

    PubMed Central

    Huettel, W N.; Francl, L. J.; Henn, A.; Bourgoin, T.

    1990-01-01

    In a survey of plant-parasitic nematodes associated with agricultural crops in nine Maine counties, 744 soil samples from 26 potential host plants were analyzed between November 1987 and January 1989. The most commonly encountered nematode genus was Pratylenchus, occurring in 85% of the samples from most crops, except blueberries and onions. Pratylenchus penetrans and P. crenatus were found commonly as species mixtures, with P. penetrans composing 40-80% of the mixture. Meloidogyne hapla was encountered in 16% of the samples in four counties, generally in potato rotations. Other nematodes encountered were Aphelenchoides spp., Criconemella curvature, Ditylenchus spp., Helicotylenchus pseudorobustus, H. digonicus, Heterodera trifolii, Paratylenchus projectus, Trichodorus spp., Tylenchorhynchus maximus, and Xiphinema americanum. Potato fields were the most heavily sampled and thus weighted the statewide results. PMID:19287791

  8. Role of transgenic plants in agriculture and biopharming.

    PubMed

    Ahmad, Parvaiz; Ashraf, Muhammad; Younis, Muhammad; Hu, Xiangyang; Kumar, Ashwani; Akram, Nudrat Aisha; Al-Qurainy, F

    2012-01-01

    At present, environmental degradation and the consistently growing population are two main problems on the planet earth. Fulfilling the needs of this growing population is quite difficult from the limited arable land available on the globe. Although there are legal, social and political barriers to the utilization of biotechnology, advances in this field have substantially improved agriculture and human life to a great extent. One of the vital tools of biotechnology is genetic engineering (GE) which is used to modify plants, animals and microorganisms according to desired needs. In fact, genetic engineering facilitates the transfer of desired characteristics into other plants which is not possible through conventional plant breeding. A variety of crops have been engineered for enhanced resistance to a multitude of stresses such as herbicides, insecticides, viruses and a combination of biotic and abiotic stresses in different crops including rice, mustard, maize, potato, tomato, etc. Apart from the use of GE in agriculture, it is being extensively employed to modify the plants for enhanced production of vaccines, hormones, etc. Vaccines against certain diseases are certainly available in the market, but most of them are very costly. Developing countries cannot afford the disease control through such cost-intensive vaccines. Alternatively, efforts are being made to produce edible vaccines which are cheap and have many advantages over the commercialized vaccines. Transgenic plants generated for this purpose are capable of expressing recombinant proteins including viral and bacterial antigens and antibodies. Common food plants like banana, tomato, rice, carrot, etc. have been used to produce vaccines against certain diseases like hepatitis B, cholera, HIV, etc. Thus, the up- and down-regulation of desired genes which are used for the modification of plants have a marked role in the improvement of genetic crops. In this review, we have comprehensively discussed the role

  9. Effects of fuel processing methods on industrial scale biogas-fuelled solid oxide fuel cell system for operating in wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Farhad, Siamak; Yoo, Yeong; Hamdullahpur, Feridun

    The performance of three solid oxide fuel cell (SOFC) systems, fuelled by biogas produced through anaerobic digestion (AD) process, for heat and electricity generation in wastewater treatment plants (WWTPs) is studied. Each system has a different fuel processing method to prevent carbon deposition over the anode catalyst under biogas fuelling. Anode gas recirculation (AGR), steam reforming (SR), and partial oxidation (POX) are the methods employed in systems I-III, respectively. A planar SOFC stack used in these systems is based on the anode-supported cells with Ni-YSZ anode, YSZ electrolyte and YSZ-LSM cathode, operated at 800 °C. A computer code has been developed for the simulation of the planar SOFC in cell, stack and system levels and applied for the performance prediction of the SOFC systems. The key operational parameters affecting the performance of the SOFC systems are identified. The effect of these parameters on the electrical and CHP efficiencies, the generated electricity and heat, the total exergy destruction, and the number of cells in SOFC stack of the systems are studied. The results show that among the SOFC systems investigated in this study, the AGR and SR fuel processor-based systems with electrical efficiency of 45.1% and 43%, respectively, are suitable to be applied in WWTPs. If the entire biogas produced in a WWTP is used in the AGR or SR fuel processor-based SOFC system, the electricity and heat required to operate the WWTP can be completely self-supplied and the extra electricity generated can be sold to the electrical grid.

  10. Renewable Hydrogen Potential from Biogas in the United States

    SciTech Connect

    Saur, G.; Milbrandt, A.

    2014-07-01

    This analysis updates and expands upon previous biogas studies to include total potential and net availability of methane in raw biogas with respect to competing demands and includes a resource assessment of four sources of biogas: (1) wastewater treatment plants, including domestic and a new assessment of industrial sources; (2) landfills; (3) animal manure; and (4) a new assessment of industrial, institutional, and commercial sources. The results of the biogas resource assessment are used to estimate the potential production of renewable hydrogen from biogas as well as the fuel cell electric vehicles that the produced hydrogen might support.

  11. Microwave and thermal pretreatment as methods for increasing the biogas potential of secondary sludge from municipal wastewater treatment plants.

    PubMed

    Kuglarz, Mariusz; Karakashev, Dimitar; Angelidaki, Irini

    2013-04-01

    In the present study, the sludge was pretreated with microwave irradiation and low-temperature thermal method, both conducted under the same temperature range (30-100°C). Microwave pretreatment was found to be superior over the thermal treatment with respect to sludge solubilization and biogas production. Taking into account the specific energy demand of solubilization, the sludge pre-treated at 60-70°C by microwaves of 900 W was chosen for further experiments in continuous mode, which was more energetically sustainable compared to lower value (700 W) and thermal treatment. Continuous biogas reactor experiments indicated that pre-treated sludge (microwave irradiation: 900 W, temperature: 60-70°C) gave 35% more methane, compared to untreated sludge. Moreover, the results of this study clearly demonstrated that microwave pretreated sludge showed better degree of sanitation. PMID:23500587

  12. Microwave and thermal pretreatment as methods for increasing the biogas potential of secondary sludge from municipal wastewater treatment plants.

    PubMed

    Kuglarz, Mariusz; Karakashev, Dimitar; Angelidaki, Irini

    2013-04-01

    In the present study, the sludge was pretreated with microwave irradiation and low-temperature thermal method, both conducted under the same temperature range (30-100°C). Microwave pretreatment was found to be superior over the thermal treatment with respect to sludge solubilization and biogas production. Taking into account the specific energy demand of solubilization, the sludge pre-treated at 60-70°C by microwaves of 900 W was chosen for further experiments in continuous mode, which was more energetically sustainable compared to lower value (700 W) and thermal treatment. Continuous biogas reactor experiments indicated that pre-treated sludge (microwave irradiation: 900 W, temperature: 60-70°C) gave 35% more methane, compared to untreated sludge. Moreover, the results of this study clearly demonstrated that microwave pretreated sludge showed better degree of sanitation.

  13. Biogas: Production and utilization

    NASA Astrophysics Data System (ADS)

    Price, E. C.; Cheremisinoff, P. N.

    Among the aspects of biogas production and utilization covered are: (1) the microbiology and biochemistry of the acid and methane production stages in the anaerobic process; (2) factors affecting the process, such as temperature, acidity and alkalinity, nutrients, and cations; (3) denitrification processes and systems; and (4) the process kinetics of suspended growth systems, packed columns, and fluidized beds. Also considered are such issues in the application of this technology as the digestion of municipal treatment plant sludges, animal wastes, food processing wastes and energy crops. Attention is in addition given to anaerobic digester design, offgas measurement of anaerobic digesters, and sludge treatment through soil conditioning and composting.

  14. Plant protection under conditions of radioactive contamination of agricultural lands

    SciTech Connect

    Filipas, A.S.; Oulianenko, L.N.; Pimenov, E.P.

    1995-12-31

    Increasing influence of anthropogenic contaminants as well as substantiated risk of the action of ionizing radiation on agroecosystems suggest the necessity of studying both the state of separate components of cenosis and search for methods on retention of ecosystem stability as a whole. In this case it should be taken into account that by retention of resistance of living organisms to the action of stress agents not only genetically conditioned potential but induction of protective reactions at the expense of ecogene action is of deciding significance as well. Protection of agricultural plants on the territories subjected to radioactive contamination resulting from the ChNPP accident brings attention of research works to a series of problems, the main one being the minimization of pesticide use by the total ecologization of technological processes, in plant growing. But an ordinary discontinuance of conducting protective chemical measures leads to growth in the number of harmful organisms in crop sowings and as a consequence an increase of crop loss and decrease of its quality. It is possible to solve this problem by introduction of measures increasing the resistance of agricultural plants to the action of unfavorable factors of environment. Application of biologically active substances (BAS) of natural and synthetic nature for incrustation of seeds fits into these methods. For the territories with increased content of radionuclides and especially by their rehabilitation the methods of preventive treatments directed to retarding the development of harmful organisms in crop sowings and excluding subsequent technological operations on chemical protection of sowings takes on special significance as it is directly connected with the problem of radiation burden on workers of agroindustrial complex.

  15. Decolourisation of palm oil mill biogas plant wastewater using Poly-Diallyldimethyl Ammonium Chloride (polyDADMAC) and other chemical coagulants

    NASA Astrophysics Data System (ADS)

    Zahrim, A. Y.; Dexter, Z. D.

    2016-06-01

    Palm oil mill effluent was expected as a future source of renewable biogas. Nevertheless,colours in palm oil mill biogas plant wastewater (POMBPW) causes negative perception among the public and the wastewater is difficult to be treated biologically. In this study, the performance of various chemical coagulants i.e., calcium lactate, magnesium hydroxide, ferric chloride, aluminium chlorohydrate i.e. CK-800, CK-1000, and polyDADMAC, forPOMBPW colour removal were investigated. PolyDADMAC (1,000 mg/L) shows best colour removal (∼48%). The main coagulation process with polyDADMACcould be due to charge neutralization-bridging mechanism. The zeta potential analysis supports the finding where the value became positive as the dosage increases. The addition of polyDADMAC has increased the conductivity of the treated wastewater up to 9.22%; however, the final pH is maintained (8.0-8.3). It can be deduced that polyDADMAC has potential to treat POMBPW at low dosage.

  16. Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa.

    PubMed

    Green, S K; Schroth, M N; Cho, J J; Kominos, S K; Vitanza-jack, V B

    1974-12-01

    Pseudomonas aeruginosa was detected in 24% of the soil samples but in only 0.13% of the vegetable samples from various agricultural areas of California. The distribution of pyocin types of soil and vegetable isolates was similar to that of clinical strains, and three of the soil isolates were resistant to carbenicillin. Pseudomonas aeruginosa multiplied in lettuce and bean under conditions of high temperature and high relative humidity (27 C and 80-95% relative humidity) but declined when the temperature and humidity were lowered (16 C, 55-75% relative humidity). The results suggest that soil is a reservior for P. aeruginosa and that the bacterium has the capacity to colonize plants during favorable conditions of temperature and moisture. PMID:4217591

  17. Life Cycle Environmental Impacts of Electricity from Biogas Produced by Anaerobic Digestion.

    PubMed

    Fusi, Alessandra; Bacenetti, Jacopo; Fiala, Marco; Azapagic, Adisa

    2016-01-01

    The aim of this study was to evaluate life cycle environmental impacts associated with the generation of electricity from biogas produced by the anaerobic digestion (AD) of agricultural products and waste. Five real plants in Italy were considered, using maize silage, slurry, and tomato waste as feedstocks and cogenerating electricity and heat; the latter is not utilized. The results suggest that maize silage and the operation of anaerobic digesters, including open storage of digestate, are the main contributors to the impacts of biogas electricity. The system that uses animal slurry is the best option, except for the marine and terrestrial ecotoxicity. The results also suggest that it is environmentally better to have smaller plants using slurry and waste rather than bigger installations, which require maize silage to operate efficiently. Electricity from biogas is environmentally more sustainable than grid electricity for seven out of 11 impacts considered. However, in comparison with natural gas, biogas electricity is worse for seven out of 11 impacts. It also has mostly higher impacts than other renewables, with a few exceptions, notably solar photovoltaics. Thus, for the AD systems and mesophilic operating conditions considered in this study, biogas electricity can help reduce greenhouse gas (GHG) emissions relative to a fossil-intensive electricity mix; however, some other impacts increase. If mitigation of climate change is the main aim, other renewables have a greater potential to reduce GHG emissions. If, in addition to this, other impacts are considered, then hydro, wind, and geothermal power are better alternatives to biogas electricity. However, utilization of heat would improve significantly its environmental sustainability, particularly global warming potential, summer smog, and the depletion of abiotic resources and the ozone layer. Further improvements can be achieved by banning open digestate storage to prevent methane emissions and regulating

  18. Life Cycle Environmental Impacts of Electricity from Biogas Produced by Anaerobic Digestion

    PubMed Central

    Fusi, Alessandra; Bacenetti, Jacopo; Fiala, Marco; Azapagic, Adisa

    2016-01-01

    The aim of this study was to evaluate life cycle environmental impacts associated with the generation of electricity from biogas produced by the anaerobic digestion (AD) of agricultural products and waste. Five real plants in Italy were considered, using maize silage, slurry, and tomato waste as feedstocks and cogenerating electricity and heat; the latter is not utilized. The results suggest that maize silage and the operation of anaerobic digesters, including open storage of digestate, are the main contributors to the impacts of biogas electricity. The system that uses animal slurry is the best option, except for the marine and terrestrial ecotoxicity. The results also suggest that it is environmentally better to have smaller plants using slurry and waste rather than bigger installations, which require maize silage to operate efficiently. Electricity from biogas is environmentally more sustainable than grid electricity for seven out of 11 impacts considered. However, in comparison with natural gas, biogas electricity is worse for seven out of 11 impacts. It also has mostly higher impacts than other renewables, with a few exceptions, notably solar photovoltaics. Thus, for the AD systems and mesophilic operating conditions considered in this study, biogas electricity can help reduce greenhouse gas (GHG) emissions relative to a fossil-intensive electricity mix; however, some other impacts increase. If mitigation of climate change is the main aim, other renewables have a greater potential to reduce GHG emissions. If, in addition to this, other impacts are considered, then hydro, wind, and geothermal power are better alternatives to biogas electricity. However, utilization of heat would improve significantly its environmental sustainability, particularly global warming potential, summer smog, and the depletion of abiotic resources and the ozone layer. Further improvements can be achieved by banning open digestate storage to prevent methane emissions and regulating

  19. Life Cycle Environmental Impacts of Electricity from Biogas Produced by Anaerobic Digestion.

    PubMed

    Fusi, Alessandra; Bacenetti, Jacopo; Fiala, Marco; Azapagic, Adisa

    2016-01-01

    The aim of this study was to evaluate life cycle environmental impacts associated with the generation of electricity from biogas produced by the anaerobic digestion (AD) of agricultural products and waste. Five real plants in Italy were considered, using maize silage, slurry, and tomato waste as feedstocks and cogenerating electricity and heat; the latter is not utilized. The results suggest that maize silage and the operation of anaerobic digesters, including open storage of digestate, are the main contributors to the impacts of biogas electricity. The system that uses animal slurry is the best option, except for the marine and terrestrial ecotoxicity. The results also suggest that it is environmentally better to have smaller plants using slurry and waste rather than bigger installations, which require maize silage to operate efficiently. Electricity from biogas is environmentally more sustainable than grid electricity for seven out of 11 impacts considered. However, in comparison with natural gas, biogas electricity is worse for seven out of 11 impacts. It also has mostly higher impacts than other renewables, with a few exceptions, notably solar photovoltaics. Thus, for the AD systems and mesophilic operating conditions considered in this study, biogas electricity can help reduce greenhouse gas (GHG) emissions relative to a fossil-intensive electricity mix; however, some other impacts increase. If mitigation of climate change is the main aim, other renewables have a greater potential to reduce GHG emissions. If, in addition to this, other impacts are considered, then hydro, wind, and geothermal power are better alternatives to biogas electricity. However, utilization of heat would improve significantly its environmental sustainability, particularly global warming potential, summer smog, and the depletion of abiotic resources and the ozone layer. Further improvements can be achieved by banning open digestate storage to prevent methane emissions and regulating

  20. Anaerobic digestion of agricultural and other substrates--implications for greenhouse gas emissions.

    PubMed

    Pucker, J; Jungmeier, G; Siegl, S; Pötsch, E M

    2013-06-01

    The greenhouse gas (GHG) emissions, expressed in carbon dioxide equivalents (CO2-eq), of different Austrian biogas systems were analyzed and evaluated using life-cycle assessment (LCA) as part of a national project. Six commercial biogas plants were investigated and the analysis included the complete process chain: viz., the production and collection of substrates, the fermentation of the substrates in the biogas plant, the upgrading of biogas to biomethane (if applicable) and the use of the biogas or biomethane for heat and electricity or as transportation fuel. Furthermore, the LCA included the GHG emissions of construction, operation and dismantling of the major components involved in the process chain, as well as the use of by-products (e.g. fermentation residues used as fertilizers). All of the biogas systems reduced GHG emissions (in CO2-eq) compared with fossil reference systems. The potential for GHG reduction of the individual biogas systems varied between 60% and 100%. Type of feedstock and its reference use, agricultural practices, coverage of storage tanks for fermentation residues, methane leakage at the combined heat and power plant unit and the proportion of energy used as heat were identified as key factors influencing the GHG emissions of anaerobic digestion processes. PMID:23739470

  1. Revising and Updating the Plant Science Components of the Connecticut Vocational Agriculture Curriculum.

    ERIC Educational Resources Information Center

    Connecticut Univ., Storrs. Dept. of Educational Leadership.

    This curriculum guide provides the plant science components of the vocational agriculture curriculum for Regional Vocational Agriculture Centers. The curriculum is divided into exploratory units for students in the 9th and 10th grades and specialized units for students in grades 11 and 12. The five exploratory units are: agricultural pest control;…

  2. Sludge storage lagoon biogas recovery and use

    SciTech Connect

    Muller, D.; Norville, C. )

    1991-07-01

    The City of Memphis has two wastewater treatment plants. The SWTP employs two large anaerobic digestion sludge lagoons as part of the overall sludge treatment system. Although these lagoons are effective in concentrating and digesting sludge, they can generate offensive odors. The SWTP uses aerobic digesters to partially stabilize the sludge and help reduce objectionable odors before it enters the lagoons. The anaerobic digestion of sludge in the lagoons results in the dispersion of a large quantity of biogas into the atmosphere. The City realized that if the lagoons could be covered, the odor problem could be resolved, and at the same, time, biogas could be recovered and utilized as a source of energy. In 1987, the City commissioned ADI International to conduct a feasibility study to evaluate alternative methods of covering the lagoons and recovering and utilizing the biogas. The study recommended that the project be developed in two phases: (1) recovery of the biogas and (2) utilization of the biogas. Phase 1 consists of covering the two lagoons with an insulated membrane to control odor and temperature and collect the biogas. Phase 1 was found to be economically feasible and offered a unique opportunity for the City to save substantial operating costs at the treatment facility. The Memphis biogas recovery project is the only application in the world where a membrane cover has been used on a municipal wastewater sludge lagoon. It is also the largest lagoon cover system in the world.

  3. One foot in the furrow: linkages between agriculture, plant pathology, and public health.

    PubMed

    Scholthof, Karen-Beth G

    2003-01-01

    Plant pathology is a field of biology that focuses on understanding the nature of disease in plants as well as on more practical aspects of preventing and controlling plant diseases in crop plants that are important to agriculture. Throughout history, plant diseases have had significant effects on human health and welfare. Several examples, in both historical and contemporary contexts, are presented in this review to show how plant pathogens, biotechnology, and farming practices have affected public health. Specific topics illustrating clear linkages between agriculture and human health include allergens in the environment, food-safety and agricultural practices, mycotoxigenic fungi, agrobioterrorism, and the biological control of plant diseases. The further argument is made that in order to monitor and ensure that good health and safety practices are maintained from "farm to fork," public health specialists may benefit from the resources and expertise of agricultural scientists.

  4. Characterisation and treatment of VOCs in process water from upgrading facilities for compressed biogas (CBG).

    PubMed

    Nilsson Påledal, S; Arrhenius, K; Moestedt, J; Engelbrektsson, J; Stensen, K

    2016-02-01

    Compression and upgrading of biogas to vehicle fuel generates process water, which to varying degrees contains volatile organic compounds (VOCs) originating from the biogas. The compostion of this process water has not yet been studied and scientifically published and there is currently an uncertainty regarding content of VOCs and how the process water should be managed to minimise the impact on health and the environment. The aim of the study was to give an overview about general levels of VOCs in the process water. Characterisation of process water from amine and water scrubbers at plants digesting waste, sewage sludge or agricultural residues showed that both the average concentration and composition of particular VOCs varied depending on the substrate used at the biogas plant, but the divergence was high and the differences for total concentrations from the different substrate groups were only significant for samples from plants using waste compared to residues from agriculture. The characterisation also showed that the content of VOCs varied greatly between different sampling points for same main substrate and between sampling occasions at the same sampling point, indicating that site-specific conditions are important for the results which also indicates that a number of analyses at different times are required in order to make an more exact characterisation with low uncertainty. Inhibition of VOCs in the anaerobic digestion (AD) process was studied in biomethane potential tests, but no inhibition was observed during addition of synthetic process water at concentrations of 11.6 mg and 238 mg VOC/L.

  5. Gasification of agricultural residues in a demonstrative plant: corn cobs.

    PubMed

    Biagini, Enrico; Barontini, Federica; Tognotti, Leonardo

    2014-12-01

    Biomass gasification couples the high power efficiency with the possibility of valuably using the byproducts heat and biochar. The use of agricultural wastes instead of woody feedstock extends the seasonal availability of biomasses. The downdraft type is the most used reactor but has narrow ranges of feedstock specifications (above all on moisture and particle size distribution), so tests on a demonstrative scale are conducted to prove the versatility of the gasifier. Measurements on pressure drops, syngas flow rate and composition are studied to assess the feasibility of such operations with corn cobs. Material and energy balances, and performance indexes are compared for the four tests carried out under different biomass loads (66-85 kg/h). A good operability of the plant and interesting results are obtained (gas specific production of 2 m3/kg, gas heating value 5.6-5.8 MJ/m3, cold gas efficiency in the range 66-68%, potential net power efficiency 21.1-21.6%). PMID:25299486

  6. Sustainable agriculture and plant diseases: an epidemiological perspective.

    PubMed

    Gilligan, Christopher A

    2008-02-27

    The potential for modern biology to identify new sources for genetical, chemical and biological control of plant disease is remarkably high. Successful implementation of these methods within globally and locally changing agricultural environments demands new approaches to durable control. This, in turn, requires fusion of population genetics and epidemiology at a range of scales from the field to the landscape and even to continental deployment of control measures. It also requires an understanding of economic and social constraints that influence the deployment of control. Here I propose an epidemiological framework to model invasion, persistence and variability of epidemics that encompasses a wide range of scales and topologies through which disease spreads. By considering how to map control methods onto epidemiological parameters and variables, some new approaches towards optimizing the efficiency of control at the landscape scale are introduced. Epidemiological strategies to minimize the risks of failure of chemical and genetical control are presented and some consequences of heterogeneous selection pressures in time and space on the persistence and evolutionary changes of the pathogen population are discussed. Finally, some approaches towards embedding epidemiological models for the deployment of control in an economically plausible framework are presented.

  7. Gasification of agricultural residues in a demonstrative plant: corn cobs.

    PubMed

    Biagini, Enrico; Barontini, Federica; Tognotti, Leonardo

    2014-12-01

    Biomass gasification couples the high power efficiency with the possibility of valuably using the byproducts heat and biochar. The use of agricultural wastes instead of woody feedstock extends the seasonal availability of biomasses. The downdraft type is the most used reactor but has narrow ranges of feedstock specifications (above all on moisture and particle size distribution), so tests on a demonstrative scale are conducted to prove the versatility of the gasifier. Measurements on pressure drops, syngas flow rate and composition are studied to assess the feasibility of such operations with corn cobs. Material and energy balances, and performance indexes are compared for the four tests carried out under different biomass loads (66-85 kg/h). A good operability of the plant and interesting results are obtained (gas specific production of 2 m3/kg, gas heating value 5.6-5.8 MJ/m3, cold gas efficiency in the range 66-68%, potential net power efficiency 21.1-21.6%).

  8. Chemosensitization of plant pathogenic fungi to agricultural fungicides.

    PubMed

    Dzhavakhiya, Vitaly; Shcherbakova, Larisa; Semina, Yulia; Zhemchuzhina, Natalia; Campbell, Bruce

    2012-01-01

    A common consequence of using agricultural fungicides is the development of resistance by fungal pathogens, which undermines reliability of fungicidal effectiveness. A potentially new strategy to aid in overcoming or minimizing this problem is enhancement of pathogen sensitivity to fungicides, or "chemosensitization." Chemosensitization can be accomplished by combining a commercial fungicide with a certain non- or marginally fungicidal substance at levels where, alone, neither compound would be effective. Chemosensitization decreases the probability of the pathogen developing resistance, reduces the toxic impact on the environment by lowering effective dosage levels of toxic fungicides, and improves efficacy of antifungal agents. The present study shows that the antifungal activity of azole and strobilurin fungicides can be significantly enhanced through their co-application with certain natural or synthetic products against several economically important plant pathogenic fungi. Quadris (azoxystrobin) combined with thymol at a non-fungitoxic concentration produced much higher growth inhibition of Bipolaris sorokiniana, Phoma glomerata, Alternaria sp. and Stagonospora nodorum than the fungicide alone. The effect of Dividend (difenoconazole) applied with thymol significantly enhanced antifungal activity against B. sorokiniana and S. nodorum. Folicur (tebuconazole) combined with 4-hydroxybenzaldehyde (4-HBA), 2,3-dihydroxybenzaldehyde or thymol significantly inhibited growth of Alternaria alternata, at a much greater level than the fungicide alone. In addition, co-application of Folicur and 4-HBA resulted in a similar enhancement of antifungal activity against Fusarium culmorum. Lastly, we discovered that metabolites in the culture liquid of Fusarium sambucinum biocontrol isolate FS-94 also had chemosensitizing activity, increasing S. nodorum sensitivity to Folicur and Dividend. PMID:22408641

  9. Chemosensitization of Plant Pathogenic Fungi to Agricultural Fungicides

    PubMed Central

    Dzhavakhiya, Vitaly; Shcherbakova, Larisa; Semina, Yulia; Zhemchuzhina, Natalia; Campbell, Bruce

    2012-01-01

    A common consequence of using agricultural fungicides is the development of resistance by fungal pathogens, which undermines reliability of fungicidal effectiveness. A potentially new strategy to aid in overcoming or minimizing this problem is enhancement of pathogen sensitivity to fungicides, or “chemosensitization.” Chemosensitization can be accomplished by combining a commercial fungicide with a certain non- or marginally fungicidal substance at levels where, alone, neither compound would be effective. Chemosensitization decreases the probability of the pathogen developing resistance, reduces the toxic impact on the environment by lowering effective dosage levels of toxic fungicides, and improves efficacy of antifungal agents. The present study shows that the antifungal activity of azole and strobilurin fungicides can be significantly enhanced through their co-application with certain natural or synthetic products against several economically important plant pathogenic fungi. Quadris (azoxystrobin) combined with thymol at a non-fungitoxic concentration produced much higher growth inhibition of Bipolaris sorokiniana, Phoma glomerata, Alternaria sp. and Stagonospora nodorum than the fungicide alone. The effect of Dividend (difenoconazole) applied with thymol significantly enhanced antifungal activity against B. sorokiniana and S. nodorum. Folicur (tebuconazole) combined with 4-hydroxybenzaldehyde (4-HBA), 2,3-dihydroxybenzaldehyde or thymol significantly inhibited growth of Alternaria alternata, at a much greater level than the fungicide alone. In addition, co-application of Folicur and 4-HBA resulted in a similar enhancement of antifungal activity against Fusarium culmorum. Lastly, we discovered that metabolites in the culture liquid of Fusarium sambucinum biocontrol isolate FS-94 also had chemosensitizing activity, increasing S. nodorum sensitivity to Folicur and Dividend. PMID:22408641

  10. Chemosensitization of plant pathogenic fungi to agricultural fungicides.

    PubMed

    Dzhavakhiya, Vitaly; Shcherbakova, Larisa; Semina, Yulia; Zhemchuzhina, Natalia; Campbell, Bruce

    2012-01-01

    A common consequence of using agricultural fungicides is the development of resistance by fungal pathogens, which undermines reliability of fungicidal effectiveness. A potentially new strategy to aid in overcoming or minimizing this problem is enhancement of pathogen sensitivity to fungicides, or "chemosensitization." Chemosensitization can be accomplished by combining a commercial fungicide with a certain non- or marginally fungicidal substance at levels where, alone, neither compound would be effective. Chemosensitization decreases the probability of the pathogen developing resistance, reduces the toxic impact on the environment by lowering effective dosage levels of toxic fungicides, and improves efficacy of antifungal agents. The present study shows that the antifungal activity of azole and strobilurin fungicides can be significantly enhanced through their co-application with certain natural or synthetic products against several economically important plant pathogenic fungi. Quadris (azoxystrobin) combined with thymol at a non-fungitoxic concentration produced much higher growth inhibition of Bipolaris sorokiniana, Phoma glomerata, Alternaria sp. and Stagonospora nodorum than the fungicide alone. The effect of Dividend (difenoconazole) applied with thymol significantly enhanced antifungal activity against B. sorokiniana and S. nodorum. Folicur (tebuconazole) combined with 4-hydroxybenzaldehyde (4-HBA), 2,3-dihydroxybenzaldehyde or thymol significantly inhibited growth of Alternaria alternata, at a much greater level than the fungicide alone. In addition, co-application of Folicur and 4-HBA resulted in a similar enhancement of antifungal activity against Fusarium culmorum. Lastly, we discovered that metabolites in the culture liquid of Fusarium sambucinum biocontrol isolate FS-94 also had chemosensitizing activity, increasing S. nodorum sensitivity to Folicur and Dividend.

  11. The good, the bad or the ugly: Microbial biomass of biogas residues as a contributor to soil carbon cycle

    NASA Astrophysics Data System (ADS)

    Coban, H.; Miltner, A.; Kaestner, M.

    2013-12-01

    Loss of soil organic matter is a recent problem in soils all over the world. This can be related to enhanced mineralization of the soil organic matter due to land use change, which is a source of anthropogenic carbon dioxide increase. For example, the carbon input from plant residues is reduced because of the increased cultivation of bioenergy crops. In order to avoid soil degradation, application of biogas residues is a common practice in such areas. Biogas residues are side products of biogas production and contain microbial biomass. Application of these residues as soil additive influences the soil microorganisms as well as the carbon cycle. We study this effect by incubating 13C-labeled biogas residues in an arable soil from the Static Fertilization Experiment in Bad Lauchstaedt, Germany. Labeled residues were produced via labeling of active microbial biomass by addition of KH13CO3 to biogas reactors. High enrichment in the various phospholipid fatty acids proved the successful labeling of the biomass. The labeled biogas residues are being long-term incubated in the soil. During incubation, we monitor the fate of the carbon by analyzing the label in phospholipid fatty acids, amino acids as well as carbon dioxide. This allows us to trace the fate of the biogas residues-derived C in soil and to quantify the effect on the transformation of the natural soil organic matter (e.g. negative effects such as priming effects). Also, microbial community dynamics will be determined using molecular biology tools such as denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR (Q-PCR). In order to prevent potentially negative effects, various additives such as charred biomaterials, clays and chopped bark will be tested to improve the carbon storage in soil. In conclusion, this study investigates the fate and impact of biogas residues used as a soil additive on the soil microbial community and amount of soil organic matter. It is aimed to understand and

  12. Effect of biological pretreatment of Agropyron elongatum 'BAMAR' on biogas production by anaerobic digestion.

    PubMed

    Lalak, Justyna; Kasprzycka, Agnieszka; Martyniak, Danuta; Tys, Jerzy

    2016-01-01

    The aim of this work was to analyze the impact of three different moisture contents (MC), at 45% MC, 65% MC, 75% MC, on the degradation of cellulose, hemicellulose, and lignin during fungi treatment by Flammulina velutipes of Agropyron elongatum 'BAMAR' and on biogas production. The analysis of chemical composition shown that F. velutipes had greater selectivity for lignin biodegradation with the highest hemicellulose and lignin removal at 29.1% and 35.4%, respectively, and lowest cellulose removal (20.48%) at 65% MC. F. velutipes cultivated at 65% MC increased biogas production of 398.07Ndm(3)kg(-1)VS(-1), which was 120% higher than the untreated sample. These treatment conditions resulted in 134% more methane yield compared with untreated sample. The results of this study suggested that A. elongatum is a potential biomass for biogas production in agriculture biogas plant and white-rot fungus F. velutipes provides an effective methods for improve biodegradation of A. elongatum. PMID:26492171

  13. Potential alternative fuel sources for agricultural crops and plant components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The changing landscape of agricultural production is placing unprecedented demands on farmers as they face increasing global competition and greater natural resource conservation challenges. However, shrinking profit margins due to increasing input costs, particularly of fuel and fertilizer, can res...

  14. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology.

    PubMed

    Holaskova, Edita; Galuszka, Petr; Frebort, Ivo; Oz, M Tufan

    2015-11-01

    Antimicrobial peptides (AMPs) are vital components of the innate immune system of nearly all living organisms. They generally act in the first line of defense against various pathogenic bacteria, parasites, enveloped viruses and fungi. These low molecular mass peptides are considered prospective therapeutic agents due to their broad-spectrum rapid activity, low cytotoxicity to mammalian cells and unique mode of action which hinders emergence of pathogen resistance. In addition to medical use, AMPs can also be employed for development of innovative approaches for plant protection in agriculture. Conferred disease resistance by AMPs might help us surmount losses in yield, quality and safety of agricultural products due to plant pathogens. Heterologous expression in plant-based systems, also called plant molecular farming, offers cost-effective large-scale production which is regarded as one of the most important factors for clinical or agricultural use of AMPs. This review presents various types of AMPs as well as plant-based platforms ranging from cell suspensions to whole plants employed for peptide production. Although AMP production in plants holds great promises for medicine and agriculture, specific technical limitations regarding product yield, function and stability still remain. Additionally, establishment of particular stable expression systems employing plants or plant tissues generally requires extended time scale for platform development compared to certain other heterologous systems. Therefore, fast and promising tools for evaluation of plant-based expression strategies and assessment of function and stability of the heterologously produced AMPs are critical for molecular farming and plant protection.

  15. Biogas electricity -- The Pura village case study

    SciTech Connect

    Rajabapaiah, P.; Jayakumar, S.; Reddy, A.K.N.

    1993-12-31

    A potentially useful decentralized source of energy is biogas, which is an approximately 60:40 mixture of methane (CH{sub 4}) and carbon dioxide (CO{sub 2}), produced by the anaerobic fermentation of cellulosic biomass materials such as bovine wastes. Since 1987, the traditional system of obtaining water, illumination, and fertilizer in Pura village in south India has been replaced with a community biogas plant electricity-generation system. The technical, managerial, and economical aspects of this system are the subject manner of the present paper. Various subsystems are described, and the problems of operation and maintenance under field conditions are also discussed. A comparison of Pura`s present community biogas system with its traditional means for obtaining water, illumination, and fertilizer shows that the households are winners on all counts, having obtained such benefits as improved hygiene and convenience at relatively low cost. The Pura community biogas plant is held together and sustained by the convergence of individual and collective interests. Noncooperation with the community biogas plant results in a heavy individual price (access to water and light being cut off by the village), which is too great a personal loss to compensate for the minor advantages of noncooperation and noncontribution to collective interests.

  16. Department of Agriculture, Animal and Plant Health Inspection Service

    MedlinePlus

    ... Focus Animal Health Animal Welfare Biotechnology Business Services Civil Rights Emergency Response Imports & Exports International Services Plant ... Focus Animal Health Animal Welfare Biotechnology Business Services Civil Rights Emergency Response Imports & Exports International Services Plant ...

  17. Using microbial community interactions within plant microbiomes to advance an evergreen agricultural revolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Innovative plant breeding and technology transfer fostered the Green Revolution, which transformed agriculture worldwide by increasing grain yields in developing countries. The Green Revolution temporarily alleviated world hunger, but also reduced biodiversity, nutrient cycling, and carbon sequestr...

  18. Isotopes and radiation in agricultural sciences: Animals, plants, food and the environment. Volume 2

    SciTech Connect

    L'Annunziata, M.F.; Legg, J.O.

    1984-01-01

    This book concentrates on techniques used in studies of the biochemistry of living systems important to agriculture, the preservation of food, and the environment. Topics considered include animals, radiopreservation, biochemistry, plants, radioisotopes, and food processing.

  19. Relationship between humanity and plant natural resources – in the context of food and agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture, the domestication, culture, and management of plants and animals, has led to profound social changes in human evolution and development; it can be considered as the basis for civilization. Roughly 12,000 years ago agriculture appeared independently in several parts of the world. A natur...

  20. Improved detection of extended spectrum beta-lactamase (ESBL)-producing Escherichia coli in input and output samples of German biogas plants by a selective pre-enrichment procedure.

    PubMed

    Schauss, Thorsten; Glaeser, Stefanie P; Gütschow, Alexandra; Dott, Wolfgang; Kämpfer, Peter

    2015-01-01

    The presence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli was investigated in input (manure from livestock husbandry) and output samples of six German biogas plants in 2012 (one sampling per biogas plant) and two German biogas plants investigated in an annual cycle four times in 2013/2014. ESBL-producing Escherichia coli were cultured by direct plating on CHROMagar ESBL from input samples in the range of 100 to 104 colony forming units (CFU) per g dry weight but not from output sample. This initially indicated a complete elimination of ESBL-producing E. coli by the biogas plant process. Detected non target bacteria were assigned to the genera Acinetobacter, Pseudomonas, Bordetella, Achromobacter, Castellaniella, and Ochrobactrum. A selective pre-enrichment procedure increased the detection efficiency of ESBL-producing E. coli in input samples and enabled the detection in five of eight analyzed output samples. In total 119 ESBL-producing E. coli were isolated from input and 46 from output samples. Most of the E. coli isolates carried CTX-M-type and/or TEM-type beta lactamases (94%), few SHV-type beta lactamase (6%). Sixty-four blaCTX-M genes were characterized more detailed and assigned mainly to CTX-M-groups 1 (85%) and 9 (13%), and one to group 2. Phylogenetic grouping of 80 E. coli isolates showed that most were assigned to group A (71%) and B1 (27%), only one to group D (2%). Genomic fingerprinting and multilocus sequence typing (MLST) showed a high clonal diversity with 41 BOX-types and 19 ST-types. The two most common ST-types were ST410 and ST1210. Antimicrobial susceptibility testing of 46 selected ESBL-producing E. coli revealed that several isolates were additionally resistant to other veterinary relevant antibiotics and some grew on CHROMagar STEC but shiga-like toxine (SLT) genes were not detected. Resistance to carbapenems was not detected. In summary the study showed for the first time the presence of ESBL-producing E. coli in

  1. Improved detection of extended spectrum beta-lactamase (ESBL)-producing Escherichia coli in input and output samples of German biogas plants by a selective pre-enrichment procedure.

    PubMed

    Schauss, Thorsten; Glaeser, Stefanie P; Gütschow, Alexandra; Dott, Wolfgang; Kämpfer, Peter

    2015-01-01

    The presence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli was investigated in input (manure from livestock husbandry) and output samples of six German biogas plants in 2012 (one sampling per biogas plant) and two German biogas plants investigated in an annual cycle four times in 2013/2014. ESBL-producing Escherichia coli were cultured by direct plating on CHROMagar ESBL from input samples in the range of 100 to 104 colony forming units (CFU) per g dry weight but not from output sample. This initially indicated a complete elimination of ESBL-producing E. coli by the biogas plant process. Detected non target bacteria were assigned to the genera Acinetobacter, Pseudomonas, Bordetella, Achromobacter, Castellaniella, and Ochrobactrum. A selective pre-enrichment procedure increased the detection efficiency of ESBL-producing E. coli in input samples and enabled the detection in five of eight analyzed output samples. In total 119 ESBL-producing E. coli were isolated from input and 46 from output samples. Most of the E. coli isolates carried CTX-M-type and/or TEM-type beta lactamases (94%), few SHV-type beta lactamase (6%). Sixty-four blaCTX-M genes were characterized more detailed and assigned mainly to CTX-M-groups 1 (85%) and 9 (13%), and one to group 2. Phylogenetic grouping of 80 E. coli isolates showed that most were assigned to group A (71%) and B1 (27%), only one to group D (2%). Genomic fingerprinting and multilocus sequence typing (MLST) showed a high clonal diversity with 41 BOX-types and 19 ST-types. The two most common ST-types were ST410 and ST1210. Antimicrobial susceptibility testing of 46 selected ESBL-producing E. coli revealed that several isolates were additionally resistant to other veterinary relevant antibiotics and some grew on CHROMagar STEC but shiga-like toxine (SLT) genes were not detected. Resistance to carbapenems was not detected. In summary the study showed for the first time the presence of ESBL-producing E. coli in

  2. Improved Detection of Extended Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli in Input and Output Samples of German Biogas Plants by a Selective Pre-Enrichment Procedure

    PubMed Central

    Schauss, Thorsten; Glaeser, Stefanie P.; Gütschow, Alexandra; Dott, Wolfgang; Kämpfer, Peter

    2015-01-01

    The presence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli was investigated in input (manure from livestock husbandry) and output samples of six German biogas plants in 2012 (one sampling per biogas plant) and two German biogas plants investigated in an annual cycle four times in 2013/2014. ESBL-producing Escherichia coli were cultured by direct plating on CHROMagar ESBL from input samples in the range of 100 to 104 colony forming units (CFU) per g dry weight but not from output sample. This initially indicated a complete elimination of ESBL-producing E. coli by the biogas plant process. Detected non target bacteria were assigned to the genera Acinetobacter, Pseudomonas, Bordetella, Achromobacter, Castellaniella, and Ochrobactrum. A selective pre-enrichment procedure increased the detection efficiency of ESBL-producing E. coli in input samples and enabled the detection in five of eight analyzed output samples. In total 119 ESBL-producing E. coli were isolated from input and 46 from output samples. Most of the E. coli isolates carried CTX-M-type and/or TEM-type beta lactamases (94%), few SHV-type beta lactamase (6%). Sixty-four blaCTX-M genes were characterized more detailed and assigned mainly to CTX-M-groups 1 (85%) and 9 (13%), and one to group 2. Phylogenetic grouping of 80 E. coli isolates showed that most were assigned to group A (71%) and B1 (27%), only one to group D (2%). Genomic fingerprinting and multilocus sequence typing (MLST) showed a high clonal diversity with 41 BOX-types and 19 ST-types. The two most common ST-types were ST410 and ST1210. Antimicrobial susceptibility testing of 46 selected ESBL-producing E. coli revealed that several isolates were additionally resistant to other veterinary relevant antibiotics and some grew on CHROMagar STEC but shiga-like toxine (SLT) genes were not detected. Resistance to carbapenems was not detected. In summary the study showed for the first time the presence of ESBL-producing E. coli in

  3. Plant growth-promoting bacteria as inoculants in agricultural soils.

    PubMed

    Souza, Rocheli de; Ambrosini, Adriana; Passaglia, Luciane M P

    2015-12-01

    Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria.

  4. Plant growth-promoting bacteria as inoculants in agricultural soils

    PubMed Central

    de Souza, Rocheli; Ambrosini, Adriana; Passaglia, Luciane M.P.

    2015-01-01

    Abstract Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria. PMID:26537605

  5. Persistence and Potential Viable but Non-culturable State of Pathogenic Bacteria during Storage of Digestates from Agricultural Biogas Plants

    PubMed Central

    Maynaud, Geraldine; Pourcher, Anne-Marie; Ziebal, Christine; Cuny, Anais; Druilhe, Céline; Steyer, Jean-Philippe; Wéry, Nathalie

    2016-01-01

    Despite the development of on-farm anaerobic digestion as a process for making profitable use of animal by-products, factors leading to the inactivation of pathogenic bacteria during storage of digestates remain poorly described. Here, a microcosm approach was used to evaluate the persistence of three pathogenic bacteria (Salmonella enterica Derby, Campylobacter coli and Listeria monocytogenes) in digestates from farms, stored for later land spreading. Nine samples, including raw digestates, liquid fractions of digestate and composted digestates, were inoculated with each pathogen and maintained for 40 days at 24°C. Concentrations of pathogens were monitored using culture and qPCR methods. The persistence of L. monocytogenes, detected up to 20 days after inoculation, was higher than that of Salmonella Derby, detected for 7–20 days, and of C. coli (not detected after 7 days). In some digestates, the concentration of the pathogens by qPCR assay was several orders of magnitude higher than the concentration of culturable cells, suggesting a potential loss of culturability and induction of Viable but Non-Culturable (VBNC) state. The potential VBNC state which was generally not observed in the same digestate for the three pathogens, occurred more frequently for C. coli and L. monocytogenes than for Salmonella Derby. Composting a digestate reduced the persistence of seeded L. monocytogenes but promoted the maintenance of Salmonella Derby. The effect of NH4+/NH3 on the culturability of C. coli and Salmonella Derby was also shown. The loss of culturability may be the underlying mechanism for the regrowth of pathogens. We have also demonstrated the importance of using molecular tools to monitor pathogens in environmental samples since culture methods may underestimate cell concentration. Our results underline the importance of considering VBNC cells when evaluating the sanitary effect of an anaerobic digestion process and the persistence of pathogens during the storage of digestates and subsequent land spreading. PMID:27695451

  6. Persistence and Potential Viable but Non-culturable State of Pathogenic Bacteria during Storage of Digestates from Agricultural Biogas Plants

    PubMed Central

    Maynaud, Geraldine; Pourcher, Anne-Marie; Ziebal, Christine; Cuny, Anais; Druilhe, Céline; Steyer, Jean-Philippe; Wéry, Nathalie

    2016-01-01

    Despite the development of on-farm anaerobic digestion as a process for making profitable use of animal by-products, factors leading to the inactivation of pathogenic bacteria during storage of digestates remain poorly described. Here, a microcosm approach was used to evaluate the persistence of three pathogenic bacteria (Salmonella enterica Derby, Campylobacter coli and Listeria monocytogenes) in digestates from farms, stored for later land spreading. Nine samples, including raw digestates, liquid fractions of digestate and composted digestates, were inoculated with each pathogen and maintained for 40 days at 24°C. Concentrations of pathogens were monitored using culture and qPCR methods. The persistence of L. monocytogenes, detected up to 20 days after inoculation, was higher than that of Salmonella Derby, detected for 7–20 days, and of C. coli (not detected after 7 days). In some digestates, the concentration of the pathogens by qPCR assay was several orders of magnitude higher than the concentration of culturable cells, suggesting a potential loss of culturability and induction of Viable but Non-Culturable (VBNC) state. The potential VBNC state which was generally not observed in the same digestate for the three pathogens, occurred more frequently for C. coli and L. monocytogenes than for Salmonella Derby. Composting a digestate reduced the persistence of seeded L. monocytogenes but promoted the maintenance of Salmonella Derby. The effect of NH4+/NH3 on the culturability of C. coli and Salmonella Derby was also shown. The loss of culturability may be the underlying mechanism for the regrowth of pathogens. We have also demonstrated the importance of using molecular tools to monitor pathogens in environmental samples since culture methods may underestimate cell concentration. Our results underline the importance of considering VBNC cells when evaluating the sanitary effect of an anaerobic digestion process and the persistence of pathogens during the storage of digestates and subsequent land spreading.

  7. Energy Efficiency of Biogas Produced from Different Biomass Sources

    NASA Astrophysics Data System (ADS)

    Begum, Shahida; Nazri, A. H.

    2013-06-01

    Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.

  8. THE USE OF CHEMICALS AS PLANT REGULATORS. AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 8.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    ONE OF A SERIES DESIGNED TO ASSIST TEACHERS IN PREPARING POST-SECONDARY STUDENTS FOR AGRICULTURAL CHEMICAL OCCUPATIONS, THIS MODULE IS SPECIFICALLY CONCERNED WITH CHEMICALS AS PLANT REGULATORS. IT WAS DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF DATA FROM STATE STUDIES. SECTIONS INCLUDE -- (1) CHEMICALS AS MODIFIERS OF PLANT GROWTH, (2)…

  9. Accumulation of artificial radionuclides in agricultural plants in the area used for surface nuclear tests.

    PubMed

    Kozhakhanov, T E; Lukashenko, S N; Larionova, N V

    2014-11-01

    The paper reports on the study of artificial radionuclide accumulation in agricultural crops grown at the territory with high concentration of radionuclides, and first of all - with high concentration of transuranium elements. As a result of this work, peculiarities of accumulation and distribution of artificial radionuclides in the vegetative and generative organs of the studied plants have been revealed. Basic accumulation factors have been found for (137)Cs, (90)Sr, (239+240)Pu, and (241)Am in agricultural products. Accumulation factor dependence on type of planting was found for the investigated types of plants. It has been found that the vegetative organs accumulate radionuclides most of all.

  10. Correlation between biogas yield and chemical composition of energy crops.

    PubMed

    Dandikas, V; Heuwinkel, H; Lichti, F; Drewes, J E; Koch, K

    2014-12-01

    The scope of this study was to investigate the influence of the chemical composition of energy crops on biogas and methane yield. In total, 41 different plants were analyzed in batch test and their chemical composition was determined. For acid detergent lignin (ADL) content below 10% of total solids, a significant negative correlation for biogas and methane yields (r≈-0.90) was observed. Based on a simple regression analysis, more than 80% of the sample variation can be explained through ADL. Based on a principal component analysis and multiple regression analysis, ADL and hemicellulose are suggested as suitable model variables for biogas yield potential predictions across plant species. PMID:25443623

  11. Creating an agricultural world order: regional plant protection problems and international phytopathology, 1878-1939.

    PubMed

    Castonguay, Stéphane

    2010-01-01

    Beginning in 1878 with the International Phylloxera Convention of Berne, international conventions have sought to relieve national agricultural industries from two specific burdens. First, by defining phytosanitary practices to be enforced by national plant protection services, these conventions attempted to prevent the introduction of plant diseases and pests into national territories from which they were previously absent. Second, by standardizing these practices - especially through the design of a unique certificate of inspection - the conventions attempted to eliminate barriers such as quarantines affection international agricultural trade. The succession of phytopathological conventions seemed to epitomize the coalescence of an international community against agricultural pests. What actually coalesced was bio-geopolitics wherein plant pathologists and economic entomologists from North America and the British Empire questioned the so-called internationality of the environmental and economic specificities of continental European agriculture, embodied in "international" conventions. Although an international phenomenon, the dissemination of agricultural pests provided opportunities for cooperation on a strictly regional albeit transnational basis that pitted bio-geopolitical spaces against each other. This article retraces the formation of these spaces by analyzing the deliberations of committees and congresses that gathered to define an international agricultural order based on the means to prevent the spread of plant diseases and pests. PMID:20329355

  12. Creating an agricultural world order: regional plant protection problems and international phytopathology, 1878-1939.

    PubMed

    Castonguay, Stéphane

    2010-01-01

    Beginning in 1878 with the International Phylloxera Convention of Berne, international conventions have sought to relieve national agricultural industries from two specific burdens. First, by defining phytosanitary practices to be enforced by national plant protection services, these conventions attempted to prevent the introduction of plant diseases and pests into national territories from which they were previously absent. Second, by standardizing these practices - especially through the design of a unique certificate of inspection - the conventions attempted to eliminate barriers such as quarantines affection international agricultural trade. The succession of phytopathological conventions seemed to epitomize the coalescence of an international community against agricultural pests. What actually coalesced was bio-geopolitics wherein plant pathologists and economic entomologists from North America and the British Empire questioned the so-called internationality of the environmental and economic specificities of continental European agriculture, embodied in "international" conventions. Although an international phenomenon, the dissemination of agricultural pests provided opportunities for cooperation on a strictly regional albeit transnational basis that pitted bio-geopolitical spaces against each other. This article retraces the formation of these spaces by analyzing the deliberations of committees and congresses that gathered to define an international agricultural order based on the means to prevent the spread of plant diseases and pests.

  13. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture.

    PubMed

    Berg, Gabriele

    2009-08-01

    Plant-associated microorganisms fulfill important functions for plant growth and health. Direct plant growth promotion by microbes is based on improved nutrient acquisition and hormonal stimulation. Diverse mechanisms are involved in the suppression of plant pathogens, which is often indirectly connected with plant growth. Whereas members of the bacterial genera Azospirillum and Rhizobium are well-studied examples for plant growth promotion, Bacillus, Pseudomonas, Serratia, Stenotrophomonas, and Streptomyces and the fungal genera Ampelomyces, Coniothyrium, and Trichoderma are model organisms to demonstrate influence on plant health. Based on these beneficial plant-microbe interactions, it is possible to develop microbial inoculants for use in agricultural biotechnology. Dependent on their mode of action and effects, these products can be used as biofertilizers, plant strengtheners, phytostimulators, and biopesticides. There is a strong growing market for microbial inoculants worldwide with an annual growth rate of approximately 10%. The use of genomic technologies leads to products with more predictable and consistent effects. The future success of the biological control industry will benefit from interdisciplinary research, e.g., on mass production, formulation, interactions, and signaling with the environment, as well as on innovative business management, product marketing, and education. Altogether, the use of microorganisms and the exploitation of beneficial plant-microbe interactions offer promising and environmentally friendly strategies for conventional and organic agriculture worldwide.

  14. Drought Impacts on Ancient Maya Maize Agriculture Inferred from Isotopic Analyses of Plant Biomarkers

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Pagani, M.; Eglinton, T. I.; Brenner, M.; Hodell, D. A.; Curtis, J. H.

    2013-05-01

    There is increasing evidence suggesting that a series of droughts in the Maya lowlands of southeastern Mexico and northern Central America coincided with the Terminal Classic decline of the Classic Maya civilization (ca. 1250 to 1000 years BP). However, there is little evidence directly linking climatic change and changes in human activities in this region. In this study we combine plant-wax hydrogen and carbon analyses in two lake sediment cores from the Yucatan and northern Guatemala to develop coupled records of hydroclimate variability and human-driven vegetation change and assess drought impacts on maize agriculture In the Maya lowlands plant-wax hydrogen isotope ratios (δD) are controlled by the isotopic composition of precipitation and evapotranspiration, and are highly sensitive to changes in aridity. In this low-elevation tropical environment plant-wax carbon isotope ratios (δ13C) are largely controlled by the relative abundance of C3 and C4 plants. The ancient Maya practiced widespread maize (C4) agriculture and strongly influenced regional C3-C4 vegetation dynamics. Under natural conditions C4 plant coverage and plant-wax δD would tend to co-vary positively since C4 plants are well adapted for dry conditions. Under ancient Maya land-use, however, this relationship is likely to be decoupled, since drought would have disrupted C4 agriculture. Combined analyses of plant-wax δD and δ13C from two lake sediment cores in the Maya lowlands indicate co-evolving changes in hydroclimate and C4 plant coverage over the past 4000 years. Compound-specific radiocarbon analyses of plant-waxes provide independent chronologies for these plant-wax stable isotope records, and plant-wax δD records developed using these chronologies agree closely with other regional records of hydroclimate change. Trends in plant-wax δD and δ13C diverge following ca. 3500 years BP, around the onset of widespread ancient Maya agriculture. After this time high plant-wax δD values tend

  15. Density of biogas digestate depending on temperature and composition.

    PubMed

    Gerber, Mandy; Schneider, Nico

    2015-09-01

    Density is one of the most important physical properties of biogas digestate to ensure an optimal dimensioning and a precise design of biogas plant components like stirring devices, pumps and heat exchangers. In this study the density of biogas digestates with different compositions was measured using pycnometers at ambient pressure in a temperature range from 293.15 to 313.15K. The biogas digestates were taken from semi-continuous experiments, in which the marine microalga Nannochloropsis salina, corn silage and a mixture of both were used as feedstocks. The results show an increase of density with increasing total solid content and a decrease with increasing temperature. Three equations to calculate the density of biogas digestate were set up depending on temperature as well as on the total solid content, organic composition and elemental composition, respectively. All correlations show a relative deviation below 1% compared to experimental data.

  16. Density of biogas digestate depending on temperature and composition.

    PubMed

    Gerber, Mandy; Schneider, Nico

    2015-09-01

    Density is one of the most important physical properties of biogas digestate to ensure an optimal dimensioning and a precise design of biogas plant components like stirring devices, pumps and heat exchangers. In this study the density of biogas digestates with different compositions was measured using pycnometers at ambient pressure in a temperature range from 293.15 to 313.15K. The biogas digestates were taken from semi-continuous experiments, in which the marine microalga Nannochloropsis salina, corn silage and a mixture of both were used as feedstocks. The results show an increase of density with increasing total solid content and a decrease with increasing temperature. Three equations to calculate the density of biogas digestate were set up depending on temperature as well as on the total solid content, organic composition and elemental composition, respectively. All correlations show a relative deviation below 1% compared to experimental data. PMID:26026294

  17. Radiochlorine concentration ratios for agricultural plants in various soil conditions.

    PubMed

    Kashparov, V; Colle, C; Levchuk, S; Yoschenko, V; Zvarich, S

    2007-01-01

    Long-term field experiments have been carried out in the Chernobyl exclusion zone in order to determine the parameters governing radiochlorine ((36)Cl) transfer to plants from four types of soil, namely, Podzoluvisol, Greyzem, Phaeozem and Chernozem. Radiochlorine concentration ratios (CR=concentration of (36)Cl in the fresh plant material divided by its concentration in the dried soil in the upper 20 cm layer) were obtained in green peas (2.6+/-0.4), onions (1.5+/-0.5), potatoes (8+/-1), clover (90+/-26) and ryegrass (158+/-88) hay, oat seeds (36+/-23) and straw (305+/-159), wheat seeds (35+/-10) and straw (222+/-82). These values correlate with the stable chlorine values for the same plants. It was shown that (36)Cl plant/soil CR in radish roots (CR=9.7+/-1.4) does not depend on the stable chlorine content in the soil (up to 150 mgkg(-1)), soil type and thus, that stable chlorine CR values (9.4+/-1.2) can also be used for (36)Cl. Injection of additional quantities of stable chlorine into the soil (100 mgkg(-1) of dry soil) with fertilizer does not change the soil-to-plant transfer of (36)Cl. The results from a batch experiment showed that chlorine is retained in the investigated soils only by live biota and transfers quickly (in just a few hours) into the soil solution from dry vegetation even without decomposition of dead plants and is integrated in the migration processes in soil.

  18. Current EU-27 technical potential of organic waste streams for biogas and energy production.

    PubMed

    Lorenz, Helge; Fischer, Peter; Schumacher, Britt; Adler, Philipp

    2013-11-01

    Anaerobic digestion of organic waste generated by households, businesses, agriculture, and industry is an important approach as method of waste treatment - especially with regard to its potential as an alternative energy source and its cost-effectiveness. Separate collection of biowaste from households or vegetal waste from public green spaces is already established in some EU-27 countries. The material recovery in composting plants is common for biowaste and vegetal waste. Brewery waste fractions generated by beer production are often used for animal feeding after a suitable preparation. Waste streams from paper industry generated by pulp and paper production such as black liquor or paper sludge are often highly contaminated with toxic substances. Recovery of chemicals and the use in thermal processes like incineration, pyrolysis, and gasification are typical utilization paths. The current utilization of organic waste from households and institutions (without agricultural waste) was investigated for EU-27 countries with Germany as an in-depth example. Besides of biowaste little is known about the suitability of waste streams from brewery and paper industry for anaerobic digestion. Therefore, an evaluation of the most important biogas process parameters for different substrates was carried out, in order to calculate the biogas utilization potential of these waste quantities. Furthermore, a calculation of biogas energy potentials was carried out for defined waste fractions which are most suitable for anaerobic digestion. Up to 1% of the primary energy demand can be covered by the calculated total biogas energy potential. By using a "best-practice-scenario" for separately collected biowaste, the coverage of primary energy demand may be increased above 2% for several countries. By using sector-specific waste streams, for example the German paper industry could cover up to 4.7% and the German brewery industry up to 71.2% of its total energy demand.

  19. Current EU-27 technical potential of organic waste streams for biogas and energy production.

    PubMed

    Lorenz, Helge; Fischer, Peter; Schumacher, Britt; Adler, Philipp

    2013-11-01

    Anaerobic digestion of organic waste generated by households, businesses, agriculture, and industry is an important approach as method of waste treatment - especially with regard to its potential as an alternative energy source and its cost-effectiveness. Separate collection of biowaste from households or vegetal waste from public green spaces is already established in some EU-27 countries. The material recovery in composting plants is common for biowaste and vegetal waste. Brewery waste fractions generated by beer production are often used for animal feeding after a suitable preparation. Waste streams from paper industry generated by pulp and paper production such as black liquor or paper sludge are often highly contaminated with toxic substances. Recovery of chemicals and the use in thermal processes like incineration, pyrolysis, and gasification are typical utilization paths. The current utilization of organic waste from households and institutions (without agricultural waste) was investigated for EU-27 countries with Germany as an in-depth example. Besides of biowaste little is known about the suitability of waste streams from brewery and paper industry for anaerobic digestion. Therefore, an evaluation of the most important biogas process parameters for different substrates was carried out, in order to calculate the biogas utilization potential of these waste quantities. Furthermore, a calculation of biogas energy potentials was carried out for defined waste fractions which are most suitable for anaerobic digestion. Up to 1% of the primary energy demand can be covered by the calculated total biogas energy potential. By using a "best-practice-scenario" for separately collected biowaste, the coverage of primary energy demand may be increased above 2% for several countries. By using sector-specific waste streams, for example the German paper industry could cover up to 4.7% and the German brewery industry up to 71.2% of its total energy demand. PMID:23849753

  20. Biogas Production Modelling: A Control System Engineering Approach

    NASA Astrophysics Data System (ADS)

    Stollenwerk, D.; Rieke, C.; Dahmen, M.; Pieper, M.

    2016-03-01

    Due to the Renewable Energy Act, in Germany it is planned to increase the amount of renewable energy carriers up to 60%. One of the main problems is the fluctuating supply of wind and solar energy. Here biogas plants provide a solution, because a demand-driven supply is possible. Before running such a plant, it is necessary to simulate and optimize the process feeding strategy. Current simulation models are either very detailed like the ADM 1, which leads to very long optimization runtimes or not accurate enough to handle the biogas production kinetics. Therefore this paper provides a new model of a biogas plant, which is easy to parametrize but also has the needed accuracy for the output prediction. It is based on the control system approach of system identification and validated with laboratory results of a real biogas production testing facility.

  1. Biogas systems in India: is the technology appropriate

    SciTech Connect

    Tucker, J.B.

    1982-10-01

    In 1973 the Indian government launched a project to install 50,000 biogas plants in villages by 1978. About 36,000 plants were in operation by 1977. Biogas technology was seen as providing a valuable source of energy and fertilizer, helping to conserve forests and preventing soil erosion, improving India's balance of payments and improving rural sanitation and public health. As it turned out, the rigidly stratified socioeconomic structure of Indian villages prevented the lower classes from benefiting from the new technology and had the unforeseen effect of ultimately widening the gap between rich and poor. This article looks at how this happened, examines the socioeconomic impact of biogas and discusses the technical improvements needed to make existing biogas plants into a truly appropriate technology in the context of Indian village life. (Refs. 35).

  2. Durable strategies to deploy plant resistance in agricultural landscapes.

    PubMed

    Fabre, Frédéric; Rousseau, Elsa; Mailleret, Ludovic; Moury, Benoit

    2012-03-01

    The deployment of resistant crops often leads to the emergence of resistance-breaking pathogens that suppress the yield benefit provided by the resistance. Here, we theoretically explored how farmers' main leverages (resistant cultivar choice, resistance deployment strategy, landscape planning and cultural practices) can be best combined to achieve resistance durability while minimizing yield losses as a result of plant viruses. Assuming a gene-for-gene type of interaction, virus epidemics are modelled in a landscape composed of a mosaic of resistant and susceptible fields, subjected to seasonality, and a reservoir hosting viruses year-round. The model links the genetic and the epidemiological processes, shaping at nested scales the demogenetic dynamics of viruses. The choice of the resistance gene (characterized by the equilibrium frequency of the resistance-breaking virus at mutation-selection balance in a susceptible plant) is the most influential leverage of action. Our results showed that optimal strategies of resistance deployment range from 'mixture' (where susceptible and resistant cultivars coexist) to 'pure' strategies (with only resistant cultivar) depending on the resistance characteristics and the epidemiological context (epidemic incidence and landscape connectivity). We demonstrate and discuss gaps concerning virus epidemiology across the agro-ecological interface that must be filled to achieve sustainable disease management.

  3. Analysis of problems with dry fermentation process for biogas production

    NASA Astrophysics Data System (ADS)

    Pilát, Peter; Patsch, Marek; Jandačka, Jozef

    2012-04-01

    The technology of dry anaerobic fermentation is still meeting with some scepticism, and therefore in most biogas plants are used wet fermentation technology. Fermentation process would be not complete without an optimal controlled condition: dry matter content, density, pH, and in particular the reaction temperature. If is distrust of dry fermentation eligible it was on the workplace of the Department of Power Engineering at University of Zilina built an experimental small-scale biogas station that allows analysis of optimal parameters of the dry anaerobic fermentation, in particular, however, affect the reaction temperature on yield and quality of biogas.

  4. Biogas Production on Demand Regulated by Butyric Acid Addition

    NASA Astrophysics Data System (ADS)

    Kasper, K.; Schiffels, J.; Krafft, S.; Kuperjans, I.; Elbers, G.; Selmer, T.

    2016-03-01

    Investigating effects of volatile fatty acids on the biogas process it was observed that butyric acid can be used for transient stimulation of the methane production in biogas plants operating with low energy substrates like cattle manure. Upon addition of butyrate the methane output of the reactors doubled within 24 h and reached almost 3-times higher methane yields within 3-4 days. Butyrate was quantitatively eliminated and the reactors returned to the original productivity state within 3 days when application of butyrate was stopped. The opportunity to use butyrate feeding for increased biogas production on demand is discussed.

  5. Global perspective of health related edible plants from the agricultural point of view.

    PubMed

    Lee, Yi-Yang; Tsou, Chih-Sheng; Lin, Hai-Chen; Ien, Cheng-Hua; Wu, Ya-Tien

    2008-01-01

    In knowledge-based economies, nutrition concepts evolve with advances in agriculture. As people around the world become more health conscious, national health becomes one of the main directives for agricultural policies, including that of functional foods and their global markets. This article evaluates the development of the functional food industry in Taiwan and other countries through analysis of R&D capacity and bibliometrics. It attempts to identify future trends in nutrition with technology foresight research. Taiwan has a wide variety of indigenous herbal plants, although its functional food related literature is not large compared with some other Asian countries. However, there are quality papers on the immunologic functions of edible plants Globally there is much interest in edible plants with antioxidant activity and those phyto-nutrients which might help reduce the burden of chronic illness as well as in the nutrigenomics that will lead to the design of foods with these properties. To make the most of available agricultural resources, countries like Taiwan should relate agricultural development to the nutritional status of their populations. This strategy will add significant value to global agriculture.

  6. Agricultural Mechanics Unit for Plant Science Core Curriculum. Volume 15, Number 4. Instructor's Guide.

    ERIC Educational Resources Information Center

    Linhardt, Richard E.; Hunter, Bill

    This instructor's guide is intended for use in teaching the agricultural mechanics unit of a plant science core curriculum. Covered in the individual units of the guide are the following topics: arc welding (following safety procedures, controlling distortion, selecting and caring for electrodes, identifying the material to be welded, and welding…

  7. Pesticide Applicator Certification Training, Manual No. 1a: Agricultural Pest Control. a. Plant.

    ERIC Educational Resources Information Center

    Allen, W. A.; And Others

    This manual provides information needed to meet the minimum standards for certification as an applicator of pesticides in the agricultural plant pest control category. Adapted for the State of Virginia, the text discusses: (1) the basics of insecticides; (2) insect pests; (3) selection and calibration of applicator equipment; and (4) the proper…

  8. Climate change, plant traits, and invasion in natural and agricultural ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive species and climate change, each of which is likely to influence agricultural productivity and biological diversity, are also likely to interact. This chapter explores characteristics of both invasive plants and invaded ecosystems to search for generalizations that may allow us to predict w...

  9. Historical agriculture alters the effects of fire on understory plant beta diversity.

    PubMed

    Mattingly, W Brett; Orrock, John L; Collins, Cathy D; Brudvig, Lars A; Damschen, Ellen I; Veldman, Joseph W; Walker, Joan L

    2015-02-01

    Land-use legacies are known to shape the diversity and distribution of plant communities, but we lack an understanding of whether historical land use influences community responses to contemporary disturbances. Because human-modified landscapes often bear a history of multiple land-use activities, this contingency can challenge our understanding of land-use impacts on plant diversity. We address this contingency by evaluating how beta diversity (the spatial variability of species composition), an important component of regional biodiversity, is shaped by interactions between historical agriculture and prescribed fire, two prominent disturbances that are often coincident in terrestrial ecosystems. At three study locations spanning 450 km in the southeastern United States, we surveyed longleaf pine woodland understory plant communities across 232 remnant and post-agricultural sites with differing prescribed fire regimes. Our results demonstrate that agricultural legacies are a strong predictor of beta diversity, but the direction of this land-use effect differed among the three study locations. Further, although beta diversity increased with prescribed fire frequency at each study location, this effect was influenced by agricultural land-use history, such that positive fire effects were only documented among sites that lacked a history of agriculture at two of our three study locations. Our study not only highlights the role of historical agriculture in shaping beta diversity in a fire-maintained ecosystem but also illustrates how this effect can be contingent upon fire regime and geographic location. We suggest that interactions among historical and contemporary land-use activities may help to explain dissimilarities in plant communities among sites in human-dominated landscapes.

  10. Design and installation of 25 MW agricultural/wood waste fueled power plants

    SciTech Connect

    Precht, D. )

    1991-01-01

    This paper discusses the design and installation of two 25 MW power projects, including permitting, fuels, engineering, construction, start-up and commercial operation. Plant systems and equipment features, project management highlights and first year operating experience are presented. Two similar 25 MW wood and agricultural waste fueled power plants were constructed at two separate sites. Regulatory conditions in California were restrictive, requiring state-of-the-art technology, close adherence to state and local codes/standards, agreement to locally specified improvements and a conditional operation permit. Both plants are equipped with circulating fluidized bed boilers and NO{sub x}, SO{sub 2} and particulate emission control equipment. One plant is designed for zero waste water discharge with cooling tower make-up water supplied from the local sewage treatment plant effluent. Both plants utilize a wide variety of biomass fuels.

  11. Biogas as a source of rural energy

    SciTech Connect

    Kalia, A.K.

    2000-01-01

    The hilly state of Himachal Pradesh, with nearly 2.15 million cattle and 0.7 million buffalo, has the potential to install 0.64 million biogas plants of 1 m{sup 3} size. These plants could generate nearly 4.90 x 105 m{sup 3} of biogas, equivalent to 3.07 x 10{sup 5} L kerosene per day to meet domestic energy needs of nearly one-fourth of its rural population. During 1982--1998, only 12.8% of this potential was achieved. The percent of possible potential achieved in plant installations in 12 districts of this state, namely, Bilaspur, Chamba, Hamirpur, Kangra, Kinnaur, Kullu, Lahul-Spiti, Mandi, Shimla, Sirmour, Solan, and Una, are 35.35, 1.70, 20.96, 8.67, 1.54, 6.96, 0.00, 18.49, 3.84, 8.521, 18.29, and 13.23%, respectively. There is a need to strengthen biogas promotion, particularly in the districts of Kangra, Mandi, Solan, and Una, which range from mid-hill to low-hill terrain and which have large potential due to high concentration of bovine population. Increased costs and comparatively low rate of subsidies has resulted in a decreasing rate of plant installation annually, from 3,500 during 1987--1992 to fewer than 1,200 during 1995--1998. The percentage of functioning plants was 82% in 1987--1988 but has decreased to 63%. To ensure proper installation and functionality of plants, the authors discuss the needed improvements in the biogas promotion program.

  12. Residual biogas potential from the storage tanks of non-separated digestate and digested liquid fraction.

    PubMed

    Gioelli, F; Dinuccio, E; Balsari, P

    2011-11-01

    Biogas plants daily produce enormous volumes of digestate that can be handled in its raw form or after mechanical separation. In Italy, effluents are usually stored within aboveground, uncovered tanks, which make them potential emitters of biogas into the atmosphere. The purpose of this study was to estimate the amount of biogas emitted to the atmosphere during the storage phase of non-separated digestate and digested liquid fraction. The trials were performed at two northwest Italy 1 MWel. biogas plants. A floating system for the residual biogas recovery, and a set of three wind tunnels for NH3 emission measurement were used. The experiment demonstrated significant loss to the atmosphere for each of the gases; specifically, on average, 19.5 and 7.90 N m3 biogas MWhel.(-1) were emitted daily from the storage tanks of non-separated digestate and digested liquid fraction, respectively.

  13. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: Recovering a wasted methane potential and enhancing the biogas yield

    SciTech Connect

    Martin-Gonzalez, L.; Colturato, L.F.; Font, X.; Vicent, T.

    2010-10-15

    Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 {sup o}C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5 L continuous reactor. Biogas yield increased from 0.38 {+-} 0.02 L g VS{sub feed}{sup -1} to 0.55 {+-} 0.05 L g VS{sub feed}{sup -1} as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW.

  14. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: recovering a wasted methane potential and enhancing the biogas yield.

    PubMed

    Martín-González, L; Colturato, L F; Font, X; Vicent, T

    2010-10-01

    Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 degrees C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5L continuous reactor. Biogas yield increased from 0.38+/-0.02 L g VS(feed)(-1) to 0.55+/-0.05 L g VS(feed)(-1) as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW.

  15. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: recovering a wasted methane potential and enhancing the biogas yield.

    PubMed

    Martín-González, L; Colturato, L F; Font, X; Vicent, T

    2010-10-01

    Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 degrees C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5L continuous reactor. Biogas yield increased from 0.38+/-0.02 L g VS(feed)(-1) to 0.55+/-0.05 L g VS(feed)(-1) as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW. PMID:20400285

  16. Sludge storage lagoon biogas recovery and use. Volume 2

    SciTech Connect

    Muller, D.; Norville, C.

    1991-07-01

    The City of Memphis has two wastewater treatment plants. The SWTP employs two large anaerobic digestion sludge lagoons as part of the overall sludge treatment system. Although these lagoons are effective in concentrating and digesting sludge, they can generate offensive odors. The SWTP uses aerobic digesters to partially stabilize the sludge and help reduce objectionable odors before it enters the lagoons. The anaerobic digestion of sludge in the lagoons results in the dispersion of a large quantity of biogas into the atmosphere. The City realized that if the lagoons could be covered, the odor problem could be resolved, and at the same, time, biogas could be recovered and utilized as a source of energy. In 1987, the City commissioned ADI International to conduct a feasibility study to evaluate alternative methods of covering the lagoons and recovering and utilizing the biogas. The study recommended that the project be developed in two phases: (1) recovery of the biogas and (2) utilization of the biogas. Phase 1 consists of covering the two lagoons with an insulated membrane to control odor and temperature and collect the biogas. Phase 1 was found to be economically feasible and offered a unique opportunity for the City to save substantial operating costs at the treatment facility. The Memphis biogas recovery project is the only application in the world where a membrane cover has been used on a municipal wastewater sludge lagoon. It is also the largest lagoon cover system in the world.

  17. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review.

    PubMed

    Vejan, Pravin; Abdullah, Rosazlin; Khadiran, Tumirah; Ismail, Salmah; Nasrulhaq Boyce, Amru

    2016-01-01

    Plant growth promoting rhizobacteria (PGPR) shows an important role in the sustainable agriculture industry. The increasing demand for crop production with a significant reduction of synthetic chemical fertilizers and pesticides use is a big challenge nowadays. The use of PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth through either a direct or indirect mechanism. The mechanisms of PGPR include regulating hormonal and nutritional balance, inducing resistance against plant pathogens, and solubilizing nutrients for easy uptake by plants. In addition, PGPR show synergistic and antagonistic interactions with microorganisms within the rhizosphere and beyond in bulk soil, which indirectly boosts plant growth rate. There are many bacteria species that act as PGPR, described in the literature as successful for improving plant growth. However, there is a gap between the mode of action (mechanism) of the PGPR for plant growth and the role of the PGPR as biofertilizer-thus the importance of nano-encapsulation technology in improving the efficacy of PGPR. Hence, this review bridges the gap mentioned and summarizes the mechanism of PGPR as a biofertilizer for agricultural sustainability. PMID:27136521

  18. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review.

    PubMed

    Vejan, Pravin; Abdullah, Rosazlin; Khadiran, Tumirah; Ismail, Salmah; Nasrulhaq Boyce, Amru

    2016-01-01

    Plant growth promoting rhizobacteria (PGPR) shows an important role in the sustainable agriculture industry. The increasing demand for crop production with a significant reduction of synthetic chemical fertilizers and pesticides use is a big challenge nowadays. The use of PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth through either a direct or indirect mechanism. The mechanisms of PGPR include regulating hormonal and nutritional balance, inducing resistance against plant pathogens, and solubilizing nutrients for easy uptake by plants. In addition, PGPR show synergistic and antagonistic interactions with microorganisms within the rhizosphere and beyond in bulk soil, which indirectly boosts plant growth rate. There are many bacteria species that act as PGPR, described in the literature as successful for improving plant growth. However, there is a gap between the mode of action (mechanism) of the PGPR for plant growth and the role of the PGPR as biofertilizer-thus the importance of nano-encapsulation technology in improving the efficacy of PGPR. Hence, this review bridges the gap mentioned and summarizes the mechanism of PGPR as a biofertilizer for agricultural sustainability.

  19. Biogas production: current state and perspectives.

    PubMed

    Weiland, Peter

    2010-01-01

    Anaerobic digestion of energy crops, residues, and wastes is of increasing interest in order to reduce the greenhouse gas emissions and to facilitate a sustainable development of energy supply. Production of biogas provides a versatile carrier of renewable energy, as methane can be used for replacement of fossil fuels in both heat and power generation and as a vehicle fuel. For biogas production, various process types are applied which can be classified in wet and dry fermentation systems. Most often applied are wet digester systems using vertical stirred tank digester with different stirrer types dependent on the origin of the feedstock. Biogas is mainly utilized in engine-based combined heat and power plants, whereas microgas turbines and fuel cells are expensive alternatives which need further development work for reducing the costs and increasing their reliability. Gas upgrading and utilization as renewable vehicle fuel or injection into the natural gas grid is of increasing interest because the gas can be used in a more efficient way. The digestate from anaerobic fermentation is a valuable fertilizer due to the increased availability of nitrogen and the better short-term fertilization effect. Anaerobic treatment minimizes the survival of pathogens which is important for using the digested residue as fertilizer. This paper reviews the current state and perspectives of biogas production, including the biochemical parameters and feedstocks which influence the efficiency and reliability of the microbial conversion and gas yield. PMID:19777226

  20. Plant science and agricultural productivity: why are we hitting the yield ceiling?

    PubMed

    de Bossoreille de Ribou, Stève; Douam, Florian; Hamant, Olivier; Frohlich, Michael W; Negrutiu, Ioan

    2013-09-01

    Trends in conventional plant breeding and in biotechnology research are analyzed with a focus on production and productivity of individual organisms. Our growing understanding of the productive/adaptive potential of (crop) plants is a prerequisite to increasing this potential and also its expression under environmental constraints. This review concentrates on growth rate, ribosome activity, and photosynthetic rate to link these key cellular processes to plant productivity. Examples of how they may be integrated in heterosis, organ growth control, and responses to abiotic stresses are presented. The yield components in rice are presented as a model. The ultimate goal of research programs, that concentrate on yield and productivity and integrating the panoply of systems biology tools, is to achieve "low input, high output" agriculture, i.e. shifting from a conventional "productivist" agriculture to an efficient sustainable agriculture. This is of critical, strategic importance, because the extent to which we, both locally and globally, secure and manage the long-term productive potential of plant resources will determine the future of humanity.

  1. Areas of Increasing Agricultural Abandonment Overlap the Distribution of Previously Common, Currently Threatened Plant Species

    PubMed Central

    Osawa, Takeshi; Kohyama, Kazunori; Mitsuhashi, Hiromune

    2013-01-01

    Human-driven land-use changes increasingly threaten biodiversity. In agricultural ecosystems, abandonment of former farmlands constitutes a major land-use shift. We examined the relationships between areas in which agriculture has been abandoned and the distribution records of threatened plant species across Japan. We selected 23 plant species that are currently identified as threatened but were previously common in the country as indicators of threatened plant species. The areas of abandoned farmlands within the distribution ranges of the indicator species were significantly larger than the proportion of abandoned farmland area across the whole country. Also, abandoned farmland areas were positively correlated with the occurrence of indicator species. Therefore, sections of agricultural landscape that are increasingly becoming abandoned and the distribution ranges of indicator species overlapped. These results suggest that abandoned farmland areas contain degraded or preferred habitats of threatened plant species. We propose that areas experiencing increased abandonment of farmland can be divided into at least two categories: those that threaten the existence of threatened species and those that provide habitats for these threatened species. PMID:24260328

  2. A comparison of the herbicide tolerances of rare and common plants in an agricultural landscape.

    PubMed

    Egan, J Franklin; Graham, Ian M; Mortensen, David A

    2014-03-01

    Declining plant biodiversity in agroecosystems has often been attributed to escalating use of chemical herbicides, but other changes in farming systems, including the clearing of seminatural habitat fragments, confound the influence of herbicides. The present study introduces a new approach to evaluate the impacts of herbicide pollution on plant communities at landscape or regional scales. If herbicides are in fact a key factor shaping agricultural plant diversity, one would expect to see the signal of past herbicide impacts in the current plant community composition of an intensively farmed region, with common, successful species more tolerant to widely used herbicides than rare or declining species. Data from an extensive field survey of plant diversity in Lancaster County, Pennsylvania, USA, were compared with herbicide bioassay experiments in a greenhouse to test the hypothesis that common species possess higher herbicide tolerances than rare species. Five congeneric pairs of rare and common species were treated with 3 commonly used herbicide modes of action in bioassay experiments, and few significant differences were found in the tolerances of rare species relative to common species. These preliminary results suggest that other factors beyond herbicide exposure may be more important in shaping the distribution and abundance of plant species diversity across an agricultural landscape.

  3. Short-term effect of acetate and ethanol on methane formation in biogas sludge.

    PubMed

    Refai, Sarah; Wassmann, Kati; Deppenmeier, Uwe

    2014-08-01

    Biochemical processes in biogas plants are still not fully understood. Especially, the identification of possible bottlenecks in the complex fermentation processes during biogas production might provide potential to increase the performance of biogas plants. To shed light on the question which group of organism constitutes the limiting factor in the anaerobic breakdown of organic material, biogas sludge from different mesophilic biogas plants was examined under various conditions. Therefore, biogas sludge was incubated and analyzed in anaerobic serum flasks under an atmosphere of N2/CO2. The batch reactors mirrored the conditions and the performance of the full-scale biogas plants and were suitable test systems for a period of 24 h. Methane production rates were compared after supplementation with substrates for syntrophic bacteria, such as butyrate, propionate, or ethanol, as well as with acetate and H2+CO2 as substrates for methanogenic archaea. Methane formation rates increased significantly by 35 to 126 % when sludge from different biogas plants was supplemented with acetate or ethanol. The stability of important process parameters such as concentration of volatile fatty acids and pH indicate that ethanol and acetate increase biogas formation without affecting normally occurring fermentation processes. In contrast to ethanol or acetate, other fermentation products such as propionate, butyrate, or H2 did not result in increased methane formation rates. These results provide evidence that aceticlastic methanogenesis and ethanol-oxidizing syntrophic bacteria are not the limiting factor during biogas formation, respectively, and that biogas plant optimization is possible with special focus on methanogenesis from acetate.

  4. Biogas generation apple pulp.

    PubMed

    Llaneza Coalla, H; Blanco Fernández, J M; Morís Morán, M A; López Bobo, M R

    2009-09-01

    In view of the pressing problem that appears in our region (Asturias, north of Spain) with the residues from the cider production, it was decided to test this kind of material as a co-substrate joint with slaughterhouse waste in a laboratory unit. The anaerobic digestion of apple pulp was investigated for biogas production. This paper presents the results where apple pulp was co-digested with slaughterhouse waste (pig intestine and bovine stomach content) in a biogas laboratory unit (10 l CSTR reactor). The production of biogas has reached very satisfactory values during the whole test (0.8m(3)kg(-1)OTS), verifying that the process is kept in stable conditions of pH (near 8.0), and the volatile fatty acids was always underneath 3000 mg/l, when the pulp amount was lower than 100g in mesophilic conditions. The fat concentration into the digester remained always below the value that causes inhibition of the methanogenic bacteria, 500 mg/l. Finally, methane concentration (77-80%) and H(2)S concentration (400 ppm) in the biogas, they were similar to those obtained when the test was run out in the absence of apple pulp. The process efficiency with respect to COD removal was high, near 80% of the total COD. Finally, inhibitory effects of methanogenic bacteria were observed when pulp concentration was around 10% in the input material.

  5. Influence of copper on root exudate patterns in some metallophytes and agricultural plants.

    PubMed

    Meier, S; Alvear, M; Borie, F; Aguilera, P; Ginocchio, R; Cornejo, P

    2012-01-01

    A hydroponic experiment was carried out to determine the root exudation patterns in two Cu-metallophytes (Oenothera picensis and Imperata condensata) and two agricultural plants (Lupinus albus and Helianthus annuus). Plants were grown in nutrient solution at increasing Cu doses (0, 0.125, 0.25, 0.5, 1 and 2mgCuL(-1)), and plant growth, root elongation, Cu accumulation and root exudates were measured. All plants showed a decrease of over 60% in root elongation at the highest Cu supply level, being O. picensis the most sensitive specie and showing the highest shoot and root Cu concentrations (116 and 2657μgCug(-1), respectively), which were six fold higher than the other species. Differences in root exudation patterns of low molecular weight organic acids were found, with extremely high amounts of succinic acid exuded by O. picensis (1049μmolg(-1)h(-1)), and citric acid by I. condensata (164μmolg(-1)h(-1)). In metallophytes, the organic acid exudation was increased even with no root elongation, meanwhile agricultural plants exuded citric acid at constant levels. Exudation of phenolic compounds was highly species-dependent, with catechin mainly exuded by I. condensata, (2.62μmolg(-1)h(-1)) cinnamic acid by O. picensis (5.08μmolg(-1)h(-1)) and coumaric acid exclusively exuded by H. annuus (13.6μmolg(-1)h(-1)) at high Cu levels. These results indicated that differences in root exudation patterns among metallophytes and agricultural plants could affect their Cu tolerance. Particularly, the higher exudation rate showed by I. condensata can be an effective exclusion mechanism to tolerate high Cu concentrations, supporting its use in Cu phytostabilization programs. PMID:21937112

  6. Influence of copper on root exudate patterns in some metallophytes and agricultural plants.

    PubMed

    Meier, S; Alvear, M; Borie, F; Aguilera, P; Ginocchio, R; Cornejo, P

    2012-01-01

    A hydroponic experiment was carried out to determine the root exudation patterns in two Cu-metallophytes (Oenothera picensis and Imperata condensata) and two agricultural plants (Lupinus albus and Helianthus annuus). Plants were grown in nutrient solution at increasing Cu doses (0, 0.125, 0.25, 0.5, 1 and 2mgCuL(-1)), and plant growth, root elongation, Cu accumulation and root exudates were measured. All plants showed a decrease of over 60% in root elongation at the highest Cu supply level, being O. picensis the most sensitive specie and showing the highest shoot and root Cu concentrations (116 and 2657μgCug(-1), respectively), which were six fold higher than the other species. Differences in root exudation patterns of low molecular weight organic acids were found, with extremely high amounts of succinic acid exuded by O. picensis (1049μmolg(-1)h(-1)), and citric acid by I. condensata (164μmolg(-1)h(-1)). In metallophytes, the organic acid exudation was increased even with no root elongation, meanwhile agricultural plants exuded citric acid at constant levels. Exudation of phenolic compounds was highly species-dependent, with catechin mainly exuded by I. condensata, (2.62μmolg(-1)h(-1)) cinnamic acid by O. picensis (5.08μmolg(-1)h(-1)) and coumaric acid exclusively exuded by H. annuus (13.6μmolg(-1)h(-1)) at high Cu levels. These results indicated that differences in root exudation patterns among metallophytes and agricultural plants could affect their Cu tolerance. Particularly, the higher exudation rate showed by I. condensata can be an effective exclusion mechanism to tolerate high Cu concentrations, supporting its use in Cu phytostabilization programs.

  7. Not all GMOs are crop plants: non-plant GMO applications in agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the time since the tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteri...

  8. Silicon: Potential to Promote Direct and Indirect Effects on Plant Defense Against Arthropod Pests in Agriculture.

    PubMed

    Reynolds, Olivia L; Padula, Matthew P; Zeng, Rensen; Gurr, Geoff M

    2016-01-01

    Silicon has generally not been considered essential for plant growth, although it is well recognized that many plants, particularly Poaceae, have substantial plant tissue concentrations of this element. Recently, however, the International Plant Nutrition Institute [IPNI] (2015), Georgia, USA has listed it as a "beneficial substance". This reflects that numerous studies have now established that silicon may alleviate both biotic and abiotic stress. This paper explores the existing knowledge and recent advances in elucidating the role of silicon in plant defense against biotic stress, particularly against arthropod pests in agriculture and attraction of beneficial insects. Silicon confers resistance to herbivores via two described mechanisms: physical and biochemical/molecular. Until recently, studies have mainly centered on two trophic levels; the herbivore and plant. However, several studies now describe tri-trophic effects involving silicon that operate by attracting predators or parasitoids to plants under herbivore attack. Indeed, it has been demonstrated that silicon-treated, arthropod-attacked plants display increased attractiveness to natural enemies, an effect that was reflected in elevated biological control in the field. The reported relationships between soluble silicon and the jasmonic acid (JA) defense pathway, and JA and herbivore-induced plant volatiles (HIPVs) suggest that soluble silicon may enhance the production of HIPVs. Further, it is feasible that silicon uptake may affect protein expression (or modify proteins structurally) so that they can produce additional, or modify, the HIPV profile of plants. Ultimately, understanding silicon under plant ecological, physiological, biochemical, and molecular contexts will assist in fully elucidating the mechanisms behind silicon and plant response to biotic stress at both the bi- and tri-trophic levels. PMID:27379104

  9. Silicon: Potential to Promote Direct and Indirect Effects on Plant Defense Against Arthropod Pests in Agriculture

    PubMed Central

    Reynolds, Olivia L.; Padula, Matthew P.; Zeng, Rensen; Gurr, Geoff M.

    2016-01-01

    Silicon has generally not been considered essential for plant growth, although it is well recognized that many plants, particularly Poaceae, have substantial plant tissue concentrations of this element. Recently, however, the International Plant Nutrition Institute [IPNI] (2015), Georgia, USA has listed it as a “beneficial substance”. This reflects that numerous studies have now established that silicon may alleviate both biotic and abiotic stress. This paper explores the existing knowledge and recent advances in elucidating the role of silicon in plant defense against biotic stress, particularly against arthropod pests in agriculture and attraction of beneficial insects. Silicon confers resistance to herbivores via two described mechanisms: physical and biochemical/molecular. Until recently, studies have mainly centered on two trophic levels; the herbivore and plant. However, several studies now describe tri-trophic effects involving silicon that operate by attracting predators or parasitoids to plants under herbivore attack. Indeed, it has been demonstrated that silicon-treated, arthropod-attacked plants display increased attractiveness to natural enemies, an effect that was reflected in elevated biological control in the field. The reported relationships between soluble silicon and the jasmonic acid (JA) defense pathway, and JA and herbivore-induced plant volatiles (HIPVs) suggest that soluble silicon may enhance the production of HIPVs. Further, it is feasible that silicon uptake may affect protein expression (or modify proteins structurally) so that they can produce additional, or modify, the HIPV profile of plants. Ultimately, understanding silicon under plant ecological, physiological, biochemical, and molecular contexts will assist in fully elucidating the mechanisms behind silicon and plant response to biotic stress at both the bi- and tri-trophic levels. PMID:27379104

  10. Silicon: Potential to Promote Direct and Indirect Effects on Plant Defense Against Arthropod Pests in Agriculture.

    PubMed

    Reynolds, Olivia L; Padula, Matthew P; Zeng, Rensen; Gurr, Geoff M

    2016-01-01

    Silicon has generally not been considered essential for plant growth, although it is well recognized that many plants, particularly Poaceae, have substantial plant tissue concentrations of this element. Recently, however, the International Plant Nutrition Institute [IPNI] (2015), Georgia, USA has listed it as a "beneficial substance". This reflects that numerous studies have now established that silicon may alleviate both biotic and abiotic stress. This paper explores the existing knowledge and recent advances in elucidating the role of silicon in plant defense against biotic stress, particularly against arthropod pests in agriculture and attraction of beneficial insects. Silicon confers resistance to herbivores via two described mechanisms: physical and biochemical/molecular. Until recently, studies have mainly centered on two trophic levels; the herbivore and plant. However, several studies now describe tri-trophic effects involving silicon that operate by attracting predators or parasitoids to plants under herbivore attack. Indeed, it has been demonstrated that silicon-treated, arthropod-attacked plants display increased attractiveness to natural enemies, an effect that was reflected in elevated biological control in the field. The reported relationships between soluble silicon and the jasmonic acid (JA) defense pathway, and JA and herbivore-induced plant volatiles (HIPVs) suggest that soluble silicon may enhance the production of HIPVs. Further, it is feasible that silicon uptake may affect protein expression (or modify proteins structurally) so that they can produce additional, or modify, the HIPV profile of plants. Ultimately, understanding silicon under plant ecological, physiological, biochemical, and molecular contexts will assist in fully elucidating the mechanisms behind silicon and plant response to biotic stress at both the bi- and tri-trophic levels.

  11. Fabrication Of Biogenic Silver Nanoparticles Using Agricultural Crop Plant Leaf Extracts

    NASA Astrophysics Data System (ADS)

    Rajani, P.; SriSindhura, K.; Prasad, T. N. V. K. V.; Hussain, O. M.; Sudhakar, P.; Latha, P.; Balakrishna, M.; Kambala, V.; Reddy, K. Raja

    2010-10-01

    Nanoparticles are being viewed as fundamental building blocks of nanotechnology. Biosynthesis of nanoparticles by plant extracts is currently under exploitation. Use of agricultural crop plant extracts for synthesis of metal nanoparticles would add a new dimension to the agricultural sector in the utilization of crop waste. Silver has long been recognized as having an inhibitory effect towards many bacterial strains and microorganisms commonly present in medical and industrial processes. Four pulse crop plants and three cereal crop plants (Vigna radiata, Arachis hypogaea, Cyamopsis tetragonolobus, Zea mays, Pennisetum glaucum, Sorghum vulgare) were used and compared for their extra cellular synthesis of metallic silver nanoparticles. Stable silver nanoparticles were formed by treating aqueous solution of AgNO3 with the plant leaf extracts as reducing agent at temperatures 50 °C-95 °C. UV-Visible spectroscopy was utilized to monitor the formation of silver nanoparticles. XRD analysis of formed silver nanoparticles revealed face centered cubic structure with (111), (200), (220) and (311) planes. SEM and EDAX analysis confirm the size of the formed silver nanoparticles to be in the range of 50-200 nm. Our proposed work offers a enviro-friendly method for biogenic silver nanoparticles production. This could provide a faster synthesis rate comparable to those of chemical methods and potentially be used in areas such as cosmetics, food and medical applications.

  12. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science.

    PubMed

    Tan, Dun-Xian; Hardeland, Rudiger; Manchester, Lucien C; Korkmaz, Ahmet; Ma, Shuran; Rosales-Corral, Sergio; Reiter, Russel J

    2012-01-01

    The presence of melatonin in plants is universal. Evidence has confirmed that a major portion of the melatonin is synthesized by plants themselves even though a homologue of the classic arylalkylamine N-acetyltransferase (AANAT) has not been identified as yet in plants. Thus, the serotonin N-acetylating enzyme in plants may differ greatly from the animal AANAT with regard to sequence and structure. This would imply multiple evolutionary origins of enzymes with these catalytic properties. A primary function of melatonin in plants is to serve as the first line of defence against internal and environmental oxidative stressors. The much higher melatonin levels in plants compared with those found in animals are thought to be a compensatory response by plants which lack means of mobility, unlike animals, as a means of coping with harsh environments. Importantly, remarkably high melatonin concentrations have been measured in popular beverages (coffee, tea, wine, and beer) and crops (corn, rice, wheat, barley, and oats). Billions of people worldwide consume these products daily. The beneficial effects of melatonin on human health derived from the consumption of these products must be considered. Evidence also indicates that melatonin has an ability to increase the production of crops. The mechanisms may involve the roles of melatonin in preservation of chlorophyll, promotion of photosynthesis, and stimulation of root development. Transgenic plants with enhanced melatonin content could probably lead to breakthroughs to increase crop production in agriculture and to improve the general health of humans.

  13. Response of spinach and komatsuna to biogas effluent made from source-separated kitchen garbage.

    PubMed

    Furukawa, Yuichiro; Hasegawa, Hiroshi

    2006-01-01

    Recycling of kitchen garbage is an urgent task for reducing public spending and environmental burdens by incineration and/or landfill. There is an interesting regional effort in Ogawa, Saitama prefecture, Japan, in which source-separated kitchen garbage is anaerobically fermented with a biogas plant and the resultant effluent is used as a quick-release organic fertilizer by surrounding farmers. However, scientific assessments of fertilizer values and risks in the use of the effluent were lacking. Thus, a field experiment was conducted from 2003 to 2004 in Tohoku National Agricultural Research Center to grow spinach (Spinacia oleracea L.) and komatsuna (Brassica rapa var. perviridis L. H. Bailey) for evaluating the fertilizer value of the kitchen garbage effluent (KGE), nitrate, coliform group (CG), Escherichia coli, fecal streptococci (FS), and Vibrio parahaemolyticus concentrations of KGE and in the soil and the plant leaves. A cattle manure effluent (CME) and chemical fertilizers (NPK) were used as controls. Total nitrogen (N) and ammonium N concentrations of the KGE were 1.47 and 1.46 g kg(-1), respectively. The bacteria tested were detected in both biogas effluents in the order of 2 to 3 log CFU g(-1), but there was little evidence that the biogas effluents increased these bacteria in the soil and the plant leaves. At the rate of 22 g N m(-2), yield, total N uptake, apparent N recovery rate, and leaf nitrate ion concentration at harvest of spinach and komatsuna in the KGE plot were mostly comparable to those in the NPK and CME plots. We conclude that the KGE is a quick-release N fertilizer comparable to chemical fertilizers and does not cause contamination of CG, E. coli, FS, or V. parahaemolyticus in the soil and spinach and komatsuna leaves.

  14. Response of spinach and komatsuna to biogas effluent made from source-separated kitchen garbage.

    PubMed

    Furukawa, Yuichiro; Hasegawa, Hiroshi

    2006-01-01

    Recycling of kitchen garbage is an urgent task for reducing public spending and environmental burdens by incineration and/or landfill. There is an interesting regional effort in Ogawa, Saitama prefecture, Japan, in which source-separated kitchen garbage is anaerobically fermented with a biogas plant and the resultant effluent is used as a quick-release organic fertilizer by surrounding farmers. However, scientific assessments of fertilizer values and risks in the use of the effluent were lacking. Thus, a field experiment was conducted from 2003 to 2004 in Tohoku National Agricultural Research Center to grow spinach (Spinacia oleracea L.) and komatsuna (Brassica rapa var. perviridis L. H. Bailey) for evaluating the fertilizer value of the kitchen garbage effluent (KGE), nitrate, coliform group (CG), Escherichia coli, fecal streptococci (FS), and Vibrio parahaemolyticus concentrations of KGE and in the soil and the plant leaves. A cattle manure effluent (CME) and chemical fertilizers (NPK) were used as controls. Total nitrogen (N) and ammonium N concentrations of the KGE were 1.47 and 1.46 g kg(-1), respectively. The bacteria tested were detected in both biogas effluents in the order of 2 to 3 log CFU g(-1), but there was little evidence that the biogas effluents increased these bacteria in the soil and the plant leaves. At the rate of 22 g N m(-2), yield, total N uptake, apparent N recovery rate, and leaf nitrate ion concentration at harvest of spinach and komatsuna in the KGE plot were mostly comparable to those in the NPK and CME plots. We conclude that the KGE is a quick-release N fertilizer comparable to chemical fertilizers and does not cause contamination of CG, E. coli, FS, or V. parahaemolyticus in the soil and spinach and komatsuna leaves. PMID:16973635

  15. Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from a meat processing plant.

    PubMed

    Luostarinen, S; Luste, S; Sillanpää, M

    2009-01-01

    The feasibility of co-digesting grease trap sludge from a meat-processing plant and sewage sludge was studied in batch and reactor experiments at 35 degrees C. Grease trap sludge had high methane production potential (918 m(3)/tVS(added)), but methane production started slowly. When mixed with sewage sludge, methane production started immediately and the potential increased with increasing grease trap sludge content. Semi-continuous co-digestion of the two materials was found feasible up to grease trap sludge addition of 46% of feed volatile solids (hydraulic retention time 16d; maximum organic loading rate 3.46 kgVS/m(3)d). Methane production was significantly higher and no effect on the characteristics of the digested material was noticed as compared to digesting sewage sludge alone. At higher grease trap sludge additions (55% and 71% of feed volatile solids), degradation was not complete and methane production either remained the same or decreased. PMID:18707877

  16. Linking agricultural practices, mycorrhizal fungi, and traits mediating plant-insect interactions.

    PubMed

    Barber, Nicholas A; Kiers, E Toby; Theis, Nina; Hazzard, Ruth V; Adler, Lynn S

    2013-10-01

    Agricultural management has profound effects on soil communities. Activities such as fertilizer inputs can modify the composition of arbuscular mycorrhizal fungi (AMF) communities, which form important symbioses with the roots of most crop plants. Intensive conventional agricultural management may select for less mutualistic AMF with reduced benefits to host plants compared to organic management, but these differences are poorly understood. AMF are generally evaluated based on their direct growth effects on plants. However, mycorrhizal colonization also may alter plant traits such as tissue nutrients, defensive chemistry, or floral traits, which mediate important plant-insect interactions like herbivory and pollination. To determine the effect of AMF from different farming practices on plant performance and traits that putatively mediate species interactions, we performed a greenhouse study by inoculating Cucumis sativus (cucumber, Cucurbitaceae) with AMF from conventional farms, organic farms, and a commercial AMF inoculum. We measured growth and a suite of plant traits hypothesized to be important predictors of herbivore resistance and pollinator attraction. Several leaf and root traits and flower production were significantly affected by AMF inoculum. Both conventional and organic AMF reduced leaf P content but increased Na content compared to control and commercial AMF. Leaf defenses were unaffected by AMF treatments, but conventional AMF increased root cucurbitacin C, the primary defensive chemical of C. sativus, compared to organic AMF. These effects may have important consequences for herbivore preference and population dynamics. AMF from both organic and conventional farms decreased flower production relative to commercial and control treatments, which may reduce pollinator attraction and plant reproduction. AMF from both farm types also reduced seed germination, but effects on plant growth were limited. Our results suggest that studies only considering AMF

  17. Environmental effects of planting biomass crops at larger scales on agricultural lands

    SciTech Connect

    Tolbert, V.R.; Downing, M.E.

    1995-09-01

    Increasing from research-scale to larger-scale plantings of herbaceous. and short rotation woody crops on agricultural land in the United States has raised questions about the positive and negative environmental effects of farmland conversion. Research currently underway at experimental plot scales enables us examine runoff quality and quantity, erosion, and changes in soil characteristics associated with these energy crops compared to conventional row crops. A study of the fate of chemicals applied to the different crop types will enhance our knowledge of uptake, release, and off-site movement of nutrients and pesticides. Ongoing biodiversity studies in the North Central US allow us to compare differences in scale of plantings on bird and small mammal populations and habitat use. Plantings of 50--100 or more contiguous acres are needed to allow both researchers and producers to determine the benefits of including temporal energy crop rotations in the landscape. Results from these larger-scale plantings will help identify (1) the monitoring requirements needed to determine environmental effects of larger-scale plantings, (2) the best methods to determine the environmental effects of rotation length and the best crop management strategies for full-scale production. Because of the variations in soils, temperature, rainfall and other climatic conditions, as well as differences in the types of energy crops most suited for different regions, monitoring of large-scale plantings in these different regions of the US will be required to predict the environmental effects of regional agricultural land-use shifts for full-scale plantings.

  18. Environmental effects of planting energy crops at larger scales on agricultural lands

    SciTech Connect

    Tolbert, V.R.; Downing, M.

    1995-09-01

    Increasing from research-scale to larger-scale plantings of herbaceous and short rotation woody crops on agricultural land in the United States has raised questions about the positive and negative environmental effects of farmland conversion. Research currently underway at experimental plot scales enables us examine runoff quality and quantity, erosion, and changes in soil characteristics associated with these energy crops compared to conventional row crops. A study of the fate of chemicals applied to the different crop types will enhance our knowledge of uptake, release, and off-site movement of nutrients and pesticides. Ongoing biodiversity studies in the North Central US allow us to compare differences in scale of plantings on bird and small mammal populations and habitat use. Plantings of 50--100 or more contiguous acres are needed to allow both researchers and producers to determine the benefits of including temporal energy crop rotations in the landscape. Results from these larger-scale plantings will help identify (1) the monitoring requirements needed to determine environmental effects of larger-scale plantings, (2) the best methods to determine the environmental effects of rotation length and the best crop management strategies for full-scale production. Because of the variations in soils, temperature, rainfall and other climatic conditions, as well as differences in the types of energy crops most suited for different regions, monitoring of large-scale plantings in these different regions of the US will be required to predict the environmental effects of regional agricultural land-use shifts for full-scale plantings.

  19. Addressing case specific biogas plant tasks: industry oriented methane yields derived from 5L Automatic Methane Potential Test Systems in batch or semi-continuous tests using realistic inocula, substrate particle sizes and organic loading.

    PubMed

    Kolbl, Sabina; Paloczi, Attila; Panjan, Jože; Stres, Blaž

    2014-02-01

    The primary aim of the study was to develop and validate an in-house upscale of Automatic Methane Potential Test System II for studying real-time inocula and real-scale substrates in batch, codigestion and enzyme enhanced hydrolysis experiments, in addition to semi-continuous operation of the developed equipment and experiments testing inoculum functional quality. The successful upscale to 5L enabled comparison of different process configurations in shorter preparation times with acceptable accuracy and high-through put intended for industrial decision making. The adoption of the same scales, equipment and methodologies in batch and semi-continuous tests mirroring those at full scale biogas plants resulted in matching methane yields between the two laboratory tests and full-scale, confirming thus the increased decision making value of the approach for industrial operations. PMID:24368269

  20. Addressing case specific biogas plant tasks: industry oriented methane yields derived from 5L Automatic Methane Potential Test Systems in batch or semi-continuous tests using realistic inocula, substrate particle sizes and organic loading.

    PubMed

    Kolbl, Sabina; Paloczi, Attila; Panjan, Jože; Stres, Blaž

    2014-02-01

    The primary aim of the study was to develop and validate an in-house upscale of Automatic Methane Potential Test System II for studying real-time inocula and real-scale substrates in batch, codigestion and enzyme enhanced hydrolysis experiments, in addition to semi-continuous operation of the developed equipment and experiments testing inoculum functional quality. The successful upscale to 5L enabled comparison of different process configurations in shorter preparation times with acceptable accuracy and high-through put intended for industrial decision making. The adoption of the same scales, equipment and methodologies in batch and semi-continuous tests mirroring those at full scale biogas plants resulted in matching methane yields between the two laboratory tests and full-scale, confirming thus the increased decision making value of the approach for industrial operations.

  1. Phytoremediation potential of some agricultural plants on heavy metal contaminated mine waste soils, salem district, tamilnadu.

    PubMed

    Padmapriya, S; Murugan, N; Ragavendran, C; Thangabalu, R; Natarajan, D

    2016-01-01

    The Pot culture experiment performed for phytoextraction potential of selected agricultural plants [millet (Eleusine coracana), mustard (Brassica juncea), jowar (Sorghum bicolor), black gram (Vigna mungo), pumpkin (Telfairia occidentalis)] grown in metal contaminated soils around the Salem region, Tamilnadu, India. Physiochemical characterization of soils, reported as low to medium level of N, P, K was found in test soils. The Cr content higher in mine soils than control and the values are 0.176 mg/L in Dalmia soil and 0.049 mg/L in Burn & Co soil. The germination rate low in mine soil than control soils (25 to 85%). The content of chlorophyll, carotenoid, carbohydrate and protein decreased in mine soils than control. The morphological parameters and biomass values decreased in experimental plants due to metal accumulation. Proline content increased in test plants and ranged from 0.113 mg g(-1) to 0.858 mg g(-1) which indicate the stress condition due to toxicity of metals. Sorghum and black gram plants reported as metal tolerant capacity. Among the plants, Sorghum produced good results (both biomass and biochemical parameters) which equal to control plant and suggests Sorghum plant is an ideal for remediation of metal contaminated soils.

  2. Monitoring arsenic contamination in agricultural soils with reflectance spectroscopy of rice plants.

    PubMed

    Shi, Tiezhu; Liu, Huizeng; Wang, Junjie; Chen, Yiyun; Fei, Teng; Wu, Guofeng

    2014-06-01

    The objective of this study was to explore the feasibility and to investigate the mechanism for rapidly monitoring arsenic (As) contamination in agricultural soils with the reflectance spectra of rice plants. Several data pretreatment methods were applied to improve the prediction accuracy. The prediction of soil As contents was achieved by partial least-squares regression (PLSR) using laboratory and field spectra of rice plants, as well as linear regression employing normalized difference spectral index (NDSI) calculated from fild spectra. For laboratory spectra, the optimal PLSR model for predicting soil As contents was achieved using Savitzky-Golay smoothing (SG), first derivative and mean center (MC) (root-mean-square error of prediction (RMSEP)=14.7 mg kg(-1); r=0.64; residual predictive deviation (RPD)=1.31). For field spectra, the optimal PLSR model was also achieved using SG, first derivative and MC (RMSEP=13.7 mg kg(-1); r=0.71; RPD=1.43). In addition, the NDSI with 812 and 782 nm obtained a prediction accuracy with r=0.68, RMSEP=13.7 mg kg(-1), and RPD=1.36. These results indicated that it was feasible to monitor the As contamination in agricultural soils using the reflectance spectra of rice plants. The prediction mechanism might be the relationship between the As contents in soils and the chlorophyll-a/-b contents and cell structure in leaves or canopies of rice plants. PMID:24804926

  3. Arsenic contamination of soils and agricultural plants through irrigation water in Nepal.

    PubMed

    Dahal, B M; Fuerhacker, M; Mentler, A; Karki, K B; Shrestha, R R; Blum, W E H

    2008-09-01

    This study monitored the influence of arsenic-contaminated irrigation water on alkaline soils and arsenic uptake in agricultural plants at field level. The arsenic concentrations in irrigation water ranges from <0.005 to 1.014 mg L(-1) where the arsenic concentrations in the soils were measured from 6.1 to 16.7 mg As kg(-1). The arsenic content in different parts of plants are found in the order of roots>shoots>leaves>edible parts. The mean arsenic content of edible plant material (dry weight) were found in the order of onion leaves (0.55 mg As kg(-1))>onion bulb (0.45 mg As kg(-1))>cauliflower (0.33 mg As kg(-1))>rice (0.18 mg As kg(-1))>brinjal (0.09 mg As kg(-1))>potato (<0.01 mg As kg(-1)). PMID:18068879

  4. Emergy Analysis of Biogas Systems Based on Different Raw Materials

    PubMed Central

    Wang, Yang; Lin, Cong; Li, Jing; Duan, Na; Li, Xue; Fu, Yanyan

    2013-01-01

    Environmental pollution and energy crisis restrict the development of China, and the utilization of renewable technology is an effective strategy to alleviate the damage. Biogas engineering has rapidly developed attributes to solve environmental problems and create a renewable energy product biogas. In this paper, two different biogas plants' materials were analyzed by emergy method. One of them is a biogas project whose degraded material is feces (BPF system), and the other is the one whose degraded material is corn straw (BPC system). As a result, the ecological-economic values of BPF and BPC are $28,300/yr and $8,100/yr, respectively. Considering currency, environment, and human inputs, both of the biogas projects have the ability of disposing waste and potential for development. The proportion of biogas output is much more than fertilizer output; so, fertilizer utilization should be emphasized in the future. In comparison, BPF is better than BPC in the aspects of ecological-economic benefits, environmental benefits, and sustainability. The reason is the difficulty of corn straw seasonal collection and degradation. Thus it is proposed that BPC should be combined with the other raw materials. PMID:23476134

  5. Emergy analysis of biogas systems based on different raw materials.

    PubMed

    Wang, Yang; Lin, Cong; Li, Jing; Duan, Na; Li, Xue; Fu, Yanyan

    2013-01-01

    Environmental pollution and energy crisis restrict the development of China, and the utilization of renewable technology is an effective strategy to alleviate the damage. Biogas engineering has rapidly developed attributes to solve environmental problems and create a renewable energy product biogas. In this paper, two different biogas plants' materials were analyzed by emergy method. One of them is a biogas project whose degraded material is feces (BPF system), and the other is the one whose degraded material is corn straw (BPC system). As a result, the ecological-economic values of BPF and BPC are $28,300/yr and $8,100/yr, respectively. Considering currency, environment, and human inputs, both of the biogas projects have the ability of disposing waste and potential for development. The proportion of biogas output is much more than fertilizer output; so, fertilizer utilization should be emphasized in the future. In comparison, BPF is better than BPC in the aspects of ecological-economic benefits, environmental benefits, and sustainability. The reason is the difficulty of corn straw seasonal collection and degradation. Thus it is proposed that BPC should be combined with the other raw materials.

  6. Emergy analysis of biogas systems based on different raw materials.

    PubMed

    Wang, Yang; Lin, Cong; Li, Jing; Duan, Na; Li, Xue; Fu, Yanyan

    2013-01-01

    Environmental pollution and energy crisis restrict the development of China, and the utilization of renewable technology is an effective strategy to alleviate the damage. Biogas engineering has rapidly developed attributes to solve environmental problems and create a renewable energy product biogas. In this paper, two different biogas plants' materials were analyzed by emergy method. One of them is a biogas project whose degraded material is feces (BPF system), and the other is the one whose degraded material is corn straw (BPC system). As a result, the ecological-economic values of BPF and BPC are $28,300/yr and $8,100/yr, respectively. Considering currency, environment, and human inputs, both of the biogas projects have the ability of disposing waste and potential for development. The proportion of biogas output is much more than fertilizer output; so, fertilizer utilization should be emphasized in the future. In comparison, BPF is better than BPC in the aspects of ecological-economic benefits, environmental benefits, and sustainability. The reason is the difficulty of corn straw seasonal collection and degradation. Thus it is proposed that BPC should be combined with the other raw materials. PMID:23476134

  7. Environmental consequences of future biogas technologies based on separated slurry.

    PubMed

    Hamelin, Lorie; Wesnæs, Marianne; Wenzel, Henrik; Petersen, Bjørn M

    2011-07-01

    This consequential life cycle assessment study highlights the key environmental aspects of producing biogas from separated pig and cow slurry, a relatively new but probable scenario for future biogas production, as it avoids the reliance on constrained carbon cosubstrates. Three scenarios involving different slurry separation technologies have been assessed and compared to a business-as-usual reference slurry management scenario. The results show that the environmental benefits of such biogas production are highly dependent upon the efficiency of the separation technology used to concentrate the volatile solids in the solid fraction. The biogas scenario involving the most efficient separation technology resulted in a dry matter separation efficiency of 87% and allowed a net reduction of the global warming potential of 40%, compared to the reference slurry management. This figure comprises the whole slurry life cycle, including the flows bypassing the biogas plant. This study includes soil carbon balances and a method for quantifying the changes in yield resulting from increased nitrogen availability as well as for quantifying mineral fertilizers displacement. Soil carbon balances showed that between 13 and 50% less carbon ends up in the soil pool with the different biogas alternatives, as opposed to the reference slurry management.

  8. Tightly-Coupled Plant-Soil Nitrogen Cycling: Comparison of Organic Farms across an Agricultural Landscape.

    PubMed

    Bowles, Timothy M; Hollander, Allan D; Steenwerth, Kerri; Jackson, Louise E

    2015-01-01

    How farming systems supply sufficient nitrogen (N) for high yields but with reduced N losses is a central challenge for reducing the tradeoffs often associated with N cycling in agriculture. Variability in soil organic matter and management of organic farms across an agricultural landscape may yield insights for improving N cycling and for evaluating novel indicators of N availability. We assessed yields, plant-soil N cycling, and root expression of N metabolism genes across a representative set of organic fields growing Roma-type tomatoes (Solanum lycopersicum L.) in an intensively-managed agricultural landscape in California, USA. The fields spanned a three-fold range of soil carbon (C) and N but had similar soil types, texture, and pH. Organic tomato yields ranged from 22.9 to 120.1 Mg ha-1 with a mean similar to the county average (86.1 Mg ha-1), which included mostly conventionally-grown tomatoes. Substantial variability in soil inorganic N concentrations, tomato N, and root gene expression indicated a range of possible tradeoffs between yields and potential for N losses across the fields. Fields showing evidence of tightly-coupled plant-soil N cycling, a desirable scenario in which high crop yields are supported by adequate N availability but low potential for N loss, had the highest total and labile soil C and N and received organic matter inputs with a range of N availability. In these fields, elevated expression of a key gene involved in root N assimilation, cytosolic glutamine synthetase GS1, confirmed that plant N assimilation was high even when inorganic N pools were low. Thus tightly-coupled N cycling occurred on several working organic farms. Novel combinations of N cycling indicators (i.e. inorganic N along with soil microbial activity and root gene expression for N assimilation) would support adaptive management for improved N cycling on organic as well as conventional farms, especially when plant-soil N cycling is rapid.

  9. Environmental and economic analysis of application of water hyacinth for eutrophic water treatment coupled with biogas production.

    PubMed

    Wang, Zanxin; Calderon, Margaret M

    2012-11-15

    The proliferation of water hyacinth is currently controlled by removing it from a water body and disposing it by landfill in China. Using water hyacinth to remove nutrients from water bodies and to produce biogas is another technically feasible option for the control of water hyacinth, but its environmental and economic performances are not well understood. This study collected data from an experimental biogas plant to develop a lifecycle analysis and a cost benefit analysis for the control of water hyacinth proliferation in a eutrophic lake in China. Comparison was made between the alternative option of using water hyacinth for biogas production and the current practice of disposing it in landfills. The results reveal that the biogas option is economically feasible with a positive energy balance. The removal of water hyacinth to produce biogas can contribute to water quality improvement and GHG emission reduction whose values, however, depend on the processing scale of the biogas plant. Since both the current approach and the biogas option can remove nutrients from water bodies, the additional value of water quality improvement resulting from the biogas option is only possible when the processing scale of the biogas plant is greater than the amount of water hyacinth disposed by landfill. The emission of methane deserves attention when water hyacinth is disposed by landfill. The biogas option can respond to China's policies on water pollution control, renewable energy development, and energy saving and emission reduction.

  10. Environmental and economic analysis of application of water hyacinth for eutrophic water treatment coupled with biogas production.

    PubMed

    Wang, Zanxin; Calderon, Margaret M

    2012-11-15

    The proliferation of water hyacinth is currently controlled by removing it from a water body and disposing it by landfill in China. Using water hyacinth to remove nutrients from water bodies and to produce biogas is another technically feasible option for the control of water hyacinth, but its environmental and economic performances are not well understood. This study collected data from an experimental biogas plant to develop a lifecycle analysis and a cost benefit analysis for the control of water hyacinth proliferation in a eutrophic lake in China. Comparison was made between the alternative option of using water hyacinth for biogas production and the current practice of disposing it in landfills. The results reveal that the biogas option is economically feasible with a positive energy balance. The removal of water hyacinth to produce biogas can contribute to water quality improvement and GHG emission reduction whose values, however, depend on the processing scale of the biogas plant. Since both the current approach and the biogas option can remove nutrients from water bodies, the additional value of water quality improvement resulting from the biogas option is only possible when the processing scale of the biogas plant is greater than the amount of water hyacinth disposed by landfill. The emission of methane deserves attention when water hyacinth is disposed by landfill. The biogas option can respond to China's policies on water pollution control, renewable energy development, and energy saving and emission reduction. PMID:22813757

  11. Microparticle bombardment as a tool in plant science and agricultural biotechnology.

    PubMed

    Taylor, Nigel J; Fauquet, Claude M

    2002-12-01

    Microparticle bombardment technology has evolved as a method for delivering exogenous nucleic acids into plant cells and is a commonly employed technique in plant science. Desired genetic material is precipitated onto micron-sized metal particles and placed within one of a variety of devices designed to accelerate these "microcarriers" to velocities required to penetrate the plant cell wall. In this manner, transgenes can be delivered into the cell's genome or plastome. Since the late 1980s microparticle bombardment has become a powerful tool for the study of gene expression and production of stably transformed tissues and whole transgenic plants for experimental purposes and agricultural applications. This paper reviews development and application of the technology, including the protocols and mechanical systems employed as delivery systems, and the types of plant cells and culture systems employed to generate effective "targets" for receiving the incoming genetic material. Current understanding of how the exogenous DNA becomes integrated into the plant's native genetic background are assessed as are methods for improving the efficiency of this process. Pros and cons of particle bombardment technologies compared to alternative direct gene transfer methods and Agrobacterium based transformation systems are discussed.

  12. Agricultural recycling of treatment-plant sludge: a case study for a vegetable-processing factory.

    PubMed

    Dolgen, Deniz; Alpaslan, M Necdet; Delen, Nafiz

    2007-08-01

    The present study evaluated the possibility of using the sludge produced by a vegetable-processing factory in agriculture. The sludge was amended with a soil mixture (i.e., a mixture of sand, soil, and manure) and was applied at 0, 165, 330, 495 and 660 t/ha to promote the growth of cucumbers. The effects of various sludge loadings on plant growth were assessed by counting plants and leaves, measuring stem lengths, and weighing the green parts and roots of the plants. We also compared heavy metal uptake by the plants for sludge loadings of 330, 495, and 660 t/ha with various recommended standards for vegetables. Our results showed that plant growth patterns were influenced to some extent by the sludge loadings. In general, the number of leaves, stem length, and dry weight of green parts exhibited a pronounced positive growth response compared with an unfertilized control, and root growth showed a lesser but still significant response at sludge loadings of 165 and 330 t/ha. The sludge application caused no significant increase in heavy metal concentrations in the leaves, though zinc (Zn) and iron (Fe) were found at elevated concentrations. However, despite the Zn and Fe accumulation, we observed no toxicity symptoms in the plants. This may be a result of cucumber's tolerance of high metal levels. PMID:16934389

  13. Agricultural recycling of treatment-plant sludge: a case study for a vegetable-processing factory.

    PubMed

    Dolgen, Deniz; Alpaslan, M Necdet; Delen, Nafiz

    2007-08-01

    The present study evaluated the possibility of using the sludge produced by a vegetable-processing factory in agriculture. The sludge was amended with a soil mixture (i.e., a mixture of sand, soil, and manure) and was applied at 0, 165, 330, 495 and 660 t/ha to promote the growth of cucumbers. The effects of various sludge loadings on plant growth were assessed by counting plants and leaves, measuring stem lengths, and weighing the green parts and roots of the plants. We also compared heavy metal uptake by the plants for sludge loadings of 330, 495, and 660 t/ha with various recommended standards for vegetables. Our results showed that plant growth patterns were influenced to some extent by the sludge loadings. In general, the number of leaves, stem length, and dry weight of green parts exhibited a pronounced positive growth response compared with an unfertilized control, and root growth showed a lesser but still significant response at sludge loadings of 165 and 330 t/ha. The sludge application caused no significant increase in heavy metal concentrations in the leaves, though zinc (Zn) and iron (Fe) were found at elevated concentrations. However, despite the Zn and Fe accumulation, we observed no toxicity symptoms in the plants. This may be a result of cucumber's tolerance of high metal levels.

  14. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture

    PubMed Central

    Masclaux-Daubresse, Céline; Daniel-Vedele, Françoise; Dechorgnat, Julie; Chardon, Fabien; Gaufichon, Laure; Suzuki, Akira

    2010-01-01

    Background Productive agriculture needs a large amount of expensive nitrogenous fertilizers. Improving nitrogen use efficiency (NUE) of crop plants is thus of key importance. NUE definitions differ depending on whether plants are cultivated to produce biomass or grain yields. However, for most plant species, NUE mainly depends on how plants extract inorganic nitrogen from the soil, assimilate nitrate and ammonium, and recycle organic nitrogen. Efforts have been made to study the genetic basis as well as the biochemical and enzymatic mechanisms involved in nitrogen uptake, assimilation, and remobilization in crops and model plants. The detection of the limiting factors that could be manipulated to increase NUE is the major goal of such research. Scope An overall examination of the physiological, metabolic, and genetic aspects of nitrogen uptake, assimilation and remobilization is presented in this review. The enzymes and regulatory processes manipulated to improve NUE components are presented. Results obtained from natural variation and quantitative trait loci studies are also discussed. Conclusions This review presents the complexity of NUE and supports the idea that the integration of the numerous data coming from transcriptome studies, functional genomics, quantitative genetics, ecophysiology and soil science into explanatory models of whole-plant behaviour will be promising. PMID:20299346

  15. Progress in the study of biological effects of hydrogen on higher plants and its promising application in agriculture.

    PubMed

    Zeng, Jiqing; Ye, Zhouheng; Sun, Xuejun

    2014-01-01

    While the medical effects of hydrogen have been broadly analyzed, research into the effects of hydrogen on higher plants has often been of lesser concern. Recent studies on the botanical effects of hydrogen have shown that it is involved in signal transduction pathways of plant hormones and can improve the resistance of plants to stressors, such as drought, salinity, cold and heavy metals. In addition, hydrogen could delay postharvest ripening and senescence of fruits. Observational evidence has also shown that hydrogen can regulate the flowering time of plants. These results indicate that hydrogen may have great potential applications within agricultural production, indicating that there may be a new 'hydrogen agricultural era' to come.

  16. The plant breeding industry after pure line theory: Lessons from the National Institute of Agricultural Botany.

    PubMed

    Berry, Dominic

    2014-06-01

    In the early twentieth century, Wilhelm Johannsen proposed his pure line theory and the genotype/phenotype distinction, work that is prized as one of the most important founding contributions to genetics and Mendelian plant breeding. Most historians have already concluded that pure line theory did not change breeding practices directly. Instead, breeding became more orderly as a consequence of pure line theory, which structured breeding programmes and eliminated external heritable influences. This incremental change then explains how and why the large multi-national seed companies that we know today were created; pure lines invited standardisation and economies of scale that the latter were designed to exploit. Rather than focus on breeding practice, this paper examines the plant varietal market itself. It focusses upon work conducted by the National Institute of Agricultural Botany (NIAB) during the interwar years, and in doing so demonstrates that, on the contrary, the pure line was actually only partially accepted by the industry. Moreover, claims that contradicted the logic of the pure line were not merely tolerated by the agricultural geneticists affiliated with NIAB, but were acknowledged and legitimised by them. The history of how and why the plant breeding industry was transformed remains to be written. PMID:24650856

  17. Towards personalized agriculture: what chemical genomics can bring to plant biotechnology

    PubMed Central

    Stokes, Michael E.; McCourt, Peter

    2014-01-01

    In contrast to the dominant drug paradigm in which compounds were developed to “fit all,” new models focused around personalized medicine are appearing in which treatments are developed and customized for individual patients. The agricultural biotechnology industry (Ag-biotech) should also think about these new personalized models. For example, most common herbicides are generic in action, which led to the development of genetically modified crops to add specificity. The ease and accessibility of modern genomic analysis, when wedded to accessible large chemical space, should facilitate the discovery of chemicals that are more selective in their utility. Is it possible to develop species-selective herbicides and growth regulators? More generally put, is plant research at a stage where chemicals can be developed that streamline plant development and growth to various environments? We believe the advent of chemical genomics now opens up these and other opportunities to “personalize” agriculture. Furthermore, chemical genomics does not necessarily require genetically tractable plant models, which in principle should allow quick translation to practical applications. For this to happen, however, will require collaboration between the Ag-biotech industry and academic labs for early stage research and development, a situation that has proven very fruitful for Big Pharma. PMID:25183965

  18. The plant breeding industry after pure line theory: Lessons from the National Institute of Agricultural Botany.

    PubMed

    Berry, Dominic

    2014-06-01

    In the early twentieth century, Wilhelm Johannsen proposed his pure line theory and the genotype/phenotype distinction, work that is prized as one of the most important founding contributions to genetics and Mendelian plant breeding. Most historians have already concluded that pure line theory did not change breeding practices directly. Instead, breeding became more orderly as a consequence of pure line theory, which structured breeding programmes and eliminated external heritable influences. This incremental change then explains how and why the large multi-national seed companies that we know today were created; pure lines invited standardisation and economies of scale that the latter were designed to exploit. Rather than focus on breeding practice, this paper examines the plant varietal market itself. It focusses upon work conducted by the National Institute of Agricultural Botany (NIAB) during the interwar years, and in doing so demonstrates that, on the contrary, the pure line was actually only partially accepted by the industry. Moreover, claims that contradicted the logic of the pure line were not merely tolerated by the agricultural geneticists affiliated with NIAB, but were acknowledged and legitimised by them. The history of how and why the plant breeding industry was transformed remains to be written.

  19. Noncrop flowering plants restore top-down herbivore control in agricultural fields.

    PubMed

    Balmer, Oliver; Pfiffner, Lukas; Schied, Johannes; Willareth, Martin; Leimgruber, Andrea; Luka, Henryk; Traugott, Michael

    2013-08-01

    Herbivore populations are regulated by bottom-up control through food availability and quality and by top-down control through natural enemies. Intensive agricultural monocultures provide abundant food to specialized herbivores and at the same time negatively impact natural enemies because monocultures are depauperate in carbohydrate food sources required by many natural enemies. As a consequence, herbivores are released from both types of control. Diversifying intensive cropping systems with flowering plants that provide nutritional resources to natural enemies may enhance top-down control and contribute to natural herbivore regulation. We analyzed how noncrop flowering plants planted as "companion plants" inside cabbage (Brassica oleracea) fields and as margins along the fields affect the plant-herbivore-parasitoid-predator food web. We combined molecular analyses quantifying parasitism of herbivore eggs and larvae with molecular predator gut content analysis and a comprehensive predator community assessment. Planting cornflowers (Centaurea cynanus), which have been shown to attract and selectively benefit Microplitis mediator, a larval parasitoid of the cabbage moth Mamestra brassicae, between the cabbage heads shifted the balance between trophic levels. Companion plants significantly increased parasitism of herbivores by larval parasitoids and predation on herbivore eggs. They furthermore significantly affected predator species richness. These effects were present despite the different treatments being close relative to the parasitoids' mobility. These findings demonstrate that habitat manipulation can restore top-down herbivore control in intensive crops if the right resources are added. This is important because increased natural control reduces the need for pesticide input in intensive agricultural settings, with cascading positive effects on general biodiversity and the environment. Companion plants thus increase biodiversity both directly, by introducing

  20. Historic Mining and Agriculture as Indicators of Occurrence and Abundance of Widespread Invasive Plant Species

    PubMed Central

    Calinger, Kellen; Calhoon, Elisabeth; Chang, Hsiao-chi; Whitacre, James; Wenzel, John; Comita, Liza; Queenborough, Simon

    2015-01-01

    Anthropogenic disturbances often change ecological communities and provide opportunities for non-native species invasion. Understanding the impacts of disturbances on species invasion is therefore crucial for invasive species management. We used generalized linear mixed effects models to explore the influence of land-use history and distance to roads on the occurrence and abundance of two invasive plant species (Rosa multiflora and Berberis thunbergii) in a 900-ha deciduous forest in the eastern U.S.A., the Powdermill Nature Reserve. Although much of the reserve has been continuously forested since at least 1939, aerial photos revealed a variety of land-uses since then including agriculture, mining, logging, and development. By 2008, both R. multiflora and B. thunbergii were widespread throughout the reserve (occurring in 24% and 13% of 4417 10-m diameter regularly-placed vegetation plots, respectively) with occurrence and abundance of each varying significantly with land-use history. Rosa multiflora was more likely to occur in historically farmed, mined, logged or developed plots than in plots that remained forested, (log odds of 1.8 to 3.0); Berberis thunbergii was more likely to occur in plots with agricultural, mining, or logging history than in plots without disturbance (log odds of 1.4 to 2.1). Mining, logging, and agriculture increased the probability that R. multiflora had >10% cover while only past agriculture was related to cover of B. thunbergii. Proximity to roads was positively correlated with the occurrence of R. multiflora (a 0.26 increase in the log odds for every 1-m closer) but not B. thunbergii, and roads had no impact on the abundance of either species. Our results indicated that a wide variety of disturbances may aid the introduction of invasive species into new habitats, while high-impact disturbances such as agriculture and mining increase the likelihood of high abundance post-introduction. PMID:26046534

  1. Historic Mining and Agriculture as Indicators of Occurrence and Abundance of Widespread Invasive Plant Species.

    PubMed

    Calinger, Kellen; Calhoon, Elisabeth; Chang, Hsiao-Chi; Whitacre, James; Wenzel, John; Comita, Liza; Queenborough, Simon

    2015-01-01

    Anthropogenic disturbances often change ecological communities and provide opportunities for non-native species invasion. Understanding the impacts of disturbances on species invasion is therefore crucial for invasive species management. We used generalized linear mixed effects models to explore the influence of land-use history and distance to roads on the occurrence and abundance of two invasive plant species (Rosa multiflora and Berberis thunbergii) in a 900-ha deciduous forest in the eastern U.S.A., the Powdermill Nature Reserve. Although much of the reserve has been continuously forested since at least 1939, aerial photos revealed a variety of land-uses since then including agriculture, mining, logging, and development. By 2008, both R. multiflora and B. thunbergii were widespread throughout the reserve (occurring in 24% and 13% of 4417 10-m diameter regularly-placed vegetation plots, respectively) with occurrence and abundance of each varying significantly with land-use history. Rosa multiflora was more likely to occur in historically farmed, mined, logged or developed plots than in plots that remained forested, (log odds of 1.8 to 3.0); Berberis thunbergii was more likely to occur in plots with agricultural, mining, or logging history than in plots without disturbance (log odds of 1.4 to 2.1). Mining, logging, and agriculture increased the probability that R. multiflora had >10% cover while only past agriculture was related to cover of B. thunbergii. Proximity to roads was positively correlated with the occurrence of R. multiflora (a 0.26 increase in the log odds for every 1-m closer) but not B. thunbergii, and roads had no impact on the abundance of either species. Our results indicated that a wide variety of disturbances may aid the introduction of invasive species into new habitats, while high-impact disturbances such as agriculture and mining increase the likelihood of high abundance post-introduction. PMID:26046534

  2. Historic Mining and Agriculture as Indicators of Occurrence and Abundance of Widespread Invasive Plant Species.

    PubMed

    Calinger, Kellen; Calhoon, Elisabeth; Chang, Hsiao-Chi; Whitacre, James; Wenzel, John; Comita, Liza; Queenborough, Simon

    2015-01-01

    Anthropogenic disturbances often change ecological communities and provide opportunities for non-native species invasion. Understanding the impacts of disturbances on species invasion is therefore crucial for invasive species management. We used generalized linear mixed effects models to explore the influence of land-use history and distance to roads on the occurrence and abundance of two invasive plant species (Rosa multiflora and Berberis thunbergii) in a 900-ha deciduous forest in the eastern U.S.A., the Powdermill Nature Reserve. Although much of the reserve has been continuously forested since at least 1939, aerial photos revealed a variety of land-uses since then including agriculture, mining, logging, and development. By 2008, both R. multiflora and B. thunbergii were widespread throughout the reserve (occurring in 24% and 13% of 4417 10-m diameter regularly-placed vegetation plots, respectively) with occurrence and abundance of each varying significantly with land-use history. Rosa multiflora was more likely to occur in historically farmed, mined, logged or developed plots than in plots that remained forested, (log odds of 1.8 to 3.0); Berberis thunbergii was more likely to occur in plots with agricultural, mining, or logging history than in plots without disturbance (log odds of 1.4 to 2.1). Mining, logging, and agriculture increased the probability that R. multiflora had >10% cover while only past agriculture was related to cover of B. thunbergii. Proximity to roads was positively correlated with the occurrence of R. multiflora (a 0.26 increase in the log odds for every 1-m closer) but not B. thunbergii, and roads had no impact on the abundance of either species. Our results indicated that a wide variety of disturbances may aid the introduction of invasive species into new habitats, while high-impact disturbances such as agriculture and mining increase the likelihood of high abundance post-introduction.

  3. Technological assumptions for biogas purification.

    PubMed

    Makareviciene, Violeta; Sendzikiene, Egle

    2015-01-01

    Biogas can be used in the engines of transport vehicles and blended into natural gas networks, but it also requires the removal of carbon dioxide, hydrogen sulphide, and moisture. Biogas purification process flow diagrams have been developed for a process enabling the use of a dolomite suspension, as well as for solutions obtained by the filtration of the suspension, to obtain biogas free of hydrogen sulphide and with a carbon dioxide content that does not exceed 2%. The cost of biogas purification was evaluated on the basis of data on biogas production capacity and biogas production cost obtained from local water treatment facilities. It has been found that, with the use of dolomite suspension, the cost of biogas purification is approximately six times lower than that in the case of using a chemical sorbent such as monoethanolamine. The results showed travelling costs using biogas purified by dolomite suspension are nearly 1.5 time lower than travelling costs using gasoline and slightly lower than travelling costs using mineral diesel fuel.

  4. Technological assumptions for biogas purification.

    PubMed

    Makareviciene, Violeta; Sendzikiene, Egle

    2015-01-01

    Biogas can be used in the engines of transport vehicles and blended into natural gas networks, but it also requires the removal of carbon dioxide, hydrogen sulphide, and moisture. Biogas purification process flow diagrams have been developed for a process enabling the use of a dolomite suspension, as well as for solutions obtained by the filtration of the suspension, to obtain biogas free of hydrogen sulphide and with a carbon dioxide content that does not exceed 2%. The cost of biogas purification was evaluated on the basis of data on biogas production capacity and biogas production cost obtained from local water treatment facilities. It has been found that, with the use of dolomite suspension, the cost of biogas purification is approximately six times lower than that in the case of using a chemical sorbent such as monoethanolamine. The results showed travelling costs using biogas purified by dolomite suspension are nearly 1.5 time lower than travelling costs using gasoline and slightly lower than travelling costs using mineral diesel fuel. PMID:25609385

  5. Initial Effects of Differently Treated Biogas Residues from Municipal and Industrial Wastes on Spring Barley Yield Formation

    PubMed Central

    Prays, Nadia; Kaupenjohann, Martin

    2016-01-01

    Soil application of biogas residues (BGRs) is important for closing nutrient cycles. This study examined the efficiency and impact on yields and yield formation of solid-liquid separated residues from biodegradable municipal and industrial wastes (bio-waste) in comparison to complete BGRs, nitrification inhibitor, agricultural BGRs, mineral fertilizer and unfertilized plots as control. The experiment was set up as a randomized block design on silt loam Cambisol. Biogas residues from four biogas plants were evaluated. Plants per m², ears per plant, grains per ear and thousand grain weight (TGW) were measured at harvest. Fertilization with BGRs resulted in similar biomass yields compared with mineral fertilizer. Mineral fertilizer (71 dt/ha) and plots fertilized with liquid fraction (59–62 dt/ha) indicated a trend to higher yields than solid fraction or complete BGR due to its high ammonia content. Liquid fractions and fraction with nitrification inhibitor induced fewer plants per m² than corresponding solid and complete variants due to a potential phytotoxicity of high NH4-N concentration during germination. However, barley on plots fertilized with liquid fraction compensated the disadvantages at the beginning during the vegetation period and induced higher grain yields than solid fraction. This was attributable to a higher number of ears per plant and grains per ear. In conclusion, BGRs from biodegradable municipal and industrial wastes can be used for soil fertilization and replace considerable amounts of mineral fertilizer. Our study showed that direct application of the liquid fraction of BGR is the most suitable strategy to achieve highest grain yields. Nevertheless potential phytotoxicity of the high NH4-N concentration in the liquid fraction should be considered. PMID:27116355

  6. Dielectric spectroscopic studies on the water hyacinth plant collected from agriculture drainage

    NASA Astrophysics Data System (ADS)

    Mahani, Ragab; Atia, Fatma; Al Neklawy, Mohammed M.; Fahem, Amin

    2016-06-01

    The present paper aims to investigate the sensitivity of dielectric spectroscopy to changes in concentrations of pollutants (heavy metals and metal oxides) uptake by the water hyacinth plant collected from agriculture wastewater drainage. The measurements were carried out on the dried root and shoot plant parts before and after subjecting to different microwave heating powers for different times. Dielectric properties of the untreated root were investigated at temperature range (30-90 °C). X-ray fluorescence spectroscopy (XRF) results showed that the concentration of metals and metals oxides are higher in plant root than in plant shoot. Accordingly, the obtained dielectric properties were found to depend on the applied electric field frequency, magnitude of heating power as well as concentrations of pollutants. Analysis of experimental data represented by the imaginary part of the dielectric modulus M″ (ω) revealed to the presence of three different relaxation processes. The lower frequency relaxation process was associated to charge carriers conduction whereas those appeared at higher frequencies were associated to different types of interfacial polarization. The plant ability for removing heavy metals and metal oxides from the aquatic environments would be enhanced upon subjecting to microwave heating power with 400 W for 30 min.

  7. Dielectric spectroscopic studies on the water hyacinth plant collected from agriculture drainage.

    PubMed

    Mahani, Ragab; Atia, Fatma; Al Neklawy, Mohammed M; Fahem, Amin

    2016-06-01

    The present paper aims to investigate the sensitivity of dielectric spectroscopy to changes in concentrations of pollutants (heavy metals and metal oxides) uptake by the water hyacinth plant collected from agriculture wastewater drainage. The measurements were carried out on the dried root and shoot plant parts before and after subjecting to different microwave heating powers for different times. Dielectric properties of the untreated root were investigated at temperature range (30-90°C). X-ray fluorescence spectroscopy (XRF) results showed that the concentration of metals and metals oxides are higher in plant root than in plant shoot. Accordingly, the obtained dielectric properties were found to depend on the applied electric field frequency, magnitude of heating power as well as concentrations of pollutants. Analysis of experimental data represented by the imaginary part of the dielectric modulus M″ (ω) revealed to the presence of three different relaxation processes. The lower frequency relaxation process was associated to charge carriers conduction whereas those appeared at higher frequencies were associated to different types of interfacial polarization. The plant ability for removing heavy metals and metal oxides from the aquatic environments would be enhanced upon subjecting to microwave heating power with 400 W for 30 min. PMID:26985876

  8. Effects of coal-fired thermal power plant discharges on agricultural soil and crop plants

    SciTech Connect

    Ajmal, M.; Khan, M.A.

    1986-04-01

    The physicochemical properties of the upstream and downstream waters from the Upper Ganga canal, discharged cooling tower water, machine washings, and scrubber and bottom ash effluents of a 530 MW Kasimpur coal-fired thermal power plant have been determined, and their effects directly on fertile soil and indirectly on pea (Pisum sativam) and wheat (Triticum aestivum) crops have also been studied. The effluents were alkaline in nature. The scrubber and bottom ash effluent contained large amounts of solids and had high biochemical and chemical oxygen demands. The soils irrigated with the different effluents exhibited an increase in pH, organic matter, calcium carbonate, water-soluble salts, cation exchange capacity, electrical conductivity, and nitrogen and phosphorus contents while potassium content decreased. The effects of 100, 50, and 0% (tap water control) dilutions of cooling tower, machine washings, and scrubber and bottom ash effluents on the germination and growth of pea and wheat crops were also monitored. Using the undiluted effluents, there was 100% germination for both crops when irrigation was done with cooling tower effluent. Germination was restricted to 90% for the two crops when irrigated with machine washings effluent, and to 80 and 70% for pea and wheat, respectively, when irrigated with scrubber and bottom ash effluent. Samples of upstream and downstream canal water were also used for irrigating soils with and without crop plants in order to ascertain the impact of effluents on canal water and its subsequent effect on crops. The soils irrigated with downstream canal water were found to contain slightly more calcium carbonate, phosphorus, and ammonia-nitrogen than those receiving upstream canal water. Though 100% germination was obtained in both cases, the growth of plants irrigated with the downstream canal water was slightly reduced.

  9. Effects of coal-fired thermal power plant discharges on agricultural soil and crop plants.

    PubMed

    Ajmal, M; Khan, M A

    1986-04-01

    The physicochemical properties of the upstream and downstream waters from the Upper Ganga canal, discharged cooling tower water, machine washings, and scrubber and bottom ash effluents of a 530 MW Kasimpur coal-fired thermal power plant have been determined, and their effects directly on fertile soil and indirectly on pea (Pisum sativam) and wheat (Triticum aestivum) crops have also been studied. The effluents were found to be alkaline in nature. The scrubber and bottom ash effluent was found to contain large amounts of solids and had high biochemical and chemical oxygen demands. All the effluents were found to be responsible for altering the chemical composition of the soil. The soils irrigated with the different effluents exhibited an increase in pH, organic matter, calcium carbonate, water-soluble salts, cation exchange capacity, electrical conductivity, and nitrogen and phosphorus contents while potassium content decreased, probably due to being leached to the lower layers of the soil. The effects of 100, 50, and 0% (tap water control) dilutions of cooling tower, machine washings, and scrubber and bottom ash effluents on the germination and growth of pea and wheat crops were also monitored. Using the undiluted effluents, there was 100% germination for both the crops when the irrigation was done with cooling tower effluent. The germination was restricted to 90% for the two crops when irrigated with machine washings effluent, and to 80 and 70% for pea and wheat, respectively, when irrigated with scrubber and bottom ash effluent. The samples of upstream and downstream canal water were also used for irrigating soils with and without crop plants in order to ascertain the impact of the effluents on the canal water and its subsequent effect on the crops. The soils irrigated with downstream canal water were found to contain slightly more calcium carbonate, phosphorus, and ammonia-nitrogen than those receiving upstream canal water. Though 100% germination was obtained

  10. Biogas production from rice straw by solid-state anaerobic digestion

    NASA Astrophysics Data System (ADS)

    Shitophyta, Lukhi Mulia; Budiyono, Fuadi, Ahmad M.

    2015-12-01

    Biogas production from lignocellulosic biomass can be used as an alternative fuel to replace fossil fuels. Lignocellulose can be obtained from agricultural crop residues, such as rice straw. The aims of this study were to determine the effects of F/I ratio, total solid content, and physical pretreatment on biogas production by solid-state anaerobic digestion. The kinetics of biogas production were also examined in this study. The results showed that the biogas yield decreased by the increasing of F/I ratio. Meanwhile, the increase TS content of 22% to 24% also decreased the biogas yield. Physical pretreatment had no a significant effect on biogas yield (p > 0.05). The highest biogas yield of 248.4 L/kg VS was obtained at an F/I ratio of 2, TS content of 22%, and particle size of 2 mm. The kinetics of biogas production from rice straw followed the first-order kinetic model with the highest rate constant (k) of 0.0861 day-1.

  11. Occurrence of an herbicide-resistant plant trait in agricultural field margins.

    PubMed

    Gage, Karla L; Gibson, David J; Young, Bryan G; Young, Julie M; Matthews, Joseph L; Weller, Stephen C; Wilson, Robert G

    2015-09-01

    Agricultural environments allow study of evolutionary change in plants. An example of evolution within agroecological systems is the selection for resistance to the herbicide glyphosate within the weed, Conyza canadensis. Changes in survivorship and reproduction associated with the development of glyphosate resistance (GR) may impact fitness and influence the frequency of occurrence of the GR trait. We hypothesized that site characteristics and history would affect the occurrence of GR C. canadensis in field margins. We surveyed GR occurrence in field margins and asked whether there were correlations between GR occurrence and location, crop rotation, GR crop trait rotation, crop type, use of tillage, and the diversity of herbicides used. In a field experiment, we hypothesized that there would be no difference in fitness between GR and glyphosate-susceptible (GS) plants. We asked whether there were differences in survivorship, phenology, reproduction, and herbivory between 2 GR and 2 GS populations of C. canadensis in agrestal and ruderal habitats. We found that geographic location was an important factor in the occurrence of GR C. canadensis in field margins. Although not consistently associated with either glyphosate resistance or glyphosate susceptibility, there were differences in phenology, survivorship, and herbivory among biotypes of C. canadensis. We found equal or greater fitness in GR biotypes, compared to GS biotypes, and GR plants were present in field margins. Field margins or ruderal habitats may provide refugia for GR C. canadensis, allowing reproduction and further selection to occur as seeds recolonize the agrestal habitat. Agricultural practices may select for ecological changes that feed back into the evolution of plants in ruderal habitats. PMID:26445665

  12. Occurrence of an herbicide-resistant plant trait in agricultural field margins.

    PubMed

    Gage, Karla L; Gibson, David J; Young, Bryan G; Young, Julie M; Matthews, Joseph L; Weller, Stephen C; Wilson, Robert G

    2015-09-01

    Agricultural environments allow study of evolutionary change in plants. An example of evolution within agroecological systems is the selection for resistance to the herbicide glyphosate within the weed, Conyza canadensis. Changes in survivorship and reproduction associated with the development of glyphosate resistance (GR) may impact fitness and influence the frequency of occurrence of the GR trait. We hypothesized that site characteristics and history would affect the occurrence of GR C. canadensis in field margins. We surveyed GR occurrence in field margins and asked whether there were correlations between GR occurrence and location, crop rotation, GR crop trait rotation, crop type, use of tillage, and the diversity of herbicides used. In a field experiment, we hypothesized that there would be no difference in fitness between GR and glyphosate-susceptible (GS) plants. We asked whether there were differences in survivorship, phenology, reproduction, and herbivory between 2 GR and 2 GS populations of C. canadensis in agrestal and ruderal habitats. We found that geographic location was an important factor in the occurrence of GR C. canadensis in field margins. Although not consistently associated with either glyphosate resistance or glyphosate susceptibility, there were differences in phenology, survivorship, and herbivory among biotypes of C. canadensis. We found equal or greater fitness in GR biotypes, compared to GS biotypes, and GR plants were present in field margins. Field margins or ruderal habitats may provide refugia for GR C. canadensis, allowing reproduction and further selection to occur as seeds recolonize the agrestal habitat. Agricultural practices may select for ecological changes that feed back into the evolution of plants in ruderal habitats.

  13. Mesophilic anaerobic co-digestion of cow manure and biogas crops in full scale German biogas plants: a model for calculating the effect of hydraulic retention time and VS crop proportion in the mixture on methane yield from digester and from digestate storage at different temperatures.

    PubMed

    Linke, Bernd; Muha, Ivo; Wittum, Gabriel; Plogsties, Vincent

    2013-02-01

    Data from 24 full scale biogas plants in Germany digesting cow manure and crops were evaluated. Special emphasis was given to the effect of hydraulic retention time HRT and proportion of crops in the mixture (VS basis) p(VS,Crops)(Inp) on the methane yield from the digester [Formula: see text] and the storage tank [Formula: see text] at 37 and 22°C. The evaluation has shown model parameters for maximal methane yield of manure and crops [Formula: see text] at 270 and 420 Lkg(-1), respectively. For example, at HRT of 60days, maximum methane yield result to 249 and 388 Lkg(-1) for a crop proportion in the input of 0.0 and 1.0, respectively. The calculation of [Formula: see text] considers first order reaction rates and a temperature term f(T). Hence, at any arbitrary temperature in the range of 12°C

  14. Influence of planting grass filter strips on the structure and function of riparian habitats of agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grass filter strips are strips of cool or warm season grasses planted adjacent to agricultural streams to reduce nutrient, pesticide, and sediment input. This conservation practice is the most frequently planted riparian buffer type in the United States. Previous studies have not evaluated how gra...

  15. Combined hydrogen and carbon isotopes of plant waxes as an indicator of drought impacts on ancient Maya agriculture

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Pagani, M.; Eglinton, T. I.; Brenner, M.; Hodell, D. A.; Curtis, J. H.

    2012-12-01

    There is increasing evidence suggesting that a series of droughts in the Yucatan Peninsula coincided with the Terminal Classic decline of the Classic Maya civilization (ca. 1250 to 1000 years BP). However, there is little evidence directly linking climatic change and changes in human activities in this region. In this study we combine plant-wax δD, δ13C, and Δ14C analyses in two lake sediment cores from southeastern Mexico and northern Guatemala to develop coupled records of hydroclimate variability and human-driven vegetation change. Plant-wax specific Δ14C ages indicate a large input of pre-aged plant waxes into lake sediment. Comparison of plant-wax δD records with other regional hydroclimate proxy records suggest that plant-wax ages are evenly distributed around plant-wax radiocarbon ages, and that applying an age model based on plant-wax radiocarbon ages is appropriate for these lake sediments. We evaluate how differences in plant-wax age distributions influence stable isotope records to assess the age uncertainty associated with records of climate and vegetation change derived from plant-wax stable isotopes. In this low-elevation tropical environment plant-wax δ13C is largely controlled by the relative abundance of C3 and C4 plants. The ancient Maya practiced widespread maize (C4) agriculture and strongly influenced regional C3-C4 vegetation dynamics. Under natural conditions C4 plant coverage and plant-wax δ13C would tend to co-vary positively since C4 plants are well adapted for dry conditions. Under ancient Maya land-use, however, this relationship is likely to be decoupled, since drought would have disrupted C4 agriculture. Combined analysis of plant-wax δD and δ13C from both lakes indicates increasingly divergent trends following ca. 3500 years BP, around the onset of widespread ancient Maya agriculture. After this time high plant-wax δD values tend to correspond with low plant-wax δ13C values and vice versa. This pattern is consistent with

  16. Agriculture in the developing world: Connecting innovations in plant research to downstream applications.

    PubMed

    Delmer, Deborah P

    2005-11-01

    Enhancing agricultural productivity in those areas of the world bypassed by the Green Revolution will require new approaches that provide incentives and funding mechanisms that promote the translation of new innovations in plant science into concrete benefits for poor farmers. Through better dialogue, plant breeders and laboratory scientists from both the public and private-sectors need to find solutions for the key constraints to crop production, many of which center around abiotic and biotic stresses. The revolution in plant genomics has opened up new perspectives and opportunities for plant breeders who can now apply molecular markers to assess and enhance diversity in their germplasm collections, to introgress valuable traits from new sources, and to identify genes that control key traits. Functional genomics is also providing another powerful route to the identification of such genes. The ability to introgress beneficial genes under the control of specific promoters through transgenic approaches is yet one more stepping stone in the path to targeted approaches to crop improvement, and the new sciences have identified a vast array of genes that have exciting potential for crop improvement. For a few crops with viable markets, such as maize and cotton, some of the traits developed by the private sector are already showing benefits for farmers of the developing world, but the public sector will need to develop new skills and overcome a number of hurdles to carry out similar efforts for other crops and traits useful to very poor farmers. PMID:16263937

  17. Agriculture in the developing world: Connecting innovations in plant research to downstream applications

    PubMed Central

    Delmer, Deborah P.

    2005-01-01

    Enhancing agricultural productivity in those areas of the world bypassed by the Green Revolution will require new approaches that provide incentives and funding mechanisms that promote the translation of new innovations in plant science into concrete benefits for poor farmers. Through better dialogue, plant breeders and laboratory scientists from both the public and private-sectors need to find solutions for the key constraints to crop production, many of which center around abiotic and biotic stresses. The revolution in plant genomics has opened up new perspectives and opportunities for plant breeders who can now apply molecular markers to assess and enhance diversity in their germplasm collections, to introgress valuable traits from new sources, and to identify genes that control key traits. Functional genomics is also providing another powerful route to the identification of such genes. The ability to introgress beneficial genes under the control of specific promoters through transgenic approaches is yet one more stepping stone in the path to targeted approaches to crop improvement, and the new sciences have identified a vast array of genes that have exciting potential for crop improvement. For a few crops with viable markets, such as maize and cotton, some of the traits developed by the private sector are already showing benefits for farmers of the developing world, but the public sector will need to develop new skills and overcome a number of hurdles to carry out similar efforts for other crops and traits useful to very poor farmers. PMID:16263937

  18. Tightly-Coupled Plant-Soil Nitrogen Cycling: Comparison of Organic Farms across an Agricultural Landscape

    PubMed Central

    Bowles, Timothy M.; Hollander, Allan D.; Steenwerth, Kerri; Jackson, Louise E.

    2015-01-01

    How farming systems supply sufficient nitrogen (N) for high yields but with reduced N losses is a central challenge for reducing the tradeoffs often associated with N cycling in agriculture. Variability in soil organic matter and management of organic farms across an agricultural landscape may yield insights for improving N cycling and for evaluating novel indicators of N availability. We assessed yields, plant-soil N cycling, and root expression of N metabolism genes across a representative set of organic fields growing Roma-type tomatoes (Solanum lycopersicum L.) in an intensively-managed agricultural landscape in California, USA. The fields spanned a three-fold range of soil carbon (C) and N but had similar soil types, texture, and pH. Organic tomato yields ranged from 22.9 to 120.1 Mg ha-1 with a mean similar to the county average (86.1 Mg ha-1), which included mostly conventionally-grown tomatoes. Substantial variability in soil inorganic N concentrations, tomato N, and root gene expression indicated a range of possible tradeoffs between yields and potential for N losses across the fields. Fields showing evidence of tightly-coupled plant-soil N cycling, a desirable scenario in which high crop yields are supported by adequate N availability but low potential for N loss, had the highest total and labile soil C and N and received organic matter inputs with a range of N availability. In these fields, elevated expression of a key gene involved in root N assimilation, cytosolic glutamine synthetase GS1, confirmed that plant N assimilation was high even when inorganic N pools were low. Thus tightly-coupled N cycling occurred on several working organic farms. Novel combinations of N cycling indicators (i.e. inorganic N along with soil microbial activity and root gene expression for N assimilation) would support adaptive management for improved N cycling on organic as well as conventional farms, especially when plant-soil N cycling is rapid. PMID:26121264

  19. Tightly-Coupled Plant-Soil Nitrogen Cycling: Comparison of Organic Farms across an Agricultural Landscape.

    PubMed

    Bowles, Timothy M; Hollander, Allan D; Steenwerth, Kerri; Jackson, Louise E

    2015-01-01

    How farming systems supply sufficient nitrogen (N) for high yields but with reduced N losses is a central challenge for reducing the tradeoffs often associated with N cycling in agriculture. Variability in soil organic matter and management of organic farms across an agricultural landscape may yield insights for improving N cycling and for evaluating novel indicators of N availability. We assessed yields, plant-soil N cycling, and root expression of N metabolism genes across a representative set of organic fields growing Roma-type tomatoes (Solanum lycopersicum L.) in an intensively-managed agricultural landscape in California, USA. The fields spanned a three-fold range of soil carbon (C) and N but had similar soil types, texture, and pH. Organic tomato yields ranged from 22.9 to 120.1 Mg ha-1 with a mean similar to the county average (86.1 Mg ha-1), which included mostly conventionally-grown tomatoes. Substantial variability in soil inorganic N concentrations, tomato N, and root gene expression indicated a range of possible tradeoffs between yields and potential for N losses across the fields. Fields showing evidence of tightly-coupled plant-soil N cycling, a desirable scenario in which high crop yields are supported by adequate N availability but low potential for N loss, had the highest total and labile soil C and N and received organic matter inputs with a range of N availability. In these fields, elevated expression of a key gene involved in root N assimilation, cytosolic glutamine synthetase GS1, confirmed that plant N assimilation was high even when inorganic N pools were low. Thus tightly-coupled N cycling occurred on several working organic farms. Novel combinations of N cycling indicators (i.e. inorganic N along with soil microbial activity and root gene expression for N assimilation) would support adaptive management for improved N cycling on organic as well as conventional farms, especially when plant-soil N cycling is rapid. PMID:26121264

  20. Treatment of digestate from a co-digestion biogas plant by means of vacuum evaporation: tests for process optimization and environmental sustainability.

    PubMed

    Chiumenti, A; da Borso, F; Chiumenti, R; Teri, F; Segantin, P

    2013-06-01

    Vacuum evaporation consists in the boiling of a liquid substrate at negative pressure, at a temperature lower than typical boiling temperature at atmospheric conditions. Condensed vapor represents the so called condensate, while the remaining substrate represents the concentrate. This technology is derived from other sectors and is mainly dedicated to the recovery of chemicals from industrial by-products, while it has not been widely implemented yet in the field of agricultural digestate treatment. The present paper relates on experimental tests performed in pilot-scale vacuum evaporation plants (0.100 and 0.025 m(3)), treating filtered digestate (liquid fraction of digestate filtered by a screw-press separator). Digestate was produced by a 1 MWe anaerobic digestion plant fed with swine manure, corn silage and other biomasses. Different system and process configurations were tested (single-stage and two-stage, with and without acidification) with the main objectives of assessing the technical feasibility and of optimizing process parameters for an eventual technology transfer to full scale systems. The inputs and outputs of the process were subject to characterization and mass and nutrients balances were determined. The vacuum evaporation process determined a relevant mass reduction of digestate. The single stage configuration determined the production of a concentrate, still in liquid phase, with a total solid (TS) mean concentration of 15.0%, representing, in terms of mass, 20.2% of the input; the remaining 79.8% was represented by condensate. The introduction of the second stage allowed to obtain a solid concentrate, characterized by a content of TS of 59.0% and representing 5.6% of initial mass. Nitrogen balance was influenced by digestate pH: in order to limit the stripping of ammonia and its transfer to condensate it was necessary to reduce the pH. At pH 5, 97.5% of total nitrogen remained in the concentrate. This product was characterized by very high

  1. Biogas and Fuel Cells Workshop Summary Report: Proceedings from the Biogas and Fuel Cells Workshop, Golden, Colorado, June 11-13, 2012

    SciTech Connect

    Not Available

    2013-01-01

    The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) held a Biogas and Fuel Cells Workshop June 11-13, 2012, in Golden, Colorado, to discuss biogas and waste-to-energy technologies for fuel cell applications. The overall objective was to identify opportunities for coupling renewable biomethane with highly efficient fuel cells to produce electricity; heat; combined heat and power (CHP); or combined heat, hydrogen and power (CHHP) for stationary or motive applications. The workshop focused on biogas sourced from wastewater treatment plants (WWTPs), landfills, and industrial facilities that generate or process large amounts of organic waste, including large biofuel production facilities (biorefineries).

  2. [Effect of pretreatment on storage and biogas production of baling wheat straw].

    PubMed

    Ma, Hui-Juan; Chen, Guang-Yin; Du, Jing; Chang, Zhi-Zhou; Ye, Xiao-Mei

    2013-08-01

    Long-term storage of crop straw is very important for biogas plant while pretreatment is always used to improve biogas production of crop straw. Feasibility of integrating the storage with pretreatment of baling wheat straw was studied. Changes of physicochemical properties and the biogas productivity of wheat straw obtained before and after 120 days storage were analyzed. The results showed that it was feasible to directly bale wheat straw for storage (control) and storage treatment had little effect on the physicochemical properties, structure and biogas productivity of wheat straw. After 120 day's storage, biogas production potential of the surface wheat straw of pile was decreased by 7.40%. Integrating NaOH pretreatment with straw storage was good for biogas production of wheat straw and the total solid (TS) biogas yield was increased by 7.02%-8.31% (compared to that of wheat straw without storage) and 5.68% -16.96% (compared to that of storage without alkaline pretreatment), respectively. Storage with urea treatment was adverse to biogas production of wheat straw and the contents of cellulose and hemicellulose of wheat straw were decreased by 18.25%-27.22% and 5.31%-16.15% and the TS biogas yield was decreased by 2.80%-7.71% after 120 day's storage. Exposing wheat straw to the air during the storage process was adverse to the conserving of organic matter and biogas utilization of wheat straw, but the influence was very slight and the TS biogas yield of wheat straw obtained from pile surface of control and urea treatment was decreased by 7.40% and 4.25%, respectively.

  3. Composition and uses of anaerobic digestion derived biogas from wastewater treatment facilities in North America.

    PubMed

    Lackey, Jillian C; Peppley, B; Champagne, P; Maier, A

    2015-08-01

    A study was conducted to determine the current knowledge of biogas production and its use at municipal wastewater treatment plants (WWTPs) across North America. Information was provided by municipal WWTPs across Canada and the US. It was determined that hydrogen sulfide (H2S) and silicon (Si) compounds had sufficient variability to be of concern. The only biogas production trend that could be identified was a possible seasonal relationship with sludge input and biogas production. Secondary analysis was performed to observe trends in biogas usage in urban areas larger than 150,000 in the US and 50,000 in Canada; 66% of facilities had anaerobic digestion systems and, of those, only 35% had an energy recovery system. Climatic, population, and socio-political influences on the trends were considered. The primary conclusion was that more data is required to perform significant analyses on biogas production and composition variation.

  4. Multivariate identification of plant functional response and effect traits in an agricultural landscape.

    PubMed

    Pakeman, Robin J

    2011-06-01

    Plant functional traits have been proposed as a linkage between the environmental control of vegetation and ecosystem function. Identification of traits that mediate the response of plant species to the environment is well established, but the identification of effect traits and the linkage between the two sets is less developed. This was attempted for a study of eight contrasting land uses in a marginal agricultural landscape where data on vegetation, management controls of the disturbance regime, and soil characteristics, including nitrogen release, were measured simultaneously with measures of ecosystem function such as litter decomposition rates and primary productivity on 30 sites. Trait data were assembled from databases, and an iterative multivariate approach using the three table (species, trait, environment) method RLQ was employed to identify a parsimonious set of traits that predict plant species responses to the environment and a parsimonious set of traits that link vegetation to ecosystem function. The lists of response and effect traits were similar, and where differences were observed, traits were usually highly correlated with at least one trait in the other list. This approach identified a small number of traits (canopy height, leaf dry matter content, leaf size, and specific leaf area) that provide a means of linking vegetation responses to environmental change with changes in ecosystem function. Other response traits included vegetative spread strategy, start of flowering, and seed terminal velocity, but within the system studied these traits were all significantly correlated to the traits shared between the response and effect lists.

  5. The total and freely dissolved polycyclic aromatic hydrocarbons content in residues from biogas production.

    PubMed

    Stefaniuk, Magdalena; Oleszczuk, Patryk

    2016-01-01

    In the situation of increasing agricultural utilization of residues from biogas production (RBP) it is important to determine the concentration of contaminants, which could occur in these materials. The group of contaminants that requires special attention are polycyclic aromatic hydrocarbons (PAH). The objective of the study was to determine the total and freely dissolved (Cfree) of PAHs in RBP from 6 different biogas plants operating under various temperature conditions and without or with the separation into the solid and liquid fractions. The freely dissolved PAHs were determined using polyoxymethylene (POM method). The total content of the Σ16 PAHs in RBP varied from 449 to 6147 μg/kgdw, while that of Cfree PAHs was at the level from 57 to 653 ng/L. No significant differences were noted in the content of the Σ16 PAHs (total) between the solid and the liquid fractions. This indicates that in the course of the separation, the PAHs are distributed proportionally between the fractions. However in the case of Cfree, PAHs content in the solid fraction was over twice as high as in the liquid fraction. This was probably due to the greater affinity of the particles present in the liquid fraction to the analysed PAHs than to the particles of the solid fraction. Higher affinity to liquid fraction was also confirmed by the distribution coefficients KTOC determined on the basis of Cfree.

  6. Agricultural origins from the ground up: archaeological approaches to plant domestication.

    PubMed

    Langlie, BrieAnna S; Mueller, Natalie G; Spengler, Robert N; Fritz, Gayle J

    2014-10-01

    The timing, geographical locations, causes, and consequences of crop domestication have long been major concerns of archaeologists, and agricultural origins and dispersals are currently more relevant than ever to scientists seeking solutions to elusive problems involving food insecurity and global health disparities. Perennial research issues that archaeologists continue to tackle include (1) thinking outside centers of origin that were based on limited and insufficient past knowledge; (2) distinguishing between single and multiple domestications of specific crops; (3) measuring the pace of domestication; and (4) decoupling domestication from agricultural economies. Paleoethnobotanists have expanded their toolkits to include analysis of ancient and modern DNA and have added increasingly sophisticated techniques in the field and the laboratory to derive precise chronological sequences to assess morphological changes in ancient and often fragmentary archaeobotanical remains and to correctly interpret taphonomy and context. Multiple lines of archaeological evidence are ideally brought together, and whenever possible, these are integrated with information from complementary sources. We discuss current perspectives and anthropological approaches to research that have as their goals the fuller and broader understanding of ancient farming societies, the plants that were domesticated, the landscapes that were created, and the culinary legacies that were passed on.

  7. Assessing health in agriculture--towards a common research framework for soils, plants, animals, humans and ecosystems.

    PubMed

    Vieweger, Anja; Döring, Thomas F

    2015-02-01

    In agriculture and food systems, health-related research includes a vast diversity of topics. Nutritional, toxicological, pharmacological, epidemiological, behavioural, sociological, economic and political methods are used to study health in the five domains of soils, plants, livestock, humans and ecosystems. An idea developed in the early founding days of organic agriculture stated that the health of all domains is one and indivisible. Here we show that recent research reveals the existence and complex nature of such health links among domains. However, studies of health aspects in agriculture are often separated by disciplinary boundaries. This restrains the understanding of health in agricultural systems. Therefore we explore the opportunities and limitations of bringing perspectives together from the different domains. We review current approaches to define and assess health in agricultural contexts, comparing the state of the art of commonly used approaches and bringing together the presently disconnected debates in soil science, plant science, veterinary science and human medicine. Based on a qualitative literature analysis, we suggest that many health criteria fall into two paradigms: (1) the Growth Paradigm, where terms are primarily oriented towards continued growth; (2) the Boundary Paradigm, where terms focus on maintaining or coming back to a status quo, recognising system boundaries. Scientific health assessments in agricultural and food systems need to be explicit in terms of their position on the continuum between Growth Paradigm and Boundary Paradigm. Finally, we identify areas and concepts for a future direction of health assessment and research in agricultural and food systems.

  8. Organic farming benefits local plant diversity in vineyard farms located in intensive agricultural landscapes.

    PubMed

    Nascimbene, Juri; Marini, Lorenzo; Paoletti, Maurizio G

    2012-05-01

    The majority of research on organic farming has considered arable and grassland farming systems in Central and Northern Europe, whilst only a few studies have been carried out in Mediterranean agro-systems, such as vineyards, despite their economic importance. The main aim of the study was to test whether organic farming enhances local plant species richness in both crop and non-crop areas of vineyard farms located in intensive conventional landscapes. Nine conventional and nine organic farms were selected in an intensively cultivated region (i.e. no gradient in landscape composition) in northern Italy. In each farm, vascular plants were sampled in one vineyard and in two non-crop linear habitats, grass strips and hedgerows, adjacent to vineyards and therefore potentially influenced by farming. We used linear mixed models to test the effect of farming, and species longevity (annual vs. perennial) separately for the three habitat types. In our intensive agricultural landscapes organic farming promoted local plant species richness in vineyard fields, and grassland strips while we found no effect for linear hedgerows. Differences in species richness were not associated to differences in species composition, indicating that similar plant communities were hosted in vineyard farms independently of the management type. This negative effect of conventional farming was probably due to the use of herbicides, while mechanical operations and mowing regime did not differ between organic and conventional farms. In grassland strips, and only marginally in vineyards, we found that the positive effect of organic farming was more pronounced for perennial than annual species.

  9. Organic Farming Benefits Local Plant Diversity in Vineyard Farms Located in Intensive Agricultural Landscapes

    NASA Astrophysics Data System (ADS)

    Nascimbene, Juri; Marini, Lorenzo; Paoletti, Maurizio G.

    2012-05-01

    The majority of research on organic farming has considered arable and grassland farming systems in Central and Northern Europe, whilst only a few studies have been carried out in Mediterranean agro-systems, such as vineyards, despite their economic importance. The main aim of the study was to test whether organic farming enhances local plant species richness in both crop and non-crop areas of vineyard farms located in intensive conventional landscapes. Nine conventional and nine organic farms were selected in an intensively cultivated region (i.e. no gradient in landscape composition) in northern Italy. In each farm, vascular plants were sampled in one vineyard and in two non-crop linear habitats, grass strips and hedgerows, adjacent to vineyards and therefore potentially influenced by farming. We used linear mixed models to test the effect of farming, and species longevity (annual vs. perennial) separately for the three habitat types. In our intensive agricultural landscapes organic farming promoted local plant species richness in vineyard fields, and grassland strips while we found no effect for linear hedgerows. Differences in species richness were not associated to differences in species composition, indicating that similar plant communities were hosted in vineyard farms independently of the management type. This negative effect of conventional farming was probably due to the use of herbicides, while mechanical operations and mowing regime did not differ between organic and conventional farms. In grassland strips, and only marginally in vineyards, we found that the positive effect of organic farming was more pronounced for perennial than annual species.

  10. Phthalate esters contamination in soil and plants on agricultural land near an electronic waste recycling site.

    PubMed

    Ma, Ting Ting; Christie, Peter; Luo, Yong Ming; Teng, Ying

    2013-08-01

    The accumulation of phthalic acid esters (PAEs) in soil and plants in agricultural land near an electronic waste recycling site in east China has become a great threat to the neighboring environmental quality and human health. Soil and plant samples collected from land under different utilization, including fallow plots, vegetable plots, plots with alfalfa (Medicago sativa L.) as green manure, fallow plots under long-term flooding and fallow plots under alternating wet and dry periods, together with plant samples from relative plots were analyzed for six PAE compounds nominated as prior pollutants by USEPA. In the determined samples, the concentrations of six target PAE pollutants ranged from 0.31-2.39 mg/kg in soil to 1.81-5.77 mg/kg in various plants (dry weight/DW), and their bioconcentration factors (BCFs) ranged from 5.8 to 17.9. Health risk assessments were conducted on target PAEs, known as typical environmental estrogen analogs, based on their accumulation in the edible parts of vegetables. Preliminary risk assessment to human health from soil and daily vegetable intake indicated that DEHP may present a high-exposure risk on all ages of the population in the area by soil ingestion or vegetable consumption. The potential damage that the target PAE compounds may pose to human health should be taken into account in further comprehensive risk assessments in e-waste recycling sites areas. Moreover, alfalfa removed substantial amounts of PAEs from the soil, and its use can be considered a good strategy for in situ remediation of PAEs.

  11. Full-scale mesophilic biogas plants using manure as C-source: bacterial community shifts along the process cause changes in the abundance of resistance genes and mobile genetic elements.

    PubMed

    Wolters, Birgit; Ding, Guo-Chun; Kreuzig, Robert; Smalla, Kornelia

    2016-02-01

    The application of manure, typically harboring bacteria carrying resistance genes (RGs) and mobile genetic elements (MGEs), as co-substrate in biogas plants (BGPs) might be critical when digestates are used as fertilizers. In the present study, the relative abundance of RGs and MGEs in total community (TC-) DNA from manure, fermenters and digestate samples taken at eight full-scale BGPs co-fermenting manure were determined by real-time PCR. In addition, the bacterial community composition of all digestates as well as manure and fermenter material from one BGP (BGP3) was characterized by 454-pyrosequencing of 16S rRNA amplicons from TC-DNA. Compared to respective input manures, relative abundances determined for sul1, sul2, tet(M), tet(Q), intI1, qacEΔ1, korB and traN were significantly lower in fermenters, whereas relative abundances of tet(W) were often higher in fermenters. The bacterial communities in all digestates were dominated by Firmicutes and Bacteroidetes while Proteobacteria were low in abundance and no Enterobacteriaceae were detected. High-throughput sequencing revealed shifts in bacterial communities during treatment for BGP3. Although in comparison to manure, digestate bacteria had lower relative abundances of RGs and MGEs except for tet(W), mesophilic BGPs seem not to be effective for prevention of the spread of RGs and MGEs via digestates into arable soils.

  12. Agricultural approaches of remediation in the outside of the Fukushima Daiichi nuclear power plant

    SciTech Connect

    Sato, Nobuaki; Saso, Michitaka; Umeda, Miki; Fujii, Yasuhiko; Amemiya, Kiyoshi

    2013-07-01

    This paper outlines agricultural approaches of remediation activity done in contaminated areas around the Fukushima Daiichi Nuclear Power Plant. About the decontamination examination of contaminated areas, we have tried the land scale test of a rice field before and after planting by the use of currently recommended methods. Since farmers would carry out the land preparation by themselves, generation of secondary radioactive waste should be as low as possible through the decontamination works. For the radioactive nuclide migration control of rice by wet rice production, several types of decontamination methods such as zeolite addition and potassium fertilization in the soil have been examined. The results are summarized in the 4 following points. 1) Plowing and water discharge are effective for removing radioactive cesium from rice field. 2) Additional potassium fertilization is effective for reducing cesium radioactivity in the product. 3) No significant difference is observed with or without the zeolite addition. 4) Very low transfer factor of cesium from soil to brown rice has been obtained compared with literature values.

  13. Progress in the study of biological effects of hydrogen on higher plants and its promising application in agriculture

    PubMed Central

    2014-01-01

    While the medical effects of hydrogen have been broadly analyzed, research into the effects of hydrogen on higher plants has often been of lesser concern. Recent studies on the botanical effects of hydrogen have shown that it is involved in signal transduction pathways of plant hormones and can improve the resistance of plants to stressors, such as drought, salinity, cold and heavy metals. In addition, hydrogen could delay postharvest ripening and senescence of fruits. Observational evidence has also shown that hydrogen can regulate the flowering time of plants. These results indicate that hydrogen may have great potential applications within agricultural production, indicating that there may be a new ‘hydrogen agricultural era’ to come. PMID:25276344

  14. Agricultural Microbiology.

    ERIC Educational Resources Information Center

    Brill, Winston J.

    1981-01-01

    Elucidates strategies for applying microbiological techniques to traditional agricultural practices. Discusses the manipulation of microorganisms that live with plants and also the problems involved in the introduction of new genes into crop plants by recombinant DNA methods. (CS)

  15. Production costs and operative margins in electric energy generation from biogas. Full-scale case studies in Italy.

    PubMed

    Riva, C; Schievano, A; D'Imporzano, G; Adani, F

    2014-08-01

    The purpose of this study was to observe the economic sustainability of three different biogas full scale plants, fed with different organic matrices: energy crops (EC), manure, agro-industrial (Plants B and C) and organic fraction of municipal solid waste (OFMSW) (Plant A). The plants were observed for one year and total annual biomass feeding, biomass composition and biomass cost (€ Mg(-1)), initial investment cost and plant electric power production were registered. The unit costs of biogas and electric energy (€ Sm(-3)biogas, € kWh(-1)EE) were differently distributed, depending on the type of feed and plant. Plant A showed high management/maintenance cost for OFMSW treatment (0.155 € Sm(-3)biogas, 45% of total cost), Plant B suffered high cost for EC supply (0.130 € Sm(-3)biogas, 49% of total cost) and Plant C showed higher impact on the total costs because of the depreciation charge (0.146 € Sm(-3)biogas, 41% of total costs). The breakeven point for the tariff of electric energy, calculated for the different cases, resulted in the range 120-170 € MWh(-1)EE, depending on fed materials and plant scale. EC had great impact on biomass supply costs and should be reduced, in favor of organic waste and residues; plant scale still heavily influences the production costs. The EU States should drive incentives in dependence of these factors, to further develop this still promising sector.

  16. Production costs and operative margins in electric energy generation from biogas. Full-scale case studies in Italy.

    PubMed

    Riva, C; Schievano, A; D'Imporzano, G; Adani, F

    2014-08-01

    The purpose of this study was to observe the economic sustainability of three different biogas full scale plants, fed with different organic matrices: energy crops (EC), manure, agro-industrial (Plants B and C) and organic fraction of municipal solid waste (OFMSW) (Plant A). The plants were observed for one year and total annual biomass feeding, biomass composition and biomass cost (€ Mg(-1)), initial investment cost and plant electric power production were registered. The unit costs of biogas and electric energy (€ Sm(-3)biogas, € kWh(-1)EE) were differently distributed, depending on the type of feed and plant. Plant A showed high management/maintenance cost for OFMSW treatment (0.155 € Sm(-3)biogas, 45% of total cost), Plant B suffered high cost for EC supply (0.130 € Sm(-3)biogas, 49% of total cost) and Plant C showed higher impact on the total costs because of the depreciation charge (0.146 € Sm(-3)biogas, 41% of total costs). The breakeven point for the tariff of electric energy, calculated for the different cases, resulted in the range 120-170 € MWh(-1)EE, depending on fed materials and plant scale. EC had great impact on biomass supply costs and should be reduced, in favor of organic waste and residues; plant scale still heavily influences the production costs. The EU States should drive incentives in dependence of these factors, to further develop this still promising sector. PMID:24841069

  17. Pilot-scale field study for ammonia removal from lagoon biogas using an acid wet scrubber.

    PubMed

    Lin, Hongjian; Wu, Xiao; Miller, Curtis; Zhu, Jun; Hadlocon, Lara Jane; Manuzon, Roderick; Zhao, Lingying

    2014-01-01

    The anaerobic activities in swine slurry storage and treatment generate biogas containing gaseous ammonia component which is a chemical agent that can cause adverse environmental impacts when released to the atmosphere. The aim of this pilot plant study was to remove ammonia from biogas generated in a covered lagoon, using a sulfuric acid wet scrubber. The data showed that, on average, the biogas contained 43.7 ppm of ammonia and its concentration was found to be exponentially related to the air temperature inside the lagoon. When the air temperature rose to 35°C and the biogas ammonia concentration reached 90 ppm, the mass transfer of ammonia/ammonium from the deeper liquid body to the interface between the air and liquid became a limiting factor. The biogas velocity was critical in affecting ammonia removal efficiency of the wet scrubber. A biogas flow velocity of 8 to 12 mm s(-1) was recommended to achieve a removal efficiency of greater than 60%. Stepwise regression revealed that the biogas velocity and air temperature, not the inlet ammonia concentration in biogas, affected the ammonia removal efficiency. Overall, when 73 g L(-1) (or 0.75 M) sulfuric acid solution was used as the scrubber solution, removal efficiencies varied from 0% to 100% with an average of 55% over a 40-d measurement period. Mass balance calculation based on ammonium-nitrogen concentration in final scrubber liquid showed that about 21.3 g of ammonia was collected from a total volume of 1169 m(3) of biogas, while the scrubber solution should still maintain its ammonia absorbing ability until its concentration reaches up to 1 M. These results showed promising use of sulfuric acid wet scrubber for ammonia removal in the digester biogas.

  18. Introduction to biogas production on the farm

    SciTech Connect

    Not Available

    1984-03-01

    A number of farmers, ranchers, and engineers received support from the US Department of Energy Appropriate Technology Small Grants Program to design, construct, and demonstrate biogas production systems. Many of these projects generated more than just biogas; grantees' work and results have contributed to a growing body of information about practical applications of this technology. This publication was developed to share some of that information, to answer the basic questions about biogas production, and to lead farmers to more information. Section I introduces biogas and the various components of a biogas production system, discusses the system's benefits and liabilities, and provides a brief checklist to determine if biogas production may be applicable to an individual's particular situation. Section II features descriptions of four biogas projects of various sizes. Section III provides sources of additional information including descriptions of other biogas production projects.

  19. Perry`s bio-gas experience 1995 ASME/EPRI radwaste workshop

    SciTech Connect

    Schwenk, A.K.

    1995-09-01

    The Perry Power Plant has been in commercial operation for about ten years. Although we didn`t know it at the time, we now believe our bio-gas problem may have started about seven years ago. Barnwell discovered we had a bio-gas problem about a year and a half ago. We found out we had a bio-gas problem a few hours later. The history associated with this process at Perry is outlined, and past as well as present efforts to monitor this process are also discussed.

  20. Interactive Agricultural Ecological Atlas of Russia and Neighboring Countries:Economic Plants and their Diseases, Pests and Weeds.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The AgroAtlas is a comprehensive on-line bilingual reference on the geographic distribution of economic plants, their diseases, pests and weeds, and environmental factors that influence agricultural production through out the Former Soviet Union. Online users can read about and examine maps and ima...

  1. The mechanisms of plant stress mitigation by kaolin-based particle films and its applications in horticultural and agricultural crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Kaolin-based particle films have utility in reducing insect, heat, light, and uv stress in plants due to the reflective nature of the particles. Particle films with a residue density of 1 to 3 g/ square meter have been evaluated in a range of crops and agricultural environments. The particle film ...

  2. Agriculture--Ornamental Horticulture. Building Model Greenhouse and Growing Plants. Kit No. 41. Instructor's Manual [and] Student Learning Activity Guide.

    ERIC Educational Resources Information Center

    Carter, Wesley

    An instructor's manual and student activity guide on building a model greenhouse and growing plants are provided in this set of prevocational education materials which focuses on the vocational area of agriculture (ornamental horticulture). (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven…

  3. Greenhouse gas emissions of an agro-biogas energy system: Estimation under the Renewable Energy Directive.

    PubMed

    Rana, Roberto; Ingrao, Carlo; Lombardi, Mariarosaria; Tricase, Caterina

    2016-04-15

    Agro-biogas from energy crops and by-products is a renewable energy carrier that can potentially contribute to climate change mitigation. In this context, application of the methodology defined by the Renewable Energy Directive 2009/28/EC (RED) was performed in order to estimate the 100-year Global Warming Potential (GWP100) associated with an agro-biogas supply chain (SC) in Southern Italy. Doing so enabled calculation of Greenhouse Gas (GHG) emission saving in order to verify if it is at least equal to 35% compared to the fossil fuel reference system, as specified by the RED. For the assessment, an attributional Life Cycle Assessment (LCA) approach (International Organization for Standardization (ISO), 2006a,b) was integrated with the RED methodology applied following the guidelines reported in COM(2010)11 and updated by SWD(2014)259 and Report EUR 27215 EN (2015). Moreover, primary data were collected with secondary data extrapolated from the Ecoinvent database system. Results showed that the GWP100 associated with electricity production through the biogas plant investigated was equal to 111.58gCO2eqMJe(-1) and so a 40.01% GHG-emission saving was recorded compared to the RED reference. The highest contribution comes from biomass production and, in particular, from crop cultivation due to production of ammonium nitrate in the overall amount used for crop cultivation. Based upon the findings of the study, the GHG saving calculated slightly exceeds the related minimum proposed by the RED: therefore, improvements are needed anyway. In particular, the authors documented that through replacement of ammonium nitrate with urea the GHG-emission saving would increase to almost 68%, thus largely satisfying the RED limit. In addition, the study highlighted that conservation practices, such as NT, can significantly enable reduction of the GHG-emissions coming from agricultural activities. Therefore, those practices should be increasingly adopted for cultivation of energy

  4. Greenhouse gas emissions of an agro-biogas energy system: Estimation under the Renewable Energy Directive.

    PubMed

    Rana, Roberto; Ingrao, Carlo; Lombardi, Mariarosaria; Tricase, Caterina

    2016-04-15

    Agro-biogas from energy crops and by-products is a renewable energy carrier that can potentially contribute to climate change mitigation. In this context, application of the methodology defined by the Renewable Energy Directive 2009/28/EC (RED) was performed in order to estimate the 100-year Global Warming Potential (GWP100) associated with an agro-biogas supply chain (SC) in Southern Italy. Doing so enabled calculation of Greenhouse Gas (GHG) emission saving in order to verify if it is at least equal to 35% compared to the fossil fuel reference system, as specified by the RED. For the assessment, an attributional Life Cycle Assessment (LCA) approach (International Organization for Standardization (ISO), 2006a,b) was integrated with the RED methodology applied following the guidelines reported in COM(2010)11 and updated by SWD(2014)259 and Report EUR 27215 EN (2015). Moreover, primary data were collected with secondary data extrapolated from the Ecoinvent database system. Results showed that the GWP100 associated with electricity production through the biogas plant investigated was equal to 111.58gCO2eqMJe(-1) and so a 40.01% GHG-emission saving was recorded compared to the RED reference. The highest contribution comes from biomass production and, in particular, from crop cultivation due to production of ammonium nitrate in the overall amount used for crop cultivation. Based upon the findings of the study, the GHG saving calculated slightly exceeds the related minimum proposed by the RED: therefore, improvements are needed anyway. In particular, the authors documented that through replacement of ammonium nitrate with urea the GHG-emission saving would increase to almost 68%, thus largely satisfying the RED limit. In addition, the study highlighted that conservation practices, such as NT, can significantly enable reduction of the GHG-emissions coming from agricultural activities. Therefore, those practices should be increasingly adopted for cultivation of energy

  5. Comparison of biogas production from wild and cultivated varieties of reed canary grass.

    PubMed

    Oleszek, Marta; Król, Aleksandra; Tys, Jerzy; Matyka, Mariusz; Kulik, Mariusz

    2014-03-01

    The chemical composition and efficiency of biogas production in the methane fermentation process of silages of wild and cultivated varieties of reed canary grass were compared. An attempt was made to answer the question on how the habitat and the way of utilization of plants affect chemical composition and biogas yield. Physicochemical properties such as dry matter, organic dry matter, protein, fat, crude fiber fraction, macro- and microelements content were considered. The anaerobic digestion process and FTIR analysis were also carried out. The results showed that the two varieties differ essentially in their physical and chemical properties. The cultivated variety was characterized by higher biogas yield (406Ndm(3)kg(-1) VS) than the wild one (120Ndm(3)kg(-1) VS). This was probably related to the chemical composition of plants, especially the high content of indigestible crude fiber fractions and ash. These components could reduce biogas quantity and quality.

  6. Comparison of biogas production from wild and cultivated varieties of reed canary grass.

    PubMed

    Oleszek, Marta; Król, Aleksandra; Tys, Jerzy; Matyka, Mariusz; Kulik, Mariusz

    2014-03-01

    The chemical composition and efficiency of biogas production in the methane fermentation process of silages of wild and cultivated varieties of reed canary grass were compared. An attempt was made to answer the question on how the habitat and the way of utilization of plants affect chemical composition and biogas yield. Physicochemical properties such as dry matter, organic dry matter, protein, fat, crude fiber fraction, macro- and microelements content were considered. The anaerobic digestion process and FTIR analysis were also carried out. The results showed that the two varieties differ essentially in their physical and chemical properties. The cultivated variety was characterized by higher biogas yield (406Ndm(3)kg(-1) VS) than the wild one (120Ndm(3)kg(-1) VS). This was probably related to the chemical composition of plants, especially the high content of indigestible crude fiber fractions and ash. These components could reduce biogas quantity and quality. PMID:24518439

  7. Evaluation of anaerobic degradation, biogas and digestate production of cereal silages using nylon-bags.

    PubMed

    Negri, Marco; Bacenetti, Jacopo; Fiala, Marco; Bocchi, Stefano

    2016-06-01

    In this study, the degradation efficiency and the biogas and digestate production during anaerobic digestion were evaluated for the cereal silages most used to feed biogas plants. To this purpose, silages of: maize from the whole plant, maize from the ear, triticale and wheat were digested, inside of nylon bags, in laboratory scale digesters, for 75days. Overall, the test involved 288 nylon bags. After 75days of digestion, the maize ear silage shows the highest degradation efficiency (about 98%) while wheat silage the lowest (about 83%). The biogas production ranges from 438 to 852Nm(3)/t of dry matter for wheat and ear maize silage, respectively. For all the cereal silages, the degradation as well as the biogas production are faster at the beginning of the digestion time. Digestate mass, expressed as percentage of the fresh matter, ranges from 38% to 84% for wheat and maize ear silage, respectively. PMID:26946439

  8. Upscaling of an electronic nose for completely stirred tank reactor stability monitoring from pilot-scale to real-scale agricultural co-digestion biogas plant.

    PubMed

    Adam, Gilles; Lemaigre, Sébastien; Goux, Xavier; Delfosse, Philippe; Romain, Anne-Claude

    2015-02-01

    This study investigated the use of an electronic nose for on-line anaerobic reactor state monitoring at the pilot-scale level and then upscaling to the full-scale level. E-nose indicator was compared to classical state indicators such as pH, alkalinity, volatile fatty acids concentration and to other gas phase compounds. Multivariate statistical process control method, based on principal component analysis and the Hotelling's T(2) statistics was used to derive an indicator representative of the reactor state. At the pilot-scale level, the e-nose indicator was relevant and could distinguish 3 process states: steady-state, transient and collapsing process. At the full-scale level, the e-nose indicator could provide the warning of the major disturbance whereas two slight disturbances were not detected and it gave one major false alarm. This work showed that gas phase relation with anaerobic process should be deeper investigated, as an e-nose could indicate the reactor state, focusing on the gas phase.

  9. Seasonal OVOC fluxes from an agricultural field planted with sugar beet

    NASA Astrophysics Data System (ADS)

    Custer, T. G.; Schade, G. W.

    2005-12-01

    Although agricultural crops are generally not strong isoprenoid emitters, they do emit a variety of other atmospherically significant species collectively known as oxygenated VOCs (OVOCs), such as methanol, acetaldehyde, or various hexenal and hexenol compounds. Many OVOCs have longer atmospheric lifetimes than isoprenoid compounds and can affect the atmosphere's oxidative potential at higher elevations and far from sources. We performed selected OVOC flux measurements for select species above an agricultural field planted with sugar beets ( B. vulgaris) in northern Germany in 2004 to better understand the magnitude and controls over these OVOC emissions. Virtual disjunct eddy covariance was used to measure fluxes beginning immediately following seeding and continuing until past harvest. A commercial PTR-MS provided mixing ratios of methanol (m/z 33), acetaldehyde (m/z 45), acetone (m/z 59), and the sum of the isoprene oxidation products methacrolein and methyl vinyl ketone (m/z 71) while 3D wind velocities were measured using a Gill R3 sonic anemometer. Here, we compare the fluxes of methanol and acetone over the growth cycle of sugar beet to plant development as measured by the leaf area index. Methanol fluxes ranged from approximately -0.05 to 0.15 mg C m-2 h-1 (mixing ratios from ~1 to 15 ppbv) and showed a clear diurnal cycle after the sugar beets established a significant leaf area. Acetone fluxes ranged from approximately -0.2 to 0.2 mg C m-2 h-1 (mixing ratios from ~0.2 to 3 ppb). Higher specific emissions were found during earlier growth stages. Methanol flux correlated strongly with latent heat flux (or alternatively, with canopy conductance derived from the latent heat flux), while acetone flux did not. Acetone flux was small compared to methanol flux and sugar beet is likely not a significant acetone emitter. Weekly measurements of soil OVOC exchange using a flux chamber showed that the soil may have contributed significantly to the overall flux values

  10. BIOGAS Process development

    SciTech Connect

    Ghosh, S.; Mensinger, M.C.; Sajjad, A.; Henry, M.P.

    1984-01-01

    The overall objective of the program is to demonstrate and commercialize the IGT two-phase BIOGAS Process for optimized methane production from, and simultaneous stabilization of, municipal solid waste (MSW). The specific objective of the current program is to conduct a laboratory-scale investigation of simple, cost-effective feed pretreatment techniques and selected digestion reactor designs to optimize methane production from MSW-sludge blends, and to select the best pretreatment and digestion conditions for testing during the subsequent program for process development unit (PDU) operation. A significant portion of the program efforts to date has been directed at evaluating and/or developing feeding, mixing and discharging systems for handling high concentration, large particle size RDF slurries for anaerobic digestion processes. The performance of such processes depends significantly on the operational success of these subsystems. The results of the subsystem testing have been implemented in the design and operation of the 10-L, 20-L, and 125-L digesters. These results will also be utilized to design the CSTR and the upflow digesters of a large two-phase system. Data collected during the initial phase of this research showed in general that methane production from RDF decreased as the loading rate was increased. Thermophilic digestion did not appear to be significantly better than mesophlic digestion. 9 figures, 3 tables.

  11. Biodiversity and Ecosystem Functioning: Exploring Principles of Ecology with Agricultural Plants

    ERIC Educational Resources Information Center

    Ruesink, Jennifer; O'Connor, Eileen; Sparks, Grace

    2006-01-01

    To date, little of the ecological research on biological diversity and ecosystem functioning has been carried out in agricultural systems, despite the fact that agriculture is a major contributor to loss of native habitats and species. However, agricultural research has demonstrated that polycultures of multiple crop species can have higher total…

  12. Changes in water quality in agricultural catchments after deployment of wastewater treatment plant.

    PubMed

    Langhammer, Jakub; Rödlová, Sylva

    2013-12-01

    Insufficient wastewater remediation in small communities and nonpoint source pollution are the key factors in determining the water quality of small streams in an agricultural landscape. Despite the current extensive construction of municipal wastewater treatment facilities in small communities, the level of organic substances and nutrients in the recipient catchments has not decreased in many areas. This paper analyzes the changes in the water quality of the small streams after the deployment of wastewater treatment plants that were designed to address sources of pollution from small municipalities. The analysis is based on the results from a water quality monitoring network in the small watersheds in the Czech Republic. Five rural catchments with one dominant municipal pollution source, where a wastewater treatment plant was deployed during the monitoring period, were selected according to a predefined set of criteria, from a series of 317 profiles. Basic water quality indicators were selected for the assessment: O₂, BOD-5, COD, TOC, conductivity, NH₄-N, NO₂-N, NO₃-N, PT, and PO₄-P. Results of the analysis showed that the simple deployment of the water treatment facilities at these streams often did not lead to a reduction of contamination in the streams. The expected post-deployment changes, namely, a significant and permanent reduction of stream contamination, occurred only in one catchment, whereas in the remainder of the catchments, only marginal changes or even increased concentrations of the contaminants were detected. As the critical factors that determined the efficiency of wastewater treatment were studied, the need for the consideration of the local conditions during the design of the facility, particularly regarding the size of the catchments, initial level of contamination, proper system of operation, and process optimization of the treatment facility, emerged as the important factor.

  13. The responding relationship between plants and environment is the essential principle for agricultural sustainable development on the globe.

    PubMed

    Zhou, Yi; Shao, Hong-Bo

    2008-04-01

    The mutual-responding relationship between plants and environment is involved in all life processes, which are the essential bases for different types of sustainable development on the globe, particularly the critical basis for agricultural sustainable development. How to regulate the above relationship between plants and the corresponding environment (in particular soil environment) is the key problem to modern sustainable agriculture development under global climate change, which is one of the hot topics in the field of plant biology. Detailed dissection of this responding relationship is also important for conducting global eco-environmental restoration and construction. Although powerful methodology and dataset related to genomics, post-genomics, and metabolomics have provided some insights into this relationship, crop physiological measures are also critical for crop full performance in field. With the increase of tested plants (including model plants) and development of integrated molecular biology, a complete understanding of the relationship at different scales under biotic and abiotic stresses will be accelerated. In the current paper, we will cover some important aspects in combination with the recent work from our laboratory and related advances reflected by international academic journals, as follows: plant physiological function performance under natural condition, plant gene regulatory network system under abiotic stresses, gene regulatory network system and drought resistance improvement, summary of the related work from our laboratory, conclusions, and acknowledgement.

  14. Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy

    PubMed Central

    Cheng, Fang; Cheng, Zhihui

    2015-01-01

    Allelopathy is a common biological phenomenon by which one organism produces biochemicals that influence the growth, survival, development, and reproduction of other organisms. These biochemicals are known as allelochemicals and have beneficial or detrimental effects on target organisms. Plant allelopathy is one of the modes of interaction between receptor and donor plants and may exert either positive effects (e.g., for agricultural management, such as weed control, crop protection, or crop re-establishment) or negative effects (e.g., autotoxicity, soil sickness, or biological invasion). To ensure sustainable agricultural development, it is important to exploit cultivation systems that take advantage of the stimulatory/inhibitory influence of allelopathic plants to regulate plant growth and development and to avoid allelopathic autotoxicity. Allelochemicals can potentially be used as growth regulators, herbicides, insecticides, and antimicrobial crop protection products. Here, we reviewed the plant allelopathy management practices applied in agriculture and the underlying allelopathic mechanisms described in the literature. The major points addressed are as follows: (1) Description of management practices related to allelopathy and allelochemicals in agriculture. (2) Discussion of the progress regarding the mode of action of allelochemicals and the physiological mechanisms of allelopathy, consisting of the influence on cell micro- and ultra-structure, cell division and elongation, membrane permeability, oxidative and antioxidant systems, growth regulation systems, respiration, enzyme synthesis and metabolism, photosynthesis, mineral ion uptake, protein and nucleic acid synthesis. (3) Evaluation of the effect of ecological mechanisms exerted by allelopathy on microorganisms and the ecological environment. (4) Discussion of existing problems and proposal for future research directions in this field to provide a useful reference for future studies on plant

  15. Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy.

    PubMed

    Cheng, Fang; Cheng, Zhihui

    2015-01-01

    Allelopathy is a common biological phenomenon by which one organism produces biochemicals that influence the growth, survival, development, and reproduction of other organisms. These biochemicals are known as allelochemicals and have beneficial or detrimental effects on target organisms. Plant allelopathy is one of the modes of interaction between receptor and donor plants and may exert either positive effects (e.g., for agricultural management, such as weed control, crop protection, or crop re-establishment) or negative effects (e.g., autotoxicity, soil sickness, or biological invasion). To ensure sustainable agricultural development, it is important to exploit cultivation systems that take advantage of the stimulatory/inhibitory influence of allelopathic plants to regulate plant growth and development and to avoid allelopathic autotoxicity. Allelochemicals can potentially be used as growth regulators, herbicides, insecticides, and antimicrobial crop protection products. Here, we reviewed the plant allelopathy management practices applied in agriculture and the underlying allelopathic mechanisms described in the literature. The major points addressed are as follows: (1) Description of management practices related to allelopathy and allelochemicals in agriculture. (2) Discussion of the progress regarding the mode of action of allelochemicals and the physiological mechanisms of allelopathy, consisting of the influence on cell micro- and ultra-structure, cell division and elongation, membrane permeability, oxidative and antioxidant systems, growth regulation systems, respiration, enzyme synthesis and metabolism, photosynthesis, mineral ion uptake, protein and nucleic acid synthesis. (3) Evaluation of the effect of ecological mechanisms exerted by allelopathy on microorganisms and the ecological environment. (4) Discussion of existing problems and proposal for future research directions in this field to provide a useful reference for future studies on plant

  16. Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy.

    PubMed

    Cheng, Fang; Cheng, Zhihui

    2015-01-01

    Allelopathy is a common biological phenomenon by which one organism produces biochemicals that influence the growth, survival, development, and reproduction of other organisms. These biochemicals are known as allelochemicals and have beneficial or detrimental effects on target organisms. Plant allelopathy is one of the modes of interaction between receptor and donor plants and may exert either positive effects (e.g., for agricultural management, such as weed control, crop protection, or crop re-establishment) or negative effects (e.g., autotoxicity, soil sickness, or biological invasion). To ensure sustainable agricultural development, it is important to exploit cultivation systems that take advantage of the stimulatory/inhibitory influence of allelopathic plants to regulate plant growth and development and to avoid allelopathic autotoxicity. Allelochemicals can potentially be used as growth regulators, herbicides, insecticides, and antimicrobial crop protection products. Here, we reviewed the plant allelopathy management practices applied in agriculture and the underlying allelopathic mechanisms described in the literature. The major points addressed are as follows: (1) Description of management practices related to allelopathy and allelochemicals in agriculture. (2) Discussion of the progress regarding the mode of action of allelochemicals and the physiological mechanisms of allelopathy, consisting of the influence on cell micro- and ultra-structure, cell division and elongation, membrane permeability, oxidative and antioxidant systems, growth regulation systems, respiration, enzyme synthesis and metabolism, photosynthesis, mineral ion uptake, protein and nucleic acid synthesis. (3) Evaluation of the effect of ecological mechanisms exerted by allelopathy on microorganisms and the ecological environment. (4) Discussion of existing problems and proposal for future research directions in this field to provide a useful reference for future studies on plant

  17. Agricultural Activities of a Meadow Eliminated Plant Litter from the Periphery of a Farmland in Inner Mongolia, China

    PubMed Central

    Kawada, Kiyokazu; Borjigin, Wuyunna; Nakamura, Toru

    2015-01-01

    The purpose of our investigation was to clarify the effects of agriculture on the process of loss of litter at the periphery of a farmland. This study revealed the generation process of an ecologically unusual phenomenon that is observed around cropland in semi-arid regions. We hypothesized that the vegetation around a farmland cannot supply plant litter to the ground surface because the ecological structure has been changed by agricultural activities. The study was conducted at Xilingol steppe, Xilingol League, Inner Mongolia Autonomous Region, China. Four study lines were established from the edge of an arable field to the surrounding meadow and parallel to the wind direction during the strong wind season. Key measurement for each line was set at the border between the farmland and steppe. Four study sites were set at intervals along each line. Plant litter, soil particle size distribution, plant species composition, plant volume, and species diversity were investigated. Despite using the same mowing method at the meadows of all study sites, the litter at the only periphery of the farmland completely disappeared. Soil particle size distribution in steppe, which was adjacent to the farmland, was similar to that of the farmland. Plant community structure at the periphery of the farmland was different from that of the far side from the farmland. This implies that soil scattered from the farmland affected the species composition of the steppe. Consequently, the change in plant community structure induced litter loss because of mowing. We concluded that plant litter was lost near the farmland because of the combined effects of farming and mowing. The results support our hypothesis that the vegetation around a farmland cannot supply plant litter because the ecological structure has been changed by agricultural activities. PMID:26241943

  18. Ecology of plant and free-living nematodes in natural and agricultural soil.

    PubMed

    Neher, Deborah A

    2010-01-01

    Nematodes are aquatic organisms that depend on thin water films to live and move within existing pathways of soil pores of 25-100 mum diameter. Soil nematodes can be a tool for testing ecological hypotheses and understanding biological mechanisms in soil because of their central role in the soil food web and linkage to ecological processes. Ecological succession is one of the most tested community ecology concepts, and a variety of nematode community indices have been proposed for purposes of environmental monitoring. In contrast, theories of biogeography, colonization, optimal foraging, and niche partitioning by nematodes are poorly understood. Ecological hypotheses related to strategies of coexistence of nematode species sharing the same resource have potential uses for more effective biological control and use of organic amendments to foster disease suppression. Essential research is needed on nematodes in natural and agricultural soils to synchronize nutrient release and availability relative to plant needs, to test ecological hypotheses, to apply optimal foraging and niche partitioning strategies for more effective biological control, to blend organic amendments to foster disease suppression, to monitor environmental and restoration status, and to develop better predictive models for land-use decisions. PMID:20455699

  19. Ecology of plant and free-living nematodes in natural and agricultural soil.

    PubMed

    Neher, Deborah A

    2010-01-01

    Nematodes are aquatic organisms that depend on thin water films to live and move within existing pathways of soil pores of 25-100 mum diameter. Soil nematodes can be a tool for testing ecological hypotheses and understanding biological mechanisms in soil because of their central role in the soil food web and linkage to ecological processes. Ecological succession is one of the most tested community ecology concepts, and a variety of nematode community indices have been proposed for purposes of environmental monitoring. In contrast, theories of biogeography, colonization, optimal foraging, and niche partitioning by nematodes are poorly understood. Ecological hypotheses related to strategies of coexistence of nematode species sharing the same resource have potential uses for more effective biological control and use of organic amendments to foster disease suppression. Essential research is needed on nematodes in natural and agricultural soils to synchronize nutrient release and availability relative to plant needs, to test ecological hypotheses, to apply optimal foraging and niche partitioning strategies for more effective biological control, to blend organic amendments to foster disease suppression, to monitor environmental and restoration status, and to develop better predictive models for land-use decisions.

  20. Introduction and domestication of woody plants for sustainable agriculture in desert areas

    NASA Astrophysics Data System (ADS)

    Shelef, Oren; Soloway, Elaine; Rachmilevitch, Shimon

    2014-05-01

    plantation in arid conditions. 5) Balanites aegyptiaca is potentially a good biomass crop and good feed for grazers as goats. We illuminated differences related to drought tolerance between two distinct ecotypes. Attempts to develope sustainable agriculture based on local species will save resources (water, fertilizers, insecticides and herbicides), keep endangered plant species and enhance vegetation reestablishment.

  1. Improvement of biogas production by bioaugmentation.

    PubMed

    Kovács, K L; Ács, N; Kovács, E; Wirth, R; Rákhely, G; Strang, Orsolya; Herbel, Zsófia; Bagi, Z

    2013-01-01

    Biogas production technologies commonly involve the use of natural anaerobic consortia of microbes. The objective of this study was to elucidate the importance of hydrogen in this complex microbial food chain. Novel laboratory biogas reactor prototypes were designed and constructed. The fates of pure hydrogen-producing cultures of Caldicellulosiruptor saccharolyticus and Enterobacter cloacae were followed in time in thermophilic and mesophilic natural biogas-producing communities, respectively. Molecular biological techniques were applied to study the altered ecosystems. A systematic study in 5-litre CSTR digesters revealed that a key fermentation parameter in the maintenance of an altered population balance is the loading rate of total organic solids. Intensification of the biogas production was observed and the results corroborate that the enhanced biogas productivity is associated with the increased abundance of the hydrogen producers. Fermentation parameters did not indicate signs of failure in the biogas production process. Rational construction of more efficient and sustainable biogas-producing microbial consortia is proposed.

  2. Improvement of Biogas Production by Bioaugmentation

    PubMed Central

    Kovács, K. L.; Ács, N.; Kovács, E.; Wirth, R.; Rákhely, G.; Strang, Orsolya; Herbel, Zsófia; Bagi, Z.

    2013-01-01

    Biogas production technologies commonly involve the use of natural anaerobic consortia of microbes. The objective of this study was to elucidate the importance of hydrogen in this complex microbial food chain. Novel laboratory biogas reactor prototypes were designed and constructed. The fates of pure hydrogen-producing cultures of Caldicellulosiruptor saccharolyticus and Enterobacter cloacae were followed in time in thermophilic and mesophilic natural biogas-producing communities, respectively. Molecular biological techniques were applied to study the altered ecosystems. A systematic study in 5-litre CSTR digesters revealed that a key fermentation parameter in the maintenance of an altered population balance is the loading rate of total organic solids. Intensification of the biogas production was observed and the results corroborate that the enhanced biogas productivity is associated with the increased abundance of the hydrogen producers. Fermentation parameters did not indicate signs of failure in the biogas production process. Rational construction of more efficient and sustainable biogas-producing microbial consortia is proposed. PMID:23484123

  3. Biogas final digestive byproduct applied to croplands as fertilizer contains high levels of steroid hormones.

    PubMed

    Rodriguez-Navas, Carlos; Björklund, Erland; Halling-Sørensen, Bent; Hansen, Martin

    2013-09-01

    In this study we evaluate and demonstrate the occurrence of nine natural and one synthetic steroid hormone, including estrogens, androgens and progestagens in biogas final digestate byproduct (digestion liquid) commonly used as an agricultural fertilizer. We investigated two biogas sites that utilize different anaerobic digestion technologies (mesophilic and thermophilic) from swine manure and other organic wastes. Individual hormone concentration levels were observed up to 1478 ng g(-1) dry weight or 22.5 mg kg(-1) N with estrone and progesterone reaching highest concentration levels. Evaluation of the potential environmental burden through the application in agriculture was also assessed on the basis of predicted environmental concentrations. This study indicates that the biogas digestion process does not completely remove steroid hormones from livestock manure and use of final digestate byproduct on croplands contributes to the environmental emission of hormones.

  4. Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States.

    PubMed

    Williams, Neal M; Ward, Kimiora L; Pope, Nathaniel; Isaacs, Rufus; Wilson, Julianna; May, Emily A; Ellis, Jamie; Daniels, Jaret; Pence, Akers; Ullmann, Katharina; Peters, Jeff

    2015-12-01

    Global trends in pollinator-dependent crops have raised awareness of the need to support managed and wild bee populations to ensure sustainable crop production. Provision of sufficient forage resources is a key element for promoting bee populations within human impacted landscapes, particularly those in agricultural lands where demand for pollination service is high and land use and management practices have reduced available flowering resources. Recent government incentives in North America and Europe support the planting of wildflowers to benefit pollinators; surprisingly, in North America there has been almost no rigorous testing of the performance of wildflower mixes, or their ability to support wild bee abundance and diversity. We tested different wildflower mixes in a spatially replicated, multiyear study in three regions of North America where production of pollinator-dependent crops is high: Florida, Michigan, and California. In each region, we quantified flowering among wildflower mixes composed of annual and perennial species, and with high and low relative diversity. We measured the abundance and species richness of wild bees, honey bees, and syrphid flies at each mix over two seasons. In each region, some but not all wildflower mixes provided significantly greater floral display area than unmanaged weedy control plots. Mixes also attracted greater abundance and richness of wild bees, although the identity of best mixes varied among regions. By partitioning floral display size from mix identity we show the importance of display size for attracting abundant and diverse wild bees. Season-long monitoring also revealed that designing mixes to provide continuous bloom throughout the growing season is critical to supporting the greatest pollinator species richness. Contrary to expectation, perennials bloomed in their first season, and complementarity in attraction of pollinators among annuals and perennials suggests that inclusion of functionally diverse

  5. Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States.

    PubMed

    Williams, Neal M; Ward, Kimiora L; Pope, Nathaniel; Isaacs, Rufus; Wilson, Julianna; May, Emily A; Ellis, Jamie; Daniels, Jaret; Pence, Akers; Ullmann, Katharina; Peters, Jeff

    2015-12-01

    Global trends in pollinator-dependent crops have raised awareness of the need to support managed and wild bee populations to ensure sustainable crop production. Provision of sufficient forage resources is a key element for promoting bee populations within human impacted landscapes, particularly those in agricultural lands where demand for pollination service is high and land use and management practices have reduced available flowering resources. Recent government incentives in North America and Europe support the planting of wildflowers to benefit pollinators; surprisingly, in North America there has been almost no rigorous testing of the performance of wildflower mixes, or their ability to support wild bee abundance and diversity. We tested different wildflower mixes in a spatially replicated, multiyear study in three regions of North America where production of pollinator-dependent crops is high: Florida, Michigan, and California. In each region, we quantified flowering among wildflower mixes composed of annual and perennial species, and with high and low relative diversity. We measured the abundance and species richness of wild bees, honey bees, and syrphid flies at each mix over two seasons. In each region, some but not all wildflower mixes provided significantly greater floral display area than unmanaged weedy control plots. Mixes also attracted greater abundance and richness of wild bees, although the identity of best mixes varied among regions. By partitioning floral display size from mix identity we show the importance of display size for attracting abundant and diverse wild bees. Season-long monitoring also revealed that designing mixes to provide continuous bloom throughout the growing season is critical to supporting the greatest pollinator species richness. Contrary to expectation, perennials bloomed in their first season, and complementarity in attraction of pollinators among annuals and perennials suggests that inclusion of functionally diverse

  6. Heavy metal accumulation in agricultural soils around a coal fired thermal power plant (Farakka) in India.

    PubMed

    Sengupta, Saswati; Chatterjee, Tamoghno; Ghosh, P B; Saha, Tapan

    2010-10-01

    Agricultural soils around the ash dumping sites of one of the largest thermal power plant (TPP) in India located at Farakka, West Bengal were assessed for some heavy metal (Pb, Cd, Cr, As, Cu, Zn, Ni and Fe) distribution in association with other physicochemical components and compared with the control soils collected from far away of TPP. The toxic group metals (Pb, Cd, Cr and As) were well differentiated by their higher values of variability and non-normal distribution from the biologically essential metals (Cu, Zn, Ni and Fe). The statistical analysis of the heavy metals revealed that the two probable sources (Eigen values) in affected soils are responsible for their distribution; the more dominant one contributed the toxic metals and less dominating source contributed the essential heavy metals. While in control soils, no distinct separation of sources of the metals were found out signifying that the natural common sources could play active role in metal distributions. Although EF (Enrichment Factor) values of toxic metals are higher with large fraction of anthropogenic sources, yet (Igeo) (Geo-accumulation Index) values indicate moderate to unpolluted condition of the soils in respect to Pb, Cd and As. The calculated PLI (Pollution Load Index) values (1.88) considering all the metals also support the findings. Since there are no other sources of industrial effluents in the study area except the TPP, it can be said that the enrichment of these metals is solely attributed to their input from the ash contamination. For this, considerable degree of enrichment of toxic group of metals occurred in these soils.

  7. Biogas project advances in California

    SciTech Connect

    Wittrup, L.

    1995-04-01

    The National Renewable Energy Laboratory (NREL) has given a `thumbs up` rating to the high solids anaerobic digester project which is designed to produce biogas. The Sacramento Municipal Utility District (SMUD), the local utility, is considering the use of biogas to run a fuel cell pilot project. The designs for the three digesters are state-of-the-art, with each containing a horizontal trough measuring 120 feet long, 32 feet wide and 22 feet tall. NREL was asked by the PIA to review the mixing method in the digesters and analyze the overall potential success of the operation. The design employs a redundant system for foam removal from the digester gas, and has provisions to remove moisture from the biogas. However, there are no systems specified to reduce hydrogen sulfide levels. Since hydrogen sulfide is known to be corrosive, it may be destructive to the ultimate use as biogas in fuel cells. A suggested remedy from NREL is to add redundant iron sponge systems to remove hydrogen sulfide gases. A redundant system would allow regenerating one while the other is in service. In general, the lab found the design offers low construction costs, relative ease of operation, and a reasonably high level of anticipated success in operation. Therefore, NREL recommends proceeding with the current digester design plans, once the modifications as indicated are made.

  8. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity

    PubMed Central

    2014-01-01

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers. PMID:24885352

  9. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity.

    PubMed

    Bhardwaj, Deepak; Ansari, Mohammad Wahid; Sahoo, Ranjan Kumar; Tuteja, Narendra

    2014-05-08

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers.

  10. Plant available silicon in South-east Asian rice paddy soils - relevance of agricultural practice and of abiotic factors

    NASA Astrophysics Data System (ADS)

    Marxen, A.; Klotzbücher, T.; Vetterlein, D.; Jahn, R.

    2012-12-01

    Background Silicon (Si) plays a crucial role in rice production. Si content of rice plants exceeds the content of other major nutrients such as nitrogen, phosphorous or potassium. Recent studies showed that in some environments external supply of Si can enhance the growth of rice plants. Rice plants express specific Si transporters to absorb Si from soil solutions in form of silicic acid, which precipitates in tissue cells forming amorphous silica bodies, called phytoliths. The phytoliths are returned to soils with plant residues. They might be a main source of plant available silicic acid in soils. Aims In this study we assess the effects of rice paddy cultivation on the stocks of `reactive` Si fractions in mineral topsoils of rice paddy fields in contrasting landscapes. The `reactive` Si fractions are presumed to determine the release of plant-available silicic acid in soils. We consider the relevance of abiotic factors (mineral assemblage; soil weathering status) and agricultural practice for these fractions. Agricultural practices, which were assumed to affect the stocks of `reactive` Si were (i) the usage of different rice varieties (which might differ in Si demand), (ii) straw residue management (i.e., whether straw residues are returned to the fields or removed and used e.g. as fodder), and (iii) yield level and number of crops per year. Material and methods Soils (top horizon of about 0-20 cm depth) were sampled from rice paddy fields in 2 mountainous and 5 lowland landscapes of contrasting geologic conditions in Vietnam and the Philippines. Ten paddy fields were sampled per landscape. The rice paddy management within landscapes differed when different farmers and/or communities managed the fields. We analysed the following fractions of `reactive` Si in the soils: acetate-extractable Si (dissolved and easily exchangeable Si), phosphate-extractable Si (adsorbed Si), oxalate extractable Si (Si associated with poorly-ordered sesquioxides), NaOH extractable Si

  11. Educational Plant Survey. The University of Florida Institute of Food and Agricultural Sciences on Campus--Alachua County. April 4-5, 1994.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee.

    This report presents the results of a systematic study and evaluation of the existing educational plants of the University of Florida's Institute of Food and Agricultural Sciences (IFAS), along with a determination of future plant needs. Section 1 contains an introduction to the educational plant survey, including statutory foundations, procedural…

  12. Comparisons of diazotrophic communities in native and agricultural desert ecosystems reveal plants as important drivers in diversity.

    PubMed

    Köberl, Martina; Erlacher, Armin; Ramadan, Elshahat M; El-Arabi, Tarek F; Müller, Henry; Bragina, Anastasia; Berg, Gabriele

    2016-02-01

    Diazotrophs provide the only biological source of fixed atmospheric nitrogen in the biosphere. Although they are the key player for plant-available nitrogen, less is known about their diversity and potential importance in arid ecosystems. We investigated the nitrogenase gene diversity in native and agricultural desert soil as well as within root-associated microbiota of medicinal plants grown in Egypt through the combination of nifH-specific qPCR, fingerprints, amplicon pyrosequencing and fluorescence in situ hybridization-confocal laser scanning microscopy. Although the diazotrophic microbiota were characterized by generally high abundances and diversity, statistically significant differences were found between both soils, the different microhabitats, and between the investigated plants (Matricaria chamomilla L., Calendula officinalis L. and Solanum distichum Schumach. and Thonn.). We observed a considerable community shift from desert to agriculturally used soil that demonstrated a higher abundance and diversity in the agro-ecosystem. The endorhiza was characterized by lower abundances and only a subset of species when compared to the rhizosphere. While the microbiomes of the Asteraceae were similar and dominated by potential root-nodulating rhizobia acquired primarily from soil, the perennial S. distichum generally formed associations with free-living nitrogen fixers. These results underline the importance of diazotrophs in desert ecosystems and additionally identify plants as important drivers in functional gene pool diversity. PMID:26705571

  13. Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake.

    PubMed

    Doolette, Casey L; McLaughlin, Michael J; Kirby, Jason K; Navarro, Divina A

    2015-12-30

    Silver nanoparticles (AgNPs) can enter terrestrial systems as sulfidised AgNPs (Ag2S-NPs) through the application of biosolids to soil. However, the bioavailability of Ag2S-NPs in soils is unknown. The two aims of this study were to investigate (1) the bioavailability of Ag to lettuce (Lactuca sativa) using a soil amended with biosolids containing Ag2S-NPs and (2) the effect of commonly used agricultural fertilisers/amendments on the bioavailability of Ag, AgNPs and Ag2S-NPs to lettuce. The study used realistic AgNP exposure pathways and exposure concentrations. The plant uptake of Ag from biosolids-amended soil containing Ag2S-NPs was very low for all Ag treatments (0.02%). Ammonium thiosulfate and potassium chloride fertilisation significantly increased the Ag concentrations of plant roots and shoots. The extent of the effect varied depending on the type of Ag. Ag2S-NPs, the realistic form of AgNPs in soil, had the lowest bioavailability. The potential risk of AgNPs in soils is low; even in the plants that had the highest Ag concentrations (Ag(+)+thiosulfate), only 0.06% of added Ag was found in edible plant parts (shoots). Results from the study suggest that agricultural practises must be considered when carrying out risk assessments of AgNPs in terrestrial systems; such practises can affect AgNP bioavailability.

  14. Comparisons of diazotrophic communities in native and agricultural desert ecosystems reveal plants as important drivers in diversity.

    PubMed

    Köberl, Martina; Erlacher, Armin; Ramadan, Elshahat M; El-Arabi, Tarek F; Müller, Henry; Bragina, Anastasia; Berg, Gabriele

    2016-02-01

    Diazotrophs provide the only biological source of fixed atmospheric nitrogen in the biosphere. Although they are the key player for plant-available nitrogen, less is known about their diversity and potential importance in arid ecosystems. We investigated the nitrogenase gene diversity in native and agricultural desert soil as well as within root-associated microbiota of medicinal plants grown in Egypt through the combination of nifH-specific qPCR, fingerprints, amplicon pyrosequencing and fluorescence in situ hybridization-confocal laser scanning microscopy. Although the diazotrophic microbiota were characterized by generally high abundances and diversity, statistically significant differences were found between both soils, the different microhabitats, and between the investigated plants (Matricaria chamomilla L., Calendula officinalis L. and Solanum distichum Schumach. and Thonn.). We observed a considerable community shift from desert to agriculturally used soil that demonstrated a higher abundance and diversity in the agro-ecosystem. The endorhiza was characterized by lower abundances and only a subset of species when compared to the rhizosphere. While the microbiomes of the Asteraceae were similar and dominated by potential root-nodulating rhizobia acquired primarily from soil, the perennial S. distichum generally formed associations with free-living nitrogen fixers. These results underline the importance of diazotrophs in desert ecosystems and additionally identify plants as important drivers in functional gene pool diversity.

  15. Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake.

    PubMed

    Doolette, Casey L; McLaughlin, Michael J; Kirby, Jason K; Navarro, Divina A

    2015-12-30

    Silver nanoparticles (AgNPs) can enter terrestrial systems as sulfidised AgNPs (Ag2S-NPs) through the application of biosolids to soil. However, the bioavailability of Ag2S-NPs in soils is unknown. The two aims of this study were to investigate (1) the bioavailability of Ag to lettuce (Lactuca sativa) using a soil amended with biosolids containing Ag2S-NPs and (2) the effect of commonly used agricultural fertilisers/amendments on the bioavailability of Ag, AgNPs and Ag2S-NPs to lettuce. The study used realistic AgNP exposure pathways and exposure concentrations. The plant uptake of Ag from biosolids-amended soil containing Ag2S-NPs was very low for all Ag treatments (0.02%). Ammonium thiosulfate and potassium chloride fertilisation significantly increased the Ag concentrations of plant roots and shoots. The extent of the effect varied depending on the type of Ag. Ag2S-NPs, the realistic form of AgNPs in soil, had the lowest bioavailability. The potential risk of AgNPs in soils is low; even in the plants that had the highest Ag concentrations (Ag(+)+thiosulfate), only 0.06% of added Ag was found in edible plant parts (shoots). Results from the study suggest that agricultural practises must be considered when carrying out risk assessments of AgNPs in terrestrial systems; such practises can affect AgNP bioavailability. PMID:26322966

  16. Comparisons of diazotrophic communities in native and agricultural desert ecosystems reveal plants as important drivers in diversity

    PubMed Central

    Köberl, Martina; Erlacher, Armin; Ramadan, Elshahat M.; El-Arabi, Tarek F.; Müller, Henry; Bragina, Anastasia; Berg, Gabriele

    2015-01-01

    Diazotrophs provide the only biological source of fixed atmospheric nitrogen in the biosphere. Although they are the key player for plant-available nitrogen, less is known about their diversity and potential importance in arid ecosystems. We investigated the nitrogenase gene diversity in native and agricultural desert soil as well as within root-associated microbiota of medicinal plants grown in Egypt through the combination of nifH-specific qPCR, fingerprints, amplicon pyrosequencing and fluorescence in situ hybridization–confocal laser scanning microscopy. Although the diazotrophic microbiota were characterized by generally high abundances and diversity, statistically significant differences were found between both soils, the different microhabitats, and between the investigated plants (Matricaria chamomilla L., Calendula officinalis L. and Solanum distichum Schumach. and Thonn.). We observed a considerable community shift from desert to agriculturally used soil that demonstrated a higher abundance and diversity in the agro-ecosystem. The endorhiza was characterized by lower abundances and only a subset of species when compared to the rhizosphere. While the microbiomes of the Asteraceae were similar and dominated by potential root-nodulating rhizobia acquired primarily from soil, the perennial S. distichum generally formed associations with free-living nitrogen fixers. These results underline the importance of diazotrophs in desert ecosystems and additionally identify plants as important drivers in functional gene pool diversity. PMID:26705571

  17. Techno-economical study of biogas production improved by steam explosion pretreatment.

    PubMed

    Shafiei, Marzieh; Kabir, Maryam M; Zilouei, Hamid; Sárvári Horváth, Ilona; Karimi, Keikhosro

    2013-11-01

    Economic feasibility of steam explosion pretreatment for improvement of biogas production from wheat straw and paper tube residuals was investigated. The process was simulated by Aspen plus ®, and the economical feasibility of five different plant capacities was studied by Aspen Process Economic Analyzer. Total project investment of a plant using paper tube residuals or wheat straw was 63.9 or 61.8 million Euros, respectively. The manufacturing cost of raw biogas for these two feedstocks was calculated to 0.36 or 0.48 €/m(3) of methane, respectively. Applying steam explosion pretreatment resulted in 13% higher total capital investment while significantly improved the economy of the biogas plant and decreased the manufacturing cost of methane by 36%. The sensitivity analysis showed that 5% improvement in the methane yield and 20% decrease in the raw material price resulted in 5.5% and 8% decrease in the manufacturing cost of methane, respectively.

  18. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils.

    PubMed

    Adamo, Paola; Iavazzo, Pietro; Albanese, Stefano; Agrelli, Diana; De Vivo, Benedetto; Lima, Annamaria

    2014-12-01

    Soil pollution in agricultural lands poses a serious threat to food safety, and suggests the need for consolidated methods providing advisory indications for soil management and crop production. In this work, the three-step extraction procedure developed by the EU Measurement and Testing Programme and two soil-to-plant transfer factors (relative to total and bioavailable concentration of elements in soil) were applied on polluted agricultural soils from southern Italy to obtain information on the retention mechanisms of metals in soils and on their level of translocation to edible vegetables. The study was carried out in the Sarno river plain of Campania, an area affected by severe environmental degradation potentially impacting the health of those consuming locally produced vegetables. Soil samples were collected in 36 locations along the two main rivers flowing into the plain. In 11 sites, lettuce plants were collected at the normal stage of consumption. According to Italian environmental law governing residential soils, and on the basis of soil background reference values for the study area, we found diffuse pollution by Be, Sn and Tl, of geogenic origin, Cr and Cu from anthropogenic sources such as tanneries and intensive agriculture, and more limited pollution by Pb, Zn and V. It was found that metals polluting soils as a result of human activities were mainly associated to residual, oxidizable and reducible phases, relatively immobile and only potentially bioavailable to plants. By contrast, the essential elements Zn and Cu showed a tendency to become more readily mobile and bioavailable as their total content in soil increased and were more easily transported to the edible parts of lettuce than other pollutants. According to our results, current soil pollution in the studied area does not affect the proportion of metals taken up by lettuce plants and there is a limited health risk incurred.

  19. Gene flow in the green mirid, Creontiades dilutus (Hemiptera: Miridae), across arid and agricultural environments with different host plant species

    PubMed Central

    Hereward, J P; Walter, G H; DeBarro, P J; Lowe, A J; Riginos, C

    2013-01-01

    Creontiades dilutus (Stål), the green mirid, is a polyphagous herbivorous insect endemic to Australia. Although common in the arid interior of Australia and found on several native host plants that are spatially and temporally ephemeral, green mirids also reach pest levels on several crops in eastern Australia. These host-associated dynamics, distributed across a large geographic area, raise questions as to whether (1) seasonal fluctuations in population size result in genetic bottlenecks and drift, (2) arid and agricultural populations are genetically isolated, and (3) the use of different host plants results in genetic differentiation. We sequenced a mitochondrial COI fragment from individuals collected over 24 years and screened microsatellite variation from 32 populations across two seasons. The predominance of a single COI haplotype and negative Tajima D in samples from 2006/2007 fit with a population expansion model. In the older collections (1983 and 1993), a different haplotype is most prevalent, consistent with successive population contractions and expansions. Microsatellite data indicates recent migration between inland sites and coastal crops and admixture in several populations. Altogether, the data suggest that long-distance dispersal occurs between arid and agricultural regions, and this, together with fluctuations in population size, leads to temporally dynamic patterns of genetic differentiation. Host-associated differentiation is evident between mirids sampled from plants in the genus Cullen (Fabaceae), the primary host, and alternative host plant species growing nearby in arid regions. Our results highlight the importance of jointly assessing natural and agricultural environments in understanding the ecology of pest insects. PMID:23610626

  20. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture.

    PubMed

    Saleem, Muhammad; Arshad, Muhammad; Hussain, Sarfraz; Bhatti, Ahmad Saeed

    2007-10-01

    Ethylene is a gaseous plant growth hormone produced endogenously by almost all plants. It is also produced in soil through a variety of biotic and abiotic mechanisms, and plays a key role in inducing multifarious physiological changes in plants at molecular level. Apart from being a plant growth regulator, ethylene has also been established as a stress hormone. Under stress conditions like those generated by salinity, drought, waterlogging, heavy metals and pathogenicity, the endogenous production of ethylene is accelerated substantially which adversely affects the root growth and consequently the growth of the plant as a whole. Certain plant growth promoting rhizobacteria (PGPR) contain a vital enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which regulates ethylene production by metabolizing ACC (an immediate precursor of ethylene biosynthesis in higher plants) into alpha-ketobutyrate and ammonia. Inoculation with PGPR containing ACC deaminase activity could be helpful in sustaining plant growth and development under stress conditions by reducing stress-induced ethylene production. Lately, efforts have been made to introduce ACC deaminase genes into plants to regulate ethylene level in the plants for optimum growth, particularly under stressed conditions. In this review, the primary focus is on giving account of all aspects of PGPR containing ACC deaminase regarding alleviation of impact of both biotic and abiotic stresses onto plants and of recent trends in terms of introduction of ACC deaminase genes into plant and microbial species.

  1. Low-temperature upgrading of low-calorific biogas for CO2 mitigation using DBD-catalyst hybrid reactor

    NASA Astrophysics Data System (ADS)

    Nozaki, Tomohiro; Tsukijihara, Hiroyuki; Fukui, Wataru; Okazaki, Ken

    2006-10-01

    Although huge amounts of biogas, which consists of 20-60% of CH4 in CO2/N2, can be obtained from landfills, coal mines, and agricultural residues, most of them are simply flared and wasted: because global warming potential of biogas is 5-15 times as potent as CO2. Poor combustibility of such biogas makes it difficult to utilize in conventional energy system. The purpose of this project is to promote the profitable recovery of methane from poor biogas via non-thermal plasma technology. We propose low-temperature steam reforming of biogas using DBD generated in catalyst beds. Methane is partially converted into hydrogen, and then fed into internal combustion engines for improved ignition stability as well as efficient operation. Low-temperature steam reforming is beneficial because exhaust gas from an engine can be used to activate catalyst beds. Space velocity (3600-15000 hr-1), reaction temperature (300-650^oC), and energy cost (30-150 kJ per mol CH4) have been investigated with simulated biogas (20-60% CH4 in mixtures of CO2/N2). The DBD enhances reaction rate of CH4 by a factor of ten at given catalyst temperatures, which is a rate-determining step of methane steam reforming, while species concentration of upgraded biogas was governed by thermodynamic equilibrium in the presence of catalyst.

  2. Micro-aeration for hydrogen sulfide removal from biogas

    NASA Astrophysics Data System (ADS)

    Duangmanee, Thanapong

    was affected by changes in liquid heights the most, followed by changes in flow rates. Feasibility studies for H2S removal from biogas by micro-aeration were conducted at the Ames Water Pollution Control Facility (AWPCF) by using different types of liquid media available at the plant, i.e. plant effluent, mixed liquor, and digester supernatant. From the experiment at AWPCF, it was found that operating pHs were affected by the amount of alkalinity in the liquid media and that the removal efficiencies were affected by the operating pH. Among all the liquid media tested, digester supernatant showed the greatest potential with more than 99% H2S removal at an operating pH of 7.0 and volumetric biogas flow rate of 21.6 m3/m 3-hr. By increasing trace metal contents and temperature of the medium, the hydrogen sulfide removal rate was greatly improved. The operating cost of the full-scale system was estimated to be approximately $2/kg-S-removed. In addition, it was also revealed that abiotic sulfide oxidation accounted for 95% of overall sulfide oxidation. This technology is expected to widen the use of biogas as a renewable fuel since the maintenance requirements of biogas handling equipment, the methane purification costs, and the emissions of SOx will dramatically be reduced. Importantly, the technology does not require inoculation of special bacteria, addition of nutrients and trace elements, or chemicals for pH control.

  3. Anaerobic Fungi and Their Potential for Biogas Production.

    PubMed

    Dollhofer, Veronika; Podmirseg, Sabine Marie; Callaghan, Tony Martin; Griffith, Gareth Wyn; Fliegerová, Kateřina

    2015-01-01

    Plant biomass is the largest reservoir of environmentally friendly renewable energy on earth. However, the complex and recalcitrant structure of these lignocellulose-rich substrates is a severe limitation for biogas production. Microbial pro-ventricular anaerobic digestion of ruminants can serve as a model for improvement of converting lignocellulosic biomass into energy. Anaerobic fungi are key players in the digestive system of various animals, they produce a plethora of plant carbohydrate hydrolysing enzymes. Combined with the invasive growth of their rhizoid system their contribution to cell wall polysaccharide decomposition may greatly exceed that of bacteria. The cellulolytic arsenal of anaerobic fungi consists of both secreted enzymes, as well as extracellular multi-enzyme complexes called cellulosomes. These complexes are extremely active, can degrade both amorphous and crystalline cellulose and are probably the main reason of cellulolytic efficiency of anaerobic fungi. The synergistic use of mechanical and enzymatic degradation makes anaerobic fungi promising candidates to improve biogas production from recalcitrant biomass. This chapter presents an overview about their biology and their potential for implementation in the biogas process.

  4. Mechanisms for flowering plants to benefit arthropod natural enemies of insect pests: prospects for enhanced use in agriculture.

    PubMed

    Lu, Zhong-Xian; Zhu, Ping-Yang; Gurr, Geoff M; Zheng, Xu-Song; Read, Donna M Y; Heong, Kong-Luen; Yang, Ya-Jun; Xu, Hong-Xing

    2014-02-01

    Reduction of noncrop habitats, intensive use of pesticides and high levels of disturbance associated with intensive crop production simplify the farming landscape and bring about a sharp decline of biodiversity. This, in turn, weakens the biological control ecosystem service provided by arthropod natural enemies. Strategic use of flowering plants to enhance plant biodiversity in a well-targeted manner can provide natural enemies with food sources and shelter to improve biological control and reduce dependence on chemical pesticides. This article reviews the nutritional value of various types of plant-derived food for natural enemies, possible adverse effects on pest management, and the practical application of flowering plants in orchards, vegetables and field crops, agricultural systems where most research has taken place. Prospects for more effective use of flowering plants to maximize biological control of insect pests in agroecosystem are good but depend up on selection of optimal plant species based on information on the ecological mechanisms by which natural enemies are selectively favored over pest species.

  5. Syntrophic acetate oxidation in industrial CSTR biogas digesters.

    PubMed

    Sun, Li; Müller, Bettina; Westerholm, Maria; Schnürer, Anna

    2014-02-10

    The extent of syntrophic acetate oxidation (SAO) and the levels of known SAO bacteria and acetate- and hydrogen-consuming methanogens were determined in sludge from 13 commercial biogas production plants. Results from these measurements were statistically related to the prevailing operating conditions, through partial least squares (PLS) analysis. This revealed that high abundance of microorganisms involved in SAO was positively correlated with relatively low abundance of aceticlastic methanogens and high concentrations of free ammonia (>160 mg/L) and volatile fatty acids (VFA). Temperature was identified as another influencing factor for the population structure of the syntrophic acetate oxidising bacteria (SAOB). Overall, there was a high abundance of SAOB in the different digesters despite differences in their operating parameters, indicating that SAOB are an enduring and important component of biogas-producing consortia.

  6. Cow power: the energy and emissions benefits of converting manure to biogas

    NASA Astrophysics Data System (ADS)

    Cuéllar, Amanda D.; Webber, Michael E.

    2008-07-01

    This report consists of a top-level aggregate analysis of the total potential for converting livestock manure into a domestic renewable fuel source (biogas) that could be used to help states meet renewable portfolio standard requirements and reduce greenhouse gas (GHG) emissions. In the US, livestock agriculture produces over one billion tons of manure annually on a renewable basis. Most of this manure is disposed of in lagoons or stored outdoors to decompose. Such disposal methods emit methane and nitrous oxide, two important GHGs with 21 and 310 times the global warming potential of carbon dioxide, respectively. In total, GHG emissions from the agricultural sector in the US amounted to 536 million metric tons (MMT) of carbon dioxide equivalent, or 7% of the total US emissions in 2005. Of this agricultural contribution, 51 to 118 MMT of carbon dioxide equivalent resulted from livestock manure emissions alone, with trends showing this contribution increasing from 1990 to 2005. Thus, limiting GHG emissions from manure represents a valuable starting point for mitigating agricultural contributions to global climate change. Anaerobic digestion, a process that converts manure to methane-rich biogas, can lower GHG emissions from manure significantly. Using biogas as a substitute for other fossil fuels, such as coal for electricity generation, replaces two GHG sources—manure and coal combustion—with a less carbon-intensive source, namely biogas combustion. The biogas energy potential was calculated using values for the amount of biogas energy that can be produced per animal unit (defined as 1000 pounds of animal) per day and the number of animal units in the US. The 95 million animal units in the country could produce nearly 1 quad of renewable energy per year, amounting to approximately 1% of the US total energy consumption. Converting the biogas into electricity using standard microturbines could produce 88 ± 20 billion kWh, or 2.4 ± 0.6% of annual electricity

  7. Inhibition of proliferation by agricultural plant extracts in seven human adult T-cell leukaemia (ATL)-related cell lines.

    PubMed

    Kai, Hisahiro; Akamatsu, Ena; Torii, Eri; Kodama, Hiroko; Yukizaki, Chizuko; Sakakibara, Yoichi; Suiko, Masahito; Morishita, Kazuhiro; Kataoka, Hiroaki; Matsuno, Koji

    2011-07-01

    Adult T-cell leukaemia (ATL) is caused by human T-cell leukaemia virus type I (HTLV-I) infection and is resistant to conventional chemotherapy. We evaluated the inhibitory effects of agricultural plants on the proliferation of seven ATL-related human leukaemia cells, using three ATL cell lines (ED, Su9T01 and S1T), two human T-cell lines transformed by HTLV-I infection (HUT-102 and MT-2) and two HTLV-I-negative human T-cell acute lymphoblastic leukaemia cell lines (Jurkat and MOLT-4). A total of 52 samples of 80% ethanol extracts obtained from 30 types of agricultural plants were examined. On the basis of IC(50) values, we selected samples with greater activity than genistein, which was used as a positive control. The highest inhibitory effect was observed with extracts from leaves of Vaccinium virgatum Aiton (blueberry) on four cell lines (ED, Su9T01, HUT-102 and Jurkat); seeds of Momordica charantia L. (bitter gourd) exhibited the second highest activity. The bitter gourd seeds suppressed the proliferation of three cell lines (Su9T01, HUT-102 and Jurkat). The extracts from edible parts of Ipomea batatas LAM. (sweet potato), edible parts of Colocasia esculenta (L.) Schott (taro), skin of taro and seeds of Prunus mume Sieb. et Zucc. (mume) showed markedly greater inhibitory effects on Su9T01 than genistein. These findings suggest that ATL-preventative bioactive compounds may exist in these agricultural plants, which are considered to be functional foods. PMID:21293936

  8. Infrared Spectroscopy as a Versatile Analytical Tool for the Quantitative Determination of Antioxidants in Agricultural Products, Foods and Plants

    PubMed Central

    Cozzolino, Daniel

    2015-01-01

    Spectroscopic methods provide with very useful qualitative and quantitative information about the biochemistry and chemistry of antioxidants. Near infrared (NIR) and mid infrared (MIR) spectroscopy are considered as powerful, fast, accurate and non-destructive analytical tools that can be considered as a replacement of traditional chemical analysis. In recent years, several reports can be found in the literature demonstrating the usefulness of these methods in the analysis of antioxidants in different organic matrices. This article reviews recent applications of infrared (NIR and MIR) spectroscopy in the analysis of antioxidant compounds in a wide range of samples such as agricultural products, foods and plants. PMID:26783838

  9. THE USE OF CHEMICALS AS INSECTICIDES--PLANTS. AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 2.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    THIS GUIDE IS ONE OF A SERIES DESIGNED TO PROVIDE GROUP INSTRUCTION AND INDIVIDUAL OCCUPATIONAL EXPERIENCE FOR POST-SECONDARY STUDENTS PREPARING FOR EMPLOYMENT AS AGRICULTURAL CHEMICAL TECHNICIANS. IT WAS DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF STATE STUDY DATA. THE OBJECTIVES ARE TO DEVELOP (1) INTEREST, APPRECIATION, AND UNDERSTANDING…

  10. Impact of enzymatic pretreatment on corn stover degradation and biogas production.

    PubMed

    Schroyen, Michel; Vervaeren, Han; Van Hulle, Stijn W H; Raes, Katleen

    2014-12-01

    Corn stover is an agricultural residue consisting of lignocellulose, cellulose and hemicellulose polymers, sheeted in a lignin barrier. Corn stover can be used as feedstock for biogas production. Previous studies have shown biological pretreatment of lignocellulose materials can increase digestibility of the substrate improving hydrolysis, the rate-limiting step in biogas production. The impact of pretreating with different enzymes (laccase, manganese peroxidase and versatile peroxidase) and different incubation times, (0, 6 and 24 h) was studied. The effect on the matrix and biomethane production was determined. Pretreatments did not yield high concentrations of phenolic compounds, inhibitors of biogas production. The laccase enzyme showed an increase in biomethane production of 25% after 24 h of incubation. Pretreatment with peroxidase enzymes increased biomethane production with 17% after 6 h of incubation. As such it can be concluded that by introducing the different enzymes at different stages during pretreatment an increased biomethane production can be obtained.

  11. Comparative study of heavy metal and pathogenic bacterial contamination in sludge and manure in biogas and non-biogas swine farms.

    PubMed

    Tulayakul, Phitsanu; Boonsoongnern, Alongkot; Kasemsuwan, Suwicha; Wiriyarampa, Srisamai; Pankumnoed, Juree; Tippayaluck, Suwanna; Hananantachai, Hathairad; Mingkhwan, Ratchaneekorn; Netvichian, Ramnaree; Khaodhiar, Sutha

    2011-01-01

    The objective of this study is to determine and compare the heavy metal (Zn, Cu, Cd, Pb) and bacterial (E. coli, coliform and Salmonella spp.) contamination between swine farms utilizing biogas and non-biogas systems in the central part of Thailand. Results showed that average levels of E. coli, coliform, BOD, COD, Zn, Cu and Pb in sludge from the post-biogas pond were higher than the standard limits. Moreover, the levels of E. coli, coliform, Cd and Pb were also higher than the standard limits for dry manure. The levels of E. coli, coliform and BOD on biogas farms were lower than on non-biogas farms. Following isolation of Salmonella spp., it was found that Salmonella serovars Rissen was the most abundant at 18.46% (12/65), followed by Anatum 12.31% (8/65), and Kedougou 9.23% (6/65). The pathogenic strains of Salmonella serovars Paratyphi B var. java and Typhimurium were present in equal amounts at 4.62% (3/65) in samples from all swine farms. This study revealed that significant reduction in E. coli and coliform levels in sludge from covered lagoon biogas systems on swine farms. The presence of Salmonella as well as Cd and Pb, in significant amount in dry manure, suggests that there is a high probability of environmental contamination if it is used for agricultural purposes. Thus, careful waste and manure disposal from swine farms and the regular monitoring of wastewater is strongly recommended to ensure the safety of humans, other animals and the environment. PMID:22066222

  12. Assessment of heavy metal and pesticide levels in soil and plant products from agricultural area of Belgrade, Serbia.

    PubMed

    Marković, Mirjana; Cupać, Svjetlana; Durović, Rada; Milinović, Jelena; Kljajić, Petar

    2010-02-01

    This study was aimed to assess the levels of selected heavy metals and pesticides in soil and plant products from an agricultural area of Belgrade, Serbia and to indicate possible sources and risks of contamination. Soil, vegetable, and fruit samples from the most important agricultural city areas were collected from July to November of 2006. Metal contents were determined by atomic absorption spectrometry, whereas pesticide residues were analyzed by gas chromatography-mass spectrometry after extraction performed using solid-phase microextraction technique. Soil characterization based on the determination of selected physical and chemical properties revealed heterogeneous soils belonging to different soil groups. The concentrations of lead, cadmium, copper, and zinc in soil samples do not exceed the limits established by national and international regulations. Residues of the herbicide atrazine were detected in three soil samples, with levels lower than the relevant limit. The presence of other herbicides, namely prometryn, chloridazon, acetochlor, flurochloridone, and napropamide, was registered in some soil samples as well. Among the insecticides investigated in the soil, fenitrothion and chlorpyrifos were the only ones detected. In most of the investigated vegetable samples from the Obrenovac area, Pb and Cd contents are higher in comparison with the maximum levels, indicating the emission of coal combustion products from local thermal power plants as a possible source of contamination. Residue levels of some herbicides and insecticides (metribuzin, trifluralin, pendimethalin, bifenthrin, chlorpyrifos, and cypermethrin) determined in tomato, pepper, potato, and onion samples from Slanci, Ovca, and Obrenovac areas are even several times higher than the maximum residue levels. Inappropriate use of these plant protection products is considered to be the most probable reason of contamination. Because increased levels of heavy metals and pesticide residues found in

  13. Assessment of heavy metal and pesticide levels in soil and plant products from agricultural area of Belgrade, Serbia.

    PubMed

    Marković, Mirjana; Cupać, Svjetlana; Durović, Rada; Milinović, Jelena; Kljajić, Petar

    2010-02-01

    This study was aimed to assess the levels of selected heavy metals and pesticides in soil and plant products from an agricultural area of Belgrade, Serbia and to indicate possible sources and risks of contamination. Soil, vegetable, and fruit samples from the most important agricultural city areas were collected from July to November of 2006. Metal contents were determined by atomic absorption spectrometry, whereas pesticide residues were analyzed by gas chromatography-mass spectrometry after extraction performed using solid-phase microextraction technique. Soil characterization based on the determination of selected physical and chemical properties revealed heterogeneous soils belonging to different soil groups. The concentrations of lead, cadmium, copper, and zinc in soil samples do not exceed the limits established by national and international regulations. Residues of the herbicide atrazine were detected in three soil samples, with levels lower than the relevant limit. The presence of other herbicides, namely prometryn, chloridazon, acetochlor, flurochloridone, and napropamide, was registered in some soil samples as well. Among the insecticides investigated in the soil, fenitrothion and chlorpyrifos were the only ones detected. In most of the investigated vegetable samples from the Obrenovac area, Pb and Cd contents are higher in comparison with the maximum levels, indicating the emission of coal combustion products from local thermal power plants as a possible source of contamination. Residue levels of some herbicides and insecticides (metribuzin, trifluralin, pendimethalin, bifenthrin, chlorpyrifos, and cypermethrin) determined in tomato, pepper, potato, and onion samples from Slanci, Ovca, and Obrenovac areas are even several times higher than the maximum residue levels. Inappropriate use of these plant protection products is considered to be the most probable reason of contamination. Because increased levels of heavy metals and pesticide residues found in

  14. Caesium-137 soil-to-plant transfer for representative agricultural crops of monocotyledonous and dicotyledonous plants in post-Chernobyl steppe landscape

    NASA Astrophysics Data System (ADS)

    Paramonova, Tatiana; Komissarova, Olga; Turykin, Leonid; Kuzmenkova, Natalia; Belyaev, Vladimir

    2016-04-01

    The accident at the Chernobyl nuclear power plant in 1986 had a large-scale action on more than 2.3 million hectares agricultural lands in Russia. The area of radioactively contaminated chernozems of semi-arid steppe zone with initial levels of Cs-137 185-555 kBq/m2 in Tula region received the name "Plavsky radioactive hotspot". Nowadays, after the first half-life period of Cs-137 arable chernozems of the region are still polluted with 3-6-fold excess above the radioactive safety standard (126-228 kBq/m2). Therefore, qualitative and quantitative characteristics of Cs-137 soil-to-plant transfer are currently a central problem for land use on the territory. The purpose of the present study was revealing the biological features of Cs-137 root uptake from contaminated arable chernozems by different agricultural crops. The components of a grass mixture growing at the central part of Plavsky radioactive hotspot with typical dicotyledonous and monocotyledonous plants - galega (Galega orientalis, Fabaceae family) and bromegrass (Bromus inermis, Gramineae family) respectively - were selected for the investigation, that was conducted during the period of harvesting in 2015. An important point was that the other factors influenced on Cs-137 soil-to-plant transfer - the level of soil pollution, soil properties, climatic conditions, vegetative phase, etc. - were equal. So, biological features of Cs-137 root uptake could be estimated the most credible manner. As a whole, general discrimination of Cs-137 root uptake was clearly shown for both agricultural crops. Whereas Cs-137 activity in rhizosphere 30-cm layer of arable chernozem was 371±74 Bq/kg (140±32 kBq/m2), Cs-137 activities in plant biomass were one-two orders of magnitude less, and transfer factor (TF) values (the ratio of the Cs-137 activities in vegetation and in soil) not exceeded 0.11. At the same time bioavailability of Cs-137 for bromegrass was significantly higher than for galega: TFs in total biomass of the

  15. A method of variable spacing for controlled plant growth systems in spaceflight and terrestrial agriculture applications

    NASA Technical Reports Server (NTRS)

    Knox, J.

    1986-01-01

    A higher plant growth system for Controlled Ecological Life Support System (CELSS) applications is described. The system permits independent movement of individual plants during growth. Enclosed within variable geometry growth chambers, the system allocates only the volume required by the growing plants. This variable spacing system maintains isolation between root and shoot environments, providing individual control for optimal growth. The advantages of the system for hydroponic and aeroponic growth chambers are discussed. Two applications are presented: (1) the growth of soybeans in a space station common module, and (2) in a terrestrial city greenhouse.

  16. Biogas production from Jatropha curcas press-cake

    SciTech Connect

    Staubmann, R.; Guebitz, G.M.; Lafferty, R.M.

    1997-12-31

    Seeds of the tropical plant Jatropha curcas (purge nut, physic nut) are used for the production of oil. Several methods for oil extraction have been developed. In all processes, about 50% of the weight of the seeds remain as a press cake containing mainly protein and carbohydrates. Investigations have shown that this residue contains toxic compounds and cannot be used as animal feed without further processing. Preliminary experiments have shown that the residue is a good substrate for biogas production. Biogas formation was studied using a semicontinous upflow anaerobic sludge blanket (UASB) reactor; a contact-process and an anaerobic filter each reactor having a total volume of 110 L. A maximum production rate of 3.5 m{sup 3} m{sup -3} d{sup -1} was obtained in the anaerobic filter with a loading rate of 13 kg COD m{sup -3} d{sup -1}. However, the UAS reactor and the contact-process were not suitable for using this substrate. When using an anaerobic filter with Jatropha curcas seed cake as a substrate, 76% of the COD was degraded and 1 kg degraded COD yielded 355 L of biogas containing 70% methane. 28 refs., 3 figs., 4 tabs.

  17. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production.

    PubMed

    Nges, Ivo Achu; Escobar, Federico; Fu, Xinmei; Björnsson, Lovisa

    2012-01-01

    Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.

  18. Evaluation of Shiraz wastewater treatment plant effluent quality for agricultural irrigation by Canadian Water Quality Index (CWQI)

    PubMed Central

    2013-01-01

    Background Using treated wastewater in agriculture irrigation could be a realistic solution for the shortage of fresh water in Iran, however, it is associated with environmental and health threats; therefore, effluent quality assessment is quite necessary before use. The present study aimed to evaluate the physicochemical and microbial quality of Shiraz wastewater treatment plant effluent for being used in agricultural irrigation. In this study, 20 physicochemical and 3 microbial parameters were measured during warm (April to September) and cold months (October to march). Using the measured parameters and the Canadian Water Quality Index, the quality of the effluent was determined in both warm and cold seasons and in all the seasons together. Results The calculated index for the physicochemical parameters in the effluent was equal (87) in warm and cold months and it was obtained as 85 for the seasons all together. When the microbial parameters were used in order to calculate the index, it declined to 67 in warm and cold seasons and 64 in all the seasons together. Also, it was found that three physicochemical parameters (TDS, EC, and NO3) and three microbial parameters (Fecal coliform, Helminthes egg, and Total coliform) had the most contribution to the reduction of the index value. Conclusions The results showed that the physicochemical quality of Shiraz Wastewater Treatment Plant Effluent was good for irrigation in the warm, cold, and total of the two kinds of seasons. However, by applying the microbial parameter, the index value declined dramatically and the quality of the effluent was marginal. PMID:23566673

  19. Toward policies for climate change mitigation: "Barriers for family-sized biogas in the District of Gihanga, Burundi"

    NASA Astrophysics Data System (ADS)

    Nkunzimana, Leonard; Huart, Michel; Zaccai, Edwin

    2014-05-01

    In the context of climate change mitigation and poverty reduction, it has been argued that biogas energy is relevant, as it is economically and ecologically useful. In the 1980s, biogas use played an important role in the development of Burundi. Many schools and public institutions had implemented such installations. Unfortunately, many biogas infrastructures were destroyed in the civil war of the 1990s. This study analyzes what could be done, after a decade of crisis, to develop that sector. It aims to assess how and to what extent the inhabitants of villages are willing to contribute to the development of biogas technologies. We interviewed 150 farmers in order to assess their perception on the ecologic and economic features of biogas plants if implemented in their villages. The influence of socioeconomic, cultural, and demographic factors of households was assessed in this study. Results suggest that the maximum amount that a household is willing to pay each month for biogas use at a family level is positive for large-size households, households that are aware of climate change, consumers of candles, households with high income, households with an educated head, women, and breeders. However, the willingness decreases for households with older head of families. The study concludes that awareness campaigns on biogas benefits and financial and nonfinancial incentives are necessary. This policy should probably and primarily be oriented toward some more receptive categories of the population. Women should be fully involved, considering their positive motivation toward sustaining this sector.

  20. Liquid membrane purification of biogas

    SciTech Connect

    Majumdar, S.; Guha, A.K.; Lee, Y.T.; Papadopoulos, T.; Khare, S. . Dept. of Chemistry and Chemical Engineering)

    1991-03-01

    Conventional gas purification technologies are highly energy intensive. They are not suitable for economic removal of CO{sub 2} from methane obtained in biogas due to the small scale of gas production. Membrane separation techniques on the other hand are ideally suited for low gas production rate applications due to their modular nature. Although liquid membranes possess a high species permeability and selectivity, they have not been used for industrial applications due to the problems of membrane stability, membrane flooding and poor operational flexibility, etc. A new hollow-fiber-contained liquid membrane (HFCLM) technique has been developed recently. This technique overcomes the shortcomings of the traditional immobilized liquid membrane technology. A new technique uses two sets of hydrophobic, microporous hollow fine fibers, packed tightly in a permeator shell. The inter-fiber space is filled with an aqueous liquid acting as the membrane. The feed gas mixture is separated by selective permeation of a species through the liquid from one fiber set to the other. The second fiber set carries a sweep stream, gas or liquid, or simply the permeated gas stream. The objectives (which were met) of the present investigation were as follows. To study the selective removal of CO{sub 2} from a model biogas mixture containing 40% CO{sub 2} (the rest being N{sub 2} or CH{sub 4}) using a HFCLM permeator under various operating modes that include sweep gas, sweep liquid, vacuum and conventional permeation; to develop a mathematical model for each mode of operation; to build a large-scale purification loop and large-scale permeators for model biogas separation and to show stable performance over a period of one month.

  1. Fate of hazardous elements in agricultural soils surrounding a coal power plant complex from Santa Catarina (Brazil).

    PubMed

    Rodriguez-Iruretagoiena, Azibar; Fdez-Ortiz de Vallejuelo, Silvia; Gredilla, Ainara; Ramos, Claudete G; Oliveira, Marcos L S; Arana, Gorka; de Diego, Alberto; Madariaga, Juan Manuel; Silva, Luis F O

    2015-03-01

    Hazard element contamination coming from coal power plants is something obvious, but when this contamination is accompanied by other contamination sources, such as, urban, coal mining and farming activities the study gets complicated. This is the case of an area comprised in the southern part of Santa Catarina state (Brazil) with the largest private power plant generator. After the elemental analysis of 41 agricultural soils collected in an extensive area around the thermoelectric (from 0 to 47 km), the high presence of As, Co, Cr, Cu, Fe, Mn, Mo, Pb, Sb, Sn, Tl, V and Zn was found in some specific areas around the power plant. Nevertheless, as the NWAC (Normalized-and-Weighted Average Concentration) confirmed, only soils from one site were classified as of very high concern due to the presence of potential toxic elements. This site was located within the sedimentation basin of the power plant. The spatial distribution obtained by kriging in combination with the analysis of the data by Principal Component Analysis (PCA) revealed three important hotspots in the area according to soil uses and geographic localization: the thermoelectric, its area of influence due to volatile compound deposition, and the area comprised between two urban areas. Farming practice turn out to be an important factor too for the quantity of hazard element stored in soils.

  2. Effects of fluoride emissions on enzyme activity in metabolism of agricultural plants

    SciTech Connect

    Moeri, P.B.

    1980-01-01

    The effects of fluoride on the activity of malatedehydrogenase (MDH) in rape seed and rye grass have been investigated. Fluoride, which has been absorbed from the air, seems to act differently from fluoride added to the soil. The action of airborne fluoride compounds resorbed by the plant on the activity of MDH significantly correlated with the distance from an aluminum plant, crop yield, and fluoride content. 5 references, 5 figures, 2 tables.

  3. Herbivore-induced plant volatiles to enhance biological control in agriculture.

    PubMed

    Peñaflor, M F G V; Bento, J M S

    2013-08-01

    Plants under herbivore attack synthetize defensive organic compounds that directly or indirectly affect herbivore performance and mediate other interactions with the community. The so-called herbivore-induced plant volatiles (HIPVs) consist of odors released by attacked plants that serve as important cues for parasitoids and predators to locate their host/prey. The understanding that has been gained on the ecological role and mechanisms of HIPV emission opens up paths for developing novel strategies integrated with biological control programs with the aim of enhancing the efficacy of natural enemies in suppressing pest populations in crops. Tactics using synthetic HIPVs or chemically/genetically manipulating plant defenses have been suggested in order to recruit natural enemies to plantations or help guiding them to their host more quickly, working as a "synergistic" agent of biological control. This review discusses strategies using HIPVs to enhance biological control that have been proposed in the literature and were categorized here as: (a) exogenous application of elicitors on plants, (b) use of plant varieties that emit attractive HIPVs to natural enemies, (c) release of synthetic HIPVs, and (d) genetic manipulation targeting genes that optimize HIPV emission. We discuss the feasibility, benefits, and downsides of each strategy by considering not only field studies but also comprehensive laboratory assays that present an applied approach for HIPVs or show the potential of employing them in the field.

  4. High throughput imaging and analysis for biological interpretation of agricultural plants and environmental interaction

    NASA Astrophysics Data System (ADS)

    Hong, Hyundae; Benac, Jasenka; Riggsbee, Daniel; Koutsky, Keith

    2014-03-01

    High throughput (HT) phenotyping of crops is essential to increase yield in environments deteriorated by climate change. The controlled environment of a greenhouse offers an ideal platform to study the genotype to phenotype linkages for crop screening. Advanced imaging technologies are used to study plants' responses to resource limitations such as water and nutrient deficiency. Advanced imaging technologies coupled with automation make HT phenotyping in the greenhouse not only feasible, but practical. Monsanto has a state of the art automated greenhouse (AGH) facility. Handling of the soil, pots water and nutrients are all completely automated. Images of the plants are acquired by multiple hyperspectral and broadband cameras. The hyperspectral cameras cover wavelengths from visible light through short wave infra-red (SWIR). Inhouse developed software analyzes the images to measure plant morphological and biochemical properties. We measure phenotypic metrics like plant area, height, and width as well as biomass. Hyperspectral imaging allows us to measure biochemcical metrics such as chlorophyll, anthocyanin, and foliar water content. The last 4 years of AGH operations on crops like corn, soybean, and cotton have demonstrated successful application of imaging and analysis technologies for high throughput plant phenotyping. Using HT phenotyping, scientists have been showing strong correlations to environmental conditions, such as water and nutrient deficits, as well as the ability to tease apart distinct differences in the genetic backgrounds of crops.

  5. Impact of biosolids and wastewater effluent application to agricultural land on corticosterone content in lettuce plants.

    PubMed

    Shargil, Dorit; Fine, Pinchas; Gerstl, Zev; Nitsan, Ido; Kurtzman, Daniel

    2016-01-15

    We studied corticosterone occurrence in lettuce plants grown on three biosolids amended soils under irrigation with either tap water or secondary wastewater effluent. Corticosterone was examined as it has possible implications for human health. It is a major glucocorticoid, and as such has an effect on regulation of metabolism, immune functions and stress response. The plants were grown in 220-L lysimeters packed with 3 soils which represent a wide range of physicochemical properties. Lettuce was grown in cycles (two in summer and two in winter) during 3 years, and in every spring season the sludges were re-applied. Corticosterone was quantified using ELISA and LCMS, and was found in the biosolids, tap water, wastewater effluent and lettuce plants. The respective ranges of concentrations were: 11-92 ng g(-1), 0.5-1.6 ng L(-1), 4.2-4.7 ng L(-1); and 1-900 ng g(-1) dry weight. A positive relationship was found between corticosterone concentrations in winter-grown lettuces and the plants fresh weight. The corticosterone content of the plants did not correspond with either the type of irrigation water or the biosolids type and rate of application or the soil properties.

  6. The local view on the role of plant protection in sustainable agriculture in India.

    PubMed

    Jayaraj, S; Rabindra, R J

    1993-01-01

    Indiscriminate use of chemical insecticides has affected humans and their environment and contributed significantly to reduced productivity of crops. With the increasing realization of the importance of sustainable agriculture, the concept of integrated pest management (IPM) for sustainable agriculture has emerged. In the recent past entomologists and the farmers have identified methods of pest management that are ecologically non-disruptive and stable. Concurrently indigenous crop varieties with resistance to pests and diseases have been developed and cultivated. According to the principle of 'organic farming', several non-chemical methods have become popular among the local farmers. Simple cultural practices like increasing the seed rate to compensate for pest damage, adjusting the time of sowing to avoid pest damage, mulching, intercropping, trap cropping and crop rotation have been found to provide adequate protection from pest damage with no additional cost and without harmful effects on the environment. The age-old method of catch and kill is still being practised by farmers, particularly for cotton. Mechanical methods like the bow trap for control of rats and provision of tin sheets around coconut tree trunks to prevent rats damaging the nuts are still being adopted. The use of botanical materials such as the neem products for pest management has been well received almost all over the world. Biological control using the natural enemies of insect pests has become very popular among the farmers in the 1980s. The farmers who clamoured for chemical pesticides in the 1960s and 1970s are now disillusioned with these poisonous eco-destabilizing substances; they want sensible, biologically rational methods of IPM. Pest surveillance and monitoring play an important role in IPM for sustainable agriculture.

  7. Passive solar technology aids biogas digesters

    SciTech Connect

    Not Available

    1988-07-01

    Farming communities throughout China rely on biogas generators as a primary source of light and heat, as well as using the sludge as a nitrogen-rich fertilizer. Now researchers at Beijing's Solar Energy Laboratory have improved efficiency by building a rectangular tank out of concrete slabs, with one slanted surface painted black and covered with glass. According to a report in New Scientist, this passive solar panel generates heat in the same way as a greenhouse, raising inside temperatures by 10{degree}C and increasing biogas production by 50%. Another advantage of the new tanks is easy access, since the tank's lid sites in wells of water which form a seal against oxygen. (Old biogas tanks were made of soil, sand and a little concrete, prone to developing severe cracks which would allow oxygen to enter thus slowing down anaerobic reaction). Explains Debora MacKenzie of New Scientist: with the new tank, the farmer can simply remove the lid and attack the contents with a spade. This means that the mixture can comprise more than 10% solids. Greater density allows smaller tanks. Rural families need one cubic meter of biogas daily for light and heat; instead of the former 8 cm biogas generator, the new tanks need only be 1 cm. The prediction is that the smaller size could make biogas more popular in China's crowded towns. The biogas department is headed by He Shao Qi, who is also investigating ways to reduce production costs for the tanks.

  8. Biogas, compost and fuel cells

    SciTech Connect

    Wichert, B.; Wittrup, L.; Robel, R.

    1994-08-01

    A pilot project now under development in Folsom, California, incorporates an anaerobic digestion/aerobic composting process that could eventually supply enough biogas to a fuel cell. The Sacramento Municipal Utility District (SMUD) has two fuel cells in operation and is participating in the research project. Recently, the California Prison Industry Authority (PIA) began operating a processing facility at the Folsom prison, designed for 100 tons/day of mixed waste from the City of Folsom. The 35,000 square foot Correctional Resource Recovery Facility (CRRF) uses minimum security inmates from Folsom`s Return to Custody Facility to manually separate recyclables and compostable materials from the waste stream. The PIA will be using a new technology, high solids anaerobic digestion, to compost the organic fraction (representing approximately 60 to 70 percent of the waste stream). Construction began in June on a 40-foot wide by 120-foot long and 22-foot deep anaerobic digester. Once the vessel is operational in 1995, the composting process and the gradual breakdown of organic material will produce biogas, which SMUD hopes to use to power an adjacent two megawatt fuel cell. The electricity generated will serve SMUD customers, including the waste facility and nearby correctional institutions. 1 fig.

  9. Trace element biogeochemistry in the soil-water-plant system of a temperate agricultural soil amended with different biochars.

    PubMed

    Kloss, Stefanie; Zehetner, Franz; Buecker, Jannis; Oburger, Eva; Wenzel, Walter W; Enders, Akio; Lehmann, Johannes; Soja, Gerhard

    2015-03-01

    Various biochar (BC) types have been investigated as soil amendment; however, information on their effects on trace element (TE) biogeochemistry in the soil-water-plant system is still scarce. In the present study, we determined aqua-regia (AR) and water-extractable TEs of four BC types (woodchips (WC), wheat straw (WS), vineyard pruning (VP), pyrolyzed at 525 °C, of which VP was also pyrolyzed at 400 °C) and studied their effects on TE concentrations in leachates and mustard (Sinapis alba L.) tissue in a greenhouse pot experiment. We used an acidic, sandy agricultural soil and a BC application rate of 3% (w/w). Our results show that contents and extractability of TEs in the BCs and effectuated changes of TE biogeochemistry in the soil-water-plant system strongly varied among the different BC types. High AR-digestable Cu was found in VP and high B contents in WC. WS had the highest impact on TEs in leachates showing increased concentrations of As, Cd, Mo, and Se, whereas WC application resulted in enhanced leaching of B. All BC types increased Mo and decreased Cu concentrations in the plant tissue; however, they showed diverging effects on Cu in the leachates with decreased concentrations for WC and WS, but increased concentrations for both VPs. Our results demonstrate that BCs may release TEs into the soil-water-plant system. A BC-induced liming effect in acidic soils may lead to decreased plant uptake of cationic TEs, including Pb and Cd, but may enhance the mobility of anionic TEs like Mo and As. We also found that BCs with high salt contents (e.g., straw-based BCs) may lead to increased mobility of both anionic and cationic TEs in the short term. PMID:25315931

  10. Trace element biogeochemistry in the soil-water-plant system of a temperate agricultural soil amended with different biochars.

    PubMed

    Kloss, Stefanie; Zehetner, Franz; Buecker, Jannis; Oburger, Eva; Wenzel, Walter W; Enders, Akio; Lehmann, Johannes; Soja, Gerhard

    2015-03-01

    Various biochar (BC) types have been investigated as soil amendment; however, information on their effects on trace element (TE) biogeochemistry in the soil-water-plant system is still scarce. In the present study, we determined aqua-regia (AR) and water-extractable TEs of four BC types (woodchips (WC), wheat straw (WS), vineyard pruning (VP), pyrolyzed at 525 °C, of which VP was also pyrolyzed at 400 °C) and studied their effects on TE concentrations in leachates and mustard (Sinapis alba L.) tissue in a greenhouse pot experiment. We used an acidic, sandy agricultural soil and a BC application rate of 3% (w/w). Our results show that contents and extractability of TEs in the BCs and effectuated changes of TE biogeochemistry in the soil-water-plant system strongly varied among the different BC types. High AR-digestable Cu was found in VP and high B contents in WC. WS had the highest impact on TEs in leachates showing increased concentrations of As, Cd, Mo, and Se, whereas WC application resulted in enhanced leaching of B. All BC types increased Mo and decreased Cu concentrations in the plant tissue; however, they showed diverging effects on Cu in the leachates with decreased concentrations for WC and WS, but increased concentrations for both VPs. Our results demonstrate that BCs may release TEs into the soil-water-plant system. A BC-induced liming effect in acidic soils may lead to decreased plant uptake of cationic TEs, including Pb and Cd, but may enhance the mobility of anionic TEs like Mo and As. We also found that BCs with high salt contents (e.g., straw-based BCs) may lead to increased mobility of both anionic and cationic TEs in the short term.

  11. Integrated validation of modeled plant growth, nitrogen- and water-fluxes in the agricultural used Rur catchment in Western Germany

    NASA Astrophysics Data System (ADS)

    Korres, Wolfgang; Klar, Christian; Reichenau, Tim; Fiener, Peter; Schneider, Karl

    2010-05-01

    Numerous studies have shown that agricultural management is one of the key drivers for spatio-temporal patterns of soil moisture in agricultural landscapes. The process-based ecohydrological model components of the integrated decision support system DANUBIA are used to identify the important processes and feedbacks determining soil-moisture patterns in agroecosystems. Interactions between plant growth, soil hydrology and soil nitrogen transformation processes are modeled by using a dynamically coupled modeling approach. Integrative validation of all three model components serves as a basis for modeling analysis of spatial soil moisture patterns. DANUBIA is parameterized and validated for the Rur catchment located in Western Germany. For integrative validation, an extensive three year dataset (2007 - 2009) of soil moisture- (TDR, FDR), plant- (LAI, organ specific biomass and N) and soil- (texture, N, C) measurements was acquired. Plant measurements on an arable land test site were carried out biweekly. Measurements were conducted for winter wheat, maize and sugar beet during the growing season. Soil nitrogen and carbon measurements were taken before, during and after the growing season. Field averages of plant and soil parameters are derived from three individual measuring locations within each test field. Soil moisture was measured with three FDR soil moisture stations in 10 and 30 cm depth. In a grassland test site biomass measurements were carried out biweekly in 2009. Soil moisture was monitored at different locations in up to 60 cm soil depth using FDR- and TDR-stations. Meteorological data was measured with an eddy flux (arable land) and energy flux station (grassland test site). First results of point validation are in very good agreement with field measurements. Model results for winter wheat in 2007/2008 match field measurements well for both, the overall biomass (R2= 0.97, rel. RMSE = 16.8%, Nash Sutcliff - model efficiency ME = 0.96) as well as for

  12. Integrating Phytoextraction and Biofortification: Fungal Accumulation of Selenium in Plant Materials from Phytoremediation of Agricultural Drainage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phytomanagement of Se-polluted soil and water is one strategy that may be environmentally sustainable and cost-effective for soils and waters enriched with natural-occurring Se. Several plant species, including Indian mustard (Brassica juncea), pickleweed (Salicornia bigelovii), and other salt/S...

  13. An Analysis of Occupational Titles and Competencies Needed in Agricultural Food Products Processing Plants.

    ERIC Educational Resources Information Center

    Smeltz, LeRoy C.

    To identify, rate, and cluster groups of competencies and occupational titles at entry and advance levels for occupations in five food products commodity areas, data were collected by interviews with personnel managers in 25 Pennsylvania food processing plants. Some findings were: (1) There were meaningful competency factor and occupational title…

  14. Pollinating flies (Diptera): A major contribution to plant diversity and agricultural production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diptera are one of the three largest and most diverse animal groups of the world. As an often neglected, but important group of pollinators, they play a significant role in agrobiodiversity and biodiversity of plants everywhere. Flies are present in almost all habitats and biomes and for many food p...

  15. A comparison of the herbicide tolerances of rare and common plants in an agricultural landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Declining plant biodiversity in agroecosystems has often been attributed to escalating use of chemical herbicides, but other changes in farming practice including the clearing of semi-natural habitat fragments confound the influence of herbicides. In this paper, we introduce a new approach to evalua...

  16. Pivoting from Arabidopsis to wheat to understand how agricultural plants integrate responses to biotic stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we argue for a research initiative on gene-for-gene (g-f-g) interactions between wheat and its parasites. One aim is to begin a conversation between the disparate communities of plant pathology and entomology. Another is to understand how responses to biotic stress are integrated in an import...

  17. Introduction to the USDA-Agricultural Research Service Poisonous Plant Research Laboratory Special Rangelands Issue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA-ARS Poisonous Plant Research Labortory (PPRL) in Logan, UT will sponsor an edition of the magazine Rangelands. This paper provides a brief history and overview of the PPRL, mission statement, research objectives by CRIS, and the disciplines involved in the research....

  18. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power

    SciTech Connect

    2009-11-01

    TDA Research Inc., in collaboration with FuelCell Energy, will develop a new, high-capacity sorbent to remove sulfur from anaerobic digester gas. This technology will enable the production of a nearly sulfur-free biogas to replace natural gas in fuel cell power plants while reducing greenhouse gas emissions from fossil fuels.

  19. Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents.

    PubMed

    Singhal, V; Rai, J P N

    2003-02-01

    The paper reports on the biogas production from water hyacinth (Eichhornia crassipes) and channel grass (Vallisneria spiralis) employed separately for phytoremediation of lignin and metal-rich pulp and paper mill and highly acidic distillery effluents. These plants eventually grow well in diluted effluent up to 40% (i.e., 2.5-times dilution with deionized water) and often take up metals and toxic materials from wastewater for their metabolic use. Slurry of the two plants used for phytoremediation produced significantly more biogas than that produced by the plants grown in deionized water; the effect being more marked with plants used for phytoremediation of 20% pulp and paper mill effluent. Biogas production from channel grass was relatively greater and quicker (maximum in 6-9 days) than that from water hyacinth (in 9-12 days). Such variation in biogas production by the two macrophytes has been correlated with the changes in C, N and C/N ratio of their slurry brought by phytoremediation. PMID:12688463

  20. Choosing co-substrates to supplement biogas production from animal slurry--a life cycle assessment of the environmental consequences.

    PubMed

    Croxatto Vega, Giovanna Catalina; ten Hoeve, Marieke; Birkved, Morten; Sommer, Sven G; Bruun, Sander

    2014-11-01

    Biogas production from animal slurry can provide substantial contributions to reach renewable energy targets, yet due to the low methane potential of slurry, biogas plants depend on the addition of co-substrates to make operations profitable. The environmental performance of three underexploited co-substrates, straw, organic household waste and the solid fraction of separated slurry, were assessed against slurry management without biogas production, using LCA methodology. The analysis showed straw, which would have been left on arable fields, to be an environmentally superior co-substrate. Due to its low nutrient content and high methane potential, straw yields the lowest impacts for eutrophication and the highest climate change and fossil depletion savings. Co-substrates diverted from incineration to biogas production had fewer environmental benefits, due to the loss of energy production, which is then produced from conventional fossil fuels. The scenarios can often provide benefits for one impact category while causing impacts in another.

  1. Net energy production and emissions mitigation of domestic wastewater treatment system: a comparison of different biogas-sludge use alternatives.

    PubMed

    Chen, Shaoqing; Chen, Bin

    2013-09-01

    Wastewater treatment systems are increasingly designed for the recovery of valuable chemicals and energy in addition to waste stream disposal. Herein, the life-cycle energy production and emissions mitigation of a typical domestic wastewater treatment system were assessed, in which different combinations of biogas use and sludge processing lines for industrial or household applications were considered. The results suggested that the reuse of biogas and sludge was so important in the system's overall energy balance and environmental performance that it may offset the cost in the plant's installation and operation. Combined heat and power and household utilization were two prior options for net energy production, provided an ideal power conversion efficiency and biogas production. The joint application of household biogas use and sludge nutrient processing achieved both high net energy production and significant environmental remediation across all impact categories, representing the optimal tradeoff for domestic wastewater treatment.

  2. Net energy production and emissions mitigation of domestic wastewater treatment system: a comparison of different biogas-sludge use alternatives.

    PubMed

    Chen, Shaoqing; Chen, Bin

    2013-09-01

    Wastewater treatment systems are increasingly designed for the recovery of valuable chemicals and energy in addition to waste stream disposal. Herein, the life-cycle energy production and emissions mitigation of a typical domestic wastewater treatment system were assessed, in which different combinations of biogas use and sludge processing lines for industrial or household applications were considered. The results suggested that the reuse of biogas and sludge was so important in the system's overall energy balance and environmental performance that it may offset the cost in the plant's installation and operation. Combined heat and power and household utilization were two prior options for net energy production, provided an ideal power conversion efficiency and biogas production. The joint application of household biogas use and sludge nutrient processing achieved both high net energy production and significant environmental remediation across all impact categories, representing the optimal tradeoff for domestic wastewater treatment. PMID:23880131

  3. Choosing co-substrates to supplement biogas production from animal slurry--a life cycle assessment of the environmental consequences.

    PubMed

    Croxatto Vega, Giovanna Catalina; ten Hoeve, Marieke; Birkved, Morten; Sommer, Sven G; Bruun, Sander

    2014-11-01

    Biogas production from animal slurry can provide substantial contributions to reach renewable energy targets, yet due to the low methane potential of slurry, biogas plants depend on the addition of co-substrates to make operations profitable. The environmental performance of three underexploited co-substrates, straw, organic household waste and the solid fraction of separated slurry, were assessed against slurry management without biogas production, using LCA methodology. The analysis showed straw, which would have been left on arable fields, to be an environmentally superior co-substrate. Due to its low nutrient content and high methane potential, straw yields the lowest impacts for eutrophication and the highest climate change and fossil depletion savings. Co-substrates diverted from incineration to biogas production had fewer environmental benefits, due to the loss of energy production, which is then produced from conventional fossil fuels. The scenarios can often provide benefits for one impact category while causing impacts in another. PMID:25226057

  4. Microbiological removal of hydrogen sulfide from biogas by means of a separate biofilter system: experience with technical operation.

    PubMed

    Schieder, D; Quicker, P; Schneider, R; Winter, H; Prechtl, S; Faulstich, M

    2003-01-01

    The "BIO-Sulfex" biofilter of ATZ-EVUS removes hydrogen sulfide from biogas in a biological way. Hydrogen sulfide causes massive problems during power generation from biogas in a power plant, e.g. corrosion of engines and heat exchangers, and thus causes frequent and therefore expensive engine oil changes. The BIO-Sulfex module is placed between the digester and the power-plant and warrants a cost-effective, reliable and fully biological desulfurization. In the cleaned gas concentrations of less than 100 ppm can be achieved. Power-plant manufacturers usually demand less than 500 or less than 200 ppm. At present, several plants with biogas flow rates between 20 and 350 m3/h are in operation.

  5. [Possibilities for improved production of meat and milk in state agricultural plants in Egypt].

    PubMed

    1975-01-01

    One of the possible ways of overcoming the deficit of animal protein in human nutrition is that of increasing the livestock and increasing the performance of the animals. Egypt wants to follow this way, especially utilizing the possibilities offered by the newly reclaimed land. For this purpose efficient herds must be developed in the newly reclaimed areas in large-scale production units and under optimum farming conditions. This includes above all a continuous supply of feedstuff by means of intensive field forage cultivation. Starting in August 1973, the test station for agricultural machinery of the GDR VVB Land-und Nahrungsgütertechnik at El Ghasair has investigated the problems connected with a continuous daily supply of fresh feed-stuff to large livestock (cattle) and with preservation methods suited to this aim. First results are reported of applying an advanced technology - and partly GDR farm machinery - in cultivating and harvesting green fodder and hay, using Alexandrian clover and lucern.

  6. Perspectives and challenges in the future use of plant nutrients in tilled and mixed agricultural systems.

    PubMed

    Bergström, Lars; Goulding, Keith W T

    2005-06-01

    Producing an adequate quantity of healthy food without polluting the environment is a serious challenge for future agriculture around the world. The Food 21 research program in Sweden has researched all aspects--economic, environmental, and social--of sustainable farming systems. This paper presents some of the research from that and other relevant international research programs that have focused on better nutrient-use efficiency, especially for nitrogen and phosphorus. It shows that a range of sustainable solutions to nutrient-use efficiency exists, some of which are complex but some very simple. Government policies, including subsidies; research and technology; and public acceptance of farming practices all combine to create these solutions. Participatory approaches to knowledge transfer are needed, in which scientists, policy makers, farmers, advisers, and consumers exchange information and together build sustainable farming systems.

  7. Biogas and CH(4) productivity by co-digesting swine manure with three crop residues as an external carbon source.

    PubMed

    Wu, Xiao; Yao, Wanying; Zhu, Jun; Miller, Curtis

    2010-06-01

    Co-digesting swine manure with three agricultural residues, i.e., corn stalks, oat straw, and wheat straw, to enhance biogas productivity was investigated in this study. A 3x3 experimental design with duplicates was adopted (3 crop residuesx3 carbon/nitrogen ratios) to examine the improvement of batch digestion in terms of biogas volume produced, CH(4) content in the biogas, and net CH(4) volume. The crop residues were first cut into small sections and then ground into fine particles smaller than 40 mesh size (0.422mm) before being added to digesters. All the digesters were run simultaneously under controlled temperature at 37+/-0.1 degrees C. The length of experiment was 25days. The results showed that all crop residues significantly increased biogas production and net CH(4) volume at all C/N ratios, among which corn stalks performed the best with increase in daily maximum biogas volume by 11.4-fold as compared to the control, followed by oat straw (8.45-fold) and wheat straw (6.12-fold) at the C/N ratio of 20/1, which was found to be the optimal C/N ratio for co-digestion in the present study. In addition, corn stalks achieved the highest CH(4) content in the biogas ( approximately 68%), which was about 11% higher than that of oat straw ( approximately 57%), whereas wheat straw and the control both had produced biogas with approximately 47% CH(4) content. Wheat straw demonstrated a lower biogas productivity than corn stalks and oat straw even it had a higher carbon content (46%) than the latter two residues (39%).

  8. Influence of Merosesquiterpenoids from Marine Sponges on Seedling Root Growth of Agricultural Plants.

    PubMed

    Chaikina, Elena L; Utkina, Natalia K; Anisimov, Mikhail M

    2016-01-01

    The impact of the merosesquiterpenoids avarol (1), avarone (2), 18-methylaminoavarone (3), melemeleone A (4), isospongiaquinone (5), ilimaquinone (6), and smenoquinone (7), isolated from marine sponges of the Dictyoceratida order, was studied on the root growth of seedlings of buckwheat (Fagopyrumesculentum Moench), wheat (Triticumaestivum L.), soy (Glycine max (L.) Merr.), and barley (Hordeumvulgare L.). Compounds 2and 6 were effective for the root growth of wheat seedlings, compound 3 stimulated the root growth of seedlings of buckwheat and soy, compound 4 affected the roots of barley seedlings, and compound 5 stimulated the root growth of seedlings of buckwheat and barley. Compounds 1 and 7 showed no activity on the root growth of the seedlings of any of the studied plants. The stimulatory effect depends on the chemical structure of the compounds and the type of crop plant.

  9. Influence of Merosesquiterpenoids from Marine Sponges on Seedling Root Growth of Agricultural Plants.

    PubMed

    Chaikina, Elena L; Utkina, Natalia K; Anisimov, Mikhail M

    2016-01-01

    The impact of the merosesquiterpenoids avarol (1), avarone (2), 18-methylaminoavarone (3), melemeleone A (4), isospongiaquinone (5), ilimaquinone (6), and smenoquinone (7), isolated from marine sponges of the Dictyoceratida order, was studied on the root growth of seedlings of buckwheat (Fagopyrumesculentum Moench), wheat (Triticumaestivum L.), soy (Glycine max (L.) Merr.), and barley (Hordeumvulgare L.). Compounds 2and 6 were effective for the root growth of wheat seedlings, compound 3 stimulated the root growth of seedlings of buckwheat and soy, compound 4 affected the roots of barley seedlings, and compound 5 stimulated the root growth of seedlings of buckwheat and barley. Compounds 1 and 7 showed no activity on the root growth of the seedlings of any of the studied plants. The stimulatory effect depends on the chemical structure of the compounds and the type of crop plant. PMID:26996006

  10. Biogas Production from Sugarcane Waste: Assessment on Kinetic Challenges for Process Designing.

    PubMed

    Janke, Leandro; Leite, Athaydes; Nikolausz, Marcell; Schmidt, Thomas; Liebetrau, Jan; Nelles, Michael; Stinner, Walter

    2015-01-01

    Biogas production from sugarcane waste has large potential for energy generation, however, to enable the optimization of the anaerobic digestion (AD) process each substrate characteristic should be carefully evaluated. In this study, the kinetic challenges for biogas production from different types of sugarcane waste were assessed. Samples of vinasse, filter cake, bagasse, and straw were analyzed in terms of total and volatile solids, chemical oxygen demand, macronutrients, trace elements, and nutritional value. Biochemical methane potential assays were performed to evaluate the energy potential of the substrates according to different types of sugarcane plants. Methane yields varied considerably (5-181 Nm³·tonFM(-1)), mainly due to the different substrate characteristics and sugar and/or ethanol production processes. Therefore, for the optimization of AD on a large-scale, continuous stirred-tank reactor with long hydraulic retention times (>35 days) should be used for biogas production from bagasse and straw, coupled with pre-treatment process to enhance the degradation of the fibrous carbohydrates. Biomass immobilization systems are recommended in case vinasse is used as substrate, due to its low solid content, while filter cake could complement the biogas production from vinasse during the sugarcane offseason, providing a higher utilization of the biogas system during the entire year. PMID:26404248

  11. Biogas Production from Sugarcane Waste: Assessment on Kinetic Challenges for Process Designing.

    PubMed

    Janke, Leandro; Leite, Athaydes; Nikolausz, Marcell; Schmidt, Thomas; Liebetrau, Jan; Nelles, Michael; Stinner, Walter

    2015-08-31

    Biogas production from sugarcane waste has large potential for energy generation, however, to enable the optimization of the anaerobic digestion (AD) process each substrate characteristic should be carefully evaluated. In this study, the kinetic challenges for biogas production from different types of sugarcane waste were assessed. Samples of vinasse, filter cake, bagasse, and straw were analyzed in terms of total and volatile solids, chemical oxygen demand, macronutrients, trace elements, and nutritional value. Biochemical methane potential assays were performed to evaluate the energy potential of the substrates according to different types of sugarcane plants. Methane yields varied considerably (5-181 Nm³·tonFM(-1)), mainly due to the different substrate characteristics and sugar and/or ethanol production processes. Therefore, for the optimization of AD on a large-scale, continuous stirred-tank reactor with long hydraulic retention times (>35 days) should be used for biogas production from bagasse and straw, coupled with pre-treatment process to enhance the degradation of the fibrous carbohydrates. Biomass immobilization systems are recommended in case vinasse is used as substrate, due to its low solid content, while filter cake could complement the biogas production from vinasse during the sugarcane offseason, providing a higher utilization of the biogas system during the entire year.

  12. Biogas Production from Sugarcane Waste: Assessment on Kinetic Challenges for Process Designing

    PubMed Central

    Janke, Leandro; Leite, Athaydes; Nikolausz, Marcell; Schmidt, Thomas; Liebetrau, Jan; Nelles, Michael; Stinner, Walter

    2015-01-01

    Biogas production from sugarcane waste has large potential for energy generation, however, to enable the optimization of the anaerobic digestion (AD) process each substrate characteristic should be carefully evaluated. In this study, the kinetic challenges for biogas production from different types of sugarcane waste were assessed. Samples of vinasse, filter cake, bagasse, and straw were analyzed in terms of total and volatile solids, chemical oxygen demand, macronutrients, trace elements, and nutritional value. Biochemical methane potential assays were performed to evaluate the energy potential of the substrates according to different types of sugarcane plants. Methane yields varied considerably (5–181 Nm3·tonFM−1), mainly due to the different substrate characteristics and sugar and/or ethanol production processes. Therefore, for the optimization of AD on a large-scale, continuous stirred-tank reactor with long hydraulic retention times (>35 days) should be used for biogas production from bagasse and straw, coupled with pre-treatment process to enhance the degradation of the fibrous carbohydrates. Biomass immobilization systems are recommended in case vinasse is used as substrate, due to its low solid content, while filter cake could complement the biogas production from vinasse during the sugarcane offseason, providing a higher utilization of the biogas system during the entire year. PMID:26404248

  13. Molecular characterization of nitrogen-fixing bacteria isolated from brazilian agricultural plants at São Paulo state

    PubMed Central

    Reinhardt, Érica. L.; Ramos, Patrícia L.; Manfio, Gilson P.; Barbosa, Heloiza R.; Pavan, Crodowaldo; Moreira-Filho, Carlos A.

    2008-01-01

    Fourteen strains of nitrogen-fixing bacteria were isolated from different agricultural plant species, including cassava, maize and sugarcane, using nitrogen-deprived selective isolation conditions. Ability to fix nitrogen was verified by the acetylene reduction assay. All potentially nitrogen-fixing strains tested showed positive hybridization signals with a nifH probe derived from Azospirillum brasilense. The strains were characterized by RAPD, ARDRA and 16S rDNA sequence analysis. RAPD analyses revealed 8 unique genotypes, the remaining 6 strains clustered into 3 RAPD groups, suggesting a clonal origin. ARDRA and 16S rDNA sequence analyses allowed the assignment of 13 strains to known groups of nitrogen-fixing bacteria, including organisms from the genera Azospirillum, Herbaspirillum, Pseudomonas and Enterobacteriaceae. Two strains were classified as Stenotrophomonas ssp. Molecular identification results from 16S rDNA analyses were also corroborated by morphological and biochemical data. PMID:24031239

  14. Toxicologic studies associated with the agricultural use of municipal sewage sludge and health effects among sewage treatment plant workers.

    PubMed

    Babish, J G; Stoewsand, G S; Kranz, J M; Boyd, J N; Ahrens, V D; Lisk, D J

    1984-09-01

    The proposed use of municipal sewage sludges as soil amendments on agricultural land involves potential health risks. Sludges may contain toxic heavy metals, synthetic organics, and pathogens. Studies of animals inhabiting sludge-amended soils, or foraging on crops grown on such soils, have shown an increased deposition of cadmium and polychlorinated biphenyls in animal tissues, hepatic microsomal enzyme induction, altered blood profiles, appearance of mutagens in blood and excreta, and lowered feed intake, feed efficiency, and milk production. Epidemiologic evidence of possible adverse health effects among sewage plant workers exposed to aerosolized pathogens or synthetic organic vapors during wastewater treatment or land spreading of sludge is still inconclusive. Other possible deleterious environmental effects include pollution of groundwater and toxicity to birds consuming worms or insects inhabiting sludge-treated soils.

  15. Foam suppression in overloaded manure-based biogas reactors using antifoaming agents.

    PubMed

    Kougias, P G; Boe, K; Tsapekos, P; Angelidaki, I

    2014-02-01

    Foam control is an imperative need in biogas plants, as foaming is a major operational problem. In the present study, the effect of oils (rapeseed oil, oleic acid, and octanoic acid) and tributylphosphate on foam reduction and process performance in batch and continuous manure-based biogas reactors was investigated. The compounds were tested in dosages of 0.05%, 0.1% and 0.5% v/vfeed. The results showed that rapeseed oil was most efficient to suppress foam at the dosage of 0.05% and 0.1% v/vfeed, while octanoic acid was most efficient to suppress foam at dosage of 0.5% v/vfeed. Moreover, the addition of rapeseed oil also increased methane yield. In contrast, tributylphosphate, which was very efficient antifoam, was found to be inhibitory to the biogas process.

  16. Development of an in-line process viscometer for the full-scale biogas process.

    PubMed

    Mönch-Tegeder, Matthias; Lemmer, Andreas; Hinrichs, Jörg; Oechsner, Hans

    2015-02-01

    An in-line viscometer was developed to determine the rheological properties of biogas slurries at a full-scale biogas plant. This type of viscometer allows the investigation of flow characteristics without additional pretreatment and has many advantageous aspects in contrast to the rotational viscometer. Various effects were studied: alterations in the feedstock structure, increasing total solid (TS) of the slurry and the disintegration of the feedstock on the rheological properties. The results indicate that the Power-Law model is sufficient for the description of the flow curve of biogas slurries. Furthermore, the use of more fibrous materials increases in viscosity. The increase in TS of 10.1-15.1% resulted in a sharp increase of the viscosity. The mechanical disintegration of the feedstock positively influenced the rheological properties, but the effects were more apparent at higher TS.

  17. Harvesting biogas from wastewater sludge and food waste

    NASA Astrophysics Data System (ADS)

    Chua, K. H.; Cheah, W. L.; Tan, C. F.; Leong, Y. P.

    2013-06-01

    Wastewater sludge and food waste are good source of biogas. Anaerobic treatment of slude and food waste able to produce biogas which is a potential renewable energy source. This study looks into the potential biogas generation and the effects of temperature on biogas generation. A lab scale reactor was used to simulate the biogas generation. The results show that wastewater sludge able to produced upto 44.82 ml biogas/kg of sludge. When mixed with food waste at a ratio of 30:70 (food waste), the biogas generated were 219.07 ml/kg of waste. Anaerobic of food waste alone produced biogas amount to 59.75 ml/kg of food waste. Anaerobic treatment also reduces the volume of waste. The effect of temperature shows that higher temperature produces more biogas than lower temperature.

  18. Energy integrated dairy farm system in Georgia: Technical manual, Mathis/P and M Dairy Farm, Social Circle, Georgia. [Cogeneration using biogas; heat recovery

    SciTech Connect

    Walsh, J.L. Jr.; Ross, C.C.; Lamade, R.M.

    1986-09-01

    This manual describes a project sponsored to optimize energy generation and utilization in the agricultural or food processing industry. The particular project involves the Mathis/P and M Dairy Farm located in Social Circle, Georgia (about 60 miles east of Atlanta). The farm is designed for a 550 milking cow herd and produces certified raw milk for sale to a processing plant located in Atlanta. The project converted the Mathis/P and and M Dairy into an energy integrated dairy farm system (EIDFS) in which the interaction of the subsystems and components are modified such that the energy resources of the farm are optimized. This manual is a description of the system, subsystems and components composing the Mathis EIDFS and is primarily intended for farmers, extension agents, and equipment manufacturers who might be involved in future EIDFS projects. Cogeneration using biogas from manures and heat recovery from the refrigeration machinery were among the options chosen.

  19. Impact of acid effluent from Kawah Ijen crater lake on irrigated agricultural soils: Soil chemical processes and plant uptake

    NASA Astrophysics Data System (ADS)

    van Rotterdam-Los, A. M. D.; Heikens, A.; Vriend, S. P.; van Bergen, M. J.; van Gaans, P. F. M.

    2008-12-01

    Volcanogenic contamination of irrigation water, caused by effluent from the hyperacid Ijen crater lake, has severely affected the properties of agricultural soils in East Java, Indonesia. From a comparison of acidified topsoil with subsoil and with top- and subsoil in a reference area, we identified processes responsible for changes in soil and soil solution chemistry induced by acid irrigation water, with emphasis on the nutrients Ca, Mg, Fe, and Mn, and on Al, which may become phytotoxic under acid conditions in soils. Compositional data for bulk soil composition and selective extractions with 1 M KCl and 0.2 M acid ammonium oxalate are used in a mass balance approach to specify element fluxes, including uptake by rice plants. The results show that input via irrigation water has produced an increase in the total aluminum content in the affected topsoil, which is of the same order of magnitude as the increase in labile Al. High bioavailability of Al, as reflected by concentrations in KCl extracts, is consistent with elevated concentrations observed in rice plants. In contrast, and despite the high input via irrigation water, Ca and Mg concentrations have decreased in all measured soil fractions through dissolution of amorphous phases and minerals, and through competition of Al for adsorption sites on the exchange complex and plant roots. Strong leaching is also evident for Fe and especially Mn. In terms of the overall mass balance of the topsoil, plant uptake of Al, Ca, Fe, Mg and Mn is negligible. If the use of acid irrigation would be stopped and the soil pH were to increase to values above 4.5, the observed phytotoxicity of Al will be halted. However, crops may then become fully dependent on the input from irrigation water or fertilizer for essential elements, due to the previous removal from the topsoil through leaching.

  20. Comparative analysis of environmental impacts of maize-biogas and photovoltaics on a land use basis

    SciTech Connect

    Graebig, Markus; Fenner, Richard; Bringezu, Stefan

    2010-07-15

    This study aims to stimulate the discussion on how to optimize a sustainable energy mix from an environmental perspective and how to apply existing renewable energy sources in the most efficient way. Ground-mounted photovoltaics (PV) and the maize-biogas-electricity route are compared with regard to their potential to mitigate environmental pressure, assuming that a given agricultural area is available for energy production. Existing life cycle assessment (LCA) studies are taken as a basis to analyse environmental impacts of those technologies in relation to conventional technology for power and heat generation. The life-cycle-wide mitigation potential per area used is calculated for the impact categories non-renewable energy input, green house gas (GHG) emissions, acidification and eutrophication. The environmental performance of each system depends on the scenario that is assumed for end energy use (electricity and heat supply have been contemplated). In all scenarios under consideration, PV turns out to be superior to biogas in almost all studied impact categories. Even when maize is used for electricity production in connection with very efficient heat usage, and reduced PV performance is assumed to account for intermittence, PV can still mitigate about four times the amount of green house gas emissions and non-renewable energy input compared to maize-biogas. Soil erosion, which can be entirely avoided with PV, exceeds soil renewal rates roughly 20-fold on maize fields. Regarding the overall Eco-indicator 99 (H) score under most favourable assumptions for the maize-biogas route, PV has still a more than 100% higher potential to mitigate environmental burden. At present, the key advantages of biogas are its price and its availability without intermittence. In the long run, and with respect to more efficient land use, biogas might preferably be produced from organic waste or manure, whereas PV should be integrated into buildings and infrastructures. (author)

  1. Cavitation for improved sludge conversion into biogas

    NASA Astrophysics Data System (ADS)

    Stoop, A. H.; Bakker, T. W.; Kramer, H. J. M.

    2015-12-01

    In several studies the beneficial influence of pre-treatment of waste activated sludge with cavitation on the biogas production was demonstrated. It is however, still not fully certain whether this effect should be mainly contributed to an increase in conversion rate of organics into biogas by anaerobic bacteria, and how much cavitation increases the total biogas yield. An increase in yield is only the case if cavitation can further disrupt otherwise inaccessible cell membrane structures and long chain organic molecules. In this study the influence of hydrodynamic cavitation on sludge that was already digested for 30 days was investigated. The total biogas yield could indeed be increased. The effect of the backpressure behind the venturi tube on the yield could not yet be established.

  2. Association of N2-fixing cyanobacteria and plants: towards novel symbioses of agricultural importance

    SciTech Connect

    Elhai, Jeff

    2001-06-25

    Some nitrogen-fixing cyanobacteria are able to form symbioses with a wide variety of plants. Nostoc 2S9B is unusual in its ability to infect the roots of wheat, raising the prospect of a productive association with an important crop plant. The goal of the project was to lay the groundwork for the use of novel associations between Nostoc and crops of agronomic importance, thereby reducing our reliance on nitrogenous fertilizer. Nostoc 2S9B was found to enter roots through mechanical damage of roots and reside primarily in intercellular spaces. The strain could also be incorporated into wheat calli grown in tissue culture. In both cases, the rate of nitrogen fixation by the cyanobacterium was higher than that of the same strain grown with no plant present. Artificial nodules induced by the action of hormone 2,4D were readily infected by Nostoc 2S9B, and the cyanobacteria within such nodules fixed nitrogen under fully aerobic conditions. The nitrogen fixed was shown to be incorporated into the growing wheat seedlings. Nostoc thus differs from other bacteria in its ability to fix nitrogen in para-nodules without need for artificially microaerobic conditions. It would be useful to introduce foreign DNA into Nostoc 2S9B in order to make defined mutations to understand the genetic basis of its ability to infect wheat and to create strains that might facilitate the study of the infection process. Transfer of DNA into the cyanobacterium appears to be limited by the presence of four restriction enzymes, with recognition sequences the same as BamHI, BglI, BsaHI, and Tth111I. Genes encoding methyltransferases that protect DNA against these four enzymes have been cloned into helper plasmids to allow transfer of DNA from E. coli to Nostoc 2S9B.

  3. Anaerobic filter for biogas production

    NASA Astrophysics Data System (ADS)

    Chavadej, S.

    1980-01-01

    A laboratory study evaluated the performance of an anaerobic filter in producing biogas from pig waste with 30,000 mg/l of COD. The filter packing was bamboo rings of 1 and 1/2 in. diameter, 1 in. long; the bamboo-bed filter operated satisfactorily in a wide COD loading range of 3.74-15.65 kg/cu m/d which corresponds to the hydraulic retention of 8.47 to 1.68 days. At the optimum loading of 7.299 kg COD/cu m/d, the largest gas rate of 0.212 cu m/kg of COD was produced. The required volume of the digester for 1.2 cu m/d of gas production would be only 1.5 cu m; in practical applications, consideration should be given to the gas collecting system and clogging problems.

  4. Assessment of energy potential from wetland plants along the minor channel network on an agricultural floodplain.

    PubMed

    Pappalardo, Salvatore Eugenio; Prosdocimi, Massimo; Tarolli, Paolo; Borin, Maurizio

    2015-02-01

    Renewable energy sources such as biomasses can play a pivotal role to ensure security of energy supply and reduce greenhouse gases through the substitution of fossil fuels. At present, bioenergy is mainly derived from cultivated crops that mirror the environmental impacts from the intensification of agricultural systems for food production. Instead, biomass from perennial herbaceous species growing in wetland ecosystems and marginal lands has recently aroused interest as bioenergy for electricity and heat, methane and 2nd-generation bioethanol. The aim of this paper is to assess, at local scale, the energy potential of wetland vegetation growing along the minor hydrographic network of a reclamation area in Northeast Italy, by performing energy scenarios for combustion, methane and 2nd-generation ethanol. The research is based on a cross-methodology that combines survey analyses in the field with a GIS-based approach: the former consists of direct measurements and biomass sampling, the latter of spatial analyses and scaling up simulations at the minor channel network level. Results highlight that biomass from riparian zones could represent a significant source of bioenergy for combustion transformation, turning the disposal problem to cut and store in situ wetland vegetation into an opportunity to produce sustainable renewable energy at local scale.

  5. White Earth Biomass/Biogas Feasibility Study

    SciTech Connect

    Triplett, Michael

    2015-03-12

    The White Earth Nation examined the feasibility of cost savings and fossil energy reduction through the installation of biogas/biomass boiler at the tribal casino. The study rejected biogas options due to availability and site constraints, but found a favorable environment for technical and financial feasibility of installing a 5 MMBtu hot water boiler system to offset 60-70 percent of current fuel oil and propane usage.

  6. Enhancement of the Initial Growth Rate of Agricultural Plants by Using Static Magnetic Fields.

    PubMed

    Kim, Seung C; Mason, Alex; Im, Wooseok

    2016-01-01

    Electronic devices and high-voltage wires induce magnetic fields. A magnetic field of 1,300-2,500 Gauss (0.2 Tesla) was applied to Petri dishes containing seeds of Garden Balsam (Impatiens balsamina), Mizuna (Brassica rapa var. japonica), Komatsuna (Brassica rapa var. perviridis), and Mescluns (Lepidium sativum). We applied magnets under the culture dish. During the 4 days of application, we observed that the stem and root length increased. The group subjected to magnetic field treatment (n = 10) showed a 1.4 times faster rate of growth compared with the control group (n = 11) in a total of 8 days (p <0.0005). This rate is 20% higher than that reported in previous studies. The tubulin complex lines did not have connecting points, but connecting points occur upon the application of magnets. This shows complete difference from the control, which means abnormal arrangements. However, the exact cause remains unclear. These results of growth enhancement of applying magnets suggest that it is possible to enhance the growth rate, increase productivity, or control the speed of germination of plants by applying static magnetic fields. Also, magnetic fields can cause physiological changes in plant cells and can induce growth. Therefore, stimulation with a magnetic field can have possible effects that are similar to those of chemical fertilizers, which means that the use of fertilizers can be avoided.

  7. Enhancement of the Initial Growth Rate of Agricultural Plants by Using Static Magnetic Fields.

    PubMed

    Kim, Seung C; Mason, Alex; Im, Wooseok

    2016-01-01

    Electronic devices and high-voltage wires induce magnetic fields. A magnetic field of 1,300-2,500 Gauss (0.2 Tesla) was applied to Petri dishes containing seeds of Garden Balsam (Impatiens balsamina), Mizuna (Brassica rapa var. japonica), Komatsuna (Brassica rapa var. perviridis), and Mescluns (Lepidium sativum). We applied magnets under the culture dish. During the 4 days of application, we observed that the stem and root length increased. The group subjected to magnetic field treatment (n = 10) showed a 1.4 times faster rate of growth compared with the control group (n = 11) in a total of 8 days (p <0.0005). This rate is 20% higher than that reported in previous studies. The tubulin complex lines did not have connecting points, but connecting points occur upon the application of magnets. This shows complete difference from the control, which means abnormal arrangements. However, the exact cause remains unclear. These results of growth enhancement of applying magnets suggest that it is possible to enhance the growth rate, increase productivity, or control the speed of germination of plants by applying static magnetic fields. Also, magnetic fields can cause physiological changes in plant cells and can induce growth. Therefore, stimulation with a magnetic field can have possible effects that are similar to those of chemical fertilizers, which means that the use of fertilizers can be avoided. PMID:27500712

  8. Biogas production experimental research using algae.

    PubMed

    Baltrėnas, Pranas; Misevičius, Antonas

    2015-01-01

    The current study is on the the use of macro-algae as feedstock for biogas production. Three types of macro-algae, Cladophora glomerata (CG), Chara fragilis (CF), and Spirogyra neglecta (SN), were chosen for this research. The experimental studies on biogas production were carried out with these algae in a batch bioreactor. In the bioreactor was maintained 35 ± 1°C temperature. The results showed that the most appropriate macro-algae for biogas production are Spirogyra neglecta (SN) and Cladophora glomerata (CG). The average amount of biogas obtained from the processing of SN - 0.23 m(3)/m(3)d, CG - 0.20 m(3)/m(3)d, and CF - 0.12 m(3)/m(3)d. Considering the concentration of methane obtained during the processing of SN and CG, which after eight days and until the end of the experiment exceeded 60%, it can be claimed that biogas produced using these algae is valuable. When processing CF, the concentration of methane reached the level of 50% only by the final day of the experiment, which indicates that this alga is less suitable for biogas production.

  9. Biogas powering a small tubular solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Staniforth, J.; Kendall, K.

    Biogas has been used to power a small tubular solid oxide fuel cell (SOFC). It was demonstrated that biogas could provide power equivalent to hydrogen, even when the methane content was reduced below the value at which normal combustion could occur. The carbon dioxide content of biogas was especially beneficial because it aided the internal reforming process. But carbon deposition was a problem unless air was added to the biogas before it entered the cell. When air was premixed, the biogas was comparable with than hydrogen in the power produced. However, a problem was the variability of biogas samples. Of the three types tested, only one produced a consistent power output.

  10. Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing

    PubMed Central

    2012-01-01

    microbiological diversity and the regulatory role of the hydrogen metabolism appear to be the driving forces optimizing biogas-producing microbial communities. The findings may allow a rational design of these communities to promote greater efficacy in large-scale practical systems. The composition of an optimal biogas-producing consortium can be determined through the use of this approach, and this systematic methodology allows the design of the optimal microbial community structure for any biogas plant. In this way, metagenomic studies can contribute to significant progress in the efficacy and economic improvement of biogas production. PMID:22673110

  11. Fate of synthetic musks in a domestic wastewater treatment plant and in an agricultural field amended with biosolids.

    PubMed

    Yang, Jian-Jun; Metcalfe, Chris D

    2006-06-15

    Synthetic musks are widely used as fragrance ingredients in personal care products, and they enter domestic wastewater treatment plants (WWTPs) through discharges into municipal sewage systems. Samples of aqueous sewage and biosolids collected from the Peterborough Wastewater Treatment Plant (WWTP), Ontario, Canada were analyzed for 11 synthetic musk compounds using GC/MS. The results showed that 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta[g]-2-benzopyrane (HHCB, 173.1+/-43.4 ng/L) and 7-acetyl-1,1,3,4,4,6-hexamethyl-tetrahydronaphthalene (AHTN, 41.6+/-15.8 ng/L) were the dominant fragrances in sewage, but other polycyclic musks and nitro musks were present at lower concentrations. The concentrations of HHCB and AHTN in the aqueous phase of the sewage were highly correlated with both BOD5 and TOC. The overall removal efficiency of synthetic musks from the aqueous sewage in the WWTP ranged from 43.3% to 56.9%, but removal occurred mainly by partitioning into the biosolids. Based on a mass balance model, the daily input and output of HHCB and AHTN in the Peterborough WWTP were 47 g and 46 g, respectively. In an agricultural field amended with biosolids from the Peterborough WWTP, HHCB and AHTN were detected in soil immediately after application at mean concentrations of 1.0 and 1.3 mug/kg, respectively, but concentrations declined relatively rapidly over the next 6 weeks, post-application.

  12. Urban Agricultural Education.

    ERIC Educational Resources Information Center

    Corbellini, Margaret

    1991-01-01

    John Bourne High School in Queens, New York, offers an agricultural program enrolling more than 400 students. The curriculum includes agricultural career exploration, plant and animal science, summer land laboratories, and a special education component. (SK)

  13. Gasification of agricultural residues in a demonstrative plant: Vine pruning and rice husks.

    PubMed

    Biagini, Enrico; Barontini, Federica; Tognotti, Leonardo

    2015-10-01

    Tests with vine pruning and rice husks were carried out in a demonstrative downdraft gasifier (350 kW), to prove the reactor operability, quantify the plant efficiency, and thus extend the range of potential energy feedstocks. Pressure drops, syngas flow rate and composition were monitored to study the material and energy balances, and performance indexes. Interesting results were obtained for vine pruning (syngas heating value 5.7 MJ/m(3), equivalent ratio 0.26, cold gas efficiency 65%, power efficiency 21%), while poorer values were obtained for rice husks (syngas heating value 2.5-3.8 MJ/m(3), equivalent ratio 0.4, cold gas efficiency 31-42%, power efficiency 10-13%). The work contains also a comparison with previous results (wood pellets, corn cobs, Miscanthus) for defining an operating diagram, based on material density and particle size and shape, and the critical zones (reactor obstruction, bridging, no bed buildup, combustion regime).

  14. Gasification of agricultural residues in a demonstrative plant: Vine pruning and rice husks.

    PubMed

    Biagini, Enrico; Barontini, Federica; Tognotti, Leonardo

    2015-10-01

    Tests with vine pruning and rice husks were carried out in a demonstrative downdraft gasifier (350 kW), to prove the reactor operability, quantify the plant efficiency, and thus extend the range of potential energy feedstocks. Pressure drops, syngas flow rate and composition were monitored to study the material and energy balances, and performance indexes. Interesting results were obtained for vine pruning (syngas heating value 5.7 MJ/m(3), equivalent ratio 0.26, cold gas efficiency 65%, power efficiency 21%), while poorer values were obtained for rice husks (syngas heating value 2.5-3.8 MJ/m(3), equivalent ratio 0.4, cold gas efficiency 31-42%, power efficiency 10-13%). The work contains also a comparison with previous results (wood pellets, corn cobs, Miscanthus) for defining an operating diagram, based on material density and particle size and shape, and the critical zones (reactor obstruction, bridging, no bed buildup, combustion regime). PMID:26183923

  15. Effects of biogas digestate and cattle slurry application on greenhouse gas emissions from grasslands on organic soils

    NASA Astrophysics Data System (ADS)

    Eickenscheidt, Tim; Freibauer, Annette; Heinichen, Jan; Augustin, Jürgen; Drösler, Matthias

    2014-05-01

    The change in the German energy policy resulted in a strong development of biogas plants in Germany. As a consequence, drained peatlands are increasingly used to satisfy the rising demand for fermentative substrates. In return high amounts of nutrient-rich digestates are used as organic fertilizer to maintain soil fertility and crop yield. It is well known that organic fertilization enhances nitrous oxide (N2O) emissions from managed grasslands, especially in south Germany, a region with frequently frost-thaw cycles. Additionally drained organic soils are considered as hotspots of GHG emissions including N2O. Our study addressed the question to what extent biogas digestate and cattle slurry application alters N2O and methane (CH4) fluxes and how different contents of soil organic matter (SOM) promote the production of GHG. The study was conducted at two areas within one grassland parcel, which differed in their soil organic carbon (SOC) contents (10% versus 17%). At each area (named Corg medium and Corg high) three sites were established: One was fertilized five times with biogas digestate, the second five times with cattle slurry and the third site served as control without fertilization. For each treatment, the fluxes of N2O and CH4 were measured over two years using the closed chamber method. Significantly higher short term (16 days) N2O fluxes after fertilization with digestate compared to slurry could only be found in one out of four fertilisation events. However, on an annual basis the application of biogas digestate significantly enhanced the N2O fluxes compared to the application of cattle slurry. Furthermore, N2O fluxes from the Corghigh site significantly exceeded N2O fluxes from the Corg medium sites. Annual cumulative emissions ranged from 0.91 ± 0.49 kg N ha-1 yr-1 to 3.14 ± 0.91 kg N ha-1 yr-1, reflecting the lower end of literature values from other organic soils and corresponding more to those reported from grasslands on mineral soils in Germany

  16. Agricultural Biodiversity.

    ERIC Educational Resources Information Center

    Postance, Jim

    1998-01-01

    The extinction of farm animals and crops is rarely brought up during discussions of endangered species and biodiversity; however, the loss of diversity in crops and livestock threatens the sustainability of agriculture. Presents three activities: (1) "The Colors of Diversity"; (2) "Biodiversity among Animals"; and (3) "Heirloom Plants." Discusses…

  17. Communities of endophytic sebacinales associated with roots of herbaceous plants in agricultural and grassland ecosystems are dominated by Serendipita herbamans sp. nov.

    PubMed

    Riess, Kai; Oberwinkler, Franz; Bauer, Robert; Garnica, Sigisfredo

    2014-01-01

    Endophytic fungi are known to be commonly associated with herbaceous plants, however, there are few studies focusing on their occurrence and distribution in plant roots from ecosystems with different land uses. To explore the phylogenetic diversity and community structure of Sebacinales endophytes from agricultural and grassland habitats under different land uses, we analysed the roots of herbaceous plants using strain isolation, polymerase chain reaction (PCR), transmission electron microscopy (TEM) and co-cultivation experiments. A new sebacinoid strain named Serendipita herbamans belonging to Sebacinales group B was isolated from the roots of Bistorta vivipara, which is characterized by colourless monilioid cells (chlamydospores) that become yellow with age. This species was very common and widely distributed in association with a broad spectrum of herbaceous plant families in diverse habitats, independent of land use type. Ultrastructurally, the presence of S. herbamans was detected in the cortical cells of Plantago media, Potentilla anserina and Triticum aestivum. In addition, 13 few frequent molecular operational taxonomic units (MOTUs) or species were found across agricultural and grassland habitats, which did not exhibit a distinctive phylogenetic structure. Laboratory-based assays indicate that S. herbamans has the ability to colonize fine roots and stimulate plant growth. Although endophytic Sebacinales are widely distributed across agricultural and grassland habitats, TEM and nested PCR analyses reinforce the observation that these microorganisms are present in low quantity in plant roots, with no evidence of host specificity.

  18. Soil-to-plant transfer factors for radiocesium and radiostrontium in agricultural systems

    SciTech Connect

    Nisbet, A.F.; Woodman, R.F.M.

    2000-03-01

    A database of soil-to-plant transfer factors for radiocesium and radiostrontium has been compiled for arable crops from published and unpublished sources. The database is more extensive than previous compilations of data published by the International Union of Radioecologists, containing new information for Scandinavia and Greece in particular. It also contains ancillary data on important soil characteristics. The database is sub-divided into 28 soil-crop combinations, covering four soil types and seven crop groups. Statistical analyses showed that transfer factors for radiocesium could not generally be predicted as a function of climatic region, type of experiment, age of contamination, or silt characteristics. However, significant relationships accounting for more than 30% of the variability in transfer factor were identified between transfer factors for radiostrontium and soil pH/organic matter status for a few soil-crop combinations. Best estimate transfer factors for radiocesium and radiostrontium were calculated for 28 soil-crop combinations, based on their geometric means: only the edible parts were considered. To predict the likely value of future individual transfer factors, 95% confidence intervals were also derived. A comparison of best estimate transfer factors derived in this study with recommended values published by the International Union of Radioecologists in 1989 and 1992 was made for comparable soil-crop groupings. While there were no significant differences between the best estimate values derived in this study and the 1992 data, radiological assessments that still use 1989 data may be unnecessarily cautious.

  19. Screening of different Trichoderma species against agriculturally important foliar plant pathogens.

    PubMed

    Prabhakaran, Narayanasamy; Prameeladevi, Thokala; Sathiyabama, Muthukrishnan; Kamil, Deeba

    2015-01-01

    Different isolates of Trichoderma were isolated from soil samples which were collected from different part of India. These isolates were grouped into four Trichoderma species viz., Trichoderma asperellum (Ta), T. harzianum (Th), T. pseudokoningii (Tp) and T. longibrachiatum (Tl) based on their morphological characters. Identification of the above isolates was also confirmed through ITS region analysis. These Trichoderma isolates were tested for in vitro biological control of Alternaria solani, Bipolaris oryzae, Pyricularia oryzae and Sclerotinia scierotiorum which cause serious diseases like early blight (target spot) of tomato and potato, brown leaf spot disease in rice, rice blast disease, and white mold disease in different plants. Under in vitro conditions, all the four species of Trichoderma (10 isolates) proved 100% potential inhibition against rice blast pathogen Pyracularia oryzae. T. harzianum (Th-01) and T. asperellum (Ta-10) were effective with 86.6% and 97.7%, growth inhibition of B. oryzae, respectively. Among others, T. pseudokoningii (Tp-08) and T. Iongibrachiatum (Tl-09) species were particularly efficient in inhibiting growth of S. sclerotiorum by 97.8% and 93.3%. T. Iongibrachiatum (TI-06 and TI-07) inhibited maximum mycelial growth of A. solani by 87.6% and 84.75. However, all the T. harzianum isolates showed significantly higher inhibition against S. sclerotiorum (CD value 9.430), causing white mold disease. This study led to the selection of potential Trichoderma isolates against rice blast, early blight, brown leaf spot in rice and white mold disease in different crops. PMID:26536792

  20. Screening of different Trichoderma species against agriculturally important foliar plant pathogens.

    PubMed

    Prabhakaran, Narayanasamy; Prameeladevi, Thokala; Sathiyabama, Muthukrishnan; Kamil, Deeba

    2015-01-01

    Different isolates of Trichoderma were isolated from soil samples which were collected from different part of India. These isolates were grouped into four Trichoderma species viz., Trichoderma asperellum (Ta), T. harzianum (Th), T. pseudokoningii (Tp) and T. longibrachiatum (Tl) based on their morphological characters. Identification of the above isolates was also confirmed through ITS region analysis. These Trichoderma isolates were tested for in vitro biological control of Alternaria solani, Bipolaris oryzae, Pyricularia oryzae and Sclerotinia scierotiorum which cause serious diseases like early blight (target spot) of tomato and potato, brown leaf spot disease in rice, rice blast disease, and white mold disease in different plants. Under in vitro conditions, all the four species of Trichoderma (10 isolates) proved 100% potential inhibition against rice blast pathogen Pyracularia oryzae. T. harzianum (Th-01) and T. asperellum (Ta-10) were effective with 86.6% and 97.7%, growth inhibition of B. oryzae, respectively. Among others, T. pseudokoningii (Tp-08) and T. Iongibrachiatum (Tl-09) species were particularly efficient in inhibiting growth of S. sclerotiorum by 97.8% and 93.3%. T. Iongibrachiatum (TI-06 and TI-07) inhibited maximum mycelial growth of A. solani by 87.6% and 84.75. However, all the T. harzianum isolates showed significantly higher inhibition against S. sclerotiorum (CD value 9.430), causing white mold disease. This study led to the selection of potential Trichoderma isolates against rice blast, early blight, brown leaf spot in rice and white mold disease in different crops.

  1. Energy Economics of Farm Biogas in Cold Climates

    SciTech Connect

    Pillay, Pragasen; Grimberg, Stefan; Powers, Susan E

    2012-10-24

    Anaerobic digestion of farm and dairy waste has been shown to be capital intensive. One way to improve digester economics is to co-digest high-energy substrates together with the dairy manure. Cheese whey for example represents a high-energy substrate that is generated during cheese manufacture. There are currently no quantitative tools available that predict performance of co-digestion farm systems. The goal of this project was to develop a mathematical tool that would (1) predict the impact of co-digestion and (2) determine the best use of the generated biogas for a cheese manufacturing plant. Two models were developed that separately could be used to meet both goals of the project. Given current pricing structures of the most economical use of the generated biogas at the cheese manufacturing plant was as a replacement of fuel oil to generate heat. The developed digester model accurately predicted the performance of 26 farm digesters operating in the North Eastern U.S.

  2. Efficiency and biotechnological aspects of biogas production from microalgal substrates.

    PubMed

    Klassen, Viktor; Blifernez-Klassen, Olga; Wobbe, Lutz; Schlüter, Andreas; Kruse, Olaf; Mussgnug, Jan H

    2016-09-20

    Photosynthetic organisms like plants and algae can harvest, convert, and store solar energy and thus represent readily available sources for renewable biofuels production on a domestic or industrial scale. Anaerobic digestion (AD) of the organic biomass yields biogas, containing methane and carbon dioxide as major constituents. Combustion of the biogas or purification of the energy-rich methane fraction can be applied to provide electricity or fuel. AD procedures have been applied for several decades with organic waste, animal products, or higher plants and more recently, utilization of photosynthetic algae as substrates have gained considerable research interest. To provide an overview of recent research efforts made to characterize the AD process of microalgal biomass, we present extended summaries of experimentally determined biochemical methane potentials (BMP), biomass pretreatment options and digestion strategies in this article. We conclude that cultivation options, biomass composition and time of harvesting, application of biomass pretreatment strategies, and parameters of the digestion process are all important factors, which can significantly affect the AD process efficiency. The transition from batch to continuous microalgal biomass digestion trials, accompanied by state-of-the-art analytical techniques, is now in demand to refine the assessments of the overall process feasibility. PMID:27449486

  3. Efficiency and biotechnological aspects of biogas production from microalgal substrates.

    PubMed

    Klassen, Viktor; Blifernez-Klassen, Olga; Wobbe, Lutz; Schlüter, Andreas; Kruse, Olaf; Mussgnug, Jan H

    2016-09-20

    Photosynthetic organisms like plants and algae can harvest, convert, and store solar energy and thus represent readily available sources for renewable biofuels production on a domestic or industrial scale. Anaerobic digestion (AD) of the organic biomass yields biogas, containing methane and carbon dioxide as major constituents. Combustion of the biogas or purification of the energy-rich methane fraction can be applied to provide electricity or fuel. AD procedures have been applied for several decades with organic waste, animal products, or higher plants and more recently, utilization of photosynthetic algae as substrates have gained considerable research interest. To provide an overview of recent research efforts made to characterize the AD process of microalgal biomass, we present extended summaries of experimentally determined biochemical methane potentials (BMP), biomass pretreatment options and digestion strategies in this article. We conclude that cultivation options, biomass composition and time of harvesting, application of biomass pretreatment strategies, and parameters of the digestion process are all important factors, which can significantly affect the AD process efficiency. The transition from batch to continuous microalgal biomass digestion trials, accompanied by state-of-the-art analytical techniques, is now in demand to refine the assessments of the overall process feasibility.

  4. Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge.

    PubMed

    Kidd, P S; Domínguez-Rodríguez, M J; Díez, J; Monterroso, C

    2007-01-01

    Amendment of agricultural soils with municipal sewage sludges provides a valuable source of plant nutrients and organic matter. Nevertheless, addition of heavy metals and risks of eutrophication continue to be of concern. Metal behaviour in soils and plant uptake are dependent on the nature of the metal, sludge/soil physico-chemical properties and plant species. A pot experiment was carried out to evaluate plant production and heavy metal uptake, soil heavy metal pools and bioavailability, and soil P pools and possible leaching losses, in agricultural soils amended with sewage sludge for at least 10 years (F20) compared to non-amended soils (control). Sewage sludge application increased soil pH, N, Olsen-extractable-P, DOC and exchangeable Ca, Mg and K concentrations. Total and EDTA-extractable soil concentrations of Cu and Zn were also significantly greater in F20, and soil metal (Cu, Mn and Zn) and P fractionation altered. Compared to the control, in F20 relative amounts of acid-extractable (Mn, Zn), reducible (Mn, Zn) and oxidisable (Cu, Zn) metal fractions were greater, and a dominance of inorganic P forms was observed. Analyses of F20 soil solutions highlighted risks of PO4 and Cu leaching. However, despite the observed increases in metal bioavailability sewage sludge applications did not lead to an increase in plant shoot concentrations (in wild plants or crop species). On the contrary, depending on the plant species, Mn and Zn tissue concentrations were within the deficiency level for most plants.

  5. Plant physiological models of heat, water and photoinhibition stress for climate change modelling and agricultural prediction

    NASA Astrophysics Data System (ADS)

    Nicolas, B.; Gilbert, M. E.; Paw U, K. T.

    2015-12-01

    Soil-Vegetation-Atmosphere Transfer (SVAT) models are based upon well understood steady state photosynthetic physiology - the Farquhar-von Caemmerer-Berry model (FvCB). However, representations of physiological stress and damage have not been successfully integrated into SVAT models. Generally, it has been assumed that plants will strive to conserve water at higher temperatures by reducing stomatal conductance or adjusting osmotic balance, until potentially damaging temperatures and the need for evaporative cooling become more important than water conservation. A key point is that damage is the result of combined stresses: drought leads to stomatal closure, less evaporative cooling, high leaf temperature, less photosynthetic dissipation of absorbed energy, all coupled with high light (photosynthetic photon flux density; PPFD). This leads to excess absorbed energy by Photosystem II (PSII) and results in photoinhibition and damage, neither are included in SVAT models. Current representations of photoinhibition are treated as a function of PPFD, not as a function of constrained photosynthesis under heat or water. Thus, it seems unlikely that current models can predict responses of vegetation to climate variability and change. We propose a dynamic model of damage to Rubisco and RuBP-regeneration that accounts, mechanistically, for the interactions between high temperature, light, and constrained photosynthesis under drought. Further, these predictions are illustrated by key experiments allowing model validation. We also integrated this new framework within the Advanced Canopy-Atmosphere-Soil Algorithm (ACASA). Preliminary results show that our approach can be used to predict reasonable photosynthetic dynamics. For instances, a leaf undergoing one day of drought stress will quickly decrease its maximum quantum yield of PSII (Fv/Fm), but it won't recover to unstressed levels for several days. Consequently, cumulative effect of photoinhibition on photosynthesis can cause

  6. Local-scale spatial modelling for interpolating climatic temperature variables to predict agricultural plant suitability

    NASA Astrophysics Data System (ADS)

    Webb, Mathew A.; Hall, Andrew; Kidd, Darren; Minansy, Budiman

    2016-05-01

    Assessment of local spatial climatic variability is important in the planning of planting locations for horticultural crops. This study investigated three regression-based calibration methods (i.e. traditional versus two optimized methods) to relate short-term 12-month data series from 170 temperature loggers and 4 weather station sites with data series from nearby long-term Australian Bureau of Meteorology climate stations. The techniques trialled to interpolate climatic temperature variables, such as frost risk, growing degree days (GDDs) and chill hours, were regression kriging (RK), regression trees (RTs) and random forests (RFs). All three calibration methods produced accurate results, with the RK-based calibration method delivering the most accurate validation measures: coefficients of determination ( R 2) of 0.92, 0.97 and 0.95 and root-mean-square errors of 1.30, 0.80 and 1.31 °C, for daily minimum, daily maximum and hourly temperatures, respectively. Compared with the traditional method of calibration using direct linear regression between short-term and long-term stations, the RK-based calibration method improved R 2 and reduced root-mean-square error (RMSE) by at least 5 % and 0.47 °C for daily minimum temperature, 1 % and 0.23 °C for daily maximum temperature and 3 % and 0.33 °C for hourly temperature. Spatial modelling indicated insignificant differences between the interpolation methods, with the RK technique tending to be the slightly better method due to the high degree of spatial autocorrelation between logger sites.

  7. Counteracting foaming caused by lipids or proteins in biogas reactors using rapeseed oil or oleic acid as antifoaming agents.

    PubMed

    Kougias, P G; Boe, K; Einarsdottir, E S; Angelidaki, I

    2015-08-01

    Foaming is one of the major operational problems in biogas plants, and dealing with foaming incidents is still based on empirical practices. Various types of antifoams are used arbitrarily to combat foaming in biogas plants, but without any scientific support this action can lead to serious deterioration of the methanogenic process. Many commercial antifoams are derivatives of fatty acids or oils. However, it is well known that lipids can induce foaming in manure based biogas plants. This study aimed to elucidate the effect of rapeseed oil and oleic acid on foam reduction and process performance in biogas reactors fed with protein or lipid rich substrates. The results showed that both antifoams efficiently suppressed foaming. Moreover rapeseed oil resulted in stimulation of the biogas production. Finally, it was reckoned that the chemical structure of lipids, and more specifically their carboxylic ends, is responsible for their foam promoting or foam counteracting behaviour. Thus, it was concluded that the fatty acids and oils could suppress foaming, while salt of fatty acids could generate foam.

  8. CO2 abatement costs of greenhouse gas (GHG) mitigation by different biogas conversion pathways.

    PubMed

    Rehl, T; Müller, J

    2013-01-15

    Biogas will be of increasing importance in the future as a factor in reducing greenhouse gas emissions cost-efficiently by the optimal use of available resources and technologies. The goal of this study was to identify the most ecological and economical use of a given resource (organic waste from residential, commercial and industry sectors) using one specific treatment technology (anaerobic digestion) but applying different energy conversion technologies. Average and marginal abatement costs were calculated based on Life Cycle Cost (LCC) and Life Cycle Assessment (LCA) methodologies. Eight new biogas systems producing electricity, heat, gas or automotive fuel were analyzed in order to identify the most cost-efficient way of reducing GHG emissions. A system using a combined heat and power station (which is connected to waste treatment and digestion operation facilities and located nearby potential residential, commercial or industrial heat users) was found to be the most cost-efficient biogas technology for reducing GHG emissions. Up to € 198 per tonne of CO(2) equivalents can be saved by replacing the "business as usual" systems based on fossil resources with ones based on biogas. Limited gas injection (desulfurized and dried biogas, without compression and upgrading) into the gas grid can also be a viable option with an abatement cost saving of € 72 per tonne of CO(2) equivalents, while a heating plant with a district heating grid or a system based on biogas results in higher abatement costs (€ 267 and € 270 per tonne CO(2) eq). Results from all systems are significantly influenced by whether average or marginal data are used as a reference. Beside that energy efficiency, the reference system that was replaced and the by-products as well as feedstock and investment costs were identified to be parameters with major impacts on abatement costs. The quantitative analysis was completed by a discussion of the role that abatement cost methodology can play in

  9. Effect of temperature and active biogas process on passive separation of digested manure.

    PubMed

    Kaparaju, P; Angelidaki, I

    2008-03-01

    The objective of the study was to identify the optimum time interval for effluent removal after temporarily stopping stirring in otherwise continuously stirred tank reactors. Influence of temperature (10 and 55 degrees C) and active biogas process on passive separation of digested manure, where no outside mechanical or chemical action was used, within the reactor was studied in three vertical settling columns (100 cm deep). Variations in solids and microbial distribution at top, middle and bottom layers of column were assessed over a 15 day settling period. Results showed that best solids separation was achieved when digested manure was allowed to settle at 55 degrees C with active biogas process (pre-incubated at 55 degrees C) compared to separation at 55 degrees C without active biogas process (autoclaved at 120 degrees C, for 20 min) or at 10 degrees C with active biogas process. Maximum solids separation was noticed 24h after settling in column incubated at 55 degrees C, with active biogas process. Microbiological analyses revealed that proportion of Archaea and Bacteria, absent in the autoclaved material, varied with incubation temperature, time and sampling depth. Short rod shaped bacteria dominated at 55 degrees C, while long rod shaped bacteria dominated at 10 degrees C. Methanosarcinaceae were seen more abundant in the surface layer at 55 degrees C while it was seen more common in the top and bottom layers at 10 degrees C. Thus, passive separation of digester contents within the reactor can be used effectively as an operating strategy to optimize biogas production by increasing the solids and biomass retention times. A minimum of 1-2h "non-stirring" period appears to be optimal time before effluent removal in plants where extraction is batch-wise 2-4 times a day.

  10. CO2 abatement costs of greenhouse gas (GHG) mitigation by different biogas conversion pathways.

    PubMed

    Rehl, T; Müller, J

    2013-01-15

    Biogas will be of increasing importance in the future as a factor in reducing greenhouse gas emissions cost-efficiently by the optimal use of available resources and technologies. The goal of this study was to identify the most ecological and economical use of a given resource (organic waste from residential, commercial and industry sectors) using one specific treatment technology (anaerobic digestion) but applying different energy conversion technologies. Average and marginal abatement costs were calculated based on Life Cycle Cost (LCC) and Life Cycle Assessment (LCA) methodologies. Eight new biogas systems producing electricity, heat, gas or automotive fuel were analyzed in order to identify the most cost-efficient way of reducing GHG emissions. A system using a combined heat and power station (which is connected to waste treatment and digestion operation facilities and located nearby potential residential, commercial or industrial heat users) was found to be the most cost-efficient biogas technology for reducing GHG emissions. Up to € 198 per tonne of CO(2) equivalents can be saved by replacing the "business as usual" systems based on fossil resources with ones based on biogas. Limited gas injection (desulfurized and dried biogas, without compression and upgrading) into the gas grid can also be a viable option with an abatement cost saving of € 72 per tonne of CO(2) equivalents, while a heating plant with a district heating grid or a system based on biogas results in higher abatement costs (€ 267 and € 270 per tonne CO(2) eq). Results from all systems are significantly influenced by whether average or marginal data are used as a reference. Beside that energy efficiency, the reference system that was replaced and the by-products as well as feedstock and investment costs were identified to be parameters with major impacts on abatement costs. The quantitative analysis was completed by a discussion of the role that abatement cost methodology can play in

  11. An economic analysis of the electricity generation potential from biogas resources in the state of Indiana

    NASA Astrophysics Data System (ADS)

    Giraldo, Juan S.

    Anaerobic digestion is a process that is a common part of organic waste management systems and is used in concentrated animal feeding operations (CAFOs), wastewater treatment plants (WWTPs), and municipal solid waste (MSW) landfills. The process produces biogas, which contains methane, and it can be burned to generate electricity. Previous reports have indicated that based on the availability of feedstocks there is a large potential for biogas production and use for electricity generation in the state of Indiana. However, these reports varied in their consideration of important factors that affect the technical and economic feasibility of being able to develop the resources available. The goal of this thesis is to make a more targeted assessment of the electricity generation potential from biogas resources at CAFOs, WWTPs, and MSW landfills in Indiana. A capital budgeting model is used to estimate the net present value (NPV) of biogas electricity projects at facilities that are identified as technically suitable. A statewide estimate of the potential generation capacity is made by estimating the number of facilities that could profitably undertake a biogas electricity project. In addition this thesis explored the impact that different incentive policies would have on the economic viability of these projects. The results indicated that the electricity generation potential is much smaller when technical and economic factors are taken into account in addition to feedstock availability. In particular it was found that projects at hog farms are unlikely to be economically feasible in the present even when financial incentives are considered. In total, 47.94 MW of potential generating capacity is estimated from biogas production at CAFOs, WWTPs, and MSW landfills. Though results indicated that 37.10 MW of capacity are economically feasible under current operating conditions, sensitivity analysis reveals that these projects are very sensitive to capital cost assumptions

  12. Feasibility study for retrofitting biogas cogeneration systems to district heating in South Korea.

    PubMed

    Chung, Mo; Park, Hwa-Choon

    2015-08-01

    A feasibility study was performed to assess the technical and economic merits of retrofitting biogas-based cogeneration systems to district heating networks. Three district heating plants were selected as candidates for accommodating heat recovery from nearby waste treatment stations, where a massive amount of biogas can be produced on a regular basis. The scenario involves constructing cogeneration systems in each waste treatment station and producing electricity and heat. The amounts of biogas production for each station are estimated based on the monthly treatment capacities surveyed over the most recent years. Heat produced by the cogeneration system is first consumed on site by the waste treatment system to keep the operating temperature at a proper level. If surplus heat is available, it will be transported to the nearest district heating plant. The year-round operation of the cogeneration system was simulated to estimate the electricity and heat production. We considered cost associated with the installation of the cogeneration system and piping as initial investments. Profits from selling electricity and recovering heat are counted as income, while costs associated with buying biogas are expenses. Simple payback periods of 2-10 years were projected under the current economic conditions of South Korea. We found that most of the proposed scenarios can contribute to both energy savings and environmental protection.

  13. Feasibility study for retrofitting biogas cogeneration systems to district heating in South Korea.

    PubMed

    Chung, Mo; Park, Hwa-Choon

    2015-08-01

    A feasibility study was performed to assess the technical and economic merits of retrofitting biogas-based cogeneration systems to district heating networks. Three district heating plants were selected as candidates for accommodating heat recovery from nearby waste treatment stations, where a massive amount of biogas can be produced on a regular basis. The scenario involves constructing cogeneration systems in each waste treatment station and producing electricity and heat. The amounts of biogas production for each station are estimated based on the monthly treatment capacities surveyed over the most recent years. Heat produced by the cogeneration system is first consumed on site by the waste treatment system to keep the operating temperature at a proper level. If surplus heat is available, it will be transported to the nearest district heating plant. The year-round operation of the cogeneration system was simulated to estimate the electricity and heat production. We considered cost associated with the installation of the cogeneration system and piping as initial investments. Profits from selling electricity and recovering heat are counted as income, while costs associated with buying biogas are expenses. Simple payback periods of 2-10 years were projected under the current economic conditions of South Korea. We found that most of the proposed scenarios can contribute to both energy savings and environmental protection. PMID:26159562

  14. Chemical-oxidative scrubbing for the removal of hydrogen sulphide from raw biogas: potentials and economics.

    PubMed

    Miltner, M; Makaruk, A; Krischan, J; Harasek, M

    2012-01-01

    In the present work chemical-oxidative scrubbing as a novel method for the desulphurisation of raw biogas is presented with a special focus on the process potentials and economics. The selective absorption of hydrogen sulphide from gas streams containing high amounts of carbon dioxide using caustic solutions is not trivial but has been treated in literature. However, the application of this method to biogas desulphurisation has not been established so far. Based on rigorous experimental work, an industrial-scale pilot plant has been designed, erected and commissioned at a biogas plant with biogas upgrading and gas grid injection in Austria. Data collected from the 12-month monitored operation has been used to elaborate performance as well as economic parameters for the novel desulphurisation method. The proposed technology offers significant operational advantages regarding the degree of automation and the flexibility towards fluctuations in process boundary conditions. Furthermore, the economic assessment revealed the high competitiveness of the chemical-oxidative scrubbing process compared with other desulphurisation technologies with the named advantageous operational behaviour.

  15. [Characteristics of the microflora of soddy-podzol soil during single-crop cultivation of agricultural plants and during crop rotation].

    PubMed

    Berestetskiĭ, O A; Torzhevskiĭ, V I; Mochalov, Iu M

    Structural organization of microbial populations in soddy-podzolic soil was studied during growth of agricultural plants in monoculture and in crop rotation. The content of bacteria and their biomass decreased when plants were grown in monoculture. The content of actinomycetes, bacilli and oligonitrophilic microorganisms increased in soil during crop rotation as compared with monocultures, suggesting a higher rate of mobilization processes. The content of microscopic fingi in soil increased when lupine was grown in monoculture. Growth of plants in monoculture affects the cenotic structure of soil microflora. The composition of active soil microflora was characterized by a wider spectrum of microbial forms during crop rotation of monocultures. PMID:135916

  16. [The change in efficiency of protective measures for reduction of 137Cs accumulation by agricultural plants in various periods after the Chernobyl accident].

    PubMed

    Panov, A V; Aleksakhin, R M; Muzalevskaia, A A

    2011-01-01

    Dynamics of 137Cs transfer factors to plants and the effects of protective measures on this radionuclide accumulation in the agricultural production is estimated on the example of the south-western regions of Bryansk District. Three periods in decreasing the 137Cs content in plants during 20 years after the Chernobyl accident are identified. The contribution of radionuclide decay, natural biogeochemical processes and protective measures aimed at reduction of the 137Cs accumulation in agricultural plants during various periods after radioactive fallout is shown. Maximum permissible levels of 137Cs contamination of cultivated lands, where crop products meeting current standards may be obtained, at different scopes of protective measures on radioactive-contaminated territories are forecasted. Periods after radioactive fallout, when crop and forage products meeting radiological standards are obtained, are assessed. PMID:21520624

  17. [The change in efficiency of protective measures for reduction of 137Cs accumulation by agricultural plants in various periods after the Chernobyl accident].

    PubMed

    Panov, A V; Aleksakhin, R M; Muzalevskaia, A A

    2011-01-01

    Dynamics of 137Cs transfer factors to plants and the effects of protective measures on this radionuclide accumulation in the agricultural production is estimated on the example of the south-western regions of Bryansk District. Three periods in decreasing the 137Cs content in plants during 20 years after the Chernobyl accident are identified. The contribution of radionuclide decay, natural biogeochemical processes and protective measures aimed at reduction of the 137Cs accumulation in agricultural plants during various periods after radioactive fallout is shown. Maximum permissible levels of 137Cs contamination of cultivated lands, where crop products meeting current standards may be obtained, at different scopes of protective measures on radioactive-contaminated territories are forecasted. Periods after radioactive fallout, when crop and forage products meeting radiological standards are obtained, are assessed.

  18. NEEM: UNUSUALLY VERSATILE PLANT GENUS AZADIRACHTA WITH MANY USEFUL AND SO FAR INSUFFICIENTLY EXPLOITED PROPERTIES FOR AGRICULTURE, MEDICINE, AND INDUSTRY.

    PubMed

    Hummel, H E; Langner, S S; Leithold, G; Schmutterer, H

    2014-01-01

    Neem plants (Rutales: Meliaceae) are well known for their multitude of human benefits in various fields. Specifically well investigated are the Indian neem tree Azadirachta indica A. Juss., the Thai neem A. siamensis Val., the originally Malaysian/Philippinean neem A. excelsa (Jack) and, as a close relative, the Persian lilac, Melia azedarach. The major and most active natural products are azadirachtin, salannin, nimbin and marrangin from Azadirachta species, and azadirachtin analogues like meliantriol from Melia species. Neem fruits, leaves, bark, and roots have specific virtues. They have been traditionally exploited for a considerable part of human history and are documented in Sanskrit texts. Due to human activity in trade and travel both at land and sea, the plant species has been distributed around the globe and is cultivated in many tropical, and subtropical regions. A multitude of natural products of neem have been isolated, chemically characterized or identified, and investigated for their properties in the management of insects, Acarina, Crustacea, nematodes, bacteria, fungi, viruses and soil fertility (for reviews see Kraus, 2002; Schmutterer, 2002A; Rembold, 2002; Koul, 2004; Schmutterer and Huber, 2005; Kleeberg and Strang, 2009; Hummel et al., 2008, 2011, 2012). Neem products are virtually nontoxic, compatible with beneficial insects, pollinators and bees. They are environmentally benign, sustainable, renewable, and of a price affordable for developed countries. In conclusion, neem is a prime example of a natural resource with many beneficial applications in agriculture, human and veterinary medicine. So far, its use is practically free of resistance problems which are frustratingly prevalent in many areas of synthetic insecticide and drug development. Investigating more neem applications will increase future human welfare and health while being of general ecological benefit to the planet. PMID:26084100

  19. NEEM: UNUSUALLY VERSATILE PLANT GENUS AZADIRACHTA WITH MANY USEFUL AND SO FAR INSUFFICIENTLY EXPLOITED PROPERTIES FOR AGRICULTURE, MEDICINE, AND INDUSTRY.

    PubMed

    Hummel, H E; Langner, S S; Leithold, G; Schmutterer, H

    2014-01-01

    Neem plants (Rutales: Meliaceae) are well known for their multitude of human benefits in various fields. Specifically well investigated are the Indian neem tree Azadirachta indica A. Juss., the Thai neem A. siamensis Val., the originally Malaysian/Philippinean neem A. excelsa (Jack) and, as a close relative, the Persian lilac, Melia azedarach. The major and most active natural products are azadirachtin, salannin, nimbin and marrangin from Azadirachta species, and azadirachtin analogues like meliantriol from Melia species. Neem fruits, leaves, bark, and roots have specific virtues. They have been traditionally exploited for a considerable part of human history and are documented in Sanskrit texts. Due to human activity in trade and travel both at land and sea, the plant species has been distributed around the globe and is cultivated in many tropical, and subtropical regions. A multitude of natural products of neem have been isolated, chemically characterized or identified, and investigated for their properties in the management of insects, Acarina, Crustacea, nematodes, bacteria, fungi, viruses and soil fertility (for reviews see Kraus, 2002; Schmutterer, 2002A; Rembold, 2002; Koul, 2004; Schmutterer and Huber, 2005; Kleeberg and Strang, 2009; Hummel et al., 2008, 2011, 2012). Neem products are virtually nontoxic, compatible with beneficial insects, pollinators and bees. They are environmentally benign, sustainable, renewable, and of a price affordable for developed countries. In conclusion, neem is a prime example of a natural resource with many beneficial applications in agriculture, human and veterinary medicine. So far, its use is practically free of resistance problems which are frustratingly prevalent in many areas of synthetic insecticide and drug development. Investigating more neem applications will increase future human welfare and health while being of general ecological benefit to the planet.

  20. LCA as a decision support tool for the environmental improvement of the operation of a municipal wastewater treatment plant.

    PubMed

    Pasqualino, Jorgelina C; Meneses, Montse; Abella, Montserrat; Castells, Francesc

    2009-05-01

    Life cycle assessment (LCA) methodology is used to evaluate the environmental profile of a product or process from its origin to its final destination. In this paper we used LCA to evaluate the current situation of a wastewater treatment plant and identify improvement alternatives. Currently, the highest environmental impacts are caused by the stages of the plant with the highest energy consumption, the use of biogas from anaerobic digestion (95% burned in torch) and the final destination of the sludge (98.6% for agricultural use and 1.4% for compost). We propose four alternatives for biogas applications and five alternatives for sludge applications and compare them to the current situation. The alternatives were incorporated in a decision support system to identify and prioritize the most positive environmental option. Using biogas to produce electricity or a combination of electricity and heat provided the best environmental options since the energy produced would be enough to supply all the stages of the plant, thus reducing their environmental impact. The best environmental option for the final destination of the sludge is to combine the current situation (fertilizer replacement) with use of the sludge in a cement plant (as a replacement for fuel and raw material). PMID:19534150

  1. Multiwalled carbon nanotubes and c60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants.

    PubMed

    De La Torre-Roche, Roberto; Hawthorne, Joseph; Deng, Yingqing; Xing, Baoshan; Cai, Wenjun; Newman, Lee A; Wang, Qiang; Ma, Xingmao; Hamdi, Helmi; White, Jason C

    2013-01-01

    The effect of multiwalled carbon nanotubes (MWCNT) or C60 fullerenes on the uptake of weathered chlordane or DDx (DDT + metabolites) by Cucurbita pepo (zucchini), Zea mays (corn), Solanum lycopersicum (tomato), and Glycine max (soybean) was investigated. The plants were grown in 50 g of soil with weathered chlordane (2150 ng/g) and DDx (118 ng/g) that was amended with 0, 500, 1000, or 5000 mg/kg MWCNT or C60. After 28 d, the root and shoot content of chlordane components and DDx was determined by GC-MS. Zucchini and tomato growth were unaffected by carbon nanomaterial coexposure, although C60 at 500 mg/kg reduced corn and soybean biomass by 36.5-45.0%. Total chlordane content ranged from 1490 (tomato) to 4780 (zucchini) ng; DDx amounts ranged from 77.8 (corn) to 395 ng (zucchini). MWCNT coexposure decreased chlordane and DDx accumulation 21-80% across all crops, depending on species and nanotube concentration. Conversely, C60 had species- and contaminant-specific effects on pesticide uptake, ranging from complete suppression of DDx uptake (corn/tomato) to 34.9% increases in chlordane accumulation (tomato/soybean). The data show that pesticide accumulation varies greatly with crop species and carbon nanomaterial type/concentration. These findings have implications for food safety and for the use of engineered nanomaterials in agriculture. PMID:24079803

  2. Multiwalled carbon nanotubes and c60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants.

    PubMed

    De La Torre-Roche, Roberto; Hawthorne, Joseph; Deng, Yingqing; Xing, Baoshan; Cai, Wenjun; Newman, Lee A; Wang, Qiang; Ma, Xingmao; Hamdi, Helmi; White, Jason C

    2013-01-01

    The effect of multiwalled carbon nanotubes (MWCNT) or C60 fullerenes on the uptake of weathered chlordane or DDx (DDT + metabolites) by Cucurbita pepo (zucchini), Zea mays (corn), Solanum lycopersicum (tomato), and Glycine max (soybean) was investigated. The plants were grown in 50 g of soil with weathered chlordane (2150 ng/g) and DDx (118 ng/g) that was amended with 0, 500, 1000, or 5000 mg/kg MWCNT or C60. After 28 d, the root and shoot content of chlordane components and DDx was determined by GC-MS. Zucchini and tomato growth were unaffected by carbon nanomaterial coexposure, although C60 at 500 mg/kg reduced corn and soybean biomass by 36.5-45.0%. Total chlordane content ranged from 1490 (tomato) to 4780 (zucchini) ng; DDx amounts ranged from 77.8 (corn) to 395 ng (zucchini). MWCNT coexposure decreased chlordane and DDx accumulation 21-80% across all crops, depending on species and nanotube concentration. Conversely, C60 had species- and contaminant-specific effects on pesticide uptake, ranging from complete suppression of DDx uptake (corn/tomato) to 34.9% increases in chlordane accumulation (tomato/soybean). The data show that pesticide accumulation varies greatly with crop species and carbon nanomaterial type/concentration. These findings have implications for food safety and for the use of engineered nanomaterials in agriculture.

  3. Biogas production from ensiled meadow grass; effect of mechanical pretreatments and rapid determination of substrate biodegradability via physicochemical methods.

    PubMed

    Tsapekos, P; Kougias, P G; Angelidaki, I

    2015-04-01

    As the biogas sector is rapidly expanding, there is an increasing need in finding new alternative feedstock to biogas plants. Meadow grass can be a suitable co-substrate and if ensiled it can be supplied to biogas plants continuously throughout the year. Nevertheless, this substrate is quite recalcitrant and therefore efficient pretreatment is needed to permit easy access of microbes to the degradable components. In this study, different mechanical pretreatment methods were applied on ensiled meadow grass to investigate their effect on biomass biodegradability. All the tested pretreatments increased the methane productivity and the increase ranged from 8% to 25%. The best mechanical pretreatment was the usage of two coarse mesh grating plates. Additionally, simple analytical methods were conducted to investigate the possibility of rapidly determining the methane yield of meadow grass. Among the methods, electrical conductivity test showed the most promising calibration statistics (R(2)=0.68).

  4. Ultrasound assisted biogas production from landfill leachate

    SciTech Connect

    Oz, Nilgün Ayman Yarimtepe, Canan Can

    2014-07-15

    Highlights: • Effect of low frequency ultrasound pretreatment on leachate was investigated. • Three different ultrasound energy inputs (200, 400 and 600 W/l) was applied. • Low-frequency ultrasound treatment increased soluble COD in landfill leachate. • Application of ultrasound to leachate increased biogas production about 40%. • Application of ultrasound to leachate increased total methane production rate about 20%. - Abstract: The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency

  5. Fuel Cells on Bio-Gas (Presentation)

    SciTech Connect

    Remick, R. J.

    2009-03-04

    The conclusions of this presentation are: (1) Fuel cells operating on bio-gas offer a pathway to renewable electricity generation; (2) With federal incentives of $3,500/kW or 30% of the project costs, reasonable payback periods of less than five years can be achieved; (3) Tri-generation of electricity, heat, and hydrogen offers an alternative route to solving the H{sub 2} infrastructure problem facing fuel cell vehicle deployment; and (4) DOE will be promoting bio-gas fuel cells in the future under its Market Transformation Programs.

  6. Effect of two biogas residues' application on copper and zinc fractionation and release in different soils.

    PubMed

    Chen, Miao; Cui, Yanshan; Bai, Fan; Wang, Jiaojiao

    2013-09-01

    Biogas residue (BR) is widely used as a new green fertilizer in agriculture in China. However, it often contains a high concentration of heavy metals so its application should cause our concern. An incubation experiment was conducted to study the risk of pig biogas residue (PBR) and chicken biogas residue (CBR) application on Liuminying soil (LS) and Yixing soil (YS). The soils were incubated for one, three and six months with 0, 2%, 4% and 6% addition of BRs. According to BCR extraction results, the PBR and CBR applications induced an increase in the concentration of exchangeable fraction of Zn. As for the concentration of exchangeable fraction of Cu, an increase was only observed in the treatments with PBR application. The heavy metal binding intensity also showed a similar trend. With the PBR application, for the LS and YS, the highest concentrations of exchangeable Zn increased 3.6 and 9.5 times, respectively, while the exchangeable Cu was increased by 52.6% and 187.1%. Dissolved organic carbon was the limiting factor for the exchangeable Cu while the exchangeable Zn was controlled by soil pH. PBR presented more agricultural risk than CBR when used as fertilizer. Meanwhile, BRs were more adaptable to LS than YS according to the heavy metal release results. PMID:24520730

  7. Process for electric power production using a biogas

    SciTech Connect

    Archer, D.H.; Bauer, F.I.; Vidt, E.J.

    1987-01-27

    A process is described for the production of electric power with a biogas used as a fuel for an electric power producing combustion turbine which drives a generator. The turbine will accept such a biogas only at a temperature below a predetermined temperature, wherein a biomass is gasified to produce a hot stream of a biogas. The biogas is at temperatures of between about 650/sup 0/-875/sup 0/C and contains vaporized tar components and solid particulate matter. It is characterized in that: the hot stream of biogas, consisting essentially of a biogas, vaporized tars and solid particulate matter, has water injected thereto partially cool the biogas to a temperature below the predetermined temperature by vaporization of the water. However, the biogas is above a temperature at which the vaporized tars in the biogas would condense out of the stream; filtering the partially cooled biogas to remove the particulate matter; and directly charging the partially cooled, filtered biogas containing the vaporized water and vaporized tars to an electric power producing combustion turbine to produce electric power.

  8. Science of Agricultural Plants

    ERIC Educational Resources Information Center

    Murdock, Ashleigh Barbee, Ed.

    2010-01-01

    Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…

  9. Metal-organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy.

    PubMed

    Chaemchuen, Somboon; Kabir, Nawsad Alam; Zhou, Kui; Verpoort, Francis

    2013-12-21

    In the midst of the global climate change phenomenon, mainly caused by fossil fuel burning to provide energy for our daily life and discharge of CO2 into the atmosphere, biogas is one of the important renewable energy sources that can be upgraded and applied as a fuel source for energy in daily life. The advantages of the production of hybrid materials, metal-organic framework (MOF) adsorbents, expected for the biogas upgrading, rely on the bulk separation of CO2 under near-ambient conditions. This review highlights the challenges for MOF adsorbents, which have the greatest upgrading abilities for biogas via selective passage of methane. The key factors improving the ideal MOF materials for these high CO2 capture and selectivity uses for biogas upgrading to produce bio-methane and reduce fossil-fuel CO2 emission will be discussed.

  10. Improving the prediction of arsenic contents in agricultural soils by combining the reflectance spectroscopy of soils and rice plants

    NASA Astrophysics Data System (ADS)

    Shi, Tiezhu; Wang, Junjie; Chen, Yiyun; Wu, Guofeng

    2016-10-01

    Visible and near-infrared reflectance spectroscopy provides a beneficial tool for investigating soil heavy metal contamination. This study aimed to investigate mechanisms of soil arsenic prediction using laboratory based soil and leaf spectra, compare the prediction of arsenic content using soil spectra with that using rice plant spectra, and determine whether the combination of both could improve the prediction of soil arsenic content. A total of 100 samples were collected and the reflectance spectra of soils and rice plants were measured using a FieldSpec3 portable spectroradiometer (350-2500 nm). After eliminating spectral outliers, the reflectance spectra were divided into calibration (n = 62) and validation (n = 32) data sets using the Kennard-Stone algorithm. Genetic algorithm (GA) was used to select useful spectral variables for soil arsenic prediction. Thereafter, the GA-selected spectral variables of the soil and leaf spectra were individually and jointly employed to calibrate the partial least squares regression (PLSR) models using the calibration data set. The regression models were validated and compared using independent validation data set. Furthermore, the correlation coefficients of soil arsenic against soil organic matter, leaf arsenic and leaf chlorophyll were calculated, and the important wavelengths for PLSR modeling were extracted. Results showed that arsenic prediction using the leaf spectra (coefficient of determination in validation, Rv2 = 0.54; root mean square error in validation, RMSEv = 12.99 mg kg-1; and residual prediction deviation in validation, RPDv = 1.35) was slightly better than using the soil spectra (Rv2 = 0.42, RMSEv = 13.35 mg kg-1, and RPDv = 1.31). However, results also showed that the combinational use of soil and leaf spectra resulted in higher arsenic prediction (Rv2 = 0.63, RMSEv = 11.94 mg kg-1, RPDv = 1.47) compared with either soil or leaf spectra alone. Soil spectral bands near 480, 600, 670, 810, 1980, 2050 and

  11. The potential for tree planting strategies to reduce local and regional ecosystem impacts of agricultural ammonia emissions.

    PubMed

    Bealey, W J; Dore, A J; Dragosits, U; Reis, S; Reay, D S; Sutton, M A

    2016-01-01

    Trees are very effective at capturing both gaseous and particulate pollutants from the atmosphere. But while studies have often focussed on PM and NOx in the urban environment, little research has been carried out on the tree effect of capturing gaseous emissions of ammonia in the rural landscape. To examine the removal or scavenging of ammonia by trees a long-range atmospheric model (FRAME) was used to compare two strategies that could be used in emission reduction policies anywhere in the world where nitrogen pollution from agriculture is a problem. One strategy was to reduce the emission source strength of livestock management systems by implementing two 'tree-capture' systems scenarios - tree belts downwind of housing and managing livestock under trees. This emission reduction can be described as an 'on-farm' emission reduction policy, as ammonia is 'stopped' from dispersion outside the farm boundaries. The second strategy was to apply an afforestation policy targeting areas of high ammonia emission through two planting scenarios of increasing afforestation by 25% and 50%. Both strategies use trees with the aim of intercepting NH3 emissions to protect semi-natural areas. Scenarios for on-farm emission reductions showed national reductions in nitrogen deposition to semi-natural areas of 0.14% (0.2 kt N-NHx) to 2.2% (3.15 kt N-NHx). Scenarios mitigating emissions from cattle and pig housing gave the highest reductions. The afforestation strategy showed national reductions of 6% (8.4 kt N-NHx) to 11% (15.7 kt N-NHx) for 25% and 50% afforestation scenarios respectively. Increased capture by the planted trees also showed an added benefit of reducing long range effects including a decrease in wet deposition up to 3.7 kt N-NHx (4.6%) and a decrease in export from the UK up to 8.3 kt N-NHx (6.8%).

  12. The potential for tree planting strategies to reduce local and regional ecosystem impacts of agricultural ammonia emissions.

    PubMed

    Bealey, W J; Dore, A J; Dragosits, U; Reis, S; Reay, D S; Sutton, M A

    2016-01-01

    Trees are very effective at capturing both gaseous and particulate pollutants from the atmosphere. But while studies have often focussed on PM and NOx in the urban environment, little research has been carried out on the tree effect of capturing gaseous emissions of ammonia in the rural landscape. To examine the removal or scavenging of ammonia by trees a long-range atmospheric model (FRAME) was used to compare two strategies that could be used in emission reduction policies anywhere in the world where nitrogen pollution from agriculture is a problem. One strategy was to reduce the emission source strength of livestock management systems by implementing two 'tree-capture' systems scenarios - tree belts downwind of housing and managing livestock under trees. This emission reduction can be described as an 'on-farm' emission reduction policy, as ammonia is 'stopped' from dispersion outside the farm boundaries. The second strategy was to apply an afforestation policy targeting areas of high ammonia emission through two planting scenarios of increasing afforestation by 25% and 50%. Both strategies use trees with the aim of intercepting NH3 emissions to protect semi-natural areas. Scenarios for on-farm emission reductions showed national reductions in nitrogen deposition to semi-natural areas of 0.14% (0.2 kt N-NHx) to 2.2% (3.15 kt N-NHx). Scenarios mitigating emissions from cattle and pig housing gave the highest reductions. The afforestation strategy showed national reductions of 6% (8.4 kt N-NHx) to 11% (15.7 kt N-NHx) for 25% and 50% afforestation scenarios respectively. Increased capture by the planted trees also showed an added benefit of reducing long range effects including a decrease in wet deposition up to 3.7 kt N-NHx (4.6%) and a decrease in export from the UK up to 8.3 kt N-NHx (6.8%). PMID:26413804

  13. Processed vs. Non-Processed Biowastes for Agriculture: Effects of Post-Harvest Tomato Plants and Biochar on Radish Growth, Chlorophyll Content and Protein Production

    PubMed Central

    Mozzetti Monterumici, Chiara; Rosso, Daniele; Montoneri, Enzo; Ginepro, Marco; Baglieri, Andrea; Novotny, Etelvino Henrique; Kwapinski, Witold; Negre, Michèle

    2015-01-01

    The aim of this work was to address the issue of processed vs. non-processed biowastes for agriculture, by comparing materials widely differing for the amount of process energy consumption. Thus, residual post harvest tomato plants (TP), the TP hydrolysates obtained at pH 13 and 60 °C, and two known biochar products obtained by 650 °C pyrolysis were prepared. All products were characterized and used in a cultivation of radish plants. The chemical composition and molecular nature of the materials was investigated by solid state 13C NMR spectrometry, elemental analysis and potentiometric titration. The plants were analysed for growth and content of chlorophyll, carotenoids and soluble proteins. The results show that the TP and the alkaline hydrolysates contain lignin, hemicellulose, protein, peptide and/or amino acids moieties, and several mineral elements. The biochar samples contain also similar mineral elements, but the organic fraction is characterized mainly by fused aromatic rings. All materials had a positive effect on radish growth, mainly on the diameter of roots. The best performances in terms of plant growth were given by miscanthus originated biochar and TP. The most significant effect was the enhancement of soluble protein content in the plants treated with the lowest energy consumption non processed TP. The significance of these findings for agriculture and the environment is discussed. PMID:25906472

  14. Processed vs. non-processed biowastes for agriculture: effects of post-harvest tomato plants and biochar on radish growth, chlorophyll content and protein production.

    PubMed

    Mozzetti Monterumici, Chiara; Rosso, Daniele; Montoneri, Enzo; Ginepro, Marco; Baglieri, Andrea; Novotny, Etelvino Henrique; Kwapinski, Witold; Negre, Michèle

    2015-01-01

    The aim of this work was to address the issue of processed vs. non-processed biowastes for agriculture, by comparing materials widely differing for the amount of process energy consumption. Thus, residual post harvest tomato plants (TP), the TP hydrolysates obtained at pH 13 and 60 °C, and two known biochar products obtained by 650 °C pyrolysis were prepared. All products were characterized and used in a cultivation of radish plants. The chemical composition and molecular nature of the materials was investigated by solid state 13C NMR spectrometry, elemental analysis and potentiometric titration. The plants were analysed for growth and content of chlorophyll, carotenoids and soluble proteins. The results show that the TP and the alkaline hydrolysates contain lignin, hemicellulose, protein, peptide and/or amino acids moieties, and several mineral elements. The biochar samples contain also similar mineral elements, but the organic fraction is characterized mainly by fused aromatic rings. All materials had a positive effect on radish growth, mainly on the diameter of roots. The best performances in terms of plant growth were given by miscanthus originated biochar and TP. The most significant effect was the enhancement of soluble protein content in the plants treated with the lowest energy consumption non processed TP. The significance of these findings for agriculture and the environment is discussed. PMID:25906472

  15. Bio-gas production from alligator weeds

    NASA Technical Reports Server (NTRS)

    Latif, A.

    1976-01-01

    Laboratory experiments were conducted to study the effect of temperature, sample preparation, reducing agents, light intensity and pH of the media, on bio-gas and methane production from the microbial anaerobic decomposition of alligator weeds (Alternanthera philoxeroides. Efforts were also made for the isolation and characterization of the methanogenic bacteria.

  16. Biogas/biofertilizer business handbook (third edition)

    SciTech Connect

    Arnott, M.

    1985-07-01

    The handbook covers biogas systems, including raw material preparation, digesters, separate gas storage tanks, use of gas to run engines, and the use of sludge as fertilizer. Also covers secondary projects such as flat-plate solar collector water heaters, composting, and bio-insecticides.

  17. Biogas desulfurization using autotrophic denitrification process.

    PubMed

    Bayrakdar, Alper; Tilahun, Ebrahim; Calli, Baris

    2016-01-01

    The aim of this study was to evaluate the performance of an autotrophic denitrification process for desulfurization of biogas produced from a chicken manure digester. A laboratory scale upflow fixed bed reactor (UFBR) was operated for 105 days and fed with sodium sulfide or H2S scrubbed from the biogas and nitrate as electron donor and acceptor, respectively. The S/N ratio (2.5 mol/mol) of the feed solution was kept constant throughout the study. When the UFBR was fed with sodium sulfide solution with an influent pH of 7.7, about 95 % sulfide and 90 % nitrate removal efficiencies were achieved. However, the inlet of the UFBR was clogged several times due to the accumulation of biologically produced elemental sulfur particles and the clogging resulted in operational problems. When the UFBR was fed with the H2S absorbed from the biogas and operated with an influent pH of 8-9, around 98 % sulfide and 97 % nitrate removal efficiencies were obtained. In this way, above 95 % of the H2S in the biogas was removed as elemental sulfur and the reactor effluent was reused as scrubbing liquid without any clogging problem.

  18. Membrane separation of CO{sub 2} and H{sub 2}S from biogas for industrial cogeneration purposes

    SciTech Connect

    Calabro, L.A.; Friedman, A.A.; Stern, S.A.; Krishnakumar, B.

    1996-11-01

    Membrane separation processes are being used on an increasingly larger scale for a wide variety of gas mixtures. The objective of this study was to assess the feasibility and economics of a new membrane separation process for upgrading the CH{sub 4} content of biogas produced by anaerobic processes in industrial wastewater treatment plants. The upgraded biogas can be utilized for the cogeneration of electricity and heat, which could result in substantial savings in plant operation costs. This paper reports preliminary results of laboratory and pilot plant studies on the separation of CO{sub 2} and H{sub 2}S from mixtures with CH{sub 4} by means of polymer membranes in the form of hollow fibers. Both synthetic CH{sub 4}/CO{sub 2} and CH{sub 4}/CO{sub 2}H{sub 2}S mixtures and biogas produced in a municipal wastewater treatment plant were used in a range of elevated pressures selected to determine optimum operating conditions. These data were used to develop economic assessments of cogeneration systems fueled with biogas upgraded by membrane systems.

  19. Ultrasound assisted biogas production from landfill leachate.

    PubMed

    Oz, Nilgün Ayman; Yarimtepe, Canan Can

    2014-07-01

    The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman's test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p<0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann-Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p<0.05) in anaerobic batch reactors. The overall results showed that low frequency ultrasound pretreatment can be potentially used for wastewater management especially with integration of anaerobic processes.

  20. Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community composition.

    PubMed

    Kovács, Etelka; Wirth, Roland; Maróti, Gergely; Bagi, Zoltán; Rákhely, Gábor; Kovács, Kornél L

    2013-01-01

    It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids) in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM) significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM) were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the alterations in

  1. Environmental balance of the UK biogas sector: An evaluation by consequential life cycle assessment.

    PubMed

    Styles, David; Dominguez, Eduardo Mesa; Chadwick, Dave

    2016-08-01

    Anaerobic digestion (AD) is expanding rapidly in the UK. Previous life cycle assessment (LCA) studies have highlighted the sensitivity of environmental outcomes to feedstock type, fugitive emissions, biomethane use, energy conversion efficiency and digestate management. We combined statistics on current and planned AD deployment with operational data from a survey of biogas plant operators to evaluate the environmental balance of the UK biogas sector for the years 2014 and 2017. Consequential LCA was applied to account for all major environmental credits and burdens incurred, including: (i) substitution of composting, incineration, sewer disposal, field decomposition and animal feeding of wastes; (ii) indirect land use change (ILUC) incurred by the cultivation of crops used for biogas production and to compensate for bakery and brewery wastes diverted from animal feed. In 2014, the UK biogas sector reduced greenhouse gas (GHG) emissions by 551-755Gg CO2e excluding ILUC, or 238-755Gg CO2e including ILUC uncertainty. Fossil energy depletion was reduced by 8.9-10.8PJe, but eutrophication and acidification burdens were increased by 1.8-3.4Gg PO4e and 8.1-14.6Gg SO2e, respectively. Food waste and manure feedstocks dominate GHG abatement, largely through substitution of in-vessel composting and manure storage, whilst food waste and crop feedstocks dominate fossil energy credit, primarily through substitution of natural gas power generation. Biogas expansion is projected to increase environmental credits and loadings by a factor of 2.4 by 2017. If all AD bioelectricity replaced coal generation, or if 90% of biomethane replaced transport diesel or grid natural gas, GHG abatement would increase by 131%, 38% and 20%, respectively. Policies to encourage digestion of food waste and manures could maximize GHG abatement, avoiding the risk of carbon leakage associated with use of crops and wastes otherwise used to feed livestock. Covering digestate stores could largely mitigate

  2. Ecological and health risk-based characterization of agricultural soils contaminated with polycyclic aromatic hydrocarbons in the vicinity of a chemical plant in China.

    PubMed

    Liu, Geng; Niu, Junjie; Guo, Wenjiong; An, Xiangsheng; Zhao, Long

    2016-11-01

    Polycyclic aromatic hydrocarbons (PAHs) from chemical plants can cause serious pollution of surrounding agricultural soils. A comprehensive study of agricultural soils was conducted in the vicinity of a chemical plant in China to characterize the soil PAH concentration, as well as their composition and sources. Human health and a screening-level ecological risk assessment were conducted for PAH contamination in agricultural soils. The results showed that the total concentrations of 16 priority PAHs ranged from 250.49 to 9387.26 ng g(-1), with an average of 2780.42 ng g(-1). High molecular weight PAHs (four to six rings) were the dominant component, accounting for more than 60% of all PAHs. Principal component analysis (PCA) and positive matrix factorization model (PMF) suggested that diesel emissions, coal combustion, coke ovens, and fuel combustion and gasoline emissions were the main sources of PAHs in agricultural soils. The ecological risk assessment results based on the effects range-low (ERL), the effects range-median (ERM), and the ecological screening levels (ESL) indicated that the exposure to ∑PAH16 was >ERL, >ERM, and ≥ERL and ESL at 78.1% of the soil sampling stations, and could induce biological effects in mammals. The Bapeq concentrations posed a potential carcinogenic risk to humans. Further risk management and control of soil PAHs in these agricultural soils is required to ensure the safety of the biocoenosis and human health. PMID:27565314

  3. Crop monitoring using remote sensing orientated for government decision making and agricultural management: a case study of China's soybean planting area estimation

    NASA Astrophysics Data System (ADS)

    Yang, Bangjie; Qian, Yonglan; Pei, Zhiyuan; Jiao, Xianfeng

    2006-12-01

    China is one of the main soybean production countries in the world and soybean is of great importance in agricultural industry, domestic consumption and international trade. In recent years, however, China has become the largest soybean importer in the world. Therefore timely credible information about soybean planting area and production is essential for government decision making and agricultural management on domestic consumption and international trade. Moreover, information on soybean planting and continuous planting location is critical for distributing farmer subsidies and production management. In this paper, an operational system based on multi-resolution remotely sensed data was developed for the soybean area inventory and continuous cropping area monitoring. A stratified sampling method is employed to extract and locate major soybean-planting regions, which are later surveyed using remote sensing data. At the same time, sub regions are constructed based on cropping systems in which remotely sensed data of different resolutions are applied for the soybean area estimation and replanting area location assessment.

  4. Spatial distribution of Aglais urticae (L.) and its host plant Urtica dioica (L.) in an agricultural landscape: implications for Bt maize risk assessment and post-market monitoring.

    PubMed

    Gathmann, Achim; Wirooks, Ludger; Eckert, Jörg; Schuphan, Ingolf

    2006-01-01

    Over the past decades, genes of Bacillus thuringiensis var. kurstaki (Berliner) (Bt) coding for protein toxins have been engineered into maize for protection against the European Corn Borer (Ostrinia nubilalis (Hbn.)). However, these transgenic plants may have an impact on non-target organisms. In particular, a potential hazard was identified for non-target lepidopteran larvae, if they consume Bt maize pollen on their host plants. Risk can be defined as a function of the effect of an event (hazard) and the likelihood of this event occurring. Although data on toxicity (hazard) are available from many lab and field studies, knowledge about the environmental exposure of European lepidopteran larvae is incomplete at the population level. Therefore we studied the distribution of small tortoiseshell caterpillars (Aglais urticae (L.)) and its host plant in an agricultural landscape in Germany, to estimate the potential population exposure to maize pollen. The results showed that larvae of the small tortoiseshell developed primarily on freshly sprouted nettle stands (Urtica dioica (L.)) in field margins, rather than adjacent to hedges and groves. However, the main distribution was at margins of cereal (non-maize) fields, where 70% of all larvae were found. This may be due the fact that cereals covered 54% of the survey area, while maize only covered 6.1%. On the other hand, maize fields seem so show higher food plant densities than cereal crops. The results must be interpreted carefully, as the data basis of the present study is very small, and the situation can vary between years due to crop rotation or other changes in agricultural practices. Therefore it is still questionable whether the small tortoiseshell is significantly exposed to maize pollen. For a conclusive risk assessment, more replications and surveys of larger areas in different intensively managed agricultural landscapes over several years are needed. PMID:16978572

  5. Biogas Potential in the United States (Fact Sheet)

    SciTech Connect

    Not Available

    2013-10-01

    Biogas has received increased attention as an alternative energy source in the United States. The factsheet provides information about the biogas (methane) potential from various sources in the country (by county and state) and estimates the power generation and transportation fuels production (renewable natural gas) potential from these biogas sources. It provides valuable information to the industry, academia and policy makers in support of their future decisions.

  6. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review

    PubMed Central

    Taherzadeh, Mohammad J.; Karimi, Keikhosro

    2008-01-01

    Lignocelluloses are often a major or sometimes the sole components of different waste streams from various industries, forestry, agriculture and municipalities. Hydrolysis of these materials is the first step for either digestion to biogas (methane) or fermentation to ethanol. However, enzymatic hydrolysis of lignocelluloses with no pretreatment is usually not so effective because of high stability of the materials to enzymatic or bacterial attacks. The present work is dedicated to reviewing the methods that have been studied for pretreatment of lignocellulosic wastes for conversion to ethanol or biogas. Effective parameters in pretreatment of lignocelluloses, such as crystallinity, accessible surface area, and protection by lignin and hemicellulose are described first. Then, several pretreatment methods are discussed and their effects on improvement in ethanol and/or biogas production are described. They include milling, irradiation, microwave, steam explosion, ammonia fiber explosion (AFEX), supercritical CO2 and its explosion, alkaline hydrolysis, liquid hot-water pretreatment, organosolv processes, wet oxidation, ozonolysis, dilute-and concentrated-acid hydrolyses, and biological pretreatments. PMID:19325822

  7. New practical and theoretical approaches to the induction of morphogenesis from plant tumors in vitro using new types of plant growth regulators: towards constructive paradigms in agriculture and medicine.

    PubMed

    Lieber, Michael M

    2013-01-01

    Using classical or traditional plant growth regulators, calli or plant tumors have been produced in vitro and subsequently have been induced to produce buds and plantlets, a process referred to as regeneration. For many years, this has been a successful procedure for in vitro, plant propagation. However, for a number of plant species investigators could not induce calli in vitro to produce buds. Organogenesis was still recalcitrant for various plants in 1980. New types or nonconventional growth regulators, such as methylglyoxal and ascorbic acid, were then found to overcome recalcitrant organogenesis in vitro. Their successful or effective use gave support to a theory that stressful, non-uniform cohesive force-fields, electromagnetic in nature, occurring through the application of certain chemicals, are necessary for in vitro morphogenesis from plant neoplasm or callus. Morphogenesis is seen as an adaptive accommodation to the inner stresses from such non-uniform, cohesive forces. Diverse chemicals, not considered traditional plant growth regulators would, it has been conjectured, enable the generation of such cohesive forces, in non-uniform arrays, and it has been predicted that more chemicals of this type will be discovered. A new constructive approach to agriculture and medicine, using a new plant tissue-culture model, based on new theory, has also been predicted.

  8. Impact assessment of treated/untreated wastewater toxicants discharged by sewage treatment plants on health, agricultural, and environmental quality in the wastewater disposal area.

    PubMed

    Singh, Kunwar P; Mohan, Dinesh; Sinha, Sarita; Dalwani, R

    2004-04-01

    Studies were undertaken to assess the impact of wastewater/sludge disposal (metals and pesticides) from sewage treatment plants (STPs) in Jajmau, Kanpur (5 MLD) and Dinapur, Varanasi (80 MLD), on health, agriculture and environmental quality in the receiving/application areas around Kanpur and Varanasi in Uttar Pradesh, India. The raw, treated and mixed treated urban wastewater samples were collected from the inlet and outlet points of the plants during peak (morning and evening) and non-peak (noon) hours. The impact of the treated wastewater toxicants (metals and pesticides) on the environmental quality of the disposal area was assessed in terms of their levels in different media samples viz., water, soil, crops, vegetation, and food grains. The da