Science.gov

Sample records for agricultural biotechnology research

  1. Considerations for conducting research in agricultural biotechnology.

    PubMed

    Shelton, Anthony M

    2003-06-01

    Science has shown its increased vulnerability because of two recent high-profile articles published in major journals on corn produced through biotechnology: a laboratory report suggesting profound consequences to monarch butterfly populations due to Bt corn pollen and a report suggesting transgenic introgression into Mexican maize. While both studies have been widely regarded as having flawed methodology, publishing these studies has created great consternation in the scientific community, regulatory agencies and the general public. There are roles and responsibilities of scientists, scientific journals, the public media, public agencies, and those who oppose or advocate a specific technology, and serious consequences when those roles and responsibilities go awry. Modern communication may exacerbate the flow of misinformation and easily lead to a decline in public confidence about biotechnology and science. However, common sense tells us that scientific inquiry and the publication and reporting of results should be performed with high standards of ethical behavior, regardless of one's personal perspective on agricultural biotechnology.

  2. Biotechnology and Agriculture.

    ERIC Educational Resources Information Center

    Kenney, Martin

    Even at this early date in the application of biotechnology to agriculture, it is clear that agriculture may provide the largest market for new or less expensive biotechnologically manufactured products. The chemical and pharmaceutical industries that hold important positions in agricultural inputs are consolidating their positions by purchasing…

  3. "Othering" agricultural biotechnology: Slovenian media representation of agricultural biotechnology.

    PubMed

    Zajc, Jožica; Erjavec, Karmen

    2014-08-01

    While studies on media representations of agricultural biotechnology mostly analyse media texts, this work is intended to fill a research gap with an analysis of journalistic interpretations of media representations. The purpose of this project was to determine how news media represent agricultural biotechnology and how journalists interpret their own representations. A content and critical discourse analysis of news texts published in the Slovenian media over two years and in-depth interviews with their authors were conducted. News texts results suggest that most of the news posts were "othering" biotechnology and biotechnologists: biotechnology as a science and individual scientists are represented as "they," who are socially irresponsible, ignorant, arrogant, and "our" enemies who produce unnatural processes and work for biotechnology companies, whose greed is destroying people, animals, and the environment. Most journalists consider these representations to be objective because they have published the biotechnologists' opinions, despite their own negative attitudes towards biotechnology.

  4. Recent progress in agricultural biotechnology and opportunities for contract research and development.

    PubMed

    Kolodziejczyk, P P; Fedec, P

    1999-01-01

    The global market for agriculture products and agriculture-based value-added products is undergoing change as the top players in agriculture and agricultural biotechnology face increased consolidation and ultimately form alliances in development, production and marketing. Transgenic plants for human consumption and industrial applications are entering the marketplace. Novel, genetically engineered, plant-based organisms (GMO) designed for resistance to herbicides, pesticides and environmental stress or for the production of valuable chemicals, pharmaceuticals and vaccines are available. A growing demand for bioprocessing, test production, scale-up or providing data for registration has created new opportunities for contract research and development (CR&D) firms. PMID:10335382

  5. Recent progress in agricultural biotechnology and opportunities for contract research and development.

    PubMed

    Kolodziejczyk, P P; Fedec, P

    1999-01-01

    The global market for agriculture products and agriculture-based value-added products is undergoing change as the top players in agriculture and agricultural biotechnology face increased consolidation and ultimately form alliances in development, production and marketing. Transgenic plants for human consumption and industrial applications are entering the marketplace. Novel, genetically engineered, plant-based organisms (GMO) designed for resistance to herbicides, pesticides and environmental stress or for the production of valuable chemicals, pharmaceuticals and vaccines are available. A growing demand for bioprocessing, test production, scale-up or providing data for registration has created new opportunities for contract research and development (CR&D) firms.

  6. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security.

    PubMed

    Anderson, Jennifer A; Gipmans, Martijn; Hurst, Susan; Layton, Raymond; Nehra, Narender; Pickett, John; Shah, Dilip M; Souza, Thiago Lívio P O; Tripathi, Leena

    2016-01-20

    As global populations continue to increase, agricultural productivity will be challenged to keep pace without overtaxing important environmental resources. A dynamic and integrated approach will be required to solve global food insecurity and position agriculture on a trajectory toward sustainability. Genetically modified (GM) crops enhanced through modern biotechnology represent an important set of tools that can promote sustainable agriculture and improve food security. Several emerging biotechnology approaches were discussed in a recent symposium organized at the 13th IUPAC International Congress of Pesticide Chemistry meeting in San Francisco, CA, USA. This paper summarizes the innovative research and several of the new and emerging technologies within the field of agricultural biotechnology that were presented during the symposium. This discussion highlights how agricultural biotechnology fits within the context of sustainable agriculture and improved food security and can be used in support of further development and adoption of beneficial GM crops. PMID:26785813

  7. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security.

    PubMed

    Anderson, Jennifer A; Gipmans, Martijn; Hurst, Susan; Layton, Raymond; Nehra, Narender; Pickett, John; Shah, Dilip M; Souza, Thiago Lívio P O; Tripathi, Leena

    2016-01-20

    As global populations continue to increase, agricultural productivity will be challenged to keep pace without overtaxing important environmental resources. A dynamic and integrated approach will be required to solve global food insecurity and position agriculture on a trajectory toward sustainability. Genetically modified (GM) crops enhanced through modern biotechnology represent an important set of tools that can promote sustainable agriculture and improve food security. Several emerging biotechnology approaches were discussed in a recent symposium organized at the 13th IUPAC International Congress of Pesticide Chemistry meeting in San Francisco, CA, USA. This paper summarizes the innovative research and several of the new and emerging technologies within the field of agricultural biotechnology that were presented during the symposium. This discussion highlights how agricultural biotechnology fits within the context of sustainable agriculture and improved food security and can be used in support of further development and adoption of beneficial GM crops.

  8. Agricultural biotechnology in developing countries.

    PubMed

    Dookun, A

    2001-01-01

    After a slow start many developing countries are now investing in agricultural biotechnology. Although these countries face several constraints, efforts are being made to promote biotechnology that requires high investment with long term returns. A number of donor agencies are providing incentives to stimulate biotechnology in the developing countries. There is however a major debate towards the development of biotechnology, especially genetically modified organisms, in the developing countries and there is a need for them to address biosafety issues and proper monitoring systems. The concern of intellectual property rights is a major issue in the developing countries in order to have access to the technologies that are often owned by multinational corporations in the industrialized countries.

  9. The costly benefits of opposing agricultural biotechnology.

    PubMed

    Apel, Andrew

    2010-11-30

    Rigorous application of a simple definition of what constitutes opposition to agricultural biotechnology readily encompasses a wide array of key players in national and international systems of food production, distribution and governance. Even though the sum of political and financial benefits of opposing agricultural biotechnology appears vastly to outweigh the benefits which accrue to providers of agricultural biotechnology, technology providers actually benefit from this opposition. If these barriers to biotechnology were removed, subsistence farmers still would not represent a lucrative market for improved seed. The sum of all interests involved ensures that subsistence farmers are systematically denied access to agricultural biotechnology.

  10. Beyond knowledge transfer: The social construction of autonomous academic science in university-industry agricultural biotechnology research collaborations

    NASA Astrophysics Data System (ADS)

    Biscotti, Dina Louise

    Autonomy is a social product. Although some might view autonomy as the absence of social interference in individual action, it is in fact produced through social institutions. It enables social actors to act; it is the justification for the allocation of enormous public resources into institutions classified as "public" or "nonprofit;" it can lead to innovation; and, significantly, it is key to the public acceptance of new technologies. In this dissertation, I analyze the social construction of autonomy for academic science in U.S. university-industry agricultural biotechnology research collaborations. University-industry relationships (UIRs) are a site of concern about the influence of commercial interests on academic science. Agricultural biotechnology is a contentious technology that has prompted questions about the ecological and public health implications of genetically-modified plants and animals. It has also spurred awareness of the industrialization of agriculture and accelerating corporate control of the global food system. Through analysis of in-depth interviews with over 200 scientists and administrators from nine U.S. research universities and thirty agricultural biotechnology companies, I find that both the academy and industry have a vested interest in the social construction of the academy as an autonomous space from which claims to objective, disinterested scientific knowledge can be made. These claims influence government regulation, as well as grower and public acceptance of agricultural biotechnology products. I argue that the social production of autonomy for academic science can be observed in narratives and practices related to: (1) the framing of when, how and why academic scientists collaborate with industry, (2) the meanings ascribed to and the uses deemed appropriate for industry monies in academic research, and (3) the dissemination of research results into the public domain through publications and patents. These narratives and practices

  11. 76 FR 48797 - Notice of the Advisory Committee on Biotechnology and 21st Century Agriculture Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ... Agricultural Research Service Notice of the Advisory Committee on Biotechnology and 21st Century Agriculture... on Biotechnology and 21st Century Agriculture (AC21). DATES: August 30-31, 2011. ADDRESSES: Rooms... consists of members representing the biotechnology industry, the organic food industry, farming...

  12. 77 FR 11064 - Notice of the Advisory Committee on Biotechnology and 21st Century Agriculture Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... Agricultural Research Service Notice of the Advisory Committee on Biotechnology and 21st Century Agriculture... Committee on Biotechnology and 21st Century Agriculture (AC21). DATES: The meeting dates are March 5-6, 2012..., 2012. The AC21 consists of members representing the biotechnology industry, the organic food...

  13. 76 FR 3599 - Renewal of the Advisory Committee on Biotechnology and 21st Century Agriculture

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ...; ] DEPARTMENT OF AGRICULTURE Agricultural Research Service Renewal of the Advisory Committee on Biotechnology... Biotechnology and 21st Century Agriculture (AC21) for a 2- year period. FOR FURTHER INFORMATION CONTACT... Committee Purpose: USDA supports the responsible development and application of biotechnology within...

  14. Food, agricultural and marine biotechnology in Chile.

    PubMed

    Aguilera, J M; Agosin, E; San Martín, R

    1993-10-01

    Economic segments with highest growth rates in Chile are those based on renewable resources like agriculture (fruits and vegetables), marine and forest products. Opportunities for biotechnology are based on a sound scientific base at universities, adequate funding and incipient industry-academia relationships. However, there is an urgent need to develop the engineering capabilities required to scale-up processes and to design, build and operate industrial biotechnology plants.

  15. Biotechnology in Agriculture. Teacher Edition.

    ERIC Educational Resources Information Center

    Peterson, Dennis R.; Rehberger, Thomas

    This curriculum guide is designed to help teachers to present a course that emphasizes the interrelationship of science and technology and the impact of this technology on agriculture and agricultural products. The guide contains six units that each contain some or all of the following basic components of a unit of instruction: objective sheet,…

  16. Industry Perceptions of University-Industry Relationships Related to Agricultural Biotechnology Research

    ERIC Educational Resources Information Center

    Glenna, Leland L.; Welsh, Rick; Lacy, William B.; Biscotti, Dina

    2007-01-01

    Following a rise in university-industry relationships (UIRs), scholars began questioning the efficacy of those relationships, as well as whether industry and university research interests and integrity are being compromised. Although many of these studies focus on the university, few examine the perspectives of industry participants. We conducted…

  17. How Japanese students reason about agricultural biotechnology.

    PubMed

    Maekawa, Fumi; Macer, Darryl

    2004-10-01

    Many have claimed that education of the ethical issues raised by biotechnology is essential in universities, but there is little knowledge of its effectiveness. The focus of this paper is to investigate how university students assess the information given in class to make their own value judgments and decisions relating to issues of agricultural biotechnology, especially over genetically modified organisms (GMOs). Analysis of homework reports related with agricultural biotechnology after identification of key concepts and ideas in each student report is presented. The ideas were sorted into different categories. The ideas were compared with those in the reading materials using the same categories. These categories included: concern about affects on humans, affects on the environment, developing countries and starvation, trust in industry, responsibility of scientists, risk perception, media influence, need for (international) organizations or third parties, and information dissemination. What was consistent through the different years was that more than half of the students took a "neutral" position. A report was scored as "neutral" when the report included both the positive and negative side of an issue, or when the student could not make a definite decision about the use of GMOs and GM food. While it may be more difficult to defend a strong ''for" or "against" position, some students used logical arguments successfully in doing so. Sample comments are presented to depict how Japanese students see agricultural technology, and how they value its application, with comparisons to the general social attitudes towards biotechnology.

  18. The impact of biotechnology on agricultural worker safety and health.

    PubMed

    Shutske, J M; Jenkins, S M

    2002-08-01

    Biotechnology applications such as the use and production of genetically modified organisms (GMOs) have been widely promoted, adopted, and employed by agricultural producers throughout the world. Yet, little research exists that examines the implications of agricultural biotechnology on the health and safety of workers involved in agricultural production and processing. Regulatory frameworks do exist to examine key issues related to food safety and environmental protection in GMO applications. However, based on the lack of research and regulatory oversight, it would appear that the potential impact on the safety and health of workers is of limited interest. This article examines some of the known worker health and safety implications related to the use and production of GMOs using the host, agent, and environment framework. The characteristics of employers, workers, inputs, production practices, and socio-economic environments in which future agricultural workers perform various tasks is likely to change based on the research summarized here. PMID:12363179

  19. The impact of biotechnology on agricultural worker safety and health.

    PubMed

    Shutske, J M; Jenkins, S M

    2002-08-01

    Biotechnology applications such as the use and production of genetically modified organisms (GMOs) have been widely promoted, adopted, and employed by agricultural producers throughout the world. Yet, little research exists that examines the implications of agricultural biotechnology on the health and safety of workers involved in agricultural production and processing. Regulatory frameworks do exist to examine key issues related to food safety and environmental protection in GMO applications. However, based on the lack of research and regulatory oversight, it would appear that the potential impact on the safety and health of workers is of limited interest. This article examines some of the known worker health and safety implications related to the use and production of GMOs using the host, agent, and environment framework. The characteristics of employers, workers, inputs, production practices, and socio-economic environments in which future agricultural workers perform various tasks is likely to change based on the research summarized here.

  20. Agricultural biotechnology and its contribution to the global knowledge economy.

    PubMed

    Aerni, Philipp

    2007-01-01

    The theory of neoclassical welfare economics largely shaped international and national agricultural policies during the Cold War period. It treated technology as an exogenous factor that could boost agricultural productivity but not necessarily sustainable agriculture. New growth theory, the economic theory of the new knowledge economy, treats technological change as endogenous and argues that intangible assets such as human capital and knowledge are the drivers of sustainable economic development. In this context, the combined use of agricultural biotechnology and information technology has a great potential, not just to boost economic growth but also to empower people in developing countries and improve the sustainable management of natural resources. This article outlines the major ideas behind new growth theory and explains why agricultural economists and agricultural policy-makers still tend to stick to old welfare economics. Finally, the article uses the case of the Cassava Biotechnology Network (CBN) to illustrate an example of how new growth theory can be applied in the fight against poverty. CBN is a successful interdisciplinary crop research network that makes use of the new knowledge economy to produce new goods that empower the poor and improve the productivity and nutritional quality of cassava. It shows that the potential benefits of agricultural biotechnology go far beyond the already known productivity increases and pesticide use reductions of existing GM crops.

  1. 76 FR 14895 - Request for Nominations to the Advisory Committee on Biotechnology and 21st Century Agriculture

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... Agricultural Research Service Request for Nominations to the Advisory Committee on Biotechnology and 21st...: Notice of request for nominations to the Advisory Committee on Biotechnology and 21st Century Agriculture... the Advisory Committee on Biotechnology and 21st Century Agriculture (AC21). DATES:...

  2. BIOTECHNOLOGY RESEARCH PROGRAM

    EPA Science Inventory

    In accordance with EPA's mission to minimize risks to human health and to safeguard ecological integrity, the EPA Office of Prevention, Pesticides, and Toxic Substances (OPPTS) is committed to assessing and mitigating any risk posed by biotechnology-derived crops. Consequently, ...

  3. Current and Future Leaders' Perceptions of Agricultural Biotechnology

    ERIC Educational Resources Information Center

    Wingenbach, Gary J.; Miller, Rene P.

    2009-01-01

    Were elected state FFA officers' attitudes toward agricultural biotechnology significantly different from elected Texas legislators' attitudes about the same topic? The purpose of this study was to determine if differences existed in agricultural biotechnology perceptions or information source preferences when compared by leadership status:…

  4. Evaluation of protein safety in the context of agricultural biotechnology.

    PubMed

    Delaney, Bryan; Astwood, James D; Cunny, Helen; Conn, Robin Eichen; Herouet-Guicheney, Corinne; Macintosh, Susan; Meyer, Linda S; Privalle, Laura; Gao, Yong; Mattsson, Joel; Levine, Marci

    2008-05-01

    One component of the safety assessment of agricultural products produced through biotechnology is evaluation of the safety of newly expressed proteins. The ILSI International Food Biotechnology Committee has developed a scientifically based two-tiered, weight-of-evidence strategy to assess the safety of novel proteins used in the context of agricultural biotechnology. Recommendations draw upon knowledge of the biological and chemical characteristics of proteins and testing methods for evaluating potential intrinsic hazards of chemicals. Tier I (potential hazard identification) includes an assessment of the biological function or mode of action and intended application of the protein, history of safe use, comparison of the amino acid sequence of the protein to other proteins, as well as the biochemical and physico-chemical properties of the proteins. Studies outlined in Tier II (hazard characterization) are conducted when the results from Tier I are not sufficient to allow a determination of safety (reasonable certainty of no harm) on a case-by-case basis. These studies may include acute and repeated dose toxicology studies and hypothesis-based testing. The application of these guidelines is presented using examples of transgenic proteins applied for agricultural input and output traits in genetically modified crops along with recommendations for future research considerations related to protein safety assessment.

  5. 78 FR 7387 - Advisory Committee on Biotechnology and 21st Century Agriculture; Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... the expanding dimensions and importance of agricultural biotechnology. The AC21 has been established... issues related to the expanding dimensions and importance of agricultural biotechnology. Dated:...

  6. 77 FR 48948 - Notice of the Advisory Committee on Biotechnology and 21st Century Agriculture Meeting; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ..., 202-720-3817. Correction In the Federal Register of August 6, 2012 in FR Doc. 151, on page 46681 in...; ] DEPARTMENT OF AGRICULTURE Agricultural Research Service Notice of the Advisory Committee on Biotechnology and... meeting of the Advisory Committee on Biotechnology and 21st Century Agriculture (AC21). The notice...

  7. Agricultural Communications Students' Awareness and Perceptions of Biotechnology Issues.

    ERIC Educational Resources Information Center

    Wingenbach, Gary J.; Rutherford, Tracy A.; Dunsford, Deborah W.

    2003-01-01

    Agricultural communications students (n=330) from 11 universities were most aware of biotechnology effects on food, less aware of effects on health and the environment. They were somewhat accepting of genetic modifications for plants, not humans. Sources of biotechnology knowledge were science classes, labs, and university professors' beliefs.…

  8. Challenges facing European agriculture and possible biotechnological solutions.

    PubMed

    Ricroch, Agnès; Harwood, Wendy; Svobodová, Zdeňka; Sági, László; Hundleby, Penelope; Badea, Elena Marcela; Rosca, Ioan; Cruz, Gabriela; Salema Fevereiro, Manuel Pedro; Marfà Riera, Victoria; Jansson, Stefan; Morandini, Piero; Bojinov, Bojin; Cetiner, Selim; Custers, René; Schrader, Uwe; Jacobsen, Hans-Joerg; Martin-Laffon, Jacqueline; Boisron, Audrey; Kuntz, Marcel

    2016-10-01

    Agriculture faces many challenges to maximize yields while it is required to operate in an environmentally sustainable manner. In the present study, we analyze the major agricultural challenges identified by European farmers (primarily related to biotic stresses) in 13 countries, namely Belgium, Bulgaria, the Czech Republic, France, Germany, Hungary, Italy, Portugal, Romania, Spain, Sweden, UK and Turkey, for nine major crops (barley, beet, grapevine, maize, oilseed rape, olive, potato, sunflower and wheat). Most biotic stresses (BSs) are related to fungi or insects, but viral diseases, bacterial diseases and even parasitic plants have an important impact on yield and harvest quality. We examine how these challenges have been addressed by public and private research sectors, using either conventional breeding, marker-assisted selection, transgenesis, cisgenesis, RNAi technology or mutagenesis. Both national surveys and scientific literature analysis followed by text mining were employed to evaluate genetic engineering (GE) and non-GE approaches. This is the first report of text mining of the scientific literature on plant breeding and agricultural biotechnology research. For the nine major crops in Europe, 128 BS challenges were identified with 40% of these addressed neither in the scientific literature nor in recent European public research programs. We found evidence that the private sector was addressing only a few of these "neglected" challenges. Consequently, there are considerable gaps between farmer's needs and current breeding and biotechnology research. We also provide evidence that the current political situation in certain European countries is an impediment to GE research in order to address these agricultural challenges in the future. This study should also contribute to the decision-making process on future pertinent international consortia to fill the identified research gaps.

  9. Challenges facing European agriculture and possible biotechnological solutions.

    PubMed

    Ricroch, Agnès; Harwood, Wendy; Svobodová, Zdeňka; Sági, László; Hundleby, Penelope; Badea, Elena Marcela; Rosca, Ioan; Cruz, Gabriela; Salema Fevereiro, Manuel Pedro; Marfà Riera, Victoria; Jansson, Stefan; Morandini, Piero; Bojinov, Bojin; Cetiner, Selim; Custers, René; Schrader, Uwe; Jacobsen, Hans-Joerg; Martin-Laffon, Jacqueline; Boisron, Audrey; Kuntz, Marcel

    2016-10-01

    Agriculture faces many challenges to maximize yields while it is required to operate in an environmentally sustainable manner. In the present study, we analyze the major agricultural challenges identified by European farmers (primarily related to biotic stresses) in 13 countries, namely Belgium, Bulgaria, the Czech Republic, France, Germany, Hungary, Italy, Portugal, Romania, Spain, Sweden, UK and Turkey, for nine major crops (barley, beet, grapevine, maize, oilseed rape, olive, potato, sunflower and wheat). Most biotic stresses (BSs) are related to fungi or insects, but viral diseases, bacterial diseases and even parasitic plants have an important impact on yield and harvest quality. We examine how these challenges have been addressed by public and private research sectors, using either conventional breeding, marker-assisted selection, transgenesis, cisgenesis, RNAi technology or mutagenesis. Both national surveys and scientific literature analysis followed by text mining were employed to evaluate genetic engineering (GE) and non-GE approaches. This is the first report of text mining of the scientific literature on plant breeding and agricultural biotechnology research. For the nine major crops in Europe, 128 BS challenges were identified with 40% of these addressed neither in the scientific literature nor in recent European public research programs. We found evidence that the private sector was addressing only a few of these "neglected" challenges. Consequently, there are considerable gaps between farmer's needs and current breeding and biotechnology research. We also provide evidence that the current political situation in certain European countries is an impediment to GE research in order to address these agricultural challenges in the future. This study should also contribute to the decision-making process on future pertinent international consortia to fill the identified research gaps. PMID:26133365

  10. Students' knowledge of, and attitudes towards biotechnology revisited, 1995-2014: Changes in agriculture biotechnology but not in medical biotechnology.

    PubMed

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-09-10

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and attitudes towards biotechnology for nearly two decades. Not surprisingly, knowledge of biotechnology of current students has increased significantly (p < 0.001) and most students have learned some definitions and examples of biotechnology. There was a positive correlation between biotechnology knowledge and attitudes toward biotechnology for current students who study Advanced Biology (AB). However, for current students who did not study AB, there was a negative correlation.The attitude results showed that students today expressed less favorable opinions toward agricultural biotechnology (p < 0.001) despite studying AB or not. However, there is no significant difference between students today and 18 years ago in opinions towards medical biotechnology. In addition, current students showed a greater concern involving environmental risks than former students. Interestingly, the high school curriculum did affect students' attitudes toward genetically engineered (GE) plants but not GE animals. Our current study also found that the students' attitude towards GE animals was influenced more by their limited knowledge than by their moral belief. On the basis of findings from this study, we suggest that more materials of emerging animal biotechnology should be included in high school curriculum and recommend that high school teachers and university faculty establish a collaborative framework in the near future. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):475-491, 2016.

  11. Agricultural Biotechnology Technician. National Voluntary Occupational Skill Standards.

    ERIC Educational Resources Information Center

    National Future Farmers of America Foundation, Madison, WI.

    The skill standards in this document were developed as a result of meetings between representatives of the agricultural industry and educational institutions to determine the skills and educational preparation required of an agricultural biotechnology technician, verified by technicians working in laboratories, greenhouses, animal facilities, and…

  12. Biotechnology: An Assessment of Agricultural Science Teachers' Knowledge and Attitudes

    ERIC Educational Resources Information Center

    Mowen, Diana L.; Roberts, T. Grady; Wingenbach, Gary J.; Harlin, Julie F.

    2007-01-01

    The purpose of this study was to explore agricultural science teachers' knowledge levels and attitudes toward biotechnology topics. The average agricultural science teacher in this study was a 37-year-old male who had taught for 12 years. He had a bachelor's degree and had lived or worked on a farm or ranch. He had not attended…

  13. Biotechnology: Applications in Agriculture. Instructor Guide [and] Student Reference.

    ERIC Educational Resources Information Center

    Nevils, Aaron

    This curriculum guide incorporates the needed components to aid agriculture teachers in the implementation of the Vocational Instructional Management System in biotechnology: applications in agriculture. The guide begins with a list of the competencies/objectives found in the six units; list of references and materials; list of materials and…

  14. Environmental biotechnology research: an overview.

    PubMed

    Spain, J C

    1994-05-01

    Cleanup and treatment of hazardous wastes incur major operational costs for the U.S. Air Force. Bioremediation can provide a cost-effective alternative to traditional technologies for a wide range of natural organic compounds such as jet fuel. Bioventing and natural attenuation are emerging as treatments of choice in many instances. Synthetic organic chemicals are much more resistant to biodegradation. However, recent advances in biotechnology allow the development of strains able to use nitro- and chloro-substituted organic compounds as their sole source of carbon and energy. Current basic research is focused on expanding the range of synthetic chemicals amenable to biodegradation. At the same time, development of appropriate bioreactors and models for scale up are essential for practical application of the technology.

  15. Essential Features of Responsible Governance of Agricultural Biotechnology

    PubMed Central

    Hartley, Sarah; Wickson, Fern

    2016-01-01

    Agricultural biotechnology continues to generate considerable controversy. We argue that to address this controversy, serious changes to governance are needed. The new wave of genomic tools and products (e.g., CRISPR, gene drives, RNAi, synthetic biology, and genetically modified [GM] insects and fish), provide a particularly useful opportunity to reflect on and revise agricultural biotechnology governance. In response, we present five essential features to advance more socially responsible forms of governance. In presenting these, we hope to stimulate further debate and action towards improved forms of governance, particularly as these new genomic tools and products continue to emerge. PMID:27144921

  16. Essential Features of Responsible Governance of Agricultural Biotechnology.

    PubMed

    Hartley, Sarah; Gillund, Frøydis; van Hove, Lilian; Wickson, Fern

    2016-05-01

    Agricultural biotechnology continues to generate considerable controversy. We argue that to address this controversy, serious changes to governance are needed. The new wave of genomic tools and products (e.g., CRISPR, gene drives, RNAi, synthetic biology, and genetically modified [GM] insects and fish), provide a particularly useful opportunity to reflect on and revise agricultural biotechnology governance. In response, we present five essential features to advance more socially responsible forms of governance. In presenting these, we hope to stimulate further debate and action towards improved forms of governance, particularly as these new genomic tools and products continue to emerge. PMID:27144921

  17. Agriculture Breaks New Ground. How Biotechnology and Regrowing Materials Are Being Used in the Federal Republic of Germany. Sonderdienst Special Report SO1.

    ERIC Educational Resources Information Center

    Grimm, Fritz; Born, Sigrid

    This document provides an overview of the major research priorities of biotechnology and the use of what is known as "regrowing raw materials" in agriculture in the Federal Republic of Germany. Following an introduction, section 2 addresses biotechnology in agriculture, including biotechnology and genetic engineering, the significance of…

  18. Fossil energy biotechnology: A research needs assessment

    NASA Astrophysics Data System (ADS)

    1993-11-01

    The Office of Program Analysis of the U.S. Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation's fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects into three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.

  19. Biotechnology and the developing world. Finding ways to bridge the agricultural technology gap.

    PubMed

    Platais, K W; Collinson, M P

    1992-03-01

    Biotechnology is a controversial subject that involves a range of scientific principles from basic tissue culture to genetic manipulation. Proponents include private sector capitalists, public sector researchers, and developing nation governments. Opponents include environmental organizations and social organizations involved in protecting the rights of developing nations. Biotechnology is being presented as the next step after the Green Revolution and the only way that the people of the developing world will be able to feed themselves in the next half century. Research by industrialized nations world wide total an estimated $11 billion with 66% being contributed by the private sector. Biotechnology represents somewhat of a dilemma. Since the majority of the work is being done by the private sector the interests of shareholders and profit are greater done by the private sector the interests of shareholders and profit are greater than that of public welfare or safety. The Consultative Group on International Agricultural Research (CGIAR) is one public sector group that is concerned about this problem. The countries of the developing world fall into 2 categories in relation to use of biotechnology: (1) those that have the potential to adapt imported biotechnologies to local conditions; (2) those that have little or no applied research capacity to effectively use biotechnologies. Currently only Brazil, China, India, and Thailand belong in the 1st category, all other developing countries fall into the 2nd. CGIAR believes it can help in 2 ways: (1) it can provide a bridge for needed information and germplasm between developed and developing countries; (2) it can help to ensure that the agricultural needs of developing countries are not lost. In 1990 CGIAR's plant and animal biotechnology research totaled $14.5 million which was less than 5% of the total CGIAR budget. Networking and institutions building are areas that CGIAR focuses on in an attempt to increase its affect

  20. Factors Related to the Intent of Agricultural Educators To Adopt Integrated Agricultural Biotechnology Curriculum.

    ERIC Educational Resources Information Center

    Wilson, Elizabeth; Kirby, Barbara; Flowers, Jim

    2002-01-01

    Recent legislation encourages the integration of academic content in agricultural education. In North Carolina, high school agricultural education programs can now choose to offer a state adopted integrated biotechnology curriculum. Empirical evidence was needed to identify and describe factors related to the intent of agricultural educators to…

  1. Developments in biotechnological research in Austria

    SciTech Connect

    Kubicek, C.P.

    1996-12-01

    Austria is a small European country with a small number of universities and biotechnological industries, but with great efforts in the implementation of environmental consciousness and corresponding legal standards. This review attempts to describe the biotechnological landscape of Austria, thereby focusing on the highlights in research by industry, universities, and research laboratories, as published during 1990 to early 1995. These will include microbial metabolite (organic acids, antibiotics) and biopolymer (polyhydroxibutyrate, S-layers) production; enzyme (cellulases, hemicellulases, ligninases) technology and biocatalysis; environmental biotechnology; plant breeding and plant protection; mammalian cell products; fermenter design; and bioprocess engineering. 234 refs.

  2. Developments in biotechnological research in Austria.

    PubMed

    Kubicek, C P

    1996-01-01

    Austria is a small European country with a small number of universities and biotechnological industries, but with great efforts in the implementation of environmental consciousness and corresponding legal standards. This review attempts to describe the biotechnological landscape of Austria, thereby focusing on the highlights in research by industry, universities, and research laboratories, as published during 1990 to early 1995. These will include microbial metabolite (organic acids, antibiotics) and biopolymer (polyhydroxibutyrate, S-layers) production; enzyme (cellulases, hemicellulases, ligninases) technology and biocatalysis; environmental biotechnology; plant breeding and plant protection; mammalian cell products; fermenter design; and bioprocess engineering. PMID:8856962

  3. 77 FR 26725 - Advisory Committee on Biotechnology and 21st Century Agriculture Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ...; ] DEPARTMENT OF AGRICULTURE Advisory Committee on Biotechnology and 21st Century Agriculture Meeting AGENCY... Biotechnology and 21st Century Agriculture (AC21). DATES: The meeting dates are May 29-30, 2012, 8:30 a.m. to 5... consists of members representing the biotechnology industry, the organic food industry, farming...

  4. 77 FR 46681 - Advisory Committee on Biotechnology and 21st Century Agriculture; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ...; ] DEPARTMENT OF AGRICULTURE Advisory Committee on Biotechnology and 21st Century Agriculture; Notice of Meeting... meeting of the Advisory Committee on Biotechnology and 21st Century Agriculture (AC21). DATES: The meeting... the biotechnology industry, the organic food industry, farming communities, the seed industry,...

  5. Development and application of modern agricultural biotechnology in Botswana: the potentials, opportunities and challenges.

    PubMed

    Batlang, Utlwang; Tsurupe, Gorata; Segwagwe, Amogelang; Obopile, Motshwari

    2014-07-01

    In Botswana, approximately 40% of the population live in rural areas and derive most of their livelihood from agriculture by keeping livestock and practising arable farming. Due to the nature of their farming practises livestock and crops are exposed to diseases and environmental stresses. These challenges offer opportunities for application of biotechnology to develop adaptable materials to the country's environment. On the other hand, the perceived risk of genetically modified organisms (GMOs) has dimmed the promise of the technology for its application in agriculture. This calls for a holistic approach to the application of biotechnology to address issues of biosafety of GMOs. We have therefore assessed the potentials, challenges and opportunities to apply biotechnology with specific emphasis on agriculture, taking cognisance of requirement for its research, development and application in research and teaching institutions. In order to achieve this, resource availability, infrastructure, human and laboratory requirements were analyzed. The analysis revealed that the country has the capacity to carry out research in biotechnology in the development and production of genetically modified crops for food and fodder crops. These will include gene discovery, genetic transformation and development of systems to comply with the world regulatory framework on biosafety. In view of the challenges facing the country in agriculture, first generation biotech crops could be released for production. Novel GM products for development may include disease diagnosis kits, animal disease vaccines, and nutrient use efficiency, drought, and pest and disease resistant food and fodder crops. PMID:25437237

  6. Development and application of modern agricultural biotechnology in Botswana: The potentials, opportunities and challenges

    PubMed Central

    Batlang, Utlwang; Tsurupe, Gorata; Segwagwe, Amogelang; Obopile, Motshwari

    2014-01-01

    In Botswana, approximately 40% of the population live in rural areas and derive most of their livelihood from agriculture by keeping livestock and practising arable farming. Due to the nature of their farming practises livestock and crops are exposed to diseases and environmental stresses. These challenges offer opportunities for application of biotechnology to develop adaptable materials to the country's environment. On the other hand, the perceived risk of genetically modified organisms (GMOs) has dimmed the promise of the technology for its application in agriculture. This calls for a holistic approach to the application of biotechnology to address issues of biosafety of GMOs. We have therefore assessed the potentials, challenges and opportunities to apply biotechnology with specific emphasis on agriculture, taking cognisance of requirement for its research, development and application in research and teaching institutions. In order to achieve this, resource availability, infrastructure, human and laboratory requirements were analyzed. The analysis revealed that the country has the capacity to carry out research in biotechnology in the development and production of genetically modified crops for food and fodder crops. These will include gene discovery, genetic transformation and development of systems to comply with the world regulatory framework on biosafety. In view of the challenges facing the country in agriculture, first generation biotech crops could be released for production. Novel GM products for development may include disease diagnosis kits, animal disease vaccines, and nutrient use efficiency, drought, and pest and disease resistant food and fodder crops. PMID:25437237

  7. Development and application of modern agricultural biotechnology in Botswana: the potentials, opportunities and challenges.

    PubMed

    Batlang, Utlwang; Tsurupe, Gorata; Segwagwe, Amogelang; Obopile, Motshwari

    2014-07-01

    In Botswana, approximately 40% of the population live in rural areas and derive most of their livelihood from agriculture by keeping livestock and practising arable farming. Due to the nature of their farming practises livestock and crops are exposed to diseases and environmental stresses. These challenges offer opportunities for application of biotechnology to develop adaptable materials to the country's environment. On the other hand, the perceived risk of genetically modified organisms (GMOs) has dimmed the promise of the technology for its application in agriculture. This calls for a holistic approach to the application of biotechnology to address issues of biosafety of GMOs. We have therefore assessed the potentials, challenges and opportunities to apply biotechnology with specific emphasis on agriculture, taking cognisance of requirement for its research, development and application in research and teaching institutions. In order to achieve this, resource availability, infrastructure, human and laboratory requirements were analyzed. The analysis revealed that the country has the capacity to carry out research in biotechnology in the development and production of genetically modified crops for food and fodder crops. These will include gene discovery, genetic transformation and development of systems to comply with the world regulatory framework on biosafety. In view of the challenges facing the country in agriculture, first generation biotech crops could be released for production. Novel GM products for development may include disease diagnosis kits, animal disease vaccines, and nutrient use efficiency, drought, and pest and disease resistant food and fodder crops.

  8. The integrated web service and genome database for agricultural plants with biotechnology information

    PubMed Central

    Kim, ChangKug; Park, DongSuk; Seol, YoungJoo; Hahn, JangHo

    2011-01-01

    The National Agricultural Biotechnology Information Center (NABIC) constructed an agricultural biology-based infrastructure and developed a Web based relational database for agricultural plants with biotechnology information. The NABIC has concentrated on functional genomics of major agricultural plants, building an integrated biotechnology database for agro-biotech information that focuses on genomics of major agricultural resources. This genome database provides annotated genome information from 1,039,823 records mapped to rice, Arabidopsis, and Chinese cabbage. PMID:21887015

  9. The use of GMOs (genetically modified organisms): agricultural biotechnology or agricultural biopolitics?

    PubMed

    Nuti, Marco; Felici, Cristiana; Agnolucci, Monica

    2007-01-01

    Agricultural biotechnologies embrace a large array of conventional and modern technologies, spanning from composting organic by-products of agriculture to innovative improvement of quality traits of about twenty out of the mostly cultivated plants. In EU a rather restrictive legislative framework has been installed for GMOs, requiring a risk assessment disproportionate with respect to conventional agriculture and organic farming products. The latter are far from being proved safe for human and animal health, and for the environment. Biotechnology of GMOs has been overtaken by biopolitics. On one side there are biotechnological challenges to be tackled, on another side there is plenty of ground for biopolitical decisions about GMOs. Perhaps the era of harsh confrontation could be fruitfully replaced by sensible cooperation, in order to get a sustainable agricultural development.

  10. The advent of biotechnology and technology transfer in agriculture

    SciTech Connect

    Postlewait, A.; Zilberman, D.; Parker, D.D.

    1993-05-01

    One of the keys to the success of American agriculture has been continuous waves of innovation, starting with mechanical innovations in the nineteenth century and continuing into the present with chemical and biological innovations (modern fertilizers and pesticides, high yield varieties of corn and wheat). Technological success resulted not only from new discoveries, but also from the capacity to translate new knowledge into practical innovations. Innovations helped generate an industrial infrastructure capable of both producing the new technology cheaply and effectively, and building a marketing and education network for its diffusion. The capacity for quick transfer of technology from the source of knowledge (universities) to technology producers (industry) and users (farmers) has been instrumental in the technological progress of agriculture. Mechanisms for technology transfer have changed over time as the nature of agriculture and the new technologies has changed. At present agriculture faces a new wave of technological innovation associated with biotechnology and genetic engineering. This paper investigates so that institutions can efficiently accommodate the transfer of new knowledge for biotechnology in agriculture.

  11. Development of agricultural biotechnology and biosafety regulations used to assess the safety of genetically modified crops in Iran.

    PubMed

    Mousavi, Amir; Malboobi, Mohammad A; Esmailzadeh, Nasrin S

    2007-01-01

    Rapid progress in the application of biotechnological methodologies and development of genetically modified crops in Iran necessitated intensive efforts to establish proper organizations and prepare required rules and regulations at the national level to ensure safe application of biotechnology in all pertinent aspects. Practically, preparation of a national biotechnology strategic plan in the country coincided with development of a national biosafety framework that was the basis for the drafted biosafety law. Although biosafety measures were observed by researchers voluntarily, the establishment of national biosafety organizations since the year 2000 built a great capacity to deal with biosafety issues in the present and future time, particularly with respect to food and agricultural biotechnology.

  12. Construction Biotechnology: a new area of biotechnological research and applications.

    PubMed

    Stabnikov, Viktor; Ivanov, Volodymyr; Chu, Jian

    2015-09-01

    A new scientific and engineering discipline, Construction Biotechnology, is developing exponentially during the last decade. The major directions of this discipline are selection of microorganisms and development of the microbially-mediated construction processes and biotechnologies for the production of construction biomaterials. The products of construction biotechnologies are low cost, sustainable, and environmentally friendly microbial biocements and biogrouts for the construction ground improvement. The microbial polysaccharides are used as admixtures for cement. Microbially produced biodegradable bioplastics can be used for the temporarily constructions. The bioagents that are used in construction biotechnologies are either pure or enrichment cultures of microorganisms or activated indigenous microorganisms of soil. The applications of microorganisms in the construction processes are bioaggregation, biocementation, bioclogging, and biodesaturation of soil. The biotechnologically produced construction materials and the microbially-mediated construction technologies have a lot of advantages in comparison with the conventional construction materials and processes. Proper practical implementations of construction biotechnologies could give significant economic and environmental benefits. PMID:26070432

  13. Construction Biotechnology: a new area of biotechnological research and applications.

    PubMed

    Stabnikov, Viktor; Ivanov, Volodymyr; Chu, Jian

    2015-09-01

    A new scientific and engineering discipline, Construction Biotechnology, is developing exponentially during the last decade. The major directions of this discipline are selection of microorganisms and development of the microbially-mediated construction processes and biotechnologies for the production of construction biomaterials. The products of construction biotechnologies are low cost, sustainable, and environmentally friendly microbial biocements and biogrouts for the construction ground improvement. The microbial polysaccharides are used as admixtures for cement. Microbially produced biodegradable bioplastics can be used for the temporarily constructions. The bioagents that are used in construction biotechnologies are either pure or enrichment cultures of microorganisms or activated indigenous microorganisms of soil. The applications of microorganisms in the construction processes are bioaggregation, biocementation, bioclogging, and biodesaturation of soil. The biotechnologically produced construction materials and the microbially-mediated construction technologies have a lot of advantages in comparison with the conventional construction materials and processes. Proper practical implementations of construction biotechnologies could give significant economic and environmental benefits.

  14. Priorities for Research in Agricultural Education.

    ERIC Educational Resources Information Center

    Silva-Guerrero, Luis; Sutphin, H. Dean

    1990-01-01

    Twenty agricultural education experts identified research topics and categories, which were then rated by 34 research experts (92 percent) and 49 department heads (79 percent). Highest ratings went to biotechnology, high technology, and agribusiness; agricultural education curriculum; and long-term impact and cost effectiveness of agricultural…

  15. European Union research and innovation perspectives on biotechnology.

    PubMed

    Cichocka, Danuta; Claxton, John; Economidis, Ioannis; Högel, Jens; Venturi, Piero; Aguilar, Alfredo

    2011-12-20

    "Food, Agriculture and Fisheries and Biotechnology" is one of 10 thematic areas in the Cooperation programme of the European Union's 7th Framework Programme for Research, Technological Development and Demonstration Activities (FP7). With a budget of nearly €2 billion for the period 2007-2013, its objective is to foster the development of a European Knowledge-Based Bio-Economy (KBBE) by bringing together science, industry and other stakeholders that produce, manage or otherwise exploit biological resources. Biotechnology plays an important role in addressing social, environmental and economic challenges and it is recognised as a key enabling technology in the transition to a green, low carbon and resource-efficient economy. Biotechnologies for non-health applications have received a considerable attention in FP7 and to date 61 projects on industrial, marine, plant, environmental and emerging biotechnologies have been supported with a contribution of €262.8 million from the European Commission (EC). This article presents an outlook of the research, technological development and demonstration activities in biotechnology currently supported in FP7 within the Cooperation programme, including a brief overview of the policy context. PMID:21745504

  16. Biotechnology Facility: An ISS Microgravity Research Facility

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min

    2000-01-01

    The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.

  17. Transgenic barley: a prospective tool for biotechnology and agriculture.

    PubMed

    Mrízová, Katarína; Holasková, Edita; Öz, M Tufan; Jiskrová, Eva; Frébort, Ivo; Galuszka, Petr

    2014-01-01

    Barley (Hordeum vulgare L.) is one of the founder crops of agriculture, and today it is the fourth most important cereal grain worldwide. Barley is used as malt in brewing and distilling industry, as an additive for animal feed, and as a component of various food and bread for human consumption. Progress in stable genetic transformation of barley ensures a potential for improvement of its agronomic performance or use of barley in various biotechnological and industrial applications. Recently, barley grain has been successfully used in molecular farming as a promising bioreactor adapted for production of human therapeutic proteins or animal vaccines. In addition to development of reliable transformation technologies, an extensive amount of various barley genetic resources and tools such as sequence data, microarrays, genetic maps, and databases has been generated. Current status on barley transformation technologies including gene transfer techniques, targets, and progeny stabilization, recent trials for improvement of agricultural traits and performance of barley, especially in relation to increased biotic and abiotic stress tolerance, and potential use of barley grain as a protein production platform have been reviewed in this study. Overall, barley represents a promising tool for both agricultural and biotechnological transgenic approaches, and is considered an ancient but rediscovered crop as a model industrial platform for molecular farming.

  18. Transgenic barley: a prospective tool for biotechnology and agriculture.

    PubMed

    Mrízová, Katarína; Holasková, Edita; Öz, M Tufan; Jiskrová, Eva; Frébort, Ivo; Galuszka, Petr

    2014-01-01

    Barley (Hordeum vulgare L.) is one of the founder crops of agriculture, and today it is the fourth most important cereal grain worldwide. Barley is used as malt in brewing and distilling industry, as an additive for animal feed, and as a component of various food and bread for human consumption. Progress in stable genetic transformation of barley ensures a potential for improvement of its agronomic performance or use of barley in various biotechnological and industrial applications. Recently, barley grain has been successfully used in molecular farming as a promising bioreactor adapted for production of human therapeutic proteins or animal vaccines. In addition to development of reliable transformation technologies, an extensive amount of various barley genetic resources and tools such as sequence data, microarrays, genetic maps, and databases has been generated. Current status on barley transformation technologies including gene transfer techniques, targets, and progeny stabilization, recent trials for improvement of agricultural traits and performance of barley, especially in relation to increased biotic and abiotic stress tolerance, and potential use of barley grain as a protein production platform have been reviewed in this study. Overall, barley represents a promising tool for both agricultural and biotechnological transgenic approaches, and is considered an ancient but rediscovered crop as a model industrial platform for molecular farming. PMID:24084493

  19. The role of biotechnology for agricultural sustainability in Africa.

    PubMed

    Thomson, Jennifer A

    2008-02-27

    Sub-Saharan Africa could have a shortfall of nearly 90Mt of cereals by the year 2025 if current agricultural practices are maintained. Biotechnology is one of the ways to improve agricultural production. Insect-resistant varieties of maize and cotton suitable for the subcontinent have been identified as already having a significant impact. Virus-resistant crops are under development. These include maize resistant to the African endemic maize streak virus and cassava resistant to African cassava mosaic virus. Parasitic weeds such as Striga attack the roots of crops such as maize, millet, sorghum and upland rice. Field trials in Kenya using a variety of maize resistant to a herbicide have proven very successful. Drought-tolerant crops are also under development as are improved varieties of local African crops such as bananas, cassava, sorghum and sweet potatoes.

  20. Reducing agricultural greenhouse gas emissions: role of biotechnology, organic systems, and consumer behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All agricultural systems have environmental and societal costs and benefits that should be objectively quantified before recommending specific management practices. Agricultural biotechnology, which takes advantage of genetically engineered organisms (GEOs), along with organic cropping systems, econ...

  1. Current challenges and future perspectives of plant and agricultural biotechnology.

    PubMed

    Moshelion, Menachem; Altman, Arie

    2015-06-01

    Advances in understanding plant biology, novel genetic resources, genome modification, and omics technologies generate new solutions for food security and novel biomaterials production under changing environmental conditions. New gene and germplasm candidates that are anticipated to lead to improved crop yields and other plant traits under stress have to pass long development phases based on trial and error using large-scale field evaluation. Therefore, quantitative, objective, and automated screening methods combined with decision-making algorithms are likely to have many advantages, enabling rapid screening of the most promising crop lines at an early stage followed by final mandatory field experiments. The combination of novel molecular tools, screening technologies, and economic evaluation should become the main goal of the plant biotechnological revolution in agriculture.

  2. Safety assessment of foods produced through agricultural biotechnology.

    PubMed

    Taylor, Steve L

    2003-06-01

    Often the main criticism of foods derived from biotechnology is concerns about food safety. Whereas most present-day biotechnology-derived foods are approximately 99% similar to their non-biotechnology counterparts, the scientific community must ensure the safety of the novel aspects of these foods. The three phases of safety assessment are discussed and the concept of substantial equivalence is explained.

  3. Regulation of animal biotechnology: research needs.

    PubMed

    Rexroad, C E; Green, R D; Wall, R J

    2007-09-01

    Livestock that result from biotechnology have been a part of agricultural science for over 30 years but have not entered the market place as food or fiber. Two biotechnologies are at the forefront as challenges to the world's systems for regulating the market place: animal clones and transgenic animals. Both technologies have come before the Food and Drug Administration in the United States and it appears that action is imminent for clones. The FDA has asserted principles for evaluation of clones and asserts that "... remaining hazard(s) from cloning are likely to be subtle in nature." The science-based principles recognize that in some areas related to developmental biology and gene expression in clones, additional scientific information would be useful. The role of science then is to use the genomic tools that we have available to answer questions about epigenetic regulation of development and reprogramming of genes to the state found in germ cells. Transgenics pose additional challenges to regulators. If the transgenics are produced using cloning from modified cells then the additional scientific information needed will be related to the effects of insertion and expression of the transgenes. Other approaches such as retrovirally vectored transgenesis will elicit additional questions. These questions will be challenging because the science will have to be related to the expression and function of each gene or class of genes. For the promises of animal biotechnology to be fulfilled, scientists will have to resolve many questions for regulators and the public but tools to answer those questions are rapidly becoming available.

  4. Students' Knowledge of, and Attitudes towards Biotechnology Revisited, 1995-2014: Changes in Agriculture Biotechnology but Not in Medical Biotechnology

    ERIC Educational Resources Information Center

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-01-01

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and…

  5. RNAi technologies in agricultural biotechnology: The Toxicology Forum 40th Annual Summer Meeting.

    PubMed

    Sherman, James H; Munyikwa, Tichafa; Chan, Stephen Y; Petrick, Jay S; Witwer, Kenneth W; Choudhuri, Supratim

    2015-11-01

    During the 40th Annual Meeting of The Toxicology Forum, the current and potential future science, regulations, and politics of agricultural biotechnology were presented and discussed. The meeting session described herein focused on the technology of RNA interference (RNAi) in agriculture. The general process by which RNAi works, currently registered RNAi-based plant traits, example RNAi-based traits in development, potential use of double stranded RNA (dsRNA) as topically applied pesticide active ingredients, research related to the safety of RNAi, biological barriers to ingested dsRNA, recent regulatory RNAi science reviews, and regulatory considerations related to the use of RNAi in agriculture were discussed. Participants generally agreed that the current regulatory framework is robust and appropriate for evaluating the safety of RNAi employed in agricultural biotechnology and were also supportive of the use of RNAi to develop improved crop traits. However, as with any emerging technology, the potential range of future products, potential future regulatory frameworks, and public acceptance of the technology will continue to evolve. As such, continuing dialogue was encouraged to promote education of consumers and science-based regulations. PMID:26361858

  6. RNAi technologies in agricultural biotechnology: The Toxicology Forum 40th Annual Summer Meeting.

    PubMed

    Sherman, James H; Munyikwa, Tichafa; Chan, Stephen Y; Petrick, Jay S; Witwer, Kenneth W; Choudhuri, Supratim

    2015-11-01

    During the 40th Annual Meeting of The Toxicology Forum, the current and potential future science, regulations, and politics of agricultural biotechnology were presented and discussed. The meeting session described herein focused on the technology of RNA interference (RNAi) in agriculture. The general process by which RNAi works, currently registered RNAi-based plant traits, example RNAi-based traits in development, potential use of double stranded RNA (dsRNA) as topically applied pesticide active ingredients, research related to the safety of RNAi, biological barriers to ingested dsRNA, recent regulatory RNAi science reviews, and regulatory considerations related to the use of RNAi in agriculture were discussed. Participants generally agreed that the current regulatory framework is robust and appropriate for evaluating the safety of RNAi employed in agricultural biotechnology and were also supportive of the use of RNAi to develop improved crop traits. However, as with any emerging technology, the potential range of future products, potential future regulatory frameworks, and public acceptance of the technology will continue to evolve. As such, continuing dialogue was encouraged to promote education of consumers and science-based regulations.

  7. [Ecological significance of arbuscular mycorrhiza biotechnology in modern agricultural system].

    PubMed

    Zhang, Yong; Zeng, Ming; Xiong, Bingquan; Yang, Xiaohong

    2003-04-01

    Mycorrhiza plays a key role in nutrient cycling in ecosystem, and protects host plant against environmental stress. Under natural condition, plant's mycorrhizal structure is a normal phenomenon, and arbuscular mycorrhiza (AM) association is the commonest mycorrhizal type. If well mycorrhizal structure can be formed during plant root system developing process, the quantity and quality of plant production will be improved in large. Because of its effects on plant growth and health, it is accepted that AM symbiosis can reduce chemical fertilizer and pesticide inputs. Consequently, this will lead to a reduction in harmful chemical substance impact on environment. The key effects of AM symbiosis can be summarized as follows: (1) improving rooting and plant establishment; (2) improving uptake of low mobile ions; (3) improving nutrient cycling; (4) enhancing plant tolerance to (biotic and abiotic) stress; (5) improving quality of soil structure; and (6) enhancing plant community diversity. In this paper, the ecological characteristic of arbuscular mycorrhiza fungi (AMF), effects of AM on host plant, and ecologic significance of AM biotechnology in agricultural system were reviewed.

  8. Agricultural aviation research

    NASA Technical Reports Server (NTRS)

    Chevalier, H. L. (Compiler); Bouse, L. F. (Compiler)

    1977-01-01

    A compilation of papers, comments, and results is provided during a workshop session. The purpose of the workshop was to review and evaluate the current state of the art of agricultural aviation, to identify and rank potentially productive short and long range research and development areas, and to strengthen communications between research scientists and engineers involved in agricultural research. Approximately 71 individuals actively engaged in agricultural aviation research were invited to participate in the workshop. These were persons familiar with problems related to agricultural aviation and processing expertise which are of value for identifying and proposing beneficial research.

  9. Biotechnology.

    ERIC Educational Resources Information Center

    Van Vranken, Nancy S., Ed.

    1987-01-01

    The field of biotechnology, and specifically recombinant DNA technology, is transforming the way that many feel about the nature and purposes of biology. This newsletter annual supplement contains several articles addressing the topic of biotechnology and the importance that the topic should be given in science classes. James D. Watson's article,…

  10. College Students' View of Biotechnology Products and Practices in Sustainable Agriculture Systems

    ERIC Educational Resources Information Center

    Anderson, William A.

    2008-01-01

    Sustainable agriculture implies the use of products and practices that sustain production, protect the environment, ensure economic viability, and maintain rural community viability. Disagreement exists as to whether or not the products and practices of modern biotechnological support agricultural sustainability. The purpose of this study was to…

  11. Agricultural Science Teachers' Barriers, Roles, and Information Source Preferences for Teaching Biotechnology Topics

    ERIC Educational Resources Information Center

    Mowen, Diana L.; Wingenbach, Gary J.; Roberts, T. Grady; Harlin, Julie F.

    2007-01-01

    The purpose of this study was to determine barriers, roles, and information source preferences for teaching agricultural biotechnology topics. Agricultural science teachers were described primarily as 37 year-old males who had taught for 12 years, had bachelor's degrees, and had lived or worked on a farm or ranch. Equipment was perceived as the…

  12. Fossil energy biotechnology: A research needs assessment. Final report

    SciTech Connect

    Not Available

    1993-11-01

    The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects into three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.

  13. Land-Grant University-Industry Relationships in Biotechnology: A Comparison with the Non-Land-Grant Research Universities.

    ERIC Educational Resources Information Center

    Curry, James; Kenney, Martin

    1990-01-01

    Presents study of industrial involvement in biotechnology research, comparing faculty surveys from land-grant colleges of agriculture and nonagricultural research universities. Agricultural biotechnologists report higher industrial involvement and more optimism about it. Industrial funding levels shown as significant factor in activities and…

  14. Biotechnologies for the management of genetic resources for food and agriculture.

    PubMed

    Lidder, Preetmoninder; Sonnino, Andrea

    2012-01-01

    In recent years, the land area under agriculture has declined as also has the rate of growth in agricultural productivity while the demand for food continues to escalate. The world population now stands at 7 billion and is expected to reach 9 billion in 2045. A broad range of agricultural genetic diversity needs to be available and utilized in order to feed this growing population. Climate change is an added threat to biodiversity that will significantly impact genetic resources for food and agriculture (GRFA) and food production. There is no simple, all-encompassing solution to the challenges of increasing productivity while conserving genetic diversity. Sustainable management of GRFA requires a multipronged approach, and as outlined in the paper, biotechnologies can provide powerful tools for the management of GRFA. These tools vary in complexity from those that are relatively simple to those that are more sophisticated. Further, advances in biotechnologies are occurring at a rapid pace and provide novel opportunities for more effective and efficient management of GRFA. Biotechnology applications must be integrated with ongoing conventional breeding and development programs in order to succeed. Additionally, the generation, adaptation, and adoption of biotechnologies require a consistent level of financial and human resources and appropriate policies need to be in place. These issues were also recognized by Member States at the FAO international technical conference on Agricultural Biotechnologies for Developing Countries (ABDC-10), which took place in March 2010 in Mexico. At the end of the conference, the Member States reached a number of key conclusions, agreeing, inter alia, that developing countries should significantly increase sustained investments in capacity building and the development and use of biotechnologies to maintain the natural resource base; that effective and enabling national biotechnology policies and science-based regulatory frameworks can

  15. Agricultural biotechnologies in developing countries and their possible contribution to food security.

    PubMed

    Ruane, John; Sonnino, Andrea

    2011-12-20

    Latest FAO figures indicate that an estimated 925 million people are undernourished in 2010, representing almost 16% of the population in developing countries. Looking to the future, there are also major challenges ahead from the rapidly changing socio-economic environment (increasing world population and urbanisation, and dietary changes) and climate change. Promoting agriculture in developing countries is the key to achieving food security, and it is essential to act in four ways: to increase investment in agriculture, broaden access to food, improve governance of global trade, and increase productivity while conserving natural resources. To enable the fourth action, the suite of technological options for farmers should be as broad as possible, including agricultural biotechnologies. Agricultural biotechnologies represent a broad range of technologies used in food and agriculture for the genetic improvement of plant varieties and animal populations, characterisation and conservation of genetic resources, diagnosis of plant or animal diseases and other purposes. Discussions about agricultural biotechnology have been dominated by the continuing controversy surrounding genetic modification and its resulting products, genetically modified organisms (GMOs). The polarised debate has led to non-GMO biotechnologies being overshadowed, often hindering their development and application. Extensive documentation from the FAO international technical conference on Agricultural Biotechnologies in Developing Countries (ABDC-10), that took place in Guadalajara, Mexico, on 1-4 March 2010, gave a very good overview of the many ways that different agricultural biotechnologies are being used to increase productivity and conserve natural resources in the crop, livestock, fishery, forestry and agro-industry sectors in developing countries. The conference brought together about 300 policy-makers, scientists and representatives of intergovernmental and international non

  16. Agricultural biotechnologies in developing countries and their possible contribution to food security.

    PubMed

    Ruane, John; Sonnino, Andrea

    2011-12-20

    Latest FAO figures indicate that an estimated 925 million people are undernourished in 2010, representing almost 16% of the population in developing countries. Looking to the future, there are also major challenges ahead from the rapidly changing socio-economic environment (increasing world population and urbanisation, and dietary changes) and climate change. Promoting agriculture in developing countries is the key to achieving food security, and it is essential to act in four ways: to increase investment in agriculture, broaden access to food, improve governance of global trade, and increase productivity while conserving natural resources. To enable the fourth action, the suite of technological options for farmers should be as broad as possible, including agricultural biotechnologies. Agricultural biotechnologies represent a broad range of technologies used in food and agriculture for the genetic improvement of plant varieties and animal populations, characterisation and conservation of genetic resources, diagnosis of plant or animal diseases and other purposes. Discussions about agricultural biotechnology have been dominated by the continuing controversy surrounding genetic modification and its resulting products, genetically modified organisms (GMOs). The polarised debate has led to non-GMO biotechnologies being overshadowed, often hindering their development and application. Extensive documentation from the FAO international technical conference on Agricultural Biotechnologies in Developing Countries (ABDC-10), that took place in Guadalajara, Mexico, on 1-4 March 2010, gave a very good overview of the many ways that different agricultural biotechnologies are being used to increase productivity and conserve natural resources in the crop, livestock, fishery, forestry and agro-industry sectors in developing countries. The conference brought together about 300 policy-makers, scientists and representatives of intergovernmental and international non

  17. Application of modern biotechnology to food and agriculture: food systems perspective.

    PubMed

    McCullum, Christine; Benbrook, Charles; Knowles, Lori; Roberts, Susan; Schryver, Tamara

    2003-01-01

    The purpose of this article is to provide nutrition educators with an introduction to a range of considerations and forces that are driving the application of modern biotechnology in the food and fiber sector based on a food systems perspective. In doing so, the following issues are critically assessed: (1) the global debate on how to regulate genetically engineered (GE) foods and crops, (2) cultural differences in public perceptions of GE foods, and (3) evaluation of selected GE traits against the principles of social, economic, and ecological sustainability, including the potential of modern agricultural biotechnology to enhance global food security. Where appropriate, we also review other agricultural technologies and the broader political, social, and economic contexts in which these technologies have been introduced. Finally, we offer recommendations for how multiple stakeholder groups, including policy makers, biotechnology advocates, and nutrition educators, can move toward a more informed dialogue and debate on this issue.

  18. Towards personalized agriculture: what chemical genomics can bring to plant biotechnology

    PubMed Central

    Stokes, Michael E.; McCourt, Peter

    2014-01-01

    In contrast to the dominant drug paradigm in which compounds were developed to “fit all,” new models focused around personalized medicine are appearing in which treatments are developed and customized for individual patients. The agricultural biotechnology industry (Ag-biotech) should also think about these new personalized models. For example, most common herbicides are generic in action, which led to the development of genetically modified crops to add specificity. The ease and accessibility of modern genomic analysis, when wedded to accessible large chemical space, should facilitate the discovery of chemicals that are more selective in their utility. Is it possible to develop species-selective herbicides and growth regulators? More generally put, is plant research at a stage where chemicals can be developed that streamline plant development and growth to various environments? We believe the advent of chemical genomics now opens up these and other opportunities to “personalize” agriculture. Furthermore, chemical genomics does not necessarily require genetically tractable plant models, which in principle should allow quick translation to practical applications. For this to happen, however, will require collaboration between the Ag-biotech industry and academic labs for early stage research and development, a situation that has proven very fruitful for Big Pharma. PMID:25183965

  19. The Omics Revolution in Agricultural Research.

    PubMed

    Van Emon, Jeanette M

    2016-01-13

    The Agrochemicals Division cosponsored the 13th International Union of Pure and Applied Chemistry International Congress of Pesticide Chemistry held as part of the 248th National Meeting and Exposition of the American Chemical Society in San Francisco, CA, USA, August 10-14, 2014. The topic of the Congress was Crop, Environment, and Public Health Protection; Technologies for a Changing World. Over 1000 delegates participated in the Congress with interactive scientific programming in nine major topic areas including the challenges and opportunities of agricultural biotechnology. Plenary speakers addressed global issues related to the Congress theme prior to the daily technical sessions. The plenary lecture addressing the challenges and opportunities that omic technologies provide agricultural research is presented here. The plenary lecture provided the diverse audience with information on a complex subject to stimulate research ideas and provide a glimpse of the impact of omics on agricultural research.

  20. The Omics Revolution in Agricultural Research

    PubMed Central

    2015-01-01

    The Agrochemicals Division cosponsored the 13th International Union of Pure and Applied Chemistry International Congress of Pesticide Chemistry held as part of the 248th National Meeting and Exposition of the American Chemical Society in San Francisco, CA, USA, August 10–14, 2014. The topic of the Congress was Crop, Environment, and Public Health Protection; Technologies for a Changing World. Over 1000 delegates participated in the Congress with interactive scientific programming in nine major topic areas including the challenges and opportunities of agricultural biotechnology. Plenary speakers addressed global issues related to the Congress theme prior to the daily technical sessions. The plenary lecture addressing the challenges and opportunities that omic technologies provide agricultural research is presented here. The plenary lecture provided the diverse audience with information on a complex subject to stimulate research ideas and provide a glimpse of the impact of omics on agricultural research. PMID:26468989

  1. Immunoassay as an analytical tool in agricultural biotechnology.

    PubMed

    Grothaus, G David; Bandla, Murali; Currier, Thomas; Giroux, Randal; Jenkins, G Ronald; Lipp, Markus; Shan, Guomin; Stave, James W; Pantella, Virginia

    2006-01-01

    Immunoassays for biotechnology engineered proteins are used by AgBiotech companies at numerous points in product development and by feed and food suppliers for compliance and contractual purposes. Although AgBiotech companies use the technology during product development and seed production, other stakeholders from the food and feed supply chains, such as commodity, food, and feed companies, as well as third-party diagnostic testing companies, also rely on immunoassays for a number of purposes. The primary use of immunoassays is to verify the presence or absence of genetically modified (GM) material in a product or to quantify the amount of GM material present in a product. This article describes the fundamental elements of GM analysis using immunoassays and especially its application to the testing of grains. The 2 most commonly used formats are lateral flow devices (LFD) and plate-based enzyme-linked immunosorbent assays (ELISA). The main applications of both formats are discussed in general, and the benefits and drawbacks are discussed in detail. The document highlights the many areas to which attention must be paid in order to produce reliable test results. These include sample preparation, method validation, choice of appropriate reference materials, and biological and instrumental sources of error. The article also discusses issues related to the analysis of different matrixes and the effects they may have on the accuracy of the immunoassays. PMID:16915826

  2. Integrating Interdisciplinary Research-Based Experiences in Biotechnology Laboratories

    ERIC Educational Resources Information Center

    Iyer, Rupa S.; Wales, Melinda E.

    2012-01-01

    The increasingly interdisciplinary nature of today's scientific research is leading to the transformation of undergraduate education. In addressing these needs, the University of Houston's College of Technology has developed a new interdisciplinary research-based biotechnology laboratory curriculum. Using the pesticide degrading bacterium,…

  3. The regulation of agricultural biotechnology: science shows a better way.

    PubMed

    Miller, Henry I

    2010-11-30

    National and international regulation of recombinant DNA-modified, or 'genetically engineered' (also referred to as 'genetically modified' or GM), organisms is unscientific and illogical, a lamentable illustration of the maxim that bad science makes bad law. Instead of regulatory scrutiny that is proportional to risk, the degree of oversight is actually inversely proportional to risk. The current approach to regulation, which captures for case-by-case review organisms to be field tested or commercialized according to the techniques used to construct them rather than their properties, flies in the face of scientific consensus. This approach has been costly in terms of economic losses and human suffering. The poorest of the poor have suffered the most because of hugely inflated development costs of genetically engineered plants and food. A model for regulation of field trials known as the 'Stanford Model' is designed to assess risks of new agricultural introductions - whether or not the organisms are genetically engineered, and independent of the genetic modification techniques employed. It offers a scientific, rational, risk-based basis for field trial regulations. Using this sort of model for regulatory review would not only better protect human health and the environment, but would also permit more expeditious development and more widespread use of new plants and seeds.

  4. Global unbalance in seaweed production, research effort and biotechnology markets.

    PubMed

    Mazarrasa, Inés; Olsen, Ylva S; Mayol, Eva; Marbà, Núria; Duarte, Carlos M

    2014-01-01

    Exploitation of the world's oceans is rapidly growing as evidenced by a booming patent market of marine products including seaweed, a resource that is easily accessible without sophisticated bioprospecting technology and that has a high level of domestication globally. The investment in research effort on seaweed aquaculture has recently been identified to be the main force for the development of a biotechnology market of seaweed-derived products and is a more important driver than the capacity of seaweed production. Here, we examined seaweed patent registrations between 1980 and 2009 to assess the growth rate of seaweed biotechnology, its geographic distribution and the types of applications patented. We compare this growth with scientific investment in seaweed aquaculture and with the market of seaweed production. We found that both the seaweed patenting market and the rate of scientific publications are rapidly growing (11% and 16.8% per year respectively) since 1990. The patent market is highly geographically skewed (95% of all registrations belonging to ten countries and the top two holding 65% of the total) compared to the distribution of scientific output among countries (60% of all scientific publications belonging to ten countries and the top two countries holding a 21%), but more homogeneously distributed than the production market (with a 99.8% belonging to the top ten countries, and a 71% to the top two). Food industry was the dominant application for both the patent registrations (37.7%) and the scientific publications (21%) followed in both cases by agriculture and aquaculture applications. This result is consistent with the seaweed taxa most represented. Kelp, which was the target taxa for 47% of the patent registrations, is a traditional ingredient in Asian food and Gracilaria and Ulva, which were the focus of 15% and 13% of the scientific publications respectively, that are also used in more sophisticated applications such as cosmetics, chemical

  5. Agricultural biotechnology. Monsanto donates its share of golden rice.

    PubMed

    Normile, D

    2000-08-11

    Monsanto Co. has agreed to provide royalty-free licenses to speed up work on a genetically modified rice that could alleviate vitamin A deficiency around the world. Researchers welcomed last week's announcement, but warn that a thicket of intellectual property claims surrounds the technology and that significant legal hurdles remain before the rice can become widely available to farmers in developing countries.

  6. Future Public Policy and Ethical Issues Facing the Agricultural and Microbial Genomics Sectors of the Biotechnology Industry: A Roundtable Discussion

    SciTech Connect

    Diane E. Hoffmann

    2003-09-12

    On September 12, 2003, the University of Maryland School of Law's Intellectual Property and Law & Health Care Programs jointly sponsored and convened a roundtable discussion on the future public policy and ethical issues that will likely face the agricultural and microbial genomics sectors of the biotechnology industry. As this industry has developed over the last two decades, societal concerns have moved from what were often local issues, e.g., the safety of laboratories where scientists conducted recombinant DNA research on transgenic microbes, animals and crops, to more global issues. These newer issues include intellectual property, international trade, risks of genetically engineered foods and microbes, bioterrorism, and marketing and labeling of new products sold worldwide. The fast paced nature of the biotechnology industry and its new developments often mean that legislators, regulators and society, in general, must play ''catch up'' in their efforts to understand the issues, the risks, and even the benefits, that may result from the industry's new ways of conducting research, new products, and novel methods of product marketing and distribution. The goal of the roundtable was to develop a short list of the most significant public policy and ethical issues that will emerge as a result of advances in these sectors of the biotechnology industry over the next five to six years. More concretely, by ''most significant'' the conveners meant the types of issues that would come to the attention of members of Congress or state legislators during this time frame and for which they would be better prepared if they had well researched and timely background information. A concomitant goal was to provide a set of focused issues for academic debate and scholarship so that policy makers, industry leaders and regulators would have the intellectual resources they need to better understand the issues and concerns at stake. The goal was not to provide answers to any of the

  7. Biotechnology of algae: A bibliography. Bibliographies and literature of agriculture (Final)

    SciTech Connect

    Stone, V.; Warmbrodt, R.D.; Young, A.T.

    1993-02-04

    The use of algae in biotechnology research and in the biotechnology industry is significant. Algae play critical roles as bioreactors for the production of food, chemicals, and fuels. They are becoming extremely important in the development of solar energy technology and in biodegradation and bioremediation programs, and their importance in the ever-expanding domestic and international aquaculture industry cannot be over-emphasized. The bibliography has been sub-divided into several sections representing the major efforts in algal biotechnology research. The first section represents literature of a general nature followed by sections on the specific topics of culture, gene expression and sequencing information, products and product development, and bioremediation and biodegradation. The citations included in the bibliography were taken from the NAL AGRICOLA database and from BIOSIS Previews.

  8. 7 CFR 2.65 - Administrator, Agricultural Research Service.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... pollution control standards and section 1-601 of Executive Order 12088, 3 CFR, 1978 Comp., p. 243, to enter... authority, exercise the functions delegated to the Secretary by Executive Order 12580, 3 CFR, 1987 Comp., p... of biotechnology (7 U.S.C. 5921). (39) Conduct a research initiative known as the Agricultural...

  9. 7 CFR 2.65 - Administrator, Agricultural Research Service.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pollution control standards and section 1-601 of Executive Order 12088, 3 CFR, 1978 Comp., p. 243, to enter... authority, exercise the functions delegated to the Secretary by Executive Order 12580, 3 CFR, 1987 Comp., p... of biotechnology (7 U.S.C. 5921). (39) Conduct a research initiative known as the Agricultural...

  10. 7 CFR 2.65 - Administrator, Agricultural Research Service.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pollution control standards and section 1-601 of Executive Order 12088, 3 CFR, 1978 Comp., p. 243, to enter... CFR, 1987 Comp., p. 193, under the following provisions of the Comprehensive Environmental Response... of biotechnology (7 U.S.C. 5921). (39) Conduct a research initiative known as the Agricultural...

  11. 7 CFR 2.65 - Administrator, Agricultural Research Service.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... pollution control standards and section 1-601 of Executive Order 12088, 3 CFR, 1978 Comp., p. 243, to enter... authority, exercise the functions delegated to the Secretary by Executive Order 12580, 3 CFR, 1987 Comp., p... of biotechnology (7 U.S.C. 5921). (39) Conduct a research initiative known as the Agricultural...

  12. Biotechnology for the 21st century, FY 1993

    SciTech Connect

    Not Available

    1992-02-01

    This report outlines the Federal role in biotechnology research and describes the foundation for a coordinated national initiative that will, over the coming years, maximize the effectiveness of the Federal investment in biotechnology research. Specifically, this report: (1) Defines the baseline of programmatic activity and Federal funding in biotechnology research, (2) Highlights ongoing agency programs and new initiatives, (3) Outlines national strategic objectives for biotechnology research, (4) Presents the first interagency Federal biotechnology research budget, and (5) Suggests directions for future efforts. Biotechnology Research Areas include: Agriculture, Energy, Environment, Health, Manufacturing/Bioprocessing, General Foundations, Genome Projects, Marine Biotechnology, Structural Biology, Social Impact Research, and Infrastructure.

  13. Food and agricultural biotechnology: a summary and analysis of ethical concerns.

    PubMed

    Thompson, Paul B; Hannah, William

    2008-01-01

    The range of social and ethical concerns that have been raised in connection with food and agricultural biotechnology is exceedingly broad. Many of these deal with risks and possible outcomes that are not unique to crops or animals developed using recombinant DNA. Food safety, animal welfare, socio-economic and environmental impacts, as well as shifts in power relations or access to technology raise concerns that might be generalized to many technologies. These aspects of the controversy over biotechnology are analyzed below as elements of general technological ethics, and key norms or values pertinent to each of these categories are specified in some detail. However, a number of special concerns unique to the use of rDNA in manipulating plant and animal genomes have been raised, and these are reviewed as well. The chapter concludes by reviewing two broad policy strategies for responding to the issues, one involving labels and consumer consent, the other applying the precautionary principle.

  14. Novel biotechnological approaches in environmental remediation research.

    PubMed

    Pletsch, M; de Araujo, B S; Charlwood, B V

    1999-12-30

    Two novel approaches, the use of Agrobacterium-transformed plant roots and mycelia cultures of fungi, are considered as research tools in the study of the remediation of soil, groundwater, and biowastes. Transformed roots are excellent model systems for screening higher plants that are tolerant of various inorganic and organic pollutants, and for determining the role of the root matrix in the uptake and further metabolism of contaminants. Edible and/or medicinal fungi may also be natural environmental remediators. Liquid cultures of fungal mycelia are appropriate model systems with which to commence screening and biochemical studies in this under-researched area of biotransformation.

  15. Science and Policy Issues: A Report of Citizen Concerns and Recommendations for American Agricultural Research.

    ERIC Educational Resources Information Center

    National Agricultural Research and Extension Users Advisory Board (USDA), Washington, DC.

    Two areas which will have far reaching consequences for the future of United States agriculture are discussed: (1) biotechnology; and (2) critical economic research in world trade and commodity supply management. Topics in the first area include: controversies related to biotechnology; the relative importance of health, safety, and environmental…

  16. Britain's genetically modified crop controversies: the Agriculture and Environment Biotechnology Commission and the negotiation of 'uncertainty'.

    PubMed

    Grove-White, Robin

    2006-01-01

    The genetically modified crop controversies in Britain between 1997 and 2004 involved tensions surrounding the role of science in policy. The author of the paper was a member of the Agriculture and Environment Biotechnology Commission, a novel government advisory body created in 2000, which played a central role in negotiating new policy frameworks. The commission was also a key influence in the creation and execution of the three-pronged official 'GM dialogue' in 2002 and 2003. New understandings of 'uncertainty', both scientific and social, emerged as a result. The outcomes have relevance for the future political handling of other technological fields, including human genetics.

  17. Biotechnology tools in agriculture: recent patents involving soybean, corn and sugarcane.

    PubMed

    Hansen, Daiane; Nakahata, Adriana M; Haraguchi, Mitsue; Alonso, Antonio

    2011-05-01

    The technological opportunities opened up by biotechnology in agriculture are diverse, including plant breeding, the partial or total relief of pesticides chemicals usage, the improvement of soil fertility, the improvement of the quality attributes of various foods. Specifically, various tricks of biotechnology can be used for higher seed yield, resistance to diseases and insects, better stems and roots, tolerance to drought and heat, and better agronomic quality. A number of recent works considerably widen the potential of plant biotechnology where transformation methods and studies of molecular genomics have been described. For example, transformation techniques and search for new selectable markers involving biolistic technique, gene transfer technique using the soil bacterium Agrobacterium tumefaciens, selection technique based on the use of mannose, utilization of genes promoting endogenous hormone production under the control of chemical stimulants, further more, engineering the nuclear genome without antibiotic resistance genes and engineering the plastid genome. We are presenting in this paper some of the recent patents on methods and techniques involving genes coding proteins and breeding techniques with possible agronomic applicability on crops economically important, such as soybean, corn and sugarcane.

  18. Agricultural Research Service

    MedlinePlus

    ... Protection Crop Production and Protection Natural Resources and Sustainable Agricultural Systems Nutrition, Food Safety, and Quality Overseas ... LA, MS, NC, PR, SC) Footer Content ARS Home | USDA.gov | Site Map | Statements and Disclaimers | Plain ...

  19. Transgenic proteins in agricultural biotechnology: The toxicology forum 40th annual summer meeting.

    PubMed

    Sherman, James H; Choudhuri, Supratim; Vicini, John L

    2015-12-01

    During the 40th Annual Meeting of The Toxicology Forum, the current and potential future science, regulations, and politics of agricultural biotechnology were presented and discussed. The range of current commercial crops and commercial crop traits related to transgenic proteins were reviewed and example crop traits discussed, including insecticidal resistance conferred by Bt proteins and the development of nutritionally enhanced food such as Golden Rice. The existing regulatory framework in the USA, with an emphasis on US FDA's role in evaluating the safety of genetically engineered crops under the regulatory umbrella of the FD&C Act was reviewed. Consideration was given to the polarized politics surrounding agricultural biotechnology, the rise of open access journals, and the influence of the internet and social media in shaping public opinion. Numerous questions related to misconceptions regarding current products and regulations were discussed, highlighting the need for more scientists to take an active role in public discourse to facilitate public acceptance and adoption of new technologies and to enable science-based regulations. PMID:26493003

  20. Transgenic proteins in agricultural biotechnology: The toxicology forum 40th annual summer meeting.

    PubMed

    Sherman, James H; Choudhuri, Supratim; Vicini, John L

    2015-12-01

    During the 40th Annual Meeting of The Toxicology Forum, the current and potential future science, regulations, and politics of agricultural biotechnology were presented and discussed. The range of current commercial crops and commercial crop traits related to transgenic proteins were reviewed and example crop traits discussed, including insecticidal resistance conferred by Bt proteins and the development of nutritionally enhanced food such as Golden Rice. The existing regulatory framework in the USA, with an emphasis on US FDA's role in evaluating the safety of genetically engineered crops under the regulatory umbrella of the FD&C Act was reviewed. Consideration was given to the polarized politics surrounding agricultural biotechnology, the rise of open access journals, and the influence of the internet and social media in shaping public opinion. Numerous questions related to misconceptions regarding current products and regulations were discussed, highlighting the need for more scientists to take an active role in public discourse to facilitate public acceptance and adoption of new technologies and to enable science-based regulations.

  1. Chinese public understanding of the use of agricultural biotechnology--a case study from Zhejiang Province of China.

    PubMed

    Lü, Lan

    2006-04-01

    This study explores the Chinese public's perceptions of, and attitudes to, agriculture and food applications of biotechnology; and investigates the effect of socio-demographic factors on attitudes. A questionnaire survey and interviews were used in an attempt to combine quantitative analysis with qualitative review. The main finding of this study is that the Chinese population has a superficial, optimistic attitude to agricultural biotechnology; and that, in accordance with public attitudes, a cautious policy, with obligatory labelling, should be adopted. The study reveals that education is the factor among socio-demographic variables with the strongest impact on public attitudes. Higher education leads to a more positive evaluation of GM (genetically modified) foods and applications of biotechnology with respect to usefulness, moral acceptability, and suitability for encouragement. In addition, public attitudinal differences depend significantly on area of residence. Compared with their more urban compatriots, members of the public in less developed areas of China have more optimistic attitudes, perceive more benefits, and are more risk tolerant in relation to GM foods and agricultural biotechnology. Finally we obtained a very high rate of "don't know" answers to our survey questions. This suggests that many people do not have settled attitudes, and correspondingly, that the overall public attitude to agricultural biotechnology and GM foods in China is at present somewhat unstable.

  2. Current state of biotechnology in Turkey.

    PubMed

    Dundar, Munis; Akbarova, Yagut

    2011-09-01

    Biotechnology is an interdisciplinary branch of science that encompasses a wide range of subjects like genetics, virology, microbiology, immunology, engineering to develop vaccines, and so on and plays a vital role in health systems, crop and seed management, yield improvement, agriculture, soil management, ecology, animal farming, cellular process, bio statistics, and so on. This article is about activities in medical and pharmaceutical biotechnology, environmental biotechnology, agricultural biotechnology and nanobiotechnology carried out in Turkey. Turkey has made some progress in biotechnology projects for research and development.

  3. 76 FR 71933 - Office of the Under Secretary, Research, Education, and Economics; Notice of the Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... Biotechnology and 21st Century Agriculture Meeting AGENCY: Agricultural Research Service, USDA. ACTION: Notice... United States Department of Agriculture announces a meeting of the Advisory Committee on Biotechnology... representing the biotechnology industry, the organic food industry, farming communities, the seed...

  4. Development of an agricultural biotechnology crop product: testing from discovery to commercialization.

    PubMed

    Privalle, Laura S; Chen, Jingwen; Clapper, Gina; Hunst, Penny; Spiegelhalter, Frank; Zhong, Cathy X

    2012-10-17

    "Genetically modified" (GM) or "biotech" crops have been the most rapidly adopted agricultural technology in recent years. The development of a GM crop encompasses trait identification, gene isolation, plant cell transformation, plant regeneration, efficacy evaluation, commercial event identification, safety evaluation, and finally commercial authorization. This is a lengthy, complex, and resource-intensive process. Crops produced through biotechnology are the most highly studied food or food component consumed. Before commercialization, these products are shown to be as safe as conventional crops with respect to feed, food, and the environment. This paper describes this global process and the various analytical tests that must accompany the product during the course of development, throughout its market life, and beyond.

  5. Perspectives of biotechnologies based on dormancy phenomenon for space researches

    NASA Astrophysics Data System (ADS)

    Alekseev, V.; Sychev, V.; Layus, D.; Levinsky, M.; Novikova, N.; Zakhodnova, T.

    Long term space missions will require a renewable source of food and an efficient method to recycle oxygen Plants especially aquatic micro algae provide an obvious solution to these problems However long duration plant growth and reproduction in space that is necessary for transportation of a control ecological life support system CELSS from Earth to other planets are problematic The introduction of heterotrophs in space CELSS is a more formidable problem as the absence of gravity creates additional difficulties for their life Dormancy phenomenon protected a great many animals and plants in harsh environmental conditions within a special resting phases of life cycle lasting from months up to hundred years This phenomenon can be quite perspective as a tool to overcome difficulties with CELSS transportation in space missions Cryptobiotic stages of microbes fungi unicellular algae and protists can survive in open space conditions that is important for interplanetary quarantine and biological security inside spacecraft Searching for life outside the Earth at such planet like Mars with extremely variable environment should be oriented on dormancy as crucial phases of a life cycle in such organisms Five major research programs aimed on study dormancy phenomenon for exobiology purposes and creation of new biotechnologies are discussed List of species candidate components of CELSS with dormancy in their life cycle used in space experiments at the Russian segment of International Space Station now includes 26 species from bacteria to fish The

  6. Genetically modified animals for use in research and biotechnology.

    PubMed

    Chaible, L M; Corat, M A; Abdelhay, E; Dagli, M L Z

    2010-07-27

    Transgenic animals are used extensively in the study of in vivo gene function, as models for human diseases and in the production of biopharmaceuticals. The technology behind obtaining these animals involves molecular biology techniques, cell culture and embryo manipulation; the mouse is the species most widely used as an experimental model. In scientific research, diverse models are available as tools for the elucidation of gene function, such as transgenic animals, knockout and conditional knockout animals, knock-in animals, humanized animals, and knockdown animals. We examined the evolution of the science for the development of these animals, as well as the techniques currently used in obtaining these animal models. We review the phenotypic techniques used for elucidation of alterations caused by genetic modification. We also investigated the role of genetically modified animals in the biotechnology industry, where they promise a revolution in obtaining heterologous proteins through natural secretions, such as milk, increasing the scale of production and facilitating purification, thereby lowering the cost of production of hormones, growth factors and enzymes.

  7. The application of biotechnology in medicinal plants breeding research in China.

    PubMed

    Huang, He-Ping; Li, Jin-Cai; Huang, Lu-Qi; Wang, Dian-Lei; Huang, Peng; Nie, Jiu-Sheng

    2015-07-01

    Breeding is not only an important area of medicinal plants research but also the foundation for the superior varieties acquirement of medicinal plants. The rise of modern biotechnology provides good opportunities and new means for medicinal plants breeding research in China. Biotechnology shows its technical advantages and new development prospects in breeding of new medicinal plants varieties with high and stable yield, good quality, as well as stress-resistance. In this paper, we describe recent advances, problems, and development prospects about the application of modern biotechnology in medicinal plants breeding research in China.

  8. Advances in agricultural research. [Review

    SciTech Connect

    Leepson, M.

    1981-05-22

    Several factors could have disastrous consequences for the world's food supply, namely: shrinking agricultural acreage; increasing population; decreasing productivity gains in most crops; heavy dependence on petroleum-based pesticides and fertilizers; and genetic vulnerability. Many feel that solutions to these potentially grave problems lie in expanding agricultural research, with particular focus on age-old plant-breeding techniques. The newest plant-breeding technology, genetic engineering (also called recombinant DNA technology), could some day allow biologists to design actually new genetic material rather than just manipulate genetic material already present in crops. Most scientists foresee imminent breakthroughs with recombinant DNA technology and plant breeding, but warn the practial applications may be decades away - perhaps 20 to 50 years. Many of the larger chemical companies are working in the following areas of agriculture R and D: nitrogen fixation; plant growth regulants; photosynthesis; recombinant DNA; plant genetics; and soybean hybrids. New progress in hydroponic technology is reported briefly. Germ plasm collection and storage is being pursued in the US, Soviet Union, and Mexico; US activities are summarized. In addition to the chemical-company efforts in R and D, there have been many acquisitions of seed companies by some of the nation's largest corporations in the last decade; a significant difference of opinion exists as to what this growing corporate involvement portends for agriculture. 49 references, 1 figure, 3 tables.

  9. New directions at TVA with special reference to agricultural research

    SciTech Connect

    Williams, R.J.; Rylant, K.E.

    1994-03-01

    Public Support for the Tennessee Valley Authority`s (TVA) fertilizer research and development program in Muscle Shoals, Alabama, ended in fiscal year 1993. TVA`s research center at Muscle Shoals, formerly known as the National Fertilizer and Environmental Research Center, is now the TVA Environmental Research Center. Efforts at the Center have diversified to include research and support areas of Agricultural Research and Practices, Atmospheric Sciences, Biotechnology, Waste Management, and Remediation, Environmental Site Remediation, Support Services, Environmental Management, and Technology Transfer. ``We`re building on the expertise and success of our earlier research and focusing our new projects on emerging problems of the 21st century,`` TVA`s Chairman Craven Crowell said in prepared remarks to Congress on March 2, 1994. Agricultural Research in TVA has been aligned with corporate objectives to develop solutions to environmental problems of regional, national and international significance because the agency`s business incorporates a broad mix of responsibilities, including power generation, navigation, flood control, shoreline management, recreation, environmental research, and economic development. Agricultural strategies for watershed protection lie at the core of TVA`s new agricultural research agenda. The major influences for this agenda are TVA`s direct stewardship responsibilities for the 60,000 miles of streams that feed the 652-mile-long Tennessee River; the 11,000 miles of shoreline; and 470,000 acres of TVA-managed public land.

  10. Enzyme research and applications in biotechnological intensification of biogas production.

    PubMed

    Parawira, Wilson

    2012-06-01

    Biogas technology provides an alternative source of energy to fossil fuels in many parts of the world. Using local resources such as agricultural crop remains, municipal solid wastes, market wastes and animal waste, energy (biogas), and manure are derived by anaerobic digestion. The hydrolysis process, where the complex insoluble organic materials are hydrolysed by extracellular enzymes, is a rate-limiting step for anaerobic digestion of high-solid organic solid wastes. Biomass pretreatment and hydrolysis are areas in need of drastic improvement for economic production of biogas from complex organic matter such as lignocellulosic material and sewage sludge. Despite development of pretreatment techniques, sugar release from complex biomass still remains an expensive and slow step, perhaps the most critical in the overall process. This paper gives an updated review of the biotechnological advances to improve biogas production by microbial enzymatic hydrolysis of different complex organic matter for converting them into fermentable structures. A number of authors have reported significant improvement in biogas production when crude and commercial enzymes are used in the pretreatment of complex organic matter. There have been studies on the improvement of biogas production from lignocellulolytic materials, one of the largest and renewable sources of energy on earth, after pretreatment with cellulases and cellulase-producing microorganisms. Lipids (characterised as oil, grease, fat, and free long chain fatty acids, LCFA) are a major organic compound in wastewater generated from the food processing industries and have been considered very difficult to convert into biogas. Improved methane yield has been reported in the literature when these lipid-rich wastewaters are pretreated with lipases and lipase-producing microorganisms. The enzymatic treatment of mixed sludge by added enzymes prior to anaerobic digestion has been shown to result in improved degradation of the

  11. Scientific Research and Agricultural Innovation in Israel

    ERIC Educational Resources Information Center

    Ben-David, Joseph; Katz, Shaul

    1975-01-01

    Traces the development and interrelationships of agriculture and agricultural research in Israel since 1920, concluding that major contributing factors to successful relationship between research and production in agriculture are a rise in the educational level of the agricultural population and a thorough knowledge of the soil and climate. (JT)

  12. Biotechnology in agriculture, 1986-May 1992. Citation from agricola concerning diseases and other environmental considerations. Bibliographies and literature of agriculture (Final)

    SciTech Connect

    Bebee, C.N.

    1992-08-01

    The citations in this bibliography, Biotechnology in Agriculture, 1986 - May 1992, are selected from the AGRICOLA database and cover diseases, insects, nematodes, weeds, chemicals, and other environmental considerations. This is the 46th volume in a series of commodity-oriented listings of citations from AGRICOLA. Entries in the bibliography are subdivided into a series of section headings used in the contents of the Bibliography of Agriculture. Each item appears under every section heading assigned to the cited document. A personal author index accompanies this publication.

  13. Challenges for global agricultural research.

    PubMed

    Blake, R O

    1992-03-01

    The Green Revolution of the 60s can not be expected to continue to feed the world as its population continues to grow. Innovations in plant varieties, chemical inputs, and irrigation did result in more food; however, the cost of this innovation was loss of soil and fertility, poisoning of ground water, waterlogging, and salination of fields. If the world's food production system is to be sustainable and environmentally safe as well as capable of producing 50% more food in the next 20 years, then a lot of research must still be done. Now, instead of 2 international research centers, there are 17. All these centers are operated under the Consultative Group on International Agricultural Research (CGIAR). Another 12 center are currently being set up or cooperating with CGIAR. The scientists are also being asked to develop cost and labor effective ways to improve the soil and conserve water. This change of priorities has come about partly from external pressure, but mostly from: the realization that agricultural productivity must continue to grow at unprecedented rates for the next 4 decades; chemical inputs are often to expensive, unavailable, or dangerous, there is very little room for expanding irrigation; national /agricultural research and extension centers have become underfunded, overly politicized, and ineffective; developing countries can not rely solely upon their fertile land to feed their people, they must bring marginal land into production. To accomplish all this, the World Bank must take a leadership role. It is the only organization with enough money and political power to effectively bring everyone together.

  14. Challenges for global agricultural research.

    PubMed

    Blake, R O

    1992-03-01

    The Green Revolution of the 60s can not be expected to continue to feed the world as its population continues to grow. Innovations in plant varieties, chemical inputs, and irrigation did result in more food; however, the cost of this innovation was loss of soil and fertility, poisoning of ground water, waterlogging, and salination of fields. If the world's food production system is to be sustainable and environmentally safe as well as capable of producing 50% more food in the next 20 years, then a lot of research must still be done. Now, instead of 2 international research centers, there are 17. All these centers are operated under the Consultative Group on International Agricultural Research (CGIAR). Another 12 center are currently being set up or cooperating with CGIAR. The scientists are also being asked to develop cost and labor effective ways to improve the soil and conserve water. This change of priorities has come about partly from external pressure, but mostly from: the realization that agricultural productivity must continue to grow at unprecedented rates for the next 4 decades; chemical inputs are often to expensive, unavailable, or dangerous, there is very little room for expanding irrigation; national /agricultural research and extension centers have become underfunded, overly politicized, and ineffective; developing countries can not rely solely upon their fertile land to feed their people, they must bring marginal land into production. To accomplish all this, the World Bank must take a leadership role. It is the only organization with enough money and political power to effectively bring everyone together. PMID:12284925

  15. Editorial: metabolic modeling in biotechnology and medical research.

    PubMed

    Mattanovich, Diethard; Hatzimanikatis, Vassily

    2013-09-01

    Metabolic Modeling and Simulation: This special issue of Biotechnology Journal is edited by Diethard Mattanovich and Vassily Hatzimanikatis and covers the state-of-the-art in metabolic modeling, including the major themes of methods in metabolic modeling, modeling of human and microbial metabolism, and modeling of bioprocesses.

  16. Opportunities for innovation: Biotechnology

    SciTech Connect

    Busche, R.M.

    1993-09-01

    The basic purpose of this project is to help small businesses get on the fast track in biotechnology research and development leading to the spin off of viable commercial businesses, probably with the help of larger companies having the resources for commercialization that are lacking in a small enterprise. Such resources could include financing, and positions in marketing, manufacturing, regulatory affairs, and raw material supply, to name a few. In general, biotechnology can be expected to have a major impact on fundamental human needs engendered in the market segments of: health care, agriculture, forestry, food ingredients, industrial chemicals, plastics, energy, mining, pollution control, and bioelectronics.

  17. 75 FR 28811 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ... HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH Guidelines for Research Involving Recombinant DNA Molecules (NIH... DNA Advisory Committee and approved by the NIH Director (Section III-A-1). Such research involves...

  18. Opportunities for Biotechnology and Policy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite being introduced more than a decade ago, agricultural biotechnology still remains framed in controversy impacting both the global economy and international regulations. Controversies surrounding agricultural biotechnology produced crops and foods commonly focus on human and environmental sa...

  19. Opportunities for biotechnology and policy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite being introduced more than a decade ago, agricultural biotechnology still remains framed in controversy impacting both the global economy and international regulations. Controversies surrounding agricultural biotechnology produced crops and foods commonly focus on human and environmental sa...

  20. 78 FR 23885 - Agricultural Research Service

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-23

    ..., Agricultural Research Service, intends to grant to Headwall Photonics, Inc. of Fitchburg, Massachusetts, an... public interest to so license these inventions as Headwall Photonics, Inc. of Fitchburg,...

  1. Biotechnological research and development for biomass conversion to chemicals and fuels

    SciTech Connect

    Villet, R.

    1980-08-01

    It is likely that a growing need to produce chemicals and fuels from renewable resources will stimulate the development of biotechnology as a commerical enterprise of considerable potential. The purpose of the analysis and the development structure that could lead to establishing this new technology are presented. Two general goals are recommended: (i) in the near term, to revive the older fermentation industry and, by the addition of sophisticated technology, to make it competitive; (ii) in the longer term, to develop a new biotechnology largely based on lignocellulose. Specific research projects are outlined in these two areas and also for the following: microbial formation of hydrocarbons; methane from anaerobic digestion; lignin; methanol. For cellulose conversion to ethanol the relative merits of using added cellulases or, alternatively, direct fermentation with anaerobic thermophiles, are discussed. In selecting suitable feedstocks for biotechnological processes there is a need to use a production-extraction-conversion system as a basis for evaluation. An effective research workforce for developing biotechnology must be pluridisciplinary. The strategy adopted at the Solar Energy Research Institute is to design the Biotechnology Branch as an integrated set of three Groups: Biochemistry and Molecular Genetics; Microbiology; Chemical and Biochemical Engineering.

  2. 75 FR 69687 - Office of Biotechnology Activities Recombinant DNA Research: Proposed Actions Under the NIH...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities Recombinant DNA Research: Proposed Actions Under the NIH Guidelines for Research Involving Recombinant DNA Molecules (NIH Guidelines... the NIH Recombinant DNA Advisory Committee (RAC) and specifically approved by the NIH Director as...

  3. 78 FR 12074 - Office of Biotechnology Activities; Recombinant DNA Research: Actions Under the NIH Guidelines...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... containing an HA from the Goose/Guangdong/1/96 lineage should become an HHS Select Agent (77 FR 63783... HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Recombinant DNA Research: Actions Under the NIH Guidelines for Research Involving Recombinant DNA Molecules (NIH...

  4. 76 FR 62816 - Office of Biotechnology Activities; Recombinant DNA Research: Action Under the NIH Guidelines for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... experts from NIH, CDC, and academia. These proposed changes were published in the Federal Register (76 FR... HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Recombinant DNA Research: Action Under the NIH Guidelines for Research Involving Recombinant DNA Molecules (NIH...

  5. Biotechnology: Education.

    ERIC Educational Resources Information Center

    Airozo, Diana; Warmbrodt, Robert D.

    Biotechnology is the latest in a series of technological innovations that have revolutionized the fields of agriculture and the health sciences; however, there are concerns with this technology. This document is designed to help foster dialogue with emphasis on education and the development of a public understanding of the principals involved in…

  6. Green systems biology - From single genomes, proteomes and metabolomes to ecosystems research and biotechnology.

    PubMed

    Weckwerth, Wolfram

    2011-12-10

    Plants have shaped our human life form from the outset. With the emerging recognition of world population feeding, global climate change and limited energy resources with fossil fuels, the relevance of plant biology and biotechnology is becoming dramatically important. One key issue is to improve plant productivity and abiotic/biotic stress resistance in agriculture due to restricted land area and increasing environmental pressures. Another aspect is the development of CO(2)-neutral plant resources for fiber/biomass and biofuels: a transition from first generation plants like sugar cane, maize and other important nutritional crops to second and third generation energy crops such as Miscanthus and trees for lignocellulose and algae for biomass and feed, hydrogen and lipid production. At the same time we have to conserve and protect natural diversity and species richness as a foundation of our life on earth. Here, biodiversity banks are discussed as a foundation of current and future plant breeding research. Consequently, it can be anticipated that plant biology and ecology will have more indispensable future roles in all socio-economic aspects of our life than ever before. We therefore need an in-depth understanding of the physiology of single plant species for practical applications as well as the translation of this knowledge into complex natural as well as anthropogenic ecosystems. Latest developments in biological and bioanalytical research will lead into a paradigm shift towards trying to understand organisms at a systems level and in their ecosystemic context: (i) shotgun and next-generation genome sequencing, gene reconstruction and annotation, (ii) genome-scale molecular analysis using OMICS technologies and (iii) computer-assisted analysis, modeling and interpretation of biological data. Systems biology combines these molecular data, genetic evolution, environmental cues and species interaction with the understanding, modeling and prediction of active

  7. Green systems biology - From single genomes, proteomes and metabolomes to ecosystems research and biotechnology.

    PubMed

    Weckwerth, Wolfram

    2011-12-10

    Plants have shaped our human life form from the outset. With the emerging recognition of world population feeding, global climate change and limited energy resources with fossil fuels, the relevance of plant biology and biotechnology is becoming dramatically important. One key issue is to improve plant productivity and abiotic/biotic stress resistance in agriculture due to restricted land area and increasing environmental pressures. Another aspect is the development of CO(2)-neutral plant resources for fiber/biomass and biofuels: a transition from first generation plants like sugar cane, maize and other important nutritional crops to second and third generation energy crops such as Miscanthus and trees for lignocellulose and algae for biomass and feed, hydrogen and lipid production. At the same time we have to conserve and protect natural diversity and species richness as a foundation of our life on earth. Here, biodiversity banks are discussed as a foundation of current and future plant breeding research. Consequently, it can be anticipated that plant biology and ecology will have more indispensable future roles in all socio-economic aspects of our life than ever before. We therefore need an in-depth understanding of the physiology of single plant species for practical applications as well as the translation of this knowledge into complex natural as well as anthropogenic ecosystems. Latest developments in biological and bioanalytical research will lead into a paradigm shift towards trying to understand organisms at a systems level and in their ecosystemic context: (i) shotgun and next-generation genome sequencing, gene reconstruction and annotation, (ii) genome-scale molecular analysis using OMICS technologies and (iii) computer-assisted analysis, modeling and interpretation of biological data. Systems biology combines these molecular data, genetic evolution, environmental cues and species interaction with the understanding, modeling and prediction of active

  8. Research activities on supercritical fluid science in food biotechnology.

    PubMed

    Khosravi-Darani, Kianoush

    2010-06-01

    This article serves as an overview, introducing the currently popular area of supercritical fluids and their uses in food biotechnology. Within each application, and wherever possible, the basic principles of the technique, as well as a description of the history, instrumentation, methodology, uses, problems encountered, and advantages over the traditional, non-supercritical methods are given. Most current commercial application of the supercritical extraction involve biologically-produced materials; the technique may be particularly relevant to the extraction of biological compounds in cases where there is a requirement for low-temperature processing, high mass-transfer rates, and negligible carrying over of the solvent into the final product. Special applications to food processing include the decaffeination of green coffee beans, the production of hops extracts, the recovery of aromas and flavors from herbs and spices, the extraction and fractionation of edible oils, and the removal of contaminants, among others. New advances, in which the extraction is combined with reaction or crystallization steps, may further increase the attractiveness of supercritical fluids in the bioprocess industries. To develop and establish a novel and effective alternative to heating treatment, the lethal action of high hydrostatic pressure CO(2) on microorganisms, with none or only a minimal heating process, has recently received a great deal of attention.

  9. Research activities on supercritical fluid science in food biotechnology.

    PubMed

    Khosravi-Darani, Kianoush

    2010-06-01

    This article serves as an overview, introducing the currently popular area of supercritical fluids and their uses in food biotechnology. Within each application, and wherever possible, the basic principles of the technique, as well as a description of the history, instrumentation, methodology, uses, problems encountered, and advantages over the traditional, non-supercritical methods are given. Most current commercial application of the supercritical extraction involve biologically-produced materials; the technique may be particularly relevant to the extraction of biological compounds in cases where there is a requirement for low-temperature processing, high mass-transfer rates, and negligible carrying over of the solvent into the final product. Special applications to food processing include the decaffeination of green coffee beans, the production of hops extracts, the recovery of aromas and flavors from herbs and spices, the extraction and fractionation of edible oils, and the removal of contaminants, among others. New advances, in which the extraction is combined with reaction or crystallization steps, may further increase the attractiveness of supercritical fluids in the bioprocess industries. To develop and establish a novel and effective alternative to heating treatment, the lethal action of high hydrostatic pressure CO(2) on microorganisms, with none or only a minimal heating process, has recently received a great deal of attention. PMID:20544439

  10. Long-Term Farm Policy to Succeed the Agriculture and Food Act of 1981 (Research, Extension, and Teaching). Part 5. Hearings before the Subcommittee on Departmental Operations, Research, and Foreign Agriculture of the Committee on Agriculture, House of Representatives, Ninety-Eighth Congress, Second Session (June 6, 7, 12, and 13, 1984).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Agriculture.

    This congressional hearing is the fifth of five volumes examining various aspects of agricultural research, extension, and teaching as a prelude to determining what changes are to be made in Title XIV of the farm bill. Focuses are the U.S. Department of Agriculture (USDA) biotechnology program plans and regulatory concerns and the public benefits…

  11. 75 FR 31795 - Office of Biotechnology Activities; Recombinant DNA Research: Amended Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ..., 2010 (75 FR 28811) is withdrawn. The discussion that was to be held at the June 16-17, 2010 meeting of... HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Recombinant DNA... ] under Section III-A-1 of the NIH Guidelines for Research Involving Recombinant DNA Molecules...

  12. Agricultural biology in the 3rd millennium: nutritional food security & specialty crops through sustainable agriculture and biotechnology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food security and agricultural sustainability are of prime concern in the world today in light of the increasing trends in population growth in most parts of the globe excepting Europe. The need to develop capacity to produce more to feed more people is complicated since the arable land is decreasin...

  13. Editorial: Biotechnology Journal brings more than biotechnology.

    PubMed

    Jungbauer, Alois; Lee, Sang Yup

    2015-09-01

    Biotechnology Journal always brings the state-of-the-art biotechnologies to our readers. Different from other topical issues, this issue of Biotechnology Journal is complied with a series of exiting reviews and research articles from spontaneous submissions, again, addressing society's actual problems and needs. The progress is a real testimony how biotechnology contributes to achievements in healthcare, better utilization of resources, and a bio-based economy.

  14. [First South american network of biomedical research. Education and biotechnology for health].

    PubMed

    Perone, Marcelo J; Velázquez, Graciela; Rojas de Arias, Antonieta; Chamorro, Gustavo; Coluchi, Norma; Pirmez, Claude; Savino, Wilson; Barbeito, Luis; Arzt, Eduardo

    2013-01-01

    It is in our interest, in this brief manuscript, to report the creation of the first program of regional integration of a network of research institutes in Biomedicine belonging to members of the MERCOSUR countries. We discuss some of the foundations that gave sustenance to its creation and its objectives in the medium and long term. In addition, we consider the potential of the results of this program in the fields of applied medical research, education and biotechnology.

  15. Ascendancy of agricultural biotechnology in the Australian political mainstream coexists with technology criticism by a vocal-minority.

    PubMed

    Tribe, David

    2014-07-01

    Australia is a federation of States. This political structure necessitates collaborative arrangements between Australian governments to harmonize national regulation of gene technology and food standards. Extensive political negotiation among institutions of federal government has managed regulation of GM crops and food. Well-developed human resources in Australian government provided numerous policy documents facilitating a transparent political process. Workable legislation has been devised in the face of criticisms of gene technology though the political process. Conflicts between potential disruptions to food commodity trade by precautionary proposals for environmental protection were one cause of political tensions, and differences in policy priorities at regional political levels versus national and international forums for negotiation were another. Australian policy outcomes on GM crops reflect (a) strong economic self-interest in innovative and productive farming, (b) reliance on global agricultural market reforms through the Cairns trade group and the WTO, and (c) the importance of Codex Alimentarius and WTO instruments SPS and TBT. Precautionary frameworks for GM food safety assurance that are inconsistent with WTO obligations were avoided in legislation. Since 2008 the 2 major parties, Australian Labor Party (ALP) and the Liberals appear to have reached a workable consensus at the Federal policy level about an important role for agricultural biotechnology in Australia's economic future. PMID:25437242

  16. Ascendancy of agricultural biotechnology in the Australian political mainstream coexists with technology criticism by a vocal-minority.

    PubMed

    Tribe, David

    2014-07-01

    Australia is a federation of States. This political structure necessitates collaborative arrangements between Australian governments to harmonize national regulation of gene technology and food standards. Extensive political negotiation among institutions of federal government has managed regulation of GM crops and food. Well-developed human resources in Australian government provided numerous policy documents facilitating a transparent political process. Workable legislation has been devised in the face of criticisms of gene technology though the political process. Conflicts between potential disruptions to food commodity trade by precautionary proposals for environmental protection were one cause of political tensions, and differences in policy priorities at regional political levels versus national and international forums for negotiation were another. Australian policy outcomes on GM crops reflect (a) strong economic self-interest in innovative and productive farming, (b) reliance on global agricultural market reforms through the Cairns trade group and the WTO, and (c) the importance of Codex Alimentarius and WTO instruments SPS and TBT. Precautionary frameworks for GM food safety assurance that are inconsistent with WTO obligations were avoided in legislation. Since 2008 the 2 major parties, Australian Labor Party (ALP) and the Liberals appear to have reached a workable consensus at the Federal policy level about an important role for agricultural biotechnology in Australia's economic future.

  17. Ascendancy of agricultural biotechnology in the Australian political mainstream coexists with technology criticism by a vocal-minority

    PubMed Central

    Tribe, David

    2014-01-01

    Australia is a federation of States. This political structure necessitates collaborative arrangements between Australian governments to harmonize national regulation of gene technology and food standards. Extensive political negotiation among institutions of federal government has managed regulation of GM crops and food. Well-developed human resources in Australian government provided numerous policy documents facilitating a transparent political process. Workable legislation has been devised in the face of criticisms of gene technology though the political process. Conflicts between potential disruptions to food commodity trade by precautionary proposals for environmental protection were one cause of political tensions, and differences in policy priorities at regional political levels versus national and international forums for negotiation were another. Australian policy outcomes on GM crops reflect (a) strong economic self-interest in innovative and productive farming, (b) reliance on global agricultural market reforms through the Cairns trade group and the WTO, and (c) the importance of Codex Alimentarius and WTO instruments SPS and TBT. Precautionary frameworks for GM food safety assurance that are inconsistent with WTO obligations were avoided in legislation. Since 2008 the 2 major parties, Australian Labor Party (ALP) and the Liberals appear to have reached a workable consensus at the Federal policy level about an important role for agricultural biotechnology in Australia's economic future. PMID:25437242

  18. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology.

    PubMed

    Holaskova, Edita; Galuszka, Petr; Frebort, Ivo; Oz, M Tufan

    2015-11-01

    Antimicrobial peptides (AMPs) are vital components of the innate immune system of nearly all living organisms. They generally act in the first line of defense against various pathogenic bacteria, parasites, enveloped viruses and fungi. These low molecular mass peptides are considered prospective therapeutic agents due to their broad-spectrum rapid activity, low cytotoxicity to mammalian cells and unique mode of action which hinders emergence of pathogen resistance. In addition to medical use, AMPs can also be employed for development of innovative approaches for plant protection in agriculture. Conferred disease resistance by AMPs might help us surmount losses in yield, quality and safety of agricultural products due to plant pathogens. Heterologous expression in plant-based systems, also called plant molecular farming, offers cost-effective large-scale production which is regarded as one of the most important factors for clinical or agricultural use of AMPs. This review presents various types of AMPs as well as plant-based platforms ranging from cell suspensions to whole plants employed for peptide production. Although AMP production in plants holds great promises for medicine and agriculture, specific technical limitations regarding product yield, function and stability still remain. Additionally, establishment of particular stable expression systems employing plants or plant tissues generally requires extended time scale for platform development compared to certain other heterologous systems. Therefore, fast and promising tools for evaluation of plant-based expression strategies and assessment of function and stability of the heterologously produced AMPs are critical for molecular farming and plant protection.

  19. Human Nutrition Research Conducted at State Agricultural Experiment Stations and 1890/Tuskegee Agricultural Research Programs.

    ERIC Educational Resources Information Center

    Driskell, Judy A.; Myers, John R.

    1989-01-01

    Cooperative State Research Service-administered and state-appropriated State Agriculture Experiment Station funds for human nutrition research increased about two-fold from FY70-FY86, while the percentage of budget expended for this research decreased. (JOW)

  20. Developing Tomorrow's Decision-Makers: Opportunities for Biotechnology Education Research

    ERIC Educational Resources Information Center

    Hilton, Annette; Nichols, Kim; Kanasa, Harry

    2011-01-01

    Globally, science curricula have been described as outdated, and students perceive school science as lacking in relevance. Declines in senior secondary and tertiary student participation in science indicate an urgent need for change if we are to sustain future scientific research and development, and perhaps more importantly, to equip students…

  1. ENVIRONMENTAL RISK MANAGEMENT OF BIOTECHNOLOGY

    EPA Science Inventory

    The last two decades have shown remarkable advances in the field of biotechnology. We have processes using biotechnology to produce materials from commodity chemicals to pharmaceuticals. The application to agriculture has shown the introduction of transgenic crops with pesticidal...

  2. ENVIRONMENTAL RISK MANAGEMENT OF BIOTECHNOLOGY

    EPA Science Inventory

    The last two decades have shown remarkable advances in the field of biotechnology. We hav processes using biotechnology to produce materials from commodity chemicals to pharmaceuticals. The application to agriculture gas shown the introduction of transgenic crops with pesticidal ...

  3. Biotechnology opportunities on Space Station

    NASA Technical Reports Server (NTRS)

    Deming, Jess; Henderson, Keith; Phillips, Robert W.; Dickey, Bernistine; Grounds, Phyllis

    1987-01-01

    Biotechnology applications which could be implemented on the Space Station are examined. The advances possible in biotechnology due to the favorable microgravity environment are discussed. The objectives of the Space Station Life Sciences Program are: (1) the study of human diseases, (2) biopolymer processing, and (3) the development of cryoprocessing and cryopreservation methods. The use of the microgravity environment for crystal growth, cell culturing, and the separation of biological materials is considered. The proposed Space Station research could provide benefits to the fields of medicine, pharmaceuticals, genetics, agriculture, and industrial waste management.

  4. Geologic research in support of sustainable agriculture

    USGS Publications Warehouse

    Gough, L.P.; Herring, J.R.

    1993-01-01

    The importance and role of the geosciences in studies of sustainable agriculture include such traditional research areas as, agromineral resource assessments, the mapping and classification of soils and soil amendments, and the evaluation of landscapes for their vulnerability to physical and chemical degradation. Less traditional areas of study, that are increasing in societal importance because of environmental concerns and research into sustainable systems in general, include regional geochemical studies of plant and animal trace element deficiencies and toxicities, broad-scale water quality investigations, agricultural chemicals and the hydrogeologic interface, and minimally processed and ion-exchange agrominerals. We discuss the importance and future of phosphate in the US and world based on human population growth, projected agromineral demands in general, and the unavailability of new, high-quality agricultural lands. We also present examples of studies that relate geochemistry and the hydrogeologic characteristics of a region to the bioavailability and cycling of trace elements important to sustainable agricultural systems. ?? 1993.

  5. Gaps in agricultural climate adaptation research

    NASA Astrophysics Data System (ADS)

    Davidson, Debra

    2016-05-01

    The value of the social sciences to climate change research is well recognized, but notable gaps remain in the literature on adaptation in agriculture. Contributions focus on farmer behaviour, with important research regarding gender, social networks and institutions remaining under-represented.

  6. Gene Silencing in Crustaceans: From Basic Research to Biotechnologies

    PubMed Central

    Sagi, Amir; Manor, Rivka; Ventura, Tomer

    2013-01-01

    Gene silencing through RNA interference (RNAi) is gaining momentum for crustaceans, both in basic research and for commercial development. RNAi has proven instrumental in a growing number of crustacean species, revealing the functionality of novel crustacean genes essential among others to development, growth, metabolism and reproduction. Extensive studies have also been done on silencing of viral transcripts in crustaceans, contributing to the understanding of the defense mechanisms of crustaceans and strategies employed by viruses to overcome these. The first practical use of gene silencing in aquaculture industry has been recently achieved, through manipulation of a crustacean insulin-like androgenic gland hormone. This review summarizes the advancements in the use of RNAi in crustaceans, and assesses the advantages of this method, as well as the current hurdles that hinder its large-scale practice. PMID:24705266

  7. 2003 Biology and Biotechnology Research Program Overview and Highlights

    SciTech Connect

    Prange, C

    2003-03-01

    LLNL conducts multidisciplinary bioscience to fill national needs. Our primary roles are to: develop knowledge and tools which enhance national security, including biological, chemical and nuclear capabilities, and energy and environmental security; develop understanding of genetic and biochemical processes to enhance disease prevention, detection and treatment; develop unique biochemical measurement and computational modeling capabilities which enable understanding of biological processes; and develop technology and tools which enhance healthcare. We execute our roles through integrated multidisciplinary programs that apply our competencies in: microbial and mammalian genomics--the characterization of DNA, the genes it encodes, their regulation and function and their role in living systems; protein function and biochemistry - the structure, function, and interaction of proteins and other molecules involved in the integrated biochemical function of the processes of life; computational modeling and understanding of biochemical systems--the application of high-speed computing technology to simulate and visualize complex, integrated biological processes; bioinformatics--databasing, networking, and analysis of biological data; and bioinstrumentation--the application of physical and engineering technologies to novel biological and biochemical measurements, laboratory automation, medical device development, and healthcare technologies. We leverage the Laboratory's exceptional capabilities in the physical, computational, chemical, environmental and engineering sciences. We partner with industry and universities to utilize their state-of-the art technology and science and to make our capabilities and discoveries available to the broader research community.

  8. Biotechnology and the American agricultural industry. Council on Scientific Affairs, American Medical Association.

    PubMed

    1991-03-20

    To meet the needs of a rapidly growing population and minimize the toxic influences of traditional farming practices on the environment, the American agricultural industry has applied molecular technology to the development of food crops and livestock. By placing genes specific for highly desirable phenotypes into the DNA of plants, animals, and bacteria, farmers have increased crop and livestock survival, enhanced the nutritional quality of foods, increased industry productivity, and reduced the need for toxic pesticides and herbicides. However, introduction of genetically modified foods into the marketplace has raised a spectrum of public health issues. Physicians, as the most proximal scientific resource for most individuals, are uniquely positioned to address patient concerns regarding the safety of genetically altered foods. This report provides an overview of the inherent risks and benefits of "agrogenetics" and offers a series of recommendations designed to promote the education of the medical community and dispel public misconception regarding genetic manipulation.

  9. Agricultural Biotechnology: From the lab to the market place. Partnership between FAS and ARS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dr. VanToai is a Plant Physiologist and the Lead Scientist for plant flooding tolerance research at the Soil Drainage Research Unit in Columbus, Ohio. A native of Vietnam, Dr. VanToai grew up in the Mekong Delta, where the land was fertile and the water plentiful, yet many farmers faced life-long po...

  10. Microgravity as a research tool to improve US agriculture

    NASA Astrophysics Data System (ADS)

    Bula, R. J.; Stankovic, Bratislav

    2000-01-01

    Crop production and utilization are undergoing significant modifications and improvements that emanate from adaptation of recently developed plant biotechnologies. Several innovative technologies will impact US agriculture in the next century. One of these is the transfer of desirable genes from organisms to economically important crop species in a way that cannot be accomplished with traditional plant breeding techniques. Such plant genetic engineering offers opportunities to improve crop species for a number of characteristics as well as use as source materials for specific medical and industrial applications. Although plant genetic engineering is having an impact on development of new crop cultivars, several major constraints limit the application of this technology to selected crop species and genotypes. Consequently, gene transfer systems that overcome these constraints would greatly enhance development of new crop materials. If results of a recent gene transfer experiment conducted in microgravity during a Space Shuttle mission are confirmed, and with the availability of the International Space Station as a permanent space facility, commercial plant transformation activity in microgravity could become a new research tool to improve US agriculture. .

  11. Microparticle bombardment as a tool in plant science and agricultural biotechnology.

    PubMed

    Taylor, Nigel J; Fauquet, Claude M

    2002-12-01

    Microparticle bombardment technology has evolved as a method for delivering exogenous nucleic acids into plant cells and is a commonly employed technique in plant science. Desired genetic material is precipitated onto micron-sized metal particles and placed within one of a variety of devices designed to accelerate these "microcarriers" to velocities required to penetrate the plant cell wall. In this manner, transgenes can be delivered into the cell's genome or plastome. Since the late 1980s microparticle bombardment has become a powerful tool for the study of gene expression and production of stably transformed tissues and whole transgenic plants for experimental purposes and agricultural applications. This paper reviews development and application of the technology, including the protocols and mechanical systems employed as delivery systems, and the types of plant cells and culture systems employed to generate effective "targets" for receiving the incoming genetic material. Current understanding of how the exogenous DNA becomes integrated into the plant's native genetic background are assessed as are methods for improving the efficiency of this process. Pros and cons of particle bombardment technologies compared to alternative direct gene transfer methods and Agrobacterium based transformation systems are discussed.

  12. Biotechnology's foreign policy.

    PubMed

    Feldbaum, Carl

    2002-01-01

    From its inception, biotechnology has been a uniquely international enterprise. An American and an Englishman working together elucidated the structure of DNA almost 50 years ago; more recently, the Human Genome Project linked researchers around the world, from the Baylor College of Medicine in Houston to the Beijing Human Genome Center. Today our industry's researchers hail from African villages and Manhattan high rises; from Munich and Melbourne; from London, Ontario, and London, England; from Scotland and Nova Scotia--New Scotland; from Calcutta and Calgary. But in the beginning, the infrastructure that supported these efforts--intellectual property, venture capital, streamlined technology transfer--was less widely dispersed and the world's brightest biotech researchers clustered in only half a dozen scientific Meccas. Previous technological revolutions have spread around the world. Following in their footsteps, biotechnology's global diaspora seems inevitable, especially since governments are promoting it. But as our science and business emigrate from early strongholds in the United States, Canada and Europe across oceans and borders and into new cultures, international tensions over biotechnology continue to grow. In just the last few years, controversies have rolled over R&D spending priorities, genetic patents, bioprospecting, transgenic agriculture and drug pricing. My premise today is that our industry needs to formulate its first foreign policy, one which is cognizant of the miserable judgments and mistakes of other industries--and avoids them.

  13. Biotechnology's foreign policy.

    PubMed

    Feldbaum, Carl

    2002-01-01

    From its inception, biotechnology has been a uniquely international enterprise. An American and an Englishman working together elucidated the structure of DNA almost 50 years ago; more recently, the Human Genome Project linked researchers around the world, from the Baylor College of Medicine in Houston to the Beijing Human Genome Center. Today our industry's researchers hail from African villages and Manhattan high rises; from Munich and Melbourne; from London, Ontario, and London, England; from Scotland and Nova Scotia--New Scotland; from Calcutta and Calgary. But in the beginning, the infrastructure that supported these efforts--intellectual property, venture capital, streamlined technology transfer--was less widely dispersed and the world's brightest biotech researchers clustered in only half a dozen scientific Meccas. Previous technological revolutions have spread around the world. Following in their footsteps, biotechnology's global diaspora seems inevitable, especially since governments are promoting it. But as our science and business emigrate from early strongholds in the United States, Canada and Europe across oceans and borders and into new cultures, international tensions over biotechnology continue to grow. In just the last few years, controversies have rolled over R&D spending priorities, genetic patents, bioprospecting, transgenic agriculture and drug pricing. My premise today is that our industry needs to formulate its first foreign policy, one which is cognizant of the miserable judgments and mistakes of other industries--and avoids them. PMID:12402751

  14. 76 FR 68126 - Office of the Under Secretary, Research, Education, and Economics; Notice of the Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... Advisory Committee on Biotechnology and 21st Century Agriculture Meeting AGENCY: Agricultural Research... Committee on Biotechnology and 21st Century Agriculture (AC21). DATES: The meeting dates are November 14... biotechnology in agriculture. Background information regarding the work and membership of the AC21 is...

  15. Research careers for microbiologists in the USDA Agricultural Research Service

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States Department of Agriculture (USDA) and the Agricultural Research Service (ARS) employees microbiologists in a wide variety of diverse positions. This includes work involving animal health, infectious diseases and food safety. Various agencies within the USDA are responsible for monit...

  16. Resistance to agricultural biotechnology: the importance of distinguishing between weak and strong public attitudes.

    PubMed

    Aerni, Philipp

    2013-10-01

    Empirical research shows that European governments and retailers are unlikely to be directly punished by taxpayers and consumers if they move away from their anti-GMO positions and policies. However, it is ultimately not the weak attitudes of taxpayers and consumers that matter to governments and retailers but the strong attitudes of the noisy anti-biotech movement. (Image: Highway signs: ©maxmitzu - Fotolia.com; woman and balance: ©lassedesignen - Fotolia.com).

  17. Resistance to agricultural biotechnology: the importance of distinguishing between weak and strong public attitudes.

    PubMed

    Aerni, Philipp

    2013-10-01

    Empirical research shows that European governments and retailers are unlikely to be directly punished by taxpayers and consumers if they move away from their anti-GMO positions and policies. However, it is ultimately not the weak attitudes of taxpayers and consumers that matter to governments and retailers but the strong attitudes of the noisy anti-biotech movement. (Image: Highway signs: ©maxmitzu - Fotolia.com; woman and balance: ©lassedesignen - Fotolia.com). PMID:23857924

  18. Cell biology and biotechnology research for exploration of the Moon and Mars

    NASA Astrophysics Data System (ADS)

    Pellis, N.; North, R.

    Health risks generated by human long exposure to radiation, microgravity, and unknown factors in the planetary environment are the major unresolved issues for human space exploration. A complete characterization of human and other biological systems adaptation processes to long-duration space missions is necessary for the development of countermeasures. The utilization of cell and engineered tissue cultures in space research and exploration complements research in human, animal, and plant subjects. We can bring a small number of humans, animals, or plants to the ISS, Moon, and Mars. However, we can investigate millions of their cells during these missions. Furthermore, many experiments can not be performed on humans, e.g. radiation exposure, cardiac muscle. Cells from critical tissues and tissue constructs per se are excellent subjects for experiments that address underlying mechanisms important to countermeasures. The development of cell tissue engineered for replacement, implantation of biomaterial to induce tissue regeneration (e.g. absorbable collagen matrix for guiding tissue regeneration in periodontal surgery), and immunoisolation (e.g. biopolymer coating on transplanted tissues to ward off immunological rejection) are good examples of cell research and biotechnology applications. NASA Cell Biology and Biotechnology research include Bone/Muscle and Cardiovascular cell culture and tissue engineering; Environmental Health and Life Support Systems; Immune System; Radiation; Gravity Thresholds ; and Advanced Biotechnology Development to increase the understanding of animal and plant cell adaptive behavior when exposed to space, and to advance technologies that facilitates exploration. Cell systems can be used to investigate processes related to food, microbial proliferation, waste management, biofilms and biomaterials. The NASA Cell Science Program has the advantage of conducting research in microgravity based on significantly small resources, and the ability to

  19. Towards a more open debate about values in decision-making on agricultural biotechnology.

    PubMed

    Devos, Yann; Sanvido, Olivier; Tait, Joyce; Raybould, Alan

    2014-12-01

    Regulatory decision-making over the use of products of new technology aims to be based on science-based risk assessment. In some jurisdictions, decision-making about the cultivation of genetically modified (GM) plants is blocked supposedly because of scientific uncertainty about risks to the environment. However, disagreement about the acceptability of risks is primarily a dispute over normative values, which is not resolvable through natural sciences. Natural sciences may improve the quality and relevance of the scientific information used to support environmental risk assessments and make scientific uncertainties explicit, but offer little to resolve differences about values. Decisions about cultivating GM plants will thus not necessarily be eased by performing more research to reduce scientific uncertainty in environmental risk assessments, but by clarifying the debate over values. We suggest several approaches to reveal values in decision-making: (1) clarifying policy objectives; (2) determining what constitutes environmental harm; (3) making explicit the factual and normative premises on which risk assessments are based; (4) better demarcating environmental risk assessment studies from ecological research; (5) weighing the potential for environmental benefits (i.e., opportunities) as well as the potential for environmental harms (i.e., risks); and (6) expanding participation in the risk governance of GM plants. Recognising and openly debating differences about values will not remove controversy about the cultivation of GM plants. However, by revealing what is truly in dispute, debates about values will clarify decision-making criteria.

  20. The Role of Public Opinion in Shaping Trajectories of Agricultural Biotechnology.

    PubMed

    Malyska, Aleksandra; Bolla, Robert; Twardowski, Tomasz

    2016-07-01

    Science and technology are not autonomous entities and research trajectories are largely influenced by public opinion. The role of political decisions becomes especially evident in light of rapidly developing new breeding techniques (NBTs) and other genome editing methods for crop improvement. Decisions on how those new techniques should be regulated may not be based entirely on scientific rationale, and even if it is decided that crops produced by NBTs do not fall under the umbrella of genetically modified organisms (GMOs), their commercialization is by no means certain at this time. If and when adopted regulations do not comply with the public's perception of risks, policy makers will find themselves under pressure to ban or restrict the use of the respective products. PMID:27059762

  1. The Role of Public Opinion in Shaping Trajectories of Agricultural Biotechnology.

    PubMed

    Malyska, Aleksandra; Bolla, Robert; Twardowski, Tomasz

    2016-07-01

    Science and technology are not autonomous entities and research trajectories are largely influenced by public opinion. The role of political decisions becomes especially evident in light of rapidly developing new breeding techniques (NBTs) and other genome editing methods for crop improvement. Decisions on how those new techniques should be regulated may not be based entirely on scientific rationale, and even if it is decided that crops produced by NBTs do not fall under the umbrella of genetically modified organisms (GMOs), their commercialization is by no means certain at this time. If and when adopted regulations do not comply with the public's perception of risks, policy makers will find themselves under pressure to ban or restrict the use of the respective products.

  2. The Challenge in Teaching Biotechnology

    ERIC Educational Resources Information Center

    Steele, F.; Aubusson, P.

    2004-01-01

    Agriculture, industry and medicine are being altered by new biotechnologies. Biotechnology education is important because today's students and citizens will make decisions about the development and application of these new molecular biologies. This article reports an investigation of the teaching of biotechnology in an Australian state, New South…

  3. Environmental biotechnology

    SciTech Connect

    Forster, C.F.

    1987-01-01

    Offers an up-to-date overview of the major activities in the field and appraises the principles involved in applying biotechnological techniques to environmental problems. coverage includes pollution of agricultural land, techniques of treating effluents, environmental problems caused by solid waste disposal in landfill sites, and the potential for biogas generation at such sites. It also examines the potential uses and dangers of future technologies in environmental management, such as manipulating aromatic-degrading microorganisms, use of recalcitrant xenobiotics, biological pest control, and controlling biological nitrogen fixation.

  4. Production of high-quality marketing applications: strategies for biotechnology companies working with contract research organizations.

    PubMed

    Hecker, Sandra J; Preston, Christopher; Foote, MaryAnn

    2003-01-01

    Many biotechnology and pharmaceutical companies use clinical research organizations (CROs) to assist in the writing and preparation of clinical documents intended for submission to health authorities. Start-up companies often require the expertise of a CRO to prepare their first regulatory documents. Larger or more experienced companies often require CRO staff to assist at times of multiple simultaneous submissions. The timely production of high-quality new drug marketing applications requires close collaborations between the drug company and the CRO. The views of both CRO and industry in ensuring best practices are discussed.

  5. Expediting Agriculture Through Science Act

    THOMAS, 112th Congress

    Rep. Fincher, Stephen Lee [R-TN-8

    2011-05-26

    06/08/2011 Referred to the Subcommittee on Rural Development, Research, Biotechnology, and Foreign Agriculture. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  6. Recent research efforts in the area of biotechnology for fuels and chemicals: Poster session papers

    SciTech Connect

    Antonopoulos, A.A.; Grohmann, K.

    1992-09-01

    This report presents research presented at the poster session of the Symposium covering a wide spectrum of current biotechnological research activities. Research focused mostly on ethanol production and methane generation from biomass material via microbial processing, as well as on enhanced hydrogen yield from algae. Several of the posters dealt with the pretreatment of cellulosic materials, and enzyme production/characterization, while a good number of papers displayed research efforts on bioremediation, photosynthesis, production of various useful chemicals from biomass by bioprocessing, and on other miscellaneous subjects. One of the papers treated a very interesting topic of cellulose-cellulase complexes. Many of the poster papers are included in this volume, and a synopsis of all the poster/papers presented is the subject of this article.

  7. Recent research efforts in the area of biotechnology for fuels and chemicals: Poster session papers

    SciTech Connect

    Antonopoulos, A.A. ); Grohmann, K. )

    1992-01-01

    This report presents research presented at the poster session of the Symposium covering a wide spectrum of current biotechnological research activities. Research focused mostly on ethanol production and methane generation from biomass material via microbial processing, as well as on enhanced hydrogen yield from algae. Several of the posters dealt with the pretreatment of cellulosic materials, and enzyme production/characterization, while a good number of papers displayed research efforts on bioremediation, photosynthesis, production of various useful chemicals from biomass by bioprocessing, and on other miscellaneous subjects. One of the papers treated a very interesting topic of cellulose-cellulase complexes. Many of the poster papers are included in this volume, and a synopsis of all the poster/papers presented is the subject of this article.

  8. [Agricultural biotechnology safety assessment].

    PubMed

    McClain, Scott; Jones, Wendelyn; He, Xiaoyun; Ladics, Gregory; Bartholomaeus, Andrew; Raybould, Alan; Lutter, Petra; Xu, Haibin; Wang, Xue

    2015-01-01

    Genetically modified (GM) crops were first introduced to farmers in 1995 with the intent to provide better crop yield and meet the increasing demand for food and feed. GM crops have evolved to include a thorough safety evaluation for their use in human food and animal feed. Safety considerations begin at the level of DNA whereby the inserted GM DNA is evaluated for its content, position and stability once placed into the crop genome. The safety of the proteins coded by the inserted DNA and potential effects on the crop are considered, and the purpose is to ensure that the transgenic novel proteins are safe from a toxicity, allergy, and environmental perspective. In addition, the grain that provides the processed food or animal feed is also tested to evaluate its nutritional content and identify unintended effects to the plant composition when warranted. To provide a platform for the safety assessment, the GM crop is compared to non-GM comparators in what is typically referred to as composition equivalence testing. New technologies, such as mass spectrometry and well-designed antibody-based methods, allow better analytical measurements of crop composition, including endogenous allergens. Many of the analytical methods and their intended uses are based on regulatory guidance documents, some of which are outlined in globally recognized documents such as Codex Alimentarius. In certain cases, animal models are recommended by some regulatory agencies in specific countries, but there is typically no hypothesis or justification of their use in testing the safety of GM crops. The quality and standardization of testing methods can be supported, in some cases, by employing good laboratory practices (GLP) and is recognized in China as important to ensure quality data. Although the number of recommended, in some cases, required methods for safety testing are increasing in some regulatory agencies, it should be noted that GM crops registered to date have been shown to be comparable to their nontransgenic counterparts and safe . The crops upon which GM development are based are generally considered safe. PMID:25876504

  9. [Agricultural biotechnology safety assessment].

    PubMed

    McClain, Scott; Jones, Wendelyn; He, Xiaoyun; Ladics, Gregory; Bartholomaeus, Andrew; Raybould, Alan; Lutter, Petra; Xu, Haibin; Wang, Xue

    2015-01-01

    Genetically modified (GM) crops were first introduced to farmers in 1995 with the intent to provide better crop yield and meet the increasing demand for food and feed. GM crops have evolved to include a thorough safety evaluation for their use in human food and animal feed. Safety considerations begin at the level of DNA whereby the inserted GM DNA is evaluated for its content, position and stability once placed into the crop genome. The safety of the proteins coded by the inserted DNA and potential effects on the crop are considered, and the purpose is to ensure that the transgenic novel proteins are safe from a toxicity, allergy, and environmental perspective. In addition, the grain that provides the processed food or animal feed is also tested to evaluate its nutritional content and identify unintended effects to the plant composition when warranted. To provide a platform for the safety assessment, the GM crop is compared to non-GM comparators in what is typically referred to as composition equivalence testing. New technologies, such as mass spectrometry and well-designed antibody-based methods, allow better analytical measurements of crop composition, including endogenous allergens. Many of the analytical methods and their intended uses are based on regulatory guidance documents, some of which are outlined in globally recognized documents such as Codex Alimentarius. In certain cases, animal models are recommended by some regulatory agencies in specific countries, but there is typically no hypothesis or justification of their use in testing the safety of GM crops. The quality and standardization of testing methods can be supported, in some cases, by employing good laboratory practices (GLP) and is recognized in China as important to ensure quality data. Although the number of recommended, in some cases, required methods for safety testing are increasing in some regulatory agencies, it should be noted that GM crops registered to date have been shown to be comparable to their nontransgenic counterparts and safe . The crops upon which GM development are based are generally considered safe.

  10. Improving value assessment of high-risk, high-reward biotechnology research: the role of 'thick tails'.

    PubMed

    Casault, Sébastien; Groen, Aard J; Linton, Jonathan D

    2014-03-25

    This paper presents work toward improving the efficacy of financial models that describe the unique nature of biotechnology firms. We show that using a 'thick tailed' power law distribution to describe the behavior of the value of biotechnology R&D used in a Real Options Pricing model is significantly more accurate than the traditionally used Gaussian approach. A study of 287 North-American biotechnology firms gives insights into common problems faced by investors, managers and other stakeholders when using traditional techniques to calculate the commercial value of R&D. This is important because specific quantitative tools to assess the value of high-risk, high-reward R&D do not currently exist. This often leads to an undervaluation of biotechnology R&D and R&D intensive biotechnology firms. For example, the widely used Net Present Value (NPV) method assumes a fixed risk ignoring management flexibility and the changing environment. However, Real Options Pricing models assume that commercial returns from R&D investments are described by a normal random walk. A normal random walk model eliminates the possibility of drastic changes to the marketplace resulting from the introduction of revolutionary products and/or services. It is possible to better understand and manage biotechnology research projects and portfolios using a model that more accurately considers large non-Gaussian price fluctuations with thick tails, which recognize the unusually large risks and opportunities associated with Biotechnology R&D. Our empirical data show that opportunity overcompensates for the downside risk making biotechnology R&D statistically more valuable than other Gaussian options investments, which may otherwise appear to offer a similar combination of risk and return.

  11. Global Transformations and Agriculture.

    ERIC Educational Resources Information Center

    Campbell, Rex R.

    1990-01-01

    Examines worldwide political, economic, and social transformations and their impact on agriculture, focusing on biotechnology. Discusses rise of international corporations and accompanying constraints on government power. Sees trend toward increasing agribusiness role in world food and agricultural sectors. Calls for broader views and research in…

  12. Arthropod genomics research in the United States Department of Agriculture-Agricultural Research Service: Current impacts and future prospects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Research Service (ARS) is the intramural research agency of the United States Department of Agriculture (USDA) which employs scientists to conduct basic and applied research aimed to develop and transfer solutions to agricultural problems of high national priority and to ensure food...

  13. Viewing Agricultural Education Research through a Qualitative Lens

    ERIC Educational Resources Information Center

    Dooley, Kim E.

    2007-01-01

    The Journal of Agricultural Education has primarily published research that uses quantitative research methods. Perhaps this is due partly to the lack of a qualitative research conceptual framework to guide our profession. Most researchers in agricultural education were academically prepared to conduct empirical research. Those who are in the…

  14. Theme: The Role of Research in the Agricultural Education Curriculum.

    ERIC Educational Resources Information Center

    Agricultural Education Magazine, 2002

    2002-01-01

    Theme articles discuss the impact of research, accountability, linking programmatic questions to answers developed through research, starting an agriscience research program in high school, a student's perspective in research in agricultural education, student achievement in agricultural education, and user-friendly research. (JOW)

  15. Research Report. Teenagers and Biotechnology: A Survey of Understanding and Opinion in Britain.

    ERIC Educational Resources Information Center

    Gunter, Barrie; Kinderlerer, Julian; Beyleveld, Deryck

    1998-01-01

    Describes British teenagers' (n=138) knowledge, perceptions, and attitudes toward biotechnology with particular reference to food production. Concludes that more than half the teenagers were familiar with the term "biotechnology," but most lacked detailed knowledge of the subject. Teens rated formal schooling in science as an important source of…

  16. The Research of Vertical Search Engine for Agriculture

    NASA Astrophysics Data System (ADS)

    Li, Weiying; Zhao, Yan; Liu, Bo; Li, Qiang

    Following rapid expansion of huge Agriculture information body on the Web, the efficient Agriculture information gathering on specified top becomes more and more important in search engine research. Through the statement of the developing trend of search engine and sharing agriculture information resource, this paper discusses the necessity of building search engine for agriculture information. The author clarifies the working principles of professional search engine for agriculture and finally analyses the improvement of searching technique of agriculture and proposes a model for agriculture - focused search.

  17. Biotechnology worldwide and the 'European Biotechnology Thematic Network' Association (EBTNA).

    PubMed

    Bruschi, F; Dundar, M; Gahan, P B; Gartland, K; Szente, M; Viola-Magni, M P; Akbarova, Y

    2011-09-01

    The European Biotechnology Congress 2011 held under the auspices of the European Biotechnology Thematic Network Association (EBTNA) in conjunction with the Turkish Medical Genetics Association brings together a broad spectrum of biotechnologists from around the world. The subsequent abstracts indicate the manner in which biotechnology has permeated all aspects of research from the basic sciences through to small and medium enterprises and major industries. The brief statements before the presentation of the abstracts aim to introduce not only Biotechnology in general and its importance around the world, but also the European Biotechnology Thematic Network Association and its aims especially within the framework of education and ethics in biotechnology.

  18. Organisation of biotechnological information into knowledge.

    PubMed

    Boh, B

    1996-09-01

    The success of biotechnological research, development and marketing depends to a large extent on the international transfer of information and on the ability to organise biotechnology information into knowledge. To increase the efficiency of information-based approaches, an information strategy has been developed and consists of the following stages: definition of the problem, its structure and sub-problems; acquisition of data by targeted processing of computer-supported bibliographic, numeric, textual and graphic databases; analysis of data and building of specialized in-house information systems; information processing for structuring data into systems, recognition of trends and patterns of knowledge, particularly by information synthesis using the concept of information density; design of research hypotheses; testing hypotheses in the laboratory and/or pilot plant; repeated evaluation and optimization of hypotheses by information methods and testing them by further laboratory work. The information approaches are illustrated by examples from the university-industry joint projects in biotechnology, biochemistry and agriculture.

  19. Innovation in biotechnology: moving from academic research to product development--the case of biosensors.

    PubMed

    Siontorou, Christina G; Batzias, Fragiskos A

    2010-06-01

    The fast pace of technological change in the biotechnology industry and the market demands require continuous innovation, which, owing to the science base of the sector, derives from academic research through a transformation process that converts science-oriented knowledge to marketable products. There appear to be some inherent difficulties in transforming directly the knowledge output of academic research to industrial use. The purpose of this article is to examine certain transition mechanisms from monodisciplinary academic isolation (curiosity-driven and internal-worth innovation) to university-industry alliances (market-driven and public-worth innovation) through inter-organizational multidisciplinary collaboration and contextualize the analysis with the case of biosensors. While the majority of literature on the subject studies the channels of knowledge transfer as determinants of alliance success (transferor/transferee interactions), either from the university side (science base) or the industry side (market base), this article focuses on the transferable (technology base) and how it can be strategically modeled and managed by the industry to promote innovation. Based on the valuable lessons learnt from the biosensor paradigm, the authors argue that strategic industry choices deal primarily with the best stage/point to intersect and seize the university output, implanting the required element of marketability that will transform an idea to a viable application. The authors present a methodological approach for accelerating the knowledge transfer from the university to industry aiming at the effective transition of science to products through a business model reconfiguration. PMID:20214418

  20. 76 FR 44339 - Office of Biotechnology Activities; Recombinant DNA Research: Action Under the NIH Guidelines for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Recombinant DNA...) AGENCY: National Institutes of Health, PHS, Department of Health and Human Services. ACTION:...

  1. Who Talks to Whom in Malawi's Agricultural Research Information Network?

    ERIC Educational Resources Information Center

    Mapila, Mariam A. T. J.; Yauney, Jason; Thangata, Paul; Droppelmann, Klaus; Mazunda, John

    2016-01-01

    Purpose: The sector-wide approach currently dominates as the strategy for developing the agricultural sector of many African countries. Although recognised that collaborative agricultural research is vital in ensuring success of sector-wide agricultural development strategies; there have been few efforts to understand the dynamics of national…

  2. REVIEW AND SYNTHESIS OF RESEARCH IN AGRICULTURAL EDUCATION.

    ERIC Educational Resources Information Center

    PHIPPS, LLOYD J.; WARMBROD, J. ROBERT

    OVER 400 STUDIES WERE CONSIDERED IN PREPARING THIS REPORT ON AGRICULTURAL EDUCATION RESEARCH CONCLUSIONS, TRENDS, METHODOLOGY, AND NEEDS. THOUGH EMERGENCE OF CORRELATIONAL AND EXPERIMENTAL RESEARCH IS EVIDENT, RESEARCH IN AGRICULTURAL EDUCATION HAS BEEN LARGELY DESCRIPTIVE. WEAKNESSES IN PROBABILITY SAMPLING AND SURVEY TECHNIQUES HAVE BEEN…

  3. Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology.

    PubMed

    Bock, Ralph

    2015-01-01

    The small bacterial-type genome of the plastid (chloroplast) can be engineered by genetic transformation, generating cells and plants with transgenic plastid genomes, also referred to as transplastomic plants. The transformation process relies on homologous recombination, thereby facilitating the site-specific alteration of endogenous plastid genes as well as the precisely targeted insertion of foreign genes into the plastid DNA. The technology has been used extensively to analyze chloroplast gene functions and study plastid gene expression at all levels in vivo. Over the years, a large toolbox has been assembled that is now nearly comparable to the techniques available for plant nuclear transformation and that has enabled new applications of transplastomic technology in basic and applied research. This review describes the state of the art in engineering the plastid genomes of algae and land plants (Embryophyta). It provides an overview of the existing tools for plastid genome engineering, discusses current technological limitations, and highlights selected applications that demonstrate the immense potential of chloroplast transformation in several key areas of plant biotechnology. PMID:25494465

  4. Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology.

    PubMed

    Bock, Ralph

    2015-01-01

    The small bacterial-type genome of the plastid (chloroplast) can be engineered by genetic transformation, generating cells and plants with transgenic plastid genomes, also referred to as transplastomic plants. The transformation process relies on homologous recombination, thereby facilitating the site-specific alteration of endogenous plastid genes as well as the precisely targeted insertion of foreign genes into the plastid DNA. The technology has been used extensively to analyze chloroplast gene functions and study plastid gene expression at all levels in vivo. Over the years, a large toolbox has been assembled that is now nearly comparable to the techniques available for plant nuclear transformation and that has enabled new applications of transplastomic technology in basic and applied research. This review describes the state of the art in engineering the plastid genomes of algae and land plants (Embryophyta). It provides an overview of the existing tools for plastid genome engineering, discusses current technological limitations, and highlights selected applications that demonstrate the immense potential of chloroplast transformation in several key areas of plant biotechnology.

  5. On Teaching Biotechnology in Kentucky.

    ERIC Educational Resources Information Center

    Brown, Dan C.; Kemp, Michael C.; Hall, Jennifer

    1998-01-01

    One study surveyed 187 Kentucky teachers (36% agriculture, 32% science, 32% technology education); they rated importance of content organizers, topics, transferable skills, and delivery methods for biotechnology. A second study received responses from 70 of 150 teachers; 45 thought science teachers or an integrated team should teach biotechnology;…

  6. Biotechnology takes root in the third world

    SciTech Connect

    Gibbons, A.

    1990-05-25

    Biotechnology offers the hope of increasing crop yields in the highland of communist Viet Nam. Thirty Vietnamese families have been culturing potato seedlings for planting. Their potato progeny earn the families $100 to $120 a month, a considerable sum in rural Viet Nam. Some of the farmers are starting to use the same techniques to propagate other vegetables in vitro. This is proof that biotechnology can be beneficial in developing nations. Now agriculture in countries from Indonesia to Ecuador is gaining from biotechnology, thereby helping them compete in the international marketplace. Third World leaders want their own biotech centers and to set their own research agendas, rather than relying on the First World to decide what genetically engineered crops would be most useful for them.

  7. The NUTRA-SNACKS project: basic research and biotechnological programs on nutraceutics.

    PubMed

    Rea, Giuseppina; Antonacci, Amina; Lambreva, Maya; Margonelli, Andrea; Ambrosi, Cecilia; Giardi, Maria Teresa

    2010-01-01

    The Nutra-Snacks project aims at creating novel high quality ready-to-eat foods with functional activity, useful for promoting public health. The team is composed of seven research institutes and three SMEs from different countries whose activities span from basic to applied research providing the right technological transfer to small and medium industries involved in the novel food production chain. Strategic objectives include the application of plant cell and in vitro culture systems to create very large amounts of high-value plant secondary metabolites with recognized anticancer, antilipidemic, anticholesterol, antimicrobial, antiviral, antihypertensive and anti-inflammatory properties and to include them in specific food products. To this end, the screening of a vast number of working organisms capable of accumulating the desired compounds and the characterization of their expression profiles represent fundamental steps in the research program. The information allows the identification of plant species hyper-producing metabolites and selection of those metabolites capable of specifically counteracting the oxidative stress that underlies the development of important pathologies and diseases. In addition, devising safe metabolite extraction procedures is also crucial in order to provide nutraceutical-enriched extracts compatible with human health. New biotechnological approaches are also undertaken including the exploitation of photosynthetic algal strains in bio-farms to enhance the synthesis ofantioxidant compounds and the design of novel bioreactors for small and large scale biomass production. Further outstanding objectives include the development of (i) safety and quality control protocols (ii) biosensor techniques for the analysis of the emerging ready-to-eat food and (iii) a contribution to define a standard for new regulations on nutraceutics.

  8. To amend the Agricultural Adjustment Act to exclude raisins from agricultural marketing orders.

    THOMAS, 113th Congress

    Rep. Radel, Trey [R-FL-19

    2013-07-25

    08/13/2013 Referred to the Subcommittee on Horticulture, Research, Biotechnology, and Foreign Agriculture. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  9. Research and dissemination needs for ergonomics in agriculture.

    PubMed

    Estill, Cheryl Fairfield; Baron, Sherry; Steege, Andrea L

    2002-01-01

    In 1998, the National Institute for Occupational Safety and Health convened a conference of researchers interested in the ergonomics of agricultural workers. Participants included 20 representatives from universities, state governments, private agricultural and insurance companies, migrant worker organizations, agricultural industry organizations, and the Agricultural Extension Service. The attendees divided into three groups and brainstormed about research ideas and dissemination methods related to ergonomics for farm workers. The groups separately reported that interventions, cost-benefit analyses, and cultural belief systems were the main topics that needed to be researched to reduce physical risk factors for musculoskeletal disorders. The participants also presented ideas for disseminating information to farm owners and workers. PMID:12500960

  10. Job Prospects for Agricultural Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1986-01-01

    Discusses the career outlook for agricultural engineers. Explains that the number of bachelor degrees awarded yearly continues to drop, and that the traditional industries that hire agricultural engineers are employing fewer each year. Suggests that future opportunities exist in the areas of information technology, biotechnology, and research. (TW)

  11. Modern biotechnology in China.

    PubMed

    Wang, Qing-Zhao; Zhao, Xue-Ming

    2010-01-01

    In recent years, with the booming economy, the Chinese government has increased its financial input to biotechnology research, which has led to remarkable achievements by China in modern biotechnology. As one of the key parts of modern biotechnology, industrial biotechnology will be crucial for China's sustainable development in this century. This review presents an overview of Chinese industrial biotechnology in last 10 years. Modern biotechnology had been classified into metabolic engineering and systems biology framework. Metabolic engineering is a field of broad fundamental and practical concept so we integrated the related technology achievements into the real practices of many metabolic engineering cases, such as biobased products production, environmental control and others. Now metabolic engineering is developing towards the systems level. Chinese researchers have also embraced this concept and have contributed invaluable things in genomics, transcriptomics, proteomics and related bioinformatics. A series of advanced laboratories or centers were established which will represent Chinese modern biotechnology development in the near future. At the end of this review, metabolic network research advances have also been mentioned.

  12. Modern Biotechnology in China

    NASA Astrophysics Data System (ADS)

    Wang, Qing-Zhao; Zhao, Xue-Ming

    In recent years, with the booming economy, the Chinese government has increased its financial input to biotechnology research, which has led to remarkable achievements by China in modern biotechnology. As one of the key parts of modern biotechnology, industrial biotechnology will be crucial for China's sustainable development in this century. This review presents an overview of Chinese industrial biotechnology in last 10 years. Modern biotechnology had been classified into metabolic engineering and systems biology framework. Metabolic engineering is a field of broad fundamental and practical concept so we integrated the related technology achievements into the real practices of many metabolic engineering cases, such as biobased products production, environmental control and others. Now metabolic engineering is developing towards the systems level. Chinese researchers have also embraced this concept and have contributed invaluable things in genomics, transcriptomics, proteomics and related bioinformatics. A series of advanced laboratories or centers were established which will represent Chinese modern biotechnology development in the near future. At the end of this review, metabolic network research advances have also been mentioned.

  13. Overview of Mosquito Research Programs at the United States Department of Agriculture - Agricultural Research Service, Center for Medical, Agricultural & Veterinary Entomology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Center for Medical, Agricultural, and Veterinary Entomology (CMAVE), a U.S. Department of AgricultureAgricultural Research Service laboratory, was established in World War II to produce products to protect military personnel against insect vector of disease. Currently the mission of CMAVE is ...

  14. Fungal biodiversity to biotechnology.

    PubMed

    Chambergo, Felipe S; Valencia, Estela Y

    2016-03-01

    Fungal habitats include soil, water, and extreme environments. With around 100,000 fungus species already described, it is estimated that 5.1 million fungus species exist on our planet, making fungi one of the largest and most diverse kingdoms of eukaryotes. Fungi show remarkable metabolic features due to a sophisticated genomic network and are important for the production of biotechnological compounds that greatly impact our society in many ways. In this review, we present the current state of knowledge on fungal biodiversity, with special emphasis on filamentous fungi and the most recent discoveries in the field of identification and production of biotechnological compounds. More than 250 fungus species have been studied to produce these biotechnological compounds. This review focuses on three of the branches generally accepted in biotechnological applications, which have been identified by a color code: red, green, and white for pharmaceutical, agricultural, and industrial biotechnology, respectively. We also discuss future prospects for the use of filamentous fungi in biotechnology application.

  15. Challenges of climate change: omics-based biology of saffron plants and organic agricultural biotechnology for sustainable saffron production.

    PubMed

    Husaini, Amjad M

    2014-01-01

    Kashmir Valley is a major saffron (Crocus sativus Kashmirianus) growing area of the world, second only to Iran in terms of production. In Kashmir, saffron is grown on uplands (termed in the local language as "Karewas"), which are lacustrine deposits located at an altitude of 1585 to 1677 m above mean sea level (amsl), under temperate climatic conditions. Kashmir, despite being one of the oldest historical saffron-producing areas, faces a rapid decline of saffron industry. Among many other factors responsible for decline of saffron industry the preponderance of erratic rainfalls and drought-like situation have become major challenges imposed by climate change. Saffron has a limited coverage area as it is grown as a 'niche crop' and is a recognized "geographical indication," growing under a narrow microclimatic condition. As such it has become a victim of climate change effects, which has the potential of jeopardizing the livelihood of thousands of farmers and traders associated with it. The paper discusses the potential and actual impact of climate change process on saffron cultivation in Kashmir; and the biotechnological measures to address these issues.

  16. 76 FR 3150 - Office of Biotechnology Activities; Recombinant DNA Research: Action Under the NIH Guidelines for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ...). On July 20, 2010 the NIH Office of Biotechnology Activities (OBA) published a proposed action (75 FR... exception of rodents that contain a transgene encoding more than fifty percent of an exogenous eukaryotic... percent of the genome of an exogenous eukaryotic virus from a single family, in order to...

  17. 78 FR 27977 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ... HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Recombinant DNA... the trial with the NIH OBA or the Recombinant DNA Advisory Committee (RAC) review and reporting... Nucleic Acid Molecules, or DNA or RNA Derived from Recombinant or Synthetic Nucleic Acid Molecules,...

  18. Rationale for Research on Including Sustainable Agriculture in the High School Agricultural Education Curriculum.

    ERIC Educational Resources Information Center

    Williams, David L.; Dollisso, Awoke D.

    1998-01-01

    Sustainable agriculture is a multidisciplinary approach to food and fiber problems. Its inclusion in the secondary curriculum would enrich and align it with social concerns. Research is needed in the scholarship functions of discovery, integrative approaches, and teaching. (SK)

  19. (Workshop on Willow Breeding and Biotechnology Development Activities)

    SciTech Connect

    Layton, P.A.

    1988-10-12

    P.A. Layton attended a workshop on Willow Breeding and Biotechnology Development Activities,'' which was organized by the International Energy Agency/Bioenergy Agreement (IEA/BA) Task II. The traveler spent 1 d prior to the meeting to visit scientists and administrators of Shell Research Limited. Physiology and Biological Chemistry Division to discus their interest in biomass production research as well as their other research interests in tissue culture, biotechnology, and management of forests and agricultural crops that are pertinent to the Department of Energy's (DOE's) Biomass Production program.

  20. Identification of Emerging Science Competencies in Agriculture. Vocational Education Research.

    ERIC Educational Resources Information Center

    Louisiana State Univ., Baton Rouge. School of Vocational Education.

    A research project identified new and emerging science concepts that should be taught in high school vocational agriculture. Agricultural scientists on an advisory panel identified the emerging science concepts. The majority were in the areas of plant science and animal science. Animal science was completely reorganized with greater emphasis on…

  1. Benefits of Supervised Agricultural Experience Programs: A Synthesis of Research.

    ERIC Educational Resources Information Center

    Williams, David L.; Dyer, James E.

    1997-01-01

    A review of literature from 1964 to 1993 identified the benefits of supervised agricultural experience (SAE) programs, including agriculture knowledge and positive work attitudes. Classroom, SAE, and Future Farmers of America complemented each other. The research base is state specific and fragmented and lacks cohesiveness. (SK)

  2. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - USDA BELTSVILLE AGRICULTURAL RESEARCH CENTER

    EPA Science Inventory

    A pollution prevention opportunity assessment (PPOA) was performed during the spring of 1991 which identified areas for waste reduction at the U.S. Department of Agriculture's Beltsville Agricultural Research Center (BARC), Beltsville, Maryland. he areas selected for this joint E...

  3. Space Biotechnology and Commercial Applications University of Florida

    NASA Technical Reports Server (NTRS)

    Phillips, Winfred; Evanich, Peggy L.

    2004-01-01

    The Space Biotechnology and Commercial Applications grant was funded by NASA's Kennedy Space Center in FY 2002 to provide dedicated biotechnology and agricultural research focused on the regeneration of space flight environments with direct parallels in Earth-based applications for solving problems in the environment, advances in agricultural science, and other human support issues amenable to targeted biotechnology solutions. This grant had three project areas, each with multiple tasks. They are: 1) Space Agriculture and Biotechnology Research and Education, 2) Integrated Smart Nanosensors for Space Biotechnology Applications, and 3) Commercial Applications. The Space Agriculture and Biotechnology Research and Education (SABRE) Center emphasized the fundamental biology of organisms involved in space flight applications, including those involved in advanced life support environments because of their critical role in the long-term exploration of space. The SABRE Center supports research at the University of Florida and at the Space Life Sciences Laboratory (SLSL) at the Kennedy Space Center. The Integrated Smart Nanosensors for Space Biotechnology Applications component focused on developing and applying sensor technologies to space environments and agricultural systems. The research activities in nanosensors were coordinated with the SABRE portions of this grant and with the research sponsored by the NASA Environmental Systems Commercial Space Technology Center located in the Department of Environmental Engineering Sciences. Initial sensor efforts have focused on air and water quality monitoring essential to humans for living and working permanently in space, an important goal identified in NASA's strategic plan. The closed environment of a spacecraft or planetary base accentuates cause and effect relationships and environmental impacts. The limited available air and water resources emphasize the need for reuse, recycling, and system monitoring. It is essential to

  4. Reporting and Interpreting Effect Size in Quantitative Agricultural Education Research

    ERIC Educational Resources Information Center

    Kotrlik, Joe W.; Williams, Heather A.; Jabor, M. Khata

    2011-01-01

    The Journal of Agricultural Education (JAE) requires authors to follow the guidelines stated in the Publication Manual of the American Psychological Association [APA] (2009) in preparing research manuscripts, and to utilize accepted research and statistical methods in conducting quantitative research studies. The APA recommends the reporting of…

  5. Factors Associated with Research Productivity of Agricultural Education Faculty.

    ERIC Educational Resources Information Center

    Kotrlik, Joe W.; Bartlett, James E., II; Higgins, Chadwick C.; Williams, Heather A.

    2002-01-01

    Factors influencing the research productivity of full-time agriculture professors (n=114) included the following: number of doctoral students advised to completion, self-perceptions of research confidence, and number of graduate assistant hours allocated. Not influential were percent of time on research, salary, age, gender, rank, or years in…

  6. Societal and Commercial Issues Affecting the Future of Biotechnology in the United States: A Survey of Researchers' Perceptions

    NASA Astrophysics Data System (ADS)

    Rabino, Isaac

    A 1995 survey of 1,257 U.S. recombinant DNA researchers assessed how they view outside factors affecting their work, including public and media attention; regulation; funding; international competition; commercialization of research and university/industry collaboration; health care reform efforts; and patenting laws and policies. Generally, respondents view public attention as having had positive effects on biotechnology progress, but they are concerned about the decrease in R&D funding, especially from government; the loss of scientific openness and basic-research quality caused by academic/industrial collaboration; international competition, particularly from Japan and Germany; overly stringent regulations that control R&D processes rather than products; inefficient regulatory agencies focused on irrelevant criteria; and threats to basic biomedical research from the short-term cost focus of managed-care companies.

  7. 78 FR 25691 - Meeting Notice of the National Agricultural Research, Extension, Education, and Economics...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ... of Agriculture Tom Vilsack, and the Under Secretary of Research, Education, and Economics Dr...; ] DEPARTMENT OF AGRICULTURE Office of the Secretary Meeting Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board AGENCY: Research, Education, and Economics, USDA....

  8. Cultural impacts on public perceptions of agricultural biotechnology: A comparison of South Korea and the United States

    NASA Astrophysics Data System (ADS)

    Nader, Richard Harrison

    According to Millar (1996), the gulf between science and society is growing. Technologies are tools cultures develop to solve society's problems. The rapid dispersion of science and technology across cultural borders through trade, technology transfer and exchange, increasingly requires people in different cultures to make choices about accepting or rejecting artifacts of science and technology such as genetically modified (GM) foods, which originate primarily from the United States. These issues challenge policy makers and scientists to account for the affects of different cultural perspectives on controversial scientific issues. Given the controversy across cultures over acceptance or rejection of genetically modified (GM) foods, GM foods are an excellent example with which to begin to reveal how culture impacts public perceptions of the risk and benefits of science and technology in different societies. This research will: (1) Define public awareness and understanding of science, specifically GM foods; (2) Examine culture's impact on knowledge, including different cultural approaches to research; and (3) Compare recent findings of a bi-national public opinion survey on GM comparing in South Korea and the United States. The proposed research outlines two research questions: (1) How and in what ways do South Koreans and Americans differ in their opinions about GMOs? This question is important for gathering current points of contrast about how the two cultures may differ; and (2) What role does culture play on opinion formation about GM foods? Through grounded theory, the researcher will investigate how cultural differences help explain opinion on public perceptions of GM foods. Is it possible to identify common cultural factors that impact public perceptions of GM foods between South Koreans and Americans? The study will utilize both qualitative and quantitative methodologies. Higher education is a major producer of new science and technology. The study is

  9. [Current estate of biotechnology in Costa Rica].

    PubMed

    Valdez, Marta; López, Rebeca; Jiménez, Luis

    2004-09-01

    A study was carried out on the construction of indicators in biotechnology in Costa Rica as part of the project "SYMBIOSIS, Cooperative Program for the Construction of Indicators in Biotechnology adapted to Latin American and Caribbean countries, to motivate the application and transference of industrial technologies". The study focused on two units: researchers and research projects developed in Costa Rica, between 1998 and 2002. For researchers, information was collected about indicators related to sex, age, teaching activities, number of projects, academic degree, area of speciality and number of publications. For research projects we obtained information about: speciality, sector of application, duration of projects and number of researchers per project. Very interesting results include the high participation of the women in this area of investigation (54%); the low participation of young researchers (13% younger than 30), and a high proportion of the investigators that are responsible for 4 or more projects (42%). With relation to the specialities of the projects, the majority are in the category Bio-Agro (39%) whereas in Acuaculture only 1% was found. The sectors of application with the most number of projects are: Agriculture and Livestock (37%) and Human Health (35%). The main strengthts and limitatations for the development of biotechnology in Costa Rica are discussed.

  10. Opportunities and constraints to biotechnological applications in the Caribbean: transgenic papayas in Jamaica and Venezuela.

    PubMed

    Fermin, Gustavo; Tennant, Paula

    2011-05-01

    In this opinion article, we briefly review the status of crop biotechnology research-with emphasis on the development of GM crops-in Jamaica and Venezuela. We focus on the transgenic papayas developed for both countries, and examine the factors hindering not only the development and application of this biotechnological commodity for the improvement of agricultural productivity, but also on the challenges influencing societal acceptance of the technology. PMID:21212960

  11. Biotechnology: from university to industry

    SciTech Connect

    Kenney, M.F.

    1984-01-01

    This study examines the birth of the biotechnology industry in the US. It is argued that biotechnology may have important implications for the future of American capitalism. The study is contextualized theoretically through the use of the idea of the capitalism experiences waves of innovations at certain historical periods. Finally, the idea of a new regime of accumulation based on information technologies is explored and biotechnology's potential position in the information society is explored. The first section of the study examines the role of the university in biotechnology. The various objectives of administrators and professors are explored as is the role of corporate gift giving in transforming the university into an institution more useful for capitalist accumulation. The second section examines the corporate role in biotechnology: both from the viewpoint of the small venture capital-financed biotechnology firms and the large multinational oil, chemical, and pharmaceutical companies that have made a number of important investments in biotechnology. The last chapter describes the unique effects that biotechnology will have upon the US agricultural sector.

  12. Rhetorical Structure of Research Articles in Agricultural Science

    ERIC Educational Resources Information Center

    Shi, Huimin; Wannaruk, Anchalee

    2014-01-01

    Although the rhetorical structure of research articles (RA) has been extensively examined from individual sections to complete IMRD sections regarding different disciplines, no research has been addressed to the overall rhetorical structure of RAs as a whole entity in the field of agricultural science. In this study, we analyzed 45 agricultural…

  13. Sustaining the Earth's watersheds, agricultural research data system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA-ARS water resources program has developed a web-based data system, STEWARDS: Sustaining the Earth’s Watersheds, Agricultural Research Data System to support research that encompasses a broad range of topics such as water quality, hydrology, conservation, land use, and soils. The data syst...

  14. Genetic Engineering of Plants. Agricultural Research Opportunities and Policy Concerns.

    ERIC Educational Resources Information Center

    Roberts, Leslie

    Plant scientists and science policymakers from government, private companies, and universities met at a convocation on the genetic engineering of plants. During the convocation, researchers described some of the ways genetic engineering may be used to address agricultural problems. Policymakers delineated and debated changes in research funding…

  15. Agricultural weed research: a critique and two proposals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two broad aims drive weed science research: improved management and improved understanding of weed biology and ecology. In recent years, agricultural weed research addressing these two aims has effectively split into separate sub-disciplines despite repeated calls for greater integration. While some...

  16. Research in Agricultural Education. Proceedings of the Annual AAAE Eastern Regional Research Conference (55th, Baltimore, MD, July 6, 2001). Volume 55.

    ERIC Educational Resources Information Center

    Boone, Harry N., Jr., Ed.

    These proceedings contain eight papers presented at the meeting, each followed by a critique. Major areas studied are home schooling, incorporating agriscience and biotechnology in agricultural education, part-time employment by agricultural education teachers, 4-H, attitudes of Agricultural Science Institute participants, client satisfaction, and…

  17. Editorial: Biotechnology Journal's diverse coverage of biotechnology.

    PubMed

    Wink, Michael

    2014-03-01

    This issue of Biotechnology Journal is a regular issue edited by Prof. Michael Wink. The issue covers all the major focus areas of the journal, including medical biotechnology, synthetic biology, and novel biotechnological methods.

  18. Bacteriophages and their implications on future biotechnology: a review

    PubMed Central

    2012-01-01

    Recently it has been recognized that bacteriophages, the natural predators of bacteria can be used efficiently in modern biotechnology. They have been proposed as alternatives to antibiotics for many antibiotic resistant bacterial strains. Phages can be used as biocontrol agents in agriculture and petroleum industry. Moreover phages are used as vehicles for vaccines both DNA and protein, for the detection of pathogenic bacterial strain, as display system for many proteins and antibodies. Bacteriophages are diverse group of viruses which are easily manipulated and therefore they have potential uses in biotechnology, research, and therapeutics. The aim of this review article is to enable the wide range of researchers, scientists, and biotechnologist who are putting phages into practice, to accelerate the progress and development in the field of biotechnology. PMID:22234269

  19. 78 FR 44092 - Request for Nominations of Members for the National Agricultural Research, Extension, Education...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... Request for Nominations of Members for the National Agricultural Research, Extension, Education, and Economics Advisory Board AGENCY: Agricultural Research Service, USDA. ACTION: Solicitation for membership. SUMMARY: The notice announced the USDA's request for membership on the National Agricultural...

  20. Biotechnology Works!

    ERIC Educational Resources Information Center

    Cohen, Libby G.; Spenciner, Loraine

    There have been few initiatives addressing the improvement of science education for students with disabilities. Funded by the National Science Foundation, Biotechnology Works is a summer institute in immunology and genetics for students with disabilities, high school science teachers, and high school counselors. During the 1998 summer session,…

  1. Food biotechnology: benefits and concerns.

    PubMed

    Falk, Michael C; Chassy, Bruce M; Harlander, Susan K; Hoban, Thomas J; McGloughlin, Martina N; Akhlaghi, Amin R

    2002-06-01

    Recent advances in agricultural biotechnology have highlighted the need for experimental evidence and sound scientific judgment to assess the benefits and risks to society. Nutrition scientists and other animal biologists need a balanced understanding of the issues to participate in this assessment. To date most modifications to crop plants have benefited producers. Crops have been engineered to decrease pesticide and herbicide usage, protect against stressors, enhance yields and extend shelf life. Beyond the environmental benefits of decreased pesticide and herbicide application, consumers stand to benefit by development of food crops with increased nutritional value, medicinal properties, enhanced taste and esthetic appeal. There remains concern that these benefits come with a cost to the environment or increased risk to the consumer. Most U.S. consumers are not aware of the extent that genetically modified foods have entered the marketplace. Consumer awareness of biotechnology seems to have increased over the last decade, yet most consumers remain confused over the science. Concern over the impact on the safety of the food supply remains low in the United States, but is substantially elevated in Europe. Before a genetically engineered crop is introduced into commerce it must pass regulatory scrutiny by as many as four different federal regulatory bodies to ensure a safe food supply and minimize the risk to the environment. Key areas for more research are evaluation of the nutritional benefits of new crops, further investigation of the environmental impact, and development of better techniques to identify and track genetically engineered products.

  2. Agave biotechnology: an overview.

    PubMed

    Nava-Cruz, Naivy Y; Medina-Morales, Miguel A; Martinez, José L; Rodriguez, R; Aguilar, Cristóbal N

    2015-01-01

    Agaves are plants of importance both in Mexican culture and economy and in other Latin-American countries. Mexico is reported to be the place of Agave origin, where today, scientists are looking for different industrial applications without compromising its sustainability and preserving the environment. To make it possible, a deep knowledge of all aspects involved in production process, agro-ecological management and plant biochemistry and physiology is required. Agave biotechnology research has been focusing on bio-fuels, beverages, foods, fibers, saponins among others. In this review, we present the advances and challenges of Agave biotechnology. PMID:25058832

  3. Agave biotechnology: an overview.

    PubMed

    Nava-Cruz, Naivy Y; Medina-Morales, Miguel A; Martinez, José L; Rodriguez, R; Aguilar, Cristóbal N

    2015-01-01

    Agaves are plants of importance both in Mexican culture and economy and in other Latin-American countries. Mexico is reported to be the place of Agave origin, where today, scientists are looking for different industrial applications without compromising its sustainability and preserving the environment. To make it possible, a deep knowledge of all aspects involved in production process, agro-ecological management and plant biochemistry and physiology is required. Agave biotechnology research has been focusing on bio-fuels, beverages, foods, fibers, saponins among others. In this review, we present the advances and challenges of Agave biotechnology.

  4. The Global Research Alliance on agricultural greenhouse gases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Global Research Alliance on Agricultural Greenhouse Gases was proposed by New Zealand at the United Nations Framework Convention on Climate Change Conference of the Parties (COP) in Copenhagen in 2009 and developed in partnership with the United States. This alliance now includes 32 member count...

  5. Undergraduate Research in Agriculture: Constructivism and the Scholarship of Discovery

    ERIC Educational Resources Information Center

    Splan, Rebecca K.; Porr, C. A. Shea; Broyles, Thomas W.

    2011-01-01

    Experiential learning is a hallmark of undergraduate education programs in the agricultural sciences, and is aligned with constructivist learning theory. This interpretivist qualitative study used historical research methodology to analyze the epistemological underpinnings of constructivism and explore the construct's relationship to undergraduate…

  6. Developing Transferable Research Skills in First Year Agricultural Economics Students

    ERIC Educational Resources Information Center

    Koppi, Tony; Nolan, Elizabeth; Field, Damien

    2010-01-01

    A problem-based learning approach was adopted for a unit of study in first year agricultural economics at the University of Sydney with the aim of starting development of students' research skills earlier than usual. The novel teaching approach employed a structured and guided problem activity in the first semester and progressed to a more…

  7. USU research helps agriculture enter the space age

    NASA Technical Reports Server (NTRS)

    Salisbury, F. B.

    1987-01-01

    Research at the Utah State University College of Agriculture that is relevant to the space life sciences is reviewed. Specific programs detailed are gravitropism of dicot stems, maximization of wheat yields for use in space exploration, and plant development processes in wheat in microgravity.

  8. Research of spatio-temporal analysis of agricultural pest

    NASA Astrophysics Data System (ADS)

    Wang, Changwei; Li, Deren; Hu, Yueming; Wu, Xiaofang; Qi, Yu

    2009-10-01

    The increase of agricultural pest disasters in recent years has become one of major problems in agriculture harvest; how to predict and control the disasters of agricultural pest has thus attracted great research interest. Although a series of works have been done and some achievements have been attained, the knowledge in this area remains limited. The migration of agricultural pest is not only related to the time variation, but also the space; consequently, the population of agricultural pest has complex spatio-temporal characteristics. The space factor and the temporal factor must be considered at the same time in the research of dynamics changes of the pest population. Using plant hoppers as an object of study, this study employed the biological analogy deviation model to study the distribution of pest population in different periods of time in Guangdong Province. It is demonstrated that the population distribution of plant hoppers is not only related to the space location, but also has a certain direction. The result reported here offers help to the monitor, prevention and control of plant hoppers in Guangdong Provinces.

  9. Impact of Biotechnology on Pharmacy Practice.

    ERIC Educational Resources Information Center

    Black, Curtis D.; And Others

    1990-01-01

    Discussed is the role of schools of pharmacy in (1) preparing future practitioners to assimilate and shape the impact of biotechnology; (2) establish graduate and research programs to enhance and apply products of biotechnology; and (3) identify manpower needs to fully realize potential advances caused by biotechnology. (DB)

  10. [Health risks in the biotechnological industry].

    PubMed

    Colombi, A; Maroni, M; Foà, V

    1989-01-01

    Biotechnology has been defined as the application of biological organisms, systems or processes to manufacturing and service industries. In considering health aspects of biotechnological development it must be underlined that the use of microorganisms in traditional industries, such as the production of food, bread, beer and dairy products, has not added significantly to the more usual industrial hazards. The risk factors encountered in the biotechnology industry can be defined as general, i.e., common to other industrial activities, and specific, i.e., depending on the presence of microorganisms and/or their metabolic products. The specific health risks vary according to the type of process, but can be grouped into three main categories: immunological diseases, toxic effects; pathological effects of microorganisms. Allergic immunological diseases such as bronchial asthma, contact dermatitis, oculo-rhinitis and extrinsic allergic alveolitis are by far the most frequent and well known diseases occurring among workers employed on biotechnological production. Toxic effects were observed among workers employed on the production of antibiotics and hormones or single cell proteins, where absorption of endotoxins has been described. Infectious diseases may arise from uncontrolled dissemination of pathogenic microorganisms through aerosols, dusts, aqueous and semisolid sludge effluents from biotechnological plants. The greatest risks occur in the production of antiviral vaccines, in research laboratories and in waste-water treatment plants. Risk of pathogenic effects has also been speculated from exposure to engineered microorganisms in laboratory and environmental or agricultural applications. Safety precautions consisting of protective measures, and effective barriers of containment (both physical and biological) have to be advised according to the hazardous characteristics of the organisms.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Proceedings of the Symposium on Research in Biology and Biotechnology in Developing Countries (National University of Singapore, November 2-4, 1983). Selected Papers.

    ERIC Educational Resources Information Center

    Rao, A. N., Ed.

    These proceedings of a symposium designed to increase public awareness of current research in biology and biotechnology include: welcoming addresses by Chau Sian Eng and S. Radhakrishna; an opening address by Tay Eng Soon; five papers; four abstracts; summary; symposium program; and list of participants. The five papers are: (1) "The Role of…

  12. Factors affecting the perceptions of Iranian agricultural researchers towards nanotechnology.

    PubMed

    Hosseini, Seyed Mahmood; Rezaei, Rohollah

    2011-07-01

    This descriptive survey research was undertaken to design appropriate programs for the creation of a positive perception of nanotechnology among their intended beneficiaries. In order to do that, the factors affecting positive perceptions were defined. A stratified random sample of 278 science board members was selected out of 984 researchers who were working in 22 National Agricultural Research Institutions (NARIs). Data were collected by using a mailed questionnaire. The descriptive results revealed that more than half of the respondents had "low" or "very low" familiarity with nanotechnology. Regression analysis indicated that the perceptions of Iranian NARI Science Board Members towards nanotechnology were explained by three variables: the level of their familiarity with emerging applications of nanotechnology in agriculture, the level of their familiarity with nanotechnology and their work experiences. The findings of this study can contribute to a better understanding of the present situation of the development of nanotechnology and the planning of appropriate programs for creating a positive perception of nanotechnology.

  13. Agricultural Impacts on Water Resources: Recommendations for Successful Applied Research

    NASA Astrophysics Data System (ADS)

    Harmel, D.

    2014-12-01

    We, as water resource professionals, are faced with a truly monumental challenge - that is feeding the world's growing population and ensuring it has an adequate supply of clean water. As researchers and educators it is good for us to regularly remember that our research and outreach efforts are critical to people around the world, many of whom are desperate for solutions to water quality and supply problems and their impacts on food supply, land management, and ecosystem protection. In this presentation, recommendations for successful applied research on agricultural impacts on water resources will be provided. The benefits of building multidisciplinary teams will be illustrated with examples related to the development and world-wide application of the ALMANAC, SWAT, and EPIC/APEX models. The value of non-traditional partnerships will be shown by the Soil Health Partnership, a coalition of agricultural producers, chemical and seed companies, and environmental advocacy groups. The results of empowering decision-makers with useful data will be illustrated with examples related to bacteria source and transport data and the MANAGE database, which contains runoff nitrogen and phosphorus data for cultivated, pasture, and forest land uses. The benefits of focusing on sustainable solutions will be shown through examples of soil testing, fertilizers application, on-farm profit analysis, and soil health assessment. And the value of welcoming criticism will be illustrated by the development of a framework to estimate and publish uncertainty in measured discharge and water quality data. The good news for researchers is that the agricultural industry is faced with profitability concerns and the need to wisely utilize soil and water resources, and simultaneously state and federal agencies crave sound-science to improve decision making, policy, and regulation. Thus, the audience for and beneficiaries of agricultural research are ready and hungry for applied research results.

  14. An Overview of NASA Biotechnology

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.

    1997-01-01

    Biotechnology research at NASA has comprised three separate areas; cell science and tissue culture, separations methods, and macromolecular crystal growth. This presentation will primarily focus on the macromolecular crystal growth.

  15. 78 FR 47271 - Draft Environmental Assessment for the Kika de la Garza Subtropical Agricultural Research Center...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... Research Center Land Transfer AGENCY: Agricultural Research Service, USDA. ACTION: Notice of the Draft Environmental Assessment for the Kika de la Garza Subtropical Agricultural Research Center Land Transfer... Research Center (KSARC) from the USDA Agricultural Research Service (ARS) in Weslaco, Texas, to The Texas...

  16. Career opportunities for college graduates with the Agricultural Research Service Agency of the U.S. Department of Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Research Service is the principal scientific research agency of the U.S. Department of Agriculture. This agency employs more than 7,600 people working at various locations in the United States and U.S. territories. Careers for new scientists span a variety of disciplines such as c...

  17. Agricultural Research Service research highlights in remote sensing for calendar year 1980

    NASA Technical Reports Server (NTRS)

    Ritchie, J. C. (Principal Investigator)

    1981-01-01

    The AR research mission in remote sensing is to develop the basic understanding of the soil plant animal atmosphere continuum in agricultural ecosystems and to determine when remotely sensed data can be used to provide information about these agricultural ecosystems. A brief statement of the significant results of each project is given. A list of 1980 publication and location contacts is also given.

  18. Support for international agricultural research: current status and future challenges.

    PubMed

    Zeigler, Robert S; Mohanty, Samarendu

    2010-11-30

    The success of the first Green Revolution in the form of abundant food supplies and low prices over the past two decades has diverted the world's attention from agriculture to other pressing issues. This has resulted in lower support for the agricultural research work primarily undertaken by the 15 research centers of the Consultative Group on International Agricultural Research (CGIAR). The total support in real dollars for most of the last three decades has been more or less flat although the number of centers increased from 4 to 15. However, since 2000, the funding situation has improved for the CGIAR centers, with almost all the increase coming from grants earmarked for specific research projects. Even for some centers such as the International Rice Research Institute (IRRI), the downward trend continued as late as 2006 with the budget in real dollars reaching the 1978 level of support. The recent food crisis has renewed the call for a second Green Revolution by revitalizing yield growth to feed the world in the face of growing population and a shrinking land base for agricultural use. The slowdown in yield growth because of decades of neglect in agricultural research and infrastructure development has been identified as the underlying reason for the recent food crisis. For the second Green Revolution to be successful, the CGIAR centers will have to play a complex role by expanding productivity in a sustainable manner with fewer resources. Thus, it is crucial to examine the current structure of support for the CGIAR centers and identify the challenges ahead in terms of source and end use of funds for the success of the second Green Revolution. The objective of this paper is to provide a historical perspective on the support to the CGIAR centers and to examine the current status of funding, in particular, the role of project-specific grants in rebuilding capacity of these centers. The paper will also discuss the nature of the support (unrestricted vs. project

  19. Organic Research Activities of the USDA’s Agricultural Research Service

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic research is a vital and ongoing part of the overall ARS research portfolio and occurs at approximately 20 % of ARS research locations across the United States. The vision for ARS organic agriculture research is to help the organic industry overcome the challenges it faces related to producti...

  20. State responses to biotechnology.

    PubMed

    Harris, Rebecca C

    2015-01-01

    This article reviews biotechnology legislation in the 50 states for 11 policy areas spanning 1990-2010, an era of immense growth in biotechnology, genetic knowledge, and significant policy development. Policies regarding health insurance, life insurance, long-term care insurance, DNA data bank collection, biotech research protection, biotech promotion and support, employment discrimination, genetic counselor licensing, human cloning, and genetic privacy each represent major policy responses arising from biotechnology and coinciding with key areas of state regulation (insurance, criminal justice, economic development, labor law, health and safety, privacy, and property rights). This analysis seeks to answer three questions regarding biotechnology legislation at the state level: who is acting (policy adoption), when is policy adopted (policy timing), and what is policy doing (policy content). Theoretical concerns examine state ideology (conservative or liberal), policy type (economic or moral), and the role of external events (federal law, news events, etc.) on state policy adoption. Findings suggest ideological patterns in adoption, timing, and content of biotech policy. Findings also suggest economic policies tend to be more uniform in content than moral policies, and findings also document a clear link between federal policy development, external events, and state policy response.

  1. Metamorphosis of cisgenic insect resistance research in the transgenic crop era

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biotechnological revolution has forever changed agricultural research and crop production worldwide. Commercial agriculture now includes plants that produce enhanced yield and quality, survival in hostile environmental conditions, manufacture and express defensive toxins, and yield grains with ...

  2. 75 FR 25199 - Solicitation of Input From Stakeholders Regarding the Agriculture and Food Research Initiative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... the Agriculture and Food Research Initiative (AFRI). The AFRI process has been iterative. Pursuant to... Agriculture and Food Research Initiative (AFRI) AGENCY: National Institute of Food and Agriculture, USDA... National Institute of Food and Agriculture (NIFA), formerly known as the Cooperative State...

  3. Biological control of weeds: research by the United States Department of Agriculture-Agricultural Research Service: selected case studies.

    PubMed

    Quimby, Paul C; DeLoach, C Jack; Wineriter, Susan A; Goolsby, John A; Sobhian, Rouhollah; Boyette, C Douglas; Abbas, Hamed K

    2003-01-01

    Research by the USDA-Agricultural Research Service (ARS) on biological control of weeds has been practiced for many years because of its inherent ecological and economic advantages. Today, it is further driven by ARS adherence to Presidential Executive Order 13112 (3 February 1999) on invasive species and to USDA-ARS policy toward developing technology in support of sustainable agriculture with reduced dependence on non-renewable petrochemical resources. This paper reports examples or case studies selected to demonstrate the traditional or classical approach for biological control programs using Old World arthropods against Tamarix spp, Melaleuca quinquenervia (Cav) ST Blake and Galium spurium L/G aparine L, and the augmentative approach with a native plant pathogen against Pueraria lobata Ohwi = P montana. The examples illustrated various conflicts of interest with endangered species and ecological complexities of arthropods with associated microbes such as nematodes.

  4. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research

    PubMed Central

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss small-group apprenticeships (SGAs) as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments using both flow cytometry and laser scanning cytometry during the 1-month summer apprenticeship. In addition to effectively and efficiently teaching cell biology laboratory techniques, this course design provided an opportunity for research training, career exploration, and mentoring. Students participated in active research projects, working with a skilled interdisciplinary team of researchers in a large research institution with access to state-of-the-art instrumentation. The instructors, composed of graduate students, laboratory managers, and principal investigators, worked well together to present a real and worthwhile research experience. The students enjoyed learning cell culture techniques while contributing to active research projects. The institution's researchers were equally enthusiastic to instruct and serve as mentors. In this article, we clarify and illuminate the value of small-group laboratory apprenticeships to the institution and the students by presenting the results and experiences of seven middle and high school participants and their instructors. PMID:12587031

  5. Benefits and concerns associated with biotechnology-derived foods: can additional research reduce children health risks?

    PubMed

    Cantani, A

    2006-01-01

    The development of techniques devised for the genetic manipulation of foods poses new risks for children with food allergy (FA). The introduction of foreign allergenic proteins from different foods into previously tolerated foods may trigger allergic reactions, often complicating with anaphylactic shock in a subset of allergic babies. Children with FA, even if subjected to preventative diets, always challenge the risk of developing allergic manifestations after unintentional intake of a non tolerated food in restaurant settings, with relatives or schoolmates, etc, where product labelling is necessarily lacking. The introduction of potentially allergenic proteins into foods generally considered safe for allergic children can be done deliberately, by either substantially altering the food ingredients, or by genetic manipulation which change the composition or transfer allergens, or unintentionally by quality-control failures, due to contaminations in the production process, or to genetic mismanipulation. There is a controversy between multinationals often favored by governments and consumer association resistance, thus an equidistant analysis poses some unprecedented impediments. The importance of FA and the potential of transgenic plants to bring food allergens into the food supply should not be disregarded. The expression in soybeans of a Brazil nut protein resulted in a food allergen expressed in widely used infant formulas, so paving the way to an often reported multinational debacle. Genetic engineering poses innovative ethical and social concerns, as well as serious challenges to the environment, human health, animal welfare, and the future of agriculture. In this paper will be emphasized practical concepts more crucial for pediatricians.

  6. Benefits and concerns associated with biotechnology-derived foods: can additional research reduce children health risks?

    PubMed

    Cantani, A

    2009-01-01

    The development of techniques devised for the genetic manipulation of foods poses new risks for children with food allergy (FA). The introduction of foreign allergenic proteins from different foods into previously tolerated foods may trigger allergic reactions, often complicating with anaphylactic shock in a subset of allergic babies. Children with FA, even if subjected to preventative diets, always challenge the risk of developing allergic manifestations after unintentional intake of a non tolerated food in restaurant settings, with relatives or schoolmates, etc, where product labelling is necessarily lacking. The introduction of potentially allergenic proteins into foods generally considered safe for allergic children can be done deliberately, by either substantially altering the food ingredients, or by genetic manipulation which change the composition or transfer allergens, or unintentionally by qualitycontrol failures, due to contaminations in the production process, or to genetic mismanipulation. There is a controversy between multinationals often favored by governments and consumer association resistance, thus an equidistant analysis poses some unprecedented impediments. The importance of FA and the potential of transgenic plants to bring food allergens into the food supply should not be disregarded. The expression in soybeans of a Brazil nut protein resulted in a food allergen ex-pressed in widely used infant formulas, so paving the way to an often reported multinational debacle. Genetic engineering poses innovative ethical and social concerns, as well as serious challenges to the environment, human health, animal welfare, and the future of agriculture. In this paper will be emphasized practical concepts more crucial for pediatricians.

  7. Benefits and concerns associated with biotechnology-derived foods: can additional research reduce children health risks?

    PubMed

    Cantani, A

    2006-01-01

    The development of techniques devised for the genetic manipulation of foods poses new risks for children with food allergy (FA). The introduction of foreign allergenic proteins from different foods into previously tolerated foods may trigger allergic reactions, often complicating with anaphylactic shock in a subset of allergic babies. Children with FA, even if subjected to preventative diets, always challenge the risk of developing allergic manifestations after unintentional intake of a non tolerated food in restaurant settings, with relatives or schoolmates, etc, where product labelling is necessarily lacking. The introduction of potentially allergenic proteins into foods generally considered safe for allergic children can be done deliberately, by either substantially altering the food ingredients, or by genetic manipulation which change the composition or transfer allergens, or unintentionally by quality-control failures, due to contaminations in the production process, or to genetic mismanipulation. There is a controversy between multinationals often favored by governments and consumer association resistance, thus an equidistant analysis poses some unprecedented impediments. The importance of FA and the potential of transgenic plants to bring food allergens into the food supply should not be disregarded. The expression in soybeans of a Brazil nut protein resulted in a food allergen expressed in widely used infant formulas, so paving the way to an often reported multinational debacle. Genetic engineering poses innovative ethical and social concerns, as well as serious challenges to the environment, human health, animal welfare, and the future of agriculture. In this paper will be emphasized practical concepts more crucial for pediatricians. PMID:16910351

  8. Benefits and concerns associated with biotechnology-derived foods: can additional research reduce children health risks?

    PubMed

    Cantani, A

    2009-01-01

    The development of techniques devised for the genetic manipulation of foods poses new risks for children with food allergy (FA). The introduction of foreign allergenic proteins from different foods into previously tolerated foods may trigger allergic reactions, often complicating with anaphylactic shock in a subset of allergic babies. Children with FA, even if subjected to preventative diets, always challenge the risk of developing allergic manifestations after unintentional intake of a non tolerated food in restaurant settings, with relatives or schoolmates, etc, where product labelling is necessarily lacking. The introduction of potentially allergenic proteins into foods generally considered safe for allergic children can be done deliberately, by either substantially altering the food ingredients, or by genetic manipulation which change the composition or transfer allergens, or unintentionally by qualitycontrol failures, due to contaminations in the production process, or to genetic mismanipulation. There is a controversy between multinationals often favored by governments and consumer association resistance, thus an equidistant analysis poses some unprecedented impediments. The importance of FA and the potential of transgenic plants to bring food allergens into the food supply should not be disregarded. The expression in soybeans of a Brazil nut protein resulted in a food allergen ex-pressed in widely used infant formulas, so paving the way to an often reported multinational debacle. Genetic engineering poses innovative ethical and social concerns, as well as serious challenges to the environment, human health, animal welfare, and the future of agriculture. In this paper will be emphasized practical concepts more crucial for pediatricians. PMID:19364084

  9. Social Sleepwalkers. Scientific and Technological Research in California Agriculture. Research Monograph No. 13.

    ERIC Educational Resources Information Center

    Friedland, William H.

    Making a case for initiation of a systematic methodology that would predict and evaluate the potential social ramifications of scientific research, this monograph presents: (1) a review of the general lack of social concern among scientific researchers and rationale for utilization of scientific agricultural research as initiator of social…

  10. 78 FR 52496 - Meeting Notice of the National Agricultural Research, Extension, Education, and Economics...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE Meeting Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board AGENCY: Research, Education, and Economics, Office of the Secretary, USDA. ACTION: Notice of...

  11. Focusing Research in Agricultural Education. Proceedings of the Annual Central Region Research Conference in Agricultural Education (47th, St. Louis, Missouri, March 6, 1993).

    ERIC Educational Resources Information Center

    Birkenholz, Robert J., Comp.; Schumacher, Leon G., Comp.

    A conference proceedings on agricultural education research included: "Focusing for Excellence" (Jordan); "Factors Related to the Integration of International Agricultural Concepts into the Secondary Agricultural Education (AE) Curriculum" (Ibezim, McCracken); "Perceptions of State Vocational Education (VE) Administrators Relevant to AE in the…

  12. Developing Digital Courseware for a Virtual Nano-Biotechnology Laboratory: A Design-Based Research Approach

    ERIC Educational Resources Information Center

    Yueh, Hsiu-Ping; Chen, Tzy-Ling; Lin, Weijane; Sheen, Horn-Jiunn

    2014-01-01

    This paper first reviews applications of multimedia in engineering education, especially in laboratory learning. It then illustrates a model and accreditation criteria adopted for developing a specific set of nanotechnology laboratory courseware and reports the design-based research approach used in designing and developing the e-learning…

  13. 75 FR 21008 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ...) to address biosafety for research with synthetic nucleic acids (74 FR 9411). The proposal included... the proposed changes to Section III-E-1 (74 FR 9411), a substantively revised proposal has been...-1 and the other proposed revisions included in the March 2009 Federal Register (FR) notice....

  14. Advanced genetic tools for plant biotechnology

    SciTech Connect

    Liu, WS; Yuan, JS; Stewart, CN

    2013-10-09

    Basic research has provided a much better understanding of the genetic networks and regulatory hierarchies in plants. To meet the challenges of agriculture, we must be able to rapidly translate this knowledge into generating improved plants. Therefore, in this Review, we discuss advanced tools that are currently available for use in plant biotechnology to produce new products in plants and to generate plants with new functions. These tools include synthetic promoters, 'tunable' transcription factors, genome-editing tools and site-specific recombinases. We also review some tools with the potential to enable crop improvement, such as methods for the assembly and synthesis of large DNA molecules, plant transformation with linked multigenes and plant artificial chromosomes. These genetic technologies should be integrated to realize their potential for applications to pressing agricultural and environmental problems.

  15. [Research progress on water footprint in agricultural products].

    PubMed

    Lu, Yang; Liu, Xiu-wei; Zhang, Xi-ying

    2015-10-01

    Water is one of the important resources in human activities. Scientifically and rationally evaluating the effects of human activities on water resources is important for sustainable water resource management. The innovative concepts of water footprint (WF) distinguished the human water consumption into green water, blue water and grey water which extended the evaluation methods in sustainable utilization of water resources. Concepts of WF based on virtual water (VW) and based on life cycle assessment (LCA) both combined water quality and water quantity are now the focuses in agricultural water management researches. Theory of WF based on VW includes the calculation of green, blue and grey WF as well as the evaluation of the sustainability of water environment. Theory of WF based on LCA reflects the overall impact of consumptive and degradative water use on the environment. The purpose of this article was to elaborate the research progresses in theoretical calculation methods and environmental sustainability assessment of the two water footprint theories and then to analyze the differentiation of these two methodologies in describing the consumptive water use in agriculture and its effects on environment. Finally, some future research aspects on water footprint were provided.

  16. Workshop proceedings: challenges and opportunities in evaluating protein allergenicity across biotechnology industries.

    PubMed

    Stagg, Nicola J; Ghantous, Hanan N; Ladics, Gregory S; House, Robert V; Gendel, Steven M; Hastings, Kenneth L

    2013-01-01

    A workshop entitled "Challenges and Opportunities in Evaluating Protein Allergenicity across Biotechnology Industries" was held at the 51st Annual Meeting of the Society of Toxicology (SOT) in San Francisco, California. The workshop was sponsored by the Biotechnology Specialty Section of SOT and was designed to present the science-based approaches used in biotechnology industries to evaluate and regulate protein allergenicity. A panel of experts from industry and government highlighted the allergenicity testing requirements and research in the agricultural, pharmaceutical/biopharma, and vaccine biotechnology industries and addressed challenges and opportunities for advancing the science of protein allergenicity. The main learning from the workshop was that immunoglobulin E-mediated allergenicity of biotechnology-derived products is difficult to assess without human data. The approaches currently being used to evaluate potential for allergenicity across biotechnology industries are very different and range from bioinformatics, in vitro serology, in vivo animal testing, in vitro and in vivo functional assays, and "biosimilar" assessments (ie, biotherapeutic equivalents to innovator products). The challenge remains with regard to the different or lack of regulatory requirements for allergenicity testing across industries, but the novel approaches being used with bioinformatics and biosimilars may lead to opportunities in the future to collaborate across biotechnology industries.

  17. DNA polymerases as useful reagents for biotechnology – the history of developmental research in the field

    PubMed Central

    Ishino, Sonoko; Ishino, Yoshizumi

    2014-01-01

    DNA polymerase is a ubiquitous enzyme that synthesizes complementary DNA strands according to the template DNA in living cells. Multiple enzymes have been identified from each organism, and the shared functions of these enzymes have been investigated. In addition to their fundamental role in maintaining genome integrity during replication and repair, DNA polymerases are widely used for DNA manipulation in vitro, including DNA cloning, sequencing, labeling, mutagenesis, and other purposes. The fundamental ability of DNA polymerases to synthesize a deoxyribonucleotide chain is conserved. However, the more specific properties, including processivity, fidelity (synthesis accuracy), and substrate nucleotide selectivity, differ among the enzymes. The distinctive properties of each DNA polymerase may lead to the potential development of unique reagents, and therefore searching for novel DNA polymerase has been one of the major focuses in this research field. In addition, protein engineering techniques to create mutant or artificial DNA polymerases have been successfully developing powerful DNA polymerases, suitable for specific purposes among the many kinds of DNA manipulations. Thermostable DNA polymerases are especially important for PCR-related techniques in molecular biology. In this review, we summarize the history of the research on developing thermostable DNA polymerases as reagents for genetic manipulation and discuss the future of this research field. PMID:25221550

  18. Theme: The Role of Science in the Agricultural Education Curriculum.

    ERIC Educational Resources Information Center

    Agricultural Education Magazine, 2002

    2002-01-01

    Thirteen theme articles discuss integration of science and agriculture, the role of science in agricultural education, biotechnology, agriscience in Tennessee and West Virginia, agriscience and program survival, modernization of agricultural education curriculum, agriscience and service learning, and biotechnology websites. (SK)

  19. A Model of Agricultural and Food Research Excellence-USDA/ARS/WRRC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Research Service is the principal in-house research arm of the U.S. Department of Agriculture (USDA), responsible for solving agricultural problems of national importance. Included among ARS's 100 locations in the U.S. are regional centers such as the Western Regional Research Cent...

  20. Expressing the sense of the House of Representatives that specialty crops are a vital part of agriculture in the United States, that the Committee on Agriculture should propose funding for programs that support specialty crops priorities, and that legislation should be passed that includes funding reflecting specialty crops as a growing and important part of United States agriculture.

    THOMAS, 113th Congress

    Rep. DelBene, Suzan K. [D-WA-1

    2013-04-25

    05/03/2013 Referred to the Subcommittee on Horticulture, Research, Biotechnology, and Foreign Agriculture. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  1. [The embryonic stem cells research. Example of biotechnology progress under extra-scientific pressure].

    PubMed

    Gámez Escalona, José Antonio

    2013-01-01

    The possibility to isolate, cultivate, preserve, characterize and differentiate Human Embryonic Stem Cells (ES) discovered by James Thomson and his colleagues in 1998 was a milestone in the history of Stem Cell Research. Immediately after this discovery many speculations were made about the therapeutic possibilities of ES, motivated by ideological, political and economic aspects. The episode made clear the lack of scientific rationality and ethics when assessing realities as meaningful as those of human embryos obtained by in vitro fertilization techniques (IVF) or human eggs. Therapeutic Cloning as a promise to produce ″tailored″ Stem Cells reported by Hwang and his team in 2004, ended up being a scandal within the scientific community. The technical difficulties and ethical controversies that arose from obtaining ES were insurmountable. In 2010 only two clinical trials were reported using these cells. Those trials were abandoned in late 2011 arguing financial reasons. The discovery of Induced Pluripotent Stem Cell (iPS) in 2006 in mice and in 2007 in humans, represented the possibility of obtaining pluripotent stem cells without the need to destroy embryos. Today, the absence of clinical trials using ES, caused by financial difficulties as a result of its ineffectiveness, anticipates that the use of ES will be limited to certain experimental controls. Probably, the main contribution of Embryonic Stem Cells will be the understanding that biomedical research should follow an ethically and rationally based rigorous method that cannot be ignore.

  2. Eco-efficiency analysis of an agricultural research complex.

    PubMed

    Reith, Charles C; Guidry, Michael J

    2003-07-01

    The Model Sustainable Agricultural Complex (MSAC) is a 600-acre experimental farm in south-central Louisiana, in the very southern reaches of the United States, approximately 40 km north of the Gulf of Mexico. The MSAC consists of many land uses and facilities, including a dairy, crawfish center, beef herd, sugarcane crop, and equestrian center, as well as numerous features and programs for research, education, and residence. The mission of the MSAC, which is operated by the Department of Renewable Resources at the University of Louisiana at Lafayette, has been to accommodate research and education in production agriculture, while generating revenues through the delivery of food products into the local economy. In recent years, environmental conservation has been increasingly important at the MSAC. Best management practices (BMPs) were implemented to reduce soil loss and mitigate nonpoint source pollution. Research was initiated to quantify the effectiveness of these BMPs, and workshops were conducted to explain preliminary results to local farmers. However, environmental improvements at the MSAC had until 2000 been piecemeal, which may be said as well for agriculture overall. What is needed is a comprehensive integrated approach to analyzing and improving environmental performance, as is possible when implementing an environmental management system (EMS). This manuscript describes our efforts to integrate piecemeal environmental improvements into a farm-wide program of systematic improvement. This process began with a qualitative ranking of the MSAC's inputs and outputs, followed by a quantification of certain key parameters related to the consumption of resources and provision of services at the Complex. Certain measures related to the Complex's eco-efficiency were combined into a ratio that provides a useful target for management and continuous improvement. Eco-efficiency, which is defined as 'the efficiency with which receivables are converted into deliverables

  3. Eco-efficiency analysis of an agricultural research complex.

    PubMed

    Reith, Charles C; Guidry, Michael J

    2003-07-01

    The Model Sustainable Agricultural Complex (MSAC) is a 600-acre experimental farm in south-central Louisiana, in the very southern reaches of the United States, approximately 40 km north of the Gulf of Mexico. The MSAC consists of many land uses and facilities, including a dairy, crawfish center, beef herd, sugarcane crop, and equestrian center, as well as numerous features and programs for research, education, and residence. The mission of the MSAC, which is operated by the Department of Renewable Resources at the University of Louisiana at Lafayette, has been to accommodate research and education in production agriculture, while generating revenues through the delivery of food products into the local economy. In recent years, environmental conservation has been increasingly important at the MSAC. Best management practices (BMPs) were implemented to reduce soil loss and mitigate nonpoint source pollution. Research was initiated to quantify the effectiveness of these BMPs, and workshops were conducted to explain preliminary results to local farmers. However, environmental improvements at the MSAC had until 2000 been piecemeal, which may be said as well for agriculture overall. What is needed is a comprehensive integrated approach to analyzing and improving environmental performance, as is possible when implementing an environmental management system (EMS). This manuscript describes our efforts to integrate piecemeal environmental improvements into a farm-wide program of systematic improvement. This process began with a qualitative ranking of the MSAC's inputs and outputs, followed by a quantification of certain key parameters related to the consumption of resources and provision of services at the Complex. Certain measures related to the Complex's eco-efficiency were combined into a ratio that provides a useful target for management and continuous improvement. Eco-efficiency, which is defined as 'the efficiency with which receivables are converted into deliverables

  4. Safety assessment of biotechnology products for potential risk of food allergy: implications of new research.

    PubMed

    Selgrade, MaryJane K; Bowman, Christal C; Ladics, Gregory S; Privalle, Laura; Laessig, Susan A

    2009-07-01

    Food allergy is a potential risk associated with use of transgenic proteins in crops. Currently, safety assessment involves consideration of the source of the introduced protein, in silico amino acid sequence homology comparisons to known allergens, physicochemical properties, protein abundance in the crop, and, when appropriate, specific immunoglobulin E binding studies. Recently conducted research presented at an International Life Sciences Institute/Health and Environmental Sciences Institute-hosted workshop adds to the scientific foundation for safety assessment of transgenic proteins in five areas: structure/activity, serum screening, animal models, quantitative proteomics, and basic mechanisms. A web-based tool is now available that integrates a database of allergenic proteins with a variety of computational tools which could be used to improve our ability to predict allergenicity based on structural analysis. A comprehensive strategy and model protocols have been developed for conducting meaningful serum screening, an extremely challenging process. Several animal models using oral sensitization with adjuvant and one dermal sensitization model have been developed and appear to distinguish allergenic from non-allergenic food extracts. Data presented using a mouse model suggest that pepsin resistance is indicative of allergenicity. Certain questions remain to be addressed before considering animal model validation. Gel-free mass spectrometry is a viable alternative to more labor-intensive approaches to quantitative proteomics. Proteomic data presented on four nontransgenic varieties of soy suggested that if known allergen expression in genetically modified crops falls within the range of natural variability among commercial varieties, there appears to be no need to test further. Finally, basic research continues to elucidate the etiology of food allergy. PMID:19363142

  5. Safety assessment of biotechnology products for potential risk of food allergy: implications of new research.

    PubMed

    Selgrade, MaryJane K; Bowman, Christal C; Ladics, Gregory S; Privalle, Laura; Laessig, Susan A

    2009-07-01

    Food allergy is a potential risk associated with use of transgenic proteins in crops. Currently, safety assessment involves consideration of the source of the introduced protein, in silico amino acid sequence homology comparisons to known allergens, physicochemical properties, protein abundance in the crop, and, when appropriate, specific immunoglobulin E binding studies. Recently conducted research presented at an International Life Sciences Institute/Health and Environmental Sciences Institute-hosted workshop adds to the scientific foundation for safety assessment of transgenic proteins in five areas: structure/activity, serum screening, animal models, quantitative proteomics, and basic mechanisms. A web-based tool is now available that integrates a database of allergenic proteins with a variety of computational tools which could be used to improve our ability to predict allergenicity based on structural analysis. A comprehensive strategy and model protocols have been developed for conducting meaningful serum screening, an extremely challenging process. Several animal models using oral sensitization with adjuvant and one dermal sensitization model have been developed and appear to distinguish allergenic from non-allergenic food extracts. Data presented using a mouse model suggest that pepsin resistance is indicative of allergenicity. Certain questions remain to be addressed before considering animal model validation. Gel-free mass spectrometry is a viable alternative to more labor-intensive approaches to quantitative proteomics. Proteomic data presented on four nontransgenic varieties of soy suggested that if known allergen expression in genetically modified crops falls within the range of natural variability among commercial varieties, there appears to be no need to test further. Finally, basic research continues to elucidate the etiology of food allergy.

  6. A brief background on the U.S. Department of Agriculture Agricultural Research Service Walnut Gulch Experimental Watershed 1857

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watershed research is critical for quantifying the unique characteristics of hydrologic processes worldwide and especially in semiarid regions. In 1953, the United States Department of Agriculture established the Walnut Gulch Experimental Watershed (WGEW) near Tombstone, Arizona, to conduct hydrolog...

  7. Applications of UAV imagery for agricultural and environmental research at the USDA Southeast Watershed Research Lab

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ARS is the USDA's in-house scientific research agency, whose mission is to conduct research to "develop and transfer solutions to agricultural problems of high national priority..." This includes enhancing the natural resource base and the environment, a dimension of particular relevance to the ...

  8. Biobased products research at the National Center for Agricultural Utilization Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent research by our group at the NCAUR has concerned the research and development of biobased products, most of which are derived from the residues produced during agricultural processing. These include: novel sophorolipids from yeast as natural emulsifiers and surfactants for certified organic...

  9. Peak Performance...Reaching for Excellence in Agricultural Education Research. Proceedings of the Annual National Agricultural Education Research Meeting (22nd, Denver, Colorado, December 1, 1995). Volume XXII.

    ERIC Educational Resources Information Center

    Birkenholz, Robert J., Ed.; Schumacher, Leon G., Ed.

    The theme of this conference reflects the continuing need to conduct and report research that addresses significant problems and issues in Agricultural Education. Selected research papers are as follows: "Opportunities and Obstacles for Distance Education in Agricultural Education (AE)" (Murphy, Terry); "Faculty Needs Associated with Agricultural…

  10. Agricultural Education. Proceedings of the Central Region Annual Research Conference (44th, Chicago, Illinois, February 24-25, 1990).

    ERIC Educational Resources Information Center

    Kansas State Univ., Manhattan.

    The following papers are included: "Focusing Agricultural Education Research" (Williams); "A Time Series Analysis of Agricultural Education Student Teachers' Perceptions of Agricultural Mechanics Laboratory Management Competencies" (Schumacher, Johnson); "Determination of the Agricultural Mechanics Laboratory Management Inservice Needs of Missouri…

  11. Training for Innovation: Capacity-Building in Agricultural Research in Post-War Sierra Leone

    ERIC Educational Resources Information Center

    Gboku, Matthew L. S.; Bebeley, Jenneh F.

    2016-01-01

    This paper examines how the Sierra Leone Agricultural Research Institute (SLARI) used training and development to build capacity for innovation in agricultural research following the country's civil war which ended in 2002. The Institute's training for innovation addressed different agricultural product value chains (APVCs) within the framework of…

  12. Explaining Strengthening Mechanisms, Institutional Orientations and Problematic Challenges of University Agricultural Research in Iran

    ERIC Educational Resources Information Center

    Sharifzadeh, Aboulghasem; Abdollahzadeh, Gholamhossein

    2009-01-01

    According to empirical evidence and noted implications of sustainable agricultural development as a systemic and multi-actor process, integration of the research function of higher agricultural education in Iranian agricultural research systems seems to be an ongoing and considerable necessity. With the aim of identification and analysis of…

  13. Millennium III Challenges: A Major Role for Agricultural Research/Extension/Education.

    ERIC Educational Resources Information Center

    National Association of State Universities and Land Grant Colleges, Washington, DC.

    This report by the National Association of State Universities and Land-Grant Colleges (NASULGC) ad hoc Committee on Federal Support for Agricultural Research, Extension and Education suggests solutions to major challenges in agricultural research. Three new realities provide a powerful rationale for major new investment in agriculture: dramatic…

  14. A Study of Pupils' Conceptions and Reasoning in Connection with "Microbes", as a Contribution To Research in Biotechnology Education.

    ERIC Educational Resources Information Center

    Simonneaux, Laurence

    2000-01-01

    Students' conceptions about "microbes" tend to condition their understanding of biotechnology. Explores connections between the status given to diseases, a hygiene-oriented culture, layman's versus school knowledge, personal experience, socio-cultural mediation, linguistic confusions, and students' conceptions. (Contains 21 references.)…

  15. Progress and needs in agricultural research, development, and applications programs

    NASA Technical Reports Server (NTRS)

    Moore, D. G.; Myers, V. I.

    1977-01-01

    The dynamic nature of agriculture requires repetitive resource assessments such as those from remote sensing. Until recently, the use of remote sensing in agriculture has been limited primarily to site specific investigations without large-scale evaluations. Examples of successful applications at various user levels are provided. The stage of development for applying remote sensing to many agricultural problems is assessed, and goals for planning future data characteristics for increased use in agriculture are suggested.

  16. Research of Development of Agricultural Knowledge Service in China

    NASA Astrophysics Data System (ADS)

    Zhang, Junfeng; Tan, Cuiping; Zheng, Huaiguo; Sun, Sufen; Yu, Feng

    With the global development of knowledge economy, the knowledge requirement of farmers is more personalized and solution-oriented, so there is pressing needs to develop agricultural knowledge service. The paper analyzes characteristics of agricultural knowledge service, and summarizes typical cases of agricultural knowledge service development in China.

  17. Innovations in information management to enhance agriculture: A research perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information management should be the cornerstone for innovative agricultural systems; however, the challenge remains on how to utilize all of the components to enhance agriculture. The enhancement of agriculture is often considered from only a yield perspective. This is an important factor and effo...

  18. 76 FR 38348 - Notice of Appointment of Committee Members to the Advisory Committee on Biotechnology and 21st...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-30

    ... Advisory Committee on Biotechnology and 21st Century Agriculture AGENCY: Office of the Under Secretary... Advisory Committee on Biotechnology and 21st Century Agriculture. SUMMARY: The Office of the Under... Committee on Biotechnology and 21st Century Agriculture (``AC21''). FOR FURTHER INFORMATION CONTACT:...

  19. To amend the Export Apple Act to permit the export of apples to Canada in bulk bins without certification by the Department of Agriculture.

    THOMAS, 113th Congress

    Rep. Owens, William L. [D-NY-21

    2013-03-20

    04/02/2013 Referred to the Subcommittee on Horticulture, Research, Biotechnology, and Foreign Agriculture. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  20. Past, present, and future industrial biotechnology in China.

    PubMed

    Li, Zhenjiang; Ji, Xiaojun; Kan, Suli; Qiao, Hongqun; Jiang, Min; Lu, Dingqiang; Wang, Jun; Huang, He; Jia, Honghua; Ouyuang, Pingkai; Ying, Hanjie

    2010-01-01

    Fossil resources, i.e. concentrated carbon from biomass, have been irrecoverably exhausted through modern industrial civilization in the last two hundred years. Serious consequences including crises in resources, environment and energy, as well as the pressing need for direct and indirect exploitation of solar energy, pose challenges to the science and technology community of today. Bioenergy, bulk chemicals, and biomaterials could be produced from renewable biomass in a biorefinery via biocatalysis. These sustainable industries will match the global mass cycle, creating a new form of civilization with new industries and agriculture driven by solar energy. Industrial biotechnology is the dynamo of a bioeconomy, leading to a new protocol for production of energy, bulk chemicals, and materials. This new mode of innovation will place the industry at center stage supported by universities and research institutes. Creativity in industrial biotechnology will be promoted and China will successfully follow the road to green modernization. China's rapid economic development and its traditional capacity in fermentation will place it in an advantageous position in the industrial biotechnology revolution. The development and current status of industrial biotechnology in China are summarized herein.

  1. Past, Present, and Future Industrial Biotechnology in China

    NASA Astrophysics Data System (ADS)

    Li, Zhenjiang; Ji, Xiaojun; Kan, Suli; Qiao, Hongqun; Jiang, Min; Lu, Dingqiang; Wang, Jun; Huang, He; Jia, Honghua; Ouyuang, Pingkai; Ying, Hanjie

    Fossil resources, i.e. concentrated carbon from biomass, have been irrecoverably exhausted through modern industrial civilization in the last two hundred years. Serious consequences including crises in resources, environment and energy, as well as the pressing need for direct and indirect exploitation of solar energy, pose challenges to the science and technology community of today. Bioenergy, bulk chemicals, and biomaterials could be produced from renewable biomass in a biorefinery via biocatalysis. These sustainable industries will match the global mass cycle, creating a new form of civilization with new industries and agriculture driven by solar energy. Industrial biotechnology is the dynamo of a bioeconomy, leading to a new protocol for production of energy, bulk chemicals, and materials. This new mode of innovation will place the industry at center stage supported by universities and research institutes. Creativity in industrial biotechnology will be promoted and China will successfully follow the road to green modernization. China's rapid economic development and its traditional capacity in fermentation will place it in an advantageous position in the industrial biotechnology revolution. The development and current status of industrial biotechnology in China are summarized herein.

  2. Biotechnology Computing: Information Science for the Era of Molecular Medicine.

    ERIC Educational Resources Information Center

    Masys, Daniel R.

    1989-01-01

    The evolution from classical genetics to biotechnology, an area of research involving key macromolecules in living cells, is chronicled and the current state of biotechnology is described, noting related advances in computing and clinical medicine. (MSE)

  3. The Emerging Significance of Biotechnology for the Study of International Relations.

    ERIC Educational Resources Information Center

    Wiegele, Thomas C.

    1990-01-01

    Considers biotechnology's influence on international relations, focusing on agriculture, environmental issues, law, commerce, and biological warfare. Claims that, because biotechnology cuts across international boundaries and affects public and private interests, it necessitates the rethinking of international systems theory. Urges international…

  4. Pennsylvania's 1982 Abstracts of Research in Agricultural Education. Teacher Education Research Series, Volume 24, Number l.

    ERIC Educational Resources Information Center

    Yoder, Edgar Paul, Comp.

    This document consists of abstracts of research and development activities of 29 studies completed in Pennsylvania during the period from January 1 to December 31, 1982. Included in the collection are abstracts of 21 masters theses and eight doctoral theses. Various topics pertaining to agricultural education are covered, including the…

  5. Beyond and between academia and business: How Austrian biotechnology researchers describe high-tech startup companies as spaces of knowledge production.

    PubMed

    Fochler, Maximilian

    2016-04-01

    Research and innovation policy has invested considerable effort in creating new institutional spaces at the interface of academia and business. High-tech startups founded by academic entrepreneurs have been central to these policy imaginaries. These companies offer researchers new possibilities beyond and between academia and larger industry. However, the field of science and technology studies has thus far shown only limited interest in understanding these companies as spaces of knowledge production. This article analyses how researchers working in small and medium-sized biotechnology companies in Vienna, Austria, describe the cultural characteristics of knowledge production in this particular institutional space. It traces how they relate these characteristics to other institutional spaces they have experienced in their research biographies, such as in academia or larger corporations. It shows that the reasons why researchers decide to work in biotechnology companies and how they organize their work are deeply influenced by their perception of deficiencies in the conditions for epistemic work in contemporary academia and, to a lesser degree, in industry. PMID:27263239

  6. Beyond and between academia and business: How Austrian biotechnology researchers describe high-tech startup companies as spaces of knowledge production.

    PubMed

    Fochler, Maximilian

    2016-04-01

    Research and innovation policy has invested considerable effort in creating new institutional spaces at the interface of academia and business. High-tech startups founded by academic entrepreneurs have been central to these policy imaginaries. These companies offer researchers new possibilities beyond and between academia and larger industry. However, the field of science and technology studies has thus far shown only limited interest in understanding these companies as spaces of knowledge production. This article analyses how researchers working in small and medium-sized biotechnology companies in Vienna, Austria, describe the cultural characteristics of knowledge production in this particular institutional space. It traces how they relate these characteristics to other institutional spaces they have experienced in their research biographies, such as in academia or larger corporations. It shows that the reasons why researchers decide to work in biotechnology companies and how they organize their work are deeply influenced by their perception of deficiencies in the conditions for epistemic work in contemporary academia and, to a lesser degree, in industry.

  7. About soil cover heterogeneity of agricultural research stations' experimental fields

    NASA Astrophysics Data System (ADS)

    Rannik, Kaire; Kõlli, Raimo; Kukk, Liia

    2013-04-01

    Depending on local pedo-ecological conditions (topography, (geo) diversity of soil parent material, meteorological conditions) the patterns of soil cover and plant cover determined by soils are very diverse. Formed in the course of soil-plant mutual relationship, the natural ecosystems are always influenced to certain extent by the other local soil forming conditions or they are site specific. The agricultural land use or the formation of agro-ecosystems depends foremost on the suitability of soils for the cultivation of feed and food crops. As a rule, the most fertile or the best soils of the area, which do not present any or present as little as possible constraints for agricultural land use, are selected for this purpose. Compared with conventional field soils, the requirements for the experimental fields' soil cover quality are much higher. Experimental area soils and soil cover composition should correspond to local pedo-ecological conditions and, in addition to that, represent the soil types dominating in the region, whereas the fields should be as homogeneous as possible. The soil cover heterogeneity of seven arable land blocks of three research stations (Jõgeva, Kuusiku and Olustvere) was studied 1) by examining the large scale (1:10 000) digital soil map (available via the internet), and 2) by field researches using the transect method. The stages of soils litho-genetic and moisture heterogeneities were estimated by using the Estonian normal soils matrix, however, the heterogeneity of top- and subsoil texture by using the soil texture matrix. The quality and variability of experimental fields' soils humus status, was studied more thoroughly from the aspect of humus concentration (g kg-1), humus cover thickness (cm) and humus stocks (Mg ha-1). The soil cover of Jõgeva experimental area, which presents an accumulative drumlin landscape (formed during the last glacial period), consist from loamy Luvisols and associated to this Cambisols. In Kuusiku area

  8. Attaining Excellence in the 80's. Research in Agricultural Education. Proceedings of the Annual National Agricultural Education Research Meeting (14th, Las Vegas, Nevada, December 4, 1987).

    ERIC Educational Resources Information Center

    Mannebach, Alfred J., Comp.

    Among the 36 research papers and critiques are "A Comparison of 1972 and 1980 Secondary Agricultural Education Students" (Navaratnam, Oliver); "A Day Late and a Dollar Short" (Moore); "Assessment of Preservice Preparation by Recent Graduates of Agricultural Education Programs" (Yahya, Burnett); "Characteristics and Activities of Vocational…

  9. Focusing Agricultural Education Research: The Challenge of the 1990's and Beyond. Proceedings of the National Agricultural Education Research Meeting (17th, Cincinnati, Ohio, November 30, 1990).

    ERIC Educational Resources Information Center

    Martin, Robert A., Comp.

    Selected titles among the 51 papers accepted for presentation or publication by the 1990 meeting of a yearly forum for agricultural research presentation include the following: "Effectiveness of Beginning Scholars Program in Attracting High Ability Students to the College of Agriculture and Home Economics" (Lester, Graham); "Analysis of Enrollment…

  10. "Recombinant Protein of the Day": Using Daily Student Presentations to Add Real-World Aspects to a Biotechnology Course

    ERIC Educational Resources Information Center

    Shaffer, Justin F.

    2013-01-01

    To provide a realistic view of the biotechnology industry for students, a novel course focusing on recombinant proteins and their importance in medicine, pharmaceuticals, industry, scientific research, and agriculture was developed. ''Designer Proteins and Society,'' an upper-division elective, was taught in the Fall 2012…

  11. 75 FR 68598 - Notice of Appointment of Members to the National Agricultural Research, Extension, Education, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... with a historic commitment to research in the food and agricultural sciences, food retailing and.... ``National Food Animal Science Society,'' Nancy M. Cox, Director, Kentucky Agricultural Experiment Station... Agriculture to a specific category on the Board, including farming or ranching, food production and...

  12. A Review of Subject Matter Topics Researched in Agricultural and Extension Education.

    ERIC Educational Resources Information Center

    Radhakrishna, Rama B.; Xu, Wenwei

    1997-01-01

    Analysis of 402 articles in the Journal of Agricultural Education and 451 National Agricultural Education Research Meeting papers (1986-1996) yielded 30 categories of topics. The top five were secondary agriculture programs, learning styles, extension education, professionalism, and ag mechanics/engineering. Emerging topics included distance…

  13. Agricultural Research and Extension in Latin America: The Agenda for the Nineties.

    ERIC Educational Resources Information Center

    Kaimowitz, David

    1993-01-01

    Agricultural research and extension institutions in Latin America increased agricultural productivity during 1950-75 but deteriorated during the mid-1970s because they were unable to adapt to a heterogeneous agricultural sector and the changing demands of society. External pressure may be necessary to force these institutions to serve the needs of…

  14. 77 FR 7565 - Solicitation of Input From Stakeholders Regarding the Agriculture and Food Research Initiative

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    ... to read: Food Safety; Food Security; (8) In the Federal Register of February 1, 2012 in FR Doc. 2012...; ] DEPARTMENT OF AGRICULTURE National Institute of Food and Agriculture Solicitation of Input From Stakeholders Regarding the Agriculture and Food Research Initiative AGENCY: National Institute of Food and...

  15. 77 FR 4984 - Solicitation of Input From Stakeholders Regarding the Agriculture and Food Research Initiative

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-01

    ... products; (B) Animal health and production and animal products; (C) Food safety, nutrition, and health; (D... National Institute of Food and Agriculture Solicitation of Input From Stakeholders Regarding the Agriculture and Food Research Initiative AGENCY: National Institute of Food and Agriculture, USDA....

  16. Biotechnology touches the forest

    SciTech Connect

    Powledge, J.M.

    1984-09-01

    Both the United States and New Zealand are doing research in forest biotechnology and much of the interest is in speedy propagation from seed to mature tree. A number of propagation techniques are discussed, such as tissue culture, the culture of tissue from mature trees and somatic embryo genesis. Much of the tissue culture work has been done on radiata pine. Field testing results are considered. The aims and the advantages of forest biotechnology are discussed under the following headings. 1) Disease resistance: research is being carried out on a loblolly pine which would be resistant to fusiform rust. 2) Animal feed: some trees have been discovered to have lower lignin content and similar cellulose and hemicellulose to alfalfa. 3) Specialty chemicals: terpenes, in the tree resin, could be turned into hormones, drugs and other chemicals: the genetic system for the overall biosynthesis of terpenes has been studied. 4) Herbicide resistance. The resistance to glyphosate in poplars is being studied. In conclusion, further research into forest species, using molecular biology is considered essential.

  17. Cell biotechnology of rhodophytes in China

    NASA Astrophysics Data System (ADS)

    Wang, Su-Juan; Kuang, Mei; Ma, Ling-Bo

    1998-03-01

    Cell biotechnology of rhodophytes is important not only in theoretical research but also in cultural practice and for exploitation of genetic resources. In this paper, cell biotechnology of Porphyra is reviewed. Tissue culture and protoplast studies on other rhodophytes in China are discussed.

  18. New Directions for Biosciences Research in Agriculture. High-Reward Opportunities.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Board on Agriculture.

    To aid in the effort to define comprehensive long-range planning goals in bioregulation, the Agricultural Research Service (ARS) asked the Board of Agriculture of the National Research Council to undertake a study of the ARS research programs concerned with bioregulation. (For the purposes of this study bioregulation was interpreted broadly to be…

  19. Agricultural Education: Review and Synthesis of the Research, Fourth Edition. Information Series No. 298.

    ERIC Educational Resources Information Center

    Lee, Jasper S.

    This fourth edition of a review and synthesis of agricultural education research concentrates on the period from 1978 to 1984. The review covers research published in papers and bulletins, compilations of abstracts, proceedings of regional and national agricultural education research meetings, material in the ERIC database, masters' theses, and…

  20. The Impact of Biotechnology upon Pharmacy Education.

    ERIC Educational Resources Information Center

    Speedie, Marilyn K.

    1990-01-01

    Biotechnology is defined, and its impact on pharmacy practice, the professional curriculum (clinical pharmacy, pharmacy administration, pharmacology, medicinal chemistry, pharmaceutics, basic sciences, and continuing education), research in pharmacy schools, and graduate education are discussed. Resulting faculty, library, and research resource…

  1. Integrating and Institutionalizing Lessons Learned: Reorganizing Agricultural Research and Extension

    ERIC Educational Resources Information Center

    Goletti, Francesco; Pinners, Elise; Purcell, Timothy; Smith, Dominic

    2007-01-01

    The majority of the population of Vietnam lives in rural areas and depends on agriculture for their livelihood. Consistent growth of the agriculture sector over the past two decades has contributed to a remarkable reduction in the poverty rate and the virtual elimination of hunger in the rural areas of Vietnam. In order to continue the growth…

  2. A RESEARCH STUDY OF AGRICULTURAL TRAINING NEEDS IN VENTURA COUNTY.

    ERIC Educational Resources Information Center

    RODRIGUES, DONALD F.

    QUESTIONNAIRE RETURNS FROM 103 EMPLOYERS IN AGRICULTURE AND RELATED INDUSTRIES WERE COMBINED WITH 50 INTERVIEWS WITHIN THE SAME GROUP TO PROVIDE INFORMATION ABOUT AGRICULTURAL TRAINING NEEDS IN VENTURA COUNTY. MOST FIRMS EMPLOYED FEWER THAN 15 WORKERS ON A PERMANENT BASIS, SUPPLEMENTED BY LARGE MEMBERS OF SEASONAL WORKERS, ESPECIALLY IN THE…

  3. Progress towards the 'Golden Age' of biotechnology.

    PubMed

    Gartland, K M A; Bruschi, F; Dundar, M; Gahan, P B; Viola Magni, M p; Akbarova, Y

    2013-07-01

    Biotechnology uses substances, materials or extracts derived from living cells, employing 22 million Europeans in a € 1.5 Tn endeavour, being the premier global economic growth opportunity this century. Significant advances have been made in red biotechnology using pharmaceutically and medically relevant applications, green biotechnology developing agricultural and environmental tools and white biotechnology serving industrial scale uses, frequently as process feedstocks. Red biotechnology has delivered dramatic improvements in controlling human disease, from antibiotics to overcome bacterial infections to anti-HIV/AIDS pharmaceuticals such as azidothymidine (AZT), anti-malarial compounds and novel vaccines saving millions of lives. Green biotechnology has dramatically increased food production through Agrobacterium and biolistic genetic modifications for the development of 'Golden Rice', pathogen resistant crops expressing crystal toxin genes, drought resistance and cold tolerance to extend growth range. The burgeoning area of white biotechnology has delivered bio-plastics, low temperature enzyme detergents and a host of feedstock materials for industrial processes such as modified starches, without which our everyday lives would be much more complex. Biotechnological applications can bridge these categories, by modifying energy crops properties, or analysing circulating nucleic acid elements, bringing benefits for all, through increased food production, supporting climate change adaptation and the low carbon economy, or novel diagnostics impacting on personalized medicine and genetic disease. Cross-cutting technologies such as PCR, novel sequencing tools, bioinformatics, transcriptomics and epigenetics are in the vanguard of biotechnological progress leading to an ever-increasing breadth of applications. Biotechnology will deliver solutions to unimagined problems, providing food security, health and well-being to mankind for centuries to come. PMID:23797042

  4. Progress towards the 'Golden Age' of biotechnology.

    PubMed

    Gartland, K M A; Bruschi, F; Dundar, M; Gahan, P B; Viola Magni, M p; Akbarova, Y

    2013-07-01

    Biotechnology uses substances, materials or extracts derived from living cells, employing 22 million Europeans in a € 1.5 Tn endeavour, being the premier global economic growth opportunity this century. Significant advances have been made in red biotechnology using pharmaceutically and medically relevant applications, green biotechnology developing agricultural and environmental tools and white biotechnology serving industrial scale uses, frequently as process feedstocks. Red biotechnology has delivered dramatic improvements in controlling human disease, from antibiotics to overcome bacterial infections to anti-HIV/AIDS pharmaceuticals such as azidothymidine (AZT), anti-malarial compounds and novel vaccines saving millions of lives. Green biotechnology has dramatically increased food production through Agrobacterium and biolistic genetic modifications for the development of 'Golden Rice', pathogen resistant crops expressing crystal toxin genes, drought resistance and cold tolerance to extend growth range. The burgeoning area of white biotechnology has delivered bio-plastics, low temperature enzyme detergents and a host of feedstock materials for industrial processes such as modified starches, without which our everyday lives would be much more complex. Biotechnological applications can bridge these categories, by modifying energy crops properties, or analysing circulating nucleic acid elements, bringing benefits for all, through increased food production, supporting climate change adaptation and the low carbon economy, or novel diagnostics impacting on personalized medicine and genetic disease. Cross-cutting technologies such as PCR, novel sequencing tools, bioinformatics, transcriptomics and epigenetics are in the vanguard of biotechnological progress leading to an ever-increasing breadth of applications. Biotechnology will deliver solutions to unimagined problems, providing food security, health and well-being to mankind for centuries to come.

  5. [Research of spectrum characteristics for light conversion agricultural films].

    PubMed

    Zhang, Song-pei; Li, Jian-yu; Chen, Juan; Xiao, Yang; Sun, Yu-e

    2004-10-01

    The solar spectrum and the function spectrum in chrysanthemum and tomato were determined in this paper. The research for a relation plant growth to solar spectrum showed that the efficiency of plant making use of ultraviolet light of 280-380 nm and yellow-green light of 500-600 nm and near IR spectra over 720 nm are lower, that the blue-purple light of 430-480 nm and red light of 630-690 nm are beneficial to enhancing photosynthesis and promoting plant growth. According to plant photosynthesis and solar spectrum characteristic, the author developed CaS:Cu+, Cl- blue light film, and red light film added with CaS:Eu2+, Mn2+, Cl- to convert green light into red light, and discussed the spectrum characteristic of red-blue double peak in agricultural film and rare earth organic complex which could convert ultraviolet light into red light. Just now, the study on light conversion regents in farm films is going to face new breakthrough and the technology of anti-stocks displacement to study red film which can convert near infrared light are worth to attention.

  6. Cosmetics - chemical technology or biotechnology?

    PubMed

    Allen, G

    1984-04-01

    Synopsis Over the past 25 years the cosmetic industry has become increasingly technological. The origins of many of these advances were based upon chemical technology usually related to colloid science, although more recent developments have had clear biological improvements. A number of recent innovations are examined to consider how far developments in the future will stem from biotechnology rather than chemical technology. The working of surface active materials (e.g. CTAB) is discussed as an example of cosmetic effects being generated purely from chemical technology. The role of fluoride toothpaste in decreasing the incidence of dental caries is discussed as an effect based essentially on chemical technology in an area where future alternatives might come from biotechnology. Skin research is highlighted as the area where new understanding, e.g. of the role of epidermal growth factor (EGF), fibronectin and laminin, could lead to a whole new biotechnological approach to the appraisal of skin. As we venture into innovations based on biotechnology we may be introducing new dimensions in product safety which will need an even closer relationship with the medical fraternity. Consequently the introduction of products based on biotechnology may not be as rapid as is sometimes suggested.

  7. Mannan biotechnology: from biofuels to health.

    PubMed

    Yamabhai, Montarop; Sak-Ubol, Suttipong; Srila, Witsanu; Haltrich, Dietmar

    2016-01-01

    Mannans of different structure and composition are renewable bioresources that can be widely found as components of lignocellulosic biomass in softwood and agricultural wastes, as non-starch reserve polysaccharides in endosperms and vacuoles of a wide variety of plants, as well as a major component of yeast cell walls. Enzymatic hydrolysis of mannans using mannanases is essential in the pre-treatment step during the production of second-generation biofuels and for the production of potentially health-promoting manno-oligosaccharides (MOS). In addition, mannan-degrading enzymes can be employed in various biotechnological applications, such as cleansing and food industries. In this review, fundamental knowledge of mannan structures, sources and functions will be summarized. An update on various aspects of mannan-degrading enzymes as well as the current status of their production, and a critical analysis of the potential application of MOS in food and feed industries will be given. Finally, emerging areas of research on mannan biotechnology will be highlighted.

  8. European biotechnology. April 1978-July 1989 (Citations from the Life Sciences Collection data base). Report for April 1978-July 1989

    SciTech Connect

    Not Available

    1989-12-01

    This bibliography contains citations concerning agricultural and pharmaceutical biotechnical research and development being conducted by Western European nations. Topics include: the future of biotechnology, recent developments, genetic analysis and manipulation (biomolecular engineering), and the biological production of pesticides and medicinals. This bibliography will be especially useful to R D professionals and advanced biochemistry students entering the biomedical or agricultural fields. (Contains 134 citations fully indexed and including a title list.)

  9. 78 FR 65960 - Enhancing Agricultural Coexistence; Request for Public Input

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... response to recommendations from the USDA's Advisory Committee on Biotechnology & 21st Century Agriculture... Committee on Biotechnology & 21st Century Agriculture (AC21) presented a report \\2\\ to Secretary Thomas...

  10. U.S. Department of Agriculture Agricultural Research Service Mahantango Creek Watershed, Pennsylvania, United States: physiography and history

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 420 km**2 Mahantango Creek Watershed, located within the Northern Appalachian Ridges and Valleys, is a subwatershed of the Susquehanna River Basin, which flows to Chesapeake Bay. Research on agricultural management and hydrologic processes that control nutrient loss from nonpoint sources is cond...

  11. Citrus Disease Research and Development Trust Fund Act of 2013

    THOMAS, 113th Congress

    Rep. Buchanan, Vern [R-FL-16

    2013-02-27

    03/13/2013 Referred to the Subcommittee on Horticulture, Research, Biotechnology, and Foreign Agriculture. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  12. GUIDELINES FOR STATE VOCATIONAL AGRICULTURE CURRICULUM MATERIALS SERVICES, A RESEARCH REPORT OF A GRADUATE STUDY. RESEARCH SERIES IN AGRICULTURAL EDUCATION.

    ERIC Educational Resources Information Center

    RIDENOUR, HARLAN E.; WOODIN, RALPH J.

    PROBLEMS OF VOCATIONAL AGRICULTURE TEACHERS IN KEEPING ABREAST OF TECHNICAL KNOWLEDGE AND OBTAINING OR PREPARING MATERIALS STRUCTURED IN LOGICAL SEQUENCE FOR TEACHING PROMPTED A STUDY TO DEVELOP GUIDELINES FOR ORGANIZING AND OPERATING A STATEWIDE VOCATIONAL AGRICULTURE CURRICULUM MATERIALS SERVICE. A SURVEY OF 48 STATE DIRECTORS AND 48 STATE…

  13. INTEGRATING BIOLOGICAL PRINCIPLES WITH INSTRUCTION IN VOCATIONAL AGRICULTURE, A RESEARCH REPORT OF A GRADUATE STUDY. RESEARCH SERIES IN AGRICULTURAL EDUCATION.

    ERIC Educational Resources Information Center

    BENDER, RALPH E.; STARLING, JOHN T.

    TO DETERMINE THE FEASIBILITY OF INTEGRATING BIOLOGICAL PRINCIPLES WITH INSTRUCTION IN VOCATIONAL AGRICULTURE IN OHIO HIGH SCHOOLS, 15 PILOT SCHOOLS AND 8 CONTROL SCHOOLS WERE STUDIED. PRETESTS ADMINISTERED TO STUDENTS IN OCTOBER 1963 WERE AN AGRICULTURAL ACHIEVEMENT TEST, A BIOLOGICAL PRINCIPLES TEST, THE CALIFORNIA SHORT-FORM TEST OF MENTAL…

  14. HEALTH AND EXPOSURE RESEARCH FOR THE AGRICULTURAL COMMUNITY: THE AGRICULTURAL HEALTH STUDY

    EPA Science Inventory

    The Agricultural Health Study (AHS) is a collaborative effort between the National Cancer Institute, the National Institute of Environmental Health Sciences, the U.S. Environmental Protection Agency, and the National Institute for Occupational Safety and Health. The AHS is the...

  15. ADAPTING THE FFA TO A CHANGING PROGRAM OF VOCATIONAL AGRICULTURE. RESEARCH SERIES IN AGRICULTURAL EDUCATION.

    ERIC Educational Resources Information Center

    KANTER, EARL F.; BENDER, RALPH E.

    THE PURPOSE OF THIS NATIONAL STUDY WAS TO SUGGEST WAYS OF ADAPTING THE FUTURE FARMERS OF AMERICA (FFA) TO A CHANGING PROGRAM OF VOCATIONAL AGRICULTURE THROUGH IDENTIFYING NEW PURPOSES OF THE FFA AND EVALUATING SELECTED OPERATIONAL GUIDELINES AND NATIONAL AND STATE FFA ACTIVITIES. MEMBERS OF THE UNITED STATES OFFICE OF EDUCATION, HEAD STATE…

  16. Cassava: constraints to production and the transfer of biotechnology to African laboratories.

    PubMed

    Bull, Simon E; Ndunguru, Joseph; Gruissem, Wilhelm; Beeching, John R; Vanderschuren, Hervé

    2011-05-01

    Knowledge and technology transfer to African institutes is an important objective to help achieve the United Nations Millennium Development Goals. Plant biotechnology in particular enables innovative advances in agriculture and industry, offering new prospects to promote the integration and dissemination of improved crops and their derivatives from developing countries into local markets and the global economy. There is also the need to broaden our knowledge and understanding of cassava as a staple food crop. Cassava (Manihot esculenta Crantz) is a vital source of calories for approximately 500 million people living in developing countries. Unfortunately, it is subject to numerous biotic and abiotic stresses that impact on production, consumption, marketability and also local and country economics. To date, improvements to cassava have been led via conventional plant breeding programmes, but with advances in molecular-assisted breeding and plant biotechnology new tools are being developed to hasten the generation of improved farmer-preferred cultivars. In this review, we report on the current constraints to cassava production and knowledge acquisition in Africa, including a case study discussing the opportunities and challenges of a technology transfer programme established between the Mikocheni Agricultural Research Institute in Tanzania and Europe-based researchers. The establishment of cassava biotechnology platform(s) should promote research capabilities in African institutions and allow scientists autonomy to adapt cassava to suit local agro-ecosystems, ultimately serving to develop a sustainable biotechnology infrastructure in African countries.

  17. Southern Research Conference in Agricultural Education Proceedings. (34th, Mobile, Alabama, March 23-25, 1985).

    ERIC Educational Resources Information Center

    Rawls, Willie J.; And Others

    These proceedings include presentations that reflect the conference's focus on reporting current research in agricultural education. Twenty-one papers are presented in six general sessions: "Future Research Needs for Improving Vocational Agriculture Teacher Education Programs" (David L. Williams); "Assessment of Competencies Possessed by Students…

  18. Sustaining the Earth's Watersheds-Agricultural Research Data System: Data development, user interaction, and operations management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To support the Agricultural Research Service’s Conservation Effects Assessment Project (CEAP) in assessing USDA conservation programs and practices on soil and water quality, a publicly available web-based watershed data system, called Sustaining the Earth’s Watersheds, Agricultural Research Data Sy...

  19. 77 FR 64794 - Cancellation of the National Agricultural Research, Extension, Education, and Economics Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ...; ] DEPARTMENT OF AGRICULTURE Office of the Secretary Cancellation of the National Agricultural Research, Extension, Education, and Economics Advisory Board Meeting AGENCY: Research, Education, and Economics, USDA..., Extension, Education, and Economics Advisory Board scheduled for October 23-25, 2012 has been cancelled....

  20. Managing Our Environment, A Report on Ways Agricultural Research Fights Pollution.

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC.

    A report on the ways agricultural research attempts to fight pollution is presented in this series of articles covering some of the major challenges facing scientists and regulatory officials working in agricultural research. Improved resource management is stressed with the use of advanced technologies as the avenue to solving environmental…

  1. Reaping the Return on Agricultural Research and Education in Virginia. Information Series 93-3.

    ERIC Educational Resources Information Center

    Norton, George W.; Paczkowski, Remi

    This report focuses upon the economic and other contributions that agricultural research and education have made to Virginia over the past 40 years. Agricultural research, extension, and classroom instruction contribute in the following ways to Virginia's citizens: increased supplies and reduced costs, improved competitiveness, multiplier effects…

  2. Competence Challenges of Demand-Led Agricultural Research and Extension in Uganda

    ERIC Educational Resources Information Center

    Kibwika, P.; Wals, A. E. J.; Nassuna-Musoke, M. G.

    2009-01-01

    Governments and development agencies in Sub-Saharan Africa are experimenting alternative approaches within the innovation systems paradigm to enhance relevance of agricultural research and extension to the poverty eradication agenda. Uganda, for example, has recently shifted from the supply driven to demand-led agricultural research and extension.…

  3. State FFA Officers' Confidence and Trustworthiness of Biotechnology Information Sources

    ERIC Educational Resources Information Center

    Wingenbach, Gary J.; Rutherford, Tracy A.

    2007-01-01

    Are state FFA officers' awareness levels of agricultural topics reported in mass media superior to those who do not serve in leadership roles? The purpose of this study was to determine elected state FFA officers' awareness of biotechnology, and their confidence and trust of biotechnology information sources. Descriptive survey methods were used…

  4. Biotechnology and food security in the 21st century.

    PubMed

    Serageldin, I

    1999-07-16

    Biotechnology can contribute to future food security if it benefits sustainable small-farm agriculture in developing countries. Presently, agrobiotechnology research cites ethical, safety, and intellectual property rights issues. Protection of intellectual property rights encourages private sector investment in agrobiotechnology, but in developing countries the needs of smallholder farmers and environmental conservation are unlikely to attract private funds. Public investment will be needed, and new and imaginative public-private collaboration can make the gene revolution beneficial to developing countries. This is crucial for the well-being of today's hungry people and future generations.

  5. [African agriculture faced with global changes: researches and innovations based on ecological sciences].

    PubMed

    Masse, Dominique; Ndour Badiane, Yacine; Hien, Edmond; Akpo, Léonard-Élie; Assigbetsé, Komi; Bilgo, Ablassé; Diédhiou, Ibrahima; Hien, Victor; Lardy, Lydie

    2013-01-01

    In the context of environmental and socio-economic changes, the agriculture of Sub-Saharan African countries will have to ensure food security of the population, while reducing its environmental footprint. The biophysical and social systems of agricultural production are complex. Innovative agricultural practices will be based on an intensification of ecological processes that determine the functioning of the soil-plant system, farmers' fields and agro-ecosystems. This ecological engineering approach is useful to take up the challenge of Sub-Saharan agricultures in the future, as shown in researches conducted by IESOL International Joint Lab "Intensification of agricultural soils in West Africa" (ISRA, UCAD, TU, OU, INERA, IRD).

  6. Beyond Knowledge Transfer: The Social Construction of Autonomous Academic Science in University-Industry Agricultural Biotechnology Research Collaborations

    ERIC Educational Resources Information Center

    Biscotti, Dina Louise

    2010-01-01

    Autonomy is a social product. Although some might view autonomy as the absence of social interference in individual action, it is in fact produced through social institutions. It enables social actors to act; it is the justification for the allocation of enormous public resources into institutions classified as "public" or "nonprofit;" it can lead…

  7. Termites as targets and models for biotechnology.

    PubMed

    Scharf, Michael E

    2015-01-01

    Termites have many unique evolutionary adaptations associated with their eusocial lifestyles. Recent omics research has created a wealth of new information in numerous areas of termite biology (e.g., caste polyphenism, lignocellulose digestion, and microbial symbiosis) with wide-ranging applications in diverse biotechnological niches. Termite biotechnology falls into two categories: (a) termite-targeted biotechnology for pest management purposes, and (b) termite-modeled biotechnology for use in various industrial applications. The first category includes several candidate termiticidal modes of action such as RNA interference, digestive inhibition, pathogen enhancement, antimicrobials, endocrine disruption, and primer pheromone mimicry. In the second category, termite digestomes are deep resources for host and symbiont lignocellulases and other enzymes with applications in a variety of biomass, industrial, and processing applications. Moving forward, one of the most important approaches for accelerating advances in both termite-targeted and termite-modeled biotechnology will be to consider host and symbiont together as a single functional unit. PMID:25341102

  8. Western Australian school students' understanding of biotechnology

    NASA Astrophysics Data System (ADS)

    Dawson, Vaille; Schibeci, Renato

    2003-01-01

    Are science educators providing secondary school students with the background to understand the science behind recent controversies such as the recently introduced compulsory labelling of genetically modified foods? Research from the UK suggests that many secondary school students do not understand the processes or implications of modern biotechnology. The situation in Australia is unclear. In this study, 1116 15-year-old students from eleven Western Australian schools were surveyed to determine their understanding of, and attitude towards, recent advances in modern biotechnology. The results indicate that approximately one third of students have little or no understanding of biotechnology. Many students over-estimate the use of biotechnology in our society by confusing current uses with possible future applications. The results provide a rationale for the inclusion of biotechnology, a cutting edge science, in the school science curriculum

  9. Termites as targets and models for biotechnology.

    PubMed

    Scharf, Michael E

    2015-01-01

    Termites have many unique evolutionary adaptations associated with their eusocial lifestyles. Recent omics research has created a wealth of new information in numerous areas of termite biology (e.g., caste polyphenism, lignocellulose digestion, and microbial symbiosis) with wide-ranging applications in diverse biotechnological niches. Termite biotechnology falls into two categories: (a) termite-targeted biotechnology for pest management purposes, and (b) termite-modeled biotechnology for use in various industrial applications. The first category includes several candidate termiticidal modes of action such as RNA interference, digestive inhibition, pathogen enhancement, antimicrobials, endocrine disruption, and primer pheromone mimicry. In the second category, termite digestomes are deep resources for host and symbiont lignocellulases and other enzymes with applications in a variety of biomass, industrial, and processing applications. Moving forward, one of the most important approaches for accelerating advances in both termite-targeted and termite-modeled biotechnology will be to consider host and symbiont together as a single functional unit.

  10. Emerging National Research Needs for Agricultural Air Quality

    NASA Astrophysics Data System (ADS)

    Aneja, Viney P.; Schlesinger, William H.; Niyogi, Dev; Jennings, Greg; Gilliam, Wendell; Knighton, Raymond E.; Duke, Clifford S.; Blunden, Jessica; Krishnan, Srinath

    2006-01-01

    Over the next 50 years, the Earth's human population is predicted to increase from the current 6.1 billion to more than 9 billion, creating a parallel increase in demand for agricultural commodities. Satisfying the demand for food is already driving changes in crop and livestock production methods that may have profound environmental effects. Increased consumption of animal protein in developed and developing countries, for example, has resulted in concentrated production of poultry and livestock, which has led to concentrated emissions of pollutants from these production facilities and has created regulatory concerns for agriculture. Development of land for nonagricultural uses has placed more pressure on marginal agricultural lands and has caused environmental degradation including the emission of trace gases (e.g., carbon, sulfur, and nitrogen species) into the atmosphere.

  11. A.C. Hildreth: Initiating USDA agricultural research in Cheyenne

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eight months after the October, 1929 Stock Market crash, 36-year-old Aubrey Claire Hildreth resigned his position at the University of Maine Agricultural Station and left the blueberries and cranberries of Orono, Maine, to travel with his family to Cheyenne to assume the duties of Station Superinten...

  12. Production or Perish: Changing the Inequities of Agricultural Research Priorities.

    ERIC Educational Resources Information Center

    Friedland, William H.; Kappel, Tim

    Because of the decline of farm population and family farms, the increase in energy-intensivity, and concentration process in agriculture, a rising tide of criticism has focused on the land grant system and its role in encouraging scientific applications supporting these trends. A study was conducted to develop a strategy that would change…

  13. Emergence of the global research alliance on agricultural greenhouse gases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing human population pressure on the Earth is of great concern and a key reason why agricultural and natural resource sciences must be fully engaged to develop solutions for a sustainable future. Increasing population puts pressure on the demand for food, clean water, healthy soil, and a sta...

  14. Climate-smart agriculture global research agenda: science for action

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate Smart Agriculture (CSA) addresses the challenge of meeting the growing demand for food, fiber, or fuel, caused by population growth, changes in diet related to increases in per capita income, and the need for alternative energy sources, despite the changing climate and fewer opportunities fo...

  15. Supervision of Supervised Agricultural Experience Programs: A Synthesis of Research.

    ERIC Educational Resources Information Center

    Dyer, James E.; Williams, David L.

    1997-01-01

    A review of literature from 1964 to 1993 found that supervised agricultural experience (SAE) teachers, students, parents, and employers value the teachers' supervisory role. Implementation practices vary widely and there are no cumulative data to guide policies and standards for SAE supervision. (SK)

  16. Mycelium reinforced agricultural fiber bio-composites: Summary of research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Industry and the public sector have a growing interest in utilizing natural fibers, such as agricultural substrates, in the manufacture of components and products currently manufactured from fossil fuels. A patented process, developed by Ecovative Design, LLC (Ecovative), for growing fungal species ...

  17. New Developments in Biotechnology: U.S. Investment in Biotechnology. Summary.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    Since the discovery of recombinant DNA in the early 1970s, biotechnology has become an essential tool for many industries. The potential of biotechnology to improve the Nation's health, food supply, and the quality of the environment leads logically to questions of whether current levels of investment in research and development, human resources,…

  18. New Developments in Biotechnology: U.S. Investment in Biotechnology. [Special Report.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    Since the discovery of recombinant DNA in the early 1970s, biotechnology has become an essential tool for many industries. The potential of biotechnology to improve the Nation's health, food supply, and the quality of the environment leads logically to questions of whether current levels of investment in research and development, human resources,…

  19. Environmentally compatible applications of biotechnology

    SciTech Connect

    Frederick, R.J.; Egan, M.

    1994-09-01

    Using living organisms to minimize harmful human impact on the environment is relatively recent thrust of biotechnology. Biotechnology developments are being employed as green technologies in a variety of applications that fall into the category of environmental biotechnology. The following aspects of biotechnology are discussed in this article: biosensors; bioremediation; bioleaching; natural plastics; clean fuels; pesticides; regulation of biotechnology products and processes. 58 refs.

  20. New challenges in microalgae biotechnology.

    PubMed

    Valverde, Federico; Romero-Campero, Francisco J; León, Rosa; Guerrero, Miguel G; Serrano, Aurelio

    2016-08-01

    Photosynthetic protists, also called microalgae, have been systematically studied for more than a century. However, only recently broad biotechnological applications have fostered a novel wave of research on their potentialities as sustainable resources of renewable energy as well as valuable industrial and agro-food products. At the recent VII European Congress of Protistology held in Seville, three outstanding examples of different research strategies on microalgae with biotechnological implications were presented, which suggested that integrative approaches will produce very significant advances in this field in the next future. In any case, intense research and the application of systems biology and genetic engineering techniques are absolutely essential to reach the full potential of microalgae as cell-factories of bio-based products and, therefore, could contribute significantly to solve the problems of biosustainability and energy shortage. PMID:27062304

  1. New challenges in microalgae biotechnology.

    PubMed

    Valverde, Federico; Romero-Campero, Francisco J; León, Rosa; Guerrero, Miguel G; Serrano, Aurelio

    2016-08-01

    Photosynthetic protists, also called microalgae, have been systematically studied for more than a century. However, only recently broad biotechnological applications have fostered a novel wave of research on their potentialities as sustainable resources of renewable energy as well as valuable industrial and agro-food products. At the recent VII European Congress of Protistology held in Seville, three outstanding examples of different research strategies on microalgae with biotechnological implications were presented, which suggested that integrative approaches will produce very significant advances in this field in the next future. In any case, intense research and the application of systems biology and genetic engineering techniques are absolutely essential to reach the full potential of microalgae as cell-factories of bio-based products and, therefore, could contribute significantly to solve the problems of biosustainability and energy shortage.

  2. Recent advances in mid- and near-infrared spectroscopy with applications for research and teaching, focusing on petrochemistry and biotechnology relevant products

    NASA Astrophysics Data System (ADS)

    Heise, H. M.; Fritzsche, J.; Tkatsch, H.; Waag, F.; Karch, K.; Henze, K.; Delbeck, S.; Budde, J.

    2013-11-01

    Mid- and near-infrared spectroscopy is introduced as a versatile analytical method for characterizing liquid and solid chemicals as obtained from petrochemistry and biotechnology processes. Besides normal transmission measurements, special equipment with silver halide fiber-optic probes allowing efficient analysis based on mid-infrared attenuated total reflection, and an accessory for near-infrared diffuse reflection measurements, are presented. The latter technique can be used advantageously for powdered samples such as microalgae biomass and polysaccharides, as well as for different tissues such as meat samples. The advantages and disadvantages of both methods, which can be used for industrial process monitoring and chemical quality control applications, are discussed, and have been used in several research projects of BSc students within their degree course of bio- and nano-technologies of our University of Applied Sciences.

  3. Twenty-third Annual Southern Region Research Conference in Agricultural Education.

    ERIC Educational Resources Information Center

    Lee, Jasper S., Ed.

    The report of the conference proceedings of the Southern Region Research Conference in Agricultural Education has summarized the presentations of 17 speakers. Some topics covered were: private foundation grantsmanship; problems of agricultural teacher reciprocity, certification, and recruiting; pre-teacher attitudes; follow-up studies of…

  4. CATIE: Tropical Agricultural Research and Higher Education Center. http://www.catie.ac.cr

    ERIC Educational Resources Information Center

    Applied Environmental Education and Communication, 2004

    2004-01-01

    This article features CATIE (Centro Agronomico Tropical de Investigacion y Ensenanza), a tropical agricultural research and higher education center. CATIE's mission is to be instrumental in poverty reduction and rural development in the American tropics, by promoting diversified and competitive agriculture and sustainable management of natural…

  5. Identification of Researchable Topics on International Agricultural Education. A Delphi Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.; Madou-Bangurah, Kabba

    A modified Delphi technique was used to identify topics in international agricultural education considered by eight experts on agricultural education to be areas needing research. All eight (100%) of the experts completed the first-round mail questionnaire, and seven (87.5%) completed the second and third rounds. Survey category areas were as…

  6. Returns to Human and Research Capital, United States Agriculture, 1949-1964.

    ERIC Educational Resources Information Center

    Fishelson, Gideon

    This study estimated rates of return to public investments in human and research capital (formal schooling and extension and vocational agricultural education) in the United States agricultural industry. (Southern states were excluded because of demographic and educational factors that would have biased the variables.) Output per farm was defined…

  7. Education and Research Related to Organic Waste Management at Agricultural Engineering Schools

    ERIC Educational Resources Information Center

    Soliva, Montserrat; Bernat, Carles; Gil, Emilio; Martinez, Xavier; Pujol, Miquel; Sabate, Josep; Valero, Jordi

    2007-01-01

    Purpose: The purpose of this paper is to describe the experience of the Agriculture Engineering School of Barcelona (ESAB), where undergraduate students were involved in field research experiments on organic waste use in agricultural systems. Design/methodology/approach: The paper outlines how the formation of professionals oriented to work for…

  8. Sustainable agriculture for a dynamic world: Forage-Crop-Livestock systems research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research at the USDA-Agricultural Research Service, Grazinglands Research Laboratory is focused on development and delivery of improved technologies, strategies, and planning tools for integrated crop-forage-livestock systems under variable climate, energy, and market conditions. The GRL research p...

  9. RESEARCH CONFERENCE IN AGRICULTURAL EDUCATION (20TH, UNIVERSITY OF NEBRASKA, AUGUST 2-4, 1966).

    ERIC Educational Resources Information Center

    KAHLER, ALAN; AND OTHERS

    FIFTY-FOUR PARTICIPANTS FROM NINE STATES ATTENDED THE CONFERENCE TO DISCUSS REGIONAL RESEARCH, METHODOLOGICAL IMPROVEMENTS, AND NEW AREAS OF RESEARCH. TEXTS OF MAJOR SPEECHES GIVEN AT THE CONFERENCE ARE INCLUDED--"RESEARCH IN EDUCATION" BY W. K. BEGGS, "THE CHALLENGE TO SOCIAL SCIENCE RESEARCH IN AGRICULTURE," BY HOWARD W. OTTOSON, "RESEARCH…

  10. Operationalizing Demand-Driven Agricultural Research: Institutional Influences in a Public and Private System of Research Planning in the Netherlands

    ERIC Educational Resources Information Center

    Klerkx, Laurens; Leeuwis, Cees

    2009-01-01

    The trend towards demand-driven agricultural research has focused attention on the inclusion of farmers in research planning. Theoretically, this should enhance ownership and increase the applicability of research. However, in practice, several tensions emerge with regard to the operationalization of such "user-driven research planning systems",…

  11. Improving microalgae for biotechnology--From genetics to synthetic biology.

    PubMed

    Hlavova, Monika; Turoczy, Zoltan; Bisova, Katerina

    2015-11-01

    Microalgae have traditionally been used in many biotechnological applications, where each new application required a different species or strain expressing the required properties; the challenge therefore is to isolate or develop, characterize and optimize species or strains that can express more than one specific property. In agriculture, breeding of natural variants has been successfully used for centuries to improve production traits in many existing plant and animal species. With the discovery of the concepts of classical genetics, these new ideas have been extensively used in selective breeding. However, many biotechnologically relevant algae do not possess the sexual characteristics required for traditional breeding/crossing, although they can be modified by chemical and physical mutagens. The resulting mutants are not considered as genetically modified organisms (GMOs) and their cultivation is therefore not limited by legislation. On the other hand, mutants prepared by random or specific insertion of foreign DNA are considered to be GMOs. This review will compare the effects of two genetic approaches on model algal species and will summarize their advantages in basic research. Furthermore, we will discuss the potential of mutagenesis to improve microalgae as a biotechnological resource, to accelerate the process from specific strain isolation to growth optimization, and discuss the production of new products. Finally, we will explore the potential of algae in synthetic biology. PMID:25656099

  12. Improving microalgae for biotechnology--From genetics to synthetic biology.

    PubMed

    Hlavova, Monika; Turoczy, Zoltan; Bisova, Katerina

    2015-11-01

    Microalgae have traditionally been used in many biotechnological applications, where each new application required a different species or strain expressing the required properties; the challenge therefore is to isolate or develop, characterize and optimize species or strains that can express more than one specific property. In agriculture, breeding of natural variants has been successfully used for centuries to improve production traits in many existing plant and animal species. With the discovery of the concepts of classical genetics, these new ideas have been extensively used in selective breeding. However, many biotechnologically relevant algae do not possess the sexual characteristics required for traditional breeding/crossing, although they can be modified by chemical and physical mutagens. The resulting mutants are not considered as genetically modified organisms (GMOs) and their cultivation is therefore not limited by legislation. On the other hand, mutants prepared by random or specific insertion of foreign DNA are considered to be GMOs. This review will compare the effects of two genetic approaches on model algal species and will summarize their advantages in basic research. Furthermore, we will discuss the potential of mutagenesis to improve microalgae as a biotechnological resource, to accelerate the process from specific strain isolation to growth optimization, and discuss the production of new products. Finally, we will explore the potential of algae in synthetic biology.

  13. The Biotechnology Facility for International Space Station

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas; Lundquist, Charles; Tuxhorn, Jennifer; Hurlbert, Katy

    2004-01-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput.

  14. Frontiers in biomedical engineering and biotechnology.

    PubMed

    Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu

    2014-01-01

    The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.

  15. The Biotechnology Facility for International Space Station.

    PubMed

    Goodwin, Thomas; Lundquist, Charles; Tuxhorn, Jennifer; Hurlbert, Katy

    2004-03-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput.

  16. Biotechnology Laboratory Methods.

    ERIC Educational Resources Information Center

    Davis, Robert H.; Kompala, Dhinakar S.

    1989-01-01

    Describes a course entitled "Biotechnology Laboratory" which introduces a variety of laboratory methods associated with biotechnology. Describes the history, content, and seven experiments of the course. The seven experiments are selected from microbiology and molecular biology, kinetics and fermentation, and downstream processing-bioseparations.…

  17. Biotechnology and Education.

    ERIC Educational Resources Information Center

    Journal of Biological Education, 1982

    1982-01-01

    Summarizes a Royal Society report on the educational implications of the growth of biotechnology (application of biological organisms, systems, or processes to manufacturing and service industries). Eighteen recommendations are made including the inclusion of biotechnological content into science curricula. (Author/JN)

  18. Ohio Biotechnology Competency Profile.

    ERIC Educational Resources Information Center

    Miller, Lavonna; Bowermeister, Bob; Boudreau, Joyce

    This document, which lists the biotechnology competencies identified by representatives from biotechnology businesses and industries as well as secondary and post-secondary educators throughout Ohio, is intended to assist individuals and organizations in developing college tech prep programs that will prepare students from secondary through…

  19. Medical biotechnology in India.

    PubMed

    Lohray, Braj B

    2003-01-01

    The potential of biotechnology has just began to emerge in the 20th century. After the full knowledge of human genomes is available, biotechnology is going to play a major role in shaping the concept of future drug discovery, drug delivery, diagnostic methodology, clinical trials, and to a great extent the major lifestyle of the human society. This article is a comprehensive review of the major impact of biotechnology in diagnostics, antibiotics, r-proteins, vaccines, and antibodies production. It also highlights the future aspects of gene therapy in the management of healthcare. A comprehensive list of biotech products in healthcare management has been given. Also, the growth of biotechnology throughout the world at large and in the Indian industries in particular has been highlighted. Constraints, concerns and difficulties in biotechnology in India have been addressed mainly related to human resources, training institutions in India, funding in biotechnology, patent-related issues and regulatory hurdles. Like in information technology, India has great potential in bioinformatics as well. Some of the recent information on bioinformatics centers in India has been summarized. Indian biotechnology industries have the potential to use the modern discoveries in life sciences to reach an enviable position in the world of biotechnology.

  20. Scenario development as a basis for formulating a research program on future agriculture: a methodological approach.

    PubMed

    Oborn, Ingrid; Bengtsson, Jan; Hedenus, Fredrik; Rydhmer, Lotta; Stenström, Maria; Vrede, Katarina; Westin, Charles; Magnusson, Ulf

    2013-11-01

    To increase the awareness of society to the challenges of global food security, we developed five contrasting global and European scenarios for 2050 and used these to identify important issues for future agricultural research. Using a scenario development method known as morphological analysis, scenarios were constructed that took economic, political, technical, and environmental factors into account. With the scenarios as a starting point future challenges were discussed and research issues and questions were identified in an interactive process with stakeholders and researchers. Based on the outcome of this process, six socioeconomic and biophysical overarching challenges for future agricultural were formulated and related research issues identified. The outcome was compared with research priorities generated in five other research programs. In comparison, our research questions focus more on societal values and the role of consumers in influencing agricultural production, as well as on policy formulation and resolving conflicting goals, areas that are presently under-represented in agricultural research. The partly new and more interdisciplinary research priorities identified in Future Agriculture compared to other programs analyzed are likely a result of the methodological approach used, combining scenarios and interaction between stakeholders and researchers.

  1. Moving GIS research indoors: spatiotemporal analysis of agricultural animals.

    PubMed

    Daigle, Courtney L; Banerjee, Debasmit; Montgomery, Robert A; Biswas, Subir; Siegford, Janice M

    2014-01-01

    A proof of concept applying wildlife ecology techniques to animal welfare science in intensive agricultural environments was conducted using non-cage laying hens. Studies of wildlife ecology regularly use Geographic Information Systems (GIS) to assess wild animal movement and behavior within environments with relatively unlimited space and finite resources. However, rather than depicting landscapes, a GIS could be developed in animal production environments to provide insight into animal behavior as an indicator of animal welfare. We developed a GIS-based approach for studying agricultural animal behavior in an environment with finite space and unlimited resources. Concurrent data from wireless body-worn location tracking sensor and video-recording systems, which depicted spatially-explicit behavior of hens (135 hens/room) in two identical indoor enclosures, were collected. The spatial configuration of specific hen behaviors, variation in home range patterns, and variation in home range overlap show that individual hens respond to the same environment differently. Such information could catalyze management practice adjustments (e.g., modifying feeder design and/or location). Genetically-similar hens exhibited diverse behavioral and spatial patterns via a proof of concept approach enabling detailed examinations of individual non-cage laying hen behavior and welfare. PMID:25098421

  2. Antimony bioavailability: knowledge and research perspectives for sustainable agricultures.

    PubMed

    Pierart, Antoine; Shahid, Muhammad; Séjalon-Delmas, Nathalie; Dumat, Camille

    2015-05-30

    The increasing interest in urban agriculture highlights the crucial question of crop quality. The main objectives for environmental sustainability are a decrease in chemical inputs, a reduction in the level of pollutants, and an improvement in the soil's biological activity. Among inorganic pollutants emitted by vehicle traffic and some industrial processes in urban areas, antimony (Sb) is observed on a global scale. While this metalloid is known to be potentially toxic, it can transfer from the soil or the atmosphere to plants, and accumulate in their edible parts. Urban agriculture is developing worldwide, and could therefore increasingly expose populations to Sb. The objective of this review was in consequences to gather and interpret actual knowledge of Sb uptake and bioaccumulation by crops, to reveal investigative fields on which to focus. While there is still no legal maximal value for Sb in plants and soils, light has to be shed on its accumulation and the factors affecting it. A relative absence of data exists about the role of soil flora and fauna in the transfer, speciation and compartmentation of Sb in vegetables. Moreover, little information exists on Sb ecotoxicity for terrestrial ecosystems. A human risk assessment has finally been reviewed, with particular focus on Sb bioaccessibility.

  3. Moving GIS Research Indoors: Spatiotemporal Analysis of Agricultural Animals

    PubMed Central

    Daigle, Courtney L.; Banerjee, Debasmit; Montgomery, Robert A.; Biswas, Subir; Siegford, Janice M.

    2014-01-01

    A proof of concept applying wildlife ecology techniques to animal welfare science in intensive agricultural environments was conducted using non-cage laying hens. Studies of wildlife ecology regularly use Geographic Information Systems (GIS) to assess wild animal movement and behavior within environments with relatively unlimited space and finite resources. However, rather than depicting landscapes, a GIS could be developed in animal production environments to provide insight into animal behavior as an indicator of animal welfare. We developed a GIS-based approach for studying agricultural animal behavior in an environment with finite space and unlimited resources. Concurrent data from wireless body-worn location tracking sensor and video-recording systems, which depicted spatially-explicit behavior of hens (135 hens/room) in two identical indoor enclosures, were collected. The spatial configuration of specific hen behaviors, variation in home range patterns, and variation in home range overlap show that individual hens respond to the same environment differently. Such information could catalyze management practice adjustments (e.g., modifying feeder design and/or location). Genetically-similar hens exhibited diverse behavioral and spatial patterns via a proof of concept approach enabling detailed examinations of individual non-cage laying hen behavior and welfare. PMID:25098421

  4. Moving GIS research indoors: spatiotemporal analysis of agricultural animals.

    PubMed

    Daigle, Courtney L; Banerjee, Debasmit; Montgomery, Robert A; Biswas, Subir; Siegford, Janice M

    2014-01-01

    A proof of concept applying wildlife ecology techniques to animal welfare science in intensive agricultural environments was conducted using non-cage laying hens. Studies of wildlife ecology regularly use Geographic Information Systems (GIS) to assess wild animal movement and behavior within environments with relatively unlimited space and finite resources. However, rather than depicting landscapes, a GIS could be developed in animal production environments to provide insight into animal behavior as an indicator of animal welfare. We developed a GIS-based approach for studying agricultural animal behavior in an environment with finite space and unlimited resources. Concurrent data from wireless body-worn location tracking sensor and video-recording systems, which depicted spatially-explicit behavior of hens (135 hens/room) in two identical indoor enclosures, were collected. The spatial configuration of specific hen behaviors, variation in home range patterns, and variation in home range overlap show that individual hens respond to the same environment differently. Such information could catalyze management practice adjustments (e.g., modifying feeder design and/or location). Genetically-similar hens exhibited diverse behavioral and spatial patterns via a proof of concept approach enabling detailed examinations of individual non-cage laying hen behavior and welfare.

  5. Policy Implications of Current Research in Agricultural Education. Central Region Research Conference in Agricultural Education. Proceedings of Annual Meeting (29th, Columbia, Missouri, July 29-31, 1975).

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia.

    Research on the following topics is presented in this publication: "Analysis of Factors Related to the Educational Plans of Iowa Vocational Agriculture Students,""Development of a Statewide System for Follow-up of Vocational Graduates that Has Implementation for Usage by Local Educational Agencies,""Factors Influencing Ninth and Tenth Grade…

  6. Biotechnology for the extractive metals industries

    NASA Astrophysics Data System (ADS)

    Brierley, James A.

    1990-01-01

    Biotechnology is an alternative process for the extraction of metals, the beneficiation of ores, and the recovery of metals from aqueous systems. Currently, microbial-based processes are used for leaching copper and uranium, enhancing the recovery of gold from refractory ores, and treating industrial wastewater to recover metal values. Future developments, emanating from fundamental and applied research and advances through genetic engineering, are expected to increase the use and efficiency of these biotechnological processes.

  7. Fulfilling the promise of biotechnology.

    PubMed

    Colwell, Rita R

    2002-11-01

    Genetic engineering has produced pharmaceuticals, disease-resistant plants, cloned animals and research and industrial products. While the comparably mature field of medical biotechnology now reveals its true potential, marine biotechnology is still in the realm of the future. As we explore the earth for new sources of natural chemicals, we now search the waters. Myriad organisms, most unknown to us, live there. Many produce compounds that can be commercialized, or the organisms themselves may be commercialized, through genetic engineering methods. For decades, scientists studied the ocean depths searching for unique molecules and organisms. But not until the early 1980s was there a synthesis uniting marine natural products, ecology, aquaculture and bioremediation research under the heading of marine biotechnology. As harvesting enough products from marine sources to produce sufficient amounts, even for study, is nearly impossible, we need to use genomics techniques to identify biologically active compounds. As we damage our oceanic ecosystems through pollution, overfishing and destructive fishing methods, opportunities to learn more about marine organisms and their commercial potential may be limited. Although governments and intergovernmental agencies are committed to funding and expanding oceanic research, more funding is needed to discover and study the ocean's vast, unplumbed resources.

  8. A commentary on domestic animals as dual-purpose models that benefit agricultural and biomedical research.

    PubMed

    Ireland, J J; Roberts, R M; Palmer, G H; Bauman, D E; Bazer, F W

    2008-10-01

    Research on domestic animals (cattle, swine, sheep, goats, poultry, horses, and aquatic species) at land grant institutions is integral to improving the global competitiveness of US animal agriculture and to resolving complex animal and human diseases. However, dwindling federal and state budgets, years of stagnant funding from USDA for the Competitive State Research, Education, and Extension Service National Research Initiative (CSREES-NRI) Competitive Grants Program, significant reductions in farm animal species and in numbers at land grant institutions, and declining enrollment for graduate studies in animal science are diminishing the resources necessary to conduct research on domestic species. Consequently, recruitment of scientists who use such models to conduct research relevant to animal agriculture and biomedicine at land grant institutions is in jeopardy. Concerned stakeholders have addressed this critical problem by conducting workshops, holding a series of meetings with USDA and National Institutes of Health (NIH) officials, and developing a white paper to propose solutions to obstacles impeding the use of domestic species as dual-purpose animal models for high-priority problems common to agriculture and biomedicine. In addition to shortfalls in research support and human resources, overwhelming use of mouse models in biomedicine, lack of advocacy from university administrators, long-standing cultural barriers between agriculture and human medicine, inadequate grantsmanship by animal scientists, and a scarcity of key reagents and resources are major roadblocks to progress. Solutions will require a large financial enhancement of USDA's Competitive Grants Program, educational programs geared toward explaining how research using agricultural animals benefits both animal agriculture and human health, and the development of a new mind-set in land grant institutions that fosters greater cooperation among basic and applied researchers. Recruitment of

  9. Airborne Remote Sensing (ARS) for Agricultural Research and Commercialization Applications

    NASA Technical Reports Server (NTRS)

    Narayanan, Ram; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    Tremendous advances in remote sensing technology and computing power over the last few decades are now providing scientists with the opportunity to investigate, measure, and model environmental patterns and processes with increasing confidence. Such advances are being pursued by the Nebraska Remote Sensing Facility, which consists of approximately 30 faculty members and is very competitive with other institutions in the depth of the work that is accomplished. The development of this facility targeted at applications, commercialization, and education programs in the area of precision agriculture provides a unique opportunity. This critical area is within the scope of NASA goals and objectives of NASA s Applications, Technology Transfer, Commercialization, and Education Division and the Earth Science Enterprise. This innovative integration of Aerospace (Aeronautics) Technology Enterprise applications with other NASA enterprises serves as a model of cross-enterprise transfer of science with specific commercial applications.

  10. Research Orientations and Sources of Influence: Agricultural Scientists in the U.S. Land-Grant System.

    ERIC Educational Resources Information Center

    Goldberger, Jessica R.

    2001-01-01

    Uses data from a 1995-96 national survey of agricultural scientists at land-grant universities to investigate the relative importance of 19 sources of influence on agricultural scientists engaged in six areas of agricultural research: productionist-oriented, sustainable agriculture, environmental, basic, consumer-oriented, and rural…

  11. Bioethics and biotechnology

    PubMed Central

    2007-01-01

    Biotechnology is at the intersection of science and ethics. Technological developments are shaped by an ethical vision, which in turn is shaped by available technology. Much in biotechnology can be celebrated for how it benefits humanity. But technology can have a darker side. Biotechnology can produce unanticipated consequences that cause harm or dehumanise people. The ethical implications of proposed developments must be carefully examined. The ethical assessment of new technologies, including biotechnology, requires a different approach to ethics. Changes are necessary because new technology can have a more profound impact on the world; because of limitations with a rights-based approach to ethics; because of the importance and difficulty of predicting consequences; and because biotechnology now manipulates humans themselves. The ethical questions raised by biotechnology are of a very different nature. Given the potential to profoundly change the future course of humanity, such questions require careful consideration. Rather than focussing on rights and freedoms, wisdom is needed to articulate our responsibilities towards nature and others, including future generations. The power and potential of biotechnology demands caution to ensure ethical progress. PMID:19003197

  12. A brief background on the U.S. Department of Agriculture Agricultural Research Service Walnut Gulch Experimental Watershed

    NASA Astrophysics Data System (ADS)

    Renard, K. G.; Nichols, M. H.; Woolhiser, D. A.; Osborn, H. B.

    2008-05-01

    Watershed research is critical for quantifying the unique characteristics of hydrologic processes worldwide and especially in semiarid regions. In 1953, the United States Department of Agriculture established the Walnut Gulch Experimental Watershed (WGEW) near Tombstone, Arizona, to conduct hydrologic and erosion research. This manuscript (1) provides a historical context summarizing the evolution of the Southwest Watershed Research Center research program, (2) describes significant contributions to instrumentation development and contributions to science, and (3) describes the current WGEW data collection program in the context of contemporary research questions. The development of specialized flumes for streamflow measurement and the establishment of the core monitoring networks are described. WGEW data have been used to quantify semiarid rainfall, runoff, infiltration, and transmission losses; to develop and validate simulation models; and to support broader, regional, basin-scale research. Currently, rainfall, runoff, sediment, meteorology, and flux data collection continue at the WGEW, but the monitoring network has been expanded, and data use has evolved to support several multiple government agencies, universities, and international research programs.

  13. New Directions in Biotechnology

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The macromolecule crystallization program within NASA is undergoing considerable pressure, particularly budgetary pressure. While it has shown some successes, they have not lived up to the expectations of others, and technological advances may rapidly overtake the natural advantages offered by crystallization in microgravity. Concomitant with the microgravity effort has been a research program to study the macromolecule crystallization process. It was believed that a better understanding of the process would lead to growth of improved crystals for X-ray diffraction studies. The results of the various research efforts have been impressive in improving our understanding of macromolecule crystallization, but have not led to any improved structures. Macromolecule crystallization for structure determination is "one of", the job being unique for every protein and finished once a structure is obtained. However, the knowledge gained is not lost, but instead lays the foundation for developments in new areas of biotechnology and nanotechnology. In this it is highly analogous to studies into small molecule crystallization, the results of which have led to our present day microelectronics-based society. We are conducting preliminary experiments into areas such as designed macromolecule crystals, macromolecule-inorganic hybrid structures, and macromolecule-based nanotechnology. In addition, our protein crystallization studies are now being directed more towards industrial and new approaches to membrane protein crystallization.

  14. Case studies on the use of biotechnologies and on biosafety provisions in four African countries.

    PubMed

    Black, Robert; Fava, Fabio; Mattei, Niccolo; Robert, Vincent; Seal, Susan; Verdier, Valerie

    2011-12-20

    This review is based on a study commissioned by the European Commission on the evaluation of scientific, technical and institutional challenges, priorities and bottlenecks for biotechnologies and regional harmonisation of biosafety in Africa. Biotechnology was considered within four domains: agricultural biotechnologies ('Green'), industrial biotechnologies and biotechnologies for environmental remediation ('White'), biotechnologies in aquaculture ('Blue') and biotechnologies for healthcare ('Red'). An important consideration was the decline in partnerships between the EU and developing countries because of the original public antipathy to some green biotechnologies, particularly genetically modified organisms (GMOs) and food from GM crops in Europe. The study focus reported here was West Africa (Ghana, Senegal, Mali and Burkina Faso). The overall conclusion was that whereas high-quality research was proceeding in the countries visited, funding is not sustained and there is little evidence of practical application of biotechnology and benefit to farmers and the wider community. Research and development that was being carried out on genetically modified crop varieties was concentrating on improving food security and therefore unlikely to have significant impact on EU markets and consumers. However, there is much non-controversial green biotechnology such as molecular diagnostics for plant and animal disease and marker-assisted selection for breeding that has great potential application. Regarding white biotechnology, it is currently occupying only a very small industrial niche in West Africa, basically in the sole sector of the production of liquid biofuels (i.e., bio-ethanol) from indigenous and locally planted biomass (very often non-food crops). The presence of diffused small-scale fish production is the basis to develop and apply new (Blue) aquaculture technologies and, where the research conditions and the production sector can permit, to increase this type of

  15. Case studies on the use of biotechnologies and on biosafety provisions in four African countries.

    PubMed

    Black, Robert; Fava, Fabio; Mattei, Niccolo; Robert, Vincent; Seal, Susan; Verdier, Valerie

    2011-12-20

    This review is based on a study commissioned by the European Commission on the evaluation of scientific, technical and institutional challenges, priorities and bottlenecks for biotechnologies and regional harmonisation of biosafety in Africa. Biotechnology was considered within four domains: agricultural biotechnologies ('Green'), industrial biotechnologies and biotechnologies for environmental remediation ('White'), biotechnologies in aquaculture ('Blue') and biotechnologies for healthcare ('Red'). An important consideration was the decline in partnerships between the EU and developing countries because of the original public antipathy to some green biotechnologies, particularly genetically modified organisms (GMOs) and food from GM crops in Europe. The study focus reported here was West Africa (Ghana, Senegal, Mali and Burkina Faso). The overall conclusion was that whereas high-quality research was proceeding in the countries visited, funding is not sustained and there is little evidence of practical application of biotechnology and benefit to farmers and the wider community. Research and development that was being carried out on genetically modified crop varieties was concentrating on improving food security and therefore unlikely to have significant impact on EU markets and consumers. However, there is much non-controversial green biotechnology such as molecular diagnostics for plant and animal disease and marker-assisted selection for breeding that has great potential application. Regarding white biotechnology, it is currently occupying only a very small industrial niche in West Africa, basically in the sole sector of the production of liquid biofuels (i.e., bio-ethanol) from indigenous and locally planted biomass (very often non-food crops). The presence of diffused small-scale fish production is the basis to develop and apply new (Blue) aquaculture technologies and, where the research conditions and the production sector can permit, to increase this type of

  16. Advanced Manufacturing and Value-added Products from US Agriculture

    NASA Technical Reports Server (NTRS)

    Villet, Ruxton H.; Child, Dennis R.; Acock, Basil

    1992-01-01

    An objective of the US Department of Agriculture (USDA) Agriculture Research Service (ARS) is to develop technology leading to a broad portfolio of value-added marketable products. Modern scientific disciplines such as chemical engineering are brought into play to develop processes for converting bulk commodities into high-margin products. To accomplish this, the extremely sophisticated processing devices which form the basis of modern biotechnology, namely, genes and enzymes, can be tailored to perform the required functions. The USDA/ARS is a leader in the development of intelligent processing equipment (IPE) for agriculture in the broadest sense. Applications of IPE are found in the production, processing, grading, and marketing aspects of agriculture. Various biotechnology applications of IPE are discussed.

  17. Biotechnology in Switzerland and a glance at Germany.

    PubMed

    Fiechter, A

    2000-01-01

    The roots of biotechnology go back to classic fermentation processes, which starting from spontaneous reactions were developed by simple means. The discovery of antibiotics made contamination-free bioprocess engineering indispensable, which led to a further step in technology development. On-line analytics and the use of computers were the basis of automation and the increase in quality. On both sides of the Atlantic, molecular biology emerged at the same time, which gave genetic engineering in medicine, agriculture, industry and environment new opportunities. The story of this new advanced technology in Switzerland, with a quick glance at Germany, is followed back to the post-war years. The growth of research and teaching and the foundation of the European Federation of Biotechnology (EFB) are dealt with. The promising phase of the 1960s and 1970s soon had to give way to a restrictive policy of insecurity and anxiousness, which, today, manifests itself in the rather insignificant contributions of many European countries to the new sciences of genomics, proteomics and bioinformatics, as well as in the resistance to the use of transgenic agricultural crops and their products in foods. PMID:11036695

  18. Biotechnology in Switzerland and a glance at Germany.

    PubMed

    Fiechter, A

    2000-01-01

    The roots of biotechnology go back to classic fermentation processes, which starting from spontaneous reactions were developed by simple means. The discovery of antibiotics made contamination-free bioprocess engineering indispensable, which led to a further step in technology development. On-line analytics and the use of computers were the basis of automation and the increase in quality. On both sides of the Atlantic, molecular biology emerged at the same time, which gave genetic engineering in medicine, agriculture, industry and environment new opportunities. The story of this new advanced technology in Switzerland, with a quick glance at Germany, is followed back to the post-war years. The growth of research and teaching and the foundation of the European Federation of Biotechnology (EFB) are dealt with. The promising phase of the 1960s and 1970s soon had to give way to a restrictive policy of insecurity and anxiousness, which, today, manifests itself in the rather insignificant contributions of many European countries to the new sciences of genomics, proteomics and bioinformatics, as well as in the resistance to the use of transgenic agricultural crops and their products in foods.

  19. Proteomics: a biotechnology tool for crop improvement

    PubMed Central

    Eldakak, Moustafa; Milad, Sanaa I. M.; Nawar, Ali I.; Rohila, Jai S.

    2013-01-01

    A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improvements in proteomic platforms and many other but related advances in plant biotechnology techniques offer various new ways to encourage the usage of these technologies by plant scientists for crop improvement programs. A combinatorial approach of accelerated gene discovery through genomics, proteomics, and other associated -omic branches of biotechnology, as an applied approach, is proving to be an effective way to speed up the crop improvement programs worldwide. In the near future, swift improvements in -omic databases are becoming critical and demand immediate attention for the effective utilization of these techniques to produce next-generation crops for the progressive farmers. Here, we have reviewed the recent advances in proteomics, as tools of biotechnology, which are offering great promise and leading the path toward crop improvement for sustainable agriculture. PMID:23450788

  20. Equipment Request for the Belleville Agricultural Research and Education Center

    SciTech Connect

    Young, Bryan; Nehring, Jarrett; Graham, Susan; Klubek, Brian

    2013-01-13

    The funding provided by the DOE for this project was used exclusively to purchase research equipment involved with the field development and evaluation of crop production technologies and practices for energy crop production. The new equipment has been placed into service on the SIU farms and has significantly enhanced our research capacity and scope for agronomy and precision ag research to support novel seed traits or crop management strategies for improving the efficiency and productivity of corn and soybeans. More specifically, the precision ag capability of the equipment that was purchased has heightened interest by faculty and associated industry partners to develop collaborative projects. In addition, this equipment has provided SIU with a foundation to be more successful at securing competitive grants in energy crop production and precision ag data management. Furthermore, the enhanced capacity for agronomy research in the southern Illinois region has been realized and will benefit crop producers in this region by learning to improve their operations from our research outcomes.

  1. Agriculture and biotechnology in Pacific countries.

    PubMed

    Shigaki, Toshiro

    2014-01-01

    The Pacific countries are small in land mass and therefore represent one of the most fragile ecosystems. Due to the isolation of these island counties, these are home to unique species of plants and animals as well as crop varieties and landraces. Biosafety issues in the Pacific countries, therefore, require special attention to take these factors into account. The issues are shared with other small island nations such as the Caribbean countries. Although most Pacific countries do not have scientific capacity to develop genetically modified organisms (GMOs), they are inadvertently introduced from the developed world. As the countries do not have appropriate capacity to monitor the introduction and commerce of GMO's, it is imperative to establish biosafety legislation and capacity by pooling the resources within the Pacific countries. PMID:25412740

  2. Biotechnology: Impact on sugarcane agriculture and industry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Of the nine key technology issues that affect the sustainability of the sugar- or bio-energy- cane industry, namely: land, fertility, water, variety, planting density, crop protection, cultural practices, harvesting and processing, and lately, information technology, growing the right varieties rema...

  3. Agriculture and biotechnology in Pacific countries.

    PubMed

    Shigaki, Toshiro

    2014-01-01

    The Pacific countries are small in land mass and therefore represent one of the most fragile ecosystems. Due to the isolation of these island counties, these are home to unique species of plants and animals as well as crop varieties and landraces. Biosafety issues in the Pacific countries, therefore, require special attention to take these factors into account. The issues are shared with other small island nations such as the Caribbean countries. Although most Pacific countries do not have scientific capacity to develop genetically modified organisms (GMOs), they are inadvertently introduced from the developed world. As the countries do not have appropriate capacity to monitor the introduction and commerce of GMO's, it is imperative to establish biosafety legislation and capacity by pooling the resources within the Pacific countries.

  4. PBT-1 Prana Biotechnology.

    PubMed

    Huckle, Richard

    2005-01-01

    PBT-1 (clioquinol), is undergoing phase II clinical trials by Prana Biotechnology Ltd for the potential treatment of Alzheimer's disease. By October 2004, the company had planned phase III trials for the first half of 2005. PMID:15675609

  5. Traditional Chinese Biotechnology

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Wang, Dong; Fan, Wen Lai; Mu, Xiao Qing; Chen, Jian

    The earliest industrial biotechnology originated in ancient China and developed into a vibrant industry in traditional Chinese liquor, rice wine, soy sauce, and vinegar. It is now a significant component of the Chinese economy valued annually at about 150 billion RMB. Although the production methods had existed and remained basically unchanged for centuries, modern developments in biotechnology and related fields in the last decades have greatly impacted on these industries and led to numerous technological innovations. In this chapter, the main biochemical processes and related technological innovations in traditional Chinese biotechnology are illustrated with recent advances in functional microbiology, microbial ecology, solid-state fermentation, enzymology, chemistry of impact flavor compounds, and improvements made to relevant traditional industrial facilities. Recent biotechnological advances in making Chinese liquor, rice wine, soy sauce, and vinegar are reviewed.

  6. Analytical Challenges in Biotechnology.

    ERIC Educational Resources Information Center

    Glajch, Joseph L.

    1986-01-01

    Highlights five major analytical areas (electrophoresis, immunoassay, chromatographic separations, protein and DNA sequencing, and molecular structures determination) and discusses how analytical chemistry could further improve these techniques and thereby have a major impact on biotechnology. (JN)

  7. Research on agricultural ecology and environment analysis and modeling based on RS and GIS

    NASA Astrophysics Data System (ADS)

    Zhang, Wensheng; Chen, Hongfu; Wang, Mingsheng

    2009-07-01

    Analysis of agricultural ecology and environment is based on the data of agricultural resources, which are obtained by RS monitoring. The over-exploitation of farmlands will cause structural changes of the soil composition, and damage the planting environment and the agro-ecosystem. Through the research on the dynamic monitoring methods of multitemporal RS images and GIS technology, the crop growth status, crop acreage and other relevant information in agricultural production are extracted based on the monitor and analysis of the conditions of the fields and crop growth. The agro-ecological GIS platform is developed with the establishment of the agricultural resources management database, which manages spatial data, RS data and attribute data of agricultural resources. Using the RS, GIS analysis results, the reasons of agro-ecological destruction are analyzed and the evaluation methods are established. This paper puts forward the concept of utilization capacity of farmland, which describes farmland space for development and utilization that is influenced by the conditions of the land, water resources, climate, pesticides and chemical fertilizers and many other agricultural production factors. Assessment model of agricultural land use capacity is constructed with the help of Fuzzy. Assessing the utilization capacity of farmland can be helpful to agricultural production and ecological protection of farmland. This paper describes the application of the capacity evaluation model with simulated data in two aspects, namely, in evaluating the status of farmland development and utilization and in optimal planting.

  8. Central Regional Annual Research Conference in Agricultural Education Proceedings (41st, Chicago, Illinois, February 22-23, 1987).

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Dept. of Agricultural and Extension Education.

    This proceedings contains 18 papers on agricultural research issues selected by panel review plus the keynote address, a conference summary, and the conference agenda. The following papers are included: "Research in Agricultural Education: Requisites for Further Progress" (Warmbrod--keynote address); "Marketing Agricultural Education" (Casey,…

  9. Focusing Agricultural Education Research: An Agenda for the Graduate Student.

    ERIC Educational Resources Information Center

    Williams, David L.

    1997-01-01

    Eight ways are suggested to prepare for graduate research: (1) assess professional experience; (2) understand the discipline; (3) review trends and priorities; (4) study requirements of positions; (5) identify mentors; (6) build a theoretical base; (7) practice good science; and (8) become a scholar. (SK)

  10. Ag Data Commons: Adding Value to Open Agricultural Research Data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Public access to results of federally-funded research is a new mandate for large departments of the United States government. Public access to scholarly literature from U.S. investments is straightforward, with policies and systems like PubMed Central and PubAg (http://pubag.nal.usda.gov) already im...

  11. From the tumor-inducing principle to plant biotechnology and its importance for society.

    PubMed

    Angenon, Geert; Van Lijsebettens, Mieke; Van Montagu, Marc

    2013-01-01

    This dialogue was held between the Guest Editors of the Special Issue on "Plant Transgenesis" of the Int. J. Dev. Biol. and Marc Van Montagu. Research in the group of Marc Van Montagu and Jeff Schell in the 1970s was essential to reveal how the phytopathogenic bacterium Agrobacterium tumefaciens transfers DNA to host plants to cause crown gall disease. Knowledge of the molecular mechanism underlying gene transfer, subsequently led to the development of plant transgene technology, an indispensable tool in fundamental plant research and plant improvement. In the early 1980s, Marc Van Montagu founded a start-up company, Plant Genetic Systems, which successfully developed insect-resistant plants, herbicide-tolerant plants and a hybrid seed production system based on nuclear male sterility. Even before the first transgenic plant had been produced, Marc Van Montagu realized that the less developed countries might benefit most from plant biotechnology and throughout his subsequent career, this remained a focus of his efforts. After becoming emeritus professor, he founded the Institute of Plant Biotechnology Outreach (IPBO), which aims to raise awareness of the major role that plant biotechnology can play in sustainable agricultural systems, especially in less developed countries. Marc Van Montagu has been honored with many prizes and awards, the most recent being the prestigious World Food Prize 2013. In this paper, we look to the past and present of plant biotechnology and to the promises this technology holds for the future, on the basis of the personal perspective of Marc Van Montagu. PMID:24166428

  12. From the tumor-inducing principle to plant biotechnology and its importance for society.

    PubMed

    Angenon, Geert; Van Lijsebettens, Mieke; Van Montagu, Marc

    2013-01-01

    This dialogue was held between the Guest Editors of the Special Issue on "Plant Transgenesis" of the Int. J. Dev. Biol. and Marc Van Montagu. Research in the group of Marc Van Montagu and Jeff Schell in the 1970s was essential to reveal how the phytopathogenic bacterium Agrobacterium tumefaciens transfers DNA to host plants to cause crown gall disease. Knowledge of the molecular mechanism underlying gene transfer, subsequently led to the development of plant transgene technology, an indispensable tool in fundamental plant research and plant improvement. In the early 1980s, Marc Van Montagu founded a start-up company, Plant Genetic Systems, which successfully developed insect-resistant plants, herbicide-tolerant plants and a hybrid seed production system based on nuclear male sterility. Even before the first transgenic plant had been produced, Marc Van Montagu realized that the less developed countries might benefit most from plant biotechnology and throughout his subsequent career, this remained a focus of his efforts. After becoming emeritus professor, he founded the Institute of Plant Biotechnology Outreach (IPBO), which aims to raise awareness of the major role that plant biotechnology can play in sustainable agricultural systems, especially in less developed countries. Marc Van Montagu has been honored with many prizes and awards, the most recent being the prestigious World Food Prize 2013. In this paper, we look to the past and present of plant biotechnology and to the promises this technology holds for the future, on the basis of the personal perspective of Marc Van Montagu.

  13. The Consortium for Plant Biotechnology Research, Inc. Semi-Annual Technical Report for April 1, 2000 - September 30, 2000

    SciTech Connect

    2000-10-02

    Scientific progress reports submitted by university researchers conducting projects funded through CPBR and metrics reports submitted by industry sponsors that provided matching funds to the projects.

  14. MULTI-DISCIPLINARY TEAMS - A NECESSITY FOR RESEARCH IN PRECISION AGRICULTURE SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture may offer great promise for the future, but extensive additional research is required if that promise is to be realized. The research will not be easy, for few, if any, individuals have sufficiently broad training in the many disciplines (e.g. economics, engineering, crop and ...

  15. Assessment of Professional Training Programmes in International Agricultural Research Institutions: The Case of ICRAF

    ERIC Educational Resources Information Center

    Wanjiku, Julliet; Mairura, Franklin; Place, Frank

    2010-01-01

    The following survey was undertaken in 2005 to assess the effectiveness of professional training activities in international agricultural research organizations that were undertaken between 1999 and 2002 at ICRAF (International Centre for Research in Agroforestry), now World Agroforestry Centre, Nairobi. Trainees were randomly selected from…

  16. The Transformation of Agricultural Research in France: The Introduction of the American System

    ERIC Educational Resources Information Center

    Castonguay, Stephane

    2005-01-01

    In 1916, French entomologist Paul Marchal published a seminal report on the contemporary state of agricultural research in the United States of America. His recommendations underlined the need for a close relationship between research and education, a factor vital to national survival in the aftermath of the Great War. This essay discusses the…

  17. Sustaining the earth's watersheds-agricultural research data system: Overview of development and challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comprehensive, long-term data for watershed systems across diverse locations are essential for interdisciplinary hydrologic and ecosystem analysis and model development, calibration and validation. The USDA and Agricultural Research Service (ARS) have supported watershed research since the 1930’s w...

  18. Commentary on domestic animals in agricultural and biomedical research: An endangered enterprise

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite the long and successful history of research on agriculturally relevant domestic animals, basic and translational research using domestic species is becoming increasingly threatened due to budgetary erosion. This funding decline is well documented in a recent article by Ireland et al., publis...

  19. Biotechnology of riboflavin.

    PubMed

    Schwechheimer, Susanne Katharina; Park, Enoch Y; Revuelta, José Luis; Becker, Judith; Wittmann, Christoph

    2016-03-01

    Riboflavin (vitamin B2) production has shifted from chemical synthesis to exclusive biotechnological synthesis in less than 15 years. The underlying extraordinary achievement in metabolic engineering and bioprocess engineering is reviewed in this article with regard to the two most important industrial producers Bacillus subtilis and Ashbya gossypii. The respective biosynthetic routes and modifications are discussed, and also the regulation of riboflavin synthesis. As the terminal biosynthesis of riboflavin starts from the two precursors, ribulose 5-phosphate and guanosine triphosphate (GTP), both strains have been optimized for an improved flux through the pentose phosphate pathway as well as the purine biosynthetic pathway. Specific targets for improvement of A. gossypii were the increase of the glycine pool and the increase of carbon flow through the glyoxylic shunt. In B. subtilis, research interest, amongst others, has focused on gluconeogenesis and overexpression of the rib operon. In addition, insight into large-scale production of vitamin B2 is given, as well as future prospects and possible developments. PMID:26758294

  20. Fungal genome sequencing: basic biology to biotechnology.

    PubMed

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research.

  1. Tension on the Farm Fields: The Death of Traditional Agriculture?

    ERIC Educational Resources Information Center

    Oguamanam, Chidi

    2007-01-01

    Taking into account the historic transitions and progressions in agricultural science, this article examines the emergence of the phenomenon of agricultural biotechnology. It identifies pivotal sites of tension between agricultural biotechnology and alternative approaches to agriculture. The article identifies two distinct sources of contemporary…

  2. Linking international agricultural research knowledge with action for sustainable development.

    PubMed

    Kristjanson, Patti; Reid, Robin S; Dickson, Nancy; Clark, William C; Romney, Dannie; Puskur, Ranjitha; Macmillan, Susan; Grace, Delia

    2009-03-31

    We applied an innovation framework to sustainable livestock development research projects in Africa and Asia. The focus of these projects ranged from pastoral systems to poverty and ecosystems services mapping to market access by the poor to fodder and natural resource management to livestock parasite drug resistance. We found that these projects closed gaps between knowledge and action by combining different kinds of knowledge, learning, and boundary spanning approaches; by providing all partners with the same opportunities; and by building the capacity of all partners to innovate and communicate.

  3. Proceedings of the Annual Central Region Research Conference in Agricultural Education (30th, Columbus, Ohio, August 3-5, 1976).

    ERIC Educational Resources Information Center

    Erpelding, Lawrence H., Comp.

    Thirteen papers constitute the major portion of the proceedings of a conference designed to review and analyze current research, to identify research priorities, and to provide a challenge for the continuing improvement of the planning, conduct, and implementation of research in agricultural education: (1) Research in Agricultural Education from a…

  4. Biosafety legislation and biotechnology development gains momentum in Africa.

    PubMed

    Wafula, David; Waithaka, Michael; Komen, John; Karembu, Margaret

    2012-01-01

    Opinion in Africa over the use of genetically modified crops for food has been divided, honed by more than a decade of arguments in Europe and elsewhere. Fortunately, the perceived image of a passive Africa in this game is changing rapidly with clear positions on how to harness modern biotechnology. This article examines the status of biosafety regulation across Africa, pertinent challenges and the extent to which regulation fosters or constrains the development of agricultural biotechnology.

  5. Ergot: from witchcraft to biotechnology.

    PubMed

    Haarmann, Thomas; Rolke, Yvonne; Giesbert, Sabine; Tudzynski, Paul

    2009-07-01

    The ergot diseases of grasses, caused by members of the genus Claviceps, have had a severe impact on human history and agriculture, causing devastating epidemics. However, ergot alkaloids, the toxic components of Claviceps sclerotia, have been used intensively (and misused) as pharmaceutical drugs, and efficient biotechnological processes have been developed for their in vitro production. Molecular genetics has provided detailed insight into the genetic basis of ergot alkaloid biosynthesis and opened up perspectives for the design of new alkaloids and the improvement of production strains; it has also revealed the refined infection strategy of this biotrophic pathogen, opening up the way for better control. Nevertheless, Claviceps remains an important pathogen worldwide, and a source for potential new drugs for central nervous system diseases.

  6. Ergot: from witchcraft to biotechnology.

    PubMed

    Haarmann, Thomas; Rolke, Yvonne; Giesbert, Sabine; Tudzynski, Paul

    2009-07-01

    The ergot diseases of grasses, caused by members of the genus Claviceps, have had a severe impact on human history and agriculture, causing devastating epidemics. However, ergot alkaloids, the toxic components of Claviceps sclerotia, have been used intensively (and misused) as pharmaceutical drugs, and efficient biotechnological processes have been developed for their in vitro production. Molecular genetics has provided detailed insight into the genetic basis of ergot alkaloid biosynthesis and opened up perspectives for the design of new alkaloids and the improvement of production strains; it has also revealed the refined infection strategy of this biotrophic pathogen, opening up the way for better control. Nevertheless, Claviceps remains an important pathogen worldwide, and a source for potential new drugs for central nervous system diseases. PMID:19523108

  7. Identification of high payoff research for more efficient applicator helicopters in agriculture and forestry

    NASA Technical Reports Server (NTRS)

    Waters, K. T.

    1979-01-01

    The results of a study of the uses of helicopters in agriculture and forestry in the United States are discussed. Comparisons with agricultural airplanes are made in terms of costs of aerial application to the growers. An analysis of cost drivers and potential improvements to helicopters that will lower costs is presented. Future trends are discussed, and recommendations for research are outlined. Operational safety hazards and accident records are examined, and problem areas are identified. Areas where research and development are needed to provide opportunities for lowering costs while increasing productivity are analyzed.

  8. Commercialization of animal biotechnology.

    PubMed

    Faber, D C; Molina, J A; Ohlrichs, C L; Vander Zwaag, D F; Ferré, L B

    2003-01-01

    Commercialization of animal biotechnology is a wide-ranging topic for discussion. In this paper, we will attempt to review embryo transfer (ET) and related technologies that relate to food-producing mammals. A brief review of the history of advances in biotechnology will provide a glimpse to present and future applications. Commercialization of animal biotechnology is presently taking two pathways. The first application involves the use of animals for biomedical purposes. Very few companies have developed all of the core competencies and intellectual properties to complete the bridge from lab bench to product. The second pathway of application is for the production of animals used for food. Artificial insemination (AI), embryo transfer, in vitro fertilization (IVF), cloning, transgenics, and genomics all are components of the toolbox for present and future applications. Individually, these are powerful tools capable of providing significant improvements in productivity. Combinations of these technologies coupled with information systems and data analysis, will provide even more significant change in the next decade. Any strategies for the commercial application of animal biotechnology must include a careful review of regulatory and social concerns. Careful review of industry infrastructure is also important. Our colleagues in plant biotechnology have helped highlight some of these pitfalls and provide us with a retrospective review. In summary, today we have core competencies that provide a wealth of opportunities for the members of this society, commercial companies, producers, and the general population. Successful commercialization will benefit all of the above stakeholders. PMID:12499024

  9. International Agricultural Trade and Policy: Issues and Implications for U.S. Agriculture. Texas Agricultural Market Research Center Special Series Report No. SS-2-89.

    ERIC Educational Resources Information Center

    Williams, Gary W.

    Historical events have set the stage for the current U.S. agricultural export performance. Agricultural exports in the early 1990s were as large or larger relative to the size of the agricultural sector than at any time since. A dramatic decrease in net farm income was caused by the Great Depression (1929-1932). Following passage of the…

  10. Disease resistance: Molecular mechanisms and biotechnological applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This special issue “Disease resistance: molecular mechanisms and biotechnological applications” contains 11 review articles and four original research papers. Research in the area of engineering for disease resistance continues to progress although only 10% of the transgenic plants registered for ...

  11. agINFRA: a research data hub for agriculture, food and the environment.

    PubMed

    Drakos, Andreas; Protonotarios, Vassilis; Manouselis, Nikos

    2015-01-01

    The agINFRA project (www.aginfra.eu) was a European Commission funded project under the 7th Framework Programme that aimed to introduce agricultural scientific communities to the vision of open and participatory data-intensive science. agINFRA has now evolved into the European hub for data-powered research on agriculture, food and the environment, serving the research community through multiple roles. Working on enhancing the interoperability between heterogeneous data sources, the agINFRA project has left a set of grid- and cloud- based services that can be reused by future initiatives and adopted by existing ones, in order to facilitate the dissemination of agricultural research, educational and other types of data. On top of that, agINFRA provided a set of domain-specific recommendations for the publication of agri-food research outcomes. This paper discusses the concept of the agINFRA project and presents its major outcomes, as adopted by existing initiatives activated in the context of agricultural research and education.

  12. Biotechnology of marine fungi.

    PubMed

    Damare, Samir; Singh, Purnima; Raghukumar, Seshagiri

    2012-01-01

    Filamentous fungi are the most widely used eukaryotes in industrial and pharmaceutical applications. Their biotechnological uses include the production of enzymes, vitamins, polysaccharides, pigments, lipids and others. Marine fungi are a still relatively unexplored group in biotechnology. Taxonomic and habitat diversity form the basis for exploration of marine fungal biotechnology. This review covers what is known of the potential applications of obligate and marine-derived fungi obtained from coastal to the oceanic and shallow water to the deep-sea habitats. Recent studies indicate that marine fungi are potential candidates for novel enzymes, bioremediation, biosurfactants, polysaccharides, polyunsaturated fatty acids and secondary metabolites. Future studies that focus on culturing rare and novel marine fungi, combined with knowledge of their physiology and biochemistry will provide a firm basis for marine mycotechnology. PMID:22222837

  13. Designing a Model for Integration of Information and Communication Technologies (ICTs) in the Iranian Agricultural Research System

    ERIC Educational Resources Information Center

    Sharifzadeh, Aboulqasem; Abdollahzadeh, Gholam Hossein; Sharifi, Mahnoosh

    2009-01-01

    Capacity Development is needed in the Iranian Agricultural System. Integrating Information and Communication Technologies (ICTs) in the agricultural research system is an appropriate capacity development mechanism. The appropriate application of ICTs and information such as a National Agricultural Information System requires a systemically…

  14. To provide for Federal research, development, demonstration, and commercial application activities to enable the development of farms that are net producers of both food and energy, and for other purposes.

    THOMAS, 112th Congress

    Rep. Bartlett, Roscoe G. [R-MD-6

    2011-01-05

    03/03/2011 Referred to the Subcommittee on Rural Development, Research, Biotechnology, and Foreign Agriculture. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  15. The biotechnology innovation machine: a source of intelligent biopharmaceuticals for the pharma industry--mapping biotechnology's success.

    PubMed

    Evens, R P; Kaitin, K I

    2014-05-01

    The marriage of biotechnology and the pharmaceutical industry (pharma) is predicated on an evolution in technology and product innovation. It has come as a result of advances in both the science and the business practices of the biotechnology sector in the past 30 years. Biotechnology products can be thought of as "intelligent pharmaceuticals," in that they often provide novel mechanisms of action, new approaches to disease control, higher clinical success rates, improved patient care, extended patent protection, and a significant likelihood of reimbursement. Although the first biotechnology product, insulin, was approved just 32 years ago in 1982, today there are more than 200 biotechnology products commercially available. Research has expanded to include more than 900 biotechnology products in clinical trials. Pharma is substantially engaged in both the clinical development of these products and their commercialization. PMID:24448474

  16. The biotechnology innovation machine: a source of intelligent biopharmaceuticals for the pharma industry--mapping biotechnology's success.

    PubMed

    Evens, R P; Kaitin, K I

    2014-05-01

    The marriage of biotechnology and the pharmaceutical industry (pharma) is predicated on an evolution in technology and product innovation. It has come as a result of advances in both the science and the business practices of the biotechnology sector in the past 30 years. Biotechnology products can be thought of as "intelligent pharmaceuticals," in that they often provide novel mechanisms of action, new approaches to disease control, higher clinical success rates, improved patient care, extended patent protection, and a significant likelihood of reimbursement. Although the first biotechnology product, insulin, was approved just 32 years ago in 1982, today there are more than 200 biotechnology products commercially available. Research has expanded to include more than 900 biotechnology products in clinical trials. Pharma is substantially engaged in both the clinical development of these products and their commercialization.

  17. Technoeconomic evaluation of the extractive fermentation of butanol as a guide to research in this area of biotechnology

    SciTech Connect

    Busche, R.M.

    1991-09-01

    This report represents the completion of a part of an overall project to evaluate the technical and economic status of several newly conceptualized processes for producing butanol, acetone, acetic acid, and aerobically produced specialty chemicals, which are candidates for research support. The objective of the project are to identify strengths and weaknesses in the proposed and to assist in developing an ongoing research strategy along economically relevant lines. The products to be studied presently comprise a collective US market for 10.7 billion lb valued at $2.8 billion. If their manufacturing processes were converted from petroleum feedstocks to corn, they could consume 556 million bushels. Furthermore, if ethanol could be produced at a low enough price to serve as the precursor to ethylene and butadiene, it an its derivatives could account for 159 billion lb, or 50% of the US production of 316 billion lb of synthetic organic chemicals, presently valued at $113 billion. This use would consume 3.4 billion bushels, or {approximately}45% of the corn crop. In addition, the use of butanol for diesel blends or in jet fuel blends to enhance the range of military aircraft could further increase its market.

  18. Infusing Authentic Inquiry into Biotechnology

    NASA Astrophysics Data System (ADS)

    Hanegan, Nikki L.; Bigler, Amber

    2009-10-01

    Societal benefit depends on the general public's understandings of biotechnology (Betsch in World J Microbiol Biotechnol 12:439-443, 1996; Dawson and Cowan in Int J Sci Educ 25(1):57-69, 2003; Schiller in Business Review: Federal Reserve Bank of Philadelphia (Fourth Quarter), 2002; Smith and Emmeluth in Am Biol Teach 64(2):93-99, 2002). A National Science Foundation funded survey of high school biology teachers reported that hands-on biotechnology education exists in advanced high school biology in the United States, but is non-existent in mainstream biology coursework (Micklos et al. in Biotechnology labs in American high schools, 1998). The majority of pre-service teacher content preparation courses do not teach students appropriate content knowledge through the process of inquiry. A broad continuum exists when discussing inquiry-oriented student investigations (Hanegan et al. in School Sci Math J 109(2):110-134, 2009). Depending on the amount of structure in teacher lessons, inquiries can often be categorized as guided or open. The lesson can be further categorized as simple or authentic (Chinn and Malhotra in Sci Educ 86(2):175-218, 2002). Although authentic inquiries provide the best opportunities for cognitive development and scientific reasoning, guided and simple inquiries are more often employed in the classroom (Crawford in J Res Sci Teach 37(9):916-937, 2000; NRC in Inquiry and the national science education standards: a guide for teaching and learning, 2000). For the purposes of this study we defined inquiry as "authentic" if original research problems were resolved (Hanegan et al. in School Sci Math J 109(2):110-134, 2009; Chinn and Malhotra in Sci Educ 86(2):175-218, 2002; Roth in Authentic school science: knowing and learning in open-inquiry science laboratories, 1995). The research question to guide this study through naturalistic inquiry research methods was: How will participants express whether or not an authentic inquiry experience enhanced

  19. Advances in reproductive biotechnologies.

    PubMed

    Choudhary, K K; Kavya, K M; Jerome, A; Sharma, R K

    2016-04-01

    In recent times, reproductive biotechnologies have emerged and started to replace the conventional techniques. It is noteworthy that for sustained livestock productivity, it is imperative to start using these techniques for facing the increasing challenges for productivity, reproduction and health with impending environment conditions. These recent biotechniques, both in male and female, have revolutionized and opened avenues for studying and manipulating the reproductive process both in vitro and in vivo in various livestock species for improving tis efficiency. This review attempts to highlight pros and cons, on the recent developments in reproductive biotechnologies, both in male and female in livestock species. PMID:27182135

  20. Advances in reproductive biotechnologies.

    PubMed

    Choudhary, K K; Kavya, K M; Jerome, A; Sharma, R K

    2016-04-01

    In recent times, reproductive biotechnologies have emerged and started to replace the conventional techniques. It is noteworthy that for sustained livestock productivity, it is imperative to start using these techniques for facing the increasing challenges for productivity, reproduction and health with impending environment conditions. These recent biotechniques, both in male and female, have revolutionized and opened avenues for studying and manipulating the reproductive process both in vitro and in vivo in various livestock species for improving tis efficiency. This review attempts to highlight pros and cons, on the recent developments in reproductive biotechnologies, both in male and female in livestock species.

  1. Advances in reproductive biotechnologies

    PubMed Central

    Choudhary, K. K.; Kavya, K. M.; Jerome, A.; Sharma, R. K.

    2016-01-01

    In recent times, reproductive biotechnologies have emerged and started to replace the conventional techniques. It is noteworthy that for sustained livestock productivity, it is imperative to start using these techniques for facing the increasing challenges for productivity, reproduction and health with impending environment conditions. These recent biotechniques, both in male and female, have revolutionized and opened avenues for studying and manipulating the reproductive process both in vitro and in vivo in various livestock species for improving tis efficiency. This review attempts to highlight pros and cons, on the recent developments in reproductive biotechnologies, both in male and female in livestock species. PMID:27182135

  2. The Biotechnology Facility for International Space Station

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas; Lundquist, Charles; Hurlbert, Katy; Tuxhorn, Jennifer

    2004-01-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput. With the BTF, dedicated ground support, and a community of investigators, the goals of the Cellular Biotechnology Program at Johnson Space Center are to: Support approximately 400 typical investigator experiments during the nominal design life of BTF (10 years). Support a steady increase in investigations per year, starting with stationary bioreactor experiments and adding rotating bioreactor experiments at a later date. Support at least 80% of all new cellular biotechnology investigations selected through the NASA Research Announcement (NRA) process. Modular components - to allow sequential and continuous experiment operations without cross-contamination Increased cold storage capability (+4 C, -80 C, -180 C). Storage of frozen cell culture inoculum - to allow sequential investigations. Storage of post-experiment samples - for return of high quality samples. Increased number of cell cultures per investigation, with replicates - to provide sufficient number of samples for data analysis and publication of results in peer-reviewed scientific journals.

  3. Effects of research tool patents on biotechnology innovation in a developing country: A case study of South Korea

    PubMed Central

    Kang, Kyung-Nam; Ryu, Tae-Kyu; Lee, Yoon-Sik

    2009-01-01

    Background Concerns have recently been raised about the negative effects of patents on innovation. In this study, the effects of patents on innovations in the Korean biotech SMEs (small and medium-sized entrepreneurs) were examined using survey data and statistical analysis. Results The survey results of this study provided some evidence that restricted access problems have occurred even though their frequency was not high. Statistical analysis revealed that difficulties in accessing patented research tools were not negatively correlated with the level of innovation performance and attitudes toward the patent system. Conclusion On the basis of the results of this investigation in combination with those of previous studies, we concluded that although restricted access problems have occurred, this has not yet deterred innovation in Korea. However, potential problems do exist, and the effects of restricted access should be constantly scrutinized. PMID:19321013

  4. The closterovirus-derived gene expression and RNA interference vectors as tools for research and plant biotechnology

    PubMed Central

    Dolja, Valerian V.; Koonin, Eugene V.

    2013-01-01

    Important progress in understanding replication, interactions with host plants, and evolution of closteroviruses enabled engineering of several vectors for gene expression and virus-induced gene silencing. Due to the broad host range of closteroviruses, these vectors expanded vector applicability to include important woody plants such as citrus and grapevine. Furthermore, large closterovirus genomes offer genetic capacity and stability unrivaled by other plant viral vectors. These features provided immense opportunities for using closterovirus vectors for the functional genomics studies and pathogen control in economically valuable crops. This review briefly summarizes advances in closterovirus research during the last decade, explores the relationships between virus biology and vector design, and outlines the most promising directions for future application of closterovirus vectors. PMID:23596441

  5. Disclosing Biology Teachers' Beliefs about Biotechnology and Biotechnology Education

    ERIC Educational Resources Information Center

    Fonseca, Maria Joao; Costa, Patricio; Lencastre, Leonor; Tavares, Fernando

    2012-01-01

    Teachers have been shown to frequently avoid addressing biotechnology topics. Aiming to understand the extent to which teachers' scarce engagement in biotechnology teaching is influenced by their beliefs and/or by extrinsic constraints, such as practical limitations, this study evaluates biology teachers' beliefs about biotechnology and…

  6. FATE & EFFECTS OF AGRICULTURAL PESTICIDES WITHIN WEEKS BAY WATERSHED, A NATIONAL ESTUARINE RESEARCH RESERVE

    EPA Science Inventory

    Lytle, J.S., T.F. Lytle and M.A. Lewis. In press. Fate and Effects of Agricultural Pesticides Within Weeks Bay Watershed, a National Estuarine Research Preserve. To be presented at the 24th Annual Meeting in North America of the Society of Environmental Toxicology and Chemistry: ...

  7. Compilation of Agricultural Research, Education, and Extension Questions for Discussion. 104th Congress, 1st Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Agriculture.

    This volume compiles and reprints the responses of 37 organizations to a series of questions issued by the House Committee on Agriculture in anticipation of debates concerning the Research Title of the 1995 Farm Bill due for updating and revision. The questions address some of the following topics: the role of the federal government in…

  8. 77 FR 11064 - National Agricultural Research, Extension, Education, and Economics Advisory Board Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... Independence Avenue SW., Washington, DC 20250-0321. FOR FURTHER INFORMATION CONTACT: J. Robert Burk, Executive Director or Shirley Morgan-Jordan, Program Support Coordinator, National Agricultural Research, Extension, Education, and Economics Advisory Board; telephone: (202) 536-6547; fax: (202) 720-6199; or email:...

  9. Counter-Geographies: The Campaign against Rationalisation of Agricultural Research Stations in New South Wales, Australia

    ERIC Educational Resources Information Center

    Gibson, Chris; Dufty, Rae; Phillips, Samantha; Smith, Heather

    2008-01-01

    This paper discusses an example of community action mounted in a rural region of New South Wales, Australia, in response to proposals by the State Government to rationalise agricultural research stations operated by the Department of Primary Industries. Informed by a Foucaultian understanding of power and the concept of governmentality,…

  10. 7 CFR 3406.16 - Scope of a research proposal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., sustainable agriculture, biotechnology, agribusiness management and marketing, and aquaculture. (b... using the techniques of biotechnology. (ii) Computerized data banks of important scientific...

  11. Projector Center. What Is Biotechnology?

    ERIC Educational Resources Information Center

    Belzer, Bill; Case, Christine L.

    1990-01-01

    Presented is a menu designed to illustrate some classical examples of fermentation. This may be used to discuss biotechnology from a technological perspective. Other examples of biotechnology used in the foods industry are described. (CW)

  12. The Impact of Biotechnology upon Chemistry in Pharmacy Schools.

    ERIC Educational Resources Information Center

    Henkel, James G.; And Others

    1990-01-01

    Applications of biotechnology to the pharmaceutical industry are examined, and its impact on the research and practical domains of medicinal and natural products chemistry is discussed. Specific curricular implications for undergraduate and graduate study in pharmacy are outlined, and suggestions for faculty development in biotechnology are made.…

  13. Biotechnology Teaching Models: What Is Their Role in Technology Education?

    ERIC Educational Resources Information Center

    France, Bev

    2000-01-01

    Discusses the opportunity to teach biotechnology from a technological perspective with the introduction of technology education in New Zealand. Presents information on the professional development research project that introduces teachers to the practice of biotechnology identified in "Technology in New Zealand Curriculum". (Contains 24…

  14. Current developments in arbuscular mycorrhizal fungi research and its role in salinity stress alleviation: a biotechnological perspective.

    PubMed

    Kumar, Ashwani; Dames, Joanna F; Gupta, Aditi; Sharma, Satyawati; Gilbert, Jack A; Ahmad, Parvaiz

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) form widespread symbiotic associations with 80% of known land plants. They play a major role in plant nutrition, growth, water absorption, nutrient cycling and protection from pathogens, and as a result, contribute to ecosystem processes. Salinity stress conditions undoubtedly limit plant productivity and, therefore, the role of AMF as a biological tool for improving plant salt stress tolerance, is gaining economic importance worldwide. However, this approach requires a better understanding of how plants and AMF intimately interact with each other in saline environments and how this interaction leads to physiological changes in plants. This knowledge is important to develop sustainable strategies for successful utilization of AMF to improve plant health under a variety of stress conditions. Recent advances in the field of molecular biology, "omics" technology and advanced microscopy can provide new insight about these mechanisms of interaction between AMF and plants, as well as other microbes. This review mainly discusses the effect of salinity on AMF and plants, and role of AMF in alleviation of salinity stress including insight on methods for AMF identification. The focus remains on latest advancements in mycorrhizal research that can potentially offer an integrative understanding of the role of AMF in salinity tolerance and sustainable crop production. PMID:24708070

  15. 7 CFR 2.16 - Under Secretary for Farm and Foreign Agricultural Services.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Executive Order 12580, 3 CFR, 1987 Comp., p. 193, under the following provisions of the Comprehensive... applicable pollution control standards and section 1-601 of Executive Order 12088, 3 CFR, 1978 Comp., p. 243...). (xlviii) Administer the grant program for agricultural biotechnology research and development...

  16. Applications for biotechnology: present and future improvements in lactic acid bacteria.

    PubMed

    McKay, L L; Baldwin, K A

    1990-09-01

    The lactic acid bacteria are involved in the manufacture of fermented foods from raw agricultural materials such as milk, meat, vegetables, and cereals. These fermented foods are a significant part of the food processing industry and are often prepared using selected strains that have the ability to produce desired products or changes efficiently. The application of genetic engineering technology to improve existing strains or develop novel strains for these fermentations is an active research area world-wide. As knowledge about the genetics and physiology of lactic acid bacteria accumulates, it becomes possible to genetically construct strains with characteristics shaped for specific purposes. Examples of present and future applications of biotechnology to lactic acid bacteria to improve product quality are described. Studies of the basic biology of these bacteria are being actively conducted and must be continued, in order for the food fermentation industry to reap the benefits of biotechnology.

  17. Teaching Pharmaceutical Biotechnology at the University of Illinois at Chicago.

    ERIC Educational Resources Information Center

    Groves, Michael J.; Klegerman, Melvin E.

    1988-01-01

    The Department of Pharmaceutics at the University of Illinois at Chicago has been carrying out research in pharmaceutical biotechnology that has allowed unique student involvement and promises further interdisciplinary research and instructional activities. (MSE)

  18. Biotechnologies and Human Dignity

    ERIC Educational Resources Information Center

    Sweet, William; Masciulli, Joseph

    2011-01-01

    In this article, the authors review some contemporary cases where biotechnologies have been employed, where they have had global implications, and where there has been considerable debate. The authors argue that the concept of dignity, which lies at the center of such documents as the 2005 Universal Declaration on Bioethics and Human Rights, the…

  19. Biotechnology, Ethics and Education

    ERIC Educational Resources Information Center

    Fitzsimons, Peter John

    2007-01-01

    Fundamental differences between current and past knowledge in the field of biotechnology mean that we now have at our disposal the means to irreversibly change what is meant by "human nature". This paper explores some of the ethical issues that accompany the (as yet tentative) attempt to increase scientific control over the human genetic code in…

  20. Biotechnology in weed control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biotechnology can be used to enhance the management of weeds in several ways. Crops have been made resistant to herbicides by inserting transgenes that impart herbicide resistance into the plant genome. Glyphosate and glufosinate-resistant crops are commercialized in North America and crops made res...

  1. Biotechnology and the University.

    ERIC Educational Resources Information Center

    Wofsy, Leon

    1986-01-01

    Biotechnology is changing the values of the university's bioscience community. Priorities are distorted by entrepreneurial incentives and government pressures that increase the scientist's dependence on industry and the military. The university is seen as inattentive to the social, ethical, and educational challenges. (Author/MLW)

  2. Biotechnology Program Guide.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This program quide presents the biotechnology curriculum for technical institutes in Georgia. The general information section contains the following: purpose and objectives; program description, including admissions, typical job titles, and accreditation and certification; and curriculum model, including standard curriculum sequence and lists of…

  3. Research and implementation of good agricultural practice for traditional Chinese medicinal materials in Jilin Province, China

    PubMed Central

    Li, Changtian; Yan, Zhengfei; Zhang, Lianxue; Li, Yu

    2014-01-01

    Jilin Province is one of the principal production bases of traditional Chinese medicine (TCM) in China with its typical preponderance in TCM resources, research and development power, and industrialization capacity. The province has 2,790 species of TCM materials in total. Over 20% of the TCM materials in common use are from Jilin Province. The province has established 36 good agricultural practice bases for 22 typical TCMs. The overall situation, in terms of collection, processing, and preparation, and the implementation of good agricultural practice of TCM materials in Jilin Province are summarized. PMID:25379000

  4. Research priorities for the environment, agriculture and infectious diseases of poverty.

    PubMed

    2013-01-01

    This report reviews the connections between environmental change, modern agricultural practices and the occurrence of infectious diseases - especially those of poverty; proposes a multi-criteria decision analysis approach to determining the key research priorities; and explores the benefits and limitations of a more systems-based approach to conceptualizing and investigating the problem. The report is the output of the Thematic Reference Group on Environment, Agriculture and Infectious Diseases of Poverty (TRG 4), part of an independent think tank of international experts, established and funded by the Special Programme for Research and Training in Tropical Diseases (TDR) to identify key research priorities through review of research evidence and input from stakeholder consultations. The report concludes that mitigating the outcomes on human health will require far-reaching strategies - spanning the environment, climate, agriculture, social-ecological, microbial and public-health sectors; as well as inter-disciplinary research and intersectoral action. People will also need to modify their way of thinking and engage beyond their own specialities, since the challenges are systemic and are amplified by the increasing inter-connectedness of human populations. This is one of a series of disease and thematic reference group reports that have come out of the TDR Think Tank, all of which have contributed to the development of the Global Report for Research on Infectious Diseases of Poverty, available at www.who.int/tdr/capacity/global_report. PMID:23687800

  5. Research priorities for the environment, agriculture and infectious diseases of poverty.

    PubMed

    2013-01-01

    This report reviews the connections between environmental change, modern agricultural practices and the occurrence of infectious diseases - especially those of poverty; proposes a multi-criteria decision analysis approach to determining the key research priorities; and explores the benefits and limitations of a more systems-based approach to conceptualizing and investigating the problem. The report is the output of the Thematic Reference Group on Environment, Agriculture and Infectious Diseases of Poverty (TRG 4), part of an independent think tank of international experts, established and funded by the Special Programme for Research and Training in Tropical Diseases (TDR) to identify key research priorities through review of research evidence and input from stakeholder consultations. The report concludes that mitigating the outcomes on human health will require far-reaching strategies - spanning the environment, climate, agriculture, social-ecological, microbial and public-health sectors; as well as inter-disciplinary research and intersectoral action. People will also need to modify their way of thinking and engage beyond their own specialities, since the challenges are systemic and are amplified by the increasing inter-connectedness of human populations. This is one of a series of disease and thematic reference group reports that have come out of the TDR Think Tank, all of which have contributed to the development of the Global Report for Research on Infectious Diseases of Poverty, available at www.who.int/tdr/capacity/global_report.

  6. The Ohio Science Workbook: Biotechnology.

    ERIC Educational Resources Information Center

    Reames, Spencer E., Comp.

    Because of the daily impact of biotechnology, it is important that students have some knowledge and experience with biotechnology in order to enable them to deal with the issues that arise as a result of its implementation. The purpose of this workbook is to assist in the efforts to expose students to the concepts of biotechnology through hands-on…

  7. Biotechnology for developing countries. The case of the Central American isthmus.

    PubMed

    León, P E

    1993-12-21

    Recent developments in the fields of chemistry, molecular biology, computer science, and communications promise to transform the way that many things will be done in the near future in diverse fields of scientific R&D. Fortunately for less developed countries (LDCs) some of the technologies involved are user friendly and safe, avoiding the need for radioactive precursors, large machines, or expensive reagents. For instance, tissue culture, polymerase chain reaction (PCR), dideoxi-sequencing, and recombinant DNA techniques have already invaded clinical laboratories, agricultural field stations, and natural history museums, even in some developing nations. Somatic cell culture for plant biotechnology and immunologic techniques for diagnosis have had wide applications for over a decade in all countries in the Central American Isthmus. More recently, recombinant DNA techniques, including PCR, have been introduced for diagnostic purposes and research at the two largest universities in Costa Rica and at other public institutions and are also used in Guatemala and Panama. Honduras and Nicaragua are only now acquiring these technologies for diagnostic purposes. Biotechnological applications in industry seem to be lagging behind, and presently no good links exist between research laboratories and industry for advanced applications. The application of biotechnologies in environmental problems is slowly underway, with molecular studies of natural wildlife populations and primary forest trees. A major effort is needed to create safe and effective ways of dealing with environmental degradation, wastes, and byproducts of tropical agriculture and industry. The creation of the National Biodiversity Institute (INBio) in Costa Rica to elaborate an inventory of flora and fauna and to prospect for useful substances provides a unique opportunity for biotechnological applications. In addition, government policies to promote biotechnological development are supported by CONICIT (National

  8. Biotechnology for developing countries. The case of the Central American isthmus.

    PubMed

    León, P E

    1993-12-21

    Recent developments in the fields of chemistry, molecular biology, computer science, and communications promise to transform the way that many things will be done in the near future in diverse fields of scientific R&D. Fortunately for less developed countries (LDCs) some of the technologies involved are user friendly and safe, avoiding the need for radioactive precursors, large machines, or expensive reagents. For instance, tissue culture, polymerase chain reaction (PCR), dideoxi-sequencing, and recombinant DNA techniques have already invaded clinical laboratories, agricultural field stations, and natural history museums, even in some developing nations. Somatic cell culture for plant biotechnology and immunologic techniques for diagnosis have had wide applications for over a decade in all countries in the Central American Isthmus. More recently, recombinant DNA techniques, including PCR, have been introduced for diagnostic purposes and research at the two largest universities in Costa Rica and at other public institutions and are also used in Guatemala and Panama. Honduras and Nicaragua are only now acquiring these technologies for diagnostic purposes. Biotechnological applications in industry seem to be lagging behind, and presently no good links exist between research laboratories and industry for advanced applications. The application of biotechnologies in environmental problems is slowly underway, with molecular studies of natural wildlife populations and primary forest trees. A major effort is needed to create safe and effective ways of dealing with environmental degradation, wastes, and byproducts of tropical agriculture and industry. The creation of the National Biodiversity Institute (INBio) in Costa Rica to elaborate an inventory of flora and fauna and to prospect for useful substances provides a unique opportunity for biotechnological applications. In addition, government policies to promote biotechnological development are supported by CONICIT (National

  9. Perceived damage and areas of needed research for wildlife pests of California agriculture.

    PubMed

    Baldwin, Roger A; Salmon, Terrell P; Schmidt, Robert H; Timm, Robert M

    2014-06-01

    Many wildlife species cause extensive damage to a variety of agricultural commodities in California, with estimates of damage in the hundreds of millions annually. Given the limited availability of resources to solve all human-wildlife conflicts, we should focus management efforts on issues that provide the greatest benefit to agricultural commodities in California. This survey provides quantitative data on research needs to better guide future efforts in developing more effective, practical and appropriate methods for managing these species. We found that ground squirrels, pocket gophers, birds, wild pigs, coyotes and voles were the most common agricultural wildlife pest species in California. The damage caused by these species could be quite high, but varied by agricultural commodity. For most species, common forms of damage included loss of crop production and direct death of the plant, although livestock depredation was the greatest concern for coyotes. Control methods used most frequently and those deemed most effective varied by pest species, although greater advancements in control methods were listed as a top research priority for all species. Collectively, the use of toxicants, biocontrol and trapping were the most preferred methods for control, but this varied by species. In general, integrated pest management practices were used to control wildlife pests, with a special preference for those approaches that were efficacious and quick and inexpensive to apply. This information and survey design should be useful in establishing research and management priorities for wildlife pest species in California and other similar regions.

  10. Perceived damage and areas of needed research for wildlife pests of California agriculture.

    PubMed

    Baldwin, Roger A; Salmon, Terrell P; Schmidt, Robert H; Timm, Robert M

    2014-06-01

    Many wildlife species cause extensive damage to a variety of agricultural commodities in California, with estimates of damage in the hundreds of millions annually. Given the limited availability of resources to solve all human-wildlife conflicts, we should focus management efforts on issues that provide the greatest benefit to agricultural commodities in California. This survey provides quantitative data on research needs to better guide future efforts in developing more effective, practical and appropriate methods for managing these species. We found that ground squirrels, pocket gophers, birds, wild pigs, coyotes and voles were the most common agricultural wildlife pest species in California. The damage caused by these species could be quite high, but varied by agricultural commodity. For most species, common forms of damage included loss of crop production and direct death of the plant, although livestock depredation was the greatest concern for coyotes. Control methods used most frequently and those deemed most effective varied by pest species, although greater advancements in control methods were listed as a top research priority for all species. Collectively, the use of toxicants, biocontrol and trapping were the most preferred methods for control, but this varied by species. In general, integrated pest management practices were used to control wildlife pests, with a special preference for those approaches that were efficacious and quick and inexpensive to apply. This information and survey design should be useful in establishing research and management priorities for wildlife pest species in California and other similar regions. PMID:24952967

  11. [Biotechnology and animal health].

    PubMed

    Desmettre, P

    1993-06-01

    The development of the first vaccines for use in animals, by Louis Pasteur at the end of the 19th Century, was an initial step in applying biotechnology to animal health. However, it is only much more recently that decisive progress has been made in finding applications for biotechnology, in both detecting and preventing infectious and parasitic diseases. This progress has shown the way to developing a range of procedures, the application of which will benefit the health of domestic and wild animals, enhance the well-being of companion animals, develop the performance of sporting animals and improve the productivity of farm animals, while also serving to protect human health. Such progress results from the increasingly rapid application of knowledge gained in the material and life sciences, all of which contribute to the multidisciplinary nature of biotechnology. Similarly, reagents and diagnostic techniques have been made more specific, sensitive, reproducible, rapid and robust by updating them through recent discoveries in immunology, biochemistry and molecular biology (monoclonal antibodies, nucleic probes, deoxyribonucleic acid amplification and many more). The development of new vaccines which combine efficacy, duration of protection, innocuity, stability, multivalence and ease of use (subunit vaccines, recombinant vaccines, synthetic vaccines and anti-idiotype vaccines) has resulted from recent progress in immunology, immunochemistry, molecular biology and biochemistry. Finally, the availability of new anti-infective, anti-parasitic agents and immunomodulatory therapeutic agents (capable of stimulating the specific and non-specific defence mechanisms of the body) demonstrates that biotechnology is continuing to find new applications in the field of animal health. New diagnostic techniques, vaccines and therapeutic substances are the most immediate applications of knowledge which may, in the future, extend to the development of transgenic animals of revised

  12. Wisconsin Radio and Television Agricultural Market News Programming. Wisconsin Agricultural Extension Service Research Report No. R2615, April 1974.

    ERIC Educational Resources Information Center

    Kroupa, Eugene A.; Walker, Douglas K.

    The study determined what Wisconsin's 102 AM, 107 FM, and 21 television stations were providing as agricultural market information programming and documented the amount, timing, frequency, and completeness of broadcast agricultural market news reports. Data were collected on the sources of market price information, types of commodity and price…

  13. Future agriculture with minimized phosphorus losses to waters: Research needs and direction.

    PubMed

    Sharpley, Andrew N; Bergström, Lars; Aronsson, Helena; Bechmann, Marianne; Bolster, Carl H; Börling, Katarina; Djodjic, Faruk; Jarvie, Helen P; Schoumans, Oscar F; Stamm, Christian; Tonderski, Karin S; Ulén, Barbro; Uusitalo, Risto; Withers, Paul J A

    2015-03-01

    The series of papers in this issue of AMBIO represent technical presentations made at the 7th International Phosphorus Workshop (IPW7), held in September, 2013 in Uppsala, Sweden. At that meeting, the 150 delegates were involved in round table discussions on major, predetermined themes facing the management of agricultural phosphorus (P) for optimum production goals with minimal water quality impairment. The six themes were (1) P management in a changing world; (2) transport pathways of P from soil to water; (3) monitoring, modeling, and communication; (4) importance of manure and agricultural production systems for P management; (5) identification of appropriate mitigation measures for reduction of P loss; and (6) implementation of mitigation strategies to reduce P loss. This paper details the major challenges and research needs that were identified for each theme and identifies a future roadmap for catchment management that cost-effectively minimizes P loss from agricultural activities.

  14. Biotechnology and poplars: A US perspective

    SciTech Connect

    Layton, P.; Ostry, M.E.

    1988-01-01

    An increasing number of researchers are investigating Populus spp. using biotechnical research techniques. Its commercial importance, genome size, and relative ease of propagation from cell and tissue culture are contributing to the increase. Significant progress has been made in refining cell and tissue culture methods and identifying the associated genetic variability. Researchers have identified somaclones with acceptable tolerance levels to several herbicides and diseases. Genetic transformation of poplars has progressed with the development of several gene transfer methods (Agrobacterium, electroporation, and microprojectiles) and the incorporation of commercially important genes (aroA and potato inhibitor II). Research on gene promoters has progressed, and two putative wound inducible promoters have been identified in hybrid poplar. Although federal research dollars in FY 1989 are low for forest biotechnology, research is continuing. Federal research dollars may rise again in 1990 to aid the exploitation of biotechnology to enhance poplar growth and production, especially for use as energy feedstocks. 13 refs., 1 fig.

  15. Is international agricultural research a global public good? The case of rice biofortification.

    PubMed

    Brooks, Sally

    2011-01-01

    The status of international agricultural research as a global public good (GPG) has been widely accepted since the Green Revolution of the 1960s and 1970s. While the term was not used at the time of its creation, the Consultative Group on International Agricultural Research (CGIAR) system that evolved at that time has been described as a 'prime example of the promise, performance and perils of an international approach to providing GPGs'. Contemporary literature on international agricultural research as a GPG tends to support this view and focuses on how to operationalize the concept. This paper adopts a different starting point and questions this conceptualization of the CGIAR and its outputs. It questions the appropriateness of such a 'neutral' concept to a system born of the imperatives of Cold War geopolitics, and shaped by a history of attempts to secure its relevance in a changing world. This paper draws on a multi-sited, ethnographic study of a research effort highlighted by the CGIAR as an exemplar of GPG-oriented research. Behind the ubiquitous language of GPGs, 'partnership' and 'consensus', however, new forms of exclusion and restriction are emerging within everyday practice, reproducing North-South inequalities and undermining the ability of these programmes to respond to the needs of projected beneficiaries. PMID:21485456

  16. Is international agricultural research a global public good? The case of rice biofortification.

    PubMed

    Brooks, Sally

    2011-01-01

    The status of international agricultural research as a global public good (GPG) has been widely accepted since the Green Revolution of the 1960s and 1970s. While the term was not used at the time of its creation, the Consultative Group on International Agricultural Research (CGIAR) system that evolved at that time has been described as a 'prime example of the promise, performance and perils of an international approach to providing GPGs'. Contemporary literature on international agricultural research as a GPG tends to support this view and focuses on how to operationalize the concept. This paper adopts a different starting point and questions this conceptualization of the CGIAR and its outputs. It questions the appropriateness of such a 'neutral' concept to a system born of the imperatives of Cold War geopolitics, and shaped by a history of attempts to secure its relevance in a changing world. This paper draws on a multi-sited, ethnographic study of a research effort highlighted by the CGIAR as an exemplar of GPG-oriented research. Behind the ubiquitous language of GPGs, 'partnership' and 'consensus', however, new forms of exclusion and restriction are emerging within everyday practice, reproducing North-South inequalities and undermining the ability of these programmes to respond to the needs of projected beneficiaries.

  17. New technological era for American agriculture

    SciTech Connect

    Not Available

    1992-08-01

    The report examines emerging technologies that may be available to American agriculture in the 1990s, their potential for industry, and consequent policy issues. The report analyzes the technologies and related policy issues Congress may need to resolve. The analysis includes an assessment of adjustments industry must take to capitalize on the new technologies, the scientific and institutional issues relevant to food safety and environmental risk and benefit, and the implications for intellectual property rights and science policy. It is the final report in a series on emerging agricultural issues in the 1990s. Other reports in the series include: Agricultural Research and Technology Transfer Policies for the 1990s; U.S. Dairy Industry at a Crossroad: Biotechnology and Policy Choices; and Agricultural Commodities as Industrial Raw Materials.

  18. Sharing Malaysian experience with the development of biotechnology-derived food crops.

    PubMed

    Abu Bakar, Umi K; Pillai, Vilasini; Hashim, Marzukhi; Daud, Hassan Mat

    2005-12-01

    Biotechnology-derived food crops are currently being developed in Malaysia mainly for disease resistance and improved post harvest quality. The modern biotechnology approach is adopted because of its potential to overcome constraints faced by conventional breeding techniques. Research on the development of biotechnology-derived papaya, pineapple, chili, passion fruit, and citrus is currently under way. Biotechnology-derived papaya developed for resistance to papaya ringspot virus (PRSV) and improved postharvest qualities is at the field evaluation stage. Pineapple developed for resistance to fruit black heart disorder is also being evaluated for proof-of-concept. Other biotechnology-derived food crops are at early stages of gene cloning and transformation. Activities and products involving biotechnology-derived crops will be fully regulated in the near future under the Malaysian Biosafety Law. At present they are governed only by guidelines formulated by the Genetic Modification Advisory Committee (GMAC), Malaysia. Commercialization of biotechnology-derived crops involves steps that require GMAC approval for all field evaluations and food-safety assessments before the products are placed on the market. Public acceptance of the biotechnology product is another important factor for successful commercialization. Understanding of biotechnology is generally low among Malaysians, which may lead to low acceptance of biotechnology-derived products. Initiatives are being taken by local organizations to improve public awareness and acceptance of biotechnology. Future research on plant biotechnology will focus on the development of nutritionally enhanced biotechnology-derived food crops that can provide more benefits to consumers. PMID:16465992

  19. Sharing Malaysian experience with the development of biotechnology-derived food crops.

    PubMed

    Abu Bakar, Umi K; Pillai, Vilasini; Hashim, Marzukhi; Daud, Hassan Mat

    2005-12-01

    Biotechnology-derived food crops are currently being developed in Malaysia mainly for disease resistance and improved post harvest quality. The modern biotechnology approach is adopted because of its potential to overcome constraints faced by conventional breeding techniques. Research on the development of biotechnology-derived papaya, pineapple, chili, passion fruit, and citrus is currently under way. Biotechnology-derived papaya developed for resistance to papaya ringspot virus (PRSV) and improved postharvest qualities is at the field evaluation stage. Pineapple developed for resistance to fruit black heart disorder is also being evaluated for proof-of-concept. Other biotechnology-derived food crops are at early stages of gene cloning and transformation. Activities and products involving biotechnology-derived crops will be fully regulated in the near future under the Malaysian Biosafety Law. At present they are governed only by guidelines formulated by the Genetic Modification Advisory Committee (GMAC), Malaysia. Commercialization of biotechnology-derived crops involves steps that require GMAC approval for all field evaluations and food-safety assessments before the products are placed on the market. Public acceptance of the biotechnology product is another important factor for successful commercialization. Understanding of biotechnology is generally low among Malaysians, which may lead to low acceptance of biotechnology-derived products. Initiatives are being taken by local organizations to improve public awareness and acceptance of biotechnology. Future research on plant biotechnology will focus on the development of nutritionally enhanced biotechnology-derived food crops that can provide more benefits to consumers.

  20. Perspectives on biotechnological applications of archaea

    PubMed Central

    Schiraldi, Chiara; Giuliano, Mariateresa; De Rosa, Mario

    2002-01-01

    Many archaea colonize extreme environments. They include hyperthermophiles, sulfur-metabolizing thermophiles, extreme halophiles and methanogens. Because extremophilic microorganisms have unusual properties, they are a potentially valuable resource in the development of novel biotechnological processes. Despite extensive research, however, there are few existing industrial applications of either archaeal biomass or archaeal enzymes. This review summarizes current knowledge about the biotechnological uses of archaea and archaeal enzymes with special attention to potential applications that are the subject of current experimental evaluation. Topics covered include cultivation methods, recent achievements in genomics, which are of key importance for the development of new biotechnological tools, and the application of wild-type biomasses, engineered microorganisms, enzymes and specific metabolites in particular bioprocesses of industrial interest. PMID:15803645

  1. The Tropical Fruit Research Program of the USDA-ARS Tropical Agriculture Research Station

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropical and subtropical fruit crops are of major importance in commercial and subsistence agriculture. The globalization of the economy and the increased demand for healthy and more diverse food products have opened a large market for many of these fruit crops. Despite this fact, increased produc...

  2. Technology Teachers' Beliefs about Biotechnology and Its Instruction in South Korea

    ERIC Educational Resources Information Center

    Kwon, Hyuksoo; Chang, Mido

    2009-01-01

    The increased public awareness of the significance and necessity of biotechnology has encouraged educators to implement biotechnology instruction in various educational settings. One example is the great effort made by educational researchers and practitioners internationally to integrate biotechnology in technology education. Despite the gains in…

  3. Student Content Knowledge Increases after Participation in a Hands-on Biotechnology Intervention

    ERIC Educational Resources Information Center

    Bigler, Amber M.; Hanegan, Nikki L.

    2011-01-01

    Implementing biotechnology education through hands-on teaching methods should be considered by secondary biology teachers. This study is an experimental research design to examine increased student content knowledge in biotechnology after a hands-on biotechnology intervention. The teachers from both school groups participated in, Project Crawfish,…

  4. What Makes Small-Scale Farmers Participate in Financing Agricultural Research and Extension? Analysis of Three Case Studies from Benin

    ERIC Educational Resources Information Center

    Moumouni, Ismail M.; Vodouhe, Simplice D.; Streiffeler, Friedhelm

    2009-01-01

    This paper analyses the organizational, financial and technological incentives that service organizations used to motivate farmers to finance agricultural research and extension in Benin. Understanding the foundations and implications of these motivation systems is important for improving farmer financial participation in agricultural research and…

  5. Agricultural (nonbiomedical) animal research outside the laboratory: a review of guidelines for institutional animal care and use committees.

    PubMed

    Granstrom, David E

    2003-01-01

    Challenges and published guidelines associated with appropriate care and use of farm animals in agricultural research conducted outside the laboratory are briefly reviewed. The Animal Welfare Act (Title 9 of the 2000 Code of Federal Regulations), which regulates the care and use of agricultural animals in biomedical research, does not include livestock and poultry used in agricultural research. Farm animal research funded (and thereby regulated) by the US Public Health Service is further discussed in the National Research Council's 1996 Guide for the Care and Use of Laboratory Animals. However, neither of these guidelines adequately addresses the unique attributes of research and teaching designed to improve production agriculture. That information is contained in the Guide for the Care and Use of Agricultural Animals in Agricultural Research and Teaching (the Ag Guide), published by the Federation of Animal Science Societies in 1999. The Ag Guide provides excellent general recommendations for agricultural animal research. It serves as an invaluable resource for institutional animal care and use committees, which attempt to balance the welfare of farm animals and the needs of those working to improve animal agriculture.

  6. Effects of agriculture upon the air quality and climate: research, policy, and regulations.

    PubMed

    Aneja, Viney P; Schlesinger, William H; Erisman, Jan Willem

    2009-06-15

    Scientific assessments of agricultural air quality, including estimates of emissions and potential sequestration of greenhouse gases, are an important emerging area of environmental science that offers significant challenges to policy and regulatory authorities. Improvements are needed in measurements, modeling, emission controls, and farm operation management. Controlling emissions of gases and particulate matter from agriculture is notoriously difficult as this sector affects the most basic need of humans, i.e., food. Current policies combine an inadequate science covering a very disparate range of activities in a complex industry with social and political overlays. Moreover, agricultural emissions derive from both area and point sources. In the United States, agricultural emissions play an important role in several atmospherically mediated processes of environmental and public health concerns. These atmospheric processes affect local and regional environmental quality, including odor, particulate matter (PM) exposure, eutrophication, acidification, exposure to toxics, climate, and pathogens. Agricultural emissions also contribute to the global problems caused by greenhouse gas emissions. Agricultural emissions are variable in space and time and in how they interact within the various processes and media affected. Most important in the U.S. are ammonia (where agriculture accounts for approximately 90% of total emissions), reduced sulfur (unquantified), PM25 (approximately 16%), PM110 (approximately 18%), methane (approximately 29%), nitrous oxide (approximately 72%), and odor and emissions of pathogens (both unquantified). Agriculture also consumes fossil fuels for fertilizer production and farm operations, thus emitting carbon dioxide (CO2), oxides of nitrogen (NO(x)), sulfur oxides (SO(x)), and particulates. Current research priorities include the quantification of point and nonpoint sources, the biosphere-atmosphere exchange of ammonia, reduced sulfur

  7. [Research progress of Terahertz wave technology in quality measurement of food and agricultural products].

    PubMed

    Yan, Zhan-Ke; Zhang, Hong-Jian; Ying, Yi-Bin

    2007-11-01

    The quality concern of food and agricultural products has become more and more significant. The related technologies for nondestructive measurement or quality control of food products have been the focus of many researches. Terahertz (THz) radiation, or THz wave, the least explored region of the spectrum, is the electromagnetic wave that lies between mid-infrared and microwave radiation, which has very important research and application values. THz spectroscopy and THz imaging technique are the two main applications of THz wave. During the past decade, THz waves have been used to characterize the electronic, vibrational and compositional properties of solid, liquid and gas phase materials. Recently, THz technology has gained a lot of attention of researchers in various fields from biological spectral analysis to bio-medical imaging due to its unique features compared with microwave and optical waves. In the present paper, the properties of THz wave and its uniqueness in sensing and imaging applications were discussed. The most recent researches on THz technology used in food quality control and agricultural products inspection were summarized. The prospect of this novel technology in agriculture and food industry was also discussed.

  8. United States Department of Agriculture-Agricultural Research Service stored-grain areawide integrated pest management program.

    PubMed

    Flinn, Paul W; Hagstrum, David W; Reed, Carl; Phillips, Tom W

    2003-01-01

    The USDA Agricultural Research Service (ARS) funded a demonstration project (1998-2002) for areawide IPM for stored wheat in Kansas and Oklahoma. This project was a collaboration of researchers at the ARS Grain Marketing and Production Research Center in Manhattan, Kansas, Kansas State University, and Oklahoma State University. The project utilized two elevator networks, one in each state, for a total of 28 grain elevators. These elevators stored approximately 31 million bushels of wheat, which is approximately 1.2% of the annual national production. Stored wheat was followed as it moved from farm to the country elevator and finally to the terminal elevator. During this study, thousands of grain samples were taken in concrete elevator silos. Wheat stored at elevators was frequently infested by several insect species, which sometimes reached high numbers and damaged the grain. Fumigation using aluminum phosphide pellets was the main method for managing these insect pests in elevators in the USA. Fumigation decisions tended to be based on past experience with controlling stored-grain insects, or were calendar based. Integrated pest management (IPM) requires sampling and risk benefit analysis. We found that the best sampling method for estimating insect density, without turning the grain from one bin to another, was the vacuum probe sampler. Decision support software, Stored Grain Advisor Pro (SGA Pro) was developed that interprets insect sampling data, and provides grain managers with a risk analysis report detailing which bins are at low, moderate or high risk for insect-caused economic losses. Insect density was predicted up to three months in the future based on current insect density, grain temperature and moisture. Because sampling costs money, there is a trade-off between frequency of sampling and the cost of fumigation. The insect growth model in SGA Pro reduces the need to sample as often, thereby making the program more cost-effective. SGA Pro was validated

  9. Microfluidics in biotechnology

    PubMed Central

    Barry, Richard; Ivanov, Dimitri

    2004-01-01

    Microfluidics enables biotechnological processes to proceed on a scale (microns) at which physical processes such as osmotic movement, electrophoretic-motility and surface interactions become enhanced. At the microscale sample volumes and assay times are reduced, and procedural costs are lowered. The versatility of microfluidic devices allows interfacing with current methods and technologies. Microfluidics has been applied to DNA analysis methods and shown to accelerate DNA microarray assay hybridisation times. The linking of microfluidics to protein analysis techologies, e.g. mass spectrometry, enables picomole amounts of peptide to be analysed within a controlled micro-environment. The flexibility of microfluidics will facilitate its exploitation in assay development across multiple biotechnological disciplines. PMID:15056390

  10. Elemental analysis in biotechnology.

    PubMed

    Hann, Stephan; Dernovics, Mihaly; Koellensperger, Gunda

    2015-02-01

    This article focuses on analytical strategies integrating atomic spectroscopy in biotechnology. The rationale behind developing such methods is inherently linked to unique features of the key technique in elemental analysis, which is inductively coupled plasma mass spectrometry: (1) the high sensitivity and selectivity of state of the art instrumentation, (2) the possibility of accurate absolute quantification even in complex matrices, (3) the capability of combining elemental detectors with chromatographic separation methods and the versatility of the latter approach, (4) the complementarity of inorganic and organic mass spectrometry, (5) the multi-element capability and finally (6) the capability of isotopic analysis. The article highlights the most recent bio-analytical developments exploiting these methodological advantages and shows the potential in biotechnological applications.

  11. The relationship of knowledge, attitudes and perceptions regarding biotechnology in college students

    NASA Astrophysics Data System (ADS)

    Sohan, Donna Elizabeth

    Biotechnology is the latest in a series of technological innovations that have revolutionized such fields as agriculture and the health sciences. However, along with the benefits of biotechnology are concerns. For biotechnology's potential to be realized, it must be accepted on public and governmental levels. Although many studies focus on adult consumer attitudes, it will be the students of today who will be the consumers and leaders of tomorrow. Therefore, this study focused on the knowledge, attitudes, and perceptions of college students regarding biotechnology. More than 3,000 undergraduate students were surveyed from a variety of undergraduate courses at Texas A&M University in College Station, Texas during the 1997-1998 academic year. Information sought included students' knowledge regarding recent applications of biotechnology, demographic information, and their agreement or disagreement with statements regarding different aspects and applications of biotechnology. This study found that despite a low awareness or knowledge of biotechnology, students were accepting of specific applications or products of biotechnology. Those applications or products viewed as beneficial without involving animals had the highest acceptance levels. A majority of the students identified mass media as their major source of biotechnology while also indicating a high level of distrust of the media. Students also indicated that biotechnology information is needed and that such information is appropriate for high school students. Relationships between knowledge and attitudes were also investigated. A greater knowledge level correlated with a more favorable view of biotechnology. In addition, relationships between demographic variables such as gender and race were investigated. Individuals who identified themselves as scientists were found more accepting of biotechnology while females in general were found less accepting. Females majoring in education were found to be the least

  12. Biotechnology: Education and Training. Special Reference Briefs Series No. SRB 96-08.

    ERIC Educational Resources Information Center

    Dobert, Raymond

    This document, prepared by The Biotechnology Information Center at the National Agricultural Library, contains sources of information that can provide a starting point for teachers, university faculty, extension agents, and other education leaders who have an interest in biotechnology education and training. Sections include a bibliography of the…

  13. Teachers' Concerns About Biotechnology Education

    NASA Astrophysics Data System (ADS)

    Borgerding, Lisa A.; Sadler, Troy D.; Koroly, Mary Jo

    2013-04-01

    The impacts of biotechnology are found in nearly all sectors of society from health care and food products to environmental issues and energy sources. Despite the significance of biotechnology within the sciences, it has not become a prominent trend in science education. In this study, we seek to more fully identify biology teachers' concerns about biotechnology instruction and their reported practices. Consistent with the Stages of Concern framework as modified by Hord et al., we investigated teachers' awareness, informational, personal, management, consequences, collaboration, and refocusing concerns about biotechnology teaching by employing a qualitative design that allowed for the emergence of teachers' ideas. Twenty high school life science teachers attending a biotechnology institute were interviewed using an interview protocol specifically designed to target various Stages of Concern. Although the Stages of Concern framework guided the development of interview questions in order to target a wide range of concerns, data analysis employed a grounded theory approach wherein patterns emerged from teachers' own words and were constantly compared with each other to generate larger themes. Our results have potential to provide guidance for professional development providers and curriculum developers committed to supporting initial implementation of biotechnology education. Recommendations include supporting teacher development of biotechnology content knowledge; promoting strategies for obtaining, storing and managing biotechnology equipment and materials; providing opportunities for peer teaching as a means of building teacher confidence; and highlighting career opportunities in biotechnology and the intersections of biotechnology and everyday life.

  14. Research in Agricultural Education. Proceedings of the Annual Southern Agricultural Education Research Meeting (44th, Wilmington, North Carolina, March 19-20, 1995).

    ERIC Educational Resources Information Center

    Flowers, Jim, Comp.

    The proceedings includes the following: "Evaluation of the Leadership Development of Oklahoma Agricultural Leadership Program Graduates" (Lee-Cooper, Weeks); "Model for Undergraduate Academic Programs in Agricultural Communications" (Terry, Jr. et al.); "Competencies Needed for Graduates of Agricultural Communications Programs" (Terry,…

  15. Defining the Social Context through Agricultural Research. Proceedings of the Annual National Agricultural Education Research Meeting (20th, Nashville, Tennessee, December 3, 1993).

    ERIC Educational Resources Information Center

    Scanlon, Dennis C., Ed.; Bruening, Thomas H., Ed.

    Selected papers are as follows: "Agriculture, Environmental Science and the Relationship of Agriculture to Academic Courses as Perceived by 10th Grade Students" (Newsom-Stewart; Sutphin); "Factors Related to Recruitment and Retention of Ethnic Minority Youth in the Ohio 4-H Program" (Bankston, Cano); "Hispanics in Agriculture" (Nichols, Nelson);…

  16. Agricultural research and development in Eastern European countries: Challenges and needs

    SciTech Connect

    Maticic, B. )

    1993-01-01

    All the countries in Eastern Europe are in a state of transition towards a market-oriented economy. Although these countries differ in many respects, they have in common some four decades of central and administrative planning. The transformation of these countries has to take place. The course of future agricultural development will depend on the policies regarding ownership of land and of other basic resources (livestock, management and organization of feed, breeding, health of animals, marketing, agroprocessing services), prices, and incentives. Maintaining good environmental quality will have to play an important role in agricultural development, taking into consideration health and welfare of humans, plants, and animals for a sustainable social and economic development. Agricultural research, development, and extension are the cornerstones on which market-oriented agricultural systems in Eastern European countries are to be rebuilt in order to meet domestic demand and increase export opportunities. The greatest emphasis should be on appropriate applied programs adopted to the new orientation and structure. 6 refs., 7 tabs.

  17. Opportunities for energy conservation through biotechnology

    SciTech Connect

    Young, J.K.; Griffin, E.A.; Russell, J.A.

    1984-11-01

    The purpose of this study is to identify and quantify potential energy savings available through the development and application of biotechnologies. This information is required in support of ECUT research planning efforts as an aid in identifying promising areas needing further consideration and development. It is also intended as background information for a companion ECUT study being conducted by the National Academy of Science to evaluate the use of bioprocessing methods to conserve energy. Several studies have been conducted recently to assess the status and implications of the development of biotechnology. The Office of Technology Assessment (OTA) considered institutional, economic, and scientific problems and barriers. The National Science Foundation sponsored a study to examine regulatory needs for this new and expanding technology. Somewhat in contrast to these studies, this report covers principally the technical issues. It should be emphasized that the practicality of many developments in biotechnology is not evaluated solely on the basis of energy considerations. Bioprocesses must often compete with well-established coal, petroleum, and natural gas technologies. A complete evaluation of the technical, economical, and ecological impacts of the large-scale applications discussed in this report is not possible within the scope of this study. Instead, this report assesses the potential of biotechnology to save energy so that research into all aspects of implementation will be stimulated for those industries with significant energy savings potential. 92 references, 6 figures, 24 tables.

  18. Sex, gender, and health biotechnology: points to consider

    PubMed Central

    2009-01-01

    Background Reproductive technologies have been extensively debated in the literature. As well, feminist economists, environmentalists, and agriculturalists have generated substantial debate and literature on gender. However, the implications for women of health biotechnologies have received relatively less attention. Surprisingly, while gender based frameworks have been proposed in the context of public health policy, practice, health research, and epidemiological research, we could identify no systematic framework for gender analysis of health biotechnology in the developing world. Discussion We propose sex and gender considerations at five critical stages of health biotechnology research and development: priority setting; technology design; clinical trials; commercialization, and health services delivery. Summary Applying a systematic sex and gender framework to five key process stages of health biotechnology research and development could be a first step towards unlocking the opportunities of this promising science for women in the developing world. PMID:19622163

  19. Ex-ante evaluation of biotechnology innovations: the case of folate biofortified rice in China.

    PubMed

    De Steur, Hans; Blancquaert, Dieter; Gellynck, Xavier; Lambert, Willy; Van Der Straeten, Dominique

    2012-12-01

    In order to valorize novel biotechnology innovations, there is a need to evaluate ex-ante their market potential. A case in point is biofortification, i.e. the enhancement of the micronutrient content of staple crops through conventional or genetic breeding techniques. In a recent article in Nature Biotechnology, for example, De Steur et al. (2010) demonstrated the large potential consumer health benefits of folate biofortified rice as a means to reduce folate deficiency and Neural-Tube Defects. By focusing on a Chinese high-risk region of Neural-Tube Defects, the current study defines the potential cost-effectiveness of this genetically modified crop where the need to improve folate intake levels is highest. Building on the Disability-Adjusted Life Years (DALY) approach, both the potential health impacts and costs of its implementation are measured and benchmarked against similar innovations. The results show that this transgenic crop could be a highly cost-effective product innovation (US$ 120.34 - US$ 40.1 per DALY saved) to alleviate the large health burden of folate deficiency and reduce the prevalence of neural-tube birth defects. When compared with other biofortified crops and target regions, folate biofortified rice in China has a relatively high health impact and moderate cost-effectiveness. This research further supports the need for, and importance of ex-ante evaluation studies in order to adequately market and, thus, valorize biotechnology innovations. Although the cost-effectiveness analysis enables to illustrate the market potential of innovative agricultural biotechnology research, further research is required to address policy issues on transgenic biofortification, such as biosafety regulatory requirements.

  20. Herbicide-resistant crop biotechnology: potential and pitfalls

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbicide-resistant crops are an important agricultural biotechnology that can enable farmers to effectively control weeds without harming their crops. Glyphosate-resistant (i.e. Roundup Ready) crops have been the most commercially successful varieties of herbicide-resistant crops and have been plan...

  1. FORT KEOGH LIVESTOCK & RANGE RESEARCH LABORATORY, U.S. DEPARTMENT OF AGRICULTURE-AGRICULTRAL RESEARCH SERVICE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Article describes Fort Keogh Livestock and Range Research Laboratory to an audience of scientific researchers (i.e. ecologists) interested in the interactions among organisms and their environment. Article outlines the facilities, environment, history, and ongoing types of research. Emphasis is on...

  2. Introduction to the USDA-Agricultural Research Service Poisonous Plant Research Laboratory Special Rangelands Issue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA-ARS Poisonous Plant Research Labortory (PPRL) in Logan, UT will sponsor an edition of the magazine Rangelands. This paper provides a brief history and overview of the PPRL, mission statement, research objectives by CRIS, and the disciplines involved in the research....

  3. A career in government: my experiences working for the U.S. Department of Agriculture-Agricultural Research Service

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agricultural sector provides highly diverse career opportunities that include private companies, academic institutions, non-government organizations, and government agencies. One possible career path is with the Federal government which is one of the largest employers of scientists and engineers...

  4. Proceedings of the Annual National Agricultural Education Research Meeting (9th, St, Louis, Missouri, December 3, 1982).

    ERIC Educational Resources Information Center

    American Vocational Association, Arlington, VA. Agricultural Education Div.

    These proceedings contain the texts of 29 papers presented at the ninth Annual Agricultural Education Research Meeting. During the five sessions of the conference, various areas of agricultural education were addressed, such as inservice education, job satisfaction and morale, teacher concerns, national issues, program improvement, preservice…

  5. Contextualising Teaching and Learning in Rural Primary Schools: Using Agricultural Experience. Volume 1 [and] Volume 2. Education Research.

    ERIC Educational Resources Information Center

    Taylor, Peter; Mulhall, Abigail

    This research project examined the potential role of agricultural experiences as a vehicle for meeting the diverse learning needs of rural primary students in developing countries. Volume 1 of the project report represents a literature review that investigated a "new role" for agriculture as a key element for developing rural students' basic…

  6. Central States Annual Research Conference in Agricultural Education Proceedings (42nd, Chicago, Illinois, February 21-22, 1988).

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale.

    The following papers are included in this conference report: "Generative Themes for Research in Agricultural Education," (Copa); "Factors Associated with Participation of Iowa Young Farmers in Agricultural Extension Programs" (Martin, Omer); "Personality Characteristics of Groups of Wisconsin Vocational, Technical, and Adult Education" (Petrick,…

  7. Motivational Strategies and Utilisation of Internet Resources as Determinants of Research Productivity of Lecturers in Universities of Agriculture in Nigeria

    ERIC Educational Resources Information Center

    Ajegbomogun, Fredrick Olatunji; Popoola, Sunday Olarenwaju

    2013-01-01

    This study examined motivational strategies and utilisation of Internet resources as determinants of research productivity of lecturers in universities of agriculture in Nigeria. One thousand, one hundred and thirty two (1,132) copies of the questionnaire were administered on the lecturers in universities of agriculture in Nigeria. Eight hundred…

  8. The emerging international regulatory framework for biotechnology.

    PubMed

    Komen, John

    2012-01-01

    Debate about the potential risks of genetically modified organisms (GMOs) to the environment or human health spurred attention to biosafety. Biosafety is associated with the safe use of GMOs and, more generally, with the introduction of non-indigenous species into natural or managed ecosystems. Biosafety regulation--the policies and procedures adopted to ensure the environmentally safe application of modern biotechnology--has been extensively discussed at various national and international forums. Much of the discussion has focused on developing guidelines, appropriate legal frameworks and, at the international level, a legally binding international biosafety protocol--the Cartagena Protocol on Biosafety. The Protocol is one among various international instruments and treaties that regulate specific aspects relevant to agricultural biotechnology. The present article presents the main international instruments relevant to biosafety regulation, and their key provisions. While international agreements and standards provide important guidance, they leave significant room for interpretation, and flexibility for countries implementing them. Implementation of biosafety at the national level has proven to be a major challenge, particularly in developing countries, and consequently the actual functioning of the international regulatory framework for biotechnology is still in a state of flux.

  9. Integrating ecology into biotechnology.

    PubMed

    McMahon, Katherine D; Martin, Hector Garcia; Hugenholtz, Philip

    2007-06-01

    New high-throughput culture-independent molecular tools are allowing the scientific community to characterize and understand the microbial communities underpinning environmental biotechnology processes in unprecedented ways. By creatively leveraging these new data sources, microbial ecology has the potential to transition from a purely descriptive to a predictive framework, in which ecological principles are integrated and exploited to engineer systems that are biologically optimized for the desired goal. But to achieve this goal, ecology, engineering and microbiology curricula need to be changed from the very root to better promote interdisciplinarity.

  10. Biotechnology System Facility: Risk Mitigation on Mir

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R., III; Galloway, Steve R.

    2003-01-01

    NASA is working with its international partners to develop space vehicles and facilities that will give researchers the opportunity to conduct scientific investigations in space. As part of this activity, NASA's Biotechnology Cell Science Program (BCSP) at the Johnson Space Center (JSC) is developing a world-class biotechnology laboratory facility for the International Space Station (ISS). This report describes the BCSP, including the role of the BTS. We identify the purpose and objectives of the BTS and a detailed description of BTS facility design and operational concept, BTS facility and experiment-specific hardware, and scientific investigations conducted in the facility. We identify the objectives, methods, and results of risk mitigation investigations of the effects of microgravity and cosmic radiation on the BTS data acquisition and control system. These results may apply to many other space experiments that use commercial, terrestrial-based data acquisition technology. Another focal point is a description of the end-to-end process of integrating and operating biotechnology experiments on a variety of space vehicles. The identification of lessons learned that can be applied to future biotechnology experiments is an overall theme of the report. We include a brief summary of the science results, but this is not the focus of the report. The report provides some discussion on the successful 130-day tissue engineering experiment performed in BTS on Mir and describes a seminal gene array investigation that identified a set of unique genes that are activated in space.

  11. Final report, International Symposium on Environmental Biotechnology

    SciTech Connect

    Wise, Donald L.

    2000-03-20

    This meeting included technical presentations of state-of-the-art research which were integrated with tutorials and workshops by practicing technologies in the broad field of environmental biotechnology. This meeting was designed to be, in every respect, truly global. Over 150 excellent abstracts from around the world were accepted. For example, presentations were heard from technical workers in Southeast Asia, Russia, China, Europe, North Africa, India, and the US. By having these selected presenters, as well as identified experienced tutors with focused workshops, all participants benefited from this interactive symposium. A number of social events further promoted informal exchange of ideas, discussions of technical problems, and exploration of new applications. This international symposium on environmental biotechnology was on the campus of Northeastern University but all Boston area universities were included and participated using designed conference Co-Chairs. This symposium, with an attendance of several hundred people, was considered a major success. Workers with experience in one area of environmental biotechnology learned from the wealth of established backgrounds of those in other areas of environmental biotechnology. To formally disseminate conference results, it was pre-arranged that all technical presentations were reviewed for formal publications.

  12. Agricultural Waste.

    PubMed

    Xue, Ling; Zhang, Panpan; Shu, Huajie; Chang, Chein-Chi; Wang, Renqing; Zhang, Shuping

    2016-10-01

    In recent years, the quantity of agricultural waste has been rising rapidly all over the world. As a result, the environmental problems and negative impacts of agricultural waste are drawn more and more attention. Therefore, there is a need to adopt proper approaches to reduce and reuse agricultural waste. This review presented about 200 literatures published in 2015 relating to the topic of agricultural waste. The review examined research on agricultural waste in 2015 from the following four aspects: the characterization, reuse, treatment, and management. Researchers highlighted the importance to reuse agricultural waste and investigated the potential to utilize it as biofertilizers, cultivation material, soil amendments, adsorbent, material, energy recycling, enzyme and catalyst etc. The treatment of agricultural waste included carbonization, biodegradation, composting hydrolysis and pyrolysis. Moreover, this review analyzed the differences of the research progress in 2015 from 2014. It may help to reveal the new findings and new trends in this field in 2015 comparing to 2014. PMID:27620093

  13. Agricultural Waste.

    PubMed

    Xue, Ling; Zhang, Panpan; Shu, Huajie; Chang, Chein-Chi; Wang, Renqing; Zhang, Shuping

    2016-10-01

    In recent years, the quantity of agricultural waste has been rising rapidly all over the world. As a result, the environmental problems and negative impacts of agricultural waste are drawn more and more attention. Therefore, there is a need to adopt proper approaches to reduce and reuse agricultural waste. This review presented about 200 literatures published in 2015 relating to the topic of agricultural waste. The review examined research on agricultural waste in 2015 from the following four aspects: the characterization, reuse, treatment, and management. Researchers highlighted the importance to reuse agricultural waste and investigated the potential to utilize it as biofertilizers, cultivation material, soil amendments, adsorbent, material, energy recycling, enzyme and catalyst etc. The treatment of agricultural waste included carbonization, biodegradation, composting hydrolysis and pyrolysis. Moreover, this review analyzed the differences of the research progress in 2015 from 2014. It may help to reveal the new findings and new trends in this field in 2015 comparing to 2014.

  14. ABSTRACTS OF RESEARCH STUDIES IN AGRICULTURAL EDUCATION, SOUTHERN REGION, 1965-66.

    ERIC Educational Resources Information Center

    BAKER, RICHARD A.

    THIRTY-ONE DOCTORAL DISSERTATIONS, STAFF STUDIES, AND MASTERS' THESES IN AGRICULTURAL EDUCATION ARE REPORTED IN THE FOLLOWING AREAS -- ACADEMIC ACHIEVEMENT, ADMINISTRATOR ATTITUDES, ADULT VOCATIONAL EDUCATION, ADVISORY COMMITTEES, AGRICULTURAL COLLEGES, AGRICULTURAL EXTENSION AGENTS, ASPIRATION, CURRICULUM, EDUCATIONAL NEEDS, EMPLOYMENT…

  15. 75 FR 49357 - United States Department of Agriculture Research Misconduct Regulations for Extramural Research

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... the President (OSTP), published in the Federal Register (65 FR 76260) the Federal Policy on Research... (73 FR 70915), requesting comments from the public. Comments were received on the proposed rule from... and animal research subjects. The OSTP policy (65 FR 76260) specifically states, ``This...

  16. Agricultural Research Service research highlights in remote sensing for calendar year 1981

    NASA Technical Reports Server (NTRS)

    Ritchie, J. C. (Compiler)

    1982-01-01

    Selected examples of research accomplishments related to remote sensing are compiled. A brief statement is given to highlight the significant results of each research project. A list of 1981 publication and location contacts is given also. The projects cover emission and reflectance analysis, identification of crop and soil parameters, and the utilization of remote sensing data.

  17. Geothermal waste treatment biotechnology

    SciTech Connect

    Premuzic, E.T.; Lin, M.S.; Jin, J.Z.; Hamilton, K.

    1997-01-01

    Studies at the Brookhaven National Laboratory (BNL) have led to the development of a technically and economically feasible, as well as environmentally acceptable, biochemical process for detoxification of geothermal residues. For this process, selected microorganisms that live in extreme environments have served as models for the new biotechnology. Assuming a 2,500-kg/h sludge production rate, the new technology is capable of a better than 80% removal rate of toxic metals, usually in less than a 25-hour period. The process itself depends on a number of flexible parameters, allowing this technology to be tailored to specific needs of different geothermal producing regimes, such as those found in the Salton Sea and the Geysers area of California. Thus geothermal residual sludges and brines can be processed to remove only a few metals, such as arsenic and mercury, or many metals, ranging from valuable metals such as chromium, gold, and silver to radionuclides, such as radium. In some cases, combined metal removal and metal recovery processes may be cost efficient and therefore advantageous. The emerging biotechnology for the treatment of geothermal energy production wastes is versatile and offers a number of application options, which are discussed in the paper.

  18. Biotechnology Towards Energy Crops.

    PubMed

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra

    2016-03-01

    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops. PMID:26798073

  19. The role of the statistician in the Scottish Agricultural and Biological Research Institutes.

    PubMed

    McKendrick, Iain J

    2004-09-01

    Several of the Scottish Agricultural and Biological Research Institutes carry out research on domestic animal health and welfare. Statistical services are provided by Biomathematics & Statistics Scotland, a sister research organisation. At one of these institutes, a statistician has been an integral member of the animal experiments and ethics committee for over 10 years, and each animal experiment is examined by the committee statistician as part of the review process. This paper will describe this review process, and then discuss those areas in which statistical advice has had most impact in the reduction of animal numbers. It is suggested that most benefit does not come from simple sample-size calculations, but rather from the application of the principles of good experimental design and close collaboration between the scientist and the statistician in the design and analysis of experiments. The final conclusion is that scientists welcome constructive, long-term statistical input, although budgetary issues can prove to be a barrier.

  20. Agriculture, nutrition, and health in global development: typology and metrics for integrated interventions and research.

    PubMed

    Masters, William A; Webb, Patrick; Griffiths, Jeffrey K; Deckelbaum, Richard J

    2014-12-01

    Despite rhetoric arguing that enhanced agriculture leads to improved nutrition and health, there is scant empirical evidence about potential synergies across sectors or about the mix of actions that best supports all three sectors. The geographic scale and socioeconomic nature of these interventions require integration of previously separate research methods. This paper proposes a typology of interventions and a metric of integration among them to help researchers build on each other's results, facilitating integration in methods to inform the design of multisector interventions. The typology recognizes the importance of regional effect modifiers that are not themselves subject to randomized assignment, and trade-offs in how policies and programs are implemented, evaluated, and scaled. Using this typology could facilitate methodological pluralism, helping researchers in one field use knowledge generated elsewhere, each using the most appropriate method for their situation.