Science.gov

Sample records for agricultural catchment located

  1. Grey water on three agricultural catchments in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Blazkova, Sarka D.; Kulasova, Alena

    2014-05-01

    The COST project EU EURO-AGRIWAT focuses apart from other problems on the assessment of water footprint (WF). WF is defined as the quantity of water used to produce some goods or a service. In particular, the WF of an agricultural product is the volume of water used during the crop growing period. It has three components: the green water which is rain or soil moisture transpired by a crop, the blue water which is the amount of irrigation water transpired and the grey water which is the volume of water required to dilute pollutants and to restore the quality standards of the water body. We have been observing three different agricultural catchments. The first of them is Smrzovka Brook, located in the protected nature area in the south part of the Jizerske Mountains. An ecological farming has been carried out there. The second agricultural catchment area is the Kralovsky Creek, which lies in the foothills of the Krkonose Mountains and is a part of an agricultural cooperative. The last agricultural catchment is the Klejnarka stream, located on the outskirts of the fertile Elbe lowlands near Caslav. Catchments Kralovsky Brook and Klejnarka carry out usual agricultural activities. On all three catchments, however, recreational cottages or houses not connected to the sewerage system and/or with inefficient septic tanks occur. The contribution shows our approach to trying to quantify the real grey water from agriculture, i.e. the grey water caused by nutrients not utilised by the crops.

  2. Environmental care in agricultural catchments: Toward the communicative catchment

    NASA Astrophysics Data System (ADS)

    Martin, Peter

    1991-11-01

    Substantial land degradation of agricultural catchments in Australia has resulted from the importation of European farming methods and the large-scale clearing of land. Rural communities are now being encouraged by government to take responsibility for environmental care. The importance of community involvement is supported by the view that environmental problems are a function of interactions between people and their environment. It is suggested that the commonly held view that community groups cannot care for their resources is due to inappropriate social institutions rather that any inherent disability in people. The communicative catchment is developed as a vision for environmental care into the future. This concept emerges from a critique of resource management through the catchment metaphors of the reduced, mechanical, and the complex, evolving catchment, which reflect the development of systemic and people-centered approaches to environmental care. The communicative catchment is one where both community and resource managers participate collaboratively in environmental care. A methodology based on action research and systemic thinking (systemic action research) is proposed as a way of moving towards the communicative catchment of the future. Action research is a way of taking action in organizations and communities that is participative and informed by theory, while systemic thinking takes into account the interconnections and relationships between social and natural worlds. The proposed vision, methodology, and practical operating principles stem from involvement in an action research project looking at extension strategies for the implementation of total catchment management in the Hunter Valley, New South Wales.

  3. Seasonal Variations of Nitrate Concentrations In Agricultural Catchments

    NASA Astrophysics Data System (ADS)

    Martin, C.; Aquilina, L.; Gascuel-Odoux, C.; Molénat, J.; Ruiz, L.

    Nitrate concentrations in streams of agricultural catchments with impervious bedrock often present an interannual variability (due to landuse changes) and a seasonal one. Usually seasonal variations are characterised by high concentrations in winter and low in summer. Some catchments may present intermediate or inverse cycles (high con- centrations in summer). Two hypothesis to explain classical variations of nitrate con- centrations in streams exist: (i) the availibility of nitrate in the soil for leaching and (ii) the temporal variations of the nitrate-rich shallow groundwater. The aim of this study is to explain the occurence of classical or inverse scheme of seasonal variations by testing these two existing hypothesis and proposing an alternative one for inverse cycles. Two catchments with different seasonal variations (KERRIEN catchment : normal cycle, and KERBERNEZ catchment : inverse cycle), located in the South Western French Brittany, were instrumented in 2001 with a set of 22 piezometers in- stalled at different depths and located along the hillslope. The water table dynamic and chemestry (nitrate, chloride, carbon, Rare Earth Elements,...) had been measured weekly during one year. The shallow groundwater of the Kerrien catchment is char- acterised by two lateral domains with a temporal stability of concentrations : the bot- tom land, constantly denitrified, and the upper domain with nitrate concentrations around 60 mg.L(-1) . The Kerbernez catchment is characterised by two vertical domains with a temporal rise of concentrations : the upper domain with nitrate concen- trations around 60 mg.L(-1) , as the Kerrien catchment, and a deeper compartment, with concentrations excedeed 100 to 120 mg.L(-1) of nitrate. On the Kerrien catchment, the classical cycle is due to the most important contribution of the shal- low groundwater in winter. The inverse cycle of the Kerbernez catchment may be due to the most important contribution of the deep compartment in

  4. Agricultural Catchments: Evaluating Policies and Monitoring Adaptive Management

    NASA Astrophysics Data System (ADS)

    Jordan, P.; Shortle, G.; Mellander, P. E.; Shore, M.; McDonald, N.; Buckley, C.

    2014-12-01

    Agricultural management in river catchments must combine the objectives of economic profit and environmental stewardship and, in many countries, mitigate the decline of water quality and/or maintain high water quality. Achieving these objectives is, amongst other activities, in the remit of 'sustainable intensification'. Of concern is the efficient use of crop nutrients, phosphorus and nitrogen, and minimising or offsetting the effects of transfers from land to water - corner-stone requirements of many agri-environmental regulations. This requires a robust monitoring programme that can audit the stages of nutrient inputs and outputs in river catchments and indicate where the likely points of successful policy interventions can be observed - or confounded. In this paper, a catchment, or watershed, experimental design and results are described for monitoring the nutrient transfer continuum in the Irish agricultural landscape against the backdrop of the European Union Nitrates and Water Framework Directives. This Agricultural Catchments Programme experimental design also serves to indicate water quality pressure-points that may be catchment specific as agricultural activities intensify to adapt to national efforts to build important parts of the post-recession economy.

  5. Phosphorus delivery via groundwater in agricultural river catchments

    NASA Astrophysics Data System (ADS)

    Mellander, Per-Erik; Jordan, Philip; Shore, Mairead; Melland, Alice R.

    2014-05-01

    Mitigating diffuse phosphorus (P) delivery to rivers, lakes and estuaries in the agricultural landscape is important for ecological quality management. In order to plan this management, it is useful to identify and quantify dominating P transfer pathways and their potential variation over time and space. Phosphorus is anticipated to mainly be transferred to rivers episodically via pathways on the surface and is not usually considered as a major concern in groundwater-fed waters. However, in this paper we report considerable proportions of P delivery via groundwater in two agricultural river catchments with permeable soils. We investigated the P transfer pathways and links between groundwater and surface water, as well as the implication of spatio-temporally variable P concentrations in groundwater at the hillslope scale. We present four years of P concentrations in stream water (sub-hourly) and in groundwater (monthly) of different strata in four hillslopes, as well as estimated P transfer pathways for winter periods (Oct-Jan) in two ca. 10 km2 catchments in Ireland. One catchment was dominated by arable land overlying slate bedrock and the other by grassland overlying sandstone. High temporal resolution monitoring of river discharge and P concentration allowed an estimation of total P (TP) and total reactive P (TRP) transfer pathways as well as flow pathways. In the groundwater of both catchments the 4-year average dissolved reactive P was up to 0.021 mg/l (Arable) and 0.050 mg/l (Grassland) in shallow near-stream groundwater. During the winter periods in the Arable catchment 20% of the runoff, 59% of stream TP load and 35% of stream TRP load was transferred by quick aboveground pathways while 77% of runoff, 36% of TP and 58% of TRP was transferred via delayed groundwater pathways. In the Grassland catchment 10% of the runoff, 48% of TP and 38% of TRP was transferred above ground while 86% of runoff, 46% of TP and 55% of TRP transferred via groundwater. In both

  6. [Contribution of Base Flow to Total Nitrogen Loading in Subtropical Agricultural Catchments].

    PubMed

    Ma, Qiu-mei; Li, Wei; Wang, Yi; Liu, Xin-liang; Li, Yong; Wu, Jin-shui

    2016-04-15

    With the fast development of economics and improvement of people's living standard, non-point source pollution of the agricultural catchments in subtropical China has become more and more severe, where water quality deterioration has become a main barrier for sustainable development and ecological restoration. The process of ecohydrology in catchment is greatly influenced by the process of base flow in channel. This study selected the Tuojia and Jianshan catchments located in Changsha County, Hunan Province, to quantify and compare the contribution of base flow to total nitrogen (TN) loading from January 2011 to December 2013, through field observation and model estimation. The results suggested that the Tuojia catchment with higher intensity of rice agriculture had the greater volume of base flow, higher average flow-weighted TN concentration in base flow, and greater monthly TN loading via base flow [15.2 mm · month⁻¹, 4.14 mg · L⁻¹ and 0.54 kg · (hm² · month)⁻¹, respectively] than those in the Jianshan catchment with lower intensity [11.4 mm · month⁻¹, 1.72 mg · L⁻¹ and 0.20 kg · (hm² · month)⁻¹, respectively]. The base flow contribution to TN loading showed an apparently seasonal pattern. During rice-growing seasons, the contributions of base flow to TN loading were 23.2% and 18.6% in the Tuojia and Jianshan catchments, respectively, lower than those in the fallow seasons (46.9% and 40.0% correspondingly. These results suggested that rice agriculture increased the contribution of base flow in the fallow season to TN loading. Therefore, to alleviate the suffering of non-point source pollution in the rice agriculture catchments, reasonable management measure of rice fields should be implemented to decrease contrihution of base flow to TN loading. PMID:27548958

  7. Hydrological Controls on Nutrient Concentrations and Fluxes in Agricultural Catchments

    NASA Astrophysics Data System (ADS)

    Petry, J.; Soulsby, C.

    2002-12-01

    This investigation into diffuse agricultural pollution and the hydrological controls that exert a strong influence on both nutrient concentrations and fluxes, was conducted in an intensively farmed lowland catchment in north-east Scotland. The study focuses on spatial and seasonal variations in nutrient concentrations and fluxes at the catchment scale, over a 15-month period. The water quality of the 14.5 km2 Newmills Burn catchment has relatively high nutrient levels with mean concentrations of NO3-N and NH3-N at 6.09 mg/l and 0.28 mg/l respectively. Average PO4-P concentrations are 0.06 mg/l. Over short timescales nutrient concentrations and fluxes are greatest during storm events when PO4-P and NH3-N are mobilised by overland flow in riparian areas, where soils have been compacted by livestock or machinery. Delivery of deeper soil water in subsurface storm flow, facilitated by agricultural under-drainage, produces a marked increase in NO3-N (6.9 mg/l) concentrations on the hydrograph recession limb. A more detailed insight into the catchment response to storm events, and in particular the response of the hydrological pathways which provide the main sources of runoff during storm events, was gained by sampling stream water at 2-hourly intervals during 5 events. End Member Mixing Analysis (EMMA) was carried out using event specific end-member chemistries to differentiate three catchment-scale hydrological pathways (overland flow, subsurface storm flow, groundwater flow) on the basis of observed Si and NO3-N concentrations in sampled source waters. Results show that overland flow generally dominates the storm peak and provides the main flow path by which P is transferred to stream channels during storm events, whilst subsurface storm flows usually dominate the storm hydrograph volumetrically and route NO3-rich soil water to the stream. The study shows that altering hydrological pathways in a catchment can have implications for nutrient management. Whilst buffer

  8. Nitrogen attenuation along delivery pathways in agricultural catchments

    NASA Astrophysics Data System (ADS)

    McAleer, Eoin; Mellander, Per-Erik; Coxon, Catherine; Richards, Karl G.

    2014-05-01

    Hillslope hydrologic systems and in particular near-stream saturated zones are active sites of nitrogen (N) biogeochemical dynamics. The efficiency of N removal and the ratio of reaction products (nitrous oxide and dinitrogen) in groundwater is highly variable and depends upon aquifer hydrology, mineralogy, dissolved oxygen, energy sources and redox chemistry. There are large uncertainties in the closing of N budgets in agricultural catchments. Spatial and temporal variability in groundwater physico-chemistry, catchment hydrology and land-use gives rise to hotspots and hot moments of N attenuation. In addition the production, consumption and movement of denitrification products remains poorly understood. The focus of this study is to develop a holistic understanding of N dynamics in groundwater as it moves from the top of the hillslope to the stream. This includes saturated groundwater flow, exchange at the groundwater-surface water interface and hyporheic zone flow. This project is being undertaken in two ca. 10km2 Irish catchments, characterised by permeable soils. One catchment is dominated by arable land overlying slate bedrock and the other by grassland overlying sandstone. Multi-level monitoring wells have been installed at the upslope, midslope and bottom of each hillslope. The piezometers are screened to intercept the subsoil, weathered bedrock and competent bedrock zones. Groundwater samples for nitrate (NO3-N) nitrite (NO2-N), ammonium (NH4-N) and total nitrogen are collected on a monthly basis while dissolved gas concentrations are collected seasonally. Groundwater NO3-N profiles from monitoring data to date in both catchments differ markedly. Although the two catchments had similar 3 year mean concentrations of 6.89 mg/L (arable) and 6.24 mg/L (grassland), the grassland catchment had higher spatial and temporal variation. The arable catchment showed relatively homogenous NO3-N concentrations in all layers and zones (range: 1.2 - 12.13 mg/L, SD = 1.60 mg

  9. Tracing crop-specific sediment sources in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Blake, William H.; Ficken, Katherine J.; Taylor, Philip; Russell, Mark A.; Walling, Desmond E.

    2012-02-01

    A Compound Specific Stable Isotope (CSSI) sediment tracing approach is evaluated for the first time in an agricultural catchment setting against established geochemical fingerprinting techniques. The work demonstrates that novel CSSI techniques have the potential to provide important support for soil resource management policies and inform sediment risk assessment for the protection of aquatic habitats and water resources. Analysis of soil material from a range of crop covers in a mixed land-use agricultural catchment shows that the carbon CSSI signatures of particle-reactive fatty acids label surface agricultural soil with distinct crop-specific signatures, thus permitting sediment eroded from each land-cover to be tracked downstream. High resolution sediment sampling during a storm event and analysis for CSSI and conventional geochemical fingerprints elucidated temporal patterns of sediment mobilisation under different crop regimes and the specific contribution that each crop type makes to downstream sediment load. Pasture sources (65% of the catchment area) dominated the sediment load but areal yield (0.13 ± 0.02 t ha - 1 ) was considerably less than that for winter wheat (0.44 ± 0.15 t ha - 1 ). While temporal patterns in crop response matched runoff and erosion response predictions based on plot-scale rainfall simulation experiments, comparison of biomarker and geochemical fingerprinting data indicated that the latter overestimated cultivated land inputs to catchment sediment yield due to inability to discriminate temporary pasture (in rotation) from cultivated land. This discrepancy, however, presents an opportunity since combination of the two datasets revealed the extremely localised nature of erosion from permanent pasture fields in this system (estimated at up to 0.5 t ha - 1 ). The novel use of CSSI and geochemical tracers in tandem provided unique insights into sediment source dynamics that could not have been derived from each method alone. Research

  10. Identification of phosphorus emission hotspots in agricultural catchments

    PubMed Central

    Kovacs, Adam; Honti, Mark; Zessner, Matthias; Eder, Alexander; Clement, Adrienne; Blöschl, Günter

    2012-01-01

    An enhanced transport-based management approach is presented, which is able to support cost-effective water quality management with respect to diffuse phosphorus pollution. Suspended solids and particulate phosphorus emissions and their transport were modeled in two hilly agricultural watersheds (Wulka River in Austria and Zala River in Hungary) with an improved version of the catchment-scale PhosFate model. Source and transmission areas were ranked by an optimization method in order to provide a priority list of the areas of economically efficient (optimal) management alternatives. The model was calibrated and validated at different gauges and for various years. The spatial distribution of the emissions shows that approximately one third of the catchment area is responsible for the majority of the emissions. However, only a few percent of the source areas can transport fluxes to the catchment outlet. These effective source areas, together with the main transmission areas are potential candidates for improved management practices. In accordance with the critical area concept, it was shown that intervention with better management practices on a properly selected small proportion of the total area (1–3%) is sufficient to reach a remarkable improvement in water quality. If soil nutrient management is also considered in addition to water quality, intervention on 4–12% of the catchment areas can fulfill both aspects. PMID:22771465

  11. Influence of teleconnection on water quality in agricultural river catchments

    NASA Astrophysics Data System (ADS)

    Mellander, Per-Erik; Jordan, Phil; Shore, Mairead; McDonald, Noeleen; Shortle, Ger

    2015-04-01

    Influences such as weather, flow controls and lag time play an important role in the processes influencing the water quality of agricultural catchments. In particular weather signals need to be clearly considered when interpreting the effectiveness of current measures for reducing nitrogen (N) and phosphorus (P) losses from agricultural sources to water bodies. In north-western Europe weather patterns and trends are influenced by large-scale systems such as the North Atlantic Oscillation (NAO) and the position of the Gulf Stream, the latter expressed as the Gulf Stream North Wall index (GSNW index). Here we present five years of monthly data of nitrate-N concentration in stream water and groundwater (aggregated from sub-hourly monitoring in the stream outlet and monthly sampling in multilevel monitoring wells) from four agricultural catchments (ca. 10 km2) together with monitored weather parameters, long-term weather data and the GSNW index. The catchments are situated in Ireland on the Atlantic seaboard and are susceptible to sudden and seasonal shifts in oceanic climate patterns. Rain anomalies and soil moisture deficit dynamics were similar to the dynamics of the GSNW index. There were monitored changes in nitrate-N concentration in both groundwater and surface water with no apparent connection to agricultural management; instead such changes also appeared to follow the GSNW index. For example, in catchments with poorly drained soils and a 'flashy hydrology' there were seasonal dynamics in nitrate-N concentration that correlated with the seasonal dynamics of the GSNW index. In a groundwater driven catchment there was a consistent increase in nitrate-N concentration over the monitored period which may be the result of increasingly more recharge in summer and autumn (as indicated by more flux in the GSNW index). The results highlight that the position of the Gulf Stream may influence the nitrate-N concentration in groundwater and stream water and there is a risk

  12. Estimation of groundwater contribution in runoff from small agricultural dominated catchments

    NASA Astrophysics Data System (ADS)

    Deelstra, Johannes; Jansons, Viesturs; Lagzdiņš, Ainis

    2013-04-01

    Latvia. Each set consisted of a field providing both surface and subsurface runoff located within the catchment. Different filters were tested but the one developed by Chapman & Maxwell (1996) was selected. An improved filter parameter value was obtained, resulting in more realistic values for BFI in Norwegian catchments, being in the order of 10%. The values for the Latvian catchments were slightly higher, the main reason for this being soil types and geological settings. The results indicate that care should be taken in selecting the digital filter value for catchments having flashy runoff behaviour. This might lead to wrong estimates of baseflow contribution which can have negative effects on modelling hydrology, pollutant transport and the selection of mitigation measures at the scale of small agricultural catchments. References Chapman, T.G., Maxwell, A.I . 1996. Baseflow separation - comparison of numerical methods with tracer experiments. Institute Engineers Australia National Conference. Publ. 96/05, 539-545 Deelstra, J., Eggestad, H.O., Iital, A., Jansons, V. and Barkved, L.J. (2010), "Time resolution and hydrological characteristics in agricultural catchments", in Hermann, A. and Schumann, S. (Eds), Status and Perspectives of Hydrology in Small Basins, Vol. 336, IAHS Publication, pp. 138 - 143.

  13. Transport and attenuation of chloroacetanilides in an agricultural headwater catchment

    NASA Astrophysics Data System (ADS)

    Lefrancq, Marie; Imfeld, Gwenaël; Millet, Maurice; Payraudeau, Sylvain

    2015-04-01

    Chloroacetanilides (e.g., S-metolachlor and acetochlor) are pre-emergent herbicides used on corn and sugar beet and are applied to bare soil, which is prone to runoff and erosion. Some of these herbicides are chiral and the commercial products can be isomerically enriched in the enantiomer-S compared to the enantiomer-R as an example S-metolachlor 80/20% S to R . Determination of the transport of these herbicides in the dissolved and particulate phases of runoff water and degradation in agricultural catchments is currently lacking. The objectives of this study were i) to quantify over an corn growing season the export of chloroacetanilides and their main degradation products (ethane sulfonic (ESA) and oxanilic acid (OXA) degradates of metolachlor (MESA and MOXA) and acetochlor (AcESA and AcOXA)) in an 47 ha agricultural head-catchment in the dissolved and particulate phases, and ii) to evaluate S-metolachlor biodegradation from its application on the field to its export from the catchment using enantiomer analysis. Runoff, erosion, hydrochemistry and chloroacetanilide transport were evaluated at both the plot and catchment scales. Our results showed that an important amount of the pesticide load is missed when only the dissolved concentration of the parent compound is analysed. The total export coefficients for S-metolachlor and acetochlor and their degradation products were 11.4 and 11.8%, respectively, which includes both the dissolved and particulate loads. The partitioning of S-metolachlor and acetochlor between the dissolved and particulate phases varied widely over time and was linked to the suspended solid concentrations. Detection of S-metolachlor degradation products in runoff water was more frequent compared to that of acetochlor degradation products. Enrichment up to 37% of R-metolachlor was observed during the corn growing season, supporting enantioselective degradation of S-metolachlor. Our field study indicates the potential of enantiomer analyses for

  14. Impact of agricultural practices and river catchment characteristics on river and bathing water quality.

    PubMed

    Aitken, M N

    2003-01-01

    The objective was to investigate the potential risk of faecal indicator organism (FIO) bacteriological contamination of river catchments and coastal bathing waters from farm management practices and to develop practices to reduce the risk. A risk assessment on 117 farms was carried out in two river catchments in south-west Scotland. Manure storage facilities, farming practices, field conditions and catchment characteristics were assessed. River samples at 33 locations were regularly taken and analysed for FIOs. Available manure storage capacity and farm management practices are inadequate on a high proportion of farms and FIO contamination of watercourses was likely the result of effluent transported into watercourses due to non-collection or poor containment. In addition, surface run-off or leaching following land application of manure or intensive stocking in adverse conditions was a high risk on up to 50% of farms. The concentrations of FIOs in the streams of two sub-catchments with high livestock intensity was 4 to 8 times higher compared to the two sub-catchments which had a low livestock intensity. The majority of potential risks of agricultural pollution to watercourses may be eliminated through improved manure and dirty water management, forward planning of manure spreading activities and improved operational procedures. PMID:15137173

  15. Runoff production in a small agricultural catchment in Lao PDR : influence of slope, land-use and observation scale.

    NASA Astrophysics Data System (ADS)

    Patin, J.; Ribolzi, O.; Mugler, C.; Valentin, C.; Mouche, E.

    2009-04-01

    We study the surface and sub-surface hydrology of a small agricultural catchment (60ha) located in the Luang Prabang province of Lao PDR. This catchment is representative of the rural mountainous south east Asia. It exhibits steep slopes (up to 100% and more) under a monsoon climate. After years of traditional slash and burn cultures, it is now under high land pressures due to population resettling and environment preservation policies. This evolution leads to rapid land-use changes such as shifting cultivation reduction or growing of teak forest instead of classical crops. This catchment is a benchmark site of the Managing Soil Erosion Consortium since 1998. The international consortium aims to understand the effects of agricultural changes on the catchment hydrology and soil erosion in south east Asia. The Huay Pano catchment is subdivided into small sub-catchments that are gauged and monitored. Differ- ent agricultural practices where tested along the years. At a smaller scale, plot of 1m2 are instrumented to follow runoff and detachment of soil under natural rainfall along the monsoon season. Our modeling work aims to develop a distributed hydrological model integrating experimental data at the different scales. One of the objective is to understand the impact of land-use, soil properties (slope, crust, etc) and rainfall (dry and wet seasons) on surface and subsurface flows. We present here modeling results of the runoff plot experiments (1m2 scale) performed from 2002 to 2007. The plots distribution among the catchment and over the years gives a good representativity of the different runoff responses. The role of crust, slope and land-use on runoff is examined. Finally we discuss how this plot scale will be integrated in a sub-catchment model, with a particular attention on the observed paradox: how to explain that runoff coefficients at the catchment scale are much slower than at the plot scale ?

  16. Overland flow and sediment transport in an agricultural lowland catchments: a focus on tile drain export

    NASA Astrophysics Data System (ADS)

    Vandromme, Rosalie; Grangeon, Thomas; Cerdan, Olivier; Manière, Louis; Salvador Blanes, Sébastien; Foucher, Anthony; Chapalain, Marion; Evrard, Olivier; Le Gall, Marion

    2016-04-01

    Rural landscapes have been extensively modified by human activities in Western Europe since the beginning of the 20th century in order to intensify agricultural production. Cultivated areas often expanded at the expense of grassland and wetlands located in lowland areas (de Groot et al., 2002). Therefore, large modifications were made to the agricultural landscapes: stream redesign, land consolidation, removal of hedges, and installation of tile drainage networks to drain the hydromorphic soils. These changes modified sediment processes and resulted in large morphological alterations (e.g. channel bed incision, deposition of fine sediment, channel bank erosion). Accordingly, these alterations threaten water quality and prevent to meet the requirements of the European directives. Improving water quality requires a clear understanding of the hydrosedimentary dynamics in these lowland cultivated catchments. However, few studies were conducted in drained environments. To fill this research gap, a pilot study was started in cultivated catchment of the Loire River basin, France, where tile drain densities are very high (> 1.5 km/km²). Six hydro-sedimentary monitoring stations were installed in the Louroux catchment (24 km²). One of them was specifically dedicated to measuring water/sediment fluxes from tile drains. Water level and turbidity were continuously monitored and sediments were sampled during floods and low stage periods. Samples were measured for particle size distribution, and sediment tracing studies are currently being developed to quantify the contribution of potential sources (e.g. surface vs subsurface, lithologies) to river sediment. Hydro-sedimentary fluxes were quantified and modelled for some selected events. The catchment hydrosedimentary fluxes and their properties were shown to be impacted by tile drain sediment transport, especially regarding particle size distribution, with the dominant export of very fine particles (< 2 μm) from tile drains

  17. Rainfall Threshold For Slope-Channel Connectivity In Agricultural Catchment

    NASA Astrophysics Data System (ADS)

    Święchowicz, Jolanta

    2015-04-01

    Many rainfall events lead to the transfer of soil material from one slope section to another, which does not notably alter slope relief (first transfer threshold). Some events lead to the transfer of soil from the water divide to the footslope (second transfer threshold). In a few exceptional cases, soil material is transferred directly into river channels due to severe erosion moving large quantities of soil over long distances. Extreme events lead to the transfer of soil material down the entire slope length, its deposition at the footslope and even further across the valley floor. Sediment is transferred directly from slopes to river channels (third transfer threshold or slope-channel connectivity threshold). This work presents rainfall threshold values and probability of slope-to-river sediment transfer in a foothill agricultural catchment in Poland. The study is based on research performed in the Dworski Potok Catchment (227-275 m a.s.l.), which is a small agricultural foothill catchment (0.29 km2), situated in a moderate climate zone, with slopes covered with loess-like formations. The paper uses precipitation data for the period 1987-2009 obtained at the Łazy Field Research Station near Bochnia (Poland) and long-term field data on splash (2007-2009), slope wash (2007-2009) and linear erosion (1998-2009) on slopes. In Dworski Potok Catchment change in the slope relief was brought about by short transformation periods, during which soil erosion by water took place, especially if it was caused by events of high magnitude and low frequency. Those periods which, depending on the criterion adopted, lasted from 0.3 to 4% of the time of study were the most interesting and effective episodes in the development of slopes. It was determined that in the researched multi-year period, the transfer of soil material was possible to occur after certain parameters had exceeded the following threshold values: EI30 = 40.5 MJmmha-1h-1 or I30 = 9.8 mmh-1 for the first transfer

  18. Field-based evaluation tool for riparian buffer zones in agricultural catchments.

    PubMed

    Ducros, Caroline M J; Joyce, Chris B

    2003-08-01

    Riparian buffer zones can improve water quality and enhance habitat, but a comprehensive yet rapid method that can assist the resource manager in assessing the effectiveness of buffers is not available. The aim of this paper is to describe and illustrate the use of a newly developed field-based evaluation tool for riparian buffer zones in agricultural catchments. The Buffer Zone Inventory and Evaluation Form (BZIEF) incorporates criteria-based scoring systems developed from literature review, subsequent peer-review, and then a pilot field study. Use of the BZIEF is demonstrated by comparing buffer zones in three catchments established for water quality and habitat improvement under the Water Fringe Option agrienvironment scheme in England in order to assess whether the buffers were likely to provide environmental enhancement. Results among the three catchments were generally similar; buffer zones scored highly for their abundant vegetation cover, lack of erosion, stream habitat quality, and sufficient width. Furthermore, previous grassland or arable land use did not substantially affect buffer zone ratings. However, the BZIEF indicated that inappropriate soil characteristics in one catchment were likely to constrain buffer zone effectiveness for improving water quality. In another catchment, poor riparian vegetation diversity and structure may yield ineffective habitat enhancement, according to the BZIEF. It was concluded that the BZIEF might be a useful tool for buffer zone comparison and monitoring, even though more work is needed to test and validate the method. For example, the BZIEF could be used to target appropriate locations for buffer zones and is flexible, so could be adapted for different policies, objectives and regions. PMID:14753650

  19. Modelling the effects of recent agricultural land use change on catchment flow and sediment generation

    NASA Astrophysics Data System (ADS)

    Escobar Ruiz, Veronica; Smith, Hugh; Blake, William

    2016-04-01

    Intensive agricultural practices can exacerbate runoff and soil erosion leading to detrimental impacts downstream. Physically-based models have previously been used to assess the impacts on flow and sediment transport in response to land use change, but there has been little investigation of the effect shorter-term changes linked to variations in the extent of cultivated land. The aim of this project is to quantify the impacts on flow generation and sediment transport of different catchment conditions related to both actual recent changes in agricultural land use as well as future change scenarios. To this end, a physically-based distributed hydrological model, SHETRAN was applied in the Blackwater catchment (12 km2) located in south-west England. Land cover was simulated on the basis of satellite-derived land cover maps (1990, 2000 and 2007) as well as a catchment-scale field survey (2011). Soils were represented in the model using five layers for five different soil types in which parameter values were varied in accordance with land use and literature values. Rainfall data (15 min) combined with monthly calculations of evapotranspiration using a simple temperature-based PE model were used to represent contemporary climatic conditions spanning 2010-2014. Calibration was undertaken for selected events during 2011 when land use information was concurrent with available flow and suspended sediment yield data. All land use simulations were then completed for the period 2010-2014 to enable the comparison of model outputs. This contribution will present preliminary results from these land use simulations alongside the effect of several future changes scenarios on catchment flow and sediment generation.

  20. Critical source times for nutrient loss in agricultural catchment streams

    NASA Astrophysics Data System (ADS)

    Melland, Alice; Shore, Mairead; Mellander, Per-Erik; McDonald, Noeleen; Shortle, Ger; Murphy, Paul; Jordan, Phil

    2014-05-01

    Identifying periods of the year when there is a high risk of incidental nutrient loss from farms via runoff to streams underpins current nutrient management legislation in Europe. This research explored high-temporal resolution nutrient transfer patterns relative to the time that manure and fertiliser are prohibited from being spread (the mandatory spreading 'closed' period) in five Irish agricultural catchments. Catchment nutrient losses during the 12 week closed periods in 2009-10, 2010-11 and 2011-12 were compared with losses during the remainder of the year, and with losses in the two week 'shoulder' periods immediately before and after the closed period. The closed period losses were assumed to be residual from soil nutrient stores and the 'shoulder' periods were considered to also include incidental losses. Nutrient loss was measured at sub-hourly frequency as total phosphorus (P) and total oxidised nitrogen (mostly nitrate-N) fluxes in streamflow. The streamflow fluxes showed that the proportion of the annual nitrate-N loss occurring during the closed periods (33-61%) was high compared with the remainder of the year. Six to ten times more nitrate-N loss occurred in the two weeks after, compared with the two weeks before, the closed period. These two week 'shoulder' period losses were, on average, less than or equal to 2.5 kg nitrate-N/ha and 9% of total annual nitrate-N loss in streamflow. On average, 40-53% of the annual P loss occurred during the closed periods but in a runoff-prone catchment in a year with a wet summer, the closed period was the less risky period. Similar to nitrate-N, two to twenty times more P loss occurred in the two weeks after, compared with the two weeks before, the closed period. These shoulder period losses were, on average, less than or equal to 0.027 kg/ha and 4.2% of total annual P loss in streamflow. The proportion of the shoulder period loss that could be attributed to recently spread nutrients was not known but can be

  1. Quantifying subsurface mixing of water and nutrients in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Van der Velde, Y.; Torfs, P.; Van Der Zee, S.; Uijlenhoet, R.

    2011-12-01

    The distribution of time it takes water from the moment of rainfall to reach the catchment outlet is widely used to characterize catchment-scale groundwater-surface water interactions, catchment vulnerability to pollution spreading and pollutant loads from catchments to downstream waters. However, this distribution tends to vary in time driven by rainfall and evapotranspiration, which compromises the applicability of a single travel time distribution as catchment characteristic. Recent studies suggested that subsurface mixing controls to what extent dynamics in rainfall and evpotranspiration are translated into dynamics of travel time distributions of individual water flows. This new insight in hydrologic functioning of catchments requires new definitions and concepts that link dynamics of catchment travel time distributions to the degree of subsurface mixing. We propose the concept of Refresh Rate Functions (RRF) and will demonstrate how RRFs directly quantify subsurface mixing within a catchment, allow for deriving transient as well as temporally averaged travel time distributions of a catchment and are largely independent of weather or climate. The presented analyses will use a unique dataset of high-frequent nitrate concentrations in an agricultural catchment in the Netherlands to reveal the effects of mixing dynamics inside a catchment on stream water nitrate concentrations. These measurements will be compared with calculations by a spatially distributed groundwater model and conceptual models of water flow and solute transport. Remarkable findings are the large contrasts in discharge behavior expressed in travel time between lowland and sloping catchments and the strong relation between evapotranspiration and stream water nitrate concentration dynamics.

  2. Evaluation of nitrate removal in buffer zone supply by water from agricultural drained catchment

    NASA Astrophysics Data System (ADS)

    Fesneau, Corinne; Tournebize, Julien; Chaumont, Cedric; Guenne, Angeline

    2010-05-01

    The European Directive 2000/60/CE states objectives of a good ecological and chemical status from water body until 2015. The Cemagref project focuses on the constructed wetlands (CW) which can be used as buffer zones to lower the impact of agricultural practices on hydrosystems and decrease or even stop the transfer of contaminants via the surface waters. The experiments are carried out on a drained area where the runoff is limited and waters from the soil profile are concentrated at the drain pipes outlet. The constructed wetland studied is located at Aulnoy (77) at 70 km north-east of Paris, within the Orgeval catchment (France). Our aim is to assess the efficiency of constructed wetlands on the removal of agricultural nitrates. We are also interested in the hydrological balance of CW and agricultural catchment. The buffer zone is connected to a drained agricultural catchment of 35 hectares. The crops in the agricultural plots mainly consist in cereals (corn, maize), vegetables (horse bean, pea), sugar beet and rape. Nitrogen fertilizers are applied following normal agricultural practices. The site is monitored since 2005 for discharge and nitrate concentration in order to infer water and nitrate budgets. The buffer zone includes a pond (860m2) and a reservoir (3305 m2). The storage volume is estimated to 8000m3 which corresponds to about 10% of drainage runoff. Our study reveals potential nitrate removal because a decrease of nitrate average contents has been documented between inlet and outlet CW over a measurement period of 4 years. Average values of 57 mg/l, 40 mg/l and 27 mg/l are respectively measured at the main drain, in the pond mean and in the reservoir; that is a reduction close to 50% of nitrate fluxes. The semi-potential denitrification experiments confirm the denitrification capacity of buffer zone sediments. This constructed wetland allows the treatment of waters from agricultural drainage and provides results in line with the expectations of "good

  3. Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments

    NASA Astrophysics Data System (ADS)

    Thomas, Z.; Abbott, B. W.; Troccaz, O.; Baudry, J.; Pinay, G.

    2015-09-01

    Direct and indirect effects from agriculture, urbanization, and resource extraction have dramatically increased nutrient loading to aquatic inland and estuarine ecosystems. The capacity of a watershed to remove or retain nutrients is a function of biotic and abiotic conditions across the terrestrial-aquatic gradient including soil, groundwater, riparian zone, and surface water. The goal of this study was to identify proximate and ultimate controls on dissolved organic carbon and nutrient dynamics in small agricultural catchments. We analysed a five-year, high frequency water chemistry dataset from 3 catchments ranging from 2.3 to 10.8 km2 in northwestern France. Catchments differed in the relationship between hydrology and solute concentrations, associated with catchment characteristics such as hedgerow density, agricultural activity, and geology. The catchment with thicker soil and higher surface roughness appeared to have greater transient storage and residence time, buffering the catchment to fluctuations in water chemistry, reflected in relatively invariant carbon and nutrient chemistry across hydrologic conditions. Conversely, the catchments with smoother, thinner soils responded to both intra- and inter-annual hydrologic variation with high concentrations of PO43- and NH4+ during low flow conditions and strong increases in DOC, sediment, and particulate organic matter during high flows. Despite contrasting agricultural activity between catchments, the physical context (geology, topography, and land use) appeared to be the most important determinant of catchment solute dynamics based on principle components analysis. The influence of geology and accompanying topographic and geomorphological factors on elemental fluxes is both direct and indirect because the distribution of agricultural activity in these catchments is largely a consequence of the geologic and topographic context. This link between inherent catchment buffering capacity and probability of human

  4. Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments

    NASA Astrophysics Data System (ADS)

    Thomas, Zahra; Abbott, Benjamin W.; Troccaz, Olivier; Baudry, Jacques; Pinay, Gilles

    2016-03-01

    Direct and indirect effects from human activity have dramatically increased nutrient loading to aquatic inland and estuarine ecosystems. Despite an abundance of studies investigating the impact of agricultural activity on water quality, our understanding of what determines the capacity of a watershed to remove or retain nutrients remains limited. The goal of this study was to identify proximate and ultimate controls on dissolved organic carbon and nutrient dynamics in small agricultural catchments by investigating the relationship between catchment characteristics, stream discharge, and water chemistry. We analyzed a 5-year, high-frequency water chemistry data set from three catchments in western France ranging from 2.3 to 10.8 km2. The relationship between hydrology and solute concentrations differed between the three catchments and was associated with hedgerow density, agricultural activity, and geology. The catchment with thicker soil and higher surface roughness had relatively invariant carbon and nutrient chemistry across hydrologic conditions, indicating high resilience to human disturbance. Conversely, the catchments with smoother, thinner soils responded to both intra- and interannual hydrologic variation with high concentrations of phosphate (PO43-) and ammonium (NH4+) in streams during low flow conditions and strong increases in dissolved organic carbon (DOC), sediment, and particulate organic matter during high flows. Despite contrasting agricultural activity between catchments, the physical context (geology, topography, and land-use configuration) appeared to be the most important determinant of catchment solute dynamics based on principle components analysis. The influence of geology and accompanying topographic and geomorphological factors on water quality was both direct and indirect because the distribution of agricultural activity in these catchments is largely a consequence of the geologic and topographic context. This link between inherent

  5. Response of current phosphorus mitigation measures across the nutrient transfer continuum in two hydrological contrasting agricultural catchments

    NASA Astrophysics Data System (ADS)

    McDonald, Noeleen; Shore, Mairead; Mellander, Per-Erik; Shortle, Ger; Jordan, Phil

    2015-04-01

    Effective assessment of National Action Programme (NAP) measures introduced under the EU Nitrates Directive (ND), to manage nutrient use and risk of loss to waters from agriculture, is best achieved when examined across the nutrient transfer continuum at catchment scale. The Irish NAP measures are implemented on a whole-territory basis for both nitrogen (N) and phosphorus (P), with P being the key trophic pressure. The aim of this research was to observe the efficacy of P regulation measures and P source management across the transfer continuum and resultant water quality status (i.e. source to impact), in two contrasting agricultural catchments over a four year period. The catchments are ca. 11 km2 and are located in the south-east of Ireland. One is well-drained and arable dominated, while the other is mostly poorly-drained and grassland dominated. In 2009 and 2013 soil surveys for plant-available P were carried out (<2 ha sample areas) in both catchments. Concurrently, high temporal resolution monitoring of water discharge and P concentration was conducted at each catchment outlet across four hydrological years (April to March). Ecological impact surveys were carried out at four sites within each catchment in May and September across the observed four year period (2009-2013). Importantly, the proportion of farmland with excessive soil P concentrations decreased in both the arable (20% to 11.8%) and grassland catchments (5.9 to 3.6%). However, soil P concentrations also declined critically in both catchments, as proportional areas below the national crop agronomic optimum thresholds (grassland; <5 mg P l-1, arable; <6 mg P l-1) increased from 57% to 68% in the arable catchment and 75% to 87% in the grassland catchment. This decline in plant available P strongly indicates a reduced or sustained level of P inputs in both catchments. Indications of responses to soil P change in the surface waters of these catchments appeared to be highly influenced by their

  6. Nutrient cycles in agricultural systems at sub-catchment scale within the UK and China

    NASA Astrophysics Data System (ADS)

    Bellarby, Jessica; Surridge, Ben; Haygarth, Philip M.; Lai, Xin; Zhang, Guilong; Song, Xiaolong; Zhou, Jianbin; Meng, Fanqiao; Shen, Jianbo; Rahn, Clive; Smith, Laurence; Burke, Sean

    2015-04-01

    Diffuse water pollution from agriculture (DWPA) represents a significant challenge in both the UK and China. The UK has developed policies and practices which seek to mitigate DWPA, yet the risks and adverse impacts of DWPA remain widespread. In contrast, China's past priorities have largely focussed on food security, with an emphasis on increasing food production through high fertiliser application rates with little attention being paid to enhanced nutrient export from land to water and to air. This has contributed to severe environmental problems which are only now beginning to be recognised and addressed. We have prepared nutrient balances (phosphorus and nitrogen) in contrasting agricultural production systems at sub-catchment scale within China and the UK. These draw from a variety of sources ranging from general yearly statistics collected by the respective government to farm surveys. Our aim is to use the resulting nutrient balances to underpin the sharing of knowledge and innovation to mitigate DWPA in both nations. In the UK, the case studies focus on the three Demonstration Test Catchment locations, covering a range of livestock and arable production systems across England. Here, the high frequency monitoring of phosphorus river loads enables the cross-validation of the simple nutrient budget approaches applied in this study. In China, our case studies span kiwi orchard, fruit and vegetable solar greenhouse systems, double cropped rice-wheat and wheat-maize production systems. Substantial differences in nutrient stocks and flows exist between individual production systems both across and within the two countries. These differences will be expressed along the source-mobilisation-delivery-impact continuum that underpins our budgets for both phosphorus and nitrogen. We will present the phosphorus cycles of some case studies and highlight their challenges and relevance at sub-catchment scale. Based on our nutrient budgets, general recommendations can be

  7. A Lowland Catchment Response to Heavy Agricultural Nitrogen Loads Explained with a Multiple Isotope and Hydrochemical Approach

    NASA Astrophysics Data System (ADS)

    Wexler, S. K.; Hiscock, K. M.; Dennis, P.

    2009-12-01

    East Anglia, UK, is a lowland area of intensive agriculture, producing much of the UK’s arable crops, while also supporting some of Europe’s most sensitive wetland habitats. The River Wensum in East Anglia is a calcareous lowland river with Site of Special Scientific Interest status. Within the catchment Special Areas of Conservation have been designated (EU Habitats Directive). The river supplies the city of Norwich with its drinking water (population 120 000), while downstream of Norwich water from the Wensum flows through the Norfolk Broads, a unique and protected wetland habitat, to enter the North Sea at Great Yarmouth. The Wensum catchment, covering an area of 570 km2, is heavily impacted by agricultural activity with a high nutrient load that affects both the underlying Cretaceous Chalk aquifer and the groundwater-dependent river, which has a base flow index of 0.78. Nitrate concentrations exceed the legal limit in places (up to 85 mg/ L). In this study, river, tributary, drain and groundwater samples from the Wensum catchment were collected over 27 months from February 2007, through all seasons and flow conditions, alongside samples of fertiliser, manure, waste water, precipitation and dry deposition. The nitrogen and oxygen isotopic composition of nitrate was analysed using the denitrifier method to understand nitrogen transport and cycling within the catchment. Water isotopes were used as an additional tracer, with major ion and trace element hydrochemistry. There is evidence of significant natural attenuation of nitrate which occurs in different locations and at varying rates within the catchment hydrology. Baseflow from highly impacted Chalk groundwater in the valley, with the lowest nitrate isotope ratios and highest concentration of catchment waters, is partially denitrified as it passes through a thick gravel hyporheic zone. Nitrate in surface drainage water undergoes assimilation and denitrification as it infiltrates through the soil and

  8. A view of annual water quality cycle and inter-annual variations in agricultural headwater catchment (Kervidy-Naizin, France)

    NASA Astrophysics Data System (ADS)

    Aubert, A.; Gascuel-odoux, C.; Merot, P.; Grimaldi, C.; Gruau, G.; Ruiz, L.

    2011-12-01

    Climatic conditions impact biotransformation and transfer of solutes. Therefore, they modify solute emissions in streams. Studying these modifications requires long term and detailed monitoring of both internal processes and river loads, which are rarely combined. The Kervidy-Naizin catchment, implemented in 1993, is part of the French network of catchment for environmental research (SOERE RBV, focused on the Critical Zone). It is an intensive agricultural catchment located in a temperate climate in Western France (Brittany) (Molenat et al., 2008; Morel et al., 2009). It presents shallow aquifers due to impervious bedrock. Both hydrology and water chemistry are monitored with a daily time step since 2000-01, as well as possible explanatory data (land use, meteorology, etc.). Concentrations in major anions in this catchment are extremely high, which make people call it a "saturated" catchment. We identified annual patterns for chloride, sulphate, dissolved organic and inorganic carbon and nitrate concentration variations. First, we considered the complete set of concentration data as function of the time. From that, we foresaw 3 cyclic temporal patterns. Then, from representing the concentrations as function of meteorological parameters, intra-annual hysteretic variations and their inter-annual variations were clearly identified. Our driving question is to know if and how climatic conditions are responsible for variations of the patterns in and between years. In winter, i.e. rainy and cold period, rainfall is closely linked to discharge because of a direct recharge to the shallow groundwater. Reversely, in transition periods (spring and fall) and hot periods, both rainfall and temperature influences discharge in relation to their range of variations. Moreover, biological processes, driven by temperature and wetness, also act during these periods. On the whole, we can emphasize the specificity of water chemistry patterns for each element. Noticeable differences

  9. Legacies and Trajectories of Hormone Export from Agricultural Catchments Under Natural and Anthropogenic Drivers

    NASA Astrophysics Data System (ADS)

    Gall, H. E.; Mashtare, M. L.; Sassman, S. A.; Rao, P. C.; Thompson, S. E.; Basu, N. B.; Lee, L. S.

    2011-12-01

    of aquatic organisms to hormones at low concentrations and intermittent, short durations of high concentrations closely related to application times and hydrologic variability. These preliminary results also suggest a lag time between the ceasing of animal waste application and subsequent depletion of the accumulated legacy sources, thereby limiting the extent of human control to effectively reduce hormone mass fluxes. These research findings suggest that future research is needed to quantify the extent of legacy hormone sources in agricultural catchments to best determine long-term mitigation strategies and that best management practices that intercept and attenuate hormones at downstream locations are likely to be most effective at reducing hormone loads in the short-term.

  10. Interacting effects of climate and agriculture on fluvial DOM in temperate and subtropical catchments

    NASA Astrophysics Data System (ADS)

    Graeber, D.; Goyenola, G.; Meerhoff, M.; Zwirnmann, E.; Ovesen, N. B.; Glendell, M.; Gelbrecht, J.; Teixeira de Mello, F.; Gonzalez-Bergonzoni, I.; Jeppesen, E.; Kronvang, B.

    2015-05-01

    Dissolved organic matter (DOM) is an important factor in aquatic ecosystems, which is involved in a large variety of biogeochemical and ecological processes, and recent literature suggests that it could be strongly affected by agriculture in different climates. Based on novel monitoring techniques, we investigated the interaction of climate and agriculture effects on DOM quantity and quality. To examine this, we took water samples over 2 years in two paired intensive and extensive farming catchments in each of Denmark (temperate climate) and Uruguay (subtropical climate). We measured dissolved organic carbon (DOC) and nitrogen (DON) concentrations and DOC and DON molecular fractions with size-exclusion chromatography. Moreover, we characterized DOM quality with absorbance and fluorescence measurements, as well as parallel factor analysis (PARAFAC). We also calculated the DOC and DON loads based on daily discharge measurements, as well as measured precipitation and air temperature. The fluvial DOM in the catchments in Uruguay was characterized by higher temporal variability of DOC and DON loads which were clearly to a higher temporal variability of precipitation and a DOM composition with rather plant-like character relative to the Danish catchments. Moreover, we found a consistently higher temporal variability of DOC and DON loads in the intensive farming catchments than in the extensive farming catchments, with highest temporal variability in the Uruguayan intensive farming catchment. Furthermore, the composition of DOM exported from the intensive farming catchments was consistently complex and always related to microbial processing in both Denmark and Uruguay. This was indicated by low C : N ratios, several spectroscopic DOM composition indices and PARAFAC fluorescence components. We propose that the consistent effect of intensive farming on DOM composition and the temporal variability of DOC and DON loads is related to similarities in the management of

  11. Quantifying faecal indicator organism hydrological transfer pathways and phases in agricultural catchments.

    PubMed

    Murphy, S; Jordan, P; Mellander, P-E; O' Flaherty, V

    2015-07-01

    Faecal indicator organisms (FIOs) can impact on water quality and pose a health and environmental risk. The transfer of FIOs, such as Escherichia coli (E. coli), from land to water is driven by hydrological connectivity and may follow the same flowpaths as nutrients, from agricultural and human sources. This study investigated E. coli transfer in two catchment areas with high source and transport pressures. These pressures were: organic phosphorus (P) loading; human settlement; conduits and fissures in a grassland karst area; and clay rich and impermeable soils in a mixed arable area. The occurrence of E. coli and its transport pathways, along with the pathways of nutrients, were studied using a combination of targeted FIO sampling, during different hydrological phases and events, and high resolution nutrient analysis. The quick flow component in both catchments was found to be a more potent vector for E. coli, and was coincident with the total P flowpaths using a P Loadograph Recession Analysis (LRA). The karst grassland catchment was found to be a transport limited system and the mixed arable catchment a source limited system. Hence, despite the grassland catchment being a potentially higher FIO source, the E. coli loads leaving the catchment were low compared to the mixed arable catchment. E. coli load whole-event comparisons also indicated that the grassland karst transfers tended to be much lower on falling phases of runoff, while the arable catchment, over greywacke and mudstone geology, showed little change between the phases. Furthermore, the arable catchment showed asymptotic decline of sustained E. coli loads towards low flows, which may be indicative of chronic point sources. These results indicate the dominance of transport mechanisms over source mechanisms for mass E. coli loads and also chronic loads during low flow. These will be important considerations for risk assessment and mitigation. PMID:25840482

  12. Hydrologic control of dissolved organic matter concentration and quality in a semiarid artificially drained agricultural catchment

    NASA Astrophysics Data System (ADS)

    Bellmore, Rebecca A.; Harrison, John A.; Needoba, Joseph A.; Brooks, Erin S.; Kent Keller, C.

    2015-10-01

    Agricultural practices have altered watershed-scale dissolved organic matter (DOM) dynamics, including in-stream concentration, biodegradability, and total catchment export. However, mechanisms responsible for these changes are not clear, and field-scale processes are rarely directly linked to the magnitude and quality of DOM that is transported to surface water. In a small (12 ha) agricultural catchment in eastern Washington State, we tested the hypothesis that hydrologic connectivity in a catchment is the dominant control over the concentration and quality of DOM exported to surface water via artificial subsurface drainage. Concentrations of dissolved organic carbon (DOC) and humic-like components of DOM decreased while the Fluorescence Index and Freshness Index increased with depth through the soil profile. In drain discharge, these characteristics were significantly correlated with drain flow across seasons and years, with drain DOM resembling deep sources during low-flow and shallow sources during high flow, suggesting that DOM from shallow sources bypasses removal processes when hydrologic connectivity in the catchment is greatest. Assuming changes in streamflow projected for the Palouse River (which contains the study catchment) under the A1B climate scenario (rapid growth, dependence on fossil fuel, and renewable energy sources) apply to the study catchment, we project greater interannual variability in annual DOC export in the future, with significant increases in the driest years. This study highlights the variability in DOM inputs from agricultural soil to surface water on daily to interannual time scales, pointing to the need for a more nuanced understanding of agricultural impacts on DOM dynamics in surface water.

  13. Implications of climate change scenarios for agriculture in alpine regions--a case study in the Swiss Rhone catchment.

    PubMed

    Fuhrer, J; Smith, P; Gobiet, A

    2014-09-15

    Coping with climate change in agriculture requires knowledge of trends in agro-climatic conditions with a focus at the smaller scales where decisions are taken. As part of the EU FP7 ACQWA project, the situation was analyzed for agriculture in the case of the Swiss Rhone catchment (Valais) where cultivation of permanent crops (orchards and vineyards) and livestock production are the most important agro-economic activities. The aim of this study was to use daily data from four downscaled and bias corrected transient climate change scenarios to analyze changes in water and temperature related indices over the period 1951-2050 for three locations (Aigle, Sion, Montana) that are representative of different production zones in the catchment. The results indicate that most relevant implications are caused by projected changes in temperature and not in precipitation. They indicate an extension of the thermal growing season with potentially positive effects on pasture and livestock production, most pronounced at the mountain site (Montana), but a trend towards increasing risks of frost in permanent crops and in heat stress for livestock at the valley bottom (Aigle, Sion). The increase in water requirement for irrigation in 2021-2050 relative to 1981-2009 is moderate (4-16%, depending on location). However, in years with low amounts of snow and rain, in small catchments with a nival regime, reduced water supply by rivers could restrict the surface area of grassland that can be irrigated, particularly during springtime. It is concluded that coping with heat-related risks may be most needed at the lower cropland and pasture sites while water-related issues would become more relevant in more elevated locations where pasture-based livestock production is the dominant type of agricultural land use. PMID:23830922

  14. Using long time series of agricultural-derived nitrates for estimating catchment transit times

    NASA Astrophysics Data System (ADS)

    Fovet, O.; Ruiz, L.; Faucheux, M.; Molénat, J.; Sekhar, M.; Vertès, F.; Aquilina, L.; Gascuel-Odoux, C.; Durand, P.

    2015-03-01

    The estimation of water and solute transit times in catchments is crucial for predicting the response of hydrosystems to external forcings (climatic or anthropogenic). The hydrogeochemical signatures of tracers (either natural or anthropogenic) in streams have been widely used to estimate transit times in catchments as they integrate the various processes at stake. However, most of these tracers are well suited for catchments with mean transit times lower than about 4-5 years. Since the second half of the 20th century, the intensification of agriculture led to a general increase of the nitrogen load in rivers. As nitrate is mainly transported by groundwater in agricultural catchments, this signal can be used to estimate transit times greater than several years, even if nitrate is not a conservative tracer. Conceptual hydrological models can be used to estimate catchment transit times provided their consistency is demonstrated, based on their ability to simulate the stream chemical signatures at various time scales and catchment internal processes such as N storage in groundwater. The objective of this study was to assess if a conceptual lumped model was able to simulate the observed patterns of nitrogen concentration, at various time scales, from seasonal to pluriannual and thus if it was relevant to estimate the nitrogen transit times in headwater catchments. A conceptual lumped model, representing shallow groundwater flow as two parallel linear stores with double porosity, and riparian processes by a constant nitrogen removal function, was applied on two paired agricultural catchments which belong to the Research Observatory ORE AgrHys. The Global Likelihood Uncertainty Estimation (GLUE) approach was used to estimate parameter values and uncertainties. The model performance was assessed on (i) its ability to simulate the contrasted patterns of stream flow and stream nitrate concentrations at seasonal and inter-annual time scales, (ii) its ability to simulate the

  15. The impact of land management in agricultural catchments on groundwater pollution levels

    NASA Astrophysics Data System (ADS)

    Matysik, Magdalena

    2014-10-01

    Agricultural activity results in water pollution from nitrogen and phosphorus compounds. Increased concentrations of nitrogen compounds pose a threat to animal and human health. The purpose of this study was to determine the impact of agriculture in a catchment basin on the level of groundwater pollution from biogenic compounds. Spatial analysis of the land cover was conducted using a GIS and was based on data from the Corine Land Cover databases.

  16. Establishing a sediment budget for a small agricultural catchment in southern Brazil, to support the development of effective sediment management strategies

    NASA Astrophysics Data System (ADS)

    Minella, Jean P. G.; Walling, Desmond E.; Merten, Gustavo H.

    2014-11-01

    The rapid expansion of agriculture in Brazil has increased erosion rates and sediment yields, causing many negative environmental and economic impacts, both on- and off-site. However, to date, very few catchment-scale sediment budget investigations have been carried out in Brazil. Given the need to reduce the negative off-site impacts of increasing agricultural activity, there is an important need for such investigations in order to inform the development of effective sediment management strategies. Against this background, 137Cs measurements have been combined with measurements of sediment yield and fingerprinting the source of the fine sediment output, to establish a provisional sediment budget for a small (1.19 km2) agricultural catchment in southern Brazil. The catchment is located in an area of steep highly erodible basaltic terrain, which has been intensively cultivated with tobacco. An ongoing monitoring programme provided information on the sediment yield from the catchment and existing suspended sediment source fingerprinting investigations provided information on the main sediment sources contributing to the sediment load at the catchment outlet. 137Cs measurements have been used to estimate medium-term erosion and deposition rates along 17 transects across the cultivated slopes and to quantify sedimentation rates within valley floor sediment sinks. These data have been used to estimate sediment redistribution rates within the cultivated areas of the study catchment and sediment accumulation in the valley floor sinks. The information provided by the three primary data sources has been integrated to establish the sediment budget for the catchment over the past 57 years. The individual terms of the budget necessarily involve much uncertainty, but its closure adds confidence to the final result. The budget calculations indicate that the study catchment has a sediment delivery ratio of ∼15%. The implications of the key features of the budget for developing

  17. Sediment fingerprinting in agricultural catchments: A critical re-examination of source discrimination and data corrections

    NASA Astrophysics Data System (ADS)

    Smith, Hugh G.; Blake, William H.

    2014-01-01

    Fine sediment source fingerprinting techniques have been widely applied in agricultural river catchments. Successful source discrimination in agricultural environments depends on the key assumption that land-use source signatures imprinted on catchment soils are decipherable from those due to other landscape factors affecting soil and sediment properties. In this study, we re-examine this critical assumption by investigating (i) the physical and chemical basis for source discrimination and (ii) potential factors that may confound source un-mixing in agricultural catchments, including particle size and organic matter effects on tracer properties. The study is situated in the River Tamar, a predominantly agricultural catchment (920 km2) in south-west England that has also been affected by mining. Source discrimination focused on pasture and cultivated land uses and channel banks. Monthly, time-integrated suspended sediment samples were collected across seven catchments for a 12-month period. Physical and chemical properties measured in source soils and sediment included fallout radionuclides (137Cs, excess 210Pb), major and minor element geochemical constituents, total organic carbon and particle size. Source discrimination was entirely dependent on differences in tracer property concentrations between surface and sub-surface soils. This is based on fallout radionuclide concentrations that are surface-elevated, while many geochemical properties are surface-depleted due to weathering and pedogenetic effects, although surface soil contamination can reverse this trend. However, source discrimination in the study catchments was limited by (i) rotation of cultivated and pasture fields resulting in reduced differences between these two sources, and (ii) the cultivated source signature resembling a mix of the pasture and channel bank sources for many tracer properties. Furthermore, a combination of metal pollution from abandoned historic mines and organic enrichment of

  18. Linking Groundwater Nitrate-N Concentrations to Management and Hydrological Changes in two Agricultural Catchments

    NASA Astrophysics Data System (ADS)

    Mellander, Per-Erik; Melland, Alice R.; Jordan, Philip; Murphy, Paul N. C.; Shortle, Ger

    2013-04-01

    In order to minimize Nitrogen (N) transfer from groundwater to surface water in agricultural river catchments it is useful to understand how those transfer pathways may vary over time and space, and thus in their connection to nutrient sources and potential effects of temporal changes in water recharge and land management. In this paper we investigate the links between N sources, groundwater and surface water, as well as the implication of spatiotemporal variability for mitigation measures. We present three years of N concentrations in stream water (sub-hourly) and in groundwater (monthly) of different strata in four hillslopes in two ca 10 km2 Irish agricultural catchments with permeable soils. One catchment with arable land overlying slate bedrock and the other with intensively managed grassland on sandstone. Both catchments were dominated by delayed nutrient transfer pathways via groundwater. Relatively high concentrations of N were found in the groundwater of both catchments, attributed to leaching of surplus soil nitrate-N. The Grassland/sandstone catchment had locally higher nitrate-N concentrations in the groundwater with more spatiotemporal variability than in the groundwater of the Arable/Slate catchment. The N concentrations in the stream water of the Arable/Slate catchment were more directly reflected by groundwater conditions. In one hillslope the effects of pasture reseeding were observed by locally elevated N concentrations in the groundwater with a delay of ca five months. This was not reflected in the surface water despite groundwater dominating the contribution to stream water. In another hillslope N was naturally buffered in the near-stream zone, but this zone was bypassed with high nitrate-N content water from the uplands via tile-drains. The apparent spatiotemporal variability in N concentration highlights the need for insight into these differences when interpreting groundwater quality data from a limited number of sampling points and occasions

  19. Assessment of suspended matter transport in a large agricultural catchment using the MOHID water modelling system

    NASA Astrophysics Data System (ADS)

    David, Bailly; David, Brito; Chantha, Oeurng; Ramiro, Neves; Sabine, Sauvage; Sánchez-Pérez, José-Miguel

    2010-05-01

    Suspended sediment transport from agricultural catchments to stream networks is responsible for impaired water quality, reservoir sedimentation and the transport of sediment-bound pollutants (pesticides, particulate nutrients, metals and other adsorbed toxic substances). The dynamic of pollutants adsorbed on sediment and associated with particulate organic carbon, from land areas into stream network arises mainly from erosion and sedimentation processes. It is known that up to 90% of suspended sediment is transported during flood event and therefore quick flood events have a major impact on pollutant transport. This study - part of the EU AguaFlash (http://www.aguaflash-sudoe.eu/) project - examined and quantified suspended sediment dynamics from catchment to river (erosion, transport, deposition on hillside and in the river). Semi-distributed, physics-based watershed or reservoir models are generally used to simulate sediment dynamics. One of the limitations of this kind of modelling is that transport along agricultural field and the possibility of deposition of suspended sediments in hillslopes are not considered. Consequently, all sediments eroded are assumed to be accumulated in the river and the sediment and associated pollutant dynamics are over- or under-estimated. In our approach, the mechanistic physics-based water modelling system MOHID (http://www.mohid.com) was used to quantify soil erosion and sediment transport processes at the local and macroscopic scale. This paper present the erosion and transport mathematical model and modelling strategy used and compares our initial results with filed data obtained on an 1100 km² intensive agricultural catchment (Save catchment, South-west France) during 2007-2009 and with simulation data produced using SWAT (Soil and Water Assessment Tool, 2005 version). The contribution of the MOHID model compared with that of the semi-distributed SWAT model is discussed. Keywords: Erosion, suspended sediment, transport

  20. Plot and Catchment Scale Hydrological Impacts of Agricultural Field Boundary Features

    NASA Astrophysics Data System (ADS)

    Coates, Victoria; Pattison, Ian

    2015-04-01

    Natural flood management aims to reduce downstream flow levels by delaying the movement of water through a catchment and increasing the amount of soil infiltration. Field boundary features such as hedgerows and dry stone walls are common features in the rural landscape. It is hypothesised that there presence could reduce runoff connectivity and change the soil moisture levels by altering the soil structure and porosity. The use of larger agricultural machinery has resulted in the removal of field boundaries and the subsequent increase in field sizes over the 20th Century. This change in the rural landscape is likely to have changed the partitioning of rainfall into runoff and the hydrological pathways throughout the catchment. However, the link between field boundaries and catchment scale flood risk has not yet been proven. We aim to address this need for evidence to support natural flood management by focussing on these widespread features in the rural landscape. Firstly, we quantify the change in the density of field boundaries over the past 120 years for the Skell catchment, Northern England using historical OS maps. The analysis has shown that field size has approximately doubled in the Skell catchment since 1892, due to the removal of field boundaries. Secondly, we assess the effect of field boundaries on local soil characteristics and hydrological processes through plot scale continuous monitoring of the hydrological processes along a 20m transect through the linear boundary features. For the summer period results show that soil moisture levels are lower immediately next to the hedgerow compared to distances greater than 1m from the hedgerow. Finally, we use this data to parameterise and validate a catchment scale hydrological model. The model is then applied to test the impact of a network of field boundaries on river flow extremes at the catchment scale.

  1. Agricultural management change effects on river nutrient yields in a catchment of Central Greece

    NASA Astrophysics Data System (ADS)

    Panagopoulos, Y.

    2009-04-01

    Modelling efforts are strongly recommended nowadays by European legislation for investigating non-structural mitigation measures against water pollution on catchment scale. Agricultural diffuse pollution is considered to be the main responsible human activity for the Eutrophication of inland waters with nitrogen (N) and phosphorus (P). The physically-based water quality model SWAT is implemented in an agricultural medium-size agricultural catchment of Central Greece with the purpose to simulate the baseline situation and subsequently to predict the effects that realistic non-structural interventions, applied on the agricultural land, have on water quality and crop yields. SWAT was successfully calibrated according to measured flows and water quality data and subsequently scenarios were developed by changing chemical fertilizer application rates and timing on corn, cotton and wheat cultivations. All scenarios resulted in a decrease of nutrient emissions to surface waters but with a simultaneous small decrease in crop yields. The model predicted explicitly the consequences of non-structural mitigation measures against water pollution sustaining that the understanding of land management changes in relation to its driving factors provides essential information for sustainable management of the agricultural sector in an agricultural country like Greece.

  2. Urbanization and agriculture increase exports and differentially alter elemental stoichiometry of dissolved organic matter (DOM) from tropical catchments.

    PubMed

    Gücker, Björn; Silva, Ricky C S; Graeber, Daniel; Monteiro, José A F; Boëchat, Iola G

    2016-04-15

    Many tropical biomes are threatened by rapid land-use change, but its catchment-wide biogeochemical effects are poorly understood. The few previous studies on DOM in tropical catchments suggest that deforestation and subsequent land use increase stream water dissolved organic carbon (DOC) concentrations, but consistent effects on DOM elemental stoichiometry have not yet been reported. Here, we studied stream water DOC concentrations, catchment DOC exports, and DOM elemental stoichiometry in 20 tropical catchments at the Cerrado-Atlantic rainforest transition, dominated by natural vegetation, pasture, intensive agriculture, and urban land cover. Streams draining pasture could be distinguished from those draining natural catchments by their lower DOC concentrations, with lower DOM C:N and C:P ratios. Catchments with intensive agriculture had higher DOC exports and lower DOM C:P ratios than natural catchments. Finally, with the highest DOC concentrations and exports, as well as the highest DOM C:P and N:P ratios, but the lowest C:N ratios among all land-use types, urbanized catchments had the strongest effects on catchment DOM. Thus, urbanization may have alleviated N limitation of heterotrophic DOM decomposition, but increased P limitation. Land use-especially urbanization-also affected the seasonality of catchment biogeochemistry. While natural catchments exhibited high DOC exports and concentrations, with high DOM C:P ratios in the rainy season only, urbanized catchments had high values in these variables throughout the year. Our results suggest that urbanization and pastoral land use exerted the strongest impacts on DOM biogeochemistry in the investigated tropical catchments and should thus be important targets for management and mitigation efforts. PMID:26849342

  3. Groundwater denitrification in two agricultural river catchments: influence of hydro-geological setting and aquifer geochemistry

    NASA Astrophysics Data System (ADS)

    McAleer, Eoin; Mellander, Per-Erik; Coxon, Catherine; Richards, Karl G.; Jahangir, Mohammad M. R.

    2015-04-01

    Identifying subsurface environments with a natural capacity for denitrification is important for improving agricultural management. At the catchment scale, a complex hierarchy of landscape, hydro-geological and physico-chemical characteristics combine to affect the distribution of groundwater nitrate (NO3-). This study was conducted along four instrumented hillslopes in two ca. 10km2 agricultural river catchments in Ireland, one dominated by arable and one by grassland agriculture. Both catchments are characterised by well drained soils, but have differing aquifer characteristics. The arable catchment is underlain by weathered Ordovician slate bedrock which is extensively fractured with depth. The grassland catchment is characterised by Devonian sandstone bedrock, exhibiting both lateral (from upslope to near stream) and vertical variations in permeability along each hillslope. The capacity for groundwater denitrification was assessed by examining the concentration and distribution patterns of N species (total nitrogen, nitrate, nitrite, ammonium), dissolved organic carbon (DOC), dissolved oxygen (DO) and redox potential (Eh) in monthly samples from shallow and deep groundwater piezometers (n=37). Additionally, the gaseous products of denitrification: nitrous oxide (N2O) and excess dinitrogen (excess N2) were measured seasonally using gas chromatography and membrane inlet mass spectroscopy, respectively. The slate catchment was characterised by uniformity, both laterally and vertically, in aquifer geochemistry and gaseous denitrification products. The four year spatial mean groundwater NO3--N concentration was 6.89 mg/l and exhibited low spatial and temporal variability (temporal SD: 1.19 mg/l, spatial SD: 1.185 mg/l). Elevated DO concentrations (mean: 9.75 mg/l) and positive Eh (mean: +176.5mV) at all sample horizons indicated a setting with little denitrification potential. This non-reducing environment was reflected in a low accumulation of denitrification

  4. Spatio-temporal analysis of discharge regimes based on hydrograph classification techniques in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Chen, Xiaofei; Bloeschl, Guenter; Blaschke, Alfred Paul; Silasari, Rasmiaditya; Exner-Kittridge, Mike

    2016-04-01

    The stream, discharges and groundwater hydro-graphs is an integration in spatial and temporal variations for small-scale hydrological response. Characterizing discharges response regime in a drainage farmland is essential to irrigation strategies and hydrologic modeling. Especially for agricultural basins, diurnal hydro-graphs from drainage discharges have been investigated to achieve drainage process inferences in varying magnitudes. To explore the variability of discharge responses, we developed an impersonal method to characterize and classify discharge hydrograph based on features of magnitude and time-series. A cluster analysis (hierarchical k-means) and principal components analysis techniques are used for discharge time-series and groundwater level hydro-graphs to analyze their event characteristics, using 8 different discharge and 18 groundwater level hydro-graphs to test. As the variability of rainfall activity, system location, discharge regime and soil moisture pre-event condition in the catchment, three main clusters of discharge hydro-graph are identified from the test. The results show that : (1) the hydro-graphs from these drainage discharges had similar shapes but different magnitudes for individual rainstorm; the similarity is also showed in overland flow discharge and spring system; (2) for each cluster, the similarity of shape insisted, but the rising slope are different due to different antecedent wetness condition and the rain accumulation meanwhile the difference of regression slope can be explained by system location and discharge area; and (3) surface water always has a close proportional relation with soil moisture throughout the year, while only after the soil moisture exceeds a certain threshold does the outflow of tile drainage systems have a direct ratio relationship with soil moisture and a inverse relationship with the groundwater levels. Finally, we discussed the potential application of hydrograph classification in a wider range of

  5. Solute transport dynamics in small, shallow groundwater-dominated agricultural catchments: insights from a high-frequency, multisolute 10 yr-long monitoring study

    NASA Astrophysics Data System (ADS)

    Aubert, A. H.; Gascuel-Odoux, C.; Gruau, G.; Akkal, N.; Faucheux, M.; Fauvel, Y.; Grimaldi, C.; Hamon, Y.; Jaffrézic, A.; Lecoz-Boutnik, M.; Molénat, J.; Petitjean, P.; Ruiz, L.; Merot, P.

    2013-04-01

    High-frequency, long-term and multisolute measurements are required to assess the impact of human pressures on water quality due to (i) the high temporal and spatial variability of climate and human activity and (ii) the fact that chemical solutes combine short- and long-term dynamics. Such data series are scarce. This study, based on an original and unpublished time series from the Kervidy-Naizin headwater catchment (Brittany, France), aims to determine solute transfer processes and dynamics that characterise this strongly human-impacted catchment. The Kervidy-Naizin catchment is a temperate, intensive agricultural catchment, hydrologically controlled by shallow groundwater. Over 10 yr, five solutes (nitrate, sulphate, chloride, and dissolved organic and inorganic carbon) were monitored daily at the catchment outlet and roughly every four months in the shallow groundwater. The concentrations of all five solutes showed seasonal variations but the patterns of the variations differed from one solute to another. Nitrate and chloride exhibit rather smooth variations. In contrast, sulphate as well as organic and inorganic carbon is dominated by flood flushes. The observed nitrate and chloride patterns are typical of an intensive agricultural catchment hydrologically controlled by shallow groundwater. Nitrate and chloride originating mainly from organic fertilisers accumulated over several years in the shallow groundwater. They are seasonally exported when upland groundwater connects with the stream during the wet season. Conversely, sulphate as well as organic and inorganic carbon patterns are not specific to agricultural catchments. These solutes do not come from fertilisers and do not accumulate in soil or shallow groundwater; instead, they are biogeochemically produced in the catchment. The results allowed development of a generic classification system based on the specific temporal patterns and source locations of each solute. It also considers the stocking period

  6. Runoff production in a small agricultural catchment in Lao PDR: influence of slope, land-use and observation scale

    NASA Astrophysics Data System (ADS)

    Patin, J.; Ribolzi, O.; Mugler, C.; Valentin, C.; Mouche, E.

    2010-12-01

    After years of traditional slash and burn cultures, the Houay Pano catchment is now under high land pressures due to population resettling and environmental preservation policies. This evolution leads to rapid land-use changes in the uplands, such as fallow time reductions and growing of cash crops as teaks or banana. The catchment is located in the Luang Prabang province, in the north of Lao PDR and was selected in late 1998 as a benchmark site for the Managing Soil Erosion Consortium (MSEC). It is a small (60ha) agricultural catchment representative of the rural mountainous South East Asia : it exhibits steep cultivated slopes (from 2% to more than 110%) under a wet-dry monsoon climate. To understand the partition between runoff and infiltration, data from runoff on 20 plot experiments (1m2) under natural rainfall and with representative slopes and land uses is collected from 2003 to 2009. A simulated rainfall experiment was conducted in 2002 on bare soil plots (1m2) with different antecedent cultures. We investigate the role of crust, slope and land-use on runoff production at different scales. A model accounting for small scale variability is applied to compute the time and space variations of soil infiltrability at the plot scale (1m2) and sub-catchment scale (0.6ha). From the hypothesis of exponentially distributed infiltrabilities at the centimeter scale, we found that infiltration is log-normaly distributed over time for a given land use. The median infiltrability vary from 10mm/h under teak cultures to 150mm/h on plots with fallow. Variations along a year are tribute to many meteorological and human factors.

  7. Distribution of soil organic carbon in two small agricultural Mediterranean catchments.

    NASA Astrophysics Data System (ADS)

    Gomez, J. A.; Burguet, M.; Taguas, M. E.; Perez, R.; Ayuso, J. L.; Vanwallgehem, T.; Giraldez, J. V.; Vanderlinden, K.

    2012-04-01

    Soil organic carbon (SOC) is a key indicator of soil quality and a major factor for evaluating carbon sequestration schemes in forest and agricultural soils. However, at the farm or catchment scale SOC presents a large spatial variability which complicates the evaluation of soil quality (Gomez et al., 2009) and the certification of the potential for carbon sequestration. We hypothesize that the typical row crop configuration of olive orchards, with cover crops or bare soil in-between the rows, can explain a vast proportion of this variability. However, it is also expected that agricultural activities and topography-driven erosion processes at different scales (Van Oost et al., 2007) will contribute to SOC variability. Given the complexity of this problem and the important experimental effort required to resolve it, there are to our knowledge relatively few studies that have addressed this issue, especially in agricultural soils under Mediterranean conditions. This communications presents a preliminary evaluation of the top 1-m SOC content at two small, 8 and 6.7-ha, catchments in Southern Spain, covered by olive groves, that were intensively sampled in 2011. Spatial variability of SOC is analyzed across tree rows, areas in-between tree rows, and at different depths. The SOC distribution is evaluated against the topography of the catchment and the intensity of the water erosion processes analyzed by a simple model, such as SEDD, as used by Ferro and Porto (2000) and Taguas et al. (2011). The results of this communication will explore and discuss the differences between both catchments, and suggest guidelines for further exploring the sources of SOC variability, while providing guidelines to improve SOC estimation at the field scale for certification purposes.

  8. Apportioning sediment pressures on watercourses in grassland dominated agricultural catchments: a new framework for policy support

    NASA Astrophysics Data System (ADS)

    Collins, A.; Black, K.; Walling, D. E.; Wilson, P.

    2009-04-01

    Much of the effort directed towards monitoring and understanding soil erosion in the UK has focused upon arable farming systems, but the evidence base has suggested for some time that soil loss from grassland dominated landscapes can be enhanced by agricultural practises. Studies using composite source fingerprinting procedures have, for example, repeatedly highlighted the relative significance of managed pasture as a sediment source at catchment scale. Although traditional sediment sourcing approaches provide useful generic information for characterising sediment pressures, Catchment Officers working as part of the England Catchment Sensitive Farming Delivery Initiative (ECSFDI) also require higher resolution evidence to assist better the targeting of mitigation options. Accordingly, a new framework combining conventional sediment source fingerprinting and a dual signature tracking method has recently been tested in a grassland catchment in Cumbria, north-west England. The former provides information on the relative significance of generic sediment sources such as grassland or arable surface soils, damaged road verges and channel banks/subsurface sources, whereas the latter elucidates sediment loss from poached gateways or cattle tracks and wider areas of general hoofing damage in grass fields. Uncertainty and prior information are explicitly recognised by the novel framework.

  9. How agricultural landscape features control the transfer of nutrient and eutrophication risk in headwater catchments?

    NASA Astrophysics Data System (ADS)

    Dupas, Rémi; Delmas, Magalie; Dorioz, Jean-Marcel; Garnier, Josette; Moatar, Florentina; Gascuel-Odoux, Chantal

    2014-05-01

    The degradation of surface water quality due to nitrogen and phosphorus pollution is a major concern for drinking water quality and ecosystems health. Numerous studies have demonstrated that headwater catchments are large contributors of nutrient loads to downstream waters bodies. In terms of scientific understanding of the processes controlling nutrient transfers, headwater catchments are relevant spatial units to study the role of landscape features because of the relatively low contribution of point sources and in-stream processes compared to larger river networks. This paper presents an analysis of the variability in space and time of observed N and P loads for a dataset of 160 headwater catchments at a national level (France). A multivariate statistical analysis was performed to relate observed N and P loads to spatial attributes describing agricultural landscapes and the physical characteristics of the catchments: climate, topography, soils, etc. We identified factors controlling N and P loads and N:P:Si ratios in freshwaters; and specifically spatially described factors, by considering river corridors and interaction between soils and land use attributes. The same catchment dataset is used to calibrate the Nutting model, i.e. a statistical model developed to estimate nutrient emission to surface water, using readily available data in France (Dupas et al., 2013). Nutting is a statistical model linking N/P sources and catchment land and river attributes to estimate mean interannual nitrate-N, total-N, dissolved-P and total-P loads. It allows to extrapolate nutrient loads in unmonitored catchments at a national level and to estimate the risk of eutrophication in freshwaters considering Redfield's (1963) N:P:Si ratios. Results show that N is in excess over silica in 93% of French headwater bodies, and that phosphorus is in excess over silica in 26%-65% of French headwater catchments. This means that between 26% and 63% of French headwaters are at risk of

  10. Spatial heterogeneity of mobilization processes and input pathways of herbicides into a brook in a small agricultural catchment

    NASA Astrophysics Data System (ADS)

    Doppler, Tobias; Lück, Alfred; Popow, Gabriel; Strahm, Ivo; Winiger, Luca; Gaj, Marcel; Singer, Heinz; Stamm, Christian

    2010-05-01

    Soil applied herbicides can be transported from their point of application (agricultural field) to surface waters during rain events. There they can have harmful effects on aquatic species. Since the spatial distribution of mobilization and transport processes is very heterogeneous, the contributions of different fields to the total load in a surface water body may differ considerably. The localization of especially critical areas (contributing areas) can help to efficiently minimize herbicide inputs to surface waters. An agricultural field becomes a contributing area when three conditions are met: 1) herbicides are applied, 2) herbicides are mobilized on the field and 3) the mobilized herbicides are transported rapidly to the surface water. In spring 2009, a controlled herbicide application was performed on corn fields in a small (ca 1 km2) catchment with intensive crop production in the Swiss plateau. Subsequently water samples were taken at different locations in the catchment with a high temporal resolution during rain events. We observed both saturation excess and hortonian overland flow during the field campaign. Both can be important mobilization processes depending on the intensity and quantity of the rain. This can lead to different contributing areas during different types of rain events. We will show data on the spatial distribution of herbicide loads during different types of rain events. Also the connectivity of the fields with the brook is spatially heterogeneous. Most of the fields are disconnected from the brook by internal sinks in the catchment, which prevents surface runoff from entering the brook directly. Surface runoff from these disconnected areas can only enter the brook rapidly via macropore-flow into tile drains beneath the internal sinks or via direct shortcuts to the drainage system (maintenance manholes, farmyard or road drains). We will show spatially distributed data on herbicide concentration in purely subsurface systems which shows

  11. Scale appropriate modelling to represent dominant pollution processes in agricultural catchments, to underpin management and policy decisions

    NASA Astrophysics Data System (ADS)

    Adams, Russell; Quinn, Paul

    2014-05-01

    We present the development of scale appropriate modelling techniques to represent dominant pollution processes in agricultural catchments to underpin catchment management and its implications on policy. A quasi-physically based, spatially lumped macro-model (CRAFT), has been developed to assess mitigation options for nitrogen and phosphorus. CRAFT has been developed to use daily time series data of rainfall, stream flow and nutrient concentration data, and can be applied to catchments varying in size from a few hectares to 100s of square kilometres. If stream flow routing is added to the model then potentially larger catchments and sub-daily time steps could be represented. There are two key issues addressed here. Firstly, the model can be used to assess the usefulness of monitoring data collected at a high temporal resolution at considerable expense compared to routine grab sampling. An earlier study in the Frome catchment in southern England collected sub-daily water quality data for more than 12 months at the catchment outlet, comprising: total oxidised nitrogen (TON); soluble reactive phosphorus (SRP) and total phosphorus (TP) concentrations. The three data sets have quite different temporal signals relating to flow pathways with different residence times and the importance of runoff events in generating acute pollution. The flexible model structure was therefore developed to include different sources of runoff including overland flow from impervious areas in the catchment, where pollution hotspots will be located (e.g. farmyards). The model has been used to assess the value of collecting high resolution monitoring data, in this case by resampling the Frome sub-daily data to a daily timestep, and comparing these model simulations against those calibrated using all the samples. The usefulness of the high resolution data can be assessed on whether a daily model would undepredict (for example) high nutrient concentrations that can be identified in the sub

  12. Incidental nutrient transfers: Assessing critical times in agricultural catchments using high-resolution data.

    PubMed

    Shore, Mairead; Jordan, Phil; Melland, Alice R; Mellander, Per-Erik; McDonald, Noeleen; Shortle, Ger

    2016-05-15

    Managing incidental losses associated with liquid slurry applications during closed periods has significant cost and policy implications and the environmental data required to review such a measure are difficult to capture due to storm dependencies. Over four years (2010-2014) in five intensive agricultural catchments, this study used high-resolution total and total reactive phosphorus (TP and TRP), total oxidised nitrogen (TON) and suspended sediment (SS) concentrations with river discharge data to investigate the magnitude and timing of nutrient losses. A large dataset of storm events (defined as 90th percentile discharges), and associated flow-weighted mean (FWM) nutrient concentrations and TP/SS ratios, was used to indicate when losses were indicative of residual or incidental nutrient transfers. The beginning of the slurry closed period was reflective of incidental and residual transfers with high storm FWM P (TP and TRP) concentrations, with some catchments also showing elevated storm TP:SS ratios. This pattern diminished at the end of the closed period in all catchments. Total oxidised N behaved similarly to P during storms in the poorly drained catchments and revealed a long lag time in other catchments. Low storm FWM P concentrations and TP:SS ratios during the weeks following the closed period suggests that nutrients either weren't applied during this time (best times chosen) or that they were applied to less risky areas (best places chosen). For other periods such as late autumn and during wet summers, where storm FWM P concentrations and TP:SS ratios were high, it is recommended that an augmentation of farmer knowledge of soil drainage characteristics with local and detailed current and forecast soil moisture conditions will help to strengthen existing regulatory frameworks to avoid storm driven incidental nutrient transfers. PMID:26933967

  13. Source and transport factors influencing storm phosphorus losses in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Shore, Mairead; Jordan, Phil; Mellander, Per-Erik; kelly-quinn, Mary; Wall, David; Murphy, Paul; Melland, Alice

    2014-05-01

    The relative risk of diffuse phosphorus (P) loss from agricultural land was assessed in a well-drained arable catchment and a poorly-drained grassland catchment and in two nested basins within each catchment. This research investigated the relative control of hydrology and soil P on P losses between basins. Quick flow (QF) P losses (defined here as both concentrations and loads), monitored in stream flow during four storm events, were compared with a dynamic metric of transport risk (QF magnitude) and a static metric of critical source area (CSA) risk (extent of highly-connected poorly-drained soils with excess plant-available soil P). The potential for static transport metrics of soil connectivity and soil drainage class, to predict relative QF magnitudes and P losses between basins was also investigated. In basins with similar CSA risk but with contrasting QF magnitudes, mean TRP (total molybdate-reactive P) losses were consistently higher in the basins which had the highest QF magnitudes. This suggests that basin hydrology, rather than hydrology of high-P soils only, determined relative TRP losses between hydrologically contrasting basins. Furthermore, static transport metrics of soil connectivity and soil drainage class reliably discerned relative QF magnitudes and TRP losses between these basins. However, for two of the storm events (both occurring during the hydrologically active season), PP (particulate P) concentrations were frequently higher in basins which had the lowest QF magnitudes and may be attributed to a higher proportion of bare soil in these basins at these times as a result of their predominantly arable nature. In basins with similar hydrology, relative TRP and PP losses did not reflect trends in CSA risk or QF magnitude. The dynamics of TRP and PP losses and QF magnitude between these basins varied across storms, thus could not be predicted using static metrics. Where differences in hydrological dynamics were large, storm TRP losses were well

  14. The fate of organic carbon in colluvial soils in a subtropical agricultural catchment (Arvorezinha, Brazil)

    NASA Astrophysics Data System (ADS)

    Van de Broek, Marijn; Van Oost, Kristof; Minella, Jean; Govers, Gerard

    2016-04-01

    One of the main reasons as to why soil erosion is considered to be a carbon sink for the atmosphere is that eroded carbon is often redeposited and buried in depositional environments. However, the quantification of the magnitude of this effect is still uncertain because the residence time of soil organic carbon in depositional environments is ill defined. The latter is especially true for tropical and subtropical areas as field data for these climatic zones are largely lacking. This is an important hiatus as ca. 40% of the total global arable land is located in the (sub-)tropics [1]. We collected samples from four depositional and one stable agricultural profile in a small agricultural catchment in Arvorezinha (Brazil) where deforestation started ca. 90 yrs ago. δ13C depth profiles allowed to identify the bottom of the original A-horizon: this is because δ13C values of the buried forest soils are significantly heavier than those of the colluvial deposits. The results show that soil organic carbon contents systematically decrease with depth below the actual plough layer. This is due to the fact that a significant fraction of the organic carbon that was originally deposited is removed by mineralization from these soils over decadal time scales. As the time of deforestation is known, age-depth curves could be established. Combining this information with SOC measurements allowed for a first estimate of carbon preservation rates and showed that after 70 years ca. 25% of the deposited organic carbon is released to the atmosphere: results were very consistent across profiles. In temperate environments, the time necessary for this fraction of the deposited carbon to be mineralized is somewhat longer, i.e. 100 years [2]. This suggests that soil organic carbon may be decomposed faster in sub-tropical environments in comparison to temperate environments. This is not unexpected, given the fact that average soil temperatures are higher and soils are, in this climate

  15. Identifying priority zones in an agricultural catchment to mitigate glyphosate runoff

    NASA Astrophysics Data System (ADS)

    Joris, Ingeborg; Desmet, Nele; Wilczek, Daniel; Boënne, Wesley; Seuntjens, Piet; Koopmans, Kim; Bylemans, Dany; Wouters, Katrien; Vandaele, Karel

    2015-04-01

    Pesticide concentrations in rivers generally have a very dynamic signature and are strongly dependent on time and space. The dynamic time course is due to the time- and space-variant input conditions resulting from fast overland (runoff and erosion, direct losses) and subsurface flow (artificial drainage), directly connecting surfaces and/or agricultural fields where pesticides are applied, to receiving rivers. A thorough understanding of pesticide behavior at the watershed scale is needed to increase the effectiveness of mitigation measures. We developed a method to derive priority zones for applying mitigation measures for erosion control and mitigation of glyphosate runoff in an agricultural catchment. The study catchment was selected based on results from geospatial pesticide emission modeling, historical glyphosate concentrations, and crop cover. Priority zones were derived based on a risk map which includes information about the topography, crop cover, the estimated glyphosate use, the potential erosion risk, and the connectivity of the agricultural parcels to the river. The theoretical risk map was then validated in the field using field observations of runoff during stormflow events, and observations of roads short-circuiting the runoff to the river. The validated risk map was used to define priority zones for measures related to erosion control. Suggestions for specific measures such as grass buffer strips and small dams at the field scale were made. The information will be used to target farmers that may have a significant impact on the glyphosate load to surface water. Those farmers will be encouraged to participate in a voluntary erosion control program supported by the local government. The effect of mitigation measures on the glyphosate concentrations in the river will be assessed by monitoring two years before and three years after implementation of the measures. We will present the general setup of the study and the selection methodology of the

  16. Patterns and processes of nutrient transfers from land to water: a catchment approach to evaluate Good Agricultural Practice in Ireland

    NASA Astrophysics Data System (ADS)

    Mellander, P.-E.; Melland, A. R.; Shortle, G.; Wall, D.; Mechan, S.; Buckley, C.; Fealy, R.; Jordan, P.

    2009-04-01

    Eutrophication of fresh, transitional and coastal waters by excessive nutrient inputs is one of the most widespread water quality problems in developed countries. Sources of nutrient nitrogen (N) and phosphorus (P) can come from a multiplicity of sources and be dependent on numerous hydrological controls from catchments with both urban and agricultural landuses. Aquatic impacts are widely reported as a result of excessive nutrient transfers from land to water and include changes in ecological integrity and loss of amenity. In the European Union, the Water Framework Directive (WFD) and associated Directives are the key structures with which member states must develop national and often trans-national polices to deal with issues of water resources management. The linked Nitrates Directive is particularly concerned with integrating sustainable agriculture and good water quality objectives and is written into national polices. In Ireland this policy is the Nitrates Directive National Action Programme (NAP), Statutory Instruction 378, Good Agricultural Practise regulation, and amongst other things, sets targets and limits on the use of organic and inorganic fertilisers, soil fertility and slurry/fertiliser spreading and cultivation times. To evaluate the effectiveness of this policy, Teagasc, the Irish Agriculture and Food Development Authority, is undertaking a catchment scale audit on sources, sinks, and changes in nutrient use and export over several years. The Agricultural Catchments Programme is based on a science-stakeholder-management partnership to generate knowledge and specifically to protect water quality from nitrogen and phosphorus transfers within the constraints of the requirements of modern Irish agricultural practises. Eight catchments of 5-12 km2 have been selected for the programme to represent a range of agricultural intensities and vulnerabilities to nitrogen and phosphorus loss including catchments that are situated on permeable and impermeable

  17. Nitrate sinks and sources as controls of spatio-temporal water quality dynamics in an agricultural headwater catchment

    NASA Astrophysics Data System (ADS)

    Schuetz, T.; Gascuel-Odoux, C.; Durand, P.; Weiler, M.

    2015-08-01

    Several controls are known to affect water quality of stream networks during flow recession periods such as solute leaching processes, surface water - groundwater interactions as well as biogeochemical in-stream retention processes. Throughout the stream network combinations of specific water and solute export rates and local in-stream conditions overlay the biogeochemical signals from upstream sections. Therefore, upstream sections can be considered as functional units which could be distinguished and ordered regarding their relative contribution to nutrient dynamics at the catchment outlet. Based on synoptic sampling of flow and nitrate concentrations along the stream in an agricultural headwater during the summer flow recession period, we determined spatial and temporal patterns of water quality for the whole stream. A data-driven, in-stream-mixing-and-removal model was developed and applied for analyzing the spatio-temporal in-stream retention processes and their effect on the spatio-temporal fluxes of nitrates from sub-catchments. Thereby, we have been able to distinguish between nitrate sinks and sources per stream reaches and sub-catchments. For nitrate sources we have determined their permanent and temporally impact on stream water quality and for nitrate sinks we have found increasing nitrate removal efficiencies from up- to downstream. Our results highlight the importance of distinct nitrate source locations within the watershed for in-stream concentrations and in-stream removal processes, respectively. Thus, our findings contribute to the development of a more dynamic perception of water quality in streams and rivers concerning ecological and sustainable water resources management.

  18. Effect of Agricultural Practices on Hydrology and Water Chemistry in a Small Irrigated Catchment, Yakima River Basin, Washington

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Johnson, Henry M.

    2009-01-01

    The role of irrigation and artificial drainage in the hydrologic cycle and the transport of solutes in a small agricultural catchment in central Washington's Yakima Valley were explored using hydrologic, chemical, isotopic, age-dating, and mineralogical data from several environmental compartments, including stream water, ground water, overland flow, and streambed pore water. A conceptual understanding of catchment hydrology and solute transport was developed and an inverse end-member mixing analysis was used to further explore the effects of agriculture in this small catchment. The median concentrations of major solutes and nitrates were similar for the single field site and for the catchment outflow site, indicating that the net effects of transport processes for these constituents were similar at both scales. However, concentrations of nutrients were different at the two sites, suggesting that field-scale variations in agricultural practices as well as nearstream and instream biochemical processes are important components of agricultural chemical transformation and transport in this catchment. This work indicates that irrigation coupled with artificial drainage networks may exacerbate the ecological effects of agricultural runoff by increasing direct connectivity between fields and streams and minimizing potentially mitigating effects (denitrification and dilution, for example) of longer subsurface pathways.

  19. Measuring fallout radionuclides to constrain the origin and the dynamics of suspended sediment in an agricultural drained catchment (Loire River basin, France)

    NASA Astrophysics Data System (ADS)

    Le Gall, Marion; Evrard, Olivier; Foucher, Anthony; Laceby, J. Patrick; Salvador-Blanes, Sébastien; Lefèvre, Irène; Cerdan, Olivier; Ayrault, Sophie

    2015-04-01

    Soil erosion reaches problematic levels in agricultural areas of Northwestern Europe where tile drains may accelerate sediment transfer to rivers. This supply of large quantities of fine sediment to the river network leads to the degradation of water quality by increasing water turbidity, filling reservoirs and transporting contaminants. Agricultural patterns and landscapes features have been largely modified by human activities during the last century. To investigate erosion and sediment transport in lowland drained areas, a small catchment, the Louroux (24 km²), located in the French Loire River basin was selected. In this catchment, channels have been reshaped and more than 220 tile drains outlets have been installed after World War II. As a result, soil erosion and sediment fluxes strongly increased. Sediment supply needs to be better understood by quantifying the contribution of sources and the residence times of particles within the catchment. To this end, a network of river monitoring stations was installed, and fallout radionuclides (Cs-137, excess Pb-210 and Be-7) were measured in rainwater (n=3), drain tile outlets (n=4), suspended sediment (n=15), soil surface (n=30) and channel bank samples (n=15) between January 2013 and February 2014. Cs-137 concentrations were used to quantify the contribution of surface vs. subsurface sources of sediment. Results show a clear dominance of particles originating from surface sources (99 ± 1%). Be-7 and excess Pb-210 concentrations and calculation of Be-7/excess Pb-210 ratios in rainfall and suspended sediment samples were used to estimate percentages of recently eroded sediment in rivers. The first erosive winter storm mainly exported sediment depleted in Be-7 that likely deposited on the riverbed during the previous months. Then, during the subsequent floods, sediment was directly eroded and exported to the catchment outlet. Our results show the added value of combining spatial and temporal tracers to characterize

  20. Co-location opportunities for renewable energy and agriculture

    NASA Astrophysics Data System (ADS)

    Ravi, Sujith; Macknick, Jordan; Lobell, David; Field, Christopher; Elchinger, Michael; Stoltenberg, Blaise

    2015-04-01

    Solar energy installations in arid and semi-arid regions are rapidly increasing, due to technological advances and policy changes. Large-scale expansion of solar infrastructure can adversely impact land and water resources. A major challenge is how to meet the ever-expanding energy demand with limited land and water resources, in the context of increasing competition from agricultural and domestic consumption. We explored opportunities to co-locate solar infrastructures and agricultural crops or biofuel feedstocks to maximize the efficiency of land and water use. We considered energy inputs/outputs, water use, greenhouse gas emissions and economics of solar installations in comparison to location-specific agricultural /biofuel crops in different arid regions of the world. The life cycle analyses show that co-located systems are economically viable in some areas and may provide opportunities for electrification and stimulate economic growth in rural areas. The water inputs for cleaning solar panels (photo voltaic) or mirrors (concentrated solar) and dust suppression are similar to amounts required for the desert-adapted crops (e.g. agave, aloe) considered in the study, suggesting the possibility of integrating the two systems to maximize water and land use efficiency. A life-cycle analysis of a hypothetical co-location indicated higher returns per m3 of water used than either system alone. Arid and semi arid regions of the world are experiencing high population growth, creating additional demand for land and water resources. In these water limited areas, coupled solar infrastructure and agriculture could be established on marginal lands, thus minimizing the socioeconomic and environmental issues resulting from cultivation of high value non-food crops in prime agricultural lands.

  1. Location of Agricultural Drainage Pipes and Assessment of Agricultural Drainage Pipe Conditions Using Ground Penetrating Radar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods are needed to not only locate buried agricultural drainage pipe, but to also determine if the pipes are functioning properly with respect to water delivery. The primary focus of this research project was to confirm the ability of ground penetrating radar (GPR) to locate buried drainage pipe ...

  2. Location of agricultural drainage pipes and assessment of agricultural drainage pipe conditions using ground penetrating radar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods are needed to not only locate buried agricultural drainage pipe, but to also determine if the pipes are functioning properly with respect to water delivery. The primary focus of this research project was to confirm the ability of ground penetrating radar (GPR) to locate buried drainage pipe ...

  3. The effectiveness of agricultural stewardship for improving water quality at the catchment scale: Experiences from an NVZ and ECSFDI watershed

    NASA Astrophysics Data System (ADS)

    Kay, Paul; Grayson, Richard; Phillips, Martin; Stanley, Karen; Dodsworth, Alan; Hanson, Ann; Walker, Andrew; Foulger, Miles; McDonnell, Iain; Taylor, Simon

    2012-02-01

    SummaryAgriculture is estimated to be responsible for 70% of nitrate and 30-50% of phosphorus pollution, contributing to ecological and water treatment problems. Despite the fact that significant gaps remain in our understanding, it is known that agricultural stewardship can be highly effective in controlling water pollution at the plot and field scales. Knowledge at the catchment scale is, to a large extent, entirely lacking though and this is of paramount concern given that the catchment is the management unit used by regulatory authorities. The few studies that have examined the impact of agricultural stewardship at the catchment scale have found that Nitrate Vulnerable Zones (NVZs) in the UK have resulted in little improvement in water quality which concurs with the current catchment study. In addition to NVZs, there was little evidence to suggest that the England Catchment Sensitive Farming Delivery Initiative had impacted water quality and suggestions have been made for improvements, such as ensuring that stewardship measures are used in key pollution source areas and their implementation and impacts are monitored more closely. This will be essential if agricultural catchment management schemes are going to provide the benefits expected of them. Nevertheless, more intensive monitoring than that carried out by regulators showed a significant trend in decreasing winter nitrate peaks in some streams which is hypothesised to be due to recent reduced inorganic fertiliser application as a result of increasing prices. It was concluded that, collectively, these findings indicate that agricultural stewardship measures have the potential to improve water quality at the catchment scale but that voluntary schemes with insufficient financial reward or regulatory pressure are unlikely to be successful.

  4. Managing the drinking water catchment areas: the French agricultural cooperatives feed back.

    PubMed

    Charrière, Séverine; Aumond, Claire

    2016-06-01

    The quality of raw water is problematic in France, largely polluted by nitrates and pesticides (Mueller and Helsel, Nutrients in the nation's waters-too much of a good thing? Geological Survey (U.S.), 1996; European Environment Agency, European waters-assessment of status and pressures, 2012).This type of pollution, even though not always due to agriculture (example of the catchment of Ambleville, county 95, France where the nitrate pollution is mainly due to sewers (2012)), has been largely related to the agricultural practices (Sci Total Environ 407:6034-6043, 2009).Taking note of this observation, and instead of letting it paralyze their actions, the agricultural cooperatives decided with Agrosolutions to act directly on the field with their subscribers to change the agricultural practices impacting the water and the environment.This article shows how the French agricultural cooperatives transformed the awareness of the raw water quality problem into an opportunity for the development and implementation of more precise and responsible practices, to protect their environment. They measure in order to pilot, co-construct and build the best action plans possible according to the three pillars of environment, economy and agronomy. PMID:27074925

  5. A palaeolimnological investigation into nutrient impact and recovery in an agricultural catchment.

    PubMed

    O'Dwyer, Barry; Crockford, Lucy; Jordan, Phil; Hislop, Lindsay; Taylor, David

    2013-07-30

    Widespread deterioration in water quality as a result of anthropogenic activity has led to the development and implementation of measures aimed at the protection of water resources in the EU. To date, however, relatively little attention has been paid to the effectiveness of these measures. Evidence from an enrichment-sensitive lake permitted reconstructions of changes in ecological and chemical water quality over the last c. 150-200 years, a period that includes a mid to late 20th century intensification of agriculture that was widely experienced across the European Union and the subsequent implementation of measures aimed at protecting water resources against pollution from farming. The data show the development of a more nutrient-tolerant diatom community from early in the 20th century, while the main trophic changes occurred from the 1950s, with the site becoming eutrophic by the 1960s. Heightened enrichment is thought to be linked to enhanced levels of phosphorus (P) transfers from the surrounding grassland catchment owing to an intensification of agricultural activities locally. Most recently, since the late 1990s and particularly post-2007, evidence suggests a decrease in aquatic enrichment, despite continued increases in agricultural intensification. This decoupling is likely to mark a successful implementation in 2006 of measures aimed at decreasing diffuse nutrient transfers from catchments linked to agri-environmental policies in Europe. The research highlights the importance of enrichment-sensitive water bodies as sentinel sites in the monitoring of both external and internal nutrient loadings as agricultural activities and other pressures change within the context of implementing regulatory responses to earlier declines in water quality. PMID:23490624

  6. Water ponding and catchment runoff as influenced by conservation agriculture in May Zeg-zeg (Ethiopia)

    NASA Astrophysics Data System (ADS)

    Lanckriet, Sil; Nyssen, Jan; Araya, Tesfay; Poesen, Jean; Govaerts, Bram; Bauer, Hans; Deckers, Jozef; Haile, Mitiku; Verfaillie, Els; Cornelis, Wim M.

    2013-04-01

    This study evaluates the practice of conservation agriculture (CA) in the May Zeg-zeg catchment (MZZ; 187 ha) in the North Ethiopian Highlands as a soil management technique for reducing soil loss and runoff, and assesses the consequences of future large-scale implementation on soil and hydrology at catchment-level. The study of such practice is important especially under conditions of climate change, since EdGCM (Educational Global Climate Model) simulation predicts by 2040 an increase in precipitation by more than 100 mm yr-1 in the study area. Firstly, field-saturated infiltration rates, together with soil texture and soil organic carbon contents, were measured. Relation with local topography allows to generate a pedotransfer function for field-saturated infiltration rate, and spatial interpolation with Linear Regression Mapping was used to map field-saturated infiltration rates optimally within the catchment. Secondly, on several farmlands, CA was checked against Plain Tillage (PT) for values of field-saturated infiltration rates, soil organic carbon, runoff and soil loss. Results show no significant differences for infiltration rates but significant differences for runoff and soil loss (as measured in the period 2005-2011). Runoff coefficients were 30.4% for PT and 18.8% for CA; soil losses were 35.4 t ha-1 yr-1 for PT and 14.4 t ha-1 yr-1 for CA. Thirdly, all collected information was used to predict future catchment hydrological response for full-implementation of CA under the predicted wetter climate (simulation with EdGCM). Curve Numbers for farmlands with CA were calculated. An area-weighted Curve Number allows the simulation of the 2011 rainy season runoff, predicting a total runoff depth of 23.5 mm under CA and 27.9 mm under PT. Furthermore, the Revised Universal Soil Loss Equation management factor P was calibrated for CA. Results also show the important influence of increased surface roughness on water ponding, modeled with a hydrologic conservation

  7. Deriving a per-field land use and land cover map in an agricultural mosaic catchment

    NASA Astrophysics Data System (ADS)

    Seo, B.; Bogner, C.; Poppenborg, P.; Martin, E.; Hoffmeister, M.; Jun, M.; Koellner, T.; Reineking, B.; Shope, C. L.; Tenhunen, J.

    2014-09-01

    Detailed data on land use and land cover constitute important information for Earth system models, environmental monitoring and ecosystem services research. Global land cover products are evolving rapidly; however, there is still a lack of information particularly for heterogeneous agricultural landscapes. We censused land use and land cover field by field in the agricultural mosaic catchment Haean in South Korea. We recorded the land cover types with additional information on agricultural practice. In this paper we introduce the data, their collection and the post-processing protocol. Furthermore, because it is important to quantitatively evaluate available land use and land cover products, we compared our data with the MODIS Land Cover Type product (MCD12Q1). During the studied period, a large portion of dry fields was converted to perennial crops. Compared to our data, the forested area was underrepresented and the agricultural area overrepresented in MCD12Q1. In addition, linear landscape elements such as waterbodies were missing in the MODIS product due to its coarse spatial resolution. The data presented here can be useful for earth science and ecosystem services research. The data are available at the public repository Pangaea (doi:110.1594/PANGAEA.823677).

  8. Predicting microbial water quality with models: Over-arching questions for managing risk in agricultural catchments.

    PubMed

    Oliver, David M; Porter, Kenneth D H; Pachepsky, Yakov A; Muirhead, Richard W; Reaney, Sim M; Coffey, Rory; Kay, David; Milledge, David G; Hong, Eunmi; Anthony, Steven G; Page, Trevor; Bloodworth, Jack W; Mellander, Per-Erik; Carbonneau, Patrice E; McGrane, Scott J; Quilliam, Richard S

    2016-02-15

    The application of models to predict concentrations of faecal indicator organisms (FIOs) in environmental systems plays an important role for guiding decision-making associated with the management of microbial water quality. In recent years there has been an increasing demand by policy-makers for models to help inform FIO dynamics in order to prioritise efforts for environmental and human-health protection. However, given the limited evidence-base on which FIO models are built relative to other agricultural pollutants (e.g. nutrients) it is imperative that the end-user expectations of FIO models are appropriately managed. In response, this commentary highlights four over-arching questions associated with: (i) model purpose; (ii) modelling approach; (iii) data availability; and (iv) model application, that must be considered as part of good practice prior to the deployment of any modelling approach to predict FIO behaviour in catchment systems. A series of short and longer-term research priorities are proposed in response to these questions in order to promote better model deployment in the field of catchment microbial dynamics. PMID:26657248

  9. Detecting surface runoff location in a small catchment using distributed and simple observation method

    NASA Astrophysics Data System (ADS)

    Dehotin, Judicaël; Breil, Pascal; Braud, Isabelle; de Lavenne, Alban; Lagouy, Mickaël; Sarrazin, Benoît

    2015-06-01

    Surface runoff is one of the hydrological processes involved in floods, pollution transfer, soil erosion and mudslide. Many models allow the simulation and the mapping of surface runoff and erosion hazards. Field observations of this hydrological process are not common although they are crucial to evaluate surface runoff models and to investigate or assess different kinds of hazards linked to this process. In this study, a simple field monitoring network is implemented to assess the relevance of a surface runoff susceptibility mapping method. The network is based on spatially distributed observations (nine different locations in the catchment) of soil water content and rainfall events. These data are analyzed to determine if surface runoff occurs. Two surface runoff mechanisms are considered: surface runoff by saturation of the soil surface horizon and surface runoff by infiltration excess (also called hortonian runoff). The monitoring strategy includes continuous records of soil surface water content and rainfall with a 5 min time step. Soil infiltration capacity time series are calculated using field soil water content and in situ measurements of soil hydraulic conductivity. Comparison of soil infiltration capacity and rainfall intensity time series allows detecting the occurrence of surface runoff by infiltration-excess. Comparison of surface soil water content with saturated water content values allows detecting the occurrence of surface runoff by saturation of the soil surface horizon. Automatic records were complemented with direct field observations of surface runoff in the experimental catchment after each significant rainfall event. The presented observation method allows the identification of fast and short-lived surface runoff processes at a small spatial and temporal resolution in natural conditions. The results also highlight the relationship between surface runoff and factors usually integrated in surface runoff mapping such as topography, rainfall

  10. Deriving a per-field land use and land cover map in an agricultural mosaic catchment

    NASA Astrophysics Data System (ADS)

    Seo, B.; Bogner, C.; Poppenborg, P.; Martin, E.; Hoffmeister, M.; Jun, M.; Koellner, T.; Reineking, B.; Shope, C. L.; Tenhunen, J.

    2014-04-01

    Detailed data on land use and land cover constitutes important information for Earth system models, environmental monitoring and ecosystem services research. Global land cover products are evolving rapidly, however, there is still a lack of information particularly for heterogeneous agricultural landscapes. We censused land use and land cover field by field in an agricultural mosaic catchment Haean, South Korea. We recorded the land cover types with additional information on agricultural practice and make this data available at the public repository Pangaea (doi:10.1594/PANGAEA.823677). In this paper we introduce the data, its collection and the post-processing protocol. During the studied period, a large portion of dry fields was converted to perennial crops. A comparison between our dataset and MODIS Land Cover Type (MCD12Q1) suggested that the MODIS product was restricted in this area since it does not distinguish irrigated fields from general croplands. In addition, linear landscape elements such as water bodies were not detected in the MODIS product due to its coarse spatial resolution. The data presented here can be useful for earth science and ecosystem services research.

  11. Re-examining the basis for source discrimination and data corrections used by sediment fingerprinting studies in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Smith, Hugh; Blake, Will

    2014-05-01

    The sediment fingerprinting technique has been widely used in agricultural catchments to quantify fine sediment contributions from various land use sources. This application of the technique depends on the key assumption that land-use source signatures imprinted on catchment soils are decipherable from those due to other landscape factors affecting soil and sediment properties. We re-examine this key assumption by investigating (i) the physical and chemical basis for source discrimination and (ii) potential factors that may confound source un-mixing in agricultural catchments, including particle size and organic matter effects on tracer properties. The study is situated in the River Tamar, a predominantly agricultural catchment in south-west England that has also been affected by mining. Source discrimination focused on pasture and cultivated land uses and channel banks. Monthly, time-integrated suspended sediment samples were collected across seven catchments for a 12-month period. Physical and chemical properties measured in source soils and sediment included fallout radionuclides, major and minor element geochemical constituents, total organic carbon and particle size. Source discrimination was entirely dependent on differences in tracer property concentrations between surface and sub-surface soils. This is based on fallout radionuclide concentrations that are surface-elevated, while many geochemical properties are surface-depleted due to weathering and pedogenetic effects, although surface soil contamination can reverse this trend. Source discrimination in the study catchments was limited by (i) rotation of cultivated and pasture fields resulting in reduced differences between these two sources and (ii) the cultivated source signature resembling a mix of the pasture and channel bank sources for many tracer properties. Furthermore, metal pollution from abandoned historic mines and organic enrichment of sediment from areas of peaty soil resulted in the non

  12. Dynamics of nitrate and chloride during storm events in agricultural catchments with different subsurface drainage intensity (Indiana, USA)

    NASA Astrophysics Data System (ADS)

    Kennedy, Casey D.; Bataille, Clement; Liu, Zhongfang; Ale, Srinivasulu; VanDeVelde, Justin; Roswell, Charles R.; Bowling, Laura C.; Bowen, Gabriel J.

    2012-10-01

    SummaryDrainage tiles buried beneath many naturally poorly drained agricultural fields in the Midwestern U.S. are believed to "short circuit" pools of NO3--laden soil water and shallow groundwater directly into streams that eventually discharge to the Mississippi River. Although much is known about the mechanisms controlling this regionally pervasive practice of artificial drainage at the field-plot scale, an integrative assessment of the effect of drainage density (i.e., the number of tile drains per unit area) on the transport of nutrients and solutes in streams at the catchment scale is lacking. In this study, we quantified the flux and hydrological pathways of agricultural NO3- and road-salt Cl- from catchments lying within the Wabash River Basin, a major source of NO3- to the Mississippi River. The paired catchments differ primarily in drainage density (70% vs. 31%, by catchment area), with essentially all other agricultural management, land use, and soil drainage characteristics remaining equal. Our study revealed two significant hydrological responses to increased drainage density: (1) more near-surface storm event water (dilute in both NO3- and Cl) was transported early in the storm and (2) higher transport of Cl--laden pre-event soil water relative to shallow groundwater elevated in NO3- occurred later in the storm. These patterns are consistent with a proposed conceptual model in which increased drainage density results in (1) greater transport of soil water to streams and (2) a delayed rise in the water table. With respect to nutrient management implications, these results indicate that increased drainage density impacts subsurface pools of Cl- and NO3- differently, a finding that we propose is linked to soil/ground water dynamics in artificially drained agricultural catchments.

  13. Using continuous monitoring of physical parameters to better estimate phosphorus fluxes in a small agricultural catchment

    NASA Astrophysics Data System (ADS)

    Minaudo, Camille; Dupas, Rémi; Moatar, Florentina; Gascuel-Odoux, Chantal

    2016-04-01

    Phosphorus fluxes in streams are subjected to high temporal variations, questioning the relevance of the monitoring strategies (generally monthly sampling) chosen to assist EU Directives to capture phosphorus fluxes and their variations over time. The objective of this study was to estimate the annual and seasonal P flux uncertainties depending on several monitoring strategies, with varying sampling frequencies, but also taking into account simultaneous and continuous time-series of parameters such as turbidity, conductivity, groundwater level and precipitation. Total Phosphorus (TP), Soluble Reactive Phosphorus (SRP) and Total Suspended Solids (TSS) concentrations were surveyed at a fine temporal frequency between 2007 and 2015 at the outlet of a small agricultural catchment in Brittany (Naizin, 5 km2). Sampling occurred every 3 to 6 days between 2007 and 2012 and daily between 2013 and 2015. Additionally, 61 storms were intensively surveyed (1 sample every 30 minutes) since 2007. Besides, water discharge, turbidity, conductivity, groundwater level and precipitation were monitored on a sub-hourly basis. A strong temporal decoupling between SRP and particulate P (PP) was found (Dupas et al., 2015). The phosphorus-discharge relationships displayed two types of hysteretic patterns (clockwise and counterclockwise). For both cases, time-series of PP and SRP were estimated continuously for the whole period using an empirical model linking P concentrations with the hydrological and physic-chemical variables. The associated errors of the estimated P concentrations were also assessed. These « synthetic » PP and SRP time-series allowed us to discuss the most efficient monitoring strategies, first taking into account different sampling strategies based on Monte Carlo random simulations, and then adding the information from continuous data such as turbidity, conductivity and groundwater depth based on empirical modelling. Dupas et al., (2015, Distinct export dynamics for

  14. Scaling issues relating to phosphorus transfer from land to water in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Brazier, R. E.; Heathwaite, A. L.; Liu, S.

    2005-03-01

    Various scales of input data exist to parameterise diffuse pollution models for the UK. For screening methodologies such as the phosphorus indicators tool—PIT [Heathwaite, A.L., Sharpley, A.N., Bechmann, M., 2003a. The conceptual basis for a decision support framework to assess the risk of phosphorus loss at the field scale across Europe. Journal of Plant Nutrition and Soil Science 166, 1-12; Heathwaite, A.L., Burke, S., Quinn, P.F., 2003b. The nutrient export risk matrix (the NERM) for strategic application of biosolids to agricultural land. International Association for Hydrological Sciences Publication 285, 1-9], which is applied throughout England and Wales, some assessment of the implications of using input data derived at different scales must be made. This work is further driven by practical issues such as licensing costs and data availability, which mean that not all data are readily accessible for all end users. This paper represents a first step towards quantifying the 'value-added' to model predictions by using input data derived at three different scales: 50×50 m, 1×1 km and 5×5 km. Model runs using PIT were carried out against observed phosphorus water quality data from the River Start and River Gara, which are the main sub-catchments of Slapton Ley, a grade 1 National Nature Reserve in southwest England. Model runs for the main 46 km 2 Slapton catchment were also undertaken. The results show that some improvement in the ability of the model to capture the observed water quality behaviour may be made by using higher resolution DEM data, though these improvements may be outweighed by the extra data processing and computational time. Conversely, model runs driven by the 5 km data demonstrate consistent under-prediction for all three test catchments, which is perhaps not surprising given the greater degree of averaging underlying datasets at this scale. Results from the 1 km datasets provide the best agreement with observed water quality data, and

  15. Understanding the controls on deposited fine sediment in the streams of agricultural catchments.

    PubMed

    Naden, P S; Murphy, J F; Old, G H; Newman, J; Scarlett, P; Harman, M; Duerdoth, C P; Hawczak, A; Pretty, J L; Arnold, A; Laizé, C; Hornby, D D; Collins, A L; Sear, D A; Jones, J I

    2016-03-15

    Excessive sediment pressure on aquatic habitats is of global concern. A unique dataset, comprising instantaneous measurements of deposited fine sediment in 230 agricultural streams across England and Wales, was analysed in relation to 20 potential explanatory catchment and channel variables. The most effective explanatory variable for the amount of deposited sediment was found to be stream power, calculated for bankfull flow and used to index the capacity of the stream to transport sediment. Both stream power and velocity category were highly significant (p ≪ 0.001), explaining some 57% variation in total fine sediment mass. Modelled sediment pressure, predominantly from agriculture, was marginally significant (p<0.05) and explained a further 1% variation. The relationship was slightly stronger for erosional zones, providing 62% explanation overall. In the case of the deposited surface drape, stream power was again found to be the most effective explanatory variable (p<0.001) but velocity category, baseflow index and modelled sediment pressure were all significant (p<0.01); each provided an additional 2% explanation to an overall 50%. It is suggested that, in general, the study sites were transport-limited and the majority of stream beds were saturated by fine sediment. For sites below saturation, the upper envelope of measured fine sediment mass increased with modelled sediment pressure. The practical implications of these findings are that (i) targets for fine sediment loads need to take into account the ability of streams to transport/retain fine sediment, and (ii) where agricultural mitigation measures are implemented to reduce delivery of sediment, river management to mobilise/remove fines may also be needed in order to effect an improvement in ecological status in cases where streams are already saturated with fines and unlikely to self-cleanse. PMID:26789373

  16. Interactive Effects of Storms, Drought, and Weekly Land Cover Changes on Water Quality Patterns in an Agricultural-dominated Subtropical Catchment in New Zealand

    NASA Astrophysics Data System (ADS)

    Julian, J.; Owsley, B.; de Beurs, K.; Hughes, A.

    2013-12-01

    Rivers are the funnels of landscapes, with the quality of water at the catchment outlet reflecting interactions among geomorphic processes, vegetation characteristics, weather patterns, and anthropogenic land uses. The impacts of changing climate and land cover on water quality are not straightforward; but instead, are set by the interaction of numerous landscape components at multiple spatiotemporal scales. In agricultural-dominated subtropical landscapes such as the Hoteo River Catchment in northern North Island of New Zealand, the land surface can be very dynamic, responding quickly to storms, drought, forest clearings, and grazing practices. In order to capture these short-term fluctuations, we created an 8-day land disturbance index for the catchment using MODIS Nadir BRDF-adjusted reflectance (NBAR) data (500 meter resolution) from 2000 to 2013. We also fused this time-series with Landsat TM/ETM surface reflectance data (30 meter resolution) to more precisely capture the location and extent of these land disturbances. This high-resolution land disturbance time-series was then compared to daily rainfall, daily river discharge, and monthly water samples to assess the effects of changing weather and land cover on a suite of water quality variables including water clarity, turbidity, ammonium (NH4), nitrate (NO3), total nitrogen (TN), dissolved reactive phosphate (DRP), total phosphorus (TP), and fecal coliforms. Forest clearings in the early part of our study period created the most intense land disturbances, which led to elevated turbidity and DRP during subsequent storms. Pasture areas during drought were also characterized by high disturbance indices, particularly in 2013 - the worst drought on record for northern New Zealand. Seasonal effects on land disturbance and water quality were also detected, especially for water clarity and turbidity. From 2011 to 2013, river discharge and turbidity from three sub-catchments were measured at 5-minute intervals to

  17. Patterns and processes of nutrient transfers from land to water: a catchment approach to evaluate Good Agricultural Practice in Ireland

    NASA Astrophysics Data System (ADS)

    Mellander, P.-E.; Melland, A. R.; Shortle, G.; Wall, D.; Mechan, S.; Buckley, C.; Fealy, R.; Jordan, P.

    2009-04-01

    Eutrophication of fresh, transitional and coastal waters by excessive nutrient inputs is one of the most widespread water quality problems in developed countries. Sources of nutrient nitrogen (N) and phosphorus (P) can come from a multiplicity of sources and be dependent on numerous hydrological controls from catchments with both urban and agricultural landuses. Aquatic impacts are widely reported as a result of excessive nutrient transfers from land to water and include changes in ecological integrity and loss of amenity. In the European Union, the Water Framework Directive (WFD) and associated Directives are the key structures with which member states must develop national and often trans-national polices to deal with issues of water resources management. The linked Nitrates Directive is particularly concerned with integrating sustainable agriculture and good water quality objectives and is written into national polices. In Ireland this policy is the Nitrates Directive National Action Programme (NAP), Statutory Instruction 378, Good Agricultural Practise regulation, and amongst other things, sets targets and limits on the use of organic and inorganic fertilisers, soil fertility and slurry/fertiliser spreading and cultivation times. To evaluate the effectiveness of this policy, Teagasc, the Irish Agriculture and Food Development Authority, is undertaking a catchment scale audit on sources, sinks, and changes in nutrient use and export over several years. The Agricultural Catchments Programme is based on a science-stakeholder-management partnership to generate knowledge and specifically to protect water quality from nitrogen and phosphorus transfers within the constraints of the requirements of modern Irish agricultural practises. Eight catchments of 5-12 km2 have been selected for the programme to represent a range of agricultural intensities and vulnerabilities to nitrogen and phosphorus loss including catchments that are situated on permeable and impermeable

  18. Assessing the impacts of sustainable agricultural practices for water quality improvements in the Vouga catchment (Portugal) using the SWAT model.

    PubMed

    Rocha, João; Roebeling, Peter; Rial-Rivas, María Ermitas

    2015-12-01

    The extensive use of fertilizers has become one of the most challenging environmental issues in agricultural catchment areas. In order to reduce the negative impacts from agricultural activities and to accomplish the objectives of the European Water Framework Directive we must consider the implementation of sustainable agricultural practices. In this study, we assess sustainable agricultural practices based on reductions in N-fertilizer application rates (from 100% to 0%) and N-application methods (single, split and slow-release) across key agricultural land use classes in the Vouga catchment, Portugal. The SWAT model was used to relate sustainable agricultural practices, agricultural yields and N-NO3 water pollution deliveries. Results show that crop yields as well as N-NO3 exportation rates decrease with reductions in N-application rates and single N-application methods lead to lower crop yields and higher N-NO3 exportation rates as compared to split and slow-release N-application methods. PMID:26196068

  19. Catchments Under Change: Assessing Impacts and Feedbacks from New Biomass Crops in the Agricultural Midwestern USA

    NASA Astrophysics Data System (ADS)

    Yaeger, Mary; Housh, Mashor; Ng, Tze Ling; Cai, Ximing; Sivapalan, Murugesu

    2013-04-01

    In order to meet the challenges of future change, it is essential to understand the environmental response to current conditions and historical changes. The central Midwestern US is an example of anthropogenic change and environmental feedbacks, having been transformed from a natural grassland system to an artificially-drained agricultural system. Environmental feedbacks from reduced soil residence times coupled with increasing crop fertilization have manifested as a hypoxic zone in the Gulf of Mexico. In an effort to address these feedbacks while meeting new crop demands, large-scale planting of high-yielding perennial biomass crops has been proposed. This could be detrimental to both human and environmental streamflow users because these plants require more water than do current crops. The lowest natural flows in this shallow groundwater-dependent region coincide with the peak of the growing season, thus compounding the problem. Therefore, for large-scale biomass crop production to be sustainable, these tradeoffs between water quality and water quantity must be fully understood. To better understand the catchment response to current conditions, we have analyzed streamflow data in a central Illinois agricultural watershed. To deal with future changes, we have developed an integrated systems model which provides, among other outputs, the land usage that maximizes the benefit to the human system. This land use is then implemented in a separate hydrologic model to determine the impact to the environmental system. Interactively running the two models, taking into account the catchment response to human actions as well as possible anthropogenic responses to the environment, allows us to examine the feedbacks between the two systems. This lets us plot the trajectory of the state of the system, which we hypothesize will show emergent internal properties of the coupled system. Initial tests of this modeling framework show promise that this may indeed be the case. External

  20. A review of monitoring approaches and outcomes of surface water quality mitigation measures in meso-scale agricultural catchments

    NASA Astrophysics Data System (ADS)

    Melland, Alice; Jordan, Phil; Murphy, Paul; Mellander, Per-Erik; Shortle, Ger

    2013-04-01

    Critical for an informative feedback loop from scientific monitoring of biophysical change, to making and implementing suitable policy to effect the desired change, are both accurate measurement of biophysical change, and measurement or modelling of the causes of change. For example the European Environment Agency uses the DPSIR framework to assess change in the state (S) of natural resources due to changes in specific drivers (D) and pressures (P) that can have an impact (I) and are the focus of policy responses (R). This paper provides a review of meso-catchment scale studies worldwide that have measured the impacts of agricultural land management practice on surface water quality. Approaches for measuring water quality impacts of agricultural mitigation practices in meso-catchments (1-100 km2) ranged from measuring water quality over a time series, such as before and after a land management change, or over a spatial series such as in paired catchments with and without agricultural practice change (or over a gradient of practices or catchment types), and by cause and effect studies that measure sources, pathways and impacts of practices. Agricultural mitigation measures had no measurable effect, or positive, or negative effects on water quality over periods of 3 to 20 years. In most catchments where beneficial effects of mitigation measures were successfully measured, combinations of measures that address nutrient or pollutant sources, pathways, delivery and impact have been implemented. Successful farm measures included substantial reductions in the intensity of the farming systems, improved engineering and crop management to reduce runoff and drainage transport of nutrients and sediment, as well as high rates of implementation of measures across the catchments. In many cases, the potential to measure improvement in one or more water quality indicators was limited by the impact of a few management or weather events. Reasons that water quality did not improve in

  1. Evaluating the critical source area concept of phosphorus loss from soils to water-bodies in agricultural catchments.

    PubMed

    Shore, M; Jordan, P; Mellander, P-E; Kelly-Quinn, M; Wall, D P; Murphy, P N C; Melland, A R

    2014-08-15

    Using data collected from six basins located across two hydrologically contrasting agricultural catchments, this study investigated whether transport metrics alone provide better estimates of storm phosphorus (P) loss from basins than critical source area (CSA) metrics which combine source factors as well. Concentrations and loads of P in quickflow (QF) were measured at basin outlets during four storm events and were compared with dynamic (QF magnitude) and static (extent of highly-connected, poorly-drained soils) transport metrics and a CSA metric (extent of highly-connected, poorly-drained soils with excess plant-available P). Pairwise comparisons between basins with similar CSA risks but contrasting QF magnitudes showed that QF flow-weighted mean TRP (total molybdate-reactive P) concentrations and loads were frequently (at least 11 of 14 comparisons) more than 40% higher in basins with the highest QF magnitudes. Furthermore, static transport metrics reliably discerned relative QF magnitudes between these basins. However, particulate P (PP) concentrations were often (6 of 14 comparisons) higher in basins with the lowest QF magnitudes, most likely due to soil-management activities (e.g. ploughing), in these predominantly arable basins at these times. Pairwise comparisons between basins with contrasting CSA risks and similar QF magnitudes showed that TRP and PP concentrations and loads did not reflect trends in CSA risk or QF magnitude. Static transport metrics did not discern relative QF magnitudes between these basins. In basins with contrasting transport risks, storm TRP concentrations and loads were well differentiated by dynamic or static transport metrics alone, regardless of differences in soil P. In basins with similar transport risks, dynamic transport metrics and P source information additional to soil P may be required to predict relative storm TRP concentrations and loads. Regardless of differences in transport risk, information on land use and

  2. Suspended sediment export in five intensive agricultural river catchments with contrasting land use and soil drainage characteristics

    NASA Astrophysics Data System (ADS)

    Sherriff, Sophie; Rowan, John; Melland, Alice; Jordan, Phil; Fenton, Owen; hUallacháin, Daire Ó.

    2015-04-01

    Soil erosion and sediment loss from land can have a negative impact on the chemical and ecological quality of freshwater resources. In catchments dominated by agriculture, prediction of soil erosion risk is complex due to the interaction of physical characteristics such as topography, soil erodibility, hydrological connectivity and climate. Robust measurement approaches facilitate the assessment of sediment loss magnitudes in relation to a range of agricultural settings. These approaches improve our understanding of critical sediment transfer periods and inform development of evidence-based and cost-effective management strategies. The aim of this study was to i) assess the efficacy of out-of-channel (ex-situ) suspended sediment measurement approaches, ii) to quantify the variability of sediment exported from five river catchments with varying hydrology and agricultural land uses over multiple years and iii) to investigate trends in relation to physical and land use characteristics when sediment data were compared between catchments. Sediment data were collected in five intensive agricultural river catchments in Ireland (3-11 km2) which featured contrasting land uses (predominantly intensive grassland or arable) and soil drainage classes (well, moderate and poor). High-resolution suspended sediment concentration data (SSC - using a calibrated turbidity proxy) were collected ex-situ and combined with in-stream discharge data measured at each catchment outlet to estimate suspended sediment yield (SSY - t km-2 yr-1). In two catchments additional in-stream turbidity monitoring equipment replicated ex-situ measurements including site specific calibration of individual in-stream and ex-situ turbidity probes. Depth-integrated samples were collected to assess the accuracy of both approaches. Method comparison results showed that true SSC values (from depth-integrated sampling) were predominantly within the 95% confidence interval of ex-situ predicted SSC consequently

  3. Where to locate a tree plantation within a low rainfall catchment to minimise impacts on groundwater resources

    NASA Astrophysics Data System (ADS)

    Dean, J. F.; Webb, J. A.; Jacobsen, G. E.; Chisari, R.; Dresel, P. E.

    2014-08-01

    Despite the fact that there are many studies that consider the impacts of plantation forestry on water resources, and others that explore the spatial heterogeneity of groundwater recharge in dry regions, there is little marriage of the two subjects in forestry management guidelines and legislation. Here we carry out an in-depth analysis of the groundwater and surface water regime in a low rainfall, high evapotranspiration paired catchment study to examine the impact of reforestation, using water table fluctuations and chloride mass balance methods to estimate groundwater recharge. Recharge estimations using the chloride mass balance method were shown to be more likely representative of groundwater recharge regimes prior to the planting of the trees, and most likely prior to widespread land clearance by European settlers. These estimations were complicated by large amounts of recharge occurring as a result of runoff and streamflow in the lower parts of the catchment. Water table fluctuation method estimations of recharge verified that groundwater recharge occurs predominantly in the lowland areas of the study catchment. This leads to the conclusion that spatial variations in recharge are important considerations for locating tree plantations with respect to conserving water resources for downstream users. For dry regions, this means planting trees in the upland parts of the catchments, as recharge is shown to occur predominantly in the lowland areas.

  4. Spatio-temporal variability of the molecular fingerprint of soil dissolved organic matter in a headwater agricultural catchment

    NASA Astrophysics Data System (ADS)

    Jeanneau, Laurent; Pierson-Wickmann, Anne-Catherine; Jaffrezic, Anne; Lambert, Thibault; Gruau, Gérard

    2013-04-01

    Dissolved organic matter (DOM) is implied in (i) ecosystem services such as the support of biodiversity, (ii) the alteration of the drinkable water quality by formation of trihalomethane and (iii) the transfer of micropollutants from soils to rivers. Moreover, since DOM connects soils and oceans that are interacting with the atmosphere, understanding its biogeochemistry will help in investigating the carbon cycle and in creating strategies to mitigate climate change. DOM in headwater stream ecosystems is mainly inherited from allochtonous inputs with different reservoirs being mobilized during storm and interstorm events at the scale of an hydrological year. Those changes in DOM reservoirs, if accompanied by composition and reactivity changes, may impact DOM ecosystem services and drinking water production processes. Elucidating the compositional changes due to changes in the source of DOM in rivers has thus become a important axis of DOM research. The aim of this study is to test the ability of the molecular tools of the organic geochemistry and more specifically the combination of thermochemiolysis and gas chromatography - mass spectrometry (THM-GC-MS) to (i) link the variability of the river DOM composition to different DOM reservoirs in catchment soils and (ii) provide hypothesis on the nature and the mechanisms of formation (microbial growth, litter decomposition) of those reservoirs. This analytical method seems particularly adapted since it allows the differentiation between vegetal and microbial inputs and the determination of the extent of the biodegradation process of biomolecules such as lignin. To test this method, the molecular fingerprint of soil DOM has been investigated in the wetland area of a small (500 ha) agricultural catchment (the so-called Kervidy-Naizin catchment) located in Brittany, western France. The soil DOM was sampled fortnightly at three depths using zero-tension lysimeters during the hydrological year 2010-2011. The samples were

  5. USE OF MACROINVERTEBRATE METRICS TO DIFFERENTIATE BETWEEN THE EFFECTS OF DECREASED CANOPY AND INCREASED EMBEDDEDNESS IN STREAMS IN DRAINING AGRICULTURAL CATCHMENTS

    EPA Science Inventory

    Reduced canopy as a result of lost riparian vegetation and increased substrate embeddedness as a result of greater inputs of the fine sediments are two environmental stressor gradients that often covary in streams draining agricultural catchments. An understanding of relationship...

  6. Impacts of agricultural phosphorus use in catchments on shallow lake water quality: About buffers, time delays and equilibria.

    PubMed

    Schippers, Peter; van de Weerd, Hendrika; de Klein, Jeroen; de Jong, Barend; Scheffer, Marten

    2006-10-01

    Phosphorus (P) losses caused by intensive agriculture are known to have potentially large negative effects on the water quality of lakes. However, due to the buffering capacity of soils and lake ecosystems, such effects may appear long after intensive agriculture started. Here we present the study of a coupled shallow lake catchment model, which allows a glimpse of the magnitude of these buffer-related time delays. Results show that the buffering capacity of the lake water was negligible whereas buffering in the lake sediment postponed the final lake equilibrium for several decades. The surface soil layer in contact with runoff water was accountable for a delay of 5-50 years. The most important buffer, however, was the percolation soil layer that may cause a delay of 150-1700 years depending on agricultural P surplus levels. Although the buffers could postpone final lake equilibria for a considerable time, current and target agricultural surplus levels eventually led to very turbid conditions with total P concentrations of 2.0 and 0.6 mg L(-1) respectively. To secure permanent clear water states the current agricultural P surplus of 15 kg P ha(-1) yr(-1) should drop to 0.7 kg P ha(-1) yr(-1). We present several simple equations that can be used to estimate the sustainable P surplus levels, buffer related time delays and equilibrium P concentrations in other catchment-lake systems. PMID:16781763

  7. Using lumped modelling for providing simple metrics and associated uncertainties of catchment response to agricultural-derived nitrates pollutions

    NASA Astrophysics Data System (ADS)

    RUIZ, L.; Fovet, O.; Faucheux, M.; Molenat, J.; Sekhar, M.; Aquilina, L.; Gascuel-odoux, C.

    2013-12-01

    The development of simple and easily accessible metrics is required for characterizing and comparing catchment response to external forcings (climate or anthropogenic) and for managing water resources. The hydrological and geochemical signatures in the stream represent the integration of the various processes controlling this response. The complexity of these signatures over several time scales from sub-daily to several decades [Kirchner et al., 2001] makes their deconvolution very difficult. A large range of modeling approaches intent to represent this complexity by accounting for the spatial and/or temporal variability of the processes involved. However, simple metrics are not easily retrieved from these approaches, mostly because of over-parametrization issues. We hypothesize that to obtain relevant metrics, we need to use models that are able to simulate the observed variability of river signatures at different time scales, while being as parsimonious as possible. The lumped model ETNA (modified from[Ruiz et al., 2002]) is able to simulate adequately the seasonal and inter-annual patterns of stream NO3 concentration. Shallow groundwater is represented by two linear stores with double porosity and riparian processes are represented by a constant nitrogen removal function. Our objective was to identify simple metrics of catchment response by calibrating this lumped model on two paired agricultural catchments where both N inputs and outputs were monitored for a period of 20 years. These catchments, belonging to ORE AgrHys, although underlain by the same granitic bedrock are displaying contrasted chemical signatures. The model was able to simulate the two contrasted observed patterns in stream and groundwater, both on hydrology and chemistry, and at the seasonal and pluri-annual scales. It was also compatible with the expected trends of nitrate concentration since 1960. The output variables of the model were used to compute the nitrate residence time in both the

  8. Quantifying sediment sources in a lowland agricultural catchment pond using (137)Cs activities and radiogenic (87)Sr/(86)Sr ratios.

    PubMed

    Le Gall, Marion; Evrard, Olivier; Foucher, Anthony; Laceby, J Patrick; Salvador-Blanes, Sébastien; Thil, François; Dapoigny, Arnaud; Lefèvre, Irène; Cerdan, Olivier; Ayrault, Sophie

    2016-10-01

    Soil erosion often supplies high sediment loads to rivers, degrading water quality and contributing to the siltation of reservoirs and lowland river channels. These impacts are exacerbated in agricultural catchments where modifications in land management and agricultural practices were shown to accelerate sediment supply. In this study, sediment sources were identified with a novel tracing approach combining cesium ((137)Cs) and strontium isotopes ((87)Sr/(86)Sr) in the Louroux pond, at the outlet of a lowland cultivated catchment (24km(2), Loire River basin, France) representative of drained agricultural areas of Northwestern Europe. Surface soil (n=36) and subsurface channel bank (n=17) samples were collected to characterize potential sources. Deposited sediment (n=41) was sampled across the entire surface of the pond to examine spatial variation in sediment deposits. In addition, a 1.10m sediment core was sampled in the middle of the pond to reconstruct source variations throughout time. (137)Cs was used to discriminate between surface and subsurface sources, whereas (87)Sr/(86)Sr ratios discriminated between lithological sources. A distribution modeling approach quantified the relative contribution of these sources to the sampled sediment. Results indicate that surface sources contributed to the majority of pond (μ 82%, σ 1%) and core (μ 88%, σ 2%) sediment with elevated subsurface contributions modeled near specific sites close to the banks of the Louroux pond. Contributions of the lithological sources were well mixed in surface sediment across the pond (i.e., carbonate sediment contribution, μ 48%, σ 1% and non-carbonate sediment contribution, μ 52%, σ 3%) although there were significant variations of these source contributions modeled for the sediment core between 1955 and 2013. These fluctuations reflect both the progressive implementation of land consolidation schemes in the catchment and the eutrophication of the pond. This original sediment

  9. Monitoring Two Small Catchments to Evaluate Effects of No-Tillage Agricultural Management in São Paulo State, Brazil

    NASA Astrophysics Data System (ADS)

    Figueiredo, R. D. O.; Gonçalves, A. O.; Melo, A. D. S.; de Bona, F. D.; Hernani, L. C.

    2015-12-01

    In recent years, declines in water and soil quality have been observed in areas of Brazil where no-till agriculture had been previously implemented. Poor soil management associated with the absence of public policies has caused soil erosion, because many farmers are moving back from no-till to traditional cultivation for faster economic gains. A research project - SoloVivo Project - leaded by Embrapa (Brazilian Agricultural Research Corporation) in partnership with Itaipu Binacional aims to develop and validate, in a participatory way, tools to evaluate the technical performance of soil and water management at the rural properties that practice no-till agriculture. In this context we have selected two paired small (< 100 ha) catchments in the Paranapanema region, São Paulo State, where no-till management is practiced at two different degrees of effectiveness. In the figure bellow it can be seen a scene of one of the two studied catchments. For monitoring rainfall, soil solution and stream water, each catchment will be equipped with a programmable datalogger (with cell phone communication for data collection) linked to: a high intensity tipping bucket rain gage; a reflectometer to monitor soil volumetric water content, bulk electric conductivity and temperature; a radar water level sensor; a turbidity sensor; and an electric conductivity-temperature probe. We expect that stream flow and sediment generation, besides water quality (measured by conductivity) may serve as indicators of the benefits of no-tillage agriculture done more or less well. The results of this study will be used to stimulate discussions at workshops with the farmers who participate in a rural producers association in the region. In addition this and other results can be used to help the Brazilian National Water Agency (ANA) decide about applying no-till agricultural management systems in its programs of payment for environmental services.

  10. Mitigation scenario analysis: modelling the impacts of changes in agricultural management practices on surface water quality at the catchment scale

    NASA Astrophysics Data System (ADS)

    Taylor, Sam; He, Yi; Hiscock, Kevin

    2014-05-01

    Increasing human pressures on the natural environment through the demand for increased agricultural productivity have exacerbated and deteriorated water quality conditions within many environments due to an unbalancing of the nutrient cycle. As a consequence, increased agricultural diffuse water pollution has resulted in elevated concentrations of nutrients within surface water and groundwater bodies. This deterioration in water quality has direct consequences for the health of aquatic ecosystems and biodiversity, human health, and the use of water as a resource for public water supply and recreation. To mitigate these potential impacts and to meet commitments under the EU Drinking Water and Water Framework Directives, there is a need to improve our understanding of the impacts that agricultural land use and management practices have on water quality. Water quality models are one of the tools available which can be used to facilitate this aim. These simplified representations of the physical environment allow a variety of changes to be simulated within a catchment, including for example changes in agricultural land use and management practices, allowing for predictions of the impacts of those measures on water quality to be developed and an assessment to be made of their effectiveness in improving conditions. The aim of this research is to apply the water quality model SWAT (Soil and Water Assessment Tool) to the Wensum catchment (area 650 km2), situated in the East of England, to predict the impacts of potential changes in land use and land management practices on water quality as part of a process to select those measures that in combination will have the greatest potential to improve water quality. Model calibration and validation is conducted at three sites within the catchment against observations of river discharge and nitrate and total phosphorus loads at a monthly time-step using the optimisation algorithm SUFI-2 (Sequential Uncertainty Fitting Version 2

  11. Monitoring of soil moisture dynamics and spatial differences in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Oswald, Sascha; Baroni, Gabriele; Biro, Peter; Schrön, Martin

    2015-04-01

    A novel method to observe changes in soil moisture and other water pools at the land surface is non-invasive cosmic-ray neutron sensing. This approach by its physical principles is placed between in-soil measurements and remote sensing, and retrieves values for an intermediate spatial scale of several hectars, which can be used to quantify stored water at the land surface. It detects variations in the background of neutrons, induced initially from cosmic-rays hitting the atmosphere, and this can be related to interesting quantities at the land surface, such as soil moisture, but to some degree also snow water equivalent and changes in the biomass of vegetation. In a small catchment being used as a long-term landscape observatory of the TERENO initiative we retrieved cosmic-ray neutron measurements for several years, for up to four adjacent sites. The terrain was hilly with some slopes being partly used for agricultural fields, partly grassland. Here, after atmospheric corrections and a calibration procedure soil moisture dynamics could be observed for integral soil depths of several decimeters, clearly responding to precipitation events and offering a comparison to various local and non-local soil moisture measurements there. For winter periods with frost and snow, also the water mass stored in the snow cover can be retrieved. Furthermore, observed spatial differences can be related to vegetation, terrain and soil moisture state. Also, the relation to parameters representing crop biomass and growth will be discussed in respect to the retrieved cosmic-ray neutron signals, which have an influence on the interpretation as soil moisture.

  12. Impacts of intensive agricultural irrigation and livestock farming on a semi-arid Mediterranean catchment.

    PubMed

    Martín-Queller, Emi; Moreno-Mateos, David; Pedrocchi, César; Cervantes, Juan; Martínez, Gonzalo

    2010-08-01

    Irrigation return flows (IRF) are a major contributor of non-point source pollution to surface and groundwater. We evaluated the effects of irrigation on stream hydrochemistry in a Mediterranean semi-arid catchment (Flumen River, NE Spain). The Flumen River was separated into two zones based on the intensity of irrigation activities in the watershed. General linear models were used to compare the two zones. Relevant covariables (urban sewage, pig farming, and gypsum deposits in the basin) were quantified with the help of geographic information system techniques, accompanied by ground-truthing. High variability of the water quality parameters and temporal dynamics caused by irrigation were used to distinguish the two river reaches. Urban activity and livestock farming had a significant effect on water chemistry. An increase in the concentration of salts (240-541 microS.cm(-1) more in winter) and nitrate (average concentrations increased from 8.5 to 20.8 mg.l(-1) during irrigation months) was associated with a higher level of IRF. Those river reaches more strongly influenced by urban areas tended to have higher phosphorus (0.19-0.42 mg.l(-1) more in winter) concentrations. These results support earlier research about the significant consequences to water quality of both urban expansion and intensive agricultural production in arid and semi-arid regions. Data also indicate that salinization of soils, subsoils, surface water, and groundwater can be an unwelcome result of the application of pig manure for fertilization (increase in sodium concentration in 77.9 to 138.6 mg.l(-1)). PMID:19585246

  13. Recent trends in water quality in an agricultural catchment in Eastern Scotland: elucidating the roles of hydrology and land use.

    PubMed

    Dunn, S M; Sample, J; Potts, J; Abel, C; Cook, Y; Taylor, C; Vinten, A J A

    2014-07-01

    Across the EU, programmes of measures have been introduced as part of river basin management planning as a means of tackling problems of diffuse pollution from agriculture. Evidence is required to demonstrate the effectiveness of these measures and with this overarching objective, monitoring of an agricultural catchment in Eastern Scotland was initiated in 2007. As a precursor to evaluating the effect of new management measures it is essential to understand how other factors, including hydrology and land use changes, could have influenced water quality. This study undertook an analysis of the trends in concentrations and loads of nitrate, soluble reactive phosphorus (SRP), suspended solids (SS) and turbidity measured at six points in the catchment over a six year period. The results identified both differing trends between determinands and differing trends occurring over varying spatial scales. The only direct relationships between land use and water quality that could be identified based on annual data was a positive link between arable cropping and nitrate concentrations. At the sub-catchment scale some temporal changes in land use and management explained short-term trends in nitrate but not in SRP. Lags in the system were identified due to soil adsorption, in-stream/loch processing and groundwater transport making the identification of cause and effect problematic. The results have implications for the demonstration of effectiveness of measures over the shorter term and the timescales of recovery from diffuse pollution. Longer term monitoring at small scales will be important in this regard. PMID:24718675

  14. Influence of Antecedent Hydrologic Conditions on Nitrate and Phosphorus Export from a Small Agricultural Catchment in Southern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Macrae, M. L.; English, M. C.; Schiff, S. L.; Stone, M.

    2009-04-01

    The ability of the scientific community to quantify and predict discharge and nutrient transport in a range of settings is confounded by the effects of antecedent hydrologic conditions in upland areas. Previous work has empirically linked spatial variables such as land use, soil type, topography, and drainage characteristics to hydrochemical export from various landscapes (e.g. MCDOWELL et al., 2001; ARHEIMER and LIDEN, 2000; STAMM et al., 1998; JORDAN et al., 1997; WELSCH et al., 2001). However, the specific reasons why similar types of events produce different nutrient export patterns are poorly understood. Nutrient (nitrate, soluble and total phosphorus) transport from agricultural catchments is difficult to quantify and predict because of the influence of variable hydrologic flowpaths and their interaction with varying nutrient pools. This research examines the role of antecedent hydrologic conditions on stream discharge and nitrate (NO3-), soluble reactive phosphorus (SRP) and total phosphorus (TP) export from a small (2.7 km2) first-order agricultural catchment in Southern Ontario, Canada. During 59 events occurring over a two-year sampling period (year-round), runoff ratios ranged from 0-0.99). Runoff ratios increased throughout successive events as conditions became wetter although key indices of antecedent wetness such as water table position, pre-event streamflow and soil moisture did not yield predictive relationships. Nitrate, SRP and TP transport from the catchment increased with antecedent wetness during some periods but decreased with antecedent wetness during other periods. This variability appears to be linked to a combination of the position of water table before and during the event, as well as timing of fertilizer application. It is hypothesized that in general, wetter antecedent hydrologic conditions increase nutrient transport from the catchment by increasing macropore connectivity between surface soil horizons and tile drains, although this

  15. Transport of suspended sediment and organic carbon during storm events in a large agricultural catchment, southwest France.

    NASA Astrophysics Data System (ADS)

    Chantha, Oeurng; Sabine, Sauvage; David, Baqué; Alexandra, Coynel; Eric, Maneux; Henri, Etcheber; José-Miguel, Sánchez-Pérez

    2010-05-01

    Intensive agriculture has led to environmental degradation through soil erosion and carbon loss transferred from agricultural land to the stream networks. Suspended sediment transport from the agricultural catchment to the watercourses is responsible for aquatic habitat degradation, reservoir sedimentation, and for transporting sediment associated pollutants (pesticides, nutrient, heavy metals and other toxic substances). Consequently, the temporal transport of suspended sediment (SS), dissolved and particulate organic carbon (DOC and POC) was investigated during 18 months from January 2008 to June 2009 within a large agricultural catchment in southwest France. This study is based on an extensive dataset with high temporal resolution using manual and automatic sampling, especially during 15 flood events. Two main objectives aim at: (i) studying temporal transport in suspended sediment (SS), DOC and POC with factors explaining their dynamics and (ii) analysing the relationships between discharge, SSC, DOC and POC during flood events. The study demonstrates there is a strong variability of SS, POC and DOC during flood events. The SS transport during different seasonal floods varied by event from 513 to 41 750 t; POC transport varied from 12 to 748 t and DOC transport varied from 9 to 218 t. The specific yield of the catchment represents 76 t km-2 y-1 of sediment, 1.8 t km-2 y-1 of POC and 0.7 t km-2 y-1 of DOC, respectively. The POC associated with sediment transport from the catchment accounted for ~2.5% of the total sediment load. Flood duration and flood magnitude are key factors in determining the sediment and organic carbon transport. Statistical analyses revealed strong correlations between total precipitation, flood discharge, total water yield with suspended sediment and organic transport. The relationships of SSC, POC and DOC versus discharge over temporal flood events resulted in different hysteresis patterns which were used to suggest those dissolved and

  16. Nitrate sinks and sources as controls of spatio-temporal water quality dynamics in an agricultural headwater catchment

    NASA Astrophysics Data System (ADS)

    Schuetz, Tobias; Gascuel-Odoux, Chantal; Durand, Patrick; Weiler, Markus

    2016-02-01

    Several controls are known to affect water quality of stream networks during flow recession periods, such as solute leaching processes, surface water-groundwater interactions as well as biogeochemical in-stream turnover processes. Throughout the stream network, combinations of specific water and solute export rates and local in-stream conditions overlay the biogeochemical signals from upstream sections. Therefore, upstream sections can be considered functional units which could be distinguished and ordered regarding their relative contribution to nutrient dynamics at the catchment outlet. Based on snapshot sampling of flow and nitrate concentrations along the stream in an agricultural headwater during the summer flow recession period, we determined spatial and temporal patterns of water quality for the whole stream. A data-driven, in-stream-mixing-and-removal model was developed and applied for analysing the spatio-temporal in-stream retention processes and their effect on the spatio-temporal fluxes of nitrate from subcatchments. Thereby, we have been able to distinguish quantitatively between nitrate sinks, sources per stream reaches, and subcatchments, and thus we could disentangle the overlay of nitrate sink and source signals. For nitrate sources, we determined their permanent and temporal impact on stream water quality and for nitrate sinks, we found increasing nitrate removal efficiencies from upstream to downstream. Our results highlight the importance of distinct nitrate source locations within the watershed for in-stream concentrations and in-stream removal processes, respectively. Thus, our findings contribute to the development of a more dynamic perception of water quality in streams and rivers concerning ecological and sustainable water resource management.

  17. Mapping Zn, Cu and Cd contents at the small catchment level after dispersion of contaminants by agricultural practices

    NASA Astrophysics Data System (ADS)

    Vidal Vázquez, E.; Mirás-Avalos, J. M.; Paz-Ferreiro, J.

    2009-04-01

    Dispersion of trace metals into the rural environment through the use of sewage sludge, fertilizers and manure has been worldwide reported. In El Abelar (Coruña province, Spain), pig slurry was discharged during years intensively into an agricultural field by means of a device which constituted a point source of contamination. The application point was located near the head of an elementary basin, so that slurry was dispersed by runoff into neighboring grassland and maize fields. In addition, diffuse pollution was also present in the study area as a consequence of cattle grazing. Water quality was monitored during and after slurry application at the outlet of a small catchment (about 10.7 ha in surface) draining the study fields. High levels of nutrients, including heavy metals, were found in drainage water. The main objectives of this paper are to determine the spatial variability of Cu, Zn and Cd as extracted by NO3H, EDTA and Ca2Cl and to evaluate the risk of accumulation of these heavy metals at the small catchment level. A set of 55 soil samples were taken from the top soil layer (0-20 cm) of the studied catchment, following a random sampling scheme. Fe, Mn, Cu, Zn and Cd contents were determined i) after digestion by nitric acid in a microwave (USEPA-SW-846 3051) ii) after extraction with EDTA and iii) after extraction with Cl2Ca. Element contents in the extracts were determined by ICP-MS. Summary statistics indicate that variability in Cu, Zn and Cd contents over the study area was very high. For example, after NO3H digestion Zn contents ranged from 29.66 to 141.77 3 mg kg-1 and Cu contents varied from 10.45 to 72.7 3 mg kg-1. High Cu and Zn contents result from accumulation as a consequence of slurry discharge. Also, some hot spots with high levels of Cd (> 3 mg kg-1 after NO3H) with respect to background values were recorded. Geostatistics provides all necessary tools to analyze the spatial variability of soil properties over a landscape. The spatial

  18. IDENTIFICATION OF PREDOMINANT ENVIRONMENTAL FACTORS STRUCTURING STREAM MACROINVERTEBRATE COMMUNITIES WITHIN A LARGE AGRICULTURAL CATCHMENT

    EPA Science Inventory

    Patterns of macroinvertebrate community composition were examined in streams within a 40,000-km2 catchment in central Michigan, USA, to identify the major environmental gradients influencing community variation. griculture and associated clay and sandy soils predominated in much ...

  19. Comparing hydrological signatures of small agricultural catchments using uncertain data provided by a soft hydrological monitoring

    NASA Astrophysics Data System (ADS)

    Crabit, Armand; Colin, François

    2016-04-01

    Discharge estimation is one of the greatest challenge for every hydrologist as it is the most classical hydrological variable used in hydrological studies. The key lies in the rating curves and the way they were built: based on field measurements or using physical equations as the Manning-Strickler relation… However, as we all know, data and associated uncertainty deeply impact the veracity of such rating curves that could have serious consequences on data interpretation. And, of all things, this affects every catchment in the world, not only the gauged catchments but also and especially the poorly gauged ones that account for the larger part of the catchment of the world. This study investigates how to compare hydrological behaviour of 11 small (0.1 to 0.6 km2) poorly gauged catchments considering uncertainty associated to their rating curves. It shows how important the uncertainty can be using Manning equation and focus on its parameter: the roughness coefficient. Innovative work has been performed under controlled experimental conditions to estimate the Manning coefficient values for the different cover types observed in studied streams: non-aquatic vegetations. The results show that estimated flow rates using suitable roughness coefficients highly differ from those we should have obtained if we only considered the common values given in the literature. Moreover, it highlights how it could also affect all derived hydrological indicators commonly used to compare hydrological behaviour. Data of rainfall and water depth at a catchment's outlet were recorded using automatic logging equipment during 2008-2009. The hydrological regime is intermittent and the annual precipitation ranged between 569 and 727 mm. Discharge was then estimated using Manning's equation and channel cross-section measurements. Even if discharge uncertainty is high, the results show significant variability between catchment's responses that allows for catchment classification. It also

  20. Impact of agricultural practices on runoff and glyphosate peaks in a small vineyard catchment

    NASA Astrophysics Data System (ADS)

    Amiot, Audrey; La Jeunesse, Isabelle; Jadas-Hécart, Alain; Landry, David; Sourice, Stéphane; Communal, Pierre-Yves; Ballouche, Aziz

    2013-04-01

    The Layon River, a tributary of the Loire River, does frequently not comply with water quality standards because of pesticides. Vineyard is generally denounced. The aim of this project is to explain the transfer of pesticides during runoff events and its interaction with erosion. Pesticides and suspended particulate matter (SPM) concentrations are monitored at the outlet of the vineyards catchment each 2 minutes during floods to follow peaks. The results of three different hydrological years (2009, 2011, 2012) are exposed. The 2.2ha catchment is composed of two main vineyards plots managed by two independent farmers. Mean slopes are of 8% and can reach 40% in terraces. A gauging station has been installed at the end of the slope with a calibrated Venturi channel. The measurement station is composed of (a) an approach channel of 10 meters long for the establishment of a stable water surface, (b) a trapezoidal long-throated flume to assess the flow rate with the water level measured with (c) a bubbler sensor, (d) an automatic rain gauge, (e) an automatic sampler, (f) a modem and (g) a logosens OTT® data logger. 2009 was an average year, 2011 was particularly dry and 2012 particularly wet. Quantities of glyphosate applied were respectively 1087, 645 and 720g. Maximum discharges in the gauging station were 5, 12 and 25L.s-1. Minimum and maximum concentrations of glyphosate in runoff waters were 1-449.1 µg.L-1 in 2009, 0.62-13.6 µg.L-1 in 2011 and 0.1-3.7 µg.L-1 in 2012. Minimum and maximum concentrations of SPM were 14-1261mg.L-1 in 2009, 108- 6454 mg.L-1 in 2011 and 9-1541 mg.L-1 in 2012. While flows, quantities of glyphosate applied and peaks of concentrations observed in 2011 are more important in 2009, SPM generated in the runoff waters are lower than 2011 and 2012, even though 2012 has particularly been a wet year. Also, maximum runoff coefficients are 7% in 2009 and 2011 and 57% in 2012. In fact, this latest explains differences between years better than

  1. Investigating suspended sediment dynamics in contrasting agricultural catchments using ex situ turbidity-based suspended sediment monitoring

    NASA Astrophysics Data System (ADS)

    Sherriff, S. C.; Rowan, J. S.; Melland, A. R.; Jordan, P.; Fenton, O.; hUallachain, D. O.

    2015-08-01

    Soil erosion and suspended sediment (SS) pose risks to chemical and ecological water quality. Agricultural activities may accelerate erosional fluxes from bare, poached or compacted soils, and enhance connectivity through modified channels and artificial drainage networks. Storm-event fluxes dominate SS transport in agricultural catchments; therefore, high temporal-resolution monitoring approaches are required, but can be expensive and technically challenging. Here, the performance of in situ turbidity sensors, conventionally installed submerged at the river bankside, is compared with installations where river water is delivered to sensors ex situ, i.e. within instrument kiosks on the riverbank, at two experimental catchments (Grassland B and Arable B). The in situ and ex situ installations gave comparable results when calibrated against storm-period, depth-integrated SS data, with total loads at Grassland B estimated at 12 800 and 15 400 t, and 22 600 and 24 900 t at Arable B, respectively. The absence of spurious turbidity readings relating to bankside debris around the in situ sensor and its greater security make the ex situ sensor more robust. The ex situ approach was then used to characterise SS dynamics and fluxes in five intensively managed agricultural catchments in Ireland which feature a range of landscape characteristics and land use pressures. Average annual suspended sediment concentration (SSC) was below the Freshwater Fish Directive (78/659/EEC) guideline of 25 mg L-1, and the continuous hourly record demonstrated that exceedance occurred less than 12 % of the observation year. Soil drainage class and proportion of arable land were key controls determining flux rates, but all catchments reported a high degree of inter-annual variability associated with variable precipitation patterns compared to the long-term average. Poorly drained soils had greater sensitivity to runoff and soil erosion, particularly in catchments with periods of bare soils. Well

  2. Identifying the controls of soil loss in agricultural catchments using ex situ turbidity-based suspended sediment monitoring

    NASA Astrophysics Data System (ADS)

    Sherriff, S. C.; Rowan, J. S.; Melland, A. R.; Jordan, P.; Fenton, O.; Ó'hUallacháin, D.

    2015-03-01

    Soil erosion and suspended sediment (SS) pose risks to chemical and ecological water quality. Agricultural activities may accelerate erosional fluxes from bare, poached or compacted soils, and enhance connectivity through modified channels and artificial drainage networks. Storm-event fluxes dominate SS transport in agricultural catchments; therefore, high temporal-resolution monitoring approaches are required but can be expensive and technically challenging. Here, the performance of in situ turbidity-sensors, conventionally installed submerged at the river bankside, is compared with installations where river water is delivered to sensors ex situ, i.e. within instrument kiosks on the riverbank, at two experimental catchments (Grassland B and Arable B). Calibrated against storm-period depth-integrated SS data, both systems gave comparable results; using the ex situ and in situ methods respectively, total load at Grassland B was estimated at 128 ± 28 and 154 ± 35, and 225 ± 54 and 248 ± 52 t at Arable B. The absence of spurious turbidity peaks relating to bankside debris around the in situ sensor and its greater security, make the ex situ sensor more robust. The ex situ approach was then used to characterise SS dynamics and fluxes in five intensively managed agricultural catchments in Ireland which feature a range of landscape characteristics and land use pressures. Average annual suspended sediment concentration (SSC) was below the Freshwater Fish Directive (FFD) guideline of 25 mg L-1, and the continuous hourly record demonstrated that exceedance occurred less than 12% of the observation year. Soil drainage class and proportion of arable land were key controls determining flux rates, but all catchments reported a high degree of inter-annual variability associated with variable precipitation patterns compared to the long-term average. Poorly-drained soils had greater sensitivity to runoff and soil erosion, particularly in catchments with periods of bare soils

  3. Assessment of climate change and increased atmospheric CO2 impacts on water quality in an intensive agricultural headwater catchment

    NASA Astrophysics Data System (ADS)

    Salmon-Monviola, Jordy; Moreau, Pierre; Benhamou, Cyril; Durand, Patrick; Merot, Philippe; Oehler, François; Gascuel-Odoux, Chantal

    2013-04-01

    Climate change and increasing atmospheric CO2 concentration can lead to disturbances in the global hydrological and nitrogen (N) cycling, and losses in catchment systems. Potential impacts on water and N cycling have been studied in large catchments with a variety of land uses but less attention has focused on agricultural headwater catchments. Despite their relatively small dimensions, headwater catchments of 1-10 km² play a dominant role in N transformations in the landscape, and streams in such catchments may have major impacts on downstream water quantity and quality. This issue is particular important for agricultural catchment which have to reach the WFD targets, where land use changes has to be analysed in combination with climate change. The effects of climate change and rising concentrations of atmospheric CO2 have been studied on (1) changes in hydrological and N balance components on a yearly basis and (2) the seasonal dynamics of water and N fluxes. The spatially distributed agro-hydrological model TNT2 (Topography-based nitrogen Transfers and Transformations) driven by ARPEGE (Action de Recherche Petite Echelle Grande Echelle) climate-model outputs from A1B scenario have been applied on the Kervidy-Naizin headwater catchment (western France), a long term hydrological observatory. Consideration of atmospheric CO2 concentration was implemented at two levels in TNT2: i) to account for the CO2 effect on stomatal conductance TNT2; ii) to consider effect of CO2 on biomass growth. Climate data from ARPEGE model, corrected with the quantile-quantile bias correction method, over 30-year simulation periods were used as TNT2 input (Salmon-Monviola et al., in review). With increased CO2, the main trends in water balance were a significant decrease in annual actual evapotranspiration, a moderate decrease in annual discharge and wetland extent, and a decrease in spring and summer of groundwater recharge and soil water content. Not considering the effects of

  4. Urban and agricultural contribution of annual loads of glyphosate and AMPA towards surface waters at the Orge River catchment scale (France)

    NASA Astrophysics Data System (ADS)

    Botta, Fabrizio; Chevreuil, Marc; Blanchoud, Hélène

    2010-05-01

    The general use of pesticides in the Orge Basin, located in the southern part of the Paris suburb (France), is damaging surface water quality. Consequently, an increase in the water supply costs is registered by the water supply agencies that are situated downstream the Orge confluence with the Seine River. In this catchment, high uses of glyphosate are registered for fallow fields (upstream part) and for roadway weed control (downstream part). The proportion of glyphosate coming from these two zones was not well known, along with the double source of its metabolite AMPA originated from the degradation of some detergent phosphonates. The aim of this work was firstly to identify the potential sources of glyphosate and AMPA in urban sectors (such as sewerage system inputs) and in agricultural areas and to quantify the origins of urban pesticides pathways towards surface waters at the basin scale. The new approach of this project was to collect information at three different scales to establish a first step of modeling. At the basin scale, 1 year of surface water monitoring at the outlet of the Orge River was useful to establish the inputs towards the Seine River. At the urban catchment scale, the investigations have permitted to record glyphosate and AMPA loads transferred by storm waters and by wastewaters. Loads were estimated during and out of application calendar, in different hydrological conditions such as rainfall with high intensity or dry conditions. Impact of WWTP on surface water was also demonstrated. The third phase of this work was the interpretation of agricultural inputs from two different agricultural catchments of the Orge River. The results showed the impact of urban uses of glyphosate upon the Orge River contamination with annual loads from 100 times higher from the urban zone than from the agricultural one. Storm sewers were recognized to be the main way for glyphosate transfer towards surface waters. A budget of glyphosate and AMPA inputs and

  5. Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: Implications for weathering CO 2 uptake at regional and global scales

    NASA Astrophysics Data System (ADS)

    Perrin, Anne-Sophie; Probst, Anne; Probst, Jean-Luc

    2008-07-01

    The goal of this study was to highlight the occurrence of an additional proton-promoted weathering pathway of carbonate rocks in agricultural areas where N-fertilizers are extensively spread, and to estimate its consequences on riverine alkalinity and uptake of CO 2 by weathering. We surveyed 25 small streams in the calcareous molassic Gascogne area located in the Garonne river basin (south-western France) that drain cultivated or forested catchments for their major element compositions during different hydrologic periods. Among these catchments, the Hay and the Montoussé, two experimental catchments, were monitored on a weekly basis. Studies in the literature from other small carbonate catchments in Europe were dissected in the same way. In areas of intensive agriculture, the molar ratio (Ca + Mg)/HCO 3 in surface waters is significantly higher (0.7 on average) than in areas of low anthropogenic pressure (0.5). This corresponds to a decrease in riverine alkalinity, which can reach 80% during storm events. This relative loss of alkalinity correlates well with the NO3- content in surface waters. In cultivated areas, the contribution of atmospheric/soil CO 2 to the total riverine alkalinity (CO 2 ATM-SOIL/HCO 3) is less than 50% (expected value for carbonate basins), and it decreases when the nitrate concentration increases. This loss of alkalinity can be attributed to the substitution of carbonic acid (natural weathering pathway) by protons produced by nitrification of N-fertilizers (anthropogenic weathering pathway) occurring in soils during carbonate dissolution. As a consequence of these processes, the alkalinity over the last 30 years shows a decreasing trend in the Save river (one of the main Garonne river tributaries, draining an agricultural catchment), while the nitrate and calcium plus magnesium contents are increasing. We estimated that the contribution of atmospheric/soil CO 2 to riverine alkalinity decreased by about 7-17% on average for all the studied

  6. Assessment of hydrology, suspended sediment and particulate organic carbon transport in a large agricultural catchment using SWAT model

    NASA Astrophysics Data System (ADS)

    Chantha, Oeurng; Sabine, Sauvage; José-Miguel, Sánchez-Pérez

    2010-05-01

    Suspended sediment transport from agricultural catchments to stream networks is responsible for aquatic habitat degradation, reservoir sedimentation and the transport of sediment-bound pollutants (pesticides, particulate nutrients, heavy metals and other toxic substances). Quantifying and understanding the dynamics of suspended sediment transfer from agricultural land to watercourses is essential in controlling soil erosion and in implementing appropriate mitigation practices to reduce stream suspended sediment and associated pollutant loads, and hence improve surface water quality downstream. Gascogne area, southwest France, has been dominated by anthropogenic activities particularly intensive agriculture causing severe erosion in recent decades. This leads to a major threat to surface water quality due to soil erosion. Therefore, the catchment water quality has been continuously monitored since January 2007 and the historical data of hydrology and suspended sediment has existed since 1998. In this study, the Soil and Water Assessment Tool (SWAT 2005) was applied to assess hydrology, suspended sediment and particulate organic carbon in this catchment Agricultural management practices (crop rotation, planting date, fertilizer quantity and irrigations) were taken into the model for simulation period of 11 years (July, 1998 to March, 2009). The investigation was conducted using a 11-year streamflow and two years of suspended sediment record from January 2007 to March 2009. Modelling strategy with dominant landuse and soil type was chosen in this study. The SWAT generally performs satisfactorily and could simulate both daily and monthly runoff and sediment yield. The simulated daily and monthly runoff matched the observed values satisfactorily (ENash>0.5). For suspended sediment simulation, the simulated values were compared with the observed continuous suspended sediment derived from turbidity data. Based on the relationship between SSC and POC (R2 = 0.93), POC was

  7. Analysing the role of abandoned agricultural terraces on flood generation in a set of small Mediterranean mountain research catchments (Vallcebre, NE Spain)

    NASA Astrophysics Data System (ADS)

    Gallart, Francesc; Llorens, Pilar; Pérez-Gallego, Nuria; Latron, Jérôme

    2016-04-01

    The Vallcebre research catchments are located in NE Spain, in a middle mountain area with a Mediterranean sub-humid climate. Most of the bedrock consists of continental red lutites that are easily weathered into loamy soils. This area was intensely used for agriculture in the past when most of the sunny gentle hillslopes were terraced. The land was progressively abandoned since the mid-20th Century and most of the fields were converted to meadows or were spontaneously forested. Early studies carried out in the terraced Cal Parisa catchment demonstrated the occurrence of two types of frequently saturated areas, ones situated in downslope locations with high topographic index values, and the others located in the inner parts of many terraces, where the shallow water table usually outcrops due to the topographical modifications linked to terrace construction. Both the increased extent of saturated areas and the role of a man-made elementary drainage system designed for depleting water from the terraces suggested that terraced areas would induce an enhanced hydrological response during rainfall events when compared with non-terraced hillslopes. The response of 3 sub-catchments, of increasing area and decreasing percentage of terraced area, during a set of major events collected during over 15 years has been analysed. The results show that storm runoff depths were roughly proportional to precipitations above 30 mm although the smallest catchment (Cal Parisa), with the highest percentage of terraces, was able to completely buffer rainfall events of 60 mm in one hour without any runoff when antecedent conditions were dry. Runoff coefficients depended on antecedent conditions and peak discharges were weakly linked to rainfall intensities. Peak lag times, peak runoff rates and recession coefficients were similar in the 3 catchments; the first variable values were in the range between Hortonian and saturation overland flow and the two last ones were in the range of

  8. Application of strontium isotope measurements to trace sediment sources in an upstream agricultural catchment (Loire River basin, France)

    NASA Astrophysics Data System (ADS)

    Le Gall, Marion; Evrard, Olivier; Thil, François; Foucher, Anthony; Salvador-Blanes, Sébastien; Cerdan, Olivier; Ayrault, Sophie

    2015-04-01

    Soil erosion is recognized as one of the main processes of land degradation in agricultural areas. It accelerates the supply of sediment to the rivers and degrades water quality. To limit those impacts and optimize management programs in such areas, sources of sediment need to be identified and sediment transport to be controlled. Here, we determined the sources of suspended sediment in the Louroux (24 km², French Loire River basin), a small catchment representative of lowland cultivated environments of Northwestern Europe. In this catchment, channels have been reshaped and 220 tile drain outlets have been installed over the last several decades. As a result, soil erosion and sediment fluxes have increased drastically. The variation of 87Sr/86Sr ratios, driven by the weathering of rocks with different ages and chemical composition, may reflect the mixing of different sediment sources. Strontium isotopic ratios (87Sr/86Sr) were therefore determined in potential soil sources, suspended particulate matter (SPM) and a sediment core sampled in the Louroux Pond at the catchment outlet. Soil, SPM and core samples displayed significantly different isotopic signatures. 87Sr/86Sr ratios in soil samples varied from 0.712763 to 0.724631 ± 0.000017 (2σ, n=20). Highest values were observed in silicic parts of the catchment whereas the lower values were identified in a calcareous area close to the Louroux Pond. 87Sr/86Sr ratios in SPM (0.713660 to 0.725749 ± 0.000017, 2σ, n=20) plotted between the soil and sediment core (0.712255 to 0.716415 ± 0.000017, 2σ, n=12), suggesting the presence of particles originating from at least two different lithological sources, i.e. silicic rocks and carbonate material. Variations in 87Sr/86Sr ratios in the outlet core sample were used to reconstruct the sedimentary dynamics in the catchment during the last decades. These results will guide the future implementation of appropriate management practices aiming to reduce erosion in upstream

  9. The 20th century whole-basin trophic history of an inter-drumlin lake in an agricultural catchment.

    PubMed

    Jordan, Philip; Rippey, Brian; Anderson, N John

    2002-10-01

    Eight 1-m sediment cores were extracted from across the basin of Friary Lough, a 5.4-ha eutrophic lake in a wholly grassland agricultural catchment in Co. Tyrone, Northern Ireland. Sedimentary TP, diatom inferred TP, Ca, Na, Fe, Mn, loss-on-ignition (LOI), dry weight and density were determined in the core profiles. Core dating and correlation gave a 210Pb, 137Cs and 241Am chronology from 1906 to 1995 and enabled a whole-basin estimate of chemical and sediment accumulation rate over the 20th Century. The major changes for all parameters occurred after c. 1946. Sediment accumulation rate was most influenced by organic matter accumulations, probably of planktonic origin, and increasing after c. 1946. Inorganic sediment accumulation rate was found to be largely unchanging through the century at 10 t km(-2) yr(-1) when expressed as catchment exports. All chemical accumulation rate changes occurred after c. 1946. Total phosphorus accumulation rate, however, was found to be the only chemical to be increasing throughout the epilimnion and hypolimnion areas of the sedimentary basin at an average of 22.5 mg m(-2) yr(-1) between 1946 and 1995. The other chemical parameters showed increasing accumulation rates after c. 1946 in the epilimnion part of the basin only. Interpreted in terms of whole-basin sedimentation and catchment export processes over time, it is suggested that diffuse TP inputs are independent of sediment inputs. This corresponds to hydrochemical models that suggest soluble P as the primary fraction that is lost from grassland catchments. The increase in sedimentary TP accumulation rate, and DI-TP concentration, are also explained with regard to current models that suggest increases in runoff P concentrations from elevated soil P concentrations. Increases in eplimnion chemical and sediment accumulation rate after c. 1946 may be due to local erosion that has limited impact on lake basin sedimentation. PMID:12389788

  10. Using the Provenance of Sediment and Bioavailable Phosphorus to Help Mitigate Water Quality Impact in an Agricultural Catchment.

    PubMed

    McDowell, R W; Norris, M; Cox, N

    2016-07-01

    The quality and health of surface waters can be impaired by sediment and sediment-bound phosphorus (P). The Waituna Lagoon catchment in southern New Zealand has undergone agricultural intensification that has been linked to increases in sediment and sediment-bound bioavailable P (BAP) in the lagoon. Time-integrated samplers trapped suspended sediment from the water column, and their geochemical signature was compared with likely sources (stream banks, stream beds, topsoil, and subsoil) in each of the lagoon's contributing streams and rivers. The proportion of BAP, but not necessarily total P, within trapped sediment was much greater in samples from the Moffat and Carran Creeks than from the Waituna Creek, probably due to the erosion of organic-rich soils that had little capacity to retain P compared with the more mineral soils of the Waituna Creek. Annually, most BAP and sediment came from bank erosion, and strategies such as fencing out stock should focus on minimizing this throughout the catchment. However, when considering losses in space and time relative to the impact on the Waituna Lagoon, strategies the Waituna Creek catchment should also minimize contributions from topsoil in winter-spring, whereas in the Carran and Moffat Creek catchments strategies need to decrease P inputs (e.g., effluent) to Organic soils likely to lose much BAP in summer-autumn when the impact on the Lagoon is quickest. This study highlighted the need to identify sources and timings of BAP and sediment loss before recommending mitigation practices, which without this information may be slow or not succeed. PMID:27380076

  11. Evaporation over a Heterogeneous Mixed Savanna-Agricultural Catchment using a Distributed Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Ceperley, N. C.; Mande, T.; Barrenetxea, G.; Vetterli, M.; Yacouba, H.; Repetti, A.; Parlange, M. B.

    2010-12-01

    Small scale rain fed agriculture is the primary livelihood for a large part of the population of Burkina Faso. Regional climate change means that this population is becoming increasingly vulnerable. Additionally, as natural savanna is converted for agriculture, hydrological systems are observed to become less stable as infiltration is decreased and rapid runoff is increased to the detriment of crop productivity, downstream populations and local water sources. The majority of the Singou River Basin, located in South East Burkina Faso is managed by hunting reserves, geared to maintaining high populations of wild game; however, residents surrounding the protected areas have been forced to intensify agriculture that has resulted in soil degradation as well as increases in the frequency and severity of flooding and droughts. Agroforestry, or planting trees in cultivated fields, has been proposed as a solution to help buffer these negative consequences, however the specific hydrologic behavior of the watershed land cover is unknown. We have installed a distributed sensor network of 17 Sensorscope wireless meteorological stations. These stations are dispersed across cultivated rice and millet fields, natural savanna, fallow fields, and around agroforestry fields. Sensorscope routes data through the network of stations to be delivered by a GPRS connection to a main server. This multi hop network allows data to be gathered over a large area and quickly adapts to changes in station performance. Data are available in real time via a website that can be accessed by a mobile phone. The stations are powered autonomously by small photovoltaic panels. This deployment is the first time that these meteorological stations have been used on the African continent. Initial calibration with measures from 2 eddy covariance stations allows us to calculate the energy balance at each of the Sensorscope stations. Thus, we can observe variation in evaporation over the various land cover in the

  12. SUSTAINABLE AGRICULTURE FOR THE WATER CATCHMENT PROTECTION AREA IN NTISAW, CAMEROON

    EPA Science Inventory

    We expect that the catchment area will increase food output for the community in addition to preserving the water source. Increased food output will benefit needy residents and allow them to focus more on education and economic development. Additionally, an area of sustainable...

  13. Flood survey of nitrate behaviour using nitrogen isotope tracing in the critical zone of a French agricultural catchment

    NASA Astrophysics Data System (ADS)

    Paul, Alexia; Moussa, Issam; Payre, Virginie; Probst, Anne; Probst, Jean-Luc

    2015-11-01

    Measurements of δ15N-NO3- were taken in a highly flood-responsive agricultural catchment in the southwest of France to trace the sources and transfer pathways of nitrates during flood events. From January to March 2013, surface water samples were collected every week at the outlet, and four floods were sampled with a high resolution. Sampling was also performed in surface waters and sand lenses from the rest of the basin to trace nitrate sources and processes spatially. Nitrate extractions were performed using a method based on the solubility difference between inorganic salts and organic solutions. The δ15N values were in the range of surface water contaminated by N-fertilisers. Depending on the hydroclimatic event, nitrates resulted from a combination of sources and processes. At the start of the floods, the values of δ15N-NO3- and nitrate concentrations were low, demonstrating the dilution of water with rainwater. During a second phase, the nitrate concentration and the δ15N were higher. Deeper waters and soil solutions were the second source of nitrates. When the water level was low, both nitrate concentration and isotopic composition were high. These values reflected the denitrification processes that occurred in the soil under anaerobic conditions. An analysis of δ15N-NO3- in stream water in a small agricultural catchment was efficient at determining the origin of nitrates during flood events using a simple method.

  14. Impacts of the post-fire erosion processes compared with the agricultural erosion rates for a mountain catchment in NW Iberia

    NASA Astrophysics Data System (ADS)

    Marisa Santos, Juliana; Nunes, João Pedro; Bernard-Jannin, Léonard; Gonzalez Pelayo, Oscar; Keizer, Jan Jacob

    2014-05-01

    Mediterranean ecosystems are very vulnerable to soil erosion by water due to particular characteristics of climate, lithology and land use history. Moreover, the foreseen climate changes might worsen land degradation and desertification, in which soil erosion has been classified as one of the most important driving forces. In this context, the frequent forest fires seen in some Mediterranean regions can case disturbances to vegetation cover and enhance soil erosion processes. This work addresses this issue for the Caramulo mountain range, NW Iberia. In the past century, large land use changes occurred due to massive afforestation. Changes from mixed natural forest cover and shrublands to Pine, the introduction of Eucalyptus plantations and, more recently, a trend for the substitution of pines by eucalypts, are the evidence of a large and rapid land use change in the last decades. Forest fires started to occur as afforestation proceeded, as a consequence of the disappearance of pasturage and accumulation of highly inflammable material; they became more frequent after the 1960's and became a determinant factor for land use changes in this region. Data collection focused on the Macieira de Alcoba catchment, a headwater agro-forested catchment (94 ha) located in this region. It has a wet Mediterranean climate, with an average annual rainfall of about 1300 mm (2002-2012), concentrated in autumn and winter, while spring and summer are dryer seasons. The mean annual temperature is 14°C and in summer it can reach 35°C. The land use is mixed, with forest and agriculture lands covering respectively 60 and 35% of the catchment area, 5% being built-up areas in the village of Macieira de Alcoba. In the last decades, this catchment suffered several forest fires (in 1969, 1986, 1991, and 2011). Erosion processes are related with periods of low vegetation cover in autumn in fields with a pasture-corn rotation, but also with forest plantations after clear-cutting and especially

  15. Runoff and sediment loss responses to rainfall and land use in two agricultural catchments on the Loess Plateau of China

    NASA Astrophysics Data System (ADS)

    Kang, Shaozhong; Zhang, Lu; Song, Xiaoyu; Zhang, Shuhan; Liu, Xianzhao; Liang, Yinli; Zheng, Shiqing

    2001-04-01

    Soil erosion is a severe problem hindering sustainable agriculture on the Loess Plateau of China. Plot experiments were conducted under the natural rainfall condition during 1995-1997 at Wangdongguo and Aobao catchments in this region to evaluate the effects of various land use, cropping systems, land slopes and rainfall on runoff and sediment losses, as well as the differences in catchment responses. The experiments included various surface conditions ranging from bare soil to vegetated surfaces (maize, wheat residue, Robinia pseudoacacia L., Amorpha fruticosa L., Stipa capillata L., buckwheat and Astragarus adsurgens L.). The measurements were carried out on hill slopes with different gradients (i.e. 0 ° to 36 °). These plots varied from 20 to 60 m in length. Results indicated that runoff and erosion in this region occurred mainly during summer storms. Summer runoff and sediment losses under cropping and other vegetation were significantly less than those from ploughed bare soil (i.e. without crop/plant or crop residue). There were fewer runoff and sediment losses with increasing canopy cover. Land slope had a major effect on runoff and sediment losses and this effect was markedly larger in the tillage plots than that in the natural grass and forest plots, although this effect was very small when the maximum rainfall intensity was larger than 58·8 mm/h or smaller than 2·4 mm/h. Sediment losses per unit area rose with increasing slope length for the same land slope and same land use. The effect of slope length on sediment losses was stronger on a bare soil plot than on a crop/plant plot. The runoff volume and sediment losses were both closely related to rainfall volume and maximum intensity, while runoff coefficient was mainly controlled by maximum rainfall intensity. Hortonian overland flow is the dominant runoff process in the region. The differences in runoff volume, runoff coefficient and sediment losses between the catchments are mainly controlled by the

  16. Impact of conservation agriculture on catchment runoff and soil loss under changing climate conditions in May Zeg-zeg (Ethiopia)

    NASA Astrophysics Data System (ADS)

    Lanckriet, Sil; Araya, Tesfay; Cornelis, Wim; Verfaillie, Els; Poesen, Jean; Govaerts, Bram; Bauer, Hans; Deckers, Jozef; Haile, Mitiku; Nyssen, Jan

    2012-12-01

    SummaryThis study evaluates the practice of conservation agriculture (CA) in the May Zeg-zeg catchment (MZZ; 187 ha) in the North Ethiopian Highlands as a soil management technique for reducing soil loss and runoff, and assesses the consequences of future large-scale implementation on soil and hydrology at catchment-level. The study of such practice is important especially under conditions of climate change, since EdGCM (Educational Global Climate Model) simulation predicts by 2040 an increase in precipitation by more than 100 mm yr-1 in the study area. Firstly, field-saturated infiltration rates, together with soil texture and soil organic carbon contents, were measured. The relation with local topography allows to generate a pedotransfer function for field-saturated infiltration rate, and spatial interpolation with Linear Regression Mapping was used to map field-saturated infiltration rates optimally within the catchment. Secondly, on several farmlands, CA was checked against plain tillage (PT) for values of field-saturated infiltration rates, soil organic carbon, runoff and soil loss. Results show no significant differences for infiltration rates but significant differences for runoff and soil loss (as measured in the period 2005-2011). Runoff coefficients were 30.4% for PT and 18.8% for CA; soil losses were 35.4 t ha-1 yr-1 for PT and 14.4 t ha-1 yr-1 for CA. Thirdly, all collected information was used to predict future catchment hydrological response for full-implementation of CA under the predicted wetter climate (simulation with EdGCM). Curve Numbers for farmlands with CA were calculated. An area-weighted Curve Number allows the simulation of the 2011 rainy season runoff, predicting a total runoff depth of 23.5 mm under CA and 27.9 mm under PT. Furthermore, the Revised Universal Soil Loss Equation management factor P was calibrated for CA. Results also show the important influence of increased surface roughness on water ponding, modeled with a hydrologic

  17. Spatio-temporal variability of shallow groundwater quality in a typical agricultural catchment in subtropical central China

    NASA Astrophysics Data System (ADS)

    Liu, X.

    2015-12-01

    Excessive agriculture-sourced N leaching into shallow groundwater has deteriorated the domestic water quality in rural China. To effectively prevent the above environmental contamination issue, it is an essential prerequisite of exploring the spatio-temporal variability (stV) of the groundwater quality. In this study, a large observation program was deployed to observe ammonium-N (NH4N), nitrate-N (NO3N) and total N (TN) concentrations in 194 groundwater observation wells (1.5 m deep from soil surface) from April 2010 to November 2012 in the Jinjing river catchment in Hunan Province of China. A logit function was applied to transform NH4N, NO3N and TN data for normality; the resultant variables were thus named as NH4Nt, NO3Nt and TNt, respectively. A spatio-temporal semivariogram model in a sum-metric form was used to quantify the stV of NH4Nt, NO3Nt and TNt. The results indicated that the 33-month means ± standard deviations of the NH4N, NO3N and TN concentrations were 0.75±0.10, 1.60±0.19 and 2.99±0.29 mg N L-1, respectively. NH4Nt and NO3Nt exhibited a strong spatio-temporal dependence, while TNt only presented a strong temporal structure. Spatio-temporal ordinary kriging (stOK) was applied to predict the spatio-temporal distributions of NH4N, NO3N and TN over the catchment. The cross-validation results indicated that the stOK predictions for NH4N (r=0.48, RMSE=1.11 mg N L-1), NO3N (r=0.46, RMSE=1.21 mg N L-1) outperformed that for TN (r=0.29, RMSE=2.11 mg N L-1). Referenced to the Chinese Environmental Quality Standards for Groundwater (GB/T 14848-93), the proportions of areas contaminated by NH4N, NO3N and TN in the catchment over a 33-month period were 20.5%, 1.46%, and 5.07%, respectively. Our findings suggested that the Jinjing groundwater was mainly polluted by NH4N, which is probably attributed to the intensive rice agriculture featured with high urea fertilizer applications in the catchment.

  18. Downstream mixing of sediment and tracers in agricultural catchments: Evidence of changing sediment sources and fluvial processes?

    NASA Astrophysics Data System (ADS)

    Ralph, Timothy; Wethered, Adam; Smith, Hugh; Heijnis, Henk

    2014-05-01

    Land clearance, soil tillage and grazing in agricultural catchments have liberated sediment and altered hydrological connectivity between hillslopes and channels, leading to increased sediment availability, mobilisation and delivery to rivers. The type and amount of sediment supplied to rivers is critical for fluvial geomorphology and aquatic ecosystem health. Contemporary sediment dynamics are routinely investigated using environmental radionuclides such as caesium-137 (Cs-137) and excess lead-210 (Pb-210ex), which can provide information regarding sediment source types and fluvial processes if sediment sources can be distinguished from one another and mixing models applied to representative samples. However, downstream transport, mixing and dilution of radionuclide-labelled sediment (especially from sources with low initial concentrations) can obliterate the tracer signal; sometimes before anything of geomorphological importance happens in the catchment. Can these findings be used as evidence of sediment source variations and fluvial processes when the limits of detection (of Cs-137 in particular) are being exceeded so rapidly downstream? Sediment sources and downstream sediment dynamics were investigated in Coolbaggie Creek, a major supplier of sediment to the Macquarie River in an agricultural catchment with temperate to semi-arid climate in Australia. Radionuclides were used to discriminate between the <63 micron fraction of sediment sources including forested topsoils (Cs-137 11.28 +/- 0.75 Bq/kg; Pb-210ex 181.87 +/- 20.00 Bq/kg), agricultural topsoils (Cs-137 3.21 +/- 0.26 Bq/kg; Pb-210ex 29.59 +/- 10.94 Bq/kg) and sub-soils from channel banks and gullies (Cs-137 1.45 +/- 0.47 Bq/kg; Pb-210ex 4.67 +/- 1.93 Bq/kg). Within the trunk stream, suspended sediment, organic matter and Cs-137 and Pb-210ex concentrations declined downstream. Results from a mixing model suggest that agricultural topsoils account for 95% of fine sediment entering the channel in the

  19. An integrated model for simulating nitrogen trading in an agricultural catchment with complex hydrogeology.

    PubMed

    Cox, T J; Rutherford, J C; Kerr, S C; Smeaton, D C; Palliser, C C

    2013-09-30

    Nitrogen loads to several New Zealand lakes are dominated by nonpoint runoff from pastoral farmland which adversely affects lake water quality. A 'cap and trade' scheme is being considered to help meet targets set for nitrogen loads to Lake Rotorua, and a numerical model, NTRADER, has been developed to simulate and compare alternative schemes. NTRADER models both the geophysics of nitrogen generation and transport, including groundwater lag times, and the economics of 'cap and trade' schemes. It integrates the output from several existing models, including a farm-scale nitrogen leaching and abatement model, a farm-scale management economic model, and a catchment-scale nitrogen transport model. This paper details modeling methods and compares possible trading program design features for the Lake Rotorua catchment. Model simulations demonstrate how a cap and trade program could be used to effectively achieve challenging environmental goals in the targeted catchment. However, results also show that, due to complex hydrogeology, satisfactory environmental outcomes may be not achieved unless groundwater lag times are incorporated into the regulatory scheme. One way to do this, as demonstrated here, would be to explicitly include lag times in the cap and trade program. The utility of the model is further demonstrated by quantifying relative differences in abatement costs across potential regulatory schemes. PMID:23771202

  20. Climate Change Impact on the Hydrology and Water Quality of a Small Partially-Irrigated Agricultural Lowland Catchment

    NASA Astrophysics Data System (ADS)

    Visser, A.; Kroes, J.; van Vliet, M. T.; Blenkinsop, S.; Broers, H.

    2010-12-01

    The objective of this study was to assess the potential effects of climate change on the hydrology of the small partially-irrigated agricultural lowland catchment of the Keersop, in south of the Netherlands, as well as the transport of a pre-existing spatially extensive trace metal contamination. The area surrounding the Keersop has been contaminated with heavy metals by the atmospheric emissions of four zinc ore smelters. This heavy metal contamination, with Cd and Zn for example, has accumulated in the topsoil and leaches towards the surface water system, especially during periods with high groundwater levels and high discharge rates. Daily time-series of precipitation and potential evapotranspiration were derived from the results of eight regional climate model experiments under the SRES A2 emissions scenario. They each span 100 years and are representative for the periods 1961-1990 (“baseline climate”) and 2071-2100 (“future climate”). The time-series of future climate were characterized by lower precipitation (-1% to -12%) and higher air temperatures (between 2°C and 5°C), and as a result higher potential evapotranspiration, especially in summer. The time-series were used to drive the quasi-2D unsaturated-saturated zone model (SWAP) of the Keersop catchment (43 km2). The model consisted of an ensemble of 686 1D models, each of which represented a 250x250 m area within the catchment. Simulation results for the future climate scenarios show a shift in the water balance of the catchment. The decrease in annual rainfall is nearly compensated by an increase in irrigation in the catchment, if present day irrigation rules are followed. On the other hand, both evaporation and transpiration fluxes increase. This increase is compensated by a decrease in the drainage flux and groundwater recharge. As a result, groundwater levels decline and the annual discharge of the Keersop stream decreases under all future climate scenarios, by 26% to 46%. Because Cd and Zn

  1. Opportunities provided by UAVs to monitor erosion processes in agricultural catchments: a case study from Northern France

    NASA Astrophysics Data System (ADS)

    Frankl, Amaury; Stal, Cornelis; De Wit, Bart; De Wulf, Alain; Salvador, Pierre-Gil; Nyssen, Jan

    2014-05-01

    In erosion studies, accurate spatio-temporal data are required to fully understand the processes involved and their relationship with environmental controls. With cameras being mounted on Unmanned Aerial Vehicles (UAVs), the latter allow to collect low-altitude aerial photographs over small catchments in a cost-effective and rapid way. From large data sets of overlapping aerial photographs, Structure from Motion - Multi View Stereo workflows, integrated in various software such as PhotoScan used here, allow to produced detailed Digital Surface Models (DSMs) and ortho-mosaics. In this study we present the results from a survey carried out in a small agricultural catchment near Hallines, in Northern France. A DSM and ortho-mosaic was produced of the catchment using photographs taken from a low-cost radio-controlled microdrone (DroneFlyer Hexacopter). Photographs were taken with a Sony Nex 5 (16.1 M pixels) camera having a fixed normal lens of 50 mm. In the field, Ground Control Points were materialized by unambiguously determinable targets, measured with a 1'' total station (Leica TS15i). Cross-sections of rills and ephemeral gullies were also quantified from total station measurements and from terrestrial image-based 3D modelling. These data allowed to define the accuracy of the DSM and the representation of the erosion features in it. The feasibility of UAVs photographic surveys to improve our understanding on water-erosion processes such as sheet, rill and gully erosion is discussed. Keywords: Ephemeral gully, Erosion study, Image-based 3D modelling, Microdrone, Rill, UAVs.

  2. Impact of selected agricultural management options on the reduction of nitrogen loads in three representative meso scale catchments in Central Germany.

    PubMed

    Rode, Michael; Thiel, Enrico; Franko, Uwe; Wenk, Gerald; Hesser, Fred

    2009-05-15

    Nitrogen inputs into surface waters from diffuse sources are still unduly high and the assessment of mitigation measures is associated with large uncertainties. The objective of this paper is to investigate selected agricultural management scenarios on nitrogen loads and to assess the impact of differing catchment characteristics in central Germany. A new modelling approach, which simulates spatially distributed N-transport and transformation processes in soil and groundwater, was applied to three meso scale catchments with strongly deviating climate, soil and topography conditions. The approach uses the integrated modelling framework JAMS to link an agro-ecosystem, a rainfall-runoff and a groundwater nitrogen transport model. Different agricultural management measures with deviating levels of acceptance were analysed in the three study catchments. N-leaching rates in all three catchments varied with soil type, the lowest leaching rates being obtained for loess soil catchment (18.5 kg nitrate N ha(-1) yr(-1)) and the highest for the sandy soils catchment (41.2 kg nitrate N ha(-1) yr(-1)). The simulated baseflow nitrogen concentrations varied between the catchments from 1 to 6 mg N l(-1), reflecting the nitrogen reduction capacity of the subsurfaces. The management scenarios showed that the highest N leaching reduction could be achieved by good site-adapted agricultural management options. Nitrogen retention in the subsurface did not alter the ranking of the management scenarios calculated as losses from the soil zone. The reduction effect depended strongly on site specific conditions, especially climate, soil variety and the regional formation of the crop rotations. PMID:19261322

  3. Water and Nutrient Balances in a Large Tile-Drained Agricultural Catchment: A Distributed Modeling Study

    SciTech Connect

    Li, Hongyi; Sivapalan, Murugesu; Tian, Fuqiang; Liu, Dengfeng

    2010-11-16

    This paper presents the development and implementation of a distributed model of coupled water nutrient processes, based on the representative elementary watershed (REW) approach, to the Upper Sangamon River Basin, a large, tile-drained agricultural basin located in central Illinois, mid-west of USA. Comparison of model predictions with the observed hydrological and biogeochemical data, as well as regional estimates from literature studies, shows that the model is capable of capturing the dynamics of water, sediment and nutrient cycles reasonably well. The model is then used as a tool to gain insights into the physical and chemical processes underlying the inter- and intra-annual variability of water and nutrient balances. Model predictions show that about 80% of annual runoff is contributed by tile drainage, while the remainder comes from surface runoff (mainly saturation excess flow) and subsurface runoff. It is also found that, at the annual scale nitrogen storage in the soil is depleted during wet years, and is supplemented during dry years. This carryover of nitrogen storage from dry year to wet year is mainly caused by the lateral loading of nitrate. Phosphorus storage, on the other hand, is not affected much by wet/dry conditions simply because the leaching of it is very minor compared to the other mechanisms taking phosphorous out of the basin, such as crop harvest. The analysis then turned to the movement of nitrate with runoff. Model results suggested that nitrate loading from hillslope into the channel is preferentially carried by tile drainage. Once in the stream it is then subject to in-stream denitrification, the significant spatio-temporal variability of which can be related to the variation of the hydrologic and hydraulic conditions across the river network.

  4. Applicability of rapid and on-site measured enzyme activity for surface water quality monitoring in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Farnleitner, Andreas H.; Sommer, Regina; Kumpan, Monika; Zessner, Matthias

    2014-05-01

    For the near real time and on-site detection of microbiological fecal pollution of water, the measurement of beta-D- Glucuronidase (GLUC) enzymatic activity has been suggested as a surrogate parameter and has been already successfully operated for water quality monitoring of ground water resources (Ryzinska-Paier et al. 2014). Due to possible short measure intervals of three hours, this method has high potential as a water quality monitoring tool. While cultivation based standard determination takes more than one working day (Cabral 2010) the potential advantage of detecting the GLUC activity is the high temporal measuring resolution. Yet, there is still a big gap of knowledge on the fecal indication capacity of GLUC (specificity, sensitivity, persistence, etc.) in relation to potential pollution sources and catchment conditions (Cabral 2010, Ryzinska-Paier et al. 2014). Furthermore surface waters are a big challenge for automated detection devices in a technical point of view due to the high sediment load during event conditions. This presentation shows results gained form two years of monitoring in an experimental catchment (HOAL) dominated by agricultural land use. Two enzymatic measurement devices are operated parallel at the catchment outlet to test the reproducibility and precision of the method. Data from continuous GLUC monitoring under both base flow and event conditions is compared with reference samples analyzed by standardized laboratory methods for fecal pollution detection (e.g. ISO 16649-1, Colilert18). It is shown that rapid enzymatic on-site GLUC determination can successfully be operated from a technical point of view for surface water quality monitoring under the observed catchment conditions. The comparison of enzyme activity with microbiological standard analytics reveals distinct differences in the dynamic of the signals during event conditions. Cabral J. P. S. (2010) "Water Microbiology. Bacterial Pathogens and Water" International Journal of

  5. A groundwater recharge perspective on locating tree plantations within low-rainfall catchments to limit water resource losses

    NASA Astrophysics Data System (ADS)

    Dean, J. F.; Webb, J. A.; Jacobsen, G. E.; Chisari, R.; Dresel, P. E.

    2015-02-01

    Despite the many studies that consider the impacts of plantation forestry on groundwater recharge, and others that explore the spatial heterogeneity of recharge in low-rainfall regions, there is little marriage of the two subjects in forestry management guidelines and legislation. Here we carry out an in-depth analysis of the impact of reforestation on groundwater recharge in a low-rainfall (< 700 mm annually), high-evapotranspiration paired catchment characterized by ephemeral streams. Water table fluctuation (WTF) estimates of modern recharge indicate that little groundwater recharge occurs along the topographic highs of the catchments (average 18 mm yr-1); instead the steeper slopes in these areas direct runoff downslope to the lowland areas, where most recharge occurs (average 78 mm yr-1). Recharge estimates using the chloride mass balance (CMB) method were corrected by replacing the rainfall input Cl- value with that for streamflow, because most recharge occurs from infiltration of runoff through the streambed and adjacent low gradient slopes. The calculated CMB recharge values (average 10 mm yr-1) are lower than the WTF recharge values (average 47 mm yr-1), because they are representative of groundwater that was mostly recharged prior to European land clearance (> BP 200 years). The tree plantation has caused a progressive drawdown in groundwater levels due to tree water use; the decline is less in the upland areas. The results of this study show that spatial variations in recharge are important considerations for locating tree plantations. To conserve water resources for downstream users in low-rainfall, high-evapotranspiration regions, tree planting should be avoided in the dominant zone of recharge, i.e. the topographically low areas and along the drainage lines, and should be concentrated on the upper slopes, although this may negatively impact the economic viability of the plantation.

  6. Interannual climate variability and spatially heterogeneous improvement of agricultural management impede detection of a decreasing trend in nitrate pollution in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Fovet, Ophélie; Dupas, Rémi; Durand, Patrick; Gascuel-Odoux, Chantal; Gruau, Gérard; Hamon, Yannick; Petitjean, Patrice

    2016-04-01

    Despite widespread implementation of the nitrate directive in the European Union since the 1990s, the impact on nitrate concentration in rivers is limited (Bouraoui and Grizzetti, 2011). To assess whether this lack of response is due to the long time lags of nitrate transfer or to inadequate programs of measure, long term river and groundwater monitoring data are necessary. This study analyses 15 years of daily nitrate concentration data at the outlet of an intensively farmed catchment in Western France (Kervidy-Naizin, 5 km²) and quarterly nitrate concentration data in the groundwater of two hillslopes equipped with piezometers (Kerroland and Gueriniec) within the same catchment. In this catchment groundwater contribution to annual stream flow is dominant. The objectives of this study were to i) disentangle the influence of interannual climate variability and improvement of agricultural practices (i.e. reduction in N surplus) in the stream chemistry and ii) discuss the reasons for slow catchment recovery from nitrate pollution by comparing trends in groundwater and stream concentrations. Analysis of stream data showed that flow-weighted mean annual concentration at the outlet of the Kervidy-Naizin catchment has decreased by 1.2 mg NO3- l-1 yr-1 from 1999 to 2015. This decrease was slow but significant (p value < 0.01) even though interannual climate variability (i.e. annual cumulated runoff) added noise to the signal: i) deviation in the linear model of nitrate decrease with time was negatively correlated with annual runoff (r = -0.54, p < 0.01) and ii) local minimums in the nitrate time series were coincident with local maximums in the annual runoff. Thus high runoff during wet years led to dilution of the nitrate originating from groundwater, which added variability to the signal of linear decrease in stream concentration. Analysis of groundwater data showed a significant and sharp decrease in nitrate concentration in the Kerroland piezometer transect (4.0 mg

  7. Mitigation of nonpoint source pesticide contamination in a artificial wetland located at the outlet of a vineyard catchment

    NASA Astrophysics Data System (ADS)

    Payraudeau, S.; Gregoire, C.; Imfeld, G.

    2009-04-01

    The use of artificial wetlands for mitigating nonpoint source pesticide contamination from surface water runoff of agricultural origin represents an innovative approach, whose potential should be evaluated. The EU LIFE project ArtWET assesses the application of ecological bioengineering methods based on various types of artificial wetlands throughout Europe. In this framework, this study focused on the mitigation of pesticides in a storm basin (320 m2; 1500m3; planted with Phragmites australis Cav.) collecting runoff from a vineyard catchment area (42 ha; Rouffach, Alsace, France) over the cultural period (March to October 2008), and whose the hydraulic design has been modified in order to enhance the mitigation process. Discharge measurements and water samples collections were carried out in parallel at the inflow and the outflow of the basin for 17 runoff events in order to evaluate the load of 17 pesticides. Among the target pesticides, Glyphosate, AMPA, its metabolites, and Diuron predominated and runoff event pesticides loads strongly varied throughout cultural period. The depletion of the Glyphosate and AMPA concentration values recorded over the runoff event between the inflow and outflow of the system exceeded 70 %, and reached 90% when considering the total loads over the runoff event. The high mitigation capacity observed in the storm water wetland was likely due to both degradation and sorption processes. Current efforts focus on characterizing the variability over the cropping season of the wetland system performance in terms of reduction of pesticide loads in relationship with the biogeochemical conditions within the storm basin.

  8. Concentration patterns of agricultural pesticides and urban biocides in surface waters of a catchment of mixed land use

    NASA Astrophysics Data System (ADS)

    Stamm, C.; Wittmer, I.; Bader, H.-P.; Scheidegger, R.; Alder, A.; Lück, A.; Hanke, I.; Singer, H.

    2009-04-01

    Organic pesticides and biocides that are found in surface waters, can originate from agricultural and urban sources. For a long time, agricultural pesticides have received substantially more attention than biocidal compounds from urban use like material protection or in-can preservatives (cosmetics etc.). Recent studies however revealed that the amounts of urban biocides used may exceed those of agricultural pesticides. This study aims at comparing the input of several important pesticides and biocides into a small Swiss stream with a special focus on loss events triggered by rainfall. A set of 16 substances was selected to represent urban and agricultural sources. The selected substances are either only used as biocides (irgarol, isothiazolinones, IPBC), as pesticides (atrazine, sulcotrione, dichlofluanid, tolylfluanid) or have a mixed use (isoproturon, terbutryn, terbutylazine, mecoprop, diazinon, carbendazim) The study catchment has an area of 25 km2 and is inhabited by about 12'000 people. Four sampling sites were selected in the river system in order to reflect different urban and agricultural sources. Additionally, we sampled a combined sewer overflow, a rain sewer and the outflow of a wastewater treatment plant. At each site discharge was measured continuously from March to November 2007. During 16 rain events samples were taken by automatic devices at a high temporal resolution. The results, based on more than 500 analyzed samples, revealed distinct concentration patterns for different compounds and sources. Agricultural pesticides exhibited a strong seasonality as expected based on the application periods. During the first one or two rain events after application the concentrations reached up to several thousand ng/l during peak flow (atrazine, isoproturon). The temporal patterns of urban biocides were more diverse. Some compounds obviously stem from permanent sources independent of rainfall because they were found mostly in the outlet of the wastewater

  9. Using 137Cs technique to quantify soil erosion and deposition rates in an agricultural catchment in the black soil region, Northeast China

    NASA Astrophysics Data System (ADS)

    Fang, Haiyan; Sun, Liying; Qi, Deli; Cai, Qiangguo

    2012-10-01

    Soil erosion significantly affects the productive black soil region in Northeast China. Quantification of the soil erosion is necessary for designing efficient degradation control strategies. 137Cs measurements undertaken on 61 sampling points collected within a 28.5 ha agricultural catchment in the black soil region of Northeast China were used to establish the magnitude and spatial pattern of soil redistribution rates as well as sediment budget within the catchment. Estimated soil redistribution rates using the Mass Balance Model 2 (MBM2) ranged from - 56.8 to 171.4 t ha- 1 yr- 1 for the sampling points that were verified by means of both runoff plot data and pedological investigation. Erosion generally occurred behind the shelterbelts, especially in the ephemeral gully susceptible areas, while deposition mainly occurred along the shelterbelts and at the catchment outlet. In the study catchment, 69% of the eroded sediments came from the slopes and 31% the ephemeral gullies. Sediments deposited along the shelterbelts at a rate of ca. 78 t yr- 1 and ca. 33 t yr- 1 at the catchment outlet. The gross soil loss rate for the catchment was - 4.4 t ha- 1 yr- 1 with a sediment delivery ratio of 53%. The mean rate of - 14.5 t ha- 1 yr- 1 in the erosion areas was much higher than the tolerable value, suggesting that effective soil conservation measures are urgently required to reduce the severe black soil loss for sustainable management of the soil resource.

  10. Hydrologic controls on the sources and dynamics of dissolved organic matter in an agricultural catchment in the Central Valley, California (U.S.A.)

    NASA Astrophysics Data System (ADS)

    Dyda, R. Y.; Hernes, P. J.; Spencer, R. G.; Pellerin, B. A.; Bergamaschi, B. A.

    2008-12-01

    The influence of agricultural practices on the dynamics of dissolved organic matter (DOM) cycling in river systems is poorly understood. We investigated molecular compositions of DOM at 14 sites in an agriculturally-impacted catchment (Willow Slough; 415 km2) under several different flow regimes over the course of two years in order to investigate the influence of sub-catchments on the biogeochemistry at the mouth of the catchment. The Willow Slough catchment area includes eastern foothills of the inner Coast Range to the alluvial plains and encompasses diverse land uses, including natural grasslands, orchards, viticulture and pasture, all draining toward the Sacramento River. Knowledge of the composition of DOM composition is crucial, as dissolved organic carbon (DOC) can form EPA-regulated carcinogenic compounds during the drinking water disinfection process and is therefore considered a drinking water constituent of concern. Willow Slough offers the opportunity to examine carbon source, cycling and transportation through multiple flowpaths and land uses that are common in Californian agricultural watersheds. As a constituent of DOM, lignin phenols provide information on the source, composition, quality and degradation state of DOM. Uniquely derived from vascular plants, lignin phenols can be used to distinguish between angiosperm and gymnosperm tissues and carbon-normalized yields can offer insight on the proportion of vascular plant-derived carbon versus in-situ production. Throughout the Willow Slough watershed, ratios of syringyl to vanillyl and cinnamyl to vanillyl lignin phenols show that the vascular plant component of DOM can be primarily attributed to non-woody angiosperm tissues. Lower lignin phenol concentrations and carbon-normalized yields were observed in the headwaters (0.1-0.6 mg/100mg OC and 2.6-33 μg/L) versus the mouth (0.7-2.0 mg/100mg OC and 25-72 μg/L), indicating that mid-catchment tributaries play important roles in determining the

  11. Nitrous oxide and methane emission in an artificial wetland treating polluted runoff from an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Mander, Ülo; Tournebize, Julien; Soosaar, Kaido; Chaumont, Cedric; Hansen, Raili; Muhel, Mart; Teemusk, Alar; Vincent, Bernard

    2015-04-01

    An artificial wetland built in 2010 to reduce water pollution in a drained agricultural watershed showed real potential for pesticide and nitrate removal. The 1.2 ha off-shore wetland with a depth of from 0.1 to 1 m intercepts drainage water from a 450 ha watershed located near the village of Rampillon (03°03'37.3'' E, 48°32'16.7'' N, 70 km south-east of Paris, France). A sluice gate installed at the inlet makes it possible to close the wetland during the winter months (December - March), when no pesticides are applied and rainfall events are more frequent. The flow entering the wetland fluctuates from 0 to 120 L/s. The wetland is partially covered by Carex spp., Phragmites australis, Juncus conglomeratus, Typha latifolia and philamentous algae. Since 2011, an automatic water quality monitoring system measures water discharge, temperature, dissolved O2, conductivity pH, NO3- and DOC in both inlet and outlet. In May 2014, an automatic weather station and Campbell Irgason system for the measurement of CO2 and H2O fluxes were installed in the middle of the wetland. In May and November 2014 one-week high frequency measurement campaigns were conducted to study N2O and CH4 fluxes using 6 manually operated opaque floating static chambers and 12 floating automatic dynamic chambers. The latter were operated via multiplexer and had an incubation time of 5 minutes, whereas the gas flow was continuously measured using the Aerodyne TILDAS quantum cascade laser system. During the campaign, the reduction of NO3- concentration was measured in nine reactor pipes. Also, water samples were collected for N2O and N2 isotope analysis, and sediments were collected for potential N2 emission measurements. In May, the hydraulic retention time (HRT) was 30 days, and the average NO3- concentration decreased from 24 in the inflow to 0 mg/L in the outflow. Methane flux was relatively high (average 1446, variation 0.2-113990 μg CH4-C m-2 h-1), while about 2/3 was emitted via ebullition

  12. Atmospheric NH3 and NO2 concentration and nitrogen deposition in an agricultural catchment of Eastern China.

    PubMed

    Yang, Rong; Hayashi, Kentaro; Zhu, Bin; Li, Feiyue; Yan, Xiaoyuan

    2010-09-15

    To assess the atmospheric environmental impacts of anthropogenic reactive nitrogen in the fast-developing Eastern China region, we measured atmospheric concentrations of nitrogen dioxide (NO(2)) and ammonia (NH(3)) as well as the wet deposition of inorganic nitrogen (NO(3)(-) and NH(4)(+)) and dissolved organic nitrogen (DON) levels in a typical agricultural catchment in Jiangsu Province, China, from October 2007 to September 2008(.) The annual average gaseous concentrations of NO(2) and NH(3) were 42.2 microg m(-3) and 4.5 microg m(-3) (0 degree C, 760 mm Hg), respectively, whereas those of NO(3)(-), NH(4)(+), and DON in the rainwater within the study catchment were 1.3, 1.3, and 0.5 mg N L(-1), respectively. No clear difference in gaseous NO(2) concentrations and nitrogen concentrations in collected rainwater was found between the crop field and residential sites, but the average NH(3) concentration of 5.4 microg m(-3) in residential sites was significantly higher than that in field sites (4.1 microg m(-3)). Total depositions were 40 kg N ha(-1) yr(-1) for crop field sites and 30 kg N ha(-1) yr(-1) for residential sites, in which dry depositions (NO(2) and NH(3)) were 7.6 kg N ha(-1) yr(-1) for crop field sites and 1.9 kg N ha(-1) yr(-1) for residential sites. The DON in the rainwater accounted for 16% of the total wet nitrogen deposition. Oxidized N (NO(3)(-) in the precipitation and gaseous NO(2)) was the dominant form of nitrogen deposition in the studied region, indicating that reactive forms of nitrogen created from urban areas contribute greatly to N deposition in the rural area evaluated in this study. PMID:20624633

  13. HYDROGEOLOGIC CONTROLS ON NITRATE TRANSPORT IN A SMALL AGRICULTURAL CATCHMENT, IOWA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of subsurface lithology on nitrate loss in stream riparian zones are recognized but little attention has been focused on similar processes occurring in upland agricultural settings. In this paper, we evaluated hydrogeologic controls on nitrate transport processes occurring in a small 7.6 ha ...

  14. Optimization based trade-off analysis of biodiesel crop production for managing a German agricultural catchment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In agricultural production, the existence of multiple trade-offs among several conflicting objectives, such as food production, water quantity, water quality, biodiversity and ecosystem services, is well known. However, quantification of the trade-offs among objectives in bioenergy crop production i...

  15. Lacustrine wetland in an agricultural catchment: nitrogen removal and related biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Balestrini, R.; Arese, C.; Delconte, C.

    2007-09-01

    The role of specific catchment areas, such as the soil-river or lake interfaces, in removing or buffering the flux of N from terrestrial to aquatic ecosystems is globally recognized but the extreme variability of microbiological and hydrological processes make it difficult to predict the extent to which different wetlands function as buffer systems. In this paper we evaluate the degree to which biogeochemical processes in a lacustrine wetland are responsible for the nitrate removal from ground waters feeding Candia Lake (Northern Italy). A transect of 18 piezometers was installed perpendicular to the shoreline, in a sub-unit formed by 80 m of poplar plantation, close to a crop field and 30 m of reed swamp. The chemical analysis revealed a drastic NO3-N ground water depletion from the crop field to the lake, with concentrations decreasing from 15-18 mg N/l to the detection limit within the reeds. Patterns of Cl, SO4, O2, NO2-N, HCO3 and DOC suggest that the metabolic activity of bacterial communities, based on the differential use of electron donors and acceptors in redox reactions is the key function of this system. The significant inverse relationship found between NO3-N and HCO3 is a valuable indicator of the denitrification activity. The pluviometric regime, the temperature, the organic carbon availability and the hydrogeomorphic properties are the main environmental factors affecting the N transformations in the studied lacustrine ecosystem.

  16. Lacustrine wetland in an agricultural catchment: nitrogen removal and related biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Balestrini, R.; Arese, C.; Delconte, C.

    2008-03-01

    The role of specific catchment areas, such as the soil-river or lake interfaces, in removing or buffering the flux of N from terrestrial to aquatic ecosystems is globally recognized but the extreme variability of microbiological and hydrological processes make it difficult to predict the extent to which different wetlands function as buffer systems. In this paper we evaluate the degree to which biogeochemical processes in a lacustrine wetland are responsible for the nitrate removal from ground waters feeding Candia Lake (Northern Italy). A transect of 18 piezometers was installed perpendicular to the shoreline, in a sub-unit formed by 80 m of poplar plantation, close to a crop field and 30 m of reed swamp. The chemical analysis revealed a drastic NO3--N ground water depletion from the crop field to the lake, with concentrations decreasing from 15-18 mg N/l to the detection limit within the reeds. Patterns of Cl-, SO42-, O2, NO2--N, HCO3- and DOC suggest that the metabolic activity of bacterial communities, based on the differential use of electron donors and acceptors in redox reactions is the key function of this system. The significant inverse relationship found between NO3--N and HCO3- is a valuable indicator of the denitrification activity. The pluviometric regime, the temperature, the organic carbon availability and the hydrogeomorphic properties are the main environmental factors affecting the N transformations in the studied lacustrine ecosystem.

  17. Effectiveness of Conservation Measures in Reducing Runoff and Soil Loss Under Different Magnitude-Frequency Storms at Plot and Catchment Scales in the Semi-arid Agricultural Landscape.

    PubMed

    Zhu, T X

    2016-03-01

    In this study, multi-year stormflow data collected at both catchment and plot scales on an event basis were used to evaluate the efficiency of conservation. At the catchment scale, soil loss from YDG, an agricultural catchment with no conservation measures, was compared with that from CZG, an agricultural catchment with an implementation of a range of conservation measures. With an increase of storm recurrence intervals in the order of <1, 1-2, 2-5, 5-10, 10-20, and >20 years, the mean event sediment yield was 639, 1721, 5779, 15191, 19627, and 47924 t/km(2) in YDG, and was 244, 767, 3077, 4679, 8388, and 15868 t/km(2) in CZG, which represented a reduction effectiveness of 61.8, 55.4, 46.7, 69.2, 57.2, and 66.8 %, respectively. Storm events with recurrence intervals greater than 2 years contributed about two-thirds of the total runoff and sediment in both YDG and CZG catchments. At the plot scale, soil loss from one cultivated slopeland was compared with that from five conservation plots. The mean event soil loss was 1622 t/km(2) on the cultivated slopeland, in comparison to 27.7 t/km(2) on the woodland plot, 213 t/km(2) on the grassland plot, 467 t/km(2) on the alfalfa plot, 236 t/km(2) on the terraceland plot, and 642 t/km(2) on the earthbank plot. Soil loss per unit area from all the plots was significantly less than that from the catchments for storms of all categories of recurrence intervals. PMID:26645075

  18. Effectiveness of Conservation Measures in Reducing Runoff and Soil Loss Under Different Magnitude-Frequency Storms at Plot and Catchment Scales in the Semi-arid Agricultural Landscape

    NASA Astrophysics Data System (ADS)

    Zhu, T. X.

    2016-03-01

    In this study, multi-year stormflow data collected at both catchment and plot scales on an event basis were used to evaluate the efficiency of conservation. At the catchment scale, soil loss from YDG, an agricultural catchment with no conservation measures, was compared with that from CZG, an agricultural catchment with an implementation of a range of conservation measures. With an increase of storm recurrence intervals in the order of <1, 1-2, 2-5, 5-10, 10-20, and >20 years, the mean event sediment yield was 639, 1721, 5779, 15191, 19627, and 47924 t/km2 in YDG, and was 244, 767, 3077, 4679, 8388, and 15868 t/km2 in CZG, which represented a reduction effectiveness of 61.8, 55.4, 46.7, 69.2, 57.2, and 66.8 %, respectively. Storm events with recurrence intervals greater than 2 years contributed about two-thirds of the total runoff and sediment in both YDG and CZG catchments. At the plot scale, soil loss from one cultivated slopeland was compared with that from five conservation plots. The mean event soil loss was 1622 t/km2 on the cultivated slopeland, in comparison to 27.7 t/km2 on the woodland plot, 213 t/km2 on the grassland plot, 467 t/km2 on the alfalfa plot, 236 t/km2 on the terraceland plot, and 642 t/km2 on the earthbank plot. Soil loss per unit area from all the plots was significantly less than that from the catchments for storms of all categories of recurrence intervals.

  19. Modeling concentration patterns of agricultural and urban micropollutants in surface waters in catchment of mixed land use

    NASA Astrophysics Data System (ADS)

    Stamm, C.; Scheidegger, R.; Bader, H. P.

    2012-04-01

    Organic micropollutants detected in surface waters can originate from agricultural and urban sources. Depending on the use of the compounds, the temporal loss patterns vary substantially. Therefore models that simulate water quality in watersheds of mixed land use have to account for all relevant sources. We present here simulation results of a transport model that describes the dynamic of several biocidal compounds as well as the behaviour of human pharmaceuticals. The model consists of the sub-model Rexpo simulating the transfer of the compounds from the point of application to the stream in semi-lumped manner. The river sub-model, which is programmed in the Aquasim software, describes the fate of the compounds in the stream. Both sub-models are process-based. The Rexpo sub-model was calibrated at the scale of a small catchment of 25 km2, which is inhabited by about 12'000 people. Based on the resulting model parameters the loss dynamics of two herbicides (atrazine, isoproturon) and a compound of mixed urban and agricultural use (diuron) were predicted for two nested catchment of 212 and 1696 km2, respectively. The model output was compared to observed time-series of concentrations and loads obtained for the entire year 2009. Additionally, the fate of two pharmaceuticals with constant input (carbamazepine, diclofenac) was simulated for improving the understanding of possible degradation processes. The simulated loads and concentrations of the biocidal compounds differed by a factor of 2 to 3 from the observations. In general, the seasonal patterns were well captured by the model. However, a detailed analysis of the seasonality revealed substantial input uncertainty for the application of the compounds. The model results also demonstrated that for the dynamics of rain-driven losses of biocidal compounds the semi-lumped approach of the Rexpo sub-model was sufficient. Only for simulating the photolytic degradation of diclofenac in the stream the detailed

  20. Sulphate leaching from diffuse agricultural and forest sources in a large central European catchment during 1900-2010.

    PubMed

    Kopáček, Jiří; Hejzlar, Josef; Porcal, Petr; Posch, Maximilian

    2014-02-01

    Using dynamic, mass budget, and empirical models, we quantified sulphate-sulphur (SO4-S) leaching from soils in a large central European catchment (upper Vltava river, Czech Republic) over a 110-year period (1900-2010). SO4-S inputs to soils with synthetic fertilisers and atmospheric deposition increased in the 1950s-1980s, then rapidly decreased (~80%), and remained low since the middle 1990s. The proportion of drained agricultural land rapidly increased from 4 to 43% between the 1950s and 1990s; then the draining ability of the system slowly decreased due to its ageing. Sulphate concentrations in the Vltava exhibited similar trends as the external SO4-S inputs, suggesting that they could be explained by changes in atmospheric and fertiliser S inputs. The available data and modelling, however, showed that (i) internal SO4-S sources (mineralization of soil organic S in the drained agricultural land), (ii) a hysteresis in SO4-S leaching from forest soils (a net S retention at the high S inputs and then a net release at the lowered inputs), and (iii) hydrology must be taken into account. An empirical model was then employed, based on parameters representing hydrology (discharge), external SO4-S sources (inputs by synthetic fertilisers and atmospheric deposition), and internal SO4-S sources (mineralization related to soil drainage). The model explained 84% of the observed variability in annual SO4-S concentrations in the Vltava river during 1900-2010 and showed that forest soils were a net sink (105 kg ha(-1)) while agricultural land was a net source (55 kg ha(-1)) of SO4-S during 1960-2010. In the late 1980s, forest soils changed from a sink to a source of S, and the present release of SO4-S accumulated in forest soils thus delays recovery of surface waters from acidification, while S losses from agricultural soils increase the risk of future S deficiency in S-demanding crops. PMID:24176702

  1. Risk assessment of surface water and groundwater pollution through agricultural activity on the catchment area of the Shelek River

    NASA Astrophysics Data System (ADS)

    Zubairov, Bulat; Dautova, Assel

    2015-04-01

    Agricultural activity in rural areas of Kazakhstan can create a potential risk of surface and groundwater pollution. In our contribution, we will focus on the risk assessment of surface water and groundwater pollution in the catchment area of the Shelek River basin in southeast Kazakhstan. Since soviet time, in the research area an intensive cultivation of tobacco was performed which means to use a big amount of pesticides during the growing-process. Therefore, this research was conducted in order to receive reliable data for management decisions justification and for practical testing of approach which is recommended by WHO for drinking water supply based on risks mapping. For our study, the soil and water samples from tobacco fields, artesian spring, and surface water source were taken for analysis on pesticides content. The samples were investigated in laboratory of Centre of Sanitary and Epidemiological Expertise of Almaty city (CSEE) according to approved methods from the national standards which are accepted in Kazakhstan. For the first time, in artesian spring small amount of nitrate pollution was found whose groundwater is one of the drinking water supplies of the region.

  2. Comparing three gap filling methods for eddy covariance crop evapotranspiration measurements within a hilly agricultural catchment

    NASA Astrophysics Data System (ADS)

    Boudhina, Nissaf; Prévot, Laurent; Zitouna Chebbi, Rim; Mekki, Insaf; Jacob, Frédéric; Ben Mechlia, Netij; Masmoudi, Moncef

    2015-04-01

    Hilly watersheds are widespread throughout coastal areas around the Mediterranean Basin. They experience agricultural intensification since hilly topographies allow water-harvesting techniques that compensate for rainfall storage, water being a strong limiting factor for crop production. Their fragility is likely to increase with climate change and human pressure. Within semi-arid hilly watershed conditions, evapotranspiration (ETR) is a major term of both land surface energy and water balances. Several methods allow determining ETR, based either on direct measurements, or on estimations and forecast from weather and soil moisture data using simulation models. Among these methods, eddy covariance technique is based on high-frequency measurements of fluctuations of wind speed and air temperature / humidity, to directly determine the convective fluxes between land surface and atmosphere. In spite of experimental and instrumental progresses, datasets of eddy covariance measurements often experience large portions of missing data. The latter results from energy power failure, experimental maintenance, instrumental troubles such as krypton hygrometer malfunctioning because of air humidity, or quality assessment based filtering in relation to spatial homogeneity and temporal stationarity of turbulence within surface boundary layer. This last item is all the more important as hilly topography, when combined with strong winds, tends to increase turbulence within surface boundary layer. The main objective of this study is to establish gap-filling procedures to provide complete chronicles of eddy-covariance measurements of crop evapotranspiration (ETR) within a hilly agricultural watershed. We focus on the specific conditions induced by the combination of hilly topography and wind direction, by discriminating between upslope and downslope winds. The experiment was set for three field configurations within hilly conditions: two flux measurement stations (A, B) were installed

  3. A classification of drainage and macropore flow in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Heppell, C. M.; Worrall, F.; Burt, T. P.; Williams, R. J.

    2002-01-01

    This paper uses a variety of multivariate statistical techniques in order to improve current understanding of the antecedent and rainfall controls on drainage characteristics for an agricultural underdrained clay site. Using the dataset obtained from a two-year hillslope study at Wytham (Oxfordshire, UK) a number of patterns in the nature and style of drainage events were explored. First, using principal components analysis, a distinction was drawn between drainflow controlled by antecedent conditions and drainflow controlled by rainfall characteristics. Dimensional analysis then distinguished between two further types of drainflow event: antecedent limited events (ALE) and non-antecedent limited events (NALE). These were drainflow events requiring a minimum antecedent hydraulic head to occur (ALE) and events that occurred in response to rainfall irrespective of the antecedent conditions, because the rainfall was either of high enough intensity or duration to prompt a response in drainflow (NALE). 2. The dataset also made possible a preliminary investigation into the controls on and types of macropore flow at the site. Principal components analysis identified that rainfall characteristics were more important than antecedent conditions in generating high proportions of macropore flow in drainflow. Of the rainfall characteristics studied, rainfall amount and intensity were the dominant controls on the amount of macropore flow, with duration as a secondary control. Two styles of macropore flow were identified: intensity-driven and duration-driven. Intensity-driven events are characterized by rainfall of high intensity and short duration. During such events the amount of macropore flow is proportional to the rainfall intensity and the interaction between macropore and matrix flow is kinetically limited. The second style of macropore flow is characterized by long-duration events. For these events the amount of macropore flow approaches a maximum value whatever the

  4. Sulfonylurea herbicides in an agricultural catchment basin and its adjacent wetland in the St. Lawrence River basin.

    PubMed

    de Lafontaine, Yves; Beauvais, Conrad; Cessna, Allan J; Gagnon, Pierre; Hudon, Christiane; Poissant, Laurier

    2014-05-01

    The use of sulfonylurea herbicides (SU) has increased greater than 100 times over the past 30 years in both Europe and North America. Applied at low rates, their presence, persistence and potential impacts on aquatic ecosystems remain poorly studied. During late-spring to early fall in 2009-2011, concentrations of 9 SU were assessed in two agricultural streams and their receiving wetland, an enlargement of the St. Lawrence River (Canada). Six SU in concentrations >LOQ (10 ng L(-1)) were detected in 10% or less of surface water samples. Rimsulfuron was detected each year, sulfosulfuron and nicosulfuron in two years and the others in one year only, suggesting that application of specific herbicides varied locally between years. Detection frequency and concentrations of SU were not significantly associated with total precipitation which occurred 1 to 5d before sampling. Concentrations and fate of SU differed among sites due to differences in stream dynamics and water quality characteristics. The persistence of SU in catchment basin streams reflected the dissipation effects associated with stream discharge. Maximum concentrations of some SU (223 and 148 ng L(-1)) were occasionally above the baseline level (100 ng L(-1)) for aquatic plant toxicity, implying potential toxic stress to flora in the streams. Substantially lower concentrations (max 55 ng L(-1)) of SU were noted at the downstream wetland site, likely as a result from dilution and mixing with St. Lawrence River water, and represent less toxicological risk to the wetland flora. Sporadic occurrence of SU at low concentrations in air and rain samples indicated that atmospheric deposition was not an important source of herbicides to the study area. PMID:24534695

  5. Long-term, high-frequency water quality monitoring in an agricultural catchment: insights from spectral analysis

    NASA Astrophysics Data System (ADS)

    Aubert, Alice; Kirchner, James; Faucheux, Mikael; Merot, Philippe; Gascuel-Odoux, Chantal

    2013-04-01

    The choice of sampling frequency is a key issue in the design and operation of environmental observatories. The choice of sampling frequency creates a spectral window (or temporal filter) that highlights some timescales and processes, and de-emphasizes others (1). New online measurement technologies can monitor surface water quality almost continuously, allowing the creation of very rich time series. The question of how best to analyze such detailed temporal datasets is an important issue in environmental monitoring. In the present work, we studied water quality data from the AgrHys long-term hydrological observatory (located at Kervidy-Naizin, Western France) sampled at daily and 20-minute time scales. Manual sampling has provided 12 years of daily measurements of nitrate, dissolved organic carbon (DOC), chloride and sulfate (2), and 3 years of daily measurements of about 30 other solutes. In addition, a UV-spectrometry probe (Spectrolyser) provides one year of 20-minute measurements for nitrate and DOC. Spectral analysis of the daily water quality time series reveals that our intensively farmed catchment exhibits universal 1/f scaling (power spectrum slope of -1) for a large number of solutes, confirming and extending the earlier discovery of universal 1/f scaling in the relatively pristine Plynlimon catchment (3). 1/f time series confound conventional methods for assessing the statistical significance of trends. Indeed, conventional methods assume that there is a clear separation of scales between the signal (the trend line) and the noise (the scatter around the line). This is not true for 1/f noise, since it overestimates the occurrence of significant trends. Our results raise the possibility that 1/f scaling is widespread in water quality time series, thus posing fundamental challenges to water quality trend analysis. Power spectra of the 20-minute nitrate and DOC time series show 1/f scaling at frequencies below 1/day, consistent with the longer-term daily

  6. Co-location opportunities for renewable energy and agriculture in Northwestern India: Tradeoffs and Synergies

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Macknick, J.; Lobell, D. B.; Field, C. B.; Ganesan, K.; Jain, R.; Elchinger, M.; Stoltenberg, B.

    2014-12-01

    Solar energy installations in arid and semi-arid regions of India are rapidly increasing, due to technological advances and policy support. Even though solar energy provides several benefits such as reduction of greenhouse gases, reclamation of degraded land, and improving the quality of life, the deployment of large-scale solar energy infrastructure can adversely impact land and water resources. A major challenge is how to meet the ever-expanding energy demand with limited land and water resources, in the context of increasing competition from agricultural and domestic consumption. We investigated whether water consumption for solar energy development in northwestern India could impact other water and land uses, and explored opportunities to co-locate solar infrastructures and agricultural crops to maximize the efficiency of land and water use. We considered energy inputs/outputs, water use, greenhouse gas emissions and economics of solar installations in northwestern India in comparison to Aloe vera cultivation, a widely promoted land use in the region. The life cycle analyses show that co-located systems are economically viable in some rural areas and may provide opportunities for rural electrification and stimulate economic growth. The water inputs for cleaning solar panels and dust suppression are similar to amounts required for aloe, suggesting the possibility of integrating the two systems to maximize water and land use efficiency. A life-cycle analysis of a hypothetical co-location indicated higher returns per m3 of water used than either system alone. The northwestern region of India is experiencing high population growth, creating additional demand for land and water resources. In these water limited areas, coupled solar infrastructure and agriculture could be established on marginal lands, thus minimizing the socioeconomic and environmental issues resulting from cultivation of non-food crops (e.g. Aloe) in prime agricultural lands.

  7. Prediction of dissolved reactive phosphorus losses from small agricultural catchments: calibration and validation of a parsimonious model

    NASA Astrophysics Data System (ADS)

    Hahn, C.; Prasuhn, V.; Stamm, C.; Lazzarotto, P.; Evangelou, M. W. H.; Schulin, R.

    2013-01-01

    Eutrophication of surface waters due to diffuse phosphorus (P) losses continues to be a severe water quality problem world-wide, causing the loss of ecosystem functions of the respective water bodies. Phosphorus in runoff often originates from a small fraction of a catchment only. Targeting mitigation measures to these critical source areas (CSA) is expected to be most efficient and cost-effective, but requires suitable tools. Here we investigated the capability of the parsimonious Rainfall-Runoff-Phosphorus (RRP) model to identify CSA in grassland-dominated catchments based on readily available soil and topographic data. After simultaneous calibration on runoff data from four small hilly catchments on the Swiss Plateau, the model was validated on a different catchment in the same region without further calibration. The RRP model adequately simulated the discharge and dissolved reactive P (DRP) export from the validation catchment. Sensitivity analysis showed that the model predictions were robust with respect to the classification of soils into "poorly drained" and "well drained", based on the available soil map. Comparing spatial hydrological model predictions with field data from the validation catchment provided further evidence that the assumptions underlying the model are valid and that the model adequately accounts for the dominant P export processes in the target region. Thus, the parsimonious RRP model is a valuable tool that can be used to determine CSA. Despite the considerable predictive uncertainty regarding the spatial extent of CSAs the RRP can provide guidance for the implementation of mitigation measures. The model helps to identify those parts of a catchment where high DRP losses are expected or can be excluded with high confidence. Legacy P was predicted to be the dominant source for DRP losses and thus, in combination with hydrologic active areas, a high risk for water quality.

  8. Prediction of dissolved reactive phosphorus losses from small agricultural catchments: calibration and validation of a parsimonious model

    NASA Astrophysics Data System (ADS)

    Hahn, C.; Prasuhn, V.; Stamm, C.; Lazzarotto, P.; Evangelou, M. W. H.; Schulin, R.

    2013-10-01

    Eutrophication of surface waters due to diffuse phosphorus (P) losses continues to be a severe water quality problem worldwide, causing the loss of ecosystem functions of the respective water bodies. Phosphorus in runoff often originates from a small fraction of a catchment only. Targeting mitigation measures to these critical source areas (CSAs) is expected to be most efficient and cost-effective, but requires suitable tools. Here we investigated the capability of the parsimonious Rainfall-Runoff-Phosphorus (RRP) model to identify CSAs in grassland-dominated catchments based on readily available soil and topographic data. After simultaneous calibration on runoff data from four small hilly catchments on the Swiss Plateau, the model was validated on a different catchment in the same region without further calibration. The RRP model adequately simulated the discharge and dissolved reactive P (DRP) export from the validation catchment. Sensitivity analysis showed that the model predictions were robust with respect to the classification of soils into "poorly drained" and "well drained", based on the available soil map. Comparing spatial hydrological model predictions with field data from the validation catchment provided further evidence that the assumptions underlying the model are valid and that the model adequately accounts for the dominant P export processes in the target region. Thus, the parsimonious RRP model is a valuable tool that can be used to determine CSAs. Despite the considerable predictive uncertainty regarding the spatial extent of CSAs, the RRP can provide guidance for the implementation of mitigation measures. The model helps to identify those parts of a catchment where high DRP losses are expected or can be excluded with high confidence. Legacy P was predicted to be the dominant source for DRP losses and thus, in combination with hydrologic active areas, a high risk for water quality.

  9. Hydroclimatic Controls on the Seasonal and Inter-Annual Variability of Dissolved Phosphorus Concentration in a Lowland Agricultural Catchment

    NASA Astrophysics Data System (ADS)

    Dupas, R.; Gascuel-odoux, C.; Grimaldi, C.; Gruau, G.

    2014-12-01

    We investigated soluble reactive phosphorus (SRP) at the outlet of a lowland agricultural catchment (Kervidy-Naizin, France) to identify the hydroclimatic controls on the seasonal and inter-annual variability in concentrations. Six years of stream data have been used, including a regular 6-daily sampling and high-frequency monitoring of 52 floods. Both on an annual basis and during flood events, distinct export dynamics for SRP and particulate phosphorus (PP) revealed that SRP transport mechanism was independent from PP (Dupas et al., submitted). During most flood events, discharge-SRP hystereses were anticlockwise, which suggests that SRP was transferred to the stream via subsurface flow. Groundwater rise in wetland soils was likely the cause of this transfer, through the hydrological connectivity it created between the stream and P-rich soil horizons. SRP concentrations were highest in the beginning of the hydrological year (period A), when the stream started to flow again after the dry summer season and water table fluctuated in the wetland domain. Thus, wetland soils seemed to be a major source of SRP. Concentrations during period A were higher after a long summer period than after a short one, which suggest that a pool of labile P was constituted in soils during the dry summer period. During winter (period B), SRP concentration generally decreased compared to period A, both during floods and interflood. This could be due to depletion of a soil P pool in the wetland domain and/or dilution by deep groundwater with low P concentration from the upland domain. Concentration during period B barely decreased compared to A during wet years, probably due to increased connectivity with soils from the upland domain in wet conditions. During spring (period C), SRP concentration increased during baseflow periods. The possible mechanisms causing the release of SRP could involve reduction of Fe oxide-hydroxides in wetland soils or in-stream processes. At the same time, SRP

  10. Environmental factors that influence the location of crop agriculture in the conterminous United States

    USGS Publications Warehouse

    Baker, Nancy T.; Capel, Paul D.

    2011-01-01

    Most crops are grown on land with shallow slope where the temperature, precipitation, and soils are favorable. In areas that are too steep, wet, or dry, landscapes have been modified to allow cultivation. Some of the limitations of the environmental factors that determine the location of agriculture can be overcome through modifications, but others cannot. On a larger-than-field scale, agricultural modifications commonly influence water availability through irrigation and (or) drainage and soil fertility and (or) organic-matter content through amendments such as manure, commercial fertilizer and lime. In general, it is not feasible to modify the other environmental factors, soil texture, soil depth, soil mineralogy, temperature, and terrain at large scales.

  11. Indirect nitrous oxide emissions from surface water bodies in a lowland arable catchment: a significant contribution to agricultural greenhouse gas budgets?

    PubMed

    Outram, Faye N; Hiscock, Kevin M

    2012-08-01

    In the UK agriculture is by far the largest source of nitrous oxide (N(2)O) emissions. Direct N(2)O emissions as a result of nitrogen (N) application to soils have been well documented in the UK, whereas indirect emissions produced in surface waters and groundwaters from leached N are much less understood with limited data to support IPCC emission factors. Indirect emissions were studied in surface waters in the Upper Thurne, a lowland drained arable catchment in eastern England. All surface waters were found to have dissolved N(2)O concentrations above that expected if in equilibrium with ambient concentrations, demonstrating all surface waters were acting as a source of N(2)O. The drainage channels represented 86% of the total indirect N(2)O flux, followed by wetland areas, 11%, and the river, 3%. The dense drainage network was found to have the highest dissolved N(2)O concentrations of all the water bodies studied with a combined N(2)O flux of 16 kg N(2)O-N per day in March 2007. Such indirect fluxes are comparable to direct fluxes per hectare and represent a significant proportion of the total N(2)O flux for this catchment. Separate emission factors were established for the three different surface water types within the same catchment, suggesting that the one emission factor used in the Intergovernmental Panel on Climate Change (IPCC) methodology for predicting all indirect N(2)O emissions is inappropriate. PMID:22789002

  12. REXPO: A catchment model designed to understand and simulate the loss dynamics of plant protection products and biocides from agricultural and urban areas

    NASA Astrophysics Data System (ADS)

    Wittmer, I. K.; Bader, H.-P.; Scheidegger, R.; Stamm, C.

    2016-02-01

    During rain events, biocides and plant protection products are transported from agricultural fields but also from urban sources to surface waters. Originally designed to be biologically active, these compounds may harm organisms in aquatic ecosystems. Although several models allow either urban or agricultural storm events to be predicted, only few combine these two sources, and none of them include biocide losses from building envelopes. This study therefore aims to develop a model designed to predict water and substance flows from urban and agricultural sources to surface waters. We developed a model based on physical principles for water percolation and substance flow including micro- (also called matrix-) and macropore-flows for the agricultural areas together with a model representing sources, sewer systems and a wastewater treatment plant for urban areas. In a second step, the combined model was applied to a catchment where an extensive field study had been conducted. The modelled and measured discharge and compound results corresponded reasonably well in terms of quantity and dynamics. The total cumulative discharge was only slightly lower than the total measured discharge (factor 0.94). The total modelled losses of the agriculturally used herbicide atrazine were slightly lower (∼25%) than the measured losses when the soil pore water distribution coefficient (describing the partition between soil particles and pore water) (Kd) was kept constant and slightly higher if it was increased with time. The modelled urban losses of diuron from facades were within a factor of three with respect to the measured values. The results highlighted the change in importance of the flow components during a rain event from urban sources during the most intensive rain period towards agricultural ones over a prolonged time period. Applications to two other catchments, one neighbouring and one on another continent showed that the model can be applied using site specific data for

  13. Spatial and temporal variations in non-point source losses of nitrogen and phosphorus in a small agricultural catchment in the Three Gorges Region.

    PubMed

    Chen, Chenglong; Gao, Ming; Xie, Deti; Ni, Jiupai

    2016-04-01

    Losses of agricultural pollutants from small catchments are a major issue for water quality in the Three Gorges Region. Solutions are urgently needed. However, before pollutant losses can be controlled, information about spatial and temporal variations in pollutant losses is needed. The study was carried out in the Wangjiagou catchment, a small agricultural catchment in Fuling District, Chongqing, and the data about non-point source losses of nitrogen and phosphorus was collected here. Water samples were collected daily by an automatic water sampler at the outlets of two subcatchments from 2012 to 2014. Also, samples of surface runoff from 28 sampling sites distributed through the subcatchments were collected during 12 rainfall events in 2014. A range of water quality variables were analyzed for all samples and were used to demonstrate the variation in non-point losses of nitrogen and phosphorus over a range of temporal and spatial scales and in different types of rainfall in the catchment. Results showed that there was a significant linear correlation between the mass concentrations of total nitrogen (TN) and nitrate (NO3-N) in surface runoff and that the relationship was maintained with changes in time. Concentrations of TN and NO3-N peaked after fertilizer was applied to crops in spring and autumn; concentrations decreased rapidly after the peak values in spring but declined slowly in autumn. N and P concentrations fluctuated more and showed a greater degree of dispersion during the spring crop cultivation period than those in autumn. Concentrations of TN and NO3-N in surface runoff were significantly and positively correlated with the proportion of the area that was planted with corn and mustard tubers, but were negatively correlated with the proportion of the area taken up with rice and mulberry plantations. The average concentrations of TN and NO3-N in surface runoff reached the highest level from the sampling points at the bottom of the land used for corn

  14. Spatial and temporal variations in non-point source losses of nitrogen and phosphorus in a small agricultural catchment in the Three Gorges Region.

    PubMed

    Chen, Chenglong; Gao, Ming; Xie, Deti; Ni, Jiupai

    2016-04-01

    Losses of agricultural pollutants from small catchments are a major issue for water quality in the Three Gorges Region. Solutions are urgently needed. However, before pollutant losses can be controlled, information about spatial and temporal variations in pollutant losses is needed. The study was carried out in the Wangjiagou catchment, a small agricultural catchment in Fuling District, Chongqing, and the data about non-point source losses of nitrogen and phosphorus was collected here. Water samples were collected daily by an automatic water sampler at the outlets of two subcatchments from 2012 to 2014. Also, samples of surface runoff from 28 sampling sites distributed through the subcatchments were collected during 12 rainfall events in 2014. A range of water quality variables were analyzed for all samples and were used to demonstrate the variation in non-point losses of nitrogen and phosphorus over a range of temporal and spatial scales and in different types of rainfall in the catchment. Results showed that there was a significant linear correlation between the mass concentrations of total nitrogen (TN) and nitrate (NO3-N) in surface runoff and that the relationship was maintained with changes in time. Concentrations of TN and NO3-N peaked after fertilizer was applied to crops in spring and autumn; concentrations decreased rapidly after the peak values in spring but declined slowly in autumn. N and P concentrations fluctuated more and showed a greater degree of dispersion during the spring crop cultivation period than those in autumn. Concentrations of TN and NO3-N in surface runoff were significantly and positively correlated with the proportion of the area that was planted with corn and mustard tubers, but were negatively correlated with the proportion of the area taken up with rice and mulberry plantations. The average concentrations of TN and NO3-N in surface runoff reached the highest level from the sampling points at the bottom of the land used for corn

  15. Environmental Risk Assessment of Fluctuating Diazinon Concentrations in an Urban and Agricultural Catchment Using Toxicokinetic–Toxicodynamic Modeling

    PubMed Central

    2011-01-01

    Temporally resolved environmental risk assessment of fluctuating concentrations of micropollutants is presented. We separated the prediction of toxicity over time from the extrapolation from one to many species and from acute to sublethal effects. A toxicokinetic–toxicodynamic (TKTD) model predicted toxicity caused by fluctuating concentrations of diazinon, measured by time-resolved sampling over 108 days from three locations in a stream network, representing urban, agricultural and mixed land use. We calculated extrapolation factors to quantify variation in toxicity among species and effect types based on available toxicity data, while correcting for different test durations with the TKTD model. Sampling from the distribution of extrapolation factors and prediction of time-resolved toxicity with the TKTD model facilitated subsequent calculation of the risk of undesired toxic events. Approximately one-fifth of aquatic organisms were at risk and fluctuating concentrations were more toxic than their averages. Contribution of urban and agricultural sources of diazinon to the overall risk varied. Thus using fixed concentrations as water quality criteria appears overly simplistic because it ignores the temporal dimension of toxicity. However, the improved prediction of toxicity for fluctuating concentrations may be small compared to uncertainty due to limited diversity of toxicity data to base the extrapolation factors on. PMID:21958042

  16. Environmental risk assessment of fluctuating diazinon concentrations in an urban and agricultural catchment using toxicokinetic-toxicodynamic modeling.

    PubMed

    Ashauer, Roman; Wittmer, Irene; Stamm, Christian; Escher, Beate I

    2011-11-15

    Temporally resolved environmental risk assessment of fluctuating concentrations of micropollutants is presented. We separated the prediction of toxicity over time from the extrapolation from one to many species and from acute to sublethal effects. A toxicokinetic-toxicodynamic (TKTD) model predicted toxicity caused by fluctuating concentrations of diazinon, measured by time-resolved sampling over 108 days from three locations in a stream network, representing urban, agricultural and mixed land use. We calculated extrapolation factors to quantify variation in toxicity among species and effect types based on available toxicity data, while correcting for different test durations with the TKTD model. Sampling from the distribution of extrapolation factors and prediction of time-resolved toxicity with the TKTD model facilitated subsequent calculation of the risk of undesired toxic events. Approximately one-fifth of aquatic organisms were at risk and fluctuating concentrations were more toxic than their averages. Contribution of urban and agricultural sources of diazinon to the overall risk varied. Thus using fixed concentrations as water quality criteria appears overly simplistic because it ignores the temporal dimension of toxicity. However, the improved prediction of toxicity for fluctuating concentrations may be small compared to uncertainty due to limited diversity of toxicity data to base the extrapolation factors on. PMID:21958042

  17. Dissolved and Particulate Organic Carbon Transport, Loads and Relationships from Catchments in the Dryland Agricultural Region of the Inland Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Boylan, R. D.; Brooks, E. S.

    2012-12-01

    It has long been understood that soil organic matter (SOM) plays important role in the chemistry of agricultural soils. Promoting both cation exchange capacity and water retention, SOM also has the ability to sequester atmospheric carbon adding to a soils organic carbon content. Increasing soil organic carbon in the dryland agricultural region of the Inland Pacific Northwest is not only good for soil health, but also has the potential to mitigate greenhouse gas emissions. Implementing strategies that minimizing the loss of soil carbon thus promoting carbon sequestration require a fundamental understanding of the dominant hydrologic flow paths and runoff generating processes in this landscape. Global fluxes of organic carbon from catchments range from 0.4-73,979 kg C km-2 year-1 for particulate organic carbon and 1.2-56,946 kg C km-2 year-1 for dissolved organic carbon (Alvarez-Cobelas, 2010). This small component of the global carbon cycle has been relatively well studied but there have yet to be any studies that focus on the dryland agricultural region of the Inland Pacific Northwest. In this study event based samples were taken at 5 sites across the Palouse Basin varying in land use and management type as well as catchment size, ranging from 1km2 to 7000 km2. Data collection includes streamflow, suspended sediment, dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), particulate organic carbon (POC), dissolved organic nitrogen (TN), and nitrate concentrations as well as soil organic carbon (SOC) from distributed source areas. It is predicted that management type and streamflow will be the main drivers for DOC and POC concentrations. Relationships generated and historic data will then be used in conjunction with the Water Erosion Prediction Project (WEPP) to simulate field scale variability in the soil moisture, temperature, surface saturation, and soil erosion. Model assessment will be based on both surface runoff and sediment load measured at the

  18. Impacts of land use and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land use and climate are the two major factors directly influencing catchment hydrology; however, it is difficult to separate the effects of the two. Using the SWAT (Soil and Water Assessment Tools) model, we assessed the impacts of land use change and climate variability on surface hydrology (runof...

  19. Wind and flux measurements in a windfarm co-located with agricultural production (Invited)

    NASA Astrophysics Data System (ADS)

    Takle, E. S.; Prueger, J. H.; Rajewski, D. A.; Lundquist, J. K.; Aitken, M.; Rhodes, M. E.; Deppe, A. J.; Goodman, F. E.; Carter, K. C.; Mattison, L.; Rabideau, S. L.; Rosenberg, A. J.; Whitfield, C. L.; Hatfield, J.

    2010-12-01

    Co-locating wind farms in pre-existing agricultural fields represents multiple land uses for which there may be interactions. Agricultural producers have raised questions about the possible impact of changes in wind speed and turbulence on pollination, dew formation, and conditions favorable for diseases. During summer 2010 we measured wind speed and surface fluxes within a wind farm that was co-located with a landscape covered by corn and soybeans in central Iowa. We erected four 9.14 m towers in corn fields upwind and downwind of lines of 1.5 MW turbines. All towers were instrumented with sonic anemometers at 6.45 m above ground, three-cup anemometers at 9.06 m ,and two temperature and relative humidity probes at 5.30 and 9.06 m. In addition, LiCor 7500 CO2/H2O flux analyzers were mounted at 6.45 m on two towers. At the beginning of the field campaign (late June) the corn had a height of about 1.3 m and grew to about 2.2 m at maturity in late July. For a 2-week period beginning late June a vertically pointing lidar was located near a flux tower downwind of one of the turbines and collected horizontal winds from 40 m to 200 m above ground. Twenty-Hz data from the eddy covariance systems were recorded as were 5-min averaged values of wind speed, temperature, humidity, and fluxes of heat, momentum, moisture and CO2 day and night under a wide variety of weather conditions, including a two-week period when the turbines were shut down. Numerical simulations with the WRF (Weather Research and Forecast) model for select periods with no turbine influence provide opportunities for comparing modeled and measured values of surface conditions and vertical wind profiles. Results show clear evidence of changes in flow field conditions at the surface that influence fluxes. We will discuss diurnal changes in fluxes and influence of turbines. Lidar measurements of vertical profiles of wind speed compared against modeled undisturbed flow fields behind a turbine reveal significant

  20. Sediment sources in a small agricultural catchment: A composite fingerprinting approach based on the selection of potential sources

    NASA Astrophysics Data System (ADS)

    Zhou, Huiping; Chang, Weina; Zhang, Longjiang

    2016-08-01

    Fingerprinting techniques have been widely used as a reasonable and reliable means for investigating sediment sources, especially in relatively large catchments in which there are significant differences in surface materials. However, the discrimination power of fingerprint properties for small catchments, in which the surface materials are relatively homogeneous and human interference is marked, may be affected by fragmentary or confused source information. Using fingerprinting techniques can be difficult, and there is still a need for further studies to verify the effectiveness of such techniques in these small catchments. A composite fingerprinting approach was used in this study to investigate the main sources of sediment output, as well as their relative contributions, from a small catchment (30 km2) with high levels of farming and mining activities. The impact of the selection of different potential sediment sources on the derivation of composite fingerprints and its discrimination power were also investigated by comparing the results from different combinations of potential source types. The initial source types and several samples that could cause confusion were adjusted. These adjustments improved the discrimination power of the composite fingerprints. The results showed that the composite fingerprinting approach used in this study had a discriminatory efficiency of 89.2% for different sediment sources and that the model had a mean goodness of fit of 0.90. Cultivated lands were the main sediment source. The sediment contribution of the studied cultivated lands ranged from 39.9% to 87.8%, with a mean of 76.6%, for multiple deposited sediment samples. The mean contribution of woodlands was 21.7%. Overall, the sediment contribution from mining and road areas was relatively low. The selection of potential sources is an important factor in the application of fingerprinting techniques and warrants more attention in future studies, as is the case with other

  1. Daily nitrate losses: implication on long-term river quality in an intensive agricultural catchment of southwestern france.

    PubMed

    Boithias, Laurie; Srinivasan, Raghavan; Sauvage, Sabine; Macary, Francis; Sánchez-Pérez, José Miguel

    2014-01-01

    High nitrate concentrations in streams have become a widespread problem throughout Europe in recent decades, damaging surface water and groundwater quality. The European Nitrate Directive fixed a potability threshold of 50 mg L for European rivers. The performance of the Soil and Water Assessment Tool model was assessed in the 1110-km Save catchment in southwestern France for predicting water discharge and nitrate loads and concentrations at the catchment outlet, considering observed data set uncertainty. Simulated values were compared with intensive and extensive measurement data sets. Daily discharge fitted observations (Nash-Sutcliffe efficiency coefficient = 0.61, = 0.7, and PBIAS = -22%). Nitrate simulation (1998-2010) was within the observed range (PBIAS = 10-21%, considering observed data set uncertainty). Annual nitrate load at the catchment outlet was correlated to the annual water yield at the outlet ( = 0.63). Simulated annual catchment nitrate exportation ranged from 21 to 49 kg ha depending on annual hydrological conditions (average, 36 kg ha). Exportation rates ranged from 3 to 8% of nitrogen inputs. During floods, 34% of the nitrate load was exported, which represented 18% of the 1998-2010 period. Average daily nitrate concentration at the outlet was 29 mg L (1998-2010), ranging from 0 to 270 mg L. Nitrate concentration exceeded the European 50 mg L potability threshold during 244 d between 1998 and 2010. A 20% reduction of nitrogen input reduced crop yield by between 5 and 9% and reduced by 62% the days when the 50 mg L threshold was exceeded. PMID:25602539

  2. Slash and Burn Agriculture: A Dynamic Spatio-temporal Model of Shifting Cultivation Locations and Areas

    NASA Astrophysics Data System (ADS)

    Plagge, C. E.; Frolking, S.; Chini, L. P.; Hurtt, G.

    2008-12-01

    Shifting cultivation is a form of agriculture, also known as slash-and-burn or swidden agriculture, in which a plot of forest is cleared and then cultivated continuously for several years, after which it is abandoned to revert to natural vegetation, and then is subsequently re-cleared after a longer fallow period. Shifting cultivation is an important form of agriculture because it affects soil erosion rates, canopy cover in tropical forests, nutrient deficiency in soils, and also has an impact on the global carbon cycle. Because it is generally outside of the larger economy, shifting cultivation is not well-represented in large-scale earth system analyses. We investigated a new way to model shifting cultivation which will be included in a global land-use transitions model to better quantify this type of land use, both historically and into the future. Ultimately this study will improve simulations of changes in the Earth system and will aid in the study of the carbon cycle and thus climate change. Our model calculates the area of shifting cultivation in square kilometers per half-degree grid cell, using gridded population data, the fraction of that population that is rural, the fraction of global population that practices shifting cultivation, the crop area needed per person, and the length of cultivation plus the fallow. Locations of shifting cultivation were further constrained by variables such as potential vegetation biomass density, population density, fraction of land already in use, GDP per capita, and average winter temperatures. With this model, we generated global estimates for total cultivated area, total population involved in shifting cultivation, and total shifting cultivation area including fallow lands. From this model it was estimated that the total global area of shifting cultivation in 2000 was approximately 1.5 million km2 with 90,000 km2 of that actually in cultivation by 190 million people.

  3. PSYCHIC A process-based model of phosphorus and sediment transfers within agricultural catchments. Part 2. A preliminary evaluation

    NASA Astrophysics Data System (ADS)

    Strömqvist, J.; Collins, A. L.; Davison, P. S.; Lord, E. I.

    2008-02-01

    SummaryThis paper describes the preliminary evaluation of the PSYCHIC catchment scale (Tier 1) model for predicting the mobilisation and delivery of phosphorus (P) and suspended sediment (SS) in the Hampshire Avon (1715 km 2) and Herefordshire Wye (4017 km 2) drainage basins, in the UK, using empirical data. Phosphorus and SS transfers to watercourses in the Wye were predicted to be greater than corresponding delivery in the Avon; SS, 249 vs 33 kg ha -1 yr -1; DP, 2.57 vs 1.26 kg ha -1 yr -1; PP, 2.20 vs 0.56 kg ha -1 yr -1. The spatial pattern of the predicted transfers was relatively uniform across the Wye drainage basin, whilst in the Avon, delivery to watercourses was largely confined to the river corridors and small areas of drained land. Statistical performance in relation to predicted exports of P and SS, using criteria for relative error (RE) and root mean square error (RMSE), reflected the potential shortcomings associated with using longer-term climate data for predicting shorter-term (2002-2004) catchment response and the need to refine calculations of point source contributions and to incorporate additional river basin processes such as channel bank erosion and in-stream geochemical processing. PSYCHIC is therefore best suited to characterising longer-term catchment response.

  4. Range-wide selection of catchments for Pacific salmon conservation.

    PubMed

    Pinsky, Malin L; Springmeyer, Dane B; Goslin, Matthew N; Augerot, Xanthippe

    2009-06-01

    Freshwater ecosystems are declining in quality globally, but a lack of data inhibits identification of areas valuable for conservation across national borders. We developed a biological measure of conservation value for six species of Pacific salmon (Oncorhynchus spp.) in catchments of the northern Pacific across Canada, China, Japan, Russia, and the United States. We based the measure on abundance and life-history richness and a model-based method that filled data gaps. Catchments with high conservation value ranged from California to northern Russia and included catchments in regions that are strongly affected by human development (e.g., Puget Sound). Catchments with high conservation value were less affected by agriculture and dams than other catchments, although only 1% were within biodiversity reserves. Our set of high-value areas was largely insensitive to simulated error, although classification remained uncertain for 3% of catchments. Although salmon face many threats, we propose they will be most likely to exhibit resilience into the future if a complementary mosaic of conservation strategies can be proactively adopted in catchments with healthy salmon populations. Our analysis provides an initial map of where these catchments are likely to be located. PMID:19220368

  5. Hydrologic controls on the export dynamics of dissolved and particulate phosphorus in a lowland, headwater agricultural catchment

    NASA Astrophysics Data System (ADS)

    Dupas, Rémi; Grimaldi, Catherine; Gruau, Gérard; Gascuel-Odoux, Chantal

    2014-05-01

    Phosphorus (P) availability controls eutrophication in freshwater ecosystems, since P is generally the limiting nutrient to algal development. The contribution of diffuse P emission to surface waters is significant in intensively livestock farmed catchments as a result of high application rates of P-rich animal waste and subsequent enrichment of soils. This study investigates the transport dynamics of particulate phosphorus (PP), suspended sediments (SS), and dissolved phosphorus (DP) with the aim of elucidating the relationship between PP and DP transport mechanisms and water dynamics in lowland, headwater catchments. The selected catchment (Kervidy-Naizin catchment, France) is particularly suitable for this purpose as it benefits of a 5 years, high-frequency monitoring of PP and DP concentrations at its outlet, including data recovered both during base flow and storm periods, with the monitoring of more than 50 storm flow events. The data analysis includes interpretation of concentration-discharge relationships at the annual time scale and on an event basis, seasonal analysis of flood characteristics and empirical modeling. Annual DP and PP concentration-discharge relationships of interflood samples display a hysteretic pattern, with higher concentrations during the autumn and spring periods, and progressive decrease during winter. No hysteretic pattern is visible for interflood SS concentration, which follows a classical C=a*Qb relationship. During floods, the dynamic of PP export is similar to that of SS during most of the events: the concentration peak occurs during the rising limb of the hydrogram (clockwise hysteresis), suggesting a source close to or within the stream. The amplitude and the hysteresis' loop size for SS and PP are a function of maximum discharge and rate of change in discharge. On the contrary, there is a strong decoupling between DP and SS (and thus PP) during most of the floods (no significant correlation), with DP concentration peaks

  6. Selected examples of needs for long term pilot areas in Mediterranean catchments: a mountain traditional agricultural system and a large and regulated hydrographic basin in Southern Spain

    NASA Astrophysics Data System (ADS)

    José Polo, María; Herrero, Javier; Millares, Agustín; José Pérez-Palazón, María; Pimentel, Rafael; Aguilar, Cristina; Jurado, Alicia; Contreras, Eva; Gómez-Beas, Raquel; Carpintero, Miriam; Gulliver, Zacarías

    2015-04-01

    Integrated River Basin Management (IRBM) aims at planning water, land and other natural resources for an equitable and sustainable management, also capable of preserving or restoring freshwater ecosystems. Long term series of significant variables at different scales and a sound knowledge of the river basin processes are needed to establish the current state and past&future evolution of the hydrological system, soil use and vegetation distribution, and their social impacts and feedbacks. This is particularly crucial if future scenario analyses are to be performed to assess decision-making processes and adaptive plans. This work highlights the need for an adequate design and development of process-oriented monitoring systems at the basin scale in a decision-making framework. First, the hydrologic monitoring network of the Guadalfeo River Basin, in the southern face of Sierra Nevada Range (Spain), is shown, in a pilot catchment of 1300 km2 in which snow processes in Mediterranean conditions have been studied over the last ten years with a holistic approach. The network development and the main features of the dataset are described together with their use for different scientific and environmental applications; their benefits for assessing social and economic impact in the rural environment are shown from a study case in which the sustainability of ancient channels fed by snowmelt, in use since the XIIIth century for traditional irrigated crops in the mountainous area, was assessed in a future scenarios analyses. Secondly, the standard flow and water quality monitoring networks in the Guadalquivir River Basin, a large (57400 km2) and highly regulated agricultural catchment in southern Spain, are shown, and their strengths and weaknessess for an IRBM framework are analysed. Sediments and selected pollutants are used to trace soil erosion and agricultural/urban exports throughout the catchment, and the final loads to the river estuary in the Atlantic Ocean are assessed

  7. Groundwater flow path dynamics and nitrogen transport potential in the riparian zone of an agricultural headwater catchment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stream riparian zones are often thought of as areas that provide natural remediation for groundwater contaminants, especially agricultural nitrogen (N). While denitrification and vegetative uptake tend to be efficient N removal processes in slow moving shallow groundwater, these mechanisms decrease ...

  8. River water quality of the River Cherwell: an agricultural clay-dominated catchment in the upper Thames Basin, southeastern England.

    PubMed

    Neal, Colin; Neal, Margaret; Hill, Linda; Wickham, Heather

    2006-05-01

    The water quality of the River Cherwell and a tributary of it, the Ray, are described in terms of point and diffuse sources of pollution, for this rural area of the upper Thames Basin. Point sources of pollution dominate at the critical ecological low flow periods of high biological activity. Although the surface geology is predominantly clay, base flow is partly supplied from springs in underlying carbonate-bearing strata, which influences the water quality particularly with regards to calcium and alkalinity. The hydrogeochemistry of the river is outlined and the overall importance of urban point sources even in what would normally be considered to be rural catchments is stressed in relation to the European Unions Water Framework Directive. Issues of phosphorus stripping at sewage treatment works are also considered: such stripping on the Cherwell has reduced phosphorus concentrations by about a factor of two, but this is insufficient for the needs of the Water Framework Directive. PMID:16253306

  9. Organic Farming Benefits Local Plant Diversity in Vineyard Farms Located in Intensive Agricultural Landscapes

    NASA Astrophysics Data System (ADS)

    Nascimbene, Juri; Marini, Lorenzo; Paoletti, Maurizio G.

    2012-05-01

    The majority of research on organic farming has considered arable and grassland farming systems in Central and Northern Europe, whilst only a few studies have been carried out in Mediterranean agro-systems, such as vineyards, despite their economic importance. The main aim of the study was to test whether organic farming enhances local plant species richness in both crop and non-crop areas of vineyard farms located in intensive conventional landscapes. Nine conventional and nine organic farms were selected in an intensively cultivated region (i.e. no gradient in landscape composition) in northern Italy. In each farm, vascular plants were sampled in one vineyard and in two non-crop linear habitats, grass strips and hedgerows, adjacent to vineyards and therefore potentially influenced by farming. We used linear mixed models to test the effect of farming, and species longevity (annual vs. perennial) separately for the three habitat types. In our intensive agricultural landscapes organic farming promoted local plant species richness in vineyard fields, and grassland strips while we found no effect for linear hedgerows. Differences in species richness were not associated to differences in species composition, indicating that similar plant communities were hosted in vineyard farms independently of the management type. This negative effect of conventional farming was probably due to the use of herbicides, while mechanical operations and mowing regime did not differ between organic and conventional farms. In grassland strips, and only marginally in vineyards, we found that the positive effect of organic farming was more pronounced for perennial than annual species.

  10. The use of forward looking infrared to locate bird carcasses in agricultural areas

    USGS Publications Warehouse

    Healy, J.M.

    2001-01-01

    Helicopter-mounted Forward Looking Infrared has mainly been used for large animal censuses. I examined the use of this instrument in locating bird carcasses in agricultural fields to improve current carcass searching techniques. Mallard (Arias platyrhynchos) and northern bobwhite quail (Colinus virginianus) carcasses were measured with an infrared thermometer immediately following death and for 5 consecutive nights to determine the optimal time for detection. Preliminary flights were conducted to design a protocol that was used in test flights. Bird species (mallard versus quail) and cover type (bare ground versus short grass) were compared in the flights. Carcasses were recovered with the aid of Global Positioning Systems. Carcasses remained above ambient ground temperatures for all or part of night 1. Quail carcass temperatures decreased faster than mallard carcasses. In warmer weather, carcass temperatures increased 3-5 nights following death. In colder weather, carcasses were 1-2 C cooler than the ground after the first night. Mallard and quail carcasses were both detected on bare ground and short grass cover types with Forward Looking Infrared. The carcass recovery rates were 40% arid 30% on bare ground and short grass, respectively. There were no significant differences in detection for species or cover type. In warmer weather, carcasses could be detected for several hours following death and again 3-5 nights after death. Carcasses may be detected as objects cooler than the ground in colder weather. Forward Looking Infrared was successful in detecting mallard and quail carcasses. Further research should evaluate improved mapping techniques to enhance carcass recovery.

  11. Quantifying the dominant sources of sediment in a drained lowland agricultural catchment: The application of a thorium-based particle size correction in sediment fingerprinting

    NASA Astrophysics Data System (ADS)

    Foucher, Anthony; Laceby, Patrick J.; Salvador-Blanes, Sébastien; Evrard, Olivier; Le Gall, Marion; Lefèvre, Irène; Cerdan, Olivier; Rajkumar, Vignesh; Desmet, Marc

    2015-12-01

    suspended sediment loads on riverine systems in similar lowland drained agricultural catchments.

  12. Dynamics of nitrate and chloride during storm events in agricultural catchments with different subsurface drainage intensity (Indiana, USA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grids of perforated pipe buried beneath many poorly drained agricultural fields in the Midwestern U.S. are believed to “short circuit” pools of nitrate-laden soil water and shallow groundwater directly into streams that eventually discharge to the Mississippi River. Although much is known about the ...

  13. Factors in the Adjustment of Khashm El-Girba Tenants to a New Location and a New Type of Agriculture.

    ERIC Educational Resources Information Center

    Abdelrahman, Ahmed Elamin

    The main objectives of the study were: to analyze factors related to adjustment to resettlement; to find the relationship of attitudes to behavior in relation to two major social changes -- adjustment to new location and to a new type of agriculture; to identify the characteristics of unadjusted tenants; to identify the environmental elements…

  14. Trace Element Distribution in Stream Bed Sediments Within AN Agricultural Catchment of the Broadkill River Watershed, Delaware, USA

    NASA Astrophysics Data System (ADS)

    Oyewumi, O.; Schreiber, M. E.

    2011-12-01

    This project examined the impact of long-term litter application on the chemical signatures of trace metals (As, Cu, Zn,) and nutrient (P) in river sediments of the Broadkill River watershed within the Delmarva Peninsula, a region of intense poultry production. Twenty-seven (27) sediment samples were collected from Broadkill River drainage systems and analyzed for acid and soluble extractable elements as well as basic soil parameters such as particle size, organic matter and soluble salts. Results showed that concentrations of the trace elements in stream sediments are approximately log-normally distributed, with concentrations increasing from upstream headwaters to downstream reaches draining predominantly agricultural areas. Using GIS maps with overlays of hydrology and land use activity, correlations between the concentrations of As, Cu, Zn and P and agricultural activities within the watershed were examined. Results indicate positive correlation between the trace elements but the connection to specific regions of agricultural land use is not clearly defined. Trace elements were also positively correlated with percent of clay and silt particles, indicating partitioning of these elements to finer grain sizes. Calculations of element enrichment factors and the geoaccumulation index revealed that most of the sediment samples were not enriched in trace elements with respect to our reference samples. However, trace element concentrations in sediments increased downgradient, suggesting that they may be influenced by anthropogenic activities within the watershed.

  15. Indirect emissions and isotopologue signatures of N2O from agricultural drainage water of a Pleistocene lowland catchment in North-Eastern Germany

    NASA Astrophysics Data System (ADS)

    Weymann, D.; Well, R.; Kahle, P.; Tiemeyer, B.; Flessa, H.

    2011-12-01

    Artificial drainage of low- and wetlands is a common practice in many agricultural regions to facilitate crop production. Agricultural drainage water was shown to be supersaturated with nitrous oxide (N2O), a major greenhouse gas thought to contribute to global warming and to the destruction of stratospheric ozone. Therefore, drainage of agricultural land has potential for indirect N2O emissions which are a highly uncertain component of the global N2O budget. This case study focuses on these emissions and further tries to unravel the source processes of N2O as well as the impact of its hydrological controls by applying an isotopologue approach. The research area was an intensively tile drained agricultural catchment embedded in the Pleistocene lowland of the federal state Mecklenburg-Vorpommern (North-Eastern Germany). Water sampling was conducted during the consecutive hydrological winter periods 2007/2008 and 2008/2009 by sampling a collector drain outlet and an adjacent drainage ditch. Besides concentrations of dissolved N2O and NO3- we determined the isotopologue signatures of N2O by measuring δ15Nbulk and δ18O as well as the 15N 'site preference', which characterizes the intramolecular distribution of the N isotopes within the asymmetric N2O molecule and is a promising tool to distinguish between the main source processes of N2O, nitrification and denitrification. The investigated hydrological winter periods varied considerably concerning the weather and hydrological conditions. During the comparatively wet winter period 2007/2008, indirect N2O emissions accounted for 0.17 kg N2O-N ha-1 a-1 and were thus higher than during the colder and comparatively dry 2008/2009 period, where we found 0.12 kg N2O-N ha-1 a-1. The emission factors for both sampling periods were 0.23 % and 0.17 % of the N input, respectively, and therefore in good agreement with the current IPCC default value of 0.25 %. The isotopologue signatures of N2O reflected the different hydrological

  16. The impact of cattle access on ecological water quality in streams: Examples from agricultural catchments within Ireland.

    PubMed

    Conroy, E; Turner, J N; Rymszewicz, A; O'Sullivan, J J; Bruen, M; Lawler, D; Lally, H; Kelly-Quinn, M

    2016-03-15

    Unrestricted cattle access to rivers and streams represent a potentially significant localised pressure on freshwater systems. However there is no consensus in the literature on the occurrence and extent of impact and limited research has examined the effects on aquatic biota in the humid temperate environment examined in the present study. Furthermore, this is one of the first times that research consider the potential for cattle access impacts in streams of varying water quality in Northern Europe. We investigated the effects of cattle access on macroinvertebrate communities and deposited fine sediment levels, in four rivers of high/good and four rivers of moderate water quality status which drain, low gradient, calcareous grassland catchments in Ireland. We assessed the temporal variability in macroinvertebrates communities across two seasons, spring and autumn. Site specific impacts were evident which appeared to be influenced by water quality status and season. All four high/good water status rivers revealed significant downstream changes in community structure and at least two univariate metrics (total richness and EPT richness together with taxon, E and EPT abundance). Two of the four moderate water status rivers showed significant changes in community structure, abundance and richness metrics and functional feeding groups driven in the main by downstream increases in collectors/gatherers, shredders and burrowing taxa. These two moderate water status rivers had high or prolonged livestock activity. In view of these findings, the potential for some of these sites to achieve at least high/good water quality status, as set out in the EU Water Framework Directive, may be compromised. The results presented highlight the need for additional research to further define the site specific factors and livestock management practices, under different discharge conditions, that increase the risk of impact on aquatic ecology due to these cattle-river interactions. PMID

  17. Importance and location of instruction for sixty-eight energy competencies for Kansas agriculture

    SciTech Connect

    French, B.T.

    1982-01-01

    The two primary objectives of this study were: to identify which energy competencies had improtance to Kansas agriculture and to determine how appropiate each competency was for three levels of instruction: high school, Area Vocational-Technical School or Community College, or four year college. An energy questionnaire, comprised of 68 competencies, was completed by 140 individuals and provided data to meet the studys primary objectives. Thirty-five returns were recieved from each of four groups: Young Farmers/Young Farm Wives, High School Vo-Ag teachers, Postsecondary AVTS-CC Agricultural teachers, and County Extension Directors. Of the 68 energy competencies, 36 were rated very important, 28 important, and 4 as having some important to Kansas agriculture. All competencies in category six, energy saving technology for farm vehicles, tractors, machinery and crop production, were rated very important. Category six was the highest-rated category importance to Kansas ariculture, and category eleven other alternate energy sources and storage systems was rated the least important. Because energy technology was important to Kansas agriculture it was recommended educational curricula and materials be developed based on the 68 competencies in this study, and be made available to agriculture instructors at all teaching levels.

  18. The seasonal dynamics of the stream sources and input flow paths of water and nitrogen of an Austrian headwater agricultural catchment.

    PubMed

    Exner-Kittridge, Michael; Strauss, Peter; Blöschl, Günter; Eder, Alexander; Saracevic, Ernis; Zessner, Matthias

    2016-01-15

    Our study examines the source aquifers and stream inputs of the seasonal water and nitrogen dynamics of a headwater agricultural catchment to determine the dominant driving forces for the seasonal dynamics in the surface water nitrogen loads and concentrations. We found that the alternating aquifer contributions throughout the year of the deep and shallow aquifers were the main cause for the seasonality of the nitrate concentration. The deep aquifer water typically contributed 75% of the total outlet discharge in the summer and 50% in the winter when the shallow aquifer recharges due to low crop evapotranspiration. The shallow aquifer supplied the vast majority of the nitrogen load to the stream due to the significantly higher total nitrogen concentration (11 mg-N/l) compared to the deep aquifer (0.50 mg-N/l). The main stream input pathway for the shallow aquifer nitrogen load was from the perennial tile drainages providing 60% of the total load to the stream outlet, while only providing 26% of the total flow volume. The diffuse groundwater input to the stream was the largest input to the stream (39%), but only supplied 27% to the total nitrogen load as the diffuse water was mostly composed of deep aquifer water. PMID:26562340

  19. Baseflow and stormflow metal fluxes from two small agricultural catchments in the Coastal Plain of the Chesapeake Bay Basin, United States

    USGS Publications Warehouse

    Miller, C.V.; Foster, G.D.; Majedi, B.F.

    2003-01-01

    Annual yields (fluxes per unit area) of Al, Mn, Fe, Ni, Cd, Pb, Zn, Cu, Cr, Co, As and Se were estimated for two small non-tidal stream catchments on the Eastern Shore of the Chesapeake Bay, United States - a poorly drained dissected-upland watershed in the Nanticoke River Basin, and a well-drained feeder tributary in the lower reaches of the Chester River Basin. Both watersheds are dominated by agriculture. A hydrograph-separation technique was used to determine the baseflow and stormflow components of metal yields, thus providing important insights into the effects of hydrology and climate on the transport of metals. Concentrations of suspended-sediment were used as a less-costly proxy of metal concentrations which are generally associated with particles. Results were compared to other studies in Chesapeake Bay and to general trends in metal concentrations across the United States. The study documented a larger than background yield of Zn and Co from the upper Nanticoke River Basin and possibly enriched concentrations of As, Cd and Se from both the upper Nanticoke River and the Chesterville Branch (a tributary of the lower Chester River). The annual yield of total Zn from the Nanticoke River Basin in 1998 was 18,000 g/km2/a, and was two to three times higher than yields reported from comparable river basins in the region. Concentrations of Cd also were high in both basins when compared to crustal concentrations and to other national data, but were within reasonable agreement with other Chesapeake Bay studies. Thus, Cd may be enriched locally either in natural materials or from agriculture.

  20. Catchment controls on solute export

    NASA Astrophysics Data System (ADS)

    Musolff, Andreas; Schmidt, Christian; Selle, Benny; Fleckenstein, Jan H.

    2015-12-01

    Dynamics of solute export from catchments can be classified in terms of chemostatic and chemodynamic export regimes by an analysis of concentration-discharge relationships. Previous studies hypothesized that distinct export regimes emerge from the presence of solute mass stores within the catchment and their connectivity to the stream. However, so far a direct link of solute export to identifiable catchment characteristics is missing. Here we investigate long-term time series of stream water quality and quantity of nine neighboring catchments in Central Germany ranging from relatively pristine mountain catchments to agriculturally dominated lowland catchments, spanning large gradients in land use, geology, and climatic conditions. Given the strong collinearity of catchment characteristics we used partial least square regression analysis to quantify the predictive power of these characteristics for median concentrations and the metrics of export regime. We can show that median concentrations and metrics of the export regimes of major ions and nutrients can indeed be inferred from catchment characteristics. Strongest predictors for median concentrations were the share of arable land, discharge per area, runoff coefficient and available water capacity in the root zone of the catchments. The available water capacity in the root zone, the share of arable land being artificially drained and the topographic gradient were found to be the most relevant predictors for the metrics of export regime. These catchment characteristics can represent the size of solute mass store such as the fraction of arable land being a measure for the store of nitrate. On the other hand, catchment characteristics can be a measure for the connectivity of these solute stores to the stream such as the fraction of tile drained land in the catchments. This study demonstrates the potential of data-driven, top down analyses using simple metrics to classify and better understand dominant controls of

  1. How old is upland catchment water?

    NASA Astrophysics Data System (ADS)

    Hofmann, Harald; Cartwright, Ian; Morgenstern, Uwe; Gilfedder, Benjamin

    2014-05-01

    Understanding the dynamics of water supply catchments is an essential part of water management. Upland catchments provide a continuous, reliable source of high quality water not only for some of the world's biggest cities, but also for agriculture and industry. Headwater streams control river flow in lowland agricultural basins as the majority of river discharge emerges from upland catchments. Many rivers are perennial and flow throughout the year, even during droughts. However, it is still unclear how reliable and continuous upland catchment water resources really are. Despite many efforts in upland catchment research, there is still little known about where the water is stored and how long it takes to travel through upper catchments. Resolving these questions is crucial to ensure that this resource is protected from changing land use and to estimate potential impacts from a changing climate. Previous research in this important area has been limited by existing measurement techniques. Knowledge to date has relied heavily on the use of variation in stable isotope signals to estimate the age and origin of water from upland catchments. The problem with relying on these measures is that as the water residence time increases, the variation in the stable isotope signal decreases. After a maximum period of four years, no variation can be detected This means that to date, the residence time in upland catchments is likely to have been vastly underestimated. Consequently, the proportion of water flow out of upland river catchments to the total river flow is also underestimated. Tritium (3H) combines directly with water molecules and enters the flow paths with the infiltrating water. Its half-life (12.32 years) makes it ideal to describe residence times in upper catchment reservoirs as it can theoretically measure water up to about 150 years old. The bomb pulse peak in the southern hemisphere was several orders of magnitude lower than in the northern hemisphere. Hence the

  2. Spatial variability of soil magnetic susceptibility in an agricultural field located in Eastern Ukraine

    NASA Astrophysics Data System (ADS)

    Menshov, Oleksandr; Pereira, Paulo; Kruglov, Oleksandr

    2015-04-01

    Magnetic susceptibility (MS) have been used to characterize soil properties. It gives an indirect information about heavy metals content and degree of human impacts on soil contamination derived from atmospheric pollution (Girault et al., 2011). This method is inexpensive in relation to chemical analysis and very useful to track soil pollution, since several toxic components deposited on soil surface are rich in particulates produced by oxidation processes (Boyko et al., 2004; Morton-Bernea et al., 2009). Thus, identify the spatial distribution of MS is of major importance, since can give an indirect information of high metals content (Dankoub et al., 2012). This allows also to distinguish the pedogenic and technogenic origin magnetic signal. For example Ukraine chernozems contain fine-grained oxidized magnetite and maghemite of pedogenic origin formed by weathering of the parent material (Jeleńska et al., 2004). However, to a correct understanding of variables distribution, the identification of the most accurate interpolation method is fundamental for a better interpretation of map information (Pereira et al., 2013). The objective of this work is to study the spatial variability of soil MS in an agricultural fields located in the Tcherkascy Tishki area (50.11°N, 36.43 °E, 162 m a.s.l), Ukraine. Soil MS was measured in 77 sampling points in a north facing slope. To estimate the best interpolation method, several interpolation methods were tested, as inverse distance to a weight (IDW) with the power of 1,2,3,4 and 5, Local Polynomial (LP) with the power of 1 and 2, Global Polynomial (GP), radial basis functions - spline with tension (SPT), completely regularized spline (CRS), multiquatratic (MTQ), inverse multiquatratic (IMTQ), and thin plate spline (TPS) - and some geostatistical methods as, ordinary kriging (OK), Simple Kriging (SK) and Universal Kriging (UK), used in previous works (Pereira et al., 2014). On average, the soil MS of the studied plot had 686

  3. Spatial variability of soil magnetic susceptibility in an agricultural field located in Eastern Ukraine

    NASA Astrophysics Data System (ADS)

    Menshov, Oleksandr; Pereira, Paulo; Kruglov, Oleksandr

    2015-04-01

    Magnetic susceptibility (MS) have been used to characterize soil properties. It gives an indirect information about heavy metals content and degree of human impacts on soil contamination derived from atmospheric pollution (Girault et al., 2011). This method is inexpensive in relation to chemical analysis and very useful to track soil pollution, since several toxic components deposited on soil surface are rich in particulates produced by oxidation processes (Boyko et al., 2004; Morton-Bernea et al., 2009). Thus, identify the spatial distribution of MS is of major importance, since can give an indirect information of high metals content (Dankoub et al., 2012). This allows also to distinguish the pedogenic and technogenic origin magnetic signal. For example Ukraine chernozems contain fine-grained oxidized magnetite and maghemite of pedogenic origin formed by weathering of the parent material (Jeleńska et al., 2004). However, to a correct understanding of variables distribution, the identification of the most accurate interpolation method is fundamental for a better interpretation of map information (Pereira et al., 2013). The objective of this work is to study the spatial variability of soil MS in an agricultural fields located in the Tcherkascy Tishki area (50.11°N, 36.43 °E, 162 m a.s.l), Ukraine. Soil MS was measured in 77 sampling points in a north facing slope. To estimate the best interpolation method, several interpolation methods were tested, as inverse distance to a weight (IDW) with the power of 1,2,3,4 and 5, Local Polynomial (LP) with the power of 1 and 2, Global Polynomial (GP), radial basis functions - spline with tension (SPT), completely regularized spline (CRS), multiquatratic (MTQ), inverse multiquatratic (IMTQ), and thin plate spline (TPS) - and some geostatistical methods as, ordinary kriging (OK), Simple Kriging (SK) and Universal Kriging (UK), used in previous works (Pereira et al., 2014). On average, the soil MS of the studied plot had 686

  4. Economic Analysis of Energy Crop Production in the U.S. - Location, Quantities, Price, and Impacts on Traditional Agricultural Crops

    SciTech Connect

    Walsh, M.E.; De La Torre Ugarte, D.; Slinsky, S.; Graham, R.L.; Shapouri, H.; Ray, D.

    1998-10-04

    POLYSYS is used to estimate US locations where, for any given energy crop price, energy crop production can be economically competitive with conventional crops. POLYSYS is a multi-crop, multi-sector agricultural model developed and maintained by the University of Tennessee and used by the USDA-Economic Research Service. It includes 305 agricultural statistical districts (ASD) which can be aggregated to provide state, regional, and national information. POLYSYS is being modified to include switchgrass, hybrid poplar, and willow on all land suitable for their production. This paper summarizes the preliminary national level results of the POLYSYS analysis for selected energy crop prices for the year 2007 and presents the corresponding maps (for the same prices) of energy crop production locations by ASD. Summarized results include: (1) estimates of energy crop hectares (acres) and quantities (dry Mg, dry tons), (2) identification of traditional crops allocated to energy crop production and calculation of changes in their prices and hectares (acres) of production, and (3) changes in total net farm returns for traditional agricultural crops. The information is useful for identifying areas of the US where large quantities of lowest cost energy crops can most likely be produced.

  5. Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture within the United States is varied and produces a large value ($200 billion in 2002) of production across a wide range of plant and animal production systems. Because of this diversity, changes in climate will likely impact agriculture throughout the United States. Climate affects crop, ...

  6. Assessing the drivers of dissolved organic matter export from two contrasting lowland catchments, U.K.

    PubMed

    Yates, Christopher A; Johnes, Penny J; Spencer, Robert G M

    2016-11-01

    Two lowland catchments in the U.K. were sampled throughout 2010-11 to investigate the dominant controls on dissolved organic matter quantity and composition. The catchments had marked differences in terms of nutrient status, land cover and contrasting lithologies resulting in differences in the dominant flow pathways (groundwater vs. surface water dominated). The Upper Wylye is a chalk stream with a baseflow index of 0.98, draining a catchment dominated by intensive agricultural production. Millersford Brook is a lowland peat catchment with a baseflow index of 0.43, draining a semi-natural catchment with heather moorland and coniferous forest. Samples were collected weekly between October 2010 and September 2011 from eleven sampling locations. Samples were analysed to determine dissolved organic carbon, nitrogen and phosphorus fractions with DOM composition evaluated via the DOC:DON ratio, DOC:DOP ratio, specific UV absorption at 254nm, absorbance ratio (a250:a365) and the spectral slope parameter between 350 and 400nm (S350-400). Significant differences were observed in all determinands between the catchments, over time, and spatially along nutrient enrichment and geoclimatic gradients. Seasonal variation in preferential flow pathways mobilising groundwater-derived DOM were identified as likely controls on the delivery of DOM in the permeable chalk dominated catchment. Steeper S350-400 values and elevated a250:a365 ratios in this catchment suggest material of a lower bulk aromatic C content and molecular weight delivered during the winter months when compared to the summer. DOC:DON ratios were markedly lower in the chalk catchment than the peatland catchment, reflecting the paucity of organic matter within the mineral soils of the chalk landscape, and higher fertiliser application rates. This manuscript highlights that DOM composition varies according to catchment landscape character and hydrological function. PMID:27422728

  7. The application of GEOtop for catchment scale hydrology in Ireland

    NASA Astrophysics Data System (ADS)

    Lewis, C.; Xu, X.; Albertson, J.; Kiely, G.

    2009-04-01

    GEOtop represents the new generation of distributed hydrological model driven by geospatial data (e.g. topography, soils, vegetation, land cover). It estimates rainfall-runoff, evapotranspiration and provides spatially distributed outputs as well as routing water and sediment flows through stream and river networks. The original version of GEOtop designed in Italy, includes a rigorous treatment of the core hydrological processes (e.g. unsaturated and saturated flow and transport, surface energy balances, and streamflow generation/routing). Recently GEOtop was extended to include treatment of shallow landslides. The GEOtop model is built on an open-source programming framework, which makes it well suited for adaptation and extension. GEOtop has been run very successfully in a number of alpine catchments (such as Brenta) but has not been used on Irish catchments before. The cell size used for the spatially distributed inputs varies from catchment to catchment. In smaller catchments (less than 2000ha) 50 by 50m cells have been used and 200 by 200 for larger catchments. Smaller cell sizes have been found to significantly increase the computational time so a larger cell size is used providing it does not significantly affect the performance of the model. Digital elevation model, drainage direction, landuse and soil type maps are the minimum spatial requirements with precipitation, radiation, temperature, atmospheric pressure and wind speed been the minimum meteorological requirements for a successful run. The soil type maps must also contain information regarding texture and hydraulic conductivity. The first trial of GEOtop in Ireland was on a small 1524 ha catchment in the south of Ireland. The catchment ranges from 50 to just over 200m, the land use is predominately agricultural grassland and it receives on average 1400mm of rain per year. Within this catchment there is a meteorological tower which provides the meteorological inputs, soil moisture is also recorded at

  8. Anaerobic co-digestion plants for the revaluation of agricultural waste: Sustainable location sites from a GIS analysis.

    PubMed

    Villamar, Cristina Alejandra; Rivera, Diego; Aguayo, Mauricio

    2016-04-01

    The aim of this study was to establish sustainably feasible areas for the implementation of anaerobic co-digestion plants for agricultural wastes (cattle/swine slurries and cereal crop wastes). The methodology was based on the use of geographic information systems (GIS), the analytic hierarchy process (AHP) and map algebra generated from hedges related to environmental, social and economic constraints. The GIS model obtained was applied to a region of Chile (Bío Bío Region) as a case study showing the energy potential (205 MW-h) of agricultural wastes (swine/cattle manures and cereal crop wastes) and thereby assessing its energy contribution (3.5%) at country level (Chile). From this model, it was possible to spatially identify the influence of each factor (environmental, economic and social) when defining suitable areas for the siting of anaerobic co-digestion plants. In conclusion, GIS-based models establish appropriate areas for the location of anaerobic co-digestion plants in the revaluation of agricultural waste from the production of energy through biogas production. PMID:26862147

  9. The use of GIS and multi-criteria evaluation (MCE) to identify agricultural land management practices which cause surface water pollution in drinking water supply catchments.

    PubMed

    Grayson, Richard; Kay, Paul; Foulger, Miles

    2008-01-01

    Diffuse pollution poses a threat to water quality and results in the need for treatment for potable water supplies which can prove costly. Within the Yorkshire region, UK, nitrates, pesticides and water colour present particular treatment problems. Catchment management techniques offer an alternative to 'end of pipe' solutions and allow resources to be targeted to the most polluting areas. This project has attempted to identify such areas using GIS based modelling approaches in catchments where water quality data were available. As no model exists to predict water colour a model was created using an MCE method which is capable of predicting colour concentrations at the catchment scale. CatchIS was used to predict pesticide and nitrate N concentrations and was found to be generally capable of reliably predicting nitrate N loads at the catchment scale. The pesticides results did not match the historic data possibly due to problems with the historic pesticide data and temporal and spatially variability in pesticide usage. The use of these models can be extended to predict water quality problems in catchments where water quality data are unavailable and highlight areas of concern. PMID:19029721

  10. Trend analysis of nutrient loadings in the South Saskatchewan River catchment

    NASA Astrophysics Data System (ADS)

    Morales-Marin, L. A.; Chun, K. P.; Wheater, H. S.; Lindenschmidt, K. E.

    2015-12-01

    Nutrient loadings in river catchments have increased in the past years as a consequence of rapid expansion of agricultural areas, new urban developments and industries, and population growth. Nutrient enrichment of water bodies has intensified eutrophication conditions that degrade water quality and ecosystem health. In large-scale catchments, the assessment of temporal and spatial variability of nutrient loads imply challenges due to climate, land use and geology heterogeneity, and to anthropogenic changes. In this study we carried out a trend analysis of total phosphorus and total nitrogen loads in the South Saskatchewan River (SSR) catchment. This catchment is located in the Canadian Prairie Provinces of Alberta and Saskatchewan. The eastern and central areas of the catchment consist mostly of croplands, pasture lands and livestock farms, whereas the western parts are located on the Rocky Mountains that are the source of most of the catchment's streamflows. The trend analysis was performed applying a novel approach to analyse nutrient time series recorded at long-term water quality stations along the main stems of the SSR river network. Since water quality is taken infrequently, in the proposed approach the time series were complemented using regression analysis methods based on streamflow data recorded at the nearest gauge stations. The time series were subsequently pre-whitened in order to remove the autocorrelation, and then subjected to non-parametric statistical test to detect trends. Seasonal analysis of trends at each of the water quality stations were performed in order to determine the relationships between annual flow regimes and nutrient loads in the catchment, in particular, the influence of the high spring runoff on nutrient export. Decadal analysis was also performed to determine the long-tern relationships of nutrients with anthropogenic changes in the catchment. In particular, the capacity of reservoirs to trap nutrients and the effects of the

  11. PSYCHIC A process-based model of phosphorus and sediment mobilisation and delivery within agricultural catchments. Part 1: Model description and parameterisation

    NASA Astrophysics Data System (ADS)

    Davison, Paul S.; Withers, Paul J. A.; Lord, Eunice I.; Betson, Mark J.; Strömqvist, Johan

    2008-02-01

    SummaryPSYCHIC is a process-based model of phosphorus (P) and suspended sediment (SS) mobilisation in land runoff and subsequent delivery to watercourses. Modelled transfer pathways include release of desorbable soil P, detachment of SS and associated particulate P, incidental losses from manure and fertiliser applications, losses from hard standings, the transport of all the above to watercourses in underdrainage (where present) and via surface pathways, and losses of dissolved P from point sources. The model can operate at two spatial scales, although the scientific core is the same in both cases. At catchment scale, the model uses easily available national scale datasets to infer all necessary input data whilst at field scale, the user is required to supply all necessary data. The model is sensitive to a number of crop and animal husbandry decisions, as well as to environmental factors such as soil type and field slope angle. It is envisaged that the catchment-scale model would provide the first tier of a catchment characterisation study, and would be used as a screening tool to identify areas within the catchment which may be at elevated risk of P loss. This would enable targeted data collection, involving farm visits and stakeholder discussion, which would then be followed up with detailed field-scale modelling. Both tiers allow the effects of possible mitigation options at catchment scale (Tier 1) and field scale (Tier 2) to be explored. The PSYCHIC model framework therefore provides a methodology for identifying critical source areas of sediment and P transfer in catchments and assessing what management changes are required to achieve environmental goals.

  12. Identifying hydrological responses of micro-catchments under contrasting land use in the Brazilian Cerrado

    NASA Astrophysics Data System (ADS)

    Nobrega, R. L. B.; Guzha, A. C.; Torres, G. N.; Kovacs, K.; Lamparter, G.; Amorim, R. S. S.; Couto, E.; Gerold, G.

    2015-09-01

    In recent decades, the Brazilian Cerrado biome has been affected by intense land-use change, particularly the conversion of natural forest to agricultural land. Understanding the environmental impacts of this land-use change on landscape hydrological dynamics is one of the main challenges in the Amazon agricultural frontier, where part of the Brazilian Cerrado biome is located and where most of the deforestation has occurred. This study uses empirical data from field measurements to characterize controls on hydrological processes from three first-order micro-catchments < 1 km2 in the Cerrado biome. These micro-catchments were selected on the basis of predominant land use including native cerrado vegetation, pasture grass with cattle ranching, and cash crop land. We continuously monitored precipitation, streamflow, soil moisture, and meteorological variables from October 2012 to September 2014. Additionally, we determined the physical and hydraulic properties of the soils, and conducted topographic surveys. We used these data to quantify the water balance components of the study catchments and to relate these water fluxes to land use, catchment physiographic parameters, and soil hydrophysical properties. The results of this study show that runoff coefficients were 0.27, 0.40, and 0.16 for the cerrado, pasture, and cropland catchments, respectively. Baseflow is shown to play a significant role in streamflow generation in the three study catchments, with baseflow index values of more than 0.95. The results also show that evapotranspiration was highest in the cerrado (986 mm yr-1) compared to the cropland (828 mm yr-1) and the pasture (532 mm yr-1). However, discharges in the cropland catchment were unexpectedly lower than that of the cerrado catchment. The normalized discharge was 55 % higher and 57 % lower in the pasture and cropland catchments, respectively, compared with the cerrado catchment. We attribute this finding to the differences in soil type and

  13. Determination of Curve Number for snowmelt-runoff floods in a small catchment

    NASA Astrophysics Data System (ADS)

    Hejduk, L.; Hejduk, A.; Banasik, K.

    2015-06-01

    One of the widely used methods for predicting flood runoff depth from ungauged catchments is the curve number (CN) method, developed by Soil Conservation Service (SCS) of US Department of Agriculture. The CN parameter can be computed directly from recorded rainfall depths and direct runoff volumes in case of existing data. In presented investigations, the CN parameter has been computed for snowmelt-runoff events based on snowmelt and rainfall measurements. All required data has been gathered for a small agricultural catchment (A = 23.4 km2) of Zagożdżonka river, located in Central Poland. The CN number received from 28 snowmelt-runoff events has been compared with CN computed from rainfall-runoff events for the same catchment. The CN parameter, estimated empirically varies from 64.0 to 94.8. The relation between CN and snowmelt depth was investigated in a similar procedure to relation between CN and rainfall depth.

  14. Guiding soil conservation strategy in headwater mediterranean catchments

    NASA Astrophysics Data System (ADS)

    Ben Slimane, Abir; Raclot, Damien; Evrard, Olivier; Sanaa, Mustapha; Lefèvre, Irène; Le Bissonnais, Yves

    2016-04-01

    Reservoir siltation due to water erosion is an important environmental issue in Mediterranean countries where storage of clear surface water is crucial for their economic and agricultural development. In order to reduce water erosion, this study aimed to design a methodology for guiding the implementation of efficient conservation strategies by identifying the dominant sediment sources in Mediterranean context. To this end, a fingerprinting method was combined with long-term field monitoring of catchment sediment yield in five headwater catchments (0.1-10 km2) equipped with a small reservoir between 1990 and 1995. The five catchments were chosen to cover the large diversity of environmental conditions found along the Tunisian Ridge and in the Cape Bon region. The fingerprinting techniques based on measurements of cesium-137 and Total Organic Carbon within the catchments and in reservoir sediment deposits successfully identified the contribution of rill/interrill and gully/channel erosion to sediment yield at the outlet of five small headwater catchments during the last 15-20 years. Results showed the very large variability of erosion processes among the selected catchments, with rill/interrill erosion contributions to sediment accumulated in outlet reservoirs ranging from 20 to 80%. Overall, rill/interrill erosion was the dominant process controlling reservoir siltation in three catchments whereas gully/channel erosion dominated in the other two catchments. This demonstrates that the dominant erosion process in the Mediterranean regions highly depends on the local environmental context. The lowest rill/interrill erosion contribution (2.2 Mg ha-1 yr-1) in the five catchments remained significantly higher than the tolerable soil loss indicating the severe levels reached by soil erosion along the Tunisian Ridge and in the Cape Bon region. This study also showed that although the implementation of improved topsoil management measures greatly reduced rill

  15. Comparative analyses of factors determining soil erosion rates based on network of Mediterranean monitored catchments for the innovative, adaptive and resilient agriculture of the future

    NASA Astrophysics Data System (ADS)

    Smetanová, Anna; Le Bissonnais, Yves; Raclot, Damien; Perdo Nunes, João; Licciardello, Feliciana; Mathys, Nicolle; Latron, Jérôme; Rodríguez Caballero, Emilio; Le Bouteiller, Caroline; Klotz, Sébastien; Mekki, Insaf; Gallart, Francesc; Solé Benet, Albert; Pérez Gallego, Nuria; Andrieux, Patrick; Jantzi, Hugo; Moussa, Roger; Planchon, Olivier; Marisa Santos, Juliana

    2015-04-01

    In order to project the soil erosion response to climate change in the fragile Mediterranean region it is inevitable to understand its existing patterns. Soil erosion monitoring on a catchment scale enables to analyse temporal and spatial variability of soil erosion and sediment delivery, while the integrating study of different catchments is often undertaken to depicther the general patterns. In this study, eight small catchments (with area up to 1,32 km2), representative for the western part of the Mediterranean region (according to climate, bedrock, soils and main type of land use) were compared. These catchments, grouped in the R-OS Med Network were situated in France (3), Spain (2), Portugal (1), Italy (1) and Tunisia (1). The average precipitation ranged between 236 to 1303 mm·a-1 and mean annual sediment yield varied 7.5 to 6900 Mg·km-2·a-1. The complex databes was based on more than 120 years of hydrological and sediment data, with series between 3 and 29 years long. The variability of sediment data was described on annual and monthly basis. The relationship between the sediment yield and more than 35 factors influencing the sediment yield including the characteristics of climate, topography, rainfall, runoff, land use, vegetation and soil cover, connectivity and dominant geomorphic processes, was studied. The preliminary results confirmed the differences in rainfall, runoff and sediment response, and revealed both the similarities and differences in soil erosion responses of the catchments. They are further dependent on the variability of factors themselves, with important contribution of the state of soil properties, vegetation cover and land use. Anna Smetanová has received the support of the European Union, in the framework of the Marie-Curie FP7 COFUND People Programme, through the award of an AgreenSkills' fellowship (under grant agreement n° 267196)

  16. Can the catchment scale SWAT model undertake management at field scale?

    NASA Astrophysics Data System (ADS)

    Lu, Shenglan; Trolle, Dennis; Blicher-Mathiesen, Gitte; Estrup Andersen, Hans

    2015-04-01

    Nitrate losses from agricultural areas to waterways remain a serious stressor for aquatic ecosystems in many developed countries, despite the fact that decades of water action plans have reduced these losses. More intelligent ways of further reducing nitrate losses are now sought for, particularly the ability to pinpoint the location of critical areas where the potential for nitrate losses are high. Here, mathematical models can play a key role, as they offer the ability to locate areas at various size-discretization, where losses could potentially be high. The Soil and Water Assessment Tool (SWAT) have been widely applied for quantifying nitrate losses from agricultural catchments, but the model have rarely be validated at field scale that are relevant for implementation of management measures, often due to lack of data from such scales. In this study, we calibrated the SWAT model for intensively monitored smaller Danish catchments based only on data from the catchment outlets. We then looked into smaller areas within these catchments and evaluated the SWAT models ability to reproduce observed tile drain dynamics and nitrogen budgets at the field scale, including fertilizer application, crop yields, leaching through the root zone and tile drainage. To evaluate the importance of the simulated tile drainage at larger scales, we applied the SWAT model to a large section of the River Odense catchment in Denmark and analysed the nitrogen sources and budgets.

  17. The catchment based approach using catchment system engineering

    NASA Astrophysics Data System (ADS)

    Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark

    2015-04-01

    The catchment based approach (CaBa) has been championed as a potential mechanism for delivery of environmental directives such as the Water Framework Directive in the UK. However, since its launch in 2013, there has been only limited progress towards achieving sustainable, holistic management, with only a few of examples of good practice ( e.g. from the Tyne Rivers trust). Common issues with developing catchment plans over a national scale include limited data and resources to identify issues and source of those issues, how to systematically identify suitable locations for measures or suites of measures that will have the biggest downstream impact and how to overcome barriers for implementing solutions. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. A significant component of the runoff generation can be managed by targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source, many runoff attenuation features or measures can be co-located to achieve benefits for water quality and biodiversity. A catchment, community-led mitigation measures plan using the CSE approach will be presented from a catchment in Northumberland, Northern England that demonstrate a generic framework for identification of multi-purpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-ditch measures. Progress on the implementation of measures will be reported alongside potential impacts on the runoff regime at both local and catchment scale and costs.

  18. Trapping runoff, sediment and nutrients at the edge-of-field: Using constructed wetlands to control runoff and improve water quality in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Deasy, Clare; Quinton, John; Stoate, Chris

    2010-05-01

    Across Europe, many rivers and lakes are polluted. In the UK, the Biodiversity Action Plan estimates that over 70% of lakes are eutrophic. Diffuse pollution from agriculture is currently of extreme concern, but pollution and flood risk can be mitigated by management activities. The use of in-field mitigation options such as reduced tillage has been found to be effective at reducing runoff, sediment and nutrient loss in overland flow, but pollutants can still be lost from hillslopes unchecked via subsurface flow pathways, some of which may contribute very high loads of nutrients to streams. Edge-of-field mitigation approaches, which can tackle both surface and subsurface pathways at locations where they discharge into ditches and streams, therefore have greater potential as runoff control measures than in-field measures alone. In the UK, the implementation, effectiveness and functioning of seven new wetlands constructed at the edges of agricultural fields is currently being assessed. The constructed wetlands, of different designs, which are fed by different flow types and are located on different farm and soil types, are continuously monitored for discharge and turbidity at inlets and outlets, while storm sampling allows assessment of sediment and nutrient transfer into and out of the wetland at times when there is a high risk of pollutant transfer. Pond surveys and sediment sampling will take place annually, and tracer experiments will be carried out in the course of the project. The data will be used to generate information on sediment and nutrient load reductions or wetland effectiveness, wetland sediment and nutrient budgets, and water and sediment residence times. In this paper we present the initial results, including novel high-resolution data from the first monitored events. Early outputs suggest that constructed wetlands which receive surface runoff inputs can retain flood waters and may reduce flood peaks, wetlands built to take drain outfalls may be

  19. A bottom up approach to implementing multi-purpose mitigation measures for reducing flood risk and improving water quality in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Wilkinson, M. E.; Quinn, P. F.; Jonczyk, J.; Burke, S.; Nicholson, A.; Barber, N.; Owen, G.; Palmer, M.

    2012-04-01

    A number of studies have suggested that there is evidence that modern land-use management practices have increased surface runoff at the local scale. There is an urgent need for interventions to reduce the risk of flooding whilst also delivering multiple benefits (doing more for less). There are many settlements, which regularly suffer from flooding, which would benefit from upstream mitigation measures. Interventions at the source of runoff generation can have a positive impact on the flood hydrograph downstream. An integrated approach to managing runoff can also have multiple benefits on pollution and ecology, which could lead to beneficial impacts at the catchment scale. Belford, a small community in Northumberland, UK has suffered from an increased number of flood events over the past ten years. There is currently support within the English and Welsh Environment Agency for sustainable flood management solutions such as storage ponds, wetlands, beaver dams and willow riparian features which are being trialled at Belford. These runoff attenuation features (RAFs) also have benefits to water quality, capture sediment and create new ecological zones. Although the process by which numerous RAFs were deployed in Belford proved initially difficult to achieve within the existing regulatory framework, an efficient uptake process is now supported by local regulators including several branches of the Environment Agency. The Belford runoff management framework provides a step by step guide to implementing mitigation measures in the Belford burn catchment and could be easily applied to other catchments at a similar scale. The approach is based on implementing mitigation measures through engaging with catchment stakeholders and using solid field science and management protocols.

  20. A methodology to determine pesticides pollution sources in water catchments: study case (Belgium).

    PubMed

    Limbourg, Q; Noel, S; Huyghebaert, B; Capette, L; Hallet, V

    2009-01-01

    In the Walloon Region (Belgium), a Committee of Investigation was created in 2007 to investigate and determine the potential pesticides pollution sources in drinkable water catchments. This Committee, constituted by a multidisciplinary team of experts i.e agronomists, soil scientists, phyto-chemists, hydrogeologists, is coordinated by the Walloon Agricultural Research Centre (CRA-W) and funded by the Société Publique de Gestion des Eaux (SPGE). The diagnosis method is inspired of the AQUAPLAINE method (Arvalis, France), and is composed of four steps: 1/preparing the diagnosis using existing data, 2/diagnosis using data bank completed by field observations, 3/meeting and discussion with the pesticide users, 4/final diagnosis and remediation proposal. In a rural district of Walloon Region, a water producer who possesses two catchments ("Les marroniers" (P1) and "Puits N2" (P2)) has problems with pesticides. The pollution started in 1998 with atrazine and bromacile detected in the two catchments. In 2004, 2,6-dichlorobenzamide, metabolite of dichlobenil, was also detected in the catchments. At present, all these pesticides are still found in the catchment P1 and only the 2,6 dichlorobenzamide is found in the other catchment. These active ingredients are not used in agriculture expect atrazine. Indeed, the main user of these products is the public sector. An investigation was realised to locate the main sites which are treated with these pesticides in this commune. The conclusion of this study is that the local authority used dichlobenil, bromacile and atrazine to weed the public areas. In more, the filling and the cleaning areas of sprayer, used for the treatment, are located near the catchments. PMID:20218526

  1. A Catchment Systems Engineering (CSE) approach to managing intensively farmed land

    NASA Astrophysics Data System (ADS)

    Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark; ODonnell, Greg

    2014-05-01

    Rural land management practices can have a significant impact on the hydrological and nutrient dynamics within a catchment which can dramatically alter the way it processes water, exacerbating nutrient losses from the system. A collaborative and holistic approach for managing potential conflicts between land management activity for food production alongside the aspiration to achieve good water quality and the need to make space for water can ensure the long-term sustainability of our agricultural catchments. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. By targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, a significant component of the runoff generation can be managed, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source many runoff attenuation features or measures can be co-located to achieve benefits for water quality. Examples of community-led mitigation measures using the CSE approach will be presented from two catchments in Northumberland, Northern England, that demonstrate the generic framework for identification of multipurpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-field sediment filters and sediment traps which demonstrate how sediment can be trapped locally (including silt and clay fractions) and be recovered for use back on the land. Deliverables from this CSE approach includes the reduction of downstream flood risk and capturing of sediment and associated nutrients. The CSE approach allows for a more natural flood and nutrient management approach which helps to restore vital catchment functions to re-establish a healthy catchment system.

  2. The role of historical agricultural terraces in geo-hydrological risk reduction: a case study from the Bisagno Stream Catchment (Genoa, Italy)

    NASA Astrophysics Data System (ADS)

    Faccini, Francesco; Giostrella, Paola; Paliaga, Guido; Piana, Pietro; Sacchini, Alessandro

    2016-04-01

    Terraces, traditionally sustained by dry stonewalls, occupy about thirty percent of the territory of Liguria. If constantly maintained, they effectively contribute to slow down the natural slope erosion. When no longer managed, terraces are recognized as one of the reasons for increased geomorphological risk along the slopes and, consequently, at the bottom of the valley. This study concerns the terraced landscapes of the Bisagno Stream catchment, internationally known for the recent and recurring floods which affected the city of Genoa. The Bisagno Stream catchment is an example of historical evolution of the territory both in terms of land use change and geo-hydrological risk. The catchment, whose highest point is Mount Candelozzo (1034 m), has a total area of 95 km2. In its terminal stretch the stream flows across the eastern part of Genoa city centre. It is a typical valley of the Genoa metropolitan area, with steep slopes and short times of concentration. Here the signs of the tragic floods which have affected the area since 1970 are still visible. The most recent and tragic geo-hydrological event in Liguria took place in the Bisagno Valley in October 2014. The study was carried out with a multi-temporal comparison of the terraced areas using aerial photographs and regional cartographic information. A further step will involve the analysis and classification of the terraces based on their maintenance condition and hydrogeological effectiveness, using some representative areas of the valley as cases study. The comparison between the distribution of terraces in the Bisagno valley and applied geomorphological cartography suggests the need of measures to reduce the risk according to a suitable set of priorities, including the recovery of the terraced areas and connected structures aimed to limit the accumulation of solid material along the main waterway.

  3. The phosphorus content of fluvial suspended sediment in three lowland groundwater-dominated catchments

    NASA Astrophysics Data System (ADS)

    Ballantine, Deborah J.; Walling, Desmond E.; Collins, Adrian L.; Leeks, Graham J. L.

    2008-07-01

    SummaryThis paper reports an investigation of the phosphorus (P) content of fluvial suspended sediment samples collected from three lowland groundwater-dominated agricultural catchments in the UK. In-stream trap samplers were installed at a total of 21 locations in the catchments of the Rivers Frome and Piddle in Dorset and in the Upper Tern in Shropshire, UK. Time-integrated suspended sediment samples ( n = 187) were collected at regular intervals over a period of 22 months and analysed for total phosphorus (TP), inorganic phosphorus (IP), organic phosphorus (OP) and algal available phosphorus (AAP). TP concentrations varied between sampling sites in the Rivers Frome and Piddle, allowing key P inputs to be identified, while fractionation of P assisted in identifying the nature of these inputs. There was also significant variation in both the TP concentration and the concentration of individual fractions between the Frome and Piddle catchments and the Upper Tern. These contrasts were attributed to the differing underlying geologies, since the Frome and Piddle are underlain predominantly by chalk, whilst the Upper Tern is underlain by sandstone, and also to the different soil types present. The TP content of suspended sediment collected from the Frome catchment showed a statistically significant relationship with specific surface area, but this relationship was not found for the remaining catchments. Temporal variation in P concentrations at both the seasonal and event scale was also investigated. Seasonal variations were noted for TP concentrations and for the concentrations of IP, OP and AAP in all the study catchments, but no consistent seasonal patterns were discernible. Maximum and minimum concentrations of the individual fractions occurred during different months in each of the study catchments, suggesting that different controls operated in the individual catchments. Short-term temporal variations in TP concentrations were documented for two high flow events

  4. Of birds, carbon and water: integrating multiple ecosystem service impacts to identify locations for agricultural conservation practice adoption

    EPA Science Inventory

    Human use of the landscape for crop production can degrade ecosystem services. A number of agricultural conservation practices are touted as mitigating these impacts. Many of these practices are encouraged by incentive programs such as the Conservation Reserve Program administere...

  5. Location, Location, Location!

    ERIC Educational Resources Information Center

    Ramsdell, Kristin

    2004-01-01

    Of prime importance in real estate, location is also a key element in the appeal of romances. Popular geographic settings and historical periods sell, unpopular ones do not--not always with a logical explanation, as the author discovered when she conducted a survey on this topic last year. (Why, for example, are the French Revolution and the…

  6. Water Catchment and Storage Monitoring

    NASA Astrophysics Data System (ADS)

    Bruenig, Michael; Dunbabin, Matt; Moore, Darren

    2010-05-01

    Sensors and Sensor Networks technologies provide the means for comprehensive understanding of natural processes in the environment by radically increasing the availability of empirical data about the natural world. This step change is achieved through a dramatic reduction in the cost of data acquisition and many orders of magnitude increase in the spatial and temporal granularity of measurements. Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) is undertaking a strategic research program developing wireless sensor network technology for environmental monitoring. As part of this research initiative, we are engaging with government agencies to densely monitor water catchments and storages, thereby enhancing understanding of the environmental processes that affect water quality. In the Gold Coast hinterland in Queensland, Australia, we are building sensor networks to monitor restoration of rainforest within the catchment, and to monitor methane flux release and water quality in the water storages. This poster will present our ongoing work in this region of eastern Australia. The Springbrook plateau in the Gold Coast hinterland lies within a World Heritage listed area, has uniquely high rainfall, hosts a wide range of environmental gradients, and forms part of the catchment for Gold Coast's water storages. Parts of the plateau are being restored from agricultural grassland to native rainforest vegetation. Since April 2008, we have had a 10-node, multi-hop sensor network deployed there to monitor microclimate variables. This network will be expanded to 50-nodes in February 2010, and to around 200-nodes and 1000 sensors by mid-2011, spread over an area of approximately 0.8 square kilometers. The extremely dense microclimate sensing will enhance knowledge of the environmental factors that enhance or inhibit the regeneration of native rainforest. The final network will also include nodes with acoustic and image sensing capability for

  7. National-Scale Hydrologic Classification & Agricultural Decision Support: A Multi-Scale Approach

    NASA Astrophysics Data System (ADS)

    Coopersmith, E. J.; Minsker, B.; Sivapalan, M.

    2012-12-01

    Classification frameworks can help organize catchments exhibiting similarity in hydrologic and climatic terms. Focusing this assessment of "similarity" upon specific hydrologic signatures, in this case the annual regime curve, can facilitate the prediction of hydrologic responses. Agricultural decision-support over a diverse set of catchments throughout the United States depends upon successful modeling of the wetting/drying process without necessitating separate model calibration at every site where such insights are required. To this end, a holistic classification framework is developed to describe both climatic variability (humid vs. arid, winter rainfall vs. summer rainfall) and the draining, storing, and filtering behavior of any catchment, including ungauged or minimally gauged basins. At the national scale, over 400 catchments from the MOPEX database are analyzed to construct the classification system, with over 77% of these catchments ultimately falling into only six clusters. At individual locations, soil moisture models, receiving only rainfall as input, produce correlation values in excess of 0.9 with respect to observed soil moisture measurements. By deploying physical models for predicting soil moisture exclusively from precipitation that are calibrated at gauged locations, overlaying machine learning techniques to improve these estimates, then generalizing the calibration parameters for catchments in a given class, agronomic decision-support becomes available where it is needed rather than only where sensing data are located.lassifications of 428 U.S. catchments on the basis of hydrologic regime data, Coopersmith et al, 2012.

  8. New insight into pesticide partition coefficient Kd for modelling pesticide fluvial transport: application to an agricultural catchment in south-western France.

    PubMed

    Boithias, Laurie; Sauvage, Sabine; Merlina, Georges; Jean, Séverine; Probst, Jean-Luc; Sánchez Pérez, José Miguel

    2014-03-01

    Pesticides applied on crops are leached with rainfall to groundwater and surface water. They threat the aquatic environment and may render water unfit for human consumption. Pesticide partitioning is one of the pesticide fate processes in the environment that should be properly formalised in pesticide fate models. Based on the analysis of 7 pesticide molecules (alachlor, atrazine, atrazine's transformation product deethylatrazine or DEA, isoproturon, tebuconazole and trifluralin) sampled from July 2009 to October 2010 at the outlet of the river Save (south-western France), the objectives of this study were (1) to check which of the environmental factors (discharge, pH, concentrations of total suspended matter (TSM), dissolved organic carbon (DOC) and particulate organic carbon (POC) could control the pesticide sorption dynamic, and (2) to establish a relationship between environmental factors, the partition coefficient Kd and the octanol/water distribution coefficient Kow. The comparison of physico-chemical parameters values during low flow and high flow shows that discharge, TSM and POC are the factors most likely controlling the pesticide sorption processes in the Save river network, especially for lower values of TSM (below 13mgL(-1)). We therefore express Kd depending on the widely literature-related variable Kow and on the commonly simulated variable TSM concentration. The equation can be implemented in any model describing the fluvial transport and fate of pesticides in both dissolved and sorbed phases, thus, Kd becomes a variable in time and space. The Kd calculation method can be applied to a wide range of catchments and organic contaminants. PMID:24275149

  9. Assessing catchment connectivity using hysteretic loops

    NASA Astrophysics Data System (ADS)

    Keesstra, Saskia; Masselink, Rens; Goni, Mikel; Campo, Miguel Angel; Gimenez, Rafael; Casali, Javier; Seeger, Manuel

    2015-04-01

    Sediment connectivity is a concept which can explain the origin, pathways and sinks of sediments within landscapes. This information is valuable for land managers to be able to take appropriate action at the correct place. Hysteresis between sediment and water discharge can give important information about the sources , pathways and conditions of sediment that arrives at the outlet of a catchment. "Hysteresis" happens when the sediment concentration associated with a certain flow rate is different depending on the direction in which the analysis is performed -towards the increase or towards the diminution of the flow. This phenomenon to some extent reflects the way in which the runoff generation processes are conjugated with those of the production and transport of sediments, hence the usefulness of hysteresis as a diagnostic hydrological parameter. However, the complexity of the phenomena and factors which determine hysteresis make its interpretation uncertain or, at the very least, problematic. Many types of hysteretic loops have been described as well as the cause for the shape of the loop, mainly describing the origin of the sediments. In this study, several measures to objectively classify hysteretic loops in an automated way were developed. These were consecutively used to classify several hundreds of loops from several agricultural catchments in Northern Spain. The data set for this study comes from four experimental watersheds in Navarre (Spain), owned and maintained by the Government of Navarre. These experimental watersheds have been monitored and studied since 1996 (La Tejería and Latxaga) and 2001 (Oskotz "principal", Op, and Oskotz "woodland", Ow). La Tejería and Latxaga watersheds, located in the Central Western part of Navarre, are roughly similar to each other regarding size (approximately 200 ha), geology (marls and sandstones), soils (fine texture topsoil), climate (humid sub Mediterranean) and land use (80-90% cultivated with winter grain crops

  10. Physical and human influences on fluvial water quality in the Tagus river catchment, Portugal

    NASA Astrophysics Data System (ADS)

    Nunes, A.

    2009-04-01

    Rivers are important resources of drinkable water, ecosystems with a high biologic potency and places of entertainment. Water quality at the catchment scale depends on climate, geology, geomorphology, soils and mainly of land use and land cover. Different activities such as agriculture, livestock, industrial and urban drains have promoted the deterioration of the fluvial water quality. The announced climate changes, the increase of food requirements, as well as the urban concentration of people pose new challenges for the assessment and sustainable management of water quality on the catchment scale. At present about 2/3 of portuguese population live near coast, in urban centers. Since the last three decades, the largest part of the marginal agricultural land has been abandoned whilst the most productive soils have experienced an intensification on its productivity. The Tagus river catchment, with an area of 24.850 km2 only in the Portuguese territory, shows very important contrasts in climate, geology, geomorphology, land use and population density. The main objectives of this work are to evaluate and compare the surface water quality in different sub catchments of Tagus river and to contribute to a better understanding of how physical and human factors (such as geology, precipitation, temperature, runoff, land use and land cover and population density) interfere in their spatial-temporal variability. In order to achieve this issue, twenty sub catchments were selected. The chosen catchments show different locations and areas, and a quite long data series of physical, chemical and biology properties of water, such as nitrates, phosphates, dissolved oxygen, total coliforms, etc. Making use of Geographic Information System (GIS) tools, a database was created for each sub-catchment containing all the physical and human characteristics. Afterwards, statistical analysis was carried out by using SPSS programme (11.0 for Windows. One-way analysis of variance and the Tukey

  11. Identifying dominant controls on hydrologic parameter transfer from gauged to ungauged catchments - A comparative hydrology approach

    NASA Astrophysics Data System (ADS)

    Singh, R.; Archfield, S. A.; Wagener, T.

    2014-09-01

    Daily streamflow information is critical for solving various hydrologic problems, though observations of continuous streamflow for model calibration are available at only a small fraction of the world's rivers. One approach to estimate daily streamflow at an ungauged location is to transfer rainfall-runoff model parameters calibrated at a gauged (donor) catchment to an ungauged (receiver) catchment of interest. Central to this approach is the selection of a hydrologically similar donor. No single metric or set of metrics of hydrologic similarity have been demonstrated to consistently select a suitable donor catchment. We design an experiment to diagnose the dominant controls on successful hydrologic model parameter transfer. We calibrate a lumped rainfall-runoff model to 83 stream gauges across the United States. All locations are USGS reference gauges with minimal human influence. Parameter sets from the calibrated models are then transferred to each of the other catchments and the performance of the transferred parameters is assessed. This transfer experiment is carried out both at the scale of the entire US and then for six geographic regions. We use classification and regression tree (CART) analysis to determine the relationship between catchment similarity and performance of transferred parameters. Similarity is defined using physical/climatic catchment characteristics, as well as streamflow response characteristics (signatures such as baseflow index and runoff ratio). Across the entire US, successful parameter transfer is governed by similarity in elevation and climate, and high similarity in streamflow signatures. Controls vary for different geographic regions though. Geology followed by drainage, topography and climate constitute the dominant similarity metrics in forested eastern mountains and plateaus, whereas agricultural land use relates most strongly with successful parameter transfer in the humid plains.

  12. Identifying dominant controls on hydrologic parameter transfer from gauged to ungauged catchments: a comparative hydrology approach

    USGS Publications Warehouse

    Singh, R.; Archfield, S.A.; Wagener, T.

    2014-01-01

    Daily streamflow information is critical for solving various hydrologic problems, though observations of continuous streamflow for model calibration are available at only a small fraction of the world’s rivers. One approach to estimate daily streamflow at an ungauged location is to transfer rainfall–runoff model parameters calibrated at a gauged (donor) catchment to an ungauged (receiver) catchment of interest. Central to this approach is the selection of a hydrologically similar donor. No single metric or set of metrics of hydrologic similarity have been demonstrated to consistently select a suitable donor catchment. We design an experiment to diagnose the dominant controls on successful hydrologic model parameter transfer. We calibrate a lumped rainfall–runoff model to 83 stream gauges across the United States. All locations are USGS reference gauges with minimal human influence. Parameter sets from the calibrated models are then transferred to each of the other catchments and the performance of the transferred parameters is assessed. This transfer experiment is carried out both at the scale of the entire US and then for six geographic regions. We use classification and regression tree (CART) analysis to determine the relationship between catchment similarity and performance of transferred parameters. Similarity is defined using physical/climatic catchment characteristics, as well as streamflow response characteristics (signatures such as baseflow index and runoff ratio). Across the entire US, successful parameter transfer is governed by similarity in elevation and climate, and high similarity in streamflow signatures. Controls vary for different geographic regions though. Geology followed by drainage, topography and climate constitute the dominant similarity metrics in forested eastern mountains and plateaus, whereas agricultural land use relates most strongly with successful parameter transfer in the humid plains.

  13. Modeling daily streamflow at ungauged catchments: What information is necessary?

    NASA Astrophysics Data System (ADS)

    Patil, S.; Stieglitz, M.

    2011-12-01

    Streamflow modeling at ungauged catchments involves transfer of information (viz., model structure and parameters) from gauged to ungauged catchments that are judged to be hydrologically similar. In this study, we focus on identifying: (1) what constitutes the critical information that needs to be transferred among hydrologically similar catchments to achieve good predictability using models at ungauged sites, and (2) which is the best approach for transferring this information from gauged to ungauged catchments. We develop a simple hydrologic model with minimal calibration requirement and implement it over 756 catchments located across the continental United States. The model computes water balance at a daily time-step and conceptualizes subsurface runoff through a storage-dependent exponential decline in saturated hydraulic conductivity. Snow accumulation and melt are modeled using the thermal degree-day concept. The calibrated model performs better in humid runoff-dominated regions than in the drier evapotranspiration-dominated regions. Results show that within a region, transfer of hydrograph recession information alone is sufficient for reliable streamflow predictions at ungauged catchments. Information transfer from spatially proximate gauged catchments provides better streamflow predictability at ungauged catchments than transfer from catchments identified as physically similar. When considering spatially proximate catchments, information transfer from multiple donor catchments is preferable to transfer from a single donor catchment.

  14. Wi-Fi and satellite-based location techniques for intelligent agricultural machinery controlled by a human operator.

    PubMed

    Drenjanac, Domagoj; Tomic, Slobodanka; Agüera, Juan; Perez-Ruiz, Manuel

    2014-01-01

    In the new agricultural scenarios, the interaction between autonomous tractors and a human operator is important when they jointly perform a task. Obtaining and exchanging accurate localization information between autonomous tractors and the human operator, working as a team, is a critical to maintaining safety, synchronization, and efficiency during the execution of a mission. An advanced localization system for both entities involved in the joint work, i.e., the autonomous tractors and the human operator, provides a basis for meeting the task requirements. In this paper, different localization techniques for a human operator and an autonomous tractor in a field environment were tested. First, we compared the localization performances of two global navigation satellite systems' (GNSS) receivers carried by the human operator: (1) an internal GNSS receiver built into a handheld device; and (2) an external DGNSS receiver with centimeter-level accuracy. To investigate autonomous tractor localization, a real-time kinematic (RTK)-based localization system installed on autonomous tractor developed for agricultural applications was evaluated. Finally, a hybrid localization approach, which combines distance estimates obtained using a wireless scheme with the position of an autonomous tractor obtained using an RTK-GNSS system, is proposed. The hybrid solution is intended for user localization in unstructured environments in which the GNSS signal is obstructed. The hybrid localization approach has two components: (1) a localization algorithm based on the received signal strength indication (RSSI) from the wireless environment; and (2) the acquisition of the tractor RTK coordinates when the human operator is near the tractor. In five RSSI tests, the best result achieved was an average localization error of 4 m. In tests of real-time position correction between rows, RMS error of 2.4 cm demonstrated that the passes were straight, as was desired for the autonomous tractor. From

  15. Wi-Fi and Satellite-Based Location Techniques for Intelligent Agricultural Machinery Controlled by a Human Operator

    PubMed Central

    Drenjanac, Domagoj; Tomic, Slobodanka; Agüera, Juan; Perez-Ruiz, Manuel

    2014-01-01

    In the new agricultural scenarios, the interaction between autonomous tractors and a human operator is important when they jointly perform a task. Obtaining and exchanging accurate localization information between autonomous tractors and the human operator, working as a team, is a critical to maintaining safety, synchronization, and efficiency during the execution of a mission. An advanced localization system for both entities involved in the joint work, i.e., the autonomous tractors and the human operator, provides a basis for meeting the task requirements. In this paper, different localization techniques for a human operator and an autonomous tractor in a field environment were tested. First, we compared the localization performances of two global navigation satellite systems’ (GNSS) receivers carried by the human operator: (1) an internal GNSS receiver built into a handheld device; and (2) an external DGNSS receiver with centimeter-level accuracy. To investigate autonomous tractor localization, a real-time kinematic (RTK)-based localization system installed on autonomous tractor developed for agricultural applications was evaluated. Finally, a hybrid localization approach, which combines distance estimates obtained using a wireless scheme with the position of an autonomous tractor obtained using an RTK-GNSS system, is proposed. The hybrid solution is intended for user localization in unstructured environments in which the GNSS signal is obstructed. The hybrid localization approach has two components: (1) a localization algorithm based on the received signal strength indication (RSSI) from the wireless environment; and (2) the acquisition of the tractor RTK coordinates when the human operator is near the tractor. In five RSSI tests, the best result achieved was an average localization error of 4 m. In tests of real-time position correction between rows, RMS error of 2.4 cm demonstrated that the passes were straight, as was desired for the autonomous tractor

  16. Characterization and cartography of topsoil hydraulic properties in a French mountainous peri-urban catchment

    NASA Astrophysics Data System (ADS)

    Gonzalez-Sosa, E.; Braud, I.; Gonzalez-Sosa, E.; Dehotin, J.; Branger, F.; Lagouy, M.

    2009-04-01

    Due to the increase of urbanization and modification of agricultural practices, peri-urban areas experiment a quick change in land use. The impact of such change on the catchment hydrological cycle must be quantified. To achieve this goal, distributed hydrological models offer the ability to take into account land use change, and more specifically its effect on surface infiltration capacity. A distributed assessment of infiltration properties and their variability at the catchment scale is thus of great importance if accurate simulation of the water balance are expected on such catchments. This paper presents a field campaign conducted in a 7 km2 peri-urban catchment, located in the "Mont du Lyonnais" area, close to the city of Lyon (France) in order to document the topsoil hydraulic properties. The sampling strategy was set up in order to sample the largest number of soil/land use combinations. The locations were chosen from a GIS analysis based on the overlapping of the pedology and land use maps, and accessibility consideration. At each location, two types of infiltration tests were performed: infiltration tests under suction using mini-disk infiltrometers and single ring infiltration tests under positive head. Three replicates were performed for each method. Particle size data and organic matter analysis were also conducted at each location. Results will be discussed in terms of soil hydraulic properties and particle size data statistics. Relationship with external factors such as pedological unit, land use, slope, texture will be explored. Preliminary results show that forest and pasture soils exhibit the highest hydraulic conductivity and sorptivity. In order to provide models with values at the modelling unit scale (field and/or sub-catchment scale), existing pedotransfer function will be assessed and if necessary calibrated using the local measurements. Finally a methodology for the cartography of the soil hydraulic properties will be proposed.

  17. Modeling Runoff from Partially Glacierized Catchments in the Tropical Andes with Different Glacier Coverage and Land Cover Conditions

    NASA Astrophysics Data System (ADS)

    Kinouchi, T.; Mendoza, J.; Luna, J.; Asaoka, Y.

    2014-12-01

    In Bolivian Andes, retreats of tropical glaciers are rapid, thus water resources currently available from glacierized catchments for drinking, agriculture, industry and hydropower would be changed in its volume and variations due to changing climate. Water resources in La Paz and El Alto, the capital city areas of Bolivia, strongly depend on the runoff from partially glacierized catchments located in the Cordillera Real, which is a combined contribution of surface and subsurface flow from glacierized and non-glacierized areas due to rainfall, snow melt and glacier melt. To predict the long-term availability of water resources for the capital city areas, we developed a semi-distributed conceptual glacio-hydrological model that considers various runoff pathways from partially glacierized high-altitudinal catchments located in the outer tropics. In the model, the retarding effect of lakes and wetlands was considered, based on the observed hydraulic functions and distribution of wetlands. The model was applied to three sub-catchments of the Tuni Lake watershed (98km2), from which the water resources for La Paz and El Alto are supplied. With calibrated parameters, the model reproduced well the observed seasonal variations of daily runoff during recent two years. Simulated results of water balance suggested that for the catchment with a larger glacier cover, more than 40% of the annual total runoff is contributed from glacierized areas due to glacier melt and snowmelt. The contribution from glacierized areas in other two sub-catchments, with relatively smaller areas covered by glacier ice, was calculated to be between 10-15%. We found that the role of wetlands and lakes are essential in retarding and regulating the runoff from partially glacierized high-mountain catchments.

  18. Nitrate concentrations and fluxes in the River Thames, London UK 1868 to 2008: catchment-scale modelling of diffuse agricultural sources and groundwater response using the world's longest water quality time series

    NASA Astrophysics Data System (ADS)

    Howden, N. J.; Burt, T. P.; Worrall, F.; Mathias, S.; Whelan, M.

    2011-12-01

    This paper presents analyses of the world's longest water quality record: 140 years of monthly-average nitrate concentrations (1868 to 2008) and fluxes (1883 to 2008) for the River Thames north of London. We show how short- and long- term patterns in these time series are influenced by both climatic and anthropogenic pressures, in the case of the latter, particularly land use and land management practices. Climate change does not play a significant role in controlling annual average concentrations or fluxes, rather large-scale land conversions from permanent grassland to arable farming have created sustained diffuse sources of nitrate that have caused (almost four-fold) increases in concentrations and fluxes that persist for many decades after the initial changes. Our analyses of this unique time series highlight four areas of particular interest: (1) Despite several layers of regulation and source control, fluvial concentrations and fluxes remain in- tractably high - no decrease has been observed since the early 1970s; (2) Catchment response to changing nitrogen inputs from land use and land management is subject to considerable lag: present conditions in the river reflect land practices from some years ago; (3) Following (2), we suggest that current changes to land use and land management practices will not be reflected in river water quality for some time to come; (4) Overall, the long-term view afforded by this record questions the derivation of "baseline conditions" that are formulated from records that do not reflect the massive changes in land use and land management in the mid-20th century. Overall, a better understanding of the links, and time delays, between cause (i.e. changing land use / land management) and fluvial response (i.e. concentration increase/decrease) will improve our ability both to predict changes in the coming decades, and inform management decision making now, to ensure the appropriate balance between agricultural development and

  19. Doing hydrology backwards in tropical humid catchments

    NASA Astrophysics Data System (ADS)

    Real Rangel, R.; Brena-Naranjo, J. A.; Pedrozo-Acuña, A.

    2015-12-01

    Top-down approaches in hydrology offer the possibility to predict water fluxes at the catchment scale based on the interpretation of the observed hydrological response at the catchment itself. Doing hydrology backwards (inferring precipitation and evapotranspiration rates at the catchment scale from streamflow measurements, see Kirchner (2009)) can be a useful methodology for estimating water fluxes at the catchment and regional scales. Previous studies using this inverse modeling approach have been performed in regions (UK, Switzerland, France, Eastern US) where energy-limited (in winter and early spring) and water-limited conditions (in summer) prevail during a large period of the year. However, such approach has not been tested in regions characterized by a quasi-constant supply of water and energy (e.g. humid tropics). The objective of this work is to infer annual rates of precipitation and evapotranspiration over the last decade in 10 catchments located in Mexico's tropical humid regions. Hourly discharge measurements during recession periods were analyzed and parameters for the nonlinear storage-discharge relationship of each catchment were derived. Results showed large variability in both catchment-scale precipitation and evapotranspiration rates among the selected study sites. Finally, a comparison was done between such estimates and those obtained from remotely-sensed data (TRMM for precipitation and MOD16 for evapotranspiration).

  20. Catchment water storage: Models vs Measurements

    NASA Astrophysics Data System (ADS)

    McMillan, Hilary

    2016-04-01

    Recent years have seen a great deal of progress in development of hydrological models that can simulate both the dynamic streamflow response and the hydrochemical flux response of a catchment. In general terms, streamflow response is driven by water deficit in the catchment, whereas hydrochemical response is driven by water storage. Therefore, models that can simultaneously predict both responses must succeed in representing these two related, but different, quantities. This presentation will consider how much information we can gain from field studies to quantify the joint deficit/storage state of a catchment. In particular, examples from two New Zealand experimental catchments in lowland and high country locations will be used to link typical measurements available with the information required by hydrological - hydrochemical models. I will then use the example catchments to assess how well the structure of a typical hydrological-hydrochemical model is supported by field measurements. In particular, can we quantify catchment storage and link this to flow response? Can we incorporate our knowledge of plant water use into such a model, including timing and depth of water withdrawn by the plant? What can field measurements tell us about spatial variability in hydrological-hydrochemical response and can this be represented in the model? I will conclude by discussing what we can learn from field data about the major challenges ahead in catchment storage modelling.

  1. Erosion studies at Lake Pyhäjärvi catchment (SW Finland)

    NASA Astrophysics Data System (ADS)

    Kirkkala, Teija; Ventelä, Anne-Mari; Tarvainen, Marjo; Jolma, Ari

    2014-05-01

    Lake Säkylän Pyhäjärvi is a large and shallow lake located in the centre of an intensive agricultural area in southwest Finland and it suffering from eutrophication. The nutrient load to Pyhäjärvi comes from diffuse agricultural sources in the catchment. The dominant land cover in the catchment area (22%) is made by cultivated fields, the rest comprising forests, peat lands and built-up areas. The soils of the Pyhäjärvi catchment are erosion sensitive clay, silt, till and peat. The suspended solid and nutrient transport of the main rivers flowing to the lake has been monitored since 1980's. Most part (over 70 %) of phosphorus load is particulate and erosion originated. In recent years the climate change has changed runoff patterns. In winter, mean air temperature is about -2.1 ºC and the catchment is also normally covered by snow in winter. However, in recent years there have been many years with higher winter time temperature and precipitation. In winter the fields are usually without vegetation cover and rainfalls increase erosion. There are already clear long term changes observed in runoff patterns and suspended solid load patterns. The erosion risk invention has been made to Yläneenjoki catchment in order to allocate erosion preventing measures. Sedimentation ponds, wetlands, buffer zones and filters have been used to catch the suspended solids from runoff but these methods are inadequate. In order to efficiently reduce nutrient load to the lake, the focus of the restoration measures should be in the soil, especially erosion preventing. Therefore more deep understanding and studying of erosion processes are needed. Runoff and erosion amounts and patterns should be measured in different types of fields should be done and combined to GIS-analysis.

  2. Controls on suspended sediment, particulate and dissolved organic carbon export from two adjacent catchments with contrasting land-uses, Exmoor UK.

    NASA Astrophysics Data System (ADS)

    Glendell, M.; Brazier, R. E.

    2012-04-01

    -west England, cover 50km2 and comprise a lower lying agricultural sub-catchment and an upland sub-catchment with extensive native woodland and heather moorland. 24 months of monitoring characterised the water quality status in both catchments, including TSS, POC and DOC in both baseflow and stormflow conditions. Results indicate that the agricultural catchment exports higher TSS and TOC concentrations, instantaneous loads and total loads on a storm-by-storm basis, though these exports are short-lived as the catchment is hydrologically very responsive. The upland/woodland catchment displays more attenuated behaviour, with longer response times and longer duration events. In addition to flux data, geospatial sampling at >200 locations across each catchment characterised the carbon and nitrogen content and bulk density of the soils across four land-use categories. Analysis of these data suggests a strong relationship between TSS and TOC loads during stormflow and the spatial distribution of contributing source areas of soil with high carbon content, erodibility and land-use controls such as soil compaction within the two study catchments.

  3. Land degradation trends in upper catchments and morphological developments of braided rivers in drylands: the case of a marginal graben of the Ethiopian Rift Valley

    NASA Astrophysics Data System (ADS)

    Demissie, Biadgilgn; Frankl, Amaury; Haile, Mitiku; Nyssen, Jan

    2014-05-01

    Braided rivers have received relatively little attention in research and development activities in drylands. However, they strongly impact agroecology and agricultural activities and thereby local livelihoods. The Raya Graben (3750 km² including the escarpment) is a marginal graben of the Ethiopian Rift Valley located in North Ethiopia. In order to study the dynamics of braided rivers and the relationship with biophysical controls, 20 representative catchments were selected, ranging between 15 and 311 km². First, the 2005 morphology (length, area) of the braided rivers was related to biophysical controls (vegetation cover, catchment area and slope gradient in the steep upper catchments and gradient in the graben bottom). Second, the changes in length of the braided rivers were related to vegetation cover changes in the upper catchments since 1972. Landsat imagery was used to calculate the Normalized Difference Vegetation Index (NDVI), and to map vegetation cover and the total length of the braided rivers. Spot CNES imagery available from Google Earth was used to identify the total area of the braided rivers in 2005. A linear regression analysis revealed that the length of braided rivers was positively related to the catchment area (R²=0.32, p<0.01), but insignificantly related to vegetation cover in the upper catchments. However, there is an indication that it is an important factor in the relationship calculated for 2005 (R²=0.2, p=0.064). Similarly, the area occupied by the braided rivers was related to NDVI (R²=0.24, p<0.05) and upper catchment area (R²=0.447, p<0.01). Slope gradient is not an important explanatory factor. This is related to the fact that slope gradients are steep (average of 38.1%) in all upper and gentle (average of 3.4%) in graben bottom catchments. The vegetation cover in the upper catchments shows a statistically insignificant increasing trend (R²=0.73, p=0.067) over the last 40 years, whereas length of rivers in the graben bottom

  4. Leaching of nitrogen from forested catchments in Finland

    NASA Astrophysics Data System (ADS)

    Kortelainen, Pirkko; Saukkonen, Sari; Mattsson, Tuija

    1997-12-01

    This study provides an assessment on the spatial variability of the long-term leaching (8-23 years) of nitrogen and organic carbon from 22 forested catchments (0.69-56 km2). The catchments are located throughout Finland excluding the northernmost regions. The Kruunuoja catchment is located in a national park; the other catchments represent typical Finnish forestry land. The leaching from the 21 forestry land catchments can be considered to represent average leaching from Finnish forestry land since the most important forestry practices (ditching, clear-cutting, scarification, and fertilization) since the 1960s have affected about 2.4% of the catchment area per year (compare 2.5% in the entire country in 1980 and 2% in 1991). Moreover, the mean annual runoff from the catchments, 230-420 mm yr-1, agree with the mean annual runoff from Finland (301 mm yr-1 from 1931 to 1990). The major part of the nitrogen transported from the catchments consisted of organic nitrogen (on average 79%). The average inorganic nitrogen proportion ((NO3-N + NH4-N)/Ntot) was lowest (7.3%) in the Kruunuoja catchment and was highest (54%) in the southernmost Teeressuonoja catchment located in the highest anthropogenic nitrogen deposition area. The median C/N ratio in the study streams was high, ranging from 34 to 66. Nitrate leaching from the catchments varied between 2.8 (Kruunuoja) and 100 kg km-2 yr-1 (Teeressuonoja) and was negatively related to C/N ratio in stream water and latitude. The stepwise multiple regression model selected C/N ratio and nitrogen deposition which together explained 72% of the variation in NO3-N leaching. Retention of NO3-N deposition (calculated as ((input-output)/input) was high in all catchments, ranging from 0.99 in Kruunuoja to 0.67 in Teeressuonoja.

  5. Establishing a connection between hydrologic model parameters and physical catchment signatures for improved hierarchical Bayesian modeling in ungauged catchments

    NASA Astrophysics Data System (ADS)

    Marshall, L. A.; Weber, K.; Smith, T. J.; Greenwood, M. C.; Sharma, A.

    2012-12-01

    In an effort to improve hydrologic analysis in areas with limited data, hydrologists often seek to link catchments where little to no data collection occurs to catchments that are gauged. Various metrics and methods have been proposed to identify such relationships, in the hope that "surrogate" catchments might provide information for those catchments that are hydrologically similar. In this study we present a statistical analysis of over 150 catchments located in southeast Australia to examine the relationship between a hydrological model and certain catchment metrics. A conceptual rainfall-runoff model is optimized for each of the catchments and hierarchical clustering is performed to link catchments based on their calibrated model parameters. Clustering has been used in recent hydrologic studies but catchments are often clustered based on physical characteristics alone. Usually there is little evidence to suggest that such "surrogate" data approaches provide sufficiently similar model predictions. Beginning with model parameters and working backwards, we hope to establish if there is a relationship between the model parameters and physical characteristics for improved model predictions in the ungauged catchment. To analyze relationships, permutational multivariate analysis of variance tests are used that suggest which hydrologic metrics are most appropriate for discriminating between calibrated catchment clusters. Additional analysis is performed to determine which cluster pairs show significant differences for various metrics. We further examine the extent to which these results may be insightful for a hierarchical Bayesian modeling approach that is aimed at generating model predictions at an ungauged site. The method, known as Bayes Empirical Bayes (BEB) works to pool information from similar catchments to generate informed probability distributions for each model parameter at a data-limited catchment of interest. We demonstrate the effect of selecting

  6. Importance of including small-scale drain discharge data in the calibration of a catchment scale nitrate model

    NASA Astrophysics Data System (ADS)

    Hansen, A.; Refsgaard, J.; Christensen, B. S.; Jensen, K. H.

    2011-12-01

    Nitrate leaching from agricultural areas and the resulting pollution of groundwater and surface waters is one of the largest challenges in water resources management in Denmark. Nitrate can however be naturally degraded under anaerobic conditions and several studies have shown that degradation in the saturated zone removes more than 50% of the nitrate leaching in Danish catchments. For degradation of nitrate to occur in the saturated zone, nitrate must be transported under the redox interface and a correct simulation of the small-scale flow patterns within a catchment is therefore important in nitrate models. The general findings in Danish nitrate modeling studies are that the models perform well at catchment scale, but the predictability of the models decreases at smaller scale. Thus the model predictions are highly uncertain at small scale and the models cannot at present predict areas within a catchment, where the majority of the nitrate is brought under the interface and thus degraded, and areas, where nitrate is transported directly to streams and lakes without any significant reduction. The objective of this study is to test if the small scale performance of a catchment scale nitrate model can be improved by including small scale observation data in the calibration procedure. The study area is the clayey catchment to Lillebæk stream (4.7 km2), located on the island of Funen in Denmark. Due to the presence of clayey top soils subsurface drains are installed and in consequence the stream discharge is highly dominated by drain flow. An integrated transient hydrological model based on the MIKE SHE code has been developed for the study area. The model has been calibrated against hydraulic head measurements and stream discharge measurements from two stations, one covering most of the catchment and the other station approximately half, using the parameter estimator code PEST. Acceptable model performance has been achieved at catchment scale calibrating the model

  7. Characterization of hydrological responses to rainfall and volumetric coefficients on the event scale in rural catchments of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Taguas, Encarnación; Nadal-Romero, Estela; Ayuso, José L.; Casalí, Javier; Cid, Patricio; Dafonte, Jorge; Duarte, Antonio C.; Giménez, Rafael; Giráldez, Juan V.; Gómez-Macpherson, Helena; Gómez, José A.; González-Hidalgo, J. Carlos; Lucía, Ana; Mateos, Luciano; Rodríguez-Blanco, M. Luz; Schnabel, Susanne; Serrano-Muela, M. Pilar; Lana-Renault, Noemí; Mercedes Taboada-Castro, M.; Taboada-Castro, M. Teresa

    2016-04-01

    Analysis of storm rainfall-runoff data is essential to improve our understanding of catchment hydrology and to validate models supporting hydrological planning. In a context of climate change, statistical and process-based models are helpful to explore different scenarios which might be represented by simple parameters such as volumetric runoff coefficient. In this work, rainfall-runoff event datasets collected at 17 rural catchments in the Iberian Peninsula were studied. The objectives were: i) to describe hydrological patterns/variability of the relation rainfall-runoff; ii) to explore different methodologies to quantify representative volumetric runoff coefficients. Firstly, the criteria used to define an event were examined in order to standardize the analysis. Linear regression adjustments and statistics of the rainfall-runoff relations were examined to identify possible common patterns. In addition, a principal component analysis was applied to evaluate the variability among catchments based on their physical attributes. Secondly, runoff coefficients at event temporal scale were calculated following different methods. Median, mean, Hawkinś graphic method (Hawkins, 1993), reference values for engineering project of Prevert (TRAGSA, 1994) and the ratio of cumulated runoff and cumulated precipitation of the event that generated runoff (Rcum) were compared. Finally, the relations between the most representative volumetric runoff coefficients with the physical features of the catchments were explored using multiple linear regressions. The mean volumetric runoff coefficient in the studied catchments was 0.18, whereas the median was 0.15, both with variation coefficients greater than 100%. In 6 catchments, rainfall-runoff linear adjustments presented coefficient of determination greater than 0.60 (p < 0.001) while in 5, it was lesser than 0.40. The slope of the linear adjustments for agricultural catchments located in areas with the lowest annual precipitation were

  8. From natural to human-dominated floodplains - A Holocene perspective for the Dijle catchment, Belgium

    NASA Astrophysics Data System (ADS)

    Broothaerts, Nils; Verstraeten, Gert; Kasse, Cornelis; Bohncke, Sjoerd; Notebaert, Bastiaan; Vandenberghe, Jef

    2015-04-01

    Floodplain systems underwent important changes in many West and Central European catchments through the late Holocene. To better understand the relation between these landscape changes and human disturbances, geomorphic fieldwork needs to be complemented by quantitative measures of human impact in the landscape. In this study, we provide an holistic discussion in which we combine detailed data on floodplain changes with detailed data on human impact for the Dijle catchment (758 km²), Belgium. Human impact in the catchment was quantified based on statistical analysis of pollen data of six alluvial study sites. The results show that during the Neolithic Period, human impact was nearly absent and floodplains consisted of a strongly vegetated marshy environment where organic material accumulated, which is considered as the natural state of the floodplain. From the Bronze Age onwards, human impact increased and caused an increase in soil erosion and hillslope-floodplain connectivity. Consequently, sediment input in the floodplain system increased and floodplain geoecology changed towards an open floodplain dominated by clastic overbank deposits, mainly as the indirect result of an intensification of agricultural activities. Based on these data, a generalized model of floodplain development is presented: At the scale of the entire Dijle catchment, the gradual changes in floodplain morphology coincided with the gradually increasing human impact in the catchment, which suggests a linearity between the external forcing (human impact) and geomorphic response (floodplain change). However, at the narrow floodplains in the headwaters, the gradual increase in human impact contrasts with the abrupt change in floodplain geoecology, only triggered when human impact reached a threshold. Observed differences at catchment scale in time-lags and in the process-response model are attributed to differences in hillslope-floodplain connectivity, the location within the catchment and to

  9. Holocene sediments within lake catchments - testing sediment delivery

    NASA Astrophysics Data System (ADS)

    Dreibrodt, S.; Bork, H.-R.

    2009-04-01

    Results of detailed investigation of soils, colluvia and lake sediments in a lake catchment in northern Germany proves that the input of eroded soil (enabled by agricultural land use) is of a minor amount compared with the storage within colluvial layers. Pre-existing micro- and meso-topography and prehistorical land use patterns as well as precipitation intensity are probable to control the Holocene flux of sediments within the lake catchment area. Therefore we entertain some doubt if sediment delivery ratios- usually applied on larger spatial scales (e. g. river catchment areas)- are useful to produce reliable quantitative data of Holocene soil erosion in central Europe.

  10. Water and sediment dynamics in a small Mediterranean cultivated catchment under cracking soils

    NASA Astrophysics Data System (ADS)

    Inoubli, Nesrine; Raclot, Damien; Moussa, Roger; Habaieb, Hamadi; Le Bissonnais, Yves

    2016-04-01

    Shrink-swell soils, such as those in a Mediterranean climate regime, can cause changes in terms of hydrological and erosive responses due to the changing soil water storage conditions. Only a limited number of long-term studies have focused on the impacts on both hydrological and erosive responses and their interactions in an agricultural environment. In this context, this study aims to document the dynamics of cracks, runoff and soil erosion within a small Mediterranean cultivated catchment and to quantify the influence of crack processes on the water and sediment supplied to a reservoir located at the catchment outlet. Detailed monitoring of the presence of topsoil cracks was conducted within the Kamech catchment (ORE OMERE, Tunisia), and runoff and suspended sediment loads were continuously measured over a long period of time (2005-2012) at the outlets of a field (1.32 ha) and a catchment (263 ha). Analysis of the data showed that topsoil cracks were open approximately half of the year and that the rainfall regime and water table level conditions locally control the seasonal cracking dynamics. Topsoil cracks appeared to seriously affect the generation of runoff and sediment concentrations and, consequently, sediment yields, with similar dynamics observed at the field and catchment outlets. A similar time lag in the seasonality between water and sediment delivery was observed at these two scales: although the runoff rates were globally low during the presence of topsoil cracks, most sediment transport occurred during this period associated with very high sediment concentrations. This study underlines the importance of a good prediction of runoff during the presence of cracks for reservoir siltation considerations. In this context, the prediction of cracking effects on runoff and soil erosion is a key factor for the development of effective soil and water management strategies and downstream reservoir preservation.

  11. Influence of urbanization pattern on stream flow of a peri-urban catchment under Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla S. S.; Walsh, Rory P. D.; Ferreira, António J. D.; Steenhuis, Tammo S.; Coelho, Celeste A. O.

    2015-04-01

    The demand for better life quality and lower living costs created a great pressure on peri-urban areas, leading to significant land-use changes. The complexity of mixed land-use patterns, however, presents a challenge to understand the hydrological pathways and streamflow response involved in such changes. This study assesses the impact of a actively changing Portuguese peri-urban area on catchment hydrology. It focuses on quantifying streamflow delivery from contributing areas, of different land-use arrangement and the seasonal influence of the Mediterranean climate on stream discharge. The study focuses on Ribeira dos Covões a small (6 km2) peri-urban catchment on the outskirts of Coimbra, one of the main cities in central Portugal. Between 1958 and 2012 the urban area of the catchment expanded from 8% to 40%, mostly at the expense of agriculture (down from 48% to 4%), with woodland now accounting for the remaining 56% of the catchment area. The urban area comprises contrasting urban settings, associated with older discontinuous arrangement of buildings and urban structures and low population density (<25 inhabitants/km), and recent well-defined urban cores dominated by apartment blocks and high population density (9900 inhabitants/km). The hydrological response of the catchment has been monitored since 2007 by a flume installed at the outlet. In 2009, five rainfall gauges and eight additional water level recorders were installed upstream, to assess the hydrological response of different sub-catchments, characterized by distinct urban patterns and either limestone or sandstone lithologies. Annual runoff coefficients range between 14% and 22%. Changes in annual baseflow index (36-39% of annual rainfall) have been small with urbanization (from 34% to 40%) during the monitoring period itself. Annual runoff coefficients were lowest (14-7%) on catchments >80% woodland and highest (29% on sandstone; 18% on limestone) in the most urbanized (49-53% urban) sub-catchments

  12. Standardised survey method for identifying catchment risks to water quality.

    PubMed

    Baker, D L; Ferguson, C M; Chier, P; Warnecke, M; Watkinson, A

    2016-06-01

    This paper describes the development and application of a systematic methodology to identify and quantify risks in drinking water and recreational catchments. The methodology assesses microbial and chemical contaminants from both diffuse and point sources within a catchment using Escherichia coli, protozoan pathogens and chemicals (including fuel and pesticides) as index contaminants. Hazard source information is gathered by a defined sanitary survey process involving use of a software tool which groups hazards into six types: sewage infrastructure, on-site sewage systems, industrial, stormwater, agriculture and recreational sites. The survey estimates the likelihood of the site affecting catchment water quality, and the potential consequences, enabling the calculation of risk for individual sites. These risks are integrated to calculate a cumulative risk for each sub-catchment and the whole catchment. The cumulative risks process accounts for the proportion of potential input sources surveyed and for transfer of contaminants from upstream to downstream sub-catchments. The output risk matrices show the relative risk sources for each of the index contaminants, highlighting those with the greatest impact on water quality at a sub-catchment and catchment level. Verification of the sanitary survey assessments and prioritisation is achieved by comparison with water quality data and microbial source tracking. PMID:27280603

  13. Detecting groundwater discharge dynamics from point-to-catchment scale in a lowland stream: combining hydraulic and tracer methods

    NASA Astrophysics Data System (ADS)

    Poulsen, J. R.; Sebok, E.; Duque, C.; Tetzlaff, D.; Engesgaard, P. K.

    2015-04-01

    Detecting, quantifying and understanding groundwater discharge to streams are crucial for the assessment of water, nutrient and contaminant exchange at the groundwater-surface water interface. In lowland agricultural catchments with significant groundwater discharge this is of particular importance because of the risk of excess leaching of nutrients to streams. Here we aim to combine hydraulic and tracer methods from point-to-catchment scale to assess the temporal and spatial variability of groundwater discharge in a lowland, groundwater gaining stream in Denmark. At the point-scale, groundwater fluxes to the stream were quantified based on vertical streambed temperature profiles (VTPs). At the reach scale (0.15-2 km), the spatial distribution of zones of focused groundwater discharge was investigated by the use of distributed temperature sensing (DTS). Groundwater discharge to the stream was quantified using differential gauging with an acoustic Doppler current profiler (ADCP). At the catchment scale (26-114 km2), runoff sources during main rain events were investigated by hydrograph separations based on electrical conductivity (EC) and stable isotopes 2H/1H. Clear differences in runoff sources between catchments were detected, ranging from approximately 65% event water for the most responsive sub-catchment to less than 10% event water for the least responsive sub-catchment. This was supported by the groundwater head gradients, where the location of weaker gradients correlated with a stronger response to precipitation events. This shows a large variability in groundwater discharge to the stream, despite the similar lowland characteristics of sub-catchments indicating the usefulness of environmental tracers for obtaining information about integrated catchment functioning during precipitation events. There were also clear spatial patterns of focused groundwater discharge detected by the DTS and ADCP measurements at the reach scale indicating high spatial variability

  14. CRA-W's committee of intervention: analyse of catchments polluted with pesticides.

    PubMed

    Noel, S; Bah, B B; Collinet, G; Buffet, D; Sorel, A; Hallet, V

    2008-01-01

    In the Walloon Region of Belgium, a committee of intervention has been created to investigate problems of pesticide contamination of various catchments use for drinking water production. This committee involves the Agricultural Research centre--Wallonia (CRA-W, project coordinator) and some University experts. It is funded by the Société Publique de Gestion des Eaux (SPGE). The diagnosis method, base on the AQUAPLAINE method (Arvatis-France), consists of 4 steps. The first step is the preparation of diagnosis (at the office) that takes into account the paper risk of active ingredients. and their uses, the identification of the agricultural parcels, the collection of cartographic and numeric data, the description of the hydrogeological and pedological contexts and the study of the meteorological data in relation with the period of pollution. The second step consists of making a plot diagnosis (on the field) to identify the way of transfer inside the plot and collecting data. At the third step, the people who can apply PPP treatment close to the catchment are met (farmers and city services). Information are collected on treatments applied and on the state of parcels. Based on the hypothesis of pollution cause, the committee proposes solution to solve the problem. One of the catchment that has been investigated by the committee is located at Biesmerée, (Namur province, in Belgium). A temporally contamination was caused by 4 pesticides : chlortoluron, isoproturon, trifluralin and diflufenican. After investigations, it seems that the pollution was probably due to the hydrogeological context. As the river is locally perched over the aquifer, the presence of Poly-aromatic hydrocarbons (PAHs) could be due to the infiltration of surface water inside the catchment or/and to the presence of a sinkhole temporally activated during river flood period. Infiltration rate has to be assessed and river bank impermeabilization is recommended. PMID:19226832

  15. How tritium illuminates catchment structure

    NASA Astrophysics Data System (ADS)

    Stewart, M.; Morgenstern, U.; McDonnell, J.

    2012-04-01

    Streams contain water which has taken widely-varying times to pass through catchments, and the distribution of ages is likely to change with the flow. Part of the water has 'runoff' straight to the stream with little delay, other parts are more delayed and some has taken years (in some cases decades) to traverse the deeper regolith or bedrock of the catchment. This work aims to establish the significance of the last component, which is important because it can cause catchments to have long memories of contaminant inputs (e.g. nitrate). Results of tritium studies on streams world-wide were accessed from the scientific literature. Most of the studies assumed that there were just two age-components present in the streams (i.e. young and old). The mean ages and proportions of the components were found by fitting simulations to tritium data. It was found that the old component in streams was substantial (average was 50% of the annual runoff) and had considerable age (average mean age was 10 years) (Stewart et al., 2010). Use of oxygen-18 or chloride variations to estimate streamflow mean age usually does not reveal the age or size of this old component, because these methods cannot detect water older than about four years. Consequently, the use of tritium has shown that substantial parts of streamflow in headwater catchments are older than expected, and that deep groundwater plays an active and sometimes even a dominant role in runoff generation. Difficulties with interpretation of tritium in streams in recent years due to interference from tritium due to nuclear weapons testing are becoming less serious, because very accurate tritium measurements can be made and there is now little bomb-tritium remaining in the atmosphere. Mean ages can often be estimated from single tritium measurements in the Southern Hemisphere, because there was much less bomb-tritium in the atmosphere. This may also be possible for some locations in the Northern Hemisphere. Age determination on

  16. Evidence of the impact of urbanization on the hydrological regime of a medium-sized periurban catchment in France

    NASA Astrophysics Data System (ADS)

    Braud, I.; Breil, P.; Thollet, F.; Lagouy, M.; Branger, F.; Jacqueminet, C.; Kermadi, S.; Michel, K.

    2013-04-01

    SummaryIn this paper we explore several indicators to evidence the impact of land use change, and particularly of urbanization/artificialization on discharge series of periurban catchments. A first set of indicators is derived from the literature and describes the monthly and annual hydrological regime, low flows and high flows, and flow components. Statistical tests are also applied to assess the existence of trends/ruptures on the longest time series. In addition, new indicators, especially built to show the impact of sewer overflow devices (SODs) and infiltration into sewer networks are proposed. The method is applied to the Yzeron (150 km2) catchment, located close to Lyon city (France) where various discharge gauges with a variable time step are available on sub-catchments ranging from a few to 130 km2 (some of them nested), with a large variety of land uses (forest, agricultural land, artificialized areas). In addition, discharge is also measured in a SOD and a combined sewer network so that the relevance of the new proposed indicators can be assessed. In the largest sub-catchments, the results show a decrease of specific discharge from upstream to downstream corresponding to an increase of artificialized areas, except for high flows. When a SOD is present, the specific discharge is increased for frequencies larger than 50%, and the frequency of zero daily discharge is decreased. Waste water can be the only source of water in autumn month in a 4.1 km2 sub-catchment. Base flow is also decreased for the most urbanized catchments. Our results confirm the impact of SODs on the modification of the flood regime, with an increase of frequent floods, but a marginal impact on the largest floods, mainly governed by saturation of the rural parts of the catchments. The decomposition of the sewer discharge shows that, on an annual basis, infiltration in the sewer network accounts for 30% of the total discharge and runoff due to rainwater to about 40% (the remaining being

  17. The Demonstration Test Catchment Approach to Land and Water Management in the river Eden Watershed, UK. (Invited)

    NASA Astrophysics Data System (ADS)

    Jonczyk, J.; Quinn, P. F.; Haygarth, P.; Reaney, S.; Wilkinson, M.; Burke, S.; McGonigle, D.; Harris, B.

    2010-12-01

    The Demonstration Test Catchment (DTC) initiative is a five year project to address pollution issues in catchments. The initiative will study the wider environmental problems suffered by catchments which are under intense farming pressures and potential climate change impacts. The UK Department for Food, Agriculture and Rural Affairs (Defra) in partnership with the Environment Agency for England and Wales (EA) have funded this initiative to answer key policy concerns in catchments. The first key step has been the establishment of a ‘research platform’ at three catchments in the UK (The Eden, Wensum and Hampshire Avon) whereby funding of 9.3 million dollars has gone into funding new equipment and pollution sampling regimes have been established. Within each catchment between three and four, 8-10km2 sub-catchments have been established. The experimental design and thinking for DTCs will be explained fully in this paper. The next phase of the project will install an extensive suite of land management and pollution mitigation interventions. In parallel to this monitoring work, a full knowledge exchange package will seek to engage with farmers, the rural community and understand the governance regime at the broader catchment scale. There is also a need for a modelling component to upscale the findings to the whole of the UK. Whilst this is an ambitious goal, there is a very basic commitment of working with rural communities to come up with real solutions that will help underpin effective policy making for the future. The research platform covers a multi-scale approach to the monitoring strategy that will allow local grouping of mitigation measures to be studied local in terms of impact and propagated to the catchment scale. Even with high level of funding, the DTC can only fully instrument a catchment of 8-10km2. Beyond this scale, the EA and the standard catchment monitoring will continue as normal. The focus here is to prove that mitigation can be achieved within

  18. The anthropic catchment-ecosystem concept: an Irish example

    SciTech Connect

    Phillips-Howard, K.D.

    1985-06-01

    The catchment-ecosystem concept is adapted to investigate the nutrient-budget of the highly-modified Colebrooke drainage basin in Northern Ireland. Anthropogenic inputs, mainly manures and fertilizers, account for 86% of the nitrogen and 96% of the phosphorus added to the catchment. These inputs greatly exceed the streamflow outputs, thereby indicating that the flow of nutrients is dominated by agriculture. This is explained by the transformation of traditional mixed farming into more intensive livestock production and is linked to policies encouraging increased agricultural production, amalgamation of farms, afforestation, rural depopulation, and urbanization. Substantial increases in the N and P output of the catchment and further eutrophication of the recipient lake, Lough Erne, are predicted without the implementation of policies to reduce agricultural nutrient losses.

  19. Transport of a nematicide in surface and ground waters in a farmed tropical catchment with volcanic substratum

    NASA Astrophysics Data System (ADS)

    Charlier, J.-B.; Cattan, P.; Voltz, M.; Moussa, R.

    2009-04-01

    Assessment of water-pollution risks in agricultural regions requires studying pesticide transport processes in soil and water compartments at the catchment scale. In tropical regions, banana (Musa spp.) plantations are located in zones with abundant rainfalls and soils with high infiltration rates, which lead to washout and leaching of soil-applied pesticides, causing severe diffuse pollution of water resources. The aim of this paper is to determine how the nematicide cadusafos [S,S-di-sec-butyl O-ethyl phosphorodithioate], used in banana plantations, contaminates water and soils at the two scales of subcatchment and catchment. The study site was a small banana-growing catchment on the tropical volcanic island of Guadeloupe in the Caribbean (FWI). The catchment is located in pedoclimatic conditions where rainfall is abundant (> 4000 mm/year), and soil permeable (saturated hydraulic conductivity of Andosol Ks > 30 mm/h). Two campaigns of nematicide application were conducted, one in 2003 over 40% of the catchment and one in 2006 over 12%. For 100 days after application, we monitored the surface water and groundwater flows and the cadusafos concentrations in the soil and in surface and ground waters in a 2400 m² subcatchment and a 17.8 ha catchment. The results show that at the subcatchment scale the high retention in the A horizon of the soil limited the transport of cadusafos by runoff, whereas the lower retention of the molecule in the B horizon favoured percolation towards the shallow groundwater. The contamination levels of surface water, as well as shallow and deep groundwaters, reflected the geological structure of the Féfé catchment: i.e. a shallow aquifer in the most recent volcanic deposits that is rapidly exposed to pollution and a deeper aquifer that is relatively protected from the pollution coming from the treated fields. Comparing the losses of cadusafos at the subcatchment and at the catchment scales revealed that the nematicide re-infiltrated in

  20. Distinguishing spatiotemporal variability of sediment sources in small urbanized catchment as a response to urban expansion

    NASA Astrophysics Data System (ADS)

    Belyaev, Vladimir; Feoktistov, Artem; Huygens, Dries; Shamshurina, Eugenia; Golosov, Valentin

    2014-05-01

    for distinguishing contributions of different sediment sources into catchment sediment budgets on a reliable quantitative basis. In combination with microstratigraphic differentiation and dating of sediment in continuous deposition zones by 137Cs depth distribution curves and available land use records, spatial and temporal variability of sediment sources and sinks can be reconstructed for the last several decades. That is especially important for catchments which experienced profound land use changes such as transition from pristine or agriculture-dominated to urbanized environment. The example presented here describes the results of reconstruction of changing sediment source types, contributions and spatial patterns for small reservoir catchment within the city of Kursk (Sredenerusskaya Upland, Central European Russia). Combination of compound specific stable isotopes, 137Cs, sediment grain size composition, land use information for several time intervals and daily rainfall record for the Kursk meteorological station (conveniently located within the study catchment) have been employed in order to evaluate major sediment sources within the catchment, their spatial pattern and temporal changes and compare those to history of reservoir sedimentation. The reservoir is situated on the Kur River - small river which gave its name to the city itself. The dam and reservoir were constructed and put into operation in 1969, thus the beginning of its infill is located stratigraphically later than the main peak of the global 137Cs fallout. It has been found that transition from dominantly agricultural land use to urbanized conditions caused decrease of contribution of soil erosion from cultivated land and increase of that of the active gullies into reservoir sedimentation. However, it is important to note that during extreme runoff events contribution of sediment originated from soil erosion on arable land still remains dominant, even though its area within the catchment recently

  1. The Use of LiDAR Elevation Data and Satellite Imagery to Locate Critical Source Areas to Diffuse Pollution in Agricultural Watersheds

    NASA Astrophysics Data System (ADS)

    Drouin, Ariane; Michaud, Aubert; Thériault, Georges; Beaudin, Isabelle; Rodrigue, Jean-François; Denault, Jean-Thomas; Desjardins, Jacques; Côté, Noémi

    2013-04-01

    In Quebec / Canada, water quality improvement in rural areas greatly depends on the reduction of diffuse pollution. Indeed, point source pollution has been reduced significantly in Canada in recent years by creating circumscribed pits for manure and removing animals from stream. Diffuse pollution differs from point source pollution because it is spread over large areas. In agricultural areas, sediment loss by soil and riverbank erosion along with loss of nutrients (phosphorus, nitrogen, etc.) and pesticides from fields represent the main source of non-point source pollution. The factor mainly responsible for diffuse pollution in agricultural areas is surface runoff occurring in poorly drained areas in fields. The presence of these poorly drained areas is also one of the most limiting factors in crop productivity. Thus, a reconciliation of objectives at the farm (financial concern for farmers) and off-farm concerns (environmental concern) is possible. In short, drainage, runoff, erosion, water quality and crop production are all interconnected issues that need to be tackled together. Two complementary data sources are mainly used in the diagnosis of drainage, surface runoff and erosion : elevation data and multispectral satellite images. In this study of two watersheds located in Québec (Canada), LiDAR elevation data and satellite imagery (QuickBird, Spot and Landsat) were acquired. The studied territories have been partitioned in hydrologic response units (HRUs) according to sub-basins, soils, elevation (topographic index) and land use. These HRUs are afterwards used in a P index software (P-Edit) that calculates the quantities of sediments and phosphorus exported from each HRUs. These exports of sediments and phosphorus are validated with hydrometric and water quality data obtain in two sub-basins and are also compared to soil brightness index derived from multispectral images. This index is sensitive to soil moisture and thus highlights areas where the soil is

  2. Leaf breakdown in streams differing in catchment land use

    USGS Publications Warehouse

    Paul, M.J.; Meyer, J.L.; Couch, C.A.

    2006-01-01

    1. The impact of changes in land use on stream ecosystem function is poorly understood. We studied leaf breakdown, a fundamental process of stream ecosystems, in streams that represent a range of catchment land use in the Piedmont physiographic province of the south-eastern United States. 2. We placed bags of chalk maple (Acer barbatum) leaves in similar-sized streams in 12 catchments of differing dominant land use: four forested, three agricultural, two suburban and three urban catchments. We measured leaf mass, invertebrate abundance and fungal biomass in leaf bags over time. 3. Leaves decayed significantly faster in agricultural (0.0465 day-1) and urban (0.0474 day-1) streams than in suburban (0.0173 day-1) and forested (0.0100 day-1) streams. Additionally, breakdown rates in the agricultural and urban streams were among the fastest reported for deciduous leaves in any stream. Nutrient concentrations in agricultural streams were significantly higher than in any other land-use type. Fungal biomass associated with leaves was significantly lower in urban streams; while shredder abundance in leaf bags was significantly higher in forested and agricultural streams than in suburban and urban streams. Storm runoff was significantly higher in urban and suburban catchments that had higher impervious surface cover than forested or agricultural catchments. 4. We propose that processes accelerating leaf breakdown in agricultural and urban streams were not the same: faster breakdown in agricultural streams was due to increased biological activity as a result of nutrient enrichment, whereas faster breakdown in urban streams was a result of physical fragmentation resulting from higher storm runoff. ?? 2006 The Authors.

  3. Hydrology and sediment yield calibration for the Barasona reservoir catchment (Spain) using SWAT

    NASA Astrophysics Data System (ADS)

    Palazón, Leticia; Navas, Ana

    2013-04-01

    Hydrological and soil erosion models, as Soil and Water Assessment Tool (SWAT), have become very useful tools and increasingly serve as vital components of integrated environmental assessments that provide information outside of direct field experiments and causal observation. The purpose of this study was to improve the calibration of SWAT model to use it in an alpine catchment as a simulator of processes related to water quality and soil erosion. SWAT is spatially semi-distributed, agro-hydrological model that operates on a daily time step (as a minimum) at basin scale. It is designed to predict the impact of management on water, sediment and agricultural chemical yields in ungaged catchments. SWAT provides physically based algorithms as an option to define many of the important components of the hydrologic cycle. The input requirements of the model are used to describe the climate, soil properties, topography, vegetation, and land management practices. SWAT analyzes small or large catchments by discretising into sub-basins, which are then further subdivided into hydrological response units (HRUs) with homogeneous land use, soil type and slope. SWAT model (SWAT2009) coupled with a GIS interface (ArcSWAT), was applied to the Barasona reservoir catchment located in the central Spanish Pyrenees. The 1509 km2 agro-forestry catchment presents a mountain type climate, an altitudinal range close to 3000 meters and a precipitation variation close to 1000 mm/km. The mountainous characteristics of the catchment, in addition to the scarcity of climate data in the region, require specific calibration for some processes. Snowfall and snowmelt are significant processes in the hydrologic regime of the area and were calibrated in a previous work. In this work some of the challenges of the catchment to model with SWAT which affected the hydrology and the sediment yield simulation were performed as improvement of the previous calibration. Two reservoirs, a karst system which

  4. Catchment management and the Great Barrier Reef.

    PubMed

    Brodie, J; Christie, C; Devlin, M; Haynes, D; Morris, S; Ramsay, M; Waterhouse, J; Yorkston, H

    2001-01-01

    Pollution of coastal regions of the Great Barrier Reef is dominated by runoff from the adjacent catchment. Catchment land-use is dominated by beef grazing and cropping, largely sugarcane cultivation, with relatively minor urban development. Runoff of sediment, nutrients and pesticides is increasing and for nitrogen is now four times the natural amount discharged 150 years ago. Significant effects and potential threats are now evident on inshore reefs, seagrasses and marine animals. There is no effective legislation or processes in place to manage agricultural pollution. The Great Barrier Reef Marine Park Act does not provide effective jurisdiction on the catchment. Queensland legislation relies on voluntary codes and there is no assessment of the effectiveness of the codes. Integrated catchment management strategies, also voluntary, provide some positive outcomes but are of limited success. Pollutant loads are predicted to continue to increase and it is unlikely that current management regimes will prevent this. New mechanisms to prevent continued degradation of inshore ecosystems of the Great Barrier Reef World Heritage Area are urgently needed. PMID:11419129

  5. Validation of Pacific Northwest Hydrologic Landscapes at the Catchment Scale

    NASA Astrophysics Data System (ADS)

    Sawicz, K. A.; Leibowitz, S. G.; Comeleo, R. L.; Wigington, P. J., Jr.

    2014-12-01

    The interaction between the physical properties of a catchment (form) and climatic forcing of precipitation and energy control how water is partitioned, stored, and conveyed through a catchment (function). Hydrologic Landscapes (HLs) were previously developed across Oregon and describe climatic and physical properties for over 5000 assessment units. This approach was then extended to the three Pacific Northwest states of Washington, Oregon and Idaho (PNW HL). The HLs were developed using the National Hydrography Dataset's WBD HU12 scale and are comprised of classification components describing climate, climate seasonality, aquifer permeability, terrain, and soil permeability. To compare the PNW HL classification to catchment hydrologic behavior, HLs were aggregated to catchment scale to compare against the input/output of water in the catchment. HL aggregation must preserve information on the location of the HL within the catchment outlet (upstream vs. downstream) and properties of that HL (i.e. water source vs. sink). Catchment function was investigated by use of hydrologic signatures, which are attributes of long-term time series of water into and out of the catchment. Signatures include Runoff Ratio, Baseflow Index, Snow Ratio, and Recession Coefficients. This study has three primary objectives: 1) derivation of hydrologic signatures to capture the hydrologic behavior for catchments in the Pacific Northwest: 2) development of methodology to aggregate HLs to the catchment scale; and 3) statistical analysis of signature values and trends with respect to aggregated HL classification. We hypothesize that we will find: 1) strong relationships between aggregated HLs and hydrologic signatures; 2) signatures related to water balance are explained by climatic conditions; and 3) signatures describing flow paths are predicted by terrain, soil, and aquifer permeability. This study examined 230 catchments to achieve objectives and test hypotheses stated.

  6. Effects of model input data uncertainty in simulating water resources of a transnational catchment

    NASA Astrophysics Data System (ADS)

    Camargos, Carla; Breuer, Lutz

    2016-04-01

    Landscape consists of different ecosystem components and how these components affect water quantity and quality need to be understood. We start from the assumption that water resources are generated in landscapes and that rural land use (particular agriculture) has a strong impact on water resources that are used downstream for domestic and industrial supply. Partly located in the north of Luxembourg and partly in the southeast of Belgium, the Haute-Sûre catchment is about 943 km2. As part of the catchment, the Haute-Sûre Lake is an important source of drinking water for Luxembourg population, satisfying 30% of the city's demand. The objective of this study is investigate impact of spatial input data uncertainty on water resources simulations for the Haute-Sûre catchment. We apply the SWAT model for the period 2006 to 2012 and use a variety of digital information on soils, elevation and land uses with various spatial resolutions. Several objective functions are being evaluated and we consider resulting parameter uncertainty to quantify an important part of the global uncertainty in model simulations.

  7. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    USGS Publications Warehouse

    Lee, Terrie Mackin

    2002-01-01

    amounts of ground-water inflow, and (2) the location of ground-water catchments that could be managed to safeguard lake water quality. Knowledge of how ground-water catchments are related to lakes could be used by water-resource managers to recommend setback distances for septic tank drain fields, agricultural land uses, and other land-use practices that contribute nutrients and major ions to lakes.

  8. Spatio-temporal variability of streamwater chemistry within a Peri-urban Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla S. S.; Walsh, Rory P. D.; Ferreira, António J. D.; Coelho, Celeste O. A.

    2015-04-01

    The complex landscape of peri-urban areas, characterized by a mosaic of land-uses and urban fabric, provides different sources of runoff and pollutants which affect stream ecosystems. This study investigates the impact of land-uses and their location within catchments on streamwater quality in a peri-urban Mediterranean catchment, including temporal variations driven by antecedent weather and rainstorm characteristics. The study is based in Ribeira dos Covões, a small (6 km2) catchment in the city of Coimbra, central Portugal. Land-use is dominated by woodland (56%) and urban cover (40%), with a small agriculture area (4%). Streamwater was monitored at the catchment outlet (ESAC) and three upstream locations: Espírito Santo and Porto Bordalo, with similar urban cover (42% and 49%) but different imperviousness (27% and 15%) and lithologies (sandstone versus limestone), and Quinta with lower urban extent (25%) but including a construction site covering 10% of the area. Samples collected throughout ten rainfall events between October 2011 and March 2013 were analysed for natural water chemistry and major pollutants (notably ammonium, nitrates, total phosphorus, COD and metals). In the paper, temporal variations in water quality are explored via hysteresis loop and correlation analysis. Hydrological regime exerted a major influence on water quality. Major nutrients declined within and after the dry summer than in winter events, because of limited dilution by the low stream baseflow. Through the wet season, increasing baseflow led to increased concentrations of major cations (Na, Mg and Ca) because of reduced dilution by solute-poor stormflow. Espírito Santo, the most urbanized sub-catchment, displayed higher concentrations of COD and NO3 (tended to peak with stormflow), but the latter was thought to result from agricultural fields located adjacent the tributary. At the catchment outlet (ESAC), the high Nk and NH4 concentrations exceeded water quality standards (2 mg

  9. Crop structure in a gully catchment and the development of a loess gully (Lublin Upland, E Poland)

    NASA Astrophysics Data System (ADS)

    Mędrek, Karolina; Rodzik, Jan

    2015-04-01

    The study was conducted in a loess gully catchment with an area of 1.23 km2 and height differences of less than 50 m (213-165 m above sea level), located in Kolonia Celejów in the Nałęczów Plateau. This is one of mesoregions of Lublin Upland. In the investigated catchment, loess cover with a thickness of 10-20 m, accumulated during the Vistulian Glaciation, is dissected by a gully system with a depth of 5-15 m and total length of 7.5 km. The gully system is forested in 30% of its area. Until recently, the remaining part of the catchment under agricultural use has been dominated by conventional farming of cereals, potatoes, and sugar beets. Today, 15% of the non-forested area of the catchment is occupied by housing premises, dirt roads, and fallow land, and 45% by orchards with maintained turf, including berry plantations. This type of land management contributes to the retention of precipitation, and protects the soil from flushing. Approximately 20% of the agricultural land is occupied by conventional crops (cereals and root crops), protecting the soil to a moderate degree. Water runoff in the area does not occur every year. Approximately 20% of the agricultural land is currently occupied by cruciferous vegetables (broccoli and cauliflower), decorative shrubs, and orchards without turf in the first 2 years of use. Water and soil runoff from these crops occurs even several times per year. The majority of the material is retained in the lower part of the field, and the water flows into the gully. The crops in the fields adjacent to the ravine have a direct impact on the development of the gully. If the field is located on a raised headland, the flowing water dissects the edge of the gully, and the eroded material is accumulated on the gully bottom. If the field is located in a valley above the gullyhead, the flowing water dissects the bottom of the gully, and the eroded material is discharged outside the catchment.

  10. Investigating dominant processes on small poorly gauged catchments: an inter-comparison approach for catchment similarity study

    NASA Astrophysics Data System (ADS)

    Crabit, Armand; Colin, François; Moussa, Roger; Lagacherie, Philippe

    2010-05-01

    Small catchment scales appear to be relevant to study and manage agricultural uses and their hydrological impacts. Mediterranean small catchment responses are characterised by short duration surface runoff due to intense rainfall events of short duration. Ephemeral streams are common fluvial systems: they are usually dry for most of the year and become particularly active during flood events. This considerably complicates hydrological analysis. Therefore, estimating and predicting runoff for small ungauged (or poorly gauged) catchments appears to be a significant challenge. It would allow to a better understanding of dominant processes in relation with catchment functions (partition, release, storage). According to many authors, classification and similarity concepts, which can be profitably used when the processes are not fully understood, could be conducted as an alternative to complex modelling. This study proposes a new methodology for small poorly gauged catchments to (i) estimate surface runoff and associated uncertainty and (ii) identify dominant functions governing hydrological responses. The work focuses on twelve small agricultural catchments, within the French Mediterranean region, with areas ranging between 0,3 and 1 km2. Water depth at the catchment's outlet and rainfall intensities have been collected at a one-minute data step, from September 2008 to September 2009. The analysis has been conducted on 120 flood events. The first step was to make an inter-catchment comparison based on limited hydrological data considering the associated uncertainty. Estimation of flow velocity for natural ephemeral channel is a difficult task. To assess catchment runoff, flow rate curves were established from water depth using Manning's equation. Innovative field and laboratory experiments have been carried out to estimate Manning's coefficient for typical Mediterranean non-aquatic vegetation types. 72 tests have been realised to analyse the effects of vegetation

  11. Comparison of drought occurrence in selected Slovak and Czech catchments

    NASA Astrophysics Data System (ADS)

    Fendekova, Miriam; Fendek, Marian; Porubska, Diana; Hanel, Martin; Horacek, Stanislav; Martinkova, Marta; Vizina, Adam

    2014-05-01

    The presented study is focused on the analysis and comparison of hydrological drought occurrence, development and duration in six small to middle sized catchments in the Czech Republic (CZ) and Slovakia. The main questions to be answered are: (1) are there correlations between the physical conditions in the catchments and drought occurrence, and (2) does the spatial trend of drought occurrence exist. The Žitava catchment is located in the central western part of Slovakia having runoff dominated by rainfall with the contribution of snow melting during the spring period. The Belá River catchment is located on the contact of Západné and Vysoké Tatry Mts. in the north of Slovakia. The runoff is snow to snow-rain combined type. The Ľupčianka catchment is located on the northern slopes of the Nízke Tatry Mts. in the northern part of the central Slovakia. The runoff regime is snow-rain combined in the upper part of the catchment, and of rain-snow type in the rest of catchment. The Rakovnický potok brook (CZ) has its spring in Rakovnická pahorkatina hilly land. Runoff is dominated by rainfall, quite heavily influenced by water uptakes in the catchment. The Teplá River (CZ) originates in peat meadows in the western part of the Czech Republic. Runoff is dominated by rainfall. The Metuje catchment (CZ) is formed by Adršsbach-Teplické stěny Upland. The headwater part is typical by deeply incest valleys, table mountains and pseudokarst caves. The discharge is fed dominantly by groundwater. The streamflow drought was characterized using discharge data, the groundwater drought using the base flow values. The local minimum method was used for base flow separation. The threshold level method (Q80, BF80) and the sequent peak algorithm were used for calculation of drought duration in discharge and base flow time series. The data of the same three decades of the common period (1971 - 1980, 1981 - 1990 and 1991 - 2000) were used. The resulting base flow values along with

  12. Human-Landscape interaction in cultivated lowland catchments (Louroux catchment, Loire Valley, France)

    NASA Astrophysics Data System (ADS)

    Cerdan, Olivier; Foucher, Anthony; Gay, Aurore; Salvador Blanes, Sébastien; Evrard, Olivier; Desmet, Marc

    2015-04-01

    Change of land use or agricultural practices are known to have high impacts on sediment transfer in catchments and rivers. Numerous studies have particularly illustrated these effects in sloping land in tropical areas undergoing deforestation. Much less attention has been paid to lowland humid areas, where permanent land uses have been plowed more recently. However recent studies reported significant erosion rates in these environments despite the gentle topography and the temperate climate. In order to quantify these changing fluxes of sediment, several instrumentation and historical database analyses were carried out in various catchments of the Loire Valley, France. More particularly, a multiparameter analysis was conducted on sedimentary deposits of a pond created in the 11th century in a catchment representative of cultivated and drained lowland environments where an intensification of agricultural practices has occurred during the last 60 years. The results showed that the initial land consolidation period (1954-1960) was characterized by a dominance of allochtonous material input to the pond. This input represents an erosion of 1900 to 2300 t.km-².yr-1 originating from the catchment. Then, between 1970-1990, terrigenous material flow decreased progressively and tended to stabilize, whereas eutrophication and associated primary production increased in the pond. In addition to these temporal changes, material input across the pond during the last 10 years corresponds to a loss of material in the catchment ranging between 90 and 102 t.km-2.yr-1. While a strong decrease is observed, it still represents a 60-fold increase of the sediment fluxes to the pond compared to the preintensification period. Subsequent research monitoring studies permitted to differentiate between the different sources of sediment and highlight the importance of surface erosion during flood events and of bank erosion during low flows. The increased export of the sediment is primarily due

  13. Catchment Restoration in the Tweed UNESCO-IHP HELP Basin - Eddleston Water

    NASA Astrophysics Data System (ADS)

    Spray, Christopher

    2013-04-01

    The EU Water Frame Work Directive (WFD) requires member states to work towards the achievement of 'good ecological status' for water bodies, through a 6 year cycle of river basin management plans (RBMPs). Within these RBMPs, states must develop and implement programmes of measures designed to improve the quality of individual water bodies at risk of failing to achieve this status. These RBMPS must not only be focussed on the key causes of failure, but increasingly look to deliver multiple benefits, such as flood risk reduction and improvement to biodiversity from such catchment interventions, and to involve communities and other stakeholders in restoration of their local environment. This paper reports on progress of a detailed study of the restoration of the Eddleston Water, a typical 'failing' water body in Scotland, the monitoring and governance arrangements behind this, and implications for rehabilitation of river systems elsewhere. Within UK rivers, the main causes of failure to achieve good ecological status are historical morphological changes to river courses, diffuse agricultural pollution and invasive non-native species. The Eddleston Water is a 70 sq kms sub-catchment of the Tweed, an UNESCO IHP-HELP basin in the Scottish : English borders, and is currently classified as 'bad' status, due largely to morphological changes to the course and structure of the river over the past 200 years. The main challenge therefor is physical restoration of the river to achieve functional connectivity with the flood plain. At the same time however, the two communities within the catchment suffer from flooding, so a second priority is to intervene within the catchment to reduce the risk of flooding through the use of "natural flood management" measures and, underlying both these two aspects a whole catchment approach to community participation and the achievement of a range of other ecosystem service benefits, including conservation of biodiversity. We report on the

  14. Estimation of regional recharge in the HOBE catchment using data from a distributed soil moisture network

    NASA Astrophysics Data System (ADS)

    Andreasen, M.; Andreasen, L. A.; Bircher, S.; Sonnenborg, T.; Jensen, K. H.

    2012-12-01

    The regional variation of recharge of ground water is dependent on a larger number of variables and conditions and is therefore difficult to quantify. In this study we have estimated regional recharge using data from a distributed network of soil moisture stations within the HOBE catchment. The network has been designed in an arrangement of three clusters along a long-term precipitation gradient and the stations have been distributed according to respective fractions of classes combining the prevailing land use, top- and subsoil conditions. At each of the 30 stations water content has been measured at three depths (0-5cm, 20-25cm and 50-55cm) for the period 2009-2011 at a temporal resolution of 30 minutes. The 1D soil-plant-atmosphere system model DAISY has been applied to each of the field locations to simulate the water balance of the root zone and the associated components of evapotranspiration and recharge. The 30 models have been formulated and parameterized using specific information on local climate, soil texture, land use and management. Each model was calibrated to the measured soil water content from the distributed network using the PEST (Parameter ESTimation) software. The calibrated parameters were saturated hydraulic conductivity Ks and van Genuchten parameter n as they were found most sensitive. The 30 sets of results were averaged to represent the mean conditions of the catchment. An effective parameterization was also determined by calibration against mean soil moisture and compared to the results obtained by using effective parameters using various averaging methods. The regional variation in groundwater recharge, actual evapotranspiration and soil water content in the catchment was dependent on land use. The simulated results showed that the largest recharge was found at the agricultural sites (554 mm/yr) and the lowest at the forested sites (257 mm/yr). Correspondingly, the highest actual evapotranspiration was found at the forested sites (614

  15. Influence of Curve Number variation on peak discharge of small catchment

    NASA Astrophysics Data System (ADS)

    Banasik, Kazimierz; Hejduk, Leszek; Banasik, Jerzy; Rutkowska, Agnieszka

    2014-05-01

    In this study, we have examined the impact of Curve Number variability on peak discharge, estimated with the use of lumped parametric model SEGMO. Analysis has been conducted for a small (82 km2) agro-forested lowland catchment, located in the center of Poland. Both, the curve number, which is determining runoff depth from rainfall depth, and the IUH characteristics (such as lag time, time to peak, maximum ordinate), which are used to transform the runoff depth into direct runoff hydrograph, have been estimated on the base of recorded in the catchment rainfall-runoff events (Banasik et al. 2011, Banasik et al. 2013). All of them include some stochastic variables, however IUH has been approximated, and used in computation as deterministic. A big variability in CNs has been found, when they were computed from recorded rainfall-runoff data. Next, using the 40 rainfall-runoff data set, the curve numbers were computed again, for each of the ordered pairs, and finally plotted against rainfall depth. Curve numbers were found to approximate an exponential function, varying with storm depth (i.e. decreasing with rainfall increase), and approaches a constant value (CN∞=69.8, which was very close to that value estimated on the base of soil type and land use) at higher rainfalls, what is call a standard behavior (Van Mullem et al. 2002). Standard error of estimation of CN was 1.54. The examination indicated high sensitivity of the flood discharge, estimated as catchment response to 100-year rainfall, to CN changes. Banasik K., Hejduk L. & Oygarden L., 2011. Prediction and reduction of diffuse pollution, solid emission and extreme flows from rural areas - case study of small agricultural catchments. Warsaw University of Life Sciences Press, Warsaw. Banasik K., Hejduk L., Banasik J., 2013. Variation of IUH shapes with size of rainfall-runoff events in a small agricultural catchment. EGU General Assembly, Abstract & Poster. Van Mullem J.A., Woodward D.E., Hawkins R

  16. Human impact variability on soil erosion during the Holocene based on valley floor sediments study in a Parisian basin fluvial catchment (France): crossing sedimentological, archaeological and palynological proxies

    NASA Astrophysics Data System (ADS)

    Morin, E.; Cyprien, A. L.; Gay-Ovejero, I.; Hinschberger, F.; Joly, C.; Macaire, J. J.; Poirier, N.; Visset, L.; Zadora-Rio, E.

    2009-04-01

    This work is part of the French CNRS ECLIPSE program « Impact anthropique sur l'érosion des sols et la sédimentation dans les zones humides associées durant l'Holocène ». It aims to reconstitute the evolution of human impact on soil erosion at various periods via the study of Holocene sedimentary archives. In this framework the Choisille catchment (288 km²; elevation: 50 - 200 m), tributary of the River Loire near Tours (France), has been the subject of an interdisciplinary study (sedimentology, geophysics, archaeology, palynology). 3 areas are investigated: a downstream stretch, a silicated sub-catchment area and a carbonated sub-catchment area. In the downstream stretch, located near ancient populated areas, drillings were performed along cross sections through valley floor alluviums. They show that a more or less organic clayey silty sedimentation started at the beginning of the Holocene. The sedimentation rates strongly increased at the beginning of the Subbatlantic (Bronze Age), simultaneously with the anthropogenic pressure advent (on set of agriculture), as shown by archaeological and palynological evidences (agricultural settlements, massive loggings on slopes, stockbreeding on valley-floor grasslands). In the silicated sub-catchment area, located upstream, drillings have shown that clayey silty sedimentation began at the end of the Roman Period, continued during the Early Middle Ages and increased during the High Middle Ages. Spatial archaeological prospecting has revealed a faint anthropogenic presence at the Roman Period, then a decline of population until the High Middle Ages, characterised by an agricultural revival. Palynological analyses have shown that, in this area, grasslands were dominant since the Early Middle Ages, with an increase in cereal cultures at the beginning of the High Middle Ages. In the carbonated sub-catchment area, drillings have shown that the more or less organic clayey silty sedimentation has begun during the Bronze Age

  17. The Hydrologic Response of a Small Catchment to Clear Cutting

    NASA Astrophysics Data System (ADS)

    Abdelnour, A.; Stieglitz, M.; Pan, F.; McKane, R. B.

    2006-12-01

    We simulated how a landscape disturbance (i.e., fire or clear-cutting) alters hillslope and catchment hydrologic processes. Specifically, we simulated how the pattern and magnitude of tree removal in a catchment increases downslope transport of water and alters catchment soil moisture and discharge. The study site is the WS10 catchment of the HJ Andrews LTER, located in the Pacific NorthWest, USA. We used a spatially- explicit hydrologic model comprised of connected landscape units. We implicitly model biomass removal and the subsequent forest re-growth by manipulating evapotranspiration. We allow potential evapotranspiration to increase exponentially from zero at the onset of the disturbance to pre-disturbance values within a 40 years period. Simulations show that while soil moisture in the uplands increased in post-disturbance period, downslope flow increased only minimally. In this catchment, upland soil moisture stayed well below field capacity, and therefore, downslope lateral flow was not initiated. As such, midland and lowland soil moisture, as well as catchment discharge, remained near pre-disturbance values throughout the re-growth period. This behavior in catchment dynamics resulted primarily from the fact that seasonal temperatures and precipitations are out of phase in this region of the US.

  18. Accelerated export of sediment and carbon from a landscape under intensive agriculture.

    PubMed

    Glendell, M; Brazier, R E

    2014-04-01

    The export of total organic carbon (particulate and dissolved) from terrestrial to aquatic ecosystems has important implications for water quality and the global carbon cycle. However, most research to date has focused on DOC losses from either forested or peaty catchments, with only limited studies examining the controls and rates of total fluvial carbon losses from agricultural catchments, particularly during storm events. This study examined the controls and fluxes of total suspended sediment (SS), total particulate (TPC) and dissolved organic carbon (DOC) from two adjacent catchments with contrasting intensive agricultural and semi-natural land-use. Data from 35 individual storm events showed that the agricultural catchment exported significantly higher SS concentrations on a storm-by-storm basis than the semi-natural catchment, with peak discharge exerting a greater control over SS, TPC and DOC concentrations. Baseflow DOC concentrations in the agricultural catchment were significantly higher. DOC quality monitored during one simultaneous rainfall event differed between the two study catchments, with more humic, higher molecular weight compounds prevailing in the agricultural catchment and lower molecular weight compounds prevailing in the semi-natural catchment. During an eight month period for which a comparable continuous turbidity record was available, the estimated SS yields from the agricultural catchment were higher than from the semi-natural catchment. Further, the agricultural catchment exported proportionally more TPC and a comparable amount of DOC, despite a lower total soil carbon pool. These results suggest that altered hydrological and biogeochemical processes within the agricultural catchment, including accelerated soil erosion and soil organic matter turnover, contributed to an enhanced fluvial SS and carbon export. Thus, we argue that enhancing semi-natural vegetation within intensively farmed catchments could reduce sediment and carbon losses

  19. Multiple-method approaches for quantifying fine sediment dynamics in river catchments over contemporary timescales

    NASA Astrophysics Data System (ADS)

    Smith, Hugh

    2015-04-01

    Understanding the patterns and processes of contemporary fine sediment dynamics in river catchments constitutes a key research challenge for catchment scientists. Such knowledge has considerable value for the targeting of management resources to reduce excess fine sediment supply and its impacts on water resources and aquatic ecosystems. Many past studies tended to focus on a single compartment of the fine sediment cascade and utilised a limited range of research methods. For more holistic understanding, the use of multiple-method approaches is required to provide data on the sources, transfer, storage, and transit times of fine sediment in river catchments. Such approaches would allow scientists to better conceptualise catchment processes controlling the movement of fine sediment across a range of spatial scales. It may also enhance the scientific quality of catchment-scale studies through the acquisition of multiple lines of evidence concerning a particular research problem. The specific combination of fine sediment tracing and fingerprinting procedures with catchment sediment flux measurements and sediment budget modelling has considerable potential to enhance our knowledge of contemporary sediment dynamics. This combination of techniques offers complementary information and the opportunity to compare datasets, such as estimates of catchment sediment source contributions obtained using sediment tracers with direct measurements of sediment fluxes or catchment model outputs. This contribution explores the potential for such combinations of methods to yield distinctive insights not otherwise available from the use of only one of these techniques. It draws on published examples of multiple-method studies by the author from small agricultural and wildfire-affected forest catchments (1-2 km2) in south-east Australia and from larger agricultural river catchments (38-920 km2) in south-west England. It will also identify possible directions for catchment research based

  20. Catchments as Reactors: How do landscapes process diffuse pollution? (Invited)

    NASA Astrophysics Data System (ADS)

    Grathwohl, P.; Cirpka, O. A.

    2013-12-01

    Anthropogenic organic and inorganic compounds nowadays occur ubiquitous in soils, surface waters and groundwater. Emission of many pollutants is ongoing (through wastewater, agriculture, traffic, households, industry) but still the long-term fate of many compounds in the environment is unclear. Some are degraded by microorganisms, others accumulate in soils or biota, enter the food chain or are transported into groundwater systems and finally may occur in drinking water. Although much progress was made during the last 20 years concerning the identification and parameterization of many processes in laboratory experiments their interplay and efficiency at field scale in not clear. Very slow, but essential processes may have been overlooked - biodegradation may be very different in the lab compared to the field. Solute turnover often happens along steep biogeochemical gradients (locally small diffusion/dispersion coefficients) which are not well known under field conditions and which may dynamically shift their location depending on hydrology causing corresponding changes in concentrations. New field monitoring and analytical methods (sensors, time integrating passive samplers, non-target analysis, etc.) along with new tracer techniques are available meanwhile to record high frequency changes of major chemical parameters and to get an comprehensive inventory of compound classes at catchment scale. Fluxes of pollutants in contrasting catchments can be related to land use or degree of urbanization. Modeling of such systems is essential for exploration of future water quality scenarios for instance as a function of land use or climatic conditions. Spatially explicit reactive models based on coupled partial differential equations are hardly to handle on the scales requested. Conceptual models, however, cannot account for non-linear reactions. Therefore it remains a challenge to combine field observations and theories/models.

  1. Modeling relationships between catchment attributes and river water quality in southern catchments of the Caspian Sea.

    PubMed

    Hasani Sangani, Mohammad; Jabbarian Amiri, Bahman; Alizadeh Shabani, Afshin; Sakieh, Yousef; Ashrafi, Sohrab

    2015-04-01

    Increasing land utilization through diverse forms of human activities, such as agriculture, forestry, urban growth, and industrial development, has led to negative impacts on the water quality of rivers. To find out how catchment attributes, such as land use, hydrologic soil groups, and lithology, can affect water quality variables (Ca(2+), Mg(2+), Na(+), Cl(-), HCO 3 (-) , pH, TDS, EC, SAR), a spatio-statistical approach was applied to 23 catchments in southern basins of the Caspian Sea. All input data layers (digital maps of land use, soil, and lithology) were prepared using geographic information system (GIS) and spatial analysis. Relationships between water quality variables and catchment attributes were then examined by Spearman rank correlation tests and multiple linear regression. Stepwise approach-based multiple linear regressions were developed to examine the relationship between catchment attributes and water quality variables. The areas (%) of marl, tuff, or diorite, as well as those of good-quality rangeland and bare land had negative effects on all water quality variables, while those of basalt, forest land cover were found to contribute to improved river water quality. Moreover, lithological variables showed the greatest most potential for predicting the mean concentration values of water quality variables, and noting that measure of EC and TDS have inversely associated with area (%) of urban land use. PMID:25395322

  2. A methodological comparison of catchment storages in mountainous catchments

    NASA Astrophysics Data System (ADS)

    Weiler, Markus; Staudinger, Maria; Stölzle, Michael; Seeger, Stefan; Seibert, Jan; Stahl, Kerstin

    2015-04-01

    One of the most important functions of catchments is the temporary storage of water, which directly influences runoff dynamics, rainfall-runoff transformation, partitioning of evaporation and runoff fluxes, and accessibility of water to plants. Generally, a large catchment storage is considered beneficial and in particular increases the transit times and hence the buffer functioning related to water quality. Many different methods have been developed to assess catchment storage, however, there are hardly any direct comparisons of several of these methods. One challenge is the definition of water storage, while some methods allow estimation of the entire water storage in a catchment, other methods quantify only the dynamic storage. In addition, most studies focused more on lowland catchments with rain-dominated runoff regimes and observed groundwater fluctuations. Furthermore, these studies often focus on one or two catchments, but do not consider the influence of different climates on the relevance of water storage in the catchment. We applied a range of different methods to assess catchment storage characteristics in 18 catchments in the Swiss Alps, ranging from 500 to 2000m of mean elevation and hence from rainfall- to snowmelt dominated runoff regimes. The first method use only discharge information during recession periods and with varying approaches to extract discharge and storage changes between high flow and low flow, the dynamic catchment storage can be derived. In the next methods the conceptual hydrological model HBV is calibrated to the runoff dynamics and the dynamic and total catchment storages of the different compartments are being evaluated. The last methods are based on stable water isotope data analysis. We use the model TRANSEP to derive the dynamic storage as well as the total water storage of the catchment based on the transit times using several years of fortnightly isotope data in streamflow. The results show that the derived catchment

  3. Effects of land use on greenhouse gas fluxes and soil properties of wetland catchments in the Prairie Pothole Region of North America

    NASA Astrophysics Data System (ADS)

    Tangen, B.; Finocchiaro, R. G.; Gleason, R. A.

    2015-12-01

    Wetland restoration has been suggested as policy goal with multiple environmental benefits including enhancement of atmospheric carbon sequestration. However, there are concerns that increased CH4 emissions associated with restoration may outweigh the potential sequestration benefits. The Prairie Pothole Region (PPR) of North America is characterized by millions of depressional wetlands and spans climate and land-use gradients that have potential to affect biotic and abiotic factors associated with the overall greenhouse gas (GHG) balance of pothole wetland ecosystems. Thus, we conducted a comprehensive, 4-year study of 119 wetland catchments distributed throughout the U.S. portion of the PPR to assess the effects of land use and restoration practices on CH4 and N2O fluxes and soil properties.Results showed that the effects of land use on GHG fluxes and abiotic soil properties differed with respect to catchment zone (upland, wetland), wetland classification, geographic location, and year. CH4 fluxes were greater than previously reported for pothole wetlands, while N2O fluxes were comparable to previously reported values. Moreover, maximum cumulative CH4 fluxes were nearly 3 times as high as previously reported in North America.Results suggest that soil organic carbon is lost when relatively undisturbed catchments are converted for agriculture, but sequestration rates associated with restoration are variable. Further, when non-drained cropland catchments are restored, CH4 fluxes generally are not different than the pre-restoration baseline; conversely, when drained cropland catchments are restored, CH4 fluxes are noticeably higher. Consequently, it is important to consider the type of restoration when assessing restoration benefits. Results also suggest that elevated N2O fluxes from cropland catchments likely would be reduced through restoration. The overall variability discovered by this study underscores the difficulty in quantifying the GHG balance of wetlands.

  4. A catchment scale water balance model for FIFE

    NASA Technical Reports Server (NTRS)

    Famiglietti, J. S.; Wood, E. F.; Sivapalan, M.; Thongs, D. J.

    1992-01-01

    A catchment scale water balance model is presented and used to predict evaporation from the King's Creek catchment at the First ISLSCP Field Experiment site on the Konza Prairie, Kansas. The model incorporates spatial variability in topography, soils, and precipitation to compute the land surface hydrologic fluxes. A network of 20 rain gages was employed to measure rainfall across the catchment in the summer of 1987. These data were spatially interpolated and used to drive the model during storm periods. During interstorm periods the model was driven by the estimated potential evaporation, which was calculated using net radiation data collected at site 2. Model-computed evaporation is compared to that observed, both at site 2 (grid location 1916-BRS) and the catchment scale, for the simulation period from June 1 to October 9, 1987.

  5. Chemical weathering and runoff chemistry in a steep headwater catchment

    NASA Astrophysics Data System (ADS)

    Anderson, Suzanne Prestrud; Dietrich, William E.

    2001-07-01

    We present here deductions about the location, rate, and mechanisms of chemical weathering in a small catchment based on a catchment-scale sprinkling experiment. In this experiment demineralized water was applied at an approximately steady rate in the CB1 catchment in the Oregon Coast Range to reach and maintain a quasi-steady discharge for a period of 4 days. Because of nearly steady flow conditions within the catchment, the contribution to solute fluxes from soil and bedrock could be partitioned. One half of the solute flux from the catchment derived from colluvial soil, and one half from weathering in bedrock. This implies more intense weathering in the thin colluvium mantling the catchment than in the thick underlying weathered bedrock. The annual solute flux from the catchment, scaled to the annual runoff from the catchment, is 32 +/- 10 t km-2 year-1, equivalent to published chemical denudation rates for nearby rivers with drainage areas 106 times greater than the experiment site. Soil waters sampled during the sprinkling experiment had steady compositions following a period of transient water flow conditions, implying steady-state chemical evolution in the soil. The waters leached organic anions from shallow depths in the soil, which solubilized aluminium and iron, indicating that podzolization is occurring in these soils. Carbonate dissolution appears to be an important source of solutes from the bedrock, despite being present as only a minor phase in the rock. Water balance suggests that the residence time of water in the catchment is about 2 months, and that typical 24 h storms displace only a fraction of the stored water. A consequence is that runoff chemistry is dominated by old water, which imposes strong limits on the variability of runoff composition.

  6. Catchments of general practice in different countries– a literature review

    PubMed Central

    2014-01-01

    The purpose of this paper is to review the current research on catchment areas of private general practices in different developed countries because healthcare reform, including primary health care, has featured prominently as an important political issue in a number of developed countries. The debates around health reform have had a significant health geographic focus. Conceptually, GP catchments describe the distribution, composition and profile of patients who access a general practitioner or a general practice (i.e. a site or facility comprising one or more general practitioners). Therefore, GP catchments provide important information into the geographic variation of access rates, utilisation of services and health outcomes by all of the population or different population groups in a defined area or aggregated area. This review highlights a wide range of diversity in the literature as to how GP catchments can be described, the indicators and measures used to frame the scale of catchments. Patient access to general practice health care services should be considered from a range of locational concepts, and not necessarily constrained by their place of residence. An analysis of catchment patterns of general practitioners should be considered as dynamic and multi-perspective. Geographic information systems provide opportunities to contribute valuable methodologies to study these relationships. However, researchers acknowledge that a conceptual framework for the analysis of GP catchments requires access to real world data. Recent studies have shown promising developments in the use of real world data, especially from studies in the UK. Understanding the catchment profiles of individual GP surgeries is important if governments are serious about patient choice being a key part of proposed primary health reforms. Future health planning should incorporate models of GP catchments as planning tools, at the micro level as well as the macro level, to assist policies on the

  7. Transferring rainfall runoff model parameters to ungauged catchments: Does the metric by which hydrologic similarity is defined actually matter?

    NASA Astrophysics Data System (ADS)

    Singh, R.; Archfield, S. A.; Wagener, T.; Vogel, R. M.

    2012-04-01

    Daily streamflow information is critical for solving any number of hydrologic problems. Because most of the world's stream reaches are ungauged, this data is commonly needed for rivers that have no readily available measurements of streamflow. One approach to estimating daily streamflow time series at ungauged catchments transfers a set of model parameters resulting from the calibration of a rainfall-runoff model at a gauged catchment (or set of gauged catchments) to an ungauged site of interest. Central to this approach is the selection of a gauged donor catchment that is considered hydrologically similar to the ungauged catchment. A number of published studies compare various methods to define hydrologic similarity, typically using distance between the catchments or similarity in catchments characteristics; however, no one metric of hydrologic similarity has been demonstrated to provide a consistent approach to select a suitable donor catchment. For 16 unregulated catchments in the mid-Atlantic United States, this study shows that the similarity metric matters little if the catchments are classified as good receivers, which we define as catchments having more than two donor catchments that result in reasonable models of daily streamflow. Rainfall-runoff models were calibrated at each of the 16 study catchments and then the study catchments were treated as ungauged and model parameters from each of the other 15 catchments were transferred to the ungauged catchment. For catchments that are good receivers, combining the model output from several donors - no matter whether the donors were selected using distance or similarity in catchment characteristics - resulted in estimated daily streamflow comparable to the observed streamflow at the ungauged location. However, none of the similarity metrics were useful for selecting a suitable donor catchment when the ungauged catchment is considered to be a poor receiver (defined as a catchment with only one donor catchment

  8. Kresoxim methyl deposition, drift and runoff in a vineyard catchment.

    PubMed

    Lefrancq, M; Imfeld, G; Payraudeau, S; Millet, M

    2013-01-01

    Surface runoff and spray drift represent a primary mode of pesticide mobilisation from agricultural land to ecosystem. Though pesticide drift has mainly been studied at small scale (<1 ha), pesticide transports by drift and runoff have rarely been compared in the same agricultural catchment. Here kresoxim methyl (KM) drift during foliar application was evaluated in a vineyard catchment (Rouffach, Alsace, France), and KM deposition on non-target surfaces was compared to KM runoff. KM was detected on 55% of the collectors and concentration reached 18% of the applied dose (i.e. 1.5 mg m(-2)). Our results indicated that KM soil deposition greatly varied in space and time. The total KM soil deposition in the vineyard plots was estimated by four different interpolation methods (arithmetic mean, Thiessen method, inverse weighting distance and ordinary kriging) and ranged between 53 g and 61 g (5.8 and 6.6% of the total mass applied). The amount of KM drifted on roads was 50 times larger than that in runoff water collected at the outlet of the catchment. Although KM application was carried out under regular operational and climatic conditions, its deposition on non-target surfaces may be significant and lead to pesticide runoff. These results can be anticipated as a starting point for assessing pesticide deposition during spray application and corresponding pesticide runoff in agricultural catchments. PMID:23201604

  9. Moments of catchment storm area

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.; Wang, Q.

    1985-01-01

    The portion of a catchment covered by a stationary rainstorm is modeled by the common area of two overlapping circles. Given that rain occurs within the catchment and conditioned by fixed storm and catchment sizes, the first two moments of the distribution of the common area are derived from purely geometrical considerations. The variance of the wetted fraction is shown to peak when the catchment size is equal to the size of the predominant storm. The conditioning on storm size is removed by assuming a probability distribution based upon the observed fractal behavior of cloud and rainstorm areas.

  10. Effects of Best Management Practice on Ecological Condition: Does Location Matter?

    PubMed

    Holmes, Roger; Armanini, David G; Yates, Adam G

    2016-05-01

    Best management practices (BMPs) are increasingly being promoted as a solution to the potentially adverse effects agriculture can have on aquatic systems. However, the ability of BMPs to improve riverine systems continues to be questioned due to equivocal empirical evidence linking BMP use with improved stream conditions, particularly in regard to ecological conditions. Explicitly viewing BMP location in relation to hydrological pathways may, however, assist in establishing stronger ecological linkages. The goal of this study was to assess the association between water chemistry, benthic macroinvertebrate community structure, and the number and location of agricultural BMPs in a catchment. Macroinvertebrate and water samples were collected in 30 small (<12 km(2)) catchments exhibiting gradients of BMP use and location in the Grand River Watershed, Southern Ontario, Canada. Stepwise regression analysis revealed that concentrations of most stream nutrients declined in association with greater numbers of BMPs and particularly when BMPs were located in hydrologically connected areas. However, BMPs were significantly associated with only one metric (%EPT) describing macroinvertebrate community structure. Furthermore, variance partitioning analysis indicated that less than 5% of the among site variation in the macroinvertebrate community could be attributed to BMPs. Overall, the implemented BMPs appear to be achieving water quality improvement goals but spatial targeting of specific BMP types may allow management agencies to attain further water quality improvements more efficiently. Mitigation and rehabilitation measures beyond the BMPs assessed in this study may be required to meet goals of enhanced ecological condition. PMID:26787015

  11. Effects of Best Management Practice on Ecological Condition: Does Location Matter?

    NASA Astrophysics Data System (ADS)

    Holmes, Roger; Armanini, David G.; Yates, Adam G.

    2016-05-01

    Best management practices (BMPs) are increasingly being promoted as a solution to the potentially adverse effects agriculture can have on aquatic systems. However, the ability of BMPs to improve riverine systems continues to be questioned due to equivocal empirical evidence linking BMP use with improved stream conditions, particularly in regard to ecological conditions. Explicitly viewing BMP location in relation to hydrological pathways may, however, assist in establishing stronger ecological linkages. The goal of this study was to assess the association between water chemistry, benthic macroinvertebrate community structure, and the number and location of agricultural BMPs in a catchment. Macroinvertebrate and water samples were collected in 30 small (<12 km2) catchments exhibiting gradients of BMP use and location in the Grand River Watershed, Southern Ontario, Canada. Stepwise regression analysis revealed that concentrations of most stream nutrients declined in association with greater numbers of BMPs and particularly when BMPs were located in hydrologically connected areas. However, BMPs were significantly associated with only one metric (%EPT) describing macroinvertebrate community structure. Furthermore, variance partitioning analysis indicated that less than 5 % of the among site variation in the macroinvertebrate community could be attributed to BMPs. Overall, the implemented BMPs appear to be achieving water quality improvement goals but spatial targeting of specific BMP types may allow management agencies to attain further water quality improvements more efficiently. Mitigation and rehabilitation measures beyond the BMPs assessed in this study may be required to meet goals of enhanced ecological condition.

  12. Hydrological Catchment Similarity Assessment in Geum River Catchments, Korea

    NASA Astrophysics Data System (ADS)

    Ko, Ara; Park, Kisoon; Lee, Hyosang

    2013-04-01

    Similarity measure of catchments is essential for regionalization studies, which provide in depth analysis in hydrological response and flood estimations at ungauged catchments. However, this similarity measure is often biased to the selected catchments and is notclearly explained in hydrological sense. This study applied a type of hydrological similarity distance measure-Flood Estimation Handbook to 25 Geum river catchments, Korea. Three Catchment Characteristics, Area (A)-Annual precipitation (SAAR)-SCS Curve Number (CN), are used in Euclidian distance measures. Furthermore, six index of Flow Duration Curve (ILow:Q275/Q185, IDrought:Q355/Q185, IFlood:Qmax/Q185, IAbundant:Q95/Q185, IFloodDuration:Q10/Q355 and IRiverRegime:Qmax/Qmin) are applied to clustering analysis of SPSS. The catchments' grouping of hydrological similarity measures suggests three groups: H1 (Cheongseong, Gidae, Bukil, Oksan, Seockhwa, Habgang and Sangyeogyo), H2 (Cheongju, Guryong, Ugon, Boksu, Useong and Seokdong) and H3 (Muju, Yangganggyo and YongdamDam). The four catchments (Cheoncheon, Donghyang, DaecheongDam and Indong) are not grouped in this study. The clustering analysis of FDC provides four Groups; CFDC1 (Muju, YongdamDam, Yangganggyo, DaecheongDam, Cheongseong, Gidae, Seokhwa, Bukil, Habgang, Cheongju, Oksan, Yuseong and Guryong), CFDC2 (Cheoncheon, Donghyang, Boksu, Indong, Nonsan, Seokdong, Ugon, Simcheon, Useong and Sangyeogyo), CFDC3 (Songcheon) and CFDC4 (Tanbu). The six catchments (out of seven) of H1 are grouped in CFDC1, while Sangyeogyo is grouped in CFDC2. The four catchments (out of six) of H2 are also grouped in CFDC2, while Cheongju and Guryong are grouped in CFDC1. The catchments of H3 are categorized in CFDC1. The authors examine the results (H1, H2 and H3) of similarity measure based on catchment physical descriptors with results (CFDC1 and CFDC2) of clustering based on catchment hydrological response. The results of hydrological similarity measures are supported by

  13. Cross-Location Analysis of the Impact of Household Socioeconomic Status on Participation in Urban and Peri-Urban Agriculture in West Africa.

    PubMed

    Dossa, Luc Hippolyte; Buerkert, Andreas; Schlecht, Eva

    2011-10-01

    This study explores the relation between household socioeconomic status (SES) and participation in urban and periurban agriculture (UPA) in three West African cities. We used a structured questionnaire to survey 700 randomly selected households: 250 in Kano, Nigeria, 250 in Bobo Dioulasso, Burkina Faso, and 200 in Sikasso, Mali. Multiple correspondence analysis was applied on household asset variables to create an index of assets which was used as a proxy for household SES. The results showed no significant differences in households' rate of participation in UPA across socioeconomic groups. Participation in UPA was rather significantly (P < 0.001) and positively related to household size. Interestingly, the analysis revealed that field crop cultivation and gardening were more common among households in the low and medium SES groups while those in the high SES group were more likely to keep livestock. PMID:22039313

  14. Spatiotemporal variability of soil hydrological properties and its implication on small catchments hydrology

    NASA Astrophysics Data System (ADS)

    Ferreira, C. S. S.; Steenhuis, T. S.; Soares, D.; Ferreira, A. J. D.; Coelho, C. O. A.; Walsh, R. P. D.

    2012-04-01

    The increasing population pressure on the environment implies changes to land use and to landscape patterns within catchments, with impacts on hydrological processes. Some of the changes are linked to soil properties modification, directly disturbing water infiltration and runoff generation processes, which affects local and regional water resources. Although there has been considerable research on soil properties, few studies focused its spatial and temporal variability at the catchment scale and how they affect hydrology. In this paper, we aim to assess the spatial and temporal variability of water repellence, soil moisture and water infiltration, in a small catchment under Mediterranean climate. The study was carried out at Ribeira dos Covões, a small catchment (620ha) located in central Portugal. This is a partly urbanizing catchment, where the urban landuse covers 32% of the area, while the forest represent 48% and farmland 20%. The catchment has a sub-humid Mediterranean climate, with long dry summers. The soil is deep overlaying sandstone and limestone lithology. Thirty one representative sites were monitored within the catchment. Each site has two replicated experiments for water infiltration (performed during 30 minutes, through minidisk tension infiltrometer at the soil surface), soil moisture content (at 0-5cm depth, by gravimetric method) and soil water repellence (assessed at 0cm, 2cm and 5cm depth through ethanol percentage test). These experiments were carried out along one entire year, during nine monitoring campaigns performed in dry and wet periods, mainly immediately after different rainfall events and long dry spells. During one of the monitoring campaigns, undisturbed soil samples were collected (0-10cm depth) in all the location sites for bulk density and stone content analyses. Composite samples were also collected from the top soil layer (0-5cm and 5-10cm) for organic content (by measuring carbon dioxide emission after combustion at 1200

  15. Internally Drained Supraglacial River Catchments on the Southwest Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Yang, K.; Smith, L. C.; Chu, V. W.; Pitcher, L. H.; Gleason, C. J.

    2015-12-01

    Internally drained catchments are the hydrologic units on the Greenland ice sheet (GrIS) surface that collect and drain meltwater into moulins or supraglacial lakes without out flows. Understanding the spatial pattern of these internal catchments is critical, which can provide key information about how supraglacial meltwater is transported and released on the ice surface. This study proposed an automatic approach to detect supraglacial hydrologic features (rivers, lakes, moulins, and internal catchments) located at southwest GrIS from Landsat-8 OLI panchromatic imagery. A total of 800 internal catchments are delineated and the average catchment size (river network length) is found to increase with elevations. In addition, moulins are the prime way to drain internal catchments and the average moulin densities decrease with elevations. Adaptive depression area thresholds are calculated to achieve optimal match between DEM-modeled and image-detected internal catchment patterns. The pattern of these image-detected internal catchments also indicates that: 1) not all the DEM-modeled topographic depressions act as meltwater sinks; 2) moulin distribution greatly impacts the internal catchment patterns; and 3) topographic depressions can be connected downstream without being fully filled, changing the fragmentary of the internal catchments.

  16. An empirical investigation of climate and land-use effects on water quantity and quality in two urbanising catchments in the southern United Kingdom.

    PubMed

    Putro, B; Kjeldsen, T R; Hutchins, M G; Miller, J

    2016-04-01

    Using historical data of climate, land-use, hydrology and water quality from four catchments located in the south of England, this study identifies the impact of climate and land-use change on selected water quantity and water quality indicators. The study utilises a paired catchment approach, with two catchments that have experienced a high degree of urbanisation over the past five decades and two nearby, hydrologically similar, but undeveloped catchments. Multivariate regression models were used to assess the influence of rainfall and urbanisation on runoff (annual and seasonal), dissolved oxygen levels and temperature. Results indicate: (i) no trend in annual or seasonal rainfall totals, (ii) upward trend in runoff totals in the two urban catchments but not in the rural catchments, (iii) upward trend in dissolved oxygen and temperature in the urban catchments, but not in the rural catchments, and (iv) changes in temperature and dissolved oxygen in the urban catchments are not driven by climatic variables. PMID:26802345

  17. Carbon redistribution by erosion processes in an intensively disturbed catchment

    NASA Astrophysics Data System (ADS)

    Boix-Fayos, Carolina; Martínez-Mena, María; Pérez Cutillas, Pedro; de Vente, Joris; Barberá, Gonzalo G.; Mosch, Wouter; Navarro Cano, Jose Antonio; Gaspar, Leticia; Navas, Ana

    2016-04-01

    Understanding how organic carbon moves with sediments along the fluvial system is crucial to close catchment scale carbon budgets. Especially challenging is the analysis of organic carbon dynamics during fluvial transport in heterogeneous, fragile and disturbed environments with ephemeral and intense hydrological pulses, typical of Mediterranean conditions. This paper explores the catchment scale organic carbon redistribution by lateral flows in extreme Mediterranean environmental conditions from a geomorphological perspective. The study area is a catchment (Cárcavo) in SE Spain with a semiarid climate, erodible lithologies, shallow soils, and highly disturbed by agricultural terraces, land levelling, reforestations and construction of check-dams. To increase understanding of erosion induced catchment scale organic carbon redistribution, we studied the subcatchments of 8 check-dams distributed along the catchment main channel in detail. We determined 137Cs, physicochemical characteristics and organic carbon pools of soils and sediments deposited behind each check-dam, performed spatial analysis of properties of the catchment and buffer areas around check-dams, and carried out geomorphological analysis of the slope-channel connections. Soils showed very low Total Organic Carbon (TOC) values oscillating between 15.2 and 4.4 g Kg-1 for forest and agricultural soils, respectively. Sediments mobilized by erosion were poor in TOC compared to the eroded (forest) soils (6.6±0.7 g Kg-1), and the redistribution of organic carbon through the catchment, especially of the Mineral Associated Organic Carbon (MAC) pool, showed the same pattern as clay particles and 137Cs. The TOC erosion rates (0.031±0.03 Mg ha-1 y-1) were comparable to others reported for subhumid Mediterranean catchments and to those modelled worldwide for pasture land. Those lateral fluxes were equivalent to 10.4 % of the TOC stock from the topsoil at the moment of the check-dam construction and

  18. Study of Beijiang catchment flash-flood forecasting model

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Huang, S.; Dong, Y.

    2015-05-01

    Beijiang catchment is a small catchment in southern China locating in the centre of the storm areas of the Pearl River Basin. Flash flooding in Beijiang catchment is a frequently observed disaster that caused direct damages to human beings and their properties. Flood forecasting is the most effective method for mitigating flash floods, the goal of this paper is to develop the flash flood forecasting model for Beijiang catchment. The catchment property data, including DEM, land cover types and soil types, which will be used for model construction and parameter determination, are downloaded from the website freely. Based on the Liuxihe Model, a physically based distributed hydrological model, a model for flash flood forecasting of Beijiang catchment is set up. The model derives the model parameters from the terrain properties, and further optimized with the observed flooding process, which improves the model performance. The model is validated with a few observed floods occurred in recent years, and the results show that the model is reliable and is promising for flash flood forecasting.

  19. Water and chemical recharge in subsurface catchment: observations and consequences for modeling

    NASA Astrophysics Data System (ADS)

    Gascuel-odoux, C.; Aquilina, L.; Faucheux, M.; Merot, P.; Molenat, J.; de Monteti, V.; Sebilo, M.; Rouxel, M.; Ruiz, L.

    2011-12-01

    Shallow groundwater that develops on hillslopes is the main compartment in headwater catchments for flow and solute transport to rivers. Although spatial and temporal variations in its chemical composition are reported in the literature, there is no coherent description of the way these variations are organized, nor is there an accepted conceptual model for the recharge mechanisms and flows in the groundwater involved. We instrumented an intensive farming and subsurface dominant catchment located in Oceanic Western Europe (France), included in AgrHyS catchments (for Agro-Hydro-SyStem) and a part of the French network of catchments for environmental research (SOERE RBV dedicated to the Critical Zone). It is strongly constrained by anthropogenic pressures (agriculture) and is characterized by a clear non-equilibrium status. A network of 42 nested piezometers was installed along a 200 m hillslope allowing water sampling in the permanent water table as well as in what we call the fluctuating zone, characterized by seasonal alternance of saturated and unsaturated conditions. Water composition was monitored at high frequency (weekly) over a 3-year period for major anion composition and over a one year period for detailed 15N, CFC, SF6 and other dissolved gases composition. The results demonstrated that (i) the anionic composition in water table fluctuation zone varied significantly compared to deeper portions of the aquifer on the hillslope, confirming that this layer constitutes a main compartment for the mixing of new recharge water and old groundwater, (ii) seasonally, the variations of 15N and CFC are much higher during the recharge period than during the recession period, confirming the preferential flow during early recharge events, iii) variations of nitrate 15N and O18 composition was suggesting any significant denitrification process in the fluctuating zone, confirming the dominance of the mixing processes in the fluctuating zone, iv) deeper parts of the aquifer

  20. Ecohydrological modeling of a tropical tidal catchment exposed to anthropogenic pressure

    NASA Astrophysics Data System (ADS)

    Lorenz, Malte; Zeunert, Stephanie; Meon, Günter

    2016-04-01

    The study area is the highly polluted estuary system of the Thi Vai river and its catchment, located in South Vietnam. It is part of Vietnam's core regions for the development of industrial and agricultural production. The middle and lower parts of the river form an estuary, which is strongly affected by the tide. As a result of untreated industrial waste water discharges, the Thi Vai river was considered as ecological dead from 1990 to 2008. Although the water quality of the Thi Vai has been improved due to waste water treatment and control, it must be still considered as polluted. These first successes could be rapidly negated by the ongoing development of industry, population and agriculture. Today the water quality management is solely focused on the industrial zones adjacent to the estuary. The contribution of the catchment to the water quality pollution is not considered yet. To quantify the pollution of the Thi Vai estuary and its catchment, a monitoring system for water quantity and quality was installed. The water quality of the Thi Vai estuary and its main tributaries is affected by elevated concentrations of NH4, NO2 and TSS and partly reduced DO concentrations. Within the German-Vietnamese BMBF research project EWATEC-COAST a model based management system was developed as an instrument for a sustainable improvement of the water quality of the Thi Vai estuary and the Thi Vai catchment. Among others, the system consists of the hydrodynamic water quality model DELFT 3D and the ecohydrological catchment model PANTA RHEI WQ. The ecohydrological model PANTA RHEI WQ was developed within the research project. The developed ecohydrological model allows a sub-daily time step and includes in-stream water quality procedures, accounting for the interaction of aquatic biomass, dissolved oxygen, nutrients, detritus and sediment. Therefore, the implemented water quality model overcomes deficits found in common ecohydrological models. Despite of the scarce data

  1. The evaluation of storm rainfall variability and its influence on runoff response at a catchment scale

    NASA Astrophysics Data System (ADS)

    David, Vaclav; Davidová, Tereza

    2015-04-01

    Storm rainfall events are usually very dynamic processes which are characterized by high spatial and temporal variability. It can influence the catchment response to the event a lot in terms of the shape and volume of response hydrographs. In this contribution, the variability of selected rainfall events is presented. It is assessed in terms of total volumes of precipitation which are an input to rainfall-runoff process. As a source of precipitation information, data from precipitation gauging stations were used which have one hour time step. Additionally, data originated from weather radar were used to describe spatial variability in more detail. Measured reflectivity data were transformed into the values of precipitation intensities which were compared to station data to make a check on the reliability of radar originated data. The assessment was carried out by the comparison of total precipitation to a catchment based on different extent of source data. Precipitation totals were calculated from station data using different methods including Thiessen polygons and different interpolation techniques. As a study area, the catchment of Blanice River was selected. This catchment is located in Central Bohemia Region and smaller part extends beyond it to South Bohemia Region. Its total area to the confluence to Sázava River is 543 km2. In this catchment, agricultural lands predominates but the percentage of forests is also not negligible. The area is in general hilly with important presence of steep slopes. The results of obtained by the analyses carried out show the high importance of the amount of available precipitation data and their quality. Despite the fact that the variability of precipitation can affect the distribution of runoff and consecutively the shape of response hydrograph, it can affect also the accuracy and representativeness of the information provided by point measurements of precipitation by gauges and by weather radars. Acknowledgement The research

  2. Characterisation and quantification of phosphorus transfer in agricultural runoff through simultaneous monitoring at nested spatial scales

    NASA Astrophysics Data System (ADS)

    Deasy, Clare; Heathwaite, Louise; Brazier, Richard

    2010-05-01

    Current data available for understanding and characterising nutrient transfer are generally collected at the catchment scale, where stream measurements integrate signals from upstream flow pathways. However, predicting and managing nutrient transfer at this scale requires a detailed understanding of the smaller scale processes and pathways which influence catchment scale data. This paper presents an original dataset which characterises and quantifies phosphorus transfer through simultaneous measurements collected at nested spatial scales (c.0.01 to 30.6 ha) within a small catchment. Monitoring took place in a mixed land use agricultural catchment in the UK between 2004 and 2006. Discharge was continuously measured on a five minute timestep, at five catchment locations: a flume fed by surface runoff (1.9 ha); three drain outfalls (1.9 ha, 2.5 ha and 3.7 ha); and the stream catchment outlet (30.6 ha). Water samples collected through five storm events were analysed for total phosphorus and total dissolved phosphorus, and were used together with discharge data to calculate phosphorus loadings and area normalised yields for the various flow pathways and scales. Data from the smallest scale, the unbounded hillslope patch (c.0.01 ha), where flow only occurred over the field surface during storm events, was collected using timed flow measurements and grab samples. The results show that phosphorus transfer within the catchment is extremely complex both spatially and temporally. In particular, variations occurred in phosphorus concentrations, loads and yields, and in the proportion of total phosphorus transported as dissolved phosphorus, between runoff pathways and scales and between storm events. The highest phosphorus concentrations were recorded in data collected at the hillslope patch scale (max. 12 mg TP l-1), while concentrations at pathways representing larger scales were much lower; measured total P concentrations were below 5 mg TP l-1 in surface runoff at the field

  3. Controls on denitrification in riparian soils in headwater catchments of a hardwood forest in the Catskill Mountains, U.S.A.

    USGS Publications Warehouse

    Ashby, J.A.; Bowden, W.B.; Murdoch, Peter S.

    1998-01-01

    Denitrification in riparian soils is thought to be an important factor that reduces hydrologic export of nitrate from forested and agricultural catchments. A 2-y study to identify the soil factors most closely associated with denitrification in riparian soils in headwater catchments within the Catskill Mountains of New York, included field surveys of surface and subsurface denitrification rates, and an amendment experiment to assess the relative effects of increases in available carbon and substrate NO-/3 on denitrification rates. Denitrification rates were measured by acetylene inhibition during incubation of intact soil cores from eight soil types representing a range of drainage classes. Soil cores were analyzed for organic matter, total P, extractable NO-/3-N and NH+/4-N, organic N, pH, moisture, porosity, and water-filled pore space, to determine which of these factors were most closely associated with denitrification. The distribution of denitrification rates found during the field surveys was highly skewed, with many low or zero values and few high values. Denitrification rates were positively associated with high soil organic matter, total P, and water-filled pore space, and were highest in seep (poorly-drained) soils, toeslope (seasonally-drained) soils, and stream-edge (poorly- to moderately well-drained) soils in which these three soil characteristics were typically high. Denitrification rates in these wet locations were also positively associated with soil NH+/4-N concentration and pH, but not with NO-/3-N concentration, suggesting that the rate of NO-/3 supply (via nitrification or hydrologic transport) was more important than the instantaneous concentration of NO-/3-N in the soils. The amendment experiment indicated that denitrification in soil types studied was most responsive to added glucose alone or with NO-/3. Thus, in these soils, a combination of slow rates of NO-/3 supply and low available carbon appears to limit denitrification. Annual

  4. Changes in catchment hydrology in relation to vegetation recovery: a comparative modelling experiment

    NASA Astrophysics Data System (ADS)

    Lana-Renault, Noemí; Karssenberg, Derek; Latron, Jérôme; Serrano, Mā Pilar; Regüés, David; Bierkens, Marc F. P.

    2010-05-01

    Mediterranean mountains have been largely affected by land abandonment and subsequent vegetation recovery, with a general expansion of shrubs and forests. Such a large scale land-cover change has modified the hydrological behavior of these areas, with significant impact on runoff production. Forecasting the trend of water resources under future re-vegetation scenarios is of paramount importance in Mediterranean basins, where water management relies on runoff generated in these areas. With this purpose, a modelling experiment was designed based on the information collected in two neighbouring research catchments with a different history of land use in the central Spanish Pyrenees. One (2.84 km2) is an abandoned agricultural catchment subjected to plant colonization and at present mainly covered by shrubs. The other (0.92 km2) is a catchment covered by dense natural forest, representative of undisturbed environments. Here we present the results of the analysis of the hydrological differences between the two catchments, and a description of the approach and results of the modelling experiment. In a statistical analysis of the field data, significant differences were observed in the streamflow response of the two catchments. The forested catchment recorded fewer floods per year compared to the old agricultural catchment, and its hydrological response was characterised by a marked seasonality, with autumn and spring as the only high flow periods. Stormflow was generally higher in the old agricultural catchment, especially for low to intermediate size events; only for large events the stormflow in the forested catchment was sometimes greater. Under drier conditions, the relative differences in the stormflow between the two catchments tended to increase whereas under wet conditions they tended to be similar. The forested catchment always reacted more slowly to rainfall, with lower peakflows (generally one order of magnitude lower) and longer recession limbs. The modelling

  5. The Influence of temporal sampling regime on the WFD classification of catchments within the Eden Demonstration Test Catchment Project

    NASA Astrophysics Data System (ADS)

    Jonczyk, Jennine; Haygarth, Phil; Quinn, Paul; Reaney, Sim

    2014-05-01

    A high temporal resolution data set from the Eden Demonstration Test Catchment (DTC) project is used to investigate the processes causing pollution and the influence of temporal sampling regime on the WFD classification of three catchments. This data highlights WFD standards may not be fit for purpose. The Eden DTC project is part of a UK government-funded project designed to provide robust evidence regarding how diffuse pollution can be cost-effectively controlled to improve and maintain water quality in rural river catchments. The impact of multiple water quality parameters on ecosystems and sustainable food production are being studied at the catchment scale. Three focus catchments approximately 10 km2 each, have been selected to represent the different farming practices and geophysical characteristics across the Eden catchment, Northern England. A field experimental programme has been designed to monitor the dynamics of agricultural diffuse pollution at multiple scales using state of the art sensors providing continuous real time data. The data set, which includes Total Phosphorus and Total Reactive Phosphorus, Nitrate, Ammonium, pH, Conductivity, Turbidity and Chlorophyll a reveals the frequency and duration of nutrient concentration target exceedance which arises from the prevalence of storm events of increasing magnitude. This data set is sub-sampled at different time intervals to explore how different sampling regimes affects our understanding of nutrient dynamics and the ramification of the different regimes to WFD chemical status. This presentation seeks to identify an optimum temporal resolution of data for effective catchment management and to question the usefulness of the WFD status metric for determining health of a system. Criteria based on high frequency short duration events needs to be accounted for.

  6. Vegetation impact on mean annual evapotranspiration at a global catchment scale

    NASA Astrophysics Data System (ADS)

    Peel, Murray C.; McMahon, Thomas A.; Finlayson, Brian L.

    2010-09-01

    Research into the role of catchment vegetation within the hydrologic cycle has a long history in the hydrologic literature. Relationships between vegetation type and catchment evapotranspiration and runoff were primarily assessed through paired catchment studies during the 20th century. Results from over 200 paired catchment studies from around the world have been reported in the literature. Two constraints on utilizing the results from paired catchment studies in the wider domain have been that the catchment areas studied are generally (1) small (<10 km2) and (2) from a narrow range of climate types. The majority of reported paired catchment studies are located in the USA (˜47%) and Australia (˜27%) and experience mainly temperate (Köppen C) and cold (Köppen D) climate types. In this paper we assess the impact of vegetation type on mean annual evapotranspiration through a large, spatially, and climatically diverse data set of 699 catchments from around the world. These catchments are a subset of 861 unregulated catchments considered for the analysis. Spatially averaged precipitation and temperature data, in conjunction with runoff and land cover information, are analyzed to draw broad conclusions about the vegetation impact on mean annual evapotranspiration. In this analysis any vegetation impact signal is assessed through differences in long-term catchment average actual evapotranspiration, defined as precipitation minus runoff, between catchments grouped by vegetation type. This methodology differs from paired catchment studies where vegetation impact is assessed through streamflow responses to a controlled, within catchment, land cover change. The importance of taking the climate type experienced by the catchments into account when assessing the vegetation impact on evapotranspiration is demonstrated. Tropical and temperate forested catchments are found to have statistically significant higher median evapotranspiration, by about 170 mm and 130 mm

  7. Geomorpho-edaphic mapping of Atécuaro catchment (Michoacan, Mexico) and indigenous soil classification

    NASA Astrophysics Data System (ADS)

    Alanís González, N.; Alcalá de Jesús, M.; Arellano Reyes, A.; Jordán, A.; Zavala, L. M.

    2012-04-01

    The needs of management and conservation of land involve the study of natural resources and their internal relationships. Over time, these resources, including soil, have been used in an uncontrolled manner, resulting in species extinction and environmental degradation processes. The main reason for this in developing areas is the lack of soil and geomorphological information for an adequate land use planning. Often, ethnopedological knowledge and the inclusion of indigenous communities as beneficiaries of the agricultural technology are indispensable premises to make a better use of soil. A geomorphology and soil survey was conducted in the Atécuaro catchment (4591 ha), in the municipality of Morelia (Michoacan, Mexico). The Atécuaro catchment is located in the Mil Cumbres area, and is characterized by an irregular relief and a diversity of landforms and substrates (andesite, rhyolite, basalt, tuff and Quaternary sediments). The main land uses are oak and pine forest, shrubland, grassland and dryland farming. Results of the soil survey and the analysis of geoforms were studied and incorporated in a geographycal information system. Preliminary geoform and soil units maps were overlapped in order to get a map of geomorpho-edaphic units. Up to 30 different geomorpho-edaphic units were classified. Finally, map units were correlated with local indigenous soil classification.

  8. Characterizing Runoff and Water Yield from Headwater Catchments in the Southern Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Safeeq, M.; Hunsaker, C. T.

    2015-12-01

    In a mediterranean climate where much of the annual precipitation falls during winter, the snow-capped Sierra Nevada serves as the primary source of dry season runoff that supports agriculture, industries, urban, and other ecosystems. Increased warming has led to significant reductions in mountain snowpack accumulation and earlier snowmelt throughout the western United States where most of the snow accumulates at temperatures near the freezing point. As a result, declines in dry season runoff magnitude, earlier runoff timing, and altered flood risk have been reported across the region. An important question in this context is, how to best manage forested catchments for water and other ecosystem services? We depict the differences in hydrologic response of ten catchments in the Kings River Experimental Watersheds (KREW) research project using continuous precipitation, snow, and runoff data during 2004-2014. The size of these catchments ranges from 50 to 475 ha, and they span a 600-m elevation range in the rain snow transitional zone. In terms of soil, Shaver and Gerle-Cagwin dominate the lower elevation Providence catchments, and Cagwin soils dominate the higher elevation Bull catchments. The majority of these catchments have southwest aspect, moderate average slope (i.e. <25%), and a well-developed drainage network with drainage density ranging from 4.6 to 10.1 km/km2. Bull catchments, on average, have higher runoff than the Providence catchments across all hydrologic signatures extracted from daily hydrographs. Mean annual runoff ranges between 281 to 408 mm in Providence and 436 to 656 mm in Bull catchments despite no significant difference in precipitation among KREW's four meteorological stations. However, high elevation Bull catchments receive significantly more precipitation as snow than the low elevation Providence catchments. The average runoff ratio ranges from 18% to as high as 43% among different catchments, indicating that the catchment

  9. Fine-suspended sediment and water budgets for a large, seasonally dry tropical catchment: Burdekin River catchment, Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Bainbridge, Zoë T.; Lewis, Stephen E.; Smithers, Scott G.; Kuhnert, Petra M.; Henderson, Brent L.; Brodie, Jon E.

    2014-11-01

    The Burdekin River catchment (˜130,400 km2) is a seasonally dry tropical catchment located in north-east Queensland, Australia. It is the single largest source of suspended sediment to the Great Barrier Reef (GBR). Fine sediments are a threat to ecosystems on the GBR where they contribute to elevated turbidity (reduced light), sedimentation stress, and potential impacts from the associated nutrients. Suspended sediment data collected over a 5 year period were used to construct a catchment-wide sediment source and transport budget. The Bowen River tributary was identified as the major source of end-of-river suspended sediment export, yielding an average of 530 t km-2 yr-1 during the study period. Sediment trapping within a large reservoir (1.86 million ML) and the preferential transport of clays and fine silts downstream of the structure were also examined. The data reveal that the highest clay and fine silt loads—which are of most interest to environmental managers of the GBR—are not always sourced from areas that yield the largest total suspended sediment load (i.e., all size fractions). Our results demonstrate the importance of incorporating particle size into catchment sediment budget studies undertaken to inform management decisions to reduce downstream turbidity and sedimentation. Our data on sediment source, reservoir influence, and subcatchment and catchment yields will improve understandings of sediment dynamics in other tropical catchments, particularly those located in seasonally wet-dry tropical savannah/semiarid climates. The influence of climatic variability (e.g., drought/wetter periods) on annual sediment loads within large seasonally dry tropical catchments is also demonstrated by our data.

  10. Nitrate contamination of groundwater in the catchment of Goczałkowice reservoir

    NASA Astrophysics Data System (ADS)

    Czekaj, Joanna; Witkowski, Andrzej J.

    2014-05-01

    Goczałkowice dammed reservoir (area - 26 km2 , volume - 100 million m3 at a typical water level) is a very important source of drinking water for Upper Silesian agglomeration. At the catchment of the reservoir there are many potential sources of groundwater pollution (agriculture, bad practices in wastewater management, intensive fish farming). Thus local groundwater contamination, mainly by nitrogen compounds. The paper presents groundwater monitoring system and preliminary results of the research carried on at Goczałkowice reservoir and its catchment in 2010 - 2014 within the project "Integrated system supporting management and protection of dammed reservoir (ZiZoZap)'. The main objective for hydrogeologists in the project is to assess the role of groundwater in total water balance of the reservoir and the influence of groundwater on its water quality. During research temporal variability of groundwater - surface water exchange has been observed. Monitoring Network of groundwater quality consists of 22 observation wells (nested piezometers included) located around the reservoir - 13 piezometers is placed in two transects on northern and southern shore of reservoir. Sampling of groundwater from piezometers was conducted twice - in autumn 2011 and spring 2012. Maximum observed concentrations of nitrate, nitrite and ammonium were 255 mg/L, 0,16 mg/L and 3,48 mg/L, respectively. Surface water in reservoir (8 points) has also been sampled. Concentrations of nitrate in groundwater are higher than in surface water. Nitrate and ammonium concentrations exceeding standards for drinking water were reported in 18% and 50% of monitored piezometers, respectively. High concentration of nitrate (exceeding more than 5 times maximal admissible concentration) have been a significant groundwater contamination problem in the catchment of the reservoir. Periodically decrease of surface water quality is possible. Results of hydrogeological research indicate substantial spatial

  11. Human impact on the geomorphic evolution of the HOAL catchment, Lower Austria

    NASA Astrophysics Data System (ADS)

    Pöppl, Ronald; Kraushaar, Sabine; Strauss, Peter; Fuchs, Markus

    2016-04-01

    Since the beginning of human settlement extensive land cover and land use changes have induced significant geomorphic landscape changes as water and sediment dynamics have been transformed. The presented project focuses on the reconstruction of Holocene geomorphic landscape evolution and the assessment of recent geomorphic processes in the Northern foothills of the Eastern Alps in Austria - an area intensively agriculturally used since the middle ages and often overlooked in its geomorphic evolution. The study area is a small catchment (ca. 66 ha) which is located in the western part of Lower Austria comprising a land use history as well as environmental settings typical for wide regions across the Northern foothills of the Eastern Alps in Austria. The catchment elevation ranges from 268 to 323 m a.s.l. and has a mean slope angle of 8%. The climate in this region can be characterized as humid. The lithology mainly consists of Tertiary marly to sandy deposits which are superimposed by Quaternary sediments (e.g. loesses). Dominant soil types are Cambisols, Luvisols, and Planosols. Furthermore, the catchment is used as a Hydrological Open Air Laboratory (HOAL) implemented for the long-term research of water-related flow and transport processes in the landscape (http://hoal.hydrology.at). The main objective of this research project is to reconstruct Holocene landscape evolution by analyzing physical parameters of sediment cores taken from colluvial and alluvial sediment archives with additional 14C and OSL dating as well as by the measurement of truncated and covered standardized Luvisol profiles. First results will be presented at the EGU General Assembly 2016.

  12. Spatiotemporal variability of hydrologic soil properties and the implications for overland flow and land management in a peri-urban Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Ferreira, C. S. S.; Walsh, R. P. D.; Steenhuis, T. S.; Shakesby, R. A.; Nunes, J. P. N.; Coelho, C. O. A.; Ferreira, A. J. D.

    2015-06-01

    Planning of semi-urban developments is often hindered by a lack of knowledge on how changes in land-use affect catchment hydrological response. The temporal and spatial patterns of overland flow source areas and their connectivity in the landscape, particularly in a seasonal climate, remain comparatively poorly understood. This study investigates seasonal variations in factors influencing runoff response to rainfall in a peri-urban catchment in Portugal characterized by a mosaic of landscape units and a humid Mediterranean climate. Variations in surface soil moisture, hydrophobicity and infiltration capacity were measured in six different landscape units (defined by land-use on either sandstone or limestone) in nine monitoring campaigns at key times over a one-year period. Spatiotemporal patterns in overland flow mechanisms were found. Infiltration-excess overland flow was generated in rainfalls during the dry summer season in woodland on both sandstone and limestone and on agricultural soils on limestone due probably in large part to soil hydrophobicity. In wet periods, saturation overland flow occurred on urban and agricultural soils located in valley bottoms and on shallow soils upslope. Topography, water table rise and soil depth determined the location and extent of saturated areas. Overland flow generated in upslope source areas potentially can infiltrate in other landscape units downslope where infiltration capacity exceeds rainfall intensity. Hydrophilic urban and agricultural-sandstone soils were characterized by increased infiltration capacity during dry periods, while forest soils provided potential sinks for overland flow when hydrophilic in the winter wet season. Identifying the spatial and temporal variability of overland flow sources and sinks is an important step in understanding and modeling flow connectivity and catchment hydrologic response. Such information is important for land managers in order to improve urban planning to minimize flood risk.

  13. Temporal Change in Discharge Response in Unregulated Swedish Catchments - Quantifying Potential Effects of Anthropogenic Modifications in Stream Network Properties on Flow Time Distributions

    NASA Astrophysics Data System (ADS)

    Worman, A. L. E.; Åkesson, A. M.; Riml, J.; Seibert, J.

    2015-12-01

    Fourier spectral analysis of daily discharge time-series with a duration of 55-110 years in 79 unregulated catchments revealed that the discharge power spectrum slope has gradually increased (statistically significant at the 99% confidence level) over time. For the locations for which historical meteorological observations is available (the 41 southernmost catchments), the evaluation theoretically accounted for fluctuation in the precipitation power spectrum. The results indicate that (local) land-use changes within the catchments may have a relatively more important role (than climate change) for the temporal changes shown in the discharge power spectra. With a basis in stream network maps from present day in two different resolutions as well as a historical map from the 1880's, anthropogenic modifications, in terms of the flow paths within the stream networks, were identified for an agricultural catchment in southern Sweden. Through scenario modelling using a 1-D distributed routing model, the influence of common anthropogenic activities such as e.g. straightening of flowpaths, widening of stream channels to avoid damming and excavation to eliminate thresholds in the stream bottom topography, on the travel time distributions within a stream network were quantified. The map studies showed that the average flow path length had decreased over the last century. The study also shows that all of the studied anthropogenic factors can potentially have a substantial impact on the travel times through the stream networks - by decreasing the average travel time as well as by decreasing the variance. These types of temporal changes in stream network properties leads to a diminished possibility to attenuate peakflows, and are expected to have a substantial influence on discharge hydrographs. This study verifies the hypothesis that anthropogenic impacts of stream networks can influence the hydrological response in catchments, and that land-use changes on a local scale may be

  14. The challenge of lots of data: different ways to synthesise and visualise high frequency catchment data

    NASA Astrophysics Data System (ADS)

    Jonczyk, Jennine; Barber, Nicholas; Benskin, Claire; Snell, Maria; Deasy, Clare; Reaney, Sim; Quinn, Paul; Owen, Gareth; EdenDTC Team

    2015-04-01

    System understanding is vital for future catchment management and to inform mitigation of both flooding and DWPA. High resolution data sets collected at catchment outlets are becoming more common. They have the potential to provide new insights into how land units process water and how this influences nutrient and ecological dynamics. However, the monitoring equipment is costly to install and operate. Also, the volume of data, both temporally and spatially, presents new challenges to catchment scientists on how best to synthesise these data into a form where they can be visualised and utilised in decision making. The Eden DTC project is part of a national project funded by the UK government to provide robust evidence on how diffuse pollution can be cost-effectively managed to improve and maintain water quality in rural river catchments. The impact of multiple water quality parameters on ecosystems and sustainable food production are being studied at the catchment scale. Three focus catchments (c. 10 km2) have been selected to represent the different farming practices and geophysical characteristics across the Eden catchment, Northern England. A field experimental programme has been designed to monitor the dynamics of agricultural diffuse pollution at multiple scales using state of the art in situ sensors, which provide continuous real-time data. Data generated through this project will be used to explore these challenges and look at different ways to synthesise and visualise these data, ultimately providing a powerful communication mechanism that potentially can be used as a conduit for real holistic catchment management.

  15. Describing Ecosystem Complexity through Integrated Catchment Modeling

    NASA Astrophysics Data System (ADS)

    Shope, C. L.; Tenhunen, J. D.; Peiffer, S.

    2011-12-01

    Land use and climate change have been implicated in reduced ecosystem services (ie: high quality water yield, biodiversity, and agricultural yield. The prediction of ecosystem services expected under future land use decisions and changing climate conditions has become increasingly important. Complex policy and management decisions require the integration of physical, economic, and social data over several scales to assess effects on water resources and ecology. Field-based meteorology, hydrology, soil physics, plant production, solute and sediment transport, economic, and social behavior data were measured in a South Korean catchment. A variety of models are being used to simulate plot and field scale experiments within the catchment. Results from each of the local-scale models provide identification of sensitive, local-scale parameters which are then used as inputs into a large-scale watershed model. We used the spatially distributed SWAT model to synthesize the experimental field data throughout the catchment. The approach of our study was that the range in local-scale model parameter results can be used to define the sensitivity and uncertainty in the large-scale watershed model. Further, this example shows how research can be structured for scientific results describing complex ecosystems and landscapes where cross-disciplinary linkages benefit the end result. The field-based and modeling framework described is being used to develop scenarios to examine spatial and temporal changes in land use practices and climatic effects on water quantity, water quality, and sediment transport. Development of accurate modeling scenarios requires understanding the social relationship between individual and policy driven land management practices and the value of sustainable resources to all shareholders.

  16. Sources and management of urban stormwater pollution in rural catchments, Australia

    NASA Astrophysics Data System (ADS)

    Al Bakri, Dhia; Rahman, Sadequr; Bowling, Lee

    2008-07-01

    SummaryThis paper assesses the impact and quantifies the relative contribution of stormwater runoff (diffuse pollution sources) and point pollution sources on the quality of receiving water in the urban catchment of Orange. The study results were employed to develop management strategies to control stormwater pollution at the catchment level. The Orange urban catchment has experienced moderate to high levels of pollution in terms of nutrients (P and N), suspended solids (SS), heavy metals, fecal coliforms, and, to a lesser extent, salinity (TDS). Treated sewage effluent (point source) contributed, on average, 5% SS, 29% total nitrogen (TN) and 41% total phosphorous (TP). The nutrient yield per unit area was 2-31-folds higher than those reported for other Australian urban catchments. The overall contribution of the urban sources accounted for 93% and 94% of the TP and TN mass loads, respectively. In contrast, stormwater pollution in coastal urban catchments, that have similar population and land use, is dominated by rural diffuse sources contributing 81-99% of nutrient mass loads. This striking difference is attributed largely to the position of the catchment with respect to the hydrological system. Orange urban catchment is situated at the headwater of its river system and as such rural runoff into the urban part of the catchment was limited. The coastal catchments, on the other hand, are located at the end of their river systems and thus rural inflow into the urban area is substantially higher than those in upland catchments. This comparative assessment may suggest that the relative impact, per capita , of urban stormwater pollution on the receiving water is more significant in the upland catchments than in the coastal catchments. A stormwater management plan (SMP), consisting of structural and non-structural strategies, was developed to control stormwater pollution and enhance the quality of receiving water.

  17. Model-based estimation of pesticides and transformation products and their export pathways in a headwater catchment

    NASA Astrophysics Data System (ADS)

    Gassmann, M.; Stamm, C.; Olsson, O.; Lange, J.; Kümmerer, K.; Weiler, M.

    2013-12-01

    Pesticides applied onto agricultural fields are frequently found in adjacent rivers. To what extent and along which pathways they are transported is influenced by intrinsic pesticide properties such as sorption and degradation. In the environment, incomplete degradation of pesticides leads to the formation of transformation products (TPs), which may differ from the parent compounds regarding their intrinsic fate characteristics. Thus, the export processes of TPs in catchments and streams may also be different. In order to test this hypothesis, we extended a distributed hydrological model by the fate and behaviour of pesticides and transformation products and applied it to a small, well-monitored headwater catchment in Switzerland. The successful model evaluation of three pesticides and their TPs at three sampling locations in the catchment enabled us to estimate the quantity of contributing processes for pollutant export. Since all TPs were more mobile than their parent compounds (PCs), they exhibited larger fractions of export via subsurface pathways. However, besides freshly applied pesticides, subsurface export was found to be influenced by residues of former applications. Export along preferential flow pathways was less dependent on substance fate characteristics than soil matrix export, but total soil water flow to tile drains increased more due to preferential flow for stronger sorbing substances. Our results indicate that runoff generation by matrix flow to tile drains gained importance towards the end of the modelling period whereas the contributions from fast surface runoff and preferential flow decreased. Accordingly, TPs were to a large extent exported under different hydrological conditions than their PCs, due to their delayed formation and longer half-lives. Thus, not only their different intrinsic characteristics but also their delayed formation could be responsible for the fact that TPs generally took different pathways than their PCs. We suggest

  18. Model-based estimation of pesticides and transformation products and their export pathways in a headwater catchment

    NASA Astrophysics Data System (ADS)

    Gassmann, M.; Stamm, C.; Olsson, O.; Lange, J.; Kümmerer, K.; Weiler, M.

    2013-07-01

    Pesticides applied onto agricultural fields are frequently found in adjacent rivers. To what extent and along which pathways they are transported is influenced by intrinsic pesticide properties such as sorption and degradation. In the environment, incomplete degradation of pesticides leads to the formation of transformation products (TPs), which may differ from the parent compounds regarding their intrinsic fate characteristics. Thus, the export processes of TPs in catchments and streams may also be different. In order to test this hypothesis, we extended a distributed hydrological model by the fate and behaviour of pesticides and transformation products and applied it to a small, well-monitored headwater catchment in Switzerland. The successful model evaluation of three pesticides and their TPs at three sampling locations in the catchment enabled us to estimate the quantity of contributing processes for pollutant export. Since all TPs were more mobile than their parent compounds (PCs), they exhibited larger fractions of export via subsurface pathways. However, besides freshly applied pesticides, subsurface export was found to be influenced by residues of former applications. Export along preferential flow pathways was less dependent on substance fate characteristics than soil matrix export, but total soil water flow to tile drains increased more due to preferential flow for stronger sorbing substances. Our results indicate that runoff generation by matrix flow to tile drains gained importance towards the end of the modelling period whereas the contributions from fast surface runoff and preferential flow decreased. Accordingly, TPs were to a large extent exported under different hydrological conditions than their PCs, due to their delayed formation and longer half-lives. Thus, not only their different intrinsic characteristics but also their delayed formation could be responsible for the fact that TPs generally took different pathways than their PCs. We suggest

  19. Quantifying the Chemical Weathering Efficiency of Basaltic Catchments

    NASA Astrophysics Data System (ADS)

    Ibarra, D. E.; Caves, J. K.; Thomas, D.; Chamberlain, C. P.; Maher, K.

    2014-12-01

    The geographic distribution and areal extent of rock type, along with the hydrologic cycle, influence the efficiency of global silicate weathering. Here we define weathering efficiency as the production of HCO3- for a given land surface area. Modern basaltic catchments located on volcanic arcs and continental flood basalts are particularly efficient, as they account for <5% of sub-aerial bedrock but produce ~30% of the modern global weathering flux. Indeed, changes in this weathering efficiency are thought to play an important role in modulating Earth's past climate via changes in the areal extent and paleo-latitude of basaltic catchments (e.g., Deccan and Ethiopian Traps, southeast Asia basaltic terranes). We analyze paired river discharge and solute concentration data for basaltic catchments from both literature studies and the USGS NWIS database to mechanistically understand geographic and climatic influences on weathering efficiency. To quantify the chemical weathering efficiency of modern basalt catchments we use solute production equations and compare the results to global river datasets. The weathering efficiency, quantified via the Damköhler coefficient (Dw [m/yr]), is calculated from fitting concentration-discharge relationships for catchments with paired solute and discharge measurements. Most basalt catchments do not demonstrate 'chemostatic' behavior. The distribution of basalt catchment Dw values (0.194 ± 0.176 (1σ)), derived using SiO2(aq) concentrations, is significantly higher than global river Dw values (mean Dw of 0.036), indicating a greater chemical weathering efficiency. Despite high Dw values and total weathering fluxes per unit area, many basaltic catchments are producing near their predicted weathering flux limit. Thus, weathering fluxes from basaltic catchments are proportionally less responsive to increases in runoff than other lithologies. The results of other solute species (Mg2+ and Ca2+) are comparable, but are influenced both by

  20. Agrochemical fate models applied in agricultural areas from Colombia

    NASA Astrophysics Data System (ADS)

    Garcia-Santos, Glenda; Yang, Jing; Andreoli, Romano; Binder, Claudia

    2010-05-01

    The misuse application of pesticides in mainly agricultural catchments can lead to severe problems for humans and environment. Especially in developing countries where there is often found overuse of agrochemicals and incipient or lack of water quality monitoring at local and regional levels, models are needed for decision making and hot spots identification. However, the complexity of the water cycle contrasts strongly with the scarce data availability, limiting the number of analysis, techniques, and models available to researchers. Therefore there is a strong need for model simplification able to appropriate model complexity and still represent the processes. We have developed a new model so-called Westpa-Pest to improve water quality management of an agricultural catchment located in the highlands of Colombia. Westpa-Pest is based on the fully distributed hydrologic model Wetspa and a fate pesticide module. We have applied a multi-criteria analysis for model selection under the conditions and data availability found in the region and compared with the new developed Westpa-Pest model. Furthermore, both models were empirically calibrated and validated. The following questions were addressed i) what are the strengths and weaknesses of the models?, ii) which are the most sensitive parameters of each model?, iii) what happens with uncertainties in soil parameters?, and iv) how sensitive are the transfer coefficients?

  1. Terrain representation impact on periurban catchment morphological properties

    NASA Astrophysics Data System (ADS)

    Rodriguez, F.; Bocher, E.; Chancibault, K.

    2013-04-01

    SummaryModelling the hydrological behaviour of suburban catchments requires an estimation of environmental features, including land use and hydrographic networks. Suburban areas display a highly heterogeneous composition and encompass many anthropogenic elements that affect water flow paths, such as ditches, sewers, culverts and embankments. The geographical data available, either raster or vector data, may be of various origins and resolutions. Urban databases often offer very detailed data for sewer networks and 3D streets, yet the data covering rural zones may be coarser. This study is intended to highlight the sensitivity of geographical data as well as the data discretisation method used on the essential features of a periurban catchment, i.e. the catchment border and the drainage network. Three methods are implemented for this purpose. The first is the DEM (for digital elevation model) treatment method, which has traditionally been applied in the field of catchment hydrology. The second is based on urban database analysis and focuses on vector data, i.e. polygons and segments. The third method is a TIN (or triangular irregular network), which provides a consistent description of flow directions from an accurate representation of slope. It is assumed herein that the width function is representative of the catchment's hydrological response. The periurban Chézine catchment, located within the Nantes metropolitan area in western France, serves as the case study. The determination of both the main morphological features and the hydrological response of a suburban catchment varies significantly according to the discretization method employed, especially on upstream rural areas. Vector- and TIN-based methods allow representing the higher drainage density of urban areas, and consequently reveal the impact of these areas on the width function, since the DEM method fails. TINs seem to be more appropriate to take streets into account, because it allows a finer

  2. Assessing water quality trends in catchments with contrasting hydrological regimes

    NASA Astrophysics Data System (ADS)

    Sherriff, Sophie C.; Shore, Mairead; Mellander, Per-Erik

    2016-04-01

    Environmental resources are under increasing pressure to simultaneously achieve social, economic and ecological aims. Increasing demand for food production, for example, has expanded and intensified agricultural systems globally. In turn, greater risks of diffuse pollutant delivery (suspended sediment (SS) and Phosphorus (P)) from land to water due to higher stocking densities, fertilisation rates and soil erodibility has been attributed to deterioration of chemical and ecological quality of aquatic ecosystems. Development of sustainable and resilient management strategies for agro-ecosystems must detect and consider the impact of land use disturbance on water quality over time. However, assessment of multiple monitoring sites over a region is challenged by hydro-climatic fluctuations and the propagation of events through catchments with contrasting hydrological regimes. Simple water quality metrics, for example, flow-weighted pollutant exports have potential to normalise the impact of catchment hydrology and better identify water quality fluctuations due to land use and short-term climate fluctuations. This paper assesses the utility of flow-weighted water quality metrics to evaluate periods and causes of critical pollutant transfer. Sub-hourly water quality (SS and P) and discharge data were collected from hydrometric monitoring stations at the outlets of five small (~10 km2) agricultural catchments in Ireland. Catchments possess contrasting land uses (predominantly grassland or arable) and soil drainage (poorly, moderately or well drained) characteristics. Flow-weighted water quality metrics were calculated and evaluated according to fluctuations in source pressure and rainfall. Flow-weighted water quality metrics successfully identified fluctuations in pollutant export which could be attributed to land use changes through the agricultural calendar, i.e., groundcover fluctuations. In particular, catchments with predominantly poor or moderate soil drainage

  3. Watershed scale spatial variability in dissolved and total organic and inorganic carbon in contrasting UK catchments

    NASA Astrophysics Data System (ADS)

    Cumberland, S.; Baker, A.; Hudson, N. J.

    2006-12-01

    Approximately 800 organic and inorganic carbon analyses have been undertaken from watershed scale and regional scale spatial surveys in various British catchments. These include (1) a small (<100 sq-km) urban catchment (Ouseburn, N England); (2) a headwater, lowland agricultural catchment (River Tern, C England) (3) a large UK catchment (River Tyne, ~3000 sq-km) and (4) a spatial survey of ~300 analyses from rivers from SW England (~1700 sq-km). Results demonstrate that: (1) the majority of organic and inorganic carbon is in the dissolved (DOC and DIC) fractions; (2) that with the exception of peat rich headwaters, DIC concentration is always greater than DOC; (3) In the rural River Tern, riverine DOC and DIC are shown to follow a simple end- member mixing between DIC (DOC) rich (poor) ground waters and DOC (DIC) rich (poor) riparian wetlands for all sample sites. (4) In the urbanized Ouseburn catchment, although many sample sites also show this same mixing trend, some tributaries follow a pollutant trend of simultaneous increases in both DOC and DIC. The Ouseburn is part of the larger Tyne catchment: this larger catchment follows the simple groundwater DIC- soil water DOC end member mixing model, with the exception of the urban catchments which exhibit an elevated DIC compared to rural sites. (5) Urbanization is demonstrated to increase DIC compared to equivalent rural catchments; this DIC has potential sources including diffuse source inputs from the dissolution of concrete, point sources such as trade effluents and landfill leachates, and bedrock derived carbonates relocated to the soil dissolution zone by urban development. (6) DIC in rural SW England demonstrates that spatial variability in DIC can be attributed to variations in geology; but that DIC concentrations in the SW England rivers dataset are typically lower than the urbanized Tyne catchments despite the presence of carbonate bedrock in many of the sample catchments in the SW England dataset. (7

  4. Changing climate and nutrient transfers: Evidence from high temporal resolution concentration-flow dynamics in headwater catchments.

    PubMed

    Ockenden, M C; Deasy, C E; Benskin, C McW H; Beven, K J; Burke, S; Collins, A L; Evans, R; Falloon, P D; Forber, K J; Hiscock, K M; Hollaway, M J; Kahana, R; Macleod, C J A; Reaney, S M; Snell, M A; Villamizar, M L; Wearing, C; Withers, P J A; Zhou, J G; Haygarth, P M

    2016-04-01

    We hypothesise that climate change, together with intensive agricultural systems, will increase the transfer of pollutants from land to water and impact on stream health. This study builds, for the first time, an integrated assessment of nutrient transfers, bringing together a) high-frequency data from the outlets of two surface water-dominated, headwater (~10km(2)) agricultural catchments, b) event-by-event analysis of nutrient transfers, c) concentration duration curves for comparison with EU Water Framework Directive water quality targets, d) event analysis of location-specific, sub-daily rainfall projections (UKCP, 2009), and e) a linear model relating storm rainfall to phosphorus load. These components, in combination, bring innovation and new insight into the estimation of future phosphorus transfers, which was not available from individual components. The data demonstrated two features of particular concern for climate change impacts. Firstly, the bulk of the suspended sediment and total phosphorus (TP) load (greater than 90% and 80% respectively) was transferred during the highest discharge events. The linear model of rainfall-driven TP transfers estimated that, with the projected increase in winter rainfall (+8% to +17% in the catchments by 2050s), annual event loads might increase by around 9% on average, if agricultural practices remain unchanged. Secondly, events following dry periods of several weeks, particularly in summer, were responsible for high concentrations of phosphorus, but relatively low loads. The high concentrations, associated with low flow, could become more frequent or last longer in the future, with a corresponding increase in the length of time that threshold concentrations (e.g. for water quality status) are exceeded. The results suggest that in order to build resilience in stream health and help mitigate potential increases in diffuse agricultural water pollution due to climate change, land management practices should target

  5. Agriculture Education. Agriculture Structures.

    ERIC Educational Resources Information Center

    Stuttgart Public Schools, AR.

    This curriculum guide is designed for group instruction of secondary agricultural education students enrolled in one or two semester-long courses in agriculture structures. The guide presents units of study in the following areas: (1) shop safety, (2) identification and general use of hand tools, (3) power tools, (4) carpentry, (5) blueprint…

  6. Preferential flow and mixing process in the chemical recharge in subsurface catchments: observations and modeling

    NASA Astrophysics Data System (ADS)

    Gascuel-Odoux, C.; Rouxel, M.; Molenat, J.; Ruiz, L.; Aquilina, L.; Faucheux, M.; Labasque, T.; Sebilo, M.

    2012-04-01

    Shallow groundwater that develops on hillslopes is the main compartment in headwater catchments for flow and solute transport to rivers. Although spatial and temporal variations in its chemical composition are reported in the literature, there is no coherent description of the way these variations are organized, nor is there an accepted conceptual model for the recharge mechanisms and flows in the groundwater involved. We instrumented an intensive farming and subsurface dominant catchment located in Oceanic Western Europe (Kerbernez, Brittany, France), a headwater catchment included in the Observatory for Research on Environment AgrHyS (Agro-Hydro-System) and a part of the French Network of catchments for environmental research (SOERE RBV focused on the Critical Zone). These systems are strongly constrained by anthropogenic pressures (agriculture) and are characterized by a clear non-equilibrium status. A network of 42 nested piezometers was installed along a 200 m hillslope allowing water sampling along two transects in the permanent water table as well as in what we call the "fluctuating zone", characterized by seasonal alternance of saturated and unsaturated conditions. Water composition was monitored at high frequency (weekly) over a 3-year period for major anion composition and over a one year period for detailed 15N, CFC, SF6 and other dissolved gases. The results demonstrated that (i) the anionic composition in water table fluctuation zone varied significantly compared to deeper portions of the aquifer on the hillslope, confirming that this layer constitutes a main compartment for the mixing of new recharge water and old groundwater, (ii) seasonally, the variations of 15N and CFC are much higher during the recharge period than during the recession period, confirming the preferential flow during early recharge events, iii) variations of nitrate 15N and O18 composition was suggesting any significant denitrification process in the fluctuating zone, confirming

  7. Seasonal trends in stable water isotopes and estimation of mean transit times for mesoscale catchments with mixed landuse in northeastern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Chutko, Krys; James, April; McConnell, Chris; Yao, Huaxia

    2015-04-01

    Northern Ontario Precambrian shield basins include considerable surface water (large lakes, wetlands), moderate relief (e.g. 400 m), variation in surficial geology (clay belt soils, glacial tills), and increasingly, the influence of human landuse impact (e.g. urban, agriculture) that are characteristic of northern Ontario, Quebec and parts of Scandinavia. In northeastern Ontario, Lake Nipissing and the French River are part of an important headwater tributary that flows into Georgian Bay, Lake Huron. Lake Nipissing and its 13,000 km2 watershed is the source of water to local municipalities and First Nation communities, home to a First Nations fishery and 5{%} of Ontario's recreational angling, and contributes an estimated 100 million/year to Ontario's economy. In 2012, in response to increasing concerns over water quality and its implications for ecological and economic systems, and limited study of water quality and quantity in the Sturgeon River-Lake Nipissing-French River (SNF) basin, we initiated a stable water isotope (SWI) study to examine how landscape characteristics influence streamflow generation at scales where both natural landscape variation (e.g. surface reservoirs, clay belt soils, forested headwaters) and anthropogenic stressors (urbanization, agriculture) are anticipated to influence water quantity and quality. Bi-weekly to monthly monitoring of SWI in precipitation and streamflow began in January 2013. Catchments range in size from 35 to 6,875 km^2, with a median size of 197 km2 and median gradients from 1 to 8{%}. Landcover includes considerable agricultural (0-18{%}) and/or urban (0-47{%}) area. Lakes and wetlands together cover 10-25{%} of catchment area, with large individual lakes (e.g. Lake Temagami) acting as important reservoir storage for hydropower generation. The existing SWI dataset includes 2 years of streamflow data for 5 of the larger catchments, > 1 year for an additional 2 catchments, and 2 years of seasonal ice-off data for the

  8. Catchment systems science and management: from evidence to resilient landscapes

    NASA Astrophysics Data System (ADS)

    Quinn, Paul

    2014-05-01

    There is an urgent need to reassess both the scientific understanding and the policy making approaches taken to manage flooding, water scarcity and pollution in intensively utilised catchments. Many European catchments have been heavily modified and natural systems have largely disappeared. However, working with natural processes must still be at the core of any future management strategy. Many catchments have greatly reduced infiltration rates and buffering capacity and this process needs to be reversed. An interventionist and holistic approach to managing water quantity and quality at the catchment scale is urgently required through the active manipulation of natural flow processes. Both quantitative (field experiments and modelling) and qualitative evidence (local knowledge) is required to demonstrate that catchment have become 'unhealthy'. For example, dense networks of low cost instrumentation could provide this multiscale evidence and, coupled with stakeholder knowledge, build a comprehensive understanding of whole system function. Proactive Catchment System Management is an interventionist approach to altering the catchment scale runoff regime through the manipulation of landscape scale hydrological flow pathways. Many of the changes to hydrological processes cannot be detected at the catchment scale as the primary causes of flooding and pollution. Evidence shows it is the land cover and the soil that are paramount to any change. Local evidence shows us that intense agricultural practices reduce the infiltration capacity through soil degradation. The intrinsic buffering capacity has also been lost across the landscape. The emerging hydrological process is one in which the whole system responds too quickly (driven by near surface and overland flow processes). The bulk of the soil matrix is bypassed during storm events and there is little or no buffering capacity in the riparian areas or in headwater catchments. The prospect of lower intensity farming rates is

  9. Flow process in a rangeland catchment in California

    SciTech Connect

    Salve, R.; Tokunaga, Tetsu K.

    2000-09-01

    Emerging hydrology-related issues in California grasslands have directed attention towards the need to understand subsurface water flow within a complex, dynamic system. Tensiometers and neutron probes evaluated the subsurface hydrology of a rangeland catchment. Hydrological processes within the catchment varied both in space and time. Spatial variability was evident along the vertical profile and between the catchment slopes. Temporal variability in processes coincided with the seasons (i.e., wet winter, dry summer, and spring). From a water-balance equation developed for the catchment, we determined that there was significant variability both spatial and temporal in the amount of soil moisture lost to evapotranspiration and deep seepage. During the 16 month monitoring period there was a total of 50 cm of rainfall that fell in the catchment of which 9-55 cm was lost to evaporation and 37-79 cm to deep seepage. A simple deduction of the losses (evaporation and deep seepage) from the input (rainfall) shows that all monitored locations had a substantial decrease in the amount of water that was stored in the soil profile.

  10. Source apportionment of trace contaminants in urban sewer catchments.

    PubMed

    Comber, Sean; Gardner, Mike; Jones, Vera; Ellor, Brian

    2015-01-01

    Sampling and analysis of Water Framework Directive priority chemicals were undertaken in nine urban catchments across the UK. Over 9000 samples were collected from a number of different catchment sources including tap water, domestic waste water, surface water runoff, trade discharges, town centre and light industrial estate wastewaters. Determinands included trace metals, polyaromatic hydrocarbons (PAHs), persistent organic pollutants and a number of common pharmaceuticals. Loads of the chemicals from each catchment entering the local wastewater treatment works (WwTW) were estimated and were shown to be relatively consistent between different catchments, after taking population into account. A Monte Carlo mixing model was used to combine the concentrations and flows from the different catchment sources and to predict concentrations and loads entering the WwTW. Based on the model output, the significance of the different sources could be evaluated. The study highlighted the importance of domestic wastewater as a source of contaminants, including metals and trace organic substances (such as ethylenediaminetetraacetic acid (EDTA), bisphenol A, nonylphenol and tributyl tin (TBT)). Concentrations in trade discharges were important in some locations in the case of nonylphenol, EDTA, TBT, as well as for some metals such as copper, zinc and nickel. Contributions to the total load from town centre and light industrial estate sources were generally less than 10% of the total. PMID:25209673

  11. Climate, Hydrochemistry and Economics of Surface-water Systems (CHESS): adding a European dimension to the catchment modelling experience developed under LOIS.

    PubMed

    Boorman, David B

    2003-10-01

    One achievement of the UK Land-Ocean Interaction Study (LOIS) was to link dynamic biogeochemical models of different domains, e.g. rivers, estuaries and coastal waters, and to use the linked model to investigate possible changes from the current status that might occur in the future, for example as the result of climate change. The Climate, Hydrochemistry and Economics of Surface-water Systems (CHESS) project has taken the LOIS methodology forward by exploring possible impacts of climate change on the water quality of European rivers, with the purpose of informing future catchment management. This was achieved by the application of a standard modelling framework to a set of five European catchments located in Finland (River Vantaa), United Kingdom (Yorkshire Ouse), Belgium (Dender), Italy (Enza) and Greece (Pinios). Baseline conditions were simulated using existing meteorological data from the period 1961-1990, and in all cases the modelling framework was able to reproduce key features of the flow and water quality regimes of the study catchments. The modelling framework comprised two models. The Soil Water Assessment Tool (SWAT) was used to simulate water and chemical fluxes, primarily nutrients and sediment, generated from diffuse areas and thereby provide sub-catchment inputs to an in-stream water quality model, the Quality Evaluation and Simulation Tool for River Systems (QUESTOR). QUESTOR integrated the diffuse runoff along the channel network, together with point source discharges from industry and sewage treatment works, and water abstractions for public supply, industry and agriculture. The modelling framework has been used for the baseline conditions, along with a set of six climate scenarios. These comprised four scenarios derived from different general circulation models (GCMs) representing the 2050s, and three scenarios from the same GCM representing the 2020s, 2050s and 2080s, with one scenario in both groups. Results have been explored using a range

  12. Controls of catchments` sub-storage contributions to dynamic water quality patterns in the stream network

    NASA Astrophysics Data System (ADS)

    Schuetz, Tobias; Maike Hegenauer, Anja

    2016-04-01

    Water quality is usually observed either continuously at a few stations within a catchment or with few snapshot sampling campaigns throughout the whole stream network. Although we know that the depletion of catchment sub-storages can vary throughout the stream network according to their actual water content (spatial variability of actual storage conditions can be caused amongst others by unevenly distributed rainfall, storage size or spatial differences in soil characteristics and land use), we know little about the impact of this process on spatial water quality patterns. For summer low flow recession periods, when stream water composition can be crucial for aquatic ecosystem conditions and the exceedance of water quality thresholds, knowledge on the controls of the dynamic interplay of catchment storages and stream water composition might improve water quality management and the implementation of corresponding mitigation measures. We studied this process throughout the stream network of a first-order agricultural headwater catchment in south-western Germany during two summer low flow recession periods. The underlying geology of the study area is a deep layer of aeolian loess, whilst the dominating soil is a silty calcaric regosol with gleizations in the colluvium. The land use in the catchment is dominated by viniculture (63 %) and arable crops (18 %). Due to the dense drainpipe network within the catchment we could identify 12 sub-catchments contributing during summer low flow recession periods to total stream discharge. We continuously observed discharge, electrical conductivity and water temperatures for 8 of the sub-catchments and at the catchment outlet. This data set was accomplished by 10 snapshot campaigns where we sampled for water temperatures, electrical conductivity, major ions, pH and O2 throughout the stream network. Using either discharge concentration relationships or time dependent functions, we derived continuous export rates for all measures in

  13. SPATIAL VARIABILITY OF DRY SPELLS A spatial and temporal rainfall analysis of the Pangani basin and Makanya catchment, Tanzania

    NASA Astrophysics Data System (ADS)

    Fischer, B. M. C.; Savenije, H. H. G. H. H. G.

    2009-04-01

    Rainfall and soil moisture are key parameters for food production and which are spatial and temporal variable. In a ever growing world the stress on water for food production increases. Farmers especially in semi arid regions with rain fed agriculture are more often forced to make away from "A" locations where water is available to water scares "B" or worse locations. Obliged by availability of arable land, tradition, customs, natural 6th sense or farmers cleverness. To improve agricultural yields a better water resource planning ,supported by system knowledge, is needed. This study describes a Markov bases dry spell tool which can fulfil in this need. By making use of Markov properties of rainfall, the temporal variability has been analysed. Plotting the derived seasonal transition probabilities vs. the rainfall amount a spatial variable power function could be derived. The spatial and temporal knowledge of rainfall was combined in the Markov based dry spell tool. For a given probability the tool provides a dry spell map. The dry spell tool is a powerful tool to assess vulnerability of dry spells based on meteorological data. The meteorological dry spell in combination with the agricultural dry spell length or critical dry spell length, which is determined by soil and vegetation characteristics, risk maps of an area to the vulnerability of dry spells could be made. The tool was applied in a case study in the Makanya catchment and showed: Compared to the lower middle part of the catchment, high altitude parts of the catchment receive higher amounts of rainfall, have shorter meteorological dry spells and are more resilient to dry spells due to their soil and vegetation characteristics. As a result one can state that farmers living in mountainous areas are blessed by their location. They receive more rain and have lower probability of long dry spells, higher probability of crop success and a higher probability of high yields, in contrast to the farmers in the valley

  14. A simple distributed sediment delivery approach for rural catchments

    NASA Astrophysics Data System (ADS)

    Reid, Lucas; Scherer, Ulrike

    2014-05-01

    The transfer of sediments from source areas to surface waters is a complex process. In process based erosion models sediment input is thus quantified by representing all relevant sub processes such as detachment, transport and deposition of sediment particles along the flow path to the river. A successful application of these models requires, however, a large amount of spatially highly resolved data on physical catchment characteristics, which is only available for a few, well examined small catchments. For the lack of appropriate models, the empirical Universal Soil Loss Equation (USLE) is widely applied to quantify the sediment production in meso to large scale basins. As the USLE provides long-term mean soil loss rates, it is often combined with spatially lumped models to estimate the sediment delivery ratio (SDR). In these models, the SDR is related to data on morphological characteristics of the catchment such as average local relief, drainage density, proportion of depressions or soil texture. Some approaches include the relative distance between sediment source areas and the river channels. However, several studies showed that spatially lumped parameters describing the morphological characteristics are only of limited value to represent the factors of influence on sediment transport at the catchment scale. Sediment delivery is controlled by the location of the sediment source areas in the catchment and the morphology along the flow path to the surface water bodies. This complex interaction of spatially varied physiographic characteristics cannot be adequately represented by lumped morphological parameters. The objective of this study is to develop a simple but spatially distributed approach to quantify the sediment delivery ratio by considering the characteristics of the flow paths in a catchment. We selected a small catchment located in in an intensively cultivated loess region in Southwest Germany as study area for the development of the SDR approach. The

  15. Impact of climate change on Vea Catchment and irrigation scheme in Upper East Region of Ghana

    NASA Astrophysics Data System (ADS)

    Limantol, A. M.; Afouda, A.; Lenartz, B.; Agyare, W. A.

    2015-12-01

    The study assessed the future impact of climate change (CC) on water resources availability in the Vea catchment of the Upper East of Ghana for irrigated agriculture. A questionnaire survey targeting farmers with at least 30 years of farming experience in the area was conducted in 6 of the 11 agricultural extension areas (EAs) in the catchment (305 km2). Data on perception about CC, adaptation measures and barriers were captured by the questionnaire. Focus group discussions were also conducted in each of the 6 selected EAs. Additionally, 8 stakeholder institutions were interviewed. Climatic data over a period of 1972 to 2012 from four stations were evaluated. Future climate simulations from 16 Regional Climate Models were used to predict future streamflow with IHACRES runoff model. The WEAP model was used to assess future water availability in two future time slices, 2021-2050 and 2071-2100. About 89.5% of 466 questioned farmers believe that temperature increased over the past 30 years, while over 94% of farmers believe that amount of rainfall; duration, intensity and rainy days decreased. Over 96% of farmers believe that their farms are extremely vulnerable to decreased rainfall, droughts and changed timing of rainfall. While analysis of climatic data shows rising trend in temperature, no long-term trend and no variability changes in both annual and monthly rainfall amounts were evident. High evapotranspiration due to rising temperature may have triggered the farmers' perception about rainfall trend and droughts in the area. Several measures such as cropping of new varieties, changing farm locations and use of more fertilizer have been employed by farmers to adjust to CC. It was found that CC could cause severe shortfall in water availability for irrigation and domestic supply in the coming decades. Government needs to assist farmers with alternative irrigation schemes and drought resistant crops in order to sustain livelihoods of farmers on the long run.

  16. Regional nitrogen dynamics in the TERENO Bode River catchment, Germany, as constrained by stable isotope patterns.

    PubMed

    Mueller, Christin; Krieg, Ronald; Merz, Ralf; Knöller, Kay

    2016-01-01

    Interactions between hydrological characteristics and microbial activities affect the isotopic composition of dissolved nitrate in surface water. Nitrogen and oxygen isotopic signatures of riverine nitrate in 133 sampling locations distributed over the Bode River catchment in the Harz Mountains, Germany, were used to identify nitrate sources and transformation processes. An annual monitoring programme consisting of seasonal sampling campaigns in spring, summer and autumn was conducted. δ(15)N and δ(18)O of nitrate and corresponding concentrations were measured as well as δ(2)H and δ(18)O of water to determine the deuterium excess. In addition, precipitation on 25 sampling stations was sampled and considered as a potential input factor. The Bode River catchment is strongly influenced by agricultural land use which is about 70 % of the overall size of the catchment. Different nitrogen sources such as ammonia (NH4) fertilizer, soil nitrogen, organic fertilizer or nitrate in precipitation show partly clear nitrate isotopic differences. Processes such as microbial denitrification result in fractionation and lead to an increase in δ(15)N of nitrate. We observed an evident regional and partly temporal variation of nitrate isotope signatures which are clearly different between main landscape types. Spring water sections within the high mountains contain nitrate in low concentrations with low δ(15)NNO3 values of -3 ‰ and high δ(18)ONO3 values up to 13 ‰. High mountain stream water sub-catchments dominated by nearly undisturbed forest and grassland contribute nitrate with δ(15)NNO3 and δ(18)ONO3 values of -1 and -3.5 ‰, respectively. In the further flow path, which is affected by an increasing agricultural land use and urban sewage, we recognized an increase in δ(15)NNO3 and δ(18)ONO3 up to 22 and 18 ‰, respectively, with high variations during the year. A correlation seems to exist between the percentage of agricultural land use area and the

  17. Soil moisture - resistivity relation at the plot and catchment scale

    NASA Astrophysics Data System (ADS)

    Calamita, Giuseppe; Perrone, Angela; Satriani, Antonio; Brocca, Luca; Moramarco, Tommaso

    2010-05-01

    The key role played by soil moisture in both Global Hydrological Cycle and Earth Radiation Budget has been claimed by numerous authors during past decades. The importance of this environmental variable is evident in several natural processes operating in a wide range of spatial and temporal scales. At continental and regional scales soil moisture influences the evapotranspiration process and so acts indirectly on the climate processes; at middle scale is one of the major controls of the infiltration-runoff soil response during rainfall events; at small scales the knowledge of soil moisture evolution is crucial for precision agriculture and the associated site-specific management practices. However, soil moisture exhibits an high temporal and spatial variability and this is even more evident in the vadose zone. Thus, in order to better understand the soil moisture dynamics it is desirable to capture its behavior at different temporal and/or spatial scales. Traditional in situ methods to measure soil moisture like TDR can be very precise and allows an high temporal resolution. Recently, the application in field of geophysical methods for capturing soil moisture spatial and temporal variations has demonstrated to be a promising tool for hydro-geological studies. One of the major advantages relies on the capability to capture the soil moisture variability at larger scales, that is decametric or hectometric scale. In particular, this study is based on the simultaneous application of the electrical resistivity and the TDR methods. We present two study cases that differ from each other by both spatial and temporal resolution. For the first one, simultaneous measurements obtained during four different period of the year and carried out within a test catchment (~60 km2) in Umbria region (central Italy) were analyzed. The second case concerns almost three months of simultaneous measurements carried out in a small test site ( <200 m2), located in the garden of IMAA

  18. Suspended sediment apportionment in a South-Korean mountain catchment

    NASA Astrophysics Data System (ADS)

    Birkholz, Axel; Meusburger, Katrin; Park, Ji-Hyung; Alewell, Christine

    2016-04-01

    Due to the rapid agricultural expansion and intensification during the last decades in South-Korea, large areas of hill slope forests were transformed to paddies and vegetable fields. The intensive agriculture and the easily erodible soils in our catchment are a major reason for the increased erosion causing suspended sediments to infiltrate into the close drinking water reservoir. The drinking water reservoir Lake Soyang provides water supply for over ten million people in Seoul. Landscape managers need to know the exact origin of these sediments before they can create landscape amelioration schemes. We applied a compound-specific stable isotope (CSSI) approach (Alewell et al., 2015) to apportion the sources of the suspended sediments between forest and agricultural soil contribution to the suspended sediments in a different catchment and applied the same approach to identify and quantify the different sources of the suspended sediments in the river(s) contributing to Lake Soyang. We sampled eight soil sites within the catchment considering the different landuse types forest, rice paddies, maize and vegetables. Suspended sediments were sampled at three outlets of the different sub-catchments. Soils and suspended sediments are analysed for bulk carbon and nitrogen isotopes, compound-specific carbon isotopes of plant-wax derived long-chain fatty acids and long-chain n-alkanes. Fatty acid and alkane isotopes are then used in mixing calculations and the mixing model software IsoSource to find out the contribution of the different source soils to the suspended sediments. We present first data of the source soils and the suspended sediments. C. Alewell, A. Birkholz, K. Meusburger, Y. Schindler-Wildhaber, L. Mabit, 2015. Sediment source attribution from multiple land use systems with CSIA. Biogeosciences Discuss. 12: 14245-14269.

  19. Simulation of pesticide dissipation in soil at the catchment scale over 23 years

    NASA Astrophysics Data System (ADS)

    Queyrel, Wilfried; Florence, Habets; Hélène, Blanchoud; Céline, Schott; Laurine, Nicola

    2014-05-01

    Pesticide applications lead to contamination risks of environmental compartments causing harmful effects on water resource used for drinking water. Pesticide fate modeling is assumed to be a relevant approach to study pesticide dissipation at the catchment scale. Simulations of five herbicides (atrazine, simazine, isoproturon, chlortoluron, metolachor) and one metabolite (DEA) were carried out with the crop model STICS over a 23-year period (1990-2012). The model application was performed using real agricultural practices over a small rural catchment (104 km²) located at 60km east from Paris (France). Model applications were established for two crops: wheat and maize. The objectives of the study were i) to highlight the main processes implied in pesticide fate and transfer at long-term; ii) to assess the influence of dynamics of the remaining mass of pesticide in soil on transfer; iii) to determine the most sensitive parameters related to pesticide losses by leaching over a 23-year period. The simulated data related to crop yield, water transfer, nitrates and pesticide concentrations were first compared to observations over the 23-year period, when measurements were available at the catchment scale. Then, the evaluation of the main processes related to pesticide fate and transfer was performed using long-term simulations at a yearly time step and monthly average variations. Analyses of the monthly average variations were oriented on the impact of pesticide application, water transfer and pesticide transformation on pesticide leaching. The evolution of the remaining mass of pesticide in soil, including the mobile phase (the liquid phase) and non-mobile (adsorbed at equilibrium and non-equilibrium), was studied to evaluate the impact of pesticide stored in soil on the fraction available for leaching. Finally, a sensitivity test was performed to evaluate the more sensitive parameters regarding the remaining mass of pesticide in soil and leaching. The findings of the

  20. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazi

    NASA Astrophysics Data System (ADS)

    Costa, M. H.; Dias, L. C. P.; Macedo, M.; Coe, M. T.; Neill, C.

    2015-12-01

    This study assess the influence of land cover changes on evapotranspiration and streamflow in small catchments in the Upper Xingu River Basin (Mato Grosso state, Brazil). Streamflow was measured in catchments with uniform land use for September 1, 2008 to August 31, 2010. We used models to simulate evapotranspiration and streamflow for the four most common land cover types found in the Upper Xingu: tropical forest, cerrado (savanna), pasture, and soybean croplands. We used INLAND to perform single point simulations considering tropical rainforest, cerrado and pasturelands, and AgroIBIS for croplands. Converting natural vegetation to agriculture substantially modifies evapotranspiration and streamflow in small catchments. Measured mean streamflow in soy catchments was about three times greater than that of forest catchments, while the mean annual amplitude of flow in soy catchments was more than twice that of forest catchments. Simulated mean annual evapotranspiration was 39% lower in agricultural ecosystems (pasture and soybean cropland) than in natural ecosystems (tropical rainforest and cerrado). Observed and simulated mean annual streamflows in agricultural ecosystems were more than 100% higher than in natural ecosystems. The accuracy of the simulations is improved by using field-measured soil hydraulic properties. The inclusion of local measurements of key soil parameters is likely to improve hydrological simulations in other tropical regions.

  1. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazi

    NASA Astrophysics Data System (ADS)

    Costa, M. H.; Dias, L. C. P.; Macedo, M.; Coe, M. T.; Neill, C.

    2014-12-01

    This study assess the influence of land cover changes on evapotranspiration and streamflow in small catchments in the Upper Xingu River Basin (Mato Grosso state, Brazil). Streamflow was measured in catchments with uniform land use for September 1, 2008 to August 31, 2010. We used models to simulate evapotranspiration and streamflow for the four most common land cover types found in the Upper Xingu: tropical forest, cerrado (savanna), pasture, and soybean croplands. We used INLAND to perform single point simulations considering tropical rainforest, cerrado and pasturelands, and AgroIBIS for croplands. Converting natural vegetation to agriculture substantially modifies evapotranspiration and streamflow in small catchments. Measured mean streamflow in soy catchments was about three times greater than that of forest catchments, while the mean annual amplitude of flow in soy catchments was more than twice that of forest catchments. Simulated mean annual evapotranspiration was 39% lower in agricultural ecosystems (pasture and soybean cropland) than in natural ecosystems (tropical rainforest and cerrado). Observed and simulated mean annual streamflows in agricultural ecosystems were more than 100% higher than in natural ecosystems. The accuracy of the simulations is improved by using field-measured soil hydraulic properties. The inclusion of local measurements of key soil parameters is likely to improve hydrological simulations in other tropical regions.

  2. Evaluation of TOPLATS on three Mediterranean catchments

    NASA Astrophysics Data System (ADS)

    Loizu, Javier; Álvarez-Mozos, Jesús; Casalí, Javier; Goñi, Mikel

    2016-08-01

    Physically based hydrological models are complex tools that provide a complete description of the different processes occurring on a catchment. The TOPMODEL-based Land-Atmosphere Transfer Scheme (TOPLATS) simulates water and energy balances at different time steps, in both lumped and distributed modes. In order to gain insight on the behavior of TOPLATS and its applicability in different conditions a detailed evaluation needs to be carried out. This study aimed to develop a complete evaluation of TOPLATS including: (1) a detailed review of previous research works using this model; (2) a sensitivity analysis (SA) of the model with two contrasted methods (Morris and Sobol) of different complexity; (3) a 4-step calibration strategy based on a multi-start Powell optimization algorithm; and (4) an analysis of the influence of simulation time step (hourly vs. daily). The model was applied on three catchments of varying size (La Tejeria, Cidacos and Arga), located in Navarre (Northern Spain), and characterized by different levels of Mediterranean climate influence. Both Morris and Sobol methods showed very similar results that identified Brooks-Corey Pore Size distribution Index (B), Bubbling pressure (ψc) and Hydraulic conductivity decay (f) as the three overall most influential parameters in TOPLATS. After calibration and validation, adequate streamflow simulations were obtained in the two wettest catchments, but the driest (Cidacos) gave poor results in validation, due to the large climatic variability between calibration and validation periods. To overcome this issue, an alternative random and discontinuous method of cal/val period selection was implemented, improving model results.

  3. On the advantage of a dynamic evaluation of catchment models - two Swedish case studies

    NASA Astrophysics Data System (ADS)

    Clemenzi, Ilaria; Seibert, Jan; Fenicia, Fabrizio; Kavetski, Dmitri; Lyon, Steve; Laudon, Hjalmar

    2010-05-01

    In two different case studies we illustrate how the application of a "dynamic identifiability analysis" approach can be a useful tool both for identifying model deficiencies, and thus guiding model improvement, and for detecting changes of catchments characteristics over time. This type of analysis consists of evaluating a hydrological model in a moving time window, which allows the assessment of time-variable parameter values. Here, the analysis was performed using the SuperFlex modeling framework, which is a hydrological modeling tool that allows the generation of multiple alternative model structures. The first case study consists of applying the analysis on the Krycklan catchment, situated in the north-east of Sweden. The available hydrological data series cover a period of ten years (1997-2007) during which no significant changes occurred in the catchment. In the second case-study, the approach was applied to the sub-arctic Abiskojokken catchment located in northern Sweden. The available time series range from 1918 to 2007 and previous investigations indicated a time-change of catchment characteristics due to changing permafrost. In the first case study, the dynamic analysis helped identifying deficiencies in the model structure, which could subsequently be improved. In the second case study, the analysis contributed to evaluating changes of catchment characteristics and functioning. Time variable model parameters could be associated to time changing catchment characteristics. Overall, this study demonstrated how the dynamic model evaluation is a powerful diagnostic tool that can increase the understanding of catchment behavior.

  4. Influence of Rainfall Data Resolution and Catchment Subdivision on Runoff Modelling

    NASA Astrophysics Data System (ADS)

    Puttaraksa Mapiam, Punpim; Chauysuk, Suttiched

    2016-04-01

    Precipitation and catchment characteristics are significant factors for runoff modelling. This study demonstrates the relative benefits offered by the application of alternate rainfall products to several scales of catchment subdivision for simulation of the runoff hydrograph in the upper Ping river basin, northern Thailand. Two point locations at the runoff stations in the upper Ping river basin were selected for model calibration over the period of 2004-2005. Rain gauge and radar rainfall products were specified as inputs to the semi-distributed hydrological URBS model at each runoff station with five catchment subdivision schemes for runoff simulation. Point rainfall from the sparse rain gauge network and estimated radar rainfall at each radar pixel were spatially averaged over each sub-catchment using Thiessen polygons and arithmetic averaging approaches, respectively. Results for using high resolution of radar rainfall input appear that the accuracy of runoff estimates is affected appreciably by a number of sub-catchments, and the accuracy of runoff estimates tends to obviously increase with an increase of the number of sub-catchments. On the other hand, there is no significant improvement with an increasing number of sub-catchments while the coarse resolution of rain gauge rainfall input is used. The comparison on runoff accuracy among different scenarios indicates that the use of radar rainfall together with the largest number of sub-catchments gives the highest accuracy of runoff estimates.

  5. Influence of land use on hyporheos in catchment of the Jarama River (central Spain)

    NASA Astrophysics Data System (ADS)

    Iepure, S.; Martínez-Hernández, V.; Herrera, S.; de Bustamante, I.; Rasines, R.

    2012-04-01

    The Water Framework Directive (2000) requires integrated assessment of water bodies based on water resources but also the evaluation of land-use catchment effect on chemical and ecological conditions of aquatic ecosystems. The hyporheic zone (HZ) supporting obligate subterranean species are particularly vulnerable in river ecosystems when environmental stress occurs at surface and require management strategies to protect both the stream catchment and the aquifer that feed the stream channel. The influence of catchment land-use in the Jarama basin (central Spain) on river geomorphology and hyporheic zone granulometry, chemical and biological variables inferred from crustacean community biodiversity (species richness, taxonomic distinctness) and ecology was assessed. The study was conducted in four streams from the Madrid metropolitan area under distinct local land-use and water resource protection: i) a preserved forested natural sites where critical river ecosystem processes were unaltered or less altered by human activities, and ii) different degree of anthropogenic impact sites from agriculture, urban industrial and mining activities. The river bed permeability reduction and the increase of low sediment size input associated with changes in geomorphology of the stream channels are greatly affected by land-use changes in the Jarama watershed. Water chemical parameters linked to land-use increase from the natural stream to the urban industrial and agricultural dominated catchment. Principal coordinate analysis (PCO) and multidimensional scaling (MDS) clearly discriminate the pristine sites from forested areas by those under anthropogenic stressors. In streams draining forested areas, groundwater discharge and regular exchange between groundwater and surface water occur due to relatively high permeability of the sediments. Consequently, forested land-use produce sites of high water quality and crustacean richness (both groundwater dwellers and surface

  6. On the value of data for catchment modelling.

    NASA Astrophysics Data System (ADS)

    Fenicia, F.; McDonnell, J. J.; Savenije, H. H.; Pfister, L.

    2006-12-01

    The dialogue between experimentalist and modeller in catchment hydrology continues to be minimal, despite the clear need for this to quantify and reduce uncertainty in our predictions. Experimentalists often instrument catchments to measure key diagnostic properties and variables that, from their perspective, characterize catchment behaviour. Typically, after some years, the research switches to the hands of the catchment modeller who uses these data to support model development or to constrain a model's degrees of freedom. Often there is frustration on the part of the modeller because only a small part of the collected information can be actually used for the set-up, calibration and evaluation of the hydrological model. Much of the field data turns out to be of little use for modelling, for problems that may be related to the disparity between the scale of measurements and the scale of model components. This happens not only because of a lack of communication between modellers and experimentalists, but also because the information requirements of a model are seldom treated as a scientific issue. We use the well-studied Maimai catchment to explore what types of measurements, what length of time series and what resolution in time and space is best suited for modellers, in a way that it can be processed into simple, integrative evaluative data that constrain the model so as to represent the hydrological processes realistically. We discuss the marginal value of different data sources and the tradeoffs between time spent completing time series for a few variables and locations to spatially distributed snapshots of different variables aimed at increasing data complementarity. A first direct application of this study will be to orientate future field research on the experimental catchments operating in the Grand Duchy of Luxembourg.

  7. Runoff predictions in ungauged catchments in southeast Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Fapeng; Zhang, Yongqiang; Xu, Zongxue; Liu, Changming; Zhou, Yanchun; Liu, Wenfeng

    2014-04-01

    The Tibetan Plateau (TP) plays a key role on both hydrology and climate for southern and eastern Asia. Improving runoff predictions in ungauged catchments in the TP is critical for surface water hydrology and water resources management in this region. However, a detailed runoff prediction study in this region has not been reported yet. To fill the gap, this study evaluates two regionalization approaches, spatial proximity and physical similarity, for predicting runoff using two rainfall-runoff models (SIMHYD and GR4J). These models are driven by meteorological inputs from eight large non-nested catchments (4000-50,000 km2) in the Yarlung Tsangpo River basin located in southeast TP. For each catchment, the two models are calibrated using data from the first two-thirds of the observation period and validated over the remaining period. The calibrated and validated Nash-Sutcliffe Efficiency of monthly runoff (NSE) varies from 0.73 to 0.93 for the SIMHYD model, and are similar to or slightly better than those obtained for the GR4J model. The incorporation of snowfall-snowmelt processes into the rainfall-runoff models does not noticeably improve the runoff predictions in the study area. The main reason is that monthly runoff is dominated by summer precipitation and snowfall in winter accounts for a small percentage (less than 14%). The results from both models show that the spatial proximity approach marginally outperforms the physical similarity approach and both approaches are better than random selection of a donor catchment. This is consistent with recent regionalization studies carried out in Europe and Australia. The study suggests that conceptual rainfall-runoff models are powerful and simple tools for monthly runoff predictions in large catchments in southeast TP, and incorporation of more catchments into regionalization can further improve prediction skills.

  8. Runoff Production in the Upper Rio Chagres Catchment, Panama

    NASA Astrophysics Data System (ADS)

    Niezialek, J. M.; Ogden, F. L.

    2003-12-01

    Runoff production in watersheds in the seasonal tropics is governed by a number of factors. The mountainous 414 sq. km upper Rio Chagres watershed offers a unique opportunity to better understand the runoff production mechanisms in seasonal tropical catchments through data analysis and modeling. The upper Rio Chagres catchment provides the majority of inflows to the Panama Canal, has been monitored for over 60 years as part of canal operations. Discharge data are available at both the catchment outlet (Chico gaging station) and an internal catchment location (Rio Piedras gaging station). There are also seven tipping bucket recording rain gages in and around the catchment. Analysis of runoff data reveals anomalously-high runoff production efficiencies early in the wet season. Furthermore, the existence of two quasi-stable base flow regimes during the wet season imply critical threshold storages. Initial field studies have shown that the soils are water repellent during the dry season. Runoff data from the 80 sq. km Rio Piedras subcatchment reveal ephemeral flows throughout the wet season, indicating significant heterogeneity in runoff production and deep groundwater circulation. Preliminary hydrologic modeling is performed with the Sacramento Soil Moisture Accounting Model (SAC-SMA), calibrated using data from 1988 and verified using data from 1989. Further modeling on the flood of 28-31 December, 2000 is also performed. Modeling using the distributed parameter GSSHA model combined with the Sacramento groundwater module allows simulation of distributed runoff. However, the role of interception by the triple-layer tropical canopy and the magnitude of evapotranspiration are uncertain. New data collection is proposed in the Rio Chagres catchment to help quantify interception and evapotranspiration. This instrumentation will include measurements of rainfall above the canopy, cloud stripping, stemflow, throughfall, soil moisture, groundwater, interflow

  9. Prognosis of groundwater drought occurrence in selected catchments of Slovakia

    NASA Astrophysics Data System (ADS)

    Stojkovova, M.; Machlica, A.; Bara, M.

    2009-04-01

    The paper contains results on prognosis of groundwater drought occurrence in six selected catchments of Slovakia with different geological, hydrogeological and climatic conditions. Prognoses were made using BILAN model. Climatic scenarios CCCM1997, CCCM2000 (Canadian model CGCM.1 and CGCM.2 modified on conditions in Slovakia) and GISS1998 were used. Groundwater drought occurrence was assessed for time-frames 2030 and 2075. Each year of the whole assessed period of 24 years (1982-2005) was classified according to the water bearing degree of the stream taking into account the yearly precipitation amounts (Majercakova, et al., 2007). Three types of dry years - very dry, medium dry and moderately dry were defined. The prognosis values for 2030 and 2075 were compared with the reference period 1971-1990. Chvojnica River catchment (Lopasov profile), located in Neogene sedimentary rocks is characterized by occurrence of 26 % of dry years (very dry, medium or moderately dry) within the period 1982-2005. Prognosis of the groundwater runoff changes showed not very expressive decrease, in about 3.6-4 % in comparison with the reference period. Tuzina River catchment (Tuzina profile), located in crystalline, Mesozoic and Neogene sedimentary rocks, is characterized by occurrence of 25 % of dry years. Values of the groundwater runoff would decrease not very expressively, in about 5-7 %. These two catchments were assessed using GISS1998 climate change scenario. Groundwater changes in four other catchments were evaluated using CCCM scenarios. Topla River catchment (Bardejov profile), located in Paleogene flysh rocks, is characterized by occurrence of 58 % of dry periods. Values of the groundwater runoff would decrease importantly - in about 59-88 %. Bela River catchment (Podbanske profile), built by granitic and glaciofluvial rocks, is characterized by occurrence of 13 % of dry periods. Values of the groundwater runoff would decrease in about 42-63 %. Boca River catchment (Kralova

  10. Water Use and Management in Semiarid Regions - A Distributed Modelling Approach in the Verlorenvlei Catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Fleischer, Melanie; Kralisch, Sven; Fink, Manfred; Pfennig, Björn; Butchart-Kuhlmann, Daniel; Meinhardt, Markus; de Clercq, Willem

    2016-04-01

    Hydrological modelling is a useful method to predict water availability and environmental impacts in a range of climate and land use change scenarios. One of the major challenges to accurate predictions using hydrological modelling in semi-arid areas is the high temporal and spatial variability of rainfall events and the associated uncertainty of related process parameters. Limited and often unreliable climate observations can cause additional problems. These particular circumstances are well documented for many catchments in the world, including semi-arid parts of South Africa. An accurate assessment of water quality and quantity is however crucial for sustainable water resource management, which is often difficult under changing environmental conditions such as climate and land use change. This situation can be found in the Verlorenvlei catchment, a part of the Sandveld area located in the Western Cape region of South Africa. Extensive dry periods in combination with an increasing domestic water demand, expanding irrigation agriculture and expected reducing rainfall due to climate change present a challenging setup for water management in this region. The catchment is a highly sensitive area with one of the most important estuary systems in the Western Cape region, containing significant natural wetlands with high biodiversity and numerous endemic species. With very limited surface water resources, most settlements and irrigation systems in the region are mainly dependent on groundwater. As a result of the particular conditions, the use of improved management techniques, such as centre pivot irrigation and contour-bank farming, are necessary. The distributed, process-oriented hydrological modelling system JAMS/J2000 is used and evaluated to assess water availability within the catchment under different climate and land-use change scenarios. The first phase has involved configuring the model to accurately represent the specific natural conditions of the

  11. Untangling hydrological pathways and nitrate sources by chemical appraisal in a stream network of a reservoir catchment

    NASA Astrophysics Data System (ADS)

    Yevenes, M. A.; Mannaerts, C. M.

    2012-03-01

    The knowledge of water source contributions to streamflow is important for understanding chemical contamination origins and the status of biogeochemical cycling in stream networks of catchments. In this study, we evaluated whether a limited number of spatially distributed geochemical tracer data sampled during different hydrological seasons were sufficient to quantify water flow pathways and nitrate sources in a catchment. Six geochemical water constituents (δ2H, δ18O, Cl-, SO2-4, Na+, NO-3 and K+) of precipitation, stream water, alluvial sediment pore water and shallow groundwater of a 352 km2 agricultural catchment in the Alentejo region of Portugal were analysed. Exploratory data analysis and end-member mixing analysis (EMMA) were performed to estimate the water source mixing proportions. Residual analysis of principal components was used to identify the appropriate geochemical tracers and the number of end-members (water sources and flow paths), and their proportional contributions to streamflow were quantified. Spearman's rank correlation analysis was further used to identify nitrate origins in the streamflow. Results showed that, when using data from both wet and dry seasons, streamflow chemistry was strongly influenced by shallow groundwater. When only wet season data were modelled, streamflow chemistry was controlled and generated by three end-members: shallow groundwater, alluvial sediment pore water and precipitation. Isotope signatures of stream water were located mostly below the local meteoric water line (LMWL) and plotted along a local evaporation line (LEL), reflecting the permanence in the streamflow of shallow groundwater subjected to prior evaporation. Interpretation of isotope signatures during summer showed an isotopic enrichment in both streamflow and shallow groundwater. Measured and historical stream nitrate concentrations appeared to be strongly related to shallow groundwater. In addition, two hydrochemical data outliers for almost every

  12. Added-value from a multi-criteria selection of donor catchments in the prediction of continuous streamflow series at ungauged pollution control-sites

    NASA Astrophysics Data System (ADS)

    Drogue, Gilles; Ben Khediri, Wiem; Conan, Céline

    2016-05-01

    We explore the potential of a multi-criteria selection of donor catchments in the prediction of continuous streamflow series by the spatial proximity method. Three criteria have been used: (1) spatial proximity; (2) physical similarity; (3) stream gauging network topology. An extensive assessment of our spatial proximity method variant is made on a 149 catchment-data set located in the Rhine-Meuse catchment. The competitiveness of the method is evaluated against spatial interpolation of catchment model parameters with ordinary kriging. We found that the spatial proximity approach is more efficient than ordinary kriging. When distance to upstream/downstream stream gauge stations is considered as a second order criterion in the selection of donor catchments, an unprecedented level of efficiency is reached for nested catchments. Nevertheless, the spatial proximity method does not take advantage from physical similarity between donor catchments and receiver catchments because catchments that are the most hydrologically similar to each catchment poorly match with the catchments that are the most physically similar to each catchment.

  13. Spatial and temporal changes in apportionments by using sediment fingerprinting in a Spanish Pyrenean river catchment.

    NASA Astrophysics Data System (ADS)

    Palazón, Leticia; Latorre, Borja; Gaspar, Leticia; Navas, Ana

    2016-04-01

    The Barasona reservoir has suffered from siltation since its construction, with the loss of over one third of its storage volume in around 30 years (period 1972-1996). Information on sediment contribution and transport dynamics from the contributing catchment to the reservoir is needed to develop management plans for maintaining reservoir sustainability. Large variability in sediment delivery was found in previous studies in the Barasona catchment (1509 km2, Central Spanish Pyrenees) and the major sediment sources identified included badlands developed in the middle part of the catchment and the agricultural fields in its lower part. In this study the < 63 μm sediment fraction from the channel bed sediment samples from the main rivers (Ésera and Isábena), their tributaries and surface reservoir sediments, the latter spanning two decades, are investigated following the fingerprinting procedure to assess how the land use sediment contributions change along the streams and on time to the reservoir. Subsoil source (badlands included) contributions to channel bed sediments of the main rivers are limited in the catchment headwater which turn to be greater than 70 % for river reaches closer to the reservoir. In the same way, the presence of the badlands and the greater percentage of bare soils in the southern part of the catchment are main source of sediments (> 50%) for the southern tributaries. Differences in source apportionments between the two time-spanning reservoir samples reveal that agricultural fields contributed more in the 90s. Study fine sediment characteristics and their contributions in river catchments provide unique and diverse information to address catchment management problems, improving the spatial and temporal knowledge of land use sediment source contributions along the catchment to the reservoir infill.

  14. Fingerprinting the main erosion processes delivering sediment to hillside reservoirs: Case of Kamech catchment in Cape Bon, Tunisia

    NASA Astrophysics Data System (ADS)

    Ben Slimane, A.; Raclot, D.; Evrard, O.; Sanaa, M.; Lefèvre, I.; Ahmadi, M.; Le Bissonnais, Y.

    2011-12-01

    About 74% of agricultural soils are affected by water erosion in Tunisia. This intense soil degradation threatens the sustainability of food production in the country. It also leads to the siltation of the numerous hillslide reservoirs that were constructed in the 1990s to protect downstream villages against floods and provide a source of water in cultivated areas. Very dense gully systems are observed in Tunisian agricultural land and in other Mediterranean regions, but their contribution to contemporary sediment supply to hillside reservoirs has not been quantified yet. Still, there is a need to quantify the sediment sources in this region in order to guide the implementation of erosion control measures. Sediment can be supplied by gully systems but it can also be provided by erosion of the superficial layer of cultivated soil. We propose a methodology to estimate the relative contribution of gully erosion vs. interrill erosion to the sediment accumulated in hillside reservoirs. This work was conducted in a pilot catchment (i.e., Kamech catchment, 263ha, Cape Bon, Tunisia) to define guidelines on the number and the location of sediment core samples to collect in the reservoirs, in order to provide relevant information on the evolution of sediment sources throughout the last two decades. Once validated, this methodology will be applied to other catchments of the Tunisian Ridge. We applied the sediment fingerprinting method, which consists in measuring conservative and stable properties in both sources and sinks of sediment to outline their origin. Sampling efforts were concentrated on the field surface (cropland and grassland), gullies and channel banks. Thirteen sediment cores were collected along an upstream-downstream transect across Kamech hillside reservoir, in order to estimate the contribution of each potential sediment source to the material accumulated at the outlet, and to investigate the potential spatial differences of sediment origin across the

  15. Microbial water pollution: a screening tool for initial catchment-scale assessment and source apportionment.

    PubMed

    Kay, D; Anthony, S; Crowther, J; Chambers, B J; Nicholson, F A; Chadwick, D; Stapleton, C M; Wyer, M D

    2010-11-01

    The European Union Water Framework Directive requires that Management Plans are developed for individual River Basin Districts. From the point of view of faecal indicator organisms (FIOs), there is a critical need for screening tools that can provide a rapid assessment of the likely FIO concentrations and fluxes within catchments under base- and high-flow conditions, and of the balance ('source apportionment') between agriculture- and sewage-derived sources. Accordingly, the present paper reports on: (1) the development of preliminary generic models, using water quality and land cover data from previous UK catchment studies for assessing FIO concentrations, fluxes and source apportionment within catchments during the summer bathing season; (2) the calibration of national land use data, against data previously used in the models; and (3) provisional FIO concentration and source-apportionment assessments for England and Wales. The models clearly highlighted the crucial importance of high-flow conditions for the flux of FIOs within catchments. At high flow, improved grassland (and associated livestock) was the key FIO source; FIO loadings derived from catchments with high proportions of improved grassland were shown to be as high as from urbanized catchments; and in many rural catchments, especially in NW and SW England and Wales, which are important areas of lowland livestock (especially dairy) farming, ≥ 40% of FIOs was assessed to be derived from agricultural sources. In contrast, under base-flow conditions, when there was little or no runoff from agricultural land, urban (i.e. sewerage-related) sources were assessed to dominate, and even in rural areas the majority of FIOs were attributed to urban sources. The results of the study demonstrate the potential of this type of approach, particularly in light of climate change and the likelihood of more high-flow events, in underpinning informed policy development and prioritization of investment. PMID:19717181

  16. Evaluating an ecosystem management approach for improving water quality in two contrasting study catchments in south-west England.

    NASA Astrophysics Data System (ADS)

    Glendell, Miriam; Brazier, Richard

    2014-05-01

    The European Water Framework Directive (WFD) 2000 established a new emphasis for the management of freshwaters by establishing ecologically-based water quality targets that are to be achieved through holistic, catchment-scale, ecosystem management approaches. However, significant knowledge gaps still exist in the understanding of the cumulative effectiveness of multiple mitigation measures on a number of pollutants at a catchment scale. This research furthers the understanding of the effectiveness of an ecosystem management approach to deliver catchment-scale water quality improvements in two contrasting study catchments in south-west England: the lowland agricultural Aller and the upland semi-natural Horner Water. Characterisation of the spatial variability of soil properties (bulk density, total carbon, nitrogen, C:N ratio, stable isotope δ15N, total, organic and inorganic phosphorus) in the two study catchments demonstrated extensive alteration of soil properties in the agricultural catchment, with likely long-term implications for the restoration of ecosystem functioning and water quality management (Glendell et al., 2014b). Further, the agricultural catchment supported a proportionally greater total fluvial carbon (dissolved and particulate) export than the semi-natural catchment. During an eight month period for which a comparable continuous turbidity record was available, the estimated SS yields from the agricultural catchment (25.5-116.2 t km-2) were higher than from the semi-natural catchment (21.7-57.8 t km-2). In addition, the agricultural catchment exported proportionally more TPC (0.51-2.59 kg mm-1) than the semi-natural catchment (0.36-0.97 kg mm-1) and a similar amount of DOC (0.26-0.52 kg mm-1 in the Aller and 0.24-0.32 kg mm-1 in Horner Water), when normalised by catchment area and total discharge, despite the lower total soil carbon pool, thus indicating an enhanced fluvial loss of sediment and carbon (Glendell and Brazier, in review). Whilst

  17. Defining the sources of low-flow phosphorus transfers in complex catchments.

    PubMed

    Arnscheidt, J; Jordan, P; Li, S; McCormick, S; McFaul, R; McGrogan, H J; Neal, M; Sims, J T

    2007-08-15

    Nutrient transfers from the land to rivers have the potential to cause persistent eutrophic impacts at low flows even though the transfers may constitute a minor percentage of total annual fluxes. In rural catchments, the contribution from agricultural soils during storm events can be particularly large and untangling the relative contributions from multiple sources that vary in time and space is especially problematic. In this study, the potential for domestic septic tank system pollution during low flows was investigated in 3 small catchments (3 to 5 km(2)) using an integrated series of methods. These included septic system surveys, continuous (10 min) total phosphorus (TP) monitoring at the outlet of each catchment, repeated low-flow water quality surveys in sub-catchments upstream of the catchment outlets and single day river-walk water quality surveys. A series of faecal matter and grey-water fingerprinting techniques were also employed. These included determining sterol ratios in stream sediments, monitoring the presence of proteins, E. coli and enterococci bacterial signatures and boron. The total density and density of poorly maintained septic systems mirrored the magnitude of frequent TP concentrations in the catchments although this relationship was less apparent in the nested sub-catchments. The exception was possibly related to the simple hydraulics in one particular catchment and indicated temporary effluent attenuation in the other catchments. Repeated low-flow and river-walk water quality surveys highlighted discrete areas and reaches where stepped changes in nutrient concentration occurred. Bio-chemical fingerprinting showed that between 7% and 27% of sediments were contaminated with human faecal material and correlation matrices indicated that, at least during low flows, P fractions were positively correlated with some markers of faecal and grey-water contamination. PMID:17512972

  18. Assessing metaldehyde concentrations in surface water catchments and implications for drinking water abstraction

    NASA Astrophysics Data System (ADS)

    Asfaw, Alemayehu; Shucksmith, James; Smith, Andrea; Cherry, Katherine

    2015-04-01

    Metaldehyde is an active ingredient in agricultural pesticides such as slug pellets, which are heavily applied to UK farmland during the autumn application season. There is current concern that existing drinking water treatment processes may be inadequate in reducing potentially high levels of metaldehyde in surface waters to below the UK drinking water quality regulation limit of 0.1 µg/l. In addition, current water quality monitoring methods can miss short term fluctuations in metaldehyde concentration caused by rainfall driven runoff, hampering prediction of the potential risk of exposure. Datasets describing levels, fate and transport of metaldehyde in river catchments are currently very scarce. This work presents results from an ongoing study to quantify the presence of metaldehyde in surface waters within a UK catchment used for drinking water abstraction. High resolution water quality data from auto-samplers installed in rivers are coupled with radar rainfall, catchment characteristics and land use data to i) understand which hydro-meteorological characteristics of the catchment trigger the peak migration of metaldehyde to surface waters; ii) assess the relationship between measured metaldehyde levels and catchment characteristics such as land use, topographic index, proximity to water bodies and runoff generation area; iii) describe the current risks to drinking water supply and discuss mitigation options based on modelling and real-time control of water abstraction. Identifying the correlation between catchment attributes and metaldehyde generation will help in the development of effective catchment management strategies, which can help to significantly reduce the amount of metaldehyde finding its way into river water. Furthermore, the effectiveness of current water quality monitoring strategy in accurately quantifying the generation of metaldehyde from the catchment and its ability to benefit the development of effective catchment management practices

  19. 7 CFR 1520.2 - Location and hours.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Location and hours. 1520.2 Section 1520.2 Agriculture Regulations of the Department of Agriculture (Continued) FOREIGN AGRICULTURAL SERVICE, DEPARTMENT OF AGRICULTURE AVAILABILITY OF INFORMATION TO THE PUBLIC § 1520.2 Location and hours. Members of the...

  20. 7 CFR 1520.2 - Location and hours.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Location and hours. 1520.2 Section 1520.2 Agriculture Regulations of the Department of Agriculture (Continued) FOREIGN AGRICULTURAL SERVICE, DEPARTMENT OF AGRICULTURE AVAILABILITY OF INFORMATION TO THE PUBLIC § 1520.2 Location and hours. Members of the...

  1. 7 CFR 1520.2 - Location and hours.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Location and hours. 1520.2 Section 1520.2 Agriculture Regulations of the Department of Agriculture (Continued) FOREIGN AGRICULTURAL SERVICE, DEPARTMENT OF AGRICULTURE AVAILABILITY OF INFORMATION TO THE PUBLIC § 1520.2 Location and hours. Members of the...

  2. A Watershed Directory As A Basis For Integrated River Catchment Management of The Modau Catchment (germany)

    NASA Astrophysics Data System (ADS)

    Klawitter, A.; Ostrowski, M.

    A key element of the EU Water Framework Directive is the River Basin Management Plan providing the program of measures, which are aimed at protecting and meliorat- ing surface waters, groundwaters and other protected areas. A further important role in the River Basin Management Plan plays the monitoring of surface waters, as well as groundwaters and protected areas, which was the trigger for this investigation. The Modau catchment, situated East of the Rhine in South Hesse, is intensively used by agriculture and industry, and is furthermore densely populated. The river channel is severely impaired by urban settlements and water engineering works. Finally, the lower part of the Modau catchment is used for groundwater extraction. Due to these facts, an integrated water management is compulsory. The main purpose of the investigation was to establish a watershed directory com- bining all available information for watershed management and to evaluate this data basis towards its suitability for a River Basin Management Plan. A further purpose was to identify deficits as well as information gaps in this data basis. During the inves- tigation, a preliminary assessment of the monitoring and management strategies was carried out, to see whether current work with regard to river basin management meets the requirements of the Water Framework Directive.

  3. Quantifying hydrological responses of small Mediterranean catchments under climate change projections.

    PubMed

    Sellami, Haykel; Benabdallah, Sihem; La Jeunesse, Isabelle; Vanclooster, Marnik

    2016-02-01

    Catchment flow regimes alteration is likely to be a prominent consequence of climate change projections in the Mediterranean. Here we explore the potential effects of climatic change on the flow regime of the Thau and the Chiba catchments which are located in Southern France and Northeastern Tunisia, respectively. The Soil and Water Assessment Tool (SWAT) hydrological model is forced with projections from an ensemble of 4 climate model (CM) to assess changes and uncertainty in relevant hydrological indicators related to water balance, magnitude, frequency and timing of the flow between a reference (1971-2000) and future (2041-2071) periods. Results indicate that both catchments are likely to experience a decrease in precipitation and increase in temperature in the future. Consequently, runoff and soil water content are projected to decrease whereas potential evapotranspiration is likely to increase in both catchments. Yet uncertain, the projected magnitudes of these changes are higher in the wet period than in the dry period. Analyses of extreme flow show similar trend in both catchments, projecting a decrease in both high flow and low flow magnitudes for various time durations. Further, significant increase in low flow frequency as a proxy for hydrological droughts is projected for both catchments but with higher uncertainty in the wet period than in the dry period. Although no changes in the average timing of maximum and minimum flow events for different flow durations are projected, substantial uncertainty remains in the hydrological projections. While the results in both catchments show consistent trend of change for most of the hydrologic indicators, the overall degree of alteration on the flow regime of the Chiba catchment is projected to be higher than that of the Thau catchment. The projected magnitudes of alteration as well as their associated uncertainty vary depending on the catchment characteristics and flow seasonality. PMID:26170115

  4. Water flow paths in a forested catchment of the East Asian monsoon region

    NASA Astrophysics Data System (ADS)

    Payeur-Poirier, Jean-Lionel; Hopp, Luisa; Peiffer, Stefan

    2015-04-01

    The climate of South Korea is strongly influenced by the East Asian summer monsoon. It is hypothesized that the high precipitation regime of the summer monsoon causes significant changes in the hydrological behaviour of forested catchments, namely in water quantity, quality and flow paths. We conducted high frequency hydrometric, isotopic, hydrochemical and meteorological measurements in a forested catchment before, during and after the 2013 summer monsoon season. The catchment is located within the Lake Soyang watershed, where recent trends of increasing eutrophication, sediment load and organic carbon load have been observed. We studied the temporal variability of catchment runoff and the spatial and temporal variability of water flow paths in relation with the hydrological conditions of the hillslope, toeslope and riparian elements of the catchment. For the summer monsoon season, the runoff coefficient approximated 68%. During this period, for the 16 monitored individual storm events ranging between 13 mm and 126 mm in precipitation, the runoff coefficient greatly varied and a threshold relationship with soil moisture was observed. Analyses of hysteresis loops of catchment runoff also revealed threshold relationships with precipitation and soil moisture, as water flow paths were activated or not in different parts of the catchment. The variation of the electrical conductivity of catchment runoff through the summer monsoon also revealed the occurrence of threshold relationships. A principal component analysis (PCA) and an end-member mixing analysis (EMMA) were performed in order to quantify the contribution of the different landscape elements to catchment runoff. The combination of the hydrometric, isotopic and hydrochemical approaches allowed us to test our hypothesis and to shed light on the threshold relationships observed at the catchment. The findings of this study could be useful for the estimation of the water balance of the Lake Soyang watershed as well

  5. Integrated monitoring of nitrogen dynamics in contrasting catchments

    NASA Astrophysics Data System (ADS)

    Schwientek, M.; Fleischer, M.

    2012-04-01

    The research institute WESS (Water & Earth System Science) is monitoring three adjacent meso-scale catchments (72 - 140 km2) in southwest Germany with respect to water quantity and quality. Due to their spatial proximity, the studied catchments are similar regarding climatic conditions and water balance. Geology is characterized by sedimentary rocks which are partly karstified. The catchments contrast strongly in land use and show a range from predominantly agriculture to almost exclusively forestry. In this context, a special focus of our research is the distinction of matter coming from the catchment area versus substances stemming from urban point sources. One important compound representing inputs from the catchment area is nitrogen. Nitrogen is an essential nutrient governing plant growth. If available in excess it leads to eutrophication and is therefore one of the globally most widespread contaminants in aquatic ecosystems. Transport of human-derived nitrogen through landscapes including urban areas to the oceans predominantly occurs via river network systems. Hence, monitoring of nitrogen fluxes in streams and rivers reveals mechanisms and dynamics of its transport and gives also insight into hydrologic processes which influence the mobilization of nitrogen. Presently, the catchments are equipped with online probes enabling high resolution monitoring of nitrate concentrations and other parameters. We found that average nitrate concentrations in stream water perfectly reflect the portion of fertilized arable land. The dynamics of N transport, however, largely depends on the hydrologic system and is driven by the dominating runoff generation processes. The interplay between different hydrological storages, which eventually also act as N pools, turns out to be decisive for the temporal variability of N concentrations in stream discharge. Inversely, the study of N transport dynamics can be used to infer the hydrologic mechanisms responsible for N mobilization

  6. A 125 year long record of DOC flux from a major temperate catchment: land-use vs. climate control?

    NASA Astrophysics Data System (ADS)

    Clay, G.; Worrall, F.; Howden, N. K.; Burt, T. P.

    2010-12-01

    Our understanding of the controls upon carbon biogeochemistry has always been limited by lack of long term observational data at the same time as having long term monitoring of possible environmental drivers. For the River Thames catchment in the UK (9998 km2) records of DOM have been kept since 1868 and DOM flux since 1882. In addition to riverflow being monitored in the catchment there has also been monitoring of climate, land-use and population back to at least 1868. The Thames catchment is a mixed agricultural urban catchment dominated by mineral soils where groundwater plays a significant part in the catchments flow system. During the period of the record the catchment has undergone urbanisation, climate warming but has also undergone large-scale land use change associated with World War II and agricultural intensification in the 1960s. The importance of these combinations of pressures are explored in the time series through a range of time series techniques and the results show: i) That DOC flux in the catchment is now at historic low levels, with the maximum flux being 35 ktonnes C/yr (3.5 tonnes/km2/yr) in 1915 and the lowest flux being 2 ktonnes C/yr (0.2 tonnes/km2/yr) in 1997. ii) The trend in the DOC flux is explained by changes in flow, which appear associated with both with groundwater storage in the catchment and with changes in land-use. iii) The significant decline in the DOC flux appears to be due to the transition in the catchment from dominated from pasture to an arable land use. iv) The decline of DOC flux with temperature would suggest that DOC mineralisation reaction has a higher Q10 than the DOC production. v) Declining DOC flux from mineral soils catchments would offset increases in DOC flux from organic soils but would also represent a shift in carbon losses from fluvial to being direct to the atmosphere.

  7. A roundup of SMOS validation activities at the HOBE site in the Skjern River Catchment, Denmark

    NASA Astrophysics Data System (ADS)

    Bircher, Simone; Richaume, Philippe; Mialon, Arnaud; Berthon, Lucie; Kerr, Yann H.; Jensen, Karsten H.

    2013-04-01

    The Soil Moisture and Ocean Salinity Mission (SMOS) delivers global surface soil moisture data at high temporal resolution which is of high relevance for water management, weather and climate predictions as well as hazard analysis. In order to estimate the quality and caveats of the SMOS data at different processing levels (e.g. L1C geolocated brightness temperatures TB, L2 soil moisture SM and optical thickness TAU, L3 spatio-temporal synthesis of TB, SM and TAU), product validation in various climatic regions is a crucial issue. In the framework of the Danish Hydrological Observatory (HOBE) one such validation site has been established in the Skjern River Catchment, Denmark. The catchment is one of Europe's northernmost intensely cultivated region with environmental features related to this latitude such as very sandy soils with large organic deposits under natural vegetation and region-specific land cover such as heathland. The area is of pronounced flatness and located at a short distance to the coast line in two directions. During fall 2009, a soil moisture and soil temperature network with 30 stations has been installed to provide continuous in-situ soil moisture data feasible for upscaling and comparison with SMOS data at large scale. One SMOS pixel (44x44 km2) to be validated was chosen by maximizing its coverage of the Skjern River Catchment and minimizing the open water fraction. Prevailing environmental conditions and their respective fractions were considered for the selection of suitable network locations. To further support validation activities an airborne campaign with the passive L-band microwave radiometer EMIRAD-2, was carried out within the chosen SMOS pixel in spring 2010 to directly acquire soil moisture data at intermediate scale (few kilometers spatial resolution). Concurrent with ascending SMOS overpasses, four flights were conducted with simultaneous ground sampling of surface soil moisture and auxiliary parameters within three 2x2 km

  8. The impact of runoff generation mechanisms on the location of critical source areas

    USGS Publications Warehouse

    Lyon, S.W.; McHale, M.R.; Walter, M.T.; Steenhuis, T.S.

    2006-01-01

    Identifying phosphorus (P) source areas and transport pathways is a key step in decreasing P loading to natural water systems. This study compared the effects of two modeled runoff generation processes - saturation excess and infiltration excess - on total phosphorus (TP) and soluble reactive phosphorus (SRP) concentrations in 10 catchment streams of a Catskill mountain watershed in southeastern New York. The spatial distribution of runoff from forested land and agricultural land was generated for both runoff processes; results of both distributions were consistent with Soil Conservation Service-Curve Number (SCS-CN) theory. These spatial runoff distributions were then used to simulate stream concentrations of TP and SRP through a simple equation derived from an observed relation between P concentration and land use; empirical results indicate that TP and SRP concentrations increased with increasing percentage of agricultural land. Simulated TP and SRP stream concentrations predicted for the 10 catchments were strongly affected by the assumed runoff mechanism. The modeled TP and SRP concentrations produced by saturation excess distribution averaged 31 percent higher and 42 percent higher, respectively, than those produced by the infiltration excess distribution. Misrepresenting the primary runoff mechanism could not only produce erroneous concentrations, it could fail to correctly locate critical source areas for implementation of best management practices. Thus, identification of the primary runoff mechanism is critical in selection of appropriate models in the mitigation of nonpoint source pollution. Correct representation of runoff processes is also critical in the future development of biogeochemical transport models, especially those that address nutrient fluxes.

  9. Sediment yield and connectivity in a gullied sandy catchment

    NASA Astrophysics Data System (ADS)

    Lucía, Ana; Francisco Martín-Duque, José; Laronne, Jonathan B.; Ángel Sanz-Santos, Miguel

    2014-05-01

    Badland areas are considered to have high connectivity of sediment at the catchment scale; however, little is known about processes occurring in gullies and badlands developed in sands. This type of gullies is quite common in the Central-Eastern Iberian Peninsula and is associated with historic mining. The sandy badlands also appear in both abandoned and traditionally reclaimed mines, generating on- and offsite environmental effects. Our aim is to quantify the rates of the different processes occurring in the sandy gullied catchments, as well as their coupling and connectivity at a catchment scale. This may allow application to improve reclamation practice in mines and quarries located in sandy materials. The study site is a small (1.32 ha) gullied catchment, the Barranca de los Pinos, which is located in the Northern Piedmont of the Guadarrama Mountains (Central Spain). The catchment area has been divided into Homogeneous Response Units (HRUs) attending to the dominant active process . The sediment produced in the different HRUs has been monitored by a variety of methods: repeat Terrestrial Laser Scanning of high gradient slopes, closed microplots in low gradient slopes and automatic (Reid type) slot bedload samplers and siphon samplers to monitor suspended sediment transport in the channel. During the 2010-11 monitoring period the sediment yield due to gravitational movements in high gradient slopes varied from 20 to 200 kg m-2y-1. In the low gradient slopes the splash and non-concentrated runoff generated 0.1 - 6 kg m-2y-1,while the channel yielded 7.44 ± 1.08 kg m-2y-1 with a very high proportion (>70%) of bedload. Despite the difficulties of extrapolating and comparing the results obtained at different spatial and temporal resolutions, annual patterns of erosion and transport of sediments within the sandy gullied catchments have been identified. These confirm that the transport of sediment in this catchment is limited by the capacity of flow events to

  10. Coevolution of volcanic catchments in Japan

    NASA Astrophysics Data System (ADS)

    Yoshida, Takeo; Troch, Peter A.

    2016-03-01

    Present-day landscapes have evolved over time through interactions between the prevailing climates and geological settings. Understanding the linkage between spatial patterns of landforms, soils, and vegetation in landscapes and their hydrological response is critical to make quantitative predictions in ungaged basins. Catchment coevolution is a theoretical framework that seeks to formulate hypotheses about the mechanisms and conditions that determine the historical development of catchments and how such evolution affects their hydrological response. In this study, we selected 14 volcanic catchments of different ages (from 0.225 to 82.2 Ma) in Japan. We derived indices of landscape properties (drainage density and slope-area relationship) as well as hydrological response (annual water balance, baseflow index, and flow-duration curves) and examined their relation with catchment age and climate (through the aridity index). We found a significant correlation between drainage density and baseflow index with age, but not with climate. The intra-annual flow variability was also significantly related to catchments age. Younger catchments tended to have lower peak flows and higher low flows, while older catchments exhibited more flashy runoff. The decrease in baseflow with catchment age is consistent with the existing hypothesis that in volcanic landscapes the major flow pathways change over time from deep groundwater flow to shallow subsurface flow. The drainage density of our catchments decreased with age, contrary to previous findings in a set of similar, but younger volcanic catchments in the Oregon Cascades, in which drainage density increased with age. In that case, older catchments were thought to show more landscape incision due to increasing near-surface lateral flow paths. Our results suggests two competing hypotheses on the evolution of drainage density in mature catchments. One is that as catchments continue to age, the hydrologically active channels retreat

  11. Modelling the effects of land use changes on the streamflow of a peri-urban catchment in central Portugal

    NASA Astrophysics Data System (ADS)

    Hävermark, Saga; Santos Ferreira, Carla Sofia; Kalantari, Zahra; Di Baldassarre, Giuliano

    2016-04-01

    Many river basis around the world are rapidly changing together with societal development. Such developments may involve changes in land use, which in turn affect the surrounding environment in various ways. Since the start of industrialisation, the urban areas have extended worldwide. Urbanization can influence hydrological processes by decreasing evapotranspiration, infiltration and groundwater recharge as well as increasing runoff and overland flow. It is therefore of uttermost importance to understand the relationship between land use and hydrology. Although several studies have been investigating the impacts of urbanization on streamflow over the last decades, less is known on how urbanization affects hydrological processes in peri-urban areas, characterized by a complex mosaic of different land uses. This study aimed to model the impact of land use changes, specifically urbanization and commercial forest plantation, on the hydrological responses of the small Ribeira dos Covões peri-urban catchment (6,2 km2) located in central Portugal. The catchment has undergone rapid land use changes between 1958 and 2012 associated with the conversion of agricultural fields (cover area decreased from 48% to 4%) into woodland and urban areas, which increased from 44% to 56% and from 8% to 40%, respectively. For the study, the fully-distributed, physically-based modelling system MIKE SHE was used. The model was designed to examine both how past land use changes might have affected the streamflow and to investigate the impacts on hydrology of possible future scenarios, including a 50 %, 60 % and 70 % urban cover. To this end, a variety of data including daily rainfall since 1958 and forward, daily potential evapotranspiration from 2009 to 2013, monthly temperature averages from 1971 to 2013, land use for the years 1958, 1973, 1979, 1990, 1995, 2002, 2007 and 2012, streamflow from the hydrological years 2008 to 2013, catchment topography and soil types were used. The model

  12. Monitoring soil erosion in terraced catchments in Mediterranean regions: a field experiment in Cyprus

    NASA Astrophysics Data System (ADS)

    Camera, Corrado; Djuma, Hakan; Zoumides, Christos; Eliades, Marinos; Bruggeman, Adriana; Abate, Dante; Faka, Marina; Hermon, Sorin

    2016-04-01

    Terraces retained by dry-stone walls are very common features in mountainous Mediterranean environments. These structures provide accessible agricultural land on steep slopes, favoring water infiltration and reducing water runoff and soil erosion. However, during the last decades, an increasing trend of agricultural land abandonment has resulted in a lack of maintenance of the terrace walls and the onset of a general process of land degradation. The objective of this study is the quantification of soil erosion in a small terraced catchment (10,000 m2), located on the north-eastern slope of the Troodos Mountains (Cyprus), at an elevation of 1,300 m a.s.l. The catchment is cultivated with vineyards and it is representative of the main agricultural land use in the Troodos region. Soil erosion is measured by sediment traps and laser scans are made to assess changes in terrace geometry. In addition, a weather station measuring rainfall, temperature and relative humidity has been installed in the catchment, along with 18 soil moisture sensors, to relate soil erosion processes with climate and (sub)surface hydrology. A total of 10 sediment traps, five pairs, have been installed in the study site, catching five well-maintained sections of a dry-stone wall and five degraded (collapsed) sections. Each trap is 1 m wide. In detail, two terraces, 11 and 14 m long, located at the same elevation and separated by a strip of natural vegetation, are monitored with four and six traps, respectively. To get a complete picture of the erosion processes occurring on the selected area, the trap pairs collect sediment from both the collapsed and the well maintained wall sections of the two terraces. In addition, terrace area of two traps is delineated by metal borders (1x4 m2) to relate erosion rates to a known drainage area. The sediment traps are emptied after all rainfall events. At the beginning and end of the rainy season, a laser scanning survey of a terrace located uphill of the ones

  13. Testing the applicability of morphometric characterisation in discordant catchments to ancient landscapes: A case study from southern Africa

    NASA Astrophysics Data System (ADS)

    Richardson, J. C.; Hodgson, D. M.; Wilson, A.; Carrivick, J. L.; Lang, A.

    2016-05-01

    The ancient landscapes south of the Great Escarpment in southern Africa preserve large-scale geomorphological features despite their antiquity. This study applies and evaluates morphometric indices (such as hypsometry, long profile analysis, stream gradient index, and linear/areal catchment characteristics) to the Gouritz catchment, a large discordant catchment in the Western Cape. Spatial variation of morphometric indices were assessed across catchment (trunk rivers) and subcatchment scales. The hypsometric curve of the catchment is sinusoidal, and a range of curve profiles are evident at subcatchment scale. Hypsometric integrals do not correlate to catchment properties such as area, circularity, relief, and dissection; and stream length gradients do not follow expected patterns, with the highest values seen in the mid-catchment areas. Rock type variation is interpreted to be the key control on morphometric indices within the Gouritz catchment, especially hypsometry and stream length gradient. External controls, such as tectonics and climate, were likely diminished because of the long duration of catchment development in this location. While morphometric indices can be a useful procedure in the evaluation of landscape evolution, this study shows that care must be taken in the application of morphometric indices to constrain tectonic or climatic variation in ancient landscapes because of inherited tectonic structures and signal shredding. More widely, we consider that ancient landscapes offer a valuable insight into long-term environmental change, but refinements to geomorphometric approaches are needed.

  14. Hydrological similarity and controls of streamflow behaviour in eastern Australian catchments

    NASA Astrophysics Data System (ADS)

    Trancoso, R.; Mcalpine, C. A.; Larsen, J.; Phinn, S. R.; McVicar, T.

    2014-12-01

    Along the eastern Australian seaboard, changes to both landscapes and climate are altering the hydrological cycle and impacting catchment outflows. The region supports 80% of the human population and regularly experiences extreme events such as tropical cyclones, floods and droughts. These changes in the hydrological cycle affect water supply for urban population centres, reduce economic activities and threaten water-dependent ecosystems. An important question that emerges from these issues is how human-modified, spatially heterogeneous catchments are responding to hydrological changes and which biophysical factors are driving the streamflow response. In order to organize and classify heterogeneous catchments with regard to their hydrological functioning, this study utilizes daily streamflow and rainfall time series to quantify hydrological similarity across 402 catchments located along the east coast of Australia. We computed several metrics such as runoff ratio, slope of the Flow Duration Curve, and streamflow elasticity to describe how catchments respond to rainfall input over a period of 30 hydrologic years (1980 to 2010). We used ordination analysis and mixed-effect models to evaluate how the landscape and climatic characteristics of catchments are controlling both individual hydrological signatures and the dominant streamflow response. This work provides new insights into how catchments characteristics and climate variability are interacting to control hydrological behaviour.

  15. Theme: Innovative Curriculum Ideas and Practices in Agricultural Education.

    ERIC Educational Resources Information Center

    Agricultural Education Magazine, 2002

    2002-01-01

    Fourteen theme articles discuss the following: curriculum ideas and innovations in agricultural education, agricultural literacy, Supervised Agricultural Experience, active learning, locating agricultural education resources, distance and web-based instruction, principles of forest management, professional development, and service learning. (JOW)

  16. From catchment to fish: Impact of anthropogenic pressures on gill histopathology.

    PubMed

    Fonseca, A R; Sanches Fernandes, L F; Fontainhas-Fernandes, A; Monteiro, S M; Pacheco, F A L

    2016-04-15

    Gill histopathology was investigated in barbel (Luciobarbus bocagei) and nase (Pseudochondrostoma sp.) in sub-catchments of Paiva River (Portugal) located upstream and downstream of a Waste Water Treatment Plant (WWTP). Multivariate statistical analyses were performed to set up correlations between the species sample (n=24) and injury types (8). The results discriminate well edema and vasodilatation between reference (upstream) and disturbed (downstream) samples. Using a watershed model, time series of physico-chemical parameters and heavy metal concentrations were calibrated and validated for the entire Paiva River basin as to investigate the relationship between water quality and the gill histopathology results. Increased concentrations of heavy metal downstream, specifically of zinc and lead, coincided with a higher severity of histopathological alterations in the fish gills. Significant but less evident relationship between water quality parameters and severity of gill injuries in the analyzed fish species were also observed for fecal coliforms, water temperature and manganese. Notwithstanding the location of the samples upstream and downstream of the WWTP, contamination of Paiva River and its effect on gill injuries cannot be disconnected from other punctual and diffuse pollution sources acting in different sectors within the watershed, namely agriculture and forest management. The severity of histopathological alterations in the fish gills reflected differences in the type and concentration of contaminants in Paiva River, and consequently can be viewed as valuable indicator of water quality. PMID:26851883

  17. Explanatory characteristics for nutrient concentrations and loads in the Sava River Catchment and cross-regionally

    NASA Astrophysics Data System (ADS)

    Levi, L.; Cvetkovic, V.; Destouni, G.

    2015-12-01

    This study compiles estimates of waterborne nutrient concentrations and loads in the Sava River Catchment (SRC). Based on this compilation, we investigate hotspots of nutrient inputs and retention along the river, as well as concentration and load correlations with river discharge and various human drivers of excess nutrient inputs to the SRC. For cross-regional assessment and possible generalization, we also compare corresponding results between the SRC and the Baltic Sea Drainage Basin (BSDB). In the SRC, one small incremental subcatchment, which is located just downstream of Zagreb and has the highest population density among the SRC subcatchments, is identified as a major hotspot for net loading (input minus retention) of both total nitrogen (TN) and total phosphorus (TP) to the river and through it to downstream areas of the SRC. The other SRC subcatchments exhibit relatively similar characteristics with smaller net nutrient loading. The annual loads of both TN and TP along the Sava River exhibit dominant temporal variability with considerably higher correlation with annual river discharge (R2 = 0.51 and 0.28, respectively) than that of annual average nutrient concentrations (R2 = 0.0 versus discharge for both TN and TP). Nutrient concentrations exhibit instead dominant spatial variability with relatively high correlation with population density among the SRC subcatchments (R2=0.43-0.64). These SRC correlation characteristics compare well with corresponding ones for the BSDB, even though the two regions are quite different in their hydroclimatic, agricultural and wastewater treatment conditions. Such cross-regional consistency in dominant variability type and explanatory catchment characteristics may be a useful generalization basis, worthy of further investigation, for at least first-order estimation of nutrient concentration and load conditions in less data-rich regions.

  18. Environmetric data interpretation to assess the water quality of Maritsa River catchment.

    PubMed

    Papazova, Petia; Simeonova, Pavlina

    2013-01-01

    Maritsa River is one of the largest rivers flowing on Bulgarian territory. The quality of its waters is of substantial importance for irrigation, industrial, recreation and domestic use. Besides, part of the river is flowing on Turkish territory and the control and management of the Maritsa catchment is of mutual interst for the neighboring countires. Thus, performing interpretation and modeling of the river water quality is a major environmetric problem. Two multivariate statstical methods (Cluster analysis/CA/and Principal components analysis/PCA/) were applied for model assessment of the water quality of Maritsa River on Bulgarian territory. The study used long-term monitoring data from 21 sampling sites characterized by 8 surface water quality indicators. The application of CA to the indicators results in 3 significant clusters showing the impact of biological, anthropogenic and eutrophication sources. For further assessment of the monitoring data, PCA was implemented, which identified, again,three latent factors confirming, in principle, the clustering output. The latent factors were conditionally named "biologic", "anthropogenic" and "eutrophication" source. Their identification coinside correctly to the location of real pollution sources along the Maritsa River catchment. The linkage of the sampling sites along the river flow by CA identified four special patterns separated by specific tracers levels: biological and anthropogenic major impact for pattern 1, euthrophication major impact for pattern 2, background levels for pattern 3 and eutrophication and agricultural major impact for pattern 4. The apportionment models of the pollution determined the contribution of each one of identified pollution factors to the total concentration of each one of the water quality parameters. Thus, a better risk management of the surface water quality is achieved both on local and national level. PMID:23485248

  19. Using high-resolution phosphorus data to investigate mitigation measures in headwater river catchments

    NASA Astrophysics Data System (ADS)

    Campbell, J. M.; Jordan, P.; Arnscheidt, J.

    2015-01-01

    This study reports the use of high-resolution water quality monitoring to assess the influence of changes in land use management on total phosphorus (TP) transfers in two 5 km2 agricultural sub-catchments. Specifically, the work investigates the issue of agricultural soil P management and subsequent diffuse transfers at high river flows over a 5-year timescale. The work also investigates the phenomenon of low flow P pollution from septic tank systems (STSs) and mitigation efforts - a key concern for catchment management. Results showed an inconsistent response to soil P management over 5 years with one catchment showing a convergence to optimum P concentrations and the other an overall increase. Both catchments indicated an overall increase in P concentration in defined high flow ranges. Low flow P concentration showed little change or higher P concentrations in defined low flow ranges despite replacement of defective systems and this is possibly due to a number of confounding reasons including increased housing densities due to new-builds. The work indicates fractured responses to catchment management advice and mitigation and that the short to medium term may be an insufficient time to expect the full implementation of policies (here defined as convergence to optimum soil P concentration and mitigation of STSs) and also to gauge their effectiveness.

  20. Using high-resolution phosphorus data to investigate mitigation measures in headwater river catchments

    NASA Astrophysics Data System (ADS)

    Campbell, J. M.; Jordan, P.; Arnscheidt, J.

    2014-09-01

    This study reports the use of high resolution water quality monitoring to assess the influence of changes in landuse management on total phosphorus (TP) transfers in two 5 km2 agricultural sub-catchments. Specifically, the work investigates the "wicked problem" of agricultural soil P management and subsequent diffuse transfers at high river flows over a five year timescale. The work also investigates the phenomenon of low flow P pollution from septic tank systems (STS) and mitigation efforts - here termed the "filthy issue" of rural catchment management. Results showed an inconsistent response to soil P management over five years with one catchment showing a convergence to optimum P concentrations and the other an overall increase. Both catchments indicated an overall increase in P concentration in defined high flow ranges. Low flow P concentration showed little change or higher P concentrations in defined low flow ranges despite replacement of defective systems and this is possibly due to a number of confounding reasons including increased housing densities due to new-builds. The work indicates fractured responses to catchment management advice and mitigation and that the short to medium term may be an insufficient time to expect the full implementation of policies (here defined as convergence to optimum soil P concentration and mitigation of STS) and also to gauge their effectiveness.

  1. Legacy Contaminantion in UK catchments since the mid-19th century

    NASA Astrophysics Data System (ADS)

    Howden, N. J. K.; Burt, T. P.; Worrall, F.; Noacco, V.; Wagener, T.

    2014-12-01

    We present data from UK catchments to characterise impacts of industrial and agricultural development of UK river catchments since the mid-19th century. We draw heavily on the world's longest continuous water quality monitoring programme in the Thames River Basin (1868-date) and discuss the implications of both agricultural development, social and industrial change, and the impact of legislation on coupled land and water resource systems. Our review draws on both data and model analysis over a 145-year period and explores how a multitude of inter-linked drivers affects process-function and practical water resource management decision-support. Our work uncovers key drivers, catchment responses and emergent challenges for process science and regulation, with particular emphasis on the technical challenge for catchment scientists to provide both insight and workable solutions to maintain food and water security in intensively management river basins. We discuss issues of appropriate methods for both data capture and subsequent analyses to support short- and long-term decision making, and particularly considers the importance of advanced techniques to clarify uncertainties in extrapolation of short-term observations to inform long-term goals. We speculate as to future trajectories of catchment responses to current pressures, and potential pitfalls to immediate concerns that may often be at odds with overall requirements for continued use of natural resources in the future.

  2. SWAT-CS: Revision and testing of SWAT for Canadian Shield catchments

    NASA Astrophysics Data System (ADS)

    Fu, Congsheng; James, April L.; Yao, Huaxia

    2014-04-01

    Canadian Shield catchments are under increasing pressure from various types of development (e.g., mining and increased cottagers) and changing climate. Within the southern part of the Canadian Shield, catchments are generally characterized by shallow forested soils with high infiltration rates and low bedrock infiltration, generating little overland flow, and macropore and subsurface flow are important streamflow generation processes. Large numbers of wetlands and lakes are also key physiographic features, and snow-processes are critical to catchment modeling in this climate. We have revised the existing, publicly available SWAT (version 2009.10.1 Beta 3) to create SWAT-CS, a version representing hydrological processes dominating Canadian Shield catchments, where forest extends over Precambrian Shield bedrock. Prior to this study, very few studies applying SWAT to Canadian Shield catchments exist (we have found three). We tested SWAT-CS using the Harp Lake catchment dataset, an Ontario Ministry of Environment research station located in south-central Ontario. Simulations were evaluated against 30 years of observational data, including streamflow from six headwater sub-catchments (0.1-1.9 km2), outflow from Harp Lake (5.4 km2) and five years of weekly snow water equivalent (SWE). The best Nash-Sutcliffe efficiency (NSE) results for daily streamflow calibration, daily streamflow validation, and SWE were 0.60, 0.65, and 0.87, respectively, for sub-catchment HP4 (with detailed land use and soil data). For this range of catchment scales, land cover and soil properties were found to be transferable across sub-catchments with similar physiographic features, namely streamflow from the remaining five sub-catchments could be modeled well using sub-catchment HP4 parameterization. The Harp Lake outflow was well modeled using the existing reservoir-based target release method, generating NSEs of 0.72 and 0.67 for calibration and verification periods respectively. With

  3. The effect of break of runoff connectivity on SOC concentration in loess catchment of the Lublin Upland (Poland)

    NASA Astrophysics Data System (ADS)

    Rejman, Jerzy; Rafalska-Przysucha, Anna; Paluszek, Jan

    2014-05-01

    Soil erosion processes lead to redistribution of soils and soil organic carbon (SOC) in the landscape. In this study, we aimed to evaluate the effect of runoff connectivity on horizontal and vertical SOC concentration in the catchment. SOC concentration was examined in a small agricultural catchment located in deep loess area of the Lublin Upland, Poland (51019'55"N, 22023'16"E). The catchment area of 5.6 ha is divided into 11 parcels. Conventional tillage is performed on each of the parcel and plow includes of 1-2 moldboard and 1 cultivator operations per year. Tillage is performed along the longest side of parcels. Crop rotation includes wheat, barley, sugar beets, potatoes and maize. Connectivity of temporal overland flow in the catchment is disturbed by grassed borders of the parcels. SOC concentration was studied in 151 sampling points in a grid 20 by 20 m. Structure of soil profile was studied in each of the sampling points, and soil cores were taken from two soil layers of 0-25 and 25-50 cm, and from 7 profiles located within the closed depression and the areas where line of temporary overland flow cross the grassed parcel borders. SOC concentration in soil samples was determined by wet combustion with dichromate solution. Depositional soils represented 57 profiles in the catchment. The thickness of accumulated soil layer varied from 20 to 151 cm with a mean of 55 cm. SOC concentration ranged from 8.4 to 15.0 g kg-1 (with a mean of 11.0 g kg-1) in the upper and from 2.9 to 14.5 g kg-1 (7.5) in the deeper soil layer. Coefficient of variation was 12.9% in the layer 0-25 cm, and 44.5% in the layer 25-50 cm. To find the reasons of high variability of SOC concentration in deeper soil layer, the location of depositional soils in the catchment was analyzed. The analysis enabled to distinguish two groups of depositional soils of different SOC concentration at the depth of 25-50 cm. Depositional soils located in the zones of temporal stagnation of overland flow (i

  4. High spatial variability of nitrate in the hard rock aquifer of an irrigated catchment: Implications for water resource assessment and vulnerability

    NASA Astrophysics Data System (ADS)

    Buvaneshwari, Sriramulu; Riotte, Jean; Ruiz, Laurent; Sekhar, Muddu; Mohan Kumar, Mandalagiri S.; Sharma, Amit Kumar; Duprey, Jean Louis; Audry, Stephane; Praveen, Yerabham; Hemanth, Moger; Durand, Patrick; Braun, Jean Jacques

    2016-04-01

    groundwater gradient was high, NO3 concentrations were low to moderate, suggesting that significant lateral flow prevented NO3 enrichment; iii) Finally, low NO3 concentrations were also found in situations where gradient was small but groundwater was shallow and hence reserve was large: these zones are potentially vulnerable to intensification of pumping and fertilizer application. Subsequent decline in groundwater level would then lead to rapid degradation of groundwater quality. We propose that the groundwater level and gradient mapping could be used in hard rock aquifers to delineate zones affected or vulnerable to intensification of irrigated agriculture. Wells located in low gradient zones are suitable for assessing the impacts of local agricultural systems. To the contrary, wells located in zones with high gradient (well mixed) are more representative of the average groundwater quality of the catchment, and hence should be used in priority for regional mapping of groundwater quality.

  5. Identifying critical source areas for phosphorus loss in Ireland using field and catchment scale ranking schemes

    NASA Astrophysics Data System (ADS)

    Hughes, K. J.; Magette, W. L.; Kurz, I.

    2005-03-01

    Phosphorus (P) in agricultural runoff is a major pollutant in many of Ireland's surface waters. Identification of areas that are at a high risk for P loss to surface waters is a critical component of river basin management. Two P ranking schemes (PRS's) were developed for Ireland, based on multi-criteria analysis approaches proposed in both the US and Europe, to predict the relative likelihood of P loss at both the field and catchment scales. The Field PRS was evaluated by comparing predicted rankings of potential P loss and transport against measured edge-of-field Dissolved Reactive P (DRP) loss for three fields with varying soil P levels. Qualitatively, results indicated that the Field PRS rankings corresponded to the magnitudes of measured P loss for the field sites, as well as to a reasoned evaluation of the relative likelihood that the fields would lose P that would subsequently make its way to surface water. The Catchment PRS was evaluated on a total of 31 catchments and sub-catchments by comparing predicted rankings of potential P loss and transport against measured in-stream median Molybdate Reactive P (MRP). Rankings of the relative likelihood of P loss and transport predicted by the Catchment PRS were positively correlated with median in-stream MRP ( r=0.51, P<0.05). Although the data available for these evaluations were limited, especially at field scale, and further research may identify the opportunity for modifications, both field and catchment scale P ranking schemes demonstrated a potential for identifying critical P source areas within catchments dominated by grass-based agricultural production systems, such as those in Ireland.

  6. A new method for separating tile drainage flow in a low land catchment using EMMA

    NASA Astrophysics Data System (ADS)

    Faber, Claas; Wu, Naicheng; Ulrich, Uta; Schmalz, Britta; Fohrer, Nicola

    2014-05-01

    Low land catchments are characterised by flat topography and low hydraulic gradients. Artificial drainages influence water and matter transport substantially in areas with agricultural usage. They shorten the soil passage and thus change the matter retention potential as well as runoff dynamics of the catchment. In such catchments, drainages and surface runoff constitute important entry pathways for nutrients into water bodies, especially after strong precipitation events. In order to be able to develop effective measures for the reduction of nutrient inflow, the main entry pathways for the important hydrological periods (low flow and rain events) haven to be known. The aim of the currently running, DFG funded project 'Separating surface runoff from tile drainage flow in agricultural lowland catchments based on diatoms to improve modeled runoff components and phosphorous transport' is to further investigate prevalent processes in this context in a 50 km2 low land catchment (Kielstau, Schleswig-Holstein, Germany) with the goal of improving existing models. The size and heterogeneity of the catchment do not allow a direct measurement of all flow components. Instead, naturally occurring chemical tracers are used to estimate the contribution of potential end members (surface runoff, drainage flow, soil water, ground water) to the total runoff (End Member Mixing Analysis). To this end, the end member are sampled regularly every 1-2 weeks and daily mixed samples as well as rain event based samples are taken at the catchment's outlet. In this project, diatoms are considered as biological tracers and are evaluated together with chemical tracers. Due to habitat preferences of certain species, indicator species for river- and drainage water could be determined. First results of the analyses are presented. Using the insights gained with this method, existing SWAT models for water quality and nutrient transport are further improved

  7. Understanding and improving mitigation strategies for reducing catchment scale nutrient loads using high resolution observations and uncertainty analysis approaches

    NASA Astrophysics Data System (ADS)

    Collins, A.; Lloyd, C.; Freer, J. E.; Johnes, P.; Stirling, M.

    2012-12-01

    One of the biggest challenges in catchment water quality management is tackling the problem of reducing water pollution from agriculture whilst ensuring food security nationally. Improvements to catchment management plans are needed if we are to enhance biodiversity and maintain good ecological status in freshwater ecosystems, while producing enough food to support a growing global population. In order to plan for a more sustainable and secure future, research needs to quantify the uncertainties and understand the complexities in the source-mobilisation-delivery-impact continuum of pollution and nutrients at all scales. In the UK the Demonstration Test Catchment (DTC) project has been set up to improve water quality specifically from diffuse pollution from agriculture by enhanced high resolution monitoring and targeted mitigation experiments. The DTC project aims to detect shifts in the baseline trend of the most ecologically-significant pollutants resulting from targeted on-farm measures at field to farm scales and assessing their effects on ecosystem function. The DTC programme involves three catchments across the UK that are indicative of three different typologies and land uses. This paper will focus on the Hampshire Avon DTC, where a total of 12 parameters are monitored by bank-side stations at two sampling sites, including flow, turbidity, phosphate and nitrate concentrations at 30 min resolution. This monitoring is supported by daily resolution sampling at 5 other sites and storm sampling at all locations. Part of the DTC project aims to understand how observations of water quality within river systems at different temporal resolutions and types of monitoring strategies enable us to understand and detect changes over and above the natural variability. Baseline monitoring is currently underway and early results show that high-resolution data is essential at this sub-catchment scale to understand important process dynamics. This is critical if we are to design

  8. Catchment-scale herbicides transport: Theory and application

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Thomet, M.; Botter, G.; Rinaldo, A.

    2013-02-01

    This paper proposes and tests a model which couples the description of hydrologic flow and transport of herbicides at catchment scales. The model accounts for streamflow components' age to characterize short and long term fluctuations of herbicide flux concentrations in stream waters, whose peaks exceeding a toxic threshold are key to exposure risk of aquatic ecosystems. The model is based on a travel time formulation of transport embedding a source zone that describes near surface herbicide dynamics. To this aim we generalize a recently proposed scheme for the analytical derivation of travel time distributions to the case of solutes that can be partially taken up by transpiration and undergo chemical degradation. The framework developed is evaluated by comparing modeled hydrographs and atrazine chemographs with those measured in the Aabach agricultural catchment (Switzerland). The model proves reliable in defining complex transport features shaped by the interplay of long term processes, related to the persistence of solute components in soils, and short term dynamics related to storm inter-arrivals. The effects of stochasticity in rainfall patterns and application dates on concentrations and loads in runoff are assessed via Monte Carlo simulations, highlighting the crucial role played by the first rainfall event occurring after herbicide application. A probabilistic framework for critical determinants of exposure risk to aquatic communities is defined. Modeling of herbicides circulation at catchment scale thus emerges as essential tools for ecological risk assessment.

  9. Multivariate analysis of a small pleistocene catchment: tracing hydrological change

    NASA Astrophysics Data System (ADS)

    Boettcher, Steven; Merz, Christoph; Dannowski, Ralf

    2013-04-01

    The water budget of catchments in north-east Germany has decreased considerably over the last decades. Especially small catchments are affected due to the small amount of water stored within. Climate projections for the next decades hint to even more negative impacts on the water budgets of these catchments. Therefore, a new concept of water resource management for this region must be developed, including counter measures to extreme events such as low and high flow conditions. In order to manage a hydrological system one needs to know the typical behavior and be able to effectively counteract if needed. Within the network activity INKA-BB (Inovationsnetzwerk Klimaanpassung Brandenburg Berlin) dealing with possible adaptation measures to climate change in the Brandenburg and Berlin region, this study aims at identifying the typical hydraulic behavior of the Fredersdorfer Mühlenfließ catchment located north-east of Berlin as a basis for a sustainable water resource management concept. Established schemes are followed, including the application of numerical geochemical and hydraulic models as well as chemical graphical interpretation approaches. A common problem is the sparse spatial as well as temporal resolution of the data at hand. Here, these schemes are too inflexible and vague with respect to analyzing and parameterization of complex features used for identifying operative hydraulic-geochemical processes including intensive non-linear interactions. Hence, methods must be applied that are able to effectively utilize the limited information available. Ordination methods such as the Principle Component Analysis (PCA) or the non-linear Isometric Feature Mapping (Isomap) can provide such a tool. Ordination methods are used in order to derive a meaningful low-dimensional representation of a high-dimensional input data set. The approach is based on the hypothesis, that the amount of processes which explain the variance of the data is relative low although the

  10. Inter-comparison of hydro-climatic regimes across northern catchments: Synchronicity, resistance and resilience

    USGS Publications Warehouse

    Carey, S.K.; Tetzlaff, D.; Seibert, J.; Soulsby, C.; Buttle, J.; Laudon, H.; McDonnell, J.; McGuire, K.; Caissie, D.; Shanley, J.; Kennedy, M.; Devito, K.; Pomeroy, J.W.

    2010-01-01

    The higher mid-latitudes of the Northern Hemisphere are particularly sensitive to climate change as small differences in temperature determine frozen ground status, precipitation phase, and the magnitude and timing of snow accumulation and melt. An international inter-catchment comparison program, North-Watch, seeks to improve our understanding of the sensitivity of northern catchments to climate change by examining their hydrological and biogeochemical responses. The catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the United States (Sleepers River, Hubbard Brook and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). This briefing presents the initial stage of the North-Watch program, which focuses on how these catchments collect, store and release water and identify 'types' of hydro-climatic catchment response. At most sites, a 10-year data of daily precipitation, discharge and temperature were compiled and evaporation and storage were calculated. Inter-annual and seasonal patterns of hydrological processes were assessed via normalized fluxes and standard flow metrics. At the annual-scale, relations between temperature, precipitation and discharge were compared, highlighting the role of seasonality, wetness and snow/frozen ground. The seasonal pattern and synchronicity of fluxes at the monthly scale provided insight into system memory and the role of storage. We identified types of catchments that rapidly translate precipitation into runoff and others that more readily store water for delayed release. Synchronicity and variance of rainfall-runoff patterns were characterized by the coefficient of variation (cv) of monthly fluxes and correlation coefficients. Principal component analysis (PCA) revealed clustering among like catchments in terms of functioning, largely controlled by two components that (i) reflect temperature and precipitation gradients and the correlation of monthly precipitation and discharge and (ii

  11. Projected Climate Change Impacts on a Mediterranean Catchment under Different Irrigation Scenarios

    NASA Astrophysics Data System (ADS)

    Gunten, D. V.; Wöhling, T.; Haslauer, C. P.; Cirpka, O. A.

    2014-12-01

    In semi-arid regions, irrigation is often needed for cultivation and greatly impacts the water cycle of agricultural catchments. It is important to investigate the effects of climate change in these settings under consideration of future agricultural management and irrigation needs. However, quantifying how irrigation influences climate-change effects is still a challenge. Understanding the differences in climate-change sensitivity between irrigated and non-irrigated catchments would allow refining regional-scale assessments of climate-change impacts. We investigated a catchment in north-east Spain which had not been irrigated prior to 2006 and where 54% of the land is now converted to irrigated agriculture. Data on hydraulic heads, discharge, and irrigation were used to simulate coupled surface-subsurface flow in the catchment, using the pde-based model HydroGeoSphere. The model performs well for both irrigated and non-irrigated periods. To predict future climate scenarios in the region, we use four regional climate models from the ENSEMBLE project (P.van der Linden and J.Mitchell, ENSEMBLES: Climate Change and its Impacts [...], Met Office Hadley Center, 2009) and three downscaling methods. We further investigated four irrigation scenarios, based on projected potential evapotranspiration. Preliminary results show a shift in the hydrological regime of the catchment under future climate scenarios. Under irrigation, the variability of low-flow discharge increases in future climate. On the contrary, peak flows increase and hydraulics heads decrease significantly in the non-irrigated scenarios. For example, annual maximum flow increases by about 15 % in the non-irrigated case but there is only little change in the corresponding irrigated scenarios. Sensitivity to projected precipitation changes is higher without irrigation, while potential evapotranspiration has more importance for irrigated catchments.

  12. Effects of climate and irrigation changes on the water balance of a Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    von Gunten, Diane; Wöhling, Thomas; Haslauer, Claus; Cirpka, Olaf

    2015-04-01

    Climate change will strongly impact the water cycle of Mediterranean catchments as a result of the changes in precipitation patterns and increased temperature. However, effects of climate change are difficult to predict with precision and are often influenced by land-use or water management choices. In agricultural catchments, irrigation is of particular interest because of its importance for cultivation in semi-arid climate and because of its strong impacts on hydrological processes. Interactions between irrigation and climate change impacts are likely to be important and should be considered when studying the future of a catchment. However, they are still difficult to quantify. A better understanding of the differences in climate-change sensitivity between irrigated and non-irrigated catchments would allow a finer description of local climate change effects. In this study, we compared the impacts of climate change in various irrigation scenarios, including a scenario without irrigation. Our case study was a relatively small catchment (about 7.5km2) in north-east Spain, called the Lerma catchment. This catchment was not irrigated prior to 2006, but 54% of its surface is now used for irrigated agriculture. This transition to irrigated agriculture was closely monitored and data on hydraulic heads, discharge and daily irrigation volume are available. Based on these measurements, a coupled surface-subsurface model of the catchment was developed using the pde-based model HydroGeoSphere. The model performs well for both irrigated and non-irrigated periods. Future climate was predicted using four regional climate models from the ENSEMBLE project (P.van der Linden and J.Mitchell, ENSEMBLES: Climate Change and its Impacts [...], Met Office Hadley Center, 2009) and two downscaling methods, including one based on a weather generator. Four irrigation scenarios, based on projected potential evapotranspiration changes, were compared. Our results show a shift in the climate

  13. Forecasting the impact of global changes on the water resources of a mountainous catchment in the Chilean Andes

    NASA Astrophysics Data System (ADS)

    Ruelland, D.; Campéon, C.; Dezetter, A.; Jourde, H.

    2012-04-01

    in a piezometer at the basin outlet are also in good agreement. The model thus provides encouraging simulations of groundwater and surface water dynamics when applied to various climatic conditions. Simulations are improved when a dam located in the upstream catchment is considered into the model. In contrast, integrating agricultural and domestic water withdrawals does not improve significantly the simulations. However, it allows assessing the ability of water resources to supply water demands by computing a water allocation index. The climatic scenarios forecast an increase in temperature of about 1-2°C and a 20-30% reduction in precipitation by the 2050 horizon. According to the hydrological simulations, the mean annual discharge of the upper Elqui River may decline by 30-40%, and the seasonal peak flow would occur earlier than in current conditions. As a result, the agricultural demands (90% of the water uses) may not be always satisfied, especially during the summer season, as shown by the future trends in the water allocation index. This calls for evaluating the efficiency of adaptation strategies consisting in an improvement of the irrigation system and of water management, which is the subject of ongoing research.

  14. Nutrient water quality of the Wye catchment, UK: exploring patterns and fluxes using the Environment Agency data archives

    NASA Astrophysics Data System (ADS)

    Jarvie, H. P.; Neal, C.; Withers, P. J. A.; Robinson, A.; Salter, N.

    Water quality data, collected by the Environment Agency in England and Wales over 10 years (1991 - 2000) were used to examine the spatial distribution of nutrient pollution risk and for assessing broad-scale spatial and temporal variability in nutrient fluxes across the Wye catchment. Nutrient water quality across the upper and middle Wye catchment, and along the main River Wye, is generally very good. However, the main areas of concern lie in the small tributaries in the south and east of the catchment, which have lower dilution capacity and high agricultural and effluent inputs, and where mean Total Reactive Phosphorus (TRP) in some cases exceed 1 mg-P l-1. Indeed, mass load calculations have demonstrated that the lowland south and east portion of the catchment contributes more than 85% of the whole-catchment TRP and more than 78% of nitrate (NO3‾) loads. Ratios of NO3‾:Ca were used to fingerprint different water-types across the catchment, linked to weathering and agricultural activity. The Wye catchment has been subject to two major sets of perturbations during the study period: (i) climatic fluctuations, with a drought during 1995-6, followed by a subsequent drought-break in 1997/8, and extreme high river flows in the autumn/winter of 2000/2001, and (ii) introduction of tertiary P-treatment at major sewage treatment works in the catchment. The implications of these perturbations for the nutrient water quality of the Wye catchment are discussed. Recommendations are made for more targeted monitoring to directly assess diffuse source nutrient contributions.

  15. Hydro-climatic control of stream water dissolved organic carbon (DOC) across northern catchments within the North-Watch program

    NASA Astrophysics Data System (ADS)

    Laudon, Hjalmar; Tetzlaff, Doerthe; Seibert, Jan; Soulsby, Chris; Carey, Sean; Buttle, Jim; McDonnell, Jeff; McGuire, Kevin; Caissie, Daniel; Shanley, Jamie

    2010-05-01

    There has been an increasing interest in understanding the regulating mechanisms of surface water dissolved organic carbon (DOC) the last decade. A majority of this recent work has been based on individual well characterized research catchments or on regional synoptic datasets combined with readily available landscape and climatic variables. However, as the production and transport of DOC primarily is a function of hydro-climatic conditions a better description of catchment hydrological functioning across large geographic regions would be favorable for moving the mechanistic understanding forward. To do this we report from a first assessment of catchment DOC within the international inter-catchment comparison program North-Watch (http://www.abdn.ac.uk/northwatch/). North-Watch includes long-term research catchments ranging from northern temperate regions to the boreal and sub-arctic biomes with the aim to better understand the variable hydrological and biogeochemical responses in Northern catchments to climate change. The North-Watch catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the US (Sleepers River and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). The annual average DOC concentration in the nine catchments investigated were directly linked to hydro-climatic influences (e.g. temperature, water storage) and landscape configuration. In general, the DOC concentration followed a parabolic shape with temperature, where the highest concentrations were found in the boreal and near boreal sites and with the lowest concentrations in the temperate and sub-arctic catchments. The between catchment variability in DOC concentration could also be explained by catchment water storage and amount of wetlands in the catchment. Whereas there is a mechanistic link between long-term climatic conditions and the areal coverage of wetlands, the total catchment storage of water is more strongly linked to topography, parent material

  16. Storm-driven pesticide dynamics in a catchment system

    NASA Astrophysics Data System (ADS)

    Harrison, Rebecca; Freer, Jim; Michaelides, Katerina; Hurley, Steven; Howden, Nicholas; Bull, Ian

    2013-04-01

    Loss of pesticides from agricultural land in runoff and subsurface flow during rainfall events poses a significant concern for water quality, with adverse effects on drinking water and aquatic life. Pesticide mobilisation and transport is affected by runoff and erosion processes which leads to different flow pathways and pesticide residence times in a catchment. In the soil and sediment environment pesticides can be a significant component of surface water contamination because of their persistence in soil and sediment and that they have a tendency to desorb back into water over time. A lowland agricultural catchment upstream of a drinking-water supply reservoir in the South West of England is being used to investigate pesticide dynamics at the catchment scale during individual storm events. Pesticide concentration in water and suspended sediments were determined from samples taken at incremental changes in stream flow incorporating both rising and falling river levels. The study aims to determine the relative partitioning of pesticides transported in the dissolved phase or adsorbed to sediment. Analyses of soil, sediment and water from across the catchment aids understanding of the interaction between different media and can be used to determine the importance of dissolved and sediment-bound pesticide dynamics during individual storm events. Initial results imply that processes of transport and desorption are occurring in both soils and river and reservoir sediments which are likely to be an important factor for timing of pesticide movement. This suggests soil and sediment are acting as a sustained source of contamination to surface water. However; interactions between these different media are complex. Investigation of the molluscicide metaldehyde, showed this to be present in stream water at concentrations greater than 0.1 µg µl-1 nine months after application. Storm event analysis shows peak pesticide concentration in the stream to coincide with storm

  17. Hydrological variability and agricultural drainage ditch nutrient mitigation capacity: Inorganic nitrogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of inorganic nitrogen fertilizers on agricultural landscapes has the potential to generate environmental degradation concerns at fine to coarse scales across the catchment and landscape. Inorganic nitrogen species (nitrate, nitrite, ammonia) are typically associated with subsurface f...

  18. Impact of land use, soil and DEM databases on surface runoff assessment with GIS decision support tool: A study case on the Briançon vineyard catchment (Gard, France)

    NASA Astrophysics Data System (ADS)

    Regazzoni, C.; Payraudeau, S.

    2012-04-01

    Runoff and associated erosion represent a primary mode of mobilization and transfer of pesticides from agricultural lands to watercourses and groundwater. The pesticides toxicity is potentially higher at the headwater catchment scale. These catchments are usually ungauged and characterized by temporary streams. Several mitigation strategies and management practices are currently used to mitigate the pesticides mixtures in agro-ecosystems. Among those practices, Stormwater Wetlands (SW) could be implemented to store surface runoff and to mitigate pesticides loads. The implementation of New Potential Stormwater Wetlands (NPSW) requires a diagnosis of intermittent runoff at the headwater catchment scale. The main difficulty to perform this diagnosis at the headwater catchment scale is to spatially characterize with enough accuracy the landscape components. Indeed, fields and field margins enhance or decrease the runoff and determine the pathways of hortonian overland flow. Land use, soil and Digital Elevation Model databases are systematically used. The question of the respective weight of each of these databases on the uncertainty of the diagnostic results is rarely analyzed at the headwater catchment scale. Therefore, this work focused (i) on the uncertainties of each of these databases and their propagation on the hortonian overland flow modelling, (ii) the methods to improve the accuracy of each database, (iii) the propagation of the databases uncertainties on intermittent runoff modelling and (iv) the impact of modelling cell size on the diagnosis. The model developed was a raster approach of the SCS-CN method integrating re-infiltration processes. The uncertainty propagation was analyzed on the Briançon vineyard catchment (Gard, France, 1400 ha). Based on this study site, the results showed that the geographic and thematic accuracies of regional soil database (1:250 000) were insufficient to correctly simulate the hortonian overland flow. These results have to

  19. Identification of groundwater nitrate sources in pre-alpine catchments: a multi-tracer approach

    NASA Astrophysics Data System (ADS)

    Stoewer, Myriam; Stumpp, Christine

    2014-05-01

    Porous aquifers in pre-alpine areas are often used as drinking water resources due to their good water quality status and water yield. Maintaining these resources requires knowledge about possible sources of pollutants and a sustainable management practice in groundwater catchment areas. Of particular interest in agricultural areas, like in pre-alpine regions, is limiting nitrate input as main groundwater pollutant. Therefore, the objective of the presented study is i) to identify main nitrate sources in a pre-alpine groundwater catchment with current low nitrate concentration using stable isotopes of nitrate (d18O and d15N) and ii) to investigate seasonal dynamics of nitrogen compounds. The groundwater catchment areas of four porous aquifers are located in Southern Germany. Most of the land use is organic grassland farming as well as forestry and residential area. Thus, potential sources of nitrate mainly are mineral fertilizer, manure/slurry, leaking sewage system and atmospheric deposition of nitrogen compounds. Monthly freshwater samples (precipitation, river water and groundwater) are analysed for stable isotope of water (d2H, d18O), the concentration of major anions and cations, electrical conductivity, water temperature, pH and oxygen. In addition, isotopic analysis of d18O-NO3- and d15N-NO3- for selected samples is carried out using the denitrifier method. In general, all groundwater samples were oxic (10.0±2.6mg/L) and nitrate concentrations were low (0.2 - 14.6mg/L). The observed nitrate isotope values in the observation area compared to values from local precipitation, sewage, manure and mineral fertilizer as well as to data from literature shows that the nitrate in freshwater samples is of microbial origin. Nitrate derived from ammonium in fertilizers and precipitation as well as from soil nitrogen. It is suggested that a major potential threat to the groundwater quality is ammonia and ammonium at a constant level mainly from agriculture activities as

  20. Unraveling soil moisture responses to storms and relationships to runoff in a headwater catchment

    NASA Astrophysics Data System (ADS)

    Singh, N.

    2015-12-01

    Soil moisture exhibits complex spatiotemporal patterns, both laterally across landscapes and vertically within soil profiles. These patterns of soil moisture can have strong influences on runoff generation, especially in catchments having large capacities for soil water storage and transmission. The body of literature on runoff generation is expansive, yet we still have a great deal to learn about how the spatial and temporal heterogeneity of soil moisture influences catchment-scale hydrologic responses to storm events. With this in mind, we investigated soil moisture responses to storm events across several landscape positions in a steep, forested headwater catchment. We measured volumetric water content (VWC) continuously for two years at 45 points representing different combinations of landscape position and soil depth within a 13 ha catchment at Coweeta Hydrologic Laboratory in the Southern Appalachian Mountains. We also monitored shallow groundwater levels at six locations within the catchment along with runoff at the catchment outlet. To investigate soil moisture response during events, we assessed absolute change in magnitude of VWC (Δs) and lag time (Δt) between peak VWC and peak precipitation for 39 events during the two-year study period. Our results showed that storm depth and antecedent moisture explained some of the spatiotemporal patterns of Δs; however, the explanatory power varied with the hillslope and season. Furthermore, we did not detect topographic control of Δs or Δt at most of the locations monitored. By evaluating the sequence of Δt, groundwater response, and runoff response for each storm, we characterized the hydrologic behavior of the study hillslopes for the 39 storm events.The characterization of hydrologic behavior reveals interrelationships between soil moisture and shallow groundwater, and their combined influence on runoff at the catchment outlet. This work provides new insights on links between the spatiotemporal variability

  1. Impact of model geometry and recharge rates on catchment's residence time distributions - numerical experiments

    NASA Astrophysics Data System (ADS)

    Neubauer, M.; Musolff, A.; Fleckenstein, J. H.

    2013-12-01

    Residence time distributions (RTD) of water in catchments are promising tools to characterize and model solute transport on a larger scale. In the last decade, much research has been conducted on the estimation and the application of RTD's. However, there are still some major issues to be addressed to complex derivation, parameterization and transient behavior. Through improved remote sensing data, the surface elevation can mostly be resolved in detail, while subsurface volumes and boundaries remain highly undetermined. Our objectives are to systematically evaluate the impact of different depths and geometries of the domain bottom and groundwater recharge rates on RTD's. The study site is a small (1.6 km2) headwater catchment located within the Harz Mountains, Germany. For this catchment long time series of climate, discharge and hydrochemistry are available while groundwater flow field and subsurface structure are less known. The site is intensively influenced by agricultural land use and exhibits strong seasonal dynamics of water flow and hydrochemistry due to the snowmelt. The modeling was performed using HydroGeoSphere, a coupled surface and subsurface model, which solves the Richards Equation for variable saturated soils. The Open Source software Paraview and R was chosen as postprocessors to perform and analyze forward particle tracking algorithms under steady state conditions. Ten depth and geometry scenarios of the domain bottom were created (5 horizontal bottom geometries - constant base and 5 variable bottom geometries - parallel to surface topography; both minimum depths ranging from 2 m to 50 m). The model's internal structure was discretized by two homogenous layers (averaged catchment representation) parallel to the input digital elevation model (2x2 m). The geometry scenarios were combined with fifteen steady state simulations for different groundwater recharge rate scenarios (0.1 mm up to 15 mm per day). Model results indicate a strong influence of

  2. Modeling sediment delivery from a highly erodible mountain catchment

    NASA Astrophysics Data System (ADS)

    Le Bouteiller, C.; Asif, N. M.; Recking, A.; Liebault, F.

    2015-12-01

    Draix observatory is located in the French Alps on a highly erodible substrate of shale. Most of the observatory is in a badland area characterized by steep gullies and high erosion rates (up to 1cm/year). Within the observatory, the study focuses on the Moulin, which is an 8ha catchment located at an elevation of 850-925m, with 54% of badland area. Available data includes DEM, meteorological data, high-frequency records of discharge and suspended sediment concentration during the floods, cumulative values of bedload transport for each flood, high-frequency records of bedload transport for a few events from a Birkbeck sampler. Modeling sediment delivery in such a catchment is challenging because 1) most available models have been designed for low-relief regions and do not account for steep slope processes such as debris flow and landslides; 2) hydrology (especially flashfloods) in mountainous regions is not well understood; 3) soil properties are very heterogeneous ; 4) multiple time scales are involved: seasonal sediment production on the slopes, storage in the bed and exportation requires to work on yearly times scales, while summer floods and most sediment delivery events occur over a few minutes only. We evaluate the ability of the SHETRAN model to reproduce sediment delivery patterns from the catchment. First, we calibrate the hydrological model using one year of meteorological and hydrological data. We then apply the sediment transport module over several flood events, using in-situ measurements of bed and slope grain-size distributions. Finally we investigate how sediment available on the slopes moves through the catchment over a year. Event-scale volumes of sediment simulated by the model are comparable to observed values within an order of 2. Sediment delivery rates are very sensitive to the slope grain-size distribution. Depending on sediment availability on the slopes and on soil erodibility, the catchment is running either in a supply-limited or

  3. Understanding catchment scale sediment sources using geochemical tracers

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla S. S.; Walsh, Rory P. D.; Shakesby, Richard A.; Steenhuis, Tammo S.; Ferreira, António J. D.; Coelho, Celeste O. A.

    2013-04-01

    It is well-established that urbanization leads to increased erosion (at least locally) as well as enhanced overland flow and streamflow peaks. Less is known about how the spatial distribution of erosion sources and scale of increases in erosion vary with the nature of urbanization in different climatic and socio-economic settings. This is important in order to prevent or reduce adverse impacts of erosion on downstream sedimentation, channel siltation and shifting, and river pollution. This paper adopts a sediment fingerprinting approach to assess the impact of partial urbanization and associated land-use change on sediment sources within a peri-urban catchment (6 km2), Ribeira dos Covões on the outskirts of the city of Coimbra in central Portugal. Urban land-use has increased from just 6% in 1958 to 30% in 2009. The urban pattern includes some well-defined urban residential centres, but also areas of discontinuous urban sprawl, including educational, health and small industrial facilities, numerous new roads and an enterprise park is under construction on the upper part of the catchment. The catchment has a wet Mediterranean climate and the lithology comprises sandstone in the west and limestone in the east. Soil depth is generally >40cm. The average slope angle is 8° (maximum 47°). Altitude ranges from 30m to 205m. A sediment fingerprinting approach was adopted to help establish the relative importance of sediment inputs from different urban areas. During September 2012 current bed-sediment samples (0-3 cm depth) were collected from 11 channel sites along the main stream and in different tributaries. At sites where bed-sediment was deeper, additional samples were taken at 3cm intervals to a maximum depth of around 42cm. In addition, overbank sediment samples (0-3cm depth) were collected at 11 locations around the catchment. All samples were oven-dried (at 38°C) and different particle size fractions (0.125-2mm, 0.063-0.125mm and <0.063mm) obtained, where the <0

  4. Comparing runoff on 11 poorly-gauged headwater catchments using a soft monitoring approach

    NASA Astrophysics Data System (ADS)

    Colin, F.; Crabit, A.; Moussa, R.

    2012-04-01

    Catchments in many parts of the world are either ungauged or poorly gauged, and the dominant processes governing their streamflow response are still poorly understood. The analysis of runoff coefficients provides essential insight into catchment response, particularly if both range of catchments and a range of events are compared. An original soft water level sensor is proposed to characterize rainfall and stream flows on agricultural catchments. This sensor works as a capacitor coupled with a capacitance to frequency converter and measures water level at an adjustable time step acquisition. It was designed to be handy, minimally invasive and optimised in terms of energy consumption and low-cost fabrication so as to multiply its use on several catchments under natural conditions. It was used as a stage recorder to measure water level dynamics in a channel during a runoff event and as a rain gauge to measure rainfall amount and intensity. Innovative work has been performed under controlled experimental conditions to estimate Manning's coefficient values for the different cover types observed in studied streams: non-aquatic vegetations (giant reed, bramble and thistle), grass and coarse granular deposits. The results show that estimates derived using roughness coefficients differ from those previously established for larger streams with aquatic vegetation. Based on these results, water discharge with a given uncertainty and hence runoff volume were estimated at the event and the annual scale. The sensor was tested under controlled conditions in the laboratory and under real conditions in the field. Comparisons of the sensor to reference devices (tipping bucket rain gauge, hydrostatic pressure transmitter limnimeter, Venturi channels, ...) showed accurate results: rainfall intensities and dynamic responses were accurately reproduced and discharges were estimated with an uncertainty usually acceptable in hydrology (Crabit et al., in Sensors 11, 2011). This device were

  5. A framework for managing runoff and pollution in the rural landscape using a Catchment Systems Engineering approach.

    PubMed

    Wilkinson, M E; Quinn, P F; Barber, N J; Jonczyk, J

    2014-01-15

    Intense farming plays a key role in increasing local scale runoff and erosion rates, resulting in water quality issues and flooding problems. There is potential for agricultural management to become a major part of improved strategies for controlling runoff. Here, a Catchment Systems Engineering (CSE) approach has been explored to solve the above problem. CSE is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. By targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, a significant component of the runoff generation can be managed in turn reducing soil nutrient losses. The Belford catchment (5.7 km(2)) is a catchment scale study for which a CSE approach has been used to tackle a number of environmental issues. A variety of Runoff Attenuation Features (RAFs) have been implemented throughout the catchment to address diffuse pollution and flooding issues. The RAFs include bunds disconnecting flow pathways, diversion structures in ditches to spill and store high flows, large wood debris structure within the channel, and riparian zone management. Here a framework for applying a CSE approach to the catchment is shown in a step by step guide to implementing mitigation measures in the Belford Burn catchment. The framework is based around engagement with catchment stakeholders and uses evidence arising from field science. Using the framework, the flooding issue has been addressed at the catchment scale by altering the runoff regime. Initial findings suggest that RAFs have functioned as designed to reduce/attenuate runoff locally. However, evidence suggested that some RAFs needed modification and new RAFs be created to address diffuse pollution issues during storm events. Initial findings from these modified RAFs are showing improvements in sediment trapping capacities and reductions in phosphorus, nitrate and suspended

  6. Eldercare Locator

    MedlinePlus

    ... page content Skip Navigation Department of Health and Human Services Your Browser ... Welcome to the Eldercare Locator, a public service of the U.S. Administration on Aging connecting you to services for older ...

  7. The observed evapotranspiration combining the energy and water balance for different land use under semiarid Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Zitouna Chebbi, Rim; Mekki, Insaf; Jacob, Frédéric; Masmoudi, Moncef; Prévot, Laurent; Ben Mechlia, Netij; Voltz, Marc; Albergel, Jean

    2014-05-01

    The Mediterranean semiarid cultivated catchments are affected by global and climate change and are characterized by very complex hydrological systems. The improvement of their management requires a best understanding of the hydrological processes and developing reliable means for characterizing the temporal dynamics of soil water balance in a spatially distributed manner. The main objective of this study is: i) to analyze the observed evapotranspiration in relation to natural drivers (i.e. rainfall and soil properties) and anthropogenic forcing (i.e. land use and crop successions), and ) ii to assess the differences in both energy and water balances. We focus on a hilly semiarid Mediterranean catchment devoted to rainfed agriculture, so-called the Kamech catchment, which is located in the Cap Bon Peninsula, north-eastern Tunisia. The site belongs to the OMERE observatory for environmental research and it is monitored for the different hydrological cycle components under influence of anthropogenic forcing. The analysis is based on in-situ data measured under the common cereals/legumes/pasture cropping systems within the Kamech catchment. Energy and water balance components and vegetation parameters were collected in different fields and during various crop growth cycles. The results showed the highly variable response of energy and water balances depending on soil types, land use, and climatic conditions. The annual rainfall is mainly converted into evapotranspiration during the growing cycle for different land uses. The runoff amounts, for most of the sites, correspond to less than 10% of the rainfall amount. The evapotransipration ratios differed significantly across site and season in relation to soil properties and cumulated rainfall. We observe large differences in soil water dynamics among the legumes (fababean and chickpea) and cereals (wheat, oat, and triticale). Soil water is larger for legume crops, despite substantial plant growth during winter

  8. Modeling radiocesium transport from a river catchment based on a physically-based distributed hydrological and sediment erosion model.

    PubMed

    Kinouchi, Tsuyoshi; Yoshimura, Kazuya; Omata, Teppei

    2015-01-01

    The accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) in March 2011 resulted in the deposition of large quantities of radionuclides, such as (134)Cs and (137)Cs, over parts of eastern Japan. Since then high levels of radioactive contamination have been detected in large areas, including forests, agricultural land, and residential areas. Due to the strong adsorption capability of radiocesium to soil particles, radiocesium migrates with eroded sediments, follows the surface flow paths, and is delivered to more populated downstream regions and eventually to the Pacific Ocean. It is therefore important to understand the transport of contaminated sediments in the hydrological system and to predict changes in the spatial distribution of radiocesium concentrations by taking the land-surface processes related to sediment migration into consideration. In this study, we developed a distributed model to simulate the transport of water and contaminated sediment in a watershed hydrological system, and applied this model to a partially forested mountain catchment located in an area highly contaminated by the radioactive fallout. Observed discharge, sediment concentration, and cesium concentration measured from June 2011 until December 2012 were used for calibration of model parameters. The simulated discharge and sediment concentration both agreed well with observed values, while the cesium concentration was underestimated in the initial period following the accident. This result suggests that the leaching of radiocesium from the forest canopy, which was not considered in the model, played a significant role in its transport from the catchment. Based on the simulation results, we quantified the long-term fate of radiocesium over the study area and estimated that the effective half-life of (137)Cs deposited in the study area will be approximately 22 y due to the export of contaminated sediment by land-surface processes, and the amount of (137)Cs remaining in the

  9. A physically-based Distributed Hydrologic Model for Tropical Catchments

    NASA Astrophysics Data System (ADS)

    Abebe, N. A.; Ogden, F. L.

    2010-12-01

    Hydrological models are mathematical formulations intended to represent observed hydrological processes in a watershed. Simulated watersheds in turn vary in their nature based on their geographic location, altitude, climatic variables and geology and soil formation. Due to these variations, available hydrologic models vary in process formulation, spatial and temporal resolution and data demand. Many tropical watersheds are characterized by extensive and persistent biological activity and a large amount of rain. The Agua Salud catchments located within the Panama Canal Watershed, Panama, are such catchments identified by steep rolling topography, deep soils derived from weathered bedrock, and limited exposed bedrock. Tropical soils are highly affected by soil cracks, decayed tree roots and earthworm burrows forming a network of preferential flow paths that drain to a perched water table, which forms at a depth where the vertical hydraulic conductivity is significantly reduced near the bottom of the bioturbation layer. We have developed a physics-based, spatially distributed, multi-layered hydrologic model to simulate the dominant processes in these tropical watersheds. The model incorporates the major flow processes including overland flow, channel flow, matrix and non-Richards film flow infiltration, lateral downslope saturated matrix and non-Darcian pipe flow in the bioturbation layer, and deep saturated groundwater flow. Emphasis is given to the modeling of subsurface unsaturated zone soil moisture dynamics and the saturated preferential lateral flow from the network of macrospores. Preliminary results indicate that the model has the capability to simulate the complex hydrological processes in the catchment and will be a useful tool in the ongoing comprehensive ecohydrological studies in tropical catchments, and help improve our understanding of the hydrological effects of deforestation and aforestation.

  10. Impact of spatial and temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: A multi-catchment investigation

    NASA Astrophysics Data System (ADS)

    Ochoa-Rodriguez, Susana; Wang, Li-Pen; Gires, Auguste; Pina, Rui Daniel; Reinoso-Rondinel, Ricardo; Bruni, Guendalina; Ichiba, Abdellah; Gaitan, Santiago; Cristiano, Elena; van Assel, Johan; Kroll, Stefan; Murlà-Tuyls, Damian; Tisserand, Bruno; Schertzer, Daniel; Tchiguirinskaia, Ioulia; Onof, Christian; Willems, Patrick; ten Veldhuis, Marie-Claire

    2015-12-01

    Urban catchments are typically characterised by high spatial variability and fast runoff processes resulting in short response times. Hydrological analysis of such catchments requires high resolution precipitation and catchment information to properly represent catchment response. This study investigated the impact of rainfall input resolution on the outputs of detailed hydrodynamic models of seven urban catchments in North-West Europe. The aim was to identify critical rainfall resolutions for urban catchments to properly characterise catchment response. Nine storm events measured by a dual-polarimetric X-band weather radar, located in the Cabauw Experimental Site for Atmospheric Research (CESAR) of the Netherlands, were selected for analysis. Based on the original radar estimates, at 100 m and 1 min resolutions, 15 different combinations of coarser spatial and temporal resolutions, up to 3000 m and 10 min, were generated. These estimates were then applied to the operational semi-distributed hydrodynamic models of the urban catchments, all of which have similar size (between 3 and 8 km2), but different morphological, hydrological and hydraulic characteristics. When doing so, methodologies for standardising model outputs and making results comparable were implemented. Results were analysed in the light of storm and catchment characteristics. Three main features were observed in the results: (1) the impact of rainfall input resolution decreases rapidly as catchment drainage area increases; (2) in general, variations in temporal resolution of rainfall inputs affect hydrodynamic modelling results more strongly than variations in spatial resolution; (3) there is a strong interaction between the spatial and temporal resolution of rainfall input estimates. Based upon these results, methods to quantify the impact of rainfall input resolution as a function of catchment size and spatial-temporal characteristics of storms are proposed and discussed.

  11. Grassland agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture in grassland environments is facing multiple stresses from: shifting demographics, declining and fragmented agricultural landscapes, declining environmental quality, variable and changing climate, volatile and increasing energy costs, marginal economic returns, and globalization. Degrad...

  12. Agricultural Production.

    ERIC Educational Resources Information Center

    Lehigh County Area Vocational-Technical School, Schnecksville, PA.

    This brochure describes the philosophy and scope of a secondary-level course in agricultural production. Addressed in the individual units of the course are the following topics: careers in agriculture and agribusiness, animal science and livestock production, agronomy, agricultural mechanics, supervised occupational experience programs, and the…

  13. Catchment classification by means of hydrological models

    NASA Astrophysics Data System (ADS)

    Hellebrand, Hugo; Ley, Rita; Casper, Markus

    2013-04-01

    An important hydrological objective is catchment classification that will serve as a basis for the regionalisation of discharge parameters or model parameters. The main task of this study is the development and assessment of two classification approaches with respect to their efficiency in catchment classification. The study area in western Germany comprises about 80 catchments that range in size from 8 km2 up to 1500 km2, covering a wide range of geological substrata, soils, landscapes and mean annual precipitation. In a first approach Self Organising Maps (SOMs) use discharge characteristics or catchment characteristics to classify the catchments of the study area. Next, a reference hydrological model calibrates the catchments of the study area and tests the possibilities of parameter transfer. Compared to the transfer of parameters outside a class, for most catchments the model performance improves when parameters within a class are transferred. Thus, it should be possible to distinguish catchment classes by means of a hydrological model. The classification results of the SOM are compared to the classification results of the reference hydrological model in order to determine the latter validity. The second approach builds on the first approach in such a way that it uses the Superflex Modelling Framework instead of only one reference model. Within this framework multiple conceptual model structures can be calibrated and adapted. Input data for each calibration of a catchment are hourly time series of runoff, precipitation and evaporation for at least eight years. The calibration of multiple models for each catchment and their comparison allows for the assessment of the influence of different model structures on model performance. Learning loops analyse model performance and adapt model structures accordingly with a view to performance improvement. The result of the modelling exercise is a best performing model structure for each catchment that serves as a basis

  14. 7 CFR 351.2 - Location of inspectors.