Science.gov

Sample records for agricultural catchment located

  1. Grey water on three agricultural catchments in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Blazkova, Sarka D.; Kulasova, Alena

    2014-05-01

    The COST project EU EURO-AGRIWAT focuses apart from other problems on the assessment of water footprint (WF). WF is defined as the quantity of water used to produce some goods or a service. In particular, the WF of an agricultural product is the volume of water used during the crop growing period. It has three components: the green water which is rain or soil moisture transpired by a crop, the blue water which is the amount of irrigation water transpired and the grey water which is the volume of water required to dilute pollutants and to restore the quality standards of the water body. We have been observing three different agricultural catchments. The first of them is Smrzovka Brook, located in the protected nature area in the south part of the Jizerske Mountains. An ecological farming has been carried out there. The second agricultural catchment area is the Kralovsky Creek, which lies in the foothills of the Krkonose Mountains and is a part of an agricultural cooperative. The last agricultural catchment is the Klejnarka stream, located on the outskirts of the fertile Elbe lowlands near Caslav. Catchments Kralovsky Brook and Klejnarka carry out usual agricultural activities. On all three catchments, however, recreational cottages or houses not connected to the sewerage system and/or with inefficient septic tanks occur. The contribution shows our approach to trying to quantify the real grey water from agriculture, i.e. the grey water caused by nutrients not utilised by the crops.

  2. Environmental care in agricultural catchments: Toward the communicative catchment

    NASA Astrophysics Data System (ADS)

    Martin, Peter

    1991-11-01

    Substantial land degradation of agricultural catchments in Australia has resulted from the importation of European farming methods and the large-scale clearing of land. Rural communities are now being encouraged by government to take responsibility for environmental care. The importance of community involvement is supported by the view that environmental problems are a function of interactions between people and their environment. It is suggested that the commonly held view that community groups cannot care for their resources is due to inappropriate social institutions rather that any inherent disability in people. The communicative catchment is developed as a vision for environmental care into the future. This concept emerges from a critique of resource management through the catchment metaphors of the reduced, mechanical, and the complex, evolving catchment, which reflect the development of systemic and people-centered approaches to environmental care. The communicative catchment is one where both community and resource managers participate collaboratively in environmental care. A methodology based on action research and systemic thinking (systemic action research) is proposed as a way of moving towards the communicative catchment of the future. Action research is a way of taking action in organizations and communities that is participative and informed by theory, while systemic thinking takes into account the interconnections and relationships between social and natural worlds. The proposed vision, methodology, and practical operating principles stem from involvement in an action research project looking at extension strategies for the implementation of total catchment management in the Hunter Valley, New South Wales.

  3. Agricultural Catchments: Evaluating Policies and Monitoring Adaptive Management

    NASA Astrophysics Data System (ADS)

    Jordan, P.; Shortle, G.; Mellander, P. E.; Shore, M.; McDonald, N.; Buckley, C.

    2014-12-01

    Agricultural management in river catchments must combine the objectives of economic profit and environmental stewardship and, in many countries, mitigate the decline of water quality and/or maintain high water quality. Achieving these objectives is, amongst other activities, in the remit of 'sustainable intensification'. Of concern is the efficient use of crop nutrients, phosphorus and nitrogen, and minimising or offsetting the effects of transfers from land to water - corner-stone requirements of many agri-environmental regulations. This requires a robust monitoring programme that can audit the stages of nutrient inputs and outputs in river catchments and indicate where the likely points of successful policy interventions can be observed - or confounded. In this paper, a catchment, or watershed, experimental design and results are described for monitoring the nutrient transfer continuum in the Irish agricultural landscape against the backdrop of the European Union Nitrates and Water Framework Directives. This Agricultural Catchments Programme experimental design also serves to indicate water quality pressure-points that may be catchment specific as agricultural activities intensify to adapt to national efforts to build important parts of the post-recession economy.

  4. Groundwater head controls nitrate export from an agricultural lowland catchment

    NASA Astrophysics Data System (ADS)

    Musolff, Andreas; Schmidt, Christian; Rode, Michael; Lischeid, Gunnar; Weise, Stephan M.; Fleckenstein, Jan H.

    2016-10-01

    Solute concentration variability is of fundamental importance for the chemical and ecological state of streams. It is often closely related to discharge variability and can be characterized in terms of a solute export regime. Previous studies, especially in lowland catchments, report that nitrate is often exported with an accretion pattern of increasing concentrations with increasing discharge. Several modeling approaches exist to predict the export regime of solutes from the spatial relationship of discharge generating zones with solute availability in the catchment. For a small agriculturally managed lowland catchment in central Germany, we show that this relationship is controlled by the depth to groundwater table and its temporal dynamics. Principal component analysis of groundwater level time series from wells distributed throughout the catchment allowed derivation of a representative groundwater level time series that explained most of the discharge variability. Groundwater sampling revealed consistently decreasing nitrate concentrations with an increasing thickness of the unsaturated zone. The relationships of depth to groundwater table to discharge and to nitrate concentration were parameterized and integrated to successfully model catchment discharge and nitrate export on the basis of groundwater level variations alone. This study shows that intensive and uniform agricultural land use likely results in a clear and consistent concentration-depth relationship of nitrate, which can be utilized in simple approaches to predict stream nitrate export dynamics at the catchment scale.

  5. [Contribution of Base Flow to Total Nitrogen Loading in Subtropical Agricultural Catchments].

    PubMed

    Ma, Qiu-mei; Li, Wei; Wang, Yi; Liu, Xin-liang; Li, Yong; Wu, Jin-shui

    2016-04-15

    With the fast development of economics and improvement of people's living standard, non-point source pollution of the agricultural catchments in subtropical China has become more and more severe, where water quality deterioration has become a main barrier for sustainable development and ecological restoration. The process of ecohydrology in catchment is greatly influenced by the process of base flow in channel. This study selected the Tuojia and Jianshan catchments located in Changsha County, Hunan Province, to quantify and compare the contribution of base flow to total nitrogen (TN) loading from January 2011 to December 2013, through field observation and model estimation. The results suggested that the Tuojia catchment with higher intensity of rice agriculture had the greater volume of base flow, higher average flow-weighted TN concentration in base flow, and greater monthly TN loading via base flow [15.2 mm · month⁻¹, 4.14 mg · L⁻¹ and 0.54 kg · (hm² · month)⁻¹, respectively] than those in the Jianshan catchment with lower intensity [11.4 mm · month⁻¹, 1.72 mg · L⁻¹ and 0.20 kg · (hm² · month)⁻¹, respectively]. The base flow contribution to TN loading showed an apparently seasonal pattern. During rice-growing seasons, the contributions of base flow to TN loading were 23.2% and 18.6% in the Tuojia and Jianshan catchments, respectively, lower than those in the fallow seasons (46.9% and 40.0% correspondingly. These results suggested that rice agriculture increased the contribution of base flow in the fallow season to TN loading. Therefore, to alleviate the suffering of non-point source pollution in the rice agriculture catchments, reasonable management measure of rice fields should be implemented to decrease contrihution of base flow to TN loading. PMID:27548958

  6. Nitrogen attenuation along delivery pathways in agricultural catchments

    NASA Astrophysics Data System (ADS)

    McAleer, Eoin; Mellander, Per-Erik; Coxon, Catherine; Richards, Karl G.

    2014-05-01

    Hillslope hydrologic systems and in particular near-stream saturated zones are active sites of nitrogen (N) biogeochemical dynamics. The efficiency of N removal and the ratio of reaction products (nitrous oxide and dinitrogen) in groundwater is highly variable and depends upon aquifer hydrology, mineralogy, dissolved oxygen, energy sources and redox chemistry. There are large uncertainties in the closing of N budgets in agricultural catchments. Spatial and temporal variability in groundwater physico-chemistry, catchment hydrology and land-use gives rise to hotspots and hot moments of N attenuation. In addition the production, consumption and movement of denitrification products remains poorly understood. The focus of this study is to develop a holistic understanding of N dynamics in groundwater as it moves from the top of the hillslope to the stream. This includes saturated groundwater flow, exchange at the groundwater-surface water interface and hyporheic zone flow. This project is being undertaken in two ca. 10km2 Irish catchments, characterised by permeable soils. One catchment is dominated by arable land overlying slate bedrock and the other by grassland overlying sandstone. Multi-level monitoring wells have been installed at the upslope, midslope and bottom of each hillslope. The piezometers are screened to intercept the subsoil, weathered bedrock and competent bedrock zones. Groundwater samples for nitrate (NO3-N) nitrite (NO2-N), ammonium (NH4-N) and total nitrogen are collected on a monthly basis while dissolved gas concentrations are collected seasonally. Groundwater NO3-N profiles from monitoring data to date in both catchments differ markedly. Although the two catchments had similar 3 year mean concentrations of 6.89 mg/L (arable) and 6.24 mg/L (grassland), the grassland catchment had higher spatial and temporal variation. The arable catchment showed relatively homogenous NO3-N concentrations in all layers and zones (range: 1.2 - 12.13 mg/L, SD = 1.60 mg

  7. Baseline Q-values for streams in intensive agricultural catchments in Ireland

    NASA Astrophysics Data System (ADS)

    Melland, Alice; Jordan, Phil; Wall, David; Mellander, Per-Erik; Mechan, Sarah; Shortle, Ger

    2010-05-01

    The effectiveness of regulations introduced in Ireland in 2006 in response to the European Union Nitrates Directives for minimising nutrient loss to waterways from farms is being studied by Teagasc, the Irish Agriculture and Food Development Authority as part of an Agricultural Catchments Programme from 2008 - 2011. The regulations in Ireland require that during winter, green cover is established and maintained on arable farms, manure is stored and not spread, ploughing is not conducted and that chemical fertiliser is not spread. The regulations also require buffer zones between fields and water courses when applying organic or chemical fertilisers and that nutrient application rates and timing match crop requirements. An upper limit for livestock manure loading of 170 kg ha-1 organic N each year is also set. The biophysical research component of the Agricultural Catchments Programme is focussed on quantifying nutrient source availability, surface and subsurface transport pathways and stream chemical water quality. A baseline description of stream ecological quality was also sought. Stream ecology was measured in autumn 2009 at 3-5 locations within four surface water catchments and at the spring emergence of a catchment underlain by karst limestone. Landuse in each catchment is dominated by medium to high intensity grassland or cereal farming and annual average rainfall ranges from 900 - 1200 mm. Surveys were conducted in 1st to 3rd order streams throughout each catchment at locations which had minimal observed point source inputs for 100m upstream, incomplete shade, a hard streambed substrate and riffle conditions suitable for the sampling methods. Benthic macroinvertebrates were identified and quantified and used to calculate the biological indices Small Stream Risk Score, Q-value, Biological Monitoring Working Party (BMWP), Average Score Per Taxa (ASPT) and EQR (Observed Q-value/Reference Q-value). Diatom community assemblages were identified from samples

  8. Tracing crop-specific sediment sources in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Blake, William H.; Ficken, Katherine J.; Taylor, Philip; Russell, Mark A.; Walling, Desmond E.

    2012-02-01

    A Compound Specific Stable Isotope (CSSI) sediment tracing approach is evaluated for the first time in an agricultural catchment setting against established geochemical fingerprinting techniques. The work demonstrates that novel CSSI techniques have the potential to provide important support for soil resource management policies and inform sediment risk assessment for the protection of aquatic habitats and water resources. Analysis of soil material from a range of crop covers in a mixed land-use agricultural catchment shows that the carbon CSSI signatures of particle-reactive fatty acids label surface agricultural soil with distinct crop-specific signatures, thus permitting sediment eroded from each land-cover to be tracked downstream. High resolution sediment sampling during a storm event and analysis for CSSI and conventional geochemical fingerprints elucidated temporal patterns of sediment mobilisation under different crop regimes and the specific contribution that each crop type makes to downstream sediment load. Pasture sources (65% of the catchment area) dominated the sediment load but areal yield (0.13 ± 0.02 t ha - 1 ) was considerably less than that for winter wheat (0.44 ± 0.15 t ha - 1 ). While temporal patterns in crop response matched runoff and erosion response predictions based on plot-scale rainfall simulation experiments, comparison of biomarker and geochemical fingerprinting data indicated that the latter overestimated cultivated land inputs to catchment sediment yield due to inability to discriminate temporary pasture (in rotation) from cultivated land. This discrepancy, however, presents an opportunity since combination of the two datasets revealed the extremely localised nature of erosion from permanent pasture fields in this system (estimated at up to 0.5 t ha - 1 ). The novel use of CSSI and geochemical tracers in tandem provided unique insights into sediment source dynamics that could not have been derived from each method alone. Research

  9. Identification of phosphorus emission hotspots in agricultural catchments

    PubMed Central

    Kovacs, Adam; Honti, Mark; Zessner, Matthias; Eder, Alexander; Clement, Adrienne; Blöschl, Günter

    2012-01-01

    An enhanced transport-based management approach is presented, which is able to support cost-effective water quality management with respect to diffuse phosphorus pollution. Suspended solids and particulate phosphorus emissions and their transport were modeled in two hilly agricultural watersheds (Wulka River in Austria and Zala River in Hungary) with an improved version of the catchment-scale PhosFate model. Source and transmission areas were ranked by an optimization method in order to provide a priority list of the areas of economically efficient (optimal) management alternatives. The model was calibrated and validated at different gauges and for various years. The spatial distribution of the emissions shows that approximately one third of the catchment area is responsible for the majority of the emissions. However, only a few percent of the source areas can transport fluxes to the catchment outlet. These effective source areas, together with the main transmission areas are potential candidates for improved management practices. In accordance with the critical area concept, it was shown that intervention with better management practices on a properly selected small proportion of the total area (1–3%) is sufficient to reach a remarkable improvement in water quality. If soil nutrient management is also considered in addition to water quality, intervention on 4–12% of the catchment areas can fulfill both aspects. PMID:22771465

  10. Soft Water Level Sensors for Characterizing the Hydrological Behaviour of Agricultural Catchments

    PubMed Central

    Crabit, Armand; Colin, François; Bailly, Jean Stéphane; Ayroles, Hervé; Garnier, François

    2011-01-01

    An innovative soft water level sensor is proposed to characterize the hydrological behaviour of agricultural catchments by measuring rainfall and stream flows. This sensor works as a capacitor coupled with a capacitance to frequency converter and measures water level at an adjustable time step acquisition. It was designed to be handy, minimally invasive and optimized in terms of energy consumption and low-cost fabrication so as to multiply its use on several catchments under natural conditions. It was used as a stage recorder to measure water level dynamics in a channel during a runoff event and as a rain gauge to measure rainfall amount and intensity. Based on the Manning equation, a method allowed estimation of water discharge with a given uncertainty and hence runoff volume at an event or annual scale. The sensor was tested under controlled conditions in the laboratory and under real conditions in the field. Comparisons of the sensor to reference devices (tipping bucket rain gauge, hydrostatic pressure transmitter limnimeter, Venturi channels…) showed accurate results: rainfall intensities and dynamic responses were accurately reproduced and discharges were estimated with an uncertainty usually acceptable in hydrology. Hence, it was used to monitor eleven small agricultural catchments located in the Mediterranean region. Both catchment reactivity and water budget have been calculated. Dynamic response of the catchments has been studied at the event scale through the rising time determination and at the annual scale by calculating the frequency of occurrence of runoff events. It provided significant insight into catchment hydrological behaviour which could be useful for agricultural management perspectives involving pollutant transport, flooding event and global water balance. PMID:22163868

  11. Soft water level sensors for characterizing the hydrological behaviour of agricultural catchments.

    PubMed

    Crabit, Armand; Colin, François; Bailly, Jean Stéphane; Ayroles, Hervé; Garnier, François

    2011-01-01

    An innovative soft water level sensor is proposed to characterize the hydrological behaviour of agricultural catchments by measuring rainfall and stream flows. This sensor works as a capacitor coupled with a capacitance to frequency converter and measures water level at an adjustable time step acquisition. It was designed to be handy, minimally invasive and optimized in terms of energy consumption and low-cost fabrication so as to multiply its use on several catchments under natural conditions. It was used as a stage recorder to measure water level dynamics in a channel during a runoff event and as a rain gauge to measure rainfall amount and intensity. Based on the Manning equation, a method allowed estimation of water discharge with a given uncertainty and hence runoff volume at an event or annual scale. The sensor was tested under controlled conditions in the laboratory and under real conditions in the field. Comparisons of the sensor to reference devices (tipping bucket rain gauge, hydrostatic pressure transmitter limnimeter, Venturi channels…) showed accurate results: rainfall intensities and dynamic responses were accurately reproduced and discharges were estimated with an uncertainty usually acceptable in hydrology. Hence, it was used to monitor eleven small agricultural catchments located in the Mediterranean region. Both catchment reactivity and water budget have been calculated. Dynamic response of the catchments has been studied at the event scale through the rising time determination and at the annual scale by calculating the frequency of occurrence of runoff events. It provided significant insight into catchment hydrological behaviour which could be useful for agricultural management perspectives involving pollutant transport, flooding event and global water balance.

  12. Influence of teleconnection on water quality in agricultural river catchments

    NASA Astrophysics Data System (ADS)

    Mellander, Per-Erik; Jordan, Phil; Shore, Mairead; McDonald, Noeleen; Shortle, Ger

    2015-04-01

    Influences such as weather, flow controls and lag time play an important role in the processes influencing the water quality of agricultural catchments. In particular weather signals need to be clearly considered when interpreting the effectiveness of current measures for reducing nitrogen (N) and phosphorus (P) losses from agricultural sources to water bodies. In north-western Europe weather patterns and trends are influenced by large-scale systems such as the North Atlantic Oscillation (NAO) and the position of the Gulf Stream, the latter expressed as the Gulf Stream North Wall index (GSNW index). Here we present five years of monthly data of nitrate-N concentration in stream water and groundwater (aggregated from sub-hourly monitoring in the stream outlet and monthly sampling in multilevel monitoring wells) from four agricultural catchments (ca. 10 km2) together with monitored weather parameters, long-term weather data and the GSNW index. The catchments are situated in Ireland on the Atlantic seaboard and are susceptible to sudden and seasonal shifts in oceanic climate patterns. Rain anomalies and soil moisture deficit dynamics were similar to the dynamics of the GSNW index. There were monitored changes in nitrate-N concentration in both groundwater and surface water with no apparent connection to agricultural management; instead such changes also appeared to follow the GSNW index. For example, in catchments with poorly drained soils and a 'flashy hydrology' there were seasonal dynamics in nitrate-N concentration that correlated with the seasonal dynamics of the GSNW index. In a groundwater driven catchment there was a consistent increase in nitrate-N concentration over the monitored period which may be the result of increasingly more recharge in summer and autumn (as indicated by more flux in the GSNW index). The results highlight that the position of the Gulf Stream may influence the nitrate-N concentration in groundwater and stream water and there is a risk

  13. Estimation of groundwater contribution in runoff from small agricultural dominated catchments

    NASA Astrophysics Data System (ADS)

    Deelstra, Johannes; Jansons, Viesturs; Lagzdiņš, Ainis

    2013-04-01

    Latvia. Each set consisted of a field providing both surface and subsurface runoff located within the catchment. Different filters were tested but the one developed by Chapman & Maxwell (1996) was selected. An improved filter parameter value was obtained, resulting in more realistic values for BFI in Norwegian catchments, being in the order of 10%. The values for the Latvian catchments were slightly higher, the main reason for this being soil types and geological settings. The results indicate that care should be taken in selecting the digital filter value for catchments having flashy runoff behaviour. This might lead to wrong estimates of baseflow contribution which can have negative effects on modelling hydrology, pollutant transport and the selection of mitigation measures at the scale of small agricultural catchments. References Chapman, T.G., Maxwell, A.I . 1996. Baseflow separation - comparison of numerical methods with tracer experiments. Institute Engineers Australia National Conference. Publ. 96/05, 539-545 Deelstra, J., Eggestad, H.O., Iital, A., Jansons, V. and Barkved, L.J. (2010), "Time resolution and hydrological characteristics in agricultural catchments", in Hermann, A. and Schumann, S. (Eds), Status and Perspectives of Hydrology in Small Basins, Vol. 336, IAHS Publication, pp. 138 - 143.

  14. Transport and attenuation of chloroacetanilides in an agricultural headwater catchment

    NASA Astrophysics Data System (ADS)

    Lefrancq, Marie; Imfeld, Gwenaël; Millet, Maurice; Payraudeau, Sylvain

    2015-04-01

    Chloroacetanilides (e.g., S-metolachlor and acetochlor) are pre-emergent herbicides used on corn and sugar beet and are applied to bare soil, which is prone to runoff and erosion. Some of these herbicides are chiral and the commercial products can be isomerically enriched in the enantiomer-S compared to the enantiomer-R as an example S-metolachlor 80/20% S to R . Determination of the transport of these herbicides in the dissolved and particulate phases of runoff water and degradation in agricultural catchments is currently lacking. The objectives of this study were i) to quantify over an corn growing season the export of chloroacetanilides and their main degradation products (ethane sulfonic (ESA) and oxanilic acid (OXA) degradates of metolachlor (MESA and MOXA) and acetochlor (AcESA and AcOXA)) in an 47 ha agricultural head-catchment in the dissolved and particulate phases, and ii) to evaluate S-metolachlor biodegradation from its application on the field to its export from the catchment using enantiomer analysis. Runoff, erosion, hydrochemistry and chloroacetanilide transport were evaluated at both the plot and catchment scales. Our results showed that an important amount of the pesticide load is missed when only the dissolved concentration of the parent compound is analysed. The total export coefficients for S-metolachlor and acetochlor and their degradation products were 11.4 and 11.8%, respectively, which includes both the dissolved and particulate loads. The partitioning of S-metolachlor and acetochlor between the dissolved and particulate phases varied widely over time and was linked to the suspended solid concentrations. Detection of S-metolachlor degradation products in runoff water was more frequent compared to that of acetochlor degradation products. Enrichment up to 37% of R-metolachlor was observed during the corn growing season, supporting enantioselective degradation of S-metolachlor. Our field study indicates the potential of enantiomer analyses for

  15. Runoff production in a small agricultural catchment in Lao PDR : influence of slope, land-use and observation scale.

    NASA Astrophysics Data System (ADS)

    Patin, J.; Ribolzi, O.; Mugler, C.; Valentin, C.; Mouche, E.

    2009-04-01

    We study the surface and sub-surface hydrology of a small agricultural catchment (60ha) located in the Luang Prabang province of Lao PDR. This catchment is representative of the rural mountainous south east Asia. It exhibits steep slopes (up to 100% and more) under a monsoon climate. After years of traditional slash and burn cultures, it is now under high land pressures due to population resettling and environment preservation policies. This evolution leads to rapid land-use changes such as shifting cultivation reduction or growing of teak forest instead of classical crops. This catchment is a benchmark site of the Managing Soil Erosion Consortium since 1998. The international consortium aims to understand the effects of agricultural changes on the catchment hydrology and soil erosion in south east Asia. The Huay Pano catchment is subdivided into small sub-catchments that are gauged and monitored. Differ- ent agricultural practices where tested along the years. At a smaller scale, plot of 1m2 are instrumented to follow runoff and detachment of soil under natural rainfall along the monsoon season. Our modeling work aims to develop a distributed hydrological model integrating experimental data at the different scales. One of the objective is to understand the impact of land-use, soil properties (slope, crust, etc) and rainfall (dry and wet seasons) on surface and subsurface flows. We present here modeling results of the runoff plot experiments (1m2 scale) performed from 2002 to 2007. The plots distribution among the catchment and over the years gives a good representativity of the different runoff responses. The role of crust, slope and land-use on runoff is examined. Finally we discuss how this plot scale will be integrated in a sub-catchment model, with a particular attention on the observed paradox: how to explain that runoff coefficients at the catchment scale are much slower than at the plot scale ?

  16. Overland flow and sediment transport in an agricultural lowland catchments: a focus on tile drain export

    NASA Astrophysics Data System (ADS)

    Vandromme, Rosalie; Grangeon, Thomas; Cerdan, Olivier; Manière, Louis; Salvador Blanes, Sébastien; Foucher, Anthony; Chapalain, Marion; Evrard, Olivier; Le Gall, Marion

    2016-04-01

    Rural landscapes have been extensively modified by human activities in Western Europe since the beginning of the 20th century in order to intensify agricultural production. Cultivated areas often expanded at the expense of grassland and wetlands located in lowland areas (de Groot et al., 2002). Therefore, large modifications were made to the agricultural landscapes: stream redesign, land consolidation, removal of hedges, and installation of tile drainage networks to drain the hydromorphic soils. These changes modified sediment processes and resulted in large morphological alterations (e.g. channel bed incision, deposition of fine sediment, channel bank erosion). Accordingly, these alterations threaten water quality and prevent to meet the requirements of the European directives. Improving water quality requires a clear understanding of the hydrosedimentary dynamics in these lowland cultivated catchments. However, few studies were conducted in drained environments. To fill this research gap, a pilot study was started in cultivated catchment of the Loire River basin, France, where tile drain densities are very high (> 1.5 km/km²). Six hydro-sedimentary monitoring stations were installed in the Louroux catchment (24 km²). One of them was specifically dedicated to measuring water/sediment fluxes from tile drains. Water level and turbidity were continuously monitored and sediments were sampled during floods and low stage periods. Samples were measured for particle size distribution, and sediment tracing studies are currently being developed to quantify the contribution of potential sources (e.g. surface vs subsurface, lithologies) to river sediment. Hydro-sedimentary fluxes were quantified and modelled for some selected events. The catchment hydrosedimentary fluxes and their properties were shown to be impacted by tile drain sediment transport, especially regarding particle size distribution, with the dominant export of very fine particles (< 2 μm) from tile drains

  17. Hydrological controls on nutrient concentrations and fluxes in agricultural catchments.

    PubMed

    Petry, J; Soulsby, C; Malcolm, I A; Youngson, A E

    2002-07-22

    Like many streams draining intensively farmed parts of lowland Scotland, water quality in the Newmills burn, Aberdeenshire, is characterized by relatively high nutrient levels; mean concentrations of NO3-N and NH3-N are 6.09 mg l(-1) and 0.28 mg l(-1), respectively, whilst average PO4-P concentrations reach 0.06 mg l(-1). Nutrient concentrations vary spatially and temporally with levels being highest under arable farming during the autumn and winter. Annual fluxes from the 14.5 km2 catchment are estimated at 25.67 and 1.26 kg ha(-1) a(-1) for NO3-N and NH3-N, respectively, and 0.26 kg ha(-1) a(-1) for PO4-P. Hydrological controls exert a strong influence on both nutrient concentrations and fluxes. Over short timescales nutrient concentrations and fluxes are greatest during storm events when P04-P and NH3-N are mobilized by overland flow in riparian areas, particularly where the soils have been compacted by livestock or farm machinery. Delivery of deeper soil water in subsurface storm flow, facilitated by agricultural under-drainage, provide large contributions of NO3-N on the recession limb of hydrological events. In contrast, groundwater inputs generally have lower NO3 concentrations implying that denitrification may be a pathway of N loss in the saturated zone. Approximately 75% of the N loss for the catchment occurs during the autumn and early winter when high flows dominate the hydrological regime. The close coupling of hydrological pathways and biogeochemical processes has major implications for catchment management strategies such as Nitrate Vulnerable Zones (NVZs) as it is likely that significant groundwater stores with long residence times will continue to cause N losses before water quality improvements become apparent.

  18. Chasing storms in an agricultural catchment: the stream DOM story

    NASA Astrophysics Data System (ADS)

    Hernes, P. J.; Spencer, R. G.; Pellerin, B. A.; Downing, B. D.; Saraceno, J.; Dyda, R. Y.; Bergamaschi, B. A.

    2011-12-01

    Storm events are notorious for mobilizing large amounts of dissolved and particulate substances in streams and rivers. Conversion of natural landscapes to agricultural land-use can significantly amplify this effect. We investigated the impacts of two storm events on stream dissolved organic matter (DOM) in 2008 in Willow Slough, a California/Sacramento Valley agricultural catchment. The tools utilized included carbon stable isotopes, fluorescence, ultraviolet-visible absorbance, lignin, disinfection byproduct formation potential, and biodegradation experiments. Dissolved organic carbon (DOC) concentrations at the mouth at peak discharge during the storms ranged from 9-10 mg/L compared to baseline conditions of 2-4 mg/L. Other storm effects included increased dissolved organic nitrogen, depleted carbon stable isotopes, increased humic fluorescence intensity, increased specific UV absorbance (SUVA), decreased spectral slopes, increased bioavailability, and increased carbon-normalized yields of lignin. Increased frequency and intensity of storms due to climate change are likely to have a non-linear effect on riverine exports and water quality, with subsequent impacts on carbon loading, mercury transport, and drinking water quality.

  19. Variation of IUH shapes with size of rainfall-runoff events in a small agricultural catchment

    NASA Astrophysics Data System (ADS)

    Banasik, Kazimierz; Hejduk, Leszek; Banasik, Jerzy

    2013-04-01

    Instantaneous unit hydrograph (IUH) is one of the key components in many procedures for design flood estimation. The IUH defined by gamma pdf, called also Nash model, has been estimated for each of the over 30 recorded rainfall-runoff events, in a small (A=82.4 km2), lowland, agricultural catchment located in central Poland, in the period 1980-2010 (Banasik et al., 2011). Variability of the IUH characteristics (such as lag time, time to peak, maximum ordinate) vs. rainfall-runoff parameters (such as peak discharge and runoff depth) will be presented. A larger variability of the IUH characteristics for smaller events was noted. Two methods for estimating, empirically based, representative IUH, for the catchment and for the design flood estimation, are presented. The first one is based on mean values of time to peak and peak ordinate of all individual IUHs, and the other one is taking into account only the largest events when the lag time has tendency to decrease with runoff depth increasing. The empirically estimated representative IUHs are compared with unit hydrograph of FSSR and ReFH (Kjeldsen 2007). Results of single event model application, with the IUH incorporated in it, are compared with results of FFA for this catchment. Banasik K., Hejduk L. and Oygarden L., 2011. Prediction and reduction of diffuse pollution, solid emission and extreme flows from rural areas - case study of small agricultural catchments. Warsaw University of Life Sciences Press, Warsaw. Kjeldsen T.R., 2007. Flood Estimation Handbook, Supplementary Report No. 1. The revitalized FSR/FEH rainfall-runoff method. Centre for Ecology & Hydrology, Wallingford, UK. ACKNOWLEDGMENTS The investigation described in the paper is part of the research project KORANET founded by PL-National Center for Research and Development.

  20. Critical source times for nutrient loss in agricultural catchment streams

    NASA Astrophysics Data System (ADS)

    Melland, Alice; Shore, Mairead; Mellander, Per-Erik; McDonald, Noeleen; Shortle, Ger; Murphy, Paul; Jordan, Phil

    2014-05-01

    Identifying periods of the year when there is a high risk of incidental nutrient loss from farms via runoff to streams underpins current nutrient management legislation in Europe. This research explored high-temporal resolution nutrient transfer patterns relative to the time that manure and fertiliser are prohibited from being spread (the mandatory spreading 'closed' period) in five Irish agricultural catchments. Catchment nutrient losses during the 12 week closed periods in 2009-10, 2010-11 and 2011-12 were compared with losses during the remainder of the year, and with losses in the two week 'shoulder' periods immediately before and after the closed period. The closed period losses were assumed to be residual from soil nutrient stores and the 'shoulder' periods were considered to also include incidental losses. Nutrient loss was measured at sub-hourly frequency as total phosphorus (P) and total oxidised nitrogen (mostly nitrate-N) fluxes in streamflow. The streamflow fluxes showed that the proportion of the annual nitrate-N loss occurring during the closed periods (33-61%) was high compared with the remainder of the year. Six to ten times more nitrate-N loss occurred in the two weeks after, compared with the two weeks before, the closed period. These two week 'shoulder' period losses were, on average, less than or equal to 2.5 kg nitrate-N/ha and 9% of total annual nitrate-N loss in streamflow. On average, 40-53% of the annual P loss occurred during the closed periods but in a runoff-prone catchment in a year with a wet summer, the closed period was the less risky period. Similar to nitrate-N, two to twenty times more P loss occurred in the two weeks after, compared with the two weeks before, the closed period. These shoulder period losses were, on average, less than or equal to 0.027 kg/ha and 4.2% of total annual P loss in streamflow. The proportion of the shoulder period loss that could be attributed to recently spread nutrients was not known but can be

  1. Evaluation of nitrate removal in buffer zone supply by water from agricultural drained catchment

    NASA Astrophysics Data System (ADS)

    Fesneau, Corinne; Tournebize, Julien; Chaumont, Cedric; Guenne, Angeline

    2010-05-01

    The European Directive 2000/60/CE states objectives of a good ecological and chemical status from water body until 2015. The Cemagref project focuses on the constructed wetlands (CW) which can be used as buffer zones to lower the impact of agricultural practices on hydrosystems and decrease or even stop the transfer of contaminants via the surface waters. The experiments are carried out on a drained area where the runoff is limited and waters from the soil profile are concentrated at the drain pipes outlet. The constructed wetland studied is located at Aulnoy (77) at 70 km north-east of Paris, within the Orgeval catchment (France). Our aim is to assess the efficiency of constructed wetlands on the removal of agricultural nitrates. We are also interested in the hydrological balance of CW and agricultural catchment. The buffer zone is connected to a drained agricultural catchment of 35 hectares. The crops in the agricultural plots mainly consist in cereals (corn, maize), vegetables (horse bean, pea), sugar beet and rape. Nitrogen fertilizers are applied following normal agricultural practices. The site is monitored since 2005 for discharge and nitrate concentration in order to infer water and nitrate budgets. The buffer zone includes a pond (860m2) and a reservoir (3305 m2). The storage volume is estimated to 8000m3 which corresponds to about 10% of drainage runoff. Our study reveals potential nitrate removal because a decrease of nitrate average contents has been documented between inlet and outlet CW over a measurement period of 4 years. Average values of 57 mg/l, 40 mg/l and 27 mg/l are respectively measured at the main drain, in the pond mean and in the reservoir; that is a reduction close to 50% of nitrate fluxes. The semi-potential denitrification experiments confirm the denitrification capacity of buffer zone sediments. This constructed wetland allows the treatment of waters from agricultural drainage and provides results in line with the expectations of "good

  2. Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments

    NASA Astrophysics Data System (ADS)

    Thomas, Z.; Abbott, B. W.; Troccaz, O.; Baudry, J.; Pinay, G.

    2015-09-01

    Direct and indirect effects from agriculture, urbanization, and resource extraction have dramatically increased nutrient loading to aquatic inland and estuarine ecosystems. The capacity of a watershed to remove or retain nutrients is a function of biotic and abiotic conditions across the terrestrial-aquatic gradient including soil, groundwater, riparian zone, and surface water. The goal of this study was to identify proximate and ultimate controls on dissolved organic carbon and nutrient dynamics in small agricultural catchments. We analysed a five-year, high frequency water chemistry dataset from 3 catchments ranging from 2.3 to 10.8 km2 in northwestern France. Catchments differed in the relationship between hydrology and solute concentrations, associated with catchment characteristics such as hedgerow density, agricultural activity, and geology. The catchment with thicker soil and higher surface roughness appeared to have greater transient storage and residence time, buffering the catchment to fluctuations in water chemistry, reflected in relatively invariant carbon and nutrient chemistry across hydrologic conditions. Conversely, the catchments with smoother, thinner soils responded to both intra- and inter-annual hydrologic variation with high concentrations of PO43- and NH4+ during low flow conditions and strong increases in DOC, sediment, and particulate organic matter during high flows. Despite contrasting agricultural activity between catchments, the physical context (geology, topography, and land use) appeared to be the most important determinant of catchment solute dynamics based on principle components analysis. The influence of geology and accompanying topographic and geomorphological factors on elemental fluxes is both direct and indirect because the distribution of agricultural activity in these catchments is largely a consequence of the geologic and topographic context. This link between inherent catchment buffering capacity and probability of human

  3. Modelling the Impact of Land Use Change on Water Quality in Agricultural Catchments

    NASA Astrophysics Data System (ADS)

    Johnes, P. J.; Heathwaite, A. L.

    1997-03-01

    Export coefficient modelling was used to model the impact of agriculture on nitrogen and phosphorus loading on the surface waters of two contrasting agricultural catchments. The model was originally developed for the Windrush catchment where the highly reactive Jurassic limestone aquifer underlying the catchment is well connected to the surface drainage network, allowing the system to be modelled using uniform export coefficients for each nutrient source in the catchment, regardless of proximity to the surface drainage network. In the Slapton catchment, the hydrological pathways are dominated by surface and lateral shallow subsurface flow, requiring modification of the export coefficient model to incorporate a distance-decay component in the export coefficients. The modified model was calibrated against observed total nitrogen and total phosphorus loads delivered to Slapton Ley from inflowing streams in its catchment. Sensitivity analysis was conducted to isolate the key controls on nutrient export in the modified model. The model was validated against long-term records of water quality, and was found to be accurate in its predictions and sensitive to both temporal and spatial changes in agricultural practice in the catchment. The model was then used to forecast the potential reduction in nutrient loading on Slapton Ley associated with a range of catchment management strategies. The best practicable environmental option (BPEO) was found to be spatial redistribution of high nutrient export risk sources to areas of the catchment with the greatest intrinsic nutrient retention capacity.

  4. Nitrogen loadings and environmental impacts in rice agriculture catchments in subtropical central China

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2015-12-01

    The severe deterioration of water quality in rice agriculture catchments challenges ecologists and hydrologists in exploring how rice agriculture affects nutrient loadings and water quality. This research observed the nitrogen (N) concentrations in stream water and groundwater in one forest and five rice agriculture catchments in subtropical central China to quantify the relationships between rice agriculture intensification, water quality of water bodies, and catchment N loadings. Our results indicate that intensive rice agriculture deteriorated stream water quality. A non-linear fitting analysis using a Boltzmann sigmoid function suggests that the concentrations and mass fluxes of ammonium-N (NH4+-N), nitrate-N (NO3--N), and total N (TN) in stream water increase with the areal proportion of rice agriculture in the catchments; however, these increases can only be detected when the areal proportions of rice agriculture in the catchments are greater than 13-30%, highlighting the importance of reasonable land use planning for managing stream water quality as well as N loadings from catchments. The factorial correspondence analysis (FCA) also suggests that rice agriculture has a potential to impose groundwater NH4+-N pollution, particularly in the soil exhausting season of July - October. And, the great N fertilizer application rates for rice cropping can increase the groundwater NO3-N and TN concentrations due to large quantities of N leaching into groundwater system beneath the paddy fields. The high N concentrations in groundwater result in strong N loadings via the base flow process. The NO3--N loadings via the base flow reaches 0.12-0.27 kg N ha-1 month-1 in the rice agriculture catchments, contributing 27.3%-36.5% of the total NO3--N loadings by the stream discharge. Therefore, the best management practices for N reduction and the smart land use planning should be applied in the rice agriculture catchments to improve water quality and mitigate N loadings.

  5. Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments

    NASA Astrophysics Data System (ADS)

    Thomas, Zahra; Abbott, Benjamin W.; Troccaz, Olivier; Baudry, Jacques; Pinay, Gilles

    2016-03-01

    Direct and indirect effects from human activity have dramatically increased nutrient loading to aquatic inland and estuarine ecosystems. Despite an abundance of studies investigating the impact of agricultural activity on water quality, our understanding of what determines the capacity of a watershed to remove or retain nutrients remains limited. The goal of this study was to identify proximate and ultimate controls on dissolved organic carbon and nutrient dynamics in small agricultural catchments by investigating the relationship between catchment characteristics, stream discharge, and water chemistry. We analyzed a 5-year, high-frequency water chemistry data set from three catchments in western France ranging from 2.3 to 10.8 km2. The relationship between hydrology and solute concentrations differed between the three catchments and was associated with hedgerow density, agricultural activity, and geology. The catchment with thicker soil and higher surface roughness had relatively invariant carbon and nutrient chemistry across hydrologic conditions, indicating high resilience to human disturbance. Conversely, the catchments with smoother, thinner soils responded to both intra- and interannual hydrologic variation with high concentrations of phosphate (PO43-) and ammonium (NH4+) in streams during low flow conditions and strong increases in dissolved organic carbon (DOC), sediment, and particulate organic matter during high flows. Despite contrasting agricultural activity between catchments, the physical context (geology, topography, and land-use configuration) appeared to be the most important determinant of catchment solute dynamics based on principle components analysis. The influence of geology and accompanying topographic and geomorphological factors on water quality was both direct and indirect because the distribution of agricultural activity in these catchments is largely a consequence of the geologic and topographic context. This link between inherent

  6. Response of current phosphorus mitigation measures across the nutrient transfer continuum in two hydrological contrasting agricultural catchments

    NASA Astrophysics Data System (ADS)

    McDonald, Noeleen; Shore, Mairead; Mellander, Per-Erik; Shortle, Ger; Jordan, Phil

    2015-04-01

    Effective assessment of National Action Programme (NAP) measures introduced under the EU Nitrates Directive (ND), to manage nutrient use and risk of loss to waters from agriculture, is best achieved when examined across the nutrient transfer continuum at catchment scale. The Irish NAP measures are implemented on a whole-territory basis for both nitrogen (N) and phosphorus (P), with P being the key trophic pressure. The aim of this research was to observe the efficacy of P regulation measures and P source management across the transfer continuum and resultant water quality status (i.e. source to impact), in two contrasting agricultural catchments over a four year period. The catchments are ca. 11 km2 and are located in the south-east of Ireland. One is well-drained and arable dominated, while the other is mostly poorly-drained and grassland dominated. In 2009 and 2013 soil surveys for plant-available P were carried out (<2 ha sample areas) in both catchments. Concurrently, high temporal resolution monitoring of water discharge and P concentration was conducted at each catchment outlet across four hydrological years (April to March). Ecological impact surveys were carried out at four sites within each catchment in May and September across the observed four year period (2009-2013). Importantly, the proportion of farmland with excessive soil P concentrations decreased in both the arable (20% to 11.8%) and grassland catchments (5.9 to 3.6%). However, soil P concentrations also declined critically in both catchments, as proportional areas below the national crop agronomic optimum thresholds (grassland; <5 mg P l-1, arable; <6 mg P l-1) increased from 57% to 68% in the arable catchment and 75% to 87% in the grassland catchment. This decline in plant available P strongly indicates a reduced or sustained level of P inputs in both catchments. Indications of responses to soil P change in the surface waters of these catchments appeared to be highly influenced by their

  7. Nutrient cycles in agricultural systems at sub-catchment scale within the UK and China

    NASA Astrophysics Data System (ADS)

    Bellarby, Jessica; Surridge, Ben; Haygarth, Philip M.; Lai, Xin; Zhang, Guilong; Song, Xiaolong; Zhou, Jianbin; Meng, Fanqiao; Shen, Jianbo; Rahn, Clive; Smith, Laurence; Burke, Sean

    2015-04-01

    Diffuse water pollution from agriculture (DWPA) represents a significant challenge in both the UK and China. The UK has developed policies and practices which seek to mitigate DWPA, yet the risks and adverse impacts of DWPA remain widespread. In contrast, China's past priorities have largely focussed on food security, with an emphasis on increasing food production through high fertiliser application rates with little attention being paid to enhanced nutrient export from land to water and to air. This has contributed to severe environmental problems which are only now beginning to be recognised and addressed. We have prepared nutrient balances (phosphorus and nitrogen) in contrasting agricultural production systems at sub-catchment scale within China and the UK. These draw from a variety of sources ranging from general yearly statistics collected by the respective government to farm surveys. Our aim is to use the resulting nutrient balances to underpin the sharing of knowledge and innovation to mitigate DWPA in both nations. In the UK, the case studies focus on the three Demonstration Test Catchment locations, covering a range of livestock and arable production systems across England. Here, the high frequency monitoring of phosphorus river loads enables the cross-validation of the simple nutrient budget approaches applied in this study. In China, our case studies span kiwi orchard, fruit and vegetable solar greenhouse systems, double cropped rice-wheat and wheat-maize production systems. Substantial differences in nutrient stocks and flows exist between individual production systems both across and within the two countries. These differences will be expressed along the source-mobilisation-delivery-impact continuum that underpins our budgets for both phosphorus and nitrogen. We will present the phosphorus cycles of some case studies and highlight their challenges and relevance at sub-catchment scale. Based on our nutrient budgets, general recommendations can be

  8. Field-based study of connectivity in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Lexartza-Artza, I.; Wainwright, J.

    2009-12-01

    Field-based studies of hydrological connectivity can provide context-specific knowledge that might both help understand dynamic complex systems and contribute to other synthetic or modelling approaches. The importance of such an understanding of catchment processes and also of the knowledge of catchment connections with water bodies and the changes of concentration with scale for Integrated Catchment Management has been increasingly emphasized. To provide a holistic understanding, approaches to the study of connectivity need to include both structural and functional aspects of the system and must consider the processes taking place within and across different temporal and spatial scales. A semi-quantitative nested approach has been used to investigate connectivity and study the interactions and feedbacks between the factors influencing transfer processes in the Ingbirchworth Catchment, in the uplands of the River Don, England. A series of reconnaissance techniques have been combined with monitoring of aspects such as rainfall, runoff, sediment transfer and soil-moisture distribution from plot to catchment scale and with consideration of linkages between land and water bodies. The temporal aspect has also been considered, with a special focus on the temporal distribution of events and the influence of longer term catchment changes such as those in land use and management practices. A variability of responses has been observed in relation to the characteristics of events, land use and scale of observation, with elements traditionally considered as limiting or enhancing connectivity responding differently under changing conditions. Sediment redistribution, reshaping of structure and consequent reinforcing loops can be observed across all land uses and landscape units, but the relevance it terms of effective connectivity of highly connected patches varies as the scale is increased. The knowledge acquired can contribute to recognise emerging processes significant for

  9. Legacies and Trajectories of Hormone Export from Agricultural Catchments Under Natural and Anthropogenic Drivers

    NASA Astrophysics Data System (ADS)

    Gall, H. E.; Mashtare, M. L.; Sassman, S. A.; Rao, P. C.; Thompson, S. E.; Basu, N. B.; Lee, L. S.

    2011-12-01

    of aquatic organisms to hormones at low concentrations and intermittent, short durations of high concentrations closely related to application times and hydrologic variability. These preliminary results also suggest a lag time between the ceasing of animal waste application and subsequent depletion of the accumulated legacy sources, thereby limiting the extent of human control to effectively reduce hormone mass fluxes. These research findings suggest that future research is needed to quantify the extent of legacy hormone sources in agricultural catchments to best determine long-term mitigation strategies and that best management practices that intercept and attenuate hormones at downstream locations are likely to be most effective at reducing hormone loads in the short-term.

  10. Interacting effects of climate and agriculture on fluvial DOM in temperate and subtropical catchments

    NASA Astrophysics Data System (ADS)

    Graeber, D.; Goyenola, G.; Meerhoff, M.; Zwirnmann, E.; Ovesen, N. B.; Glendell, M.; Gelbrecht, J.; Teixeira de Mello, F.; González-Bergonzoni, I.; Jeppesen, E.; Kronvang, B.

    2015-01-01

    Dissolved organic matter (DOM) is an important factor in aquatic ecosystems, which is involved in a large variety of biogeochemical and ecological processes and recent literature suggests that it could be strongly affected by agriculture in different climates. Based on novel monitoring techniques, we investigated the interaction of climate and agriculture effects on DOM quantity and molecular composition. To examine this, we took water samples over two years in two paired intensive and extensive farming catchments in each Denmark (temperate climate) and Uruguay (subtropical climate). We measured dissolved organic carbon (DOC) and nitrogen (DON) concentrations and DOC and DON molecular fractions with size-exclusion chromatography. Moreover, we assessed DOM composition with absorbance and fluorescence measurements, as well as parallel factor analysis (PARAFAC). We also calculated DOC and DON loads based on daily discharge measurements, as well as measured precipitation and air temperature. In the catchments in Uruguay, the fluvial DOM was characterized by higher temporal variability of DOC and DON loads which were clearly related to a higher temporal variability of precipitation and a DOM composition with rather plant-like character relative to the Danish catchments. Moreover, we consistently found a higher temporal variability of DOC an DON loads in the intensive farming catchments than in the extensive farming catchments, with the highest temporal variability in the Uruguayan intensive farming catchment. Moreover, the composition of DOM exported from the intensive farming catchments was always complex and related to microbial processing in both Denmark and Uruguay. This was indicated by low C : N ratios, several spectroscopic DOM composition indexes and the PARAFAC fluorescence components. We propose that the consistent effect of intensive farming on DOM composition and the temporal variability of DOC and DON loads is related to similarities in the management of

  11. Interacting effects of climate and agriculture on fluvial DOM in temperate and subtropical catchments

    NASA Astrophysics Data System (ADS)

    Graeber, D.; Goyenola, G.; Meerhoff, M.; Zwirnmann, E.; Ovesen, N. B.; Glendell, M.; Gelbrecht, J.; Teixeira de Mello, F.; Gonzalez-Bergonzoni, I.; Jeppesen, E.; Kronvang, B.

    2015-05-01

    Dissolved organic matter (DOM) is an important factor in aquatic ecosystems, which is involved in a large variety of biogeochemical and ecological processes, and recent literature suggests that it could be strongly affected by agriculture in different climates. Based on novel monitoring techniques, we investigated the interaction of climate and agriculture effects on DOM quantity and quality. To examine this, we took water samples over 2 years in two paired intensive and extensive farming catchments in each of Denmark (temperate climate) and Uruguay (subtropical climate). We measured dissolved organic carbon (DOC) and nitrogen (DON) concentrations and DOC and DON molecular fractions with size-exclusion chromatography. Moreover, we characterized DOM quality with absorbance and fluorescence measurements, as well as parallel factor analysis (PARAFAC). We also calculated the DOC and DON loads based on daily discharge measurements, as well as measured precipitation and air temperature. The fluvial DOM in the catchments in Uruguay was characterized by higher temporal variability of DOC and DON loads which were clearly to a higher temporal variability of precipitation and a DOM composition with rather plant-like character relative to the Danish catchments. Moreover, we found a consistently higher temporal variability of DOC and DON loads in the intensive farming catchments than in the extensive farming catchments, with highest temporal variability in the Uruguayan intensive farming catchment. Furthermore, the composition of DOM exported from the intensive farming catchments was consistently complex and always related to microbial processing in both Denmark and Uruguay. This was indicated by low C : N ratios, several spectroscopic DOM composition indices and PARAFAC fluorescence components. We propose that the consistent effect of intensive farming on DOM composition and the temporal variability of DOC and DON loads is related to similarities in the management of

  12. The Isolated Estate: An Agricultural Location Game.

    ERIC Educational Resources Information Center

    Cromley, Robert G.

    1980-01-01

    Describes a simulation, "The Isolated Estate," which introduces geography students to the Von Thonen model and game theory. The objective of the game is to make textbook concepts more realistic. Concepts illustrated through the game include agricultural land use, economic rent, competetive bidding, inequities associated with differential incomes,…

  13. Hydrologic control of dissolved organic matter concentration and quality in a semiarid artificially drained agricultural catchment

    NASA Astrophysics Data System (ADS)

    Bellmore, Rebecca A.; Harrison, John A.; Needoba, Joseph A.; Brooks, Erin S.; Kent Keller, C.

    2015-10-01

    Agricultural practices have altered watershed-scale dissolved organic matter (DOM) dynamics, including in-stream concentration, biodegradability, and total catchment export. However, mechanisms responsible for these changes are not clear, and field-scale processes are rarely directly linked to the magnitude and quality of DOM that is transported to surface water. In a small (12 ha) agricultural catchment in eastern Washington State, we tested the hypothesis that hydrologic connectivity in a catchment is the dominant control over the concentration and quality of DOM exported to surface water via artificial subsurface drainage. Concentrations of dissolved organic carbon (DOC) and humic-like components of DOM decreased while the Fluorescence Index and Freshness Index increased with depth through the soil profile. In drain discharge, these characteristics were significantly correlated with drain flow across seasons and years, with drain DOM resembling deep sources during low-flow and shallow sources during high flow, suggesting that DOM from shallow sources bypasses removal processes when hydrologic connectivity in the catchment is greatest. Assuming changes in streamflow projected for the Palouse River (which contains the study catchment) under the A1B climate scenario (rapid growth, dependence on fossil fuel, and renewable energy sources) apply to the study catchment, we project greater interannual variability in annual DOC export in the future, with significant increases in the driest years. This study highlights the variability in DOM inputs from agricultural soil to surface water on daily to interannual time scales, pointing to the need for a more nuanced understanding of agricultural impacts on DOM dynamics in surface water.

  14. Implications of climate change scenarios for agriculture in alpine regions--a case study in the Swiss Rhone catchment.

    PubMed

    Fuhrer, J; Smith, P; Gobiet, A

    2014-09-15

    Coping with climate change in agriculture requires knowledge of trends in agro-climatic conditions with a focus at the smaller scales where decisions are taken. As part of the EU FP7 ACQWA project, the situation was analyzed for agriculture in the case of the Swiss Rhone catchment (Valais) where cultivation of permanent crops (orchards and vineyards) and livestock production are the most important agro-economic activities. The aim of this study was to use daily data from four downscaled and bias corrected transient climate change scenarios to analyze changes in water and temperature related indices over the period 1951-2050 for three locations (Aigle, Sion, Montana) that are representative of different production zones in the catchment. The results indicate that most relevant implications are caused by projected changes in temperature and not in precipitation. They indicate an extension of the thermal growing season with potentially positive effects on pasture and livestock production, most pronounced at the mountain site (Montana), but a trend towards increasing risks of frost in permanent crops and in heat stress for livestock at the valley bottom (Aigle, Sion). The increase in water requirement for irrigation in 2021-2050 relative to 1981-2009 is moderate (4-16%, depending on location). However, in years with low amounts of snow and rain, in small catchments with a nival regime, reduced water supply by rivers could restrict the surface area of grassland that can be irrigated, particularly during springtime. It is concluded that coping with heat-related risks may be most needed at the lower cropland and pasture sites while water-related issues would become more relevant in more elevated locations where pasture-based livestock production is the dominant type of agricultural land use.

  15. Implications of climate change scenarios for agriculture in alpine regions--a case study in the Swiss Rhone catchment.

    PubMed

    Fuhrer, J; Smith, P; Gobiet, A

    2014-09-15

    Coping with climate change in agriculture requires knowledge of trends in agro-climatic conditions with a focus at the smaller scales where decisions are taken. As part of the EU FP7 ACQWA project, the situation was analyzed for agriculture in the case of the Swiss Rhone catchment (Valais) where cultivation of permanent crops (orchards and vineyards) and livestock production are the most important agro-economic activities. The aim of this study was to use daily data from four downscaled and bias corrected transient climate change scenarios to analyze changes in water and temperature related indices over the period 1951-2050 for three locations (Aigle, Sion, Montana) that are representative of different production zones in the catchment. The results indicate that most relevant implications are caused by projected changes in temperature and not in precipitation. They indicate an extension of the thermal growing season with potentially positive effects on pasture and livestock production, most pronounced at the mountain site (Montana), but a trend towards increasing risks of frost in permanent crops and in heat stress for livestock at the valley bottom (Aigle, Sion). The increase in water requirement for irrigation in 2021-2050 relative to 1981-2009 is moderate (4-16%, depending on location). However, in years with low amounts of snow and rain, in small catchments with a nival regime, reduced water supply by rivers could restrict the surface area of grassland that can be irrigated, particularly during springtime. It is concluded that coping with heat-related risks may be most needed at the lower cropland and pasture sites while water-related issues would become more relevant in more elevated locations where pasture-based livestock production is the dominant type of agricultural land use. PMID:23830922

  16. Establishing a sediment budget for a small agricultural catchment in southern Brazil, to support the development of effective sediment management strategies

    NASA Astrophysics Data System (ADS)

    Minella, Jean P. G.; Walling, Desmond E.; Merten, Gustavo H.

    2014-11-01

    The rapid expansion of agriculture in Brazil has increased erosion rates and sediment yields, causing many negative environmental and economic impacts, both on- and off-site. However, to date, very few catchment-scale sediment budget investigations have been carried out in Brazil. Given the need to reduce the negative off-site impacts of increasing agricultural activity, there is an important need for such investigations in order to inform the development of effective sediment management strategies. Against this background, 137Cs measurements have been combined with measurements of sediment yield and fingerprinting the source of the fine sediment output, to establish a provisional sediment budget for a small (1.19 km2) agricultural catchment in southern Brazil. The catchment is located in an area of steep highly erodible basaltic terrain, which has been intensively cultivated with tobacco. An ongoing monitoring programme provided information on the sediment yield from the catchment and existing suspended sediment source fingerprinting investigations provided information on the main sediment sources contributing to the sediment load at the catchment outlet. 137Cs measurements have been used to estimate medium-term erosion and deposition rates along 17 transects across the cultivated slopes and to quantify sedimentation rates within valley floor sediment sinks. These data have been used to estimate sediment redistribution rates within the cultivated areas of the study catchment and sediment accumulation in the valley floor sinks. The information provided by the three primary data sources has been integrated to establish the sediment budget for the catchment over the past 57 years. The individual terms of the budget necessarily involve much uncertainty, but its closure adds confidence to the final result. The budget calculations indicate that the study catchment has a sediment delivery ratio of ∼15%. The implications of the key features of the budget for developing

  17. Sediment fingerprinting in agricultural catchments: A critical re-examination of source discrimination and data corrections

    NASA Astrophysics Data System (ADS)

    Smith, Hugh G.; Blake, William H.

    2014-01-01

    Fine sediment source fingerprinting techniques have been widely applied in agricultural river catchments. Successful source discrimination in agricultural environments depends on the key assumption that land-use source signatures imprinted on catchment soils are decipherable from those due to other landscape factors affecting soil and sediment properties. In this study, we re-examine this critical assumption by investigating (i) the physical and chemical basis for source discrimination and (ii) potential factors that may confound source un-mixing in agricultural catchments, including particle size and organic matter effects on tracer properties. The study is situated in the River Tamar, a predominantly agricultural catchment (920 km2) in south-west England that has also been affected by mining. Source discrimination focused on pasture and cultivated land uses and channel banks. Monthly, time-integrated suspended sediment samples were collected across seven catchments for a 12-month period. Physical and chemical properties measured in source soils and sediment included fallout radionuclides (137Cs, excess 210Pb), major and minor element geochemical constituents, total organic carbon and particle size. Source discrimination was entirely dependent on differences in tracer property concentrations between surface and sub-surface soils. This is based on fallout radionuclide concentrations that are surface-elevated, while many geochemical properties are surface-depleted due to weathering and pedogenetic effects, although surface soil contamination can reverse this trend. However, source discrimination in the study catchments was limited by (i) rotation of cultivated and pasture fields resulting in reduced differences between these two sources, and (ii) the cultivated source signature resembling a mix of the pasture and channel bank sources for many tracer properties. Furthermore, a combination of metal pollution from abandoned historic mines and organic enrichment of

  18. [Soil Phosphorus Forms and Leaching Risk in a Typically Agricultural Catchment of Hefei Suburban].

    PubMed

    Fan, Hui-hui; Li, Ru-zhong; Pei, Ting-ting; Zhang, Rui-gang

    2016-01-15

    To investigate the soil phosphorus forms and leaching risk in a typically agricultural catchment of Ershibu River in Hefei Suburban, Chaohu Lake basin, 132 surface soil samples were collected from the catchment area. The spatial distribution of total phosphorus (TP) and bio-available phosphorus (Bio-P), and the spatial variability of soil available phosphorus (Olsen-P) and easy desorption phosphorus (CaCl2-P) were analyzed using the Kriging technology of AreGIS after speciation analysis of soil phosphorus. Moreover, the enrichment level of soil phosphorus was studied, and the phosphorus leaching risk was evaluated through determining the leaching threshold value of soil phosphorus. The results showed that the samples with high contents of TP and Bio-P mainly located in the upstream of the left tributary and on the right side of local area where two tributaries converged. The enrichment rates of soil phosphorus forms were arranged as follows: Ca-P (15.01) > OP (4.16) > TP (3. 42) > IP (2.94) > Ex-P (2.76) > Fe/Al-P (2.43) > Olsen-P (2.34). The critical value of Olsen-P leaching was 18.388 mg x kg(-1), and the leaching samples with values higher than the threshold value accounted for 16.6% of total samples. Generally, the high-risk areas mainly occurred in the upstream of the left tributary, the middle of the right tributary and the local area of the downstream of the area where two tributaries converged.

  19. Scale-dependence of land use effects on water quality of streams in agricultural catchments.

    PubMed

    Buck, Oliver; Niyogi, Dev K; Townsend, Colin R

    2004-07-01

    The influence of land use on water quality in streams is scale-dependent and varies in time and space. In this study, land cover patterns and stocking rates were used as measures of agricultural development in two pasture and one native grassland catchment in New Zealand and were related to water quality in streams of various orders. The amount of pasture per subcatchment correlated well to total nitrogen and nitrate in one catchment and turbidity and total phosphorous in the other catchment. Stocking rates were only correlated to total phosphorous in one pasture catchment but showed stronger correlations to ammonium, total phosphorous and total nitrogen in the other pasture catchment. Winter and spring floods were significant sources of nutrients and faecal coliforms from one of the pasture catchments into a wetland complex. Nutrient and faecal coliform concentrations were better predicted by pastural land cover in fourth-order than in second-order streams. This suggests that upstream land use is more influential in larger streams, while local land use and other factors may be more important in smaller streams. These temporal and spatial scale effects indicate that water-monitoring schemes need to be scale-sensitive.

  20. Linking Groundwater Nitrate-N Concentrations to Management and Hydrological Changes in two Agricultural Catchments

    NASA Astrophysics Data System (ADS)

    Mellander, Per-Erik; Melland, Alice R.; Jordan, Philip; Murphy, Paul N. C.; Shortle, Ger

    2013-04-01

    In order to minimize Nitrogen (N) transfer from groundwater to surface water in agricultural river catchments it is useful to understand how those transfer pathways may vary over time and space, and thus in their connection to nutrient sources and potential effects of temporal changes in water recharge and land management. In this paper we investigate the links between N sources, groundwater and surface water, as well as the implication of spatiotemporal variability for mitigation measures. We present three years of N concentrations in stream water (sub-hourly) and in groundwater (monthly) of different strata in four hillslopes in two ca 10 km2 Irish agricultural catchments with permeable soils. One catchment with arable land overlying slate bedrock and the other with intensively managed grassland on sandstone. Both catchments were dominated by delayed nutrient transfer pathways via groundwater. Relatively high concentrations of N were found in the groundwater of both catchments, attributed to leaching of surplus soil nitrate-N. The Grassland/sandstone catchment had locally higher nitrate-N concentrations in the groundwater with more spatiotemporal variability than in the groundwater of the Arable/Slate catchment. The N concentrations in the stream water of the Arable/Slate catchment were more directly reflected by groundwater conditions. In one hillslope the effects of pasture reseeding were observed by locally elevated N concentrations in the groundwater with a delay of ca five months. This was not reflected in the surface water despite groundwater dominating the contribution to stream water. In another hillslope N was naturally buffered in the near-stream zone, but this zone was bypassed with high nitrate-N content water from the uplands via tile-drains. The apparent spatiotemporal variability in N concentration highlights the need for insight into these differences when interpreting groundwater quality data from a limited number of sampling points and occasions

  1. Using artificial fluorescent particles as tracers of livestock wastes within an agricultural catchment.

    PubMed

    Granger, Steve J; Bol, Roland; Hawkins, Jane M B; White, Sue M; Naden, Pamela S; Old, Gareth H; Marsh, Jon K; Bilotta, Gary S; Brazier, Richard E; Macleod, Christopher J A; Haygarth, Philip M

    2011-02-15

    Evidence for the movement of agricultural slurry and associated pollutants into surface waters is often anecdotal, particularly with relation to its 'particulate' components which receive less attention than 'bio-available' soluble phases. To assess the extent of movement of slurry particles artificial fluorescent particles were mixed with slurry and applied to a field sub-catchment within a headwater catchment. Particles were 2-60 μm in diameter and two different densities, 2.7 and 1.2 g cm(-3) representing 'inorganic' and 'organic' material. Water samples from the field and catchment outlet were collected during two storm events following slurry application and analysed for particle and suspended sediment concentrations (SSC). SSC from the field and catchment outlet always formed clockwise hysteresis loops indicating sediment exhaustion and particles of the two densities were always found to be positively correlated. Particles from the field formed clockwise hysteresis loops during the first discharge event after slurry application, but anti-clockwise hysteresis loops during the second monitored event which indicated a depletion of readily mobilisable particles. Particles from the catchment outlet always formed anticlockwise hysteresis loops. Particle size became finer spatially, between field and catchment outlet, and temporally, between successive storm events. The results indicate that slurry particles may be readily transported within catchments but that different areas may contribute to pollutant loads long after the main peak in SSC has passed. The density of the particles did not appear to have any effect on particle transport however the size of the particles may play a more important role in the 2-60 μm range.

  2. Plot and Catchment Scale Hydrological Impacts of Agricultural Field Boundary Features

    NASA Astrophysics Data System (ADS)

    Coates, Victoria; Pattison, Ian

    2015-04-01

    Natural flood management aims to reduce downstream flow levels by delaying the movement of water through a catchment and increasing the amount of soil infiltration. Field boundary features such as hedgerows and dry stone walls are common features in the rural landscape. It is hypothesised that there presence could reduce runoff connectivity and change the soil moisture levels by altering the soil structure and porosity. The use of larger agricultural machinery has resulted in the removal of field boundaries and the subsequent increase in field sizes over the 20th Century. This change in the rural landscape is likely to have changed the partitioning of rainfall into runoff and the hydrological pathways throughout the catchment. However, the link between field boundaries and catchment scale flood risk has not yet been proven. We aim to address this need for evidence to support natural flood management by focussing on these widespread features in the rural landscape. Firstly, we quantify the change in the density of field boundaries over the past 120 years for the Skell catchment, Northern England using historical OS maps. The analysis has shown that field size has approximately doubled in the Skell catchment since 1892, due to the removal of field boundaries. Secondly, we assess the effect of field boundaries on local soil characteristics and hydrological processes through plot scale continuous monitoring of the hydrological processes along a 20m transect through the linear boundary features. For the summer period results show that soil moisture levels are lower immediately next to the hedgerow compared to distances greater than 1m from the hedgerow. Finally, we use this data to parameterise and validate a catchment scale hydrological model. The model is then applied to test the impact of a network of field boundaries on river flow extremes at the catchment scale.

  3. Occurrence of metolachlor and trifluralin losses in the Save river agricultural catchment during floods.

    PubMed

    Boithias, Laurie; Sauvage, Sabine; Taghavi, Lobat; Merlina, Georges; Probst, Jean-Luc; Pérez, José Miguel Sánchez

    2011-11-30

    Rising pesticide levels in streams draining intensively managed agricultural land have a detrimental effect on aquatic ecosystems and render water unfit for human consumption. The Soil and Water Assessment Tool (SWAT) was applied to simulate daily pesticide transfer at the outlet from an agriculturally intensive catchment of 1110 km(2) (Save river, south-western France). SWAT reliably simulated both dissolved and sorbed metolachlor and trifluralin loads and concentrations at the catchment outlet from 1998 to 2009. On average, 17 kg of metolachlor and 1 kg of trifluralin were exported at outlet each year, with annual rainfall variations considered. Surface runoff was identified as the preferred pathway for pesticide transfer, related to the good correlation between suspended sediment exportation and pesticide, in both soluble and sorbed phases. Pesticide exportation rates at catchment outlet were less than 0.1% of the applied amount. At outlet, SWAT hindcasted that (i) 61% of metolachlor and 52% of trifluralin were exported during high flows and (ii) metolachlor and trifluralin concentrations exceeded European drinking water standards of 0.1 μg L(-1) for individual pesticides during 149 (3.6%) and 17 (0.4%) days of the 1998-2009 period respectively. SWAT was shown to be a promising tool for assessing large catchment river network pesticide contamination in the event of floods but further useful developments of pesticide transfers and partition coefficient processes would need to be investigated.

  4. [Catchment scale risk assessment and critical source area identification of agricultural phosphorus loss].

    PubMed

    Li, Qi; Chen, Li-Ding; Qi, Xin; Zhang, Xin-Yu; Ma, Yan

    2007-09-01

    Agricultural non-point source phosphorus pollution is a severe problem for rural water bodies in China, but hard to control directly because of its special characteristics. In this paper, an approach on the catchment scale risk assessment and critical source area identification of agricultural phosphorus loss in northern China was made, based on the catchment scale phosphorus ranking scheme and the method proposed by Gburek et al. Eight factors were selected and weighed in the modified catchment scale phosphorus ranking scheme, and the phosphorus loss risk rating of each factor was adjusted based on the current professional standards and the actual circumstances in China. The areas with ' high' risk rating of phosphorus loss in definite catchment were the critical source areas for non-point source phosphorous pollution control in that catment. The availability of obtained data and the quantification of the assessment were taken into account in the new scheme, and GIS technique and geostatistics were used for confirming the factors. Therefore, the new scheme had definite operability and practicability. PMID:18062300

  5. Agricultural management change effects on river nutrient yields in a catchment of Central Greece

    NASA Astrophysics Data System (ADS)

    Panagopoulos, Y.

    2009-04-01

    Modelling efforts are strongly recommended nowadays by European legislation for investigating non-structural mitigation measures against water pollution on catchment scale. Agricultural diffuse pollution is considered to be the main responsible human activity for the Eutrophication of inland waters with nitrogen (N) and phosphorus (P). The physically-based water quality model SWAT is implemented in an agricultural medium-size agricultural catchment of Central Greece with the purpose to simulate the baseline situation and subsequently to predict the effects that realistic non-structural interventions, applied on the agricultural land, have on water quality and crop yields. SWAT was successfully calibrated according to measured flows and water quality data and subsequently scenarios were developed by changing chemical fertilizer application rates and timing on corn, cotton and wheat cultivations. All scenarios resulted in a decrease of nutrient emissions to surface waters but with a simultaneous small decrease in crop yields. The model predicted explicitly the consequences of non-structural mitigation measures against water pollution sustaining that the understanding of land management changes in relation to its driving factors provides essential information for sustainable management of the agricultural sector in an agricultural country like Greece.

  6. Urbanization and agriculture increase exports and differentially alter elemental stoichiometry of dissolved organic matter (DOM) from tropical catchments.

    PubMed

    Gücker, Björn; Silva, Ricky C S; Graeber, Daniel; Monteiro, José A F; Boëchat, Iola G

    2016-04-15

    Many tropical biomes are threatened by rapid land-use change, but its catchment-wide biogeochemical effects are poorly understood. The few previous studies on DOM in tropical catchments suggest that deforestation and subsequent land use increase stream water dissolved organic carbon (DOC) concentrations, but consistent effects on DOM elemental stoichiometry have not yet been reported. Here, we studied stream water DOC concentrations, catchment DOC exports, and DOM elemental stoichiometry in 20 tropical catchments at the Cerrado-Atlantic rainforest transition, dominated by natural vegetation, pasture, intensive agriculture, and urban land cover. Streams draining pasture could be distinguished from those draining natural catchments by their lower DOC concentrations, with lower DOM C:N and C:P ratios. Catchments with intensive agriculture had higher DOC exports and lower DOM C:P ratios than natural catchments. Finally, with the highest DOC concentrations and exports, as well as the highest DOM C:P and N:P ratios, but the lowest C:N ratios among all land-use types, urbanized catchments had the strongest effects on catchment DOM. Thus, urbanization may have alleviated N limitation of heterotrophic DOM decomposition, but increased P limitation. Land use-especially urbanization-also affected the seasonality of catchment biogeochemistry. While natural catchments exhibited high DOC exports and concentrations, with high DOM C:P ratios in the rainy season only, urbanized catchments had high values in these variables throughout the year. Our results suggest that urbanization and pastoral land use exerted the strongest impacts on DOM biogeochemistry in the investigated tropical catchments and should thus be important targets for management and mitigation efforts. PMID:26849342

  7. Urbanization and agriculture increase exports and differentially alter elemental stoichiometry of dissolved organic matter (DOM) from tropical catchments.

    PubMed

    Gücker, Björn; Silva, Ricky C S; Graeber, Daniel; Monteiro, José A F; Boëchat, Iola G

    2016-04-15

    Many tropical biomes are threatened by rapid land-use change, but its catchment-wide biogeochemical effects are poorly understood. The few previous studies on DOM in tropical catchments suggest that deforestation and subsequent land use increase stream water dissolved organic carbon (DOC) concentrations, but consistent effects on DOM elemental stoichiometry have not yet been reported. Here, we studied stream water DOC concentrations, catchment DOC exports, and DOM elemental stoichiometry in 20 tropical catchments at the Cerrado-Atlantic rainforest transition, dominated by natural vegetation, pasture, intensive agriculture, and urban land cover. Streams draining pasture could be distinguished from those draining natural catchments by their lower DOC concentrations, with lower DOM C:N and C:P ratios. Catchments with intensive agriculture had higher DOC exports and lower DOM C:P ratios than natural catchments. Finally, with the highest DOC concentrations and exports, as well as the highest DOM C:P and N:P ratios, but the lowest C:N ratios among all land-use types, urbanized catchments had the strongest effects on catchment DOM. Thus, urbanization may have alleviated N limitation of heterotrophic DOM decomposition, but increased P limitation. Land use-especially urbanization-also affected the seasonality of catchment biogeochemistry. While natural catchments exhibited high DOC exports and concentrations, with high DOM C:P ratios in the rainy season only, urbanized catchments had high values in these variables throughout the year. Our results suggest that urbanization and pastoral land use exerted the strongest impacts on DOM biogeochemistry in the investigated tropical catchments and should thus be important targets for management and mitigation efforts.

  8. Groundwater denitrification in two agricultural river catchments: influence of hydro-geological setting and aquifer geochemistry

    NASA Astrophysics Data System (ADS)

    McAleer, Eoin; Mellander, Per-Erik; Coxon, Catherine; Richards, Karl G.; Jahangir, Mohammad M. R.

    2015-04-01

    Identifying subsurface environments with a natural capacity for denitrification is important for improving agricultural management. At the catchment scale, a complex hierarchy of landscape, hydro-geological and physico-chemical characteristics combine to affect the distribution of groundwater nitrate (NO3-). This study was conducted along four instrumented hillslopes in two ca. 10km2 agricultural river catchments in Ireland, one dominated by arable and one by grassland agriculture. Both catchments are characterised by well drained soils, but have differing aquifer characteristics. The arable catchment is underlain by weathered Ordovician slate bedrock which is extensively fractured with depth. The grassland catchment is characterised by Devonian sandstone bedrock, exhibiting both lateral (from upslope to near stream) and vertical variations in permeability along each hillslope. The capacity for groundwater denitrification was assessed by examining the concentration and distribution patterns of N species (total nitrogen, nitrate, nitrite, ammonium), dissolved organic carbon (DOC), dissolved oxygen (DO) and redox potential (Eh) in monthly samples from shallow and deep groundwater piezometers (n=37). Additionally, the gaseous products of denitrification: nitrous oxide (N2O) and excess dinitrogen (excess N2) were measured seasonally using gas chromatography and membrane inlet mass spectroscopy, respectively. The slate catchment was characterised by uniformity, both laterally and vertically, in aquifer geochemistry and gaseous denitrification products. The four year spatial mean groundwater NO3--N concentration was 6.89 mg/l and exhibited low spatial and temporal variability (temporal SD: 1.19 mg/l, spatial SD: 1.185 mg/l). Elevated DO concentrations (mean: 9.75 mg/l) and positive Eh (mean: +176.5mV) at all sample horizons indicated a setting with little denitrification potential. This non-reducing environment was reflected in a low accumulation of denitrification

  9. Spatio-temporal analysis of discharge regimes based on hydrograph classification techniques in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Chen, Xiaofei; Bloeschl, Guenter; Blaschke, Alfred Paul; Silasari, Rasmiaditya; Exner-Kittridge, Mike

    2016-04-01

    The stream, discharges and groundwater hydro-graphs is an integration in spatial and temporal variations for small-scale hydrological response. Characterizing discharges response regime in a drainage farmland is essential to irrigation strategies and hydrologic modeling. Especially for agricultural basins, diurnal hydro-graphs from drainage discharges have been investigated to achieve drainage process inferences in varying magnitudes. To explore the variability of discharge responses, we developed an impersonal method to characterize and classify discharge hydrograph based on features of magnitude and time-series. A cluster analysis (hierarchical k-means) and principal components analysis techniques are used for discharge time-series and groundwater level hydro-graphs to analyze their event characteristics, using 8 different discharge and 18 groundwater level hydro-graphs to test. As the variability of rainfall activity, system location, discharge regime and soil moisture pre-event condition in the catchment, three main clusters of discharge hydro-graph are identified from the test. The results show that : (1) the hydro-graphs from these drainage discharges had similar shapes but different magnitudes for individual rainstorm; the similarity is also showed in overland flow discharge and spring system; (2) for each cluster, the similarity of shape insisted, but the rising slope are different due to different antecedent wetness condition and the rain accumulation meanwhile the difference of regression slope can be explained by system location and discharge area; and (3) surface water always has a close proportional relation with soil moisture throughout the year, while only after the soil moisture exceeds a certain threshold does the outflow of tile drainage systems have a direct ratio relationship with soil moisture and a inverse relationship with the groundwater levels. Finally, we discussed the potential application of hydrograph classification in a wider range of

  10. Solute transport dynamics in small, shallow groundwater-dominated agricultural catchments: insights from a high-frequency, multisolute 10 yr-long monitoring study

    NASA Astrophysics Data System (ADS)

    Aubert, A. H.; Gascuel-Odoux, C.; Gruau, G.; Akkal, N.; Faucheux, M.; Fauvel, Y.; Grimaldi, C.; Hamon, Y.; Jaffrézic, A.; Lecoz-Boutnik, M.; Molénat, J.; Petitjean, P.; Ruiz, L.; Merot, P.

    2013-04-01

    High-frequency, long-term and multisolute measurements are required to assess the impact of human pressures on water quality due to (i) the high temporal and spatial variability of climate and human activity and (ii) the fact that chemical solutes combine short- and long-term dynamics. Such data series are scarce. This study, based on an original and unpublished time series from the Kervidy-Naizin headwater catchment (Brittany, France), aims to determine solute transfer processes and dynamics that characterise this strongly human-impacted catchment. The Kervidy-Naizin catchment is a temperate, intensive agricultural catchment, hydrologically controlled by shallow groundwater. Over 10 yr, five solutes (nitrate, sulphate, chloride, and dissolved organic and inorganic carbon) were monitored daily at the catchment outlet and roughly every four months in the shallow groundwater. The concentrations of all five solutes showed seasonal variations but the patterns of the variations differed from one solute to another. Nitrate and chloride exhibit rather smooth variations. In contrast, sulphate as well as organic and inorganic carbon is dominated by flood flushes. The observed nitrate and chloride patterns are typical of an intensive agricultural catchment hydrologically controlled by shallow groundwater. Nitrate and chloride originating mainly from organic fertilisers accumulated over several years in the shallow groundwater. They are seasonally exported when upland groundwater connects with the stream during the wet season. Conversely, sulphate as well as organic and inorganic carbon patterns are not specific to agricultural catchments. These solutes do not come from fertilisers and do not accumulate in soil or shallow groundwater; instead, they are biogeochemically produced in the catchment. The results allowed development of a generic classification system based on the specific temporal patterns and source locations of each solute. It also considers the stocking period

  11. Runoff production in a small agricultural catchment in Lao PDR: influence of slope, land-use and observation scale

    NASA Astrophysics Data System (ADS)

    Patin, J.; Ribolzi, O.; Mugler, C.; Valentin, C.; Mouche, E.

    2010-12-01

    After years of traditional slash and burn cultures, the Houay Pano catchment is now under high land pressures due to population resettling and environmental preservation policies. This evolution leads to rapid land-use changes in the uplands, such as fallow time reductions and growing of cash crops as teaks or banana. The catchment is located in the Luang Prabang province, in the north of Lao PDR and was selected in late 1998 as a benchmark site for the Managing Soil Erosion Consortium (MSEC). It is a small (60ha) agricultural catchment representative of the rural mountainous South East Asia : it exhibits steep cultivated slopes (from 2% to more than 110%) under a wet-dry monsoon climate. To understand the partition between runoff and infiltration, data from runoff on 20 plot experiments (1m2) under natural rainfall and with representative slopes and land uses is collected from 2003 to 2009. A simulated rainfall experiment was conducted in 2002 on bare soil plots (1m2) with different antecedent cultures. We investigate the role of crust, slope and land-use on runoff production at different scales. A model accounting for small scale variability is applied to compute the time and space variations of soil infiltrability at the plot scale (1m2) and sub-catchment scale (0.6ha). From the hypothesis of exponentially distributed infiltrabilities at the centimeter scale, we found that infiltration is log-normaly distributed over time for a given land use. The median infiltrability vary from 10mm/h under teak cultures to 150mm/h on plots with fallow. Variations along a year are tribute to many meteorological and human factors.

  12. Distribution of soil organic carbon in two small agricultural Mediterranean catchments.

    NASA Astrophysics Data System (ADS)

    Gomez, J. A.; Burguet, M.; Taguas, M. E.; Perez, R.; Ayuso, J. L.; Vanwallgehem, T.; Giraldez, J. V.; Vanderlinden, K.

    2012-04-01

    Soil organic carbon (SOC) is a key indicator of soil quality and a major factor for evaluating carbon sequestration schemes in forest and agricultural soils. However, at the farm or catchment scale SOC presents a large spatial variability which complicates the evaluation of soil quality (Gomez et al., 2009) and the certification of the potential for carbon sequestration. We hypothesize that the typical row crop configuration of olive orchards, with cover crops or bare soil in-between the rows, can explain a vast proportion of this variability. However, it is also expected that agricultural activities and topography-driven erosion processes at different scales (Van Oost et al., 2007) will contribute to SOC variability. Given the complexity of this problem and the important experimental effort required to resolve it, there are to our knowledge relatively few studies that have addressed this issue, especially in agricultural soils under Mediterranean conditions. This communications presents a preliminary evaluation of the top 1-m SOC content at two small, 8 and 6.7-ha, catchments in Southern Spain, covered by olive groves, that were intensively sampled in 2011. Spatial variability of SOC is analyzed across tree rows, areas in-between tree rows, and at different depths. The SOC distribution is evaluated against the topography of the catchment and the intensity of the water erosion processes analyzed by a simple model, such as SEDD, as used by Ferro and Porto (2000) and Taguas et al. (2011). The results of this communication will explore and discuss the differences between both catchments, and suggest guidelines for further exploring the sources of SOC variability, while providing guidelines to improve SOC estimation at the field scale for certification purposes.

  13. How agricultural landscape features control the transfer of nutrient and eutrophication risk in headwater catchments?

    NASA Astrophysics Data System (ADS)

    Dupas, Rémi; Delmas, Magalie; Dorioz, Jean-Marcel; Garnier, Josette; Moatar, Florentina; Gascuel-Odoux, Chantal

    2014-05-01

    The degradation of surface water quality due to nitrogen and phosphorus pollution is a major concern for drinking water quality and ecosystems health. Numerous studies have demonstrated that headwater catchments are large contributors of nutrient loads to downstream waters bodies. In terms of scientific understanding of the processes controlling nutrient transfers, headwater catchments are relevant spatial units to study the role of landscape features because of the relatively low contribution of point sources and in-stream processes compared to larger river networks. This paper presents an analysis of the variability in space and time of observed N and P loads for a dataset of 160 headwater catchments at a national level (France). A multivariate statistical analysis was performed to relate observed N and P loads to spatial attributes describing agricultural landscapes and the physical characteristics of the catchments: climate, topography, soils, etc. We identified factors controlling N and P loads and N:P:Si ratios in freshwaters; and specifically spatially described factors, by considering river corridors and interaction between soils and land use attributes. The same catchment dataset is used to calibrate the Nutting model, i.e. a statistical model developed to estimate nutrient emission to surface water, using readily available data in France (Dupas et al., 2013). Nutting is a statistical model linking N/P sources and catchment land and river attributes to estimate mean interannual nitrate-N, total-N, dissolved-P and total-P loads. It allows to extrapolate nutrient loads in unmonitored catchments at a national level and to estimate the risk of eutrophication in freshwaters considering Redfield's (1963) N:P:Si ratios. Results show that N is in excess over silica in 93% of French headwater bodies, and that phosphorus is in excess over silica in 26%-65% of French headwater catchments. This means that between 26% and 63% of French headwaters are at risk of

  14. Spatial heterogeneity of mobilization processes and input pathways of herbicides into a brook in a small agricultural catchment

    NASA Astrophysics Data System (ADS)

    Doppler, Tobias; Lück, Alfred; Popow, Gabriel; Strahm, Ivo; Winiger, Luca; Gaj, Marcel; Singer, Heinz; Stamm, Christian

    2010-05-01

    Soil applied herbicides can be transported from their point of application (agricultural field) to surface waters during rain events. There they can have harmful effects on aquatic species. Since the spatial distribution of mobilization and transport processes is very heterogeneous, the contributions of different fields to the total load in a surface water body may differ considerably. The localization of especially critical areas (contributing areas) can help to efficiently minimize herbicide inputs to surface waters. An agricultural field becomes a contributing area when three conditions are met: 1) herbicides are applied, 2) herbicides are mobilized on the field and 3) the mobilized herbicides are transported rapidly to the surface water. In spring 2009, a controlled herbicide application was performed on corn fields in a small (ca 1 km2) catchment with intensive crop production in the Swiss plateau. Subsequently water samples were taken at different locations in the catchment with a high temporal resolution during rain events. We observed both saturation excess and hortonian overland flow during the field campaign. Both can be important mobilization processes depending on the intensity and quantity of the rain. This can lead to different contributing areas during different types of rain events. We will show data on the spatial distribution of herbicide loads during different types of rain events. Also the connectivity of the fields with the brook is spatially heterogeneous. Most of the fields are disconnected from the brook by internal sinks in the catchment, which prevents surface runoff from entering the brook directly. Surface runoff from these disconnected areas can only enter the brook rapidly via macropore-flow into tile drains beneath the internal sinks or via direct shortcuts to the drainage system (maintenance manholes, farmyard or road drains). We will show spatially distributed data on herbicide concentration in purely subsurface systems which shows

  15. Modeling pesticide transfer during flood events in an agricultural catchment using the SWAT model

    NASA Astrophysics Data System (ADS)

    Boithias, Laurie; Taghavi, Lobat; Oeurng, Chantha; Polard, Thierry; Ferrant, Sylvain; Jean, Séverine; Probst, Jean-Luc; Merlina, Georges; Sauvage, Sabine; Sánchez-Pérez, José-Miguel

    2010-05-01

    Pesticide monitoring, understanding of pesticide fate and pollution quantification have become major concerns in Europe since the introduction of the Water Framework Directive in 2000. Pesticides can be transported from agricultural catchments to stream networks in either the soluble or particulate phase, depending on their physicochemical properties (solubility, partition coefficient). Quick flood events therefore have a major impact on molecule transport. This study - part of the EU AguaFlash project (http://www.aguaflash-sudoe.eu/) - examined pesticide load dynamics in both the soluble and particulate phases and attempted to quantify their fluxes from various contributing compartments (surface runoff and subsurface and groundwater flows). The hydrological and water quality model SWAT (Soil and Water Assessment Tool, 2005 version) was tested at daily time step to assess the fate and transport of two pesticides with a wide range of solubility (Trifluralin and Metolachlor). SWAT was applied on an 1100 km² agricultural catchment (Save catchment, South-west France). The model was calibrated on discharge, suspended sediment, nitrate and pesticide data collected at the catchment outlet from March 2008 to March 2009, with weekly measurements during base flow and daily during flood events. Agricultural management practices (crop rotation, planting date, fertilizers and pesticide application) were entered into the model in a dominant simplifying land use approach (one rotation by sub-basin, same management operation dates throughout the catchment). Calibration for discharge fluctuations and suspended sediment and nitrate concentration variations was satisfactory. SWAT was able to accurately reproduce observed pesticide concentrations during base flows and peaks during flood events, despite the ‘dominant land use' approximation being used and management practices inputs being averaged for the whole catchment. During the simulation period, simulated preferred pathway for

  16. Scale appropriate modelling to represent dominant pollution processes in agricultural catchments, to underpin management and policy decisions

    NASA Astrophysics Data System (ADS)

    Adams, Russell; Quinn, Paul

    2014-05-01

    We present the development of scale appropriate modelling techniques to represent dominant pollution processes in agricultural catchments to underpin catchment management and its implications on policy. A quasi-physically based, spatially lumped macro-model (CRAFT), has been developed to assess mitigation options for nitrogen and phosphorus. CRAFT has been developed to use daily time series data of rainfall, stream flow and nutrient concentration data, and can be applied to catchments varying in size from a few hectares to 100s of square kilometres. If stream flow routing is added to the model then potentially larger catchments and sub-daily time steps could be represented. There are two key issues addressed here. Firstly, the model can be used to assess the usefulness of monitoring data collected at a high temporal resolution at considerable expense compared to routine grab sampling. An earlier study in the Frome catchment in southern England collected sub-daily water quality data for more than 12 months at the catchment outlet, comprising: total oxidised nitrogen (TON); soluble reactive phosphorus (SRP) and total phosphorus (TP) concentrations. The three data sets have quite different temporal signals relating to flow pathways with different residence times and the importance of runoff events in generating acute pollution. The flexible model structure was therefore developed to include different sources of runoff including overland flow from impervious areas in the catchment, where pollution hotspots will be located (e.g. farmyards). The model has been used to assess the value of collecting high resolution monitoring data, in this case by resampling the Frome sub-daily data to a daily timestep, and comparing these model simulations against those calibrated using all the samples. The usefulness of the high resolution data can be assessed on whether a daily model would undepredict (for example) high nutrient concentrations that can be identified in the sub

  17. Seasonality in birth defects, agricultural production and urban location.

    PubMed

    McKinnish, Terra; Rees, Daniel I; Langlois, Peter H

    2014-12-01

    This paper tests whether the strength of the "spring spike" in birth defects is related to agricultural production and urban location using Texas Birth Defects Registry data for the period 1996-2007. We find evidence of a spike in birth defects among children conceived in the spring and summer, but it is more pronounced in urban non-agricultural counties than in other types of counties. Furthermore, the spike lasts longer in urban non-agricultural counties as compared to other types of counties.

  18. Incidental nutrient transfers: Assessing critical times in agricultural catchments using high-resolution data.

    PubMed

    Shore, Mairead; Jordan, Phil; Melland, Alice R; Mellander, Per-Erik; McDonald, Noeleen; Shortle, Ger

    2016-05-15

    Managing incidental losses associated with liquid slurry applications during closed periods has significant cost and policy implications and the environmental data required to review such a measure are difficult to capture due to storm dependencies. Over four years (2010-2014) in five intensive agricultural catchments, this study used high-resolution total and total reactive phosphorus (TP and TRP), total oxidised nitrogen (TON) and suspended sediment (SS) concentrations with river discharge data to investigate the magnitude and timing of nutrient losses. A large dataset of storm events (defined as 90th percentile discharges), and associated flow-weighted mean (FWM) nutrient concentrations and TP/SS ratios, was used to indicate when losses were indicative of residual or incidental nutrient transfers. The beginning of the slurry closed period was reflective of incidental and residual transfers with high storm FWM P (TP and TRP) concentrations, with some catchments also showing elevated storm TP:SS ratios. This pattern diminished at the end of the closed period in all catchments. Total oxidised N behaved similarly to P during storms in the poorly drained catchments and revealed a long lag time in other catchments. Low storm FWM P concentrations and TP:SS ratios during the weeks following the closed period suggests that nutrients either weren't applied during this time (best times chosen) or that they were applied to less risky areas (best places chosen). For other periods such as late autumn and during wet summers, where storm FWM P concentrations and TP:SS ratios were high, it is recommended that an augmentation of farmer knowledge of soil drainage characteristics with local and detailed current and forecast soil moisture conditions will help to strengthen existing regulatory frameworks to avoid storm driven incidental nutrient transfers. PMID:26933967

  19. Changes in water quality in agricultural catchments after deployment of wastewater treatment plant.

    PubMed

    Langhammer, Jakub; Rödlová, Sylva

    2013-12-01

    Insufficient wastewater remediation in small communities and nonpoint source pollution are the key factors in determining the water quality of small streams in an agricultural landscape. Despite the current extensive construction of municipal wastewater treatment facilities in small communities, the level of organic substances and nutrients in the recipient catchments has not decreased in many areas. This paper analyzes the changes in the water quality of the small streams after the deployment of wastewater treatment plants that were designed to address sources of pollution from small municipalities. The analysis is based on the results from a water quality monitoring network in the small watersheds in the Czech Republic. Five rural catchments with one dominant municipal pollution source, where a wastewater treatment plant was deployed during the monitoring period, were selected according to a predefined set of criteria, from a series of 317 profiles. Basic water quality indicators were selected for the assessment: O₂, BOD-5, COD, TOC, conductivity, NH₄-N, NO₂-N, NO₃-N, PT, and PO₄-P. Results of the analysis showed that the simple deployment of the water treatment facilities at these streams often did not lead to a reduction of contamination in the streams. The expected post-deployment changes, namely, a significant and permanent reduction of stream contamination, occurred only in one catchment, whereas in the remainder of the catchments, only marginal changes or even increased concentrations of the contaminants were detected. As the critical factors that determined the efficiency of wastewater treatment were studied, the need for the consideration of the local conditions during the design of the facility, particularly regarding the size of the catchments, initial level of contamination, proper system of operation, and process optimization of the treatment facility, emerged as the important factor.

  20. Downscaling catchment scale flood risk to contributing sub-catchments to determine the optimum location for flood management.

    NASA Astrophysics Data System (ADS)

    Pattison, Ian; Lane, Stuart; Hardy, Richard; Reaney, Sim

    2010-05-01

    The recent increase in flood frequency and magnitude has been hypothesised to have been caused by either climate change or land management. Field scale studies have found that changing land management practices does affect local runoff and streamflow, but upscaling these effects to the catchment scale continues to be problematic, both conceptually and more importantly methodologically. The impact on downstream flood risk is highly dependent upon where the changes are in the catchment, indicating that some areas of the catchment are more important in determining downstream flood risk than others. This is a major flaw in the traditional approach to studying the effect of land use on downstream flood risk: catchment scale hydrological models, which treat every cell in the model equally. We are proposing an alternative ideological approach for doing flood management research, which is underpinned by downscaling the downstream effect (problem i.e. flooding) to the upstream causes (contributing sub-catchments). It is hoped that this approach could have several benefits over the traditional upscaling approach. Firstly, it provides an efficient method to prioritise areas for land use management changes to be implemented to reduce downstream flood risk. Secondly, targets for sub-catchment hydrograph change can be determined which will deliver the required downstream effect. Thirdly, it may be possible to detect the effect of land use changes in upstream areas on downstream flood risk, by weighting the areas of most importance in hydrological models. Two methods for doing this downscaling are proposed; 1) data-based statistical analysis; and 2) hydraulic modelling-based downscaling. These will be outlined using the case study of the River Eden, Cumbria, NW England. The data-based methodology uses the timing and magnitude of floods for each sub-catchment. Principal components analysis (PCA) is used to simplify sub-catchment interactions and optimising stepwise regression is

  1. Source and transport factors influencing storm phosphorus losses in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Shore, Mairead; Jordan, Phil; Mellander, Per-Erik; kelly-quinn, Mary; Wall, David; Murphy, Paul; Melland, Alice

    2014-05-01

    The relative risk of diffuse phosphorus (P) loss from agricultural land was assessed in a well-drained arable catchment and a poorly-drained grassland catchment and in two nested basins within each catchment. This research investigated the relative control of hydrology and soil P on P losses between basins. Quick flow (QF) P losses (defined here as both concentrations and loads), monitored in stream flow during four storm events, were compared with a dynamic metric of transport risk (QF magnitude) and a static metric of critical source area (CSA) risk (extent of highly-connected poorly-drained soils with excess plant-available soil P). The potential for static transport metrics of soil connectivity and soil drainage class, to predict relative QF magnitudes and P losses between basins was also investigated. In basins with similar CSA risk but with contrasting QF magnitudes, mean TRP (total molybdate-reactive P) losses were consistently higher in the basins which had the highest QF magnitudes. This suggests that basin hydrology, rather than hydrology of high-P soils only, determined relative TRP losses between hydrologically contrasting basins. Furthermore, static transport metrics of soil connectivity and soil drainage class reliably discerned relative QF magnitudes and TRP losses between these basins. However, for two of the storm events (both occurring during the hydrologically active season), PP (particulate P) concentrations were frequently higher in basins which had the lowest QF magnitudes and may be attributed to a higher proportion of bare soil in these basins at these times as a result of their predominantly arable nature. In basins with similar hydrology, relative TRP and PP losses did not reflect trends in CSA risk or QF magnitude. The dynamics of TRP and PP losses and QF magnitude between these basins varied across storms, thus could not be predicted using static metrics. Where differences in hydrological dynamics were large, storm TRP losses were well

  2. The fate of organic carbon in colluvial soils in a subtropical agricultural catchment (Arvorezinha, Brazil)

    NASA Astrophysics Data System (ADS)

    Van de Broek, Marijn; Van Oost, Kristof; Minella, Jean; Govers, Gerard

    2016-04-01

    One of the main reasons as to why soil erosion is considered to be a carbon sink for the atmosphere is that eroded carbon is often redeposited and buried in depositional environments. However, the quantification of the magnitude of this effect is still uncertain because the residence time of soil organic carbon in depositional environments is ill defined. The latter is especially true for tropical and subtropical areas as field data for these climatic zones are largely lacking. This is an important hiatus as ca. 40% of the total global arable land is located in the (sub-)tropics [1]. We collected samples from four depositional and one stable agricultural profile in a small agricultural catchment in Arvorezinha (Brazil) where deforestation started ca. 90 yrs ago. δ13C depth profiles allowed to identify the bottom of the original A-horizon: this is because δ13C values of the buried forest soils are significantly heavier than those of the colluvial deposits. The results show that soil organic carbon contents systematically decrease with depth below the actual plough layer. This is due to the fact that a significant fraction of the organic carbon that was originally deposited is removed by mineralization from these soils over decadal time scales. As the time of deforestation is known, age-depth curves could be established. Combining this information with SOC measurements allowed for a first estimate of carbon preservation rates and showed that after 70 years ca. 25% of the deposited organic carbon is released to the atmosphere: results were very consistent across profiles. In temperate environments, the time necessary for this fraction of the deposited carbon to be mineralized is somewhat longer, i.e. 100 years [2]. This suggests that soil organic carbon may be decomposed faster in sub-tropical environments in comparison to temperate environments. This is not unexpected, given the fact that average soil temperatures are higher and soils are, in this climate

  3. Identifying priority zones in an agricultural catchment to mitigate glyphosate runoff

    NASA Astrophysics Data System (ADS)

    Joris, Ingeborg; Desmet, Nele; Wilczek, Daniel; Boënne, Wesley; Seuntjens, Piet; Koopmans, Kim; Bylemans, Dany; Wouters, Katrien; Vandaele, Karel

    2015-04-01

    Pesticide concentrations in rivers generally have a very dynamic signature and are strongly dependent on time and space. The dynamic time course is due to the time- and space-variant input conditions resulting from fast overland (runoff and erosion, direct losses) and subsurface flow (artificial drainage), directly connecting surfaces and/or agricultural fields where pesticides are applied, to receiving rivers. A thorough understanding of pesticide behavior at the watershed scale is needed to increase the effectiveness of mitigation measures. We developed a method to derive priority zones for applying mitigation measures for erosion control and mitigation of glyphosate runoff in an agricultural catchment. The study catchment was selected based on results from geospatial pesticide emission modeling, historical glyphosate concentrations, and crop cover. Priority zones were derived based on a risk map which includes information about the topography, crop cover, the estimated glyphosate use, the potential erosion risk, and the connectivity of the agricultural parcels to the river. The theoretical risk map was then validated in the field using field observations of runoff during stormflow events, and observations of roads short-circuiting the runoff to the river. The validated risk map was used to define priority zones for measures related to erosion control. Suggestions for specific measures such as grass buffer strips and small dams at the field scale were made. The information will be used to target farmers that may have a significant impact on the glyphosate load to surface water. Those farmers will be encouraged to participate in a voluntary erosion control program supported by the local government. The effect of mitigation measures on the glyphosate concentrations in the river will be assessed by monitoring two years before and three years after implementation of the measures. We will present the general setup of the study and the selection methodology of the

  4. Patterns and processes of nutrient transfers from land to water: a catchment approach to evaluate Good Agricultural Practice in Ireland

    NASA Astrophysics Data System (ADS)

    Mellander, P.-E.; Melland, A. R.; Shortle, G.; Wall, D.; Mechan, S.; Buckley, C.; Fealy, R.; Jordan, P.

    2009-04-01

    Eutrophication of fresh, transitional and coastal waters by excessive nutrient inputs is one of the most widespread water quality problems in developed countries. Sources of nutrient nitrogen (N) and phosphorus (P) can come from a multiplicity of sources and be dependent on numerous hydrological controls from catchments with both urban and agricultural landuses. Aquatic impacts are widely reported as a result of excessive nutrient transfers from land to water and include changes in ecological integrity and loss of amenity. In the European Union, the Water Framework Directive (WFD) and associated Directives are the key structures with which member states must develop national and often trans-national polices to deal with issues of water resources management. The linked Nitrates Directive is particularly concerned with integrating sustainable agriculture and good water quality objectives and is written into national polices. In Ireland this policy is the Nitrates Directive National Action Programme (NAP), Statutory Instruction 378, Good Agricultural Practise regulation, and amongst other things, sets targets and limits on the use of organic and inorganic fertilisers, soil fertility and slurry/fertiliser spreading and cultivation times. To evaluate the effectiveness of this policy, Teagasc, the Irish Agriculture and Food Development Authority, is undertaking a catchment scale audit on sources, sinks, and changes in nutrient use and export over several years. The Agricultural Catchments Programme is based on a science-stakeholder-management partnership to generate knowledge and specifically to protect water quality from nitrogen and phosphorus transfers within the constraints of the requirements of modern Irish agricultural practises. Eight catchments of 5-12 km2 have been selected for the programme to represent a range of agricultural intensities and vulnerabilities to nitrogen and phosphorus loss including catchments that are situated on permeable and impermeable

  5. Intensive rice agriculture deteriorates the quality of shallow groundwater in a typical agricultural catchment in subtropical central China.

    PubMed

    Wang, Yi; Li, Yuyuan; Li, Yong; Liu, Feng; Liu, Xinliang; Gong, Dianlin; Ma, Qiumei; Li, Wei; Wu, Jinshui

    2015-09-01

    High nitrogen (N) concentrations in rural domestic water supplies have been attributed to excessive agricultural N leaching into shallow groundwater systems; therefore, it is important to determine the impact of agriculture (e.g., rice production) on groundwater quality. To understand the impact of agricultural land use on the N concentrations in the shallow groundwater in subtropical central China, a large observation program was established to observe ammonium-N (NH4-N), nitrate-N (NO3-N), and total N (TN) concentrations in 161 groundwater observation wells from April 2010 to November 2012. The results indicated that the median values of NH4-N, NO3-N, and TN concentrations in the groundwater were 0.15, 0.39, and 1.38 mg N L(-1), respectively. A total of 36.3 % of the water samples were categorized as NH4-N pollution, and only a small portion of the samples were categorized as NO3-N pollution, based on the Chinese Environmental Quality Standards for Groundwater of GB/T 14848-93 (General Administration of Quality Supervision of China, 1993). These results indicated of moderate groundwater NH4-N pollution, which was mainly attributed to intensive rice agriculture with great N fertilizer application rates in the catchment. In addition, tea and vegetable fields showed higher groundwater NO3-N and TN concentrations than other agricultural land use types. The factorial correspondence analysis (FCA) suggested that the flooded agricultural land use types (e.g., single-rice and double-rice) had potential to impose NH4-N pollution, particularly in the soil exhausting season during from July to October. And, the great N fertilizer application rates could lead to a worse NO3-N and TN pollution in shallow groundwater. Hence, to protect groundwater quality and minimize NH4-N pollution, managing optimal fertilizer application and applying appropriate agricultural land use types should be implemented in the region. PMID:25940468

  6. Intensive rice agriculture deteriorates the quality of shallow groundwater in a typical agricultural catchment in subtropical central China.

    PubMed

    Wang, Yi; Li, Yuyuan; Li, Yong; Liu, Feng; Liu, Xinliang; Gong, Dianlin; Ma, Qiumei; Li, Wei; Wu, Jinshui

    2015-09-01

    High nitrogen (N) concentrations in rural domestic water supplies have been attributed to excessive agricultural N leaching into shallow groundwater systems; therefore, it is important to determine the impact of agriculture (e.g., rice production) on groundwater quality. To understand the impact of agricultural land use on the N concentrations in the shallow groundwater in subtropical central China, a large observation program was established to observe ammonium-N (NH4-N), nitrate-N (NO3-N), and total N (TN) concentrations in 161 groundwater observation wells from April 2010 to November 2012. The results indicated that the median values of NH4-N, NO3-N, and TN concentrations in the groundwater were 0.15, 0.39, and 1.38 mg N L(-1), respectively. A total of 36.3 % of the water samples were categorized as NH4-N pollution, and only a small portion of the samples were categorized as NO3-N pollution, based on the Chinese Environmental Quality Standards for Groundwater of GB/T 14848-93 (General Administration of Quality Supervision of China, 1993). These results indicated of moderate groundwater NH4-N pollution, which was mainly attributed to intensive rice agriculture with great N fertilizer application rates in the catchment. In addition, tea and vegetable fields showed higher groundwater NO3-N and TN concentrations than other agricultural land use types. The factorial correspondence analysis (FCA) suggested that the flooded agricultural land use types (e.g., single-rice and double-rice) had potential to impose NH4-N pollution, particularly in the soil exhausting season during from July to October. And, the great N fertilizer application rates could lead to a worse NO3-N and TN pollution in shallow groundwater. Hence, to protect groundwater quality and minimize NH4-N pollution, managing optimal fertilizer application and applying appropriate agricultural land use types should be implemented in the region.

  7. Measuring fallout radionuclides to constrain the origin and the dynamics of suspended sediment in an agricultural drained catchment (Loire River basin, France)

    NASA Astrophysics Data System (ADS)

    Le Gall, Marion; Evrard, Olivier; Foucher, Anthony; Laceby, J. Patrick; Salvador-Blanes, Sébastien; Lefèvre, Irène; Cerdan, Olivier; Ayrault, Sophie

    2015-04-01

    Soil erosion reaches problematic levels in agricultural areas of Northwestern Europe where tile drains may accelerate sediment transfer to rivers. This supply of large quantities of fine sediment to the river network leads to the degradation of water quality by increasing water turbidity, filling reservoirs and transporting contaminants. Agricultural patterns and landscapes features have been largely modified by human activities during the last century. To investigate erosion and sediment transport in lowland drained areas, a small catchment, the Louroux (24 km²), located in the French Loire River basin was selected. In this catchment, channels have been reshaped and more than 220 tile drains outlets have been installed after World War II. As a result, soil erosion and sediment fluxes strongly increased. Sediment supply needs to be better understood by quantifying the contribution of sources and the residence times of particles within the catchment. To this end, a network of river monitoring stations was installed, and fallout radionuclides (Cs-137, excess Pb-210 and Be-7) were measured in rainwater (n=3), drain tile outlets (n=4), suspended sediment (n=15), soil surface (n=30) and channel bank samples (n=15) between January 2013 and February 2014. Cs-137 concentrations were used to quantify the contribution of surface vs. subsurface sources of sediment. Results show a clear dominance of particles originating from surface sources (99 ± 1%). Be-7 and excess Pb-210 concentrations and calculation of Be-7/excess Pb-210 ratios in rainfall and suspended sediment samples were used to estimate percentages of recently eroded sediment in rivers. The first erosive winter storm mainly exported sediment depleted in Be-7 that likely deposited on the riverbed during the previous months. Then, during the subsequent floods, sediment was directly eroded and exported to the catchment outlet. Our results show the added value of combining spatial and temporal tracers to characterize

  8. Effect of Agricultural Practices on Hydrology and Water Chemistry in a Small Irrigated Catchment, Yakima River Basin, Washington

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Johnson, Henry M.

    2009-01-01

    The role of irrigation and artificial drainage in the hydrologic cycle and the transport of solutes in a small agricultural catchment in central Washington's Yakima Valley were explored using hydrologic, chemical, isotopic, age-dating, and mineralogical data from several environmental compartments, including stream water, ground water, overland flow, and streambed pore water. A conceptual understanding of catchment hydrology and solute transport was developed and an inverse end-member mixing analysis was used to further explore the effects of agriculture in this small catchment. The median concentrations of major solutes and nitrates were similar for the single field site and for the catchment outflow site, indicating that the net effects of transport processes for these constituents were similar at both scales. However, concentrations of nutrients were different at the two sites, suggesting that field-scale variations in agricultural practices as well as nearstream and instream biochemical processes are important components of agricultural chemical transformation and transport in this catchment. This work indicates that irrigation coupled with artificial drainage networks may exacerbate the ecological effects of agricultural runoff by increasing direct connectivity between fields and streams and minimizing potentially mitigating effects (denitrification and dilution, for example) of longer subsurface pathways.

  9. Hydrogeologic controls on nitrate transport in a small agricultural catchment, Iowa

    USGS Publications Warehouse

    Schilling, K.E.; Tomer, M.D.; Zhang, Y.-K.; Weisbrod, T.; Jacobson, P.; Cambardella, C.A.

    2007-01-01

    Effects of subsurface deposits on nitrate loss in stream riparian zones are recognized, but little attention has been focused on similar processes occurring in upland agricultural settings. In this paper, we evaluated hydrogeologic controls on nitrate transport processes occurring in a small 7.6 ha Iowa catchment. Subsurface deposits in the catchment consisted of upland areas of loess overlying weathered pre-Illinoian till, drained by two ephemeral drainageways that consisted of Holocene-age silty and organic rich alluvium. Water tables in upland areas fluctuated more than 4 m per year compared to less than 0.3 m in the drainageway. Water quality patterns showed a distinct spatial pattern, with groundwater in the drainageways having lower nitrate concentrations (10 mg L-1) as wells as lower pH, dissolved oxygen and redox, and higher ammonium and dissolved organic carbon levels. Several lines of evidence suggested that conditions are conducive for denitrification of groundwater flowing from uplands through the drainageways. Field-measured nitrate decay rates in the drainageways (???0.02 day-1) were consistent with other laboratory studies and regional patterns. Results from MODFLOW and MT3DMS simulations indicated that soils in the ephemeral drainageways could process all upland groundwater nitrate flowing through them. However, model-simulated tile drainage increased both water flux and nitrate loss from the upland catchment. Study results suggest that ephemeral drainageways can provide a natural nitrate treatment system in our upland glaciated catchments, offering management opportunities to reduce nitrate delivery to streams. Copyright 2007 by the American Geophysical Union.

  10. Co-location opportunities for renewable energy and agriculture

    NASA Astrophysics Data System (ADS)

    Ravi, Sujith; Macknick, Jordan; Lobell, David; Field, Christopher; Elchinger, Michael; Stoltenberg, Blaise

    2015-04-01

    Solar energy installations in arid and semi-arid regions are rapidly increasing, due to technological advances and policy changes. Large-scale expansion of solar infrastructure can adversely impact land and water resources. A major challenge is how to meet the ever-expanding energy demand with limited land and water resources, in the context of increasing competition from agricultural and domestic consumption. We explored opportunities to co-locate solar infrastructures and agricultural crops or biofuel feedstocks to maximize the efficiency of land and water use. We considered energy inputs/outputs, water use, greenhouse gas emissions and economics of solar installations in comparison to location-specific agricultural /biofuel crops in different arid regions of the world. The life cycle analyses show that co-located systems are economically viable in some areas and may provide opportunities for electrification and stimulate economic growth in rural areas. The water inputs for cleaning solar panels (photo voltaic) or mirrors (concentrated solar) and dust suppression are similar to amounts required for the desert-adapted crops (e.g. agave, aloe) considered in the study, suggesting the possibility of integrating the two systems to maximize water and land use efficiency. A life-cycle analysis of a hypothetical co-location indicated higher returns per m3 of water used than either system alone. Arid and semi arid regions of the world are experiencing high population growth, creating additional demand for land and water resources. In these water limited areas, coupled solar infrastructure and agriculture could be established on marginal lands, thus minimizing the socioeconomic and environmental issues resulting from cultivation of high value non-food crops in prime agricultural lands.

  11. Reducing agricultural nitrogen inputs in the German Baltic Sea catchment - trends and policy options.

    PubMed

    Ackermann, Andrea; Mahnkopf, Judith; Heidecke, Claudia; Venohr, Markus

    2016-01-01

    We depict recent agricultural nitrogen input and future loads to be expected in 2021 in the German Baltic Sea catchment to assess the feasibility of reaching water quality targets defined by the Marine Strategy Framework Directive (MSFD). We calculate recent and future nitrogen balances from agriculture by applying an interdisciplinary modelling system, also considering the effects of the Nitrate Directive. The nitrogen surpluses are transferred to a nutrient emission model to simulate nitrogen emissions, in-stream retention and resulting riverine loads to the sea until 2021. Finally, we analyse input reduction demands and agri-environmental measures necessary to attain water quality targets of the MSFD. The results are target-oriented mitigation options relevant for implementation, based on regional land use and nitrogen reduction demands. Furthermore, this paper discusses the effects of policies and measures implemented to reduce nitrogen loads. PMID:27642825

  12. Nitrate Degradation in the Aquifer of an Agricultural Catchment - An Integrative Modelling Approach

    NASA Astrophysics Data System (ADS)

    Kolbe, T.

    2015-12-01

    Agricultural activity has increased nitrate concentration in aquifers worldwide, which represents one of the major environmental challenges of our generation. Nitrate is highly mobile in groundwater and if transported to denitrifying environments (i.e. anaerobic areas with the presence of bioavailable organic carbon (basis for heterotrophic denitrification) or pyrite (basis for autotrophic denitrification)) degraded to nitrogenous gas. These areas are often small, but account for a high percentage of nitrate removal. Consequential groundwater flow, a nitrate supplier to these hot spots, influence significantly the fate of nitrate. A hydro-geochemical modeling approach is used to demonstrate the relation between nitrate inputs and denitrifying services provided by catchment structure and flow dynamics. A developed three-dimensional numerical groundwater flow model is capable to map groundwater flow and visualize preferential nitrate flow paths in a 35 km2 agricultural catchment, western France. Environmental proxies for microbial processes (natural isotopic abundance of nitrogen and oxygen) are used to identify denitrification processes in the aquifer. These information are combined with the flow paths obtained by the groundwater model in a post-processing step. An overall understanding of groundwater flow patterns and therefore nitrate input to denitrifying environments yield to better management decisions and predictions for nitrate attenuation.

  13. Managing the drinking water catchment areas: the French agricultural cooperatives feed back.

    PubMed

    Charrière, Séverine; Aumond, Claire

    2016-06-01

    The quality of raw water is problematic in France, largely polluted by nitrates and pesticides (Mueller and Helsel, Nutrients in the nation's waters-too much of a good thing? Geological Survey (U.S.), 1996; European Environment Agency, European waters-assessment of status and pressures, 2012).This type of pollution, even though not always due to agriculture (example of the catchment of Ambleville, county 95, France where the nitrate pollution is mainly due to sewers (2012)), has been largely related to the agricultural practices (Sci Total Environ 407:6034-6043, 2009).Taking note of this observation, and instead of letting it paralyze their actions, the agricultural cooperatives decided with Agrosolutions to act directly on the field with their subscribers to change the agricultural practices impacting the water and the environment.This article shows how the French agricultural cooperatives transformed the awareness of the raw water quality problem into an opportunity for the development and implementation of more precise and responsible practices, to protect their environment. They measure in order to pilot, co-construct and build the best action plans possible according to the three pillars of environment, economy and agronomy.

  14. Managing the drinking water catchment areas: the French agricultural cooperatives feed back.

    PubMed

    Charrière, Séverine; Aumond, Claire

    2016-06-01

    The quality of raw water is problematic in France, largely polluted by nitrates and pesticides (Mueller and Helsel, Nutrients in the nation's waters-too much of a good thing? Geological Survey (U.S.), 1996; European Environment Agency, European waters-assessment of status and pressures, 2012).This type of pollution, even though not always due to agriculture (example of the catchment of Ambleville, county 95, France where the nitrate pollution is mainly due to sewers (2012)), has been largely related to the agricultural practices (Sci Total Environ 407:6034-6043, 2009).Taking note of this observation, and instead of letting it paralyze their actions, the agricultural cooperatives decided with Agrosolutions to act directly on the field with their subscribers to change the agricultural practices impacting the water and the environment.This article shows how the French agricultural cooperatives transformed the awareness of the raw water quality problem into an opportunity for the development and implementation of more precise and responsible practices, to protect their environment. They measure in order to pilot, co-construct and build the best action plans possible according to the three pillars of environment, economy and agronomy. PMID:27074925

  15. Deriving a per-field land use and land cover map in an agricultural mosaic catchment

    NASA Astrophysics Data System (ADS)

    Seo, B.; Bogner, C.; Poppenborg, P.; Martin, E.; Hoffmeister, M.; Jun, M.; Koellner, T.; Reineking, B.; Shope, C. L.; Tenhunen, J.

    2014-09-01

    Detailed data on land use and land cover constitute important information for Earth system models, environmental monitoring and ecosystem services research. Global land cover products are evolving rapidly; however, there is still a lack of information particularly for heterogeneous agricultural landscapes. We censused land use and land cover field by field in the agricultural mosaic catchment Haean in South Korea. We recorded the land cover types with additional information on agricultural practice. In this paper we introduce the data, their collection and the post-processing protocol. Furthermore, because it is important to quantitatively evaluate available land use and land cover products, we compared our data with the MODIS Land Cover Type product (MCD12Q1). During the studied period, a large portion of dry fields was converted to perennial crops. Compared to our data, the forested area was underrepresented and the agricultural area overrepresented in MCD12Q1. In addition, linear landscape elements such as waterbodies were missing in the MODIS product due to its coarse spatial resolution. The data presented here can be useful for earth science and ecosystem services research. The data are available at the public repository Pangaea (doi:110.1594/PANGAEA.823677).

  16. Comparing erosion rates in burnt forests and agricultural fields for a mountain catchment in NW Iberia

    NASA Astrophysics Data System (ADS)

    Nunes, João Pedro; Marisa Santos, Juliana; Bernard-Jannin, Léonard; Keizer, Jan Jacob

    2013-04-01

    A large part of northwestern Iberia is nowadays covered by commercial forest plantations of eucalypts and maritime pines, which have partly replaced traditional agricultural land-uses. The humid Mediterranean climate, with mild wet winters and warm dry summers, creates favorable conditions for the occurrence of frequent and recurrent forest fires. Erosion rates in recently burnt areas have been the subject of numerous studies; however, there is still a lack of information on their relevance when compared with agricultural erosion rates, impairing a comprehensive assessment of the role of forests for soil protection. This study focuses on Macieira de Alcoba, head-water catchment in the Caramulo Mountain Range, north-central Portugal, with a mixture of agricultural fields (mostly a rotation between winter pastures and summer cereals) on the lower slopes and forest plantations (mostly eucalypts) on the upper slopes. Agricultural erosion in this catchment has been monitored since 2010; a forest fire in 2011 presented an opportunity to compare post-fire and agricultural erosion rates at nearby sites with comparable soil and climatic conditions. Erosion rates were monitored between 2010 and 2013 by repeated surveys of visible erosion features and, in particular, by mapping and measuring rills and gullies after important rainfall events. During the 2011/2012 hydrological year, erosion rates in the burnt forest were two orders of magnitude above those in agricultural fields, amounting to 17.6 and. 0.1 Mg ha-1, respectively. Rills were widespread in the burnt area, while in the agricultural area they were limited to a small number of fields with higher slope; these particular fields experienced an erosion rate of 2.3 Mg ha-1, still one order of magnitude lower than at the burnt forest site. The timing of the erosion features was also quite distinct for the burnt area and the agricultural fields. During the first nine months after the fire, rill formation was not observed in

  17. Effects of climate change and agricultural adaptation on nutrient loading from Finnish catchments to the Baltic Sea.

    PubMed

    Huttunen, Inese; Lehtonen, Heikki; Huttunen, Markus; Piirainen, Vanamo; Korppoo, Marie; Veijalainen, Noora; Viitasalo, Markku; Vehviläinen, Bertel

    2015-10-01

    Climate change is expected to increase annual and especially winter runoff, shorten the snow cover period and therefore increase both nutrient leaching from agricultural areas and natural background leaching in the Baltic Sea catchment. We estimated the effects of climate change and possible future scenarios of agricultural changes on the phosphorus and nitrogen loading to the Baltic Sea from Finnish catchments. In the agricultural scenarios we assumed that the prices of agricultural products are among the primary drivers in the adaptation to climate change, as they affect the level of fertilization and the production intensity and volume and, hence, the modeled changes in gross nutrient loading from agricultural land. Optimal adaptation may increase production while supporting appropriate use of fertilization, resulting in low nutrient balance in the fields. However, a less optimal adaptation may result in higher nutrient balance and increased leaching. The changes in nutrient loading to the Baltic Sea were predicted by taking into account the agricultural scenarios in a nutrient loading model for Finnish catchments (VEMALA), which simulates runoff, nutrient processes, leaching and transport on land, in rivers and in lakes. We thus integrated the effects of climate change in the agricultural sector, nutrient loading in fields, natural background loading, hydrology and nutrient transport and retention processes.

  18. Integrated validation of modeled plant growth, nitrogen- and water-fluxes in the agricultural used Rur catchment in Western Germany

    NASA Astrophysics Data System (ADS)

    Korres, Wolfgang; Klar, Christian; Reichenau, Tim; Fiener, Peter; Schneider, Karl

    2010-05-01

    Numerous studies have shown that agricultural management is one of the key drivers for spatio-temporal patterns of soil moisture in agricultural landscapes. The process-based ecohydrological model components of the integrated decision support system DANUBIA are used to identify the important processes and feedbacks determining soil-moisture patterns in agroecosystems. Interactions between plant growth, soil hydrology and soil nitrogen transformation processes are modeled by using a dynamically coupled modeling approach. Integrative validation of all three model components serves as a basis for modeling analysis of spatial soil moisture patterns. DANUBIA is parameterized and validated for the Rur catchment located in Western Germany. For integrative validation, an extensive three year dataset (2007 - 2009) of soil moisture- (TDR, FDR), plant- (LAI, organ specific biomass and N) and soil- (texture, N, C) measurements was acquired. Plant measurements on an arable land test site were carried out biweekly. Measurements were conducted for winter wheat, maize and sugar beet during the growing season. Soil nitrogen and carbon measurements were taken before, during and after the growing season. Field averages of plant and soil parameters are derived from three individual measuring locations within each test field. Soil moisture was measured with three FDR soil moisture stations in 10 and 30 cm depth. In a grassland test site biomass measurements were carried out biweekly in 2009. Soil moisture was monitored at different locations in up to 60 cm soil depth using FDR- and TDR-stations. Meteorological data was measured with an eddy flux (arable land) and energy flux station (grassland test site). First results of point validation are in very good agreement with field measurements. Model results for winter wheat in 2007/2008 match field measurements well for both, the overall biomass (R2= 0.97, rel. RMSE = 16.8%, Nash Sutcliff - model efficiency ME = 0.96) as well as for

  19. Deriving a per-field land use and land cover map in an agricultural mosaic catchment

    NASA Astrophysics Data System (ADS)

    Seo, B.; Bogner, C.; Poppenborg, P.; Martin, E.; Hoffmeister, M.; Jun, M.; Koellner, T.; Reineking, B.; Shope, C. L.; Tenhunen, J.

    2014-04-01

    Detailed data on land use and land cover constitutes important information for Earth system models, environmental monitoring and ecosystem services research. Global land cover products are evolving rapidly, however, there is still a lack of information particularly for heterogeneous agricultural landscapes. We censused land use and land cover field by field in an agricultural mosaic catchment Haean, South Korea. We recorded the land cover types with additional information on agricultural practice and make this data available at the public repository Pangaea (doi:10.1594/PANGAEA.823677). In this paper we introduce the data, its collection and the post-processing protocol. During the studied period, a large portion of dry fields was converted to perennial crops. A comparison between our dataset and MODIS Land Cover Type (MCD12Q1) suggested that the MODIS product was restricted in this area since it does not distinguish irrigated fields from general croplands. In addition, linear landscape elements such as water bodies were not detected in the MODIS product due to its coarse spatial resolution. The data presented here can be useful for earth science and ecosystem services research.

  20. Uncertainty assessments and hydrological implications of climate change in two adjacent agricultural catchments of a rapidly urbanizing watershed.

    PubMed

    Oni, S K; Futter, M N; Molot, L A; Dillon, P J; Crossman, J

    2014-03-01

    Lake Simcoe is the most important inland lake in Southern Ontario. The watershed is predominantly agricultural and under increasing pressure from urbanization, leading to changing runoff patterns in rivers draining to the lake. Uncertainties in rainfall-runoff modeling in tributary catchments of the Lake Simcoe Watershed (LSW) can be an order of magnitude larger than pristine watersheds, hampering water quality predictions and export calculations. Here we conduct a robust assessment to constrain the uncertainty in hydrological simulations and projections in the LSW using two representative adjacent agricultural catchments. Downscaled CGCM 3 projections using A1B and A2 emission scenarios projected increases of 4°C in air temperature and a 26% longer growing season. The fraction of precipitation falling as snow will decrease. Spring runoff is an important event in LSW but individual HBV best calibrated parameter sets under-predicted peak flows by up to 32%. Using an ensemble of behavioral parameter sets achieved credible representations of present day hydrology and constrained uncertainties in future projections. Parameter uncertainty analysis showed that the catchments differ in terms of their snow accumulation/melt and groundwater dynamics. Human activities exacerbate the differences in hydrological response. Model parameterization in one catchment could not generate credible hydrological simulations in the other. We cautioned against extrapolating results from monitored to ungauged catchments in managed watersheds like the LSW.

  1. Re-examining the basis for source discrimination and data corrections used by sediment fingerprinting studies in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Smith, Hugh; Blake, Will

    2014-05-01

    The sediment fingerprinting technique has been widely used in agricultural catchments to quantify fine sediment contributions from various land use sources. This application of the technique depends on the key assumption that land-use source signatures imprinted on catchment soils are decipherable from those due to other landscape factors affecting soil and sediment properties. We re-examine this key assumption by investigating (i) the physical and chemical basis for source discrimination and (ii) potential factors that may confound source un-mixing in agricultural catchments, including particle size and organic matter effects on tracer properties. The study is situated in the River Tamar, a predominantly agricultural catchment in south-west England that has also been affected by mining. Source discrimination focused on pasture and cultivated land uses and channel banks. Monthly, time-integrated suspended sediment samples were collected across seven catchments for a 12-month period. Physical and chemical properties measured in source soils and sediment included fallout radionuclides, major and minor element geochemical constituents, total organic carbon and particle size. Source discrimination was entirely dependent on differences in tracer property concentrations between surface and sub-surface soils. This is based on fallout radionuclide concentrations that are surface-elevated, while many geochemical properties are surface-depleted due to weathering and pedogenetic effects, although surface soil contamination can reverse this trend. Source discrimination in the study catchments was limited by (i) rotation of cultivated and pasture fields resulting in reduced differences between these two sources and (ii) the cultivated source signature resembling a mix of the pasture and channel bank sources for many tracer properties. Furthermore, metal pollution from abandoned historic mines and organic enrichment of sediment from areas of peaty soil resulted in the non

  2. Dynamics of nitrate and chloride during storm events in agricultural catchments with different subsurface drainage intensity (Indiana, USA)

    NASA Astrophysics Data System (ADS)

    Kennedy, Casey D.; Bataille, Clement; Liu, Zhongfang; Ale, Srinivasulu; VanDeVelde, Justin; Roswell, Charles R.; Bowling, Laura C.; Bowen, Gabriel J.

    2012-10-01

    SummaryDrainage tiles buried beneath many naturally poorly drained agricultural fields in the Midwestern U.S. are believed to "short circuit" pools of NO3--laden soil water and shallow groundwater directly into streams that eventually discharge to the Mississippi River. Although much is known about the mechanisms controlling this regionally pervasive practice of artificial drainage at the field-plot scale, an integrative assessment of the effect of drainage density (i.e., the number of tile drains per unit area) on the transport of nutrients and solutes in streams at the catchment scale is lacking. In this study, we quantified the flux and hydrological pathways of agricultural NO3- and road-salt Cl- from catchments lying within the Wabash River Basin, a major source of NO3- to the Mississippi River. The paired catchments differ primarily in drainage density (70% vs. 31%, by catchment area), with essentially all other agricultural management, land use, and soil drainage characteristics remaining equal. Our study revealed two significant hydrological responses to increased drainage density: (1) more near-surface storm event water (dilute in both NO3- and Cl) was transported early in the storm and (2) higher transport of Cl--laden pre-event soil water relative to shallow groundwater elevated in NO3- occurred later in the storm. These patterns are consistent with a proposed conceptual model in which increased drainage density results in (1) greater transport of soil water to streams and (2) a delayed rise in the water table. With respect to nutrient management implications, these results indicate that increased drainage density impacts subsurface pools of Cl- and NO3- differently, a finding that we propose is linked to soil/ground water dynamics in artificially drained agricultural catchments.

  3. Using continuous monitoring of physical parameters to better estimate phosphorus fluxes in a small agricultural catchment

    NASA Astrophysics Data System (ADS)

    Minaudo, Camille; Dupas, Rémi; Moatar, Florentina; Gascuel-Odoux, Chantal

    2016-04-01

    Phosphorus fluxes in streams are subjected to high temporal variations, questioning the relevance of the monitoring strategies (generally monthly sampling) chosen to assist EU Directives to capture phosphorus fluxes and their variations over time. The objective of this study was to estimate the annual and seasonal P flux uncertainties depending on several monitoring strategies, with varying sampling frequencies, but also taking into account simultaneous and continuous time-series of parameters such as turbidity, conductivity, groundwater level and precipitation. Total Phosphorus (TP), Soluble Reactive Phosphorus (SRP) and Total Suspended Solids (TSS) concentrations were surveyed at a fine temporal frequency between 2007 and 2015 at the outlet of a small agricultural catchment in Brittany (Naizin, 5 km2). Sampling occurred every 3 to 6 days between 2007 and 2012 and daily between 2013 and 2015. Additionally, 61 storms were intensively surveyed (1 sample every 30 minutes) since 2007. Besides, water discharge, turbidity, conductivity, groundwater level and precipitation were monitored on a sub-hourly basis. A strong temporal decoupling between SRP and particulate P (PP) was found (Dupas et al., 2015). The phosphorus-discharge relationships displayed two types of hysteretic patterns (clockwise and counterclockwise). For both cases, time-series of PP and SRP were estimated continuously for the whole period using an empirical model linking P concentrations with the hydrological and physic-chemical variables. The associated errors of the estimated P concentrations were also assessed. These « synthetic » PP and SRP time-series allowed us to discuss the most efficient monitoring strategies, first taking into account different sampling strategies based on Monte Carlo random simulations, and then adding the information from continuous data such as turbidity, conductivity and groundwater depth based on empirical modelling. Dupas et al., (2015, Distinct export dynamics for

  4. Scaling issues relating to phosphorus transfer from land to water in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Brazier, R. E.; Heathwaite, A. L.; Liu, S.

    2005-03-01

    Various scales of input data exist to parameterise diffuse pollution models for the UK. For screening methodologies such as the phosphorus indicators tool—PIT [Heathwaite, A.L., Sharpley, A.N., Bechmann, M., 2003a. The conceptual basis for a decision support framework to assess the risk of phosphorus loss at the field scale across Europe. Journal of Plant Nutrition and Soil Science 166, 1-12; Heathwaite, A.L., Burke, S., Quinn, P.F., 2003b. The nutrient export risk matrix (the NERM) for strategic application of biosolids to agricultural land. International Association for Hydrological Sciences Publication 285, 1-9], which is applied throughout England and Wales, some assessment of the implications of using input data derived at different scales must be made. This work is further driven by practical issues such as licensing costs and data availability, which mean that not all data are readily accessible for all end users. This paper represents a first step towards quantifying the 'value-added' to model predictions by using input data derived at three different scales: 50×50 m, 1×1 km and 5×5 km. Model runs using PIT were carried out against observed phosphorus water quality data from the River Start and River Gara, which are the main sub-catchments of Slapton Ley, a grade 1 National Nature Reserve in southwest England. Model runs for the main 46 km 2 Slapton catchment were also undertaken. The results show that some improvement in the ability of the model to capture the observed water quality behaviour may be made by using higher resolution DEM data, though these improvements may be outweighed by the extra data processing and computational time. Conversely, model runs driven by the 5 km data demonstrate consistent under-prediction for all three test catchments, which is perhaps not surprising given the greater degree of averaging underlying datasets at this scale. Results from the 1 km datasets provide the best agreement with observed water quality data, and

  5. Understanding the controls on deposited fine sediment in the streams of agricultural catchments.

    PubMed

    Naden, P S; Murphy, J F; Old, G H; Newman, J; Scarlett, P; Harman, M; Duerdoth, C P; Hawczak, A; Pretty, J L; Arnold, A; Laizé, C; Hornby, D D; Collins, A L; Sear, D A; Jones, J I

    2016-03-15

    Excessive sediment pressure on aquatic habitats is of global concern. A unique dataset, comprising instantaneous measurements of deposited fine sediment in 230 agricultural streams across England and Wales, was analysed in relation to 20 potential explanatory catchment and channel variables. The most effective explanatory variable for the amount of deposited sediment was found to be stream power, calculated for bankfull flow and used to index the capacity of the stream to transport sediment. Both stream power and velocity category were highly significant (p ≪ 0.001), explaining some 57% variation in total fine sediment mass. Modelled sediment pressure, predominantly from agriculture, was marginally significant (p<0.05) and explained a further 1% variation. The relationship was slightly stronger for erosional zones, providing 62% explanation overall. In the case of the deposited surface drape, stream power was again found to be the most effective explanatory variable (p<0.001) but velocity category, baseflow index and modelled sediment pressure were all significant (p<0.01); each provided an additional 2% explanation to an overall 50%. It is suggested that, in general, the study sites were transport-limited and the majority of stream beds were saturated by fine sediment. For sites below saturation, the upper envelope of measured fine sediment mass increased with modelled sediment pressure. The practical implications of these findings are that (i) targets for fine sediment loads need to take into account the ability of streams to transport/retain fine sediment, and (ii) where agricultural mitigation measures are implemented to reduce delivery of sediment, river management to mobilise/remove fines may also be needed in order to effect an improvement in ecological status in cases where streams are already saturated with fines and unlikely to self-cleanse.

  6. Patterns and processes of nutrient transfers from land to water: a catchment approach to evaluate Good Agricultural Practice in Ireland

    NASA Astrophysics Data System (ADS)

    Mellander, P.-E.; Melland, A. R.; Shortle, G.; Wall, D.; Mechan, S.; Buckley, C.; Fealy, R.; Jordan, P.

    2009-04-01

    Eutrophication of fresh, transitional and coastal waters by excessive nutrient inputs is one of the most widespread water quality problems in developed countries. Sources of nutrient nitrogen (N) and phosphorus (P) can come from a multiplicity of sources and be dependent on numerous hydrological controls from catchments with both urban and agricultural landuses. Aquatic impacts are widely reported as a result of excessive nutrient transfers from land to water and include changes in ecological integrity and loss of amenity. In the European Union, the Water Framework Directive (WFD) and associated Directives are the key structures with which member states must develop national and often trans-national polices to deal with issues of water resources management. The linked Nitrates Directive is particularly concerned with integrating sustainable agriculture and good water quality objectives and is written into national polices. In Ireland this policy is the Nitrates Directive National Action Programme (NAP), Statutory Instruction 378, Good Agricultural Practise regulation, and amongst other things, sets targets and limits on the use of organic and inorganic fertilisers, soil fertility and slurry/fertiliser spreading and cultivation times. To evaluate the effectiveness of this policy, Teagasc, the Irish Agriculture and Food Development Authority, is undertaking a catchment scale audit on sources, sinks, and changes in nutrient use and export over several years. The Agricultural Catchments Programme is based on a science-stakeholder-management partnership to generate knowledge and specifically to protect water quality from nitrogen and phosphorus transfers within the constraints of the requirements of modern Irish agricultural practises. Eight catchments of 5-12 km2 have been selected for the programme to represent a range of agricultural intensities and vulnerabilities to nitrogen and phosphorus loss including catchments that are situated on permeable and impermeable

  7. Catchments Under Change: Assessing Impacts and Feedbacks from New Biomass Crops in the Agricultural Midwestern USA

    NASA Astrophysics Data System (ADS)

    Yaeger, Mary; Housh, Mashor; Ng, Tze Ling; Cai, Ximing; Sivapalan, Murugesu

    2013-04-01

    In order to meet the challenges of future change, it is essential to understand the environmental response to current conditions and historical changes. The central Midwestern US is an example of anthropogenic change and environmental feedbacks, having been transformed from a natural grassland system to an artificially-drained agricultural system. Environmental feedbacks from reduced soil residence times coupled with increasing crop fertilization have manifested as a hypoxic zone in the Gulf of Mexico. In an effort to address these feedbacks while meeting new crop demands, large-scale planting of high-yielding perennial biomass crops has been proposed. This could be detrimental to both human and environmental streamflow users because these plants require more water than do current crops. The lowest natural flows in this shallow groundwater-dependent region coincide with the peak of the growing season, thus compounding the problem. Therefore, for large-scale biomass crop production to be sustainable, these tradeoffs between water quality and water quantity must be fully understood. To better understand the catchment response to current conditions, we have analyzed streamflow data in a central Illinois agricultural watershed. To deal with future changes, we have developed an integrated systems model which provides, among other outputs, the land usage that maximizes the benefit to the human system. This land use is then implemented in a separate hydrologic model to determine the impact to the environmental system. Interactively running the two models, taking into account the catchment response to human actions as well as possible anthropogenic responses to the environment, allows us to examine the feedbacks between the two systems. This lets us plot the trajectory of the state of the system, which we hypothesize will show emergent internal properties of the coupled system. Initial tests of this modeling framework show promise that this may indeed be the case. External

  8. Assessing the impacts of sustainable agricultural practices for water quality improvements in the Vouga catchment (Portugal) using the SWAT model.

    PubMed

    Rocha, João; Roebeling, Peter; Rial-Rivas, María Ermitas

    2015-12-01

    The extensive use of fertilizers has become one of the most challenging environmental issues in agricultural catchment areas. In order to reduce the negative impacts from agricultural activities and to accomplish the objectives of the European Water Framework Directive we must consider the implementation of sustainable agricultural practices. In this study, we assess sustainable agricultural practices based on reductions in N-fertilizer application rates (from 100% to 0%) and N-application methods (single, split and slow-release) across key agricultural land use classes in the Vouga catchment, Portugal. The SWAT model was used to relate sustainable agricultural practices, agricultural yields and N-NO3 water pollution deliveries. Results show that crop yields as well as N-NO3 exportation rates decrease with reductions in N-application rates and single N-application methods lead to lower crop yields and higher N-NO3 exportation rates as compared to split and slow-release N-application methods.

  9. Assessing the impacts of sustainable agricultural practices for water quality improvements in the Vouga catchment (Portugal) using the SWAT model.

    PubMed

    Rocha, João; Roebeling, Peter; Rial-Rivas, María Ermitas

    2015-12-01

    The extensive use of fertilizers has become one of the most challenging environmental issues in agricultural catchment areas. In order to reduce the negative impacts from agricultural activities and to accomplish the objectives of the European Water Framework Directive we must consider the implementation of sustainable agricultural practices. In this study, we assess sustainable agricultural practices based on reductions in N-fertilizer application rates (from 100% to 0%) and N-application methods (single, split and slow-release) across key agricultural land use classes in the Vouga catchment, Portugal. The SWAT model was used to relate sustainable agricultural practices, agricultural yields and N-NO3 water pollution deliveries. Results show that crop yields as well as N-NO3 exportation rates decrease with reductions in N-application rates and single N-application methods lead to lower crop yields and higher N-NO3 exportation rates as compared to split and slow-release N-application methods. PMID:26196068

  10. Where to locate a tree plantation within a low rainfall catchment to minimise impacts on groundwater resources

    NASA Astrophysics Data System (ADS)

    Dean, J. F.; Webb, J. A.; Jacobsen, G. E.; Chisari, R.; Dresel, P. E.

    2014-08-01

    Despite the fact that there are many studies that consider the impacts of plantation forestry on water resources, and others that explore the spatial heterogeneity of groundwater recharge in dry regions, there is little marriage of the two subjects in forestry management guidelines and legislation. Here we carry out an in-depth analysis of the groundwater and surface water regime in a low rainfall, high evapotranspiration paired catchment study to examine the impact of reforestation, using water table fluctuations and chloride mass balance methods to estimate groundwater recharge. Recharge estimations using the chloride mass balance method were shown to be more likely representative of groundwater recharge regimes prior to the planting of the trees, and most likely prior to widespread land clearance by European settlers. These estimations were complicated by large amounts of recharge occurring as a result of runoff and streamflow in the lower parts of the catchment. Water table fluctuation method estimations of recharge verified that groundwater recharge occurs predominantly in the lowland areas of the study catchment. This leads to the conclusion that spatial variations in recharge are important considerations for locating tree plantations with respect to conserving water resources for downstream users. For dry regions, this means planting trees in the upland parts of the catchments, as recharge is shown to occur predominantly in the lowland areas.

  11. A review of monitoring approaches and outcomes of surface water quality mitigation measures in meso-scale agricultural catchments

    NASA Astrophysics Data System (ADS)

    Melland, Alice; Jordan, Phil; Murphy, Paul; Mellander, Per-Erik; Shortle, Ger

    2013-04-01

    Critical for an informative feedback loop from scientific monitoring of biophysical change, to making and implementing suitable policy to effect the desired change, are both accurate measurement of biophysical change, and measurement or modelling of the causes of change. For example the European Environment Agency uses the DPSIR framework to assess change in the state (S) of natural resources due to changes in specific drivers (D) and pressures (P) that can have an impact (I) and are the focus of policy responses (R). This paper provides a review of meso-catchment scale studies worldwide that have measured the impacts of agricultural land management practice on surface water quality. Approaches for measuring water quality impacts of agricultural mitigation practices in meso-catchments (1-100 km2) ranged from measuring water quality over a time series, such as before and after a land management change, or over a spatial series such as in paired catchments with and without agricultural practice change (or over a gradient of practices or catchment types), and by cause and effect studies that measure sources, pathways and impacts of practices. Agricultural mitigation measures had no measurable effect, or positive, or negative effects on water quality over periods of 3 to 20 years. In most catchments where beneficial effects of mitigation measures were successfully measured, combinations of measures that address nutrient or pollutant sources, pathways, delivery and impact have been implemented. Successful farm measures included substantial reductions in the intensity of the farming systems, improved engineering and crop management to reduce runoff and drainage transport of nutrients and sediment, as well as high rates of implementation of measures across the catchments. In many cases, the potential to measure improvement in one or more water quality indicators was limited by the impact of a few management or weather events. Reasons that water quality did not improve in

  12. Suspended sediment export in five intensive agricultural river catchments with contrasting land use and soil drainage characteristics

    NASA Astrophysics Data System (ADS)

    Sherriff, Sophie; Rowan, John; Melland, Alice; Jordan, Phil; Fenton, Owen; hUallacháin, Daire Ó.

    2015-04-01

    Soil erosion and sediment loss from land can have a negative impact on the chemical and ecological quality of freshwater resources. In catchments dominated by agriculture, prediction of soil erosion risk is complex due to the interaction of physical characteristics such as topography, soil erodibility, hydrological connectivity and climate. Robust measurement approaches facilitate the assessment of sediment loss magnitudes in relation to a range of agricultural settings. These approaches improve our understanding of critical sediment transfer periods and inform development of evidence-based and cost-effective management strategies. The aim of this study was to i) assess the efficacy of out-of-channel (ex-situ) suspended sediment measurement approaches, ii) to quantify the variability of sediment exported from five river catchments with varying hydrology and agricultural land uses over multiple years and iii) to investigate trends in relation to physical and land use characteristics when sediment data were compared between catchments. Sediment data were collected in five intensive agricultural river catchments in Ireland (3-11 km2) which featured contrasting land uses (predominantly intensive grassland or arable) and soil drainage classes (well, moderate and poor). High-resolution suspended sediment concentration data (SSC - using a calibrated turbidity proxy) were collected ex-situ and combined with in-stream discharge data measured at each catchment outlet to estimate suspended sediment yield (SSY - t km-2 yr-1). In two catchments additional in-stream turbidity monitoring equipment replicated ex-situ measurements including site specific calibration of individual in-stream and ex-situ turbidity probes. Depth-integrated samples were collected to assess the accuracy of both approaches. Method comparison results showed that true SSC values (from depth-integrated sampling) were predominantly within the 95% confidence interval of ex-situ predicted SSC consequently

  13. Spatio-temporal variability of the molecular fingerprint of soil dissolved organic matter in a headwater agricultural catchment

    NASA Astrophysics Data System (ADS)

    Jeanneau, Laurent; Pierson-Wickmann, Anne-Catherine; Jaffrezic, Anne; Lambert, Thibault; Gruau, Gérard

    2013-04-01

    Dissolved organic matter (DOM) is implied in (i) ecosystem services such as the support of biodiversity, (ii) the alteration of the drinkable water quality by formation of trihalomethane and (iii) the transfer of micropollutants from soils to rivers. Moreover, since DOM connects soils and oceans that are interacting with the atmosphere, understanding its biogeochemistry will help in investigating the carbon cycle and in creating strategies to mitigate climate change. DOM in headwater stream ecosystems is mainly inherited from allochtonous inputs with different reservoirs being mobilized during storm and interstorm events at the scale of an hydrological year. Those changes in DOM reservoirs, if accompanied by composition and reactivity changes, may impact DOM ecosystem services and drinking water production processes. Elucidating the compositional changes due to changes in the source of DOM in rivers has thus become a important axis of DOM research. The aim of this study is to test the ability of the molecular tools of the organic geochemistry and more specifically the combination of thermochemiolysis and gas chromatography - mass spectrometry (THM-GC-MS) to (i) link the variability of the river DOM composition to different DOM reservoirs in catchment soils and (ii) provide hypothesis on the nature and the mechanisms of formation (microbial growth, litter decomposition) of those reservoirs. This analytical method seems particularly adapted since it allows the differentiation between vegetal and microbial inputs and the determination of the extent of the biodegradation process of biomolecules such as lignin. To test this method, the molecular fingerprint of soil DOM has been investigated in the wetland area of a small (500 ha) agricultural catchment (the so-called Kervidy-Naizin catchment) located in Brittany, western France. The soil DOM was sampled fortnightly at three depths using zero-tension lysimeters during the hydrological year 2010-2011. The samples were

  14. Contrasted distribution of colloidal and true dissolved phosphorus in shallow groundwaters from a small, lowland agricultural catchment

    NASA Astrophysics Data System (ADS)

    GU, S.; Gruau, G.; Dupas, R.; Rivard, C.; Gascuel-odoux, C.; Dorioz, J. M.

    2015-12-01

    Colloids (1~1000 nm) are major phosphorus (P) carrier phases in agricultural soils. Most studies developed so far on the role of colloids in P transport have however focused on laboratory extracted colloids with only little attention being paid to natural soil solutions. Here, we monitored P speciation in natural soil solutions along two transects in a small, agricultural catchment located in Western France, during one hydrological year. We compared the P speciation in these solutions (<0.45 μm) with that of P in lab solutions (NaCl 0.001 M) obtained from the same soil samples, using different speciation techniques, including ultrafiltration combined with inductively coupled plasma mass spectrometry (UF-ICP-MS) and XANES spectroscopy. XANES data evidenced no difference in terms of P speciation between lab extracted colloids and bulk soil samples, however revealing a strong enrichment of P in extracted colloids, thereby confirming the role of colloids as a major P carrier phase in agricultural soils. In natural soil solutions, total dissolved P concentrations (TDP) were similar in transect K and G, while molybdate reactive dissolved P (MRDP) was nearly 10 times higher in transect G than in Transect K. UF-ICP-MS data showed that the natural and lab extracted colloids consisted of a homogeneous mixture of Fe(Al)-oxides and organic matter, despite strong spatial variations of colloidal P proportion in natural waters (from 25 to 70%). Overall, transect G waters showed high proportions of truly-dissolved MRDP (up to 65%), waters in Transect K being richer in colloidal P and truly-dissolved organic P (OP). Lab extractions, however, did not reveal the same difference in P speciation, all the extracts being dominated by colloidal P and MRDP in roughly the same proportions. So far, the cause of this difference is not clearly identified. Though confirming the important role of colloids as a major P carrier phase in agricultural soils, this study indicates that natural soil

  15. USE OF MACROINVERTEBRATE METRICS TO DIFFERENTIATE BETWEEN THE EFFECTS OF DECREASED CANOPY AND INCREASED EMBEDDEDNESS IN STREAMS IN DRAINING AGRICULTURAL CATCHMENTS

    EPA Science Inventory

    Reduced canopy as a result of lost riparian vegetation and increased substrate embeddedness as a result of greater inputs of the fine sediments are two environmental stressor gradients that often covary in streams draining agricultural catchments. An understanding of relationship...

  16. Using lumped modelling for providing simple metrics and associated uncertainties of catchment response to agricultural-derived nitrates pollutions

    NASA Astrophysics Data System (ADS)

    RUIZ, L.; Fovet, O.; Faucheux, M.; Molenat, J.; Sekhar, M.; Aquilina, L.; Gascuel-odoux, C.

    2013-12-01

    The development of simple and easily accessible metrics is required for characterizing and comparing catchment response to external forcings (climate or anthropogenic) and for managing water resources. The hydrological and geochemical signatures in the stream represent the integration of the various processes controlling this response. The complexity of these signatures over several time scales from sub-daily to several decades [Kirchner et al., 2001] makes their deconvolution very difficult. A large range of modeling approaches intent to represent this complexity by accounting for the spatial and/or temporal variability of the processes involved. However, simple metrics are not easily retrieved from these approaches, mostly because of over-parametrization issues. We hypothesize that to obtain relevant metrics, we need to use models that are able to simulate the observed variability of river signatures at different time scales, while being as parsimonious as possible. The lumped model ETNA (modified from[Ruiz et al., 2002]) is able to simulate adequately the seasonal and inter-annual patterns of stream NO3 concentration. Shallow groundwater is represented by two linear stores with double porosity and riparian processes are represented by a constant nitrogen removal function. Our objective was to identify simple metrics of catchment response by calibrating this lumped model on two paired agricultural catchments where both N inputs and outputs were monitored for a period of 20 years. These catchments, belonging to ORE AgrHys, although underlain by the same granitic bedrock are displaying contrasted chemical signatures. The model was able to simulate the two contrasted observed patterns in stream and groundwater, both on hydrology and chemistry, and at the seasonal and pluri-annual scales. It was also compatible with the expected trends of nitrate concentration since 1960. The output variables of the model were used to compute the nitrate residence time in both the

  17. Quantifying sediment sources in a lowland agricultural catchment pond using (137)Cs activities and radiogenic (87)Sr/(86)Sr ratios.

    PubMed

    Le Gall, Marion; Evrard, Olivier; Foucher, Anthony; Laceby, J Patrick; Salvador-Blanes, Sébastien; Thil, François; Dapoigny, Arnaud; Lefèvre, Irène; Cerdan, Olivier; Ayrault, Sophie

    2016-10-01

    Soil erosion often supplies high sediment loads to rivers, degrading water quality and contributing to the siltation of reservoirs and lowland river channels. These impacts are exacerbated in agricultural catchments where modifications in land management and agricultural practices were shown to accelerate sediment supply. In this study, sediment sources were identified with a novel tracing approach combining cesium ((137)Cs) and strontium isotopes ((87)Sr/(86)Sr) in the Louroux pond, at the outlet of a lowland cultivated catchment (24km(2), Loire River basin, France) representative of drained agricultural areas of Northwestern Europe. Surface soil (n=36) and subsurface channel bank (n=17) samples were collected to characterize potential sources. Deposited sediment (n=41) was sampled across the entire surface of the pond to examine spatial variation in sediment deposits. In addition, a 1.10m sediment core was sampled in the middle of the pond to reconstruct source variations throughout time. (137)Cs was used to discriminate between surface and subsurface sources, whereas (87)Sr/(86)Sr ratios discriminated between lithological sources. A distribution modeling approach quantified the relative contribution of these sources to the sampled sediment. Results indicate that surface sources contributed to the majority of pond (μ 82%, σ 1%) and core (μ 88%, σ 2%) sediment with elevated subsurface contributions modeled near specific sites close to the banks of the Louroux pond. Contributions of the lithological sources were well mixed in surface sediment across the pond (i.e., carbonate sediment contribution, μ 48%, σ 1% and non-carbonate sediment contribution, μ 52%, σ 3%) although there were significant variations of these source contributions modeled for the sediment core between 1955 and 2013. These fluctuations reflect both the progressive implementation of land consolidation schemes in the catchment and the eutrophication of the pond. This original sediment

  18. Quantifying sediment sources in a lowland agricultural catchment pond using (137)Cs activities and radiogenic (87)Sr/(86)Sr ratios.

    PubMed

    Le Gall, Marion; Evrard, Olivier; Foucher, Anthony; Laceby, J Patrick; Salvador-Blanes, Sébastien; Thil, François; Dapoigny, Arnaud; Lefèvre, Irène; Cerdan, Olivier; Ayrault, Sophie

    2016-10-01

    Soil erosion often supplies high sediment loads to rivers, degrading water quality and contributing to the siltation of reservoirs and lowland river channels. These impacts are exacerbated in agricultural catchments where modifications in land management and agricultural practices were shown to accelerate sediment supply. In this study, sediment sources were identified with a novel tracing approach combining cesium ((137)Cs) and strontium isotopes ((87)Sr/(86)Sr) in the Louroux pond, at the outlet of a lowland cultivated catchment (24km(2), Loire River basin, France) representative of drained agricultural areas of Northwestern Europe. Surface soil (n=36) and subsurface channel bank (n=17) samples were collected to characterize potential sources. Deposited sediment (n=41) was sampled across the entire surface of the pond to examine spatial variation in sediment deposits. In addition, a 1.10m sediment core was sampled in the middle of the pond to reconstruct source variations throughout time. (137)Cs was used to discriminate between surface and subsurface sources, whereas (87)Sr/(86)Sr ratios discriminated between lithological sources. A distribution modeling approach quantified the relative contribution of these sources to the sampled sediment. Results indicate that surface sources contributed to the majority of pond (μ 82%, σ 1%) and core (μ 88%, σ 2%) sediment with elevated subsurface contributions modeled near specific sites close to the banks of the Louroux pond. Contributions of the lithological sources were well mixed in surface sediment across the pond (i.e., carbonate sediment contribution, μ 48%, σ 1% and non-carbonate sediment contribution, μ 52%, σ 3%) although there were significant variations of these source contributions modeled for the sediment core between 1955 and 2013. These fluctuations reflect both the progressive implementation of land consolidation schemes in the catchment and the eutrophication of the pond. This original sediment

  19. Monitoring Two Small Catchments to Evaluate Effects of No-Tillage Agricultural Management in São Paulo State, Brazil

    NASA Astrophysics Data System (ADS)

    Figueiredo, R. D. O.; Gonçalves, A. O.; Melo, A. D. S.; de Bona, F. D.; Hernani, L. C.

    2015-12-01

    In recent years, declines in water and soil quality have been observed in areas of Brazil where no-till agriculture had been previously implemented. Poor soil management associated with the absence of public policies has caused soil erosion, because many farmers are moving back from no-till to traditional cultivation for faster economic gains. A research project - SoloVivo Project - leaded by Embrapa (Brazilian Agricultural Research Corporation) in partnership with Itaipu Binacional aims to develop and validate, in a participatory way, tools to evaluate the technical performance of soil and water management at the rural properties that practice no-till agriculture. In this context we have selected two paired small (< 100 ha) catchments in the Paranapanema region, São Paulo State, where no-till management is practiced at two different degrees of effectiveness. In the figure bellow it can be seen a scene of one of the two studied catchments. For monitoring rainfall, soil solution and stream water, each catchment will be equipped with a programmable datalogger (with cell phone communication for data collection) linked to: a high intensity tipping bucket rain gage; a reflectometer to monitor soil volumetric water content, bulk electric conductivity and temperature; a radar water level sensor; a turbidity sensor; and an electric conductivity-temperature probe. We expect that stream flow and sediment generation, besides water quality (measured by conductivity) may serve as indicators of the benefits of no-tillage agriculture done more or less well. The results of this study will be used to stimulate discussions at workshops with the farmers who participate in a rural producers association in the region. In addition this and other results can be used to help the Brazilian National Water Agency (ANA) decide about applying no-till agricultural management systems in its programs of payment for environmental services.

  20. Mitigation scenario analysis: modelling the impacts of changes in agricultural management practices on surface water quality at the catchment scale

    NASA Astrophysics Data System (ADS)

    Taylor, Sam; He, Yi; Hiscock, Kevin

    2014-05-01

    Increasing human pressures on the natural environment through the demand for increased agricultural productivity have exacerbated and deteriorated water quality conditions within many environments due to an unbalancing of the nutrient cycle. As a consequence, increased agricultural diffuse water pollution has resulted in elevated concentrations of nutrients within surface water and groundwater bodies. This deterioration in water quality has direct consequences for the health of aquatic ecosystems and biodiversity, human health, and the use of water as a resource for public water supply and recreation. To mitigate these potential impacts and to meet commitments under the EU Drinking Water and Water Framework Directives, there is a need to improve our understanding of the impacts that agricultural land use and management practices have on water quality. Water quality models are one of the tools available which can be used to facilitate this aim. These simplified representations of the physical environment allow a variety of changes to be simulated within a catchment, including for example changes in agricultural land use and management practices, allowing for predictions of the impacts of those measures on water quality to be developed and an assessment to be made of their effectiveness in improving conditions. The aim of this research is to apply the water quality model SWAT (Soil and Water Assessment Tool) to the Wensum catchment (area 650 km2), situated in the East of England, to predict the impacts of potential changes in land use and land management practices on water quality as part of a process to select those measures that in combination will have the greatest potential to improve water quality. Model calibration and validation is conducted at three sites within the catchment against observations of river discharge and nitrate and total phosphorus loads at a monthly time-step using the optimisation algorithm SUFI-2 (Sequential Uncertainty Fitting Version 2

  1. Monitoring of soil moisture dynamics and spatial differences in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Oswald, Sascha; Baroni, Gabriele; Biro, Peter; Schrön, Martin

    2015-04-01

    A novel method to observe changes in soil moisture and other water pools at the land surface is non-invasive cosmic-ray neutron sensing. This approach by its physical principles is placed between in-soil measurements and remote sensing, and retrieves values for an intermediate spatial scale of several hectars, which can be used to quantify stored water at the land surface. It detects variations in the background of neutrons, induced initially from cosmic-rays hitting the atmosphere, and this can be related to interesting quantities at the land surface, such as soil moisture, but to some degree also snow water equivalent and changes in the biomass of vegetation. In a small catchment being used as a long-term landscape observatory of the TERENO initiative we retrieved cosmic-ray neutron measurements for several years, for up to four adjacent sites. The terrain was hilly with some slopes being partly used for agricultural fields, partly grassland. Here, after atmospheric corrections and a calibration procedure soil moisture dynamics could be observed for integral soil depths of several decimeters, clearly responding to precipitation events and offering a comparison to various local and non-local soil moisture measurements there. For winter periods with frost and snow, also the water mass stored in the snow cover can be retrieved. Furthermore, observed spatial differences can be related to vegetation, terrain and soil moisture state. Also, the relation to parameters representing crop biomass and growth will be discussed in respect to the retrieved cosmic-ray neutron signals, which have an influence on the interpretation as soil moisture.

  2. Impacts of intensive agricultural irrigation and livestock farming on a semi-arid Mediterranean catchment.

    PubMed

    Martín-Queller, Emi; Moreno-Mateos, David; Pedrocchi, César; Cervantes, Juan; Martínez, Gonzalo

    2010-08-01

    Irrigation return flows (IRF) are a major contributor of non-point source pollution to surface and groundwater. We evaluated the effects of irrigation on stream hydrochemistry in a Mediterranean semi-arid catchment (Flumen River, NE Spain). The Flumen River was separated into two zones based on the intensity of irrigation activities in the watershed. General linear models were used to compare the two zones. Relevant covariables (urban sewage, pig farming, and gypsum deposits in the basin) were quantified with the help of geographic information system techniques, accompanied by ground-truthing. High variability of the water quality parameters and temporal dynamics caused by irrigation were used to distinguish the two river reaches. Urban activity and livestock farming had a significant effect on water chemistry. An increase in the concentration of salts (240-541 microS.cm(-1) more in winter) and nitrate (average concentrations increased from 8.5 to 20.8 mg.l(-1) during irrigation months) was associated with a higher level of IRF. Those river reaches more strongly influenced by urban areas tended to have higher phosphorus (0.19-0.42 mg.l(-1) more in winter) concentrations. These results support earlier research about the significant consequences to water quality of both urban expansion and intensive agricultural production in arid and semi-arid regions. Data also indicate that salinization of soils, subsoils, surface water, and groundwater can be an unwelcome result of the application of pig manure for fertilization (increase in sodium concentration in 77.9 to 138.6 mg.l(-1)).

  3. Recent trends in water quality in an agricultural catchment in Eastern Scotland: elucidating the roles of hydrology and land use.

    PubMed

    Dunn, S M; Sample, J; Potts, J; Abel, C; Cook, Y; Taylor, C; Vinten, A J A

    2014-07-01

    Across the EU, programmes of measures have been introduced as part of river basin management planning as a means of tackling problems of diffuse pollution from agriculture. Evidence is required to demonstrate the effectiveness of these measures and with this overarching objective, monitoring of an agricultural catchment in Eastern Scotland was initiated in 2007. As a precursor to evaluating the effect of new management measures it is essential to understand how other factors, including hydrology and land use changes, could have influenced water quality. This study undertook an analysis of the trends in concentrations and loads of nitrate, soluble reactive phosphorus (SRP), suspended solids (SS) and turbidity measured at six points in the catchment over a six year period. The results identified both differing trends between determinands and differing trends occurring over varying spatial scales. The only direct relationships between land use and water quality that could be identified based on annual data was a positive link between arable cropping and nitrate concentrations. At the sub-catchment scale some temporal changes in land use and management explained short-term trends in nitrate but not in SRP. Lags in the system were identified due to soil adsorption, in-stream/loch processing and groundwater transport making the identification of cause and effect problematic. The results have implications for the demonstration of effectiveness of measures over the shorter term and the timescales of recovery from diffuse pollution. Longer term monitoring at small scales will be important in this regard.

  4. Factors controlling the export of nitrogen from agricultural land in a large central European catchment during 1900-2010.

    PubMed

    Kopáček, Jiří; Hejzlar, Josef; Posch, Maximilian

    2013-06-18

    Using an empirical model, we quantified the nitrogen (N) export from agricultural land in a large central European catchment (upper Vltava river, Czech Republic, about 13,000 km(2)) over the 1959-2010 period. The catchment witnessed a rapid socio-economic shift from a planned to a market economy in the 1990s, resulting in an abrupt (~50%) reduction in N fertilization rates at otherwise relatively stable land-use practices. This large-scale "experiment" enabled disentangling and quantification of individual effects of N fertilization and drainage on N leaching. The model is based on a two-step regression between annual N export and three independent variables: (i) annual average discharge in the first step and (ii) net anthropogenic nitrogen inputs (NANI) and proportion of drained agricultural land in the second step. Results show that N export was more related to mineralization of soil organic N pools due to drainage and tillage than to external N sources (NANI). The model, together with other reconstructed N sources in the catchment (leaching from forests, waste waters, and atmospheric deposition) and extrapolated back to 1900, explained 77% of the observed variability in N concentrations in the Vltava river during the 1900-2010 period.

  5. A multi-criteria parameterisation strategy for the hydrological modelling of storm events in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Hallema, D. W.; Moussa, R.

    2009-04-01

    The parameterisation of physically based hydrological models is a key factor in evaluating their performance and improving their adequacy. In comparison to natural catchments, the parameterisation of agricultural catchment models requires a special approach since agricultural practice, such as tillage, introduces a temporal variability in the hydraulic conductivity of the soil. This study aims to develop and evaluate a parameterisation strategy for the hydrological modelling of storm events in a Mediterranean agricultural catchment. The adopted methodology accounts for a spatio-temporally variable land use, combined with the presence of an artificial drainage network and the occurrence of short duration-high intensity storm events. A parameterisation of 43 events covering a 12-year period was carried out applying MHYDAS (Distributed HYdrological Modelling for AgroSystems) to the Roujan catchment (0.91 km2) in southern France. Parameterisation of MHYDAS is particularly difficult considering the large number of spatio-temporally variable parameters involved. To incorporate this variability, the catchment was divided into hydrological units that are considered hydrologically homogeneous, mostly parcels separated by field boundaries and ditches. The parameterisation was performed in four parts. Firstly, the appropriate flood routing equation was selected for each channel reach in the drainage network: kinematic wave where possible and diffuse wave for the other reaches. Secondly, the boundary conditions (geometry, connectivity and roughness of hydrological units and ditches) were assumed equal for all events, while soil hydrodynamic properties and initial soil moisture content were taken variable in time. A third step was to calibrate individual events by manually tuning the average overland- and channel flow celerity, saturated hydraulic conductivity, and two coefficients for the channel infiltration and exfiltration fluxes. The predictive power of each simulation was

  6. Transport of suspended sediment and organic carbon during storm events in a large agricultural catchment, southwest France.

    NASA Astrophysics Data System (ADS)

    Chantha, Oeurng; Sabine, Sauvage; David, Baqué; Alexandra, Coynel; Eric, Maneux; Henri, Etcheber; José-Miguel, Sánchez-Pérez

    2010-05-01

    Intensive agriculture has led to environmental degradation through soil erosion and carbon loss transferred from agricultural land to the stream networks. Suspended sediment transport from the agricultural catchment to the watercourses is responsible for aquatic habitat degradation, reservoir sedimentation, and for transporting sediment associated pollutants (pesticides, nutrient, heavy metals and other toxic substances). Consequently, the temporal transport of suspended sediment (SS), dissolved and particulate organic carbon (DOC and POC) was investigated during 18 months from January 2008 to June 2009 within a large agricultural catchment in southwest France. This study is based on an extensive dataset with high temporal resolution using manual and automatic sampling, especially during 15 flood events. Two main objectives aim at: (i) studying temporal transport in suspended sediment (SS), DOC and POC with factors explaining their dynamics and (ii) analysing the relationships between discharge, SSC, DOC and POC during flood events. The study demonstrates there is a strong variability of SS, POC and DOC during flood events. The SS transport during different seasonal floods varied by event from 513 to 41 750 t; POC transport varied from 12 to 748 t and DOC transport varied from 9 to 218 t. The specific yield of the catchment represents 76 t km-2 y-1 of sediment, 1.8 t km-2 y-1 of POC and 0.7 t km-2 y-1 of DOC, respectively. The POC associated with sediment transport from the catchment accounted for ~2.5% of the total sediment load. Flood duration and flood magnitude are key factors in determining the sediment and organic carbon transport. Statistical analyses revealed strong correlations between total precipitation, flood discharge, total water yield with suspended sediment and organic transport. The relationships of SSC, POC and DOC versus discharge over temporal flood events resulted in different hysteresis patterns which were used to suggest those dissolved and

  7. Influence of Antecedent Hydrologic Conditions on Nitrate and Phosphorus Export from a Small Agricultural Catchment in Southern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Macrae, M. L.; English, M. C.; Schiff, S. L.; Stone, M.

    2009-04-01

    The ability of the scientific community to quantify and predict discharge and nutrient transport in a range of settings is confounded by the effects of antecedent hydrologic conditions in upland areas. Previous work has empirically linked spatial variables such as land use, soil type, topography, and drainage characteristics to hydrochemical export from various landscapes (e.g. MCDOWELL et al., 2001; ARHEIMER and LIDEN, 2000; STAMM et al., 1998; JORDAN et al., 1997; WELSCH et al., 2001). However, the specific reasons why similar types of events produce different nutrient export patterns are poorly understood. Nutrient (nitrate, soluble and total phosphorus) transport from agricultural catchments is difficult to quantify and predict because of the influence of variable hydrologic flowpaths and their interaction with varying nutrient pools. This research examines the role of antecedent hydrologic conditions on stream discharge and nitrate (NO3-), soluble reactive phosphorus (SRP) and total phosphorus (TP) export from a small (2.7 km2) first-order agricultural catchment in Southern Ontario, Canada. During 59 events occurring over a two-year sampling period (year-round), runoff ratios ranged from 0-0.99). Runoff ratios increased throughout successive events as conditions became wetter although key indices of antecedent wetness such as water table position, pre-event streamflow and soil moisture did not yield predictive relationships. Nitrate, SRP and TP transport from the catchment increased with antecedent wetness during some periods but decreased with antecedent wetness during other periods. This variability appears to be linked to a combination of the position of water table before and during the event, as well as timing of fertilizer application. It is hypothesized that in general, wetter antecedent hydrologic conditions increase nutrient transport from the catchment by increasing macropore connectivity between surface soil horizons and tile drains, although this

  8. Nitrate sinks and sources as controls of spatio-temporal water quality dynamics in an agricultural headwater catchment

    NASA Astrophysics Data System (ADS)

    Schuetz, Tobias; Gascuel-Odoux, Chantal; Durand, Patrick; Weiler, Markus

    2016-02-01

    Several controls are known to affect water quality of stream networks during flow recession periods, such as solute leaching processes, surface water-groundwater interactions as well as biogeochemical in-stream turnover processes. Throughout the stream network, combinations of specific water and solute export rates and local in-stream conditions overlay the biogeochemical signals from upstream sections. Therefore, upstream sections can be considered functional units which could be distinguished and ordered regarding their relative contribution to nutrient dynamics at the catchment outlet. Based on snapshot sampling of flow and nitrate concentrations along the stream in an agricultural headwater during the summer flow recession period, we determined spatial and temporal patterns of water quality for the whole stream. A data-driven, in-stream-mixing-and-removal model was developed and applied for analysing the spatio-temporal in-stream retention processes and their effect on the spatio-temporal fluxes of nitrate from subcatchments. Thereby, we have been able to distinguish quantitatively between nitrate sinks, sources per stream reaches, and subcatchments, and thus we could disentangle the overlay of nitrate sink and source signals. For nitrate sources, we determined their permanent and temporal impact on stream water quality and for nitrate sinks, we found increasing nitrate removal efficiencies from upstream to downstream. Our results highlight the importance of distinct nitrate source locations within the watershed for in-stream concentrations and in-stream removal processes, respectively. Thus, our findings contribute to the development of a more dynamic perception of water quality in streams and rivers concerning ecological and sustainable water resource management.

  9. Mapping Zn, Cu and Cd contents at the small catchment level after dispersion of contaminants by agricultural practices

    NASA Astrophysics Data System (ADS)

    Vidal Vázquez, E.; Mirás-Avalos, J. M.; Paz-Ferreiro, J.

    2009-04-01

    Dispersion of trace metals into the rural environment through the use of sewage sludge, fertilizers and manure has been worldwide reported. In El Abelar (Coruña province, Spain), pig slurry was discharged during years intensively into an agricultural field by means of a device which constituted a point source of contamination. The application point was located near the head of an elementary basin, so that slurry was dispersed by runoff into neighboring grassland and maize fields. In addition, diffuse pollution was also present in the study area as a consequence of cattle grazing. Water quality was monitored during and after slurry application at the outlet of a small catchment (about 10.7 ha in surface) draining the study fields. High levels of nutrients, including heavy metals, were found in drainage water. The main objectives of this paper are to determine the spatial variability of Cu, Zn and Cd as extracted by NO3H, EDTA and Ca2Cl and to evaluate the risk of accumulation of these heavy metals at the small catchment level. A set of 55 soil samples were taken from the top soil layer (0-20 cm) of the studied catchment, following a random sampling scheme. Fe, Mn, Cu, Zn and Cd contents were determined i) after digestion by nitric acid in a microwave (USEPA-SW-846 3051) ii) after extraction with EDTA and iii) after extraction with Cl2Ca. Element contents in the extracts were determined by ICP-MS. Summary statistics indicate that variability in Cu, Zn and Cd contents over the study area was very high. For example, after NO3H digestion Zn contents ranged from 29.66 to 141.77 3 mg kg-1 and Cu contents varied from 10.45 to 72.7 3 mg kg-1. High Cu and Zn contents result from accumulation as a consequence of slurry discharge. Also, some hot spots with high levels of Cd (> 3 mg kg-1 after NO3H) with respect to background values were recorded. Geostatistics provides all necessary tools to analyze the spatial variability of soil properties over a landscape. The spatial

  10. Comparing hydrological signatures of small agricultural catchments using uncertain data provided by a soft hydrological monitoring

    NASA Astrophysics Data System (ADS)

    Crabit, Armand; Colin, François

    2016-04-01

    Discharge estimation is one of the greatest challenge for every hydrologist as it is the most classical hydrological variable used in hydrological studies. The key lies in the rating curves and the way they were built: based on field measurements or using physical equations as the Manning-Strickler relation… However, as we all know, data and associated uncertainty deeply impact the veracity of such rating curves that could have serious consequences on data interpretation. And, of all things, this affects every catchment in the world, not only the gauged catchments but also and especially the poorly gauged ones that account for the larger part of the catchment of the world. This study investigates how to compare hydrological behaviour of 11 small (0.1 to 0.6 km2) poorly gauged catchments considering uncertainty associated to their rating curves. It shows how important the uncertainty can be using Manning equation and focus on its parameter: the roughness coefficient. Innovative work has been performed under controlled experimental conditions to estimate the Manning coefficient values for the different cover types observed in studied streams: non-aquatic vegetations. The results show that estimated flow rates using suitable roughness coefficients highly differ from those we should have obtained if we only considered the common values given in the literature. Moreover, it highlights how it could also affect all derived hydrological indicators commonly used to compare hydrological behaviour. Data of rainfall and water depth at a catchment's outlet were recorded using automatic logging equipment during 2008-2009. The hydrological regime is intermittent and the annual precipitation ranged between 569 and 727 mm. Discharge was then estimated using Manning's equation and channel cross-section measurements. Even if discharge uncertainty is high, the results show significant variability between catchment's responses that allows for catchment classification. It also

  11. Impact of agricultural practices on runoff and glyphosate peaks in a small vineyard catchment

    NASA Astrophysics Data System (ADS)

    Amiot, Audrey; La Jeunesse, Isabelle; Jadas-Hécart, Alain; Landry, David; Sourice, Stéphane; Communal, Pierre-Yves; Ballouche, Aziz

    2013-04-01

    The Layon River, a tributary of the Loire River, does frequently not comply with water quality standards because of pesticides. Vineyard is generally denounced. The aim of this project is to explain the transfer of pesticides during runoff events and its interaction with erosion. Pesticides and suspended particulate matter (SPM) concentrations are monitored at the outlet of the vineyards catchment each 2 minutes during floods to follow peaks. The results of three different hydrological years (2009, 2011, 2012) are exposed. The 2.2ha catchment is composed of two main vineyards plots managed by two independent farmers. Mean slopes are of 8% and can reach 40% in terraces. A gauging station has been installed at the end of the slope with a calibrated Venturi channel. The measurement station is composed of (a) an approach channel of 10 meters long for the establishment of a stable water surface, (b) a trapezoidal long-throated flume to assess the flow rate with the water level measured with (c) a bubbler sensor, (d) an automatic rain gauge, (e) an automatic sampler, (f) a modem and (g) a logosens OTT® data logger. 2009 was an average year, 2011 was particularly dry and 2012 particularly wet. Quantities of glyphosate applied were respectively 1087, 645 and 720g. Maximum discharges in the gauging station were 5, 12 and 25L.s-1. Minimum and maximum concentrations of glyphosate in runoff waters were 1-449.1 µg.L-1 in 2009, 0.62-13.6 µg.L-1 in 2011 and 0.1-3.7 µg.L-1 in 2012. Minimum and maximum concentrations of SPM were 14-1261mg.L-1 in 2009, 108- 6454 mg.L-1 in 2011 and 9-1541 mg.L-1 in 2012. While flows, quantities of glyphosate applied and peaks of concentrations observed in 2011 are more important in 2009, SPM generated in the runoff waters are lower than 2011 and 2012, even though 2012 has particularly been a wet year. Also, maximum runoff coefficients are 7% in 2009 and 2011 and 57% in 2012. In fact, this latest explains differences between years better than

  12. Investigating suspended sediment dynamics in contrasting agricultural catchments using ex situ turbidity-based suspended sediment monitoring

    NASA Astrophysics Data System (ADS)

    Sherriff, S. C.; Rowan, J. S.; Melland, A. R.; Jordan, P.; Fenton, O.; hUallachain, D. O.

    2015-08-01

    Soil erosion and suspended sediment (SS) pose risks to chemical and ecological water quality. Agricultural activities may accelerate erosional fluxes from bare, poached or compacted soils, and enhance connectivity through modified channels and artificial drainage networks. Storm-event fluxes dominate SS transport in agricultural catchments; therefore, high temporal-resolution monitoring approaches are required, but can be expensive and technically challenging. Here, the performance of in situ turbidity sensors, conventionally installed submerged at the river bankside, is compared with installations where river water is delivered to sensors ex situ, i.e. within instrument kiosks on the riverbank, at two experimental catchments (Grassland B and Arable B). The in situ and ex situ installations gave comparable results when calibrated against storm-period, depth-integrated SS data, with total loads at Grassland B estimated at 12 800 and 15 400 t, and 22 600 and 24 900 t at Arable B, respectively. The absence of spurious turbidity readings relating to bankside debris around the in situ sensor and its greater security make the ex situ sensor more robust. The ex situ approach was then used to characterise SS dynamics and fluxes in five intensively managed agricultural catchments in Ireland which feature a range of landscape characteristics and land use pressures. Average annual suspended sediment concentration (SSC) was below the Freshwater Fish Directive (78/659/EEC) guideline of 25 mg L-1, and the continuous hourly record demonstrated that exceedance occurred less than 12 % of the observation year. Soil drainage class and proportion of arable land were key controls determining flux rates, but all catchments reported a high degree of inter-annual variability associated with variable precipitation patterns compared to the long-term average. Poorly drained soils had greater sensitivity to runoff and soil erosion, particularly in catchments with periods of bare soils. Well

  13. Identifying the controls of soil loss in agricultural catchments using ex situ turbidity-based suspended sediment monitoring

    NASA Astrophysics Data System (ADS)

    Sherriff, S. C.; Rowan, J. S.; Melland, A. R.; Jordan, P.; Fenton, O.; Ó'hUallacháin, D.

    2015-03-01

    Soil erosion and suspended sediment (SS) pose risks to chemical and ecological water quality. Agricultural activities may accelerate erosional fluxes from bare, poached or compacted soils, and enhance connectivity through modified channels and artificial drainage networks. Storm-event fluxes dominate SS transport in agricultural catchments; therefore, high temporal-resolution monitoring approaches are required but can be expensive and technically challenging. Here, the performance of in situ turbidity-sensors, conventionally installed submerged at the river bankside, is compared with installations where river water is delivered to sensors ex situ, i.e. within instrument kiosks on the riverbank, at two experimental catchments (Grassland B and Arable B). Calibrated against storm-period depth-integrated SS data, both systems gave comparable results; using the ex situ and in situ methods respectively, total load at Grassland B was estimated at 128 ± 28 and 154 ± 35, and 225 ± 54 and 248 ± 52 t at Arable B. The absence of spurious turbidity peaks relating to bankside debris around the in situ sensor and its greater security, make the ex situ sensor more robust. The ex situ approach was then used to characterise SS dynamics and fluxes in five intensively managed agricultural catchments in Ireland which feature a range of landscape characteristics and land use pressures. Average annual suspended sediment concentration (SSC) was below the Freshwater Fish Directive (FFD) guideline of 25 mg L-1, and the continuous hourly record demonstrated that exceedance occurred less than 12% of the observation year. Soil drainage class and proportion of arable land were key controls determining flux rates, but all catchments reported a high degree of inter-annual variability associated with variable precipitation patterns compared to the long-term average. Poorly-drained soils had greater sensitivity to runoff and soil erosion, particularly in catchments with periods of bare soils

  14. Urban and agricultural contribution of annual loads of glyphosate and AMPA towards surface waters at the Orge River catchment scale (France)

    NASA Astrophysics Data System (ADS)

    Botta, Fabrizio; Chevreuil, Marc; Blanchoud, Hélène

    2010-05-01

    The general use of pesticides in the Orge Basin, located in the southern part of the Paris suburb (France), is damaging surface water quality. Consequently, an increase in the water supply costs is registered by the water supply agencies that are situated downstream the Orge confluence with the Seine River. In this catchment, high uses of glyphosate are registered for fallow fields (upstream part) and for roadway weed control (downstream part). The proportion of glyphosate coming from these two zones was not well known, along with the double source of its metabolite AMPA originated from the degradation of some detergent phosphonates. The aim of this work was firstly to identify the potential sources of glyphosate and AMPA in urban sectors (such as sewerage system inputs) and in agricultural areas and to quantify the origins of urban pesticides pathways towards surface waters at the basin scale. The new approach of this project was to collect information at three different scales to establish a first step of modeling. At the basin scale, 1 year of surface water monitoring at the outlet of the Orge River was useful to establish the inputs towards the Seine River. At the urban catchment scale, the investigations have permitted to record glyphosate and AMPA loads transferred by storm waters and by wastewaters. Loads were estimated during and out of application calendar, in different hydrological conditions such as rainfall with high intensity or dry conditions. Impact of WWTP on surface water was also demonstrated. The third phase of this work was the interpretation of agricultural inputs from two different agricultural catchments of the Orge River. The results showed the impact of urban uses of glyphosate upon the Orge River contamination with annual loads from 100 times higher from the urban zone than from the agricultural one. Storm sewers were recognized to be the main way for glyphosate transfer towards surface waters. A budget of glyphosate and AMPA inputs and

  15. Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: Implications for weathering CO 2 uptake at regional and global scales

    NASA Astrophysics Data System (ADS)

    Perrin, Anne-Sophie; Probst, Anne; Probst, Jean-Luc

    2008-07-01

    The goal of this study was to highlight the occurrence of an additional proton-promoted weathering pathway of carbonate rocks in agricultural areas where N-fertilizers are extensively spread, and to estimate its consequences on riverine alkalinity and uptake of CO 2 by weathering. We surveyed 25 small streams in the calcareous molassic Gascogne area located in the Garonne river basin (south-western France) that drain cultivated or forested catchments for their major element compositions during different hydrologic periods. Among these catchments, the Hay and the Montoussé, two experimental catchments, were monitored on a weekly basis. Studies in the literature from other small carbonate catchments in Europe were dissected in the same way. In areas of intensive agriculture, the molar ratio (Ca + Mg)/HCO 3 in surface waters is significantly higher (0.7 on average) than in areas of low anthropogenic pressure (0.5). This corresponds to a decrease in riverine alkalinity, which can reach 80% during storm events. This relative loss of alkalinity correlates well with the NO3- content in surface waters. In cultivated areas, the contribution of atmospheric/soil CO 2 to the total riverine alkalinity (CO 2 ATM-SOIL/HCO 3) is less than 50% (expected value for carbonate basins), and it decreases when the nitrate concentration increases. This loss of alkalinity can be attributed to the substitution of carbonic acid (natural weathering pathway) by protons produced by nitrification of N-fertilizers (anthropogenic weathering pathway) occurring in soils during carbonate dissolution. As a consequence of these processes, the alkalinity over the last 30 years shows a decreasing trend in the Save river (one of the main Garonne river tributaries, draining an agricultural catchment), while the nitrate and calcium plus magnesium contents are increasing. We estimated that the contribution of atmospheric/soil CO 2 to riverine alkalinity decreased by about 7-17% on average for all the studied

  16. Assessment of hydrology, suspended sediment and particulate organic carbon transport in a large agricultural catchment using SWAT model

    NASA Astrophysics Data System (ADS)

    Chantha, Oeurng; Sabine, Sauvage; José-Miguel, Sánchez-Pérez

    2010-05-01

    Suspended sediment transport from agricultural catchments to stream networks is responsible for aquatic habitat degradation, reservoir sedimentation and the transport of sediment-bound pollutants (pesticides, particulate nutrients, heavy metals and other toxic substances). Quantifying and understanding the dynamics of suspended sediment transfer from agricultural land to watercourses is essential in controlling soil erosion and in implementing appropriate mitigation practices to reduce stream suspended sediment and associated pollutant loads, and hence improve surface water quality downstream. Gascogne area, southwest France, has been dominated by anthropogenic activities particularly intensive agriculture causing severe erosion in recent decades. This leads to a major threat to surface water quality due to soil erosion. Therefore, the catchment water quality has been continuously monitored since January 2007 and the historical data of hydrology and suspended sediment has existed since 1998. In this study, the Soil and Water Assessment Tool (SWAT 2005) was applied to assess hydrology, suspended sediment and particulate organic carbon in this catchment Agricultural management practices (crop rotation, planting date, fertilizer quantity and irrigations) were taken into the model for simulation period of 11 years (July, 1998 to March, 2009). The investigation was conducted using a 11-year streamflow and two years of suspended sediment record from January 2007 to March 2009. Modelling strategy with dominant landuse and soil type was chosen in this study. The SWAT generally performs satisfactorily and could simulate both daily and monthly runoff and sediment yield. The simulated daily and monthly runoff matched the observed values satisfactorily (ENash>0.5). For suspended sediment simulation, the simulated values were compared with the observed continuous suspended sediment derived from turbidity data. Based on the relationship between SSC and POC (R2 = 0.93), POC was

  17. Effects of the spatial organization of agricultural management on the hydrological behaviour of a farmed catchment during flood events

    NASA Astrophysics Data System (ADS)

    Moussa, Roger; Voltz, Marc; Andrieux, Patrick

    2002-02-01

    Field limits, tillage practices and ditch networks constitute man-made hydrological discontinuities in farmed catchments, and are expected to influence hydrological response during flood events. The purpose of this study is to assess the role of human impact, especially the existence of tillage practices and ditch network, on flood events. The study area is the farmed catchment of Roujan (0·91 km2) located in Southern France for which a spatially distributed hydrological model, MHYDAS, was developed and tested. The model considers the catchment as a series of interconnected field parts linked to the ditch network. Descriptions are provided for the main model procedures: computation of Hortonian excess rainfall on fields using the Green and Ampt approach, conversion of excess rainfall to surface runoff, interaction between ditch network and groundwater using a simple Darcian model and flood routing through the ditch network using the diffusive wave model. To analyse the role of both tillage practices and the ditch network, two sets of sensitivity analysis of the model were applied. The first set studied the role of tillage practices by comparing the actual spatial distribution of tillage practices on the catchment with three hypothetical scenarios. The second set studied the role of the ditch network by comparing the actual man-made ditch network with a hypothetical drainage network automatically extracted from a digital elevation model. Results show the importance of the role of tillage and the ditch network on the form of the hydrograph, the lag time, the runoff volume and the peak discharge. This technique could also be applied to study the impact of land use change on the hydrological behaviour of the catchment.

  18. Effects of the Spatial Organization of Agricultural Management on the Hydrological Behaviour of a Farmed Catchment During Flood Events

    NASA Astrophysics Data System (ADS)

    Moussa, R.; Voltz, M.; Andrieux, P.

    2001-05-01

    Field limits, tillage practices and ditch networks constitute man-made hydrological discontinuities in farmed catchments, and are expected to influence hydrological response during flood events. The purpose of this study is to assess the role of human impact, especially the existence of tillage practices and ditch network, on flood events. The study area is the farmed catchment of Roujan (91 ha) located in Southern France for which a spatially distributed hydrological model, MHYDAS, was developed and tested. The model considers the catchment as a series of interconnected field parts linked to the ditch network. Descriptions are provided for the main model procedures: computation of Hortonian excess rainfall on fields using the Green and Ampt approach, conversion of excess rainfall to surface runoff, interaction between ditch network and groundwater using a simple Darcian model and flood routing through the ditch network using the diffusive wave model. To analyse the role of both tillage practices and the ditch network, two sets of sensitivity analysis of the model were applied. The first set studied the role of tillage practices by comparing the actual spatial distribution of tillage practices on the catchment to three hypothetical scenarios. The second set studied the role of the ditch network by comparing the actual man-made ditch network to a hypothetical drainage network automatically extracted from a Digital Elevation Model. Results show the importance of the role of tillage and the ditch network on the form of the hydrograph, the lag time, the runoff volume and the peak discharge. This technique could also be applied to study the impact of land use change on the hydrological behaviour of the catchment.

  19. Analysing the role of abandoned agricultural terraces on flood generation in a set of small Mediterranean mountain research catchments (Vallcebre, NE Spain)

    NASA Astrophysics Data System (ADS)

    Gallart, Francesc; Llorens, Pilar; Pérez-Gallego, Nuria; Latron, Jérôme

    2016-04-01

    The Vallcebre research catchments are located in NE Spain, in a middle mountain area with a Mediterranean sub-humid climate. Most of the bedrock consists of continental red lutites that are easily weathered into loamy soils. This area was intensely used for agriculture in the past when most of the sunny gentle hillslopes were terraced. The land was progressively abandoned since the mid-20th Century and most of the fields were converted to meadows or were spontaneously forested. Early studies carried out in the terraced Cal Parisa catchment demonstrated the occurrence of two types of frequently saturated areas, ones situated in downslope locations with high topographic index values, and the others located in the inner parts of many terraces, where the shallow water table usually outcrops due to the topographical modifications linked to terrace construction. Both the increased extent of saturated areas and the role of a man-made elementary drainage system designed for depleting water from the terraces suggested that terraced areas would induce an enhanced hydrological response during rainfall events when compared with non-terraced hillslopes. The response of 3 sub-catchments, of increasing area and decreasing percentage of terraced area, during a set of major events collected during over 15 years has been analysed. The results show that storm runoff depths were roughly proportional to precipitations above 30 mm although the smallest catchment (Cal Parisa), with the highest percentage of terraces, was able to completely buffer rainfall events of 60 mm in one hour without any runoff when antecedent conditions were dry. Runoff coefficients depended on antecedent conditions and peak discharges were weakly linked to rainfall intensities. Peak lag times, peak runoff rates and recession coefficients were similar in the 3 catchments; the first variable values were in the range between Hortonian and saturation overland flow and the two last ones were in the range of

  20. Integration of a modeling task in water policy design - Example of a prospective scenarios approach on an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Moreau, P.; Raimbault, T.; Durand, P.; Gascuel-Odoux, C.; Salmon-Monviola, J.; Masson, V.; Cordier, M. O.

    2010-05-01

    duration and by promoting CC in the autumn period. To conclude, the ability of TNT2 model to simulate catchments hydrology and nitrogen cycle has been demonstrated with a fine spatial resolution and fine degree of details in agricultural practices. A generic participatory 3-step-method for scenario analysis has been developed to ensure an appropriation of the prospective modeling task in decision support. Finally, the most advantageous CC management has been brought out and its effect of N cycling quantified. Keywords: hydrology, nitrogen, distributed model, diffuse pollution, scenario, decision support

  1. Application of strontium isotope measurements to trace sediment sources in an upstream agricultural catchment (Loire River basin, France)

    NASA Astrophysics Data System (ADS)

    Le Gall, Marion; Evrard, Olivier; Thil, François; Foucher, Anthony; Salvador-Blanes, Sébastien; Cerdan, Olivier; Ayrault, Sophie

    2015-04-01

    Soil erosion is recognized as one of the main processes of land degradation in agricultural areas. It accelerates the supply of sediment to the rivers and degrades water quality. To limit those impacts and optimize management programs in such areas, sources of sediment need to be identified and sediment transport to be controlled. Here, we determined the sources of suspended sediment in the Louroux (24 km², French Loire River basin), a small catchment representative of lowland cultivated environments of Northwestern Europe. In this catchment, channels have been reshaped and 220 tile drain outlets have been installed over the last several decades. As a result, soil erosion and sediment fluxes have increased drastically. The variation of 87Sr/86Sr ratios, driven by the weathering of rocks with different ages and chemical composition, may reflect the mixing of different sediment sources. Strontium isotopic ratios (87Sr/86Sr) were therefore determined in potential soil sources, suspended particulate matter (SPM) and a sediment core sampled in the Louroux Pond at the catchment outlet. Soil, SPM and core samples displayed significantly different isotopic signatures. 87Sr/86Sr ratios in soil samples varied from 0.712763 to 0.724631 ± 0.000017 (2σ, n=20). Highest values were observed in silicic parts of the catchment whereas the lower values were identified in a calcareous area close to the Louroux Pond. 87Sr/86Sr ratios in SPM (0.713660 to 0.725749 ± 0.000017, 2σ, n=20) plotted between the soil and sediment core (0.712255 to 0.716415 ± 0.000017, 2σ, n=12), suggesting the presence of particles originating from at least two different lithological sources, i.e. silicic rocks and carbonate material. Variations in 87Sr/86Sr ratios in the outlet core sample were used to reconstruct the sedimentary dynamics in the catchment during the last decades. These results will guide the future implementation of appropriate management practices aiming to reduce erosion in upstream

  2. Using the Provenance of Sediment and Bioavailable Phosphorus to Help Mitigate Water Quality Impact in an Agricultural Catchment.

    PubMed

    McDowell, R W; Norris, M; Cox, N

    2016-07-01

    The quality and health of surface waters can be impaired by sediment and sediment-bound phosphorus (P). The Waituna Lagoon catchment in southern New Zealand has undergone agricultural intensification that has been linked to increases in sediment and sediment-bound bioavailable P (BAP) in the lagoon. Time-integrated samplers trapped suspended sediment from the water column, and their geochemical signature was compared with likely sources (stream banks, stream beds, topsoil, and subsoil) in each of the lagoon's contributing streams and rivers. The proportion of BAP, but not necessarily total P, within trapped sediment was much greater in samples from the Moffat and Carran Creeks than from the Waituna Creek, probably due to the erosion of organic-rich soils that had little capacity to retain P compared with the more mineral soils of the Waituna Creek. Annually, most BAP and sediment came from bank erosion, and strategies such as fencing out stock should focus on minimizing this throughout the catchment. However, when considering losses in space and time relative to the impact on the Waituna Lagoon, strategies the Waituna Creek catchment should also minimize contributions from topsoil in winter-spring, whereas in the Carran and Moffat Creek catchments strategies need to decrease P inputs (e.g., effluent) to Organic soils likely to lose much BAP in summer-autumn when the impact on the Lagoon is quickest. This study highlighted the need to identify sources and timings of BAP and sediment loss before recommending mitigation practices, which without this information may be slow or not succeed.

  3. Relating land use patterns to stream nutrient levels in red soil agricultural catchments in subtropical central China.

    PubMed

    Wang, Yi; Li, Yong; Liu, Xinliang; Liu, Feng; Li, Yuyuan; Song, Lifang; Li, Hang; Ma, Qiumei; Wu, Jinshui

    2014-09-01

    Land use has obvious influence on surface water quality; thus, it is important to understand the effects of land use patterns on surface water quality. This study explored the relationships between land use patterns and stream nutrient levels, including ammonium-N (NH4 (+)-N), nitrate-N (NO3 (-)-N), total N (TN), dissolved P (DP), and total P (TP) concentrations, in one forest and 12 agricultural catchments in subtropical central China. The results indicated that the TN concentrations ranged between 0.90 and 6.50 mg L(-1) and the TP concentrations ranged between 0.08 and 0.53 mg L(-1), showing that moderate nutrient pollution occurred in the catchments. The proportional areal coverages of forests, paddy fields, tea fields, residential areas, and water had distinct effects on stream nutrient levels. Except for the forest, all studied land use types had a potential to increase stream nutrient levels in the catchments. The land use pattern indices at the landscape level were significantly correlated to N nutrients but rarely correlated to P nutrients in stream water, whereas the influence of the land use pattern indices at the class level on stream water quality differentiated among the land use types and nutrient species. Multiple regression analysis suggested that land use pattern indices at the class level, including patch density (PD), largest patch index (LPI), mean shape index (SHMN), and mean Euclidian nearest neighbor distance (ENNMN), played an intrinsic role in influencing stream nutrient quality, and these four indices explained 35.08 % of the variability of stream nutrient levels in the catchments (p<0.001). Therefore, this research provides useful ideas and insights for land use planners and managers interested in controlling stream nutrient pollution in subtropical central China.

  4. Using the Provenance of Sediment and Bioavailable Phosphorus to Help Mitigate Water Quality Impact in an Agricultural Catchment.

    PubMed

    McDowell, R W; Norris, M; Cox, N

    2016-07-01

    The quality and health of surface waters can be impaired by sediment and sediment-bound phosphorus (P). The Waituna Lagoon catchment in southern New Zealand has undergone agricultural intensification that has been linked to increases in sediment and sediment-bound bioavailable P (BAP) in the lagoon. Time-integrated samplers trapped suspended sediment from the water column, and their geochemical signature was compared with likely sources (stream banks, stream beds, topsoil, and subsoil) in each of the lagoon's contributing streams and rivers. The proportion of BAP, but not necessarily total P, within trapped sediment was much greater in samples from the Moffat and Carran Creeks than from the Waituna Creek, probably due to the erosion of organic-rich soils that had little capacity to retain P compared with the more mineral soils of the Waituna Creek. Annually, most BAP and sediment came from bank erosion, and strategies such as fencing out stock should focus on minimizing this throughout the catchment. However, when considering losses in space and time relative to the impact on the Waituna Lagoon, strategies the Waituna Creek catchment should also minimize contributions from topsoil in winter-spring, whereas in the Carran and Moffat Creek catchments strategies need to decrease P inputs (e.g., effluent) to Organic soils likely to lose much BAP in summer-autumn when the impact on the Lagoon is quickest. This study highlighted the need to identify sources and timings of BAP and sediment loss before recommending mitigation practices, which without this information may be slow or not succeed. PMID:27380076

  5. Evaporation over a Heterogeneous Mixed Savanna-Agricultural Catchment using a Distributed Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Ceperley, N. C.; Mande, T.; Barrenetxea, G.; Vetterli, M.; Yacouba, H.; Repetti, A.; Parlange, M. B.

    2010-12-01

    Small scale rain fed agriculture is the primary livelihood for a large part of the population of Burkina Faso. Regional climate change means that this population is becoming increasingly vulnerable. Additionally, as natural savanna is converted for agriculture, hydrological systems are observed to become less stable as infiltration is decreased and rapid runoff is increased to the detriment of crop productivity, downstream populations and local water sources. The majority of the Singou River Basin, located in South East Burkina Faso is managed by hunting reserves, geared to maintaining high populations of wild game; however, residents surrounding the protected areas have been forced to intensify agriculture that has resulted in soil degradation as well as increases in the frequency and severity of flooding and droughts. Agroforestry, or planting trees in cultivated fields, has been proposed as a solution to help buffer these negative consequences, however the specific hydrologic behavior of the watershed land cover is unknown. We have installed a distributed sensor network of 17 Sensorscope wireless meteorological stations. These stations are dispersed across cultivated rice and millet fields, natural savanna, fallow fields, and around agroforestry fields. Sensorscope routes data through the network of stations to be delivered by a GPRS connection to a main server. This multi hop network allows data to be gathered over a large area and quickly adapts to changes in station performance. Data are available in real time via a website that can be accessed by a mobile phone. The stations are powered autonomously by small photovoltaic panels. This deployment is the first time that these meteorological stations have been used on the African continent. Initial calibration with measures from 2 eddy covariance stations allows us to calculate the energy balance at each of the Sensorscope stations. Thus, we can observe variation in evaporation over the various land cover in the

  6. Flood survey of nitrate behaviour using nitrogen isotope tracing in the critical zone of a French agricultural catchment

    NASA Astrophysics Data System (ADS)

    Paul, Alexia; Moussa, Issam; Payre, Virginie; Probst, Anne; Probst, Jean-Luc

    2015-11-01

    Measurements of δ15N-NO3- were taken in a highly flood-responsive agricultural catchment in the southwest of France to trace the sources and transfer pathways of nitrates during flood events. From January to March 2013, surface water samples were collected every week at the outlet, and four floods were sampled with a high resolution. Sampling was also performed in surface waters and sand lenses from the rest of the basin to trace nitrate sources and processes spatially. Nitrate extractions were performed using a method based on the solubility difference between inorganic salts and organic solutions. The δ15N values were in the range of surface water contaminated by N-fertilisers. Depending on the hydroclimatic event, nitrates resulted from a combination of sources and processes. At the start of the floods, the values of δ15N-NO3- and nitrate concentrations were low, demonstrating the dilution of water with rainwater. During a second phase, the nitrate concentration and the δ15N were higher. Deeper waters and soil solutions were the second source of nitrates. When the water level was low, both nitrate concentration and isotopic composition were high. These values reflected the denitrification processes that occurred in the soil under anaerobic conditions. An analysis of δ15N-NO3- in stream water in a small agricultural catchment was efficient at determining the origin of nitrates during flood events using a simple method.

  7. Impacts of the post-fire erosion processes compared with the agricultural erosion rates for a mountain catchment in NW Iberia

    NASA Astrophysics Data System (ADS)

    Marisa Santos, Juliana; Nunes, João Pedro; Bernard-Jannin, Léonard; Gonzalez Pelayo, Oscar; Keizer, Jan Jacob

    2014-05-01

    Mediterranean ecosystems are very vulnerable to soil erosion by water due to particular characteristics of climate, lithology and land use history. Moreover, the foreseen climate changes might worsen land degradation and desertification, in which soil erosion has been classified as one of the most important driving forces. In this context, the frequent forest fires seen in some Mediterranean regions can case disturbances to vegetation cover and enhance soil erosion processes. This work addresses this issue for the Caramulo mountain range, NW Iberia. In the past century, large land use changes occurred due to massive afforestation. Changes from mixed natural forest cover and shrublands to Pine, the introduction of Eucalyptus plantations and, more recently, a trend for the substitution of pines by eucalypts, are the evidence of a large and rapid land use change in the last decades. Forest fires started to occur as afforestation proceeded, as a consequence of the disappearance of pasturage and accumulation of highly inflammable material; they became more frequent after the 1960's and became a determinant factor for land use changes in this region. Data collection focused on the Macieira de Alcoba catchment, a headwater agro-forested catchment (94 ha) located in this region. It has a wet Mediterranean climate, with an average annual rainfall of about 1300 mm (2002-2012), concentrated in autumn and winter, while spring and summer are dryer seasons. The mean annual temperature is 14°C and in summer it can reach 35°C. The land use is mixed, with forest and agriculture lands covering respectively 60 and 35% of the catchment area, 5% being built-up areas in the village of Macieira de Alcoba. In the last decades, this catchment suffered several forest fires (in 1969, 1986, 1991, and 2011). Erosion processes are related with periods of low vegetation cover in autumn in fields with a pasture-corn rotation, but also with forest plantations after clear-cutting and especially

  8. Runoff and sediment loss responses to rainfall and land use in two agricultural catchments on the Loess Plateau of China

    NASA Astrophysics Data System (ADS)

    Kang, Shaozhong; Zhang, Lu; Song, Xiaoyu; Zhang, Shuhan; Liu, Xianzhao; Liang, Yinli; Zheng, Shiqing

    2001-04-01

    Soil erosion is a severe problem hindering sustainable agriculture on the Loess Plateau of China. Plot experiments were conducted under the natural rainfall condition during 1995-1997 at Wangdongguo and Aobao catchments in this region to evaluate the effects of various land use, cropping systems, land slopes and rainfall on runoff and sediment losses, as well as the differences in catchment responses. The experiments included various surface conditions ranging from bare soil to vegetated surfaces (maize, wheat residue, Robinia pseudoacacia L., Amorpha fruticosa L., Stipa capillata L., buckwheat and Astragarus adsurgens L.). The measurements were carried out on hill slopes with different gradients (i.e. 0 ° to 36 °). These plots varied from 20 to 60 m in length. Results indicated that runoff and erosion in this region occurred mainly during summer storms. Summer runoff and sediment losses under cropping and other vegetation were significantly less than those from ploughed bare soil (i.e. without crop/plant or crop residue). There were fewer runoff and sediment losses with increasing canopy cover. Land slope had a major effect on runoff and sediment losses and this effect was markedly larger in the tillage plots than that in the natural grass and forest plots, although this effect was very small when the maximum rainfall intensity was larger than 58·8 mm/h or smaller than 2·4 mm/h. Sediment losses per unit area rose with increasing slope length for the same land slope and same land use. The effect of slope length on sediment losses was stronger on a bare soil plot than on a crop/plant plot. The runoff volume and sediment losses were both closely related to rainfall volume and maximum intensity, while runoff coefficient was mainly controlled by maximum rainfall intensity. Hortonian overland flow is the dominant runoff process in the region. The differences in runoff volume, runoff coefficient and sediment losses between the catchments are mainly controlled by the

  9. Spatio-temporal variability of shallow groundwater quality in a typical agricultural catchment in subtropical central China

    NASA Astrophysics Data System (ADS)

    Liu, X.

    2015-12-01

    Excessive agriculture-sourced N leaching into shallow groundwater has deteriorated the domestic water quality in rural China. To effectively prevent the above environmental contamination issue, it is an essential prerequisite of exploring the spatio-temporal variability (stV) of the groundwater quality. In this study, a large observation program was deployed to observe ammonium-N (NH4N), nitrate-N (NO3N) and total N (TN) concentrations in 194 groundwater observation wells (1.5 m deep from soil surface) from April 2010 to November 2012 in the Jinjing river catchment in Hunan Province of China. A logit function was applied to transform NH4N, NO3N and TN data for normality; the resultant variables were thus named as NH4Nt, NO3Nt and TNt, respectively. A spatio-temporal semivariogram model in a sum-metric form was used to quantify the stV of NH4Nt, NO3Nt and TNt. The results indicated that the 33-month means ± standard deviations of the NH4N, NO3N and TN concentrations were 0.75±0.10, 1.60±0.19 and 2.99±0.29 mg N L-1, respectively. NH4Nt and NO3Nt exhibited a strong spatio-temporal dependence, while TNt only presented a strong temporal structure. Spatio-temporal ordinary kriging (stOK) was applied to predict the spatio-temporal distributions of NH4N, NO3N and TN over the catchment. The cross-validation results indicated that the stOK predictions for NH4N (r=0.48, RMSE=1.11 mg N L-1), NO3N (r=0.46, RMSE=1.21 mg N L-1) outperformed that for TN (r=0.29, RMSE=2.11 mg N L-1). Referenced to the Chinese Environmental Quality Standards for Groundwater (GB/T 14848-93), the proportions of areas contaminated by NH4N, NO3N and TN in the catchment over a 33-month period were 20.5%, 1.46%, and 5.07%, respectively. Our findings suggested that the Jinjing groundwater was mainly polluted by NH4N, which is probably attributed to the intensive rice agriculture featured with high urea fertilizer applications in the catchment.

  10. Downstream mixing of sediment and tracers in agricultural catchments: Evidence of changing sediment sources and fluvial processes?

    NASA Astrophysics Data System (ADS)

    Ralph, Timothy; Wethered, Adam; Smith, Hugh; Heijnis, Henk

    2014-05-01

    Land clearance, soil tillage and grazing in agricultural catchments have liberated sediment and altered hydrological connectivity between hillslopes and channels, leading to increased sediment availability, mobilisation and delivery to rivers. The type and amount of sediment supplied to rivers is critical for fluvial geomorphology and aquatic ecosystem health. Contemporary sediment dynamics are routinely investigated using environmental radionuclides such as caesium-137 (Cs-137) and excess lead-210 (Pb-210ex), which can provide information regarding sediment source types and fluvial processes if sediment sources can be distinguished from one another and mixing models applied to representative samples. However, downstream transport, mixing and dilution of radionuclide-labelled sediment (especially from sources with low initial concentrations) can obliterate the tracer signal; sometimes before anything of geomorphological importance happens in the catchment. Can these findings be used as evidence of sediment source variations and fluvial processes when the limits of detection (of Cs-137 in particular) are being exceeded so rapidly downstream? Sediment sources and downstream sediment dynamics were investigated in Coolbaggie Creek, a major supplier of sediment to the Macquarie River in an agricultural catchment with temperate to semi-arid climate in Australia. Radionuclides were used to discriminate between the <63 micron fraction of sediment sources including forested topsoils (Cs-137 11.28 +/- 0.75 Bq/kg; Pb-210ex 181.87 +/- 20.00 Bq/kg), agricultural topsoils (Cs-137 3.21 +/- 0.26 Bq/kg; Pb-210ex 29.59 +/- 10.94 Bq/kg) and sub-soils from channel banks and gullies (Cs-137 1.45 +/- 0.47 Bq/kg; Pb-210ex 4.67 +/- 1.93 Bq/kg). Within the trunk stream, suspended sediment, organic matter and Cs-137 and Pb-210ex concentrations declined downstream. Results from a mixing model suggest that agricultural topsoils account for 95% of fine sediment entering the channel in the

  11. Climate Change Impact on the Hydrology and Water Quality of a Small Partially-Irrigated Agricultural Lowland Catchment

    NASA Astrophysics Data System (ADS)

    Visser, A.; Kroes, J.; van Vliet, M. T.; Blenkinsop, S.; Broers, H.

    2010-12-01

    The objective of this study was to assess the potential effects of climate change on the hydrology of the small partially-irrigated agricultural lowland catchment of the Keersop, in south of the Netherlands, as well as the transport of a pre-existing spatially extensive trace metal contamination. The area surrounding the Keersop has been contaminated with heavy metals by the atmospheric emissions of four zinc ore smelters. This heavy metal contamination, with Cd and Zn for example, has accumulated in the topsoil and leaches towards the surface water system, especially during periods with high groundwater levels and high discharge rates. Daily time-series of precipitation and potential evapotranspiration were derived from the results of eight regional climate model experiments under the SRES A2 emissions scenario. They each span 100 years and are representative for the periods 1961-1990 (“baseline climate”) and 2071-2100 (“future climate”). The time-series of future climate were characterized by lower precipitation (-1% to -12%) and higher air temperatures (between 2°C and 5°C), and as a result higher potential evapotranspiration, especially in summer. The time-series were used to drive the quasi-2D unsaturated-saturated zone model (SWAP) of the Keersop catchment (43 km2). The model consisted of an ensemble of 686 1D models, each of which represented a 250x250 m area within the catchment. Simulation results for the future climate scenarios show a shift in the water balance of the catchment. The decrease in annual rainfall is nearly compensated by an increase in irrigation in the catchment, if present day irrigation rules are followed. On the other hand, both evaporation and transpiration fluxes increase. This increase is compensated by a decrease in the drainage flux and groundwater recharge. As a result, groundwater levels decline and the annual discharge of the Keersop stream decreases under all future climate scenarios, by 26% to 46%. Because Cd and Zn

  12. A groundwater recharge perspective on locating tree plantations within low-rainfall catchments to limit water resource losses

    NASA Astrophysics Data System (ADS)

    Dean, J. F.; Webb, J. A.; Jacobsen, G. E.; Chisari, R.; Dresel, P. E.

    2015-02-01

    Despite the many studies that consider the impacts of plantation forestry on groundwater recharge, and others that explore the spatial heterogeneity of recharge in low-rainfall regions, there is little marriage of the two subjects in forestry management guidelines and legislation. Here we carry out an in-depth analysis of the impact of reforestation on groundwater recharge in a low-rainfall (< 700 mm annually), high-evapotranspiration paired catchment characterized by ephemeral streams. Water table fluctuation (WTF) estimates of modern recharge indicate that little groundwater recharge occurs along the topographic highs of the catchments (average 18 mm yr-1); instead the steeper slopes in these areas direct runoff downslope to the lowland areas, where most recharge occurs (average 78 mm yr-1). Recharge estimates using the chloride mass balance (CMB) method were corrected by replacing the rainfall input Cl- value with that for streamflow, because most recharge occurs from infiltration of runoff through the streambed and adjacent low gradient slopes. The calculated CMB recharge values (average 10 mm yr-1) are lower than the WTF recharge values (average 47 mm yr-1), because they are representative of groundwater that was mostly recharged prior to European land clearance (> BP 200 years). The tree plantation has caused a progressive drawdown in groundwater levels due to tree water use; the decline is less in the upland areas. The results of this study show that spatial variations in recharge are important considerations for locating tree plantations. To conserve water resources for downstream users in low-rainfall, high-evapotranspiration regions, tree planting should be avoided in the dominant zone of recharge, i.e. the topographically low areas and along the drainage lines, and should be concentrated on the upper slopes, although this may negatively impact the economic viability of the plantation.

  13. Mitigation of nonpoint source pesticide contamination in a artificial wetland located at the outlet of a vineyard catchment

    NASA Astrophysics Data System (ADS)

    Payraudeau, S.; Gregoire, C.; Imfeld, G.

    2009-04-01

    The use of artificial wetlands for mitigating nonpoint source pesticide contamination from surface water runoff of agricultural origin represents an innovative approach, whose potential should be evaluated. The EU LIFE project ArtWET assesses the application of ecological bioengineering methods based on various types of artificial wetlands throughout Europe. In this framework, this study focused on the mitigation of pesticides in a storm basin (320 m2; 1500m3; planted with Phragmites australis Cav.) collecting runoff from a vineyard catchment area (42 ha; Rouffach, Alsace, France) over the cultural period (March to October 2008), and whose the hydraulic design has been modified in order to enhance the mitigation process. Discharge measurements and water samples collections were carried out in parallel at the inflow and the outflow of the basin for 17 runoff events in order to evaluate the load of 17 pesticides. Among the target pesticides, Glyphosate, AMPA, its metabolites, and Diuron predominated and runoff event pesticides loads strongly varied throughout cultural period. The depletion of the Glyphosate and AMPA concentration values recorded over the runoff event between the inflow and outflow of the system exceeded 70 %, and reached 90% when considering the total loads over the runoff event. The high mitigation capacity observed in the storm water wetland was likely due to both degradation and sorption processes. Current efforts focus on characterizing the variability over the cropping season of the wetland system performance in terms of reduction of pesticide loads in relationship with the biogeochemical conditions within the storm basin.

  14. Water and Nutrient Balances in a Large Tile-Drained Agricultural Catchment: A Distributed Modeling Study

    SciTech Connect

    Li, Hongyi; Sivapalan, Murugesu; Tian, Fuqiang; Liu, Dengfeng

    2010-11-16

    This paper presents the development and implementation of a distributed model of coupled water nutrient processes, based on the representative elementary watershed (REW) approach, to the Upper Sangamon River Basin, a large, tile-drained agricultural basin located in central Illinois, mid-west of USA. Comparison of model predictions with the observed hydrological and biogeochemical data, as well as regional estimates from literature studies, shows that the model is capable of capturing the dynamics of water, sediment and nutrient cycles reasonably well. The model is then used as a tool to gain insights into the physical and chemical processes underlying the inter- and intra-annual variability of water and nutrient balances. Model predictions show that about 80% of annual runoff is contributed by tile drainage, while the remainder comes from surface runoff (mainly saturation excess flow) and subsurface runoff. It is also found that, at the annual scale nitrogen storage in the soil is depleted during wet years, and is supplemented during dry years. This carryover of nitrogen storage from dry year to wet year is mainly caused by the lateral loading of nitrate. Phosphorus storage, on the other hand, is not affected much by wet/dry conditions simply because the leaching of it is very minor compared to the other mechanisms taking phosphorous out of the basin, such as crop harvest. The analysis then turned to the movement of nitrate with runoff. Model results suggested that nitrate loading from hillslope into the channel is preferentially carried by tile drainage. Once in the stream it is then subject to in-stream denitrification, the significant spatio-temporal variability of which can be related to the variation of the hydrologic and hydraulic conditions across the river network.

  15. Applicability of rapid and on-site measured enzyme activity for surface water quality monitoring in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Farnleitner, Andreas H.; Sommer, Regina; Kumpan, Monika; Zessner, Matthias

    2014-05-01

    For the near real time and on-site detection of microbiological fecal pollution of water, the measurement of beta-D- Glucuronidase (GLUC) enzymatic activity has been suggested as a surrogate parameter and has been already successfully operated for water quality monitoring of ground water resources (Ryzinska-Paier et al. 2014). Due to possible short measure intervals of three hours, this method has high potential as a water quality monitoring tool. While cultivation based standard determination takes more than one working day (Cabral 2010) the potential advantage of detecting the GLUC activity is the high temporal measuring resolution. Yet, there is still a big gap of knowledge on the fecal indication capacity of GLUC (specificity, sensitivity, persistence, etc.) in relation to potential pollution sources and catchment conditions (Cabral 2010, Ryzinska-Paier et al. 2014). Furthermore surface waters are a big challenge for automated detection devices in a technical point of view due to the high sediment load during event conditions. This presentation shows results gained form two years of monitoring in an experimental catchment (HOAL) dominated by agricultural land use. Two enzymatic measurement devices are operated parallel at the catchment outlet to test the reproducibility and precision of the method. Data from continuous GLUC monitoring under both base flow and event conditions is compared with reference samples analyzed by standardized laboratory methods for fecal pollution detection (e.g. ISO 16649-1, Colilert18). It is shown that rapid enzymatic on-site GLUC determination can successfully be operated from a technical point of view for surface water quality monitoring under the observed catchment conditions. The comparison of enzyme activity with microbiological standard analytics reveals distinct differences in the dynamic of the signals during event conditions. Cabral J. P. S. (2010) "Water Microbiology. Bacterial Pathogens and Water" International Journal of

  16. Teacher Education Programs in Agricultural Education Should Be Located in Colleges of Education

    ERIC Educational Resources Information Center

    Binkley, Harold R.

    1977-01-01

    The rationale for locating the departments of agricultural education in colleges of education (vs. in colleges of agriculture) is presented and is based upon a desire to prevent fragmentation, enhance curriculum flexibility and innovation, emphasize coordinated research and service, improve staff recruitment and selection, and strengthen funding…

  17. Nitrate dynamics in agricultural catchments deduced from groundwater dating and long-term nitrate monitoring in surface- and groundwaters.

    PubMed

    Aquilina, L; Vergnaud-Ayraud, V; Labasque, T; Bour, O; Molénat, J; Ruiz, L; de Montety, V; De Ridder, J; Roques, C; Longuevergne, L

    2012-10-01

    Although nitrate export in agricultural catchments has been simulated using various types of models, the role of groundwater in nitrate dynamics has rarely been fully taken into account. We used groundwater dating methods (CFC analyses) to reconstruct the original nitrate concentrations in the groundwater recharge in Brittany (Western France) from 1950 to 2009. This revealed a sharp increase in nitrate concentrations from 1977 to 1990 followed by a slight decrease. The recharge concentration curve was then compared with past chronicles of groundwater concentration. Groundwater can be interpreted as resulting from the annual dilution of recharge water in an uncontaminated aquifer. Two aquifers were considered: the weathered aquifer and the deeper fractured aquifer. The nitrate concentrations observed in the upper part of the weathered aquifer implied an annual renewal rate of 27 to 33% of the reservoir volume while those in the lower part indicated an annual renewal rate of 2-3%. The concentrations in the deep fractured aquifer showed an annual renewal rate of 0.1%. The river concentration can be simulated by combining these various groundwater reservoirs with the recharge. Winter and summer waters contain i) recharge water, or water from the variably saturated zone with rapid transfer and high nitrate concentrations, and ii) a large contribution (from 35 to 80% in winter and summer, respectively) from the lower part of the aquifer (lower weathered aquifer and deep fractured aquifer). This induces not only a relatively rapid response of the catchment to variations in agricultural pressure, but also a potential inertia which has to be taken into account.

  18. Interannual climate variability and spatially heterogeneous improvement of agricultural management impede detection of a decreasing trend in nitrate pollution in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Fovet, Ophélie; Dupas, Rémi; Durand, Patrick; Gascuel-Odoux, Chantal; Gruau, Gérard; Hamon, Yannick; Petitjean, Patrice

    2016-04-01

    Despite widespread implementation of the nitrate directive in the European Union since the 1990s, the impact on nitrate concentration in rivers is limited (Bouraoui and Grizzetti, 2011). To assess whether this lack of response is due to the long time lags of nitrate transfer or to inadequate programs of measure, long term river and groundwater monitoring data are necessary. This study analyses 15 years of daily nitrate concentration data at the outlet of an intensively farmed catchment in Western France (Kervidy-Naizin, 5 km²) and quarterly nitrate concentration data in the groundwater of two hillslopes equipped with piezometers (Kerroland and Gueriniec) within the same catchment. In this catchment groundwater contribution to annual stream flow is dominant. The objectives of this study were to i) disentangle the influence of interannual climate variability and improvement of agricultural practices (i.e. reduction in N surplus) in the stream chemistry and ii) discuss the reasons for slow catchment recovery from nitrate pollution by comparing trends in groundwater and stream concentrations. Analysis of stream data showed that flow-weighted mean annual concentration at the outlet of the Kervidy-Naizin catchment has decreased by 1.2 mg NO3- l-1 yr-1 from 1999 to 2015. This decrease was slow but significant (p value < 0.01) even though interannual climate variability (i.e. annual cumulated runoff) added noise to the signal: i) deviation in the linear model of nitrate decrease with time was negatively correlated with annual runoff (r = -0.54, p < 0.01) and ii) local minimums in the nitrate time series were coincident with local maximums in the annual runoff. Thus high runoff during wet years led to dilution of the nitrate originating from groundwater, which added variability to the signal of linear decrease in stream concentration. Analysis of groundwater data showed a significant and sharp decrease in nitrate concentration in the Kerroland piezometer transect (4.0 mg

  19. Concentration patterns of agricultural pesticides and urban biocides in surface waters of a catchment of mixed land use

    NASA Astrophysics Data System (ADS)

    Stamm, C.; Wittmer, I.; Bader, H.-P.; Scheidegger, R.; Alder, A.; Lück, A.; Hanke, I.; Singer, H.

    2009-04-01

    Organic pesticides and biocides that are found in surface waters, can originate from agricultural and urban sources. For a long time, agricultural pesticides have received substantially more attention than biocidal compounds from urban use like material protection or in-can preservatives (cosmetics etc.). Recent studies however revealed that the amounts of urban biocides used may exceed those of agricultural pesticides. This study aims at comparing the input of several important pesticides and biocides into a small Swiss stream with a special focus on loss events triggered by rainfall. A set of 16 substances was selected to represent urban and agricultural sources. The selected substances are either only used as biocides (irgarol, isothiazolinones, IPBC), as pesticides (atrazine, sulcotrione, dichlofluanid, tolylfluanid) or have a mixed use (isoproturon, terbutryn, terbutylazine, mecoprop, diazinon, carbendazim) The study catchment has an area of 25 km2 and is inhabited by about 12'000 people. Four sampling sites were selected in the river system in order to reflect different urban and agricultural sources. Additionally, we sampled a combined sewer overflow, a rain sewer and the outflow of a wastewater treatment plant. At each site discharge was measured continuously from March to November 2007. During 16 rain events samples were taken by automatic devices at a high temporal resolution. The results, based on more than 500 analyzed samples, revealed distinct concentration patterns for different compounds and sources. Agricultural pesticides exhibited a strong seasonality as expected based on the application periods. During the first one or two rain events after application the concentrations reached up to several thousand ng/l during peak flow (atrazine, isoproturon). The temporal patterns of urban biocides were more diverse. Some compounds obviously stem from permanent sources independent of rainfall because they were found mostly in the outlet of the wastewater

  20. Sulphate leaching from diffuse agricultural and forest sources in a large central European catchment during 1900-2010.

    PubMed

    Kopáček, Jiří; Hejzlar, Josef; Porcal, Petr; Posch, Maximilian

    2014-02-01

    Using dynamic, mass budget, and empirical models, we quantified sulphate-sulphur (SO4-S) leaching from soils in a large central European catchment (upper Vltava river, Czech Republic) over a 110-year period (1900-2010). SO4-S inputs to soils with synthetic fertilisers and atmospheric deposition increased in the 1950s-1980s, then rapidly decreased (~80%), and remained low since the middle 1990s. The proportion of drained agricultural land rapidly increased from 4 to 43% between the 1950s and 1990s; then the draining ability of the system slowly decreased due to its ageing. Sulphate concentrations in the Vltava exhibited similar trends as the external SO4-S inputs, suggesting that they could be explained by changes in atmospheric and fertiliser S inputs. The available data and modelling, however, showed that (i) internal SO4-S sources (mineralization of soil organic S in the drained agricultural land), (ii) a hysteresis in SO4-S leaching from forest soils (a net S retention at the high S inputs and then a net release at the lowered inputs), and (iii) hydrology must be taken into account. An empirical model was then employed, based on parameters representing hydrology (discharge), external SO4-S sources (inputs by synthetic fertilisers and atmospheric deposition), and internal SO4-S sources (mineralization related to soil drainage). The model explained 84% of the observed variability in annual SO4-S concentrations in the Vltava river during 1900-2010 and showed that forest soils were a net sink (105 kg ha(-1)) while agricultural land was a net source (55 kg ha(-1)) of SO4-S during 1960-2010. In the late 1980s, forest soils changed from a sink to a source of S, and the present release of SO4-S accumulated in forest soils thus delays recovery of surface waters from acidification, while S losses from agricultural soils increase the risk of future S deficiency in S-demanding crops.

  1. Modeling water quality to improve agricultural practices and land management in a tunisian catchment using the soil and water assessment tool.

    PubMed

    Aouissi, Jalel; Benabdallah, Sihem; Chabaâne, Zohra Lili; Cudennec, Christophe

    2014-01-01

    Agriculture intensification has impaired water quality. In this study, the risk of pollution by nitrates was assessed by experimental monitoring, spatial integration of farm census, and modeling of water quality using the Soil and Water Assessment Tool (SWAT), version 2009, over the period of 1990 to 2006 for a catchment located northern Tunisia. Under a semiarid climate, the water quality is influenced by the predominating agriculture activities. The hydrological results are compared with the observed flows derived from measurements at the outlet of the Joumine watershed. Model performance showed good statistical agreements, with a Nash-Sutcliffe efficiency of 0.9 and a value of 0.92 after monthly calibration. The model predicted the timing of monthly peak flow values reasonably well. During the validation period, SWAT simulations were nearly as accurate, with Nash-Sutcliffe efficiency and values of 0.89 and 0.92, respectively. The model was used to simulate NO concentrations. The predicted NO concentration values were compared with in situ measured concentrations. The simulated and measured NO-N concentrations varied in the same range of 0 to 5 mg L at the E3 and E5 locations. The calibrated model was then used for simulating the impact of the best management practice scenarios to reduce NO loads to the river. The first set-up consisted of reducing the N fertilizer application by 20 and 100% from the current state. These two scenarios induced a reduction in NO loads by 22 and 72%, respectively. The second set-up consisted of using vegetation filter strips. The last scenario combined filter strips and a reduction of 20% in N fertilizer application. Results showed NO reduction rates of 20 and 36%, respectively. The SWAT model allowed managers to have several options to improve the water quality in the Joumine watershed. PMID:25602536

  2. Nitrous oxide and methane emission in an artificial wetland treating polluted runoff from an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Mander, Ülo; Tournebize, Julien; Soosaar, Kaido; Chaumont, Cedric; Hansen, Raili; Muhel, Mart; Teemusk, Alar; Vincent, Bernard

    2015-04-01

    An artificial wetland built in 2010 to reduce water pollution in a drained agricultural watershed showed real potential for pesticide and nitrate removal. The 1.2 ha off-shore wetland with a depth of from 0.1 to 1 m intercepts drainage water from a 450 ha watershed located near the village of Rampillon (03°03'37.3'' E, 48°32'16.7'' N, 70 km south-east of Paris, France). A sluice gate installed at the inlet makes it possible to close the wetland during the winter months (December - March), when no pesticides are applied and rainfall events are more frequent. The flow entering the wetland fluctuates from 0 to 120 L/s. The wetland is partially covered by Carex spp., Phragmites australis, Juncus conglomeratus, Typha latifolia and philamentous algae. Since 2011, an automatic water quality monitoring system measures water discharge, temperature, dissolved O2, conductivity pH, NO3- and DOC in both inlet and outlet. In May 2014, an automatic weather station and Campbell Irgason system for the measurement of CO2 and H2O fluxes were installed in the middle of the wetland. In May and November 2014 one-week high frequency measurement campaigns were conducted to study N2O and CH4 fluxes using 6 manually operated opaque floating static chambers and 12 floating automatic dynamic chambers. The latter were operated via multiplexer and had an incubation time of 5 minutes, whereas the gas flow was continuously measured using the Aerodyne TILDAS quantum cascade laser system. During the campaign, the reduction of NO3- concentration was measured in nine reactor pipes. Also, water samples were collected for N2O and N2 isotope analysis, and sediments were collected for potential N2 emission measurements. In May, the hydraulic retention time (HRT) was 30 days, and the average NO3- concentration decreased from 24 in the inflow to 0 mg/L in the outflow. Methane flux was relatively high (average 1446, variation 0.2-113990 μg CH4-C m-2 h-1), while about 2/3 was emitted via ebullition

  3. Effectiveness of Conservation Measures in Reducing Runoff and Soil Loss Under Different Magnitude-Frequency Storms at Plot and Catchment Scales in the Semi-arid Agricultural Landscape

    NASA Astrophysics Data System (ADS)

    Zhu, T. X.

    2016-03-01

    In this study, multi-year stormflow data collected at both catchment and plot scales on an event basis were used to evaluate the efficiency of conservation. At the catchment scale, soil loss from YDG, an agricultural catchment with no conservation measures, was compared with that from CZG, an agricultural catchment with an implementation of a range of conservation measures. With an increase of storm recurrence intervals in the order of <1, 1-2, 2-5, 5-10, 10-20, and >20 years, the mean event sediment yield was 639, 1721, 5779, 15191, 19627, and 47924 t/km2 in YDG, and was 244, 767, 3077, 4679, 8388, and 15868 t/km2 in CZG, which represented a reduction effectiveness of 61.8, 55.4, 46.7, 69.2, 57.2, and 66.8 %, respectively. Storm events with recurrence intervals greater than 2 years contributed about two-thirds of the total runoff and sediment in both YDG and CZG catchments. At the plot scale, soil loss from one cultivated slopeland was compared with that from five conservation plots. The mean event soil loss was 1622 t/km2 on the cultivated slopeland, in comparison to 27.7 t/km2 on the woodland plot, 213 t/km2 on the grassland plot, 467 t/km2 on the alfalfa plot, 236 t/km2 on the terraceland plot, and 642 t/km2 on the earthbank plot. Soil loss per unit area from all the plots was significantly less than that from the catchments for storms of all categories of recurrence intervals.

  4. Model-based coefficient method for calculation of N leaching from agricultural fields applied to small catchments and the effects of leaching reducing measures

    NASA Astrophysics Data System (ADS)

    Kyllmar, K.; Mårtensson, K.; Johnsson, H.

    2005-03-01

    A method to calculate N leaching from arable fields using model-calculated N leaching coefficients (NLCs) was developed. Using the process-based modelling system SOILNDB, leaching of N was simulated for four leaching regions in southern Sweden with 20-year climate series and a large number of randomised crop sequences based on regional agricultural statistics. To obtain N leaching coefficients, mean values of annual N leaching were calculated for each combination of main crop, following crop and fertilisation regime for each leaching region and soil type. The field-NLC method developed could be useful for following up water quality goals in e.g. small monitoring catchments, since it allows normal leaching from actual crop rotations and fertilisation to be determined regardless of the weather. The method was tested using field data from nine small intensively monitored agricultural catchments. The agreement between calculated field N leaching and measured N transport in catchment stream outlets, 19-47 and 8-38 kg ha -1 yr -1, respectively, was satisfactory in most catchments when contributions from land uses other than arable land and uncertainties in groundwater flows were considered. The possibility of calculating effects of crop combinations (crop and following crop) is of considerable value since changes in crop rotation constitute a large potential for reducing N leaching. When the effect of a number of potential measures to reduce N leaching (i.e. applying manure in spring instead of autumn; postponing ploughing-in of ley and green fallow in autumn; undersowing a catch crop in cereals and oilseeds; and increasing the area of catch crops by substituting winter cereals and winter oilseeds with corresponding spring crops) was calculated for the arable fields in the catchments using field-NLCs, N leaching was reduced by between 34 and 54% for the separate catchments when the best possible effect on the entire potential area was assumed.

  5. Effectiveness of Conservation Measures in Reducing Runoff and Soil Loss Under Different Magnitude-Frequency Storms at Plot and Catchment Scales in the Semi-arid Agricultural Landscape.

    PubMed

    Zhu, T X

    2016-03-01

    In this study, multi-year stormflow data collected at both catchment and plot scales on an event basis were used to evaluate the efficiency of conservation. At the catchment scale, soil loss from YDG, an agricultural catchment with no conservation measures, was compared with that from CZG, an agricultural catchment with an implementation of a range of conservation measures. With an increase of storm recurrence intervals in the order of <1, 1-2, 2-5, 5-10, 10-20, and >20 years, the mean event sediment yield was 639, 1721, 5779, 15191, 19627, and 47924 t/km(2) in YDG, and was 244, 767, 3077, 4679, 8388, and 15868 t/km(2) in CZG, which represented a reduction effectiveness of 61.8, 55.4, 46.7, 69.2, 57.2, and 66.8 %, respectively. Storm events with recurrence intervals greater than 2 years contributed about two-thirds of the total runoff and sediment in both YDG and CZG catchments. At the plot scale, soil loss from one cultivated slopeland was compared with that from five conservation plots. The mean event soil loss was 1622 t/km(2) on the cultivated slopeland, in comparison to 27.7 t/km(2) on the woodland plot, 213 t/km(2) on the grassland plot, 467 t/km(2) on the alfalfa plot, 236 t/km(2) on the terraceland plot, and 642 t/km(2) on the earthbank plot. Soil loss per unit area from all the plots was significantly less than that from the catchments for storms of all categories of recurrence intervals.

  6. Groundwater flow path dynamics and nitrogen transport potential in the riparian zone of an agricultural headwater catchment

    NASA Astrophysics Data System (ADS)

    Williams, Mark R.; Buda, Anthony R.; Elliott, Herschel A.; Hamlett, James; Boyer, Elizabeth W.; Schmidt, John P.

    2014-04-01

    Shallow groundwater dynamics play a critical role in determining the chemistry and movement of nitrogen (N) in the riparian zone. In this study, we characterized N concentration variability and hydrologic transport pathways in shallow groundwater draining areas of a riparian area with and without emergent groundwater seeps. The study was conducted in FD36, an agricultural headwater catchment in the Ridge and Valley physiographic region of central Pennsylvania, USA. Three seep and adjacent non-seep areas were each instrumented with a field of 40 piezometers installed in a grid pattern (1.5-m spacing) at both 20- and 60-cm depths. Piezometers were monitored seasonally for approximately two years (October 2010-May 2012). Results showed that hydraulic head within seep areas was variable and some regions exhibited upward vertical hydraulic gradients of 0.18-0.27. Non-seep areas were characterized by uniform hydraulic head levels and were relatively hydrostatic. Nitrate-N (NO3-N) concentrations in seep areas were significantly greater than those in the non-seep areas at two of the three study sites. A two-component mixing model using chloride as a conservative tracer indicated that shallow groundwater in seep areas was primarily (53-75%) comprised of water from a shallow fractured aquifer, which had elevated NO3-N concentrations (5.7 mg L-1). Shallow groundwater in non-seep areas, however, was comprised (58-82%) of perched water on top of the fragipan that was likely recharged locally in the riparian zone and had low NO3-N concentrations (0.6 mg L-1). Higher NO3-N concentrations, variable hydraulic head, and groundwater emergence onto the land surface in seep areas provided evidence for preferential flow paths as an important conduit for water and N movement in these areas of the riparian zone. We conclude that the potential for N delivery to the stream in FD36 was much greater from seep areas compared to non-seep areas. Targeted management of seeps should be a priority

  7. Modeling concentration patterns of agricultural and urban micropollutants in surface waters in catchment of mixed land use

    NASA Astrophysics Data System (ADS)

    Stamm, C.; Scheidegger, R.; Bader, H. P.

    2012-04-01

    Organic micropollutants detected in surface waters can originate from agricultural and urban sources. Depending on the use of the compounds, the temporal loss patterns vary substantially. Therefore models that simulate water quality in watersheds of mixed land use have to account for all relevant sources. We present here simulation results of a transport model that describes the dynamic of several biocidal compounds as well as the behaviour of human pharmaceuticals. The model consists of the sub-model Rexpo simulating the transfer of the compounds from the point of application to the stream in semi-lumped manner. The river sub-model, which is programmed in the Aquasim software, describes the fate of the compounds in the stream. Both sub-models are process-based. The Rexpo sub-model was calibrated at the scale of a small catchment of 25 km2, which is inhabited by about 12'000 people. Based on the resulting model parameters the loss dynamics of two herbicides (atrazine, isoproturon) and a compound of mixed urban and agricultural use (diuron) were predicted for two nested catchment of 212 and 1696 km2, respectively. The model output was compared to observed time-series of concentrations and loads obtained for the entire year 2009. Additionally, the fate of two pharmaceuticals with constant input (carbamazepine, diclofenac) was simulated for improving the understanding of possible degradation processes. The simulated loads and concentrations of the biocidal compounds differed by a factor of 2 to 3 from the observations. In general, the seasonal patterns were well captured by the model. However, a detailed analysis of the seasonality revealed substantial input uncertainty for the application of the compounds. The model results also demonstrated that for the dynamics of rain-driven losses of biocidal compounds the semi-lumped approach of the Rexpo sub-model was sufficient. Only for simulating the photolytic degradation of diclofenac in the stream the detailed

  8. Using 137Cs to study spatial patterns of soil erosion and soil organic carbon (SOC) in an agricultural catchment of the typical black soil region, Northeast China.

    PubMed

    Fang, Haiyan; Li, Qiuyan; Sun, Liying; Cai, Qiangguo

    2012-10-01

    Understanding the spatial pattern of soil organic carbon (SOC) is of great importance because of global environmental concerns. Soil erosion and its subsequent redistribution contribute significantly to the redistribution of SOC in agricultural ecosystems. This study investigated the relationships between (137)Cs and SOC over an agricultural landscape, and SOC redistribution was conducted for an agricultural catchment of the black soil region in Northeast China. The spatial patterns of (137)Cs and SOC were greatly affected by the established shelterbelts and the developed ephemeral gullies. (137)Cs were significantly correlated with SOC when (137)Cs were >2000 Bq m(-2), while no relation was observed between them when (137)Cs were <2000 Bq m(-2). Factors other than soil erosion such as vegetative productivity, mineralization of SOC, landscape position and management induced their spatial difference of (137)Cs and SOC. Using (137)Cs technique to directly study SOC dynamics must be cautious in the black soils. The net SOC loss rate across the entire catchment during 1954-2010 was 92.8 kg ha(-1) yr(-1), with around 42% of the eroded SOC being redeposited within the catchment. Such information can help guide shelterbelt establishment or other land management to reduce SOC loss in the agricultural ecosystems.

  9. Long-term effects of high nitrogen loads on cation and carbon riverine export in agricultural catchments.

    PubMed

    Aquilina, Luc; Poszwa, Anne; Walter, Christian; Vergnaud, Virginie; Pierson-Wickmann, Anne-Catherine; Ruiz, Laurent

    2012-09-01

    The intensification of agriculture in recent decades has resulted in extremely high nitrogen inputs to ecosystems. One effect has been H(+) release through NH(4)(+) oxidation in soils, which increases rock weathering and leads to acidification processes such as base-cation leaching from the soil exchange complex. This study investigated the evolution of cation concentrations over the past 50 years in rivers from the Armorican crystalline shield (Brittany, western France). On a regional scale, acidification has resulted in increased base-cation riverine exports (Ca(2+), Mg(2+), Na(+), K(+)) correlated with the increased NO(3)(-) concentration. The estimated cation increase is 0.7 mmol(+)/L for Ca(2+) + Mg(2+) and 0.85 mmol(+)/L for total cations. According to mass balance, cation loss represents >30% of the base-cation exchange capacity of soils. Long-term acidification thus contributes to a decline in soil productivity. Estimates of the total organic nitrogen annually produced worldwide indicate that acidification may also constitute an additional carbon source in crystalline catchments if compensated by liming practices.

  10. Risk assessment of surface water and groundwater pollution through agricultural activity on the catchment area of the Shelek River

    NASA Astrophysics Data System (ADS)

    Zubairov, Bulat; Dautova, Assel

    2015-04-01

    Agricultural activity in rural areas of Kazakhstan can create a potential risk of surface and groundwater pollution. In our contribution, we will focus on the risk assessment of surface water and groundwater pollution in the catchment area of the Shelek River basin in southeast Kazakhstan. Since soviet time, in the research area an intensive cultivation of tobacco was performed which means to use a big amount of pesticides during the growing-process. Therefore, this research was conducted in order to receive reliable data for management decisions justification and for practical testing of approach which is recommended by WHO for drinking water supply based on risks mapping. For our study, the soil and water samples from tobacco fields, artesian spring, and surface water source were taken for analysis on pesticides content. The samples were investigated in laboratory of Centre of Sanitary and Epidemiological Expertise of Almaty city (CSEE) according to approved methods from the national standards which are accepted in Kazakhstan. For the first time, in artesian spring small amount of nitrate pollution was found whose groundwater is one of the drinking water supplies of the region.

  11. Comparing three gap filling methods for eddy covariance crop evapotranspiration measurements within a hilly agricultural catchment

    NASA Astrophysics Data System (ADS)

    Boudhina, Nissaf; Prévot, Laurent; Zitouna Chebbi, Rim; Mekki, Insaf; Jacob, Frédéric; Ben Mechlia, Netij; Masmoudi, Moncef

    2015-04-01

    Hilly watersheds are widespread throughout coastal areas around the Mediterranean Basin. They experience agricultural intensification since hilly topographies allow water-harvesting techniques that compensate for rainfall storage, water being a strong limiting factor for crop production. Their fragility is likely to increase with climate change and human pressure. Within semi-arid hilly watershed conditions, evapotranspiration (ETR) is a major term of both land surface energy and water balances. Several methods allow determining ETR, based either on direct measurements, or on estimations and forecast from weather and soil moisture data using simulation models. Among these methods, eddy covariance technique is based on high-frequency measurements of fluctuations of wind speed and air temperature / humidity, to directly determine the convective fluxes between land surface and atmosphere. In spite of experimental and instrumental progresses, datasets of eddy covariance measurements often experience large portions of missing data. The latter results from energy power failure, experimental maintenance, instrumental troubles such as krypton hygrometer malfunctioning because of air humidity, or quality assessment based filtering in relation to spatial homogeneity and temporal stationarity of turbulence within surface boundary layer. This last item is all the more important as hilly topography, when combined with strong winds, tends to increase turbulence within surface boundary layer. The main objective of this study is to establish gap-filling procedures to provide complete chronicles of eddy-covariance measurements of crop evapotranspiration (ETR) within a hilly agricultural watershed. We focus on the specific conditions induced by the combination of hilly topography and wind direction, by discriminating between upslope and downslope winds. The experiment was set for three field configurations within hilly conditions: two flux measurement stations (A, B) were installed

  12. Long-term, high-frequency water quality monitoring in an agricultural catchment: insights from spectral analysis

    NASA Astrophysics Data System (ADS)

    Aubert, Alice; Kirchner, James; Faucheux, Mikael; Merot, Philippe; Gascuel-Odoux, Chantal

    2013-04-01

    The choice of sampling frequency is a key issue in the design and operation of environmental observatories. The choice of sampling frequency creates a spectral window (or temporal filter) that highlights some timescales and processes, and de-emphasizes others (1). New online measurement technologies can monitor surface water quality almost continuously, allowing the creation of very rich time series. The question of how best to analyze such detailed temporal datasets is an important issue in environmental monitoring. In the present work, we studied water quality data from the AgrHys long-term hydrological observatory (located at Kervidy-Naizin, Western France) sampled at daily and 20-minute time scales. Manual sampling has provided 12 years of daily measurements of nitrate, dissolved organic carbon (DOC), chloride and sulfate (2), and 3 years of daily measurements of about 30 other solutes. In addition, a UV-spectrometry probe (Spectrolyser) provides one year of 20-minute measurements for nitrate and DOC. Spectral analysis of the daily water quality time series reveals that our intensively farmed catchment exhibits universal 1/f scaling (power spectrum slope of -1) for a large number of solutes, confirming and extending the earlier discovery of universal 1/f scaling in the relatively pristine Plynlimon catchment (3). 1/f time series confound conventional methods for assessing the statistical significance of trends. Indeed, conventional methods assume that there is a clear separation of scales between the signal (the trend line) and the noise (the scatter around the line). This is not true for 1/f noise, since it overestimates the occurrence of significant trends. Our results raise the possibility that 1/f scaling is widespread in water quality time series, thus posing fundamental challenges to water quality trend analysis. Power spectra of the 20-minute nitrate and DOC time series show 1/f scaling at frequencies below 1/day, consistent with the longer-term daily

  13. Co-location opportunities for renewable energy and agriculture in Northwestern India: Tradeoffs and Synergies

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Macknick, J.; Lobell, D. B.; Field, C. B.; Ganesan, K.; Jain, R.; Elchinger, M.; Stoltenberg, B.

    2014-12-01

    Solar energy installations in arid and semi-arid regions of India are rapidly increasing, due to technological advances and policy support. Even though solar energy provides several benefits such as reduction of greenhouse gases, reclamation of degraded land, and improving the quality of life, the deployment of large-scale solar energy infrastructure can adversely impact land and water resources. A major challenge is how to meet the ever-expanding energy demand with limited land and water resources, in the context of increasing competition from agricultural and domestic consumption. We investigated whether water consumption for solar energy development in northwestern India could impact other water and land uses, and explored opportunities to co-locate solar infrastructures and agricultural crops to maximize the efficiency of land and water use. We considered energy inputs/outputs, water use, greenhouse gas emissions and economics of solar installations in northwestern India in comparison to Aloe vera cultivation, a widely promoted land use in the region. The life cycle analyses show that co-located systems are economically viable in some rural areas and may provide opportunities for rural electrification and stimulate economic growth. The water inputs for cleaning solar panels and dust suppression are similar to amounts required for aloe, suggesting the possibility of integrating the two systems to maximize water and land use efficiency. A life-cycle analysis of a hypothetical co-location indicated higher returns per m3 of water used than either system alone. The northwestern region of India is experiencing high population growth, creating additional demand for land and water resources. In these water limited areas, coupled solar infrastructure and agriculture could be established on marginal lands, thus minimizing the socioeconomic and environmental issues resulting from cultivation of non-food crops (e.g. Aloe) in prime agricultural lands.

  14. Prediction of dissolved reactive phosphorus losses from small agricultural catchments: calibration and validation of a parsimonious model

    NASA Astrophysics Data System (ADS)

    Hahn, C.; Prasuhn, V.; Stamm, C.; Lazzarotto, P.; Evangelou, M. W. H.; Schulin, R.

    2013-01-01

    Eutrophication of surface waters due to diffuse phosphorus (P) losses continues to be a severe water quality problem world-wide, causing the loss of ecosystem functions of the respective water bodies. Phosphorus in runoff often originates from a small fraction of a catchment only. Targeting mitigation measures to these critical source areas (CSA) is expected to be most efficient and cost-effective, but requires suitable tools. Here we investigated the capability of the parsimonious Rainfall-Runoff-Phosphorus (RRP) model to identify CSA in grassland-dominated catchments based on readily available soil and topographic data. After simultaneous calibration on runoff data from four small hilly catchments on the Swiss Plateau, the model was validated on a different catchment in the same region without further calibration. The RRP model adequately simulated the discharge and dissolved reactive P (DRP) export from the validation catchment. Sensitivity analysis showed that the model predictions were robust with respect to the classification of soils into "poorly drained" and "well drained", based on the available soil map. Comparing spatial hydrological model predictions with field data from the validation catchment provided further evidence that the assumptions underlying the model are valid and that the model adequately accounts for the dominant P export processes in the target region. Thus, the parsimonious RRP model is a valuable tool that can be used to determine CSA. Despite the considerable predictive uncertainty regarding the spatial extent of CSAs the RRP can provide guidance for the implementation of mitigation measures. The model helps to identify those parts of a catchment where high DRP losses are expected or can be excluded with high confidence. Legacy P was predicted to be the dominant source for DRP losses and thus, in combination with hydrologic active areas, a high risk for water quality.

  15. Prediction of dissolved reactive phosphorus losses from small agricultural catchments: calibration and validation of a parsimonious model

    NASA Astrophysics Data System (ADS)

    Hahn, C.; Prasuhn, V.; Stamm, C.; Lazzarotto, P.; Evangelou, M. W. H.; Schulin, R.

    2013-10-01

    Eutrophication of surface waters due to diffuse phosphorus (P) losses continues to be a severe water quality problem worldwide, causing the loss of ecosystem functions of the respective water bodies. Phosphorus in runoff often originates from a small fraction of a catchment only. Targeting mitigation measures to these critical source areas (CSAs) is expected to be most efficient and cost-effective, but requires suitable tools. Here we investigated the capability of the parsimonious Rainfall-Runoff-Phosphorus (RRP) model to identify CSAs in grassland-dominated catchments based on readily available soil and topographic data. After simultaneous calibration on runoff data from four small hilly catchments on the Swiss Plateau, the model was validated on a different catchment in the same region without further calibration. The RRP model adequately simulated the discharge and dissolved reactive P (DRP) export from the validation catchment. Sensitivity analysis showed that the model predictions were robust with respect to the classification of soils into "poorly drained" and "well drained", based on the available soil map. Comparing spatial hydrological model predictions with field data from the validation catchment provided further evidence that the assumptions underlying the model are valid and that the model adequately accounts for the dominant P export processes in the target region. Thus, the parsimonious RRP model is a valuable tool that can be used to determine CSAs. Despite the considerable predictive uncertainty regarding the spatial extent of CSAs, the RRP can provide guidance for the implementation of mitigation measures. The model helps to identify those parts of a catchment where high DRP losses are expected or can be excluded with high confidence. Legacy P was predicted to be the dominant source for DRP losses and thus, in combination with hydrologic active areas, a high risk for water quality.

  16. Hydroclimatic Controls on the Seasonal and Inter-Annual Variability of Dissolved Phosphorus Concentration in a Lowland Agricultural Catchment

    NASA Astrophysics Data System (ADS)

    Dupas, R.; Gascuel-odoux, C.; Grimaldi, C.; Gruau, G.

    2014-12-01

    We investigated soluble reactive phosphorus (SRP) at the outlet of a lowland agricultural catchment (Kervidy-Naizin, France) to identify the hydroclimatic controls on the seasonal and inter-annual variability in concentrations. Six years of stream data have been used, including a regular 6-daily sampling and high-frequency monitoring of 52 floods. Both on an annual basis and during flood events, distinct export dynamics for SRP and particulate phosphorus (PP) revealed that SRP transport mechanism was independent from PP (Dupas et al., submitted). During most flood events, discharge-SRP hystereses were anticlockwise, which suggests that SRP was transferred to the stream via subsurface flow. Groundwater rise in wetland soils was likely the cause of this transfer, through the hydrological connectivity it created between the stream and P-rich soil horizons. SRP concentrations were highest in the beginning of the hydrological year (period A), when the stream started to flow again after the dry summer season and water table fluctuated in the wetland domain. Thus, wetland soils seemed to be a major source of SRP. Concentrations during period A were higher after a long summer period than after a short one, which suggest that a pool of labile P was constituted in soils during the dry summer period. During winter (period B), SRP concentration generally decreased compared to period A, both during floods and interflood. This could be due to depletion of a soil P pool in the wetland domain and/or dilution by deep groundwater with low P concentration from the upland domain. Concentration during period B barely decreased compared to A during wet years, probably due to increased connectivity with soils from the upland domain in wet conditions. During spring (period C), SRP concentration increased during baseflow periods. The possible mechanisms causing the release of SRP could involve reduction of Fe oxide-hydroxides in wetland soils or in-stream processes. At the same time, SRP

  17. Atmospheric dry and wet nitrogen deposition on three contrasting land use types of an agricultural catchment in subtropical central China

    NASA Astrophysics Data System (ADS)

    Shen, Jianlin; Li, Yong; Liu, Xuejun; Luo, Xiaosheng; Tang, Hong; Zhang, Yangzhu; Wu, Jinshui

    2013-03-01

    Atmospheric emissions of reactive nitrogen (N) species are at high levels in China in recent years, but few studies have employed N deposition monitoring techniques that measure both dry and wet deposition for comprehensive evaluation of the impacts of N deposition on ecosystems. In this study, to quantify the total N deposition, both dry and wet N depositions were monitored using denuder/filter pack systems, passive samplers and wet-only samplers at three sites with different land use types (forest, paddy field and tea field) in a 135-km2 catchment in subtropical central China from September 2010 to August 2011. At the three sampling sites, the annual mean concentrations of total N (the sum of NH, NO and DON) in rainwater were 1.2-1.6 mg N L-1, showing small variation across sites. Annual mean concentrations of total N (the sum of NH3, NO2, HNO3, particulate NH and NO) in the air were 13-18 μg N m-3. High NH3 concentrations in the air were observed at the agricultural sites of tea and paddy fields, indicating significant NH3 emissions from N fertiliser application; and high NO2 concentrations were found at the upland sites of forest and tea field, suggesting high NO emissions from soils due to high N deposition or high N fertiliser input. The annual total N deposition for the three sites of paddy field, tea field and forest was estimated as 22, 34 and 55 kg N ha-1 yr-1, in which the dry N deposition components contributed to 21%, 36% and 63% of the annual total N deposition, respectively. The annual deposition of reduced N species was 1.1-1.8 times of the annual deposition of oxidised N species. To minimise the adverse effects of atmospheric N deposition on natural/semi-natural ecosystems, it is crucial to reduce the reactive N emissions from anthropogenic activities (e.g., N fertiliser application, animal production and fossil fuel combustion) in subtropical central China.

  18. Environmental factors that influence the location of crop agriculture in the conterminous United States

    USGS Publications Warehouse

    Baker, Nancy T.; Capel, Paul D.

    2011-01-01

    Most crops are grown on land with shallow slope where the temperature, precipitation, and soils are favorable. In areas that are too steep, wet, or dry, landscapes have been modified to allow cultivation. Some of the limitations of the environmental factors that determine the location of agriculture can be overcome through modifications, but others cannot. On a larger-than-field scale, agricultural modifications commonly influence water availability through irrigation and (or) drainage and soil fertility and (or) organic-matter content through amendments such as manure, commercial fertilizer and lime. In general, it is not feasible to modify the other environmental factors, soil texture, soil depth, soil mineralogy, temperature, and terrain at large scales.

  19. Indirect nitrous oxide emissions from surface water bodies in a lowland arable catchment: a significant contribution to agricultural greenhouse gas budgets?

    PubMed

    Outram, Faye N; Hiscock, Kevin M

    2012-08-01

    In the UK agriculture is by far the largest source of nitrous oxide (N(2)O) emissions. Direct N(2)O emissions as a result of nitrogen (N) application to soils have been well documented in the UK, whereas indirect emissions produced in surface waters and groundwaters from leached N are much less understood with limited data to support IPCC emission factors. Indirect emissions were studied in surface waters in the Upper Thurne, a lowland drained arable catchment in eastern England. All surface waters were found to have dissolved N(2)O concentrations above that expected if in equilibrium with ambient concentrations, demonstrating all surface waters were acting as a source of N(2)O. The drainage channels represented 86% of the total indirect N(2)O flux, followed by wetland areas, 11%, and the river, 3%. The dense drainage network was found to have the highest dissolved N(2)O concentrations of all the water bodies studied with a combined N(2)O flux of 16 kg N(2)O-N per day in March 2007. Such indirect fluxes are comparable to direct fluxes per hectare and represent a significant proportion of the total N(2)O flux for this catchment. Separate emission factors were established for the three different surface water types within the same catchment, suggesting that the one emission factor used in the Intergovernmental Panel on Climate Change (IPCC) methodology for predicting all indirect N(2)O emissions is inappropriate.

  20. REXPO: A catchment model designed to understand and simulate the loss dynamics of plant protection products and biocides from agricultural and urban areas

    NASA Astrophysics Data System (ADS)

    Wittmer, I. K.; Bader, H.-P.; Scheidegger, R.; Stamm, C.

    2016-02-01

    During rain events, biocides and plant protection products are transported from agricultural fields but also from urban sources to surface waters. Originally designed to be biologically active, these compounds may harm organisms in aquatic ecosystems. Although several models allow either urban or agricultural storm events to be predicted, only few combine these two sources, and none of them include biocide losses from building envelopes. This study therefore aims to develop a model designed to predict water and substance flows from urban and agricultural sources to surface waters. We developed a model based on physical principles for water percolation and substance flow including micro- (also called matrix-) and macropore-flows for the agricultural areas together with a model representing sources, sewer systems and a wastewater treatment plant for urban areas. In a second step, the combined model was applied to a catchment where an extensive field study had been conducted. The modelled and measured discharge and compound results corresponded reasonably well in terms of quantity and dynamics. The total cumulative discharge was only slightly lower than the total measured discharge (factor 0.94). The total modelled losses of the agriculturally used herbicide atrazine were slightly lower (∼25%) than the measured losses when the soil pore water distribution coefficient (describing the partition between soil particles and pore water) (Kd) was kept constant and slightly higher if it was increased with time. The modelled urban losses of diuron from facades were within a factor of three with respect to the measured values. The results highlighted the change in importance of the flow components during a rain event from urban sources during the most intensive rain period towards agricultural ones over a prolonged time period. Applications to two other catchments, one neighbouring and one on another continent showed that the model can be applied using site specific data for

  1. Spatial and temporal variations in non-point source losses of nitrogen and phosphorus in a small agricultural catchment in the Three Gorges Region.

    PubMed

    Chen, Chenglong; Gao, Ming; Xie, Deti; Ni, Jiupai

    2016-04-01

    Losses of agricultural pollutants from small catchments are a major issue for water quality in the Three Gorges Region. Solutions are urgently needed. However, before pollutant losses can be controlled, information about spatial and temporal variations in pollutant losses is needed. The study was carried out in the Wangjiagou catchment, a small agricultural catchment in Fuling District, Chongqing, and the data about non-point source losses of nitrogen and phosphorus was collected here. Water samples were collected daily by an automatic water sampler at the outlets of two subcatchments from 2012 to 2014. Also, samples of surface runoff from 28 sampling sites distributed through the subcatchments were collected during 12 rainfall events in 2014. A range of water quality variables were analyzed for all samples and were used to demonstrate the variation in non-point losses of nitrogen and phosphorus over a range of temporal and spatial scales and in different types of rainfall in the catchment. Results showed that there was a significant linear correlation between the mass concentrations of total nitrogen (TN) and nitrate (NO3-N) in surface runoff and that the relationship was maintained with changes in time. Concentrations of TN and NO3-N peaked after fertilizer was applied to crops in spring and autumn; concentrations decreased rapidly after the peak values in spring but declined slowly in autumn. N and P concentrations fluctuated more and showed a greater degree of dispersion during the spring crop cultivation period than those in autumn. Concentrations of TN and NO3-N in surface runoff were significantly and positively correlated with the proportion of the area that was planted with corn and mustard tubers, but were negatively correlated with the proportion of the area taken up with rice and mulberry plantations. The average concentrations of TN and NO3-N in surface runoff reached the highest level from the sampling points at the bottom of the land used for corn

  2. Spatial and temporal variations in non-point source losses of nitrogen and phosphorus in a small agricultural catchment in the Three Gorges Region.

    PubMed

    Chen, Chenglong; Gao, Ming; Xie, Deti; Ni, Jiupai

    2016-04-01

    Losses of agricultural pollutants from small catchments are a major issue for water quality in the Three Gorges Region. Solutions are urgently needed. However, before pollutant losses can be controlled, information about spatial and temporal variations in pollutant losses is needed. The study was carried out in the Wangjiagou catchment, a small agricultural catchment in Fuling District, Chongqing, and the data about non-point source losses of nitrogen and phosphorus was collected here. Water samples were collected daily by an automatic water sampler at the outlets of two subcatchments from 2012 to 2014. Also, samples of surface runoff from 28 sampling sites distributed through the subcatchments were collected during 12 rainfall events in 2014. A range of water quality variables were analyzed for all samples and were used to demonstrate the variation in non-point losses of nitrogen and phosphorus over a range of temporal and spatial scales and in different types of rainfall in the catchment. Results showed that there was a significant linear correlation between the mass concentrations of total nitrogen (TN) and nitrate (NO3-N) in surface runoff and that the relationship was maintained with changes in time. Concentrations of TN and NO3-N peaked after fertilizer was applied to crops in spring and autumn; concentrations decreased rapidly after the peak values in spring but declined slowly in autumn. N and P concentrations fluctuated more and showed a greater degree of dispersion during the spring crop cultivation period than those in autumn. Concentrations of TN and NO3-N in surface runoff were significantly and positively correlated with the proportion of the area that was planted with corn and mustard tubers, but were negatively correlated with the proportion of the area taken up with rice and mulberry plantations. The average concentrations of TN and NO3-N in surface runoff reached the highest level from the sampling points at the bottom of the land used for corn

  3. Environmental Risk Assessment of Fluctuating Diazinon Concentrations in an Urban and Agricultural Catchment Using Toxicokinetic–Toxicodynamic Modeling

    PubMed Central

    2011-01-01

    Temporally resolved environmental risk assessment of fluctuating concentrations of micropollutants is presented. We separated the prediction of toxicity over time from the extrapolation from one to many species and from acute to sublethal effects. A toxicokinetic–toxicodynamic (TKTD) model predicted toxicity caused by fluctuating concentrations of diazinon, measured by time-resolved sampling over 108 days from three locations in a stream network, representing urban, agricultural and mixed land use. We calculated extrapolation factors to quantify variation in toxicity among species and effect types based on available toxicity data, while correcting for different test durations with the TKTD model. Sampling from the distribution of extrapolation factors and prediction of time-resolved toxicity with the TKTD model facilitated subsequent calculation of the risk of undesired toxic events. Approximately one-fifth of aquatic organisms were at risk and fluctuating concentrations were more toxic than their averages. Contribution of urban and agricultural sources of diazinon to the overall risk varied. Thus using fixed concentrations as water quality criteria appears overly simplistic because it ignores the temporal dimension of toxicity. However, the improved prediction of toxicity for fluctuating concentrations may be small compared to uncertainty due to limited diversity of toxicity data to base the extrapolation factors on. PMID:21958042

  4. Environmental risk assessment of fluctuating diazinon concentrations in an urban and agricultural catchment using toxicokinetic-toxicodynamic modeling.

    PubMed

    Ashauer, Roman; Wittmer, Irene; Stamm, Christian; Escher, Beate I

    2011-11-15

    Temporally resolved environmental risk assessment of fluctuating concentrations of micropollutants is presented. We separated the prediction of toxicity over time from the extrapolation from one to many species and from acute to sublethal effects. A toxicokinetic-toxicodynamic (TKTD) model predicted toxicity caused by fluctuating concentrations of diazinon, measured by time-resolved sampling over 108 days from three locations in a stream network, representing urban, agricultural and mixed land use. We calculated extrapolation factors to quantify variation in toxicity among species and effect types based on available toxicity data, while correcting for different test durations with the TKTD model. Sampling from the distribution of extrapolation factors and prediction of time-resolved toxicity with the TKTD model facilitated subsequent calculation of the risk of undesired toxic events. Approximately one-fifth of aquatic organisms were at risk and fluctuating concentrations were more toxic than their averages. Contribution of urban and agricultural sources of diazinon to the overall risk varied. Thus using fixed concentrations as water quality criteria appears overly simplistic because it ignores the temporal dimension of toxicity. However, the improved prediction of toxicity for fluctuating concentrations may be small compared to uncertainty due to limited diversity of toxicity data to base the extrapolation factors on. PMID:21958042

  5. Range-wide selection of catchments for Pacific salmon conservation.

    PubMed

    Pinsky, Malin L; Springmeyer, Dane B; Goslin, Matthew N; Augerot, Xanthippe

    2009-06-01

    Freshwater ecosystems are declining in quality globally, but a lack of data inhibits identification of areas valuable for conservation across national borders. We developed a biological measure of conservation value for six species of Pacific salmon (Oncorhynchus spp.) in catchments of the northern Pacific across Canada, China, Japan, Russia, and the United States. We based the measure on abundance and life-history richness and a model-based method that filled data gaps. Catchments with high conservation value ranged from California to northern Russia and included catchments in regions that are strongly affected by human development (e.g., Puget Sound). Catchments with high conservation value were less affected by agriculture and dams than other catchments, although only 1% were within biodiversity reserves. Our set of high-value areas was largely insensitive to simulated error, although classification remained uncertain for 3% of catchments. Although salmon face many threats, we propose they will be most likely to exhibit resilience into the future if a complementary mosaic of conservation strategies can be proactively adopted in catchments with healthy salmon populations. Our analysis provides an initial map of where these catchments are likely to be located. PMID:19220368

  6. Sediment sources in a small agricultural catchment: A composite fingerprinting approach based on the selection of potential sources

    NASA Astrophysics Data System (ADS)

    Zhou, Huiping; Chang, Weina; Zhang, Longjiang

    2016-08-01

    Fingerprinting techniques have been widely used as a reasonable and reliable means for investigating sediment sources, especially in relatively large catchments in which there are significant differences in surface materials. However, the discrimination power of fingerprint properties for small catchments, in which the surface materials are relatively homogeneous and human interference is marked, may be affected by fragmentary or confused source information. Using fingerprinting techniques can be difficult, and there is still a need for further studies to verify the effectiveness of such techniques in these small catchments. A composite fingerprinting approach was used in this study to investigate the main sources of sediment output, as well as their relative contributions, from a small catchment (30 km2) with high levels of farming and mining activities. The impact of the selection of different potential sediment sources on the derivation of composite fingerprints and its discrimination power were also investigated by comparing the results from different combinations of potential source types. The initial source types and several samples that could cause confusion were adjusted. These adjustments improved the discrimination power of the composite fingerprints. The results showed that the composite fingerprinting approach used in this study had a discriminatory efficiency of 89.2% for different sediment sources and that the model had a mean goodness of fit of 0.90. Cultivated lands were the main sediment source. The sediment contribution of the studied cultivated lands ranged from 39.9% to 87.8%, with a mean of 76.6%, for multiple deposited sediment samples. The mean contribution of woodlands was 21.7%. Overall, the sediment contribution from mining and road areas was relatively low. The selection of potential sources is an important factor in the application of fingerprinting techniques and warrants more attention in future studies, as is the case with other

  7. Wind and flux measurements in a windfarm co-located with agricultural production (Invited)

    NASA Astrophysics Data System (ADS)

    Takle, E. S.; Prueger, J. H.; Rajewski, D. A.; Lundquist, J. K.; Aitken, M.; Rhodes, M. E.; Deppe, A. J.; Goodman, F. E.; Carter, K. C.; Mattison, L.; Rabideau, S. L.; Rosenberg, A. J.; Whitfield, C. L.; Hatfield, J.

    2010-12-01

    Co-locating wind farms in pre-existing agricultural fields represents multiple land uses for which there may be interactions. Agricultural producers have raised questions about the possible impact of changes in wind speed and turbulence on pollination, dew formation, and conditions favorable for diseases. During summer 2010 we measured wind speed and surface fluxes within a wind farm that was co-located with a landscape covered by corn and soybeans in central Iowa. We erected four 9.14 m towers in corn fields upwind and downwind of lines of 1.5 MW turbines. All towers were instrumented with sonic anemometers at 6.45 m above ground, three-cup anemometers at 9.06 m ,and two temperature and relative humidity probes at 5.30 and 9.06 m. In addition, LiCor 7500 CO2/H2O flux analyzers were mounted at 6.45 m on two towers. At the beginning of the field campaign (late June) the corn had a height of about 1.3 m and grew to about 2.2 m at maturity in late July. For a 2-week period beginning late June a vertically pointing lidar was located near a flux tower downwind of one of the turbines and collected horizontal winds from 40 m to 200 m above ground. Twenty-Hz data from the eddy covariance systems were recorded as were 5-min averaged values of wind speed, temperature, humidity, and fluxes of heat, momentum, moisture and CO2 day and night under a wide variety of weather conditions, including a two-week period when the turbines were shut down. Numerical simulations with the WRF (Weather Research and Forecast) model for select periods with no turbine influence provide opportunities for comparing modeled and measured values of surface conditions and vertical wind profiles. Results show clear evidence of changes in flow field conditions at the surface that influence fluxes. We will discuss diurnal changes in fluxes and influence of turbines. Lidar measurements of vertical profiles of wind speed compared against modeled undisturbed flow fields behind a turbine reveal significant

  8. PSYCHIC A process-based model of phosphorus and sediment transfers within agricultural catchments. Part 2. A preliminary evaluation

    NASA Astrophysics Data System (ADS)

    Strömqvist, J.; Collins, A. L.; Davison, P. S.; Lord, E. I.

    2008-02-01

    SummaryThis paper describes the preliminary evaluation of the PSYCHIC catchment scale (Tier 1) model for predicting the mobilisation and delivery of phosphorus (P) and suspended sediment (SS) in the Hampshire Avon (1715 km 2) and Herefordshire Wye (4017 km 2) drainage basins, in the UK, using empirical data. Phosphorus and SS transfers to watercourses in the Wye were predicted to be greater than corresponding delivery in the Avon; SS, 249 vs 33 kg ha -1 yr -1; DP, 2.57 vs 1.26 kg ha -1 yr -1; PP, 2.20 vs 0.56 kg ha -1 yr -1. The spatial pattern of the predicted transfers was relatively uniform across the Wye drainage basin, whilst in the Avon, delivery to watercourses was largely confined to the river corridors and small areas of drained land. Statistical performance in relation to predicted exports of P and SS, using criteria for relative error (RE) and root mean square error (RMSE), reflected the potential shortcomings associated with using longer-term climate data for predicting shorter-term (2002-2004) catchment response and the need to refine calculations of point source contributions and to incorporate additional river basin processes such as channel bank erosion and in-stream geochemical processing. PSYCHIC is therefore best suited to characterising longer-term catchment response.

  9. Hydrologic controls on the export dynamics of dissolved and particulate phosphorus in a lowland, headwater agricultural catchment

    NASA Astrophysics Data System (ADS)

    Dupas, Rémi; Grimaldi, Catherine; Gruau, Gérard; Gascuel-Odoux, Chantal

    2014-05-01

    Phosphorus (P) availability controls eutrophication in freshwater ecosystems, since P is generally the limiting nutrient to algal development. The contribution of diffuse P emission to surface waters is significant in intensively livestock farmed catchments as a result of high application rates of P-rich animal waste and subsequent enrichment of soils. This study investigates the transport dynamics of particulate phosphorus (PP), suspended sediments (SS), and dissolved phosphorus (DP) with the aim of elucidating the relationship between PP and DP transport mechanisms and water dynamics in lowland, headwater catchments. The selected catchment (Kervidy-Naizin catchment, France) is particularly suitable for this purpose as it benefits of a 5 years, high-frequency monitoring of PP and DP concentrations at its outlet, including data recovered both during base flow and storm periods, with the monitoring of more than 50 storm flow events. The data analysis includes interpretation of concentration-discharge relationships at the annual time scale and on an event basis, seasonal analysis of flood characteristics and empirical modeling. Annual DP and PP concentration-discharge relationships of interflood samples display a hysteretic pattern, with higher concentrations during the autumn and spring periods, and progressive decrease during winter. No hysteretic pattern is visible for interflood SS concentration, which follows a classical C=a*Qb relationship. During floods, the dynamic of PP export is similar to that of SS during most of the events: the concentration peak occurs during the rising limb of the hydrogram (clockwise hysteresis), suggesting a source close to or within the stream. The amplitude and the hysteresis' loop size for SS and PP are a function of maximum discharge and rate of change in discharge. On the contrary, there is a strong decoupling between DP and SS (and thus PP) during most of the floods (no significant correlation), with DP concentration peaks

  10. Modelling through-soil transport of phosphorus to surface waters from livestock agriculture at the field and catchment scale.

    PubMed

    McGechan, M B; Lewis, D R; Hooda, P S

    2005-05-15

    A model of phosphorus (P) losses in a small dairy farm catchment has been set up based on a linkage of weather-driven field-scale simulations using an adaptation of the MACRO model. Phosphorus deposition, both in faeces from grazing livestock in summer and in slurry spread in winter, has been represented. MACRO simulations with both forms of P deposition had been calibrated and tested at the individual field scale in previous studies. The main contaminant transport mechanism considered at both field and catchment scales is P sorbed onto mobile colloidal faeces particles, which move through the soil by macropore flow. Phosphorus moves readily through soil to field drains under wet conditions when macropores are water-filled, but in dry soil the P carrying colloids become trapped so losses remain at a low level. In the catchment study, a dairy farm is assumed to be composed of fields linked by a linear system of ditches which discharge into a single river channel. Results from linked simulations showed reasonable fits to values of catchment outflow P concentrations measured at infrequent intervals. High simulated outflow P concentrations occurred at similar times of year to high measured values, with some high loss periods during the summer grazing season and some during the winter when slurry would have been spread. However, there was a lack of information about a number parameters that would be required to carry out a more exact calibration and provide a rigorous test of the modelling procedure. It was nevertheless concluded that through soil flow of colloid sorbed P by macropore flow represents a highly plausible mechanism by which P is transported to river systems in livestock farming catchments. This represents an alternative to surface runoff transport, a mechanism to which high P losses from livestock farming areas have often been attributed. The occurrence of high simulated levels of loss under wet conditions indicates environmental benefits from avoiding

  11. Slash and Burn Agriculture: A Dynamic Spatio-temporal Model of Shifting Cultivation Locations and Areas

    NASA Astrophysics Data System (ADS)

    Plagge, C. E.; Frolking, S.; Chini, L. P.; Hurtt, G.

    2008-12-01

    Shifting cultivation is a form of agriculture, also known as slash-and-burn or swidden agriculture, in which a plot of forest is cleared and then cultivated continuously for several years, after which it is abandoned to revert to natural vegetation, and then is subsequently re-cleared after a longer fallow period. Shifting cultivation is an important form of agriculture because it affects soil erosion rates, canopy cover in tropical forests, nutrient deficiency in soils, and also has an impact on the global carbon cycle. Because it is generally outside of the larger economy, shifting cultivation is not well-represented in large-scale earth system analyses. We investigated a new way to model shifting cultivation which will be included in a global land-use transitions model to better quantify this type of land use, both historically and into the future. Ultimately this study will improve simulations of changes in the Earth system and will aid in the study of the carbon cycle and thus climate change. Our model calculates the area of shifting cultivation in square kilometers per half-degree grid cell, using gridded population data, the fraction of that population that is rural, the fraction of global population that practices shifting cultivation, the crop area needed per person, and the length of cultivation plus the fallow. Locations of shifting cultivation were further constrained by variables such as potential vegetation biomass density, population density, fraction of land already in use, GDP per capita, and average winter temperatures. With this model, we generated global estimates for total cultivated area, total population involved in shifting cultivation, and total shifting cultivation area including fallow lands. From this model it was estimated that the total global area of shifting cultivation in 2000 was approximately 1.5 million km2 with 90,000 km2 of that actually in cultivation by 190 million people.

  12. Seasonal exposure of fish to neurotoxic pesticides in an intensive agricultural catchment, Uma-oya, Sri Lanka: linking contamination and acetylcholinesterase inhibition.

    PubMed

    Sumith, Jayakody A; Hansani, P L Chamila; Weeraratne, Thilini C; Munkittrick, Kelly R

    2012-07-01

    The annual cultivation pattern in the Uma-oya catchment in Sri Lanka is characterized by Yala and Maha rainfall periods and associated cropping. Two cultivation seasons were compared for pesticide residues: base flow, field drainage, and the runoff and supplementary sediment data for three sites in the catchment. Organophosphate and N-methyl carbamate pesticide analysis confirmed a higher concentration in the Yala season with low-flow conditions. Acetylcholinesterase (AChE) activity was measured by standard spectrometry in the brain, muscle, and eye tissues of three freshwater cyprinid fishes, Garra ceylonensis, Devario malabaricus, and Rasbora daniconius from three study sites during months overlapping two seasons in 2010 (December) and 2011 (July). Baseline AChE data were measured from fish samples from a forested reserve in the Knuckles. A 73% inhibition in muscle AChE activity in G. ceylonensis was associated with intense pesticide exposure months in the Yala season. The AChE inhibition more than 70% in G. ceylonensis eyes in both Yala (76%) and Maha (72.5%) seasons indicates particular sensitivity of eye tissue to inhibitors. The less dramatic AChE inhibition in the eye tissues in D. malabaricus and R. daniconius in both seasons indicates exemplary protective capacity of muscle AChE in fish. The highest inhibition of AChE (up to 60% in brain and up to 56% in muscle AChE activity in R. daniconius and up to 47.8% in brain and up to 64.6% in muscle AChE activity in D. malabaricus) occurred during the Yala season. Tissue AChE activity and physiological activity in fish were correlated. The results collectively indicate that AChE is a consistent biomarker for diffused contaminant exposure in agricultural catchments.

  13. Selected examples of needs for long term pilot areas in Mediterranean catchments: a mountain traditional agricultural system and a large and regulated hydrographic basin in Southern Spain

    NASA Astrophysics Data System (ADS)

    José Polo, María; Herrero, Javier; Millares, Agustín; José Pérez-Palazón, María; Pimentel, Rafael; Aguilar, Cristina; Jurado, Alicia; Contreras, Eva; Gómez-Beas, Raquel; Carpintero, Miriam; Gulliver, Zacarías

    2015-04-01

    Integrated River Basin Management (IRBM) aims at planning water, land and other natural resources for an equitable and sustainable management, also capable of preserving or restoring freshwater ecosystems. Long term series of significant variables at different scales and a sound knowledge of the river basin processes are needed to establish the current state and past&future evolution of the hydrological system, soil use and vegetation distribution, and their social impacts and feedbacks. This is particularly crucial if future scenario analyses are to be performed to assess decision-making processes and adaptive plans. This work highlights the need for an adequate design and development of process-oriented monitoring systems at the basin scale in a decision-making framework. First, the hydrologic monitoring network of the Guadalfeo River Basin, in the southern face of Sierra Nevada Range (Spain), is shown, in a pilot catchment of 1300 km2 in which snow processes in Mediterranean conditions have been studied over the last ten years with a holistic approach. The network development and the main features of the dataset are described together with their use for different scientific and environmental applications; their benefits for assessing social and economic impact in the rural environment are shown from a study case in which the sustainability of ancient channels fed by snowmelt, in use since the XIIIth century for traditional irrigated crops in the mountainous area, was assessed in a future scenarios analyses. Secondly, the standard flow and water quality monitoring networks in the Guadalquivir River Basin, a large (57400 km2) and highly regulated agricultural catchment in southern Spain, are shown, and their strengths and weaknessess for an IRBM framework are analysed. Sediments and selected pollutants are used to trace soil erosion and agricultural/urban exports throughout the catchment, and the final loads to the river estuary in the Atlantic Ocean are assessed

  14. Groundwater flow path dynamics and nitrogen transport potential in the riparian zone of an agricultural headwater catchment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stream riparian zones are often thought of as areas that provide natural remediation for groundwater contaminants, especially agricultural nitrogen (N). While denitrification and vegetative uptake tend to be efficient N removal processes in slow moving shallow groundwater, these mechanisms decrease ...

  15. Quantifying the dominant sources of sediment in a drained lowland agricultural catchment: The application of a thorium-based particle size correction in sediment fingerprinting

    NASA Astrophysics Data System (ADS)

    Foucher, Anthony; Laceby, Patrick J.; Salvador-Blanes, Sébastien; Evrard, Olivier; Le Gall, Marion; Lefèvre, Irène; Cerdan, Olivier; Rajkumar, Vignesh; Desmet, Marc

    2015-12-01

    suspended sediment loads on riverine systems in similar lowland drained agricultural catchments.

  16. Identifying sediment sources in a drained lowland agricultural catchment: the application of a novel thorium-based particle size correction in sediment fingerprinting

    NASA Astrophysics Data System (ADS)

    Laceby, J. P.; Le Gall, M.; Foucher, A.; Salvador-Blanes, S.; Evrard, O.; Lefèvre, I.; Cerdan, O.; Desmet, M.

    2015-12-01

    Soil erosion is one of the main processes influencing land and water degradation at the global scale. Identifying the main sediment sources is therefore essential for effective soil erosion management. Accordingly, caesium-137 (137Cs) concentrations were used to quantify the relative contribution of surface and subsurface erosion sources in a lowland drained catchment in France. As 137Cs concentrations are often dependent on particle size, specific surface area (SSA) and novel Thorium (Th) based particle size corrections were applied. Surface and subsurface samples were collected to characterize the radionuclide properties of potential sources. Sediment samples were collected during one hydrological year and a sediment core was sampled to represent sediment accumulated over a longer temporal period. Additionally, sediment from tile drains was sampled to determine the radionuclide properties of sediment exported from the drainage network. The results highlight a substantial enrichment in fine particles and associated 137Cs concentrations between the sources and the sediment. The application of both correction factors reduced this difference, with the Th correction providing a more accurate comparison of source and sediment samples than the SSA correction. Modelling results clearly indicate the dominance of surface sources during the flood events and in the sediment core. Sediment exported from the drainage network was modelled to originate predominantly from surface sources. This study demonstrates the potential of Th to correct for 137Cs particle size enrichment. More importantly, this research indicates that drainage networks may significantly increase the connectivity of surface sources to stream networks. Managing sediment transferred through drainage networks may reduce the deleterious effects of suspended sediment loads on riverine systems in similar lowland drained agricultural catchments.

  17. Organic farming benefits local plant diversity in vineyard farms located in intensive agricultural landscapes.

    PubMed

    Nascimbene, Juri; Marini, Lorenzo; Paoletti, Maurizio G

    2012-05-01

    The majority of research on organic farming has considered arable and grassland farming systems in Central and Northern Europe, whilst only a few studies have been carried out in Mediterranean agro-systems, such as vineyards, despite their economic importance. The main aim of the study was to test whether organic farming enhances local plant species richness in both crop and non-crop areas of vineyard farms located in intensive conventional landscapes. Nine conventional and nine organic farms were selected in an intensively cultivated region (i.e. no gradient in landscape composition) in northern Italy. In each farm, vascular plants were sampled in one vineyard and in two non-crop linear habitats, grass strips and hedgerows, adjacent to vineyards and therefore potentially influenced by farming. We used linear mixed models to test the effect of farming, and species longevity (annual vs. perennial) separately for the three habitat types. In our intensive agricultural landscapes organic farming promoted local plant species richness in vineyard fields, and grassland strips while we found no effect for linear hedgerows. Differences in species richness were not associated to differences in species composition, indicating that similar plant communities were hosted in vineyard farms independently of the management type. This negative effect of conventional farming was probably due to the use of herbicides, while mechanical operations and mowing regime did not differ between organic and conventional farms. In grassland strips, and only marginally in vineyards, we found that the positive effect of organic farming was more pronounced for perennial than annual species.

  18. The use of forward looking infrared to locate bird carcasses in agricultural areas

    USGS Publications Warehouse

    Healy, J.M.

    2001-01-01

    Helicopter-mounted Forward Looking Infrared has mainly been used for large animal censuses. I examined the use of this instrument in locating bird carcasses in agricultural fields to improve current carcass searching techniques. Mallard (Arias platyrhynchos) and northern bobwhite quail (Colinus virginianus) carcasses were measured with an infrared thermometer immediately following death and for 5 consecutive nights to determine the optimal time for detection. Preliminary flights were conducted to design a protocol that was used in test flights. Bird species (mallard versus quail) and cover type (bare ground versus short grass) were compared in the flights. Carcasses were recovered with the aid of Global Positioning Systems. Carcasses remained above ambient ground temperatures for all or part of night 1. Quail carcass temperatures decreased faster than mallard carcasses. In warmer weather, carcass temperatures increased 3-5 nights following death. In colder weather, carcasses were 1-2 C cooler than the ground after the first night. Mallard and quail carcasses were both detected on bare ground and short grass cover types with Forward Looking Infrared. The carcass recovery rates were 40% arid 30% on bare ground and short grass, respectively. There were no significant differences in detection for species or cover type. In warmer weather, carcasses could be detected for several hours following death and again 3-5 nights after death. Carcasses may be detected as objects cooler than the ground in colder weather. Forward Looking Infrared was successful in detecting mallard and quail carcasses. Further research should evaluate improved mapping techniques to enhance carcass recovery.

  19. Organic Farming Benefits Local Plant Diversity in Vineyard Farms Located in Intensive Agricultural Landscapes

    NASA Astrophysics Data System (ADS)

    Nascimbene, Juri; Marini, Lorenzo; Paoletti, Maurizio G.

    2012-05-01

    The majority of research on organic farming has considered arable and grassland farming systems in Central and Northern Europe, whilst only a few studies have been carried out in Mediterranean agro-systems, such as vineyards, despite their economic importance. The main aim of the study was to test whether organic farming enhances local plant species richness in both crop and non-crop areas of vineyard farms located in intensive conventional landscapes. Nine conventional and nine organic farms were selected in an intensively cultivated region (i.e. no gradient in landscape composition) in northern Italy. In each farm, vascular plants were sampled in one vineyard and in two non-crop linear habitats, grass strips and hedgerows, adjacent to vineyards and therefore potentially influenced by farming. We used linear mixed models to test the effect of farming, and species longevity (annual vs. perennial) separately for the three habitat types. In our intensive agricultural landscapes organic farming promoted local plant species richness in vineyard fields, and grassland strips while we found no effect for linear hedgerows. Differences in species richness were not associated to differences in species composition, indicating that similar plant communities were hosted in vineyard farms independently of the management type. This negative effect of conventional farming was probably due to the use of herbicides, while mechanical operations and mowing regime did not differ between organic and conventional farms. In grassland strips, and only marginally in vineyards, we found that the positive effect of organic farming was more pronounced for perennial than annual species.

  20. Dynamics of nitrate and chloride during storm events in agricultural catchments with different subsurface drainage intensity (Indiana, USA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grids of perforated pipe buried beneath many poorly drained agricultural fields in the Midwestern U.S. are believed to “short circuit” pools of nitrate-laden soil water and shallow groundwater directly into streams that eventually discharge to the Mississippi River. Although much is known about the ...

  1. Factors in the Adjustment of Khashm El-Girba Tenants to a New Location and a New Type of Agriculture.

    ERIC Educational Resources Information Center

    Abdelrahman, Ahmed Elamin

    The main objectives of the study were: to analyze factors related to adjustment to resettlement; to find the relationship of attitudes to behavior in relation to two major social changes -- adjustment to new location and to a new type of agriculture; to identify the characteristics of unadjusted tenants; to identify the environmental elements…

  2. The impact of cattle access on ecological water quality in streams: Examples from agricultural catchments within Ireland.

    PubMed

    Conroy, E; Turner, J N; Rymszewicz, A; O'Sullivan, J J; Bruen, M; Lawler, D; Lally, H; Kelly-Quinn, M

    2016-03-15

    Unrestricted cattle access to rivers and streams represent a potentially significant localised pressure on freshwater systems. However there is no consensus in the literature on the occurrence and extent of impact and limited research has examined the effects on aquatic biota in the humid temperate environment examined in the present study. Furthermore, this is one of the first times that research consider the potential for cattle access impacts in streams of varying water quality in Northern Europe. We investigated the effects of cattle access on macroinvertebrate communities and deposited fine sediment levels, in four rivers of high/good and four rivers of moderate water quality status which drain, low gradient, calcareous grassland catchments in Ireland. We assessed the temporal variability in macroinvertebrates communities across two seasons, spring and autumn. Site specific impacts were evident which appeared to be influenced by water quality status and season. All four high/good water status rivers revealed significant downstream changes in community structure and at least two univariate metrics (total richness and EPT richness together with taxon, E and EPT abundance). Two of the four moderate water status rivers showed significant changes in community structure, abundance and richness metrics and functional feeding groups driven in the main by downstream increases in collectors/gatherers, shredders and burrowing taxa. These two moderate water status rivers had high or prolonged livestock activity. In view of these findings, the potential for some of these sites to achieve at least high/good water quality status, as set out in the EU Water Framework Directive, may be compromised. The results presented highlight the need for additional research to further define the site specific factors and livestock management practices, under different discharge conditions, that increase the risk of impact on aquatic ecology due to these cattle-river interactions.

  3. The impact of cattle access on ecological water quality in streams: Examples from agricultural catchments within Ireland.

    PubMed

    Conroy, E; Turner, J N; Rymszewicz, A; O'Sullivan, J J; Bruen, M; Lawler, D; Lally, H; Kelly-Quinn, M

    2016-03-15

    Unrestricted cattle access to rivers and streams represent a potentially significant localised pressure on freshwater systems. However there is no consensus in the literature on the occurrence and extent of impact and limited research has examined the effects on aquatic biota in the humid temperate environment examined in the present study. Furthermore, this is one of the first times that research consider the potential for cattle access impacts in streams of varying water quality in Northern Europe. We investigated the effects of cattle access on macroinvertebrate communities and deposited fine sediment levels, in four rivers of high/good and four rivers of moderate water quality status which drain, low gradient, calcareous grassland catchments in Ireland. We assessed the temporal variability in macroinvertebrates communities across two seasons, spring and autumn. Site specific impacts were evident which appeared to be influenced by water quality status and season. All four high/good water status rivers revealed significant downstream changes in community structure and at least two univariate metrics (total richness and EPT richness together with taxon, E and EPT abundance). Two of the four moderate water status rivers showed significant changes in community structure, abundance and richness metrics and functional feeding groups driven in the main by downstream increases in collectors/gatherers, shredders and burrowing taxa. These two moderate water status rivers had high or prolonged livestock activity. In view of these findings, the potential for some of these sites to achieve at least high/good water quality status, as set out in the EU Water Framework Directive, may be compromised. The results presented highlight the need for additional research to further define the site specific factors and livestock management practices, under different discharge conditions, that increase the risk of impact on aquatic ecology due to these cattle-river interactions. PMID

  4. Catchment controls on solute export

    NASA Astrophysics Data System (ADS)

    Musolff, Andreas; Schmidt, Christian; Selle, Benny; Fleckenstein, Jan H.

    2015-12-01

    Dynamics of solute export from catchments can be classified in terms of chemostatic and chemodynamic export regimes by an analysis of concentration-discharge relationships. Previous studies hypothesized that distinct export regimes emerge from the presence of solute mass stores within the catchment and their connectivity to the stream. However, so far a direct link of solute export to identifiable catchment characteristics is missing. Here we investigate long-term time series of stream water quality and quantity of nine neighboring catchments in Central Germany ranging from relatively pristine mountain catchments to agriculturally dominated lowland catchments, spanning large gradients in land use, geology, and climatic conditions. Given the strong collinearity of catchment characteristics we used partial least square regression analysis to quantify the predictive power of these characteristics for median concentrations and the metrics of export regime. We can show that median concentrations and metrics of the export regimes of major ions and nutrients can indeed be inferred from catchment characteristics. Strongest predictors for median concentrations were the share of arable land, discharge per area, runoff coefficient and available water capacity in the root zone of the catchments. The available water capacity in the root zone, the share of arable land being artificially drained and the topographic gradient were found to be the most relevant predictors for the metrics of export regime. These catchment characteristics can represent the size of solute mass store such as the fraction of arable land being a measure for the store of nitrate. On the other hand, catchment characteristics can be a measure for the connectivity of these solute stores to the stream such as the fraction of tile drained land in the catchments. This study demonstrates the potential of data-driven, top down analyses using simple metrics to classify and better understand dominant controls of

  5. The seasonal dynamics of the stream sources and input flow paths of water and nitrogen of an Austrian headwater agricultural catchment.

    PubMed

    Exner-Kittridge, Michael; Strauss, Peter; Blöschl, Günter; Eder, Alexander; Saracevic, Ernis; Zessner, Matthias

    2016-01-15

    Our study examines the source aquifers and stream inputs of the seasonal water and nitrogen dynamics of a headwater agricultural catchment to determine the dominant driving forces for the seasonal dynamics in the surface water nitrogen loads and concentrations. We found that the alternating aquifer contributions throughout the year of the deep and shallow aquifers were the main cause for the seasonality of the nitrate concentration. The deep aquifer water typically contributed 75% of the total outlet discharge in the summer and 50% in the winter when the shallow aquifer recharges due to low crop evapotranspiration. The shallow aquifer supplied the vast majority of the nitrogen load to the stream due to the significantly higher total nitrogen concentration (11 mg-N/l) compared to the deep aquifer (0.50 mg-N/l). The main stream input pathway for the shallow aquifer nitrogen load was from the perennial tile drainages providing 60% of the total load to the stream outlet, while only providing 26% of the total flow volume. The diffuse groundwater input to the stream was the largest input to the stream (39%), but only supplied 27% to the total nitrogen load as the diffuse water was mostly composed of deep aquifer water. PMID:26562340

  6. Baseflow and stormflow metal fluxes from two small agricultural catchments in the Coastal Plain of the Chesapeake Bay Basin, United States

    USGS Publications Warehouse

    Miller, C.V.; Foster, G.D.; Majedi, B.F.

    2003-01-01

    Annual yields (fluxes per unit area) of Al, Mn, Fe, Ni, Cd, Pb, Zn, Cu, Cr, Co, As and Se were estimated for two small non-tidal stream catchments on the Eastern Shore of the Chesapeake Bay, United States - a poorly drained dissected-upland watershed in the Nanticoke River Basin, and a well-drained feeder tributary in the lower reaches of the Chester River Basin. Both watersheds are dominated by agriculture. A hydrograph-separation technique was used to determine the baseflow and stormflow components of metal yields, thus providing important insights into the effects of hydrology and climate on the transport of metals. Concentrations of suspended-sediment were used as a less-costly proxy of metal concentrations which are generally associated with particles. Results were compared to other studies in Chesapeake Bay and to general trends in metal concentrations across the United States. The study documented a larger than background yield of Zn and Co from the upper Nanticoke River Basin and possibly enriched concentrations of As, Cd and Se from both the upper Nanticoke River and the Chesterville Branch (a tributary of the lower Chester River). The annual yield of total Zn from the Nanticoke River Basin in 1998 was 18,000 g/km2/a, and was two to three times higher than yields reported from comparable river basins in the region. Concentrations of Cd also were high in both basins when compared to crustal concentrations and to other national data, but were within reasonable agreement with other Chesapeake Bay studies. Thus, Cd may be enriched locally either in natural materials or from agriculture.

  7. How old is upland catchment water?

    NASA Astrophysics Data System (ADS)

    Hofmann, Harald; Cartwright, Ian; Morgenstern, Uwe; Gilfedder, Benjamin

    2014-05-01

    Understanding the dynamics of water supply catchments is an essential part of water management. Upland catchments provide a continuous, reliable source of high quality water not only for some of the world's biggest cities, but also for agriculture and industry. Headwater streams control river flow in lowland agricultural basins as the majority of river discharge emerges from upland catchments. Many rivers are perennial and flow throughout the year, even during droughts. However, it is still unclear how reliable and continuous upland catchment water resources really are. Despite many efforts in upland catchment research, there is still little known about where the water is stored and how long it takes to travel through upper catchments. Resolving these questions is crucial to ensure that this resource is protected from changing land use and to estimate potential impacts from a changing climate. Previous research in this important area has been limited by existing measurement techniques. Knowledge to date has relied heavily on the use of variation in stable isotope signals to estimate the age and origin of water from upland catchments. The problem with relying on these measures is that as the water residence time increases, the variation in the stable isotope signal decreases. After a maximum period of four years, no variation can be detected This means that to date, the residence time in upland catchments is likely to have been vastly underestimated. Consequently, the proportion of water flow out of upland river catchments to the total river flow is also underestimated. Tritium (3H) combines directly with water molecules and enters the flow paths with the infiltrating water. Its half-life (12.32 years) makes it ideal to describe residence times in upper catchment reservoirs as it can theoretically measure water up to about 150 years old. The bomb pulse peak in the southern hemisphere was several orders of magnitude lower than in the northern hemisphere. Hence the

  8. Spatial variability of soil magnetic susceptibility in an agricultural field located in Eastern Ukraine

    NASA Astrophysics Data System (ADS)

    Menshov, Oleksandr; Pereira, Paulo; Kruglov, Oleksandr

    2015-04-01

    Magnetic susceptibility (MS) have been used to characterize soil properties. It gives an indirect information about heavy metals content and degree of human impacts on soil contamination derived from atmospheric pollution (Girault et al., 2011). This method is inexpensive in relation to chemical analysis and very useful to track soil pollution, since several toxic components deposited on soil surface are rich in particulates produced by oxidation processes (Boyko et al., 2004; Morton-Bernea et al., 2009). Thus, identify the spatial distribution of MS is of major importance, since can give an indirect information of high metals content (Dankoub et al., 2012). This allows also to distinguish the pedogenic and technogenic origin magnetic signal. For example Ukraine chernozems contain fine-grained oxidized magnetite and maghemite of pedogenic origin formed by weathering of the parent material (Jeleńska et al., 2004). However, to a correct understanding of variables distribution, the identification of the most accurate interpolation method is fundamental for a better interpretation of map information (Pereira et al., 2013). The objective of this work is to study the spatial variability of soil MS in an agricultural fields located in the Tcherkascy Tishki area (50.11°N, 36.43 °E, 162 m a.s.l), Ukraine. Soil MS was measured in 77 sampling points in a north facing slope. To estimate the best interpolation method, several interpolation methods were tested, as inverse distance to a weight (IDW) with the power of 1,2,3,4 and 5, Local Polynomial (LP) with the power of 1 and 2, Global Polynomial (GP), radial basis functions - spline with tension (SPT), completely regularized spline (CRS), multiquatratic (MTQ), inverse multiquatratic (IMTQ), and thin plate spline (TPS) - and some geostatistical methods as, ordinary kriging (OK), Simple Kriging (SK) and Universal Kriging (UK), used in previous works (Pereira et al., 2014). On average, the soil MS of the studied plot had 686

  9. Spatial variability of soil magnetic susceptibility in an agricultural field located in Eastern Ukraine

    NASA Astrophysics Data System (ADS)

    Menshov, Oleksandr; Pereira, Paulo; Kruglov, Oleksandr

    2015-04-01

    Magnetic susceptibility (MS) have been used to characterize soil properties. It gives an indirect information about heavy metals content and degree of human impacts on soil contamination derived from atmospheric pollution (Girault et al., 2011). This method is inexpensive in relation to chemical analysis and very useful to track soil pollution, since several toxic components deposited on soil surface are rich in particulates produced by oxidation processes (Boyko et al., 2004; Morton-Bernea et al., 2009). Thus, identify the spatial distribution of MS is of major importance, since can give an indirect information of high metals content (Dankoub et al., 2012). This allows also to distinguish the pedogenic and technogenic origin magnetic signal. For example Ukraine chernozems contain fine-grained oxidized magnetite and maghemite of pedogenic origin formed by weathering of the parent material (Jeleńska et al., 2004). However, to a correct understanding of variables distribution, the identification of the most accurate interpolation method is fundamental for a better interpretation of map information (Pereira et al., 2013). The objective of this work is to study the spatial variability of soil MS in an agricultural fields located in the Tcherkascy Tishki area (50.11°N, 36.43 °E, 162 m a.s.l), Ukraine. Soil MS was measured in 77 sampling points in a north facing slope. To estimate the best interpolation method, several interpolation methods were tested, as inverse distance to a weight (IDW) with the power of 1,2,3,4 and 5, Local Polynomial (LP) with the power of 1 and 2, Global Polynomial (GP), radial basis functions - spline with tension (SPT), completely regularized spline (CRS), multiquatratic (MTQ), inverse multiquatratic (IMTQ), and thin plate spline (TPS) - and some geostatistical methods as, ordinary kriging (OK), Simple Kriging (SK) and Universal Kriging (UK), used in previous works (Pereira et al., 2014). On average, the soil MS of the studied plot had 686

  10. The application of GEOtop for catchment scale hydrology in Ireland

    NASA Astrophysics Data System (ADS)

    Lewis, C.; Xu, X.; Albertson, J.; Kiely, G.

    2009-04-01

    GEOtop represents the new generation of distributed hydrological model driven by geospatial data (e.g. topography, soils, vegetation, land cover). It estimates rainfall-runoff, evapotranspiration and provides spatially distributed outputs as well as routing water and sediment flows through stream and river networks. The original version of GEOtop designed in Italy, includes a rigorous treatment of the core hydrological processes (e.g. unsaturated and saturated flow and transport, surface energy balances, and streamflow generation/routing). Recently GEOtop was extended to include treatment of shallow landslides. The GEOtop model is built on an open-source programming framework, which makes it well suited for adaptation and extension. GEOtop has been run very successfully in a number of alpine catchments (such as Brenta) but has not been used on Irish catchments before. The cell size used for the spatially distributed inputs varies from catchment to catchment. In smaller catchments (less than 2000ha) 50 by 50m cells have been used and 200 by 200 for larger catchments. Smaller cell sizes have been found to significantly increase the computational time so a larger cell size is used providing it does not significantly affect the performance of the model. Digital elevation model, drainage direction, landuse and soil type maps are the minimum spatial requirements with precipitation, radiation, temperature, atmospheric pressure and wind speed been the minimum meteorological requirements for a successful run. The soil type maps must also contain information regarding texture and hydraulic conductivity. The first trial of GEOtop in Ireland was on a small 1524 ha catchment in the south of Ireland. The catchment ranges from 50 to just over 200m, the land use is predominately agricultural grassland and it receives on average 1400mm of rain per year. Within this catchment there is a meteorological tower which provides the meteorological inputs, soil moisture is also recorded at

  11. Assessing the drivers of dissolved organic matter export from two contrasting lowland catchments, U.K.

    PubMed

    Yates, Christopher A; Johnes, Penny J; Spencer, Robert G M

    2016-11-01

    Two lowland catchments in the U.K. were sampled throughout 2010-11 to investigate the dominant controls on dissolved organic matter quantity and composition. The catchments had marked differences in terms of nutrient status, land cover and contrasting lithologies resulting in differences in the dominant flow pathways (groundwater vs. surface water dominated). The Upper Wylye is a chalk stream with a baseflow index of 0.98, draining a catchment dominated by intensive agricultural production. Millersford Brook is a lowland peat catchment with a baseflow index of 0.43, draining a semi-natural catchment with heather moorland and coniferous forest. Samples were collected weekly between October 2010 and September 2011 from eleven sampling locations. Samples were analysed to determine dissolved organic carbon, nitrogen and phosphorus fractions with DOM composition evaluated via the DOC:DON ratio, DOC:DOP ratio, specific UV absorption at 254nm, absorbance ratio (a250:a365) and the spectral slope parameter between 350 and 400nm (S350-400). Significant differences were observed in all determinands between the catchments, over time, and spatially along nutrient enrichment and geoclimatic gradients. Seasonal variation in preferential flow pathways mobilising groundwater-derived DOM were identified as likely controls on the delivery of DOM in the permeable chalk dominated catchment. Steeper S350-400 values and elevated a250:a365 ratios in this catchment suggest material of a lower bulk aromatic C content and molecular weight delivered during the winter months when compared to the summer. DOC:DON ratios were markedly lower in the chalk catchment than the peatland catchment, reflecting the paucity of organic matter within the mineral soils of the chalk landscape, and higher fertiliser application rates. This manuscript highlights that DOM composition varies according to catchment landscape character and hydrological function. PMID:27422728

  12. Economic Analysis of Energy Crop Production in the U.S. - Location, Quantities, Price, and Impacts on Traditional Agricultural Crops

    SciTech Connect

    Walsh, M.E.; De La Torre Ugarte, D.; Slinsky, S.; Graham, R.L.; Shapouri, H.; Ray, D.

    1998-10-04

    POLYSYS is used to estimate US locations where, for any given energy crop price, energy crop production can be economically competitive with conventional crops. POLYSYS is a multi-crop, multi-sector agricultural model developed and maintained by the University of Tennessee and used by the USDA-Economic Research Service. It includes 305 agricultural statistical districts (ASD) which can be aggregated to provide state, regional, and national information. POLYSYS is being modified to include switchgrass, hybrid poplar, and willow on all land suitable for their production. This paper summarizes the preliminary national level results of the POLYSYS analysis for selected energy crop prices for the year 2007 and presents the corresponding maps (for the same prices) of energy crop production locations by ASD. Summarized results include: (1) estimates of energy crop hectares (acres) and quantities (dry Mg, dry tons), (2) identification of traditional crops allocated to energy crop production and calculation of changes in their prices and hectares (acres) of production, and (3) changes in total net farm returns for traditional agricultural crops. The information is useful for identifying areas of the US where large quantities of lowest cost energy crops can most likely be produced.

  13. Wind-blown volcanic ash in forest and agricultural locations as related to meteorological conditions

    NASA Astrophysics Data System (ADS)

    Fowler, W. B.; Lopushinsky, W.

    During the spring and summer of 1981, airborne ash previously deposited from the 1980 eruption of Mount St. Helens volcano was monitored at several field locations near the major axis of the depositional pattern in Washington State. Airborne ash was collected daily with standard high-volume samplers and other equipment that sampled the ash at selected windspeeds. Analysis of high-volume filtered deposits showed poor linear correlations to local meteorological conditions. At Moses Lake, weights of windspeed-selected samples indicated an exponential increase in suspended material with increasing windspeed. Wind tunnel tests with ash from two locations varying in distance from the volcano showed that the finer ash fractions from both locations became airborne at similar windspeeds. Threshold wind velocity was about 12 km h -1 for newly deposited ash, compared to more than 69 km h -1 for ash consolidated by wetting and drying.

  14. Catchments Classification: Multivariate Statistical Analysis for Physiographic Similarity in the Niger Basin

    NASA Astrophysics Data System (ADS)

    Chaibou Begou, Jamilatou; Jomaa, Seifeddine; Benabdallah, Sihem; Bazie, Pibgnina; Afouda, Abel; Rode, Michael

    2016-04-01

    The objective of this study was to determine physiographic similarity, as indicator of hydrologic similarity between catchments located in the Bani basin, and to derive the dominant factors controlling each group singularity. We utilized a dataset of 28 catchments described by 16 physical and climatic properties distributed across a wide region with strong environmental gradients. Catchments attributes were first standardized before they underwent an integrated exploratory data analysis composed by Principal Component Analysis (PCA) followed by Hierarchical Clustering. Results showed a clear distribution into 3 major clusters. Two of them were well separated and partitioned into northerly flat and semi-arid catchments, and southerly hilly and humid catchments. This nomenclature came from the interpretation of the main factors, topography, precipitation and latitude, which seem to control the most important variability inside these clusters. Moreover, the group of northerly catchments was designated to be dominated by agricultural land use and ferric luvisols soil type, two additional drivers of similarity. The third cluster was located in the center of the study basin, inside which, none of the descriptors seems to exert a strong control on the similarity. The outcome of this study can help understanding catchment functioning and provide a support for a regionalization of hydrological information.

  15. Anaerobic co-digestion plants for the revaluation of agricultural waste: Sustainable location sites from a GIS analysis.

    PubMed

    Villamar, Cristina Alejandra; Rivera, Diego; Aguayo, Mauricio

    2016-04-01

    The aim of this study was to establish sustainably feasible areas for the implementation of anaerobic co-digestion plants for agricultural wastes (cattle/swine slurries and cereal crop wastes). The methodology was based on the use of geographic information systems (GIS), the analytic hierarchy process (AHP) and map algebra generated from hedges related to environmental, social and economic constraints. The GIS model obtained was applied to a region of Chile (Bío Bío Region) as a case study showing the energy potential (205 MW-h) of agricultural wastes (swine/cattle manures and cereal crop wastes) and thereby assessing its energy contribution (3.5%) at country level (Chile). From this model, it was possible to spatially identify the influence of each factor (environmental, economic and social) when defining suitable areas for the siting of anaerobic co-digestion plants. In conclusion, GIS-based models establish appropriate areas for the location of anaerobic co-digestion plants in the revaluation of agricultural waste from the production of energy through biogas production. PMID:26862147

  16. Anaerobic co-digestion plants for the revaluation of agricultural waste: Sustainable location sites from a GIS analysis.

    PubMed

    Villamar, Cristina Alejandra; Rivera, Diego; Aguayo, Mauricio

    2016-04-01

    The aim of this study was to establish sustainably feasible areas for the implementation of anaerobic co-digestion plants for agricultural wastes (cattle/swine slurries and cereal crop wastes). The methodology was based on the use of geographic information systems (GIS), the analytic hierarchy process (AHP) and map algebra generated from hedges related to environmental, social and economic constraints. The GIS model obtained was applied to a region of Chile (Bío Bío Region) as a case study showing the energy potential (205 MW-h) of agricultural wastes (swine/cattle manures and cereal crop wastes) and thereby assessing its energy contribution (3.5%) at country level (Chile). From this model, it was possible to spatially identify the influence of each factor (environmental, economic and social) when defining suitable areas for the siting of anaerobic co-digestion plants. In conclusion, GIS-based models establish appropriate areas for the location of anaerobic co-digestion plants in the revaluation of agricultural waste from the production of energy through biogas production.

  17. Location and agricultural practices influence spring use of harvested cornfields by cranes and geese in Nebraska

    USGS Publications Warehouse

    Anteau, M.J.; Sherfy, M.H.; Bishop, A.A.

    2011-01-01

    Millions of ducks, geese, and sandhill cranes (Grus canadensis; hereafter cranes) stop in the Central Platte River Valley (CPRV) of Nebraska to store nutrients for migration and reproduction by consuming corn remaining in fields after harvest. We examined factors that influence use of cornfields by cranes and geese (all mid-continent species combined; e.g., Anser, Chen, and Branta spp.) because it is a key step to efficient conservation planning aimed at ensuring that adequate food resources are available to migratory birds stopping in the CPRV. Distance to night-time roost site, segment of the CPRV (west to east), and agricultural practices (post-harvest treatment of cornfields: idle, grazed, mulched, mulched and grazed, and tilled) were the most important and influential variables in our models for geese and cranes. Probability of cornfield use by geese and cranes decreased with increasing distance from the closest potential roosting site. The use of cornfields by geese increased with the density of corn present there during the early migration period, but field use by cranes appeared not to be influenced by early migration corn density. However, probability of cornfield use by cranes did increase with the amount of wet grassland habitat within 4.8 km of the field. Geese were most likely to use fields that were tilled and least likely to use fields that were mulched and grazed. Cranes were most likely to use fields that were mulched and least likely to use fields that were tilled, but grazing appeared not to influence the likelihood of field use by cranes. Geese were more likely to use cornfields in western segments of the CPRV, but cranes were more likely to use cornfields in eastern segments. Our data suggest that managers could favor crane use of fields and reduce direct competition with geese by reducing fall and spring tilling and increasing mulching. Moreover, crane conservation efforts would be most beneficial if they were focused in the eastern portions

  18. Location and agricultural practices influence spring use of harvested cornfields by cranes and geese in Nebraska

    USGS Publications Warehouse

    Anteau, Michael J.; Sherfy, Mark H.; Bishop, Andrew A.

    2011-01-01

    Millions of ducks, geese, and sandhill cranes (Grus canadensis; hereafter cranes) stop in the Central Platte River Valley (CPRV) of Nebraska to store nutrients for migration and reproduction by consuming corn remaining in fields after harvest. We examined factors that influence use of cornfields by cranes and geese (all mid-continent species combined; e.g., Anser, Chen, and Branta spp.) because it is a key step to efficient conservation planning aimed at ensuring that adequate food resources are available to migratory birds stopping in the CPRV. Distance to night-time roost site, segment of the CPRV (west to east), and agricultural practices (post-harvest treatment of cornfields: idle, grazed, mulched, mulched and grazed, and tilled) were the most important and influential variables in our models for geese and cranes. Probability of cornfield use by geese and cranes decreased with increasing distance from the closest potential roosting site. The use of cornfields by geese increased with the density of corn present there during the early migration period, but field use by cranes appeared not to be influenced by early migration corn density. However, probability of cornfield use by cranes did increase with the amount of wet grassland habitat within 4.8 km of the field. Geese were most likely to use fields that were tilled and least likely to use fields that were mulched and grazed. Cranes were most likely to use fields that were mulched and least likely to use fields that were tilled, but grazing appeared not to influence the likelihood of field use by cranes. Geese were more likely to use cornfields in western segments of the CPRV, but cranes were more likely to use cornfields in eastern segments. Our data suggest that managers could favor crane use of fields and reduce direct competition with geese by reducing fall and spring tilling and increasing mulching. Moreover, crane conservation efforts would be most beneficial if they were focused in the eastern portions

  19. The use of GIS and multi-criteria evaluation (MCE) to identify agricultural land management practices which cause surface water pollution in drinking water supply catchments.

    PubMed

    Grayson, Richard; Kay, Paul; Foulger, Miles

    2008-01-01

    Diffuse pollution poses a threat to water quality and results in the need for treatment for potable water supplies which can prove costly. Within the Yorkshire region, UK, nitrates, pesticides and water colour present particular treatment problems. Catchment management techniques offer an alternative to 'end of pipe' solutions and allow resources to be targeted to the most polluting areas. This project has attempted to identify such areas using GIS based modelling approaches in catchments where water quality data were available. As no model exists to predict water colour a model was created using an MCE method which is capable of predicting colour concentrations at the catchment scale. CatchIS was used to predict pesticide and nitrate N concentrations and was found to be generally capable of reliably predicting nitrate N loads at the catchment scale. The pesticides results did not match the historic data possibly due to problems with the historic pesticide data and temporal and spatially variability in pesticide usage. The use of these models can be extended to predict water quality problems in catchments where water quality data are unavailable and highlight areas of concern.

  20. Trend analysis of nutrient loadings in the South Saskatchewan River catchment

    NASA Astrophysics Data System (ADS)

    Morales-Marin, L. A.; Chun, K. P.; Wheater, H. S.; Lindenschmidt, K. E.

    2015-12-01

    Nutrient loadings in river catchments have increased in the past years as a consequence of rapid expansion of agricultural areas, new urban developments and industries, and population growth. Nutrient enrichment of water bodies has intensified eutrophication conditions that degrade water quality and ecosystem health. In large-scale catchments, the assessment of temporal and spatial variability of nutrient loads imply challenges due to climate, land use and geology heterogeneity, and to anthropogenic changes. In this study we carried out a trend analysis of total phosphorus and total nitrogen loads in the South Saskatchewan River (SSR) catchment. This catchment is located in the Canadian Prairie Provinces of Alberta and Saskatchewan. The eastern and central areas of the catchment consist mostly of croplands, pasture lands and livestock farms, whereas the western parts are located on the Rocky Mountains that are the source of most of the catchment's streamflows. The trend analysis was performed applying a novel approach to analyse nutrient time series recorded at long-term water quality stations along the main stems of the SSR river network. Since water quality is taken infrequently, in the proposed approach the time series were complemented using regression analysis methods based on streamflow data recorded at the nearest gauge stations. The time series were subsequently pre-whitened in order to remove the autocorrelation, and then subjected to non-parametric statistical test to detect trends. Seasonal analysis of trends at each of the water quality stations were performed in order to determine the relationships between annual flow regimes and nutrient loads in the catchment, in particular, the influence of the high spring runoff on nutrient export. Decadal analysis was also performed to determine the long-tern relationships of nutrients with anthropogenic changes in the catchment. In particular, the capacity of reservoirs to trap nutrients and the effects of the

  1. Identifying hydrological responses of micro-catchments under contrasting land use in the Brazilian Cerrado

    NASA Astrophysics Data System (ADS)

    Nobrega, R. L. B.; Guzha, A. C.; Torres, G. N.; Kovacs, K.; Lamparter, G.; Amorim, R. S. S.; Couto, E.; Gerold, G.

    2015-09-01

    In recent decades, the Brazilian Cerrado biome has been affected by intense land-use change, particularly the conversion of natural forest to agricultural land. Understanding the environmental impacts of this land-use change on landscape hydrological dynamics is one of the main challenges in the Amazon agricultural frontier, where part of the Brazilian Cerrado biome is located and where most of the deforestation has occurred. This study uses empirical data from field measurements to characterize controls on hydrological processes from three first-order micro-catchments < 1 km2 in the Cerrado biome. These micro-catchments were selected on the basis of predominant land use including native cerrado vegetation, pasture grass with cattle ranching, and cash crop land. We continuously monitored precipitation, streamflow, soil moisture, and meteorological variables from October 2012 to September 2014. Additionally, we determined the physical and hydraulic properties of the soils, and conducted topographic surveys. We used these data to quantify the water balance components of the study catchments and to relate these water fluxes to land use, catchment physiographic parameters, and soil hydrophysical properties. The results of this study show that runoff coefficients were 0.27, 0.40, and 0.16 for the cerrado, pasture, and cropland catchments, respectively. Baseflow is shown to play a significant role in streamflow generation in the three study catchments, with baseflow index values of more than 0.95. The results also show that evapotranspiration was highest in the cerrado (986 mm yr-1) compared to the cropland (828 mm yr-1) and the pasture (532 mm yr-1). However, discharges in the cropland catchment were unexpectedly lower than that of the cerrado catchment. The normalized discharge was 55 % higher and 57 % lower in the pasture and cropland catchments, respectively, compared with the cerrado catchment. We attribute this finding to the differences in soil type and

  2. PSYCHIC A process-based model of phosphorus and sediment mobilisation and delivery within agricultural catchments. Part 1: Model description and parameterisation

    NASA Astrophysics Data System (ADS)

    Davison, Paul S.; Withers, Paul J. A.; Lord, Eunice I.; Betson, Mark J.; Strömqvist, Johan

    2008-02-01

    SummaryPSYCHIC is a process-based model of phosphorus (P) and suspended sediment (SS) mobilisation in land runoff and subsequent delivery to watercourses. Modelled transfer pathways include release of desorbable soil P, detachment of SS and associated particulate P, incidental losses from manure and fertiliser applications, losses from hard standings, the transport of all the above to watercourses in underdrainage (where present) and via surface pathways, and losses of dissolved P from point sources. The model can operate at two spatial scales, although the scientific core is the same in both cases. At catchment scale, the model uses easily available national scale datasets to infer all necessary input data whilst at field scale, the user is required to supply all necessary data. The model is sensitive to a number of crop and animal husbandry decisions, as well as to environmental factors such as soil type and field slope angle. It is envisaged that the catchment-scale model would provide the first tier of a catchment characterisation study, and would be used as a screening tool to identify areas within the catchment which may be at elevated risk of P loss. This would enable targeted data collection, involving farm visits and stakeholder discussion, which would then be followed up with detailed field-scale modelling. Both tiers allow the effects of possible mitigation options at catchment scale (Tier 1) and field scale (Tier 2) to be explored. The PSYCHIC model framework therefore provides a methodology for identifying critical source areas of sediment and P transfer in catchments and assessing what management changes are required to achieve environmental goals.

  3. Determination of Curve Number for snowmelt-runoff floods in a small catchment

    NASA Astrophysics Data System (ADS)

    Hejduk, L.; Hejduk, A.; Banasik, K.

    2015-06-01

    One of the widely used methods for predicting flood runoff depth from ungauged catchments is the curve number (CN) method, developed by Soil Conservation Service (SCS) of US Department of Agriculture. The CN parameter can be computed directly from recorded rainfall depths and direct runoff volumes in case of existing data. In presented investigations, the CN parameter has been computed for snowmelt-runoff events based on snowmelt and rainfall measurements. All required data has been gathered for a small agricultural catchment (A = 23.4 km2) of Zagożdżonka river, located in Central Poland. The CN number received from 28 snowmelt-runoff events has been compared with CN computed from rainfall-runoff events for the same catchment. The CN parameter, estimated empirically varies from 64.0 to 94.8. The relation between CN and snowmelt depth was investigated in a similar procedure to relation between CN and rainfall depth.

  4. Guiding soil conservation strategy in headwater mediterranean catchments

    NASA Astrophysics Data System (ADS)

    Ben Slimane, Abir; Raclot, Damien; Evrard, Olivier; Sanaa, Mustapha; Lefèvre, Irène; Le Bissonnais, Yves

    2016-04-01

    Reservoir siltation due to water erosion is an important environmental issue in Mediterranean countries where storage of clear surface water is crucial for their economic and agricultural development. In order to reduce water erosion, this study aimed to design a methodology for guiding the implementation of efficient conservation strategies by identifying the dominant sediment sources in Mediterranean context. To this end, a fingerprinting method was combined with long-term field monitoring of catchment sediment yield in five headwater catchments (0.1-10 km2) equipped with a small reservoir between 1990 and 1995. The five catchments were chosen to cover the large diversity of environmental conditions found along the Tunisian Ridge and in the Cape Bon region. The fingerprinting techniques based on measurements of cesium-137 and Total Organic Carbon within the catchments and in reservoir sediment deposits successfully identified the contribution of rill/interrill and gully/channel erosion to sediment yield at the outlet of five small headwater catchments during the last 15-20 years. Results showed the very large variability of erosion processes among the selected catchments, with rill/interrill erosion contributions to sediment accumulated in outlet reservoirs ranging from 20 to 80%. Overall, rill/interrill erosion was the dominant process controlling reservoir siltation in three catchments whereas gully/channel erosion dominated in the other two catchments. This demonstrates that the dominant erosion process in the Mediterranean regions highly depends on the local environmental context. The lowest rill/interrill erosion contribution (2.2 Mg ha-1 yr-1) in the five catchments remained significantly higher than the tolerable soil loss indicating the severe levels reached by soil erosion along the Tunisian Ridge and in the Cape Bon region. This study also showed that although the implementation of improved topsoil management measures greatly reduced rill

  5. Estimation of erosion and sediment export from an agricultural catchment (1960 - 2000) confronting the outputs of an expert-based model and Cs-137 inventories

    NASA Astrophysics Data System (ADS)

    Evrard, Olivier; Nord, Guillaume; Cerdan, Olivier; Souchère, Véronique; Le Bissonnais, Yves; Bonté, Philippe

    2010-05-01

    Soil erosion leads to important environmental problems (e.g. muddy floods, reservoir sedimentation) in cultivated areas of the European loess belt. This study aimed to quantify erosion and to determine the impact of rainfall seasonality and land use change on soil erosion over the last 40 years in a 94-ha cultivated catchment of Normandy (France). To this end, scenarios representative of the different land use conditions were simulated using the STREAM expert-based erosion model. A 13-yrs long sequence of rainfall events was run with this model. Results showed that erosion increased dramatically after land consolidation (+168% on average). Interannual variability of erosion is important. After land consolidation, 79% of erosion was observed in summer and autumn, even though these seasons only accounted for 58% of annual rainfall kinetic energy. The bulk of erosion was hence produced by a few intense thunderstorms during this period. Thunderstorms correspond to 5% of rainfall events, but they generate 51% of total annual erosion after land consolidation (and up to 57% of erosion before land consolidation). Confrontation of the model outputs with the erosion rates derived from Cs-137 measurements suggested that soil redistribution within the catchment was very high but that sediment exports from the catchment remained limited (sediment delivery ratio between 1 - 10%). Erosion rates derived from Cs-137 measurements showed an important and organised spatial variability, but erosion rates integrated over larger areas remained in the same order of magnitude than those simulated by the model or were slightly higher. Water erosion would hence not be the only process generating erosion within this catchment. In this context, tillage erosion cannot be neglected to calculate the sediment budget over several decades. These findings show the necessity to simulate sequences of rainfall events to obtain reliable erosion predictions. They also demonstrate the interest of

  6. Comparative analyses of factors determining soil erosion rates based on network of Mediterranean monitored catchments for the innovative, adaptive and resilient agriculture of the future

    NASA Astrophysics Data System (ADS)

    Smetanová, Anna; Le Bissonnais, Yves; Raclot, Damien; Perdo Nunes, João; Licciardello, Feliciana; Mathys, Nicolle; Latron, Jérôme; Rodríguez Caballero, Emilio; Le Bouteiller, Caroline; Klotz, Sébastien; Mekki, Insaf; Gallart, Francesc; Solé Benet, Albert; Pérez Gallego, Nuria; Andrieux, Patrick; Jantzi, Hugo; Moussa, Roger; Planchon, Olivier; Marisa Santos, Juliana

    2015-04-01

    In order to project the soil erosion response to climate change in the fragile Mediterranean region it is inevitable to understand its existing patterns. Soil erosion monitoring on a catchment scale enables to analyse temporal and spatial variability of soil erosion and sediment delivery, while the integrating study of different catchments is often undertaken to depicther the general patterns. In this study, eight small catchments (with area up to 1,32 km2), representative for the western part of the Mediterranean region (according to climate, bedrock, soils and main type of land use) were compared. These catchments, grouped in the R-OS Med Network were situated in France (3), Spain (2), Portugal (1), Italy (1) and Tunisia (1). The average precipitation ranged between 236 to 1303 mm·a-1 and mean annual sediment yield varied 7.5 to 6900 Mg·km-2·a-1. The complex databes was based on more than 120 years of hydrological and sediment data, with series between 3 and 29 years long. The variability of sediment data was described on annual and monthly basis. The relationship between the sediment yield and more than 35 factors influencing the sediment yield including the characteristics of climate, topography, rainfall, runoff, land use, vegetation and soil cover, connectivity and dominant geomorphic processes, was studied. The preliminary results confirmed the differences in rainfall, runoff and sediment response, and revealed both the similarities and differences in soil erosion responses of the catchments. They are further dependent on the variability of factors themselves, with important contribution of the state of soil properties, vegetation cover and land use. Anna Smetanová has received the support of the European Union, in the framework of the Marie-Curie FP7 COFUND People Programme, through the award of an AgreenSkills' fellowship (under grant agreement n° 267196)

  7. Can the catchment scale SWAT model undertake management at field scale?

    NASA Astrophysics Data System (ADS)

    Lu, Shenglan; Trolle, Dennis; Blicher-Mathiesen, Gitte; Estrup Andersen, Hans

    2015-04-01

    Nitrate losses from agricultural areas to waterways remain a serious stressor for aquatic ecosystems in many developed countries, despite the fact that decades of water action plans have reduced these losses. More intelligent ways of further reducing nitrate losses are now sought for, particularly the ability to pinpoint the location of critical areas where the potential for nitrate losses are high. Here, mathematical models can play a key role, as they offer the ability to locate areas at various size-discretization, where losses could potentially be high. The Soil and Water Assessment Tool (SWAT) have been widely applied for quantifying nitrate losses from agricultural catchments, but the model have rarely be validated at field scale that are relevant for implementation of management measures, often due to lack of data from such scales. In this study, we calibrated the SWAT model for intensively monitored smaller Danish catchments based only on data from the catchment outlets. We then looked into smaller areas within these catchments and evaluated the SWAT models ability to reproduce observed tile drain dynamics and nitrogen budgets at the field scale, including fertilizer application, crop yields, leaching through the root zone and tile drainage. To evaluate the importance of the simulated tile drainage at larger scales, we applied the SWAT model to a large section of the River Odense catchment in Denmark and analysed the nitrogen sources and budgets.

  8. The catchment based approach using catchment system engineering

    NASA Astrophysics Data System (ADS)

    Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark

    2015-04-01

    The catchment based approach (CaBa) has been championed as a potential mechanism for delivery of environmental directives such as the Water Framework Directive in the UK. However, since its launch in 2013, there has been only limited progress towards achieving sustainable, holistic management, with only a few of examples of good practice ( e.g. from the Tyne Rivers trust). Common issues with developing catchment plans over a national scale include limited data and resources to identify issues and source of those issues, how to systematically identify suitable locations for measures or suites of measures that will have the biggest downstream impact and how to overcome barriers for implementing solutions. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. A significant component of the runoff generation can be managed by targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source, many runoff attenuation features or measures can be co-located to achieve benefits for water quality and biodiversity. A catchment, community-led mitigation measures plan using the CSE approach will be presented from a catchment in Northumberland, Northern England that demonstrate a generic framework for identification of multi-purpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-ditch measures. Progress on the implementation of measures will be reported alongside potential impacts on the runoff regime at both local and catchment scale and costs.

  9. Trapping runoff, sediment and nutrients at the edge-of-field: Using constructed wetlands to control runoff and improve water quality in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Deasy, Clare; Quinton, John; Stoate, Chris

    2010-05-01

    Across Europe, many rivers and lakes are polluted. In the UK, the Biodiversity Action Plan estimates that over 70% of lakes are eutrophic. Diffuse pollution from agriculture is currently of extreme concern, but pollution and flood risk can be mitigated by management activities. The use of in-field mitigation options such as reduced tillage has been found to be effective at reducing runoff, sediment and nutrient loss in overland flow, but pollutants can still be lost from hillslopes unchecked via subsurface flow pathways, some of which may contribute very high loads of nutrients to streams. Edge-of-field mitigation approaches, which can tackle both surface and subsurface pathways at locations where they discharge into ditches and streams, therefore have greater potential as runoff control measures than in-field measures alone. In the UK, the implementation, effectiveness and functioning of seven new wetlands constructed at the edges of agricultural fields is currently being assessed. The constructed wetlands, of different designs, which are fed by different flow types and are located on different farm and soil types, are continuously monitored for discharge and turbidity at inlets and outlets, while storm sampling allows assessment of sediment and nutrient transfer into and out of the wetland at times when there is a high risk of pollutant transfer. Pond surveys and sediment sampling will take place annually, and tracer experiments will be carried out in the course of the project. The data will be used to generate information on sediment and nutrient load reductions or wetland effectiveness, wetland sediment and nutrient budgets, and water and sediment residence times. In this paper we present the initial results, including novel high-resolution data from the first monitored events. Early outputs suggest that constructed wetlands which receive surface runoff inputs can retain flood waters and may reduce flood peaks, wetlands built to take drain outfalls may be

  10. A bottom up approach to implementing multi-purpose mitigation measures for reducing flood risk and improving water quality in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Wilkinson, M. E.; Quinn, P. F.; Jonczyk, J.; Burke, S.; Nicholson, A.; Barber, N.; Owen, G.; Palmer, M.

    2012-04-01

    A number of studies have suggested that there is evidence that modern land-use management practices have increased surface runoff at the local scale. There is an urgent need for interventions to reduce the risk of flooding whilst also delivering multiple benefits (doing more for less). There are many settlements, which regularly suffer from flooding, which would benefit from upstream mitigation measures. Interventions at the source of runoff generation can have a positive impact on the flood hydrograph downstream. An integrated approach to managing runoff can also have multiple benefits on pollution and ecology, which could lead to beneficial impacts at the catchment scale. Belford, a small community in Northumberland, UK has suffered from an increased number of flood events over the past ten years. There is currently support within the English and Welsh Environment Agency for sustainable flood management solutions such as storage ponds, wetlands, beaver dams and willow riparian features which are being trialled at Belford. These runoff attenuation features (RAFs) also have benefits to water quality, capture sediment and create new ecological zones. Although the process by which numerous RAFs were deployed in Belford proved initially difficult to achieve within the existing regulatory framework, an efficient uptake process is now supported by local regulators including several branches of the Environment Agency. The Belford runoff management framework provides a step by step guide to implementing mitigation measures in the Belford burn catchment and could be easily applied to other catchments at a similar scale. The approach is based on implementing mitigation measures through engaging with catchment stakeholders and using solid field science and management protocols.

  11. A methodology to determine pesticides pollution sources in water catchments: study case (Belgium).

    PubMed

    Limbourg, Q; Noel, S; Huyghebaert, B; Capette, L; Hallet, V

    2009-01-01

    In the Walloon Region (Belgium), a Committee of Investigation was created in 2007 to investigate and determine the potential pesticides pollution sources in drinkable water catchments. This Committee, constituted by a multidisciplinary team of experts i.e agronomists, soil scientists, phyto-chemists, hydrogeologists, is coordinated by the Walloon Agricultural Research Centre (CRA-W) and funded by the Société Publique de Gestion des Eaux (SPGE). The diagnosis method is inspired of the AQUAPLAINE method (Arvalis, France), and is composed of four steps: 1/preparing the diagnosis using existing data, 2/diagnosis using data bank completed by field observations, 3/meeting and discussion with the pesticide users, 4/final diagnosis and remediation proposal. In a rural district of Walloon Region, a water producer who possesses two catchments ("Les marroniers" (P1) and "Puits N2" (P2)) has problems with pesticides. The pollution started in 1998 with atrazine and bromacile detected in the two catchments. In 2004, 2,6-dichlorobenzamide, metabolite of dichlobenil, was also detected in the catchments. At present, all these pesticides are still found in the catchment P1 and only the 2,6 dichlorobenzamide is found in the other catchment. These active ingredients are not used in agriculture expect atrazine. Indeed, the main user of these products is the public sector. An investigation was realised to locate the main sites which are treated with these pesticides in this commune. The conclusion of this study is that the local authority used dichlobenil, bromacile and atrazine to weed the public areas. In more, the filling and the cleaning areas of sprayer, used for the treatment, are located near the catchments.

  12. A Catchment Systems Engineering (CSE) approach to managing intensively farmed land

    NASA Astrophysics Data System (ADS)

    Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark; ODonnell, Greg

    2014-05-01

    Rural land management practices can have a significant impact on the hydrological and nutrient dynamics within a catchment which can dramatically alter the way it processes water, exacerbating nutrient losses from the system. A collaborative and holistic approach for managing potential conflicts between land management activity for food production alongside the aspiration to achieve good water quality and the need to make space for water can ensure the long-term sustainability of our agricultural catchments. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. By targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, a significant component of the runoff generation can be managed, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source many runoff attenuation features or measures can be co-located to achieve benefits for water quality. Examples of community-led mitigation measures using the CSE approach will be presented from two catchments in Northumberland, Northern England, that demonstrate the generic framework for identification of multipurpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-field sediment filters and sediment traps which demonstrate how sediment can be trapped locally (including silt and clay fractions) and be recovered for use back on the land. Deliverables from this CSE approach includes the reduction of downstream flood risk and capturing of sediment and associated nutrients. The CSE approach allows for a more natural flood and nutrient management approach which helps to restore vital catchment functions to re-establish a healthy catchment system.

  13. Modelling Pesticide Leaching At Column, Field and Catchment Scales I. Analysis of Soil Variability At Field and Catchment Scales

    NASA Astrophysics Data System (ADS)

    Gärdenäs, A.; Jarvis, N.; Alavi, G.

    The spatial variability of soil characteristics was studied in a small agricultural catch- ment (Vemmenhög, 9 km2) at the field and catchment scales. This analysis serves as a basis for assumptions concerning upscaling approaches used to model pesticide leaching from the catchment with the MACRO model (Jarvis et al., this meeting). The work focused on the spatial variability of two key soil properties for pesticide fate in soil, organic carbon and clay content. The Vemmenhög catchment (9 km2) is formed in a glacial till deposit in southernmost Sweden. The landscape is undulating (30 - 65 m a.s.l.) and 95 % of the area is used for crop production (winter rape, winter wheat, sugar beet and spring barley). The climate is warm temperate. Soil samples for or- ganic C and texture were taken on a small regular grid at Näsby Farm, (144 m x 144 m, sampling distance: 6-24 m, 77 points) and on an irregular large grid covering the whole catchment (sampling distance: 333 m, 46 points). At the field scale, it could be shown that the organic C content was strongly related to landscape position and height (R2= 73 %, p < 0.001, n=50). The organic C content of hollows in the landscape is so high that they contribute little to the total loss of pesticides (Jarvis et al., this meeting). Clay content is also related to landscape position, being larger at the hilltop locations resulting in lower near-saturated hydraulic conductivity. Hence, macropore flow can be expected to be more pronounced (see also Roulier & Jarvis, this meeting). The variability in organic C was similar for the field and catchment grids, which made it possible to krige the organic C content of the whole catchment using data from both grids and an uneven lag distance.

  14. pH sensitivity of Swedish forest streams related to catchment characteristics and geographical location - Implications for forest bioenergy harvest and ash return

    NASA Astrophysics Data System (ADS)

    Ågren, Anneli; Löfgren, Stefan

    2013-04-01

    Whole-tree harvesting acidifies forest soils more than conventional harvest of stems. There is concern that this excess acidification will also affect surface waters and counteract the well-documented recovery from acid deposition in streams and lakes. Here we present a first attempt to identify the landscape types within Sweden where the streams are most sensitive to acidification and potentially in need of protection from excessive biomass harvest or countermeasures such as ash application. Conservative estimates indicate that forest slash must be harvested from >30 ha to produce the amount of ash needed to restore 1 ha acidified surface water. This highlights the need for careful planning of where ash should be distributed. Streams with a high pH are well buffered by the bicarbonate system and not sensitive to a potential pH decline. Streams with a low pH are also well buffered by dissolved organic carbon and aluminum and are not likely affected by bioenergy harvest. However, streams in the intermediate pH range (5-6.2) are potentially sensitive to acidification from excess base cation removal due to whole-tree harvesting. In such streams a small change in acid neutralizing capacity (ANC) can change pH dramatically. The pH sensitivity of 218 streams in different regions (northern, central, southern, and southwest Sweden) was defined from stream water pH and related to catchment characteristics and stream water acid-base chemistry. At the national level, catchments with till soils and a large proportion of forested wetlands formed the most pH sensitive areas. Because of regional variability in acidification history, amount and distribution of quaternary deposits, vegetation cover, etc. pH sensitivity was determined by different landscape elements in different regions. For example, in northern Sweden streams draining forest mires were the most pH sensitive streams. The patchy spatial distribution of this landscape type, makes it difficult from an administrative

  15. The role of historical agricultural terraces in geo-hydrological risk reduction: a case study from the Bisagno Stream Catchment (Genoa, Italy)

    NASA Astrophysics Data System (ADS)

    Faccini, Francesco; Giostrella, Paola; Paliaga, Guido; Piana, Pietro; Sacchini, Alessandro

    2016-04-01

    Terraces, traditionally sustained by dry stonewalls, occupy about thirty percent of the territory of Liguria. If constantly maintained, they effectively contribute to slow down the natural slope erosion. When no longer managed, terraces are recognized as one of the reasons for increased geomorphological risk along the slopes and, consequently, at the bottom of the valley. This study concerns the terraced landscapes of the Bisagno Stream catchment, internationally known for the recent and recurring floods which affected the city of Genoa. The Bisagno Stream catchment is an example of historical evolution of the territory both in terms of land use change and geo-hydrological risk. The catchment, whose highest point is Mount Candelozzo (1034 m), has a total area of 95 km2. In its terminal stretch the stream flows across the eastern part of Genoa city centre. It is a typical valley of the Genoa metropolitan area, with steep slopes and short times of concentration. Here the signs of the tragic floods which have affected the area since 1970 are still visible. The most recent and tragic geo-hydrological event in Liguria took place in the Bisagno Valley in October 2014. The study was carried out with a multi-temporal comparison of the terraced areas using aerial photographs and regional cartographic information. A further step will involve the analysis and classification of the terraces based on their maintenance condition and hydrogeological effectiveness, using some representative areas of the valley as cases study. The comparison between the distribution of terraces in the Bisagno valley and applied geomorphological cartography suggests the need of measures to reduce the risk according to a suitable set of priorities, including the recovery of the terraced areas and connected structures aimed to limit the accumulation of solid material along the main waterway.

  16. Designing cost efficient buffer zone programs: An application of the FyrisSKZ tool in a Swedish catchment.

    PubMed

    Collentine, Dennis; Johnsson, Holger; Larsson, Peter; Markensten, Hampus; Persson, Kristian

    2015-03-01

    Riparian buffer zones are the only measure which has been used extensively in Sweden to reduce phosphorus losses from agricultural land. This paper describes how the FyrisSKZ web tool can be used to evaluate allocation scenarios using data from the Svärta River, an agricultural catchment located in central Sweden. Three scenarios are evaluated: a baseline, a uniform 6-m-wide buffer zone in each sub-catchment, and an allocation of areas of buffer zones to sub-catchments based on the average cost of reduction. The total P reduction increases by 30 % in the second scenario compared to the baseline scenario, and the average reduction per hectare increases by 90 % while total costs of the program fall by 32 %. In the third scenario, the average cost per unit of reduction (163 kg P(-1)) is the lowest of the three scenarios (58 % lower than the baseline) and has the lowest total program costs. PMID:25681987

  17. Location, Location, Location!

    ERIC Educational Resources Information Center

    Ramsdell, Kristin

    2004-01-01

    Of prime importance in real estate, location is also a key element in the appeal of romances. Popular geographic settings and historical periods sell, unpopular ones do not--not always with a logical explanation, as the author discovered when she conducted a survey on this topic last year. (Why, for example, are the French Revolution and the…

  18. Of birds, carbon and water: integrating multiple ecosystem service impacts to identify locations for agricultural conservation practice adoption

    EPA Science Inventory

    Human use of the landscape for crop production can degrade ecosystem services. A number of agricultural conservation practices are touted as mitigating these impacts. Many of these practices are encouraged by incentive programs such as the Conservation Reserve Program administere...

  19. Water Catchment and Storage Monitoring

    NASA Astrophysics Data System (ADS)

    Bruenig, Michael; Dunbabin, Matt; Moore, Darren

    2010-05-01

    Sensors and Sensor Networks technologies provide the means for comprehensive understanding of natural processes in the environment by radically increasing the availability of empirical data about the natural world. This step change is achieved through a dramatic reduction in the cost of data acquisition and many orders of magnitude increase in the spatial and temporal granularity of measurements. Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) is undertaking a strategic research program developing wireless sensor network technology for environmental monitoring. As part of this research initiative, we are engaging with government agencies to densely monitor water catchments and storages, thereby enhancing understanding of the environmental processes that affect water quality. In the Gold Coast hinterland in Queensland, Australia, we are building sensor networks to monitor restoration of rainforest within the catchment, and to monitor methane flux release and water quality in the water storages. This poster will present our ongoing work in this region of eastern Australia. The Springbrook plateau in the Gold Coast hinterland lies within a World Heritage listed area, has uniquely high rainfall, hosts a wide range of environmental gradients, and forms part of the catchment for Gold Coast's water storages. Parts of the plateau are being restored from agricultural grassland to native rainforest vegetation. Since April 2008, we have had a 10-node, multi-hop sensor network deployed there to monitor microclimate variables. This network will be expanded to 50-nodes in February 2010, and to around 200-nodes and 1000 sensors by mid-2011, spread over an area of approximately 0.8 square kilometers. The extremely dense microclimate sensing will enhance knowledge of the environmental factors that enhance or inhibit the regeneration of native rainforest. The final network will also include nodes with acoustic and image sensing capability for

  20. Modelling phosphorus loading and algal blooms in a Nordic agricultural catchment-lake system under changing land-use and climate.

    PubMed

    Couture, Raoul-Marie; Tominaga, Koji; Starrfelt, Jostein; Moe, S Jannicke; Kaste, Øyvind; Wright, Richard F

    2014-07-01

    A model network comprising climate models, a hydrological model, a catchment-scale model for phosphorus biogeochemistry, and a lake thermodynamics and plankton dynamics model was used to simulate phosphorus loadings, total phosphorus and chlorophyll concentrations in Lake Vansjø, Southern Norway. The model network was automatically calibrated against time series of hydrological, chemical and biological observations in the inflowing river and in the lake itself using a Markov Chain Monte-Carlo (MCMC) algorithm. Climate projections from three global climate models (GCM: HadRM3, ECHAM5r3 and BCM) were used. The GCM model HadRM3 predicted the highest increase in temperature and precipitation and yielded the highest increase in total phosphorus and chlorophyll concentrations in the lake basin over the scenario period of 2031-2060. Despite the significant impact of climate change on these aspects of water quality, it is minimal when compared to the much larger effect of changes in land-use. The results suggest that implementing realistic abatement measures will remain a viable approach to improving water quality in the context of climate change.

  1. Modelling phosphorus loading and algal blooms in a Nordic agricultural catchment-lake system under changing land-use and climate.

    PubMed

    Couture, Raoul-Marie; Tominaga, Koji; Starrfelt, Jostein; Moe, S Jannicke; Kaste, Øyvind; Wright, Richard F

    2014-07-01

    A model network comprising climate models, a hydrological model, a catchment-scale model for phosphorus biogeochemistry, and a lake thermodynamics and plankton dynamics model was used to simulate phosphorus loadings, total phosphorus and chlorophyll concentrations in Lake Vansjø, Southern Norway. The model network was automatically calibrated against time series of hydrological, chemical and biological observations in the inflowing river and in the lake itself using a Markov Chain Monte-Carlo (MCMC) algorithm. Climate projections from three global climate models (GCM: HadRM3, ECHAM5r3 and BCM) were used. The GCM model HadRM3 predicted the highest increase in temperature and precipitation and yielded the highest increase in total phosphorus and chlorophyll concentrations in the lake basin over the scenario period of 2031-2060. Despite the significant impact of climate change on these aspects of water quality, it is minimal when compared to the much larger effect of changes in land-use. The results suggest that implementing realistic abatement measures will remain a viable approach to improving water quality in the context of climate change. PMID:24622900

  2. Phosphorus sources and losses in two arable catchments and implications for catchment management

    NASA Astrophysics Data System (ADS)

    Murphy, P. N. C.; Melland, A. R.; Mellander, P.-E.; Shortle, G.; Wall, D.; Jordan, P.

    2012-04-01

    Multi-scale catchment experiments allow assessment of the impact of policy measures on nutrient losses from agriculture and water quality and testing of conceptual models of nutrient loss. The potential for catchment-specific responses to be extrapolated to similar catchments country-wide can then help guide future policy measures to achieve water quality targets, such as those in the EU Water Framework Directive (WFD). This paper presents results from the Agricultural Catchments Programme; an integrated advisory/research programme working with stakeholders to assess the efficacy of Ireland's National Action Programme (NAP) of measures in meeting the targets of the Nitrates Directive and WFD. Results are presented for P sources and losses over two water years in two catchments (9.5 and 11.2 km2) with intensive arable agriculture but contrasting soil drainage and geology and resultant hydrologic and nutrient transfer pathways. Phosphorus source pressures were characterised in terms of field-scale soil P status and P balances. Phosphorus loss was characterised in terms of P concentration and loads monitored with high-resolution bank-side analysers. Despite having similar P soil status (18-19 % in excess of agronomic optimum), P losses were much greater from the catchment with more poorly drained soils (0.7 kg ha-1 yr-1) than from the catchment with more freely drained soils (0.2 kg ha-1 yr-1). This paper considers the factors controlling P loss in the two catchments (farm nutrient management, soils, topography and hydrology) to explain the differences between the two catchments and the spatio-temporal variability observed. Agricultural and non-agricultural point sources, in addition to diffuse agricultural sources, are considered. Although both catchments are subject to the same NAP measures, the outcomes, in terms of both P loads and concentrations, showed that inter-annual hydrological patterns and inter-catchment hydrological properties are critical. This

  3. Catchment-scale quantification of hyporheic denitrification using an isotopic and solute flux approach.

    PubMed

    Wexler, Sarah K; Hiscock, Kevin M; Dennis, Paul F

    2011-05-01

    A dual-isotope and solute flux mass-balance was used to elucidate the processes that lead to attenuation of nitrogen contamination in an agriculturally impacted river. The River Wensum drains a lowland catchment with an area of 570 km² in East Anglia, eastern England. Analysis of nitrate concentration, δ¹⁵N(NO₃) and δ¹⁸O(NO₃) of samples from the River Wensum collected from upstream locations to the catchment outlet through all seasons and flow conditions showed a consistent pattern of increasing isotope values with decreasing nitrate concentrations downstream. δ¹⁵N(NO₃) and δ¹⁸O(NO₃) of catchment surface water and groundwater samples revealed a dominant influence from microbially cycled and nitrified source-nitrogen, which results in high nitrate concentrations in Chalk groundwater and upstream in the River Wensum. Denitrification of Chalk groundwater-baseflow in the hyporheic zone results in the downstream trend observed in the river. Hyporheic denitrification is estimated to remove 931 kg/day of nitrate-nitrogen by the catchment outlet, representing 31% of the potential riverine nitrate load. The use of dual-isotope and solute flux modeling at the catchment scale is a novel application to quantify denitrification within the river valley, demonstrating the importance of hyporheic zone processes in attenuating the impacts of anthropogenic contamination of hydrologic systems.

  4. Assessing catchment connectivity using hysteretic loops

    NASA Astrophysics Data System (ADS)

    Keesstra, Saskia; Masselink, Rens; Goni, Mikel; Campo, Miguel Angel; Gimenez, Rafael; Casali, Javier; Seeger, Manuel

    2015-04-01

    Sediment connectivity is a concept which can explain the origin, pathways and sinks of sediments within landscapes. This information is valuable for land managers to be able to take appropriate action at the correct place. Hysteresis between sediment and water discharge can give important information about the sources , pathways and conditions of sediment that arrives at the outlet of a catchment. "Hysteresis" happens when the sediment concentration associated with a certain flow rate is different depending on the direction in which the analysis is performed -towards the increase or towards the diminution of the flow. This phenomenon to some extent reflects the way in which the runoff generation processes are conjugated with those of the production and transport of sediments, hence the usefulness of hysteresis as a diagnostic hydrological parameter. However, the complexity of the phenomena and factors which determine hysteresis make its interpretation uncertain or, at the very least, problematic. Many types of hysteretic loops have been described as well as the cause for the shape of the loop, mainly describing the origin of the sediments. In this study, several measures to objectively classify hysteretic loops in an automated way were developed. These were consecutively used to classify several hundreds of loops from several agricultural catchments in Northern Spain. The data set for this study comes from four experimental watersheds in Navarre (Spain), owned and maintained by the Government of Navarre. These experimental watersheds have been monitored and studied since 1996 (La Tejería and Latxaga) and 2001 (Oskotz "principal", Op, and Oskotz "woodland", Ow). La Tejería and Latxaga watersheds, located in the Central Western part of Navarre, are roughly similar to each other regarding size (approximately 200 ha), geology (marls and sandstones), soils (fine texture topsoil), climate (humid sub Mediterranean) and land use (80-90% cultivated with winter grain crops

  5. Physical and human influences on fluvial water quality in the Tagus river catchment, Portugal

    NASA Astrophysics Data System (ADS)

    Nunes, A.

    2009-04-01

    Rivers are important resources of drinkable water, ecosystems with a high biologic potency and places of entertainment. Water quality at the catchment scale depends on climate, geology, geomorphology, soils and mainly of land use and land cover. Different activities such as agriculture, livestock, industrial and urban drains have promoted the deterioration of the fluvial water quality. The announced climate changes, the increase of food requirements, as well as the urban concentration of people pose new challenges for the assessment and sustainable management of water quality on the catchment scale. At present about 2/3 of portuguese population live near coast, in urban centers. Since the last three decades, the largest part of the marginal agricultural land has been abandoned whilst the most productive soils have experienced an intensification on its productivity. The Tagus river catchment, with an area of 24.850 km2 only in the Portuguese territory, shows very important contrasts in climate, geology, geomorphology, land use and population density. The main objectives of this work are to evaluate and compare the surface water quality in different sub catchments of Tagus river and to contribute to a better understanding of how physical and human factors (such as geology, precipitation, temperature, runoff, land use and land cover and population density) interfere in their spatial-temporal variability. In order to achieve this issue, twenty sub catchments were selected. The chosen catchments show different locations and areas, and a quite long data series of physical, chemical and biology properties of water, such as nitrates, phosphates, dissolved oxygen, total coliforms, etc. Making use of Geographic Information System (GIS) tools, a database was created for each sub-catchment containing all the physical and human characteristics. Afterwards, statistical analysis was carried out by using SPSS programme (11.0 for Windows. One-way analysis of variance and the Tukey

  6. Identifying dominant controls on hydrologic parameter transfer from gauged to ungauged catchments: a comparative hydrology approach

    USGS Publications Warehouse

    Singh, R.; Archfield, S.A.; Wagener, T.

    2014-01-01

    Daily streamflow information is critical for solving various hydrologic problems, though observations of continuous streamflow for model calibration are available at only a small fraction of the world’s rivers. One approach to estimate daily streamflow at an ungauged location is to transfer rainfall–runoff model parameters calibrated at a gauged (donor) catchment to an ungauged (receiver) catchment of interest. Central to this approach is the selection of a hydrologically similar donor. No single metric or set of metrics of hydrologic similarity have been demonstrated to consistently select a suitable donor catchment. We design an experiment to diagnose the dominant controls on successful hydrologic model parameter transfer. We calibrate a lumped rainfall–runoff model to 83 stream gauges across the United States. All locations are USGS reference gauges with minimal human influence. Parameter sets from the calibrated models are then transferred to each of the other catchments and the performance of the transferred parameters is assessed. This transfer experiment is carried out both at the scale of the entire US and then for six geographic regions. We use classification and regression tree (CART) analysis to determine the relationship between catchment similarity and performance of transferred parameters. Similarity is defined using physical/climatic catchment characteristics, as well as streamflow response characteristics (signatures such as baseflow index and runoff ratio). Across the entire US, successful parameter transfer is governed by similarity in elevation and climate, and high similarity in streamflow signatures. Controls vary for different geographic regions though. Geology followed by drainage, topography and climate constitute the dominant similarity metrics in forested eastern mountains and plateaus, whereas agricultural land use relates most strongly with successful parameter transfer in the humid plains.

  7. Identifying dominant controls on hydrologic parameter transfer from gauged to ungauged catchments - A comparative hydrology approach

    NASA Astrophysics Data System (ADS)

    Singh, R.; Archfield, S. A.; Wagener, T.

    2014-09-01

    Daily streamflow information is critical for solving various hydrologic problems, though observations of continuous streamflow for model calibration are available at only a small fraction of the world's rivers. One approach to estimate daily streamflow at an ungauged location is to transfer rainfall-runoff model parameters calibrated at a gauged (donor) catchment to an ungauged (receiver) catchment of interest. Central to this approach is the selection of a hydrologically similar donor. No single metric or set of metrics of hydrologic similarity have been demonstrated to consistently select a suitable donor catchment. We design an experiment to diagnose the dominant controls on successful hydrologic model parameter transfer. We calibrate a lumped rainfall-runoff model to 83 stream gauges across the United States. All locations are USGS reference gauges with minimal human influence. Parameter sets from the calibrated models are then transferred to each of the other catchments and the performance of the transferred parameters is assessed. This transfer experiment is carried out both at the scale of the entire US and then for six geographic regions. We use classification and regression tree (CART) analysis to determine the relationship between catchment similarity and performance of transferred parameters. Similarity is defined using physical/climatic catchment characteristics, as well as streamflow response characteristics (signatures such as baseflow index and runoff ratio). Across the entire US, successful parameter transfer is governed by similarity in elevation and climate, and high similarity in streamflow signatures. Controls vary for different geographic regions though. Geology followed by drainage, topography and climate constitute the dominant similarity metrics in forested eastern mountains and plateaus, whereas agricultural land use relates most strongly with successful parameter transfer in the humid plains.

  8. Modeling daily streamflow at ungauged catchments: What information is necessary?

    NASA Astrophysics Data System (ADS)

    Patil, S.; Stieglitz, M.

    2011-12-01

    Streamflow modeling at ungauged catchments involves transfer of information (viz., model structure and parameters) from gauged to ungauged catchments that are judged to be hydrologically similar. In this study, we focus on identifying: (1) what constitutes the critical information that needs to be transferred among hydrologically similar catchments to achieve good predictability using models at ungauged sites, and (2) which is the best approach for transferring this information from gauged to ungauged catchments. We develop a simple hydrologic model with minimal calibration requirement and implement it over 756 catchments located across the continental United States. The model computes water balance at a daily time-step and conceptualizes subsurface runoff through a storage-dependent exponential decline in saturated hydraulic conductivity. Snow accumulation and melt are modeled using the thermal degree-day concept. The calibrated model performs better in humid runoff-dominated regions than in the drier evapotranspiration-dominated regions. Results show that within a region, transfer of hydrograph recession information alone is sufficient for reliable streamflow predictions at ungauged catchments. Information transfer from spatially proximate gauged catchments provides better streamflow predictability at ungauged catchments than transfer from catchments identified as physically similar. When considering spatially proximate catchments, information transfer from multiple donor catchments is preferable to transfer from a single donor catchment.

  9. Characterization and cartography of topsoil hydraulic properties in a French mountainous peri-urban catchment

    NASA Astrophysics Data System (ADS)

    Gonzalez-Sosa, E.; Braud, I.; Gonzalez-Sosa, E.; Dehotin, J.; Branger, F.; Lagouy, M.

    2009-04-01

    Due to the increase of urbanization and modification of agricultural practices, peri-urban areas experiment a quick change in land use. The impact of such change on the catchment hydrological cycle must be quantified. To achieve this goal, distributed hydrological models offer the ability to take into account land use change, and more specifically its effect on surface infiltration capacity. A distributed assessment of infiltration properties and their variability at the catchment scale is thus of great importance if accurate simulation of the water balance are expected on such catchments. This paper presents a field campaign conducted in a 7 km2 peri-urban catchment, located in the "Mont du Lyonnais" area, close to the city of Lyon (France) in order to document the topsoil hydraulic properties. The sampling strategy was set up in order to sample the largest number of soil/land use combinations. The locations were chosen from a GIS analysis based on the overlapping of the pedology and land use maps, and accessibility consideration. At each location, two types of infiltration tests were performed: infiltration tests under suction using mini-disk infiltrometers and single ring infiltration tests under positive head. Three replicates were performed for each method. Particle size data and organic matter analysis were also conducted at each location. Results will be discussed in terms of soil hydraulic properties and particle size data statistics. Relationship with external factors such as pedological unit, land use, slope, texture will be explored. Preliminary results show that forest and pasture soils exhibit the highest hydraulic conductivity and sorptivity. In order to provide models with values at the modelling unit scale (field and/or sub-catchment scale), existing pedotransfer function will be assessed and if necessary calibrated using the local measurements. Finally a methodology for the cartography of the soil hydraulic properties will be proposed.

  10. Wi-Fi and Satellite-Based Location Techniques for Intelligent Agricultural Machinery Controlled by a Human Operator

    PubMed Central

    Drenjanac, Domagoj; Tomic, Slobodanka; Agüera, Juan; Perez-Ruiz, Manuel

    2014-01-01

    In the new agricultural scenarios, the interaction between autonomous tractors and a human operator is important when they jointly perform a task. Obtaining and exchanging accurate localization information between autonomous tractors and the human operator, working as a team, is a critical to maintaining safety, synchronization, and efficiency during the execution of a mission. An advanced localization system for both entities involved in the joint work, i.e., the autonomous tractors and the human operator, provides a basis for meeting the task requirements. In this paper, different localization techniques for a human operator and an autonomous tractor in a field environment were tested. First, we compared the localization performances of two global navigation satellite systems’ (GNSS) receivers carried by the human operator: (1) an internal GNSS receiver built into a handheld device; and (2) an external DGNSS receiver with centimeter-level accuracy. To investigate autonomous tractor localization, a real-time kinematic (RTK)-based localization system installed on autonomous tractor developed for agricultural applications was evaluated. Finally, a hybrid localization approach, which combines distance estimates obtained using a wireless scheme with the position of an autonomous tractor obtained using an RTK-GNSS system, is proposed. The hybrid solution is intended for user localization in unstructured environments in which the GNSS signal is obstructed. The hybrid localization approach has two components: (1) a localization algorithm based on the received signal strength indication (RSSI) from the wireless environment; and (2) the acquisition of the tractor RTK coordinates when the human operator is near the tractor. In five RSSI tests, the best result achieved was an average localization error of 4 m. In tests of real-time position correction between rows, RMS error of 2.4 cm demonstrated that the passes were straight, as was desired for the autonomous tractor

  11. Wi-Fi and satellite-based location techniques for intelligent agricultural machinery controlled by a human operator.

    PubMed

    Drenjanac, Domagoj; Tomic, Slobodanka; Agüera, Juan; Perez-Ruiz, Manuel

    2014-10-22

    In the new agricultural scenarios, the interaction between autonomous tractors and a human operator is important when they jointly perform a task. Obtaining and exchanging accurate localization information between autonomous tractors and the human operator, working as a team, is a critical to maintaining safety, synchronization, and efficiency during the execution of a mission. An advanced localization system for both entities involved in the joint work, i.e., the autonomous tractors and the human operator, provides a basis for meeting the task requirements. In this paper, different localization techniques for a human operator and an autonomous tractor in a field environment were tested. First, we compared the localization performances of two global navigation satellite systems' (GNSS) receivers carried by the human operator: (1) an internal GNSS receiver built into a handheld device; and (2) an external DGNSS receiver with centimeter-level accuracy. To investigate autonomous tractor localization, a real-time kinematic (RTK)-based localization system installed on autonomous tractor developed for agricultural applications was evaluated. Finally, a hybrid localization approach, which combines distance estimates obtained using a wireless scheme with the position of an autonomous tractor obtained using an RTK-GNSS system, is proposed. The hybrid solution is intended for user localization in unstructured environments in which the GNSS signal is obstructed. The hybrid localization approach has two components: (1) a localization algorithm based on the received signal strength indication (RSSI) from the wireless environment; and (2) the acquisition of the tractor RTK coordinates when the human operator is near the tractor. In five RSSI tests, the best result achieved was an average localization error of 4 m. In tests of real-time position correction between rows, RMS error of 2.4 cm demonstrated that the passes were straight, as was desired for the autonomous tractor. From

  12. Wi-Fi and satellite-based location techniques for intelligent agricultural machinery controlled by a human operator.

    PubMed

    Drenjanac, Domagoj; Tomic, Slobodanka; Agüera, Juan; Perez-Ruiz, Manuel

    2014-01-01

    In the new agricultural scenarios, the interaction between autonomous tractors and a human operator is important when they jointly perform a task. Obtaining and exchanging accurate localization information between autonomous tractors and the human operator, working as a team, is a critical to maintaining safety, synchronization, and efficiency during the execution of a mission. An advanced localization system for both entities involved in the joint work, i.e., the autonomous tractors and the human operator, provides a basis for meeting the task requirements. In this paper, different localization techniques for a human operator and an autonomous tractor in a field environment were tested. First, we compared the localization performances of two global navigation satellite systems' (GNSS) receivers carried by the human operator: (1) an internal GNSS receiver built into a handheld device; and (2) an external DGNSS receiver with centimeter-level accuracy. To investigate autonomous tractor localization, a real-time kinematic (RTK)-based localization system installed on autonomous tractor developed for agricultural applications was evaluated. Finally, a hybrid localization approach, which combines distance estimates obtained using a wireless scheme with the position of an autonomous tractor obtained using an RTK-GNSS system, is proposed. The hybrid solution is intended for user localization in unstructured environments in which the GNSS signal is obstructed. The hybrid localization approach has two components: (1) a localization algorithm based on the received signal strength indication (RSSI) from the wireless environment; and (2) the acquisition of the tractor RTK coordinates when the human operator is near the tractor. In five RSSI tests, the best result achieved was an average localization error of 4 m. In tests of real-time position correction between rows, RMS error of 2.4 cm demonstrated that the passes were straight, as was desired for the autonomous tractor. From

  13. Modeling Runoff from Partially Glacierized Catchments in the Tropical Andes with Different Glacier Coverage and Land Cover Conditions

    NASA Astrophysics Data System (ADS)

    Kinouchi, T.; Mendoza, J.; Luna, J.; Asaoka, Y.

    2014-12-01

    In Bolivian Andes, retreats of tropical glaciers are rapid, thus water resources currently available from glacierized catchments for drinking, agriculture, industry and hydropower would be changed in its volume and variations due to changing climate. Water resources in La Paz and El Alto, the capital city areas of Bolivia, strongly depend on the runoff from partially glacierized catchments located in the Cordillera Real, which is a combined contribution of surface and subsurface flow from glacierized and non-glacierized areas due to rainfall, snow melt and glacier melt. To predict the long-term availability of water resources for the capital city areas, we developed a semi-distributed conceptual glacio-hydrological model that considers various runoff pathways from partially glacierized high-altitudinal catchments located in the outer tropics. In the model, the retarding effect of lakes and wetlands was considered, based on the observed hydraulic functions and distribution of wetlands. The model was applied to three sub-catchments of the Tuni Lake watershed (98km2), from which the water resources for La Paz and El Alto are supplied. With calibrated parameters, the model reproduced well the observed seasonal variations of daily runoff during recent two years. Simulated results of water balance suggested that for the catchment with a larger glacier cover, more than 40% of the annual total runoff is contributed from glacierized areas due to glacier melt and snowmelt. The contribution from glacierized areas in other two sub-catchments, with relatively smaller areas covered by glacier ice, was calculated to be between 10-15%. We found that the role of wetlands and lakes are essential in retarding and regulating the runoff from partially glacierized high-mountain catchments.

  14. Doing hydrology backwards in tropical humid catchments

    NASA Astrophysics Data System (ADS)

    Real Rangel, R.; Brena-Naranjo, J. A.; Pedrozo-Acuña, A.

    2015-12-01

    Top-down approaches in hydrology offer the possibility to predict water fluxes at the catchment scale based on the interpretation of the observed hydrological response at the catchment itself. Doing hydrology backwards (inferring precipitation and evapotranspiration rates at the catchment scale from streamflow measurements, see Kirchner (2009)) can be a useful methodology for estimating water fluxes at the catchment and regional scales. Previous studies using this inverse modeling approach have been performed in regions (UK, Switzerland, France, Eastern US) where energy-limited (in winter and early spring) and water-limited conditions (in summer) prevail during a large period of the year. However, such approach has not been tested in regions characterized by a quasi-constant supply of water and energy (e.g. humid tropics). The objective of this work is to infer annual rates of precipitation and evapotranspiration over the last decade in 10 catchments located in Mexico's tropical humid regions. Hourly discharge measurements during recession periods were analyzed and parameters for the nonlinear storage-discharge relationship of each catchment were derived. Results showed large variability in both catchment-scale precipitation and evapotranspiration rates among the selected study sites. Finally, a comparison was done between such estimates and those obtained from remotely-sensed data (TRMM for precipitation and MOD16 for evapotranspiration).

  15. Catchment water storage: Models vs Measurements

    NASA Astrophysics Data System (ADS)

    McMillan, Hilary

    2016-04-01

    Recent years have seen a great deal of progress in development of hydrological models that can simulate both the dynamic streamflow response and the hydrochemical flux response of a catchment. In general terms, streamflow response is driven by water deficit in the catchment, whereas hydrochemical response is driven by water storage. Therefore, models that can simultaneously predict both responses must succeed in representing these two related, but different, quantities. This presentation will consider how much information we can gain from field studies to quantify the joint deficit/storage state of a catchment. In particular, examples from two New Zealand experimental catchments in lowland and high country locations will be used to link typical measurements available with the information required by hydrological - hydrochemical models. I will then use the example catchments to assess how well the structure of a typical hydrological-hydrochemical model is supported by field measurements. In particular, can we quantify catchment storage and link this to flow response? Can we incorporate our knowledge of plant water use into such a model, including timing and depth of water withdrawn by the plant? What can field measurements tell us about spatial variability in hydrological-hydrochemical response and can this be represented in the model? I will conclude by discussing what we can learn from field data about the major challenges ahead in catchment storage modelling.

  16. Using biophysical models to manage nitrogen pollution from agricultural sources: Utopic or realistic approach for non-scientist users? Case study of a drinking water catchment area in Lorraine, France.

    PubMed

    Bernard, Pierre-Yves; Benoît, Marc; Roger-Estrade, Jean; Plantureux, Sylvain

    2016-12-01

    The objectives of this comparison of two biophysical models of nitrogen losses were to evaluate first whether results were similar and second whether both were equally practical for use by non-scientist users. Results were obtained with the crop model STICS and the environmental model AGRIFLUX based on nitrogen loss simulations across a small groundwater catchment area (<1 km(2)) located in the Lorraine region in France. Both models simulate the influences of leaching and cropping systems on nitrogen losses in a relevant manner. The authors conclude that limiting the simulations to areas where soils with a greater risk of leaching cover a significant spatial extent would likely yield acceptable results because those soils have more predictable leaching of nitrogen. In addition, the choice of an environmental model such as AGRIFLUX which requires fewer parameters and input variables seems more user-friendly for agro-environmental assessment. The authors then discuss additional challenges for non-scientists such as lack of parameter optimization, which is essential to accurately assessing nitrogen fluxes and indirectly not to limit the diversity of uses of simulated results. Despite current restrictions, with some improvement, biophysical models could become useful environmental assessment tools for non-scientists. PMID:27596940

  17. Using biophysical models to manage nitrogen pollution from agricultural sources: Utopic or realistic approach for non-scientist users? Case study of a drinking water catchment area in Lorraine, France.

    PubMed

    Bernard, Pierre-Yves; Benoît, Marc; Roger-Estrade, Jean; Plantureux, Sylvain

    2016-12-01

    The objectives of this comparison of two biophysical models of nitrogen losses were to evaluate first whether results were similar and second whether both were equally practical for use by non-scientist users. Results were obtained with the crop model STICS and the environmental model AGRIFLUX based on nitrogen loss simulations across a small groundwater catchment area (<1 km(2)) located in the Lorraine region in France. Both models simulate the influences of leaching and cropping systems on nitrogen losses in a relevant manner. The authors conclude that limiting the simulations to areas where soils with a greater risk of leaching cover a significant spatial extent would likely yield acceptable results because those soils have more predictable leaching of nitrogen. In addition, the choice of an environmental model such as AGRIFLUX which requires fewer parameters and input variables seems more user-friendly for agro-environmental assessment. The authors then discuss additional challenges for non-scientists such as lack of parameter optimization, which is essential to accurately assessing nitrogen fluxes and indirectly not to limit the diversity of uses of simulated results. Despite current restrictions, with some improvement, biophysical models could become useful environmental assessment tools for non-scientists.

  18. Nitrate concentrations and fluxes in the River Thames, London UK 1868 to 2008: catchment-scale modelling of diffuse agricultural sources and groundwater response using the world's longest water quality time series

    NASA Astrophysics Data System (ADS)

    Howden, N. J.; Burt, T. P.; Worrall, F.; Mathias, S.; Whelan, M.

    2011-12-01

    This paper presents analyses of the world's longest water quality record: 140 years of monthly-average nitrate concentrations (1868 to 2008) and fluxes (1883 to 2008) for the River Thames north of London. We show how short- and long- term patterns in these time series are influenced by both climatic and anthropogenic pressures, in the case of the latter, particularly land use and land management practices. Climate change does not play a significant role in controlling annual average concentrations or fluxes, rather large-scale land conversions from permanent grassland to arable farming have created sustained diffuse sources of nitrate that have caused (almost four-fold) increases in concentrations and fluxes that persist for many decades after the initial changes. Our analyses of this unique time series highlight four areas of particular interest: (1) Despite several layers of regulation and source control, fluvial concentrations and fluxes remain in- tractably high - no decrease has been observed since the early 1970s; (2) Catchment response to changing nitrogen inputs from land use and land management is subject to considerable lag: present conditions in the river reflect land practices from some years ago; (3) Following (2), we suggest that current changes to land use and land management practices will not be reflected in river water quality for some time to come; (4) Overall, the long-term view afforded by this record questions the derivation of "baseline conditions" that are formulated from records that do not reflect the massive changes in land use and land management in the mid-20th century. Overall, a better understanding of the links, and time delays, between cause (i.e. changing land use / land management) and fluvial response (i.e. concentration increase/decrease) will improve our ability both to predict changes in the coming decades, and inform management decision making now, to ensure the appropriate balance between agricultural development and

  19. Modelling the effects of land use changes on nutrient export in a Western Australian catchment

    NASA Astrophysics Data System (ADS)

    Zammit, C.; Sivapalan, M.

    2003-04-01

    The estuary of the Swan River in Western Australia is becoming increasingly prone to algal blooms, fish deaths and other problems associated with eutrophication. Eutrophication is an increasing problem in many of the world's waterways and the associated proliferation of algae and weeds can lead to significant loss of amenity in terms of water supply, fisheries and recreation. Phosphorus and nitrogen enrichment are the two most common causes of eutrophication. Both these elements are readily transported in streamflow and their concentrations are strongly dependent on land use within the catchment. The Large Scale Catchment Model (LASCAM) has been developed with the aim of predicting the impacts of land use and climatic changes on the daily trends of streamflow and water quality (salinity, sediments, nutrients, etc.) in large catchments over long time periods. The model has been applied to a rural catchment, Ellen Brook, located in Western Australia. It was used to test and simulate catchment exports under a range of land cover change scenarios that may occur over the next 10 years. The scenarios, which are related to different management options for the catchment are: i) urbanisation following highway development; ii) reforestation of the agricultural area; and iii) reduction in fertilizer applications. The results show that: i) urbanisation increases runoff due to the larger impermeable areas increasing overland flow; ii) phosphorus and nitrogen loads are expected to increase by about 4 to 12 % following urbanisation; iii) full reforestation is expected to reduce phosphorus and nitrogen loads export by 50 to 85%; iv) the greatest reduction of phosphorus and nitrogen export occurs for a relatively small increase of reforestation; v) reduction in fertilizer application may be suitable only for a target of 45% reduction in phosphorus export (or over).

  20. Controls on suspended sediment, particulate and dissolved organic carbon export from two adjacent catchments with contrasting land-uses, Exmoor UK.

    NASA Astrophysics Data System (ADS)

    Glendell, M.; Brazier, R. E.

    2012-04-01

    -west England, cover 50km2 and comprise a lower lying agricultural sub-catchment and an upland sub-catchment with extensive native woodland and heather moorland. 24 months of monitoring characterised the water quality status in both catchments, including TSS, POC and DOC in both baseflow and stormflow conditions. Results indicate that the agricultural catchment exports higher TSS and TOC concentrations, instantaneous loads and total loads on a storm-by-storm basis, though these exports are short-lived as the catchment is hydrologically very responsive. The upland/woodland catchment displays more attenuated behaviour, with longer response times and longer duration events. In addition to flux data, geospatial sampling at >200 locations across each catchment characterised the carbon and nitrogen content and bulk density of the soils across four land-use categories. Analysis of these data suggests a strong relationship between TSS and TOC loads during stormflow and the spatial distribution of contributing source areas of soil with high carbon content, erodibility and land-use controls such as soil compaction within the two study catchments.

  1. Nutrient sources in a Mediterranean catchment and their improvement for water quality management

    NASA Astrophysics Data System (ADS)

    Candela, Angela; Viviani, Gaspare

    2010-05-01

    Changes in land-use or management strategies may affect water outflow, sediment and nutrients loads. Thus, there is an increasing demand for quantitative information at the catchment scale that would help decision makers or planners to take appropriate decisions. The characterisation of water status, the description of pollution sources impact, the establishment of monitoring programs and the implementation of river basin management plans require an analysis of the current basin status and estimates of the relative significance of the different sources of pollution. Particularly, in this study the Soil and Water Assessment Tool (SWAT2000) model was considered since it is an integrated hydrological model that simulates both the qualitative as well as quantitative terms of hydrological balances. It is a spatially distributed hydrological model that operates on a daily time step at catchment scale developed by the Agricultural Research Service at the U.S. Department of Agriculture. Its purpose is to simulate water sediment and chemical yields on large river basins and possible impacts of land use, climate changes and watershed management. Integrated hydrological models are, nowadays, needed to support the implementation of integrated water management plans and to comply with the current requirements of the European Water Directive. Actually, they can help in evaluating current water resources, identify pollution sources, evaluate alternative management policies. More specifically, the analysis has been applied to the Oreto catchment (77 Km2), an agricultural and urbanised catchment located in Sicily (Italy). Residential, commercial, farm and industrial settlements cover almost the entire area. The climate is Mediterranean with hot dry summer and rainy winter season. The hydrological response of this basin is dominated by long dry seasons and following wetting-up periods, during which even large inputs of rainfall may produce little or no response at the basin outlet

  2. Establishing a connection between hydrologic model parameters and physical catchment signatures for improved hierarchical Bayesian modeling in ungauged catchments

    NASA Astrophysics Data System (ADS)

    Marshall, L. A.; Weber, K.; Smith, T. J.; Greenwood, M. C.; Sharma, A.

    2012-12-01

    In an effort to improve hydrologic analysis in areas with limited data, hydrologists often seek to link catchments where little to no data collection occurs to catchments that are gauged. Various metrics and methods have been proposed to identify such relationships, in the hope that "surrogate" catchments might provide information for those catchments that are hydrologically similar. In this study we present a statistical analysis of over 150 catchments located in southeast Australia to examine the relationship between a hydrological model and certain catchment metrics. A conceptual rainfall-runoff model is optimized for each of the catchments and hierarchical clustering is performed to link catchments based on their calibrated model parameters. Clustering has been used in recent hydrologic studies but catchments are often clustered based on physical characteristics alone. Usually there is little evidence to suggest that such "surrogate" data approaches provide sufficiently similar model predictions. Beginning with model parameters and working backwards, we hope to establish if there is a relationship between the model parameters and physical characteristics for improved model predictions in the ungauged catchment. To analyze relationships, permutational multivariate analysis of variance tests are used that suggest which hydrologic metrics are most appropriate for discriminating between calibrated catchment clusters. Additional analysis is performed to determine which cluster pairs show significant differences for various metrics. We further examine the extent to which these results may be insightful for a hierarchical Bayesian modeling approach that is aimed at generating model predictions at an ungauged site. The method, known as Bayes Empirical Bayes (BEB) works to pool information from similar catchments to generate informed probability distributions for each model parameter at a data-limited catchment of interest. We demonstrate the effect of selecting

  3. Land degradation trends in upper catchments and morphological developments of braided rivers in drylands: the case of a marginal graben of the Ethiopian Rift Valley

    NASA Astrophysics Data System (ADS)

    Demissie, Biadgilgn; Frankl, Amaury; Haile, Mitiku; Nyssen, Jan

    2014-05-01

    Braided rivers have received relatively little attention in research and development activities in drylands. However, they strongly impact agroecology and agricultural activities and thereby local livelihoods. The Raya Graben (3750 km² including the escarpment) is a marginal graben of the Ethiopian Rift Valley located in North Ethiopia. In order to study the dynamics of braided rivers and the relationship with biophysical controls, 20 representative catchments were selected, ranging between 15 and 311 km². First, the 2005 morphology (length, area) of the braided rivers was related to biophysical controls (vegetation cover, catchment area and slope gradient in the steep upper catchments and gradient in the graben bottom). Second, the changes in length of the braided rivers were related to vegetation cover changes in the upper catchments since 1972. Landsat imagery was used to calculate the Normalized Difference Vegetation Index (NDVI), and to map vegetation cover and the total length of the braided rivers. Spot CNES imagery available from Google Earth was used to identify the total area of the braided rivers in 2005. A linear regression analysis revealed that the length of braided rivers was positively related to the catchment area (R²=0.32, p<0.01), but insignificantly related to vegetation cover in the upper catchments. However, there is an indication that it is an important factor in the relationship calculated for 2005 (R²=0.2, p=0.064). Similarly, the area occupied by the braided rivers was related to NDVI (R²=0.24, p<0.05) and upper catchment area (R²=0.447, p<0.01). Slope gradient is not an important explanatory factor. This is related to the fact that slope gradients are steep (average of 38.1%) in all upper and gentle (average of 3.4%) in graben bottom catchments. The vegetation cover in the upper catchments shows a statistically insignificant increasing trend (R²=0.73, p=0.067) over the last 40 years, whereas length of rivers in the graben bottom

  4. Nutrient fluxes from coastal California catchments with suburban development

    NASA Astrophysics Data System (ADS)

    Melack, J. M.; Leydecker, A.; Beighley, E.; Robinson, T.; Coombs, S.

    2005-12-01

    Numerous streams originate in the mountains fringing California's coast and transport nutrients into coastal waters. In central California, these streams traverse catchments with land covers including chaparral, grazed grasslands, orchards, industrial agriculture and suburban and urban development. Fluvial nutrient concentrations and fluxes vary as a function of these land covers and as a function of considerable fluctuations in rainfall. As part of a long-term investigation of mobilization and fluvial transport of nutrients in catchments bordering the Santa Barbara Channel we have intensively sampled nutrient concentrations and measured discharge during storm and base flows in multiple catchments and subcatchments. Volume-weighted mean concentrations of nitrate generally ranged from 5 to 25 micromolar in undeveloped areas, increased to about 100 micromolar for suburban and most agricultural catchments, and were in excess of 1000 micromolar in catchments with greenhouse-based agriculture. Phosphate concentrations ranged from 2 to 20 micromolar among the catchments. These data are used to examine the premise that the suburbanized portion of the catchments is the primary source of nutrients to the streams.

  5. From natural to human-dominated floodplains - A Holocene perspective for the Dijle catchment, Belgium

    NASA Astrophysics Data System (ADS)

    Broothaerts, Nils; Verstraeten, Gert; Kasse, Cornelis; Bohncke, Sjoerd; Notebaert, Bastiaan; Vandenberghe, Jef

    2015-04-01

    Floodplain systems underwent important changes in many West and Central European catchments through the late Holocene. To better understand the relation between these landscape changes and human disturbances, geomorphic fieldwork needs to be complemented by quantitative measures of human impact in the landscape. In this study, we provide an holistic discussion in which we combine detailed data on floodplain changes with detailed data on human impact for the Dijle catchment (758 km²), Belgium. Human impact in the catchment was quantified based on statistical analysis of pollen data of six alluvial study sites. The results show that during the Neolithic Period, human impact was nearly absent and floodplains consisted of a strongly vegetated marshy environment where organic material accumulated, which is considered as the natural state of the floodplain. From the Bronze Age onwards, human impact increased and caused an increase in soil erosion and hillslope-floodplain connectivity. Consequently, sediment input in the floodplain system increased and floodplain geoecology changed towards an open floodplain dominated by clastic overbank deposits, mainly as the indirect result of an intensification of agricultural activities. Based on these data, a generalized model of floodplain development is presented: At the scale of the entire Dijle catchment, the gradual changes in floodplain morphology coincided with the gradually increasing human impact in the catchment, which suggests a linearity between the external forcing (human impact) and geomorphic response (floodplain change). However, at the narrow floodplains in the headwaters, the gradual increase in human impact contrasts with the abrupt change in floodplain geoecology, only triggered when human impact reached a threshold. Observed differences at catchment scale in time-lags and in the process-response model are attributed to differences in hillslope-floodplain connectivity, the location within the catchment and to

  6. Characterization of hydrological responses to rainfall and volumetric coefficients on the event scale in rural catchments of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Taguas, Encarnación; Nadal-Romero, Estela; Ayuso, José L.; Casalí, Javier; Cid, Patricio; Dafonte, Jorge; Duarte, Antonio C.; Giménez, Rafael; Giráldez, Juan V.; Gómez-Macpherson, Helena; Gómez, José A.; González-Hidalgo, J. Carlos; Lucía, Ana; Mateos, Luciano; Rodríguez-Blanco, M. Luz; Schnabel, Susanne; Serrano-Muela, M. Pilar; Lana-Renault, Noemí; Mercedes Taboada-Castro, M.; Taboada-Castro, M. Teresa

    2016-04-01

    Analysis of storm rainfall-runoff data is essential to improve our understanding of catchment hydrology and to validate models supporting hydrological planning. In a context of climate change, statistical and process-based models are helpful to explore different scenarios which might be represented by simple parameters such as volumetric runoff coefficient. In this work, rainfall-runoff event datasets collected at 17 rural catchments in the Iberian Peninsula were studied. The objectives were: i) to describe hydrological patterns/variability of the relation rainfall-runoff; ii) to explore different methodologies to quantify representative volumetric runoff coefficients. Firstly, the criteria used to define an event were examined in order to standardize the analysis. Linear regression adjustments and statistics of the rainfall-runoff relations were examined to identify possible common patterns. In addition, a principal component analysis was applied to evaluate the variability among catchments based on their physical attributes. Secondly, runoff coefficients at event temporal scale were calculated following different methods. Median, mean, Hawkinś graphic method (Hawkins, 1993), reference values for engineering project of Prevert (TRAGSA, 1994) and the ratio of cumulated runoff and cumulated precipitation of the event that generated runoff (Rcum) were compared. Finally, the relations between the most representative volumetric runoff coefficients with the physical features of the catchments were explored using multiple linear regressions. The mean volumetric runoff coefficient in the studied catchments was 0.18, whereas the median was 0.15, both with variation coefficients greater than 100%. In 6 catchments, rainfall-runoff linear adjustments presented coefficient of determination greater than 0.60 (p < 0.001) while in 5, it was lesser than 0.40. The slope of the linear adjustments for agricultural catchments located in areas with the lowest annual precipitation were

  7. Assessment of catchment scale connectivity in different catchments using measured suspended sediment output

    NASA Astrophysics Data System (ADS)

    Masselink, Rens; Keesstra, Saskia; Seeger, Manuel

    2014-05-01

    Recent developments in hydrology and geomorphology include the connectivity principle, which describes how different elements in a landscape are connected and how water and matter moves between these elements. So far, studies on connectivity have been mainly of a conceptual nature and have been done on a small scale, while studies that map, quantitatively establish relations, and model water and sediment transport in connectivity are rare. In this study we established a relation between change in connectivity within four catchments and the time of year by using suspended sediment data. The data were collected for four catchments in Navarra, Spain of which two catchments are dominated by forest and pasture, while the other two catchments are dominated by agriculture and have no forest. Data were collected during a 13 year period; 4 samples were taken a day at 6 hour intervals which were mixed to obtain a daily average suspended sediment concentration. This was then converted into daily suspended sediment output using the measured total daily discharge. The effect of precipitation on the sediment output data was minimized by using an antecedent precipitation index (API), which consists of the precipitation of the current day added by the precipitation of the previous 14 days, where the influence of the previous days decays exponentially with time. The daily total suspended sediment output was divided by the API, to obtain a measure for sediment output independent of precipitation. This sediment output then serves as a measure for the connectivity within the catchment. The connectivity of the four catchments throughout the years will be compared to each other and we hypothesise that the two catchments dominated by forests and pastures will change only slightly throughout the year, whereas we expect to see large differences in connectivity in the two agricultural catchments. The agricultural catchments are likely to display a highly varying connectivity throughout the

  8. Water and sediment dynamics in a small Mediterranean cultivated catchment under cracking soils

    NASA Astrophysics Data System (ADS)

    Inoubli, Nesrine; Raclot, Damien; Moussa, Roger; Habaieb, Hamadi; Le Bissonnais, Yves

    2016-04-01

    Shrink-swell soils, such as those in a Mediterranean climate regime, can cause changes in terms of hydrological and erosive responses due to the changing soil water storage conditions. Only a limited number of long-term studies have focused on the impacts on both hydrological and erosive responses and their interactions in an agricultural environment. In this context, this study aims to document the dynamics of cracks, runoff and soil erosion within a small Mediterranean cultivated catchment and to quantify the influence of crack processes on the water and sediment supplied to a reservoir located at the catchment outlet. Detailed monitoring of the presence of topsoil cracks was conducted within the Kamech catchment (ORE OMERE, Tunisia), and runoff and suspended sediment loads were continuously measured over a long period of time (2005-2012) at the outlets of a field (1.32 ha) and a catchment (263 ha). Analysis of the data showed that topsoil cracks were open approximately half of the year and that the rainfall regime and water table level conditions locally control the seasonal cracking dynamics. Topsoil cracks appeared to seriously affect the generation of runoff and sediment concentrations and, consequently, sediment yields, with similar dynamics observed at the field and catchment outlets. A similar time lag in the seasonality between water and sediment delivery was observed at these two scales: although the runoff rates were globally low during the presence of topsoil cracks, most sediment transport occurred during this period associated with very high sediment concentrations. This study underlines the importance of a good prediction of runoff during the presence of cracks for reservoir siltation considerations. In this context, the prediction of cracking effects on runoff and soil erosion is a key factor for the development of effective soil and water management strategies and downstream reservoir preservation.

  9. Influence of urbanization pattern on stream flow of a peri-urban catchment under Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla S. S.; Walsh, Rory P. D.; Ferreira, António J. D.; Steenhuis, Tammo S.; Coelho, Celeste A. O.

    2015-04-01

    The demand for better life quality and lower living costs created a great pressure on peri-urban areas, leading to significant land-use changes. The complexity of mixed land-use patterns, however, presents a challenge to understand the hydrological pathways and streamflow response involved in such changes. This study assesses the impact of a actively changing Portuguese peri-urban area on catchment hydrology. It focuses on quantifying streamflow delivery from contributing areas, of different land-use arrangement and the seasonal influence of the Mediterranean climate on stream discharge. The study focuses on Ribeira dos Covões a small (6 km2) peri-urban catchment on the outskirts of Coimbra, one of the main cities in central Portugal. Between 1958 and 2012 the urban area of the catchment expanded from 8% to 40%, mostly at the expense of agriculture (down from 48% to 4%), with woodland now accounting for the remaining 56% of the catchment area. The urban area comprises contrasting urban settings, associated with older discontinuous arrangement of buildings and urban structures and low population density (<25 inhabitants/km), and recent well-defined urban cores dominated by apartment blocks and high population density (9900 inhabitants/km). The hydrological response of the catchment has been monitored since 2007 by a flume installed at the outlet. In 2009, five rainfall gauges and eight additional water level recorders were installed upstream, to assess the hydrological response of different sub-catchments, characterized by distinct urban patterns and either limestone or sandstone lithologies. Annual runoff coefficients range between 14% and 22%. Changes in annual baseflow index (36-39% of annual rainfall) have been small with urbanization (from 34% to 40%) during the monitoring period itself. Annual runoff coefficients were lowest (14-7%) on catchments >80% woodland and highest (29% on sandstone; 18% on limestone) in the most urbanized (49-53% urban) sub-catchments

  10. Standardised survey method for identifying catchment risks to water quality.

    PubMed

    Baker, D L; Ferguson, C M; Chier, P; Warnecke, M; Watkinson, A

    2016-06-01

    This paper describes the development and application of a systematic methodology to identify and quantify risks in drinking water and recreational catchments. The methodology assesses microbial and chemical contaminants from both diffuse and point sources within a catchment using Escherichia coli, protozoan pathogens and chemicals (including fuel and pesticides) as index contaminants. Hazard source information is gathered by a defined sanitary survey process involving use of a software tool which groups hazards into six types: sewage infrastructure, on-site sewage systems, industrial, stormwater, agriculture and recreational sites. The survey estimates the likelihood of the site affecting catchment water quality, and the potential consequences, enabling the calculation of risk for individual sites. These risks are integrated to calculate a cumulative risk for each sub-catchment and the whole catchment. The cumulative risks process accounts for the proportion of potential input sources surveyed and for transfer of contaminants from upstream to downstream sub-catchments. The output risk matrices show the relative risk sources for each of the index contaminants, highlighting those with the greatest impact on water quality at a sub-catchment and catchment level. Verification of the sanitary survey assessments and prioritisation is achieved by comparison with water quality data and microbial source tracking. PMID:27280603

  11. How tritium illuminates catchment structure

    NASA Astrophysics Data System (ADS)

    Stewart, M.; Morgenstern, U.; McDonnell, J.

    2012-04-01

    Streams contain water which has taken widely-varying times to pass through catchments, and the distribution of ages is likely to change with the flow. Part of the water has 'runoff' straight to the stream with little delay, other parts are more delayed and some has taken years (in some cases decades) to traverse the deeper regolith or bedrock of the catchment. This work aims to establish the significance of the last component, which is important because it can cause catchments to have long memories of contaminant inputs (e.g. nitrate). Results of tritium studies on streams world-wide were accessed from the scientific literature. Most of the studies assumed that there were just two age-components present in the streams (i.e. young and old). The mean ages and proportions of the components were found by fitting simulations to tritium data. It was found that the old component in streams was substantial (average was 50% of the annual runoff) and had considerable age (average mean age was 10 years) (Stewart et al., 2010). Use of oxygen-18 or chloride variations to estimate streamflow mean age usually does not reveal the age or size of this old component, because these methods cannot detect water older than about four years. Consequently, the use of tritium has shown that substantial parts of streamflow in headwater catchments are older than expected, and that deep groundwater plays an active and sometimes even a dominant role in runoff generation. Difficulties with interpretation of tritium in streams in recent years due to interference from tritium due to nuclear weapons testing are becoming less serious, because very accurate tritium measurements can be made and there is now little bomb-tritium remaining in the atmosphere. Mean ages can often be estimated from single tritium measurements in the Southern Hemisphere, because there was much less bomb-tritium in the atmosphere. This may also be possible for some locations in the Northern Hemisphere. Age determination on

  12. Flash flood modelling for ungauged catchments

    NASA Astrophysics Data System (ADS)

    Garambois, P.-A.; Roux, H.; Larnier, K.; Dartus, D.

    2012-04-01

    Flash flood is a very intense and quick hydrologic response of a catchment to rainfall. This phenomenon has a high spatial-temporal variability as its generating storm, often hitting small catchments (few km2). Data collected by (Gaume et al. 2009) about 500 flash floods over the last 50 years showed that they could occur everywhere in Europe and more often in the Mediterranean regions, Alpine regions and continental Europe. Given the small spatial-temporal scales and high variability of flash floods, their prediction remains a hard exercise as the necessary data are often scarce. Flash flood prediction on ungauged catchments is one of the challenges of hydrological modelling as defined by (Sivapalan et al. 2003). Several studies have been headed up with the MARINE model (Modélisation de l'Anticipation du Ruissellement et des Inondations pour des évèNements Extrêmes) for the Gard region (France), (Roux et al. 2011), (Castaings et al. 2009). This physically based spatially distributed rainfall runoff model is dedicated to flash flood prediction. The study aims at finding a methodology for flash flood prediction at ungauged locations in the Cévennes-Vivarais region in particular. The regionalization method is based on multiple calibrations on gauged catchments in order to extract model structures (model + parameter values) for each catchment. Several mathematical methods (multiple regressions, transfer functions, krigging…) will then be tested to calculate a regional parameter set. The study also investigates the usability of additional hydrologic indices at different time scales to constrain model predictions from parameters obtained using these indices, and this independently of the model considered. These hydrologic indices gather information on hydrograph shape or catchment dynamic for instance. Results explaining global catchments behaviour are expected that way. The spatial-temporal variability of storms is also described through indices and linked with

  13. Catchment biophysical drivers of streamflow characteristics

    NASA Astrophysics Data System (ADS)

    Trancoso, R.

    2015-12-01

    The characteristics of streamflow reflect the co-evolution of climate, soils, topography and vegetation of catchments. Hydrological metrics or signatures can represent the long-term behaviour and integrate the influence of all the streamflow drivers. Although this sort of relationship has been developed in regional studies exploring prediction of Flow Duration Curves and other streamflow metrics, little is known about the controls of other key streamflow characteristics especially in continent scale. This study aims to understand how catchment biophysical variables control key hydrological metrics such as baseflow index, elasticity of streamflow to rainfall variability and intermittency in continent scale and regionally. We used a set of catchment biophysical variables to model key streamflow signatures using multivariate power-law and beta regressions in 355 catchments located along the eastern Australian seaboard. Streamflow signatures were derived from daily streamflow time series data from 1980 to 2013. We tested 52 catchment biophysical characteristics related to climate, soil, topography, geography, geomorphology, vegetation and land-cover as predictors of the streamflow signatures. The prediction R-squared ranged from 63 to 72% when relationships are built in continent scale, but can be greater than 80% when regressions are regionalised. The interpretation of the modelled relationships offers new insights regarding the controls of flow characteristics.

  14. The Demonstration Test Catchment Approach to Land and Water Management in the river Eden Watershed, UK. (Invited)

    NASA Astrophysics Data System (ADS)

    Jonczyk, J.; Quinn, P. F.; Haygarth, P.; Reaney, S.; Wilkinson, M.; Burke, S.; McGonigle, D.; Harris, B.

    2010-12-01

    The Demonstration Test Catchment (DTC) initiative is a five year project to address pollution issues in catchments. The initiative will study the wider environmental problems suffered by catchments which are under intense farming pressures and potential climate change impacts. The UK Department for Food, Agriculture and Rural Affairs (Defra) in partnership with the Environment Agency for England and Wales (EA) have funded this initiative to answer key policy concerns in catchments. The first key step has been the establishment of a ‘research platform’ at three catchments in the UK (The Eden, Wensum and Hampshire Avon) whereby funding of 9.3 million dollars has gone into funding new equipment and pollution sampling regimes have been established. Within each catchment between three and four, 8-10km2 sub-catchments have been established. The experimental design and thinking for DTCs will be explained fully in this paper. The next phase of the project will install an extensive suite of land management and pollution mitigation interventions. In parallel to this monitoring work, a full knowledge exchange package will seek to engage with farmers, the rural community and understand the governance regime at the broader catchment scale. There is also a need for a modelling component to upscale the findings to the whole of the UK. Whilst this is an ambitious goal, there is a very basic commitment of working with rural communities to come up with real solutions that will help underpin effective policy making for the future. The research platform covers a multi-scale approach to the monitoring strategy that will allow local grouping of mitigation measures to be studied local in terms of impact and propagated to the catchment scale. Even with high level of funding, the DTC can only fully instrument a catchment of 8-10km2. Beyond this scale, the EA and the standard catchment monitoring will continue as normal. The focus here is to prove that mitigation can be achieved within

  15. The anthropic catchment-ecosystem concept: an Irish example

    SciTech Connect

    Phillips-Howard, K.D.

    1985-06-01

    The catchment-ecosystem concept is adapted to investigate the nutrient-budget of the highly-modified Colebrooke drainage basin in Northern Ireland. Anthropogenic inputs, mainly manures and fertilizers, account for 86% of the nitrogen and 96% of the phosphorus added to the catchment. These inputs greatly exceed the streamflow outputs, thereby indicating that the flow of nutrients is dominated by agriculture. This is explained by the transformation of traditional mixed farming into more intensive livestock production and is linked to policies encouraging increased agricultural production, amalgamation of farms, afforestation, rural depopulation, and urbanization. Substantial increases in the N and P output of the catchment and further eutrophication of the recipient lake, Lough Erne, are predicted without the implementation of policies to reduce agricultural nutrient losses.

  16. Transport of a nematicide in surface and ground waters in a farmed tropical catchment with volcanic substratum

    NASA Astrophysics Data System (ADS)

    Charlier, J.-B.; Cattan, P.; Voltz, M.; Moussa, R.

    2009-04-01

    Assessment of water-pollution risks in agricultural regions requires studying pesticide transport processes in soil and water compartments at the catchment scale. In tropical regions, banana (Musa spp.) plantations are located in zones with abundant rainfalls and soils with high infiltration rates, which lead to washout and leaching of soil-applied pesticides, causing severe diffuse pollution of water resources. The aim of this paper is to determine how the nematicide cadusafos [S,S-di-sec-butyl O-ethyl phosphorodithioate], used in banana plantations, contaminates water and soils at the two scales of subcatchment and catchment. The study site was a small banana-growing catchment on the tropical volcanic island of Guadeloupe in the Caribbean (FWI). The catchment is located in pedoclimatic conditions where rainfall is abundant (> 4000 mm/year), and soil permeable (saturated hydraulic conductivity of Andosol Ks > 30 mm/h). Two campaigns of nematicide application were conducted, one in 2003 over 40% of the catchment and one in 2006 over 12%. For 100 days after application, we monitored the surface water and groundwater flows and the cadusafos concentrations in the soil and in surface and ground waters in a 2400 m² subcatchment and a 17.8 ha catchment. The results show that at the subcatchment scale the high retention in the A horizon of the soil limited the transport of cadusafos by runoff, whereas the lower retention of the molecule in the B horizon favoured percolation towards the shallow groundwater. The contamination levels of surface water, as well as shallow and deep groundwaters, reflected the geological structure of the Féfé catchment: i.e. a shallow aquifer in the most recent volcanic deposits that is rapidly exposed to pollution and a deeper aquifer that is relatively protected from the pollution coming from the treated fields. Comparing the losses of cadusafos at the subcatchment and at the catchment scales revealed that the nematicide re-infiltrated in

  17. Distinguishing spatiotemporal variability of sediment sources in small urbanized catchment as a response to urban expansion

    NASA Astrophysics Data System (ADS)

    Belyaev, Vladimir; Feoktistov, Artem; Huygens, Dries; Shamshurina, Eugenia; Golosov, Valentin

    2014-05-01

    for distinguishing contributions of different sediment sources into catchment sediment budgets on a reliable quantitative basis. In combination with microstratigraphic differentiation and dating of sediment in continuous deposition zones by 137Cs depth distribution curves and available land use records, spatial and temporal variability of sediment sources and sinks can be reconstructed for the last several decades. That is especially important for catchments which experienced profound land use changes such as transition from pristine or agriculture-dominated to urbanized environment. The example presented here describes the results of reconstruction of changing sediment source types, contributions and spatial patterns for small reservoir catchment within the city of Kursk (Sredenerusskaya Upland, Central European Russia). Combination of compound specific stable isotopes, 137Cs, sediment grain size composition, land use information for several time intervals and daily rainfall record for the Kursk meteorological station (conveniently located within the study catchment) have been employed in order to evaluate major sediment sources within the catchment, their spatial pattern and temporal changes and compare those to history of reservoir sedimentation. The reservoir is situated on the Kur River - small river which gave its name to the city itself. The dam and reservoir were constructed and put into operation in 1969, thus the beginning of its infill is located stratigraphically later than the main peak of the global 137Cs fallout. It has been found that transition from dominantly agricultural land use to urbanized conditions caused decrease of contribution of soil erosion from cultivated land and increase of that of the active gullies into reservoir sedimentation. However, it is important to note that during extreme runoff events contribution of sediment originated from soil erosion on arable land still remains dominant, even though its area within the catchment recently

  18. Leaf breakdown in streams differing in catchment land use

    USGS Publications Warehouse

    Paul, M.J.; Meyer, J.L.; Couch, C.A.

    2006-01-01

    1. The impact of changes in land use on stream ecosystem function is poorly understood. We studied leaf breakdown, a fundamental process of stream ecosystems, in streams that represent a range of catchment land use in the Piedmont physiographic province of the south-eastern United States. 2. We placed bags of chalk maple (Acer barbatum) leaves in similar-sized streams in 12 catchments of differing dominant land use: four forested, three agricultural, two suburban and three urban catchments. We measured leaf mass, invertebrate abundance and fungal biomass in leaf bags over time. 3. Leaves decayed significantly faster in agricultural (0.0465 day-1) and urban (0.0474 day-1) streams than in suburban (0.0173 day-1) and forested (0.0100 day-1) streams. Additionally, breakdown rates in the agricultural and urban streams were among the fastest reported for deciduous leaves in any stream. Nutrient concentrations in agricultural streams were significantly higher than in any other land-use type. Fungal biomass associated with leaves was significantly lower in urban streams; while shredder abundance in leaf bags was significantly higher in forested and agricultural streams than in suburban and urban streams. Storm runoff was significantly higher in urban and suburban catchments that had higher impervious surface cover than forested or agricultural catchments. 4. We propose that processes accelerating leaf breakdown in agricultural and urban streams were not the same: faster breakdown in agricultural streams was due to increased biological activity as a result of nutrient enrichment, whereas faster breakdown in urban streams was a result of physical fragmentation resulting from higher storm runoff. ?? 2006 The Authors.

  19. Validation of Pacific Northwest Hydrologic Landscapes at the Catchment Scale

    NASA Astrophysics Data System (ADS)

    Sawicz, K. A.; Leibowitz, S. G.; Comeleo, R. L.; Wigington, P. J., Jr.

    2014-12-01

    The interaction between the physical properties of a catchment (form) and climatic forcing of precipitation and energy control how water is partitioned, stored, and conveyed through a catchment (function). Hydrologic Landscapes (HLs) were previously developed across Oregon and describe climatic and physical properties for over 5000 assessment units. This approach was then extended to the three Pacific Northwest states of Washington, Oregon and Idaho (PNW HL). The HLs were developed using the National Hydrography Dataset's WBD HU12 scale and are comprised of classification components describing climate, climate seasonality, aquifer permeability, terrain, and soil permeability. To compare the PNW HL classification to catchment hydrologic behavior, HLs were aggregated to catchment scale to compare against the input/output of water in the catchment. HL aggregation must preserve information on the location of the HL within the catchment outlet (upstream vs. downstream) and properties of that HL (i.e. water source vs. sink). Catchment function was investigated by use of hydrologic signatures, which are attributes of long-term time series of water into and out of the catchment. Signatures include Runoff Ratio, Baseflow Index, Snow Ratio, and Recession Coefficients. This study has three primary objectives: 1) derivation of hydrologic signatures to capture the hydrologic behavior for catchments in the Pacific Northwest: 2) development of methodology to aggregate HLs to the catchment scale; and 3) statistical analysis of signature values and trends with respect to aggregated HL classification. We hypothesize that we will find: 1) strong relationships between aggregated HLs and hydrologic signatures; 2) signatures related to water balance are explained by climatic conditions; and 3) signatures describing flow paths are predicted by terrain, soil, and aquifer permeability. This study examined 230 catchments to achieve objectives and test hypotheses stated.

  20. Diatoms as a fingerprint of sub-catchment contributions to meso-scale catchment runoff

    NASA Astrophysics Data System (ADS)

    Klaus, Julian; Wetzel, Carlos E.; Martinez-Carreras, Nuria; Ector, Luc; Pfister, Laurent

    2014-05-01

    In recent years, calls were made for new eco-hydrological approaches to improve understanding of hydrological processes. Recently diatoms, one of the most common and diverse algal groups that can be easily transported by flowing water due to their small size (~10-200 µm), were used to detect the onset and cessation of surface runoff to small headwater streams and constrain isotopic and hydro-chemical hydrograph separation methods. While the method showed its potential in the hillslope-riparian zone-stream continuum of headwater catchments, the behavior of diatoms and their use for hydrological process research in meso-scale catchments remains uncertain. Diatoms can be a valuable support for isotope and hydro-chemical tracer methods when these become ambiguous with increasing scale. Distribution and abundance of diatom species is controlled by various environmental factors (pH, soil type, moisture conditions, exposition to sunlight, etc.). We therefore hypothesize that species abundance and composition can be used as a proxy for source areas. This presentation evaluates the potential for diatoms to trace source-areas in the nested meso-scale Attert River basin (250 km2, Luxembourg, Europe). We sampled diatom populations in streamwater during one flood event in Fall 2011 in 6 sub-catchments and the basin outlet - 17 to 28 samples/catchment for the different sampling locations. Diatoms were classified and counted in every individual sample. In total more than 400 diatom species were detected. Ordination analysis revealed a clear distinction between communities sampled in different sub-catchments. The species composition at the catchment outlet reflects a mixing of the diatom composition originating from different sub-catchments. This data suggests that diatoms indeed can reflect the geographic origin of stream water at the catchment outlet. The centroids of the ordination analysis might be linked to the physiographic characteristics (geology and land use) of the

  1. The Use of LiDAR Elevation Data and Satellite Imagery to Locate Critical Source Areas to Diffuse Pollution in Agricultural Watersheds

    NASA Astrophysics Data System (ADS)

    Drouin, Ariane; Michaud, Aubert; Thériault, Georges; Beaudin, Isabelle; Rodrigue, Jean-François; Denault, Jean-Thomas; Desjardins, Jacques; Côté, Noémi

    2013-04-01

    In Quebec / Canada, water quality improvement in rural areas greatly depends on the reduction of diffuse pollution. Indeed, point source pollution has been reduced significantly in Canada in recent years by creating circumscribed pits for manure and removing animals from stream. Diffuse pollution differs from point source pollution because it is spread over large areas. In agricultural areas, sediment loss by soil and riverbank erosion along with loss of nutrients (phosphorus, nitrogen, etc.) and pesticides from fields represent the main source of non-point source pollution. The factor mainly responsible for diffuse pollution in agricultural areas is surface runoff occurring in poorly drained areas in fields. The presence of these poorly drained areas is also one of the most limiting factors in crop productivity. Thus, a reconciliation of objectives at the farm (financial concern for farmers) and off-farm concerns (environmental concern) is possible. In short, drainage, runoff, erosion, water quality and crop production are all interconnected issues that need to be tackled together. Two complementary data sources are mainly used in the diagnosis of drainage, surface runoff and erosion : elevation data and multispectral satellite images. In this study of two watersheds located in Québec (Canada), LiDAR elevation data and satellite imagery (QuickBird, Spot and Landsat) were acquired. The studied territories have been partitioned in hydrologic response units (HRUs) according to sub-basins, soils, elevation (topographic index) and land use. These HRUs are afterwards used in a P index software (P-Edit) that calculates the quantities of sediments and phosphorus exported from each HRUs. These exports of sediments and phosphorus are validated with hydrometric and water quality data obtain in two sub-basins and are also compared to soil brightness index derived from multispectral images. This index is sensitive to soil moisture and thus highlights areas where the soil is

  2. Effects of model input data uncertainty in simulating water resources of a transnational catchment

    NASA Astrophysics Data System (ADS)

    Camargos, Carla; Breuer, Lutz

    2016-04-01

    Landscape consists of different ecosystem components and how these components affect water quantity and quality need to be understood. We start from the assumption that water resources are generated in landscapes and that rural land use (particular agriculture) has a strong impact on water resources that are used downstream for domestic and industrial supply. Partly located in the north of Luxembourg and partly in the southeast of Belgium, the Haute-Sûre catchment is about 943 km2. As part of the catchment, the Haute-Sûre Lake is an important source of drinking water for Luxembourg population, satisfying 30% of the city's demand. The objective of this study is investigate impact of spatial input data uncertainty on water resources simulations for the Haute-Sûre catchment. We apply the SWAT model for the period 2006 to 2012 and use a variety of digital information on soils, elevation and land uses with various spatial resolutions. Several objective functions are being evaluated and we consider resulting parameter uncertainty to quantify an important part of the global uncertainty in model simulations.

  3. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    USGS Publications Warehouse

    Lee, Terrie Mackin

    2002-01-01

    amounts of ground-water inflow, and (2) the location of ground-water catchments that could be managed to safeguard lake water quality. Knowledge of how ground-water catchments are related to lakes could be used by water-resource managers to recommend setback distances for septic tank drain fields, agricultural land uses, and other land-use practices that contribute nutrients and major ions to lakes.

  4. Spatio-temporal variability of streamwater chemistry within a Peri-urban Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla S. S.; Walsh, Rory P. D.; Ferreira, António J. D.; Coelho, Celeste O. A.

    2015-04-01

    The complex landscape of peri-urban areas, characterized by a mosaic of land-uses and urban fabric, provides different sources of runoff and pollutants which affect stream ecosystems. This study investigates the impact of land-uses and their location within catchments on streamwater quality in a peri-urban Mediterranean catchment, including temporal variations driven by antecedent weather and rainstorm characteristics. The study is based in Ribeira dos Covões, a small (6 km2) catchment in the city of Coimbra, central Portugal. Land-use is dominated by woodland (56%) and urban cover (40%), with a small agriculture area (4%). Streamwater was monitored at the catchment outlet (ESAC) and three upstream locations: Espírito Santo and Porto Bordalo, with similar urban cover (42% and 49%) but different imperviousness (27% and 15%) and lithologies (sandstone versus limestone), and Quinta with lower urban extent (25%) but including a construction site covering 10% of the area. Samples collected throughout ten rainfall events between October 2011 and March 2013 were analysed for natural water chemistry and major pollutants (notably ammonium, nitrates, total phosphorus, COD and metals). In the paper, temporal variations in water quality are explored via hysteresis loop and correlation analysis. Hydrological regime exerted a major influence on water quality. Major nutrients declined within and after the dry summer than in winter events, because of limited dilution by the low stream baseflow. Through the wet season, increasing baseflow led to increased concentrations of major cations (Na, Mg and Ca) because of reduced dilution by solute-poor stormflow. Espírito Santo, the most urbanized sub-catchment, displayed higher concentrations of COD and NO3 (tended to peak with stormflow), but the latter was thought to result from agricultural fields located adjacent the tributary. At the catchment outlet (ESAC), the high Nk and NH4 concentrations exceeded water quality standards (2 mg

  5. Crop structure in a gully catchment and the development of a loess gully (Lublin Upland, E Poland)

    NASA Astrophysics Data System (ADS)

    Mędrek, Karolina; Rodzik, Jan

    2015-04-01

    The study was conducted in a loess gully catchment with an area of 1.23 km2 and height differences of less than 50 m (213-165 m above sea level), located in Kolonia Celejów in the Nałęczów Plateau. This is one of mesoregions of Lublin Upland. In the investigated catchment, loess cover with a thickness of 10-20 m, accumulated during the Vistulian Glaciation, is dissected by a gully system with a depth of 5-15 m and total length of 7.5 km. The gully system is forested in 30% of its area. Until recently, the remaining part of the catchment under agricultural use has been dominated by conventional farming of cereals, potatoes, and sugar beets. Today, 15% of the non-forested area of the catchment is occupied by housing premises, dirt roads, and fallow land, and 45% by orchards with maintained turf, including berry plantations. This type of land management contributes to the retention of precipitation, and protects the soil from flushing. Approximately 20% of the agricultural land is occupied by conventional crops (cereals and root crops), protecting the soil to a moderate degree. Water runoff in the area does not occur every year. Approximately 20% of the agricultural land is currently occupied by cruciferous vegetables (broccoli and cauliflower), decorative shrubs, and orchards without turf in the first 2 years of use. Water and soil runoff from these crops occurs even several times per year. The majority of the material is retained in the lower part of the field, and the water flows into the gully. The crops in the fields adjacent to the ravine have a direct impact on the development of the gully. If the field is located on a raised headland, the flowing water dissects the edge of the gully, and the eroded material is accumulated on the gully bottom. If the field is located in a valley above the gullyhead, the flowing water dissects the bottom of the gully, and the eroded material is discharged outside the catchment.

  6. Transferring global uncertainty estimates from gauged to ungauged catchments

    NASA Astrophysics Data System (ADS)

    Bourgin, F.; Andréassian, V.; Perrin, C.; Oudin, L.

    2015-05-01

    Predicting streamflow hydrographs in ungauged catchments is challenging, and accompanying the estimates with realistic uncertainty bounds is an even more complex task. In this paper, we present a method to transfer global uncertainty estimates from gauged to ungauged catchments and we test it over a set of 907 catchments located in France, using two rainfall-runoff models. We evaluate the quality of the uncertainty estimates based on three expected qualities: reliability, sharpness, and overall skill. The robustness of the method to the availability of information on gauged catchments was also evaluated using a hydrometrical desert approach. Our results show that the method presents advantageous perspectives, providing reliable and sharp uncertainty bounds at ungauged locations in a majority of cases.

  7. Recovery from acidification in the Tillingbourne catchment, southern England: catchment description and preliminary results.

    PubMed

    Hill, T J; Skeffington, R A; Whitehead, P G

    2002-01-23

    Measurements of acid deposition and streamwater chemistry made in 1979-1982 and 1999-2000 are compared for a small, acid-sensitive catchment in Southeast England. The location, geology, soils, vegetation and hydrology of the catchment are described. The catchment is located on an acidic cretaceous sandstone with a low permeability clay sub-stratum. Soils are predominantly podzol and gley, with some mesotrophic peat. The catchment is forested. Mean volume-weighted concentrations in precipitation have changed approximately in proportion to emission changes. SO4(2-) has declined by 61%, H+ by 75%, both NO- and NH4+ by 37% and Cl- by 26%. Changes in wet deposition are greater, sulfate deposition declined by 69%, non-marine SO4(2-) by 73%, H+ deposition by 75%, NO3- and NH4+ by 50% and Cl- by 41%. Sulfate deposition in throughfall, a surrogate for total deposition measurement, has declined by 82% and non-marine SO4(2-) by 86%. Some of these changes are due to alterations in the tree cover and location of the collectors. In 1979-1982, the flux of NO3- and NH4+ in throughfall was less than in rainfall, 7.5 compared with 11.3 kg N ha(-1) year(-1), showing that N uptake by the canopy was greater than dry deposition of these species. However, in 1999-2000, the throughfall flux of N was greater than rainfall, 19.6 compared to 5.7 kg N ha year(-1), indicating that canopy uptake is not occurring to the same extent. Surface water was sampled at the same locations in the catchment during the two periods. At the catchment exit, mean pH increased, from 3.93 to 4.21 mg l(-1), and SO4(2-) declined from 20.2 to 16.7 mg l(-1) (18%). The decrease in SO4(2-) is much less than the reduction in deposition, suggesting that the predicted recovery is being delayed by release of sulfur from the soil. In contrast, NO3- concentrations in the catchment waters increased from 0.22 to 0.52 mg N l(-1) (133%) despite the reduction in N deposition. NH4+ concentrations were low during both study periods

  8. Seasonal occurrence of extreme events on example of long-term hydrometeorological observations from small catchment

    NASA Astrophysics Data System (ADS)

    Kaznowska, Ewa; Hejduk, Agnieszka; Hejduk, Leszek

    2014-05-01

    Periodical occurrence of floods and droughts is one of disadvantageous phenomenon of Polish climate. Forecasting of climate change for Poland in first half of the 21th century indicate a probability of more frequent occurrence of droughts, which will have the consequences in water deficits in significant areas of the country. Runoff characteristics are important indicators of water resources. Long-term observations carried out in small catchments are an important source of informations of water regime. The aim of the study was to analyze trends of occurrence floods and droughts in small, agricultural catchment of Zagożdżonka River, which is one of the few in Poland, with long-term records of rainfall and runoff. The catchment is located in central Poland, Mazovian Lowlands, about 100 km south form Warsaw. The area of the catchment till Płachty Stare station is 82 km2 and 23.4 km2 till Czarna station . The data used for statistical analysis of floods and droughts included 50 years (1963-2012) for Płachty Stare gauging station and the period of 22 years (1991-2012) for Czarna station. Based on daily hydrograph, floods and droughts were identified. In most cases the duration of floods and droughts is short (few days). Long-term floods occur in winter season and long-term drought occur in summer and autumn. In Płachty Stare decreased trend was indicated for number of days with flood discharge and increased trend was found for number of days with droughts. In Czarna gauging station opposite trends were found. Acknowledgment The paper has been prepared with financial support by grants NN 305 1445 40, NN 305 3168 40 both funded by National Science Center

  9. Catchment Restoration in the Tweed UNESCO-IHP HELP Basin - Eddleston Water

    NASA Astrophysics Data System (ADS)

    Spray, Christopher

    2013-04-01

    The EU Water Frame Work Directive (WFD) requires member states to work towards the achievement of 'good ecological status' for water bodies, through a 6 year cycle of river basin management plans (RBMPs). Within these RBMPs, states must develop and implement programmes of measures designed to improve the quality of individual water bodies at risk of failing to achieve this status. These RBMPS must not only be focussed on the key causes of failure, but increasingly look to deliver multiple benefits, such as flood risk reduction and improvement to biodiversity from such catchment interventions, and to involve communities and other stakeholders in restoration of their local environment. This paper reports on progress of a detailed study of the restoration of the Eddleston Water, a typical 'failing' water body in Scotland, the monitoring and governance arrangements behind this, and implications for rehabilitation of river systems elsewhere. Within UK rivers, the main causes of failure to achieve good ecological status are historical morphological changes to river courses, diffuse agricultural pollution and invasive non-native species. The Eddleston Water is a 70 sq kms sub-catchment of the Tweed, an UNESCO IHP-HELP basin in the Scottish : English borders, and is currently classified as 'bad' status, due largely to morphological changes to the course and structure of the river over the past 200 years. The main challenge therefor is physical restoration of the river to achieve functional connectivity with the flood plain. At the same time however, the two communities within the catchment suffer from flooding, so a second priority is to intervene within the catchment to reduce the risk of flooding through the use of "natural flood management" measures and, underlying both these two aspects a whole catchment approach to community participation and the achievement of a range of other ecosystem service benefits, including conservation of biodiversity. We report on the

  10. Influence of Curve Number variation on peak discharge of small catchment

    NASA Astrophysics Data System (ADS)

    Banasik, Kazimierz; Hejduk, Leszek; Banasik, Jerzy; Rutkowska, Agnieszka

    2014-05-01

    In this study, we have examined the impact of Curve Number variability on peak discharge, estimated with the use of lumped parametric model SEGMO. Analysis has been conducted for a small (82 km2) agro-forested lowland catchment, located in the center of Poland. Both, the curve number, which is determining runoff depth from rainfall depth, and the IUH characteristics (such as lag time, time to peak, maximum ordinate), which are used to transform the runoff depth into direct runoff hydrograph, have been estimated on the base of recorded in the catchment rainfall-runoff events (Banasik et al. 2011, Banasik et al. 2013). All of them include some stochastic variables, however IUH has been approximated, and used in computation as deterministic. A big variability in CNs has been found, when they were computed from recorded rainfall-runoff data. Next, using the 40 rainfall-runoff data set, the curve numbers were computed again, for each of the ordered pairs, and finally plotted against rainfall depth. Curve numbers were found to approximate an exponential function, varying with storm depth (i.e. decreasing with rainfall increase), and approaches a constant value (CN∞=69.8, which was very close to that value estimated on the base of soil type and land use) at higher rainfalls, what is call a standard behavior (Van Mullem et al. 2002). Standard error of estimation of CN was 1.54. The examination indicated high sensitivity of the flood discharge, estimated as catchment response to 100-year rainfall, to CN changes. Banasik K., Hejduk L. & Oygarden L., 2011. Prediction and reduction of diffuse pollution, solid emission and extreme flows from rural areas - case study of small agricultural catchments. Warsaw University of Life Sciences Press, Warsaw. Banasik K., Hejduk L., Banasik J., 2013. Variation of IUH shapes with size of rainfall-runoff events in a small agricultural catchment. EGU General Assembly, Abstract & Poster. Van Mullem J.A., Woodward D.E., Hawkins R

  11. Estimation of regional recharge in the HOBE catchment using data from a distributed soil moisture network

    NASA Astrophysics Data System (ADS)

    Andreasen, M.; Andreasen, L. A.; Bircher, S.; Sonnenborg, T.; Jensen, K. H.

    2012-12-01

    The regional variation of recharge of ground water is dependent on a larger number of variables and conditions and is therefore difficult to quantify. In this study we have estimated regional recharge using data from a distributed network of soil moisture stations within the HOBE catchment. The network has been designed in an arrangement of three clusters along a long-term precipitation gradient and the stations have been distributed according to respective fractions of classes combining the prevailing land use, top- and subsoil conditions. At each of the 30 stations water content has been measured at three depths (0-5cm, 20-25cm and 50-55cm) for the period 2009-2011 at a temporal resolution of 30 minutes. The 1D soil-plant-atmosphere system model DAISY has been applied to each of the field locations to simulate the water balance of the root zone and the associated components of evapotranspiration and recharge. The 30 models have been formulated and parameterized using specific information on local climate, soil texture, land use and management. Each model was calibrated to the measured soil water content from the distributed network using the PEST (Parameter ESTimation) software. The calibrated parameters were saturated hydraulic conductivity Ks and van Genuchten parameter n as they were found most sensitive. The 30 sets of results were averaged to represent the mean conditions of the catchment. An effective parameterization was also determined by calibration against mean soil moisture and compared to the results obtained by using effective parameters using various averaging methods. The regional variation in groundwater recharge, actual evapotranspiration and soil water content in the catchment was dependent on land use. The simulated results showed that the largest recharge was found at the agricultural sites (554 mm/yr) and the lowest at the forested sites (257 mm/yr). Correspondingly, the highest actual evapotranspiration was found at the forested sites (614

  12. A methodological comparison of catchment storages in mountainous catchments

    NASA Astrophysics Data System (ADS)

    Weiler, Markus; Staudinger, Maria; Stölzle, Michael; Seeger, Stefan; Seibert, Jan; Stahl, Kerstin

    2015-04-01

    One of the most important functions of catchments is the temporary storage of water, which directly influences runoff dynamics, rainfall-runoff transformation, partitioning of evaporation and runoff fluxes, and accessibility of water to plants. Generally, a large catchment storage is considered beneficial and in particular increases the transit times and hence the buffer functioning related to water quality. Many different methods have been developed to assess catchment storage, however, there are hardly any direct comparisons of several of these methods. One challenge is the definition of water storage, while some methods allow estimation of the entire water storage in a catchment, other methods quantify only the dynamic storage. In addition, most studies focused more on lowland catchments with rain-dominated runoff regimes and observed groundwater fluctuations. Furthermore, these studies often focus on one or two catchments, but do not consider the influence of different climates on the relevance of water storage in the catchment. We applied a range of different methods to assess catchment storage characteristics in 18 catchments in the Swiss Alps, ranging from 500 to 2000m of mean elevation and hence from rainfall- to snowmelt dominated runoff regimes. The first method use only discharge information during recession periods and with varying approaches to extract discharge and storage changes between high flow and low flow, the dynamic catchment storage can be derived. In the next methods the conceptual hydrological model HBV is calibrated to the runoff dynamics and the dynamic and total catchment storages of the different compartments are being evaluated. The last methods are based on stable water isotope data analysis. We use the model TRANSEP to derive the dynamic storage as well as the total water storage of the catchment based on the transit times using several years of fortnightly isotope data in streamflow. The results show that the derived catchment

  13. Multiple-method approaches for quantifying fine sediment dynamics in river catchments over contemporary timescales

    NASA Astrophysics Data System (ADS)

    Smith, Hugh

    2015-04-01

    Understanding the patterns and processes of contemporary fine sediment dynamics in river catchments constitutes a key research challenge for catchment scientists. Such knowledge has considerable value for the targeting of management resources to reduce excess fine sediment supply and its impacts on water resources and aquatic ecosystems. Many past studies tended to focus on a single compartment of the fine sediment cascade and utilised a limited range of research methods. For more holistic understanding, the use of multiple-method approaches is required to provide data on the sources, transfer, storage, and transit times of fine sediment in river catchments. Such approaches would allow scientists to better conceptualise catchment processes controlling the movement of fine sediment across a range of spatial scales. It may also enhance the scientific quality of catchment-scale studies through the acquisition of multiple lines of evidence concerning a particular research problem. The specific combination of fine sediment tracing and fingerprinting procedures with catchment sediment flux measurements and sediment budget modelling has considerable potential to enhance our knowledge of contemporary sediment dynamics. This combination of techniques offers complementary information and the opportunity to compare datasets, such as estimates of catchment sediment source contributions obtained using sediment tracers with direct measurements of sediment fluxes or catchment model outputs. This contribution explores the potential for such combinations of methods to yield distinctive insights not otherwise available from the use of only one of these techniques. It draws on published examples of multiple-method studies by the author from small agricultural and wildfire-affected forest catchments (1-2 km2) in south-east Australia and from larger agricultural river catchments (38-920 km2) in south-west England. It will also identify possible directions for catchment research based

  14. Modeling relationships between catchment attributes and river water quality in southern catchments of the Caspian Sea.

    PubMed

    Hasani Sangani, Mohammad; Jabbarian Amiri, Bahman; Alizadeh Shabani, Afshin; Sakieh, Yousef; Ashrafi, Sohrab

    2015-04-01

    Increasing land utilization through diverse forms of human activities, such as agriculture, forestry, urban growth, and industrial development, has led to negative impacts on the water quality of rivers. To find out how catchment attributes, such as land use, hydrologic soil groups, and lithology, can affect water quality variables (Ca(2+), Mg(2+), Na(+), Cl(-), HCO 3 (-) , pH, TDS, EC, SAR), a spatio-statistical approach was applied to 23 catchments in southern basins of the Caspian Sea. All input data layers (digital maps of land use, soil, and lithology) were prepared using geographic information system (GIS) and spatial analysis. Relationships between water quality variables and catchment attributes were then examined by Spearman rank correlation tests and multiple linear regression. Stepwise approach-based multiple linear regressions were developed to examine the relationship between catchment attributes and water quality variables. The areas (%) of marl, tuff, or diorite, as well as those of good-quality rangeland and bare land had negative effects on all water quality variables, while those of basalt, forest land cover were found to contribute to improved river water quality. Moreover, lithological variables showed the greatest most potential for predicting the mean concentration values of water quality variables, and noting that measure of EC and TDS have inversely associated with area (%) of urban land use. PMID:25395322

  15. Modeling relationships between catchment attributes and river water quality in southern catchments of the Caspian Sea.

    PubMed

    Hasani Sangani, Mohammad; Jabbarian Amiri, Bahman; Alizadeh Shabani, Afshin; Sakieh, Yousef; Ashrafi, Sohrab

    2015-04-01

    Increasing land utilization through diverse forms of human activities, such as agriculture, forestry, urban growth, and industrial development, has led to negative impacts on the water quality of rivers. To find out how catchment attributes, such as land use, hydrologic soil groups, and lithology, can affect water quality variables (Ca(2+), Mg(2+), Na(+), Cl(-), HCO 3 (-) , pH, TDS, EC, SAR), a spatio-statistical approach was applied to 23 catchments in southern basins of the Caspian Sea. All input data layers (digital maps of land use, soil, and lithology) were prepared using geographic information system (GIS) and spatial analysis. Relationships between water quality variables and catchment attributes were then examined by Spearman rank correlation tests and multiple linear regression. Stepwise approach-based multiple linear regressions were developed to examine the relationship between catchment attributes and water quality variables. The areas (%) of marl, tuff, or diorite, as well as those of good-quality rangeland and bare land had negative effects on all water quality variables, while those of basalt, forest land cover were found to contribute to improved river water quality. Moreover, lithological variables showed the greatest most potential for predicting the mean concentration values of water quality variables, and noting that measure of EC and TDS have inversely associated with area (%) of urban land use.

  16. Network for measuring runoff and water erosion in small agricultural cathments in Southern Spain

    NASA Astrophysics Data System (ADS)

    Taguas, E. V.; Gómez, J. A.; Boulal, H.; Gómez, H.; Vanwalleghem, T.; Pérez-Alcántara, R.; Peña, A.; Ayuso-Muñoz, J. L.; Giráldez, J. V.; Mateos, L.

    2010-05-01

    Water erosion is one of the major environmental threats to sustainability of agricultural production in Souther Spain. In Mediterranean climates, innapropriate soil management in steep or hilly landscapes causes intensive and extensive on-site and off-site damage. However, limited experimental information is available for fully understand the relationship between soil management practices and erosion at varying scales. This communication describes a network of five experimental catchments equipped with runoff and erosion monitoring devices established in the last five years in agricultural areas of Southern Spain. Three of the catchments are of small size (2 to 6.7 ha) and are covered by olive trees, a fourth one, of 20 ha, is cultivated with irrigated field crops, and the fifth catchment is located in an irrigation district where irrigated annual and tree crops coexist covering an area of 316 ha. Monitoring stations consist of a long-throated flume equipped with a untrasonic sensor to measure water depth, an ISCO water sampler, a rain gauge and a datalogger. This communication will present a preliminary comparison of runoff and sediment generated in the catchments during recent years, and it will discuss some of the main problems encountered in the establishment of the network and the future plans for upgrading the monitoring stations and analysing of results.

  17. Catchments as Reactors: How do landscapes process diffuse pollution? (Invited)

    NASA Astrophysics Data System (ADS)

    Grathwohl, P.; Cirpka, O. A.

    2013-12-01

    Anthropogenic organic and inorganic compounds nowadays occur ubiquitous in soils, surface waters and groundwater. Emission of many pollutants is ongoing (through wastewater, agriculture, traffic, households, industry) but still the long-term fate of many compounds in the environment is unclear. Some are degraded by microorganisms, others accumulate in soils or biota, enter the food chain or are transported into groundwater systems and finally may occur in drinking water. Although much progress was made during the last 20 years concerning the identification and parameterization of many processes in laboratory experiments their interplay and efficiency at field scale in not clear. Very slow, but essential processes may have been overlooked - biodegradation may be very different in the lab compared to the field. Solute turnover often happens along steep biogeochemical gradients (locally small diffusion/dispersion coefficients) which are not well known under field conditions and which may dynamically shift their location depending on hydrology causing corresponding changes in concentrations. New field monitoring and analytical methods (sensors, time integrating passive samplers, non-target analysis, etc.) along with new tracer techniques are available meanwhile to record high frequency changes of major chemical parameters and to get an comprehensive inventory of compound classes at catchment scale. Fluxes of pollutants in contrasting catchments can be related to land use or degree of urbanization. Modeling of such systems is essential for exploration of future water quality scenarios for instance as a function of land use or climatic conditions. Spatially explicit reactive models based on coupled partial differential equations are hardly to handle on the scales requested. Conceptual models, however, cannot account for non-linear reactions. Therefore it remains a challenge to combine field observations and theories/models.

  18. Effects of land use on greenhouse gas fluxes and soil properties of wetland catchments in the Prairie Pothole Region of North America

    NASA Astrophysics Data System (ADS)

    Tangen, B.; Finocchiaro, R. G.; Gleason, R. A.

    2015-12-01

    Wetland restoration has been suggested as policy goal with multiple environmental benefits including enhancement of atmospheric carbon sequestration. However, there are concerns that increased CH4 emissions associated with restoration may outweigh the potential sequestration benefits. The Prairie Pothole Region (PPR) of North America is characterized by millions of depressional wetlands and spans climate and land-use gradients that have potential to affect biotic and abiotic factors associated with the overall greenhouse gas (GHG) balance of pothole wetland ecosystems. Thus, we conducted a comprehensive, 4-year study of 119 wetland catchments distributed throughout the U.S. portion of the PPR to assess the effects of land use and restoration practices on CH4 and N2O fluxes and soil properties.Results showed that the effects of land use on GHG fluxes and abiotic soil properties differed with respect to catchment zone (upland, wetland), wetland classification, geographic location, and year. CH4 fluxes were greater than previously reported for pothole wetlands, while N2O fluxes were comparable to previously reported values. Moreover, maximum cumulative CH4 fluxes were nearly 3 times as high as previously reported in North America.Results suggest that soil organic carbon is lost when relatively undisturbed catchments are converted for agriculture, but sequestration rates associated with restoration are variable. Further, when non-drained cropland catchments are restored, CH4 fluxes generally are not different than the pre-restoration baseline; conversely, when drained cropland catchments are restored, CH4 fluxes are noticeably higher. Consequently, it is important to consider the type of restoration when assessing restoration benefits. Results also suggest that elevated N2O fluxes from cropland catchments likely would be reduced through restoration. The overall variability discovered by this study underscores the difficulty in quantifying the GHG balance of wetlands.

  19. A catchment scale water balance model for FIFE

    NASA Technical Reports Server (NTRS)

    Famiglietti, J. S.; Wood, E. F.; Sivapalan, M.; Thongs, D. J.

    1992-01-01

    A catchment scale water balance model is presented and used to predict evaporation from the King's Creek catchment at the First ISLSCP Field Experiment site on the Konza Prairie, Kansas. The model incorporates spatial variability in topography, soils, and precipitation to compute the land surface hydrologic fluxes. A network of 20 rain gages was employed to measure rainfall across the catchment in the summer of 1987. These data were spatially interpolated and used to drive the model during storm periods. During interstorm periods the model was driven by the estimated potential evaporation, which was calculated using net radiation data collected at site 2. Model-computed evaporation is compared to that observed, both at site 2 (grid location 1916-BRS) and the catchment scale, for the simulation period from June 1 to October 9, 1987.

  20. Probability based hydrologic catchments of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Hudson, B. D.

    2015-12-01

    Greenland Ice Sheet melt water impacts ice sheet flow dynamics, fjord and coastal circulation, and sediment and biogeochemical fluxes. Melt water exiting the ice sheet also is a key term in its mass balance. Because of this, knowledge of the area of the ice sheet that contributes melt water to a given outlet (its hydrologic catchment) is important to many ice sheet studies and is especially critical to methods using river runoff to assess ice sheet mass balance. Yet uncertainty in delineating ice sheet hydrologic catchments is a problem that is rarely acknowledged. Ice sheet catchments are delineated as a function of both basal and surface topography. While surface topography is well known, basal topography is less certain because it is dependent on radar surveys. Here, I a present a Monte Carlo based approach to delineating ice sheet catchments that quantifies the impact of uncertain basal topography. In this scheme, over many iterations I randomly vary the ice sheet bed elevation within published error bounds (using Morlighem et al., 2014 bed and bed error datasets). For each iteration of ice sheet bed elevation, I calculate the hydraulic potentiometric surface and route water over its path of 'steepest' descent to delineate the catchment. I then use all realizations of the catchment to arrive at a probability map of all major melt water outlets in Greenland. I often find that catchment size is uncertain, with small, random perturbations in basal topography leading to large variations in catchments size. While some catchments are well defined, others can double or halve in size within published basal topography error bars. While some uncertainty will likely always remain, this work points to locations where studies of ice sheet hydrology would be the most successful, allows reinterpretation of past results, and points to where future radar surveys would be most advantageous.

  1. Chemical weathering and runoff chemistry in a steep headwater catchment

    NASA Astrophysics Data System (ADS)

    Anderson, Suzanne Prestrud; Dietrich, William E.

    2001-07-01

    We present here deductions about the location, rate, and mechanisms of chemical weathering in a small catchment based on a catchment-scale sprinkling experiment. In this experiment demineralized water was applied at an approximately steady rate in the CB1 catchment in the Oregon Coast Range to reach and maintain a quasi-steady discharge for a period of 4 days. Because of nearly steady flow conditions within the catchment, the contribution to solute fluxes from soil and bedrock could be partitioned. One half of the solute flux from the catchment derived from colluvial soil, and one half from weathering in bedrock. This implies more intense weathering in the thin colluvium mantling the catchment than in the thick underlying weathered bedrock. The annual solute flux from the catchment, scaled to the annual runoff from the catchment, is 32 +/- 10 t km-2 year-1, equivalent to published chemical denudation rates for nearby rivers with drainage areas 106 times greater than the experiment site. Soil waters sampled during the sprinkling experiment had steady compositions following a period of transient water flow conditions, implying steady-state chemical evolution in the soil. The waters leached organic anions from shallow depths in the soil, which solubilized aluminium and iron, indicating that podzolization is occurring in these soils. Carbonate dissolution appears to be an important source of solutes from the bedrock, despite being present as only a minor phase in the rock. Water balance suggests that the residence time of water in the catchment is about 2 months, and that typical 24 h storms displace only a fraction of the stored water. A consequence is that runoff chemistry is dominated by old water, which imposes strong limits on the variability of runoff composition.

  2. Catchments of general practice in different countries– a literature review

    PubMed Central

    2014-01-01

    The purpose of this paper is to review the current research on catchment areas of private general practices in different developed countries because healthcare reform, including primary health care, has featured prominently as an important political issue in a number of developed countries. The debates around health reform have had a significant health geographic focus. Conceptually, GP catchments describe the distribution, composition and profile of patients who access a general practitioner or a general practice (i.e. a site or facility comprising one or more general practitioners). Therefore, GP catchments provide important information into the geographic variation of access rates, utilisation of services and health outcomes by all of the population or different population groups in a defined area or aggregated area. This review highlights a wide range of diversity in the literature as to how GP catchments can be described, the indicators and measures used to frame the scale of catchments. Patient access to general practice health care services should be considered from a range of locational concepts, and not necessarily constrained by their place of residence. An analysis of catchment patterns of general practitioners should be considered as dynamic and multi-perspective. Geographic information systems provide opportunities to contribute valuable methodologies to study these relationships. However, researchers acknowledge that a conceptual framework for the analysis of GP catchments requires access to real world data. Recent studies have shown promising developments in the use of real world data, especially from studies in the UK. Understanding the catchment profiles of individual GP surgeries is important if governments are serious about patient choice being a key part of proposed primary health reforms. Future health planning should incorporate models of GP catchments as planning tools, at the micro level as well as the macro level, to assist policies on the

  3. Accelerated export of sediment and carbon from a landscape under intensive agriculture.

    PubMed

    Glendell, M; Brazier, R E

    2014-04-01

    The export of total organic carbon (particulate and dissolved) from terrestrial to aquatic ecosystems has important implications for water quality and the global carbon cycle. However, most research to date has focused on DOC losses from either forested or peaty catchments, with only limited studies examining the controls and rates of total fluvial carbon losses from agricultural catchments, particularly during storm events. This study examined the controls and fluxes of total suspended sediment (SS), total particulate (TPC) and dissolved organic carbon (DOC) from two adjacent catchments with contrasting intensive agricultural and semi-natural land-use. Data from 35 individual storm events showed that the agricultural catchment exported significantly higher SS concentrations on a storm-by-storm basis than the semi-natural catchment, with peak discharge exerting a greater control over SS, TPC and DOC concentrations. Baseflow DOC concentrations in the agricultural catchment were significantly higher. DOC quality monitored during one simultaneous rainfall event differed between the two study catchments, with more humic, higher molecular weight compounds prevailing in the agricultural catchment and lower molecular weight compounds prevailing in the semi-natural catchment. During an eight month period for which a comparable continuous turbidity record was available, the estimated SS yields from the agricultural catchment were higher than from the semi-natural catchment. Further, the agricultural catchment exported proportionally more TPC and a comparable amount of DOC, despite a lower total soil carbon pool. These results suggest that altered hydrological and biogeochemical processes within the agricultural catchment, including accelerated soil erosion and soil organic matter turnover, contributed to an enhanced fluvial SS and carbon export. Thus, we argue that enhancing semi-natural vegetation within intensively farmed catchments could reduce sediment and carbon losses

  4. Modelling hydrology and water quality in a Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Candela, Angela; Viviani, Gaspare

    2010-05-01

    In this study the SWAT model has been used in order to analyse and quantify pollution dynamics at basin scale depending on concentrated and diffuse sources. Nowadays, the receiving water bodies quality safeguarding is of growing importance due to the promulgation of recent laws as well as the growing sensitivity regarding the environment issues by the scientific and practitioner committee. Recently the EU 2000/60 (Water Framework Directive) makes the analysis of receiving water bodies even more complex by integrating the pollution in urban areas in a framework of the pollution sources at catchment scale. and making necessary further integration of environmental impacts associated with discharges concentrates civilian and productive with the widespread pollution linked mainly to agriculture and zoo-technical activities. The complexity of natural systems and the large number of polluting sources and variables to be monitored requires the adoption of models able to get a better view of the whole system in a simplified way without neglecting the most important physical phenomena. Particularly, in this study the SWAT model was considered since it is an integrated hydrological model that are, nowadays, needed to support the implementation of integrated water management plans and to comply with the current requirements of the WFD. In addition, the SWAT model is interfaced with the ARC-VIEW software which allows easy pre-and post processing of the spatially distributed input data, driving the rainfall-runoff process. The model has been applied to the experimental Nocella catchment located in Sicily (Italy), with an area of about 50 km2. The river receives wastewater and stormwater from two urban areas drained by combined sewers. The study demonstrates that the analysis of water quality in partially urbanised natural basins is complex depending on variable polluting contributions of the different parts of the system depending on specific polluting compounds. The model was

  5. Transferring rainfall runoff model parameters to ungauged catchments: Does the metric by which hydrologic similarity is defined actually matter?

    NASA Astrophysics Data System (ADS)

    Singh, R.; Archfield, S. A.; Wagener, T.; Vogel, R. M.

    2012-04-01

    Daily streamflow information is critical for solving any number of hydrologic problems. Because most of the world's stream reaches are ungauged, this data is commonly needed for rivers that have no readily available measurements of streamflow. One approach to estimating daily streamflow time series at ungauged catchments transfers a set of model parameters resulting from the calibration of a rainfall-runoff model at a gauged catchment (or set of gauged catchments) to an ungauged site of interest. Central to this approach is the selection of a gauged donor catchment that is considered hydrologically similar to the ungauged catchment. A number of published studies compare various methods to define hydrologic similarity, typically using distance between the catchments or similarity in catchments characteristics; however, no one metric of hydrologic similarity has been demonstrated to provide a consistent approach to select a suitable donor catchment. For 16 unregulated catchments in the mid-Atlantic United States, this study shows that the similarity metric matters little if the catchments are classified as good receivers, which we define as catchments having more than two donor catchments that result in reasonable models of daily streamflow. Rainfall-runoff models were calibrated at each of the 16 study catchments and then the study catchments were treated as ungauged and model parameters from each of the other 15 catchments were transferred to the ungauged catchment. For catchments that are good receivers, combining the model output from several donors - no matter whether the donors were selected using distance or similarity in catchment characteristics - resulted in estimated daily streamflow comparable to the observed streamflow at the ungauged location. However, none of the similarity metrics were useful for selecting a suitable donor catchment when the ungauged catchment is considered to be a poor receiver (defined as a catchment with only one donor catchment

  6. Assessment of overland flow variation and blue water production in a farmed semi-arid water harvesting catchment

    NASA Astrophysics Data System (ADS)

    Mekki, I.; Albergel, J.; Ben Mechlia, N.; Voltz, M.

    Upgrading agriculture in semi-arid areas and ensuring its sustainability require an optimal management of rainfall partition between blue and green waters in the farmed water harvesting catchment. The main objective of this study is to analyze the influence of heterogeneous land use on the spatial and temporal variation of rainfall partitioning and blue water production within a typical farmed catchment located in north-eastern Tunisia. The catchment has an area of 2.6 km 2 and comprises at its outlet a dam, which retains the runoff water in a reservoir. Overland flow and soil water balance components were monitored during two cropping seasons (2000/2001 and 2001/2002) on a network of eleven plots of 2 m 2 each with different land use and soil characteristics. The hydrological balances of both the catchment and reservoir have been monitored since 1994. Observed data showed a very large temporal and spatial variability of overland flow within the catchment reflecting the great importance of total rainfall as well as land use. During the 2001/2002 season the results showed a large variation of the number of observed runoff events, from 27 to 39, and of the annual overland flow depths, from 8 mm (under vineyard on calcaric cambisols) up to 43 mm (under shrubs-pasture on haplic regosols), between the plots. The annual runoff amounts were moderate; they always corresponded to less than 15% of the annual rainfall amount whatever the observation scale. It was also observed that changes in land use in years with similar rainfall could lead to significant differences in blue water flow. An attempt for predicting the overland flow by the general linear regression approach showed an r2 of 31%, the predictors used are the class of soil infiltration capacity, the initial moisture saturation ratio of the soil surface layer and the total rainfall amounts. These experimental results indicate that the variation in land use in a semi-arid catchment is a main factor of variation in

  7. Kresoxim methyl deposition, drift and runoff in a vineyard catchment.

    PubMed

    Lefrancq, M; Imfeld, G; Payraudeau, S; Millet, M

    2013-01-01

    Surface runoff and spray drift represent a primary mode of pesticide mobilisation from agricultural land to ecosystem. Though pesticide drift has mainly been studied at small scale (<1 ha), pesticide transports by drift and runoff have rarely been compared in the same agricultural catchment. Here kresoxim methyl (KM) drift during foliar application was evaluated in a vineyard catchment (Rouffach, Alsace, France), and KM deposition on non-target surfaces was compared to KM runoff. KM was detected on 55% of the collectors and concentration reached 18% of the applied dose (i.e. 1.5 mg m(-2)). Our results indicated that KM soil deposition greatly varied in space and time. The total KM soil deposition in the vineyard plots was estimated by four different interpolation methods (arithmetic mean, Thiessen method, inverse weighting distance and ordinary kriging) and ranged between 53 g and 61 g (5.8 and 6.6% of the total mass applied). The amount of KM drifted on roads was 50 times larger than that in runoff water collected at the outlet of the catchment. Although KM application was carried out under regular operational and climatic conditions, its deposition on non-target surfaces may be significant and lead to pesticide runoff. These results can be anticipated as a starting point for assessing pesticide deposition during spray application and corresponding pesticide runoff in agricultural catchments.

  8. Modelling aggregated catchment-scale phosphorus transport over 200 years in the Peel Harvey catchment, Western Australia

    NASA Astrophysics Data System (ADS)

    Rivers, M.; Weaver, D.; Smettem, K.; Davies, P.

    2009-04-01

    Intensification of agricultural activity has resulted in increased eutrophication of waterways throughout the world. In Australia, naturally oligotrophic systems have been severely impacted by changing land use from natural ecosystems to commercial agriculture. Development of amelioration strategies to minimise the water quality impacts of intensive agriculture requires an understanding of nutrient uptake and nutrient flow pathways through catchments. To address this issue, a simulation model was developed using the STELLA dynamic modelling software package to model the transport of phosphorus (P) through major source, sink and flow sectors of the Peel-Harvey Catchment in South Western Australia. Phosphorus is the most important nutrient in this catchment for promotion of nuisance and toxic algal blooms. The model simulates changes in stores and flows of P over a 200 year time horizon to match catchment development and associated nutrient inputs and outputs to the present day (100 years of development) and a further 100 years into the future. The present catchment scenario produces model outputs which agree well with monitored water quality data, survey data of farm inputs and outputs, and soil P content data. The model allows for nutrient storage, assimilation and release from the various components of the catchment environment (soil, runoff, groundwater, stream sediment and estuarine water and sediment) and indicates that over the course of a 200 year simulation, releases of P from the soil store reach their maxima approximately 70 years from present and do not reduce from this point. That is, the soil P "storage" components of the catchment are already "leaking" P, and their ability to buffer any more P will be almost exhausted in 70 years if current agricultural practices continue. From this point onwards, P release into the regional waterways will equal annual application (currently 2610 tonnes). The P load target for the estuary is 70 tPpa, with current loads

  9. Effects of Best Management Practice on Ecological Condition: Does Location Matter?

    PubMed

    Holmes, Roger; Armanini, David G; Yates, Adam G

    2016-05-01

    Best management practices (BMPs) are increasingly being promoted as a solution to the potentially adverse effects agriculture can have on aquatic systems. However, the ability of BMPs to improve riverine systems continues to be questioned due to equivocal empirical evidence linking BMP use with improved stream conditions, particularly in regard to ecological conditions. Explicitly viewing BMP location in relation to hydrological pathways may, however, assist in establishing stronger ecological linkages. The goal of this study was to assess the association between water chemistry, benthic macroinvertebrate community structure, and the number and location of agricultural BMPs in a catchment. Macroinvertebrate and water samples were collected in 30 small (<12 km(2)) catchments exhibiting gradients of BMP use and location in the Grand River Watershed, Southern Ontario, Canada. Stepwise regression analysis revealed that concentrations of most stream nutrients declined in association with greater numbers of BMPs and particularly when BMPs were located in hydrologically connected areas. However, BMPs were significantly associated with only one metric (%EPT) describing macroinvertebrate community structure. Furthermore, variance partitioning analysis indicated that less than 5% of the among site variation in the macroinvertebrate community could be attributed to BMPs. Overall, the implemented BMPs appear to be achieving water quality improvement goals but spatial targeting of specific BMP types may allow management agencies to attain further water quality improvements more efficiently. Mitigation and rehabilitation measures beyond the BMPs assessed in this study may be required to meet goals of enhanced ecological condition. PMID:26787015

  10. Effects of Best Management Practice on Ecological Condition: Does Location Matter?

    NASA Astrophysics Data System (ADS)

    Holmes, Roger; Armanini, David G.; Yates, Adam G.

    2016-05-01

    Best management practices (BMPs) are increasingly being promoted as a solution to the potentially adverse effects agriculture can have on aquatic systems. However, the ability of BMPs to improve riverine systems continues to be questioned due to equivocal empirical evidence linking BMP use with improved stream conditions, particularly in regard to ecological conditions. Explicitly viewing BMP location in relation to hydrological pathways may, however, assist in establishing stronger ecological linkages. The goal of this study was to assess the association between water chemistry, benthic macroinvertebrate community structure, and the number and location of agricultural BMPs in a catchment. Macroinvertebrate and water samples were collected in 30 small (<12 km2) catchments exhibiting gradients of BMP use and location in the Grand River Watershed, Southern Ontario, Canada. Stepwise regression analysis revealed that concentrations of most stream nutrients declined in association with greater numbers of BMPs and particularly when BMPs were located in hydrologically connected areas. However, BMPs were significantly associated with only one metric (%EPT) describing macroinvertebrate community structure. Furthermore, variance partitioning analysis indicated that less than 5 % of the among site variation in the macroinvertebrate community could be attributed to BMPs. Overall, the implemented BMPs appear to be achieving water quality improvement goals but spatial targeting of specific BMP types may allow management agencies to attain further water quality improvements more efficiently. Mitigation and rehabilitation measures beyond the BMPs assessed in this study may be required to meet goals of enhanced ecological condition.

  11. Internally Drained Supraglacial River Catchments on the Southwest Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Yang, K.; Smith, L. C.; Chu, V. W.; Pitcher, L. H.; Gleason, C. J.

    2015-12-01

    Internally drained catchments are the hydrologic units on the Greenland ice sheet (GrIS) surface that collect and drain meltwater into moulins or supraglacial lakes without out flows. Understanding the spatial pattern of these internal catchments is critical, which can provide key information about how supraglacial meltwater is transported and released on the ice surface. This study proposed an automatic approach to detect supraglacial hydrologic features (rivers, lakes, moulins, and internal catchments) located at southwest GrIS from Landsat-8 OLI panchromatic imagery. A total of 800 internal catchments are delineated and the average catchment size (river network length) is found to increase with elevations. In addition, moulins are the prime way to drain internal catchments and the average moulin densities decrease with elevations. Adaptive depression area thresholds are calculated to achieve optimal match between DEM-modeled and image-detected internal catchment patterns. The pattern of these image-detected internal catchments also indicates that: 1) not all the DEM-modeled topographic depressions act as meltwater sinks; 2) moulin distribution greatly impacts the internal catchment patterns; and 3) topographic depressions can be connected downstream without being fully filled, changing the fragmentary of the internal catchments.

  12. Spatiotemporal variability of soil hydrological properties and its implication on small catchments hydrology

    NASA Astrophysics Data System (ADS)

    Ferreira, C. S. S.; Steenhuis, T. S.; Soares, D.; Ferreira, A. J. D.; Coelho, C. O. A.; Walsh, R. P. D.

    2012-04-01

    The increasing population pressure on the environment implies changes to land use and to landscape patterns within catchments, with impacts on hydrological processes. Some of the changes are linked to soil properties modification, directly disturbing water infiltration and runoff generation processes, which affects local and regional water resources. Although there has been considerable research on soil properties, few studies focused its spatial and temporal variability at the catchment scale and how they affect hydrology. In this paper, we aim to assess the spatial and temporal variability of water repellence, soil moisture and water infiltration, in a small catchment under Mediterranean climate. The study was carried out at Ribeira dos Covões, a small catchment (620ha) located in central Portugal. This is a partly urbanizing catchment, where the urban landuse covers 32% of the area, while the forest represent 48% and farmland 20%. The catchment has a sub-humid Mediterranean climate, with long dry summers. The soil is deep overlaying sandstone and limestone lithology. Thirty one representative sites were monitored within the catchment. Each site has two replicated experiments for water infiltration (performed during 30 minutes, through minidisk tension infiltrometer at the soil surface), soil moisture content (at 0-5cm depth, by gravimetric method) and soil water repellence (assessed at 0cm, 2cm and 5cm depth through ethanol percentage test). These experiments were carried out along one entire year, during nine monitoring campaigns performed in dry and wet periods, mainly immediately after different rainfall events and long dry spells. During one of the monitoring campaigns, undisturbed soil samples were collected (0-10cm depth) in all the location sites for bulk density and stone content analyses. Composite samples were also collected from the top soil layer (0-5cm and 5-10cm) for organic content (by measuring carbon dioxide emission after combustion at 1200

  13. Comparison of the characteristics of storm runoff and long-term discharge between a natural forest catchment and a complicated natural-artificial catchment in Japan

    NASA Astrophysics Data System (ADS)

    Hong, Lin

    2010-05-01

    Agricultural activities such as land reclamation, crop production, pesticide and fertilizer application, irrigation and drainage will cause impact on the hydrological cycle and water quality of the catchment. In this study, the hydrological characteristics during storm runoff and long-term discharges of a complicated natural-artificial terraced paddy field catchment, which is composed of natural forest (73% of the area) and terraced paddy field (27% of the area), are compared with those of a natural forest catchment. According to the theory of the rational formula, peak discharge is given as: Qp=fp rtpA/3.6 (1) where, Qp is peak discharge, in m3/s; fp is the runoff coefficient, for the natural forest catchment and the complicated natural-artificial Catchment, fp=0.60 and 0.55, respectively; rtp is the average intensity of actual rainfall during tp, in mm/h; tp is concentration time, in min; A is the area of the catchment, in km2. According to literature, tp is given as: tp=CA0.22(re)-0.35 (2) where, C is a coefficient depending on land use, for the natural forest catchment and the complicated natural-artificial catchment and natural forest catchment, C=107 and 175, respectively; re is effective rainfall intensity and it is equal to the specific peak discharge of a storm, mm/h. From the comprehensive effects of runoff coefficient and concentration time on peak discharge, we find that the peak discharge of the complicated natural-artificial catchment is about 1.5 times as much as that of the natural forest catchment. Analyses of the recession limbs for various storms in the 2 catchments reveals that the storm runoff decreases with an exponential decay constant of 0.024 h-1 from several hours after rainfall to one or two days later, and then continues to decay with a decay constant of 0.011 h-1. By analysis of the relationship between percolation and duration of percolation in the 2 catchments we find that a linear relationship between the percolation and the duration

  14. Carbon redistribution by erosion processes in an intensively disturbed catchment

    NASA Astrophysics Data System (ADS)

    Boix-Fayos, Carolina; Martínez-Mena, María; Pérez Cutillas, Pedro; de Vente, Joris; Barberá, Gonzalo G.; Mosch, Wouter; Navarro Cano, Jose Antonio; Gaspar, Leticia; Navas, Ana

    2016-04-01

    Understanding how organic carbon moves with sediments along the fluvial system is crucial to close catchment scale carbon budgets. Especially challenging is the analysis of organic carbon dynamics during fluvial transport in heterogeneous, fragile and disturbed environments with ephemeral and intense hydrological pulses, typical of Mediterranean conditions. This paper explores the catchment scale organic carbon redistribution by lateral flows in extreme Mediterranean environmental conditions from a geomorphological perspective. The study area is a catchment (Cárcavo) in SE Spain with a semiarid climate, erodible lithologies, shallow soils, and highly disturbed by agricultural terraces, land levelling, reforestations and construction of check-dams. To increase understanding of erosion induced catchment scale organic carbon redistribution, we studied the subcatchments of 8 check-dams distributed along the catchment main channel in detail. We determined 137Cs, physicochemical characteristics and organic carbon pools of soils and sediments deposited behind each check-dam, performed spatial analysis of properties of the catchment and buffer areas around check-dams, and carried out geomorphological analysis of the slope-channel connections. Soils showed very low Total Organic Carbon (TOC) values oscillating between 15.2 and 4.4 g Kg-1 for forest and agricultural soils, respectively. Sediments mobilized by erosion were poor in TOC compared to the eroded (forest) soils (6.6±0.7 g Kg-1), and the redistribution of organic carbon through the catchment, especially of the Mineral Associated Organic Carbon (MAC) pool, showed the same pattern as clay particles and 137Cs. The TOC erosion rates (0.031±0.03 Mg ha-1 y-1) were comparable to others reported for subhumid Mediterranean catchments and to those modelled worldwide for pasture land. Those lateral fluxes were equivalent to 10.4 % of the TOC stock from the topsoil at the moment of the check-dam construction and

  15. Study of Beijiang catchment flash-flood forecasting model

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Huang, S.; Dong, Y.

    2015-05-01

    Beijiang catchment is a small catchment in southern China locating in the centre of the storm areas of the Pearl River Basin. Flash flooding in Beijiang catchment is a frequently observed disaster that caused direct damages to human beings and their properties. Flood forecasting is the most effective method for mitigating flash floods, the goal of this paper is to develop the flash flood forecasting model for Beijiang catchment. The catchment property data, including DEM, land cover types and soil types, which will be used for model construction and parameter determination, are downloaded from the website freely. Based on the Liuxihe Model, a physically based distributed hydrological model, a model for flash flood forecasting of Beijiang catchment is set up. The model derives the model parameters from the terrain properties, and further optimized with the observed flooding process, which improves the model performance. The model is validated with a few observed floods occurred in recent years, and the results show that the model is reliable and is promising for flash flood forecasting.

  16. Localized bedrock aquifer distribution explains discharge from a headwater catchment

    NASA Astrophysics Data System (ADS)

    Kosugi, Ken'ichirou; Fujimoto, Masamitsu; Katsura, Shin'ya; Kato, Hiroyuki; Sando, Yoshiki; Mizuyama, Takahisa

    2011-07-01

    Understanding a discharge hydrograph is one of the leading interests in catchment hydrology. Recent research has provided credible information on the importance of bedrock groundwater on discharge hydrographs from headwater catchments. However, intensive monitoring of bedrock groundwater is rare in mountains with steep topography. Hence, how bedrock groundwater controls discharge from a steep headwater catchment is in dispute. In this study, we conducted long-term hydrological observations using densely located bedrock wells in a headwater catchment underlain by granitic bedrock. The catchment has steep topography affected by diastrophic activities. Results showed a fairly regionalized distribution of bedrock aquifers within a scale of tens of meters, consisting of upper, middle, and lower aquifers, instead of a gradual and continuous decline in water level from ridge to valley bottom. This was presumably attributable to the unique bedrock structure; fault lines developed in the watershed worked to form divides between the bedrock aquifers. Spatial expanse of each aquifer and the interaction among aquifers were key factors to explain gentle and considerable variations in the base flow discharge and triple-peak discharge responses of the observed hydrograph. A simple model was developed to simulate the discharge hydrograph, which computed each of the contributions from the soil mantle groundwater, from the lower aquifer, and from the middle aquifer to the discharge. The modeling results generally succeeded in reproducing the observed hydrograph. Thus, this study demonstrated that understanding regionalized bedrock aquifer distribution is pivotal for explaining discharge hydrograph from headwater catchments that have been affected by diastrophic activities.

  17. An empirical investigation of climate and land-use effects on water quantity and quality in two urbanising catchments in the southern United Kingdom.

    PubMed

    Putro, B; Kjeldsen, T R; Hutchins, M G; Miller, J

    2016-04-01

    Using historical data of climate, land-use, hydrology and water quality from four catchments located in the south of England, this study identifies the impact of climate and land-use change on selected water quantity and water quality indicators. The study utilises a paired catchment approach, with two catchments that have experienced a high degree of urbanisation over the past five decades and two nearby, hydrologically similar, but undeveloped catchments. Multivariate regression models were used to assess the influence of rainfall and urbanisation on runoff (annual and seasonal), dissolved oxygen levels and temperature. Results indicate: (i) no trend in annual or seasonal rainfall totals, (ii) upward trend in runoff totals in the two urban catchments but not in the rural catchments, (iii) upward trend in dissolved oxygen and temperature in the urban catchments, but not in the rural catchments, and (iv) changes in temperature and dissolved oxygen in the urban catchments are not driven by climatic variables.

  18. An empirical investigation of climate and land-use effects on water quantity and quality in two urbanising catchments in the southern United Kingdom.

    PubMed

    Putro, B; Kjeldsen, T R; Hutchins, M G; Miller, J

    2016-04-01

    Using historical data of climate, land-use, hydrology and water quality from four catchments located in the south of England, this study identifies the impact of climate and land-use change on selected water quantity and water quality indicators. The study utilises a paired catchment approach, with two catchments that have experienced a high degree of urbanisation over the past five decades and two nearby, hydrologically similar, but undeveloped catchments. Multivariate regression models were used to assess the influence of rainfall and urbanisation on runoff (annual and seasonal), dissolved oxygen levels and temperature. Results indicate: (i) no trend in annual or seasonal rainfall totals, (ii) upward trend in runoff totals in the two urban catchments but not in the rural catchments, (iii) upward trend in dissolved oxygen and temperature in the urban catchments, but not in the rural catchments, and (iv) changes in temperature and dissolved oxygen in the urban catchments are not driven by climatic variables. PMID:26802345

  19. Ecohydrological modeling of a tropical tidal catchment exposed to anthropogenic pressure

    NASA Astrophysics Data System (ADS)

    Lorenz, Malte; Zeunert, Stephanie; Meon, Günter

    2016-04-01

    The study area is the highly polluted estuary system of the Thi Vai river and its catchment, located in South Vietnam. It is part of Vietnam's core regions for the development of industrial and agricultural production. The middle and lower parts of the river form an estuary, which is strongly affected by the tide. As a result of untreated industrial waste water discharges, the Thi Vai river was considered as ecological dead from 1990 to 2008. Although the water quality of the Thi Vai has been improved due to waste water treatment and control, it must be still considered as polluted. These first successes could be rapidly negated by the ongoing development of industry, population and agriculture. Today the water quality management is solely focused on the industrial zones adjacent to the estuary. The contribution of the catchment to the water quality pollution is not considered yet. To quantify the pollution of the Thi Vai estuary and its catchment, a monitoring system for water quantity and quality was installed. The water quality of the Thi Vai estuary and its main tributaries is affected by elevated concentrations of NH4, NO2 and TSS and partly reduced DO concentrations. Within the German-Vietnamese BMBF research project EWATEC-COAST a model based management system was developed as an instrument for a sustainable improvement of the water quality of the Thi Vai estuary and the Thi Vai catchment. Among others, the system consists of the hydrodynamic water quality model DELFT 3D and the ecohydrological catchment model PANTA RHEI WQ. The ecohydrological model PANTA RHEI WQ was developed within the research project. The developed ecohydrological model allows a sub-daily time step and includes in-stream water quality procedures, accounting for the interaction of aquatic biomass, dissolved oxygen, nutrients, detritus and sediment. Therefore, the implemented water quality model overcomes deficits found in common ecohydrological models. Despite of the scarce data

  20. The evaluation of storm rainfall variability and its influence on runoff response at a catchment scale

    NASA Astrophysics Data System (ADS)

    David, Vaclav; Davidová, Tereza

    2015-04-01

    Storm rainfall events are usually very dynamic processes which are characterized by high spatial and temporal variability. It can influence the catchment response to the event a lot in terms of the shape and volume of response hydrographs. In this contribution, the variability of selected rainfall events is presented. It is assessed in terms of total volumes of precipitation which are an input to rainfall-runoff process. As a source of precipitation information, data from precipitation gauging stations were used which have one hour time step. Additionally, data originated from weather radar were used to describe spatial variability in more detail. Measured reflectivity data were transformed into the values of precipitation intensities which were compared to station data to make a check on the reliability of radar originated data. The assessment was carried out by the comparison of total precipitation to a catchment based on different extent of source data. Precipitation totals were calculated from station data using different methods including Thiessen polygons and different interpolation techniques. As a study area, the catchment of Blanice River was selected. This catchment is located in Central Bohemia Region and smaller part extends beyond it to South Bohemia Region. Its total area to the confluence to Sázava River is 543 km2. In this catchment, agricultural lands predominates but the percentage of forests is also not negligible. The area is in general hilly with important presence of steep slopes. The results of obtained by the analyses carried out show the high importance of the amount of available precipitation data and their quality. Despite the fact that the variability of precipitation can affect the distribution of runoff and consecutively the shape of response hydrograph, it can affect also the accuracy and representativeness of the information provided by point measurements of precipitation by gauges and by weather radars. Acknowledgement The research

  1. Controls on denitrification in riparian soils in headwater catchments of a hardwood forest in the Catskill Mountains, U.S.A.

    USGS Publications Warehouse

    Ashby, J.A.; Bowden, W.B.; Murdoch, Peter S.

    1998-01-01

    Denitrification in riparian soils is thought to be an important factor that reduces hydrologic export of nitrate from forested and agricultural catchments. A 2-y study to identify the soil factors most closely associated with denitrification in riparian soils in headwater catchments within the Catskill Mountains of New York, included field surveys of surface and subsurface denitrification rates, and an amendment experiment to assess the relative effects of increases in available carbon and substrate NO-/3 on denitrification rates. Denitrification rates were measured by acetylene inhibition during incubation of intact soil cores from eight soil types representing a range of drainage classes. Soil cores were analyzed for organic matter, total P, extractable NO-/3-N and NH+/4-N, organic N, pH, moisture, porosity, and water-filled pore space, to determine which of these factors were most closely associated with denitrification. The distribution of denitrification rates found during the field surveys was highly skewed, with many low or zero values and few high values. Denitrification rates were positively associated with high soil organic matter, total P, and water-filled pore space, and were highest in seep (poorly-drained) soils, toeslope (seasonally-drained) soils, and stream-edge (poorly- to moderately well-drained) soils in which these three soil characteristics were typically high. Denitrification rates in these wet locations were also positively associated with soil NH+/4-N concentration and pH, but not with NO-/3-N concentration, suggesting that the rate of NO-/3 supply (via nitrification or hydrologic transport) was more important than the instantaneous concentration of NO-/3-N in the soils. The amendment experiment indicated that denitrification in soil types studied was most responsive to added glucose alone or with NO-/3. Thus, in these soils, a combination of slow rates of NO-/3 supply and low available carbon appears to limit denitrification. Annual

  2. The Influence of temporal sampling regime on the WFD classification of catchments within the Eden Demonstration Test Catchment Project

    NASA Astrophysics Data System (ADS)

    Jonczyk, Jennine; Haygarth, Phil; Quinn, Paul; Reaney, Sim

    2014-05-01

    A high temporal resolution data set from the Eden Demonstration Test Catchment (DTC) project is used to investigate the processes causing pollution and the influence of temporal sampling regime on the WFD classification of three catchments. This data highlights WFD standards may not be fit for purpose. The Eden DTC project is part of a UK government-funded project designed to provide robust evidence regarding how diffuse pollution can be cost-effectively controlled to improve and maintain water quality in rural river catchments. The impact of multiple water quality parameters on ecosystems and sustainable food production are being studied at the catchment scale. Three focus catchments approximately 10 km2 each, have been selected to represent the different farming practices and geophysical characteristics across the Eden catchment, Northern England. A field experimental programme has been designed to monitor the dynamics of agricultural diffuse pollution at multiple scales using state of the art sensors providing continuous real time data. The data set, which includes Total Phosphorus and Total Reactive Phosphorus, Nitrate, Ammonium, pH, Conductivity, Turbidity and Chlorophyll a reveals the frequency and duration of nutrient concentration target exceedance which arises from the prevalence of storm events of increasing magnitude. This data set is sub-sampled at different time intervals to explore how different sampling regimes affects our understanding of nutrient dynamics and the ramification of the different regimes to WFD chemical status. This presentation seeks to identify an optimum temporal resolution of data for effective catchment management and to question the usefulness of the WFD status metric for determining health of a system. Criteria based on high frequency short duration events needs to be accounted for.

  3. Vegetation impact on mean annual evapotranspiration at a global catchment scale

    NASA Astrophysics Data System (ADS)

    Peel, Murray C.; McMahon, Thomas A.; Finlayson, Brian L.

    2010-09-01

    Research into the role of catchment vegetation within the hydrologic cycle has a long history in the hydrologic literature. Relationships between vegetation type and catchment evapotranspiration and runoff were primarily assessed through paired catchment studies during the 20th century. Results from over 200 paired catchment studies from around the world have been reported in the literature. Two constraints on utilizing the results from paired catchment studies in the wider domain have been that the catchment areas studied are generally (1) small (<10 km2) and (2) from a narrow range of climate types. The majority of reported paired catchment studies are located in the USA (˜47%) and Australia (˜27%) and experience mainly temperate (Köppen C) and cold (Köppen D) climate types. In this paper we assess the impact of vegetation type on mean annual evapotranspiration through a large, spatially, and climatically diverse data set of 699 catchments from around the world. These catchments are a subset of 861 unregulated catchments considered for the analysis. Spatially averaged precipitation and temperature data, in conjunction with runoff and land cover information, are analyzed to draw broad conclusions about the vegetation impact on mean annual evapotranspiration. In this analysis any vegetation impact signal is assessed through differences in long-term catchment average actual evapotranspiration, defined as precipitation minus runoff, between catchments grouped by vegetation type. This methodology differs from paired catchment studies where vegetation impact is assessed through streamflow responses to a controlled, within catchment, land cover change. The importance of taking the climate type experienced by the catchments into account when assessing the vegetation impact on evapotranspiration is demonstrated. Tropical and temperate forested catchments are found to have statistically significant higher median evapotranspiration, by about 170 mm and 130 mm

  4. Estimation of nitrogen budgets for contrasting catchments at the landscape scale

    NASA Astrophysics Data System (ADS)

    Vogt, E.; Braban, C. F.; Dragosits, U.; Theobald, M. R.; Billett, M. F.; Dore, A. J.; Tang, Y. S.; van Dijk, N.; Rees, R. M.; McDonald, C.; Murray, S.; Skiba, U. M.; Sutton, M. A.

    2012-07-01

    A comprehensive assessment of nitrogen (N) flows at the landscape scale is fundamental to understand spatial interactions in the N cascade and to inform the development of locally optimised N management strategies. To explore this interactions, complete N budgets were estimated for two contrasting hydrological catchments (dominated by agricultural grassland vs. semi-natural peat-dominated moorland), forming part of an intensively studied landscape in southern Scotland. Local scale atmospheric dispersion modelling and detailed farm and field inventories provided high resolution estimations of input fluxes. Agricultural inputs (i.e. grazing excreta, organic and synthetic fertiliser) accounted for most of the catchment N inputs with 80% in the grassland and 57% in the moorland catchment, while atmospheric deposition made a significant contribution, particularly in the moorland catchment with 38% of the N inputs. The estimated catchment N budgets highlighted areas of key uncertainty, particularly N2 emissions from denitrification and stream N export. The resulting N balances suggest that the study catchments have a limited capacity to store N within soils, vegetation and groundwater. The "catchment N retention", i.e. the amount of N which is either stored within the catchment or lost through atmospheric emissions, was estimated to be 3% of the net anthropogenic input in the moorland and 55% in the grassland catchment. These values contrast with regional scale estimates: catchment retentions of net anthropogenic input estimated within Europe at the regional scale range from 50% to 90% with an average of 82% (Billen et al., 2011). This study emphasises the need for detailed budget analyses to identify the N status of European landscapes.

  5. Estimation of nitrogen budgets for contrasting catchments at the landscape scale

    NASA Astrophysics Data System (ADS)

    Vogt, E.; Braban, C. F.; Dragosits, U.; Theobald, M. R.; Billett, M. F.; Dore, A. J.; Tang, Y. S.; van Dijk, N.; Rees, R. M.; McDonald, C.; Murray, S.; Skiba, U. M.; Sutton, M. A.

    2013-01-01

    A comprehensive assessment of nitrogen (N) flows at the landscape scale is fundamental to understand spatial interactions in the N cascade and to inform the development of locally optimised N management strategies. To explore these interactions, complete N budgets were estimated for two contrasting hydrological catchments (dominated by agricultural grassland vs. semi-natural peat-dominated moorland), forming part of an intensively studied landscape in southern Scotland. Local scale atmospheric dispersion modelling and detailed farm and field inventories provided high resolution estimations of input fluxes. Direct agricultural inputs (i.e. grazing excreta, N2 fixation, organic and synthetic fertiliser) accounted for most of the catchment N inputs, representing 82% in the grassland and 62% in the moorland catchment, while atmospheric deposition made a significant contribution, particularly in the moorland catchment, contributing 38% of the N inputs. The estimated catchment N budgets highlighted areas of key uncertainty, particularly N2 exchange and stream N export. The resulting N balances suggest that the study catchments have a limited capacity to store N within soils, vegetation and groundwater. The "catchment N retention", i.e. the amount of N which is either stored within the catchment or lost through atmospheric emissions, was estimated to be 13% of the net anthropogenic input in the moorland and 61% in the grassland catchment. These values contrast with regional scale estimates: Catchment retentions of net anthropogenic input estimated within Europe at the regional scale range from 50% to 90%, with an average of 82% (Billen et al., 2011). This study emphasises the need for detailed budget analyses to identify the N status of European landscapes.

  6. Fine-suspended sediment and water budgets for a large, seasonally dry tropical catchment: Burdekin River catchment, Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Bainbridge, Zoë T.; Lewis, Stephen E.; Smithers, Scott G.; Kuhnert, Petra M.; Henderson, Brent L.; Brodie, Jon E.

    2014-11-01

    The Burdekin River catchment (˜130,400 km2) is a seasonally dry tropical catchment located in north-east Queensland, Australia. It is the single largest source of suspended sediment to the Great Barrier Reef (GBR). Fine sediments are a threat to ecosystems on the GBR where they contribute to elevated turbidity (reduced light), sedimentation stress, and potential impacts from the associated nutrients. Suspended sediment data collected over a 5 year period were used to construct a catchment-wide sediment source and transport budget. The Bowen River tributary was identified as the major source of end-of-river suspended sediment export, yielding an average of 530 t km-2 yr-1 during the study period. Sediment trapping within a large reservoir (1.86 million ML) and the preferential transport of clays and fine silts downstream of the structure were also examined. The data reveal that the highest clay and fine silt loads—which are of most interest to environmental managers of the GBR—are not always sourced from areas that yield the largest total suspended sediment load (i.e., all size fractions). Our results demonstrate the importance of incorporating particle size into catchment sediment budget studies undertaken to inform management decisions to reduce downstream turbidity and sedimentation. Our data on sediment source, reservoir influence, and subcatchment and catchment yields will improve understandings of sediment dynamics in other tropical catchments, particularly those located in seasonally wet-dry tropical savannah/semiarid climates. The influence of climatic variability (e.g., drought/wetter periods) on annual sediment loads within large seasonally dry tropical catchments is also demonstrated by our data.

  7. Characterizing Runoff and Water Yield from Headwater Catchments in the Southern Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Safeeq, M.; Hunsaker, C. T.

    2015-12-01

    In a mediterranean climate where much of the annual precipitation falls during winter, the snow-capped Sierra Nevada serves as the primary source of dry season runoff that supports agriculture, industries, urban, and other ecosystems. Increased warming has led to significant reductions in mountain snowpack accumulation and earlier snowmelt throughout the western United States where most of the snow accumulates at temperatures near the freezing point. As a result, declines in dry season runoff magnitude, earlier runoff timing, and altered flood risk have been reported across the region. An important question in this context is, how to best manage forested catchments for water and other ecosystem services? We depict the differences in hydrologic response of ten catchments in the Kings River Experimental Watersheds (KREW) research project using continuous precipitation, snow, and runoff data during 2004-2014. The size of these catchments ranges from 50 to 475 ha, and they span a 600-m elevation range in the rain snow transitional zone. In terms of soil, Shaver and Gerle-Cagwin dominate the lower elevation Providence catchments, and Cagwin soils dominate the higher elevation Bull catchments. The majority of these catchments have southwest aspect, moderate average slope (i.e. <25%), and a well-developed drainage network with drainage density ranging from 4.6 to 10.1 km/km2. Bull catchments, on average, have higher runoff than the Providence catchments across all hydrologic signatures extracted from daily hydrographs. Mean annual runoff ranges between 281 to 408 mm in Providence and 436 to 656 mm in Bull catchments despite no significant difference in precipitation among KREW's four meteorological stations. However, high elevation Bull catchments receive significantly more precipitation as snow than the low elevation Providence catchments. The average runoff ratio ranges from 18% to as high as 43% among different catchments, indicating that the catchment

  8. Geomorpho-edaphic mapping of Atécuaro catchment (Michoacan, Mexico) and indigenous soil classification

    NASA Astrophysics Data System (ADS)

    Alanís González, N.; Alcalá de Jesús, M.; Arellano Reyes, A.; Jordán, A.; Zavala, L. M.

    2012-04-01

    The needs of management and conservation of land involve the study of natural resources and their internal relationships. Over time, these resources, including soil, have been used in an uncontrolled manner, resulting in species extinction and environmental degradation processes. The main reason for this in developing areas is the lack of soil and geomorphological information for an adequate land use planning. Often, ethnopedological knowledge and the inclusion of indigenous communities as beneficiaries of the agricultural technology are indispensable premises to make a better use of soil. A geomorphology and soil survey was conducted in the Atécuaro catchment (4591 ha), in the municipality of Morelia (Michoacan, Mexico). The Atécuaro catchment is located in the Mil Cumbres area, and is characterized by an irregular relief and a diversity of landforms and substrates (andesite, rhyolite, basalt, tuff and Quaternary sediments). The main land uses are oak and pine forest, shrubland, grassland and dryland farming. Results of the soil survey and the analysis of geoforms were studied and incorporated in a geographycal information system. Preliminary geoform and soil units maps were overlapped in order to get a map of geomorpho-edaphic units. Up to 30 different geomorpho-edaphic units were classified. Finally, map units were correlated with local indigenous soil classification.

  9. Distributed temperature measurements of a mountain stream for catchment hydrogeology understanding

    NASA Astrophysics Data System (ADS)

    Gance, Julien; Malet, Jean-Philippe; Sailhac, Pascal; Viville, Daniel; Pierret, Marie-Claire

    2015-04-01

    In mountain regions, natural water resources used for agriculture or drinking water generally come from natural sources. In this context, climate change that could result in the modification of the rainfall and of the snowcover characteristics during winter could impact natural water resources of the valley. The study of the hydrology at the catchment scale is therefore an important issue. To address this issue, we use Distributed Temperature Sensing (DTS) technology to monitor the variations of water temperature along a stream. This spatially distributed monitoring of temperature is used to assess the origin of the stream water (deep groundwater source, sub-surface water inflows…) in relation to the discharge of the stream and the rainfall conditions. The observation site if the Strengbach / OHGE catchment (Vosges massif, France). We installed an AP Sensing DTS device consisting in a datalogger and 850 m of reinforced fiber optic cable. The first 600 m have been installed directly in the stream and are underwater even for low water discharges; the next 200 m located upslope have been buried in the soil at depth in the main water source area of the catchment; finally the last 50 m are installed vertically in a borehole in the aquifer. We present a statistical analysis of a time series of 6 months of measurements. In the upper part of the stream, near the source area, the water temperature always remains close to the temperature of the aquifer (monitored in the borehole) indicating that the stream is mainly supplied by local resurgence of groundwater. In the lower part of the stream, the water temperature is more correlated to the air temperature. The analysis highlights several sections along the stream with diffuse lateral surface water arrivals, characterized by temperature anomalies.

  10. Human impact on the geomorphic evolution of the HOAL catchment, Lower Austria

    NASA Astrophysics Data System (ADS)

    Pöppl, Ronald; Kraushaar, Sabine; Strauss, Peter; Fuchs, Markus

    2016-04-01

    Since the beginning of human settlement extensive land cover and land use changes have induced significant geomorphic landscape changes as water and sediment dynamics have been transformed. The presented project focuses on the reconstruction of Holocene geomorphic landscape evolution and the assessment of recent geomorphic processes in the Northern foothills of the Eastern Alps in Austria - an area intensively agriculturally used since the middle ages and often overlooked in its geomorphic evolution. The study area is a small catchment (ca. 66 ha) which is located in the western part of Lower Austria comprising a land use history as well as environmental settings typical for wide regions across the Northern foothills of the Eastern Alps in Austria. The catchment elevation ranges from 268 to 323 m a.s.l. and has a mean slope angle of 8%. The climate in this region can be characterized as humid. The lithology mainly consists of Tertiary marly to sandy deposits which are superimposed by Quaternary sediments (e.g. loesses). Dominant soil types are Cambisols, Luvisols, and Planosols. Furthermore, the catchment is used as a Hydrological Open Air Laboratory (HOAL) implemented for the long-term research of water-related flow and transport processes in the landscape (http://hoal.hydrology.at). The main objective of this research project is to reconstruct Holocene landscape evolution by analyzing physical parameters of sediment cores taken from colluvial and alluvial sediment archives with additional 14C and OSL dating as well as by the measurement of truncated and covered standardized Luvisol profiles. First results will be presented at the EGU General Assembly 2016.

  11. Nitrate contamination of groundwater in the catchment of Goczałkowice reservoir

    NASA Astrophysics Data System (ADS)

    Czekaj, Joanna; Witkowski, Andrzej J.

    2014-05-01

    Goczałkowice dammed reservoir (area - 26 km2 , volume - 100 million m3 at a typical water level) is a very important source of drinking water for Upper Silesian agglomeration. At the catchment of the reservoir there are many potential sources of groundwater pollution (agriculture, bad practices in wastewater management, intensive fish farming). Thus local groundwater contamination, mainly by nitrogen compounds. The paper presents groundwater monitoring system and preliminary results of the research carried on at Goczałkowice reservoir and its catchment in 2010 - 2014 within the project "Integrated system supporting management and protection of dammed reservoir (ZiZoZap)'. The main objective for hydrogeologists in the project is to assess the role of groundwater in total water balance of the reservoir and the influence of groundwater on its water quality. During research temporal variability of groundwater - surface water exchange has been observed. Monitoring Network of groundwater quality consists of 22 observation wells (nested piezometers included) located around the reservoir - 13 piezometers is placed in two transects on northern and southern shore of reservoir. Sampling of groundwater from piezometers was conducted twice - in autumn 2011 and spring 2012. Maximum observed concentrations of nitrate, nitrite and ammonium were 255 mg/L, 0,16 mg/L and 3,48 mg/L, respectively. Surface water in reservoir (8 points) has also been sampled. Concentrations of nitrate in groundwater are higher than in surface water. Nitrate and ammonium concentrations exceeding standards for drinking water were reported in 18% and 50% of monitored piezometers, respectively. High concentration of nitrate (exceeding more than 5 times maximal admissible concentration) have been a significant groundwater contamination problem in the catchment of the reservoir. Periodically decrease of surface water quality is possible. Results of hydrogeological research indicate substantial spatial

  12. Spatiotemporal variability of hydrologic soil properties and the implications for overland flow and land management in a peri-urban Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Ferreira, C. S. S.; Walsh, R. P. D.; Steenhuis, T. S.; Shakesby, R. A.; Nunes, J. P. N.; Coelho, C. O. A.; Ferreira, A. J. D.

    2015-06-01

    Planning of semi-urban developments is often hindered by a lack of knowledge on how changes in land-use affect catchment hydrological response. The temporal and spatial patterns of overland flow source areas and their connectivity in the landscape, particularly in a seasonal climate, remain comparatively poorly understood. This study investigates seasonal variations in factors influencing runoff response to rainfall in a peri-urban catchment in Portugal characterized by a mosaic of landscape units and a humid Mediterranean climate. Variations in surface soil moisture, hydrophobicity and infiltration capacity were measured in six different landscape units (defined by land-use on either sandstone or limestone) in nine monitoring campaigns at key times over a one-year period. Spatiotemporal patterns in overland flow mechanisms were found. Infiltration-excess overland flow was generated in rainfalls during the dry summer season in woodland on both sandstone and limestone and on agricultural soils on limestone due probably in large part to soil hydrophobicity. In wet periods, saturation overland flow occurred on urban and agricultural soils located in valley bottoms and on shallow soils upslope. Topography, water table rise and soil depth determined the location and extent of saturated areas. Overland flow generated in upslope source areas potentially can infiltrate in other landscape units downslope where infiltration capacity exceeds rainfall intensity. Hydrophilic urban and agricultural-sandstone soils were characterized by increased infiltration capacity during dry periods, while forest soils provided potential sinks for overland flow when hydrophilic in the winter wet season. Identifying the spatial and temporal variability of overland flow sources and sinks is an important step in understanding and modeling flow connectivity and catchment hydrologic response. Such information is important for land managers in order to improve urban planning to minimize flood risk.

  13. Describing Ecosystem Complexity through Integrated Catchment Modeling

    NASA Astrophysics Data System (ADS)

    Shope, C. L.; Tenhunen, J. D.; Peiffer, S.

    2011-12-01

    Land use and climate change have been implicated in reduced ecosystem services (ie: high quality water yield, biodiversity, and agricultural yield. The prediction of ecosystem services expected under future land use decisions and changing climate conditions has become increasingly important. Complex policy and management decisions require the integration of physical, economic, and social data over several scales to assess effects on water resources and ecology. Field-based meteorology, hydrology, soil physics, plant production, solute and sediment transport, economic, and social behavior data were measured in a South Korean catchment. A variety of models are being used to simulate plot and field scale experiments within the catchment. Results from each of the local-scale models provide identification of sensitive, local-scale parameters which are then used as inputs into a large-scale watershed model. We used the spatially distributed SWAT model to synthesize the experimental field data throughout the catchment. The approach of our study was that the range in local-scale model parameter results can be used to define the sensitivity and uncertainty in the large-scale watershed model. Further, this example shows how research can be structured for scientific results describing complex ecosystems and landscapes where cross-disciplinary linkages benefit the end result. The field-based and modeling framework described is being used to develop scenarios to examine spatial and temporal changes in land use practices and climatic effects on water quantity, water quality, and sediment transport. Development of accurate modeling scenarios requires understanding the social relationship between individual and policy driven land management practices and the value of sustainable resources to all shareholders.

  14. Catchment tomography - An approach for spatial parameter estimation in catchment hydrology

    NASA Astrophysics Data System (ADS)

    Walther, Dorina; Kurtz, Wolfgang; Hendricks-Franssen, Harrie-Jan; Kollet, Stefan

    2016-04-01

    . While parameters of areas close to observations are correctly estimated within less than 200 updates, the parameter estimates of areas distant from observation locations continuously improve until the end of the simulation and may benefit from longer simulation times. We show that even the parameter of a zone mostly located in the neighboring watershed distant from all stream gauges is efficiently estimated by catchment tomography. In this case increasing the initial ensemble spread by a factor of three reduces the estimation error from 110% at the end of the time series to 0.7%. Applying two different precipitation time series it is shown that the distributed precipitation as the moving transmitter is the key component of catchment tomography, clearly initiating ensemble convergence towards the reference parameters with the commencement of precipitation events.

  15. The challenge of lots of data: different ways to synthesise and visualise high frequency catchment data

    NASA Astrophysics Data System (ADS)

    Jonczyk, Jennine; Barber, Nicholas; Benskin, Claire; Snell, Maria; Deasy, Clare; Reaney, Sim; Quinn, Paul; Owen, Gareth; EdenDTC Team

    2015-04-01

    System understanding is vital for future catchment management and to inform mitigation of both flooding and DWPA. High resolution data sets collected at catchment outlets are becoming more common. They have the potential to provide new insights into how land units process water and how this influences nutrient and ecological dynamics. However, the monitoring equipment is costly to install and operate. Also, the volume of data, both temporally and spatially, presents new challenges to catchment scientists on how best to synthesise these data into a form where they can be visualised and utilised in decision making. The Eden DTC project is part of a national project funded by the UK government to provide robust evidence on how diffuse pollution can be cost-effectively managed to improve and maintain water quality in rural river catchments. The impact of multiple water quality parameters on ecosystems and sustainable food production are being studied at the catchment scale. Three focus catchments (c. 10 km2) have been selected to represent the different farming practices and geophysical characteristics across the Eden catchment, Northern England. A field experimental programme has been designed to monitor the dynamics of agricultural diffuse pollution at multiple scales using state of the art in situ sensors, which provide continuous real-time data. Data generated through this project will be used to explore these challenges and look at different ways to synthesise and visualise these data, ultimately providing a powerful communication mechanism that potentially can be used as a conduit for real holistic catchment management.

  16. Model-based estimation of pesticides and transformation products and their export pathways in a headwater catchment

    NASA Astrophysics Data System (ADS)

    Gassmann, M.; Stamm, C.; Olsson, O.; Lange, J.; Kümmerer, K.; Weiler, M.

    2013-12-01

    Pesticides applied onto agricultural fields are frequently found in adjacent rivers. To what extent and along which pathways they are transported is influenced by intrinsic pesticide properties such as sorption and degradation. In the environment, incomplete degradation of pesticides leads to the formation of transformation products (TPs), which may differ from the parent compounds regarding their intrinsic fate characteristics. Thus, the export processes of TPs in catchments and streams may also be different. In order to test this hypothesis, we extended a distributed hydrological model by the fate and behaviour of pesticides and transformation products and applied it to a small, well-monitored headwater catchment in Switzerland. The successful model evaluation of three pesticides and their TPs at three sampling locations in the catchment enabled us to estimate the quantity of contributing processes for pollutant export. Since all TPs were more mobile than their parent compounds (PCs), they exhibited larger fractions of export via subsurface pathways. However, besides freshly applied pesticides, subsurface export was found to be influenced by residues of former applications. Export along preferential flow pathways was less dependent on substance fate characteristics than soil matrix export, but total soil water flow to tile drains increased more due to preferential flow for stronger sorbing substances. Our results indicate that runoff generation by matrix flow to tile drains gained importance towards the end of the modelling period whereas the contributions from fast surface runoff and preferential flow decreased. Accordingly, TPs were to a large extent exported under different hydrological conditions than their PCs, due to their delayed formation and longer half-lives. Thus, not only their different intrinsic characteristics but also their delayed formation could be responsible for the fact that TPs generally took different pathways than their PCs. We suggest

  17. Model-based estimation of pesticides and transformation products and their export pathways in a headwater catchment

    NASA Astrophysics Data System (ADS)

    Gassmann, M.; Stamm, C.; Olsson, O.; Lange, J.; Kümmerer, K.; Weiler, M.

    2013-07-01

    Pesticides applied onto agricultural fields are frequently found in adjacent rivers. To what extent and along which pathways they are transported is influenced by intrinsic pesticide properties such as sorption and degradation. In the environment, incomplete degradation of pesticides leads to the formation of transformation products (TPs), which may differ from the parent compounds regarding their intrinsic fate characteristics. Thus, the export processes of TPs in catchments and streams may also be different. In order to test this hypothesis, we extended a distributed hydrological model by the fate and behaviour of pesticides and transformation products and applied it to a small, well-monitored headwater catchment in Switzerland. The successful model evaluation of three pesticides and their TPs at three sampling locations in the catchment enabled us to estimate the quantity of contributing processes for pollutant export. Since all TPs were more mobile than their parent compounds (PCs), they exhibited larger fractions of export via subsurface pathways. However, besides freshly applied pesticides, subsurface export was found to be influenced by residues of former applications. Export along preferential flow pathways was less dependent on substance fate characteristics than soil matrix export, but total soil water flow to tile drains increased more due to preferential flow for stronger sorbing substances. Our results indicate that runoff generation by matrix flow to tile drains gained importance towards the end of the modelling period whereas the contributions from fast surface runoff and preferential flow decreased. Accordingly, TPs were to a large extent exported under different hydrological conditions than their PCs, due to their delayed formation and longer half-lives. Thus, not only their different intrinsic characteristics but also their delayed formation could be responsible for the fact that TPs generally took different pathways than their PCs. We suggest

  18. Assessing water quality trends in catchments with contrasting hydrological regimes

    NASA Astrophysics Data System (ADS)

    Sherriff, Sophie C.; Shore, Mairead; Mellander, Per-Erik

    2016-04-01

    Environmental resources are under increasing pressure to simultaneously achieve social, economic and ecological aims. Increasing demand for food production, for example, has expanded and intensified agricultural systems globally. In turn, greater risks of diffuse pollutant delivery (suspended sediment (SS) and Phosphorus (P)) from land to water due to higher stocking densities, fertilisation rates and soil erodibility has been attributed to deterioration of chemical and ecological quality of aquatic ecosystems. Development of sustainable and resilient management strategies for agro-ecosystems must detect and consider the impact of land use disturbance on water quality over time. However, assessment of multiple monitoring sites over a region is challenged by hydro-climatic fluctuations and the propagation of events through catchments with contrasting hydrological regimes. Simple water quality metrics, for example, flow-weighted pollutant exports have potential to normalise the impact of catchment hydrology and better identify water quality fluctuations due to land use and short-term climate fluctuations. This paper assesses the utility of flow-weighted water quality metrics to evaluate periods and causes of critical pollutant transfer. Sub-hourly water quality (SS and P) and discharge data were collected from hydrometric monitoring stations at the outlets of five small (~10 km2) agricultural catchments in Ireland. Catchments possess contrasting land uses (predominantly grassland or arable) and soil drainage (poorly, moderately or well drained) characteristics. Flow-weighted water quality metrics were calculated and evaluated according to fluctuations in source pressure and rainfall. Flow-weighted water quality metrics successfully identified fluctuations in pollutant export which could be attributed to land use changes through the agricultural calendar, i.e., groundcover fluctuations. In particular, catchments with predominantly poor or moderate soil drainage

  19. Watershed scale spatial variability in dissolved and total organic and inorganic carbon in contrasting UK catchments

    NASA Astrophysics Data System (ADS)

    Cumberland, S.; Baker, A.; Hudson, N. J.

    2006-12-01

    Approximately 800 organic and inorganic carbon analyses have been undertaken from watershed scale and regional scale spatial surveys in various British catchments. These include (1) a small (<100 sq-km) urban catchment (Ouseburn, N England); (2) a headwater, lowland agricultural catchment (River Tern, C England) (3) a large UK catchment (River Tyne, ~3000 sq-km) and (4) a spatial survey of ~300 analyses from rivers from SW England (~1700 sq-km). Results demonstrate that: (1) the majority of organic and inorganic carbon is in the dissolved (DOC and DIC) fractions; (2) that with the exception of peat rich headwaters, DIC concentration is always greater than DOC; (3) In the rural River Tern, riverine DOC and DIC are shown to follow a simple end- member mixing between DIC (DOC) rich (poor) ground waters and DOC (DIC) rich (poor) riparian wetlands for all sample sites. (4) In the urbanized Ouseburn catchment, although many sample sites also show this same mixing trend, some tributaries follow a pollutant trend of simultaneous increases in both DOC and DIC. The Ouseburn is part of the larger Tyne catchment: this larger catchment follows the simple groundwater DIC- soil water DOC end member mixing model, with the exception of the urban catchments which exhibit an elevated DIC compared to rural sites. (5) Urbanization is demonstrated to increase DIC compared to equivalent rural catchments; this DIC has potential sources including diffuse source inputs from the dissolution of concrete, point sources such as trade effluents and landfill leachates, and bedrock derived carbonates relocated to the soil dissolution zone by urban development. (6) DIC in rural SW England demonstrates that spatial variability in DIC can be attributed to variations in geology; but that DIC concentrations in the SW England rivers dataset are typically lower than the urbanized Tyne catchments despite the presence of carbonate bedrock in many of the sample catchments in the SW England dataset. (7

  20. Preferential flow and mixing process in the chemical recharge in subsurface catchments: observations and modeling

    NASA Astrophysics Data System (ADS)

    Gascuel-Odoux, C.; Rouxel, M.; Molenat, J.; Ruiz, L.; Aquilina, L.; Faucheux, M.; Labasque, T.; Sebilo, M.

    2012-04-01

    Shallow groundwater that develops on hillslopes is the main compartment in headwater catchments for flow and solute transport to rivers. Although spatial and temporal variations in its chemical composition are reported in the literature, there is no coherent description of the way these variations are organized, nor is there an accepted conceptual model for the recharge mechanisms and flows in the groundwater involved. We instrumented an intensive farming and subsurface dominant catchment located in Oceanic Western Europe (Kerbernez, Brittany, France), a headwater catchment included in the Observatory for Research on Environment AgrHyS (Agro-Hydro-System) and a part of the French Network of catchments for environmental research (SOERE RBV focused on the Critical Zone). These systems are strongly constrained by anthropogenic pressures (agriculture) and are characterized by a clear non-equilibrium status. A network of 42 nested piezometers was installed along a 200 m hillslope allowing water sampling along two transects in the permanent water table as well as in what we call the "fluctuating zone", characterized by seasonal alternance of saturated and unsaturated conditions. Water composition was monitored at high frequency (weekly) over a 3-year period for major anion composition and over a one year period for detailed 15N, CFC, SF6 and other dissolved gases. The results demonstrated that (i) the anionic composition in water table fluctuation zone varied significantly compared to deeper portions of the aquifer on the hillslope, confirming that this layer constitutes a main compartment for the mixing of new recharge water and old groundwater, (ii) seasonally, the variations of 15N and CFC are much higher during the recharge period than during the recession period, confirming the preferential flow during early recharge events, iii) variations of nitrate 15N and O18 composition was suggesting any significant denitrification process in the fluctuating zone, confirming

  1. Changing climate and nutrient transfers: Evidence from high temporal resolution concentration-flow dynamics in headwater catchments.

    PubMed

    Ockenden, M C; Deasy, C E; Benskin, C McW H; Beven, K J; Burke, S; Collins, A L; Evans, R; Falloon, P D; Forber, K J; Hiscock, K M; Hollaway, M J; Kahana, R; Macleod, C J A; Reaney, S M; Snell, M A; Villamizar, M L; Wearing, C; Withers, P J A; Zhou, J G; Haygarth, P M

    2016-04-01

    We hypothesise that climate change, together with intensive agricultural systems, will increase the transfer of pollutants from land to water and impact on stream health. This study builds, for the first time, an integrated assessment of nutrient transfers, bringing together a) high-frequency data from the outlets of two surface water-dominated, headwater (~10km(2)) agricultural catchments, b) event-by-event analysis of nutrient transfers, c) concentration duration curves for comparison with EU Water Framework Directive water quality targets, d) event analysis of location-specific, sub-daily rainfall projections (UKCP, 2009), and e) a linear model relating storm rainfall to phosphorus load. These components, in combination, bring innovation and new insight into the estimation of future phosphorus transfers, which was not available from individual components. The data demonstrated two features of particular concern for climate change impacts. Firstly, the bulk of the suspended sediment and total phosphorus (TP) load (greater than 90% and 80% respectively) was transferred during the highest discharge events. The linear model of rainfall-driven TP transfers estimated that, with the projected increase in winter rainfall (+8% to +17% in the catchments by 2050s), annual event loads might increase by around 9% on average, if agricultural practices remain unchanged. Secondly, events following dry periods of several weeks, particularly in summer, were responsible for high concentrations of phosphorus, but relatively low loads. The high concentrations, associated with low flow, could become more frequent or last longer in the future, with a corresponding increase in the length of time that threshold concentrations (e.g. for water quality status) are exceeded. The results suggest that in order to build resilience in stream health and help mitigate potential increases in diffuse agricultural water pollution due to climate change, land management practices should target

  2. Changing climate and nutrient transfers: Evidence from high temporal resolution concentration-flow dynamics in headwater catchments.

    PubMed

    Ockenden, M C; Deasy, C E; Benskin, C McW H; Beven, K J; Burke, S; Collins, A L; Evans, R; Falloon, P D; Forber, K J; Hiscock, K M; Hollaway, M J; Kahana, R; Macleod, C J A; Reaney, S M; Snell, M A; Villamizar, M L; Wearing, C; Withers, P J A; Zhou, J G; Haygarth, P M

    2016-04-01

    We hypothesise that climate change, together with intensive agricultural systems, will increase the transfer of pollutants from land to water and impact on stream health. This study builds, for the first time, an integrated assessment of nutrient transfers, bringing together a) high-frequency data from the outlets of two surface water-dominated, headwater (~10km(2)) agricultural catchments, b) event-by-event analysis of nutrient transfers, c) concentration duration curves for comparison with EU Water Framework Directive water quality targets, d) event analysis of location-specific, sub-daily rainfall projections (UKCP, 2009), and e) a linear model relating storm rainfall to phosphorus load. These components, in combination, bring innovation and new insight into the estimation of future phosphorus transfers, which was not available from individual components. The data demonstrated two features of particular concern for climate change impacts. Firstly, the bulk of the suspended sediment and total phosphorus (TP) load (greater than 90% and 80% respectively) was transferred during the highest discharge events. The linear model of rainfall-driven TP transfers estimated that, with the projected increase in winter rainfall (+8% to +17% in the catchments by 2050s), annual event loads might increase by around 9% on average, if agricultural practices remain unchanged. Secondly, events following dry periods of several weeks, particularly in summer, were responsible for high concentrations of phosphorus, but relatively low loads. The high concentrations, associated with low flow, could become more frequent or last longer in the future, with a corresponding increase in the length of time that threshold concentrations (e.g. for water quality status) are exceeded. The results suggest that in order to build resilience in stream health and help mitigate potential increases in diffuse agricultural water pollution due to climate change, land management practices should target

  3. Pesticide uses and transfers in urbanised catchments.

    PubMed

    Blanchoud, Hélène; Farrugia, Frédéric; Mouchel, Jean Marie

    2004-05-01

    An investigation on herbicide uses in two semi-urban catchments was performed simultaneously with sampling campaigns at six stations inside both watersheds from April to July 1998. Urban uses of herbicides exceeded agricultural uses, and transfer coefficients were also higher in urban areas. Therefore, the most used product in urban areas (diuron) was by far the most contaminating product. Householders accounted for 30% of all uses. The highest measured diuron concentration in water surface was 8.7 microg l(-1) due to its use on impervious surfaces. Compared to EEC standards for drinking water production (0.1 microg l(-1)), it is clear that suburban uses of herbicides may severely endanger drinking water production from river water.

  4. Simiyu River catchment parameterization using SWAT model

    NASA Astrophysics Data System (ADS)

    Mulungu, Deogratias M. M.; Munishi, Subira E.

    The paper presents advances in hydrologic modelling of the Simiyu River catchment using the soil and water assessment tool (SWAT). In this study, the SWAT model set-up and subsequent application to the catchment was based on high-resolution data such as land use from 30 m LandSat TM Satellite, 90 m Digital Elevation Model and Soil from Soil and Terrain Database for Southern Africa (SOTERSAF). The land use data were reclassified based on some ground truth maps using IDRISI Kilimanjaro software. The Soil data were also reclassified manually to represent different soil hydrologic groups, which are important for the SWAT model set-up and simulations. The SWAT application first involved analysis of parameter sensitivity, which was then used for model auto-calibration that followed hierarchy of sensitive model parameters. The analysis of sensitive parameters and auto-calibration was achieved by sensitivity analysis and auto-calibration options, which are new in the recent version of SWAT, SWAT 2005. The paper discusses the results of sensitivity and auto-calibration analyses, and present optimum model parameters, which are important for operation and water/land management studies (e.g. rain-fed agriculture and erosion/sediment and pollutant transport) in the catchment using SWAT. The river discharge estimates from this and a previous study were compared so as to evaluate performances of the recent hydrologic simulations in the catchment. Results showed that surface water model parameters are the most sensitive and have more physical meaning especially CN2 (the most sensitive) and SOL_K. Simulation results showed more or less same estimate of river flow at Ndagalu gauging station. The model efficiencies ( R2%) in this and in the pervious study during calibration and validation periods were, respectively, 13.73, 14.22 and 40.54, 36.17. The low level of model performance achieved in these studies showed that other factors than the spatial land data are greatly important for

  5. Flow process in a rangeland catchment in California

    SciTech Connect

    Salve, R.; Tokunaga, Tetsu K.

    2000-09-01

    Emerging hydrology-related issues in California grasslands have directed attention towards the need to understand subsurface water flow within a complex, dynamic system. Tensiometers and neutron probes evaluated the subsurface hydrology of a rangeland catchment. Hydrological processes within the catchment varied both in space and time. Spatial variability was evident along the vertical profile and between the catchment slopes. Temporal variability in processes coincided with the seasons (i.e., wet winter, dry summer, and spring). From a water-balance equation developed for the catchment, we determined that there was significant variability both spatial and temporal in the amount of soil moisture lost to evapotranspiration and deep seepage. During the 16 month monitoring period there was a total of 50 cm of rainfall that fell in the catchment of which 9-55 cm was lost to evaporation and 37-79 cm to deep seepage. A simple deduction of the losses (evaporation and deep seepage) from the input (rainfall) shows that all monitored locations had a substantial decrease in the amount of water that was stored in the soil profile.

  6. Catchment systems science and management: from evidence to resilient landscapes

    NASA Astrophysics Data System (ADS)

    Quinn, Paul

    2014-05-01

    There is an urgent need to reassess both the scientific understanding and the policy making approaches taken to manage flooding, water scarcity and pollution in intensively utilised catchments. Many European catchments have been heavily modified and natural systems have largely disappeared. However, working with natural processes must still be at the core of any future management strategy. Many catchments have greatly reduced infiltration rates and buffering capacity and this process needs to be reversed. An interventionist and holistic approach to managing water quantity and quality at the catchment scale is urgently required through the active manipulation of natural flow processes. Both quantitative (field experiments and modelling) and qualitative evidence (local knowledge) is required to demonstrate that catchment have become 'unhealthy'. For example, dense networks of low cost instrumentation could provide this multiscale evidence and, coupled with stakeholder knowledge, build a comprehensive understanding of whole system function. Proactive Catchment System Management is an interventionist approach to altering the catchment scale runoff regime through the manipulation of landscape scale hydrological flow pathways. Many of the changes to hydrological processes cannot be detected at the catchment scale as the primary causes of flooding and pollution. Evidence shows it is the land cover and the soil that are paramount to any change. Local evidence shows us that intense agricultural practices reduce the infiltration capacity through soil degradation. The intrinsic buffering capacity has also been lost across the landscape. The emerging hydrological process is one in which the whole system responds too quickly (driven by near surface and overland flow processes). The bulk of the soil matrix is bypassed during storm events and there is little or no buffering capacity in the riparian areas or in headwater catchments. The prospect of lower intensity farming rates is

  7. Seasonal trends in stable water isotopes and estimation of mean transit times for mesoscale catchments with mixed landuse in northeastern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Chutko, Krys; James, April; McConnell, Chris; Yao, Huaxia

    2015-04-01

    Northern Ontario Precambrian shield basins include considerable surface water (large lakes, wetlands), moderate relief (e.g. 400 m), variation in surficial geology (clay belt soils, glacial tills), and increasingly, the influence of human landuse impact (e.g. urban, agriculture) that are characteristic of northern Ontario, Quebec and parts of Scandinavia. In northeastern Ontario, Lake Nipissing and the French River are part of an important headwater tributary that flows into Georgian Bay, Lake Huron. Lake Nipissing and its 13,000 km2 watershed is the source of water to local municipalities and First Nation communities, home to a First Nations fishery and 5{%} of Ontario's recreational angling, and contributes an estimated 100 million/year to Ontario's economy. In 2012, in response to increasing concerns over water quality and its implications for ecological and economic systems, and limited study of water quality and quantity in the Sturgeon River-Lake Nipissing-French River (SNF) basin, we initiated a stable water isotope (SWI) study to examine how landscape characteristics influence streamflow generation at scales where both natural landscape variation (e.g. surface reservoirs, clay belt soils, forested headwaters) and anthropogenic stressors (urbanization, agriculture) are anticipated to influence water quantity and quality. Bi-weekly to monthly monitoring of SWI in precipitation and streamflow began in January 2013. Catchments range in size from 35 to 6,875 km^2, with a median size of 197 km2 and median gradients from 1 to 8{%}. Landcover includes considerable agricultural (0-18{%}) and/or urban (0-47{%}) area. Lakes and wetlands together cover 10-25{%} of catchment area, with large individual lakes (e.g. Lake Temagami) acting as important reservoir storage for hydropower generation. The existing SWI dataset includes 2 years of streamflow data for 5 of the larger catchments, > 1 year for an additional 2 catchments, and 2 years of seasonal ice-off data for the

  8. Flood generation and sediment transport in experimental catchments affected by land use changes in the central Pyrenees

    NASA Astrophysics Data System (ADS)

    García-Ruiz, José M.; Regüés, David; Alvera, Bernardo; Lana-Renault, Noemí; Serrano-Muela, Pilar; Nadal-Romero, Estela; Navas, Ana; Latron, Jérôme; Martí-Bono, Carlos; Arnáez, José

    2008-07-01

    SummaryThree small catchments (<2.5 km2 in size) were monitored in the Central Spanish Pyrenees to analyse the hydrological and geomorphological consequences of different land covers under the same climate scenario: (i) the San Salvador catchment represents a dense, undisturbed forest environment; (ii) the Arnás catchment corresponds to an old, abandoned cultivated area subjected to colonisation by plants; and (iii) the Araguás catchment consists in part of active badlands. The obtained results demonstrate that plant cover is a key factor, influencing (i) the seasonality and intensity of floods, (ii) the annual volume of discharge, and (iii) the suspended sediment concentration, total sediment yield and proportions of different types of sediment. The forested catchment tends to generate floods in late winter and spring, when the water table is close to the surface, and flood hydrographs are generally gentle, with solutes largely prevailing over suspended sediment. The old agricultural catchment produces in average twice the number of floods as that recorded in the forested catchment, with the highest floods recorded in autumn and spring; this catchment behaves as a complex mosaic, with a large spatial and temporal variability in terms of both sediment- and runoff-contributing areas; in addition, suspended sediment is equal to solutes, and bedload reaches a relatively high importance. Finally, the badland catchment reacts to all rainstorm events throughout the year, with a high suspended-sediment load. Sediment outputs from the Araguás catchment are two orders of magnitude higher than in the Arnás and San Salvador catchments. Suspended sediment concentrations exceed 300 g l-1 in the Araguás catchment, whereas they rarely exceed 20 g l-1 in the Arnás and rarely 1.5 g l-1 in the San Salvador catchment.

  9. Controls of catchments` sub-storage contributions to dynamic water quality patterns in the stream network

    NASA Astrophysics Data System (ADS)

    Schuetz, Tobias; Maike Hegenauer, Anja

    2016-04-01

    Water quality is usually observed either continuously at a few stations within a catchment or with few snapshot sampling campaigns throughout the whole stream network. Although we know that the depletion of catchment sub-storages can vary throughout the stream network according to their actual water content (spatial variability of actual storage conditions can be caused amongst others by unevenly distributed rainfall, storage size or spatial differences in soil characteristics and land use), we know little about the impact of this process on spatial water quality patterns. For summer low flow recession periods, when stream water composition can be crucial for aquatic ecosystem conditions and the exceedance of water quality thresholds, knowledge on the controls of the dynamic interplay of catchment storages and stream water composition might improve water quality management and the implementation of corresponding mitigation measures. We studied this process throughout the stream network of a first-order agricultural headwater catchment in south-western Germany during two summer low flow recession periods. The underlying geology of the study area is a deep layer of aeolian loess, whilst the dominating soil is a silty calcaric regosol with gleizations in the colluvium. The land use in the catchment is dominated by viniculture (63 %) and arable crops (18 %). Due to the dense drainpipe network within the catchment we could identify 12 sub-catchments contributing during summer low flow recession periods to total stream discharge. We continuously observed discharge, electrical conductivity and water temperatures for 8 of the sub-catchments and at the catchment outlet. This data set was accomplished by 10 snapshot campaigns where we sampled for water temperatures, electrical conductivity, major ions, pH and O2 throughout the stream network. Using either discharge concentration relationships or time dependent functions, we derived continuous export rates for all measures in

  10. Climate, Hydrochemistry and Economics of Surface-water Systems (CHESS): adding a European dimension to the catchment modelling experience developed under LOIS.

    PubMed

    Boorman, David B

    2003-10-01

    One achievement of the UK Land-Ocean Interaction Study (LOIS) was to link dynamic biogeochemical models of different domains, e.g. rivers, estuaries and coastal waters, and to use the linked model to investigate possible changes from the current status that might occur in the future, for example as the result of climate change. The Climate, Hydrochemistry and Economics of Surface-water Systems (CHESS) project has taken the LOIS methodology forward by exploring possible impacts of climate change on the water quality of European rivers, with the purpose of informing future catchment management. This was achieved by the application of a standard modelling framework to a set of five European catchments located in Finland (River Vantaa), United Kingdom (Yorkshire Ouse), Belgium (Dender), Italy (Enza) and Greece (Pinios). Baseline conditions were simulated using existing meteorological data from the period 1961-1990, and in all cases the modelling framework was able to reproduce key features of the flow and water quality regimes of the study catchments. The modelling framework comprised two models. The Soil Water Assessment Tool (SWAT) was used to simulate water and chemical fluxes, primarily nutrients and sediment, generated from diffuse areas and thereby provide sub-catchment inputs to an in-stream water quality model, the Quality Evaluation and Simulation Tool for River Systems (QUESTOR). QUESTOR integrated the diffuse runoff along the channel network, together with point source discharges from industry and sewage treatment works, and water abstractions for public supply, industry and agriculture. The modelling framework has been used for the baseline conditions, along with a set of six climate scenarios. These comprised four scenarios derived from different general circulation models (GCMs) representing the 2050s, and three scenarios from the same GCM representing the 2020s, 2050s and 2080s, with one scenario in both groups. Results have been explored using a range

  11. The nitrate export in subtropical mountainous catchment: implication for land use change impact

    NASA Astrophysics Data System (ADS)

    Huang, J.-C.; Lee, T.-Y.; Kao, S.-J.; Hsu, S.-C.; Lin, H.-J.; Peng, T.-R.

    2010-12-01

    Agricultural activity is the dominant factor affecting water quality and nitrate export, which causes eutrophication and episodic acidification in downstream water bodies (e.g., reservoirs, lakes, and coastal zones). However, in subtropical mountainous areas such environmental impact due to the land use change was rarely documented. In this study, we investigated 16 sub-catchments during 2007 and 2008 in the Chi-Chia-Wan catchment where is the sole habitat for the endemic species, Formosan landlocked salmon (Oncorhynchus masou formosanus). The results revealed that the NO3-N concentration in pristine catchments varied from 0.144 to 0.151 mg/L without significant seasonal variation. This concentration was comparable with other forestry catchments around the world. However, the annual nitrate export was around 375.3-677.1 kg/km2/yr, much higher than other catchments due to the greater amount of rainfall. This is an important baseline for comparisons with other climate areas. As for the impact of agricultural activities, the catchments with some human disturbance, ~5.2% of the catchment area, might yield 5947.2 kg N/km2/yr - over 10-times higher than that of pristine catchment. Such high export caused by such a low level of disturbance might indicate that subtropical mountainous area is highly sensitive to agricultural activities. As for the land-use effect on nitrate yield, the forestry land might yield 488.5 ± 325.1 kg/km2/yr and the vegetable farm could yield 298 465.4 ± 3347.2 kg/km2/yr - 1000-times greater than the forestry. The estimated nitrate yields for land use classes were a crucial basis and useful for the land manager to assess the possible impacts (e.g., non-point source pollution evaluation and the recovery of land expropriation).

  12. SPATIAL VARIABILITY OF DRY SPELLS A spatial and temporal rainfall analysis of the Pangani basin and Makanya catchment, Tanzania

    NASA Astrophysics Data System (ADS)

    Fischer, B. M. C.; Savenije, H. H. G. H. H. G.

    2009-04-01

    Rainfall and soil moisture are key parameters for food production and which are spatial and temporal variable. In a ever growing world the stress on water for food production increases. Farmers especially in semi arid regions with rain fed agriculture are more often forced to make away from "A" locations where water is available to water scares "B" or worse locations. Obliged by availability of arable land, tradition, customs, natural 6th sense or farmers cleverness. To improve agricultural yields a better water resource planning ,supported by system knowledge, is needed. This study describes a Markov bases dry spell tool which can fulfil in this need. By making use of Markov properties of rainfall, the temporal variability has been analysed. Plotting the derived seasonal transition probabilities vs. the rainfall amount a spatial variable power function could be derived. The spatial and temporal knowledge of rainfall was combined in the Markov based dry spell tool. For a given probability the tool provides a dry spell map. The dry spell tool is a powerful tool to assess vulnerability of dry spells based on meteorological data. The meteorological dry spell in combination with the agricultural dry spell length or critical dry spell length, which is determined by soil and vegetation characteristics, risk maps of an area to the vulnerability of dry spells could be made. The tool was applied in a case study in the Makanya catchment and showed: Compared to the lower middle part of the catchment, high altitude parts of the catchment receive higher amounts of rainfall, have shorter meteorological dry spells and are more resilient to dry spells due to their soil and vegetation characteristics. As a result one can state that farmers living in mountainous areas are blessed by their location. They receive more rain and have lower probability of long dry spells, higher probability of crop success and a higher probability of high yields, in contrast to the farmers in the valley

  13. Impact of climate change on Vea Catchment and irrigation scheme in Upper East Region of Ghana

    NASA Astrophysics Data System (ADS)

    Limantol, A. M.; Afouda, A.; Lenartz, B.; Agyare, W. A.

    2015-12-01

    The study assessed the future impact of climate change (CC) on water resources availability in the Vea catchment of the Upper East of Ghana for irrigated agriculture. A questionnaire survey targeting farmers with at least 30 years of farming experience in the area was conducted in 6 of the 11 agricultural extension areas (EAs) in the catchment (305 km2). Data on perception about CC, adaptation measures and barriers were captured by the questionnaire. Focus group discussions were also conducted in each of the 6 selected EAs. Additionally, 8 stakeholder institutions were interviewed. Climatic data over a period of 1972 to 2012 from four stations were evaluated. Future climate simulations from 16 Regional Climate Models were used to predict future streamflow with IHACRES runoff model. The WEAP model was used to assess future water availability in two future time slices, 2021-2050 and 2071-2100. About 89.5% of 466 questioned farmers believe that temperature increased over the past 30 years, while over 94% of farmers believe that amount of rainfall; duration, intensity and rainy days decreased. Over 96% of farmers believe that their farms are extremely vulnerable to decreased rainfall, droughts and changed timing of rainfall. While analysis of climatic data shows rising trend in temperature, no long-term trend and no variability changes in both annual and monthly rainfall amounts were evident. High evapotranspiration due to rising temperature may have triggered the farmers' perception about rainfall trend and droughts in the area. Several measures such as cropping of new varieties, changing farm locations and use of more fertilizer have been employed by farmers to adjust to CC. It was found that CC could cause severe shortfall in water availability for irrigation and domestic supply in the coming decades. Government needs to assist farmers with alternative irrigation schemes and drought resistant crops in order to sustain livelihoods of farmers on the long run.

  14. Soil moisture - resistivity relation at the plot and catchment scale

    NASA Astrophysics Data System (ADS)

    Calamita, Giuseppe; Perrone, Angela; Satriani, Antonio; Brocca, Luca; Moramarco, Tommaso

    2010-05-01

    The key role played by soil moisture in both Global Hydrological Cycle and Earth Radiation Budget has been claimed by numerous authors during past decades. The importance of this environmental variable is evident in several natural processes operating in a wide range of spatial and temporal scales. At continental and regional scales soil moisture influences the evapotranspiration process and so acts indirectly on the climate processes; at middle scale is one of the major controls of the infiltration-runoff soil response during rainfall events; at small scales the knowledge of soil moisture evolution is crucial for precision agriculture and the associated site-specific management practices. However, soil moisture exhibits an high temporal and spatial variability and this is even more evident in the vadose zone. Thus, in order to better understand the soil moisture dynamics it is desirable to capture its behavior at different temporal and/or spatial scales. Traditional in situ methods to measure soil moisture like TDR can be very precise and allows an high temporal resolution. Recently, the application in field of geophysical methods for capturing soil moisture spatial and temporal variations has demonstrated to be a promising tool for hydro-geological studies. One of the major advantages relies on the capability to capture the soil moisture variability at larger scales, that is decametric or hectometric scale. In particular, this study is based on the simultaneous application of the electrical resistivity and the TDR methods. We present two study cases that differ from each other by both spatial and temporal resolution. For the first one, simultaneous measurements obtained during four different period of the year and carried out within a test catchment (~60 km2) in Umbria region (central Italy) were analyzed. The second case concerns almost three months of simultaneous measurements carried out in a small test site ( <200 m2), located in the garden of IMAA

  15. Investigating the relationship between hydrologic model parameters and physical catchment metrics for improved modeling in data-sparse regions

    NASA Astrophysics Data System (ADS)

    Marshall, L. A.; Weber, K.; Greenwood, M. C.; Smith, T. J.; Sharma, A.

    2013-12-01

    In regions with sparse data, hydrologic modelers often endeavor to transfer information from longer-term gauged catchments to those with limited data. In this approach, it is assumed that these gauged ';surrogates' can provide useful information for those ungauged catchments that are hydrologically similar. One recent method aims to pool catchments with similar hydrologic behavior so that models may be more convincingly applied to catchments without detailed observations. An ongoing concern, however, is how to identify catchments that behave similarly in terms of hydrologic processes and thus classify catchments in terms of their modeled behavior. In this study, we investigate the complex relationship between physical catchment characteristics, hydrologic signatures, and optimized hydrologic models for regions with sparse data. We make use of a data set of over 150 catchments located in southeast Australia with basic climatic and hydrologic time series and limited information on physical catchment characteristics. A conceptual rainfall-runoff model is calibrated for each of the catchments and hierarchical clustering is performed to link catchments based on their calibrated model parameters. We then aim to isolate the physical and spatial metrics that are common to each member of a given cluster with the ultimate goal of providing insight to the selection of gauged surrogates for ungauged watersheds. A Permutational Multivariate Analysis of Variance (perMANOVA) is performed to determine if significant differences exist between clusters according to certain physical and climatic catchment descriptors. We further analyze the data using a classification tree to determine the extent to which cluster membership can be predicted by basic catchment descriptors. Our results show support for the 'surrogate' technique for hydrologic regionalization by demonstrating that the clusters, though built using calibrated model parameters, are related to clear differences in the

  16. Catchment Very-High Frequency Hydrochemistry: the Critex Chemical House

    NASA Astrophysics Data System (ADS)

    Floury, P.; Gaillardet, J.; Tallec, G.; Blanchouin, A.; Ansart, P.

    2015-12-01

    Exploring the variations of river quality at very high frequency is still a big challenge that has fundamental implications both for understanding catchment ecosystems and for water quality monitoring. Within the French Critical Zone program CRITEX, we have proposed to develop a prototype called "Chemical House", applying the "lab on field" concept to one of the stream of the Orgeval Critical Zone Observatory. The Orgeval catchment (45 km2) is part of the Critical Zone RBV ("Réseau des bassins versants") network. It is a typical temperate agricultural catchment that has been intensively monitored for the last 50 years for hydrology and nutrient chemistry. Agricultural inputs and land use are also finely monitored making Orgeval an ideal basin to test the response of the Critical Zone to agricultural forcing. Geology consists of a typical sedimentary basin of Cenozoic age with horizontal layers of limestones, silcrete and marls, covered by a thin loamy layer. Two main aquifers are present within the catchment: the Brie and the Champigny aquifers. Mean runoff is 780 mm/yr. The Chemical House is a fully automated lab and installed directly along the river, which performs measurement of all major dissolved elements such as Na, Cl, Mg, Ca, NO3, SO4 and K every half hour. It also records all physical parameters (Temperature, pH, conductivity, O2 dissolved, Turbidity) of the water every minute. Orgeval Chemical House started to measure river chemistry on June 12, 2015 and has successfully now recorded several months of data. We will present the architecture of the Chemical House and the first reproducibility and accuracy tests made during the summer drought 2015 period. Preliminary results show that the chemical house is recoding significant nychtemeral (day/night) cycles for each element. We also observe that each element has its own behaviour along a day. First results open great prospects.

  17. Suspended sediment apportionment in a South-Korean mountain catchment

    NASA Astrophysics Data System (ADS)

    Birkholz, Axel; Meusburger, Katrin; Park, Ji-Hyung; Alewell, Christine

    2016-04-01

    Due to the rapid agricultural expansion and intensification during the last decades in South-Korea, large areas of hill slope forests were transformed to paddies and vegetable fields. The intensive agriculture and the easily erodible soils in our catchment are a major reason for the increased erosion causing suspended sediments to infiltrate into the close drinking water reservoir. The drinking water reservoir Lake Soyang provides water supply for over ten million people in Seoul. Landscape managers need to know the exact origin of these sediments before they can create landscape amelioration schemes. We applied a compound-specific stable isotope (CSSI) approach (Alewell et al., 2015) to apportion the sources of the suspended sediments between forest and agricultural soil contribution to the suspended sediments in a different catchment and applied the same approach to identify and quantify the different sources of the suspended sediments in the river(s) contributing to Lake Soyang. We sampled eight soil sites within the catchment considering the different landuse types forest, rice paddies, maize and vegetables. Suspended sediments were sampled at three outlets of the different sub-catchments. Soils and suspended sediments are analysed for bulk carbon and nitrogen isotopes, compound-specific carbon isotopes of plant-wax derived long-chain fatty acids and long-chain n-alkanes. Fatty acid and alkane isotopes are then used in mixing calculations and the mixing model software IsoSource to find out the contribution of the different source soils to the suspended sediments. We present first data of the source soils and the suspended sediments. C. Alewell, A. Birkholz, K. Meusburger, Y. Schindler-Wildhaber, L. Mabit, 2015. Sediment source attribution from multiple land use systems with CSIA. Biogeosciences Discuss. 12: 14245-14269.

  18. Simulation of pesticide dissipation in soil at the catchment scale over 23 years

    NASA Astrophysics Data System (ADS)

    Queyrel, Wilfried; Florence, Habets; Hélène, Blanchoud; Céline, Schott; Laurine, Nicola

    2014-05-01

    Pesticide applications lead to contamination risks of environmental compartments causing harmful effects on water resource used for drinking water. Pesticide fate modeling is assumed to be a relevant approach to study pesticide dissipation at the catchment scale. Simulations of five herbicides (atrazine, simazine, isoproturon, chlortoluron, metolachor) and one metabolite (DEA) were carried out with the crop model STICS over a 23-year period (1990-2012). The model application was performed using real agricultural practices over a small rural catchment (104 km²) located at 60km east from Paris (France). Model applications were established for two crops: wheat and maize. The objectives of the study were i) to highlight the main processes implied in pesticide fate and transfer at long-term; ii) to assess the influence of dynamics of the remaining mass of pesticide in soil on transfer; iii) to determine the most sensitive parameters related to pesticide losses by leaching over a 23-year period. The simulated data related to crop yield, water transfer, nitrates and pesticide concentrations were first compared to observations over the 23-year period, when measurements were available at the catchment scale. Then, the evaluation of the main processes related to pesticide fate and transfer was performed using long-term simulations at a yearly time step and monthly average variations. Analyses of the monthly average variations were oriented on the impact of pesticide application, water transfer and pesticide transformation on pesticide leaching. The evolution of the remaining mass of pesticide in soil, including the mobile phase (the liquid phase) and non-mobile (adsorbed at equilibrium and non-equilibrium), was studied to evaluate the impact of pesticide stored in soil on the fraction available for leaching. Finally, a sensitivity test was performed to evaluate the more sensitive parameters regarding the remaining mass of pesticide in soil and leaching. The findings of the

  19. Evaluation of TOPLATS on three Mediterranean catchments

    NASA Astrophysics Data System (ADS)

    Loizu, Javier; Álvarez-Mozos, Jesús; Casalí, Javier; Goñi, Mikel

    2016-08-01

    Physically based hydrological models are complex tools that provide a complete description of the different processes occurring on a catchment. The TOPMODEL-based Land-Atmosphere Transfer Scheme (TOPLATS) simulates water and energy balances at different time steps, in both lumped and distributed modes. In order to gain insight on the behavior of TOPLATS and its applicability in different conditions a detailed evaluation needs to be carried out. This study aimed to develop a complete evaluation of TOPLATS including: (1) a detailed review of previous research works using this model; (2) a sensitivity analysis (SA) of the model with two contrasted methods (Morris and Sobol) of different complexity; (3) a 4-step calibration strategy based on a multi-start Powell optimization algorithm; and (4) an analysis of the influence of simulation time step (hourly vs. daily). The model was applied on three catchments of varying size (La Tejeria, Cidacos and Arga), located in Navarre (Northern Spain), and characterized by different levels of Mediterranean climate influence. Both Morris and Sobol methods showed very similar results that identified Brooks-Corey Pore Size distribution Index (B), Bubbling pressure (ψc) and Hydraulic conductivity decay (f) as the three overall most influential parameters in TOPLATS. After calibration and validation, adequate streamflow simulations were obtained in the two wettest catchments, but the driest (Cidacos) gave poor results in validation, due to the large climatic variability between calibration and validation periods. To overcome this issue, an alternative random and discontinuous method of cal/val period selection was implemented, improving model results.

  20. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazi

    NASA Astrophysics Data System (ADS)

    Costa, M. H.; Dias, L. C. P.; Macedo, M.; Coe, M. T.; Neill, C.

    2014-12-01

    This study assess the influence of land cover changes on evapotranspiration and streamflow in small catchments in the Upper Xingu River Basin (Mato Grosso state, Brazil). Streamflow was measured in catchments with uniform land use for September 1, 2008 to August 31, 2010. We used models to simulate evapotranspiration and streamflow for the four most common land cover types found in the Upper Xingu: tropical forest, cerrado (savanna), pasture, and soybean croplands. We used INLAND to perform single point simulations considering tropical rainforest, cerrado and pasturelands, and AgroIBIS for croplands. Converting natural vegetation to agriculture substantially modifies evapotranspiration and streamflow in small catchments. Measured mean streamflow in soy catchments was about three times greater than that of forest catchments, while the mean annual amplitude of flow in soy catchments was more than twice that of forest catchments. Simulated mean annual evapotranspiration was 39% lower in agricultural ecosystems (pasture and soybean cropland) than in natural ecosystems (tropical rainforest and cerrado). Observed and simulated mean annual streamflows in agricultural ecosystems were more than 100% higher than in natural ecosystems. The accuracy of the simulations is improved by using field-measured soil hydraulic properties. The inclusion of local measurements of key soil parameters is likely to improve hydrological simulations in other tropical regions.

  1. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazi

    NASA Astrophysics Data System (ADS)

    Costa, M. H.; Dias, L. C. P.; Macedo, M.; Coe, M. T.; Neill, C.

    2015-12-01

    This study assess the influence of land cover changes on evapotranspiration and streamflow in small catchments in the Upper Xingu River Basin (Mato Grosso state, Brazil). Streamflow was measured in catchments with uniform land use for September 1, 2008 to August 31, 2010. We used models to simulate evapotranspiration and streamflow for the four most common land cover types found in the Upper Xingu: tropical forest, cerrado (savanna), pasture, and soybean croplands. We used INLAND to perform single point simulations considering tropical rainforest, cerrado and pasturelands, and AgroIBIS for croplands. Converting natural vegetation to agriculture substantially modifies evapotranspiration and streamflow in small catchments. Measured mean streamflow in soy catchments was about three times greater than that of forest catchments, while the mean annual amplitude of flow in soy catchments was more than twice that of forest catchments. Simulated mean annual evapotranspiration was 39% lower in agricultural ecosystems (pasture and soybean cropland) than in natural ecosystems (tropical rainforest and cerrado). Observed and simulated mean annual streamflows in agricultural ecosystems were more than 100% higher than in natural ecosystems. The accuracy of the simulations is improved by using field-measured soil hydraulic properties. The inclusion of local measurements of key soil parameters is likely to improve hydrological simulations in other tropical regions.

  2. Calibration at regional scale for rainfall-runoff modeling in ungauged catchments.

    NASA Astrophysics Data System (ADS)

    Montosi, E.; Montanari, A.; Toth, E.; Parajka, J.; Blöschl, G.

    2012-04-01

    The objective of this study is to explore one possible solution to optimise the parameters of rainfall-runoff models in ungauged catchments. We propose a cross-calibration procedure based on the adoption, for selected pairs of catchments, of a unique, space- invariant parameter set, which can be identified by using information that refers to gauged catchments in the same region. A basin in turn in the study region is selected and identified as target catchment and treated as ungauged. We will refer to all the remaining catchments in the same region as the donors. The R-R model is calibrated on each donor in turn, therefore identifying the donor which provides the most reliable parameter set. Then, a similarity measure is elaborated to assist in the selection of the most performing donor catchment, therefore proposing a quantitative criteria to identify the most appropriate information to be used in ungauged conditions. The similarity measure, which depends on geomorphoclimatic behaviours, can be used to identify more than one donor catchment in the case one needs to increase the consistency of the available data-base. We want to analyse the trade-off between assuming the parameters homogeneous in space and adding new information as the cross-calibration evolves. The analysis is performed by referring to the case study of a set of 7 catchments located in Northern Italy.

  3. The Role of Bedrock Groundwater in Rainfall-Runoff Process at Hillslope and Catchment Scales in a Headwater Catchment with Sub-Humid Climate

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Tian, F.; Hu, H.; Tie, Q.

    2014-12-01

    Recent studies have suggested that bedrock groundwater can exert considerable influence on rainfall-runoff process in headwater catchments. However, study of the role of bedrock groundwater on rainfall-runoff process in a headwater catchment is still challenged due to limited direct observation data of bedrock groundwater. In this study, we aimed at characterize the bedrock groundwater's response to rainfall at hillslope and catchment scales in a small headwater catchment with semi-humid climate. We selected a headwater catchment of Miyun Reservoir, which is an important drinking water source of Beijing, as study area. The catchment bedrock is mainly consists of fractured granite. Major chemical constituents and stable isotopic compositions (δ18O, δD) were analyzed roughly monthly from July 2013 to July 2014 for rainwater, spring water and groundwater in the study area and neighboring catchment. Eleven wells with depth ranged from 5 to 26 m were drilled in three slopes to monitor the bedrock water table. Two soil moisture observation locations were arranged in one hillslope, and a weather station was installed to measure soil moisture and rainfall with 10-mintue interval. The recharge mechanism of bedrock groundwater is explored by combined use of hydrometric and hydrochemical approaches.

  4. Influence of land use on hyporheos in catchment of the Jarama River (central Spain)

    NASA Astrophysics Data System (ADS)

    Iepure, S.; Martínez-Hernández, V.; Herrera, S.; de Bustamante, I.; Rasines, R.

    2012-04-01

    The Water Framework Directive (2000) requires integrated assessment of water bodies based on water resources but also the evaluation of land-use catchment effect on chemical and ecological conditions of aquatic ecosystems. The hyporheic zone (HZ) supporting obligate subterranean species are particularly vulnerable in river ecosystems when environmental stress occurs at surface and require management strategies to protect both the stream catchment and the aquifer that feed the stream channel. The influence of catchment land-use in the Jarama basin (central Spain) on river geomorphology and hyporheic zone granulometry, chemical and biological variables inferred from crustacean community biodiversity (species richness, taxonomic distinctness) and ecology was assessed. The study was conducted in four streams from the Madrid metropolitan area under distinct local land-use and water resource protection: i) a preserved forested natural sites where critical river ecosystem processes were unaltered or less altered by human activities, and ii) different degree of anthropogenic impact sites from agriculture, urban industrial and mining activities. The river bed permeability reduction and the increase of low sediment size input associated with changes in geomorphology of the stream channels are greatly affected by land-use changes in the Jarama watershed. Water chemical parameters linked to land-use increase from the natural stream to the urban industrial and agricultural dominated catchment. Principal coordinate analysis (PCO) and multidimensional scaling (MDS) clearly discriminate the pristine sites from forested areas by those under anthropogenic stressors. In streams draining forested areas, groundwater discharge and regular exchange between groundwater and surface water occur due to relatively high permeability of the sediments. Consequently, forested land-use produce sites of high water quality and crustacean richness (both groundwater dwellers and surface

  5. Runoff predictions in ungauged catchments in southeast Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Fapeng; Zhang, Yongqiang; Xu, Zongxue; Liu, Changming; Zhou, Yanchun; Liu, Wenfeng

    2014-04-01

    The Tibetan Plateau (TP) plays a key role on both hydrology and climate for southern and eastern Asia. Improving runoff predictions in ungauged catchments in the TP is critical for surface water hydrology and water resources management in this region. However, a detailed runoff prediction study in this region has not been reported yet. To fill the gap, this study evaluates two regionalization approaches, spatial proximity and physical similarity, for predicting runoff using two rainfall-runoff models (SIMHYD and GR4J). These models are driven by meteorological inputs from eight large non-nested catchments (4000-50,000 km2) in the Yarlung Tsangpo River basin located in southeast TP. For each catchment, the two models are calibrated using data from the first two-thirds of the observation period and validated over the remaining period. The calibrated and validated Nash-Sutcliffe Efficiency of monthly runoff (NSE) varies from 0.73 to 0.93 for the SIMHYD model, and are similar to or slightly better than those obtained for the GR4J model. The incorporation of snowfall-snowmelt processes into the rainfall-runoff models does not noticeably improve the runoff predictions in the study area. The main reason is that monthly runoff is dominated by summer precipitation and snowfall in winter accounts for a small percentage (less than 14%). The results from both models show that the spatial proximity approach marginally outperforms the physical similarity approach and both approaches are better than random selection of a donor catchment. This is consistent with recent regionalization studies carried out in Europe and Australia. The study suggests that conceptual rainfall-runoff models are powerful and simple tools for monthly runoff predictions in large catchments in southeast TP, and incorporation of more catchments into regionalization can further improve prediction skills.

  6. Soil weathering rates in 21 catchments of the Canadian Shield

    NASA Astrophysics Data System (ADS)

    Houle, D.; Lamoureux, P.; Bélanger, N.; Bouchard, M.; Gagnon, C.; Couture, S.; Bouffard, A.

    2012-03-01

    Soil mineral weathering represents an essential source of nutrient base cation (Ca, Mg and K) for forest growth in addition to provide a buffering power against precipitation acidity for soils and surface waters. Weathering rates of base cations were obtained for 21 catchments located within the temperate and the boreal forest of the Canadian Shield with the geochemical model PROFILE. Weathering rates ranged from 0.58 to 4.46 kmolc ha-1 yr-1 and their spatial variation within the studied area was mostly in agreement with spatial variations in soil mineralogy. Weathering rates of Ca and Mg were significantly correlated (r = 0.80 and 0.64) with their respective lake concentrations. Weathering rates of K and Na did not correlate with lake concentrations of K and Na. The modeled weathering rates for each catchment were also compared with estimations of net catchment exportations. The result show that modeled weathering rates of Ca were not significantly different than the net catchment exportations while modeled weathering rates of Mg were higher by 51%. Larger differences were observed for K and Na weathering rates that were significantly different than net catchment exportations being 6.9 and 2.2 times higher than net exportations, respectively. The results for K were expected given its high reactivity with biotic compartments and suggest that most of the K produced by weathering reactions was retained within soil catchments and/or above ground biomass. This explanation does not apply to Na, however, which is a conservative element in forest ecosystems because of the insignificant needs of Na for soil microorganisms and above ground vegetations. It raises concern about the liability of the PROFILE model to provide reliable values of Na weathering rates. Overall, we concluded that the PROFILE model is powerful enough to reproduce spatial geographical gradients in weathering rates for relatively large areas as well as adequately predict absolute weathering rates values

  7. Runoff Production in the Upper Rio Chagres Catchment, Panama

    NASA Astrophysics Data System (ADS)

    Niezialek, J. M.; Ogden, F. L.

    2003-12-01

    Runoff production in watersheds in the seasonal tropics is governed by a number of factors. The mountainous 414 sq. km upper Rio Chagres watershed offers a unique opportunity to better understand the runoff production mechanisms in seasonal tropical catchments through data analysis and modeling. The upper Rio Chagres catchment provides the majority of inflows to the Panama Canal, has been monitored for over 60 years as part of canal operations. Discharge data are available at both the catchment outlet (Chico gaging station) and an internal catchment location (Rio Piedras gaging station). There are also seven tipping bucket recording rain gages in and around the catchment. Analysis of runoff data reveals anomalously-high runoff production efficiencies early in the wet season. Furthermore, the existence of two quasi-stable base flow regimes during the wet season imply critical threshold storages. Initial field studies have shown that the soils are water repellent during the dry season. Runoff data from the 80 sq. km Rio Piedras subcatchment reveal ephemeral flows throughout the wet season, indicating significant heterogeneity in runoff production and deep groundwater circulation. Preliminary hydrologic modeling is performed with the Sacramento Soil Moisture Accounting Model (SAC-SMA), calibrated using data from 1988 and verified using data from 1989. Further modeling on the flood of 28-31 December, 2000 is also performed. Modeling using the distributed parameter GSSHA model combined with the Sacramento groundwater module allows simulation of distributed runoff. However, the role of interception by the triple-layer tropical canopy and the magnitude of evapotranspiration are uncertain. New data collection is proposed in the Rio Chagres catchment to help quantify interception and evapotranspiration. This instrumentation will include measurements of rainfall above the canopy, cloud stripping, stemflow, throughfall, soil moisture, groundwater, interflow

  8. Prognosis of groundwater drought occurrence in selected catchments of Slovakia

    NASA Astrophysics Data System (ADS)

    Stojkovova, M.; Machlica, A.; Bara, M.

    2009-04-01

    The paper contains results on prognosis of groundwater drought occurrence in six selected catchments of Slovakia with different geological, hydrogeological and climatic conditions. Prognoses were made using BILAN model. Climatic scenarios CCCM1997, CCCM2000 (Canadian model CGCM.1 and CGCM.2 modified on conditions in Slovakia) and GISS1998 were used. Groundwater drought occurrence was assessed for time-frames 2030 and 2075. Each year of the whole assessed period of 24 years (1982-2005) was classified according to the water bearing degree of the stream taking into account the yearly precipitation amounts (Majercakova, et al., 2007). Three types of dry years - very dry, medium dry and moderately dry were defined. The prognosis values for 2030 and 2075 were compared with the reference period 1971-1990. Chvojnica River catchment (Lopasov profile), located in Neogene sedimentary rocks is characterized by occurrence of 26 % of dry years (very dry, medium or moderately dry) within the period 1982-2005. Prognosis of the groundwater runoff changes showed not very expressive decrease, in about 3.6-4 % in comparison with the reference period. Tuzina River catchment (Tuzina profile), located in crystalline, Mesozoic and Neogene sedimentary rocks, is characterized by occurrence of 25 % of dry years. Values of the groundwater runoff would decrease not very expressively, in about 5-7 %. These two catchments were assessed using GISS1998 climate change scenario. Groundwater changes in four other catchments were evaluated using CCCM scenarios. Topla River catchment (Bardejov profile), located in Paleogene flysh rocks, is characterized by occurrence of 58 % of dry periods. Values of the groundwater runoff would decrease importantly - in about 59-88 %. Bela River catchment (Podbanske profile), built by granitic and glaciofluvial rocks, is characterized by occurrence of 13 % of dry periods. Values of the groundwater runoff would decrease in about 42-63 %. Boca River catchment (Kralova

  9. Water Use and Management in Semiarid Regions - A Distributed Modelling Approach in the Verlorenvlei Catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Fleischer, Melanie; Kralisch, Sven; Fink, Manfred; Pfennig, Björn; Butchart-Kuhlmann, Daniel; Meinhardt, Markus; de Clercq, Willem

    2016-04-01

    Hydrological modelling is a useful method to predict water availability and environmental impacts in a range of climate and land use change scenarios. One of the major challenges to accurate predictions using hydrological modelling in semi-arid areas is the high temporal and spatial variability of rainfall events and the associated uncertainty of related process parameters. Limited and often unreliable climate observations can cause additional problems. These particular circumstances are well documented for many catchments in the world, including semi-arid parts of South Africa. An accurate assessment of water quality and quantity is however crucial for sustainable water resource management, which is often difficult under changing environmental conditions such as climate and land use change. This situation can be found in the Verlorenvlei catchment, a part of the Sandveld area located in the Western Cape region of South Africa. Extensive dry periods in combination with an increasing domestic water demand, expanding irrigation agriculture and expected reducing rainfall due to climate change present a challenging setup for water management in this region. The catchment is a highly sensitive area with one of the most important estuary systems in the Western Cape region, containing significant natural wetlands with high biodiversity and numerous endemic species. With very limited surface water resources, most settlements and irrigation systems in the region are mainly dependent on groundwater. As a result of the particular conditions, the use of improved management techniques, such as centre pivot irrigation and contour-bank farming, are necessary. The distributed, process-oriented hydrological modelling system JAMS/J2000 is used and evaluated to assess water availability within the catchment under different climate and land-use change scenarios. The first phase has involved configuring the model to accurately represent the specific natural conditions of the

  10. Added-value from a multi-criteria selection of donor catchments in the prediction of continuous streamflow series at ungauged pollution control-sites

    NASA Astrophysics Data System (ADS)

    Drogue, Gilles; Ben Khediri, Wiem; Conan, Céline

    2016-05-01

    We explore the potential of a multi-criteria selection of donor catchments in the prediction of continuous streamflow series by the spatial proximity method. Three criteria have been used: (1) spatial proximity; (2) physical similarity; (3) stream gauging network topology. An extensive assessment of our spatial proximity method variant is made on a 149 catchment-data set located in the Rhine-Meuse catchment. The competitiveness of the method is evaluated against spatial interpolation of catchment model parameters with ordinary kriging. We found that the spatial proximity approach is more efficient than ordinary kriging. When distance to upstream/downstream stream gauge stations is considered as a second order criterion in the selection of donor catchments, an unprecedented level of efficiency is reached for nested catchments. Nevertheless, the spatial proximity method does not take advantage from physical similarity between donor catchments and receiver catchments because catchments that are the most hydrologically similar to each catchment poorly match with the catchments that are the most physically similar to each catchment.

  11. Export of nitrogen from catchments within a temperate forest: Evidence for a unifying mechanism regulated by variable source area dynamics

    NASA Astrophysics Data System (ADS)

    Creed, I. F.; Band, L. E.

    1998-11-01

    Considerable variation in the export of dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) was observed among catchments located within an old-growth sugar maple forest in central Ontario. Although discharge was a strong predictor of N-export, rates of export were variable for each catchment, ranging from -50% to +50% from the catchment-average response for DIN and -25% to +25% from the catchment-average response for DON. Among the catchments, a unifying flushing behavior was apparent for NO3--N, the dominant form of DIN in the discharge waters, providing a basis for explaining the variation in the export of DIN. Flushing occurs when a water table rises to the soil surface with subsequent mobilization of nutrients stored near or at the soil surface to surface waters. Catchment-specific flushing behaviors were captured in "flushing" characteristic time constants, defined as the time interval required for a decline in N concentrations in discharge waters toe-l (37%) of their initial concentration. Variation in flushing behavior was linked to variation in N export; catchments with short flushing times (interpreted as catchments with source areas that are less variable) were observed to export less N than catchments with long flushing times (source areas that are more variable). A hypothesis was formulated in which catchment topography and its influence on variable source area dynamics accounts for variation in flushing behavior, hence variation in the export of NO3--N among the catchments. The implication of this hypothesis is that to predict accurately the export of NO3--N from catchments within a landscape, we need first to consider the influence of the topographic complexity of the catchments. Our understanding of the mechanisms of processing and export of DON is not sufficient for accurate prediction at this point, highlighting the need for additional research on DON.

  12. Fingerprinting the main erosion processes delivering sediment to hillside reservoirs: Case of Kamech catchment in Cape Bon, Tunisia

    NASA Astrophysics Data System (ADS)

    Ben Slimane, A.; Raclot, D.; Evrard, O.; Sanaa, M.; Lefèvre, I.; Ahmadi, M.; Le Bissonnais, Y.

    2011-12-01

    About 74% of agricultural soils are affected by water erosion in Tunisia. This intense soil degradation threatens the sustainability of food production in the country. It also leads to the siltation of the numerous hillslide reservoirs that were constructed in the 1990s to protect downstream villages against floods and provide a source of water in cultivated areas. Very dense gully systems are observed in Tunisian agricultural land and in other Mediterranean regions, but their contribution to contemporary sediment supply to hillside reservoirs has not been quantified yet. Still, there is a need to quantify the sediment sources in this region in order to guide the implementation of erosion control measures. Sediment can be supplied by gully systems but it can also be provided by erosion of the superficial layer of cultivated soil. We propose a methodology to estimate the relative contribution of gully erosion vs. interrill erosion to the sediment accumulated in hillside reservoirs. This work was conducted in a pilot catchment (i.e., Kamech catchment, 263ha, Cape Bon, Tunisia) to define guidelines on the number and the location of sediment core samples to collect in the reservoirs, in order to provide relevant information on the evolution of sediment sources throughout the last two decades. Once validated, this methodology will be applied to other catchments of the Tunisian Ridge. We applied the sediment fingerprinting method, which consists in measuring conservative and stable properties in both sources and sinks of sediment to outline their origin. Sampling efforts were concentrated on the field surface (cropland and grassland), gullies and channel banks. Thirteen sediment cores were collected along an upstream-downstream transect across Kamech hillside reservoir, in order to estimate the contribution of each potential sediment source to the material accumulated at the outlet, and to investigate the potential spatial differences of sediment origin across the

  13. Evaluating an ecosystem management approach for improving water quality in two contrasting study catchments in south-west England.

    NASA Astrophysics Data System (ADS)

    Glendell, Miriam; Brazier, Richard

    2014-05-01

    The European Water Framework Directive (WFD) 2000 established a new emphasis for the management of freshwaters by establishing ecologically-based water quality targets that are to be achieved through holistic, catchment-scale, ecosystem management approaches. However, significant knowledge gaps still exist in the understanding of the cumulative effectiveness of multiple mitigation measures on a number of pollutants at a catchment scale. This research furthers the understanding of the effectiveness of an ecosystem management approach to deliver catchment-scale water quality improvements in two contrasting study catchments in south-west England: the lowland agricultural Aller and the upland semi-natural Horner Water. Characterisation of the spatial variability of soil properties (bulk density, total carbon, nitrogen, C:N ratio, stable isotope δ15N, total, organic and inorganic phosphorus) in the two study catchments demonstrated extensive alteration of soil properties in the agricultural catchment, with likely long-term implications for the restoration of ecosystem functioning and water quality management (Glendell et al., 2014b). Further, the agricultural catchment supported a proportionally greater total fluvial carbon (dissolved and particulate) export than the semi-natural catchment. During an eight month period for which a comparable continuous turbidity record was available, the estimated SS yields from the agricultural catchment (25.5-116.2 t km-2) were higher than from the semi-natural catchment (21.7-57.8 t km-2). In addition, the agricultural catchment exported proportionally more TPC (0.51-2.59 kg mm-1) than the semi-natural catchment (0.36-0.97 kg mm-1) and a similar amount of DOC (0.26-0.52 kg mm-1 in the Aller and 0.24-0.32 kg mm-1 in Horner Water), when normalised by catchment area and total discharge, despite the lower total soil carbon pool, thus indicating an enhanced fluvial loss of sediment and carbon (Glendell and Brazier, in review). Whilst

  14. Response characteristics of DOC flushing in an alpine catchment

    USGS Publications Warehouse

    Boyer, E.W.; Hornberger, G.M.; Bencala, K.E.; McKnight, Diane M.

    1997-01-01

    The spatial distribution of source areas and associated residence times of water in the catchment are significant factors controlling the annual cycles of dissolved organic carbon (DOC) concentration in Deer Creek (Summit County, Colorado). During spring snowmelt (April-August 1992), stream DOC concentrations increased with the rising limb of the hydrograph, peaked before maximum discharge, then declined rapidly as melting continued. We investigated catchment sources of DOC to streamflow, measuring DOC in tension lysimeters, groundwater wells, snow and streamflow. Lysimeter data indicate that near-surface soil horizons are a primary contributor of DOC to streamflow during spring snowmelt. Concentrations of DOC in the lysimeters decrease rapidly during the melt period, supporting the hypothesis that hydrological flushing of catchment soils is the primary mechanism affecting the temporal variation of DOC in Deer Creek. Time constants of DOC flushing, characterizing the exponential decay of DOC concentration in the upper soil horizon, ranged from 10 to 30 days for the 10 lysimeter sites. Differences in the rate of flushing are influenced by topographical position, with near-stream riparian soils flushed more quickly than soils located further upslope. Variation in the amount of distribution of accumulated snow, and asynchronous melting of the snowpack across the landscape, staggered the onset of the spring flush throughout the catchment, prolonging the period of increased concentrations of DOC in the stream. Streamflow integrates the catchment-scale flushing responses, yielding a time constant associated with the recession of DOC in the stream channel (84 days) that is significantly longer than the time constants observed for particular locations in the upper soil. ?? 1997 John Wiley & Sons, Ltd.

  15. Assessing the past impact of climatic variability and human activities on the water resources of the Hérault River catchment (South of France)

    NASA Astrophysics Data System (ADS)

    Collet, L.; Ruelland, D.; Borrell-Estupina, V.; Servat, E.

    2012-04-01

    This study investigates the hydrological functioning scheme of a Mediterranean catchment. Located in southern France, the mesoscale Hérault River catchment (~2500 km2) supplies with water its inhabitants and some external cities as well as agricultural activities. The catchment water resources are intensively exploited during summertime, when tourism and irrigation needs reach a peak while water supply is limited. Since the 1980s, discharge has significantly decreased in various gauging stations. The functioning scheme aims at understanding the impact of climatic variability and human activities on the water resources of this catchment over the last 50 years. Firstly, a quality analysis of the hydro-climatic and anthropogenic variables was conducted. This allowed a robust database to be constituted over the 1959-2010 period. The hydro-climatic trends over the catchment were then studied from analysis of statistical breaks in the series of precipitation, temperature, discharge and water withdrawals. A correlation analysis was also performed to assess the influence of each forcing variable on water flow at the outlet. In order to investigate the catchment heterogeneity, six sub-basins have been identified according to the main geographical characteristics (climate, topography, lithology, land use, water uses…) and to the availability of the streamflow series. Finally, a detailed water balance at different scales made it possible to estimate the respective impact of changes in climate, land use and water withdrawals on the water resources within the basin. The statistical analysis demonstrated a break in the temperature and discharge series around 1980, but no break was detected for precipitations. Temperatures have increased by 1°C on average between 1959-1979 and 1980-2010 while discharge has decreased by 33-40% in the same time at different gauging stations. Meanwhile, the catchment has undergone a sensible reforestation since forested areas have increased from

  16. East African wetland-catchment data base for sustainable wetland management

    NASA Astrophysics Data System (ADS)

    Leemhuis, Constanze; Amler, Esther; Diekkrüger, Bernd; Gabiri, Geofrey; Näschen, Kristian

    2016-10-01

    Wetlands cover an area of approx. 18 Mio ha in the East African countries of Kenya, Rwanda, Uganda and Tanzania, with still a relative small share being used for food production. Current upland agricultural use intensification in these countries due to demographic growth, climate change and globalization effects are leading to an over-exploitation of the resource base, followed by an intensification of agricultural wetland use. We aim on translating, transferring and upscaling knowledge on experimental test-site wetland properties, small-scale hydrological processes, and water related ecosystem services under different types of management from local to national scale. This information gained at the experimental wetland/catchment scale will be embedded as reference data within an East African wetland-catchment data base including catchment physical properties and a regional wetland inventory serving as a base for policy advice and the development of sustainable wetland management strategies.

  17. Dissolved phosphorus transport from soil to surface water in catchments with different land use.

    PubMed

    Verheyen, Dries; Van Gaelen, Nele; Ronchi, Benedicta; Batelaan, Okke; Struyf, Eric; Govers, Gerard; Merckx, Roel; Diels, Jan

    2015-03-01

    Diffuse phosphorus (P) export from agricultural land to surface waters is a significant environmental problem. It is critical to determine the natural background P losses from diffuse sources, but their identification and quantification is difficult. In this study, three headwater catchments with differing land use (arable, pasture and forest) were monitored for 3 years to quantify exports of dissolved (<0.45 µm) reactive P and total dissolved P. Mean total P exports from the arable catchment ranged between 0.08 and 0.28 kg ha(-1) year(-1). Compared with the reference condition (forest), arable land and pasture exported up to 11-fold more dissolved P. The contribution of dissolved (<0.45 µm) unreactive P was low to negligible in every catchment. Agricultural practices can exert large pressures on surface waters that are controlled by hydrological factors. Adapting policy to cope with these factors is needed for lowering these pressures in the future. PMID:25681980

  18. What causes similarity in catchments?

    NASA Astrophysics Data System (ADS)

    Savenije, Hubert

    2014-05-01

    One of the biggest issues in hydrology is how to handle the heterogeneity of catchment properties at different scales. But is this really such a big issue? Is this problem not merely the consequence of how we conceptualise and how we model catchments? Is there not far more similarity than we observe. Maybe we are not looking at the right things or at the right scale to see the similarity. The identity of catchments is largely determined by: the landscape, the ecosystem living on the landscape, and the geology, in that order. Soils, which are often seen as a crucial aspect of hydrological behaviour, are far less important, as will be demonstrated. The main determinants of hydrological behaviour are: the landscape composition, the rooting depth and the phenology. These determinants are a consequence of landscape and ecosystem evolution, which, in turn, are the manifestations of entropy production. There are striking similarities between catchments. The different runoff processes from hillslopes are linked and similar in different environments (McDonnell, 2013). Wetlands behave similarly all over the world. The key is to classify landscapes and to link the ecosystems living on them to climate. The ecosystem then is the main controller of hydrological behaviour. Besides phenology, the rooting depth is key in determining runoff behaviour. Both are strongly linked to climate and much less to soil properties. An example is given of how rooting depth is determined by climate, and how rooting depth can be predicted without calibration, providing a strong constraints on the prediction of rainfall partitioning and catchment runoff.

  19. Integrated monitoring of nitrogen dynamics in contrasting catchments

    NASA Astrophysics Data System (ADS)

    Schwientek, M.; Fleischer, M.

    2012-04-01

    The research institute WESS (Water & Earth System Science) is monitoring three adjacent meso-scale catchments (72 - 140 km2) in southwest Germany with respect to water quantity and quality. Due to their spatial proximity, the studied catchments are similar regarding climatic conditions and water balance. Geology is characterized by sedimentary rocks which are partly karstified. The catchments contrast strongly in land use and show a range from predominantly agriculture to almost exclusively forestry. In this context, a special focus of our research is the distinction of matter coming from the catchment area versus substances stemming from urban point sources. One important compound representing inputs from the catchment area is nitrogen. Nitrogen is an essential nutrient governing plant growth. If available in excess it leads to eutrophication and is therefore one of the globally most widespread contaminants in aquatic ecosystems. Transport of human-derived nitrogen through landscapes including urban areas to the oceans predominantly occurs via river network systems. Hence, monitoring of nitrogen fluxes in streams and rivers reveals mechanisms and dynamics of its transport and gives also insight into hydrologic processes which influence the mobilization of nitrogen. Presently, the catchments are equipped with online probes enabling high resolution monitoring of nitrate concentrations and other parameters. We found that average nitrate concentrations in stream water perfectly reflect the portion of fertilized arable land. The dynamics of N transport, however, largely depends on the hydrologic system and is driven by the dominating runoff generation processes. The interplay between different hydrological storages, which eventually also act as N pools, turns out to be decisive for the temporal variability of N concentrations in stream discharge. Inversely, the study of N transport dynamics can be used to infer the hydrologic mechanisms responsible for N mobilization

  20. A roundup of SMOS validation activities at the HOBE site in the Skjern River Catchment, Denmark

    NASA Astrophysics Data System (ADS)

    Bircher, Simone; Richaume, Philippe; Mialon, Arnaud; Berthon, Lucie; Kerr, Yann H.; Jensen, Karsten H.

    2013-04-01

    The Soil Moisture and Ocean Salinity Mission (SMOS) delivers global surface soil moisture data at high temporal resolution which is of high relevance for water management, weather and climate predictions as well as hazard analysis. In order to estimate the quality and caveats of the SMOS data at different processing levels (e.g. L1C geolocated brightness temperatures TB, L2 soil moisture SM and optical thickness TAU, L3 spatio-temporal synthesis of TB, SM and TAU), product validation in various climatic regions is a crucial issue. In the framework of the Danish Hydrological Observatory (HOBE) one such validation site has been established in the Skjern River Catchment, Denmark. The catchment is one of Europe's northernmost intensely cultivated region with environmental features related to this latitude such as very sandy soils with large organic deposits under natural vegetation and region-specific land cover such as heathland. The area is of pronounced flatness and located at a short distance to the coast line in two directions. During fall 2009, a soil moisture and soil temperature network with 30 stations has been installed to provide continuous in-situ soil moisture data feasible for upscaling and comparison with SMOS data at large scale. One SMOS pixel (44x44 km2) to be validated was chosen by maximizing its coverage of the Skjern River Catchment and minimizing the open water fraction. Prevailing environmental conditions and their respective fractions were considered for the selection of suitable network locations. To further support validation activities an airborne campaign with the passive L-band microwave radiometer EMIRAD-2, was carried out within the chosen SMOS pixel in spring 2010 to directly acquire soil moisture data at intermediate scale (few kilometers spatial resolution). Concurrent with ascending SMOS overpasses, four flights were conducted with simultaneous ground sampling of surface soil moisture and auxiliary parameters within three 2x2 km

  1. A 125 year long record of DOC flux from a major temperate catchment: land-use vs. climate control?

    NASA Astrophysics Data System (ADS)

    Clay, G.; Worrall, F.; Howden, N. K.; Burt, T. P.

    2010-12-01

    Our understanding of the controls upon carbon biogeochemistry has always been limited by lack of long term observational data at the same time as having long term monitoring of possible environmental drivers. For the River Thames catchment in the UK (9998 km2) records of DOM have been kept since 1868 and DOM flux since 1882. In addition to riverflow being monitored in the catchment there has also been monitoring of climate, land-use and population back to at least 1868. The Thames catchment is a mixed agricultural urban catchment dominated by mineral soils where groundwater plays a significant part in the catchments flow system. During the period of the record the catchment has undergone urbanisation, climate warming but has also undergone large-scale land use change associated with World War II and agricultural intensification in the 1960s. The importance of these combinations of pressures are explored in the time series through a range of time series techniques and the results show: i) That DOC flux in the catchment is now at historic low levels, with the maximum flux being 35 ktonnes C/yr (3.5 tonnes/km2/yr) in 1915 and the lowest flux being 2 ktonnes C/yr (0.2 tonnes/km2/yr) in 1997. ii) The trend in the DOC flux is explained by changes in flow, which appear associated with both with groundwater storage in the catchment and with changes in land-use. iii) The significant decline in the DOC flux appears to be due to the transition in the catchment from dominated from pasture to an arable land use. iv) The decline of DOC flux with temperature would suggest that DOC mineralisation reaction has a higher Q10 than the DOC production. v) Declining DOC flux from mineral soils catchments would offset increases in DOC flux from organic soils but would also represent a shift in carbon losses from fluvial to being direct to the atmosphere.

  2. 7 CFR 1924.106 - Location.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 12 2013-01-01 2013-01-01 false Location. 1924.106 Section 1924.106 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE PROGRAM...

  3. 7 CFR 1924.106 - Location.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 12 2014-01-01 2013-01-01 true Location. 1924.106 Section 1924.106 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE PROGRAM...

  4. 7 CFR 1924.106 - Location.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 12 2011-01-01 2011-01-01 false Location. 1924.106 Section 1924.106 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE PROGRAM...

  5. Land degradation assessment by geo-spatially modeling different soil erodibility equations in a semi-arid catchment.

    PubMed

    Saygın, Selen Deviren; Basaran, Mustafa; Ozcan, Ali Ugur; Dolarslan, Melda; Timur, Ozgur Burhan; Yilman, F Ebru; Erpul, Gunay

    2011-09-01

    Land degradation by soil erosion is one of the most serious problems and environmental issues in many ecosystems of arid and semi-arid regions. Especially, the disturbed areas have greater soil detachability and transportability capacity. Evaluation of land degradation in terms of soil erodibility, by using geostatistical modeling, is vital to protect and reclaim susceptible areas. Soil erodibility, described as the ability of soils to resist erosion, can be measured either directly under natural or simulated rainfall conditions, or indirectly estimated by empirical regression models. This study compares three empirical equations used to determine the soil erodibility factor of revised universal soil loss equation prediction technology based on their geospatial performances in the semi-arid catchment of the Saraykoy II Irrigation Dam located in Cankiri, Turkey. A total of 311 geo-referenced soil samples were collected with irregular intervals from the top soil layer (0-10 cm). Geostatistical analysis was performed with the point values of each equation to determine its spatial pattern. Results showed that equations that used soil organic matter in combination with the soil particle size better agreed with the variations in land use and topography of the catchment than the one using only the particle size distribution. It is recommended that the equations which dynamically integrate soil intrinsic properties with land use, topography, and its influences on the local microclimates, could be successfully used to geospatially determine sites highly susceptible to water erosion, and therefore, to select the agricultural and bio-engineering control measures needed.

  6. Sediment yield and connectivity in a gullied sandy catchment

    NASA Astrophysics Data System (ADS)

    Lucía, Ana; Francisco Martín-Duque, José; Laronne, Jonathan B.; Ángel Sanz-Santos, Miguel

    2014-05-01

    Badland areas are considered to have high connectivity of sediment at the catchment scale; however, little is known about processes occurring in gullies and badlands developed in sands. This type of gullies is quite common in the Central-Eastern Iberian Peninsula and is associated with historic mining. The sandy badlands also appear in both abandoned and traditionally reclaimed mines, generating on- and offsite environmental effects. Our aim is to quantify the rates of the different processes occurring in the sandy gullied catchments, as well as their coupling and connectivity at a catchment scale. This may allow application to improve reclamation practice in mines and quarries located in sandy materials. The study site is a small (1.32 ha) gullied catchment, the Barranca de los Pinos, which is located in the Northern Piedmont of the Guadarrama Mountains (Central Spain). The catchment area has been divided into Homogeneous Response Units (HRUs) attending to the dominant active process . The sediment produced in the different HRUs has been monitored by a variety of methods: repeat Terrestrial Laser Scanning of high gradient slopes, closed microplots in low gradient slopes and automatic (Reid type) slot bedload samplers and siphon samplers to monitor suspended sediment transport in the channel. During the 2010-11 monitoring period the sediment yield due to gravitational movements in high gradient slopes varied from 20 to 200 kg m-2y-1. In the low gradient slopes the splash and non-concentrated runoff generated 0.1 - 6 kg m-2y-1,while the channel yielded 7.44 ± 1.08 kg m-2y-1 with a very high proportion (>70%) of bedload. Despite the difficulties of extrapolating and comparing the results obtained at different spatial and temporal resolutions, annual patterns of erosion and transport of sediments within the sandy gullied catchments have been identified. These confirm that the transport of sediment in this catchment is limited by the capacity of flow events to

  7. Coevolution of volcanic catchments in Japan

    NASA Astrophysics Data System (ADS)

    Yoshida, Takeo; Troch, Peter A.

    2016-03-01

    Present-day landscapes have evolved over time through interactions between the prevailing climates and geological settings. Understanding the linkage between spatial patterns of landforms, soils, and vegetation in landscapes and their hydrological response is critical to make quantitative predictions in ungaged basins. Catchment coevolution is a theoretical framework that seeks to formulate hypotheses about the mechanisms and conditions that determine the historical development of catchments and how such evolution affects their hydrological response. In this study, we selected 14 volcanic catchments of different ages (from 0.225 to 82.2 Ma) in Japan. We derived indices of landscape properties (drainage density and slope-area relationship) as well as hydrological response (annual water balance, baseflow index, and flow-duration curves) and examined their relation with catchment age and climate (through the aridity index). We found a significant correlation between drainage density and baseflow index with age, but not with climate. The intra-annual flow variability was also significantly related to catchments age. Younger catchments tended to have lower peak flows and higher low flows, while older catchments exhibited more flashy runoff. The decrease in baseflow with catchment age is consistent with the existing hypothesis that in volcanic landscapes the major flow pathways change over time from deep groundwater flow to shallow subsurface flow. The drainage density of our catchments decreased with age, contrary to previous findings in a set of similar, but younger volcanic catchments in the Oregon Cascades, in which drainage density increased with age. In that case, older catchments were thought to show more landscape incision due to increasing near-surface lateral flow paths. Our results suggests two competing hypotheses on the evolution of drainage density in mature catchments. One is that as catchments continue to age, the hydrologically active channels retreat

  8. Effects of land use on greenhouse gas fluxes and soil properties of wetland catchments in the Prairie Pothole Region of North America.

    PubMed

    Tangen, Brian A; Finocchiaro, Raymond G; Gleason, Robert A

    2015-11-15

    Wetland restoration has been suggested as policy goal with multiple environmental benefits including enhancement of atmospheric carbon sequestration. However, there are concerns that increased methane (CH4) emissions associated with restoration may outweigh potential benefits. A comprehensive, 4-year study of 119 wetland catchments was conducted in the Prairie Pothole Region of the north-central U.S. to assess the effects of land use on greenhouse gas (GHG) fluxes and soil properties. Results showed that the effects of land use on GHG fluxes and abiotic soil properties differed with respect to catchment zone (upland, wetland), wetland classification, geographic location, and year. Mean CH4 fluxes from the uplands were predictably low (<0.02 g CH4 m(-2) day(-1)), while wetland zone CH4 fluxes were much greater (<0.001-3.9 g CH4 m(-2) day(-1)). Mean cumulative seasonal CH4 fluxes ranged from roughly 0-650 g CH4 m(-2), with an overall mean of approximately 160 g CH4 m(-2). These maximum cumulative CH4 fluxes were nearly 3 times as high as previously reported in North America. The overall magnitude and variability of N2O fluxes from this study (<0.0001-0.0023 g N2O m(-2) day(-1)) were comparable to previously reported values. Results suggest that soil organic carbon is lost when relatively undisturbed catchments are converted for agriculture, and that when non-drained cropland catchments are restored, CH4 fluxes generally are not different than the pre-restoration baseline. Conversely, when drained cropland catchments are restored, CH4 fluxes are noticeably higher. Consequently, it is important to consider the type of wetland restoration (drained, non-drained) when assessing restoration benefits. Results also suggest that elevated N2O fluxes from cropland catchments likely would be reduced through restoration. The overall variability demonstrated by this study was consistent with findings of other wetland investigations and underscores the difficulty in quantifying the

  9. Effects of land use on greenhouse gas fluxes and soil properties of wetland catchments in the Prairie Pothole Region of North America.

    PubMed

    Tangen, Brian A; Finocchiaro, Raymond G; Gleason, Robert A

    2015-11-15

    Wetland restoration has been suggested as policy goal with multiple environmental benefits including enhancement of atmospheric carbon sequestration. However, there are concerns that increased methane (CH4) emissions associated with restoration may outweigh potential benefits. A comprehensive, 4-year study of 119 wetland catchments was conducted in the Prairie Pothole Region of the north-central U.S. to assess the effects of land use on greenhouse gas (GHG) fluxes and soil properties. Results showed that the effects of land use on GHG fluxes and abiotic soil properties differed with respect to catchment zone (upland, wetland), wetland classification, geographic location, and year. Mean CH4 fluxes from the uplands were predictably low (<0.02 g CH4 m(-2) day(-1)), while wetland zone CH4 fluxes were much greater (<0.001-3.9 g CH4 m(-2) day(-1)). Mean cumulative seasonal CH4 fluxes ranged from roughly 0-650 g CH4 m(-2), with an overall mean of approximately 160 g CH4 m(-2). These maximum cumulative CH4 fluxes were nearly 3 times as high as previously reported in North America. The overall magnitude and variability of N2O fluxes from this study (<0.0001-0.0023 g N2O m(-2) day(-1)) were comparable to previously reported values. Results suggest that soil organic carbon is lost when relatively undisturbed catchments are converted for agriculture, and that when non-drained cropland catchments are restored, CH4 fluxes generally are not different than the pre-restoration baseline. Conversely, when drained cropland catchments are restored, CH4 fluxes are noticeably higher. Consequently, it is important to consider the type of wetland restoration (drained, non-drained) when assessing restoration benefits. Results also suggest that elevated N2O fluxes from cropland catchments likely would be reduced through restoration. The overall variability demonstrated by this study was consistent with findings of other wetland investigations and underscores the difficulty in quantifying the

  10. The impact of runoff generation mechanisms on the location of critical source areas

    USGS Publications Warehouse

    Lyon, S.W.; McHale, M.R.; Walter, M.T.; Steenhuis, T.S.

    2006-01-01

    Identifying phosphorus (P) source areas and transport pathways is a key step in decreasing P loading to natural water systems. This study compared the effects of two modeled runoff generation processes - saturation excess and infiltration excess - on total phosphorus (TP) and soluble reactive phosphorus (SRP) concentrations in 10 catchment streams of a Catskill mountain watershed in southeastern New York. The spatial distribution of runoff from forested land and agricultural land was generated for both runoff processes; results of both distributions were consistent with Soil Conservation Service-Curve Number (SCS-CN) theory. These spatial runoff distributions were then used to simulate stream concentrations of TP and SRP through a simple equation derived from an observed relation between P concentration and land use; empirical results indicate that TP and SRP concentrations increased with increasing percentage of agricultural land. Simulated TP and SRP stream concentrations predicted for the 10 catchments were strongly affected by the assumed runoff mechanism. The modeled TP and SRP concentrations produced by saturation excess distribution averaged 31 percent higher and 42 percent higher, respectively, than those produced by the infiltration excess distribution. Misrepresenting the primary runoff mechanism could not only produce erroneous concentrations, it could fail to correctly locate critical source areas for implementation of best management practices. Thus, identification of the primary runoff mechanism is critical in selection of appropriate models in the mitigation of nonpoint source pollution. Correct representation of runoff processes is also critical in the future development of biogeochemical transport models, especially those that address nutrient fluxes.

  11. Modelling the effects of land use changes on the streamflow of a peri-urban catchment in central Portugal

    NASA Astrophysics Data System (ADS)

    Hävermark, Saga; Santos Ferreira, Carla Sofia; Kalantari, Zahra; Di Baldassarre, Giuliano

    2016-04-01

    Many river basis around the world are rapidly changing together with societal development. Such developments may involve changes in land use, which in turn affect the surrounding environment in various ways. Since the start of industrialisation, the urban areas have extended worldwide. Urbanization can influence hydrological processes by decreasing evapotranspiration, infiltration and groundwater recharge as well as increasing runoff and overland flow. It is therefore of uttermost importance to understand the relationship between land use and hydrology. Although several studies have been investigating the impacts of urbanization on streamflow over the last decades, less is known on how urbanization affects hydrological processes in peri-urban areas, characterized by a complex mosaic of different land uses. This study aimed to model the impact of land use changes, specifically urbanization and commercial forest plantation, on the hydrological responses of the small Ribeira dos Covões peri-urban catchment (6,2 km2) located in central Portugal. The catchment has undergone rapid land use changes between 1958 and 2012 associated with the conversion of agricultural fields (cover area decreased from 48% to 4%) into woodland and urban areas, which increased from 44% to 56% and from 8% to 40%, respectively. For the study, the fully-distributed, physically-based modelling system MIKE SHE was used. The model was designed to examine both how past land use changes might have affected the streamflow and to investigate the impacts on hydrology of possible future scenarios, including a 50 %, 60 % and 70 % urban cover. To this end, a variety of data including daily rainfall since 1958 and forward, daily potential evapotranspiration from 2009 to 2013, monthly temperature averages from 1971 to 2013, land use for the years 1958, 1973, 1979, 1990, 1995, 2002, 2007 and 2012, streamflow from the hydrological years 2008 to 2013, catchment topography and soil types were used. The model

  12. Testing the applicability of morphometric characterisation in discordant catchments to ancient landscapes: A case study from southern Africa

    NASA Astrophysics Data System (ADS)

    Richardson, J. C.; Hodgson, D. M.; Wilson, A.; Carrivick, J. L.; Lang, A.

    2016-05-01

    The ancient landscapes south of the Great Escarpment in southern Africa preserve large-scale geomorphological features despite their antiquity. This study applies and evaluates morphometric indices (such as hypsometry, long profile analysis, stream gradient index, and linear/areal catchment characteristics) to the Gouritz catchment, a large discordant catchment in the Western Cape. Spatial variation of morphometric indices were assessed across catchment (trunk rivers) and subcatchment scales. The hypsometric curve of the catchment is sinusoidal, and a range of curve profiles are evident at subcatchment scale. Hypsometric integrals do not correlate to catchment properties such as area, circularity, relief, and dissection; and stream length gradients do not follow expected patterns, with the highest values seen in the mid-catchment areas. Rock type variation is interpreted to be the key control on morphometric indices within the Gouritz catchment, especially hypsometry and stream length gradient. External controls, such as tectonics and climate, were likely diminished because of the long duration of catchment development in this location. While morphometric indices can be a useful procedure in the evaluation of landscape evolution, this study shows that care must be taken in the application of morphometric indices to constrain tectonic or climatic variation in ancient landscapes because of inherited tectonic structures and signal shredding. More widely, we consider that ancient landscapes offer a valuable insight into long-term environmental change, but refinements to geomorphometric approaches are needed.

  13. Monitoring soil erosion in terraced catchments in Mediterranean regions: a field experiment in Cyprus

    NASA Astrophysics Data System (ADS)

    Camera, Corrado; Djuma, Hakan; Zoumides, Christos; Eliades, Marinos; Bruggeman, Adriana; Abate, Dante; Faka, Marina; Hermon, Sorin

    2016-04-01

    Terraces retained by dry-stone walls are very common features in mountainous Mediterranean environments. These structures provide accessible agricultural land on steep slopes, favoring water infiltration and reducing water runoff and soil erosion. However, during the last decades, an increasing trend of agricultural land abandonment has resulted in a lack of maintenance of the terrace walls and the onset of a general process of land degradation. The objective of this study is the quantification of soil erosion in a small terraced catchment (10,000 m2), located on the north-eastern slope of the Troodos Mountains (Cyprus), at an elevation of 1,300 m a.s.l. The catchment is cultivated with vineyards and it is representative of the main agricultural land use in the Troodos region. Soil erosion is measured by sediment traps and laser scans are made to assess changes in terrace geometry. In addition, a weather station measuring rainfall, temperature and relative humidity has been installed in the catchment, along with 18 soil moisture sensors, to relate soil erosion processes with climate and (sub)surface hydrology. A total of 10 sediment traps, five pairs, have been installed in the study site, catching five well-maintained sections of a dry-stone wall and five degraded (collapsed) sections. Each trap is 1 m wide. In detail, two terraces, 11 and 14 m long, located at the same elevation and separated by a strip of natural vegetation, are monitored with four and six traps, respectively. To get a complete picture of the erosion processes occurring on the selected area, the trap pairs collect sediment from both the collapsed and the well maintained wall sections of the two terraces. In addition, terrace area of two traps is delineated by metal borders (1x4 m2) to relate erosion rates to a known drainage area. The sediment traps are emptied after all rainfall events. At the beginning and end of the rainy season, a laser scanning survey of a terrace located uphill of the ones

  14. Sedimentary records of earthquake-induced increase in sediment influx from lake catchments

    NASA Astrophysics Data System (ADS)

    Avşar, Ulaş; Hubert-Ferrari, Aurélia; De Batist, Marc; Fagel, Nathalie

    2013-04-01

    Lacustrine paleoseismological records from three small and shallow lakes (Yeniçaǧa, Ladik and Boraboy) located on the North Anatolian Fault (Turkey) are investigated. The high-resolution multi-proxy sedimentological analyses, as well as the precise sediment chronologies, allowed us to understand the sedimentological consequences of historically known paleoearthquakes. Accordingly, clastic layer intercalations within highly organic-rich background sedimentation are attributed to be the result of seismic shaking, which may increase the sediment yield from the catchment by shattering the landscape and triggering landslides. This kind of sedimentary traces are quite rare in the lacustrine paleoseismology literature. Even if seismic shaking may increase the sediment yield from the catchment, the existence of sedimentary traces of this increase depends on the catchment size relative to the lake size, i.e. small lakes having large catchments are expected to better record the catchment response. In order to make an overall comparison within the literature, the ratios of catchment area to lake area for 51 lakes were determined. Accordingly, it is found that the ratios of catchment area to lake area for Yeniçaǧa, Ladik and Boraboy lakes (i.e., 73, 52 and 81, respectively) are distinguishably higher than the average of the lakes in the lacustrine paleoseismology literature, which is around 17.5.

  15. From catchment to fish: Impact of anthropogenic pressures on gill histopathology.

    PubMed

    Fonseca, A R; Sanches Fernandes, L F; Fontainhas-Fernandes, A; Monteiro, S M; Pacheco, F A L

    2016-04-15

    Gill histopathology was investigated in barbel (Luciobarbus bocagei) and nase (Pseudochondrostoma sp.) in sub-catchments of Paiva River (Portugal) located upstream and downstream of a Waste Water Treatment Plant (WWTP). Multivariate statistical analyses were performed to set up correlations between the species sample (n=24) and injury types (8). The results discriminate well edema and vasodilatation between reference (upstream) and disturbed (downstream) samples. Using a watershed model, time series of physico-chemical parameters and heavy metal concentrations were calibrated and validated for the entire Paiva River basin as to investigate the relationship between water quality and the gill histopathology results. Increased concentrations of heavy metal downstream, specifically of zinc and lead, coincided with a higher severity of histopathological alterations in the fish gills. Significant but less evident relationship between water quality parameters and severity of gill injuries in the analyzed fish species were also observed for fecal coliforms, water temperature and manganese. Notwithstanding the location of the samples upstream and downstream of the WWTP, contamination of Paiva River and its effect on gill injuries cannot be disconnected from other punctual and diffuse pollution sources acting in different sectors within the watershed, namely agriculture and forest management. The severity of histopathological alterations in the fish gills reflected differences in the type and concentration of contaminants in Paiva River, and consequently can be viewed as valuable indicator of water quality. PMID:26851883

  16. From catchment to fish: Impact of anthropogenic pressures on gill histopathology.

    PubMed

    Fonseca, A R; Sanches Fernandes, L F; Fontainhas-Fernandes, A; Monteiro, S M; Pacheco, F A L

    2016-04-15

    Gill histopathology was investigated in barbel (Luciobarbus bocagei) and nase (Pseudochondrostoma sp.) in sub-catchments of Paiva River (Portugal) located upstream and downstream of a Waste Water Treatment Plant (WWTP). Multivariate statistical analyses were performed to set up correlations between the species sample (n=24) and injury types (8). The results discriminate well edema and vasodilatation between reference (upstream) and disturbed (downstream) samples. Using a watershed model, time series of physico-chemical parameters and heavy metal concentrations were calibrated and validated for the entire Paiva River basin as to investigate the relationship between water quality and the gill histopathology results. Increased concentrations of heavy metal downstream, specifically of zinc and lead, coincided with a higher severity of histopathological alterations in the fish gills. Significant but less evident relationship between water quality parameters and severity of gill injuries in the analyzed fish species were also observed for fecal coliforms, water temperature and manganese. Notwithstanding the location of the samples upstream and downstream of the WWTP, contamination of Paiva River and its effect on gill injuries cannot be disconnected from other punctual and diffuse pollution sources acting in different sectors within the watershed, namely agriculture and forest management. The severity of histopathological alterations in the fish gills reflected differences in the type and concentration of contaminants in Paiva River, and consequently can be viewed as valuable indicator of water quality.

  17. Environmetric data interpretation to assess the water quality of Maritsa River catchment.

    PubMed

    Papazova, Petia; Simeonova, Pavlina

    2013-01-01

    Maritsa River is one of the largest rivers flowing on Bulgarian territory. The quality of its waters is of substantial importance for irrigation, industrial, recreation and domestic use. Besides, part of the river is flowing on Turkish territory and the control and management of the Maritsa catchment is of mutual interst for the neighboring countires. Thus, performing interpretation and modeling of the river water quality is a major environmetric problem. Two multivariate statstical methods (Cluster analysis/CA/and Principal components analysis/PCA/) were applied for model assessment of the water quality of Maritsa River on Bulgarian territory. The study used long-term monitoring data from 21 sampling sites characterized by 8 surface water quality indicators. The application of CA to the indicators results in 3 significant clusters showing the impact of biological, anthropogenic and eutrophication sources. For further assessment of the monitoring data, PCA was implemented, which identified, again,three latent factors confirming, in principle, the clustering output. The latent factors were conditionally named "biologic", "anthropogenic" and "eutrophication" source. Their identification coinside correctly to the location of real pollution sources along the Maritsa River catchment. The linkage of the sampling sites along the river flow by CA identified four special patterns separated by specific tracers levels: biological and anthropogenic major impact for pattern 1, euthrophication major impact for pattern 2, background levels for pattern 3 and eutrophication and agricultural major impact for pattern 4. The apportionment models of the pollution determined the contribution of each one of identified pollution factors to the total concentration of each one of the water quality parameters. Thus, a better risk management of the surface water quality is achieved both on local and national level. PMID:23485248

  18. Spatial and vertical distribution of soil organic carbon at the catchment scale in Mediterranean ecosystem

    NASA Astrophysics Data System (ADS)

    Bahri, Haithem; Mekki, Insaf; Annabi, Mohamed; Jacob, Frédéric

    2013-04-01

    Soil organic carbon (SOC) plays an important role in enhancing crop production and mitigating additional greenhouse gas emissions. In fact, the assessment of the amount of SOC at the regional scale is important to better understand the role of the SOC reservoir in global climate and environmental issues. Besides, the vertical SOC profile may be of great importance for SOC cycling, both on short time scale, due to interactions with the soil temperature and moisture profile, as well as on long time scale because of depth-specific stabilization mechanisms of organic matter. The objective of this study is: i) to characterize the spatial variability of SOC in a catchment at different soil depths and ii) to assess the contributions of factors controlling this variability. The studied catchment, named Lebna, is located in the Cap Bon north-eastern Tunisia and it covers about 218 km². We used a dataset from a survey provided by the IAO (Instituto Agronomico per l'Oltremare) 20th course professional master "remote sensing and natural resources evaluation" field survey staff from 2 to 28 April 2000 (IAO, 2002). Ninety-one profiles with 345 soil horizons were described according to the IAO framework and the total carbon was determined using the combustion method with the Carlo Erba Analyser 1500. The results showed the high spatial variation of SOC content depending on soil types and land use. In fact, agricultural practices mainly crop residues management and tillage influence SOC dynamic. Concerning vertical distribution, SOC content is higher in topsoil compared to subsoil. The results suggest that further work is required to better characterize the quality of the SOC at different depths.

  19. SWAT-CS: Revision and testing of SWAT for Canadian Shield catchments

    NASA Astrophysics Data System (ADS)

    Fu, Congsheng; James, April L.; Yao, Huaxia

    2014-04-01

    Canadian Shield catchments are under increasing pressure from various types of development (e.g., mining and increased cottagers) and changing climate. Within the southern part of the Canadian Shield, catchments are generally characterized by shallow forested soils with high infiltration rates and low bedrock infiltration, generating little overland flow, and macropore and subsurface flow are important streamflow generation processes. Large numbers of wetlands and lakes are also key physiographic features, and snow-processes are critical to catchment modeling in this climate. We have revised the existing, publicly available SWAT (version 2009.10.1 Beta 3) to create SWAT-CS, a version representing hydrological processes dominating Canadian Shield catchments, where forest extends over Precambrian Shield bedrock. Prior to this study, very few studies applying SWAT to Canadian Shield catchments exist (we have found three). We tested SWAT-CS using the Harp Lake catchment dataset, an Ontario Ministry of Environment research station located in south-central Ontario. Simulations were evaluated against 30 years of observational data, including streamflow from six headwater sub-catchments (0.1-1.9 km2), outflow from Harp Lake (5.4 km2) and five years of weekly snow water equivalent (SWE). The best Nash-Sutcliffe efficiency (NSE) results for daily streamflow calibration, daily streamflow validation, and SWE were 0.60, 0.65, and 0.87, respectively, for sub-catchment HP4 (with detailed land use and soil data). For this range of catchment scales, land cover and soil properties were found to be transferable across sub-catchments with similar physiographic features, namely streamflow from the remaining five sub-catchments could be modeled well using sub-catchment HP4 parameterization. The Harp Lake outflow was well modeled using the existing reservoir-based target release method, generating NSEs of 0.72 and 0.67 for calibration and verification periods respectively. With

  20. Occurrence and potential health risk of Cryptosporidium and Giardia in different water catchments in Belgium.

    PubMed

    Ehsan, Amimul; Geurden, Thomas; Casaert, Stijn; Paulussen, Jef; De Coster, Lut; Schoemaker, Toon; Chalmers, Rachel; Grit, Grietje; Vercruysse, Jozef; Claerebout, Edwin

    2015-02-01

    Human wastewater and livestock can contribute to contamination of surface water with Cryptosporidium and Giardia. In countries where a substantial proportion of drinking water is produced from surface water, e.g., Belgium, this poses a constant threat on drinking water safety. Our objective was to monitor the presence of Cryptosporidium and Giardia in different water catchment sites in Belgium and to discriminate between (oo)cysts from human or animal origin using genotyping. Monthly samples were collected from raw water and purified drinking water at four catchment sites. Cryptosporidium and Giardia were detected using USEPA method 1623 and positive samples were genotyped. No contamination was found in purified water at any site. In three catchments, only low numbers of (oo)cysts were recovered from raw water samples (<1/liter), but raw water samples from one catchment site were frequently contaminated with Giardia (92 %) and Cryptosporidium (96 %), especially in winter and spring. Genotyping of Giardia in 38 water samples identified the presence of Giardia duodenalis assemblage AI, AII, BIV, BIV-like, and E. Cryptosporidium andersoni, Cryptosporidium suis, Cryptosporidium horse genotype, Cryptosporidium parvum, and Cryptosporidium hominis were detected. The genotyping results suggest that agriculture may be a more important source of surface water contamination than human waste in this catchment. In catchment sites with contaminated surface water, such as the Blankaart, continuous monitoring of treated water for the presence of Cryptosporidium and Giardia would be justified and (point) sources of surface water contamination should be identified.

  1. Legacy Contaminantion in UK catchments since the mid-19th century

    NASA Astrophysics Data System (ADS)

    Howden, N. J. K.; Burt, T. P.; Worrall, F.; Noacco, V.; Wagener, T.

    2014-12-01

    We present data from UK catchments to characterise impacts of industrial and agricultural development of UK river catchments since the mid-19th century. We draw heavily on the world's longest continuous water quality monitoring programme in the Thames River Basin (1868-date) and discuss the implications of both agricultural development, social and industrial change, and the impact of legislation on coupled land and water resource systems. Our review draws on both data and model analysis over a 145-year period and explores how a multitude of inter-linked drivers affects process-function and practical water resource management decision-support. Our work uncovers key drivers, catchment responses and emergent challenges for process science and regulation, with particular emphasis on the technical challenge for catchment scientists to provide both insight and workable solutions to maintain food and water security in intensively management river basins. We discuss issues of appropriate methods for both data capture and subsequent analyses to support short- and long-term decision making, and particularly considers the importance of advanced techniques to clarify uncertainties in extrapolation of short-term observations to inform long-term goals. We speculate as to future trajectories of catchment responses to current pressures, and potential pitfalls to immediate concerns that may often be at odds with overall requirements for continued use of natural resources in the future.

  2. Using high-resolution phosphorus data to investigate mitigation measures in headwater river catchments

    NASA Astrophysics Data System (ADS)

    Campbell, J. M.; Jordan, P.; Arnscheidt, J.

    2014-09-01

    This study reports the use of high resolution water quality monitoring to assess the influence of changes in landuse management on total phosphorus (TP) transfers in two 5 km2 agricultural sub-catchments. Specifically, the work investigates the "wicked problem" of agricultural soil P management and subsequent diffuse transfers at high river flows over a five year timescale. The work also investigates the phenomenon of low flow P pollution from septic tank systems (STS) and mitigation efforts - here termed the "filthy issue" of rural catchment management. Results showed an inconsistent response to soil P management over five years with one catchment showing a convergence to optimum P concentrations and the other an overall increase. Both catchments indicated an overall increase in P concentration in defined high flow ranges. Low flow P concentration showed little change or higher P concentrations in defined low flow ranges despite replacement of defective systems and this is possibly due to a number of confounding reasons including increased housing densities due to new-builds. The work indicates fractured responses to catchment management advice and mitigation and that the short to medium term may be an insufficient time to expect the full implementation of policies (here defined as convergence to optimum soil P concentration and mitigation of STS) and also to gauge their effectiveness.

  3. The effect of break of runoff connectivity on SOC concentration in loess catchment of the Lublin Upland (Poland)

    NASA Astrophysics Data System (ADS)

    Rejman, Jerzy; Rafalska-Przysucha, Anna; Paluszek, Jan

    2014-05-01

    Soil erosion processes lead to redistribution of soils and soil organic carbon (SOC) in the landscape. In this study, we aimed to evaluate the effect of runoff connectivity on horizontal and vertical SOC concentration in the catchment. SOC concentration was examined in a small agricultural catchment located in deep loess area of the Lublin Upland, Poland (51019'55"N, 22023'16"E). The catchment area of 5.6 ha is divided into 11 parcels. Conventional tillage is performed on each of the parcel and plow includes of 1-2 moldboard and 1 cultivator operations per year. Tillage is performed along the longest side of parcels. Crop rotation includes wheat, barley, sugar beets, potatoes and maize. Connectivity of temporal overland flow in the catchment is disturbed by grassed borders of the parcels. SOC concentration was studied in 151 sampling points in a grid 20 by 20 m. Structure of soil profile was studied in each of the sampling points, and soil cores were taken from two soil layers of 0-25 and 25-50 cm, and from 7 profiles located within the closed depression and the areas where line of temporary overland flow cross the grassed parcel borders. SOC concentration in soil samples was determined by wet combustion with dichromate solution. Depositional soils represented 57 profiles in the catchment. The thickness of accumulated soil layer varied from 20 to 151 cm with a mean of 55 cm. SOC concentration ranged from 8.4 to 15.0 g kg-1 (with a mean of 11.0 g kg-1) in the upper and from 2.9 to 14.5 g kg-1 (7.5) in the deeper soil layer. Coefficient of variation was 12.9% in the layer 0-25 cm, and 44.5% in the layer 25-50 cm. To find the reasons of high variability of SOC concentration in deeper soil layer, the location of depositional soils in the catchment was analyzed. The analysis enabled to distinguish two groups of depositional soils of different SOC concentration at the depth of 25-50 cm. Depositional soils located in the zones of temporal stagnation of overland flow (i

  4. Identifying critical source areas for phosphorus loss in Ireland using field and catchment scale ranking schemes

    NASA Astrophysics Data System (ADS)

    Hughes, K. J.; Magette, W. L.; Kurz, I.

    2005-03-01

    Phosphorus (P) in agricultural runoff is a major pollutant in many of Ireland's surface waters. Identification of areas that are at a high risk for P loss to surface waters is a critical component of river basin management. Two P ranking schemes (PRS's) were developed for Ireland, based on multi-criteria analysis approaches proposed in both the US and Europe, to predict the relative likelihood of P loss at both the field and catchment scales. The Field PRS was evaluated by comparing predicted rankings of potential P loss and transport against measured edge-of-field Dissolved Reactive P (DRP) loss for three fields with varying soil P levels. Qualitatively, results indicated that the Field PRS rankings corresponded to the magnitudes of measured P loss for the field sites, as well as to a reasoned evaluation of the relative likelihood that the fields would lose P that would subsequently make its way to surface water. The Catchment PRS was evaluated on a total of 31 catchments and sub-catchments by comparing predicted rankings of potential P loss and transport against measured in-stream median Molybdate Reactive P (MRP). Rankings of the relative likelihood of P loss and transport predicted by the Catchment PRS were positively correlated with median in-stream MRP ( r=0.51, P<0.05). Although the data available for these evaluations were limited, especially at field scale, and further research may identify the opportunity for modifications, both field and catchment scale P ranking schemes demonstrated a potential for identifying critical P source areas within catchments dominated by grass-based agricultural production systems, such as those in Ireland.

  5. A water and sediment budget for a Mediterranean mountainous catchment (Southern Pyrenees)

    NASA Astrophysics Data System (ADS)

    Tuset, Jordi; Vericat, Damià; Batalla, Ramon J.

    2016-04-01

    Sediment transport in Mediterranean mountainous catchments is highly variable influenced principally by sediment availability, which in turn is controlled by the temporal and spatial variability of rainfall, runoff and land uses. In this paper we present the water and sediment budget of the Ribera Salada, a Mediterranean forest catchment located in the Catalan Pre-Pyrenees (NE Iberian Peninsula). The river drains an area of 224 km2. The data acquisition design is composed by five nested experimental sub-catchments. Each monitoring station registers discharge and suspended sediment transport continuously. Here we present the data obtained between 2012 and 2013, two contrasted hydrological years. These data allows to analyse the contribution of each sub-catchment to the total water and suspended sediment yield of the catchment at multiple temporal scales. Annual water yield in the catchment outlet varied between 15 and 31 hm3 y-1. Maximum peak flow in the outlet of the basin was 60.9 m3 s-1; equivalent to a specific discharge of 0.28 m3 s-1 km2. Results indicate that, hydrologically, the catchment can divided in two areas with contrasted regimes. The upper part of catchment is the wettest zone, where the water yield of each sub-catchment is in directly and positive correlated to its area. In contrast, the bottom of the valley has an ephemeral hydrological regime that only supplies water during important rainfall events. Annual suspended sediment load at the catchment outlet oscillated between 615 and 3415 t y-1, with an average value of 2015 t y-1 (i.e. 9.3 t km‑2 y‑1). In contrast to the water yield, most of the suspended sediment load (i.e. 80%) is supplied from the driest part of the catchment where sediment availability is greater and there is a greater connectivity between sediment sources and the channel network. The humid part of the catchment only yielded the 20% of the sediment load, where, as in the case of the water yield, sediment yield is directly

  6. Understanding and improving mitigation strategies for reducing catchment scale nutrient loads using high resolution observations and uncertainty analysis approaches

    NASA Astrophysics Data System (ADS)

    Collins, A.; Lloyd, C.; Freer, J. E.; Johnes, P.; Stirling, M.

    2012-12-01

    One of the biggest challenges in catchment water quality management is tackling the problem of reducing water pollution from agriculture whilst ensuring food security nationally. Improvements to catchment management plans are needed if we are to enhance biodiversity and maintain good ecological status in freshwater ecosystems, while producing enough food to support a growing global population. In order to plan for a more sustainable and secure future, research needs to quantify the uncertainties and understand the complexities in the source-mobilisation-delivery-impact continuum of pollution and nutrients at all scales. In the UK the Demonstration Test Catchment (DTC) project has been set up to improve water quality specifically from diffuse pollution from agriculture by enhanced high resolution monitoring and targeted mitigation experiments. The DTC project aims to detect shifts in the baseline trend of the most ecologically-significant pollutants resulting from targeted on-farm measures at field to farm scales and assessing their effects on ecosystem function. The DTC programme involves three catchments across the UK that are indicative of three different typologies and land uses. This paper will focus on the Hampshire Avon DTC, where a total of 12 parameters are monitored by bank-side stations at two sampling sites, including flow, turbidity, phosphate and nitrate concentrations at 30 min resolution. This monitoring is supported by daily resolution sampling at 5 other sites and storm sampling at all locations. Part of the DTC project aims to understand how observations of water quality within river systems at different temporal resolutions and types of monitoring strategies enable us to understand and detect changes over and above the natural variability. Baseline monitoring is currently underway and early results show that high-resolution data is essential at this sub-catchment scale to understand important process dynamics. This is critical if we are to design

  7. High spatial variability of nitrate in the hard rock aquifer of an irrigated catchment: Implications for water resource assessment and vulnerability

    NASA Astrophysics Data System (ADS)

    Buvaneshwari, Sriramulu; Riotte, Jean; Ruiz, Laurent; Sekhar, Muddu; Mohan Kumar, Mandalagiri S.; Sharma, Amit Kumar; Duprey, Jean Louis; Audry, Stephane; Praveen, Yerabham; Hemanth, Moger; Durand, Patrick; Braun, Jean Jacques

    2016-04-01

    groundwater gradient was high, NO3 concentrations were low to moderate, suggesting that significant lateral flow prevented NO3 enrichment; iii) Finally, low NO3 concentrations were also found in situations where gradient was small but groundwater was shallow and hence reserve was large: these zones are potentially vulnerable to intensification of pumping and fertilizer application. Subsequent decline in groundwater level would then lead to rapid degradation of groundwater quality. We propose that the groundwater level and gradient mapping could be used in hard rock aquifers to delineate zones affected or vulnerable to intensification of irrigated agriculture. Wells located in low gradient zones are suitable for assessing the impacts of local agricultural systems. To the contrary, wells located in zones with high gradient (well mixed) are more representative of the average groundwater quality of the catchment, and hence should be used in priority for regional mapping of groundwater quality.

  8. Catchment-scale herbicides transport: Theory and application

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Thomet, M.; Botter, G.; Rinaldo, A.

    2013-02-01

    This paper proposes and tests a model which couples the description of hydrologic flow and transport of herbicides at catchment scales. The model accounts for streamflow components' age to characterize short and long term fluctuations of herbicide flux concentrations in stream waters, whose peaks exceeding a toxic threshold are key to exposure risk of aquatic ecosystems. The model is based on a travel time formulation of transport embedding a source zone that describes near surface herbicide dynamics. To this aim we generalize a recently proposed scheme for the analytical derivation of travel time distributions to the case of solutes that can be partially taken up by transpiration and undergo chemical degradation. The framework developed is evaluated by comparing modeled hydrographs and atrazine chemographs with those measured in the Aabach agricultural catchment (Switzerland). The model proves reliable in defining complex transport features shaped by the interplay of long term processes, related to the persistence of solute components in soils, and short term dynamics related to storm inter-arrivals. The effects of stochasticity in rainfall patterns and application dates on concentrations and loads in runoff are assessed via Monte Carlo simulations, highlighting the crucial role played by the first rainfall event occurring after herbicide application. A probabilistic framework for critical determinants of exposure risk to aquatic communities is defined. Modeling of herbicides circulation at catchment scale thus emerges as essential tools for ecological risk assessment.

  9. Inter-comparison of hydro-climatic regimes across northern catchments: Synchronicity, resistance and resilience

    USGS Publications Warehouse

    Carey, S.K.; Tetzlaff, D.; Seibert, J.; Soulsby, C.; Buttle, J.; Laudon, H.; McDonnell, J.; McGuire, K.; Caissie, D.; Shanley, J.; Kennedy, M.; Devito, K.; Pomeroy, J.W.

    2010-01-01

    The higher mid-latitudes of the Northern Hemisphere are particularly sensitive to climate change as small differences in temperature determine frozen ground status, precipitation phase, and the magnitude and timing of snow accumulation and melt. An international inter-catchment comparison program, North-Watch, seeks to improve our understanding of the sensitivity of northern catchments to climate change by examining their hydrological and biogeochemical responses. The catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the United States (Sleepers River, Hubbard Brook and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). This briefing presents the initial stage of the North-Watch program, which focuses on how these catchments collect, store and release water and identify 'types' of hydro-climatic catchment response. At most sites, a 10-year data of daily precipitation, discharge and temperature were compiled and evaporation and storage were calculated. Inter-annual and seasonal patterns of hydrological processes were assessed via normalized fluxes and standard flow metrics. At the annual-scale, relations between temperature, precipitation and discharge were compared, highlighting the role of seasonality, wetness and snow/frozen ground. The seasonal pattern and synchronicity of fluxes at the monthly scale provided insight into system memory and the role of storage. We identified types of catchments that rapidly translate precipitation into runoff and others that more readily store water for delayed release. Synchronicity and variance of rainfall-runoff patterns were characterized by the coefficient of variation (cv) of monthly fluxes and correlation coefficients. Principal component analysis (PCA) revealed clustering among like catchments in terms of functioning, largely controlled by two components that (i) reflect temperature and precipitation gradients and the correlation of monthly precipitation and discharge and (ii

  10. Catchments of general practice in different countries--a literature review.

    PubMed

    Allan, Donald P

    2014-08-29

    The purpose of this paper is to review the current research on catchment areas of private general practices in different developed countries because healthcare reform, including primary health care, has featured prominently as an important political issue in a number of developed countries. The debates around health reform have had a significant health geographic focus. Conceptually, GP catchments describe the distribution, composition and profile of patients who access a general practitioner or a general practice (i.e. a site or facility comprising one or more general practitioners). Therefore, GP catchments provide important information into the geographic variation of access rates, utilisation of services and health outcomes by all of the population or different population groups in a defined area or aggregated area.This review highlights a wide range of diversity in the literature as to how GP catchments can be described, the indicators and measures used to frame the scale of catchments. Patient access to general practice health care services should be considered from a range of locational concepts, and not necessarily constrained by their place of residence. An analysis of catchment patterns of general practitioners should be considered as dynamic and multi-perspective. Geographic information systems provide opportunities to contribute valuable methodologies to study these relationships. However, researchers acknowledge that a conceptual framework for the analysis of GP catchments requires access to real world data. Recent studies have shown promising developments in the use of real world data, especially from studies in the UK. Understanding the catchment profiles of individual GP surgeries is important if governments are serious about patient choice being a key part of proposed primary health reforms. Future health planning should incorporate models of GP catchments as planning tools, at the micro level as well as the macro level, to assist policies on the

  11. Nutrient water quality of the Wye catchment, UK: exploring patterns and fluxes using the Environment Agency data archives

    NASA Astrophysics Data System (ADS)

    Jarvie, H. P.; Neal, C.; Withers, P. J. A.; Robinson, A.; Salter, N.

    Water quality data, collected by the Environment Agency in England and Wales over 10 years (1991 - 2000) were used to examine the spatial distribution of nutrient pollution risk and for assessing broad-scale spatial and temporal variability in nutrient fluxes across the Wye catchment. Nutrient water quality across the upper and middle Wye catchment, and along the main River Wye, is generally very good. However, the main areas of concern lie in the small tributaries in the south and east of the catchment, which have lower dilution capacity and high agricultural and effluent inputs, and where mean Total Reactive Phosphorus (TRP) in some cases exceed 1 mg-P l-1. Indeed, mass load calculations have demonstrated that the lowland south and east portion of the catchment contributes more than 85% of the whole-catchment TRP and more than 78% of nitrate (NO3‾) loads. Ratios of NO3‾:Ca were used to fingerprint different water-types across the catchment, linked to weathering and agricultural activity. The Wye catchment has been subject to two major sets of perturbations during the study period: (i) climatic fluctuations, with a drought during 1995-6, followed by a subsequent drought-break in 1997/8, and extreme high river flows in the autumn/winter of 2000/2001, and (ii) introduction of tertiary P-treatment at major sewage treatment works in the catchment. The implications of these perturbations for the nutrient water quality of the Wye catchment are discussed. Recommendations are made for more targeted monitoring to directly assess diffuse source nutrient contributions.

  12. Forecasting the impact of global changes on the water resources of a mountainous catchment in the Chilean Andes

    NASA Astrophysics Data System (ADS)

    Ruelland, D.; Campéon, C.; Dezetter, A.; Jourde, H.

    2012-04-01

    in a piezometer at the basin outlet are also in good agreement. The model thus provides encouraging simulations of groundwater and surface water dynamics when applied to various climatic conditions. Simulations are improved when a dam located in the upstream catchment is considered into the model. In contrast, integrating agricultural and domestic water withdrawals does not improve significantly the simulations. However, it allows assessing the ability of water resources to supply water demands by computing a water allocation index. The climatic scenarios forecast an increase in temperature of about 1-2°C and a 20-30% reduction in precipitation by the 2050 horizon. According to the hydrological simulations, the mean annual discharge of the upper Elqui River may decline by 30-40%, and the seasonal peak flow would occur earlier than in current conditions. As a result, the agricultural demands (90% of the water uses) may not be always satisfied, especially during the summer season, as shown by the future trends in the water allocation index. This calls for evaluating the efficiency of adaptation strategies consisting in an improvement of the irrigation system and of water management, which is the subject of ongoing research.

  13. Theme: Innovative Curriculum Ideas and Practices in Agricultural Education.

    ERIC Educational Resources Information Center

    Agricultural Education Magazine, 2002

    2002-01-01

    Fourteen theme articles discuss the following: curriculum ideas and innovations in agricultural education, agricultural literacy, Supervised Agricultural Experience, active learning, locating agricultural education resources, distance and web-based instruction, principles of forest management, professional development, and service learning. (JOW)

  14. Unraveling soil moisture responses to storms and relationships to runoff in a headwater catchment

    NASA Astrophysics Data System (ADS)

    Singh, N.

    2015-12-01

    Soil moisture exhibits complex spatiotemporal patterns, both laterally across landscapes and vertically within soil profiles. These patterns of soil moisture can have strong influences on runoff generation, especially in catchments having large capacities for soil water storage and transmission. The body of literature on runoff generation is expansive, yet we still have a great deal to learn about how the spatial and temporal heterogeneity of soil moisture influences catchment-scale hydrologic responses to storm events. With this in mind, we investigated soil moisture responses to storm events across several landscape positions in a steep, forested headwater catchment. We measured volumetric water content (VWC) continuously for two years at 45 points representing different combinations of landscape position and soil depth within a 13 ha catchment at Coweeta Hydrologic Laboratory in the Southern Appalachian Mountains. We also monitored shallow groundwater levels at six locations within the catchment along with runoff at the catchment outlet. To investigate soil moisture response during events, we assessed absolute change in magnitude of VWC (Δs) and lag time (Δt) between peak VWC and peak precipitation for 39 events during the two-year study period. Our results showed that storm depth and antecedent moisture explained some of the spatiotemporal patterns of Δs; however, the explanatory power varied with the hillslope and season. Furthermore, we did not detect topographic control of Δs or Δt at most of the locations monitored. By evaluating the sequence of Δt, groundwater response, and runoff response for each storm, we characterized the hydrologic behavior of the study hillslopes for the 39 storm events.The characterization of hydrologic behavior reveals interrelationships between soil moisture and shallow groundwater, and their combined influence on runoff at the catchment outlet. This work provides new insights on links between the spatiotemporal variability

  15. Towards integrated catchment management, Whaingaroa, New Zealand.

    PubMed

    van Roon, M; Knight, S

    2001-01-01

    The paper examines progress towards integrated catchment management and sustainable agriculture at Whaingaroa (Raglan), New Zealand. Application of the Canadian "Atlantic Coastal Action Program" model (ACAP) has been only partially successful within New Zealand's bicultural setting. Even before the introduction of the ACAP process there existed strong motivation and leadership by various sectors of the community. A merging of resource management planning and implementation processes of the larger community and that of the Maori community has not occurred. Research carried out by Crown Research Institutes has clearly shown the actions required to make pastoral farming more sustainable. There are difficulties in the transference to, and uptake of, these techniques by farmers. An examination of the socio-economic context is required. There has been a requirement on local government bodies to tighten their focus as part of recent reform. This has occurred concurrently with a widening of vision towards integrated and sustainable forms of management. This (as well as a clear belief in empowerment of local communities) has lead to Council reliance on voluntary labour. There is a need to account for the dynamic interaction between social and political history and the geological and biophysical history of the area. As part of a re-examination of sustainable development, New Zealand needs to reconcile the earning of the bulk of its foreign income from primary production, with the accelerating ecological deficit that it creates. A sustainability strategy is required linking consumer demand, property rights and responsibilities.

  16. Modeling sediment delivery from a highly erodible mountain catchment

    NASA Astrophysics Data System (ADS)

    Le Bouteiller, C.; Asif, N. M.; Recking, A.; Liebault, F.

    2015-12-01

    Draix observatory is located in the French Alps on a highly erodible substrate of shale. Most of the observatory is in a badland area characterized by steep gullies and high erosion rates (up to 1cm/year). Within the observatory, the study focuses on the Moulin, which is an 8ha catchment located at an elevation of 850-925m, with 54% of badland area. Available data includes DEM, meteorological data, high-frequency records of discharge and suspended sediment concentration during the floods, cumulative values of bedload transport for each flood, high-frequency records of bedload transport for a few events from a Birkbeck sampler. Modeling sediment delivery in such a catchment is challenging because 1) most available models have been designed for low-relief regions and do not account for steep slope processes such as debris flow and landslides; 2) hydrology (especially flashfloods) in mountainous regions is not well understood; 3) soil properties are very heterogeneous ; 4) multiple time scales are involved: seasonal sediment production on the slopes, storage in the bed and exportation requires to work on yearly times scales, while summer floods and most sediment delivery events occur over a few minutes only. We evaluate the ability of the SHETRAN model to reproduce sediment delivery patterns from the catchment. First, we calibrate the hydrological model using one year of meteorological and hydrological data. We then apply the sediment transport module over several flood events, using in-situ measurements of bed and slope grain-size distributions. Finally we investigate how sediment available on the slopes moves through the catchment over a year. Event-scale volumes of sediment simulated by the model are comparable to observed values within an order of 2. Sediment delivery rates are very sensitive to the slope grain-size distribution. Depending on sediment availability on the slopes and on soil erodibility, the catchment is running either in a supply-limited or

  17. Impact of model geometry and recharge rates on catchment's residence time distributions - numerical experiments

    NASA Astrophysics Data System (ADS)

    Neubauer, M.; Musolff, A.; Fleckenstein, J. H.

    2013-12-01

    Residence time distributions (RTD) of water in catchments are promising tools to characterize and model solute transport on a larger scale. In the last decade, much research has been conducted on the estimation and the application of RTD's. However, there are still some major issues to be addressed to complex derivation, parameterization and transient behavior. Through improved remote sensing data, the surface elevation can mostly be resolved in detail, while subsurface volumes and boundaries remain highly undetermined. Our objectives are to systematically evaluate the impact of different depths and geometries of the domain bottom and groundwater recharge rates on RTD's. The study site is a small (1.6 km2) headwater catchment located within the Harz Mountains, Germany. For this catchment long time series of climate, discharge and hydro