Sample records for agricultural catchments programme

  1. Patterns and processes of nutrient transfers from land to water: a catchment approach to evaluate Good Agricultural Practice in Ireland

    NASA Astrophysics Data System (ADS)

    Mellander, P.-E.; Melland, A. R.; Shortle, G.; Wall, D.; Mechan, S.; Buckley, C.; Fealy, R.; Jordan, P.

    2009-04-01

    Eutrophication of fresh, transitional and coastal waters by excessive nutrient inputs is one of the most widespread water quality problems in developed countries. Sources of nutrient nitrogen (N) and phosphorus (P) can come from a multiplicity of sources and be dependent on numerous hydrological controls from catchments with both urban and agricultural landuses. Aquatic impacts are widely reported as a result of excessive nutrient transfers from land to water and include changes in ecological integrity and loss of amenity. In the European Union, the Water Framework Directive (WFD) and associated Directives are the key structures with which member states must develop national and often trans-national polices to deal with issues of water resources management. The linked Nitrates Directive is particularly concerned with integrating sustainable agriculture and good water quality objectives and is written into national polices. In Ireland this policy is the Nitrates Directive National Action Programme (NAP), Statutory Instruction 378, Good Agricultural Practise regulation, and amongst other things, sets targets and limits on the use of organic and inorganic fertilisers, soil fertility and slurry/fertiliser spreading and cultivation times. To evaluate the effectiveness of this policy, Teagasc, the Irish Agriculture and Food Development Authority, is undertaking a catchment scale audit on sources, sinks, and changes in nutrient use and export over several years. The Agricultural Catchments Programme is based on a science-stakeholder-management partnership to generate knowledge and specifically to protect water quality from nitrogen and phosphorus transfers within the constraints of the requirements of modern Irish agricultural practises. Eight catchments of 5-12 km2 have been selected for the programme to represent a range of agricultural intensities and vulnerabilities to nitrogen and phosphorus loss including catchments that are situated on permeable and impermeable

  2. Baseline Q-values for streams in intensive agricultural catchments in Ireland

    NASA Astrophysics Data System (ADS)

    Melland, Alice; Jordan, Phil; Wall, David; Mellander, Per-Erik; Mechan, Sarah; Shortle, Ger

    2010-05-01

    The effectiveness of regulations introduced in Ireland in 2006 in response to the European Union Nitrates Directives for minimising nutrient loss to waterways from farms is being studied by Teagasc, the Irish Agriculture and Food Development Authority as part of an Agricultural Catchments Programme from 2008 - 2011. The regulations in Ireland require that during winter, green cover is established and maintained on arable farms, manure is stored and not spread, ploughing is not conducted and that chemical fertiliser is not spread. The regulations also require buffer zones between fields and water courses when applying organic or chemical fertilisers and that nutrient application rates and timing match crop requirements. An upper limit for livestock manure loading of 170 kg ha-1 organic N each year is also set. The biophysical research component of the Agricultural Catchments Programme is focussed on quantifying nutrient source availability, surface and subsurface transport pathways and stream chemical water quality. A baseline description of stream ecological quality was also sought. Stream ecology was measured in autumn 2009 at 3-5 locations within four surface water catchments and at the spring emergence of a catchment underlain by karst limestone. Landuse in each catchment is dominated by medium to high intensity grassland or cereal farming and annual average rainfall ranges from 900 - 1200 mm. Surveys were conducted in 1st to 3rd order streams throughout each catchment at locations which had minimal observed point source inputs for 100m upstream, incomplete shade, a hard streambed substrate and riffle conditions suitable for the sampling methods. Benthic macroinvertebrates were identified and quantified and used to calculate the biological indices Small Stream Risk Score, Q-value, Biological Monitoring Working Party (BMWP), Average Score Per Taxa (ASPT) and EQR (Observed Q-value/Reference Q-value). Diatom community assemblages were identified from samples

  3. Catchment-scale evaluation of environmental regulations in the agricultural sector in Ireland (Invited)

    NASA Astrophysics Data System (ADS)

    Melland, A. R.; Jordan, P.; Mellander, P.; Wall, D. J.; Buckley, C.; Mechan, S.; Shortle, G.

    2010-12-01

    The European Union (EU) Nitrates Directive regulations in Ireland limits the use of agricultural fertilisers to agronomic optima and aims to minimise surplus phosphorus (P) and nitrogen (N) losses to the aquatic environment. The legislated measures include limits on nutrient application according to soil P status, crop type and livestock intensity and restricts chemical and organic fertiliser spreading and ploughing to periods of the year with typically lower exposure of nutrients to runoff and leaching. These agricultural policies are being evaluated in an Agricultural Catchments Programme in six representative catchments dominated by moderate to high intensity grassland and arable enterprises across Ireland (Fealy et al., 2010). An experimental programme has been established to provide a baseline of farm nutrient management and water body quality during the early years of the measures and to provide estimates of trajectories towards (or otherwise) water quality targets. A ‘nutrient transfer continuum’ from source, through pathways, to delivery and impact in a water body receptor describes the different phases of diffuse pollution and is being used as a framework for evaluation. Compliance with Irish standards at different levels of the continuum is being evaluated and demonstrative studies are being conducted to provide evidence of linkages between source and delivery to validate conceptual models of P and N transfers in time and space in each catchment. Source compliance is being evaluated through census soil testing and a survey of nutrient management practice and farmyard infrastructure. Mobilisation and pathways of nutrient transfers do not have chemical standards except where a groundwater body acts as both a receptor and a pathway. To demonstrate these linkages, however, representative groundwater pathways are being monitored through piezometer, chemical end-member and tracer studies, and surface water pathways are being evaluated through subcatchment

  4. Grey water on three agricultural catchments in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Blazkova, Sarka D.; Kulasova, Alena

    2014-05-01

    The COST project EU EURO-AGRIWAT focuses apart from other problems on the assessment of water footprint (WF). WF is defined as the quantity of water used to produce some goods or a service. In particular, the WF of an agricultural product is the volume of water used during the crop growing period. It has three components: the green water which is rain or soil moisture transpired by a crop, the blue water which is the amount of irrigation water transpired and the grey water which is the volume of water required to dilute pollutants and to restore the quality standards of the water body. We have been observing three different agricultural catchments. The first of them is Smrzovka Brook, located in the protected nature area in the south part of the Jizerske Mountains. An ecological farming has been carried out there. The second agricultural catchment area is the Kralovsky Creek, which lies in the foothills of the Krkonose Mountains and is a part of an agricultural cooperative. The last agricultural catchment is the Klejnarka stream, located on the outskirts of the fertile Elbe lowlands near Caslav. Catchments Kralovsky Brook and Klejnarka carry out usual agricultural activities. On all three catchments, however, recreational cottages or houses not connected to the sewerage system and/or with inefficient septic tanks occur. The contribution shows our approach to trying to quantify the real grey water from agriculture, i.e. the grey water caused by nutrients not utilised by the crops.

  5. Environmental care in agricultural catchments: Toward the communicative catchment

    NASA Astrophysics Data System (ADS)

    Martin, Peter

    1991-11-01

    Substantial land degradation of agricultural catchments in Australia has resulted from the importation of European farming methods and the large-scale clearing of land. Rural communities are now being encouraged by government to take responsibility for environmental care. The importance of community involvement is supported by the view that environmental problems are a function of interactions between people and their environment. It is suggested that the commonly held view that community groups cannot care for their resources is due to inappropriate social institutions rather that any inherent disability in people. The communicative catchment is developed as a vision for environmental care into the future. This concept emerges from a critique of resource management through the catchment metaphors of the reduced, mechanical, and the complex, evolving catchment, which reflect the development of systemic and people-centered approaches to environmental care. The communicative catchment is one where both community and resource managers participate collaboratively in environmental care. A methodology based on action research and systemic thinking (systemic action research) is proposed as a way of moving towards the communicative catchment of the future. Action research is a way of taking action in organizations and communities that is participative and informed by theory, while systemic thinking takes into account the interconnections and relationships between social and natural worlds. The proposed vision, methodology, and practical operating principles stem from involvement in an action research project looking at extension strategies for the implementation of total catchment management in the Hunter Valley, New South Wales.

  6. Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments

    NASA Astrophysics Data System (ADS)

    Thomas, Zahra; Abbott, Benjamin W.; Troccaz, Olivier; Baudry, Jacques; Pinay, Gilles

    2016-03-01

    Direct and indirect effects from human activity have dramatically increased nutrient loading to aquatic inland and estuarine ecosystems. Despite an abundance of studies investigating the impact of agricultural activity on water quality, our understanding of what determines the capacity of a watershed to remove or retain nutrients remains limited. The goal of this study was to identify proximate and ultimate controls on dissolved organic carbon and nutrient dynamics in small agricultural catchments by investigating the relationship between catchment characteristics, stream discharge, and water chemistry. We analyzed a 5-year, high-frequency water chemistry data set from three catchments in western France ranging from 2.3 to 10.8 km2. The relationship between hydrology and solute concentrations differed between the three catchments and was associated with hedgerow density, agricultural activity, and geology. The catchment with thicker soil and higher surface roughness had relatively invariant carbon and nutrient chemistry across hydrologic conditions, indicating high resilience to human disturbance. Conversely, the catchments with smoother, thinner soils responded to both intra- and interannual hydrologic variation with high concentrations of phosphate (PO43-) and ammonium (NH4+) in streams during low flow conditions and strong increases in dissolved organic carbon (DOC), sediment, and particulate organic matter during high flows. Despite contrasting agricultural activity between catchments, the physical context (geology, topography, and land-use configuration) appeared to be the most important determinant of catchment solute dynamics based on principle components analysis. The influence of geology and accompanying topographic and geomorphological factors on water quality was both direct and indirect because the distribution of agricultural activity in these catchments is largely a consequence of the geologic and topographic context. This link between inherent

  7. Rice agriculture impacts catchment hydrographic patterns and nitrogen export characteristics in subtropical central China: a paired-catchment study.

    PubMed

    Wang, Yi; Liu, Xinliang; Wang, Hua; Li, Yong; Li, Yuyuan; Liu, Feng; Xiao, Runlin; Shen, Jianlin; Wu, Jinshui

    2017-06-01

    Increased nitrogen (N) concentrations in water bodies have highlighted issues regarding nutrient pollution in agricultural catchments. In this study, the ammonium-N (NH 4 + -N), nitrate-N (NO 3 - -N), and total N (TN) concentrations were observed in the stream water and groundwater of two contrasting catchments (named Tuojia and Jianshan) in subtropical central China from 2010 to 2014, to determine the rice agriculture impacts on the hydrographic patterns, and N export characteristics of the catchments. The results suggested that greater amounts of stream flow (523.0 vs. 434.7 mm year -1 ) and base flow (237.6 vs. 142.8 mm year -1 ) were produced in Tuojia than in Jianshan, and a greater base flow contribution to stream flow and higher frequencies of high-base flow days were observed during the fallow season than during the rice-growing season, indicating that intensive rice agriculture strongly influences the catchment hydrographic pattern. Rice agriculture resulted in moderate N pollution in the stream water and groundwater, particularly in Tuojia. Primarily, rice agriculture increased the NH 4 + -N concentration in the stream water; however, it increased the NO 3 - -N concentrations in the groundwater, suggesting that the different N species in the paddy fields migrated out of the catchments through distinct hydrological pathways. The average TN loading via stream flow and base flow was greater in Tuojia than in Jianshan (1.72 and 0.58 vs. 0.72 and 0.15 kg N ha -1  month -1 , respectively). Greater TN loading via stream flow was observed during the fallow season in Tuojia and during the rice-growing season in Jianshan, and these different results were most likely a result of the higher base flow contribution to TN loading (33.5 vs. 21.3%) and greater base flow enrichment ratio (1.062 vs. 0.876) in Tuojia than in Jianshan. Therefore, the impact of rice agriculture on catchment eco-hydrological processes should be considered when performing water quality

  8. Soil moisture controlled runoff mechanisms in a small agricultural catchment in Austria.

    NASA Astrophysics Data System (ADS)

    Vreugdenhil, Mariette; Szeles, Borbala; Silasari, Rasmiaditya; Hogan, Patrick; Oismueller, Markus; Strauss, Peter; Wagner, Wolfgang; Bloeschl, Guenter

    2017-04-01

    Understanding runoff generation mechanisms is pivotal for improved estimation of floods in small catchments. However, this requires in situ measurements with a high spatial and temporal resolution of different land surface parameters, which are rarely available distributed over the catchment scale and for a long period. The Hydrological Open Air Laboratory (HOAL) is a hydrological observatory which comprises a complex agricultural catchment, covering 66 ha. Due to the agricultural land use and low permeability of the soil part of the catchment was tile drained in the 1940s. The HOAL is equipped with an extensive soil moisture network measuring at 31 locations, 4 rain gauges and 12 stream gauges. By measuring with so many sensors in a complex catchment, the collected data enables the investigation of multiple runoff mechanisms which can be observed simultaneously in different parts of the catchment. The aim of this study is to identify and characterize different runoff mechanisms and the control soil moisture dynamics exert on them. As a first step 72 rainfall events were identified within the period 2014-2015. By analyzing event discharge response, measured at the different stream gauges, and root zone soil moisture, four different runoff mechanisms are identified. The four mechanisms exhibit contrasting soil moisture-discharge relationships. In the presented study we characterize the runoff response types by curve-fitting the discharge response to the soil moisture state. The analysis provides insights in the main runoff processes occurring in agricultural catchments. The results of this study a can be of assistance in other catchments to identify catchment hydrologic response.

  9. Response of current phosphorus mitigation measures across the nutrient transfer continuum in two hydrological contrasting agricultural catchments

    NASA Astrophysics Data System (ADS)

    McDonald, Noeleen; Shore, Mairead; Mellander, Per-Erik; Shortle, Ger; Jordan, Phil

    2015-04-01

    Effective assessment of National Action Programme (NAP) measures introduced under the EU Nitrates Directive (ND), to manage nutrient use and risk of loss to waters from agriculture, is best achieved when examined across the nutrient transfer continuum at catchment scale. The Irish NAP measures are implemented on a whole-territory basis for both nitrogen (N) and phosphorus (P), with P being the key trophic pressure. The aim of this research was to observe the efficacy of P regulation measures and P source management across the transfer continuum and resultant water quality status (i.e. source to impact), in two contrasting agricultural catchments over a four year period. The catchments are ca. 11 km2 and are located in the south-east of Ireland. One is well-drained and arable dominated, while the other is mostly poorly-drained and grassland dominated. In 2009 and 2013 soil surveys for plant-available P were carried out (<2 ha sample areas) in both catchments. Concurrently, high temporal resolution monitoring of water discharge and P concentration was conducted at each catchment outlet across four hydrological years (April to March). Ecological impact surveys were carried out at four sites within each catchment in May and September across the observed four year period (2009-2013). Importantly, the proportion of farmland with excessive soil P concentrations decreased in both the arable (20% to 11.8%) and grassland catchments (5.9 to 3.6%). However, soil P concentrations also declined critically in both catchments, as proportional areas below the national crop agronomic optimum thresholds (grassland; <5 mg P l-1, arable; <6 mg P l-1) increased from 57% to 68% in the arable catchment and 75% to 87% in the grassland catchment. This decline in plant available P strongly indicates a reduced or sustained level of P inputs in both catchments. Indications of responses to soil P change in the surface waters of these catchments appeared to be highly influenced by their

  10. Tracing crop-specific sediment sources in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Blake, William H.; Ficken, Katherine J.; Taylor, Philip; Russell, Mark A.; Walling, Desmond E.

    2012-02-01

    A Compound Specific Stable Isotope (CSSI) sediment tracing approach is evaluated for the first time in an agricultural catchment setting against established geochemical fingerprinting techniques. The work demonstrates that novel CSSI techniques have the potential to provide important support for soil resource management policies and inform sediment risk assessment for the protection of aquatic habitats and water resources. Analysis of soil material from a range of crop covers in a mixed land-use agricultural catchment shows that the carbon CSSI signatures of particle-reactive fatty acids label surface agricultural soil with distinct crop-specific signatures, thus permitting sediment eroded from each land-cover to be tracked downstream. High resolution sediment sampling during a storm event and analysis for CSSI and conventional geochemical fingerprints elucidated temporal patterns of sediment mobilisation under different crop regimes and the specific contribution that each crop type makes to downstream sediment load. Pasture sources (65% of the catchment area) dominated the sediment load but areal yield (0.13 ± 0.02 t ha - 1 ) was considerably less than that for winter wheat (0.44 ± 0.15 t ha - 1 ). While temporal patterns in crop response matched runoff and erosion response predictions based on plot-scale rainfall simulation experiments, comparison of biomarker and geochemical fingerprinting data indicated that the latter overestimated cultivated land inputs to catchment sediment yield due to inability to discriminate temporary pasture (in rotation) from cultivated land. This discrepancy, however, presents an opportunity since combination of the two datasets revealed the extremely localised nature of erosion from permanent pasture fields in this system (estimated at up to 0.5 t ha - 1 ). The novel use of CSSI and geochemical tracers in tandem provided unique insights into sediment source dynamics that could not have been derived from each method alone. Research

  11. Monitoring Two Small Catchments to Evaluate Effects of No-Tillage Agricultural Management in São Paulo State, Brazil

    NASA Astrophysics Data System (ADS)

    Figueiredo, R. D. O.; Gonçalves, A. O.; Melo, A. D. S.; de Bona, F. D.; Hernani, L. C.

    2015-12-01

    In recent years, declines in water and soil quality have been observed in areas of Brazil where no-till agriculture had been previously implemented. Poor soil management associated with the absence of public policies has caused soil erosion, because many farmers are moving back from no-till to traditional cultivation for faster economic gains. A research project - SoloVivo Project - leaded by Embrapa (Brazilian Agricultural Research Corporation) in partnership with Itaipu Binacional aims to develop and validate, in a participatory way, tools to evaluate the technical performance of soil and water management at the rural properties that practice no-till agriculture. In this context we have selected two paired small (< 100 ha) catchments in the Paranapanema region, São Paulo State, where no-till management is practiced at two different degrees of effectiveness. In the figure bellow it can be seen a scene of one of the two studied catchments. For monitoring rainfall, soil solution and stream water, each catchment will be equipped with a programmable datalogger (with cell phone communication for data collection) linked to: a high intensity tipping bucket rain gage; a reflectometer to monitor soil volumetric water content, bulk electric conductivity and temperature; a radar water level sensor; a turbidity sensor; and an electric conductivity-temperature probe. We expect that stream flow and sediment generation, besides water quality (measured by conductivity) may serve as indicators of the benefits of no-tillage agriculture done more or less well. The results of this study will be used to stimulate discussions at workshops with the farmers who participate in a rural producers association in the region. In addition this and other results can be used to help the Brazilian National Water Agency (ANA) decide about applying no-till agricultural management systems in its programs of payment for environmental services.

  12. Relationships between landscape pattern, wetland characteristics, and water quality in agricultural catchments.

    PubMed

    Moreno-Mateos, David; Mander, Ulo; Comín, Francisco A; Pedrocchi, César; Uuemaa, Evelyn

    2008-01-01

    Water quality in streams is dependent on landscape metrics at catchment and wetland scales. A study was undertaken to evaluate the correlation between landscape metrics, namely patch density and area, shape, heterogeneity, aggregation, connectivity, land-use ratio, and water quality variables (salinity, nutrients, sediments, alkalinity, other potential pollutants and pH) in the agricultural areas of a semiarid Mediterranean region dominated by irrigated farmlands (NE Spain). The study also aims to develop wetland construction criteria in agricultural catchments. The percentage of arable land and landscape homogeneity (low value of Simpson index) are significantly correlated with salinity (r(2) = 0.72) and NO(3)-N variables (r(2) = 0.49) at catchment scale. The number of stock farms was correlated (Spearman's corr. = 0.60; p < 0.01) with TP concentration in stream water. The relative abundance of wetlands and the aggregation of its patches influence salinity variables at wetland scale (r(2) = 0.59 for Na(+) and K(+) concentrations). The number and aggregation of wetland patches are closely correlated to the landscape complexity of catchments, measured as patch density (r(2) = 0.69), patch size (r(2) = 0.53), and landscape heterogeneity (r(2) = 0.62). These results suggest that more effective results in water quality improvement would be achieved if we acted at both catchment and wetland scales, especially reducing landscape homogeneity and creating numerous wetlands scattered throughout the catchment. A set of guidelines for planners and decision makers is provided for future agricultural developments or to improve existing ones.

  13. Soft Water Level Sensors for Characterizing the Hydrological Behaviour of Agricultural Catchments

    PubMed Central

    Crabit, Armand; Colin, François; Bailly, Jean Stéphane; Ayroles, Hervé; Garnier, François

    2011-01-01

    An innovative soft water level sensor is proposed to characterize the hydrological behaviour of agricultural catchments by measuring rainfall and stream flows. This sensor works as a capacitor coupled with a capacitance to frequency converter and measures water level at an adjustable time step acquisition. It was designed to be handy, minimally invasive and optimized in terms of energy consumption and low-cost fabrication so as to multiply its use on several catchments under natural conditions. It was used as a stage recorder to measure water level dynamics in a channel during a runoff event and as a rain gauge to measure rainfall amount and intensity. Based on the Manning equation, a method allowed estimation of water discharge with a given uncertainty and hence runoff volume at an event or annual scale. The sensor was tested under controlled conditions in the laboratory and under real conditions in the field. Comparisons of the sensor to reference devices (tipping bucket rain gauge, hydrostatic pressure transmitter limnimeter, Venturi channels…) showed accurate results: rainfall intensities and dynamic responses were accurately reproduced and discharges were estimated with an uncertainty usually acceptable in hydrology. Hence, it was used to monitor eleven small agricultural catchments located in the Mediterranean region. Both catchment reactivity and water budget have been calculated. Dynamic response of the catchments has been studied at the event scale through the rising time determination and at the annual scale by calculating the frequency of occurrence of runoff events. It provided significant insight into catchment hydrological behaviour which could be useful for agricultural management perspectives involving pollutant transport, flooding event and global water balance. PMID:22163868

  14. Hydrological Controls on Nutrient Concentrations and Fluxes in Agricultural Catchments

    NASA Astrophysics Data System (ADS)

    Petry, J.; Soulsby, C.

    2002-12-01

    This investigation into diffuse agricultural pollution and the hydrological controls that exert a strong influence on both nutrient concentrations and fluxes, was conducted in an intensively farmed lowland catchment in north-east Scotland. The study focuses on spatial and seasonal variations in nutrient concentrations and fluxes at the catchment scale, over a 15-month period. The water quality of the 14.5 km2 Newmills Burn catchment has relatively high nutrient levels with mean concentrations of NO3-N and NH3-N at 6.09 mg/l and 0.28 mg/l respectively. Average PO4-P concentrations are 0.06 mg/l. Over short timescales nutrient concentrations and fluxes are greatest during storm events when PO4-P and NH3-N are mobilised by overland flow in riparian areas, where soils have been compacted by livestock or machinery. Delivery of deeper soil water in subsurface storm flow, facilitated by agricultural under-drainage, produces a marked increase in NO3-N (6.9 mg/l) concentrations on the hydrograph recession limb. A more detailed insight into the catchment response to storm events, and in particular the response of the hydrological pathways which provide the main sources of runoff during storm events, was gained by sampling stream water at 2-hourly intervals during 5 events. End Member Mixing Analysis (EMMA) was carried out using event specific end-member chemistries to differentiate three catchment-scale hydrological pathways (overland flow, subsurface storm flow, groundwater flow) on the basis of observed Si and NO3-N concentrations in sampled source waters. Results show that overland flow generally dominates the storm peak and provides the main flow path by which P is transferred to stream channels during storm events, whilst subsurface storm flows usually dominate the storm hydrograph volumetrically and route NO3-rich soil water to the stream. The study shows that altering hydrological pathways in a catchment can have implications for nutrient management. Whilst buffer

  15. Replacing Concrete with Natural and Social Engineering: Learning the Lessons of Stakeholder Engagement from South West Water's Upland Catchment Management Programme

    NASA Astrophysics Data System (ADS)

    Smith, David; Grand-Clement, Emile; Brazier, Richard

    2014-05-01

    Replacing Concrete with Natural and Social Engineering: Learning the Lessons of Stakeholder Engagement from South West Water's Upland Catchment Management Programme Smith, D., Grand-Clement, E., Anderson, K., Luscombe, D., G, N., Bratis, Brazier, R.E Peatlands in the South West of the British Isles have been extensively drained for agricultural reclamation and peat cutting. The improvement in food production resulting from this management practice has never clearly been observed. Instead, we are now faced with several detrimental consequences on a whole suite of ecosystem services, such as the delivery of water, water quality, biodiversity and carbon storage. Alongside the direct environmental implications, poor water quality is increasing water treatment costs and will drive significant future investment. As a result, water companies now need to find appropriate solutions to varying water levels and decreasing water quality through catchment management. The Mires Project, the catchment management programme used by South West Water (SWW) is working with a wide range of stakeholders to restore the hydrological functioning of peatlands, and the ecosystem services they provide. This programme is driven by overarching legal requirements (i.e. the water framework directive, Natura 2000), future climate change predictions, corporate responsibility and commercial needs. Post-restoration scientific monitoring is at the heart of the project improving of our understanding of the eco-hydrological and chemical process driving changes in management practice. The challenges faced from the involvement of a wide range of stakeholders will be explored, focusing on the benefits from stakeholder involvement in catchment management and hydrological research, but also considering the difficulties to be overcome. SWW is working with private land-owners, government agencies, local and national park Authorities, community and single interest groups and research institutions to achieve its

  16. Gained insights from combined high-frequency and long-term water quality monitoring in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Jomaa, Seifeddine; Dupas, Rémi; Musolff, Andreas; Rozemeijer, Joachim; Borchardt, Dietrich; Rode, Michael

    2017-04-01

    Despite extensive efforts to reduce nitrate (NO3) transfer in agricultural areas, the NO3 concentration in rivers often changes little. To investigate the reasons for this limited response, NO3 dynamics in a 100 km2 agricultural catchment in eastern Germany was analysed from decadal to infra-hourly time scales. First, Dynamic Harmonic Regression (DHR) analysis of a 32-year (1982-2014) record of NO3 and discharge revealed that i) the long-term trend in NO3 concentration was closely related to that in discharge, suggesting that large-scale weather and climate patterns were masking the effect of improved nitrogen management on NO3 trends; ii) maximum winter and minimum summer concentrations had a persistent seasonal pattern, which was interpreted as a dynamic NO3 concentration from the soil and subsoil columns; and iii) the catchment progressively changed from chemodynamic to more chemostatic behaviour over the three decades of study, which is a sign of long-term homogenisation of NO3 concentrations in the profile. Second, infra-hourly (15 min time interval) analysis of storm-event dynamics during a typical hydrological year (2005-2006) was performed to identify periods of the year with high leaching risk and to link the latter to agricultural management practices in the catchment. Also, intra-hourly data was used to improve NO3 load estimation during storm events. An Event Response Reconstruction (ERR) model was built using NO3 concentration response descriptor variables and predictor variables deduced from discharge and precipitation records. The ERR approach significantly improved NO3 load estimates compared to linear interpolation of grab-sampling data (error was reduced from 10 to 1%). Finally, this study shows that detailed physical understanding of NO3 dynamics across time scales can be obtained only through combined analysis of long-term records and high-resolution sensor data. Hence, a joint effort is advocated between environmental authorities, who usually

  17. Pollution indicators in groundwater of two agricultural catchments in Lower Silesia (Poland)

    NASA Astrophysics Data System (ADS)

    Kasperczyk, Lidia; Modelska, Magdalena; Staśko, Stanisław

    2016-12-01

    The article discusses the content and source of mineral nitrogen compounds in groundwater, based on the data collected in two river catchments in two series (spring and autumn 2014). The study area comprises two catchments located in Lower Silesia, Poland - Cicha Woda and Sąsiecznica. Both catchments are characterised agricultural character of development. In the both researched areas, the points of State Environmental Monitoring (SEM) are located but only the Cicha Woda area is classified as nitrate vulnerable zone (NVZ). To analyse and compare the contamination of Quaternary and Neogene aquifers, the concentration of nitrates, nitrites, ammonium and potassium ions was measured primarily. Results showed the exceedance of nitrogen mineral forms of shallow groundwater Quaternary aquifer in both basins. The concentration of nitrates range from 0.08 to 142.12 mgNO3 -/dm3 (Cicha Woda) and from 2.6 to 137.65 mg NO3 -/dm3 (Sąsiecznica). The major source of pollution is probably the intensive agriculture activity. It causes a degradation of the shallow groundwater because of nitrate, nitrite, potassium, phosphates and ammonium contents. There was no observed contamination of anthropogenic origin in the deeper Neogene aquifer of Cicha Woda catchment.

  18. Transport and attenuation of chloroacetanilides in an agricultural headwater catchment

    NASA Astrophysics Data System (ADS)

    Lefrancq, Marie; Imfeld, Gwenaël; Millet, Maurice; Payraudeau, Sylvain

    2015-04-01

    Chloroacetanilides (e.g., S-metolachlor and acetochlor) are pre-emergent herbicides used on corn and sugar beet and are applied to bare soil, which is prone to runoff and erosion. Some of these herbicides are chiral and the commercial products can be isomerically enriched in the enantiomer-S compared to the enantiomer-R as an example S-metolachlor 80/20% S to R . Determination of the transport of these herbicides in the dissolved and particulate phases of runoff water and degradation in agricultural catchments is currently lacking. The objectives of this study were i) to quantify over an corn growing season the export of chloroacetanilides and their main degradation products (ethane sulfonic (ESA) and oxanilic acid (OXA) degradates of metolachlor (MESA and MOXA) and acetochlor (AcESA and AcOXA)) in an 47 ha agricultural head-catchment in the dissolved and particulate phases, and ii) to evaluate S-metolachlor biodegradation from its application on the field to its export from the catchment using enantiomer analysis. Runoff, erosion, hydrochemistry and chloroacetanilide transport were evaluated at both the plot and catchment scales. Our results showed that an important amount of the pesticide load is missed when only the dissolved concentration of the parent compound is analysed. The total export coefficients for S-metolachlor and acetochlor and their degradation products were 11.4 and 11.8%, respectively, which includes both the dissolved and particulate loads. The partitioning of S-metolachlor and acetochlor between the dissolved and particulate phases varied widely over time and was linked to the suspended solid concentrations. Detection of S-metolachlor degradation products in runoff water was more frequent compared to that of acetochlor degradation products. Enrichment up to 37% of R-metolachlor was observed during the corn growing season, supporting enantioselective degradation of S-metolachlor. Our field study indicates the potential of enantiomer analyses for

  19. Effect of Agricultural Practices on Hydrology and Water Chemistry in a Small Irrigated Catchment, Yakima River Basin, Washington

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Johnson, Henry M.

    2009-01-01

    The role of irrigation and artificial drainage in the hydrologic cycle and the transport of solutes in a small agricultural catchment in central Washington's Yakima Valley were explored using hydrologic, chemical, isotopic, age-dating, and mineralogical data from several environmental compartments, including stream water, ground water, overland flow, and streambed pore water. A conceptual understanding of catchment hydrology and solute transport was developed and an inverse end-member mixing analysis was used to further explore the effects of agriculture in this small catchment. The median concentrations of major solutes and nitrates were similar for the single field site and for the catchment outflow site, indicating that the net effects of transport processes for these constituents were similar at both scales. However, concentrations of nutrients were different at the two sites, suggesting that field-scale variations in agricultural practices as well as nearstream and instream biochemical processes are important components of agricultural chemical transformation and transport in this catchment. This work indicates that irrigation coupled with artificial drainage networks may exacerbate the ecological effects of agricultural runoff by increasing direct connectivity between fields and streams and minimizing potentially mitigating effects (denitrification and dilution, for example) of longer subsurface pathways.

  20. Identification of phosphorus emission hotspots in agricultural catchments

    PubMed Central

    Kovacs, Adam; Honti, Mark; Zessner, Matthias; Eder, Alexander; Clement, Adrienne; Blöschl, Günter

    2012-01-01

    An enhanced transport-based management approach is presented, which is able to support cost-effective water quality management with respect to diffuse phosphorus pollution. Suspended solids and particulate phosphorus emissions and their transport were modeled in two hilly agricultural watersheds (Wulka River in Austria and Zala River in Hungary) with an improved version of the catchment-scale PhosFate model. Source and transmission areas were ranked by an optimization method in order to provide a priority list of the areas of economically efficient (optimal) management alternatives. The model was calibrated and validated at different gauges and for various years. The spatial distribution of the emissions shows that approximately one third of the catchment area is responsible for the majority of the emissions. However, only a few percent of the source areas can transport fluxes to the catchment outlet. These effective source areas, together with the main transmission areas are potential candidates for improved management practices. In accordance with the critical area concept, it was shown that intervention with better management practices on a properly selected small proportion of the total area (1–3%) is sufficient to reach a remarkable improvement in water quality. If soil nutrient management is also considered in addition to water quality, intervention on 4–12% of the catchment areas can fulfill both aspects. PMID:22771465

  1. Hydrologic control of dissolved organic matter concentration and quality in a semiarid artificially drained agricultural catchment

    NASA Astrophysics Data System (ADS)

    Bellmore, Rebecca A.; Harrison, John A.; Needoba, Joseph A.; Brooks, Erin S.; Kent Keller, C.

    2015-10-01

    Agricultural practices have altered watershed-scale dissolved organic matter (DOM) dynamics, including in-stream concentration, biodegradability, and total catchment export. However, mechanisms responsible for these changes are not clear, and field-scale processes are rarely directly linked to the magnitude and quality of DOM that is transported to surface water. In a small (12 ha) agricultural catchment in eastern Washington State, we tested the hypothesis that hydrologic connectivity in a catchment is the dominant control over the concentration and quality of DOM exported to surface water via artificial subsurface drainage. Concentrations of dissolved organic carbon (DOC) and humic-like components of DOM decreased while the Fluorescence Index and Freshness Index increased with depth through the soil profile. In drain discharge, these characteristics were significantly correlated with drain flow across seasons and years, with drain DOM resembling deep sources during low-flow and shallow sources during high flow, suggesting that DOM from shallow sources bypasses removal processes when hydrologic connectivity in the catchment is greatest. Assuming changes in streamflow projected for the Palouse River (which contains the study catchment) under the A1B climate scenario (rapid growth, dependence on fossil fuel, and renewable energy sources) apply to the study catchment, we project greater interannual variability in annual DOC export in the future, with significant increases in the driest years. This study highlights the variability in DOM inputs from agricultural soil to surface water on daily to interannual time scales, pointing to the need for a more nuanced understanding of agricultural impacts on DOM dynamics in surface water.

  2. Recent trends in water quality in an agricultural catchment in Eastern Scotland: elucidating the roles of hydrology and land use.

    PubMed

    Dunn, S M; Sample, J; Potts, J; Abel, C; Cook, Y; Taylor, C; Vinten, A J A

    2014-07-01

    Across the EU, programmes of measures have been introduced as part of river basin management planning as a means of tackling problems of diffuse pollution from agriculture. Evidence is required to demonstrate the effectiveness of these measures and with this overarching objective, monitoring of an agricultural catchment in Eastern Scotland was initiated in 2007. As a precursor to evaluating the effect of new management measures it is essential to understand how other factors, including hydrology and land use changes, could have influenced water quality. This study undertook an analysis of the trends in concentrations and loads of nitrate, soluble reactive phosphorus (SRP), suspended solids (SS) and turbidity measured at six points in the catchment over a six year period. The results identified both differing trends between determinands and differing trends occurring over varying spatial scales. The only direct relationships between land use and water quality that could be identified based on annual data was a positive link between arable cropping and nitrate concentrations. At the sub-catchment scale some temporal changes in land use and management explained short-term trends in nitrate but not in SRP. Lags in the system were identified due to soil adsorption, in-stream/loch processing and groundwater transport making the identification of cause and effect problematic. The results have implications for the demonstration of effectiveness of measures over the shorter term and the timescales of recovery from diffuse pollution. Longer term monitoring at small scales will be important in this regard.

  3. Nitrogen attenuation along delivery pathways in agricultural catchments

    NASA Astrophysics Data System (ADS)

    McAleer, Eoin; Mellander, Per-Erik; Coxon, Catherine; Richards, Karl G.

    2014-05-01

    Hillslope hydrologic systems and in particular near-stream saturated zones are active sites of nitrogen (N) biogeochemical dynamics. The efficiency of N removal and the ratio of reaction products (nitrous oxide and dinitrogen) in groundwater is highly variable and depends upon aquifer hydrology, mineralogy, dissolved oxygen, energy sources and redox chemistry. There are large uncertainties in the closing of N budgets in agricultural catchments. Spatial and temporal variability in groundwater physico-chemistry, catchment hydrology and land-use gives rise to hotspots and hot moments of N attenuation. In addition the production, consumption and movement of denitrification products remains poorly understood. The focus of this study is to develop a holistic understanding of N dynamics in groundwater as it moves from the top of the hillslope to the stream. This includes saturated groundwater flow, exchange at the groundwater-surface water interface and hyporheic zone flow. This project is being undertaken in two ca. 10km2 Irish catchments, characterised by permeable soils. One catchment is dominated by arable land overlying slate bedrock and the other by grassland overlying sandstone. Multi-level monitoring wells have been installed at the upslope, midslope and bottom of each hillslope. The piezometers are screened to intercept the subsoil, weathered bedrock and competent bedrock zones. Groundwater samples for nitrate (NO3-N) nitrite (NO2-N), ammonium (NH4-N) and total nitrogen are collected on a monthly basis while dissolved gas concentrations are collected seasonally. Groundwater NO3-N profiles from monitoring data to date in both catchments differ markedly. Although the two catchments had similar 3 year mean concentrations of 6.89 mg/L (arable) and 6.24 mg/L (grassland), the grassland catchment had higher spatial and temporal variation. The arable catchment showed relatively homogenous NO3-N concentrations in all layers and zones (range: 1.2 - 12.13 mg/L, SD = 1.60 mg

  4. Structural and functional connectivity in the agricultural Can Revull catchment (Mallorca, Spain)

    NASA Astrophysics Data System (ADS)

    Calsamiglia, Aleix; García-Comendador, Julián; Fortesa, Josep; Crema, Stefano; Cavalli, Marco; Alorda, Bartomeu; Estrany, Joan

    2017-04-01

    Unravelling the spatio-temporal variability of the sediment transfer within a catchment represents a challenge of great importance to quantify erosion, soil redistribution and their impacts on agricultural landscape. Structural and functional connectivity have been identified as useful aspects of connectivity that may clarify how these processes are coupled or decoupled in various types of catchment sediment cascades. In this study, hydrological and sediment connectivity in a Mediterranean agricultural catchment (1.4 km2) modified through traditional drainage systems (i.e., ditches and subsurface tile drainages) was assessed during two contrasted rainfall events occurred in October 2016 (20 mm in 24 h -return period < 1 yr-, I30 6.6 mm h-1 with 32 mm accumulated in 14 days) and in December 2016 (99 mm in 24 h -return period ≈ 25 yr-, I30 23 mm h-1 with 39 mm accumulated in 14 days). A morphometric index of connectivity (IC) was calculated to study the spatial patterns of structural connectivity. The identification of the main sediment pathways -in terms of functional connectivity- was conducted by field mapping, whilst the estimation of erosion and deposition rates by the analysis of high resolution digital terrain models (i.e., 5 cm pix-1; RMSE < 0.05 m) obtained from automated digital photogrammetry and unmanned aerial vehicle (UAV). The IC estimations allowed the identification of the most (dis-)connected areas related with the anthropogenic control in the resisting forces of the catchment. On the one hand, in the upper part of the catchment, depositional compartments were created by dry-stone walls that separate agricultural properties laminating flash floods. On the other hand, in the lower part of the catchment these depositional compartments were generated by an orthogonal network of ditches situated topographically above the natural thalwegs. In its turn, the most connected areas are located in the steepest parts of the catchment under rainfed herbaceous

  5. Spatial and temporal patterns of pesticide losses in a small Swedish agricultural catchment

    NASA Astrophysics Data System (ADS)

    Sandin, Maria; Piikki, Kristin; Jarvis, Nicholas; Larsbo, Mats; Bishop, Kevin; Kreuger, Jenny

    2017-04-01

    Research at catchment and regional scales shows that losses of pesticides to surface water often originate from a relatively small fraction of the agricultural landscape. These 'hydrologic source areas' represent areas of land that are highly susceptible to fast transport processes, primarily surface runoff or rapid subsurface flows through soil macropores, either to subsurface field drainage systems or as shallow interflow on more strongly sloping land. A good understanding of the nature of transport pathways for pesticides to surface water in agricultural landscapes is essential for cost-effective identification and implementation of mitigation measures. However, the relative importance of surface and subsurface flows for transport of pesticides to surface waters in Sweden remains largely unknown, since very few studies have been performed under Swedish agro-environmental conditions. We conducted a monitoring study in a small sub-surface drained agricultural catchment in one of the main crop production regions in Sweden. Three small sub-catchments were selected for water sampling based on a high-resolution soil map developed from proximal sensing data; one sub-catchment was dominated by clay soils, another by coarse sandy soils while the third comprised a mix of soil types. Samples were collected from the stream, from field drains discharging into the stream and from within-field surface runoff during spring and early summer in three consecutive years. LC-MS/MS analyses of more than 100 compounds, covering the majority of the polar and semi-polar pesticides most frequently used in Swedish agriculture, were performed on all samples using accredited methods. Information on pesticide applications (products, doses and timing) was obtained from annual interviews with the farmers. There were clear and consistent differences in pesticide losses between the three sub-catchments, with the largest losses occurring in the area with clay soils, and negligible losses from the

  6. The effectiveness of agricultural stewardship for improving water quality at the catchment scale: Experiences from an NVZ and ECSFDI watershed

    NASA Astrophysics Data System (ADS)

    Kay, Paul; Grayson, Richard; Phillips, Martin; Stanley, Karen; Dodsworth, Alan; Hanson, Ann; Walker, Andrew; Foulger, Miles; McDonnell, Iain; Taylor, Simon

    2012-02-01

    SummaryAgriculture is estimated to be responsible for 70% of nitrate and 30-50% of phosphorus pollution, contributing to ecological and water treatment problems. Despite the fact that significant gaps remain in our understanding, it is known that agricultural stewardship can be highly effective in controlling water pollution at the plot and field scales. Knowledge at the catchment scale is, to a large extent, entirely lacking though and this is of paramount concern given that the catchment is the management unit used by regulatory authorities. The few studies that have examined the impact of agricultural stewardship at the catchment scale have found that Nitrate Vulnerable Zones (NVZs) in the UK have resulted in little improvement in water quality which concurs with the current catchment study. In addition to NVZs, there was little evidence to suggest that the England Catchment Sensitive Farming Delivery Initiative had impacted water quality and suggestions have been made for improvements, such as ensuring that stewardship measures are used in key pollution source areas and their implementation and impacts are monitored more closely. This will be essential if agricultural catchment management schemes are going to provide the benefits expected of them. Nevertheless, more intensive monitoring than that carried out by regulators showed a significant trend in decreasing winter nitrate peaks in some streams which is hypothesised to be due to recent reduced inorganic fertiliser application as a result of increasing prices. It was concluded that, collectively, these findings indicate that agricultural stewardship measures have the potential to improve water quality at the catchment scale but that voluntary schemes with insufficient financial reward or regulatory pressure are unlikely to be successful.

  7. Suspended sediment export in five intensive agricultural river catchments with contrasting land use and soil drainage characteristics

    NASA Astrophysics Data System (ADS)

    Sherriff, Sophie; Rowan, John; Melland, Alice; Jordan, Phil; Fenton, Owen; hUallacháin, Daire Ó.

    2015-04-01

    Soil erosion and sediment loss from land can have a negative impact on the chemical and ecological quality of freshwater resources. In catchments dominated by agriculture, prediction of soil erosion risk is complex due to the interaction of physical characteristics such as topography, soil erodibility, hydrological connectivity and climate. Robust measurement approaches facilitate the assessment of sediment loss magnitudes in relation to a range of agricultural settings. These approaches improve our understanding of critical sediment transfer periods and inform development of evidence-based and cost-effective management strategies. The aim of this study was to i) assess the efficacy of out-of-channel (ex-situ) suspended sediment measurement approaches, ii) to quantify the variability of sediment exported from five river catchments with varying hydrology and agricultural land uses over multiple years and iii) to investigate trends in relation to physical and land use characteristics when sediment data were compared between catchments. Sediment data were collected in five intensive agricultural river catchments in Ireland (3-11 km2) which featured contrasting land uses (predominantly intensive grassland or arable) and soil drainage classes (well, moderate and poor). High-resolution suspended sediment concentration data (SSC - using a calibrated turbidity proxy) were collected ex-situ and combined with in-stream discharge data measured at each catchment outlet to estimate suspended sediment yield (SSY - t km-2 yr-1). In two catchments additional in-stream turbidity monitoring equipment replicated ex-situ measurements including site specific calibration of individual in-stream and ex-situ turbidity probes. Depth-integrated samples were collected to assess the accuracy of both approaches. Method comparison results showed that true SSC values (from depth-integrated sampling) were predominantly within the 95% confidence interval of ex-situ predicted SSC consequently

  8. Urbanization and agriculture increase exports and differentially alter elemental stoichiometry of dissolved organic matter (DOM) from tropical catchments.

    PubMed

    Gücker, Björn; Silva, Ricky C S; Graeber, Daniel; Monteiro, José A F; Boëchat, Iola G

    2016-04-15

    Many tropical biomes are threatened by rapid land-use change, but its catchment-wide biogeochemical effects are poorly understood. The few previous studies on DOM in tropical catchments suggest that deforestation and subsequent land use increase stream water dissolved organic carbon (DOC) concentrations, but consistent effects on DOM elemental stoichiometry have not yet been reported. Here, we studied stream water DOC concentrations, catchment DOC exports, and DOM elemental stoichiometry in 20 tropical catchments at the Cerrado-Atlantic rainforest transition, dominated by natural vegetation, pasture, intensive agriculture, and urban land cover. Streams draining pasture could be distinguished from those draining natural catchments by their lower DOC concentrations, with lower DOM C:N and C:P ratios. Catchments with intensive agriculture had higher DOC exports and lower DOM C:P ratios than natural catchments. Finally, with the highest DOC concentrations and exports, as well as the highest DOM C:P and N:P ratios, but the lowest C:N ratios among all land-use types, urbanized catchments had the strongest effects on catchment DOM. Thus, urbanization may have alleviated N limitation of heterotrophic DOM decomposition, but increased P limitation. Land use-especially urbanization-also affected the seasonality of catchment biogeochemistry. While natural catchments exhibited high DOC exports and concentrations, with high DOM C:P ratios in the rainy season only, urbanized catchments had high values in these variables throughout the year. Our results suggest that urbanization and pastoral land use exerted the strongest impacts on DOM biogeochemistry in the investigated tropical catchments and should thus be important targets for management and mitigation efforts. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Test of a simplified modeling approach for nitrogen transfer in agricultural subsurface-drained catchments

    NASA Astrophysics Data System (ADS)

    Henine, Hocine; Julien, Tournebize; Jaan, Pärn; Ülo, Mander

    2017-04-01

    In agricultural areas, nitrogen (N) pollution load to surface waters depends on land use, agricultural practices, harvested N output, as well as the hydrology and climate of the catchment. Most of N transfer models need to use large complex data sets, which are generally difficult to collect at larger scale (>km2). The main objective of this study is to carry out a hydrological and a geochemistry modeling by using a simplified data set (land use/crop, fertilizer input, N losses from plots). The modelling approach was tested in the subsurface-drained Orgeval catchment (Paris Basin, France) based on following assumptions: Subsurface tile drains are considered as a giant lysimeter system. N concentration in drain outlets is representative for agricultural practices upstream. Analysis of observed N load (90% of total N) shows 62% of export during the winter. We considered prewinter nitrate (NO3) pool (PWNP) in soils at the beginning of hydrological drainage season as a driving factor for N losses. PWNP results from the part of NO3 not used by crops or the mineralization part of organic matter during the preceding summer and autumn. Considering these assumptions, we used PWNP as simplified input data for the modelling of N transport. Thus, NO3 losses are mainly influenced by the denitrification capacity of soils and stream water. The well-known HYPE model was used to perform water and N losses modelling. The hydrological simulation was calibrated with the observation data at different sub-catchments. We performed a hydrograph separation validated on the thermal and isotopic tracer studies and the general knowledge of the behavior of Orgeval catchment. Our results show a good correlation between the model and the observations (a Nash-Sutcliffe coefficient of 0.75 for water discharge and 0.7 for N flux). Likewise, comparison of calibrated PWNP values with the results from a field survey (annual PWNP campaign) showed significant positive correlation. One can conclude that

  10. Runoff production in a small agricultural catchment in Lao PDR : influence of slope, land-use and observation scale.

    NASA Astrophysics Data System (ADS)

    Patin, J.; Ribolzi, O.; Mugler, C.; Valentin, C.; Mouche, E.

    2009-04-01

    We study the surface and sub-surface hydrology of a small agricultural catchment (60ha) located in the Luang Prabang province of Lao PDR. This catchment is representative of the rural mountainous south east Asia. It exhibits steep slopes (up to 100% and more) under a monsoon climate. After years of traditional slash and burn cultures, it is now under high land pressures due to population resettling and environment preservation policies. This evolution leads to rapid land-use changes such as shifting cultivation reduction or growing of teak forest instead of classical crops. This catchment is a benchmark site of the Managing Soil Erosion Consortium since 1998. The international consortium aims to understand the effects of agricultural changes on the catchment hydrology and soil erosion in south east Asia. The Huay Pano catchment is subdivided into small sub-catchments that are gauged and monitored. Differ- ent agricultural practices where tested along the years. At a smaller scale, plot of 1m2 are instrumented to follow runoff and detachment of soil under natural rainfall along the monsoon season. Our modeling work aims to develop a distributed hydrological model integrating experimental data at the different scales. One of the objective is to understand the impact of land-use, soil properties (slope, crust, etc) and rainfall (dry and wet seasons) on surface and subsurface flows. We present here modeling results of the runoff plot experiments (1m2 scale) performed from 2002 to 2007. The plots distribution among the catchment and over the years gives a good representativity of the different runoff responses. The role of crust, slope and land-use on runoff is examined. Finally we discuss how this plot scale will be integrated in a sub-catchment model, with a particular attention on the observed paradox: how to explain that runoff coefficients at the catchment scale are much slower than at the plot scale ?

  11. Groundwater denitrification in two agricultural river catchments: influence of hydro-geological setting and aquifer geochemistry

    NASA Astrophysics Data System (ADS)

    McAleer, Eoin; Mellander, Per-Erik; Coxon, Catherine; Richards, Karl G.; Jahangir, Mohammad M. R.

    2015-04-01

    Identifying subsurface environments with a natural capacity for denitrification is important for improving agricultural management. At the catchment scale, a complex hierarchy of landscape, hydro-geological and physico-chemical characteristics combine to affect the distribution of groundwater nitrate (NO3-). This study was conducted along four instrumented hillslopes in two ca. 10km2 agricultural river catchments in Ireland, one dominated by arable and one by grassland agriculture. Both catchments are characterised by well drained soils, but have differing aquifer characteristics. The arable catchment is underlain by weathered Ordovician slate bedrock which is extensively fractured with depth. The grassland catchment is characterised by Devonian sandstone bedrock, exhibiting both lateral (from upslope to near stream) and vertical variations in permeability along each hillslope. The capacity for groundwater denitrification was assessed by examining the concentration and distribution patterns of N species (total nitrogen, nitrate, nitrite, ammonium), dissolved organic carbon (DOC), dissolved oxygen (DO) and redox potential (Eh) in monthly samples from shallow and deep groundwater piezometers (n=37). Additionally, the gaseous products of denitrification: nitrous oxide (N2O) and excess dinitrogen (excess N2) were measured seasonally using gas chromatography and membrane inlet mass spectroscopy, respectively. The slate catchment was characterised by uniformity, both laterally and vertically, in aquifer geochemistry and gaseous denitrification products. The four year spatial mean groundwater NO3--N concentration was 6.89 mg/l and exhibited low spatial and temporal variability (temporal SD: 1.19 mg/l, spatial SD: 1.185 mg/l). Elevated DO concentrations (mean: 9.75 mg/l) and positive Eh (mean: +176.5mV) at all sample horizons indicated a setting with little denitrification potential. This non-reducing environment was reflected in a low accumulation of denitrification

  12. [Comparison of nitrogen loss via surface runoff from two agricultural catchments in semi-arid North China].

    PubMed

    Lu, Hai-Ming; Yin, Cheng-Qing; Wang, Xia-Hui; Zou, Ying

    2008-10-01

    Nitrogen loss characteristics via surface runoff from two typical agricultural catchments into Yuqiao Reservoir--the important drinking water source area for Tianjin city in semi-arid North China were investigated through two-year in-situ monitoring and indoor chemical analysis. The results showed that annual nitrogen export mainly concentrated in the rainy period between June to September. About 41% of the annual water output and 52% of the annual total nitrogen output took place in two rainfall events with rainfall> 60 mm in Taohuasi catchment (T catchment), while the distribution of water and nitrogen export among various rainfalls in Caogezhuang catchment (C catchment) was smooth. The rainfall thresholds for the appearance of water and nitrogen export from the outlet of T catchment and C catchment were 20 mm and 10 mm. The mean annual runoff coefficients of C and T catchments were 0.013 2 and 0.001 6, respectively. The mean annual total nitrogen exports from C catchment and T catchment were 1.048 kg x (hm2 x a)(-1) and 0.158 kg x (hm2 x a)(-1) respectively. The difference of micro-topography, landscape pattern and hydrological pathway between two catchments could explain the nitrogen export gap. Micro-topographical features created by long-term anthropological disturbance decrease the runoff generation ability. The distance between nitrogen source area and the outlet in T catchment was around 1 500 m, while such distance in C catchment was just around 200 m. The short distance added the nitrogen export risk via surface runoff. Road-type hydrological pathway in C catchment could transfer nitrogen into the receiving water via surface runoff directly, while nitrogen could be detained within the pathway by many sink structures such as small stones, vegetated buffer strip and dry ponds in T catchment.

  13. Assessing the impacts of sustainable agricultural practices for water quality improvements in the Vouga catchment (Portugal) using the SWAT model.

    PubMed

    Rocha, João; Roebeling, Peter; Rial-Rivas, María Ermitas

    2015-12-01

    The extensive use of fertilizers has become one of the most challenging environmental issues in agricultural catchment areas. In order to reduce the negative impacts from agricultural activities and to accomplish the objectives of the European Water Framework Directive we must consider the implementation of sustainable agricultural practices. In this study, we assess sustainable agricultural practices based on reductions in N-fertilizer application rates (from 100% to 0%) and N-application methods (single, split and slow-release) across key agricultural land use classes in the Vouga catchment, Portugal. The SWAT model was used to relate sustainable agricultural practices, agricultural yields and N-NO3 water pollution deliveries. Results show that crop yields as well as N-NO3 exportation rates decrease with reductions in N-application rates and single N-application methods lead to lower crop yields and higher N-NO3 exportation rates as compared to split and slow-release N-application methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Hydrogeologic controls on nitrate transport in a small agricultural catchment, Iowa

    USGS Publications Warehouse

    Schilling, K.E.; Tomer, M.D.; Zhang, Y.-K.; Weisbrod, T.; Jacobson, P.; Cambardella, C.A.

    2007-01-01

    Effects of subsurface deposits on nitrate loss in stream riparian zones are recognized, but little attention has been focused on similar processes occurring in upland agricultural settings. In this paper, we evaluated hydrogeologic controls on nitrate transport processes occurring in a small 7.6 ha Iowa catchment. Subsurface deposits in the catchment consisted of upland areas of loess overlying weathered pre-Illinoian till, drained by two ephemeral drainageways that consisted of Holocene-age silty and organic rich alluvium. Water tables in upland areas fluctuated more than 4 m per year compared to less than 0.3 m in the drainageway. Water quality patterns showed a distinct spatial pattern, with groundwater in the drainageways having lower nitrate concentrations (10 mg L-1) as wells as lower pH, dissolved oxygen and redox, and higher ammonium and dissolved organic carbon levels. Several lines of evidence suggested that conditions are conducive for denitrification of groundwater flowing from uplands through the drainageways. Field-measured nitrate decay rates in the drainageways (???0.02 day-1) were consistent with other laboratory studies and regional patterns. Results from MODFLOW and MT3DMS simulations indicated that soils in the ephemeral drainageways could process all upland groundwater nitrate flowing through them. However, model-simulated tile drainage increased both water flux and nitrate loss from the upland catchment. Study results suggest that ephemeral drainageways can provide a natural nitrate treatment system in our upland glaciated catchments, offering management opportunities to reduce nitrate delivery to streams. Copyright 2007 by the American Geophysical Union.

  15. Transport of suspended sediment and organic carbon during storm events in a large agricultural catchment, southwest France.

    NASA Astrophysics Data System (ADS)

    Chantha, Oeurng; Sabine, Sauvage; David, Baqué; Alexandra, Coynel; Eric, Maneux; Henri, Etcheber; José-Miguel, Sánchez-Pérez

    2010-05-01

    Intensive agriculture has led to environmental degradation through soil erosion and carbon loss transferred from agricultural land to the stream networks. Suspended sediment transport from the agricultural catchment to the watercourses is responsible for aquatic habitat degradation, reservoir sedimentation, and for transporting sediment associated pollutants (pesticides, nutrient, heavy metals and other toxic substances). Consequently, the temporal transport of suspended sediment (SS), dissolved and particulate organic carbon (DOC and POC) was investigated during 18 months from January 2008 to June 2009 within a large agricultural catchment in southwest France. This study is based on an extensive dataset with high temporal resolution using manual and automatic sampling, especially during 15 flood events. Two main objectives aim at: (i) studying temporal transport in suspended sediment (SS), DOC and POC with factors explaining their dynamics and (ii) analysing the relationships between discharge, SSC, DOC and POC during flood events. The study demonstrates there is a strong variability of SS, POC and DOC during flood events. The SS transport during different seasonal floods varied by event from 513 to 41 750 t; POC transport varied from 12 to 748 t and DOC transport varied from 9 to 218 t. The specific yield of the catchment represents 76 t km-2 y-1 of sediment, 1.8 t km-2 y-1 of POC and 0.7 t km-2 y-1 of DOC, respectively. The POC associated with sediment transport from the catchment accounted for ~2.5% of the total sediment load. Flood duration and flood magnitude are key factors in determining the sediment and organic carbon transport. Statistical analyses revealed strong correlations between total precipitation, flood discharge, total water yield with suspended sediment and organic transport. The relationships of SSC, POC and DOC versus discharge over temporal flood events resulted in different hysteresis patterns which were used to suggest those dissolved and

  16. Natural organic matter properties in Swedish agricultural streams

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Kyllmar, Katarina; Bergström, Lars; Köhler, Stephan

    2017-04-01

    The following paper shows natural organic matter (NOM) properties of stream water samples collected from 8 agricultural streams and 12 agricultural observational fields in Sweden. The catchments and observational fields cover a broad range of environmental (climate, soil type), land use and water quality (nutrient and concentrations, pH, alkalinity) characteristics. Stream water samples collected every two weeks within an ongoing Swedish Monitoring Programme for Agriculture have been analysed for total/dissolved organic carbon, absorbance and fluorescence spectroscopy. A number of quantitative and qualitative spectroscopic parameters was calculated to help to distinguish between terrestrially-derived, refractory organic material and autochthonous, labile material indicative of biogeochemical transformations of terrestrial NOM and recent biological production. The study provides insights into organic matter properties and carbon budgets in agricultural streams and improves understanding of how agricultural catchments transform natural and anthropogenic fluxes of organic matter and nutrients. The insights from the grab sampling are supported by high-frequency turbidity, fulvic-like and tryptophan-like fluorescence measurements with in situ optical sensor.

  17. Managing the drinking water catchment areas: the French agricultural cooperatives feed back.

    PubMed

    Charrière, Séverine; Aumond, Claire

    2016-06-01

    The quality of raw water is problematic in France, largely polluted by nitrates and pesticides (Mueller and Helsel, Nutrients in the nation's waters-too much of a good thing? Geological Survey (U.S.), 1996; European Environment Agency, European waters-assessment of status and pressures, 2012).This type of pollution, even though not always due to agriculture (example of the catchment of Ambleville, county 95, France where the nitrate pollution is mainly due to sewers (2012)), has been largely related to the agricultural practices (Sci Total Environ 407:6034-6043, 2009).Taking note of this observation, and instead of letting it paralyze their actions, the agricultural cooperatives decided with Agrosolutions to act directly on the field with their subscribers to change the agricultural practices impacting the water and the environment.This article shows how the French agricultural cooperatives transformed the awareness of the raw water quality problem into an opportunity for the development and implementation of more precise and responsible practices, to protect their environment. They measure in order to pilot, co-construct and build the best action plans possible according to the three pillars of environment, economy and agronomy.

  18. Determining hillslope-channel connectivity in an agricultural catchment using rare-earth oxide tracers and random forests.

    NASA Astrophysics Data System (ADS)

    Masselink, Rens; Temme, Arnaud; Giménez, Rafael; Casalí, Javier; Keesstra, Saskia

    2017-04-01

    Soil erosion from agricultural areas is a large problem, because of off-site effects like the rapid filling of reservoirs. To mitigate the problem of sediments from agricultural areas reaching the channel, reservoirs and other surface waters, it is important to understand hillslope-channel connectivity and catchment connectivity. To determine the functioning of hillslope-channel connectivity and the continuation of transport of these sediments in the channel, it is necessary to obtain data on sediment transport from the hillslopes to the channels. Simultaneously, the factors that influence sediment export out of the catchment need to be studied. For measuring hillslope-channel sediment connectivity, Rare-Earth Oxide (REO) tracers were applied to a hillslope in an agricultural catchment in Navarre, Spain, preceding the winter of 2014-2015. The results showed that during the winter there was no sediment transport from the hillslope to the channel. Analysis of precipitation data showed that total precipitation quantities did not differ much from the mean. However, precipitation intensities were low, causing little sediment mobilisation. To test the implication of the REO results at the catchment scale, two conceptual models for sediment connectivity were assessed using a Random Forest (RF) machine learning method. One model proposes that small events provide sediment for large events, while the other proposes that only large events cause sediment detachment and small events subsequently remove these sediments from near and in the channel. The RF method was applied to a daily dataset of sediment yield from the catchment (N=2451 days), and two subsets of the whole dataset: small events (N=2319) and large events (N=132). For sediment yield prediction of small events, variables related to large preceding events were the most important. The model for large events underperformed and, therefore, we could not draw any immediate conclusions whether small events influence the

  19. An integrated suspended sediment budgeting of the agricultural Can Revull catchment (Mallorca, Spain)

    NASA Astrophysics Data System (ADS)

    Estrany, J.; Garcia, C.

    2012-04-01

    The Mediterranean region of Europe has a long history of human settlement and human impacts. The very high spatial and temporal variability of fluvial processes in the region also creates problems for measurement and monitoring and for assessment of effects. Extensive rainfed herbaceous crops are one of the most representative agricultural elements of this region, which should be one of the major factor affecting erosion processes. Although land use is commonly seen as resulting in increased sediment yields, the implementation of soil and water conservation practices can have the reverse effect. Sediment budgets offer a means to assess the sources, storage, rates of transport, yields, and efficiency of delivery of sediment for a range of catchment scales. Field measurements were conducted in Can Revull, a small agricultural catchment (1.03 km2) on the island of Mallorca. This study uses 137Cs measurements, sediment source fingerprinting and continuous turbidity records of four hydrological years (2004-2005 to 2007-2008) to quantify the individual components of the budget. A large proportion of the material mobilized from cultivated fields without conservation practices (gross erosion was 775 t yr-1; 1,270 t km-2 yr-1) was, however, subsequently deposited either within the field of origin (112 t yr-1; 180 t km-2 yr-1) or at intermediate locations between the source field and the channel network (field-to-channel conveyance loss was 591 t yr-1; 1,090 t km-2 yr-1). The estimates of sediment accumulation rates on the floodplain in the lower reaches of the catchment indicate that the mean sedimentation rate was 0.47 g cm-2 yr-1. This value was extrapolated to the total area of the floodplain to estimate a total annual conveyance loss or storage of 150 t yr-1. Monitoring at the catchment outlet over the study period indicated a mean annual suspended sediment yield of 7 t km-2 yr-1. The sum of the estimates of sediment yield and floodplain storage (157 t yr-1) was taken

  20. A view of annual water quality cycle and inter-annual variations in agricultural headwater catchment (Kervidy-Naizin, France)

    NASA Astrophysics Data System (ADS)

    Aubert, A.; Gascuel-odoux, C.; Merot, P.; Grimaldi, C.; Gruau, G.; Ruiz, L.

    2011-12-01

    Climatic conditions impact biotransformation and transfer of solutes. Therefore, they modify solute emissions in streams. Studying these modifications requires long term and detailed monitoring of both internal processes and river loads, which are rarely combined. The Kervidy-Naizin catchment, implemented in 1993, is part of the French network of catchment for environmental research (SOERE RBV, focused on the Critical Zone). It is an intensive agricultural catchment located in a temperate climate in Western France (Brittany) (Molenat et al., 2008; Morel et al., 2009). It presents shallow aquifers due to impervious bedrock. Both hydrology and water chemistry are monitored with a daily time step since 2000-01, as well as possible explanatory data (land use, meteorology, etc.). Concentrations in major anions in this catchment are extremely high, which make people call it a "saturated" catchment. We identified annual patterns for chloride, sulphate, dissolved organic and inorganic carbon and nitrate concentration variations. First, we considered the complete set of concentration data as function of the time. From that, we foresaw 3 cyclic temporal patterns. Then, from representing the concentrations as function of meteorological parameters, intra-annual hysteretic variations and their inter-annual variations were clearly identified. Our driving question is to know if and how climatic conditions are responsible for variations of the patterns in and between years. In winter, i.e. rainy and cold period, rainfall is closely linked to discharge because of a direct recharge to the shallow groundwater. Reversely, in transition periods (spring and fall) and hot periods, both rainfall and temperature influences discharge in relation to their range of variations. Moreover, biological processes, driven by temperature and wetness, also act during these periods. On the whole, we can emphasize the specificity of water chemistry patterns for each element. Noticeable differences

  1. The Influence of temporal sampling regime on the WFD classification of catchments within the Eden Demonstration Test Catchment Project

    NASA Astrophysics Data System (ADS)

    Jonczyk, Jennine; Haygarth, Phil; Quinn, Paul; Reaney, Sim

    2014-05-01

    A high temporal resolution data set from the Eden Demonstration Test Catchment (DTC) project is used to investigate the processes causing pollution and the influence of temporal sampling regime on the WFD classification of three catchments. This data highlights WFD standards may not be fit for purpose. The Eden DTC project is part of a UK government-funded project designed to provide robust evidence regarding how diffuse pollution can be cost-effectively controlled to improve and maintain water quality in rural river catchments. The impact of multiple water quality parameters on ecosystems and sustainable food production are being studied at the catchment scale. Three focus catchments approximately 10 km2 each, have been selected to represent the different farming practices and geophysical characteristics across the Eden catchment, Northern England. A field experimental programme has been designed to monitor the dynamics of agricultural diffuse pollution at multiple scales using state of the art sensors providing continuous real time data. The data set, which includes Total Phosphorus and Total Reactive Phosphorus, Nitrate, Ammonium, pH, Conductivity, Turbidity and Chlorophyll a reveals the frequency and duration of nutrient concentration target exceedance which arises from the prevalence of storm events of increasing magnitude. This data set is sub-sampled at different time intervals to explore how different sampling regimes affects our understanding of nutrient dynamics and the ramification of the different regimes to WFD chemical status. This presentation seeks to identify an optimum temporal resolution of data for effective catchment management and to question the usefulness of the WFD status metric for determining health of a system. Criteria based on high frequency short duration events needs to be accounted for.

  2. Using lumped modelling for providing simple metrics and associated uncertainties of catchment response to agricultural-derived nitrates pollutions

    NASA Astrophysics Data System (ADS)

    RUIZ, L.; Fovet, O.; Faucheux, M.; Molenat, J.; Sekhar, M.; Aquilina, L.; Gascuel-odoux, C.

    2013-12-01

    The development of simple and easily accessible metrics is required for characterizing and comparing catchment response to external forcings (climate or anthropogenic) and for managing water resources. The hydrological and geochemical signatures in the stream represent the integration of the various processes controlling this response. The complexity of these signatures over several time scales from sub-daily to several decades [Kirchner et al., 2001] makes their deconvolution very difficult. A large range of modeling approaches intent to represent this complexity by accounting for the spatial and/or temporal variability of the processes involved. However, simple metrics are not easily retrieved from these approaches, mostly because of over-parametrization issues. We hypothesize that to obtain relevant metrics, we need to use models that are able to simulate the observed variability of river signatures at different time scales, while being as parsimonious as possible. The lumped model ETNA (modified from[Ruiz et al., 2002]) is able to simulate adequately the seasonal and inter-annual patterns of stream NO3 concentration. Shallow groundwater is represented by two linear stores with double porosity and riparian processes are represented by a constant nitrogen removal function. Our objective was to identify simple metrics of catchment response by calibrating this lumped model on two paired agricultural catchments where both N inputs and outputs were monitored for a period of 20 years. These catchments, belonging to ORE AgrHys, although underlain by the same granitic bedrock are displaying contrasted chemical signatures. The model was able to simulate the two contrasted observed patterns in stream and groundwater, both on hydrology and chemistry, and at the seasonal and pluri-annual scales. It was also compatible with the expected trends of nitrate concentration since 1960. The output variables of the model were used to compute the nitrate residence time in both the

  3. Dissolved organic nitrogen (DON) losses from nested artificially drained lowland catchments with contrasting soil types

    NASA Astrophysics Data System (ADS)

    Tiemeyer, Bärbel; Kahle, Petra; Lennartz, Bernd

    2010-05-01

    Artificial drainage is a common practice to improve moisture and aeration conditions of agricultural land. It shortens the residence time of water in the soil and may therefore contribute to the degradation of peatlands as well as to the still elevated level of diffuse pollution of surface water bodies, particularly if flow anomalies like preferential flow cause a further acceleration of water and solute fluxes. Especially in the case of nitrate, artificially drained sub-catchments are found to control the catchment-scale nitrate losses. However, it is frequently found that nitrate losses and nitrogen field balances do not match. At the same time, organic fertilizers are commonly applied and, especially in lowland catchments, organic soils have been drained for agricultural use. Thus, the question arises whether dissolved organic nitrogen (DON) forms an important component of the nitrogen losses from artificially drained catchments. However, in contrast to nitrate and even to dissolved organic carbon (DOC), this component is frequently overlooked, especially in nested catchment studies with different soil types and variable land use. Here, we will present data from a hierarchical water quantity and quality measurement programme in the federal state Mecklenburg-Vorpommern (North-Eastern Germany). The monitoring programme in the pleistocene lowland catchment comprises automatic sampling stations at a collector drain outlet (4.2 ha catchment), at a ditch draining arable land on mineral soils (179 ha), at a ditch mainly draining grassland on organic soils (85 ha) and at a brook with a small rural catchment (15.5 km²) of mixed land use and soil types. At all sampling stations, daily to weekly composite samples were taken, while the discharge and the meteorological data were recorded continuously. Water samples were analyzed for nitrate-nitrogen, ammonium-nitrogen and total nitrogen. We will compare two years: 2006/07 was a very wet year (P = 934 mm) with a high summer

  4. Trends and seasonality of river nutrients in agricultural catchments: 18years of weekly citizen science in France.

    PubMed

    Abbott, Benjamin W; Moatar, Florentina; Gauthier, Olivier; Fovet, Ophélie; Antoine, Virginie; Ragueneau, Olivier

    2018-05-15

    Agriculture and urbanization have disturbed three-quarters of global ice-free land surface, delivering huge amounts of nitrogen and phosphorus to freshwater ecosystems. These excess nutrients degrade habitat and threaten human food and water security at a global scale. Because most catchments are either currently subjected to, or recovering from anthropogenic nutrient loading, understanding the short- and long-term responses of river nutrients to changes in land use is essential for effective management. We analyzed a never-published, 18-year time series of anthropogenic (NO 3 - and PO 4 3- ) and naturally derived (dissolved silica) riverine nutrients in 13 catchments recovering from agricultural pollution in western France. In a citizen science initiative, high-school students sampled catchments weekly, which ranged from 26 to 1489km 2 . Nutrient concentrations decreased substantially over the period of record (19 to 50% for NO 3 - and 14 to 80% for PO 4 3- ), attributable to regional, national, and international investment and regulation, which started immediately prior to monitoring. For the majority of catchments, water quality during the summer low-flow period improved faster than during winter high-flow conditions, and annual minimum concentrations improved relatively faster than annual maximum concentrations. These patterns suggest that water-quality improvements were primarily due to elimination of discrete nutrient sources with seasonally-constant discharge (e.g. human and livestock wastewater), agreeing with available land-use and municipal records. Surprisingly, long-term nutrient decreases were not accompanied by changes in nutrient seasonality in most catchments, attributable to persistent, diffuse nutrient stocks. Despite decreases, nutrient concentrations in almost all catchments remained well above eutrophication thresholds, and because additional improvements will depend on decreasing diffuse nutrient sources, future gains may be much slower than

  5. Exploring the Dynamics of Transit Times and Subsurface Mixing in a Small Agricultural Catchment

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Heidbüchel, Ingo; Musolff, Andreas; Reinstorf, Frido; Fleckenstein, Jan H.

    2018-03-01

    The analysis of transit/residence time distributions (TTDs and RTDs) provides important insights into the dynamics of stream-water ages and subsurface mixing. These insights have significant implications for water quality. For a small agricultural catchment in central Germany, we use a 3D fully coupled surface-subsurface hydrological model to simulate water flow and perform particle tracking to determine flow paths and transit times. The TTDs of discharge, RTDs of storage and fractional StorAge Selection (fSAS) functions are computed and analyzed on daily basis for a period of 10 years. Results show strong seasonal fluctuations of the median transit time of discharge and the median residence time, with the former being strongly related to the catchment wetness. Computed fSAS functions suggest systematic shifts of the discharge selection preference over four main periods: In the wet period, the youngest water in storage is preferentially selected, and this preference shifts gradually toward older ages of stored water when the catchment transitions into the drying, dry and wetting periods. These changes are driven by distinct shifts in the dominance of deeper flow paths and fast shallow flow paths. Changes in the shape of the fSAS functions can be captured by changes in the two parameters of the approximating Beta distributions, allowing the generation of continuous fSAS functions representing the general catchment behavior. These results improve our understanding of the seasonal dynamics of TTDs and fSAS functions for a complex real-world catchment and are important for interpreting solute export to the stream in a spatially implicit manner.

  6. Changes in water quality in agricultural catchments after deployment of wastewater treatment plant.

    PubMed

    Langhammer, Jakub; Rödlová, Sylva

    2013-12-01

    Insufficient wastewater remediation in small communities and nonpoint source pollution are the key factors in determining the water quality of small streams in an agricultural landscape. Despite the current extensive construction of municipal wastewater treatment facilities in small communities, the level of organic substances and nutrients in the recipient catchments has not decreased in many areas. This paper analyzes the changes in the water quality of the small streams after the deployment of wastewater treatment plants that were designed to address sources of pollution from small municipalities. The analysis is based on the results from a water quality monitoring network in the small watersheds in the Czech Republic. Five rural catchments with one dominant municipal pollution source, where a wastewater treatment plant was deployed during the monitoring period, were selected according to a predefined set of criteria, from a series of 317 profiles. Basic water quality indicators were selected for the assessment: O₂, BOD-5, COD, TOC, conductivity, NH₄-N, NO₂-N, NO₃-N, PT, and PO₄-P. Results of the analysis showed that the simple deployment of the water treatment facilities at these streams often did not lead to a reduction of contamination in the streams. The expected post-deployment changes, namely, a significant and permanent reduction of stream contamination, occurred only in one catchment, whereas in the remainder of the catchments, only marginal changes or even increased concentrations of the contaminants were detected. As the critical factors that determined the efficiency of wastewater treatment were studied, the need for the consideration of the local conditions during the design of the facility, particularly regarding the size of the catchments, initial level of contamination, proper system of operation, and process optimization of the treatment facility, emerged as the important factor.

  7. Mitigating Agricultural Diffuse Pollution: Learning from The River Eden Demonstration Test Catchment Experiments

    NASA Astrophysics Data System (ADS)

    Reaney, S. M.; Barker, P. A.; Haygarth, P.; Quinn, P. F.; Aftab, A.; Barber, N.; Burke, S.; Cleasby, W.; Jonczyk, J. C.; Owen, G. J.; Perks, M. T.; Snell, M. A.; Surridge, B.

    2016-12-01

    Freshwater systems continue to fail to achieve their ecological potential and provide associated ecological services due to poor water quality. A key driver of the failure to achieve good status under the EU Water Framework Directive derives from non-point (diffuse) pollution of sediment, phosphorus and nitrogen from agricultural landscapes. While many mitigation options exist, a framework is lacking which provides a holistic understanding of the impact of mitigation scheme design on catchment function and agronomics. The River Eden Demonstration Test Catchment project (2009-2017) in NW England uses an interdisciplinary approach including catchment hydrology, sediment-nutrient fluxes and farmer attitudes, to understand ecological function and diffuse pollution mitigation feature performance. Water flow (both surface and groundwater) and quality monitoring focused on three ca. 10km2 catchments with N and P measurements every 30 minutes. Ecological status was determined by monthly diatom community analysis and supplemented by macrophyte, macroinvertebrate and fish surveys. Changes in erosion potential and hydrological connectivity were monitored using extensive Landsat images and detailed UAV monitoring. Simulation modelling work utilised hydrological simulation models (CRAFT, CRUM3 and HBV-Light) and SCIMAP based risk mapping. Farmer behaviour and attitudes have been assessed with surveys, interviews and diaries. A suite of mitigation features have been installed including changes to land management - e.g. aeriation, storage features within a `treatment train', riparian fencing and woodland creation. A detailed dataset of the integrated catchment hydrological, water quality and ecological behaviour over multiple years, including a drought period and an extreme rainfall event, highlights the interaction between ecology, hydrological and nutrient dynamics that are driven by sediment and nutrients exported within a small number of high magnitude storm events. Hence

  8. Hydrological controls on DOC  :  nitrate resource stoichiometry in a lowland, agricultural catchment, southern UK

    NASA Astrophysics Data System (ADS)

    Heppell, Catherine M.; Binley, Andrew; Trimmer, Mark; Darch, Tegan; Jones, Ashley; Malone, Ed; Collins, Adrian L.; Johnes, Penny J.; Freer, Jim E.; Lloyd, Charlotte E. M.

    2017-09-01

    The role that hydrology plays in governing the interactions between dissolved organic carbon (DOC) and nitrogen in rivers draining lowland, agricultural landscapes is currently poorly understood. In light of the potential changes to the production and delivery of DOC and nitrate to rivers arising from climate change and land use management, there is a pressing need to improve our understanding of hydrological controls on DOC and nitrate dynamics in such catchments. We measured DOC and nitrate concentrations in river water of six reaches of the lowland river Hampshire Avon (Wiltshire, southern UK) in order to quantify the relationship between BFI (BFI) and DOC : nitrate molar ratios across contrasting geologies (Chalk, Greensand, and clay). We found a significant positive relationship between nitrate and BFI (p < 0. 0001), and a significant negative relationship between DOC and BFI (p < 0. 0001), resulting in a non-linear negative correlation between DOC : nitrate molar ratio and BFI. In the Hampshire Avon, headwater reaches which are underlain by clay and characterized by a more flashy hydrological regime are associated with DOC : nitrate ratios > 5 throughout the year, whilst groundwater-dominated reaches underlain by Chalk, with a high BFI have DOC : nitrate ratios in surface waters that are an order of magnitude lower (< 0.5). Our analysis also reveals significant seasonal variations in DOC : nitrate transport and highlights critical periods of nitrate export (e.g. winter in sub-catchments underlain by Chalk and Greensand, and autumn in drained, clay sub-catchments) when DOC : nitrate molar ratios are low, suggesting low potential for in-stream uptake of inorganic forms of nitrogen. Consequently, our study emphasizes the tight relationship between DOC and nitrate availability in agricultural catchments, and further reveals that this relationship is controlled to a great extent by the hydrological setting.

  9. Spatial and temporal patterns of pesticide concentrations in streamflow, drainage and runoff in a small Swedish agricultural catchment.

    PubMed

    Sandin, Maria; Piikki, Kristin; Jarvis, Nicholas; Larsbo, Mats; Bishop, Kevin; Kreuger, Jenny

    2018-01-01

    A better understanding of the dominant source areas and transport pathways of pesticide losses to surface water is needed for targeting mitigation efforts in a more cost-effective way. To this end, we monitored pesticides in surface water in an agricultural catchment typical of one of the main crop production regions in Sweden. Three small sub-catchments (88-242ha) were selected for water sampling based on a high-resolution digital soil map developed from proximal sensing methods and soil sampling; one sub-catchment had a high proportion of clay soils, another was dominated by coarse sandy soils while the third comprised a mix of soil types. Samples were collected from the stream, from field drains discharging into the stream and from within-field surface runoff during spring and early summer in three consecutive years. These samples were analyzed by LC-MS/MS for 99 compounds, including most of the polar and semi-polar pesticides frequently used in Swedish agriculture. Information on pesticide applications (products, doses and timing) was obtained from annual interviews with the farmers. There were clear and consistent differences in pesticide occurrence in the stream between the three sub-catchments, with both the numbers of detected compounds and concentrations being the largest in the area with a high proportion of clay soils and with very few detections in the sandy sub-catchment. Macropore flow to drains was most likely the dominant loss pathway in the studied area. Many of the compounds that were detected in drainage and stream water samples had not been applied for several years. This suggests that despite the predominant role of fast flow pathways in determining losses to the stream, long-term storage along the transport pathways also occurs, presumably in subsoil horizons where degradation is slow. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Spatio-temporal dynamics in phytobenthos structural properties reveal insights into agricultural catchment dynamics and nutrient fluxes

    NASA Astrophysics Data System (ADS)

    Reaney, S. M.; Snell, M. A.; Barker, P. A.; Aftab, A.; Barber, N. J.; Benskin, C.; Burke, S.; Cleasby, W.; Haygarth, P.; Jonczyk, J. C.; Owen, G. J.; Perks, M. T.; Quinn, P. F.; Surridge, B.

    2016-12-01

    Low order streams are spatially extensive, temporally dynamic, systems within the agricultural landscape. This dynamism extends to the aquatic communities within these streams, including the phytobentos, which demonstrates considerable resilience to diffuse anthropogenic nutrient pressures and changing climate dynamics. The phytobenthos community can substantially contribute to the food web, in particular diatoms, which dominate photo-autotrophic assemblages in low order streams. Diatoms are widely used in ecological monitoring because of their high sensitivity to environmental condition, but knowledge is limited on the ecological effects of winter disturbances and variance introduced by multiple and interacting pressures (N, P, sediment), introducing bias in understanding temporal dynamics in benthic diatom communities. Using the environmental time series data from long term monitoring within the River Eden Demonstration Test Catchment programme, we assess the impact of multiple hydro-chemical stressors on phytobenthic community resilience, and synthesize the impact of an extreme winter event. Monthly data from diatom communities collected in the Eden DTC from March 2011 to present show that river flow, strongly coupled to precipitation, is a key driver of these communities. Discharge has a direct effect on communities through scouring, but is also tightly correlated to nutrient delivery, such that 80% of the annual TP load arrives in 10% of the time. Trophic Diatom Index (TDI) values demonstrated considerable resilience by the stability of inter-monthly TDI scores over 5 seasonal cycles against the characterised highly variable hydrological regime. This research demonstrates that well characterised winter disturbances are critical to understanding drivers of aquatic dynamics. This has implications for catchment diffuse pollution policy, farm management and economics, given the climate projections of increases in frequency and intensity of extreme winter events

  11. Nutrient cycles in agricultural systems at sub-catchment scale within the UK and China

    NASA Astrophysics Data System (ADS)

    Bellarby, Jessica; Surridge, Ben; Haygarth, Philip M.; Lai, Xin; Zhang, Guilong; Song, Xiaolong; Zhou, Jianbin; Meng, Fanqiao; Shen, Jianbo; Rahn, Clive; Smith, Laurence; Burke, Sean

    2015-04-01

    Diffuse water pollution from agriculture (DWPA) represents a significant challenge in both the UK and China. The UK has developed policies and practices which seek to mitigate DWPA, yet the risks and adverse impacts of DWPA remain widespread. In contrast, China's past priorities have largely focussed on food security, with an emphasis on increasing food production through high fertiliser application rates with little attention being paid to enhanced nutrient export from land to water and to air. This has contributed to severe environmental problems which are only now beginning to be recognised and addressed. We have prepared nutrient balances (phosphorus and nitrogen) in contrasting agricultural production systems at sub-catchment scale within China and the UK. These draw from a variety of sources ranging from general yearly statistics collected by the respective government to farm surveys. Our aim is to use the resulting nutrient balances to underpin the sharing of knowledge and innovation to mitigate DWPA in both nations. In the UK, the case studies focus on the three Demonstration Test Catchment locations, covering a range of livestock and arable production systems across England. Here, the high frequency monitoring of phosphorus river loads enables the cross-validation of the simple nutrient budget approaches applied in this study. In China, our case studies span kiwi orchard, fruit and vegetable solar greenhouse systems, double cropped rice-wheat and wheat-maize production systems. Substantial differences in nutrient stocks and flows exist between individual production systems both across and within the two countries. These differences will be expressed along the source-mobilisation-delivery-impact continuum that underpins our budgets for both phosphorus and nitrogen. We will present the phosphorus cycles of some case studies and highlight their challenges and relevance at sub-catchment scale. Based on our nutrient budgets, general recommendations can be

  12. Downstream mixing of sediment and tracers in agricultural catchments: Evidence of changing sediment sources and fluvial processes?

    NASA Astrophysics Data System (ADS)

    Ralph, Timothy; Wethered, Adam; Smith, Hugh; Heijnis, Henk

    2014-05-01

    Land clearance, soil tillage and grazing in agricultural catchments have liberated sediment and altered hydrological connectivity between hillslopes and channels, leading to increased sediment availability, mobilisation and delivery to rivers. The type and amount of sediment supplied to rivers is critical for fluvial geomorphology and aquatic ecosystem health. Contemporary sediment dynamics are routinely investigated using environmental radionuclides such as caesium-137 (Cs-137) and excess lead-210 (Pb-210ex), which can provide information regarding sediment source types and fluvial processes if sediment sources can be distinguished from one another and mixing models applied to representative samples. However, downstream transport, mixing and dilution of radionuclide-labelled sediment (especially from sources with low initial concentrations) can obliterate the tracer signal; sometimes before anything of geomorphological importance happens in the catchment. Can these findings be used as evidence of sediment source variations and fluvial processes when the limits of detection (of Cs-137 in particular) are being exceeded so rapidly downstream? Sediment sources and downstream sediment dynamics were investigated in Coolbaggie Creek, a major supplier of sediment to the Macquarie River in an agricultural catchment with temperate to semi-arid climate in Australia. Radionuclides were used to discriminate between the <63 micron fraction of sediment sources including forested topsoils (Cs-137 11.28 +/- 0.75 Bq/kg; Pb-210ex 181.87 +/- 20.00 Bq/kg), agricultural topsoils (Cs-137 3.21 +/- 0.26 Bq/kg; Pb-210ex 29.59 +/- 10.94 Bq/kg) and sub-soils from channel banks and gullies (Cs-137 1.45 +/- 0.47 Bq/kg; Pb-210ex 4.67 +/- 1.93 Bq/kg). Within the trunk stream, suspended sediment, organic matter and Cs-137 and Pb-210ex concentrations declined downstream. Results from a mixing model suggest that agricultural topsoils account for 95% of fine sediment entering the channel in the

  13. Spatio-temporal patterns in land use and management affecting surface runoff response of agricultural catchments - a review

    NASA Astrophysics Data System (ADS)

    Fiener, P.; Auerswald, K.; van Oost, K.

    2009-04-01

    In many landscapes, land use creates a complex pattern in addition to the patterns resulting from soil, topography and rain. Despite the static layout of fields, a spatio-temporally highly variable situation regarding the surface runoff and erosion processes results from the asynchronous seasonal variation associated with different land uses. While the behaviour of individual land-uses and their seasonal variation is analyzed in many studies, the spatio-temporal interaction related to this pattern is rarely studied despite its crucial influence on hydrological and geomorphic response of catchments. The difficulty in studying such interactions mainly results from the fact that it is impossible to set up a replicated experiment on the landscape scale. The purpose of this review is to present the advances made thus far in quantifying the effects of patchiness of land use and management on surface runoff response in agricultural catchments. We will focus on the effects of spatio-temporal patterns in land use patches on hydraulic connectivity between patches and within catchments. This will include the temporal patterns in land management affecting infiltration, surface roughness and hence runoff concentration within single fields or land use patches insofar as these effects must be known to evaluate the combined effect of patch behaviour in space and time on catchment connectivity and surface runoff. Surface runoff effects of patchiness and connectivity between patches or within a catchment, can either be addressed by modelling studies or by comprehensive catchment field measurements, e.g. paired-watershed experiments or landscape scale studies on different scales. This limits our review to studies at the scale of small catchments < 10 km², where the time constant of the network (i.e. travel time through it) is smaller than the infiltration phase. Despite this limitation, these small catchments are important as they constitute 2/3 of the total surface of large water

  14. Merging perspectives in the catchment sciences: the US-Japan Joint Seminar on catchment hydrology and forest biogeochemistry

    Treesearch

    Kevin J. McGuire; Stephen D. Sebestyen; Nobuhito Ohte; Emily M. Elliott; Takashi Gomi; Mark B. Green; Brian L. McGlynn; Naoko Tokuchi

    2014-01-01

    Japan has strong research programmes in the catchment sciences that overlap with interests in the US catchment science community, particularly in experimental and field-based research. Historically, however, there has been limited interaction between these two hydrologic science communities because of differences in language, culture, and research approaches. These...

  15. Combining experimentalist knowledge with modelling approaches to evaluate a controlled herbicide application experiment in an agricultural headwater catchment

    NASA Astrophysics Data System (ADS)

    Ammann, Lorenz; Fenicia, Fabrizio; Doppler, Tobias; Reichert, Peter; Stamm, Christian

    2017-04-01

    Although only a small fraction of the herbicide mass sprayed on agricultural fields reaches the stream in usual conditions, concentrations in streams may reach levels proven to affect organisms. Therefore, diffuse pollution of water bodies by herbicides in catchments dominated by agricultural land-use is a major concern. The process of herbicide wash off has been studied through experiments at lab and field scales. Fewer studies are available at the scales of small catchments and larger watersheds, as the lack of spatial measurements at these scales hinders model parameterization and evaluation. Even fewer studies make explicit use of the combined knowledge of experimentalists and modellers. As a result, the dynamics and interactions of processes responsible for herbicide mobilization and transport at the catchment scale are insufficiently understood. In this work, we integrate preexisting experimentalist knowledge aquired in a large controlled herbicide application experiment into the model development process. The experimental site was a small (1.2 km2) agricultural catchment with subdued topography (423 to 473 m a.s.l.), typical for the Swiss Plateau. The experiment consisted of an application of multiple herbicides, distributed in-stream concentration measurements at high temporal resolution as well as soil and ponding water samples. The measurements revealed considerable spatio-temporal variation in herbicide loss rates. The objective of our study is to better understand the processes that caused this variation. In an iterative dialogue between modellers and experimentalists, we constructed a simple hydrological model structure with multiple reservoirs, considering degradation and sorption of herbicides. Spatial heterogeneity was accounted for through Hydrological Response Units (HRUs). Different model structures were used for dinstinct HRUs to account for spatial variability in the perceived dominant processes. Some parameters were linked between HRUs to

  16. Identification of dominant interactions between climatic seasonality, catchment characteristics and agricultural activities on Budyko-type equation parameter estimation

    NASA Astrophysics Data System (ADS)

    Xing, Wanqiu; Wang, Weiguang; Shao, Quanxi; Yong, Bin

    2018-01-01

    Quantifying precipitation (P) partition into evapotranspiration (E) and runoff (Q) is of great importance for global and regional water availability assessment. Budyko framework serves as a powerful tool to make simple and transparent estimation for the partition, using a single parameter, to characterize the shape of the Budyko curve for a "specific basin", where the single parameter reflects the overall effect by not only climatic seasonality, catchment characteristics (e.g., soil, topography and vegetation) but also agricultural activities (e.g., cultivation and irrigation). At the regional scale, these influencing factors are interconnected, and the interactions between them can also affect the single parameter of Budyko-type equations' estimating. Here we employ the multivariate adaptive regression splines (MARS) model to estimate the Budyko curve shape parameter (n in the Choudhury's equation, one form of the Budyko framework) of the selected 96 catchments across China using a data set of long-term averages for climatic seasonality, catchment characteristics and agricultural activities. Results show average storm depth (ASD), vegetation coverage (M), and seasonality index of precipitation (SI) are three statistically significant factors affecting the Budyko parameter. More importantly, four pairs of interactions are recognized by the MARS model as: The interaction between CA (percentage of cultivated land area to total catchment area) and ASD shows that the cultivation can weaken the reducing effect of high ASD (>46.78 mm) on the Budyko parameter estimating. Drought (represented by the value of Palmer drought severity index < -0.74) and uneven distribution of annual rainfall (represented by the value of coefficient of variation of precipitation > 0.23) tend to enhance the Budyko parameter reduction by large SI (>0.797). Low vegetation coverage (34.56%) is likely to intensify the rising effect on evapotranspiration ratio by IA (percentage of irrigation area to

  17. Assessment of hydrology, suspended sediment and particulate organic carbon transport in a large agricultural catchment using SWAT model

    NASA Astrophysics Data System (ADS)

    Chantha, Oeurng; Sabine, Sauvage; José-Miguel, Sánchez-Pérez

    2010-05-01

    Suspended sediment transport from agricultural catchments to stream networks is responsible for aquatic habitat degradation, reservoir sedimentation and the transport of sediment-bound pollutants (pesticides, particulate nutrients, heavy metals and other toxic substances). Quantifying and understanding the dynamics of suspended sediment transfer from agricultural land to watercourses is essential in controlling soil erosion and in implementing appropriate mitigation practices to reduce stream suspended sediment and associated pollutant loads, and hence improve surface water quality downstream. Gascogne area, southwest France, has been dominated by anthropogenic activities particularly intensive agriculture causing severe erosion in recent decades. This leads to a major threat to surface water quality due to soil erosion. Therefore, the catchment water quality has been continuously monitored since January 2007 and the historical data of hydrology and suspended sediment has existed since 1998. In this study, the Soil and Water Assessment Tool (SWAT 2005) was applied to assess hydrology, suspended sediment and particulate organic carbon in this catchment Agricultural management practices (crop rotation, planting date, fertilizer quantity and irrigations) were taken into the model for simulation period of 11 years (July, 1998 to March, 2009). The investigation was conducted using a 11-year streamflow and two years of suspended sediment record from January 2007 to March 2009. Modelling strategy with dominant landuse and soil type was chosen in this study. The SWAT generally performs satisfactorily and could simulate both daily and monthly runoff and sediment yield. The simulated daily and monthly runoff matched the observed values satisfactorily (ENash>0.5). For suspended sediment simulation, the simulated values were compared with the observed continuous suspended sediment derived from turbidity data. Based on the relationship between SSC and POC (R2 = 0.93), POC was

  18. Natural organic matter properties in Swedish agricultural streams

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Kyllmar, Katarina; Bergström, Lars; Köhler, Stephan

    2016-04-01

    We have analysed natural organic matter (NOM) properties in 18 agricultural streams in Sweden covering a broad range of environmental (climate, soil type), land use and water quality (nutrient and concentrations, pH, alkalinity) characteristics. Stream water samples collected every two weeks within an ongoing Swedish Monitoring Programme for Agriculture have been analysed for total/dissolved organic carbon, absorbance and fluorescence spectroscopy. A number of quantitative and qualitative spectroscopic parameters was calculated to help to distinguish between terrestrially-derived, refractory organic material and autochthonous, labile material indicative of biogeochemical transformations of terrestrial NOM and recent biological production. The study provides insights into organic matter properties and carbon budgets in agricultural streams and improves understanding of how agricultural catchments transform natural and anthropogenic fluxes of organic matter and nutrients to signals observed in receiving waters.

  19. Leaf breakdown in streams differing in catchment land use

    USGS Publications Warehouse

    Paul, M.J.; Meyer, J.L.; Couch, C.A.

    2006-01-01

    1. The impact of changes in land use on stream ecosystem function is poorly understood. We studied leaf breakdown, a fundamental process of stream ecosystems, in streams that represent a range of catchment land use in the Piedmont physiographic province of the south-eastern United States. 2. We placed bags of chalk maple (Acer barbatum) leaves in similar-sized streams in 12 catchments of differing dominant land use: four forested, three agricultural, two suburban and three urban catchments. We measured leaf mass, invertebrate abundance and fungal biomass in leaf bags over time. 3. Leaves decayed significantly faster in agricultural (0.0465 day-1) and urban (0.0474 day-1) streams than in suburban (0.0173 day-1) and forested (0.0100 day-1) streams. Additionally, breakdown rates in the agricultural and urban streams were among the fastest reported for deciduous leaves in any stream. Nutrient concentrations in agricultural streams were significantly higher than in any other land-use type. Fungal biomass associated with leaves was significantly lower in urban streams; while shredder abundance in leaf bags was significantly higher in forested and agricultural streams than in suburban and urban streams. Storm runoff was significantly higher in urban and suburban catchments that had higher impervious surface cover than forested or agricultural catchments. 4. We propose that processes accelerating leaf breakdown in agricultural and urban streams were not the same: faster breakdown in agricultural streams was due to increased biological activity as a result of nutrient enrichment, whereas faster breakdown in urban streams was a result of physical fragmentation resulting from higher storm runoff. ?? 2006 The Authors.

  20. Contribution of bank erosion to the sediment budget of a drained agricultural lowland catchment

    NASA Astrophysics Data System (ADS)

    Cerdan, Olivier; Foucher, Anthony; Vandromme, Rosalie; Salvador-Blanes, Sébastien; Gay, Aurore; Landemaine, Valentin; Evrard, Olivier

    2017-04-01

    Following the shift towards more intensive agriculture in cultivated lowlands in Europe, field sizes have increased and stream valley meanderings have been removed and realigned along new straight field borders. These modifications have led to profound alterations of the hydromorphology of the streams. To test the impact of these modifications, the long-term and current volumes of sediment originating from stream banks were calculated as they provided potential sources of sediment in a large pond located at the outlet of a small agricultural lowland basin under strong anthropogenic pressure. Bank erosion was measured using several methodologies, i) over a short period using a set of erosion pins along a small stream (1400 m long) to quantify the material exported during a single winter season (2012/2013); ii) over the last 69 years using an original approach involving the comparison of a compilation of three-dimensional historical stream redesign plans from 1944 vs. new measurements conducted in 2013 (DGPS and LiDAR data); iii) over several decades by using tracers (137Cs) that can differentiate between surface and subsoil erosion. At the catchment scale, total sediment exports were estimated from 1945 to 2013 combining seismic imagery and core dating in the lake. Sediment exports decreased with time, from 300 t. km-2.yr-between 1954 and 1980 to 95 t. km-2.yr-1 between 1980 and 2013. Today, erosion rates recorded at the outlet of the catchment vary between 90-102 t.km-2.yr-1. Therefore, the order of magnitude of the mean export rate is approximately 180 t. km-2.yr-1 for the last 70 years. The contribution of channel banks to this sediment export was the highest ( 30%) between 1954 and 1980 when the ditches were constructed. For the entire period since the landscape modification, the contribution of bank erosion is lower but still reaches 20%. Bank erosion can therefore be considered as a significant contributor to the sediment budget of the lowland catchments that

  1. Implications of climate change scenarios for agriculture in alpine regions--a case study in the Swiss Rhone catchment.

    PubMed

    Fuhrer, J; Smith, P; Gobiet, A

    2014-09-15

    Coping with climate change in agriculture requires knowledge of trends in agro-climatic conditions with a focus at the smaller scales where decisions are taken. As part of the EU FP7 ACQWA project, the situation was analyzed for agriculture in the case of the Swiss Rhone catchment (Valais) where cultivation of permanent crops (orchards and vineyards) and livestock production are the most important agro-economic activities. The aim of this study was to use daily data from four downscaled and bias corrected transient climate change scenarios to analyze changes in water and temperature related indices over the period 1951-2050 for three locations (Aigle, Sion, Montana) that are representative of different production zones in the catchment. The results indicate that most relevant implications are caused by projected changes in temperature and not in precipitation. They indicate an extension of the thermal growing season with potentially positive effects on pasture and livestock production, most pronounced at the mountain site (Montana), but a trend towards increasing risks of frost in permanent crops and in heat stress for livestock at the valley bottom (Aigle, Sion). The increase in water requirement for irrigation in 2021-2050 relative to 1981-2009 is moderate (4-16%, depending on location). However, in years with low amounts of snow and rain, in small catchments with a nival regime, reduced water supply by rivers could restrict the surface area of grassland that can be irrigated, particularly during springtime. It is concluded that coping with heat-related risks may be most needed at the lower cropland and pasture sites while water-related issues would become more relevant in more elevated locations where pasture-based livestock production is the dominant type of agricultural land use. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Perception of Teachers of Agriculture about Supervised Agricultural Experience Programmes (SAEP) in Secondary Schools in Ekiti and Ondo States Nigeria

    ERIC Educational Resources Information Center

    Famiwole, Remi O.; Kolawole, E. B.

    2013-01-01

    The study investigated the perception of teachers of agriculture about Supervised Agricultural Experience Programmes (SAEP) in secondary schools in Ekiti and Ondo States. The population used for the study consisted of 520 teachers of agricultural science in all the secondary schools in Ekiti and Ondo States. The sample used for this study was 136…

  3. Stream Nitrate Concentrations in a Small Catchment in South West England over a Period of 35 Years (1970-2005)

    NASA Astrophysics Data System (ADS)

    Burt, T.; Worrall, F.

    2008-12-01

    A 35-year record of nitrate concentration for the Slapton Wood stream, a small agricultural catchment in south west England, is presented. The study reconsiders earlier work in order to assess whether upward trends have been maintained and how controls on catchment nitrate processes have altered. The study has shown that: (i) the catchment has reached a new position of equilibrium and increases in nitrate concentration have levelled off; (ii) the occurrence of severe droughts means that records of less than a decade are misleading and only longer records can illustrate changes of system state; (iii) the change of state observed in the catchment is illustrated in the switching of long-term memory effects from a negative to a positive annual memory; (iv) a significant long-term impulsivity relationship with rainfall becomes insignificant over the course of the study period. The study shows the importance of long records in exposing changes in state in catchment systems and understanding the time constants of a range of driving processes. The study by its very nature also demonstrates the importance of maintaining long-term monitoring programmes.

  4. Measuring fallout radionuclides to constrain the origin and the dynamics of suspended sediment in an agricultural drained catchment (Loire River basin, France)

    NASA Astrophysics Data System (ADS)

    Le Gall, Marion; Evrard, Olivier; Foucher, Anthony; Laceby, J. Patrick; Salvador-Blanes, Sébastien; Lefèvre, Irène; Cerdan, Olivier; Ayrault, Sophie

    2015-04-01

    Soil erosion reaches problematic levels in agricultural areas of Northwestern Europe where tile drains may accelerate sediment transfer to rivers. This supply of large quantities of fine sediment to the river network leads to the degradation of water quality by increasing water turbidity, filling reservoirs and transporting contaminants. Agricultural patterns and landscapes features have been largely modified by human activities during the last century. To investigate erosion and sediment transport in lowland drained areas, a small catchment, the Louroux (24 km²), located in the French Loire River basin was selected. In this catchment, channels have been reshaped and more than 220 tile drains outlets have been installed after World War II. As a result, soil erosion and sediment fluxes strongly increased. Sediment supply needs to be better understood by quantifying the contribution of sources and the residence times of particles within the catchment. To this end, a network of river monitoring stations was installed, and fallout radionuclides (Cs-137, excess Pb-210 and Be-7) were measured in rainwater (n=3), drain tile outlets (n=4), suspended sediment (n=15), soil surface (n=30) and channel bank samples (n=15) between January 2013 and February 2014. Cs-137 concentrations were used to quantify the contribution of surface vs. subsurface sources of sediment. Results show a clear dominance of particles originating from surface sources (99 ± 1%). Be-7 and excess Pb-210 concentrations and calculation of Be-7/excess Pb-210 ratios in rainfall and suspended sediment samples were used to estimate percentages of recently eroded sediment in rivers. The first erosive winter storm mainly exported sediment depleted in Be-7 that likely deposited on the riverbed during the previous months. Then, during the subsequent floods, sediment was directly eroded and exported to the catchment outlet. Our results show the added value of combining spatial and temporal tracers to characterize

  5. Contribution of waste water treatment plants to pesticide toxicity in agriculture catchments.

    PubMed

    Le, Trong Dieu Hien; Scharmüller, Andreas; Kattwinkel, Mira; Kühne, Ralph; Schüürmann, Gerrit; Schäfer, Ralf B

    2017-11-01

    Pesticide residues are frequently found in water bodies and may threaten freshwater ecosystems and biodiversity. In addition to runoff or leaching from treated agricultural fields, pesticides may enter streams via effluents from wastewater treatment plants (WWTPs). We compared the pesticide toxicity in terms of log maximum Toxic Unit (log mTU) of sampling sites in small agricultural streams of Germany with and without WWTPs in the upstream catchments. We found an approximately half log unit higher pesticide toxicity for sampling sites with WWTPs (p < 0.001). Compared to fungicides and insecticides, herbicides contributed most to the total pesticide toxicity in streams with WWTPs. A few compounds (diuron, terbuthylazin, isoproturon, terbutryn and Metazachlor) dominated the herbicide toxicity. Pesticide toxicity was not correlated with upstream distance to WWTP (Spearman's rank correlation, rho = - 0.11, p > 0.05) suggesting that other context variables are more important to explain WWTP-driven pesticide toxicity. Our results suggest that WWTPs contribute to pesticide toxicity in German streams. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Field-based study of connectivity in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Lexartza-Artza, I.; Wainwright, J.

    2009-12-01

    Field-based studies of hydrological connectivity can provide context-specific knowledge that might both help understand dynamic complex systems and contribute to other synthetic or modelling approaches. The importance of such an understanding of catchment processes and also of the knowledge of catchment connections with water bodies and the changes of concentration with scale for Integrated Catchment Management has been increasingly emphasized. To provide a holistic understanding, approaches to the study of connectivity need to include both structural and functional aspects of the system and must consider the processes taking place within and across different temporal and spatial scales. A semi-quantitative nested approach has been used to investigate connectivity and study the interactions and feedbacks between the factors influencing transfer processes in the Ingbirchworth Catchment, in the uplands of the River Don, England. A series of reconnaissance techniques have been combined with monitoring of aspects such as rainfall, runoff, sediment transfer and soil-moisture distribution from plot to catchment scale and with consideration of linkages between land and water bodies. The temporal aspect has also been considered, with a special focus on the temporal distribution of events and the influence of longer term catchment changes such as those in land use and management practices. A variability of responses has been observed in relation to the characteristics of events, land use and scale of observation, with elements traditionally considered as limiting or enhancing connectivity responding differently under changing conditions. Sediment redistribution, reshaping of structure and consequent reinforcing loops can be observed across all land uses and landscape units, but the relevance it terms of effective connectivity of highly connected patches varies as the scale is increased. The knowledge acquired can contribute to recognise emerging processes significant for

  7. Phosphorus and nitrogen fluxes carried by 21 Finnish agricultural rivers in 1985-2006.

    PubMed

    Ekholm, Petri; Rankinen, Katri; Rita, Hannu; Räike, Antti; Sjöblom, Heidi; Raateland, Arjen; Vesikko, Ljudmila; Cano Bernal, José Enrique; Taskinen, Antti

    2015-04-01

    The Finnish Agri-Environmental Programme aims to reduce nutrient load to waters. Using national monitoring data, we estimated the agricultural load (incl. natural background) of total phosphorus (TP) and total nitrogen (TN) transported by 21 Finnish rivers to the northern Baltic Sea and analysed the flow-adjusted trends in the loads and concentrations from 1985 to 2006. We also related the loads to spatial and temporal patterns in catchment and agricultural characteristics. Agricultural load of TN increased, especially in the rivers discharging into the Bothnian Bay, while the load of TP decreased in most of the rivers, except those discharging into the Archipelago Sea. The trends may partly be related to a decrease in grassed area (TP, TN) and increased mineralisation (TN), but the available data on catchment and agricultural characteristics did not fully explain the observed pattern. Our study showed that data arising from relatively infrequent monitoring may prove useful for analysing long-term trend. The mutual correlation among the explaining variables hampered the analysis of the load generating factors.

  8. USE OF MACROINVERTEBRATE METRICS TO DIFFERENTIATE BETWEEN THE EFFECTS OF DECREASED CANOPY AND INCREASED EMBEDDEDNESS IN STREAMS IN DRAINING AGRICULTURAL CATCHMENTS

    EPA Science Inventory

    Reduced canopy as a result of lost riparian vegetation and increased substrate embeddedness as a result of greater inputs of the fine sediments are two environmental stressor gradients that often covary in streams draining agricultural catchments. An understanding of relationship...

  9. Catchment Restoration in the Tweed UNESCO-IHP HELP Basin - Eddleston Water

    NASA Astrophysics Data System (ADS)

    Spray, Christopher

    2013-04-01

    The EU Water Frame Work Directive (WFD) requires member states to work towards the achievement of 'good ecological status' for water bodies, through a 6 year cycle of river basin management plans (RBMPs). Within these RBMPs, states must develop and implement programmes of measures designed to improve the quality of individual water bodies at risk of failing to achieve this status. These RBMPS must not only be focussed on the key causes of failure, but increasingly look to deliver multiple benefits, such as flood risk reduction and improvement to biodiversity from such catchment interventions, and to involve communities and other stakeholders in restoration of their local environment. This paper reports on progress of a detailed study of the restoration of the Eddleston Water, a typical 'failing' water body in Scotland, the monitoring and governance arrangements behind this, and implications for rehabilitation of river systems elsewhere. Within UK rivers, the main causes of failure to achieve good ecological status are historical morphological changes to river courses, diffuse agricultural pollution and invasive non-native species. The Eddleston Water is a 70 sq kms sub-catchment of the Tweed, an UNESCO IHP-HELP basin in the Scottish : English borders, and is currently classified as 'bad' status, due largely to morphological changes to the course and structure of the river over the past 200 years. The main challenge therefor is physical restoration of the river to achieve functional connectivity with the flood plain. At the same time however, the two communities within the catchment suffer from flooding, so a second priority is to intervene within the catchment to reduce the risk of flooding through the use of "natural flood management" measures and, underlying both these two aspects a whole catchment approach to community participation and the achievement of a range of other ecosystem service benefits, including conservation of biodiversity. We report on the

  10. Intensive rice agriculture deteriorates the quality of shallow groundwater in a typical agricultural catchment in subtropical central China.

    PubMed

    Wang, Yi; Li, Yuyuan; Li, Yong; Liu, Feng; Liu, Xinliang; Gong, Dianlin; Ma, Qiumei; Li, Wei; Wu, Jinshui

    2015-09-01

    High nitrogen (N) concentrations in rural domestic water supplies have been attributed to excessive agricultural N leaching into shallow groundwater systems; therefore, it is important to determine the impact of agriculture (e.g., rice production) on groundwater quality. To understand the impact of agricultural land use on the N concentrations in the shallow groundwater in subtropical central China, a large observation program was established to observe ammonium-N (NH4-N), nitrate-N (NO3-N), and total N (TN) concentrations in 161 groundwater observation wells from April 2010 to November 2012. The results indicated that the median values of NH4-N, NO3-N, and TN concentrations in the groundwater were 0.15, 0.39, and 1.38 mg N L(-1), respectively. A total of 36.3 % of the water samples were categorized as NH4-N pollution, and only a small portion of the samples were categorized as NO3-N pollution, based on the Chinese Environmental Quality Standards for Groundwater of GB/T 14848-93 (General Administration of Quality Supervision of China, 1993). These results indicated of moderate groundwater NH4-N pollution, which was mainly attributed to intensive rice agriculture with great N fertilizer application rates in the catchment. In addition, tea and vegetable fields showed higher groundwater NO3-N and TN concentrations than other agricultural land use types. The factorial correspondence analysis (FCA) suggested that the flooded agricultural land use types (e.g., single-rice and double-rice) had potential to impose NH4-N pollution, particularly in the soil exhausting season during from July to October. And, the great N fertilizer application rates could lead to a worse NO3-N and TN pollution in shallow groundwater. Hence, to protect groundwater quality and minimize NH4-N pollution, managing optimal fertilizer application and applying appropriate agricultural land use types should be implemented in the region.

  11. Model-based coefficient method for calculation of N leaching from agricultural fields applied to small catchments and the effects of leaching reducing measures

    NASA Astrophysics Data System (ADS)

    Kyllmar, K.; Mårtensson, K.; Johnsson, H.

    2005-03-01

    A method to calculate N leaching from arable fields using model-calculated N leaching coefficients (NLCs) was developed. Using the process-based modelling system SOILNDB, leaching of N was simulated for four leaching regions in southern Sweden with 20-year climate series and a large number of randomised crop sequences based on regional agricultural statistics. To obtain N leaching coefficients, mean values of annual N leaching were calculated for each combination of main crop, following crop and fertilisation regime for each leaching region and soil type. The field-NLC method developed could be useful for following up water quality goals in e.g. small monitoring catchments, since it allows normal leaching from actual crop rotations and fertilisation to be determined regardless of the weather. The method was tested using field data from nine small intensively monitored agricultural catchments. The agreement between calculated field N leaching and measured N transport in catchment stream outlets, 19-47 and 8-38 kg ha -1 yr -1, respectively, was satisfactory in most catchments when contributions from land uses other than arable land and uncertainties in groundwater flows were considered. The possibility of calculating effects of crop combinations (crop and following crop) is of considerable value since changes in crop rotation constitute a large potential for reducing N leaching. When the effect of a number of potential measures to reduce N leaching (i.e. applying manure in spring instead of autumn; postponing ploughing-in of ley and green fallow in autumn; undersowing a catch crop in cereals and oilseeds; and increasing the area of catch crops by substituting winter cereals and winter oilseeds with corresponding spring crops) was calculated for the arable fields in the catchments using field-NLCs, N leaching was reduced by between 34 and 54% for the separate catchments when the best possible effect on the entire potential area was assumed.

  12. Comparing erosion rates in burnt forests and agricultural fields for a mountain catchment in NW Iberia

    NASA Astrophysics Data System (ADS)

    Nunes, João Pedro; Marisa Santos, Juliana; Bernard-Jannin, Léonard; Keizer, Jan Jacob

    2013-04-01

    A large part of northwestern Iberia is nowadays covered by commercial forest plantations of eucalypts and maritime pines, which have partly replaced traditional agricultural land-uses. The humid Mediterranean climate, with mild wet winters and warm dry summers, creates favorable conditions for the occurrence of frequent and recurrent forest fires. Erosion rates in recently burnt areas have been the subject of numerous studies; however, there is still a lack of information on their relevance when compared with agricultural erosion rates, impairing a comprehensive assessment of the role of forests for soil protection. This study focuses on Macieira de Alcoba, head-water catchment in the Caramulo Mountain Range, north-central Portugal, with a mixture of agricultural fields (mostly a rotation between winter pastures and summer cereals) on the lower slopes and forest plantations (mostly eucalypts) on the upper slopes. Agricultural erosion in this catchment has been monitored since 2010; a forest fire in 2011 presented an opportunity to compare post-fire and agricultural erosion rates at nearby sites with comparable soil and climatic conditions. Erosion rates were monitored between 2010 and 2013 by repeated surveys of visible erosion features and, in particular, by mapping and measuring rills and gullies after important rainfall events. During the 2011/2012 hydrological year, erosion rates in the burnt forest were two orders of magnitude above those in agricultural fields, amounting to 17.6 and. 0.1 Mg ha-1, respectively. Rills were widespread in the burnt area, while in the agricultural area they were limited to a small number of fields with higher slope; these particular fields experienced an erosion rate of 2.3 Mg ha-1, still one order of magnitude lower than at the burnt forest site. The timing of the erosion features was also quite distinct for the burnt area and the agricultural fields. During the first nine months after the fire, rill formation was not observed in

  13. Impact of soil protection measures based on topographical variations through connectivity indices in two agricultural catchments in Spain

    NASA Astrophysics Data System (ADS)

    Taguas, Encarnación; Mesas, F. Javier; García-Ferrer, Alfonso; Marín-Moreno, Víctor; Mateos, Luciano

    2017-04-01

    Physiographic attributes of the catchments (spatial organization and internal connectivity) determine sediment production, transport and delivery to river channels downstream. Understanding the hydrological connectivity allows identifying runoff and sediment contribution from overland flow pathways, rills and gullies at the upper parts of the catchments to sink areas (Borselli et al., 2008). Currently, the design of orchards and row crops plantations is driven by traffic and machinery management criteria, meaning significant simplification of the landscape. Topographic alterations may reduce the connectivity and maximize the retention of water and sediments in catchments by increasing travel times and infiltration (Gay et al., 2016). There are connectivity indices based on topography and land use information (Borselli et al., 2008) and travel times (Chow et al., 1988) which may help to identify measures to reduce water and sediment transfer. In this work, connectivity indices derived from digital elevation models (DEM) of two small agricultural catchments where topographic measures to interrupt the connectivity had been implemented were analyzed. The topographical details of the tree row ridges in a young almond orchard catchment and half-moons (individual terraces) in an olive grove catchment were obtained using Unmanned Aerial Vehicles (UAVs) flights. The aim was to evaluate the benefits of ridges and half-moons by comparing spatial patterns of connectivity indices before and after the topographical modifications in the catchments. The catchments were flown in December 2016. The original DEMs were generated based on previous topographical information and a filter based on minimum heights. The statistics and the maps generated will be presented as results of our study and its interpretation will provide an analysis to preliminarily explore effective and economical measures for erosion control and improved water harvesting. REFERENCES Gay, O. Cerdan, V. Mardhel, M

  14. Comparison of threshold hydrologic response across northern catchments

    Treesearch

    Genevieve Ali; Doerthe Tetzlaff; Jeffrey J. McDonnell; Chris Soulsby; Sean Carey; Hjalmar Laudon; Kevin McGuire; Jim Buttle; Jan Seibert; Jamie Shanley

    2015-01-01

    Nine mid-latitude to high-latitude headwater catchments – part of the Northern Watershed Ecosystem Response to Climate Change (North-Watch) programme – were used to analyze threshold response to rainfall and snowmelt-driven events and link the different responses to the catchment characteristics of the nine sites. The North-Watch data include daily time-series of...

  15. Effectiveness of Conservation Measures in Reducing Runoff and Soil Loss Under Different Magnitude-Frequency Storms at Plot and Catchment Scales in the Semi-arid Agricultural Landscape.

    PubMed

    Zhu, T X

    2016-03-01

    In this study, multi-year stormflow data collected at both catchment and plot scales on an event basis were used to evaluate the efficiency of conservation. At the catchment scale, soil loss from YDG, an agricultural catchment with no conservation measures, was compared with that from CZG, an agricultural catchment with an implementation of a range of conservation measures. With an increase of storm recurrence intervals in the order of <1, 1-2, 2-5, 5-10, 10-20, and >20 years, the mean event sediment yield was 639, 1721, 5779, 15191, 19627, and 47924 t/km(2) in YDG, and was 244, 767, 3077, 4679, 8388, and 15868 t/km(2) in CZG, which represented a reduction effectiveness of 61.8, 55.4, 46.7, 69.2, 57.2, and 66.8 %, respectively. Storm events with recurrence intervals greater than 2 years contributed about two-thirds of the total runoff and sediment in both YDG and CZG catchments. At the plot scale, soil loss from one cultivated slopeland was compared with that from five conservation plots. The mean event soil loss was 1622 t/km(2) on the cultivated slopeland, in comparison to 27.7 t/km(2) on the woodland plot, 213 t/km(2) on the grassland plot, 467 t/km(2) on the alfalfa plot, 236 t/km(2) on the terraceland plot, and 642 t/km(2) on the earthbank plot. Soil loss per unit area from all the plots was significantly less than that from the catchments for storms of all categories of recurrence intervals.

  16. Process evaluation improves delivery of a nutrition-sensitive agriculture programme in Burkina Faso.

    PubMed

    Nielsen, Jennifer N; Olney, Deanna K; Ouedraogo, Marcellin; Pedehombga, Abdoulaye; Rouamba, Hippolyte; Yago-Wienne, Fanny

    2017-12-26

    Evidence is emerging from rigorous evaluations about the effectiveness of nutrition-sensitive agriculture programmes in improving nutritional outcomes. Additional evidence can elucidate how different programme components and pathways contribute and can be optimized for impact. The International Food Policy Research Institute, with Helen Keller International, designed a comprehensive framework to evaluate the delivery, utilization, and impact of Helen Keller International's enhanced homestead food production programme in Burkina Faso. After 18 months of implementation, a process evaluation was conducted to examine programme impact pathways, using key informant and semistructured interviews with implementing agents and beneficiaries, and with residents of control communities. Data were analyzed by International Food Policy Research Institute and reviewed with project managers and partners through multiple workshops to identify opportunities to strengthen implementation. Findings illuminated gaps between intended and actual delivery schemes, including input constraints, knowledge gaps among community agents in agriculture and young child nutrition practices, and lower than expected activity by community volunteers. In response, staff developed measures to overcome water constraints and expand vegetable and poultry production, retrained volunteers in certain techniques of food production and counselling for nutrition behaviour change, added small incentives to motivate volunteers, and shaped both immediate and long-term changes to the programme model. Working closely with International Food Policy Research Institute on the evaluation activities also expanded the repertoire of research methods and skills of Helen Keller International staff. Process evaluation can strengthen programme delivery, utilization, and design. Collaboration between researchers and implementers can improve programme effectiveness, project staff capacity, and advance delivery science. © 2017

  17. How Programme Teams Progress Agricultural Innovation in the Australian Dairy Industry

    ERIC Educational Resources Information Center

    Nettle, Ruth; Brightling, Pauline; Hope, Anne

    2013-01-01

    Purpose: This article outlines the emergence of programme teams in the Australian dairy farm sector as a response to counter weaknesses in the institutional environment for agricultural innovation which favours technology adoption/diffusion approaches. Design/methodology/approach: The strengths, weaknesses and risks of different approaches to…

  18. Spatial heterogeneity of mobilization processes and input pathways of herbicides into a brook in a small agricultural catchment

    NASA Astrophysics Data System (ADS)

    Doppler, Tobias; Lück, Alfred; Popow, Gabriel; Strahm, Ivo; Winiger, Luca; Gaj, Marcel; Singer, Heinz; Stamm, Christian

    2010-05-01

    Soil applied herbicides can be transported from their point of application (agricultural field) to surface waters during rain events. There they can have harmful effects on aquatic species. Since the spatial distribution of mobilization and transport processes is very heterogeneous, the contributions of different fields to the total load in a surface water body may differ considerably. The localization of especially critical areas (contributing areas) can help to efficiently minimize herbicide inputs to surface waters. An agricultural field becomes a contributing area when three conditions are met: 1) herbicides are applied, 2) herbicides are mobilized on the field and 3) the mobilized herbicides are transported rapidly to the surface water. In spring 2009, a controlled herbicide application was performed on corn fields in a small (ca 1 km2) catchment with intensive crop production in the Swiss plateau. Subsequently water samples were taken at different locations in the catchment with a high temporal resolution during rain events. We observed both saturation excess and hortonian overland flow during the field campaign. Both can be important mobilization processes depending on the intensity and quantity of the rain. This can lead to different contributing areas during different types of rain events. We will show data on the spatial distribution of herbicide loads during different types of rain events. Also the connectivity of the fields with the brook is spatially heterogeneous. Most of the fields are disconnected from the brook by internal sinks in the catchment, which prevents surface runoff from entering the brook directly. Surface runoff from these disconnected areas can only enter the brook rapidly via macropore-flow into tile drains beneath the internal sinks or via direct shortcuts to the drainage system (maintenance manholes, farmyard or road drains). We will show spatially distributed data on herbicide concentration in purely subsurface systems which shows

  19. Mapping for the management of diffuse pollution risks related to agricultural plant protection practices: case of the Etang de l'Or catchment area in France.

    PubMed

    Mghirbi, Oussama; Bord, Jean-Paul; Le Grusse, Philippe; Mandart, Elisabeth; Fabre, Jacques

    2018-03-08

    Faced with health, environmental, and socio-economic issues related to the heavy use of pesticides, diffuse phytosanitary pollution becomes a major concern shared by all the field actors. These actors, namely the farmers and territorial managers, have expressed the need to implement decision support tools for the territorial management of diffuse pollution resulting from the plant protection practices and their impacts. To meet these steadily increasing requests, a cartographic analysis approach was implemented based on GIS which allows the spatialization of the diffuse pollution impacts related to plant protection practices on the Etang de l'Or catchment area in the South of France. Risk mapping represents a support-decision tool that enables the different field actors to identify and locate vulnerable areas, so as to determine action plans and agri-environmental measures depending on the context of the natural environment. This work shows that mapping is helpful for managing risks related to the use of pesticides in agriculture by employing indicators of pressure (TFI) and risk on the applicator's health (IRSA) and on the environment (IRTE). These indicators were designed to assess the impact of plant protection practices at various spatial scales (field, farm, etc.). The cartographic analysis of risks related to plant protection practices shows that diffuse pollution is unequally located in the North (known for its abundant garrigues and vineyards) and in the South of the Etang de l'Or catchment area (the Mauguio-Lunel agricultural plain known for its diversified cropping systems). This spatial inequity is essentially related to land use and agricultural production system. Indeed, the agricultural lands cover about 60% of the total catchment area. Consequently, this cartographic analysis helps the territorial actors with the implementation of strategies for managing risks of diffuse pollution related to pesticides use in agriculture, based on environmental and

  20. Dissolved and Particulate Organic Carbon Transport, Loads and Relationships from Catchments in the Dryland Agricultural Region of the Inland Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Boylan, R. D.; Brooks, E. S.

    2012-12-01

    It has long been understood that soil organic matter (SOM) plays important role in the chemistry of agricultural soils. Promoting both cation exchange capacity and water retention, SOM also has the ability to sequester atmospheric carbon adding to a soils organic carbon content. Increasing soil organic carbon in the dryland agricultural region of the Inland Pacific Northwest is not only good for soil health, but also has the potential to mitigate greenhouse gas emissions. Implementing strategies that minimizing the loss of soil carbon thus promoting carbon sequestration require a fundamental understanding of the dominant hydrologic flow paths and runoff generating processes in this landscape. Global fluxes of organic carbon from catchments range from 0.4-73,979 kg C km-2 year-1 for particulate organic carbon and 1.2-56,946 kg C km-2 year-1 for dissolved organic carbon (Alvarez-Cobelas, 2010). This small component of the global carbon cycle has been relatively well studied but there have yet to be any studies that focus on the dryland agricultural region of the Inland Pacific Northwest. In this study event based samples were taken at 5 sites across the Palouse Basin varying in land use and management type as well as catchment size, ranging from 1km2 to 7000 km2. Data collection includes streamflow, suspended sediment, dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), particulate organic carbon (POC), dissolved organic nitrogen (TN), and nitrate concentrations as well as soil organic carbon (SOC) from distributed source areas. It is predicted that management type and streamflow will be the main drivers for DOC and POC concentrations. Relationships generated and historic data will then be used in conjunction with the Water Erosion Prediction Project (WEPP) to simulate field scale variability in the soil moisture, temperature, surface saturation, and soil erosion. Model assessment will be based on both surface runoff and sediment load measured at the

  1. Scale appropriate modelling to represent dominant pollution processes in agricultural catchments, to underpin management and policy decisions

    NASA Astrophysics Data System (ADS)

    Adams, Russell; Quinn, Paul

    2014-05-01

    We present the development of scale appropriate modelling techniques to represent dominant pollution processes in agricultural catchments to underpin catchment management and its implications on policy. A quasi-physically based, spatially lumped macro-model (CRAFT), has been developed to assess mitigation options for nitrogen and phosphorus. CRAFT has been developed to use daily time series data of rainfall, stream flow and nutrient concentration data, and can be applied to catchments varying in size from a few hectares to 100s of square kilometres. If stream flow routing is added to the model then potentially larger catchments and sub-daily time steps could be represented. There are two key issues addressed here. Firstly, the model can be used to assess the usefulness of monitoring data collected at a high temporal resolution at considerable expense compared to routine grab sampling. An earlier study in the Frome catchment in southern England collected sub-daily water quality data for more than 12 months at the catchment outlet, comprising: total oxidised nitrogen (TON); soluble reactive phosphorus (SRP) and total phosphorus (TP) concentrations. The three data sets have quite different temporal signals relating to flow pathways with different residence times and the importance of runoff events in generating acute pollution. The flexible model structure was therefore developed to include different sources of runoff including overland flow from impervious areas in the catchment, where pollution hotspots will be located (e.g. farmyards). The model has been used to assess the value of collecting high resolution monitoring data, in this case by resampling the Frome sub-daily data to a daily timestep, and comparing these model simulations against those calibrated using all the samples. The usefulness of the high resolution data can be assessed on whether a daily model would undepredict (for example) high nutrient concentrations that can be identified in the sub

  2. Nutrient pressures and legacies in a small agricultural karst catchment

    NASA Astrophysics Data System (ADS)

    Fenton, Owen; Mellander, Per-Erik; Daly, Karen; Wall, David P.; Jahangir, Mohammad M.; Jordan, Phil; Hennessey, Deirdre; Huebsch, Manuela; Blum, Philipp; Vero, Sara; Richards, Karl G.

    2017-04-01

    Catchments with short subsurface hydrologic time lags are commonly at risk for leached losses of nitrogen (N) and phosphorus (P). Such catchments are suitable for testing the efficacy of mitigation measures as management changes. In some sites, however, N and P may be retained in the soil and subsoil layers, and then leached, mobilised or attenuated over time. This biogeochemical time lag may therefore have enduring effects on the water quality. The aim of this study was to improve the understanding of N and P retention, attenuation and distribution of subsurface pathway in an intensively managed agricultural karst catchment with an oxidised aquifer setting, and also to inform how similar sites can be managed in the future. Results showed that in the years pre-2000 slurry from an on-site integrated pig production unit had been applied at rates of 33 t/ha annually, which supplied approximately 136 kg/ha total N and approximately 26 kg/ha total P annually. This practice contributed to large quantities of N (total N and NH4-N) and elevated soil test P (Morgan extractable P), present to a depth of 1 m. This store was augmented by recent surpluses of 263 kg N/ha, with leached N to groundwater of 82.5 kg N/ha and only 2.5 kg N/ha denitrified in the aquifer thereafter. Sub hourly spring data showed the largest proportion of N loss from small (54-88%) and medium fissure pathways (7- 21%) with longer hydrologic time lags, with smallest loads from either large fissure (1-13%) or conduit (1-10%) pathways with short hydrologic time lags (reaction time at the spring from onset of a rainfall event is within hours). Although soils were saturated in P and in mobile forms to 0.5 m, dissolved reactive P concentrations in groundwater remained low due to Ca and Mg limestone chemistry. Under these conditions a depletion of the legacy store, with no further inputs, would take approximately 50 years and with NO3-N concentrations in the source area dropping to levels that could sustain

  3. REXPO: A catchment model designed to understand and simulate the loss dynamics of plant protection products and biocides from agricultural and urban areas

    NASA Astrophysics Data System (ADS)

    Wittmer, I. K.; Bader, H.-P.; Scheidegger, R.; Stamm, C.

    2016-02-01

    During rain events, biocides and plant protection products are transported from agricultural fields but also from urban sources to surface waters. Originally designed to be biologically active, these compounds may harm organisms in aquatic ecosystems. Although several models allow either urban or agricultural storm events to be predicted, only few combine these two sources, and none of them include biocide losses from building envelopes. This study therefore aims to develop a model designed to predict water and substance flows from urban and agricultural sources to surface waters. We developed a model based on physical principles for water percolation and substance flow including micro- (also called matrix-) and macropore-flows for the agricultural areas together with a model representing sources, sewer systems and a wastewater treatment plant for urban areas. In a second step, the combined model was applied to a catchment where an extensive field study had been conducted. The modelled and measured discharge and compound results corresponded reasonably well in terms of quantity and dynamics. The total cumulative discharge was only slightly lower than the total measured discharge (factor 0.94). The total modelled losses of the agriculturally used herbicide atrazine were slightly lower (∼25%) than the measured losses when the soil pore water distribution coefficient (describing the partition between soil particles and pore water) (Kd) was kept constant and slightly higher if it was increased with time. The modelled urban losses of diuron from facades were within a factor of three with respect to the measured values. The results highlighted the change in importance of the flow components during a rain event from urban sources during the most intensive rain period towards agricultural ones over a prolonged time period. Applications to two other catchments, one neighbouring and one on another continent showed that the model can be applied using site specific data for

  4. Impacts of the post-fire erosion processes compared with the agricultural erosion rates for a mountain catchment in NW Iberia

    NASA Astrophysics Data System (ADS)

    Marisa Santos, Juliana; Nunes, João Pedro; Bernard-Jannin, Léonard; Gonzalez Pelayo, Oscar; Keizer, Jan Jacob

    2014-05-01

    Mediterranean ecosystems are very vulnerable to soil erosion by water due to particular characteristics of climate, lithology and land use history. Moreover, the foreseen climate changes might worsen land degradation and desertification, in which soil erosion has been classified as one of the most important driving forces. In this context, the frequent forest fires seen in some Mediterranean regions can case disturbances to vegetation cover and enhance soil erosion processes. This work addresses this issue for the Caramulo mountain range, NW Iberia. In the past century, large land use changes occurred due to massive afforestation. Changes from mixed natural forest cover and shrublands to Pine, the introduction of Eucalyptus plantations and, more recently, a trend for the substitution of pines by eucalypts, are the evidence of a large and rapid land use change in the last decades. Forest fires started to occur as afforestation proceeded, as a consequence of the disappearance of pasturage and accumulation of highly inflammable material; they became more frequent after the 1960's and became a determinant factor for land use changes in this region. Data collection focused on the Macieira de Alcoba catchment, a headwater agro-forested catchment (94 ha) located in this region. It has a wet Mediterranean climate, with an average annual rainfall of about 1300 mm (2002-2012), concentrated in autumn and winter, while spring and summer are dryer seasons. The mean annual temperature is 14°C and in summer it can reach 35°C. The land use is mixed, with forest and agriculture lands covering respectively 60 and 35% of the catchment area, 5% being built-up areas in the village of Macieira de Alcoba. In the last decades, this catchment suffered several forest fires (in 1969, 1986, 1991, and 2011). Erosion processes are related with periods of low vegetation cover in autumn in fields with a pasture-corn rotation, but also with forest plantations after clear-cutting and especially

  5. Legacy effects of nitrogen and phosphorus in a eutrophic lake catchment: Slapton Ley, SW England

    NASA Astrophysics Data System (ADS)

    Burt, T. P.; Worrall, F.; Howden, N. J. K.

    2017-12-01

    Slapton Ley is a freshwater coastal lagoon in SW England. The Ley is part of a National Nature Reserve, which is divided into two basins: the Higher Ley (39 ha) is mainly reed swamp; the Lower Ley (77 ha) is a shallow lake (maximum depth 2.9 m). In the 1960s it became apparent that the Lower Ley was becoming increasingly eutrophic. In order to gauge water, sediment and nutrient inputs into the lake, measurements began on the main catchments in 1969. Continuous monitoring of discharge and a weekly water-sampling programme have been maintained by the Slapton Ley Field Centre ever since. The monitoring programme has been supplemented by a number of research projects which have sought to identify the salient hydrological processes operating within the Slapton catchments and to relate these to the delivery of sediment and solute to the stream system. Long-term monitoring data are also available for the catchment area including the lake from the Environment Agency.The nitrate issue has been of particular interest at Slapton; although many longer series exist for large river basins like the Thames, the long record of nitrate data for the Slapton catchments is unique in Britain for a small rural basin. Recent declines in nitrate concentration may reflect less intensive agricultural activity, lower fertiliser inputs in particular, but there may also be a legacy effect in the shallow groundwater system. Phosphorus concentrations in stream and lake water have also shown declining concentrations but a phosphorus legacy in the surficial lake sediments means that algal blooms continue to develop in most summers, as indicated by a continued rise in summer pH levels. Further field observation at the sediment-water interface is needed to better understand the biogeochemical drivers and the balance between N and P limitation in the lake. Successful management of the Nature Reserve requires better understanding of the links between hydrological and biogeochemical processes operating

  6. Spatially distributed environmental fate modelling of terbuthylazine in a mesoscale agricultural catchment using passive sampler data

    NASA Astrophysics Data System (ADS)

    Gassmann, Matthias; Farlin, Julien; Gallé, Tom

    2017-04-01

    Agricultural application of herbicides often leads to significant herbicide losses to receiving rivers. The impact of agricultural practices on water pollution can be assessed by process-based reactive transport modelling using catchment scale models. Prior to investigations of management practices, these models have to be calibrated using sampling data. However, most previous studies only used concentrations at the catchment outlet for model calibration and validation. Thus, even if the applied model is spatially distributed, predicted spatial differences of pesticide loss cannot be directly compared to observations. In this study, we applied the spatially distributed reactive transport model Zin-AgriTra in the mesoscale (78 km2) catchment of the Wark River in Luxembourg in order to simulate concentrations of terbuthylazine in river water. In contrast to former studies, we used six sampling points, equipped with passive samplers, for pesticide model validation. Three samplers were located in the main channel of the river and three in smaller tributaries. At each sampling point, event mean concentration of six events from May to July 2011 were calculated by subtraction of baseflow-mass from total collected mass assuming time-proportional uptake by passive samplers. Continuous discharge measurements and high-resolution autosampling during events allowed for accurate load calculations at the outlet. Detailed information about maize cultivation in the catchment and nation-wide terbuthylazine application statistics (341 g/ha in the 3rd week of May) were used for a definition of the pesticide input function of the model. The hydrological model was manually calibrated to fit baseflow and spring/summer events. Substance fluxes were calibrated using a Latin Hypercube of physico-chemical substance characteristics as provided by the literature: surface soil half-lives of 10-35 d, Freundlich KOC of 150-330 ml/g, Freundlich n of 0.9 - 1 and adsorption/desorption kinetics of 20

  7. Assessing the impacts of Best Management Practices on nitrate pollution in an agricultural dominated lowland catchment considering environmental protection versus economic development.

    PubMed

    Haas, Marcelo B; Guse, Björn; Fohrer, Nicola

    2017-07-01

    Water quality is strongly affected by nitrate inputs in agricultural catchments. Best Management Practices (BMPs) are alternative practices aiming to mitigate the impacts derived from agricultural activities and to improve water quality. Management activities are influenced by different governmental policies like the Water Framework Directive (WFD) and the Renewable Energy Sources Act (EEG). Their distinct goals can be contrasting and hamper an integrated sustainable development. Both need to be addressed in the actual conjuncture in rural areas. Ecohydrological models like the SWAT model are important tools for land cover and land use changes investigation and the assessment of BMPs implementation effects on water quality. Thus, in this study, buffer strip, fertilization reduction and alternative crops were considered as BMPs and were implemented in the SWAT model for the Treene catchment. Their efficiency in terms of nitrate loads reduction related to implementation costs at the catchment scale was investigated. The practices correspond to the catchment conditions and are based on small and mid areal changes. Furthermore, the BMPs were evaluated from the perspective of ecologic and economic policies. The results evidenced different responses of the BMPs. The critical periods in winter were addressed by most of the BMPs. However, some practices like pasture land increase need to be implemented in greater area for better results in comparison to current activities. Furthermore, there is a greater nitrate reduction potential by combining BMPs containing fertilization reduction, buffer strips and soil coverage in winter. The discussion about efficiency showed the complexity of costs stipulation and the relation with arable land and yield losses. Furthermore, as the government policies can be divergent an integrated approach considering all the involved actors is important and seeks a sustainable development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Water quality impact assessment of agricultural Beneficial Management Practices (BMPs) simulated for a regional catchment in Quebec, Eastern Canada

    NASA Astrophysics Data System (ADS)

    Rousseau, Alain N.; Hallema, Dennis W.; Gumiere, Silvio J.; Savary, Stéphane; Hould Gosselin, Gabriel

    2014-05-01

    Water quality has become a matter of increasing concern over the past four decades as a result of the intensification of agriculture, and more particularly so in Canada where agriculture has evolved into the largest non-point source of surface water pollution. The Canadian WEBs project (Watershed Evaluation of Beneficial Management Practices, BMPs) was initiated in order to determine the efficiency of BMPs in improving the surface water quality of rural catchments, and the economic aspects related to their implementation on the same scale. In this contribution we use the integrated watershed modelling platform GIBSI (Gestion Intégrée des Bassins versants à l'aide d'un Système Informatisé) to evaluate the effects of various BMPs on sediment and nutrient yields and, in close relation to this, the surface water quality for the Beaurivage River catchment (718 km2) in Quebec, eastern Canada. A base scenario of the catchment is developed by calibrating the different models of the GIBSI platform, namely HYDROTEL for hydrology, the Revised Universal Soil Loss Equation (RUSLE) for soil erosion, the Erosion-Productivity Impact Calculator (EPIC) of the Soil and Water Assessment Tool (SWAT) for contaminant transport and fate, and QUAL2E for stream water quality. Four BMPs were analysed: (1) vegetated riparian buffer strips, (2) precision slurry application, (3) transition of all cereal and corn fields to grassland (grassland conversion), and (4) no-tillage on corn fields. Simulations suggest that riparian buffer strips and grassland conversion are more effective in terms of phosphorus, nitrogen and sediment load reduction than precision slurry application and no-tillage on corn fields. The results furthermore indicate the need for a more profound understanding of sediment dynamics in streams and on riparian buffer strips.

  9. Urban and agricultural contribution of annual loads of glyphosate and AMPA towards surface waters at the Orge River catchment scale (France)

    NASA Astrophysics Data System (ADS)

    Botta, Fabrizio; Chevreuil, Marc; Blanchoud, Hélène

    2010-05-01

    The general use of pesticides in the Orge Basin, located in the southern part of the Paris suburb (France), is damaging surface water quality. Consequently, an increase in the water supply costs is registered by the water supply agencies that are situated downstream the Orge confluence with the Seine River. In this catchment, high uses of glyphosate are registered for fallow fields (upstream part) and for roadway weed control (downstream part). The proportion of glyphosate coming from these two zones was not well known, along with the double source of its metabolite AMPA originated from the degradation of some detergent phosphonates. The aim of this work was firstly to identify the potential sources of glyphosate and AMPA in urban sectors (such as sewerage system inputs) and in agricultural areas and to quantify the origins of urban pesticides pathways towards surface waters at the basin scale. The new approach of this project was to collect information at three different scales to establish a first step of modeling. At the basin scale, 1 year of surface water monitoring at the outlet of the Orge River was useful to establish the inputs towards the Seine River. At the urban catchment scale, the investigations have permitted to record glyphosate and AMPA loads transferred by storm waters and by wastewaters. Loads were estimated during and out of application calendar, in different hydrological conditions such as rainfall with high intensity or dry conditions. Impact of WWTP on surface water was also demonstrated. The third phase of this work was the interpretation of agricultural inputs from two different agricultural catchments of the Orge River. The results showed the impact of urban uses of glyphosate upon the Orge River contamination with annual loads from 100 times higher from the urban zone than from the agricultural one. Storm sewers were recognized to be the main way for glyphosate transfer towards surface waters. A budget of glyphosate and AMPA inputs and

  10. Exploring the dynamics of transit times and runoff source zones in a small agricultural catchment using a physically-based water flow model

    NASA Astrophysics Data System (ADS)

    Fleckenstein, J. H.; Yang, J.; Heidbuchel, I.; Musolff, A.

    2017-12-01

    Catchment-scale transit time distributions (TTDs) for discharge and residence time distributions (RTDs) of the water in storage are promising tools to characterize the discharge and mixing behavior of a catchment. TTDs and RTDs are dynamic in time, influenced by dynamic rainfall and evapotranspiration forcing, as well as changing groundwater storage in the catchment. In order to understand the links between the dynamics of TTDs and catchment mixing in an agricultural catchment in central Germany, a 3D hydrological model was set up using the fully coupled surface-subsurface numerical code HydroGeoSphere. The transient model is calibrated using discharge and groundwater level measurements, and is run for a period of 10 years from 1997 to 2007. A particle tracking tool was implemented in HydroGeoSphere to track the movement of water parcels in the subsurface, outputting TTDs of discharge and RTDs of groundwater storage at daily intervals. Results show the strong variability of the median age of discharge and median age of the water in storage, in response to the overall wetness of the catchment. Computed fractional StorAge Selection (fSAS, van der Velde et al. 2012, Rinaldo et al. 2015) functions suggest systematic changes in the preference of the catchment to discharge water of a certain age ranges from storage over the seasons: In the wet period, youngest water in storage is preferentially selected, and the preference shifts gradually to older water in storage when the catchment transitions into periods of post-wet, dry and pre-wet. Those changes are driven by distinct shifts in the dominant flow paths from deeper, slow flow paths during dry periods to faster shallow flow paths during the wet season. Changes in the shape of the fSAS functions are quantified in terms of changes in the two parameters of the Beta functions, which are used to approximate the fSAS functions. This provides an opportunity to generate quasi-continuous fSAS functions over the course of a

  11. Runoff production in a small agricultural catchment in Lao PDR: influence of slope, land-use and observation scale

    NASA Astrophysics Data System (ADS)

    Patin, J.; Ribolzi, O.; Mugler, C.; Valentin, C.; Mouche, E.

    2010-12-01

    After years of traditional slash and burn cultures, the Houay Pano catchment is now under high land pressures due to population resettling and environmental preservation policies. This evolution leads to rapid land-use changes in the uplands, such as fallow time reductions and growing of cash crops as teaks or banana. The catchment is located in the Luang Prabang province, in the north of Lao PDR and was selected in late 1998 as a benchmark site for the Managing Soil Erosion Consortium (MSEC). It is a small (60ha) agricultural catchment representative of the rural mountainous South East Asia : it exhibits steep cultivated slopes (from 2% to more than 110%) under a wet-dry monsoon climate. To understand the partition between runoff and infiltration, data from runoff on 20 plot experiments (1m2) under natural rainfall and with representative slopes and land uses is collected from 2003 to 2009. A simulated rainfall experiment was conducted in 2002 on bare soil plots (1m2) with different antecedent cultures. We investigate the role of crust, slope and land-use on runoff production at different scales. A model accounting for small scale variability is applied to compute the time and space variations of soil infiltrability at the plot scale (1m2) and sub-catchment scale (0.6ha). From the hypothesis of exponentially distributed infiltrabilities at the centimeter scale, we found that infiltration is log-normaly distributed over time for a given land use. The median infiltrability vary from 10mm/h under teak cultures to 150mm/h on plots with fallow. Variations along a year are tribute to many meteorological and human factors.

  12. Water storage equity and safety assurance policy to mitigate potential 'dual-extreme cumulative threats' in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Pisaniello, John D.; Tingey-Holyoak, Joanne L.

    2017-02-01

    Farm dams that are not managed properly at the individual level can create water storage equity and safety threats to downstream communities and the environment that aggregate at the catchment level: a potential 'dual-extreme cumulative' problem. The paper provides indicative evidence and develops understanding of this novel phenomenon and associated policy needs within the Australian setting comprising dual hydrologic extremes of floods and droughts, further exacerbated by climate change. This is achieved through comparative case studies involving surveys of both dam owner perceptions and dam management practices in four States representing a complete range of integrated policy approaches from weak to strong. Survey results find most farmers do not believe dam maintenance is important, will undertake spillway blocking and do not plan for emergencies. These results are supported by physical on-site findings of farmers neglecting dams and blocking or under-designing spillways, in turn storing more water than they are entitled and creating unsafe dams at both the individual and cumulative levels. From detailed cross-case comparative assessment against policy context, it emerges that on-farm perceptions and practices form a range of 'acceptability' of dam management that directly reflects policy strength and integration in each setting. The paper advances the international small dams policy, agricultural water management and hydrology literatures, evidencing the need for effective integrated policy to mitigate dual extreme cumulative threats. Importantly, guidance is provided to jurisdictions internationally with high inter-annual rainfall variation on how best to design integrated policy that can achieve both water storage equity and safety in agricultural catchments.

  13. Hydrochemical buffer assessment in agricultural landscapes: from local to catchment scale.

    PubMed

    Viaud, Valérie; Merot, Philippe; Baudry, Jacques

    2004-10-01

    Non-point-source pollution of surface and groundwater is a prominent environmental issue in rural catchments, with major consequences on water supply and aquatic ecosystem quality. Among surface-water protection measures, environmental or landscape management policies support the implementation and the management of buffer zones. Although a great number of studies have focused on buffer zones, quantification of the buffer effect is still a recurring question. The purpose of this article is a critical review of the assessment of buffer-zone functioning. Our objective is to provide land planners and managers with a set of variables to assess the limits and possibilities for quantifying buffer impact at the catchment scale. We first consider the scale of the local landscape feature. The most commonly used empirical method for assessing buffers is to calculate water/nutrient budgets from inflow-outflow monitoring at the level of landscape structures. We show that several other parameters apart from mean depletion of flux can be used to describe buffer functions. Such parameters include variability, with major implication for water management. We develop a theoretical framework to clarify the assessment of the buffer effect and propose a systematic analysis taking account of temporal variability. Second, we review the current assessment of buffer effects at the catchment scale according to the theoretical framework established at the local scale. Finally, we stress the limits of direct empirical assessment at the catchment scale and, in particular, we emphasize the hierarchy in hydrological processes involved at the catchment scale: The landscape feature function is constrained by other factors (climate and geology) that are of importance at a broader spatial and temporal scale.

  14. [Soil Phosphorus Forms and Leaching Risk in a Typically Agricultural Catchment of Hefei Suburban].

    PubMed

    Fan, Hui-hui; Li, Ru-zhong; Pei, Ting-ting; Zhang, Rui-gang

    2016-01-15

    To investigate the soil phosphorus forms and leaching risk in a typically agricultural catchment of Ershibu River in Hefei Suburban, Chaohu Lake basin, 132 surface soil samples were collected from the catchment area. The spatial distribution of total phosphorus (TP) and bio-available phosphorus (Bio-P), and the spatial variability of soil available phosphorus (Olsen-P) and easy desorption phosphorus (CaCl2-P) were analyzed using the Kriging technology of AreGIS after speciation analysis of soil phosphorus. Moreover, the enrichment level of soil phosphorus was studied, and the phosphorus leaching risk was evaluated through determining the leaching threshold value of soil phosphorus. The results showed that the samples with high contents of TP and Bio-P mainly located in the upstream of the left tributary and on the right side of local area where two tributaries converged. The enrichment rates of soil phosphorus forms were arranged as follows: Ca-P (15.01) > OP (4.16) > TP (3. 42) > IP (2.94) > Ex-P (2.76) > Fe/Al-P (2.43) > Olsen-P (2.34). The critical value of Olsen-P leaching was 18.388 mg x kg(-1), and the leaching samples with values higher than the threshold value accounted for 16.6% of total samples. Generally, the high-risk areas mainly occurred in the upstream of the left tributary, the middle of the right tributary and the local area of the downstream of the area where two tributaries converged.

  15. Interactive Effects of Storms, Drought, and Weekly Land Cover Changes on Water Quality Patterns in an Agricultural-dominated Subtropical Catchment in New Zealand

    NASA Astrophysics Data System (ADS)

    Julian, J.; Owsley, B.; de Beurs, K.; Hughes, A.

    2013-12-01

    Rivers are the funnels of landscapes, with the quality of water at the catchment outlet reflecting interactions among geomorphic processes, vegetation characteristics, weather patterns, and anthropogenic land uses. The impacts of changing climate and land cover on water quality are not straightforward; but instead, are set by the interaction of numerous landscape components at multiple spatiotemporal scales. In agricultural-dominated subtropical landscapes such as the Hoteo River Catchment in northern North Island of New Zealand, the land surface can be very dynamic, responding quickly to storms, drought, forest clearings, and grazing practices. In order to capture these short-term fluctuations, we created an 8-day land disturbance index for the catchment using MODIS Nadir BRDF-adjusted reflectance (NBAR) data (500 meter resolution) from 2000 to 2013. We also fused this time-series with Landsat TM/ETM surface reflectance data (30 meter resolution) to more precisely capture the location and extent of these land disturbances. This high-resolution land disturbance time-series was then compared to daily rainfall, daily river discharge, and monthly water samples to assess the effects of changing weather and land cover on a suite of water quality variables including water clarity, turbidity, ammonium (NH4), nitrate (NO3), total nitrogen (TN), dissolved reactive phosphate (DRP), total phosphorus (TP), and fecal coliforms. Forest clearings in the early part of our study period created the most intense land disturbances, which led to elevated turbidity and DRP during subsequent storms. Pasture areas during drought were also characterized by high disturbance indices, particularly in 2013 - the worst drought on record for northern New Zealand. Seasonal effects on land disturbance and water quality were also detected, especially for water clarity and turbidity. From 2011 to 2013, river discharge and turbidity from three sub-catchments were measured at 5-minute intervals to

  16. Qualitatively Modeling solute fate and transport across scales in an agricultural catchment with diverse lithology

    NASA Astrophysics Data System (ADS)

    Wayman, C. R.; Russo, T. A.; Li, L.; Forsythe, B.; Hoagland, B.

    2017-12-01

    As part of the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) project, we have collected geochemical and hydrological data from several subcatchments and four monitoring sites on the main stem of Shaver's Creek, in Huntingon county, Pennsylvania. One subcatchment (0.43 km2) is under agricultural land use, and the monitoring locations on the larger Shaver's Creek (up to 163 km2) drain watersheds with 0 to 25% agricultural area. These two scales of investigation, coupled with advances made across the SSHCZO on multiple lithologies allow us to extrapolate from the subcatchment to the larger watershed. We use geochemical surface and groundwater data to estimate the solute and water transport regimes within the catchment, and to show how lithology and land use are major controls on ground and surface water quality. One area of investigation includes the transport of nutrients between interflow and regional groundwater, and how that connectivity may be reflected in local surface waters. Water and nutrient (Nitrogen) isotopes, will be used to better understand the relative contributions of local and regional groundwater and interflow fluxes into nearby streams. Following initial qualitative modeling, multiple hydrologic and nutrient transport models (e.g. SWAT and CYCLES/PIHM) will be evaluated from the subcatchment to large watershed scales. We will evaluate the ability to simulate the contributions of regional groundwater versus local groundwater, and also impacts of agricultural land management on surface water quality. Improving estimations of groundwater contributions to stream discharge will provide insight into how much agricultural development can impact stream quality and nutrient loading.

  17. Predicting nutrient responses to mitigation at catchment to national scale: the UK research platform (Invited)

    NASA Astrophysics Data System (ADS)

    Johnes, P.

    2013-12-01

    Nutrient enrichment of waters from land-based and atmospheric sources presents a significant management challenge, requiring effective stakeholder engagement and policy development, properly underpinned by robust scientific evidence. The challenge is complex, raising significant questions about the specific sources, apportionment and pathways that determine nutrient enrichment and the key priorities for effective management and policy intervention. This paper presents outputs from 4 major UK research programmes: the Defra Demonstration Test Catchments programme (DTC), the Environment Agency's Catchment Sensitive Farming monitoring and evaluation programme (CSF), Natural Resources Wales Welsh Catchment Initiative (WCI) and the NERC Environmental Virtual Observatory programme (EVOp). Funded to meet this challenge, they are delivering new understanding of the rates and sources of pollutant fluxes from land to water, their impacts on ecosystem goods and services, and likely trends under future climate and land use change from field to national scale. DTC, a 12m investment by the UK Government, has set up long-term, high resolution research platforms equipped with novel telemetered sensor networks to monitor stream ecosystem responses to on-farm mitigation measures at a representative scale for catchment management. Ecosystem structural and functional responses and bulk hydrochemistry are also being monitored using standard protocols. CSF has set up long-term, enhanced monitoring in 8 priority catchments, with monthly monitoring in a further 72 English catchments and 6 Welsh priority catchments, to identify shifts in pollutant flux to waters resulting from mitigation measures in priority areas and farming sectors. CSF and WCI have contributed to >50 million of targeted farm improvements to date, representing a significant shift in farming practice. Each programme has generated detailed evidence on stream ecosystem responses to targeted mitigation. However, to provide

  18. Opportunities provided by UAVs to monitor erosion processes in agricultural catchments: a case study from Northern France

    NASA Astrophysics Data System (ADS)

    Frankl, Amaury; Stal, Cornelis; De Wit, Bart; De Wulf, Alain; Salvador, Pierre-Gil; Nyssen, Jan

    2014-05-01

    In erosion studies, accurate spatio-temporal data are required to fully understand the processes involved and their relationship with environmental controls. With cameras being mounted on Unmanned Aerial Vehicles (UAVs), the latter allow to collect low-altitude aerial photographs over small catchments in a cost-effective and rapid way. From large data sets of overlapping aerial photographs, Structure from Motion - Multi View Stereo workflows, integrated in various software such as PhotoScan used here, allow to produced detailed Digital Surface Models (DSMs) and ortho-mosaics. In this study we present the results from a survey carried out in a small agricultural catchment near Hallines, in Northern France. A DSM and ortho-mosaic was produced of the catchment using photographs taken from a low-cost radio-controlled microdrone (DroneFlyer Hexacopter). Photographs were taken with a Sony Nex 5 (16.1 M pixels) camera having a fixed normal lens of 50 mm. In the field, Ground Control Points were materialized by unambiguously determinable targets, measured with a 1'' total station (Leica TS15i). Cross-sections of rills and ephemeral gullies were also quantified from total station measurements and from terrestrial image-based 3D modelling. These data allowed to define the accuracy of the DSM and the representation of the erosion features in it. The feasibility of UAVs photographic surveys to improve our understanding on water-erosion processes such as sheet, rill and gully erosion is discussed. Keywords: Ephemeral gully, Erosion study, Image-based 3D modelling, Microdrone, Rill, UAVs.

  19. Pesticide leaching by agricultural drainage in sloping, mid-textured soil conditions - the role of runoff components.

    PubMed

    Zajíček, Antonín; Fučík, Petr; Kaplická, Markéta; Liška, Marek; Maxová, Jana; Dobiáš, Jakub

    2018-04-01

    Dynamics of pesticides and their metabolites in drainage waters during baseflow periods and rainfall-runoff events (RREs) were studied from 2014 to 2016 at three small, tile-drained agricultural catchments in Bohemian-Moravian Highlands, Czech Republic. Drainage systems in this region are typically built in slopes with considerable proportion of drainage runoff originating outside the drained area itself. Continuous monitoring was performed by automated samplers, and the event hydrograph was separated using 18 O and 2 H isotopes and drainage water temperature. Results showed that drainage systems represent a significant source for pesticides leaching from agricultural land. Leaching of pesticide metabolites was mainly associated with baseflow and shallow interflow. Water from causal precipitation diluted their concentrations. The prerequisites for the leaching of parental compounds were a rainfall-runoff event occurring shortly after spraying, and the presence of event water in the runoff. When such situations happened consequently, pesticides concentrations in drainage water were high and the pesticide load reached several grams in a few hours. Presented results introduce new insights into the processes of pesticides movement in small, tile-drained catchments and emphasizes the need to incorporate drainage hydrology and flow-triggered sampling into monitoring programmes in larger catchments as well as in environment-conservation policy.

  20. Towards a catchment-scale macro-ecological model to support integrated catchment management in Europe

    NASA Astrophysics Data System (ADS)

    Lerner, R. N.; Lerner, D. N.; Surridge, B.; Paetzold, A.; Harris, B.; Anderson, C. W.

    2005-12-01

    In Europe, the Water Framework Directive (WFD) is providing a powerful regulatory driver to adopt integrated catchment management, and so pressurizing researchers to build suitable supporting tools. The WFD requires agencies to drive towards `good ecological quality' by 2015. After the initial step of characterising water bodies and the pressures on them, the next substantive step is the preparation of river basin management plans and proposed programmes of measures by 2009. Ecological quality is a complex concept and poorly defined, unless it is taken as a simple measure such as the abundance of a particular species of organism. There is clearly substantial work to do to build a practical but sound definition of ecological quality; practical in the sense of being easy to measure and explain to stakeholders, and sound in the sense that it reflects ecological complexity within catchments, the variability between catchments, and the conflicts demands for goods and services that human society places upon the ecological system. However ecological quality is defined, it will be driven by four interacting groups of factors. These represent the physical, chemical, ecological and socio-economic environments within and encompassing the catchment. Some of these groupings are better understood than others, for example hydrological processes and the transport of solutes are reasonably understood, even though they remain research areas in their own right. There are much larger gaps in our understanding at the interfaces, i.e. predicting how, for example, hydrological processes such as flow and river morphology influence ecological quality. Overall, it is clear we are not yet in a position to build deterministic models of the overall ecological behaviour of catchment. But we need predictive tools to support catchment management agencies in preparing robust plans. This poster describes our current exploration of soft modelling options to build a comprehensive macro

  1. Interannual climate variability and spatially heterogeneous improvement of agricultural management impede detection of a decreasing trend in nitrate pollution in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Fovet, Ophélie; Dupas, Rémi; Durand, Patrick; Gascuel-Odoux, Chantal; Gruau, Gérard; Hamon, Yannick; Petitjean, Patrice

    2016-04-01

    Despite widespread implementation of the nitrate directive in the European Union since the 1990s, the impact on nitrate concentration in rivers is limited (Bouraoui and Grizzetti, 2011). To assess whether this lack of response is due to the long time lags of nitrate transfer or to inadequate programs of measure, long term river and groundwater monitoring data are necessary. This study analyses 15 years of daily nitrate concentration data at the outlet of an intensively farmed catchment in Western France (Kervidy-Naizin, 5 km²) and quarterly nitrate concentration data in the groundwater of two hillslopes equipped with piezometers (Kerroland and Gueriniec) within the same catchment. In this catchment groundwater contribution to annual stream flow is dominant. The objectives of this study were to i) disentangle the influence of interannual climate variability and improvement of agricultural practices (i.e. reduction in N surplus) in the stream chemistry and ii) discuss the reasons for slow catchment recovery from nitrate pollution by comparing trends in groundwater and stream concentrations. Analysis of stream data showed that flow-weighted mean annual concentration at the outlet of the Kervidy-Naizin catchment has decreased by 1.2 mg NO3- l-1 yr-1 from 1999 to 2015. This decrease was slow but significant (p value < 0.01) even though interannual climate variability (i.e. annual cumulated runoff) added noise to the signal: i) deviation in the linear model of nitrate decrease with time was negatively correlated with annual runoff (r = -0.54, p < 0.01) and ii) local minimums in the nitrate time series were coincident with local maximums in the annual runoff. Thus high runoff during wet years led to dilution of the nitrate originating from groundwater, which added variability to the signal of linear decrease in stream concentration. Analysis of groundwater data showed a significant and sharp decrease in nitrate concentration in the Kerroland piezometer transect (4.0 mg

  2. Quantifying nonpoint source emissions and their water quality responses in a complex catchment: A case study of a typical urban-rural mixed catchment

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Dai, Ying; Zhi, Xiaosha; Xie, Hui; Shen, Zhenyao

    2018-04-01

    As two key threats to receiving water bodies, the generation mechanisms and processes of urban and agricultural nonpoint sources (NPSs) show clear differences, which lead to distinct characteristics of water quality responses with mixed land-uses catchments compared to single land-use ones. However, few studies have provided such insights in these characteristic or quantified different water environment responses to NPS pollution. In this study, an integrated modelling approach was developed for those complex catchments by combining three commonly used models: SWMM (Storm Water Management Model), SWAT (Soil and Water Assessment Tool) and MIKE 11. A case study was performed in a typical urban-rural catchment of Chao Lake, China. The simulated results indicated that urban NPS pollution responded sensitively to rainfall events and was greatly affected by the antecedent dry days. Compare to urban NPS, agricultural NPS pollution was characterized with the time-lag to rainfall depended on soil moisture and the post-rain-season emissions carried by lateral flows, and were also affected by the local farm-practice schedule. With comprehensive impacts from urban-rural land-uses, the time-interleaved urban and agricultural NPS pollution emissions and more abundant pollution accumulation both led to a decrease in the responsive time and an increase in the frequency of peak pollution concentration values even during the dry season. These obtained characteristics can provide guidance for drafting watershed management plans in similar mixed land use catchments.

  3. Changes in Children's Consumption of Tomatoes through a School Lunch Programme Developed by Agricultural High-School Students

    ERIC Educational Resources Information Center

    Ishikawa, Midori; Kubota, Nozomi; Kudo, Keita; Meadows, Martin; Umezawa, Atsuko; Ota, Toru

    2013-01-01

    Objective: The purpose of the study was to discover whether tomato consumption in elementary- and middle-school students could be increased through a school lunch programme developed by agricultural high-school students acting as peer educators. Design: The high-school lunch programme included the process of growing tomatoes and providing a…

  4. One Year of Monthly N and O Isotope Measurements in Nitrate from 18 Streamwater Monitoring Stations Within the Predominantly Pastoral Upper Manawatu Catchment, New Zealand

    NASA Astrophysics Data System (ADS)

    Baisden, W. T.; Douence, C.

    2010-12-01

    New Zealand's intensive pastoral agricultural systems have a significant impact on water quality due to nitrogen loading in rivers. A research programme has been designed to develop indicators of the sources and denitrification losses of nitrate in streamwater. This work describes the results of one year of monthly measurements at ~18 monitoring locations in the 1260 square km upper Manawatu River catchment. The catchment was chosen for study because it is among the most pastoral catchments in New Zealand, with little non-pastoral agriculture and limited forest area outside of the Tararua mountain range on the west side of the catchment. The use of N and O isotope ratios in nitrate has considerable potential to elucidate the sources and fate of nitrate with greater precision than in most other nations due to the lack of nitrate in atmospheric deposition and the lack of nitrates used as fertilizer. We measured N and O isotope ratios in nitrate plus nitrite using cadmium and azide chemical denitrification method, and refer to the results as nitrate for brevity due to low nitrite concentrations. When examined as annual averages at each monitoring site, we found the lowest N and O isotope ratios in our only site draining native forest. All agricultural monitoring sites sit approximately on a 1:1 line, enriched in N-15 and O-18 by 2-6 per mil relative to the native forest subcatchment. The three main effluent point sources in the catchment demonstrated unexpected variability in isotope ratios. Two modern sewage treatment ponds had N and O isotope ratios close to those found in agricultural catchments, while a closed meat freezing factory effluent pond had isotope ratios strongly enriched in N-15 and O-18. The lack of summer low flows during monitoring period, combined with the variability in isotope ratios from point source, appeared to be responsible for our inability to clearly detect the effect of point sources in the isotope data from stations upstream and

  5. Modelling metaldehyde in catchments: a River Thames case-study.

    PubMed

    Lu, Q; Whitehead, P G; Bussi, G; Futter, M N; Nizzetto, L

    2017-04-19

    The application of metaldehyde to agricultural catchment areas to control slugs and snails has caused severe problems for drinking water supply in recent years. In the River Thames catchment, metaldehyde has been detected at levels well above the EU and UK drinking water standards of 0.1 μg l -1 at many sites across the catchment between 2008 and 2015. Metaldehyde is applied in autumn and winter, leading to its increased concentrations in surface waters. It is shown that a process-based hydro-biogeochemical transport model (INCA-contaminants) can be used to simulate metaldehyde transport in catchments from areas of application to the aquatic environment. Simulations indicate that high concentrations in the river system are a direct consequence of excessive application rates. A simple application control strategy for metaldehyde in the Thames catchment based on model results is presented.

  6. Collaborative Catchment-Scale Water Quality Management using Integrated Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Zia, Huma; Harris, Nick; Merrett, Geoff

    2013-04-01

    Electronics and Computer Science, University of Southampton, United Kingdom Summary The challenge of improving water quality (WQ) is a growing global concern [1]. Poor WQ is mainly attributed to poor water management and outdated agricultural activities. We propose that collaborative sensor networks spread across an entire catchment can allow cooperation among individual activities for integrated WQ monitoring and management. We show that sharing information on critical parameters among networks of water bodies and farms can enable identification and quantification of the contaminant sources, enabling better decision making for agricultural practices and thereby reducing contaminants fluxes. Motivation and results Nutrient losses from land to water have accelerated due to agricultural and urban pursuits [2]. In many cases, the application of fertiliser can be reduced by 30-50% without any loss of yield [3]. Thus information about nutrient levels and trends around the farm can improve agricultural practices and thereby reduce water contamination. The use of sensor networks for monitoring WQ in a catchment is in its infancy, but more applications are being tested [4]. However, these are focussed on local requirements and are mostly limited to water bodies. They have yet to explore the use of this technology for catchment-scale monitoring and management decisions, in an autonomous and dynamic manner. For effective and integrated WQ management, we propose a system that utilises local monitoring networks across a catchment, with provision for collaborative information sharing. This system of networks shares information about critical events, such as rain or flooding. Higher-level applications make use of this information to inform decisions about nutrient management, improving the quality of monitoring through the provision of richer datasets of catchment information to local networks. In the full paper, we present example scenarios and analyse how the benefits of

  7. Streamwater nitrate concentrations in six agricultural catchments in Scotland.

    PubMed

    Hooda, P S; Moynagh, M; Svoboda, I F; Thurlow, M; Stewart, M; Thomson, M; Anderson, H A

    1997-08-01

    The concentrations of nitrate-N (NO3-N) in catchment inputs and outputs have been compared and contrasted between 6 farm catchments in Scotland, 3 in the West and 3 in the North-East. Forms of intensive animal farming ranging between beef and dairy cattle, sheep and poultry give different sources for potential NO3-N leakage from the systems. While stream reaches bordered by intensive cereal production give rise to the largest inputs to surface waters, climatic influences result in the more-efficient use of fertilizer- and farm waste-N in the West, and an enhanced potential for N-loss to waters in the cooler North-East, regardless of the N-inputs being considerably lower in the latter region. Although the EC Nitrate Directive limit of 11.3 mg NO3-N 1(-1) was not exceeded, peak values occurring during summer baseflows and autumn soil rewetting were commonly larger than the 'target' maximum concentration of 5.65 mg NO3-N 1-1.

  8. Evaluating an ecosystem management approach for improving water quality in two contrasting study catchments in south-west England.

    NASA Astrophysics Data System (ADS)

    Glendell, Miriam; Brazier, Richard

    2014-05-01

    The European Water Framework Directive (WFD) 2000 established a new emphasis for the management of freshwaters by establishing ecologically-based water quality targets that are to be achieved through holistic, catchment-scale, ecosystem management approaches. However, significant knowledge gaps still exist in the understanding of the cumulative effectiveness of multiple mitigation measures on a number of pollutants at a catchment scale. This research furthers the understanding of the effectiveness of an ecosystem management approach to deliver catchment-scale water quality improvements in two contrasting study catchments in south-west England: the lowland agricultural Aller and the upland semi-natural Horner Water. Characterisation of the spatial variability of soil properties (bulk density, total carbon, nitrogen, C:N ratio, stable isotope δ15N, total, organic and inorganic phosphorus) in the two study catchments demonstrated extensive alteration of soil properties in the agricultural catchment, with likely long-term implications for the restoration of ecosystem functioning and water quality management (Glendell et al., 2014b). Further, the agricultural catchment supported a proportionally greater total fluvial carbon (dissolved and particulate) export than the semi-natural catchment. During an eight month period for which a comparable continuous turbidity record was available, the estimated SS yields from the agricultural catchment (25.5-116.2 t km-2) were higher than from the semi-natural catchment (21.7-57.8 t km-2). In addition, the agricultural catchment exported proportionally more TPC (0.51-2.59 kg mm-1) than the semi-natural catchment (0.36-0.97 kg mm-1) and a similar amount of DOC (0.26-0.52 kg mm-1 in the Aller and 0.24-0.32 kg mm-1 in Horner Water), when normalised by catchment area and total discharge, despite the lower total soil carbon pool, thus indicating an enhanced fluvial loss of sediment and carbon (Glendell and Brazier, in review). Whilst

  9. East African wetland-catchment data base for sustainable wetland management

    NASA Astrophysics Data System (ADS)

    Leemhuis, Constanze; Amler, Esther; Diekkrüger, Bernd; Gabiri, Geofrey; Näschen, Kristian

    2016-10-01

    Wetlands cover an area of approx. 18 Mio ha in the East African countries of Kenya, Rwanda, Uganda and Tanzania, with still a relative small share being used for food production. Current upland agricultural use intensification in these countries due to demographic growth, climate change and globalization effects are leading to an over-exploitation of the resource base, followed by an intensification of agricultural wetland use. We aim on translating, transferring and upscaling knowledge on experimental test-site wetland properties, small-scale hydrological processes, and water related ecosystem services under different types of management from local to national scale. This information gained at the experimental wetland/catchment scale will be embedded as reference data within an East African wetland-catchment data base including catchment physical properties and a regional wetland inventory serving as a base for policy advice and the development of sustainable wetland management strategies.

  10. Nitrate dynamics in agricultural catchments deduced from groundwater dating and long-term nitrate monitoring in surface- and groundwaters.

    PubMed

    Aquilina, L; Vergnaud-Ayraud, V; Labasque, T; Bour, O; Molénat, J; Ruiz, L; de Montety, V; De Ridder, J; Roques, C; Longuevergne, L

    2012-10-01

    Although nitrate export in agricultural catchments has been simulated using various types of models, the role of groundwater in nitrate dynamics has rarely been fully taken into account. We used groundwater dating methods (CFC analyses) to reconstruct the original nitrate concentrations in the groundwater recharge in Brittany (Western France) from 1950 to 2009. This revealed a sharp increase in nitrate concentrations from 1977 to 1990 followed by a slight decrease. The recharge concentration curve was then compared with past chronicles of groundwater concentration. Groundwater can be interpreted as resulting from the annual dilution of recharge water in an uncontaminated aquifer. Two aquifers were considered: the weathered aquifer and the deeper fractured aquifer. The nitrate concentrations observed in the upper part of the weathered aquifer implied an annual renewal rate of 27 to 33% of the reservoir volume while those in the lower part indicated an annual renewal rate of 2-3%. The concentrations in the deep fractured aquifer showed an annual renewal rate of 0.1%. The river concentration can be simulated by combining these various groundwater reservoirs with the recharge. Winter and summer waters contain i) recharge water, or water from the variably saturated zone with rapid transfer and high nitrate concentrations, and ii) a large contribution (from 35 to 80% in winter and summer, respectively) from the lower part of the aquifer (lower weathered aquifer and deep fractured aquifer). This induces not only a relatively rapid response of the catchment to variations in agricultural pressure, but also a potential inertia which has to be taken into account. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. An INCA model for pathogens in rivers and catchments: Model structure, sensitivity analysis and application to the River Thames catchment, UK.

    PubMed

    Whitehead, P G; Leckie, H; Rankinen, K; Butterfield, D; Futter, M N; Bussi, G

    2016-12-01

    Pathogens are an ongoing issue for catchment water management and quantifying their transport, loss and potential impacts at key locations, such as water abstractions for public supply and bathing sites, is an important aspect of catchment and coastal management. The Integrated Catchment Model (INCA) has been adapted to model the sources and sinks of pathogens and to capture the dominant dynamics and processes controlling pathogens in catchments. The model simulates the stores of pathogens in soils, sediments, rivers and groundwaters and can account for diffuse inputs of pathogens from agriculture, urban areas or atmospheric deposition. The model also allows for point source discharges from intensive livestock units or from sewage treatment works or any industrial input to river systems. Model equations are presented and the new pathogens model has been applied to the River Thames in order to assess total coliform (TC) responses under current and projected future land use. A Monte Carlo sensitivity analysis indicates that the input coliform estimates from agricultural sources and decay rates are the crucial parameters controlling pathogen behaviour. Whilst there are a number of uncertainties associated with the model that should be accounted for, INCA-Pathogens potentially provides a useful tool to inform policy decisions and manage pathogen loading in river systems. Copyright © 2016. Published by Elsevier B.V.

  12. Mediterranean Agricultural Soil Conservation under global Change: The MASCC project.

    NASA Astrophysics Data System (ADS)

    Raclot, Damien; Ciampalini, Rossano

    2017-04-01

    The MASCC project (2016-2019, http://mascc-project.org) aims to address mitigation and adaptation strategies to global change by assessing current and future development of Mediterranean agricultural soil vulnerability to erosion in relation to projected land use, agricultural practices and climate change. It targets to i) assess the similarities/dissimilarities in dominant factors affecting the current Mediterranean agricultural soil vulnerability by exploring a wide range of Mediterranean contexts; ii) improve the ability to evaluate the impact of extreme events on both the current and projected agricultural soil vulnerability and the sediment delivery at catchment outlet; iii) evaluate the vulnerability and resilience of agricultural production to a combination of potential changes in a wide range of Mediterranean contexts, iv) and provide guidelines on sustainable agricultural conservation strategies adapted to each specific agro-ecosystem and taking into consideration both on- and off-site erosion effects and socio-economics issues. To achieve these objectives, the MASCC project consortium gather researchers from six Mediterranean countries (France, Morocco, Tunisia, Italy, Spain and Portugal) which monitor mid- to long-term environmental catchments and benefit from mutual knowledge created from previous projects and network. The major assets for MASCC are: i) the availability of an unrivalled database on catchment soil erosion and innovative agricultural practices comprising a wide range of Mediterranean contexts, ii) the capacity to better evaluate the impact of extreme events on soil erosion, iii) the expert knowledge of the LANDSOIL model, a catchment-scale integrated approach of the soil-landscape system that enables to simulate both the sediment fluxes at the catchment outlet and the intra-catchment soil evolving properties and iv) the multi-disciplinarity of the involved researchers with an international reputation in the fields of soil science

  13. Influence of hydroclimatic variations on solute concentration dynamics in nested subtropical catchments with heterogeneous landscapes.

    PubMed

    Piazza, Gustavo Antonio; Dupas, Rémi; Gascuel-Odoux, Chantal; Grimaldi, Catherine; Pinheiro, Adilson; Kaufmann, Vander

    2018-04-20

    Despite global efforts to monitor water quality in catchments worldwide, tropical and subtropical zones still lack data to study the influence of human activities and climate variations on solute dynamics. In this study, we monitored ten solutes every two weeks for six years (2010-2015) in three nested catchments (2 to30 km 2 ), which contained heterogeneous landscapes composed of forests and agricultural land, and one small neighboring forested catchment (0.4 km 2 ). Data analysis revealed that i) rainfall, discharge and solute concentrations displayed no clear seasonal patterns, unlike many catchments of the temperate zone; ii) solute concentrations in the agricultural area were higher than those in the forested area, but both areas displayed similar temporal patterns due to a common hydroclimatic driver; iii) all four catchments displayed a chemostatic export regime for most of the solutes, similar to catchments of the temperate zone; and iv) a positive correlation was observed between anion concentrations and ENSO (El Niño-Southern Oscillation) index. ENSO appeared to influence both hydroclimatic and anion dynamics in these subtropical catchments. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Using a physically-based water flow model to explore the dynamics of transit times and mixing in a small agricultural catchment

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Heidbüchel, Ingo; Musolff, Andreas; Fleckenstein, Jan H.

    2017-04-01

    Catchment-scale transit time distributions (TTDs) for discharge and residence time distributions of the water in storage (RTDs) are promising tools to characterize the discharge and mixing behavior of a catchment and can help to interpret the associated solute loads to the stream in a spatially implicit way. TTDs and RTDs are dynamic in time, influenced by dynamic rainfall and evapotranspiration forcing, and changing groundwater storage in the catchment. In order to understand the links between the dynamics of TTDs and groundwater mixing in the small agricultural catchment Schäfertal, in central Germany, a 3D hydrological model was set up for the catchment using the fully coupled surface-subsurface numerical model HydroGeoSphere (HGS). The model is calibrated using discharge and groundwater level measurements, and runs transiently for a period of 10 years from 1997 to 2007. A particle tracking tool was implemented in HGS to track the movement of water parcels in the subsurface, outputting TTDs of channel discharge and RTDs of groundwater storage at daily intervals. Results show that the mean age of the discharge water is significantly younger than that of the water in storage, indicating a poorly mixed subsurface. Discharge preferentially samples faster flowing younger water originating from the more conductive top parts of the aquifer. Spatial variations of the age of water in storage are observed, highly influenced by aquifer heterogeneity. Computed StorAge Selection (SAS) functions [Rinaldo et al. 2015] show clear shifts in the discharge sampling preferences between wet and dry states: during wet states in winter and spring, discharge has a preference for younger water because the shallow flow paths are active due to high groundwater levels and low evapotranspiration. Conversely, during dry states in summer and autumn, discharge has a preference for older water because the shallow flow paths are inactive due to low groundwater levels and stronger

  15. Soil organic carbon distribution in an agricultural catchment in Southern Brazil: from hillslope to catchment scale.

    NASA Astrophysics Data System (ADS)

    Trigalet, Sylvain; Chartin, Caroline; Van Oost, Kristof; van Wesemael, Bas

    2017-04-01

    Understanding the soil organic carbon (SOC) distribution a few decades after conversion to cropland and plantations in a hilly catchment in southern Brazil is challenging due to scale-dependent controlling factors. Firstly, SOC, bulk density (BD) and texture were measured by depth intervals along 18 soil profiles located in three topographical positions (sloping plateau, central back slope and concave foot slope) in cropland and forest with contrasting slopes. SOC stocks in concave footslope position were not significantly different between fields on steep (11.1 kg C m-2) and gentle slopes (12.8 kg C m-2). However, in eroding profiles, SOC stocks are twice as high in fields on gentle slopes (17.6/12.6 kg C m-2) compared to steep slopes (8.3/7.1 kg C m-2). SOC stocks on steep slope on cropland (8.8 kg C m-2) are three times lower than SOC stocks on steep slope under undisturbed forest (23.7 kg C m-2). On gentle slopes, the effect of deforestation on SOC stocks was not so drastic (14.3 and 14.4 kg C m-2). Therefore, contrasting topography generates different patterns of SOC redistribution in the catchment. The effect of conversion to cropland is probably due to soil redistribution by water and tillage erosion aggravated by the steep terrain. Secondly, in order to assess the heterogeneity of SOC distribution at catchment scale, samples were collected at 10-20; 40-50 and 75-85 cm in 167 soil profiles sampled with an auger. SOC concentrations (gC kg-1 ) in numerous bulk soil samples (n = 378) were predicted by VIS-NIR spectroscopy and partial least-square regression models. SOC stocks were assessed by a mass preserving spline tool by interpolating SOC mass at the three non-contiguous depth intervals. Samples of calibration-validation dataset (n = 95) were used for physical SOC fractionation allowing the measurement of carbon associated with < 20 μm fraction. Multivariate linear regression models and Pearson correlation coefficients were used to assess the influence of

  16. Changes in catchment hydrology in relation to vegetation recovery: a comparative modelling experiment

    NASA Astrophysics Data System (ADS)

    Lana-Renault, Noemí; Karssenberg, Derek; Latron, Jérôme; Serrano, Mā Pilar; Regüés, David; Bierkens, Marc F. P.

    2010-05-01

    Mediterranean mountains have been largely affected by land abandonment and subsequent vegetation recovery, with a general expansion of shrubs and forests. Such a large scale land-cover change has modified the hydrological behavior of these areas, with significant impact on runoff production. Forecasting the trend of water resources under future re-vegetation scenarios is of paramount importance in Mediterranean basins, where water management relies on runoff generated in these areas. With this purpose, a modelling experiment was designed based on the information collected in two neighbouring research catchments with a different history of land use in the central Spanish Pyrenees. One (2.84 km2) is an abandoned agricultural catchment subjected to plant colonization and at present mainly covered by shrubs. The other (0.92 km2) is a catchment covered by dense natural forest, representative of undisturbed environments. Here we present the results of the analysis of the hydrological differences between the two catchments, and a description of the approach and results of the modelling experiment. In a statistical analysis of the field data, significant differences were observed in the streamflow response of the two catchments. The forested catchment recorded fewer floods per year compared to the old agricultural catchment, and its hydrological response was characterised by a marked seasonality, with autumn and spring as the only high flow periods. Stormflow was generally higher in the old agricultural catchment, especially for low to intermediate size events; only for large events the stormflow in the forested catchment was sometimes greater. Under drier conditions, the relative differences in the stormflow between the two catchments tended to increase whereas under wet conditions they tended to be similar. The forested catchment always reacted more slowly to rainfall, with lower peakflows (generally one order of magnitude lower) and longer recession limbs. The modelling

  17. Hydro-economic modelling in mining catchments

    NASA Astrophysics Data System (ADS)

    Ossa Moreno, J. S.; McIntyre, N.; Rivera, D.; Smart, J. C. R.

    2017-12-01

    Hydro-economic models are gaining momentum because of their capacity to model both the physical processes related to water supply, and socio-economic factors determining water demand. This is particularly valuable in the midst of the large uncertainty upon future climate conditions and social trends. Agriculture, urban uses and environmental flows have received a lot of attention from researchers, as these tend to be the main consumers of water in most catchments. Mine water demand, although very important in several small and medium-sized catchments worldwide, has received less attention and only few models have attempted to reproduce its dynamics with other users. This paper describes an on-going project that addresses this gap, by developing a hydro-economic model in the upper Aconcagua River in Chile. This is a mountain catchment with large scale mining and hydro-power users at high altitudes, and irrigation areas in a downstream valley. Relevant obstacles to the model included the lack of input climate data, which is a common feature in several mining areas, the complex hydrological processes in the area and the difficulty of quantifying the value of water used by mines. A semi-distributed model developed within the Water Evaluation and Planning System (WEAP), was calibrated to reproduce water supply, and this was complemented with an analysis of the value of water for mining based on two methods; water markets and an analysis of its production processes. Agriculture and other users were included through methods commonly used in similar models. The outputs help understanding the value of water in the catchment, and its sensitivity to changes in climate variables, market prices, environmental regulations and changes in the production of minerals, crops and energy. The results of the project highlight the importance of merging hydrology and socio-economic calculations in mining regions, in order to better understand trade-offs and cost of opportunity of using

  18. Significance of floods in metal dynamics and export in a small agricultural catchment

    NASA Astrophysics Data System (ADS)

    Roussiez, Vincent; Probst, Anne; Probst, Jean-Luc

    2013-08-01

    High-resolution monitoring of water discharge and water sampling were performed between early October 2006 and late September 2007 in the Montoussé River, a permanent stream draining an experimental agricultural catchment in Gascogne region (SW France). Dissolved and particulate concentrations of major elements and trace metals (i.e. Al, Fe, Mn, As, Cd, Cr, Cu, Ni, Pb, Sc and Zn) were examined. Our results showed that contamination levels were deficient to moderate, as a result of sustainable agricultural practices. Regarding dynamics, metal partitioning between particulate and dissolved phases was altered during flood conditions: the particulate phase was diluted by coarser and less contaminated particles from river bottom and banks, whereas the liquid phase was rapidly enriched owing to desorption mechanisms. Soluble/reactive elements were washed-off from soils at the beginning of the rain episode. The contribution of the flood event of May 2007 (by far the most significant episode over the study period) to the annual metal export was considerable for particulate forms (72-82%) and moderate for dissolved elements (0-20%). The hydrological functioning of the Montoussé stream poses dual threat on ecosystems, the consequences of which differ from both temporal and spatial scales: (i) desorption processes at the beginning of floods induce locally a rapid enrichment (up to 3.4-fold the pre-flood signatures on average for the event of May 2007) of waters in bioavailable metals, and (ii) labile metals - enriched by anthropogenic sources - associated to particles (mainly via carbonates and Fe/Mn oxides), were predominantly transferred during floods into downstream-connected rivers.

  19. The nitrate response of a lowland catchment and groundwater travel times

    NASA Astrophysics Data System (ADS)

    van der Velde, Ype; Rozemeijer, Joachim; de Rooij, Gerrit; van Geer, Frans

    2010-05-01

    Intensive agriculture in lowland catchments causes eutrophication of downstream waters. To determine effective measures to reduce the nutrient loads from upstream lowland catchments, we need to understand the origin of long-term and daily variations in surface water nutrient concentrations. Surface water concentrations are often linked to travel time distributions of water passing through the saturated and unsaturated soil of the contributing catchment. This distribution represents the contact time over which sorption, desorption and degradation takes place. However, travel time distributions are strongly influenced by processes like tube drain flow, overland flow and the dynamics of draining ditches and streams and therefore exhibit strong daily and seasonal variations. The study we will present is situated in the 6.6 km2 Hupsel brook catchment in The Netherlands. In this catchment nitrate and chloride concentrations have been intensively monitored for the past 26 years under steadily decreasing agricultural inputs. We described the complicated dynamics of subsurface water fluxes as streams, ditches and tube drains locally switch between active or passive depending on the ambient groundwater level by a groundwater model with high spatial and temporal resolutions. A transient particle tracking approach is used to derive a unique catchment-scale travel time distribution for each day during the 26 year model period. These transient travel time distributions are not smooth distributions, but distributions that are strongly spiked reflecting the contribution of past rainfall events to the current discharge. We will show that a catchment-scale mass response function approach that only describes catchment-scale mixing and degradation suffices to accurately reproduce observed chloride and nitrate surface water concentrations as long as the mass response functions include the dynamics of travel time distributions caused by the highly variable connectivity of the surface

  20. Novel MixSIAR fingerprint model implementation in a Mediterranean mountain catchment

    NASA Astrophysics Data System (ADS)

    Lizaga, Ivan; Gaspar, Leticia; Blake, William; Palazón, Leticia; Quijano, Laura; Navas, Ana

    2017-04-01

    Increased sediment erosion levels can lead to degraded water and food quality, reduced aquatic biodiversity, decrease reservoir capacity and restrict recreational usage but determining soil redistribution and sediment budgets in watersheds is often challenging. One of the methods for making such determinations applies sediment fingerprinting methods by using sediment properties. The fingerprinting procedure tests a range of source material tracer properties to select a subset that can discriminate between the different potential sediment sources. The present study aims to test the feasibility of geochemical and radioisotopic fingerprint properties to apportion sediment sources within the Barués catchment. For this purpose, the new MixSIAR unmixing model was implemented as statistical tool. A total of 98 soil samples from different land cover sources (Mediterranean forest, pine forest scrubland, agricultural and subsoil) were collected in the Barués catchment (23 km2). This new approach divides the catchment into six different sub-catchments to evaluate how the sediment provenance varies along the river and the percentage of its sources and not only the contribution at the end. For this purpose, target sediments were collected at the end of each sub-catchment to introduce the variation along the entire catchment. Geochemistry and radioisotopic activity were analyzed for each sample and introduced as input parameters in the model. Percentage values from the five sources were different along the different subcatchments and the variations of all of them are summarized at the final target sample located at the end of the catchment. This work represents a good approximation to the fine sediment provenance in Mediterranean agricultural catchments and has the potential to be used for water resource control and future soil management. Identifying sediment contribution from different land uses offers considerable potential to prevent environmental degradation and the

  1. Controls on suspended sediment, particulate and dissolved organic carbon export from two adjacent catchments with contrasting land-uses, Exmoor UK.

    NASA Astrophysics Data System (ADS)

    Glendell, M.; Brazier, R. E.

    2012-04-01

    The fluvial export of total organic carbon (particulate and dissolved) plays an important role in the transportation of organic carbon from terrestrial to aquatic ecosystems, with implications for the understanding of the global carbon cycle and calculations of regional carbon budgets. The terrestrial biosphere contains large amounts of stored carbon in the soil and vegetation, thus a small change in the terrestrial carbon pool may have significant implications for atmospheric CO2 concentrations. Since the onset of agriculture, human activities have accelerated soil erosion rates 10- to 100- fold above all estimated natural background levels, especially in the uplands and at lower latitudes, whilst increasing DOC concentrations over the past decades have been reported in rivers across Western Europe and North America, raising concerns about potential destabilisation of the terrestrial soil carbon pool. The increased input of fine sediment and organic carbon into aquatic environments is also an important factor in stream water quality, being responsible for direct ecological effects as well as transport of a range of contaminants. Many factors, such as topography, hydrological regime and vegetation are known to influence the fluvial export of carbon from catchments. However, most work to date has focused on DOC losses from either forested or peaty catchments, with only limited studies examining the controls and rates of TOC (dissolved and particulate) fluxes from agricultural catchments, particularly during flood events. This research aims to: • Quantify the fluxes of total suspended sediment, total dissolved and total particulate carbon in two adjacent catchments with contrasting land-uses and • Examine the controlling factors of total fluvial carbon fluxes in a semi-natural and agricultural catchment in order to assess the impact of agricultural land-use on fluvial carbon export. The two contrasting study catchments (the Aller and Horner), in south

  2. Spatial and temporal dynamics of nitrate fluxes in a mesoscale catchment

    NASA Astrophysics Data System (ADS)

    Muller, C.; Musolff, A.; Strachauer, U.; Brauns, M.; Tarasova, L.; Merz, R.; Knoeller, K.

    2017-12-01

    Spatially and temporally variable and often superimposing processes like mobilization and turnover of N-species strongly affect nitrate fluxes at catchment outlets. It remains thus challenging to determine dominant nitrate sources to derive an effective river management. Here, we combine data sets from two spatially highly resolved key-date monitoring campaigns of nitrate fluxes along a mesoscale catchment in Germany with four years of monitoring data from two representative sites within the catchment. The study area is characterized by a strong land use gradient from pristine headwaters to lowland sub-catchments with intense agricultural land use and wastewater sources. Flow conditions were assessed by a hydrograph separation showing the clear dominance of base flow during both investigations. However, the absolute amounts of discharge differed significantly from each other (outlet: 1.42 m³ s-1 versus 0.43 m³ s-1). Nitrate concentration and flux in the headwater was found to be low. In contrast, nitrate loads further downstream originate from anthropogenic sources such as effluents from wastewater treatment plants (WWTP) and agricultural land use. The agricultural contribution did not vary in terms of nitrate concentration and isotopic signature between the years but in terms of flux. The contrasting amounts of discharge between the years led to a strongly increased relative wastewater contribution with decreasing discharge. This was mainly manifested in elevated δ18O-NO3- values downstream from the wastewater discharge. The four-year monitoring at two sides clearly indicates the chemostatic character of the agricultural N-source and its distinct, yet stable isotopic fingerprint. Denitrification was found to play no dominant role only for controlling nitrate loads in the river. The spatially highly resolved monitoring approach helped to accurately define hot spots of nitrate inputs into the stream while the long-term information allowed a classification of the

  3. Development of a New Zealand SedNet model for assessment of catchment-wide soil-conservation works

    NASA Astrophysics Data System (ADS)

    Dymond, John R.; Herzig, Alexander; Basher, Les; Betts, Harley D.; Marden, Mike; Phillips, Chris J.; Ausseil, Anne-Gaelle E.; Palmer, David J.; Clark, Maree; Roygard, Jon

    2016-03-01

    Much hill country in New Zealand has been converted from indigenous forest to pastoral agriculture, resulting in increased soil erosion. Following a severe storm that hit the Manawatu-Wanaganui region in 2004 and caused 62,000 landslides, the Horizons Regional Council have implemented the Sustainable Land Use Initiative (SLUI), a programme of widespread soil conservation. We have developed a New Zealand version (SedNetNZ) of the Australian SedNet model to evaluate the impact of the SLUI programme in the 5850 km2 Manawatu catchment. SedNetNZ spatially distributes budgets of fine sediment in the landscape. It incorporates landslide, gully, earthflow erosion, surficial erosion, bank erosion, and flood-plain deposition, the important forms of soil erosion in New Zealand. Modelled suspended sediment loads compared well with measured suspended sediment loads with an R2 value of 0.85 after log transformation. A sensitivity analysis gave the uncertainty of estimated suspended sediment loads to be approximately plus or minus 50% (at the 95% confidence level). It is expected that by 2040, suspended sediment loads in targeted water management zones will decrease by about 40%. The expected decrease for the whole catchment is 34%. The expected reduction is due to maturity of tree planting on land at risk to soil erosion. The 34% reduction represents an annual rate of return of 20% on 20 million NZ of investment on soil conservation works through avoided damage to property and infrastructure and avoided clean-up costs.

  4. Catchment management and the Great Barrier Reef.

    PubMed

    Brodie, J; Christie, C; Devlin, M; Haynes, D; Morris, S; Ramsay, M; Waterhouse, J; Yorkston, H

    2001-01-01

    Pollution of coastal regions of the Great Barrier Reef is dominated by runoff from the adjacent catchment. Catchment land-use is dominated by beef grazing and cropping, largely sugarcane cultivation, with relatively minor urban development. Runoff of sediment, nutrients and pesticides is increasing and for nitrogen is now four times the natural amount discharged 150 years ago. Significant effects and potential threats are now evident on inshore reefs, seagrasses and marine animals. There is no effective legislation or processes in place to manage agricultural pollution. The Great Barrier Reef Marine Park Act does not provide effective jurisdiction on the catchment. Queensland legislation relies on voluntary codes and there is no assessment of the effectiveness of the codes. Integrated catchment management strategies, also voluntary, provide some positive outcomes but are of limited success. Pollutant loads are predicted to continue to increase and it is unlikely that current management regimes will prevent this. New mechanisms to prevent continued degradation of inshore ecosystems of the Great Barrier Reef World Heritage Area are urgently needed.

  5. Microbial water pollution: a screening tool for initial catchment-scale assessment and source apportionment.

    PubMed

    Kay, D; Anthony, S; Crowther, J; Chambers, B J; Nicholson, F A; Chadwick, D; Stapleton, C M; Wyer, M D

    2010-11-01

    The European Union Water Framework Directive requires that Management Plans are developed for individual River Basin Districts. From the point of view of faecal indicator organisms (FIOs), there is a critical need for screening tools that can provide a rapid assessment of the likely FIO concentrations and fluxes within catchments under base- and high-flow conditions, and of the balance ('source apportionment') between agriculture- and sewage-derived sources. Accordingly, the present paper reports on: (1) the development of preliminary generic models, using water quality and land cover data from previous UK catchment studies for assessing FIO concentrations, fluxes and source apportionment within catchments during the summer bathing season; (2) the calibration of national land use data, against data previously used in the models; and (3) provisional FIO concentration and source-apportionment assessments for England and Wales. The models clearly highlighted the crucial importance of high-flow conditions for the flux of FIOs within catchments. At high flow, improved grassland (and associated livestock) was the key FIO source; FIO loadings derived from catchments with high proportions of improved grassland were shown to be as high as from urbanized catchments; and in many rural catchments, especially in NW and SW England and Wales, which are important areas of lowland livestock (especially dairy) farming, ≥ 40% of FIOs was assessed to be derived from agricultural sources. In contrast, under base-flow conditions, when there was little or no runoff from agricultural land, urban (i.e. sewerage-related) sources were assessed to dominate, and even in rural areas the majority of FIOs were attributed to urban sources. The results of the study demonstrate the potential of this type of approach, particularly in light of climate change and the likelihood of more high-flow events, in underpinning informed policy development and prioritization of investment. Copyright © 2009

  6. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazi

    NASA Astrophysics Data System (ADS)

    Costa, M. H.; Dias, L. C. P.; Macedo, M.; Coe, M. T.; Neill, C.

    2014-12-01

    This study assess the influence of land cover changes on evapotranspiration and streamflow in small catchments in the Upper Xingu River Basin (Mato Grosso state, Brazil). Streamflow was measured in catchments with uniform land use for September 1, 2008 to August 31, 2010. We used models to simulate evapotranspiration and streamflow for the four most common land cover types found in the Upper Xingu: tropical forest, cerrado (savanna), pasture, and soybean croplands. We used INLAND to perform single point simulations considering tropical rainforest, cerrado and pasturelands, and AgroIBIS for croplands. Converting natural vegetation to agriculture substantially modifies evapotranspiration and streamflow in small catchments. Measured mean streamflow in soy catchments was about three times greater than that of forest catchments, while the mean annual amplitude of flow in soy catchments was more than twice that of forest catchments. Simulated mean annual evapotranspiration was 39% lower in agricultural ecosystems (pasture and soybean cropland) than in natural ecosystems (tropical rainforest and cerrado). Observed and simulated mean annual streamflows in agricultural ecosystems were more than 100% higher than in natural ecosystems. The accuracy of the simulations is improved by using field-measured soil hydraulic properties. The inclusion of local measurements of key soil parameters is likely to improve hydrological simulations in other tropical regions.

  7. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazi

    NASA Astrophysics Data System (ADS)

    Costa, M. H.; Dias, L. C. P.; Macedo, M.; Coe, M. T.; Neill, C.

    2015-12-01

    This study assess the influence of land cover changes on evapotranspiration and streamflow in small catchments in the Upper Xingu River Basin (Mato Grosso state, Brazil). Streamflow was measured in catchments with uniform land use for September 1, 2008 to August 31, 2010. We used models to simulate evapotranspiration and streamflow for the four most common land cover types found in the Upper Xingu: tropical forest, cerrado (savanna), pasture, and soybean croplands. We used INLAND to perform single point simulations considering tropical rainforest, cerrado and pasturelands, and AgroIBIS for croplands. Converting natural vegetation to agriculture substantially modifies evapotranspiration and streamflow in small catchments. Measured mean streamflow in soy catchments was about three times greater than that of forest catchments, while the mean annual amplitude of flow in soy catchments was more than twice that of forest catchments. Simulated mean annual evapotranspiration was 39% lower in agricultural ecosystems (pasture and soybean cropland) than in natural ecosystems (tropical rainforest and cerrado). Observed and simulated mean annual streamflows in agricultural ecosystems were more than 100% higher than in natural ecosystems. The accuracy of the simulations is improved by using field-measured soil hydraulic properties. The inclusion of local measurements of key soil parameters is likely to improve hydrological simulations in other tropical regions.

  8. Spatial and Temporal Variation of Water Quality in the Bertam Catchment, Cameron Highlands, Malaysia.

    PubMed

    Rasul, M G; Islam, Mir Sujaul; Yunus, Rosli Bin Mohd; Mokhtar, Mazlin Bin; Alam, Lubna; Yahaya, F M

    2017-12-01

      The spatio-temporal variability of water quality associated with anthropogenic activities was studied for the Bertam River and its main tributaries within the Bertam Catchment, Cameron Highlands, Malaysia. A number of physico-chemical parameters of collected samples were analyzed to evaluate their spatio-temporal variability. Nonparametric statistical analysis showed significant temporal and spatial differences (p < 0.05) in most of the parameters across the catchment. Parameters except dissolved oxygen and chemical oxygen demand displayed higher values in rainy season. The higher concentration of total suspended solids was caused by massive soil erosion and sedimentation. Seasonal variations in contaminant concentrations are largely affected by precipitation and anthropogenic influences. Untreated domestic wastewater discharge as well as agricultural runoff significantly influenced the water quality. Poor agricultural practices and development activities at slope areas also affected the water quality within the catchment. The analytical results provided a basis for protection of river environments and ecological restoration in mountainous Bertam Catchment.

  9. Linking agriculture and nutrition education to improve infant and young child feeding: Lessons for future programmes.

    PubMed

    Muehlhoff, Ellen; Wijesinha-Bettoni, Ramani; Westaway, Elizabeth; Jeremias, Theresa; Nordin, Stacia; Garz, Julia

    2017-10-01

    Agriculture and food systems play a central role in nutrition by supplying nutritious, healthy and affordable foods. When integrated with nutrition education for behaviour change, agricultural interventions that supply diverse affordable foods from all food groups have great scope for improving young child and family diets. In 2014, process reviews were conducted in Cambodia and Malawi of food security projects that provided agricultural support and community-based nutrition education on improved infant and young child feeding (IYCF). In both countries, household visits were carried out with mothers/caregivers, and interviews and Focus Group Discussions (FGDs) were conducted with purposively selected project stakeholders (53 in Cambodia, 170 in Malawi), including government staff from the agriculture and health sectors. Results highlight that adoption of improved IYCF practices was facilitated by participation in nutrition education and practical cooking sessions, and supportive family and community structures. Barriers faced by families and caregivers were identified, such as women's workload and lack of access to high quality foods, namely fruits, vegetables, legumes, nuts and animal source foods. Implementation challenges regarding coordination of cross-sectoral targeting strategies and capacities of extension services to sustain community-based IYCF nutrition education need to be addressed to improve programme effectiveness and impact. The project lessons from Cambodia and Malawi are useful for integrated agriculture-IYCF nutrition education programmes to help ensure better young child nutrition outcomes. © 2017 John Wiley & Sons Ltd.

  10. The River EdenDTC Project: A National Demonstration Test Catchment

    NASA Astrophysics Data System (ADS)

    Benskin, C.; Surridge, B.; Deasy, C.; Woods, C.; Rimmer, D.; Lees, E.; Owens, G.; Jonczyk, J.; Quinton, J.; Wilkinson, M.; Perks, M.; Quinn, P.; Barker, P.; Haygarth, P.; Burke, S.; Reaney, S.; Watson, N.

    2012-04-01

    Our environment is a complex system of interactions between natural process and anthropogenic activities that disrupt them. It is crucial to manage the balance for continued food production whilst maintaining the quality of the environment. The challenges we face include managing the impact of agricultural land use on aquatic quality and biodiversity as an integral system, rather than as separate issues. In order to do this, it is critical to understand how the different components are linked - how does land use affect our water courses and ground water, and their associated ecosystems, and how can the impact of agricultural land use on these systems be minimised? Regulating farm nutrient management through measures that minimise sources, their exposure to mobilisation, and reduce drainage pathways to water courses are all fundamental to the UK's approach to meeting the Water Framework Directive objective of achieving 'good ecological status' in all surface and groundwater bodies by 2015. The EdenDTC project is part of a 5-year national Demonstration Test Catchments (DTC) environmental scheme, aiming to understand the above issues through combining scientific research with local knowledge and experience from multiple stakeholders. The DTC project is a 5-year initiative by Defra, Welsh Assembly Government and the Environment Agency, which encompasses a research platform covering three distinct river catchments: the Eden in Cumbria; the Wensum in Norfolk; and the Avon in Hampshire. Within the EdenDTC, the impact and effects of multiple diffuse pollutants on ecosystems and sustainable food production are being studied on a river catchment scale. Three 10 km2 focus catchments, selected to represent the different farming practices and geologies observed across the Eden, have been instrumented to record the dynamics of agricultural diffuse pollution at multiple scales. Within each focus catchment, two sub-catchments were selected: one control and one mitigation, in which

  11. Describing the environmental fate of diuron in a tropical river catchment.

    PubMed

    Camenzuli, Louise; Scheringer, Martin; Gaus, Caroline; Ng, Carla A; Hungerbühler, Konrad

    2012-12-01

    The use of the herbicide diuron on sugarcane fields along the river catchments of the Great Barrier Reef (GBR) in Australia is an issue of concern due to high levels of diuron reported in the GBR lagoon, and has recently led to a restriction on the use of diuron during the 2011/12 wet season. An important question in this context is how much diuron is mobilised from the agricultural area by strong rainfall and floods in the wet season and transferred to the GBR lagoon. We have set up a multimedia chemical fate model for a tropical catchment to describe the fate of diuron within the Tully River catchment, Queensland, Australia. The model includes highly variable rainfall based on meteorological data from the Tully River catchment and a flood water compartment on top of the agricultural soil that is present during times for which floods were reported. The model is driven by diuron application data estimated for the Tully River catchment and is solved for time-dependent diuron concentrations in agricultural soil and seawater. Model results show that on average 25% of the diuron applied every year is transferred to the GBR lagoon with rainwater and flood water runoff. Diuron concentrations estimated for the seawater range from 0.1 ng/L to 12 ng/L and are in good agreement with concentrations measured in the GBR lagoon. The uncertainty of the diuron concentrations estimated for seawater is approximately a factor of two and mainly derives from uncertainty in the diuron degradation half-life in soil, properties of the soil compartment such as organic matter content, and the speed of the seawater current removing diuron dissolved in seawater from the seawater compartment of the model. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Standardised survey method for identifying catchment risks to water quality.

    PubMed

    Baker, D L; Ferguson, C M; Chier, P; Warnecke, M; Watkinson, A

    2016-06-01

    This paper describes the development and application of a systematic methodology to identify and quantify risks in drinking water and recreational catchments. The methodology assesses microbial and chemical contaminants from both diffuse and point sources within a catchment using Escherichia coli, protozoan pathogens and chemicals (including fuel and pesticides) as index contaminants. Hazard source information is gathered by a defined sanitary survey process involving use of a software tool which groups hazards into six types: sewage infrastructure, on-site sewage systems, industrial, stormwater, agriculture and recreational sites. The survey estimates the likelihood of the site affecting catchment water quality, and the potential consequences, enabling the calculation of risk for individual sites. These risks are integrated to calculate a cumulative risk for each sub-catchment and the whole catchment. The cumulative risks process accounts for the proportion of potential input sources surveyed and for transfer of contaminants from upstream to downstream sub-catchments. The output risk matrices show the relative risk sources for each of the index contaminants, highlighting those with the greatest impact on water quality at a sub-catchment and catchment level. Verification of the sanitary survey assessments and prioritisation is achieved by comparison with water quality data and microbial source tracking.

  13. Spatial and temporal variations in non-point source losses of nitrogen and phosphorus in a small agricultural catchment in the Three Gorges Region.

    PubMed

    Chen, Chenglong; Gao, Ming; Xie, Deti; Ni, Jiupai

    2016-04-01

    Losses of agricultural pollutants from small catchments are a major issue for water quality in the Three Gorges Region. Solutions are urgently needed. However, before pollutant losses can be controlled, information about spatial and temporal variations in pollutant losses is needed. The study was carried out in the Wangjiagou catchment, a small agricultural catchment in Fuling District, Chongqing, and the data about non-point source losses of nitrogen and phosphorus was collected here. Water samples were collected daily by an automatic water sampler at the outlets of two subcatchments from 2012 to 2014. Also, samples of surface runoff from 28 sampling sites distributed through the subcatchments were collected during 12 rainfall events in 2014. A range of water quality variables were analyzed for all samples and were used to demonstrate the variation in non-point losses of nitrogen and phosphorus over a range of temporal and spatial scales and in different types of rainfall in the catchment. Results showed that there was a significant linear correlation between the mass concentrations of total nitrogen (TN) and nitrate (NO3-N) in surface runoff and that the relationship was maintained with changes in time. Concentrations of TN and NO3-N peaked after fertilizer was applied to crops in spring and autumn; concentrations decreased rapidly after the peak values in spring but declined slowly in autumn. N and P concentrations fluctuated more and showed a greater degree of dispersion during the spring crop cultivation period than those in autumn. Concentrations of TN and NO3-N in surface runoff were significantly and positively correlated with the proportion of the area that was planted with corn and mustard tubers, but were negatively correlated with the proportion of the area taken up with rice and mulberry plantations. The average concentrations of TN and NO3-N in surface runoff reached the highest level from the sampling points at the bottom of the land used for corn

  14. Applicability of rapid and on-site measured enzyme activity for surface water quality monitoring in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Farnleitner, Andreas H.; Sommer, Regina; Kumpan, Monika; Zessner, Matthias

    2014-05-01

    For the near real time and on-site detection of microbiological fecal pollution of water, the measurement of beta-D- Glucuronidase (GLUC) enzymatic activity has been suggested as a surrogate parameter and has been already successfully operated for water quality monitoring of ground water resources (Ryzinska-Paier et al. 2014). Due to possible short measure intervals of three hours, this method has high potential as a water quality monitoring tool. While cultivation based standard determination takes more than one working day (Cabral 2010) the potential advantage of detecting the GLUC activity is the high temporal measuring resolution. Yet, there is still a big gap of knowledge on the fecal indication capacity of GLUC (specificity, sensitivity, persistence, etc.) in relation to potential pollution sources and catchment conditions (Cabral 2010, Ryzinska-Paier et al. 2014). Furthermore surface waters are a big challenge for automated detection devices in a technical point of view due to the high sediment load during event conditions. This presentation shows results gained form two years of monitoring in an experimental catchment (HOAL) dominated by agricultural land use. Two enzymatic measurement devices are operated parallel at the catchment outlet to test the reproducibility and precision of the method. Data from continuous GLUC monitoring under both base flow and event conditions is compared with reference samples analyzed by standardized laboratory methods for fecal pollution detection (e.g. ISO 16649-1, Colilert18). It is shown that rapid enzymatic on-site GLUC determination can successfully be operated from a technical point of view for surface water quality monitoring under the observed catchment conditions. The comparison of enzyme activity with microbiological standard analytics reveals distinct differences in the dynamic of the signals during event conditions. Cabral J. P. S. (2010) "Water Microbiology. Bacterial Pathogens and Water" International Journal of

  15. Using high-resolution phosphorus data to investigate mitigation measures in headwater river catchments

    NASA Astrophysics Data System (ADS)

    Campbell, J. M.; Jordan, P.; Arnscheidt, J.

    2015-01-01

    This study reports the use of high-resolution water quality monitoring to assess the influence of changes in land use management on total phosphorus (TP) transfers in two 5 km2 agricultural sub-catchments. Specifically, the work investigates the issue of agricultural soil P management and subsequent diffuse transfers at high river flows over a 5-year timescale. The work also investigates the phenomenon of low flow P pollution from septic tank systems (STSs) and mitigation efforts - a key concern for catchment management. Results showed an inconsistent response to soil P management over 5 years with one catchment showing a convergence to optimum P concentrations and the other an overall increase. Both catchments indicated an overall increase in P concentration in defined high flow ranges. Low flow P concentration showed little change or higher P concentrations in defined low flow ranges despite replacement of defective systems and this is possibly due to a number of confounding reasons including increased housing densities due to new-builds. The work indicates fractured responses to catchment management advice and mitigation and that the short to medium term may be an insufficient time to expect the full implementation of policies (here defined as convergence to optimum soil P concentration and mitigation of STSs) and also to gauge their effectiveness.

  16. Catchment land use-dependent effects of barrage fishponds on the functioning of headwater streams.

    PubMed

    Four, Brian; Arce, Evelyne; Danger, Michaël; Gaillard, Juliette; Thomas, Marielle; Banas, Damien

    2017-02-01

    Extensive fish production systems in continental areas are often created by damming headwater streams. However, these lentic systems favour autochthonous organic matter production. As headwater stream functioning is essentially based on allochthonous organic matter (OM) supply, the presence of barrage fishponds on headwater streams might change the main food source for benthic communities. The goal of this study was thus to identify the effects of barrage fishponds on the functioning of headwater streams. To this end, we compared leaf litter breakdown (a key ecosystem function in headwater streams), their associated invertebrate communities and fungal biomass at sites upstream and downstream of five barrage fishponds in two dominant land use systems (three in forested catchments and two in agricultural catchments). We observed significant structural and functional differences between headwater stream ecosystems in agricultural catchments and those in forested catchments. Leaf litter decay was more rapid in forest streams, with a moderate, but not significant, increase in breakdown rate downstream from the barrage fishponds. In agricultural catchments, the trend was opposite with a 2-fold lower leaf litter breakdown rate at downstream sites compared to upstream sites. Breakdown rates observed at all sites were closely correlated with fungal biomass and shredder biomass. No effect of barrage fishponds were observed in this study concerning invertebrate community structure or functional feeding groups especially in agricultural landscapes. In forest streams, we observed a decrease in organic pollution (OP)-intolerant taxa at downstream sites that was correlated with an increase in OP-tolerant taxa. These results highlighted that the influence of barrage fishponds on headwater stream functioning is complex and land use dependent. It is therefore necessary to clearly understand the various mechanisms (competition for food resources, complementarities between

  17. Contribution of atmospheric nitrogen deposition to diffuse pollution in a typical hilly red soil catchment in southern China.

    PubMed

    Shen, Jianlin; Liu, Jieyun; Li, Yong; Li, Yuyuan; Wang, Yi; Liu, Xuejun; Wu, Jinshui

    2014-09-01

    Atmospheric nitrogen (N) deposition is currently high and meanwhile diffuse N pollution is also serious in China. The correlation between N deposition and riverine N export and the contribution of N deposition to riverine N export were investigated in a typical hilly red soil catchment in southern China over a two-year period. N deposition was as high as 26.1 to 55.8kgN/(ha·yr) across different land uses in the studied catchment, while the riverine N exports ranged from 7.2 to 9.6kgN/(ha·yr) in the forest sub-catchment and 27.4 to 30.3kgN/(ha·yr) in the agricultural sub-catchment. The correlations between both wet N deposition and riverine N export and precipitation were highly positive, and so were the correlations between NH4(+)-N or NO3(-)-N wet deposition and riverine NH4(+)-N or NO3(-)-N exports except for NH4(+)-N in the agricultural sub-catchment, indicating that N deposition contributed to riverine N export. The monthly export coefficients of atmospheric deposited N from land to river in the forest sub-catchment (with a mean of 14%) presented a significant positive correlation with precipitation, while the monthly contributions of atmospheric deposition to riverine N export (with a mean of 18.7% in the agricultural sub-catchment and a mean of 21.0% in the whole catchment) were significantly and negatively correlated with precipitation. The relatively high contribution of N deposition to diffuse N pollution in the catchment suggests that efforts should be done to control anthropogenic reactive N emissions to the atmosphere in hilly red soil regions in southern China. Copyright © 2014. Published by Elsevier B.V.

  18. Phytotoxic substances in runoff from forested catchment areas

    NASA Astrophysics Data System (ADS)

    Grimvall, Anders; Bengtsson, Maj-Britt; Borén, Hans; Wahlström, Dan

    Runoff from different catchment areas in southern Sweden was tested in a root bioassay based on solution cultures of cucumber seedlings. Water samples from agricultural catchment areas produced no signs at all or only weak signs of inhibited root growth, whereas several water samples from catchment areas dominated by mires or coniferous forests produced visible root injuries. The most severe root injuries (very short roots, discolouration, swelling of root tips and lack of root hairs) were caused by samples from a catchment area without local emissions and dominated by old stands of spruce. Fractionation by ultrafiltration showed that the phytotoxic effect of these samples could be attributed to organic matter with a nominal molecular-weight exceeding 1000 or to substances associated with organic macromolecules. Experiments aimed at concentrating phytotoxic compounds from surface water indicated that the observed growth inhibition was caused by strongly hydrophilic substances. Previous reports on phytotoxic, organic substances of natural origin have emphasized interaction between plants growing close together. The presence of phytotoxic substances in runoff indicates that there is also a large-scale dispersion of such compounds.

  19. Modeling relationships between catchment attributes and river water quality in southern catchments of the Caspian Sea.

    PubMed

    Hasani Sangani, Mohammad; Jabbarian Amiri, Bahman; Alizadeh Shabani, Afshin; Sakieh, Yousef; Ashrafi, Sohrab

    2015-04-01

    Increasing land utilization through diverse forms of human activities, such as agriculture, forestry, urban growth, and industrial development, has led to negative impacts on the water quality of rivers. To find out how catchment attributes, such as land use, hydrologic soil groups, and lithology, can affect water quality variables (Ca(2+), Mg(2+), Na(+), Cl(-), HCO 3 (-) , pH, TDS, EC, SAR), a spatio-statistical approach was applied to 23 catchments in southern basins of the Caspian Sea. All input data layers (digital maps of land use, soil, and lithology) were prepared using geographic information system (GIS) and spatial analysis. Relationships between water quality variables and catchment attributes were then examined by Spearman rank correlation tests and multiple linear regression. Stepwise approach-based multiple linear regressions were developed to examine the relationship between catchment attributes and water quality variables. The areas (%) of marl, tuff, or diorite, as well as those of good-quality rangeland and bare land had negative effects on all water quality variables, while those of basalt, forest land cover were found to contribute to improved river water quality. Moreover, lithological variables showed the greatest most potential for predicting the mean concentration values of water quality variables, and noting that measure of EC and TDS have inversely associated with area (%) of urban land use.

  20. Comparing hydrological signatures of small agricultural catchments using uncertain data provided by a soft hydrological monitoring

    NASA Astrophysics Data System (ADS)

    Crabit, Armand; Colin, François

    2016-04-01

    Discharge estimation is one of the greatest challenge for every hydrologist as it is the most classical hydrological variable used in hydrological studies. The key lies in the rating curves and the way they were built: based on field measurements or using physical equations as the Manning-Strickler relation… However, as we all know, data and associated uncertainty deeply impact the veracity of such rating curves that could have serious consequences on data interpretation. And, of all things, this affects every catchment in the world, not only the gauged catchments but also and especially the poorly gauged ones that account for the larger part of the catchment of the world. This study investigates how to compare hydrological behaviour of 11 small (0.1 to 0.6 km2) poorly gauged catchments considering uncertainty associated to their rating curves. It shows how important the uncertainty can be using Manning equation and focus on its parameter: the roughness coefficient. Innovative work has been performed under controlled experimental conditions to estimate the Manning coefficient values for the different cover types observed in studied streams: non-aquatic vegetations. The results show that estimated flow rates using suitable roughness coefficients highly differ from those we should have obtained if we only considered the common values given in the literature. Moreover, it highlights how it could also affect all derived hydrological indicators commonly used to compare hydrological behaviour. Data of rainfall and water depth at a catchment's outlet were recorded using automatic logging equipment during 2008-2009. The hydrological regime is intermittent and the annual precipitation ranged between 569 and 727 mm. Discharge was then estimated using Manning's equation and channel cross-section measurements. Even if discharge uncertainty is high, the results show significant variability between catchment's responses that allows for catchment classification. It also

  1. Effect of Land Use, Seasonality, and Hydrometeorological Conditions on the K+ Concentration-Discharge Relationship During Different Types of Floods in Carpathian Foothills Catchments (Poland).

    PubMed

    Siwek, Joanna P; Żelazny, Mirosław; Siwek, Janusz; Szymański, Wojciech

    2017-01-01

    The purpose of the study was to determine the role of land use, seasonality, and hydrometeorological conditions on the relationship between stream water potassium (K + ) concentration and discharge during different types of floods-short- and long-duration rainfall floods as well as snowmelt floods on frozen and thawed soils. The research was conducted in small catchments (agricultural, woodland, mixed-use) in the Carpathian Foothills (Poland). In the woodland catchment, lower K + concentrations were noted for each given specific runoff value for summer rainfall floods versus snowmelt floods (seasonal effect). In the agricultural and mixed-use catchments, the opposite was true due to their greater ability to flush K + out of the soil in the summer. In the stream draining woodland catchment, higher K + concentrations occurred during the rising limb than during the falling limb of the hydrograph (clockwise hysteresis) for all flood types, except for snowmelt floods with the ground not frozen. In the agricultural catchment, clockwise hystereses were produced for short- and long-duration rainfall floods caused by high-intensity, high-volume rainfall, while anticlockwise hystereses were produced for short- and long-duration rainfall floods caused by low-intensity, low-volume rainfall as well as during snowmelt floods with the soil frozen and not frozen. In the mixed-use catchment, the hysteresis direction was also affected by different lag times for water reaching stream channels from areas with different land use. K + hystereses for the woodland catchment were more narrow than those for the agricultural and mixed-use catchments due to a smaller pool of K + in the woodland catchment. In all streams, the widest hystereses were produced for rainfall floods preceded by a long period without rainfall.

  2. Carbon redistribution by erosion processes in an intensively disturbed catchment

    NASA Astrophysics Data System (ADS)

    Boix-Fayos, Carolina; Martínez-Mena, María; Pérez Cutillas, Pedro; de Vente, Joris; Barberá, Gonzalo G.; Mosch, Wouter; Navarro Cano, Jose Antonio; Gaspar, Leticia; Navas, Ana

    2016-04-01

    Understanding how organic carbon moves with sediments along the fluvial system is crucial to close catchment scale carbon budgets. Especially challenging is the analysis of organic carbon dynamics during fluvial transport in heterogeneous, fragile and disturbed environments with ephemeral and intense hydrological pulses, typical of Mediterranean conditions. This paper explores the catchment scale organic carbon redistribution by lateral flows in extreme Mediterranean environmental conditions from a geomorphological perspective. The study area is a catchment (Cárcavo) in SE Spain with a semiarid climate, erodible lithologies, shallow soils, and highly disturbed by agricultural terraces, land levelling, reforestations and construction of check-dams. To increase understanding of erosion induced catchment scale organic carbon redistribution, we studied the subcatchments of 8 check-dams distributed along the catchment main channel in detail. We determined 137Cs, physicochemical characteristics and organic carbon pools of soils and sediments deposited behind each check-dam, performed spatial analysis of properties of the catchment and buffer areas around check-dams, and carried out geomorphological analysis of the slope-channel connections. Soils showed very low Total Organic Carbon (TOC) values oscillating between 15.2 and 4.4 g Kg-1 for forest and agricultural soils, respectively. Sediments mobilized by erosion were poor in TOC compared to the eroded (forest) soils (6.6±0.7 g Kg-1), and the redistribution of organic carbon through the catchment, especially of the Mineral Associated Organic Carbon (MAC) pool, showed the same pattern as clay particles and 137Cs. The TOC erosion rates (0.031±0.03 Mg ha-1 y-1) were comparable to others reported for subhumid Mediterranean catchments and to those modelled worldwide for pasture land. Those lateral fluxes were equivalent to 10.4 % of the TOC stock from the topsoil at the moment of the check-dam construction and

  3. High-resolution monitoring of catchment nutrient response to the end of the 2011-2012 drought in England, captured by the demonstration test catchments

    NASA Astrophysics Data System (ADS)

    Outram, F. N.; Lloyd, C.; Jonczyk, J.; Benskin, C. McW. H.; Grant, F.; Dorling, S. R.; Steele, C. J.; Collins, A. L.; Freer, J.; Haygarth, P. M.; Hiscock, K. M.; Johnes, P. J.; Lovett, A. L.

    2013-12-01

    The Demonstration Test Catchments (DTC) project is a UK Government funded initiative to test the effectiveness of on-farm mitigation measures designed to reduce agricultural pollution without compromising farm productivity. Three distinct catchments in England have been chosen to test the efficacy of mitigation measures on working farms in small tributary sub-catchments equipped with continuous water quality monitoring stations. The Hampshire Avon in the south is a mixed livestock and arable farming catchment, the River Wensum in the east is a lowland catchment with predominantly arable farming and land use in the River Eden catchment in the north-west is predominantly livestock farming. One of the many strengths of the DTC as a national research platform is that it provides the ability to investigate catchment hydrology and biogeochemical response across different landscapes and geoclimatic characteristics, with a range of differing flow behaviours, geochemistries and nutrient chemistries. Although numerous authors present studies of individual catchment responses to storms, no studies exist of multiple catchment responses to the same rainfall event captured with in situ high-resolution nutrient monitoring at a national scale. This paper brings together findings from all three DTC research groups to compare the response of the catchments to a major storm event in April 2012. This was one of the first weather fronts to track across the country following a prolonged drought period affecting much of the UK through 2011-2012, marking an unusual meteorological transition when a rapid shift from drought to flood risk occurred. The effects of the weather front on discharge and water chemistry parameters, including nitrogen species (NO3-N and NH4-N) and phosphorus fractions (total P (TP) and total reactive P (TRP)), measured at a half-hourly time step are examined. When considered in the context of one hydrological year, flow and concentration duration curves reveal that

  4. SUSTAINABLE AGRICULTURE FOR THE WATER CATCHMENT PROTECTION AREA IN NTISAW, CAMEROON

    EPA Science Inventory

    We expect that the catchment area will increase food output for the community in addition to preserving the water source. Increased food output will benefit needy residents and allow them to focus more on education and economic development. Additionally, an area of sustainable...

  5. Using high-resolution phosphorus data to investigate mitigation measures in headwater river catchments

    NASA Astrophysics Data System (ADS)

    Campbell, J. M.; Jordan, P.; Arnscheidt, J.

    2014-09-01

    This study reports the use of high resolution water quality monitoring to assess the influence of changes in landuse management on total phosphorus (TP) transfers in two 5 km2 agricultural sub-catchments. Specifically, the work investigates the "wicked problem" of agricultural soil P management and subsequent diffuse transfers at high river flows over a five year timescale. The work also investigates the phenomenon of low flow P pollution from septic tank systems (STS) and mitigation efforts - here termed the "filthy issue" of rural catchment management. Results showed an inconsistent response to soil P management over five years with one catchment showing a convergence to optimum P concentrations and the other an overall increase. Both catchments indicated an overall increase in P concentration in defined high flow ranges. Low flow P concentration showed little change or higher P concentrations in defined low flow ranges despite replacement of defective systems and this is possibly due to a number of confounding reasons including increased housing densities due to new-builds. The work indicates fractured responses to catchment management advice and mitigation and that the short to medium term may be an insufficient time to expect the full implementation of policies (here defined as convergence to optimum soil P concentration and mitigation of STS) and also to gauge their effectiveness.

  6. The impact of agricultural land use on stream chemistry in the Middle Hills of the Himalayas, Nepal

    NASA Astrophysics Data System (ADS)

    Collins, Robert; Jenkins, Alan

    1996-11-01

    The chemistry of streams draining agricultural and forested catchments in the Middle Hills of Nepal is described. Differences between mean streamwater chemistry are attributable to the effects of the terraced agriculture and land management practices. The agricultural catchments were found to exhibit higher mean concentrations of base cations (Na, Mg, K), bicarbonate, acid anions (SO 4, Cl), metals (Al, Fe) and nutrients (NO 3, PO 4). Increased base cations apparently result from tillage practices exposing fresh soil material to weathering. Increased acid anions result from inputs of inorganic fertiliser, notably ammonium sulphate, and from an apparent increase in evapotranspiration from the flooded terraces in the agricultural catchments. Increased metal concentrations may be promoted by increased weathering and erosion rates, and this is further supported by observations of dramatically higher turbidity in the streamwater draining the agricultural catchments. Higher levels of nutrients are the direct result of fertiliser input but concentrations are generally low from all catchments as a result of denitrification, indicating that eutrophication downstream is not a likely consequence of land use change. The major dynamics of water chemistry occur during the monsoon, which is also the main season for agricultural production. Mean wet season concentrations of base cations tend to be lower than in the dry season at all catchments as higher flow dilutes the relatively constant weathering input. Ammonium concentrations are higher from the agricultural catchments in the wet season as a result of direct washout of fertiliser. Detailed monitoring through storm periods at one agricultural catchment indicates that the chemistry responds very rapidly to changing flow, with cations decreasing and acid anions increasing followed by equally rapid recovery as flow recedes. Bicarbonate concentrations also decline markedly but are still sufficiently high to maintain pH near

  7. Building Towards a Conceptual Model for Phosphorus Transport in Lowland Catchments

    NASA Astrophysics Data System (ADS)

    van der Grift, B.; Griffioen, J.; Oste, L.

    2016-12-01

    The release of P to surface water following P leaching from heavily fertilized agricultural fields to groundwater and the extent of P retention at the redox interphase are of major importance for surface water quality. We studied the role of biogeochemical and hydrological processes during exfiltration of groundwater and their impact on phosphorus transport in lowland catchments in the Netherlands. Our study showed that the mobility and ecological impact of P in surface waters in lowland catchments or polders like in the Netherlands is strongly controlled by the exfiltration of anoxic groundwater containing ferrous iron. Chemical precipitates derived from groundwater-associated Fe(II) seeping into the overlying surface water contribute to immobilization of dissolved phosphate and, therefore, reduces its bioavailability. Aeration experiments with Fe(II) and phosphate-containing synthetic solutions and natural groundwater showed that Fe(II) oxidation in presence of phosphate leads initially to formation of Fe(III) hydroxyphosphates precipitates until phosphate is near-depleted from solution. A field campaign on P specation in surface waters draining agricultural land showed, additionally, that the total-P concentration is strongly dominated by iron-bound. Between 75 and 95% of the total-P concentration in the water samples was iron-bound particulate P. After the turnover of dissolved P to iron-bound particulate P, the P transport in catchments or polders is controlled by sedimentation and erosion of suspended sediments in the water body. Shear flow-induced surface erosion of sediment beds upon natural discharge events or generated by pumping stations is thus an important mechanism for P transport in catchments or polders. The flow velocities in headwaters like drainage ditches are generally low and not high enough to cause a bed shear stress that exceed the critical shear stress. Transport of particulate P that originates from groundwater and (agricultural) drains

  8. Sharpening policy instruments with catchment evaluations and the water quality continuum

    NASA Astrophysics Data System (ADS)

    Jordan, P.; Melland, A. R.; Mellander, P.-E.; Murphy, P.; Shortle, G.; Wall, D.; Mechan, S.; Shine, O.

    2012-04-01

    There is a scale dichotomy in water quality management in European agricultural catchments due to the fact that impacts identified at river basin scale are mitigated by management that is typically asserted from research at field or plot scale and implemented at farm scale. Evaluations of management impact are then undertaken back at the river basin scale. The policy instruments in place to mitigate water quality impacts are also based on the integration of scientific research and stakeholder negotiations and can sometimes be blunt compromises. Nevertheless, expectations of accruing water quality benefits remain high and sometimes unchallenged. Evaluating all catchment components of a pollution transfer continuum from source to impact enables important elements such as lag time between policy implementation and water quality response, water body sampling frequency and allocation of correct dose-response mechanisms to be assessed. These points are particularly important in complex agricultural catchments where multiple nutrient pollution sources have variable impacts on different water body types - and at different times of year. The tools of catchment water quality policy evaluation are diverse and include metrics of natural resource management, soil and water chemistry, hydrology, ecology and palaeolimnology. Used in combination and with river basin scale and site-specific data inventories, they can provide a powerful suite of evidence for further iterations of water quality policy and projecting realistic expectations of policy success.

  9. How does the connectivity index change through year in an agricultural catchment?

    NASA Astrophysics Data System (ADS)

    Cantreul, Vincent; Degré, Aurore

    2017-04-01

    The emerging concept of hydrological connectivity is difficult to quantify. Some indices have been proposed. The most cited is Borselli's one. It gives the advantage to visualize connectivity at watershed scale with very few inputs. But it is not a dynamic index and the resulting map is not time dependent. However, vegetation cover changes through year and possibly affects the connectivity dynamics. The objective of this poster is to show the evolution of the CI during the year looking at a few "strategic" times. Moreover, the study permits to identify a few "key locations" in the watershed, for example permanent disconnections or at the opposite constantly connected fields. The CI was calculated in a 124ha catchment (Hevillers), in the loess belt, in Belgium. Land use is agricultural with mostly cereals, sugar beets and potatoes, little area with wood, road, path or grass strip. Used weighting factor is soil loss ratio. It is between 0 and 1 and translates the protection offered to the soil by the crop. In winter (January), cereals have the most connected fields because of almost bare soils. Cover crops on sugar beets and potatoes fields decrease connectivity, except for one big field not far from the outlet. But rainfalls are generally not so erosive during this period. In spring (March and May), the cereals have a decreasing CI with plants growth covering the soil. On the opposite, sugar beets and potatoes are planted and bare soils in spring involve much higher connectivity index. The effect of grass strip is strong for sugar beet field situated uphill and underlines the importance of such mitigation measures. In summer (July), the whole watershed is much more disconnected and it does not represent the most risky part of the year in terms of erosion. The end of the year is related to harvesting and consequent bare soil in September for potatoes and November for the rest. In conclusion, the IC is an easy tool to estimate connectivity in a watershed. With the

  10. Interpreting stream sediment fingerprints against primary and secondary source signatures in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Blake, Will H.; Haley, Steve; Smith, Hugh G.; Taylor, Alex; Goddard, Rupert; Lewin, Sean; Fraser, David

    2013-04-01

    Many sediment fingerprinting studies adopt a black box approach to source apportionment whereby the properties of downstream sediment are compared quantitatively to the geochemical fingerprints of potential catchment sources without consideration of potential signature development or modification during transit. Working within a source-pathway-receptor framework, this study aimed to undertake sediment source apportionment within 6 subcatchments of an agricultural river basin with specific attention to the potential role of contaminants (vehicle emissions and mine waste) in development of stream sediment signatures. Fallout radionuclide (FRN) and geochemical fingerprinting methods were adopted independently to establish source signatures for primary sediment sources of surface and subsurface soil materials under various land uses plus reworked mine and 'secondary' soil material deposited, in transit, along road networks. FRN data demonstrated expected variability between surface soil (137Cs = 14 ± 3 Bq kg-1; 210Pbxs = 40 ± 7 Bq kg-1) and channel bank materials (137Cs = 3 ± 1 Bq kg-1; 210Pbxs = 24 ± 5 Bq kg-1) but road transported soil material was considerably elevated in 210Pbxs (up to 673 ± 51 Bq kg-1) due to sediment interaction with pluvial surface water within the road network. Geochemical discrimination between surface and subsurface soil materials was dominated by alkaline earth and alkali metals e.g. Ba, Rb, Ca, K, Mg which are sensitive to weathering processes in soil. Magnetic susceptibility and heavy metals were important discriminators of road transported material which demonstrated transformation of the signatures of material transported via the road network. Numerical unmixing of stream sediment indicated that alongside channel bank erosion, road transported material was an important component in some systems in accord with FRN evidence. While mining spoil also ranked as a significant source in an affected catchment, perhaps related to legacy

  11. Simulating Catchment Scale Afforestation for Mitigating Flooding

    NASA Astrophysics Data System (ADS)

    Barnes, M. S.; Bathurst, J. C.; Quinn, P. F.; Birkinshaw, S.

    2016-12-01

    After the 2013-14, and the more recent 2015-16, winter floods in the UK there were calls to 'forest the uplands' as a solution to reducing flood risk across the nation. However, the role of forests as a natural flood management practice remains highly controversial, due to a distinct lack of robust evidence into its effectiveness in reducing flood risk during extreme events. This project aims to improve the understanding of the impacts of upland afforestation on flood risk at the sub-catchment and full catchment scales. This will be achieved through an integrated fieldwork and modelling approach, with the use of a series of process based hydrological models to scale up and examine the effects forestry can have on flooding. Furthermore, there is a need to analyse the extent to which land management practices, catchment system engineering and the installation of runoff attenuation features (RAFs), such as engineered log jams, in headwater catchments can attenuate flood-wave movement, and potentially reduce downstream flood risk. Additionally, the proportion of a catchment or riparian reach that would need to be forested in order to achieve a significant impact on reducing downstream flooding will be defined. The consequential impacts of a corresponding reduction in agriculturally productive farmland and the potential decline of water resource availability will also be considered in order to safeguard the UK's food security and satisfy the global demand on water resources.

  12. Connectivity of surface flow and sediments in a small upland catchment

    NASA Astrophysics Data System (ADS)

    Lexartza-Artza, I.; Wainwright, J.

    2009-04-01

    , including the presence of small reservoirs that regulate the flow, a number of which have experienced pollution problems. A range of agricultural uses create a patchwork landscape in this area that is part of the Catchment Sensitive Farming programme. Using a nested approach, a baseline structure on which to develop a context-specific field approach and to acquire the data necessary to assess connectivity in the system has been followed. An initial and then iterative description of the catchment structure and characteristics has been carried, together with a study of the catchment history and sedimentation record. These allow the definition of the relevant landscape units, identification of elements that might influence connectivity and inference of potential past changes of flow pathways. Through event monitoring at different landscape settings and scales, both structural and functional aspects are considered together and the variability and changes in the flow network are shown. The knowledge obtained is being used to assess the roles of the identified elements in relation to connectivity and to recognize the interactions and feedbacks between different system components.

  13. Identifying hydrological responses of micro-catchments under contrasting land use in the Brazilian Cerrado

    NASA Astrophysics Data System (ADS)

    Nobrega, R. L. B.; Guzha, A. C.; Torres, G. N.; Kovacs, K.; Lamparter, G.; Amorim, R. S. S.; Couto, E.; Gerold, G.

    2015-09-01

    In recent decades, the Brazilian Cerrado biome has been affected by intense land-use change, particularly the conversion of natural forest to agricultural land. Understanding the environmental impacts of this land-use change on landscape hydrological dynamics is one of the main challenges in the Amazon agricultural frontier, where part of the Brazilian Cerrado biome is located and where most of the deforestation has occurred. This study uses empirical data from field measurements to characterize controls on hydrological processes from three first-order micro-catchments < 1 km2 in the Cerrado biome. These micro-catchments were selected on the basis of predominant land use including native cerrado vegetation, pasture grass with cattle ranching, and cash crop land. We continuously monitored precipitation, streamflow, soil moisture, and meteorological variables from October 2012 to September 2014. Additionally, we determined the physical and hydraulic properties of the soils, and conducted topographic surveys. We used these data to quantify the water balance components of the study catchments and to relate these water fluxes to land use, catchment physiographic parameters, and soil hydrophysical properties. The results of this study show that runoff coefficients were 0.27, 0.40, and 0.16 for the cerrado, pasture, and cropland catchments, respectively. Baseflow is shown to play a significant role in streamflow generation in the three study catchments, with baseflow index values of more than 0.95. The results also show that evapotranspiration was highest in the cerrado (986 mm yr-1) compared to the cropland (828 mm yr-1) and the pasture (532 mm yr-1). However, discharges in the cropland catchment were unexpectedly lower than that of the cerrado catchment. The normalized discharge was 55 % higher and 57 % lower in the pasture and cropland catchments, respectively, compared with the cerrado catchment. We attribute this finding to the differences in soil type and

  14. Using continuous monitoring of physical parameters to better estimate phosphorus fluxes in a small agricultural catchment

    NASA Astrophysics Data System (ADS)

    Minaudo, Camille; Dupas, Rémi; Moatar, Florentina; Gascuel-Odoux, Chantal

    2016-04-01

    Phosphorus fluxes in streams are subjected to high temporal variations, questioning the relevance of the monitoring strategies (generally monthly sampling) chosen to assist EU Directives to capture phosphorus fluxes and their variations over time. The objective of this study was to estimate the annual and seasonal P flux uncertainties depending on several monitoring strategies, with varying sampling frequencies, but also taking into account simultaneous and continuous time-series of parameters such as turbidity, conductivity, groundwater level and precipitation. Total Phosphorus (TP), Soluble Reactive Phosphorus (SRP) and Total Suspended Solids (TSS) concentrations were surveyed at a fine temporal frequency between 2007 and 2015 at the outlet of a small agricultural catchment in Brittany (Naizin, 5 km2). Sampling occurred every 3 to 6 days between 2007 and 2012 and daily between 2013 and 2015. Additionally, 61 storms were intensively surveyed (1 sample every 30 minutes) since 2007. Besides, water discharge, turbidity, conductivity, groundwater level and precipitation were monitored on a sub-hourly basis. A strong temporal decoupling between SRP and particulate P (PP) was found (Dupas et al., 2015). The phosphorus-discharge relationships displayed two types of hysteretic patterns (clockwise and counterclockwise). For both cases, time-series of PP and SRP were estimated continuously for the whole period using an empirical model linking P concentrations with the hydrological and physic-chemical variables. The associated errors of the estimated P concentrations were also assessed. These « synthetic » PP and SRP time-series allowed us to discuss the most efficient monitoring strategies, first taking into account different sampling strategies based on Monte Carlo random simulations, and then adding the information from continuous data such as turbidity, conductivity and groundwater depth based on empirical modelling. Dupas et al., (2015, Distinct export dynamics for

  15. Transport of cyazofamid and kresoxim methyl in runoff at the plot and catchment scales

    NASA Astrophysics Data System (ADS)

    Lefrancq, Marie; Joaquín García Verdú, Antonio; Maillard, Elodie; Imfeld, Gwenaël; Payraudeau, Sylvain

    2013-04-01

    Surface runoff and erosion during the course of rainfall events represent major processes of pesticides transport from agricultural land to aquatic ecosystem. In general, field and catchment studies on pesticide transfer are carried out separately. A study at both scales may enable to improve the understanding of scale effects on processes involved in pesticides transport and to give clues on the source areas within an agricultural catchment. In this study, the transport in runoff of two widely used fungicides, i.e. kresoxim methyl (KM) and cyazofamid (CY) was assessed in a 43 ha vineyard catchment and the relative contribution of the total fungicides export from one representative plot was evaluated. During an entire period of fungicide application, from May to August 2011, the discharge and loads of dissolved and particle-laden KM and CY were monitored at the plot and catchment scales. The results showed larger export coefficient of KM and CY from catchment (0.064 and 0.041‰ for KM and CY respectively) than from the studied plot (0.009 and 0.023 ‰ for KM and CY respectively). It suggests that the plot margins especially the road network contributed as well to the fungicide loads. This result underlines the impact of fungicide drift on non-target areas. Furthermore, a larger rainfall threshold is necessary at the plot scale to trigger runoff and mobilise pesticides than on the road network. At the plot scale, a rapid dissipation of the both fungicides in the top soil was observed. It highlights that the risky period encompasses the first rainfall events triggering runoff after the applications. At both scales, KM and CY were not detected in suspended solids (i.e. > 0.7 µm). However their partitioning in runoff water differed. 64.1 and 91.8% of the KM load was detected in the dissolved phase (i.e. < 0.22 µm) at the plot and catchment scales respectively, whereas 98.7 and 100% of the CY load was detected in the particulate phase (i.e. between 0.22 and 0.7 µm

  16. Using high resolution water quality monitoring across three English catchments to capture a storm event during a transition from dry to wet conditions

    NASA Astrophysics Data System (ADS)

    Outram, F.; Lloyd, C.; Jonczyk, J.; Benskin, C.; Grant, F.

    2013-12-01

    The Demonstration Test Catchment (DTC) project is a UK government funded initiative to test the effectiveness of on-farm mitigation measures designed to reduce agricultural pollution without compromising farm productivity. Three distinct catchments in England have been chosen to test mitigation measures on working farms in small tributary catchments equipped with continuous water quality monitoring stations. The River Avon in the south is a chalk and sandstone catchment with livestock and arable farming, the River Wensum in the east is a lowland chalk catchment with predominantly arable farming and the River Eden in the North has a limestone and sandstone geology with predominantly livestock farming. One of the many strengths of the DTC as a national programme is that it provides the ability to investigate catchment hydrology and biogeochemical response across three different English landscapes. This is a collaborative paper involving members of all three DTC consortia, which aims to compare the responses of each of the catchments to a single storm event from April 2012, which was as a result of one of the first weather fronts to track across the country following a drought period affecting much of the UK, producing heavy rainfall in all three catchments. This was an unusual meteorological period, with subsequent hydrological implications when a rapid shift from drought to flood risk occurred across parts of the country. The effects of the weather front on discharge and water chemistry parameters, including N (NO3- and NH4), P (Total P (TP) and Total Reactive P (TRP)), dissolved oxygen (DO), chlorophyll and turbidity, measured at a half-hourly time step, are examined. When considered in the context of one hydrological year, flow and concentration duration curves reveal that the weather fronts resulted in extreme flow, nitrate and TP concentrations in all three catchments but with distinct differences in hydrograph and nutrient response. Hysteresis loops constructed

  17. Supervised Agricultural Experience Programmes (SAEP) and Work Linked Education (WLE): Panacea for Empowering Youths and Preventing Joblessness

    ERIC Educational Resources Information Center

    Famiwole, Remigius O.

    2015-01-01

    Youths from Nigerian schools and tertiary institutions are usually unemployable after schooling because they are not empowered with the required saleable skills to earn them a job or with which to establish as entrepreneurs. This paper examines the relevance of Supervised Agricultural Experience Programme (SAEP) and Work Linked Education (WLE) as…

  18. Modelling Pesticide Leaching At Column, Field and Catchment Scales I. Analysis of Soil Variability At Field and Catchment Scales

    NASA Astrophysics Data System (ADS)

    Gärdenäs, A.; Jarvis, N.; Alavi, G.

    The spatial variability of soil characteristics was studied in a small agricultural catch- ment (Vemmenhög, 9 km2) at the field and catchment scales. This analysis serves as a basis for assumptions concerning upscaling approaches used to model pesticide leaching from the catchment with the MACRO model (Jarvis et al., this meeting). The work focused on the spatial variability of two key soil properties for pesticide fate in soil, organic carbon and clay content. The Vemmenhög catchment (9 km2) is formed in a glacial till deposit in southernmost Sweden. The landscape is undulating (30 - 65 m a.s.l.) and 95 % of the area is used for crop production (winter rape, winter wheat, sugar beet and spring barley). The climate is warm temperate. Soil samples for or- ganic C and texture were taken on a small regular grid at Näsby Farm, (144 m x 144 m, sampling distance: 6-24 m, 77 points) and on an irregular large grid covering the whole catchment (sampling distance: 333 m, 46 points). At the field scale, it could be shown that the organic C content was strongly related to landscape position and height (R2= 73 %, p < 0.001, n=50). The organic C content of hollows in the landscape is so high that they contribute little to the total loss of pesticides (Jarvis et al., this meeting). Clay content is also related to landscape position, being larger at the hilltop locations resulting in lower near-saturated hydraulic conductivity. Hence, macropore flow can be expected to be more pronounced (see also Roulier & Jarvis, this meeting). The variability in organic C was similar for the field and catchment grids, which made it possible to krige the organic C content of the whole catchment using data from both grids and an uneven lag distance.

  19. Learning Our Way into Communication: The Making of the Communication and Information Strategy "with" the National Agricultural Advisory Services Programme in Uganda

    ERIC Educational Resources Information Center

    Ramirez, Ricardo

    2005-01-01

    This paper reports on the making of the Communication and Information Strategy with the National Agricultural Advisory Services Programme (NAADS) in Uganda. The NAADS is a new organization in government responsible for the implementation of a demand-driven agricultural extension approach. The new extension approach calls for fundamental changes in…

  20. Will European agricultural policy for school fruit and vegetables improve public health? A review of school fruit and vegetable programmes.

    PubMed

    de Sa, Joia; Lock, Karen

    2008-12-01

    For the first time, public health, particularly obesity, is being seen as a driver of EU agricultural policy. In 2007, European Ministers of Agriculture were asked to back new proposals for school fruit and vegetable programmes as part of agricultural reforms. In 2008, the European Commission conducted an impact assessment to assess the potential impact of this new proposal on health, agricultural markets, social equality and regional cohesion. A systematic review of the effectiveness of interventions to promote fruit and/or vegetable consumption in children in schools, to inform the EC policy development process. School schemes are effective at increasing both intake and knowledge. Of the 30 studies included, 70% increased fruits and vegetables (FV) intake, with none decreasing intake. Twenty-three studies had follow-up periods >1 year and provide some evidence that FV schemes can have long-term impacts on consumption. Only one study led to both increased fruit and vegetable intake and reduction in weight. One study showed that school fruit and vegetable schemes can also help to reduce inequalities in diet. Effective school programmes have used a range of approaches and been organized in ways which vary nationally depending on differences in food supply chain and education systems. EU agriculture policy for school fruits and vegetables schemes should be an effective approach with both public health and agricultural benefits. Aiming to increase FV intake amongst a new generation of consumers, it will support a range of EU policies including obesity and health inequalities.

  1. Modelling of catchment nitrogen concentrations response to observed varying fertilizer application intensities

    NASA Astrophysics Data System (ADS)

    Jomaa, Seifeddine; Jiang, Sanyuan; Yang, Xiaoqiang; Rode, Michael

    2016-04-01

    Eutrophication is a serious environmental problem. Despite numerous experimental and modelling efforts, understanding of the effect of land use and agriculture practices on in-stream nitrogen fluxes is still not fully achieved. This study combined intensive field monitoring and numerical modelling using 30 years of surface water quality data of a drinking water reservoir catchment in central Germany. The Weida catchment (99.5 km2) is part of the Elbe river basin and has a share of 67% of agricultural land use with significant changes in agricultural practices within the investigation period. The geology of the Weida catchment is characterized by clay schists and eruptive rocks, where rocks have low permeability. The semi-distributed hydrological water quality HYPE (Hydrological Predictions for the Environment) model was used to reproduce the measured data. First, the model was calibrated for discharge and nitrate-N concentrations (NO3-N) during the period 1997-2000. Then, the HYPE model was validated successfully for three different periods 1983-1987, 1989-1996 and 2000-2003, which are charaterized by different fertilizer application rates (with lowest discharge prediction performance of NSE = 0.78 and PBIAS = 3.74%, considering calibration and validation periods). Results showed that the measured as well as simulated in-stream nitrate-N concentration respond quickly to fertilizer application changes (increase/decrease). This rapid response can be explained with short residence times of interflow and baseflow runoff components due to the hardrock geological properties of the catchment. Results revealed that the surface runoff and interflow are the most dominant runoff components. HYPE model could reproduce reasonably well the NO3-N daily loads for varying fertilizer application, when detailed input data in terms of crop management (field-specific survey) are considered.

  2. Establishing and testing a catchment water footprint framework to inform sustainable irrigation water use for an aquifer under stress.

    PubMed

    le Roux, Betsie; van der Laan, Michael; Vahrmeijer, Teunis; Bristow, Keith L; Annandale, John G

    2017-12-01

    Future water scarcities in the face of an increasing population, climate change and the unsustainable use of aquifers will present major challenges to global food production. The ability of water footprints (WFs) to inform water resource management at catchment-scale was investigated on the Steenkoppies Aquifer, South Africa. Yields based on cropping areas were multiplied with season-specific WFs for each crop to determine blue and green water consumption by agriculture. Precipitation and evapotranspiration of natural vegetation and other uses of blue water were included with the agricultural WFs to compare water availability and consumption in a catchment sustainability assessment. This information was used to derive a water balance and develop a catchment WF framework that gave important insights into the hydrology of the aquifer through a simplified method. This method, which requires the monitoring of only a few key variables, including rainfall, agricultural production, WFs of natural vegetation and other blue water flows, can be applied to inform the sustainability of catchment scale water use (as opposed to more complex hydrological studies). Results indicate that current irrigation on the Steenkoppies Aquifer is unsustainable. This is confirmed by declining groundwater levels, and suggests that there should be no further expansion of irrigated agriculture on the Steenkoppies Aquifer. Discrepancies between in- and outflows of water in the catchment indicated that further development of the WF approach is required to improve understanding of the geohydrology of the aquifer and to set and meet sustainability targets for the aquifer. It is envisaged that this 'working' framework can be applied to other water-stressed aquifers around the world. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  3. Runoff changes have a land cover specific effect on the seasonal fluxes of terminal electron acceptors in the boreal catchments.

    PubMed

    Mattsson, Tuija; Lehtoranta, Jouni; Ekholm, Petri; Palviainen, Marjo; Kortelainen, Pirkko

    2017-12-01

    Climate change influences the volume and seasonal distribution of runoff in the northern regions. Here, we study how the seasonal variation in the runoff affects the concentrations and export of terminal electron acceptors (i.e. TEAs: NO 3 , Mn, Fe and SO 4 ) in different boreal land-cover classes. Also, we make a prediction how the anticipated climate change induced increase in runoff will alter the export of TEAs in boreal catchments. Our results show that there is a strong positive relationship between runoff and the concentration of NO 3 -N, Mn and Fe in agricultural catchments. In peaty catchments, the relationship is poorer and the concentrations of TEAs tend to decrease with increasing runoff. In forested catchments, the correlation between runoff and TEA concentrations was weak. In most catchments, the concentrations of SO 4 decrease with an increase in runoff regardless of the land cover or season. The wet years export much higher amounts of TEAs than the dry years. In southern agricultural catchments, the wet years increased the TEA export for both spring (January-May) and autumn (September-December) periods, while in the peaty and forested catchments in eastern and northern Finland the export only increased in the autumn. Our predictions for the year 2099 indicate that the export of TEAs will increase especially from agricultural but also from forested catchments. Additionally, the predictions show an increase in the export of Fe and SO 4 for all the catchments for the autumn. Thus, the climate induced change in the runoff regime is likely to alter the exported amount of TEAs and the timing of the export downstream. The changes in the amounts and timing in the export of TEAs have a potential to modify the mineralization pathways in the receiving water bodies, with feedbacks in the cycling of C, nutrients and metals in aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Impact of climate change on low flow characteristics in a small catchment of central Poland

    NASA Astrophysics Data System (ADS)

    Banasik, K.; Kaznowska, E.

    2016-12-01

    The Zagozdzonka catchment (left tributary of Vistula River) is a small lowland agricultural catchment, located in central Poland, about 100 km south of Warsaw. Hydrological investigations of the Zagozdzonka River at Plachty (N51°26'43.8''; E21°27'35.6''), have been carried out by the Department of River Engineering of Warsaw University of Life Science (WULS) since 1962. The catchment area is 82.4 km2 at the Plachty river gauging station. Annual data of temperature, annual and seasonal rainfall and runoff characteristics, as well as annual N-day (1-, 2-, 3-, 7-, 14- and 30-day) low flow from the catchment of the period of 53-year (1963-2015) were analysed. Mann-Kendall test was used for trend analysis. Analysis has revealed a long term decrease in annual discharge and in all of the analysed N-day low flows from the catchment, as well as a corresponding increase in annul temperature (1.61ºC/50 years) for this area of Poland. No trend was detected for annual precipitation nor summer/winter half year precipitation. There was little land use change in the catchment but remarkable increase of crop yields from the arable land in this region of Poland in the last 50 years, due to fertilisation. So the long term decrease of annual discharge and N-day low flows is assumed to be effect of higher evapotranspiration. The decrease of water resources in summer periods may cause problems when more intensive agriculture practice is planned (and water for irrigation is needed).

  5. Modeling concentration patterns of agricultural and urban micropollutants in surface waters in catchment of mixed land use

    NASA Astrophysics Data System (ADS)

    Stamm, C.; Scheidegger, R.; Bader, H. P.

    2012-04-01

    Organic micropollutants detected in surface waters can originate from agricultural and urban sources. Depending on the use of the compounds, the temporal loss patterns vary substantially. Therefore models that simulate water quality in watersheds of mixed land use have to account for all relevant sources. We present here simulation results of a transport model that describes the dynamic of several biocidal compounds as well as the behaviour of human pharmaceuticals. The model consists of the sub-model Rexpo simulating the transfer of the compounds from the point of application to the stream in semi-lumped manner. The river sub-model, which is programmed in the Aquasim software, describes the fate of the compounds in the stream. Both sub-models are process-based. The Rexpo sub-model was calibrated at the scale of a small catchment of 25 km2, which is inhabited by about 12'000 people. Based on the resulting model parameters the loss dynamics of two herbicides (atrazine, isoproturon) and a compound of mixed urban and agricultural use (diuron) were predicted for two nested catchment of 212 and 1696 km2, respectively. The model output was compared to observed time-series of concentrations and loads obtained for the entire year 2009. Additionally, the fate of two pharmaceuticals with constant input (carbamazepine, diclofenac) was simulated for improving the understanding of possible degradation processes. The simulated loads and concentrations of the biocidal compounds differed by a factor of 2 to 3 from the observations. In general, the seasonal patterns were well captured by the model. However, a detailed analysis of the seasonality revealed substantial input uncertainty for the application of the compounds. The model results also demonstrated that for the dynamics of rain-driven losses of biocidal compounds the semi-lumped approach of the Rexpo sub-model was sufficient. Only for simulating the photolytic degradation of diclofenac in the stream the detailed

  6. Catchments Under Change: Assessing Impacts and Feedbacks from New Biomass Crops in the Agricultural Midwestern USA

    NASA Astrophysics Data System (ADS)

    Yaeger, Mary; Housh, Mashor; Ng, Tze Ling; Cai, Ximing; Sivapalan, Murugesu

    2013-04-01

    In order to meet the challenges of future change, it is essential to understand the environmental response to current conditions and historical changes. The central Midwestern US is an example of anthropogenic change and environmental feedbacks, having been transformed from a natural grassland system to an artificially-drained agricultural system. Environmental feedbacks from reduced soil residence times coupled with increasing crop fertilization have manifested as a hypoxic zone in the Gulf of Mexico. In an effort to address these feedbacks while meeting new crop demands, large-scale planting of high-yielding perennial biomass crops has been proposed. This could be detrimental to both human and environmental streamflow users because these plants require more water than do current crops. The lowest natural flows in this shallow groundwater-dependent region coincide with the peak of the growing season, thus compounding the problem. Therefore, for large-scale biomass crop production to be sustainable, these tradeoffs between water quality and water quantity must be fully understood. To better understand the catchment response to current conditions, we have analyzed streamflow data in a central Illinois agricultural watershed. To deal with future changes, we have developed an integrated systems model which provides, among other outputs, the land usage that maximizes the benefit to the human system. This land use is then implemented in a separate hydrologic model to determine the impact to the environmental system. Interactively running the two models, taking into account the catchment response to human actions as well as possible anthropogenic responses to the environment, allows us to examine the feedbacks between the two systems. This lets us plot the trajectory of the state of the system, which we hypothesize will show emergent internal properties of the coupled system. Initial tests of this modeling framework show promise that this may indeed be the case. External

  7. Spatially based management of agricultural phosphorus pollution from diffuse sources: the SCIMAP risk based approach

    NASA Astrophysics Data System (ADS)

    Reaney, S. M.; Heathwaite, L.; Lane, S. N.; Buckley, C.

    2007-12-01

    Pollution of rivers from agricultural phosphorus is recognised as a significant global problem and is a major management challenge as it involves processes that are small in magnitude, distributed over large areas, operating at fine spatial scales and associated with certain land use types when they are well connected to the receiving waters. Whilst some of these processes have been addressed in terms of water quality forecasting models and field measurements, we lack effective tools to prioritise where action should be taken to remediate the diffuse pollution problem. From a management perspective, the required information is on 'what to do where' rather than absolute values. This change in focus opens up the problem to be considered in a probabilistic / relative framework rather than concentrating on absolute values. The SCIMAP risk management framework is based on the critical source area concept whereby a risk and a connection are required to generate a problem. Treatments of both surface and subsurface hydrological connectivity have been developed. The approach is based on the philosophy that for a point to be considered connected there needs to be a continuous flow path to the receiving water. This information is calculated by simulating the possible flow paths from the source cell to the receiving water and recording the required catchment wetness to allow flow along that route. This algorithm gives information on the ease at which each point in the landscape can export risk along surface and subsurface pathways to the receiving waters. To understand the annual dynamics of the locational diffuse P risk, a temporal risk framework has been developed. This risk framework accounts for land management activies within the agricultural calendar. These events include the application of fertiliser, the P additions from livestock and the offtake of P in crops. Changes to these risks can be made to investigate management options. The SCIMAP risk mapping framework has

  8. Land use/land cover change and implications for ecosystems services in the Likangala River Catchment, Malawi

    NASA Astrophysics Data System (ADS)

    Pullanikkatil, Deepa; Palamuleni, Lobina G.; Ruhiiga, Tabukeli M.

    2016-06-01

    Likangala River catchment in Zomba District of Southern Malawi is important for water resources, agriculture and provides many ecosystem services. Provisioning ecosystem services accrued by the populations within the catchment include water, fish, medicinal plants and timber among others. In spite of its importance, the River catchment is under threat from anthropogenic activities and land use change. This paper studies land uses and land cover change in the catchment and how the changes have impacted on the ecosystem services. Landsat 5 and 8 images (1984, 1994, 2005 and 2013) were used to map land cover change and subsequent inventorying of provisioning ecosystem services. Participatory Geographic Information Systems and Focus group discussions were conducted to identify provisioning ecosystems services that communities benefit from the catchment and indicate these on the map. Post classification comparisons indicate that since 1984, there has been a decline in woodlands from 135.3 km2 in 1984 to 15.5 km2 in 2013 while urban areas increased from 9.8 km2 to 23.8 km2 in 2013. Communities indicated that provisioning ecosystems services such as forest products, wild animals and fruits and medicinal plants have been declining over the years. In addition, evidence of catchment degradation through waste disposal, illegal sand mining, deforestation and farming on marginal lands were observed. Population growth, urbanization and demand for agricultural lands have contributed to this land use and land cover change. The study suggests addressing catchment degradation through integrated method where an ecosystems approach is used. Thus, both the proximate and underlying driving factors of land-use and land cover change need to be addressed in order to sustainably reduce ecosystem degradation.

  9. Tropical montane forest conversion affects spatial and temporal nitrogen dynamics in Kenyan headwater catchment

    NASA Astrophysics Data System (ADS)

    Jacobs, Suzanne; Weeser, Björn; Breuer, Lutz; Butterbach-Bahl, Klaus; Guzha, Alphonce; Rufino, Mariana

    2017-04-01

    Deforestation and land use change (LUC) are often stated as major contributors to changes in water quality, although other catchment characteristics such as topography, geology and climate can also play a role. Understanding how stream water chemistry is affected by LUC is essential for sustainable water management and land use planning. However, there is often a lack of reliable data, especially in less studied regions such as East Africa. This study focuses on three sub-catchments (27-36 km2) with different land use types (natural forest, smallholder agriculture and tea/tree plantations) nested in a 1023 km2 headwater catchment in the Mau Forest Complex, Kenya's largest closed-canopy indigenous tropical montane forest. In the past decades approx. 25% of the natural forest was lost due to land use change. We studied seasonal, diurnal and spatial patterns of total dissolved nitrogen (TDN), nitrate (NO3-N) and dissolved organic nitrogen (DON) using a combination of high-resolution in-situ measurements, bi-weekly stream water samples and spatial sampling campaigns. Multiple linear regression analysis of the spatial data indicates that land use shows a strong influence on TDN and nitrate, while DON is more influenced by precipitation. Highest TDN and nitrate concentrations are found in tea plantations, followed by smallholder agriculture and natural forest. This ranking does not change throughout the year, though concentrations of TDN and nitrate are respectively 27.6 and 25.4% lower in all catchments during the dry season. Maximum Overlap Discrete Wavelet Transform (MODWT) analysis of the high resolution nitrate data revealed a seasonal effect on diurnal patterns in the natural forest catchment, where the daily peak shifts from early morning in the wet season to mid-afternoon in the dry season. The smallholder and tea catchment do not exhibit clear diurnal patterns. The results suggest that land use affects dissolved nitrogen concentrations, leading to higher N

  10. Catchment process affecting drinking water quality, including the significance of rainfall events, using factor analysis and event mean concentrations.

    PubMed

    Cinque, Kathy; Jayasuriya, Niranjali

    2010-12-01

    To ensure the protection of drinking water an understanding of the catchment processes which can affect water quality is important as it enables targeted catchment management actions to be implemented. In this study factor analysis (FA) and comparing event mean concentrations (EMCs) with baseline values were techniques used to asses the relationships between water quality parameters and linking those parameters to processes within an agricultural drinking water catchment. FA found that 55% of the variance in the water quality data could be explained by the first factor, which was dominated by parameters usually associated with erosion. Inclusion of pathogenic indicators in an additional FA showed that Enterococcus and Clostridium perfringens (C. perfringens) were also related to the erosion factor. Analysis of the EMCs found that most parameters were significantly higher during periods of rainfall runoff. This study shows that the most dominant processes in an agricultural catchment are surface runoff and erosion. It also shows that it is these processes which mobilise pathogenic indicators and are therefore most likely to influence the transport of pathogens. Catchment management efforts need to focus on reducing the effect of these processes on water quality.

  11. Student Perceptions of Agricultural Education Programme Processes at Selected High Schools in KwaZulu-Natal Province, South Africa

    ERIC Educational Resources Information Center

    Kidane, T. T.; Worth, S. H.

    2014-01-01

    Purpose: This study investigates student perceptions of different aspects of Agricultural Education and Training (AET) programme processes that have been offered in secondary schools by the formal educational sector in the province of KwaZulu-Natal, South Africa. The study seeks to identify the existing shortcomings in the implementation of the…

  12. The catchment based approach using catchment system engineering

    NASA Astrophysics Data System (ADS)

    Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark

    2015-04-01

    The catchment based approach (CaBa) has been championed as a potential mechanism for delivery of environmental directives such as the Water Framework Directive in the UK. However, since its launch in 2013, there has been only limited progress towards achieving sustainable, holistic management, with only a few of examples of good practice ( e.g. from the Tyne Rivers trust). Common issues with developing catchment plans over a national scale include limited data and resources to identify issues and source of those issues, how to systematically identify suitable locations for measures or suites of measures that will have the biggest downstream impact and how to overcome barriers for implementing solutions. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. A significant component of the runoff generation can be managed by targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source, many runoff attenuation features or measures can be co-located to achieve benefits for water quality and biodiversity. A catchment, community-led mitigation measures plan using the CSE approach will be presented from a catchment in Northumberland, Northern England that demonstrate a generic framework for identification of multi-purpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-ditch measures. Progress on the implementation of measures will be reported alongside potential impacts on the runoff regime at both local and catchment scale and costs.

  13. User-inspired Research Quantifies How Floodplain Restoration Paired With Cover Crops Reduces Nutrient Export From an Agricultural Catchment Translating to Conservation Success in the Midwestern Cornbelt.

    NASA Astrophysics Data System (ADS)

    Tank, J. L.; Hanrahan, B.; Christopher, S. F.; Mahl, U. H.; Royer, T. V.

    2017-12-01

    The Midwestern US has undergone extensive land use change as forest, wetlands, and prairies have been converted to agroecosystems. Today, excess fertilizer nutrients from farm fields enter agricultural streams, which degrades both local and downstream water quality. We are quantifying the nutrient reduction benefits of two conservation practices implemented at the catchment scale. In partnership with The Nature Conservancy, in a small Indiana catchment, we have quantified how 600m of floodplain restoration (i.e., a two-stage ditch) increased nitrate-N removal via denitrification and reduced sediment export, but impacts on stream nutrient concentrations were negligible due to very high catchment loading relative to the short implementation reach. Requests from state and federal partners led to development and parameterization of a new two-stage ditch module in the SWAT model to determine the potential catchment-scale benefits when implementation lengths were extended. More recently, in partnership with state SWCD managers, we have added a landscape practice to quantify how winter cover crops reduce nutrient loss from fields, sampling year-round nutrient fluxes from multiple subsurface tile drains and longitudinally along the stream channel. Nitrate-N and dissolved P fluxes were significantly lower in tiles draining fields with cover crops compared to those without. At the urging of farmers and federal NRCS partners, we also linked tile drain nutrient reductions to changes in soil chemistry. Both soil nitrate-N and dissolved P were lower in cover cropped fields, and we found significant correlations between soil and tile drain nutrients, which may encourage future adoption of the conservation practice as soil health benefits appeal to farmers. As biogeochemists, this research has provided valuable insights on how floodplains and land cover change can alter patterns of catchment-scale nutrient export. The translation of successful soil and water quality outcomes

  14. Assessing catchment connectivity using hysteretic loops

    NASA Astrophysics Data System (ADS)

    Davis, Jason; Masselink, Rens; Goni, Mikel; Gimenez, Rafael; Casali, Javier; Seeger, Manuel; Keesstra, Saskia

    2017-04-01

    texture topsoil), climate (humid sub Mediterranean) and land use (80-90% cultivated with winter grain crops). Ozkotz principal (ca.1,700 ha) is covered with forest and pasture (cattle-breeding); while Oskotz woodland (ca. 500 ha), a sub-watershed of the Oskotz principal, is almost completely covered with forest. The predominant climate in the Oskotz catchments sub-Atlantic. Furthermore, antecedent conditions and event characteristics were analysed. The loops were compared quantitatively and qualitatively between catchments for similar events and within the catchments for events with different characteristics. In this study, several measures to objectively classify hysteresis loops in an automated way were developed. These were consecutively used to classify several hundreds of loops from several agricultural catchments in Northern Spain. These loop characteristics were compared to event specific characteristics such as antecedent precipitation, time of year, and precipitation intensity, duration and total. The combination of hysteresis loops and variables influencing connectivity can then tell something about the sources of sediments for different events and catchments. References Baartman, J.E.M., Masselink, R.H., Keesstra, S.D., Temme, A.J.A.M., 2013. Linking landscape morphological complexity and sediment connectivity. Earth Surface Processes and Landforms 38: 1457-1471. Masselink RJH, Heckmann T, Temme AJAM, Anders NS, Gooren HPA, Keesstra SD. 2016. A network theory approach for a better understanding of overland flow connectivity. Hydrological Processes. DOI: 10.1002/hyp.10993 Masselink, R.J.H., Keesstra, S.D., Temme, A.J.A.M., Seeger, M., Giménez, R., Casalí, J., 2016. Modelling Discharge and Sediment Yield at Catchment Scale Using Connectivity Components. Land Degradation and Development 27: 933-945, DOI: 10.1002/ldr.2512 Mekonnen, M., Keesstra, S.D., Baartman, J.E.M., Stroosnijder, L., Maroulis, J., Reducing sediment connectivity through man-made and natural

  15. A Monte Carlo approach to the inverse problem of diffuse pollution risk in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Milledge, D.; Lane, S. N.; Heathwaite, A. L.; Reaney, S.

    2012-04-01

    The hydrological and biogeochemical processes that operate in catchments influence the ecological quality of freshwater systems through delivery of fine sediment, nutrients and organic matter. As an alternative to the, often complex, reductionist models we outline a - data-driven - approach based on 'inverse modelling'. We invert SCIMAP, a parsimonious risk based model that has an explicit treatment of hydrological connectivity, and use a Bayesian approach to determine the risk that must be assigned to different land uses in a catchment in order to explain the spatial patterns of measured in-stream nutrient concentrations. First, we apply the model to a set of eleven UK catchments to show that: 1) some land use generates a consistently high or low risk of diffuse nitrate (N) and Phosphate (P) pollution; but 2) the risks associated with different land uses vary both between catchments and between P and N delivery; and 3) that the dominant sources of P and N risk in the catchment are often a function of the spatial configuration of land uses. These results suggest that on a case by case basis, inverse modelling may be used to help prioritise the focus of interventions to reduce diffuse pollution risk for freshwater ecosystems. However, a key uncertainty in this approach is the extent to which it can recover the 'true' risks associated with a land cover given error in both the input parameters and equifinality in model outcomes. We test this using a set of synthetic scenarios in which the true risks can be pre-assigned then compared with those recovered from the inverse model. We use these scenarios to identify the number of simulations and observations required to optimize recovery of the true weights, then explore the conditions under which the inverse model becomes equifinal (hampering recovery of the true weights) We find that this is strongly dependent on the covariance in land covers between subcatchments, introducing the possibility that instream sampling could

  16. Spatio-temporal variability of the molecular fingerprint of soil dissolved organic matter in a headwater agricultural catchment

    NASA Astrophysics Data System (ADS)

    Jeanneau, Laurent; Pierson-Wickmann, Anne-Catherine; Jaffrezic, Anne; Lambert, Thibault; Gruau, Gérard

    2013-04-01

    Dissolved organic matter (DOM) is implied in (i) ecosystem services such as the support of biodiversity, (ii) the alteration of the drinkable water quality by formation of trihalomethane and (iii) the transfer of micropollutants from soils to rivers. Moreover, since DOM connects soils and oceans that are interacting with the atmosphere, understanding its biogeochemistry will help in investigating the carbon cycle and in creating strategies to mitigate climate change. DOM in headwater stream ecosystems is mainly inherited from allochtonous inputs with different reservoirs being mobilized during storm and interstorm events at the scale of an hydrological year. Those changes in DOM reservoirs, if accompanied by composition and reactivity changes, may impact DOM ecosystem services and drinking water production processes. Elucidating the compositional changes due to changes in the source of DOM in rivers has thus become a important axis of DOM research. The aim of this study is to test the ability of the molecular tools of the organic geochemistry and more specifically the combination of thermochemiolysis and gas chromatography - mass spectrometry (THM-GC-MS) to (i) link the variability of the river DOM composition to different DOM reservoirs in catchment soils and (ii) provide hypothesis on the nature and the mechanisms of formation (microbial growth, litter decomposition) of those reservoirs. This analytical method seems particularly adapted since it allows the differentiation between vegetal and microbial inputs and the determination of the extent of the biodegradation process of biomolecules such as lignin. To test this method, the molecular fingerprint of soil DOM has been investigated in the wetland area of a small (500 ha) agricultural catchment (the so-called Kervidy-Naizin catchment) located in Brittany, western France. The soil DOM was sampled fortnightly at three depths using zero-tension lysimeters during the hydrological year 2010-2011. The samples were

  17. Pesticide fate on catchment scale: conceptual modelling of stream CSIA data

    NASA Astrophysics Data System (ADS)

    Lutz, Stefanie R.; van der Velde, Ype; Elsayed, Omniea F.; Imfeld, Gwenaël; Lefrancq, Marie; Payraudeau, Sylvain; van Breukelen, Boris M.

    2017-10-01

    Compound-specific stable isotope analysis (CSIA) has proven beneficial in the characterization of contaminant degradation in groundwater, but it has never been used to assess pesticide transformation on catchment scale. This study presents concentration and carbon CSIA data of the herbicides S-metolachlor and acetochlor from three locations (plot, drain, and catchment outlets) in a 47 ha agricultural catchment (Bas-Rhin, France). Herbicide concentrations at the catchment outlet were highest (62 µg L-1) in response to an intense rainfall event following herbicide application. Increasing δ13C values of S-metolachlor and acetochlor by more than 2 ‰ during the study period indicated herbicide degradation. To assist the interpretation of these data, discharge, concentrations, and δ13C values of S-metolachlor were modelled with a conceptual mathematical model using the transport formulation by travel-time distributions. Testing of different model setups supported the assumption that degradation half-lives (DT50) increase with increasing soil depth, which can be straightforwardly implemented in conceptual models using travel-time distributions. Moreover, model calibration yielded an estimate of a field-integrated isotopic enrichment factor as opposed to laboratory-based assessments of enrichment factors in closed systems. Thirdly, the Rayleigh equation commonly applied in groundwater studies was tested by our model for its potential to quantify degradation on catchment scale. It provided conservative estimates on the extent of degradation as occurred in stream samples. However, largely exceeding the simulated degradation within the entire catchment, these estimates were not representative of overall degradation on catchment scale. The conceptual modelling approach thus enabled us to upscale sample-based CSIA information on degradation to the catchment scale. Overall, this study demonstrates the benefit of combining monitoring and conceptual modelling of concentration

  18. Defining the sources of low-flow phosphorus transfers in complex catchments.

    PubMed

    Arnscheidt, J; Jordan, P; Li, S; McCormick, S; McFaul, R; McGrogan, H J; Neal, M; Sims, J T

    2007-08-15

    Nutrient transfers from the land to rivers have the potential to cause persistent eutrophic impacts at low flows even though the transfers may constitute a minor percentage of total annual fluxes. In rural catchments, the contribution from agricultural soils during storm events can be particularly large and untangling the relative contributions from multiple sources that vary in time and space is especially problematic. In this study, the potential for domestic septic tank system pollution during low flows was investigated in 3 small catchments (3 to 5 km(2)) using an integrated series of methods. These included septic system surveys, continuous (10 min) total phosphorus (TP) monitoring at the outlet of each catchment, repeated low-flow water quality surveys in sub-catchments upstream of the catchment outlets and single day river-walk water quality surveys. A series of faecal matter and grey-water fingerprinting techniques were also employed. These included determining sterol ratios in stream sediments, monitoring the presence of proteins, E. coli and enterococci bacterial signatures and boron. The total density and density of poorly maintained septic systems mirrored the magnitude of frequent TP concentrations in the catchments although this relationship was less apparent in the nested sub-catchments. The exception was possibly related to the simple hydraulics in one particular catchment and indicated temporary effluent attenuation in the other catchments. Repeated low-flow and river-walk water quality surveys highlighted discrete areas and reaches where stepped changes in nutrient concentration occurred. Bio-chemical fingerprinting showed that between 7% and 27% of sediments were contaminated with human faecal material and correlation matrices indicated that, at least during low flows, P fractions were positively correlated with some markers of faecal and grey-water contamination.

  19. Modelling strategies to predict the multi-scale effects of rural land management change

    NASA Astrophysics Data System (ADS)

    Bulygina, N.; Ballard, C. E.; Jackson, B. M.; McIntyre, N.; Marshall, M.; Reynolds, B.; Wheater, H. S.

    2011-12-01

    Changes to the rural landscape due to agricultural land management are ubiquitous, yet predicting the multi-scale effects of land management change on hydrological response remains an important scientific challenge. Much empirical research has been of little generic value due to inadequate design and funding of monitoring programmes, while the modelling issues challenge the capability of data-based, conceptual and physics-based modelling approaches. In this paper we report on a major UK research programme, motivated by a national need to quantify effects of agricultural intensification on flood risk. Working with a consortium of farmers in upland Wales, a multi-scale experimental programme (from experimental plots to 2nd order catchments) was developed to address issues of upland agricultural intensification. This provided data support for a multi-scale modelling programme, in which highly detailed physics-based models were conditioned on the experimental data and used to explore effects of potential field-scale interventions. A meta-modelling strategy was developed to represent detailed modelling in a computationally-efficient manner for catchment-scale simulation; this allowed catchment-scale quantification of potential management options. For more general application to data-sparse areas, alternative approaches were needed. Physics-based models were developed for a range of upland management problems, including the restoration of drained peatlands, afforestation, and changing grazing practices. Their performance was explored using literature and surrogate data; although subject to high levels of uncertainty, important insights were obtained, of practical relevance to management decisions. In parallel, regionalised conceptual modelling was used to explore the potential of indices of catchment response, conditioned on readily-available catchment characteristics, to represent ungauged catchments subject to land management change. Although based in part on

  20. Spatio-Temporal Variability of Dissolved Metals in the Surface Waters of an Agroforestry Catchment with Low Levels of Anthropogenic Activity

    NASA Astrophysics Data System (ADS)

    Soto-Varela, Fátima; Rodríguez-Blanco, M. Luz; Mercedes Taboada-Castro, M.; Taboada-Castro, M. Teresa

    2017-12-01

    Evaluation of levels and spatial variations of metals in surface waters within a catchment are critical to understanding the extent of land-use impact on the river system. The aims of this study were to investigate the spatial and temporal variations of five dissolved metals (Al, Fe, Mn, Cu and Zn) in surface waters of a small agroforestry catchment (16 km2) in NW Spain. The land uses include mainly forests (65%) and agriculture (pastures: 26%, cultivation: 4%). Stream water samples were collected at four sampling sites distributed along the main course of the Corbeira stream (Galicia, NW Spain) between the headwaters and the catchment outlet. The headwater point can be considered as pristine environment with natural metal concentrations in waters because of the absence of any agricultural activity and limited accessibility. Metal concentrations were determined by ICP-MS. The results showed that metal concentrations were relatively low (Fe > Al > Mn > Zn > Cu), suggesting little influence from agricultural activities in the area. Mn and Zn did not show significant differences between sampling points along main stream, while for Fe and Cu significant differences were found between the headwaters and all other points. Al tended to decrease from the headwaters to the catchment outlet.

  1. Understanding and improving mitigation strategies for reducing catchment scale nutrient loads using high resolution observations and uncertainty analysis approaches

    NASA Astrophysics Data System (ADS)

    Collins, A.; Lloyd, C.; Freer, J. E.; Johnes, P.; Stirling, M.

    2012-12-01

    One of the biggest challenges in catchment water quality management is tackling the problem of reducing water pollution from agriculture whilst ensuring food security nationally. Improvements to catchment management plans are needed if we are to enhance biodiversity and maintain good ecological status in freshwater ecosystems, while producing enough food to support a growing global population. In order to plan for a more sustainable and secure future, research needs to quantify the uncertainties and understand the complexities in the source-mobilisation-delivery-impact continuum of pollution and nutrients at all scales. In the UK the Demonstration Test Catchment (DTC) project has been set up to improve water quality specifically from diffuse pollution from agriculture by enhanced high resolution monitoring and targeted mitigation experiments. The DTC project aims to detect shifts in the baseline trend of the most ecologically-significant pollutants resulting from targeted on-farm measures at field to farm scales and assessing their effects on ecosystem function. The DTC programme involves three catchments across the UK that are indicative of three different typologies and land uses. This paper will focus on the Hampshire Avon DTC, where a total of 12 parameters are monitored by bank-side stations at two sampling sites, including flow, turbidity, phosphate and nitrate concentrations at 30 min resolution. This monitoring is supported by daily resolution sampling at 5 other sites and storm sampling at all locations. Part of the DTC project aims to understand how observations of water quality within river systems at different temporal resolutions and types of monitoring strategies enable us to understand and detect changes over and above the natural variability. Baseline monitoring is currently underway and early results show that high-resolution data is essential at this sub-catchment scale to understand important process dynamics. This is critical if we are to design

  2. Hedge your bets on Flood Risk: How do Hedgerows modify hillslope and catchment scale hydrological response?

    NASA Astrophysics Data System (ADS)

    Coates, Victoria; Pattison, Ian

    2017-04-01

    A dominant feature in the agricultural landscape in the UK are field boundaries. Two thirds of England has been continuously hedged for over a thousand years although most modern hedges were planted during the Enclosures Acts 1720-1840. However, the use of larger agricultural machinery has resulted in the removal of some field boundaries and the subsequent increase in field sizes over the 20th Century. The multiple benefits of hedgerows in ecology have been extensively studied, but the impact of these widespread features on hydrology and flood risk has seen very little attention. Nature-based solutions are increasingly being seen as a complementary approach to hard engineered flood defences. It is hypothesised that hedgerows play a part in this through modifying hillslope hydrological processes, including (a) changing the spatial distribution of precipitation due to sheltering effects; (b) biological loss of water through transpiration; (c) infiltration increased through improved soil structure at the boundaries; and (d) throughflow effected by modified hydraulic gradients. An extensive monitoring programme of a 20m transect through a hedgerow in the Skell Catchment, Northern England occurred from April 2014 to October 2015. The holistic hydrological cycle was monitored, including precipitation and soil moisture at different distances from the hedgerow, leaf wetness interception, stemflow collars, and throughfall gauges, and transpiration losses from the hedgerow. Results indicate that hedgerows modify precipitation volumes at different distances along the transect, but that relationships are complex, probably related to event specific weather conditions such as wind direction and speed and rainfall intensity. Soil moisture levels are significantly (p<0.001) lower along the hedgerow compared to 1, 3 and 10m away from it in all seasons. It has also been shown that hedgerows modify hydrological connectivity at the catchment scale.

  3. An integrated modelling and multicriteria analysis approach to managing nitrate diffuse pollution: 2. A case study for a chalk catchment in England.

    PubMed

    Koo, B K; O'Connell, P E

    2006-04-01

    The site-specific land use optimisation methodology, suggested by the authors in the first part of this two-part paper, has been applied to the River Kennet catchment at Marlborough, Wiltshire, UK, for a case study. The Marlborough catchment (143 km(2)) is an agriculture-dominated rural area over a deep chalk aquifer that is vulnerable to nitrate pollution from agricultural diffuse sources. For evaluation purposes, the catchment was discretised into a network of 1 kmx1 km grid cells. For each of the arable-land grid cells, seven land use alternatives (four arable-land alternatives and three grassland alternatives) were evaluated for their environmental and economic potential. For environmental evaluation, nitrate leaching rates of land use alternatives were estimated using SHETRAN simulations and groundwater pollution potential was evaluated using the DRASTIC index. For economic evaluation, economic gross margins were estimated using a simple agronomic model based on nitrogen response functions and agricultural land classification grades. In order to see whether the site-specific optimisation is efficient at the catchment scale, land use optimisation was carried out for four optimisation schemes (i.e. using four sets of criterion weights). Consequently, four land use scenarios were generated and the site-specifically optimised land use scenario was evaluated as the best compromise solution between long term nitrate pollution and agronomy at the catchment scale.

  4. The strategic significance of wastewater sources to pollutant phosphorus levels in English rivers and to environmental management for rural, agricultural and urban catchments.

    PubMed

    Neal, Colin; Jarvie, Helen P; Withers, Paul J A; Whitton, Brian A; Neal, Margaret

    2010-03-01

    The relationship between soluble and particulate phosphorus was examined for 9 major UK rivers including 26 major tributaries and 68 monitoring points, covering wide-ranging rural and agricultural/urban impacted systems with catchment areas varying from 1 to 6000km(2) scales. Phosphorus concentrations in Soluble Reactive (SRP), Total Dissolved (TDP), Total (TP), Dissolved Hydrolysable (DHP) and Particulate (PP) forms correlated with effluent markers (sodium and boron) and SRP was generally dominant signifying the importance of sewage sources. Low flows were particularly enriched in SRP, TDP and TP for average SRP>100microg/l indicating low effluent dilution. At particularly low average concentrations, SRP increased with flow but effluent sources were still implicated as the effluent markers (boron in particular) increased likewise. For rural areas, DHP had proportionately high concentrations and SRP+DHP concentrations could exceed environmental thresholds currently set for SRP. Given DHP has a high bioavailability the environmental implications need further consideration. PP concentrations were generally highest at high flows but PP in the suspended solids was generally at its lowest and in general PP correlated with particulate organic carbon and more so than the suspended sediment in total. Separation of pollutant inputs solely between effluent and diffuse (agriculture) components is misleading, as part of the "diffuse" term comprises effluents flushed from the catchments during high flow. Effluent sources of phosphorus supplied directly or indirectly to the river coupled with within-river interactions between water/sediment/biota largely determine pollutant levels. The study flags the fundamental need of placing direct and indirect effluent sources and contaminated storage with interchange to/from the river at the focus for remediation strategies for UK rivers in relation to eutrophication and the WFD.

  5. Impacts of the Conversion of Forest to Arable Land and Long Term Agriculture Practices on the Water Pathways in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Robinet, J.; Minella, J. P. G.; Schlesner, A.; Lücke, A.; Ameijeiras-Marino, Y.; Opfergelt, S.; Vanderborght, J.; Gerard, G.

    2017-12-01

    Changes in runoff pathways affect many environmental processes. Land use change (LUC), and more specifically forest conversion to arable land, is one of the controls of water fluxes at the hillslope or catchment scale. Still, the long term effects of forest conversion and agricultural activities in (sub-) tropical environments have been relatively understudied. Our objective was therefore to study the impact of deforestation and land degradation through agriculture on runoff pathways. We selected two small catchments with contrasting land use (agriculture vs. natural forest) in a subtropical region in the south of Brazil. Stream-, pore-, subsurface- and rainwater were monitored, sampled and analyzed for Dissolve Silicon concentration (DSi) and δ18O isotopic signature. Both forested and agricultural catchments were highly responsive to rainfall event and only 2 runoff components contributed to the stream discharge were identified: baseflow and peak flow components. The δ18O peak flow signal in the agricultural catchment was closely related to the δ18O rainfall signal. In the forested catchment, the δ18O peak flow signal was similar to a seasonally averaged signal. This suggested that most peak flow was derived from current rainfall events in the agricultural catchment, while being derived from a mixed reservoir in the forested one. The DSi of the peak flow was low in both catchments. Hence, the mixing in the forested catchment cannot have taken place in the soil matrix as the soil pore water contained high DSi concentrations. Instead, the mixing must have taken place in a reservoir with a relatively short residence time and isolated, to some extent, from the soil matrix. The dense channel network left by decayed roots in the forest soil above a clay-rich water-impeding B horizon is the most likely candidate and this was confirmed by visual observations. Contributions of other, deeper reservoirs are unlikely given the quick response time of the catchment

  6. Anthropogenic nitrogen sources and exports in a village-scale catchment in Southeast China.

    PubMed

    Cao, Wenzhi; Hong, Huasheng; Zhang, Yuzhen; Chen, Nengwang; Zeng, Yue; Wang, Weiping

    2006-01-01

    An experimental village-scale catchment was selected for investigation of nitrogen (N) sources and exports. The mean N application rate over the catchment was 350.2 kg N ha(-1), but this rate varied spatially and temporally. The N leaching loss rate varied from 8.1 to 52.7 kg N ha(-1) under different land use regimes. The average N leaching loss rate was 13.4 kg N ha(-1) over the whole catchment, representing about 3.8% of the total N inputs. The N export rate through stormflows was 28.8 kg N ha(-1), about 8.2% of the total N inputs. Seasonal patterns showed that 95% of N exports through stormflows occurred during July to September in 2002. Overall, the maximum riverine N exports were 12.1% of total N inputs and 15.5% of the inorganic fertilizer N applied. Understanding N sources and exports in a village-scale catchment can provide a knowledge base for amelioration of diffuse agricultural pollution.

  7. A 125 year long record of DOC flux from a major temperate catchment: land-use vs. climate control?

    NASA Astrophysics Data System (ADS)

    Clay, G.; Worrall, F.; Howden, N. K.; Burt, T. P.

    2010-12-01

    Our understanding of the controls upon carbon biogeochemistry has always been limited by lack of long term observational data at the same time as having long term monitoring of possible environmental drivers. For the River Thames catchment in the UK (9998 km2) records of DOM have been kept since 1868 and DOM flux since 1882. In addition to riverflow being monitored in the catchment there has also been monitoring of climate, land-use and population back to at least 1868. The Thames catchment is a mixed agricultural urban catchment dominated by mineral soils where groundwater plays a significant part in the catchments flow system. During the period of the record the catchment has undergone urbanisation, climate warming but has also undergone large-scale land use change associated with World War II and agricultural intensification in the 1960s. The importance of these combinations of pressures are explored in the time series through a range of time series techniques and the results show: i) That DOC flux in the catchment is now at historic low levels, with the maximum flux being 35 ktonnes C/yr (3.5 tonnes/km2/yr) in 1915 and the lowest flux being 2 ktonnes C/yr (0.2 tonnes/km2/yr) in 1997. ii) The trend in the DOC flux is explained by changes in flow, which appear associated with both with groundwater storage in the catchment and with changes in land-use. iii) The significant decline in the DOC flux appears to be due to the transition in the catchment from dominated from pasture to an arable land use. iv) The decline of DOC flux with temperature would suggest that DOC mineralisation reaction has a higher Q10 than the DOC production. v) Declining DOC flux from mineral soils catchments would offset increases in DOC flux from organic soils but would also represent a shift in carbon losses from fluvial to being direct to the atmosphere.

  8. The European Union Food Distribution programme for the Most Deprived Persons of the community, 1987-2013: From agricultural policy to social inclusion policy?

    PubMed

    Caraher, Martin

    2015-07-01

    The European Union Food Distribution programme for the Most Deprived Persons (MDP) of the community ran from 1987 until 2013. It was funded from Common Agricultural Policy budgets. The programme initially made use of surplus foods from the food mountains resulting from intervention stocks. This food was then distributed through aid agencies within member states, coordinated at a national government level. Reform of the CAP and global rises in food prices resulted in an increase in budget from €300 to €500 million Euros in 2010 with the added power to buy food on the open market. This led to a formal challenge to the scheme on the basis that buying goods on the open market shifted the emphasis from an agricultural/financial basis to a social one. A court ruling found that because the program was no longer used for removing surpluses the link to agriculture policy has become tenuous and therefore had no basis in community law. As a result of this legal challenge a number of policy compromises ensured the MDP would continue until the end of 2013 with a reduced budget. The scheme has been superseded by a new scheme in March 2014 called the Fund for European Aid to the Most Deprived (FEAD). This is seen as a social programme. The way that policy and politics developed and changed the MDP programme are set out. The article tracks its move from being an agricultural policy to a social welfare one. The key policy players and actors in this move are set out as are the changing context and policy frameworks. The replacement of the MDP by FEAD is discussed as is how intensive lobbying in 2012/13 resulted in the development of a new Fund for European Aid to the Most Deprived (FEAD). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Designing cost efficient buffer zone programs: An application of the FyrisSKZ tool in a Swedish catchment.

    PubMed

    Collentine, Dennis; Johnsson, Holger; Larsson, Peter; Markensten, Hampus; Persson, Kristian

    2015-03-01

    Riparian buffer zones are the only measure which has been used extensively in Sweden to reduce phosphorus losses from agricultural land. This paper describes how the FyrisSKZ web tool can be used to evaluate allocation scenarios using data from the Svärta River, an agricultural catchment located in central Sweden. Three scenarios are evaluated: a baseline, a uniform 6-m-wide buffer zone in each sub-catchment, and an allocation of areas of buffer zones to sub-catchments based on the average cost of reduction. The total P reduction increases by 30 % in the second scenario compared to the baseline scenario, and the average reduction per hectare increases by 90 % while total costs of the program fall by 32 %. In the third scenario, the average cost per unit of reduction (163 kg P(-1)) is the lowest of the three scenarios (58 % lower than the baseline) and has the lowest total program costs.

  10. Concentration patterns of agricultural pesticides and urban biocides in surface waters of a catchment of mixed land use

    NASA Astrophysics Data System (ADS)

    Stamm, C.; Wittmer, I.; Bader, H.-P.; Scheidegger, R.; Alder, A.; Lück, A.; Hanke, I.; Singer, H.

    2009-04-01

    Organic pesticides and biocides that are found in surface waters, can originate from agricultural and urban sources. For a long time, agricultural pesticides have received substantially more attention than biocidal compounds from urban use like material protection or in-can preservatives (cosmetics etc.). Recent studies however revealed that the amounts of urban biocides used may exceed those of agricultural pesticides. This study aims at comparing the input of several important pesticides and biocides into a small Swiss stream with a special focus on loss events triggered by rainfall. A set of 16 substances was selected to represent urban and agricultural sources. The selected substances are either only used as biocides (irgarol, isothiazolinones, IPBC), as pesticides (atrazine, sulcotrione, dichlofluanid, tolylfluanid) or have a mixed use (isoproturon, terbutryn, terbutylazine, mecoprop, diazinon, carbendazim) The study catchment has an area of 25 km2 and is inhabited by about 12'000 people. Four sampling sites were selected in the river system in order to reflect different urban and agricultural sources. Additionally, we sampled a combined sewer overflow, a rain sewer and the outflow of a wastewater treatment plant. At each site discharge was measured continuously from March to November 2007. During 16 rain events samples were taken by automatic devices at a high temporal resolution. The results, based on more than 500 analyzed samples, revealed distinct concentration patterns for different compounds and sources. Agricultural pesticides exhibited a strong seasonality as expected based on the application periods. During the first one or two rain events after application the concentrations reached up to several thousand ng/l during peak flow (atrazine, isoproturon). The temporal patterns of urban biocides were more diverse. Some compounds obviously stem from permanent sources independent of rainfall because they were found mostly in the outlet of the wastewater

  11. A Catchment Systems Engineering (CSE) approach to managing intensively farmed land

    NASA Astrophysics Data System (ADS)

    Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark; ODonnell, Greg

    2014-05-01

    Rural land management practices can have a significant impact on the hydrological and nutrient dynamics within a catchment which can dramatically alter the way it processes water, exacerbating nutrient losses from the system. A collaborative and holistic approach for managing potential conflicts between land management activity for food production alongside the aspiration to achieve good water quality and the need to make space for water can ensure the long-term sustainability of our agricultural catchments. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. By targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, a significant component of the runoff generation can be managed, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source many runoff attenuation features or measures can be co-located to achieve benefits for water quality. Examples of community-led mitigation measures using the CSE approach will be presented from two catchments in Northumberland, Northern England, that demonstrate the generic framework for identification of multipurpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-field sediment filters and sediment traps which demonstrate how sediment can be trapped locally (including silt and clay fractions) and be recovered for use back on the land. Deliverables from this CSE approach includes the reduction of downstream flood risk and capturing of sediment and associated nutrients. The CSE approach allows for a more natural flood and nutrient management approach which helps to restore vital catchment functions to re-establish a healthy catchment system.

  12. Combination of geochemical and hydrobiological tracers for the analysis of runoff generating processes in a lowland catchment

    NASA Astrophysics Data System (ADS)

    Faber, Claas; Wu, Naicheng; Ulrich, Uta; Fohrer, Nicola

    2015-04-01

    Since lowlands are characterised by flat topography and low hydraulic gradients, groundwater inflow has a large influence to streamflow generation in such catchments. In catchments with intense agricultural land use, artificial drainages are often another major contributor to streamflow. They shorten the soil passage and thus change the matter retention potential as well as runoff dynamics of a catchment. Contribution of surface runoff to streamflow is usually less important in volume. However, due to high concentrations of agrochemicals, surface runoff can constitute an important entry pathway into water bodies, especially if strong precipitation events coincide with fertilizer or pesticide application. The DFG funded project "Separating surface runoff from tile drainage flow in agricultural lowland catchments based on diatoms to improve modelled runoff components and phosphorous transport" investigates prevalent processes in this context in a 50 km² lowland catchment (Kielstau, Schleswig-Holstein, Germany) with the goal of improving existing models. End Member Mixing Analysis (EMMA) is used in the project to determine the relative importance of groundwater, tile drainage and surface runoff to streamflow at daily time steps. It became apparent that geochemical tracers are suitable for distinguishing surface runoff, but are weak for the separation of tile drainage and groundwater influence. We attribute this to the strong and complex interaction between soil water and shallow groundwater tables in the catchment. Recent studies (e.g. Pfister et al. 2011, Tauro et al. 2013) show the potential of diatoms as indicators for hydrological processes. Since we found diatoms to be suitable for the separation of tile drainage and stream samples (Wu et al., unpublished data) in our catchment, we are able to include diatom derived indices (e.g. density, species moisture indices, diversity indices) as traces in EMMA. Our results show that the inclusion of diatom data in the

  13. A mediated modelling approach to promote collaborative learning in Andean rural micro-catchments in Colombia

    NASA Astrophysics Data System (ADS)

    Gowing, John; Dominguez, Isabel

    2013-04-01

    In rural catchments of developing countries water-related diseases, due to land use patterns (agriculture and livestock), microbial pollution, inadequate sanitation systems, access to water of poor quality, and lack of institutional support are common problems which disproportionally affect poor and vulnerable people. This research aims at developing a system dynamic model to improve the understanding of the macro and micro factors that influence human health and environmental health in rural micro-catchments in Valle del Cauca, Colombia. In this catchment livelihoods for most people depend on agriculture, particularly coffee. The research uses a mediated modeling approach, in which different stakeholders in modeling sessions, develop a STELLA model that allows them to identify relations between the economic, social and environmental factors and driving forces over the performance of their system. Stakeholders jointly develop the model structure in sessions facilitated by the researcher and the data required is gathered using secondary information from the different relevant institutions and primary information from field surveys that cover socioeconomic and environmental aspects that has not been previously collected by any institution or organization (i.e. household survey, stream water survey, and drinking water survey). Representation and understanding of their system will allow the stakeholders to test the effect of different management strategies in the micro-catchment and their associated socioeconomic, environmental and human health outcomes.

  14. Adaptive management for mitigating Cryptosporidium risk in source water: a case study in an agricultural catchment in South Australia.

    PubMed

    Bryan, Brett A; Kandulu, John; Deere, Daniel A; White, Monique; Frizenschaf, Jacqueline; Crossman, Neville D

    2009-07-01

    Water-borne pathogens such as Cryptosporidium pose a significant human health risk and catchments provide the first critical pollution 'barrier' in mitigating risk in drinking water supply. In this paper we apply an adaptive management framework to mitigating Cryptosporidium risk in source water using a case study of the Myponga catchment in South Australia. Firstly, we evaluated the effectiveness of past water quality management programs in relation to the adoption of practices by landholders using a socio-economic survey of land use and management in the catchment. The impact of past management on the mitigation of Cryptosporidium risk in source water was also evaluated based on analysis of water quality monitoring data. Quantitative risk assessment was used in planning the next round of management in the adaptive cycle. Specifically, a pathogen budget model was used to identify the major remaining sources of Cryptosporidium in the catchment and estimate the mitigation impact of 30 alternative catchment management scenarios. Survey results show that earlier programs have resulted in the comprehensive adoption of best management practices by dairy farmers including exclusion of stock from watercourses and effluent management from 2000 to 2007. Whilst median Cryptosporidium concentrations in source water have decreased since 2004 they remain above target levels and put pressure on other barriers to mitigate risk, particularly the treatment plant. Non-dairy calves were identified as the major remaining source of Cryptosporidium in the Myponga catchment. The restriction of watercourse access of non-dairy calves could achieve a further reduction in Cryptosporidium export to the Myponga reservoir of around 90% from current levels. The adaptive management framework applied in this study was useful in guiding learning from past management, and in analysing, planning and refocusing the next round of catchment management strategies to achieve water quality targets.

  15. CRA-W's committee of intervention: analyse of catchments polluted with pesticides.

    PubMed

    Noel, S; Bah, B B; Collinet, G; Buffet, D; Sorel, A; Hallet, V

    2008-01-01

    In the Walloon Region of Belgium, a committee of intervention has been created to investigate problems of pesticide contamination of various catchments use for drinking water production. This committee involves the Agricultural Research centre--Wallonia (CRA-W, project coordinator) and some University experts. It is funded by the Société Publique de Gestion des Eaux (SPGE). The diagnosis method, base on the AQUAPLAINE method (Arvatis-France), consists of 4 steps. The first step is the preparation of diagnosis (at the office) that takes into account the paper risk of active ingredients. and their uses, the identification of the agricultural parcels, the collection of cartographic and numeric data, the description of the hydrogeological and pedological contexts and the study of the meteorological data in relation with the period of pollution. The second step consists of making a plot diagnosis (on the field) to identify the way of transfer inside the plot and collecting data. At the third step, the people who can apply PPP treatment close to the catchment are met (farmers and city services). Information are collected on treatments applied and on the state of parcels. Based on the hypothesis of pollution cause, the committee proposes solution to solve the problem. One of the catchment that has been investigated by the committee is located at Biesmerée, (Namur province, in Belgium). A temporally contamination was caused by 4 pesticides : chlortoluron, isoproturon, trifluralin and diflufenican. After investigations, it seems that the pollution was probably due to the hydrogeological context. As the river is locally perched over the aquifer, the presence of Poly-aromatic hydrocarbons (PAHs) could be due to the infiltration of surface water inside the catchment or/and to the presence of a sinkhole temporally activated during river flood period. Infiltration rate has to be assessed and river bank impermeabilization is recommended.

  16. An evaluation of catchment-scale phosphorus mitigation using load apportionment modelling.

    PubMed

    Greene, S; Taylor, D; McElarney, Y R; Foy, R H; Jordan, P

    2011-05-01

    Functional relationships between phosphorus (P) discharge and concentration mechanisms were explored using a load apportionment model (LAM) developed for use in a freshwater catchment in Ireland with fourteen years of data (1995-2008). The aim of model conceptualisation was to infer changes in point and diffuse sources from catchment P loading during P mitigation, based upon a dataset comprising geospatial and water quality data from a 256km(2) lake catchment in an intensively farmed drumlin region of the midlands of Ireland. The model was calibrated using river total P (TP), molybdate reactive P (MRP) and runoff data from seven subcatchments. Temporal and spatial heterogeneity of P sources existed within and between subcatchments; these were attributed to differences in agricultural intensity, soil type and anthropogenically-sourced effluent P loading. Catchment rivers were sensitive to flow regime, which can result in eutrophication of rivers during summer and lake enrichment from frequent flood events. For one sewage impacted river, the LAM estimated that point sourced P contributed up to of 90% of annual MRP load delivered during a hydrological year and in this river point P sources dominated flows up to 92% of days. In the other rivers, despite diffuse P forming a majority of the annual P exports, point sources of P dominated flows for up to 64% of a hydrological year. The calibrated model demonstrated that lower P export rates followed specific P mitigation measures. The LAM estimated up to 80% decreases in point MRP load after enhanced P removal at waste water treatments plants in urban subcatchments and the implementation of septic tank and agricultural bye-laws in rural subcatchments. The LAM approach provides a way to assess the long-term effectiveness of further measures to reduce P loadings in EU (International) River Basin Districts and subcatchments. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. A catchment-scale palaeolimnological investigation into multiple forcings of algal community change

    NASA Astrophysics Data System (ADS)

    Moorhouse, H. L.; McGowan, S.; Jones, M.; Brayshaw, S.; Barker, P.; Leavitt, P.

    2013-12-01

    A catchment-scale palaeolimnological investigation of sedimentary algal pigments spanning the past ~200 years was undertaken on lakes which drain into Windermere, England's largest and longest lake. We aimed to determine the relative influence of past regional (climatic, atmospheric deposition) and local (land-use, hydrological modification, point-source pollution) drivers of algal community change by comparing three fertile lowland lakes (Blelham Tarn, Esthwaite Water and Rydal Water) and two upland tarns (Stickle and Easedale Tarns) to better inform a catchment-wide management strategy for Windermere. Drivers of change at the upland sites included atmospheric acid deposition, climatic change and structural modifications caused by dam installation, whereas the influence of agriculture and point-source pollution is greater in the lakes in the lowland parts of the catchment. As a result, contrasting algal responses were noted in the lakes. For example, the cyanobacterial pigment zeaxanthin and the cryptophte pigment alloxanthin increased at Stickle Tarn (359% and 321% respectively) corresponding with the establishment of a dam at the outflow of the tarn in 1838. However, post-1900's the concentration of these pigments declined both at Stickle and at Easedale Tarn coincident with increased storm events and in the later decades of the century (~1980s onwards) decreases in acid deposition. In the lowland sites the cyanobacterial pigment aphanizophyll increased by 400-7000% and the indicator of total algal production β-carotene increased as much as six-fold indicating a substantial degradation in water quality and the onset of cyanobacterial blooms since the 1950's. In the lowland sites, degradation of water quality was closely linked to sewage installations and treatment work upgrades during the 1950's-70's and intensification of agricultural practices most notably increases in sheep stocking densities, which expanded in the 1950's. In lowland lakes with a higher

  18. Two dimensions of nitrate pollution management in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Wachniew, Przemysław; Martinez, Grit; Bar-Michalczyk, Dominika; Kania, Jarosław; Malina, Grzegorz; Michalczyk, Tomasz; Różański, Kazimierz; Witczak, Stanisław; Zięba, Damian; Żurek, Anna J.; Berrini, Anne

    2017-04-01

    The Kocinka River catchment underlain by the karstic-fissured upper Jurrasic Częstochowa aquifer in Southern Poland is the site of an interdisciplinary research aimed at finding solutions to pollution of water resources with nutrients. These efforts are conducted in the framework of the BONUS Soils2Sea project that deals with the development of differentiated environmental management measures based on utilization of the natural ability of soils, groundwater and surface water to remove surplus nutrients. Implementation of these or any other measures for the improvement of water quality depends primarily on the perceptions and attitudes of the major actors, which in turn are a product of the socio-economic, cultural-historical and political development spanning many generations. The problem of the deteriorating water quality is therefore twofold. Understanding the complex natural system consisting of the coupled groundwater and surface water component with a wide spectrum of time lags of pollution transport is only the beginning of the solution. The mitigation policies and measures based on this scientific knowledge have to recognize the equally complex nature of social factors and interactions. Implementation of the European and national policies and legislations has to take into account the regional perspective. Identification of the key stakeholders is in this regard a first step followed by an inquiry into their values, perceptions and motivations through interviews, workshops, etc. Understanding of the socio-cultural, historical, economic and political factors that shape stakeholder actions is a prerequisite for the development of the successful management and mitigation schemes. The process of gaining insights into the environmental and social aspects of nutrient pollution in the Kocinka catchment is partly presented by the documentary film "Soils2Sea: Reducing nutrient loadings into the Baltic Sea" (https://www.youtube.com/watch?v=LUouES4SeJk).

  19. Understanding fine sediment and phosphorous delivery in upland catchments

    NASA Astrophysics Data System (ADS)

    Perks, M. T.; Reaney, S. M.

    2013-12-01

    The uplands of UK are heavily impacted by land management including; farming and forestry operations, moorland burning, peat extraction, metal mining, artificial drainage and channelisation. It has been demonstrated that such land management activity may modify hillslope processes, resulting in enhanced runoff generation and changing the spatial distribution and magnitude of erosion. Resultantly, few upland river systems of the UK are operating in a natural state, with land management activity often resulting in increased fluxes of suspended sediment (< 2 mm) and associated pollutants (such as phosphorous). Most recent Environment Agency (EA) data reveals that 60% of monitored water bodies within upland areas of the UK are currently at risk of failing the Water Framework Directive (WFD) due to poor ecological status. In order to prevent the continual degradation of many upland catchments, riverine systems and their diverse ecosystems, a range of measures to control diffuse pollution will need to be implemented. Future mitigation options and measures in the UK may be tested and targeted through the EA's catchment pilot scheme; DEFRA's Demonstration Test Catchment (DTC) programmes and through the catchment restoration fund. However, restoring the physical and biological processes of past conditions in inherently sensitive upland environments is extremely challenging requiring the development of a solid evidence base to determine the effectiveness of resource allocation and to enable reliable and transparent decisions to be made about future catchment operations. Such evidence is rarely collected, with post-implementation assessments often neglected. This paper presents research conducted in the Morland sub-catchment of the River Eden within Cumbria; UK. 80% of this headwater catchment is in upland areas and is dominated by improved grassland and rough grazing. The catchment is heavily instrumented with a range of hydro-meteorological equipment. A high-tech monitoring

  20. Modeling the behavior of an ungauged catchment using alternative datasets: a case study of the Caribou catchment in Canada

    NASA Astrophysics Data System (ADS)

    Labrecque, Geneviève; Boucher, Marie-Amélie; Chesnaux, Romain

    2017-04-01

    The modelling of ungauged catchments is a long standing problem in hydrology and there is still no general consensus regarding the best practices to adopt in a variety of situations. In addition to flood and drought forecasting, there are other interests of modelling the hydrological behaviour of a catchment, whether it is gauged or not. For instance, estimation of groundwater recharge can be performed through an integrated modeling of the catchment. In this study, the WaSim model is used to model the hydrology of the Caribou River catchment located in the province of Quebec, in Canada. Since this catchment includes an important aquifer that is used both for drinking water, industrial and potential agricultural purposes, an accurate recharge assessment is important and is the long-term objective of the project. The WaSim model was chosen due to its very versatile soil sub-model features which allow to simulate subsurface flows and calculate the groundwater recharge as an output variable. Since the Caribou River is ungauged, alternative means of calibrating the free parameters of WaSim had to be implemented. The implementation of a calibration protocol that can get the most out of the few available data is a secondary objective and is the subject of this presentation. First, a « twin » gauged catchment is selected for its physiographic and hydro-climatic similarities with the Caribou River catchment. Streamflow series from this « twin » catchment are then transferred and used jointly with the dynamically dimensioned search (DDS) algorithm (Tolson and Shoemaker 2007) to obtain a raw calibration of the WaSim model parameters. This initial calibration can be further refined using two available datasets: (1) snow water equivalent data interpolated on a 10 km by 10 km grid and (2) a short and discontinuous time series of streamflow obtained using the land-surface scheme of the environmental multiscale atmospheric model (GEM) at Environment and Climate Change Canada

  1. Investigating low flow process controls, through complex modelling, in a UK chalk catchment

    NASA Astrophysics Data System (ADS)

    Lubega Musuuza, Jude; Wagener, Thorsten; Coxon, Gemma; Freer, Jim; Woods, Ross; Howden, Nicholas

    2017-04-01

    The typical streamflow response of Chalk catchments is dominated by groundwater contributions due the high degree of groundwater recharge through preferential flow pathways. The groundwater store attenuates the precipitation signal, which causes a delay between the corresponding high and low extremes in the precipitation and the stream flow signals. Streamflow responses can therefore be quite out of phase with the precipitation input to a Chalk catchment. Therefore characterising such catchment systems, including modelling approaches, clearly need to reproduce these percolation and groundwater dominated pathways to capture these dominant flow pathways. The simulation of low flow conditions for chalk catchments in numerical models is especially difficult due to the complex interactions between various processes that may not be adequately represented or resolved in the models. Periods of low stream flows are particularly important due to competing water uses in the summer, including agriculture and water supply. In this study we apply and evaluate the physically-based Pennstate Integrated Hydrologic Model (PIHM) to the River Kennet, a sub-catchment of the Thames Basin, to demonstrate how the simulations of a chalk catchment are improved by a physically-based system representation. We also use an ensemble of simulations to investigate the sensitivity of various hydrologic signatures (relevant to low flows and droughts) to the different parameters in the model, thereby inferring the levels of control exerted by the processes that the parameters represent.

  2. Groundwater nitrate reduction versus dissolved gas production: A tale of two catchments.

    PubMed

    McAleer, E B; Coxon, C E; Richards, K G; Jahangir, M M R; Grant, J; Mellander, Per E

    2017-05-15

    At the catchment scale, a complex mosaic of environmental, hydrogeological and physicochemical characteristics combine to regulate the distribution of groundwater and stream nitrate (NO 3 - ). The efficiency of NO 3 - removal (via denitrification) versus the ratio of accumulated reaction products, dinitrogen (excess N 2 ) & nitrous oxide (N 2 O), remains poorly understood. Groundwater was investigated in two well drained agricultural catchments (10km 2 ) in Ireland with contrasting subsurface lithologies (sandstone vs. slate) and landuse. Denitrification capacity was assessed by measuring concentration and distribution patterns of nitrogen (N) species, aquifer hydrogeochemistry, stable isotope signatures and aquifer hydraulic properties. A hierarchy of scale whereby physical factors including agronomy, water table elevation and permeability determined the hydrogeochemical signature of the aquifers was observed. This hydrogeochemical signature acted as the dominant control on denitrification reaction progress. High permeability, aerobic conditions and a lack of bacterial energy sources in the slate catchment resulted in low denitrification reaction progress (0-32%), high NO 3 - and comparatively low N 2 O emission factors (EF 5g 1). In the sandstone catchment denitrification progress ranged from 4 to 94% and was highly dependent on permeability, water table elevation, dissolved oxygen concentration solid phase bacterial energy sources. Denitrification of NO 3 - to N 2 occurred in anaerobic conditions, while at intermediate dissolved oxygen; N 2 O was the dominant reaction product. EF 5g 1 (mean: 0.0018) in the denitrifying sandstone catchment was 32% less than the IPCC default. The denitrification observations across catchments were supported by stable isotope signatures. Stream NO 3 - occurrence was 32% lower in the sandstone catchment even though N loading was substantially higher than the slate catchment. Copyright © 2016 The Authors. Published by Elsevier B

  3. Assessing metaldehyde concentrations in surface water catchments and implications for drinking water abstraction

    NASA Astrophysics Data System (ADS)

    Asfaw, Alemayehu; Shucksmith, James; Smith, Andrea; Cherry, Katherine

    2015-04-01

    Metaldehyde is an active ingredient in agricultural pesticides such as slug pellets, which are heavily applied to UK farmland during the autumn application season. There is current concern that existing drinking water treatment processes may be inadequate in reducing potentially high levels of metaldehyde in surface waters to below the UK drinking water quality regulation limit of 0.1 µg/l. In addition, current water quality monitoring methods can miss short term fluctuations in metaldehyde concentration caused by rainfall driven runoff, hampering prediction of the potential risk of exposure. Datasets describing levels, fate and transport of metaldehyde in river catchments are currently very scarce. This work presents results from an ongoing study to quantify the presence of metaldehyde in surface waters within a UK catchment used for drinking water abstraction. High resolution water quality data from auto-samplers installed in rivers are coupled with radar rainfall, catchment characteristics and land use data to i) understand which hydro-meteorological characteristics of the catchment trigger the peak migration of metaldehyde to surface waters; ii) assess the relationship between measured metaldehyde levels and catchment characteristics such as land use, topographic index, proximity to water bodies and runoff generation area; iii) describe the current risks to drinking water supply and discuss mitigation options based on modelling and real-time control of water abstraction. Identifying the correlation between catchment attributes and metaldehyde generation will help in the development of effective catchment management strategies, which can help to significantly reduce the amount of metaldehyde finding its way into river water. Furthermore, the effectiveness of current water quality monitoring strategy in accurately quantifying the generation of metaldehyde from the catchment and its ability to benefit the development of effective catchment management practices

  4. Long-term field-scale experiment on using lime filters in an agricultural catchment.

    PubMed

    Kirkkala, Teija; Ventelä, Anne-Mari; Tarvainen, Marjo

    2012-01-01

    The River Yläneenjoki catchment in southwest Finland is an area with a high agricultural nutrient load. We report here on the nutrient removal performance of three on-site lime-sand filters (F1, F2, and F3), established within or on the edge of the buffer zones. The filters contain burnt lime (CaO) or spent lime [CaO, Ca(OH), and CaCO]. Easily soluble lime results in a high pH level (>11) and leads to an efficient precipitation of soluble phosphorus (P) from the runoff. Water samples were taken from the inflow and outflow of each site in different hydrological situations. The length of the monitoring period was 4 yr for F1, 6 yr for F2, and 1.5 yr for F3. F1 and F2 significantly reduced the suspended solids (SS), total P (PTOT), and dissolved reactive P (DRP) in the treated water. The proportional reduction (%) varied but was usually clearly positive. Filter F3 was divided into two equal parts, one containing burnt lime and the other spent lime. Both filter parts removed PTOT and SS efficiently from the water; the burnt-lime part also removed DRP. The mixed-lime part removed DRP for a year, but then the efficiency decreased. The effect of filters on nitrogen compounds varied. We conclude that sand filters incorporating lime can be used together with buffer zones to reduce both P and SS load to watercourses. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Catchment systems science and management: from evidence to resilient landscapes

    NASA Astrophysics Data System (ADS)

    Quinn, Paul

    2014-05-01

    There is an urgent need to reassess both the scientific understanding and the policy making approaches taken to manage flooding, water scarcity and pollution in intensively utilised catchments. Many European catchments have been heavily modified and natural systems have largely disappeared. However, working with natural processes must still be at the core of any future management strategy. Many catchments have greatly reduced infiltration rates and buffering capacity and this process needs to be reversed. An interventionist and holistic approach to managing water quantity and quality at the catchment scale is urgently required through the active manipulation of natural flow processes. Both quantitative (field experiments and modelling) and qualitative evidence (local knowledge) is required to demonstrate that catchment have become 'unhealthy'. For example, dense networks of low cost instrumentation could provide this multiscale evidence and, coupled with stakeholder knowledge, build a comprehensive understanding of whole system function. Proactive Catchment System Management is an interventionist approach to altering the catchment scale runoff regime through the manipulation of landscape scale hydrological flow pathways. Many of the changes to hydrological processes cannot be detected at the catchment scale as the primary causes of flooding and pollution. Evidence shows it is the land cover and the soil that are paramount to any change. Local evidence shows us that intense agricultural practices reduce the infiltration capacity through soil degradation. The intrinsic buffering capacity has also been lost across the landscape. The emerging hydrological process is one in which the whole system responds too quickly (driven by near surface and overland flow processes). The bulk of the soil matrix is bypassed during storm events and there is little or no buffering capacity in the riparian areas or in headwater catchments. The prospect of lower intensity farming rates is

  6. Rainfall-runoff modelling of the Okavango River catchment to assess impacts of land use change on runoff and downstream ecosystems

    NASA Astrophysics Data System (ADS)

    Milzow, Christian; Bauer-Gottwein, Peter

    2010-05-01

    The competition between human water use and ecosystem water use is one of the major challenges for water resources management at the global scale. We analyse the situation for the Okavango River basin of southern Africa. The Okavango River is representative for many large rivers throughout the developing world in that it is ungauged and poorly studied. The Okavango basin - spanning over Angola, Namibia and Botswana - represents a multi-objective problem in an international setting. Economic benefits of agricultural development and conservation of ecosystem services call for opposed actions. A semi-distributed rainfall-runoff model of the Okavango catchment is set up using the Soil and Water Assessment Tool (SWAT). The model is sufficiently physically based to simulate the impact on runoff of extent of agricultural use, crop types and management practices. Precipitation and temperature inputs are taken from datasets covering large parts of the globe. The methodology can thus easily be applied for other ungauged catchments. For temperature we use the ERA-Interim reanalysis product of the European Centre for Medium-Range Weather Forecasts and for precipitation the Famine Early Warning Systems Network data (FEWS-Net). Tropical Rainfall Measurement Mission (TRMM) data resulted in poor model performance compared to the FEWS-Net data. Presently, the upstream catchment in Angola is largely pristine and agriculture is basically restricted to dry land subsistence farming. But economic growth in Angola is likely to result in agricultural development and consequent impacts on catchment runoff. Land use scenarios that are simulated include large scale irrigated agriculture with water extractions from the river and the shallow aquifer. Climate change impacts are also studied and compared to land use change impacts. The downstream part of the basin consists of the large Okavango Wetlands, which are a biodiversity hotspot of global importance and, through tourism, an important

  7. Transport of particle-associated elements in two agriculture-dominated boreal river systems.

    PubMed

    Marttila, Hannu; Saarinen, Tuomas; Celebi, Ahmet; Kløve, Bjørn

    2013-09-01

    Transport of particulate pollutants in fluvial systems can contribute greatly to total loads. Understanding transport mechanics under different hydrological conditions is key in successful load estimation. This study analysed trace elements and physico-chemical parameters in time-integrated suspended sediment samples, together with dissolved and total concentrations of pollutants, along two agriculture- and peatland-dominated boreal river systems. The samples were taken in a spatially and temporally comprehensive sampling programme during the ice-free seasons of 2010 and 2011. The hydrochemistry and transport of particle-bound elements in the rivers were strongly linked to intense land use and acid sulphate soils in the catchment area, with arable, pasture and peat areas in particular being main diffuse sources. There were significant seasonal and temporal variations in dissolved and particulate fluxes, but spatial variations were small. Continuous measurements of EC, turbidity and discharge proved to be an accurate indicator of dissolved and particulate fluxes. Overall, the results show that transport of particle-bound elements makes a major contribution to total transport fluxes in agriculture-dominated boreal rivers. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Assessing the drivers of dissolved organic matter export from two contrasting lowland catchments, U.K.

    PubMed

    Yates, Christopher A; Johnes, Penny J; Spencer, Robert G M

    2016-11-01

    Two lowland catchments in the U.K. were sampled throughout 2010-11 to investigate the dominant controls on dissolved organic matter quantity and composition. The catchments had marked differences in terms of nutrient status, land cover and contrasting lithologies resulting in differences in the dominant flow pathways (groundwater vs. surface water dominated). The Upper Wylye is a chalk stream with a baseflow index of 0.98, draining a catchment dominated by intensive agricultural production. Millersford Brook is a lowland peat catchment with a baseflow index of 0.43, draining a semi-natural catchment with heather moorland and coniferous forest. Samples were collected weekly between October 2010 and September 2011 from eleven sampling locations. Samples were analysed to determine dissolved organic carbon, nitrogen and phosphorus fractions with DOM composition evaluated via the DOC:DON ratio, DOC:DOP ratio, specific UV absorption at 254nm, absorbance ratio (a250:a365) and the spectral slope parameter between 350 and 400nm (S350-400). Significant differences were observed in all determinands between the catchments, over time, and spatially along nutrient enrichment and geoclimatic gradients. Seasonal variation in preferential flow pathways mobilising groundwater-derived DOM were identified as likely controls on the delivery of DOM in the permeable chalk dominated catchment. Steeper S350-400 values and elevated a250:a365 ratios in this catchment suggest material of a lower bulk aromatic C content and molecular weight delivered during the winter months when compared to the summer. DOC:DON ratios were markedly lower in the chalk catchment than the peatland catchment, reflecting the paucity of organic matter within the mineral soils of the chalk landscape, and higher fertiliser application rates. This manuscript highlights that DOM composition varies according to catchment landscape character and hydrological function. Copyright © 2016 The Authors. Published by Elsevier B

  9. Nutrient loads from agricultural and forested areas in Finland from 1981 up to 2010-can the efficiency of undertaken water protection measures seen?

    PubMed

    Tattari, Sirkka; Koskiaho, Jari; Kosunen, Maiju; Lepistö, Ahti; Linjama, Jarmo; Puustinen, Markku

    2017-03-01

    Long-term data from a network of intensively monitored research catchments in Finland was analysed. We studied temporal (1981-2010) and spatial variability in nitrogen (N) and phosphorus (P), from 1987 losses, both from agricultural and forestry land. Based on trend analysis, total nitrogen (TN) concentrations increased in two of the four agricultural sites and in most of the forested sites. In agricultural catchments, the total phosphorus (TP) trends were decreasing in two of the four catchments studied. Dissolved P (DRP) concentrations increased in two catchments and decreased in one. The increase in DRP concentration can be a result of reducing erosion by increased non-plough cultivation and direct sowing. In forested catchments, the TP trends in 1987-2011 were significantly decreasing in three of the six catchments, while DRP concentrations decreased significantly in all sites. At the same time, P fertilisation in Finnish forests has decreased significantly, thus contributing to these changes. The mean annual specific loss for agricultural land was on average 15.5 kg ha -1  year -1 for N and 1.1 kg ha -1  year -1 for P. In the national scale, total TN loading from agriculture varied between 34,000-37,000 t year -1 and total P loading 2400-2700 t year -1 . These new load estimates are of the same order than those reported earlier, emphasising the need for more efforts with wide-ranging and carefully targeted implementation of water protection measures.

  10. Assessing the potential impacts of a revised set of on-farm nutrient and sediment 'basic' control measures for reducing agricultural diffuse pollution across England.

    PubMed

    Collins, A L; Newell Price, J P; Zhang, Y; Gooday, R; Naden, P S; Skirvin, D

    2018-04-15

    The need for improved abatement of agricultural diffuse water pollution represents cause for concern throughout the world. A critical aspect in the design of on-farm intervention programmes concerns the potential technical cost-effectiveness of packages of control measures. The European Union (EU) Water Framework Directive (WFD) calls for Programmes of Measures (PoMs) to protect freshwater environments and these comprise 'basic' (mandatory) and 'supplementary' (incentivised) options. Recent work has used measure review, elicitation of stakeholder attitudes and a process-based modelling framework to identify a new alternative set of 'basic' agricultural sector control measures for nutrient and sediment abatement across England. Following an initial scientific review of 708 measures, 90 were identified for further consideration at an industry workshop and 63 had industry support. Optimisation modelling was undertaken to identify a shortlist of measures using the Demonstration Test Catchments as sentinel agricultural landscapes. Optimisation selected 12 measures relevant to livestock or arable systems. Model simulations of 95% implementation of these 12 candidate 'basic' measures, in addition to business-as-usual, suggested reductions in the national agricultural nitrate load of 2.5%, whilst corresponding reductions in phosphorus and sediment were 11.9% and 5.6%, respectively. The total cost of applying the candidate 'basic' measures across the whole of England was estimated to be £450 million per annum, which is equivalent to £52 per hectare of agricultural land. This work contributed to a public consultation in 2016. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  11. Impacts of intensive agricultural irrigation and livestock farming on a semi-arid Mediterranean catchment.

    PubMed

    Martín-Queller, Emi; Moreno-Mateos, David; Pedrocchi, César; Cervantes, Juan; Martínez, Gonzalo

    2010-08-01

    Irrigation return flows (IRF) are a major contributor of non-point source pollution to surface and groundwater. We evaluated the effects of irrigation on stream hydrochemistry in a Mediterranean semi-arid catchment (Flumen River, NE Spain). The Flumen River was separated into two zones based on the intensity of irrigation activities in the watershed. General linear models were used to compare the two zones. Relevant covariables (urban sewage, pig farming, and gypsum deposits in the basin) were quantified with the help of geographic information system techniques, accompanied by ground-truthing. High variability of the water quality parameters and temporal dynamics caused by irrigation were used to distinguish the two river reaches. Urban activity and livestock farming had a significant effect on water chemistry. An increase in the concentration of salts (240-541 microS.cm(-1) more in winter) and nitrate (average concentrations increased from 8.5 to 20.8 mg.l(-1) during irrigation months) was associated with a higher level of IRF. Those river reaches more strongly influenced by urban areas tended to have higher phosphorus (0.19-0.42 mg.l(-1) more in winter) concentrations. These results support earlier research about the significant consequences to water quality of both urban expansion and intensive agricultural production in arid and semi-arid regions. Data also indicate that salinization of soils, subsoils, surface water, and groundwater can be an unwelcome result of the application of pig manure for fertilization (increase in sodium concentration in 77.9 to 138.6 mg.l(-1)).

  12. Crop structure in a gully catchment and the development of a loess gully (Lublin Upland, E Poland)

    NASA Astrophysics Data System (ADS)

    Mędrek, Karolina; Rodzik, Jan

    2015-04-01

    The study was conducted in a loess gully catchment with an area of 1.23 km2 and height differences of less than 50 m (213-165 m above sea level), located in Kolonia Celejów in the Nałęczów Plateau. This is one of mesoregions of Lublin Upland. In the investigated catchment, loess cover with a thickness of 10-20 m, accumulated during the Vistulian Glaciation, is dissected by a gully system with a depth of 5-15 m and total length of 7.5 km. The gully system is forested in 30% of its area. Until recently, the remaining part of the catchment under agricultural use has been dominated by conventional farming of cereals, potatoes, and sugar beets. Today, 15% of the non-forested area of the catchment is occupied by housing premises, dirt roads, and fallow land, and 45% by orchards with maintained turf, including berry plantations. This type of land management contributes to the retention of precipitation, and protects the soil from flushing. Approximately 20% of the agricultural land is occupied by conventional crops (cereals and root crops), protecting the soil to a moderate degree. Water runoff in the area does not occur every year. Approximately 20% of the agricultural land is currently occupied by cruciferous vegetables (broccoli and cauliflower), decorative shrubs, and orchards without turf in the first 2 years of use. Water and soil runoff from these crops occurs even several times per year. The majority of the material is retained in the lower part of the field, and the water flows into the gully. The crops in the fields adjacent to the ravine have a direct impact on the development of the gully. If the field is located on a raised headland, the flowing water dissects the edge of the gully, and the eroded material is accumulated on the gully bottom. If the field is located in a valley above the gullyhead, the flowing water dissects the bottom of the gully, and the eroded material is discharged outside the catchment.

  13. The Treatment Train approach to reducing non-point source pollution from agriculture

    NASA Astrophysics Data System (ADS)

    Barber, N.; Reaney, S. M.; Barker, P. A.; Benskin, C.; Burke, S.; Cleasby, W.; Haygarth, P.; Jonczyk, J. C.; Owen, G. J.; Snell, M. A.; Surridge, B.; Quinn, P. F.

    2016-12-01

    An experimental approach has been applied to an agricultural catchment in NW England, where non-point pollution adversely affects freshwater ecology. The aim of the work (as part of the River Eden Demonstration Test Catchment project) is to develop techniques to manage agricultural runoff whilst maintaining food production. The approach used is the Treatment Train (TT), which applies multiple connected mitigation options that control nutrient and fine sediment pollution at source, and address polluted runoff pathways at increasing spatial scale. The principal agricultural practices in the study sub-catchment (1.5 km2) are dairy and stock production. Farm yards can act as significant pollution sources by housing large numbers of animals; these areas are addressed initially with infrastructure improvements e.g. clean/dirty water separation and upgraded waste storage. In-stream high resolution monitoring of hydrology and water quality parameters showed high-discharge events to account for the majority of pollutant exports ( 80% total phosphorus; 95% fine sediment), and primary transfer routes to be surface and shallow sub-surface flow pathways, including drains. To manage these pathways and reduce hydrological connectivity, a series of mitigation features were constructed to intercept and temporarily store runoff. Farm tracks, field drains, first order ditches and overland flow pathways were all targeted. The efficacy of the mitigation features has been monitored at event and annual scale, using inflow-outflow sampling and sediment/nutrient accumulation measurements, respectively. Data presented here show varied but positive results in terms of reducing acute and chronic sediment and nutrient losses. An aerial fly-through of the catchment is used to demonstrate how the TT has been applied to a fully-functioning agricultural landscape. The elevated perspective provides a better understanding of the spatial arrangement of mitigation features, and how they can be

  14. Promoting Interdisciplinary Education: The Vienna Doctoral Programme on Water Resource Systems

    NASA Astrophysics Data System (ADS)

    Blöschl, Günter; Bucher, Christian; Carr, Gemma; Farnleitner, Andreas; Rechberger, Helmut; Wagner, Wolfgang; Zessner, Matthias

    2010-05-01

    . Through a structured one-on-one mentoring programme close interaction is ensured between the students and the internationally reputed staff of the programme. This gives the opportunity for the encouragement of interdisciplinary thinking at the individual level. Interdisciplinarity also evolves passively through interactions between the doctoral students in their daily research work, during journal clubs, meetings, workshops and courses. A total of 22 doctoral students are enrolled in the programme at any time which allows for cross-fertilisation across the wide range of research projects. Finally, the programme is holistic, incorporating all aspects of the hydrological system at the catchment and multi-catchment scale. The ultimate aim is to provide an education programme which not only equips the students with an understanding of the need for interdisciplinarity, but also with the skills required to deliver interdisciplinary work in keeping with the holistic catchment management paradigm adopted by the hydrological science community.

  15. Exploring factors influencing farmers' willingness to pay (WTP) for a planned adaptation programme to address climatic issues in agricultural sectors.

    PubMed

    Ahmed, Adeel; Masud, Muhammad Mehedi; Al-Amin, Abul Quasem; Yahaya, Siti Rohani Binti; Rahman, Mahfuzur; Akhtar, Rulia

    2015-06-01

    This study empirically estimates farmers' willingness to pay (WTP) for a planned adaptation programme for addressing climate issues in Pakistan's agricultural sectors. The contingent valuation method (CVM) was employed to determine a monetary valuation of farmers' preferences for a planned adaptation programme by ascertaining the value attached to address climatic issues. The survey was conducted by distributing structured questionnaires among Pakistani farmers. The study found that 67 % of respondents were willing to pay for a planned adaptation programme. However, several socioeconomic and motivational factors exert greater influence on their willingness to pay (WTP). This paper specifies the steps needed for all institutional bodies to better address issues in climate change. The outcomes of this paper will support attempts by policy makers to design an efficient adaptation framework for mitigating and adapting to the adverse impacts of climate change.

  16. A new perspective on catchment storage gained from a nested catchment experiment in Luxembourg (Europe)

    NASA Astrophysics Data System (ADS)

    Pfister, Laurent; Klaus, Julian; Hissler, Christophe; François Iffly, Jean; Gourdol, Laurent; Martinez-Carreras, Nuria; McDonnell, Jeffrey J.

    2014-05-01

    Recent hydrological process research focussed on how much water a catchment can store and how these catchments store and release water. Storage can be a valuable metric for catchment description, inter-comparison, and classification. Further storage controls catchment mixing, non-linearities in rainfall-runoff transformation and eco-hydrological processes. Various methods exist to determine catchment storage (e.g. natural tracer, soil moisture and groundwater data, hydrological models). Today it remains unclear what parts of the catchment storage are measured with the different models. Here we present a new hydrometric approach to answer the question how much water a catchment can store. We tested our approach in a dense hydro-climatological monitoring network that encompasses 16 recording streamgauges and 21 pluviographs in the Alzette River basin in Luxembourg (Europe). Catchment scales are ranging from 0.47 to 285 km2 and they have clean- and mixed combinations of distinct geologies ranging from schists to marls, sandstone, dolomite and limestone. Previous investigations in the area of interest have shown that geology largely controls winter runoff coefficients. Here, we focus at how catchment geology is ultimately affecting catchment storage. We used the approach of Sayama et al. (2011) to compute catchment dynamic storage changes for each winter season over the period 2002-2012 (based on precipitation as input; discharge and evapotranspiration as output). We determined dynamic storage changes for each winter semester (October to March) in all 16 catchments over the period 2002-2012. At the beginning of each hydrological winter season, all catchments showed similar trends in storage change. A few weeks into the winter season, catchments with lowest permeability (e.g. marls) started to plateau. The highest storage values were reached several months later in the season in catchments dominated by permeable substrate (e.g. sandstone). For most catchments, we found

  17. Evaluating the use of in-situ turbidity measurements to quantify fluvial sediment and phosphorus concentrations and fluxes in agricultural streams.

    PubMed

    Stutter, Marc; Dawson, Julian J C; Glendell, Miriam; Napier, Fiona; Potts, Jacqueline M; Sample, James; Vinten, Andrew; Watson, Helen

    2017-12-31

    Accurate quantification of suspended sediments (SS) and particulate phosphorus (PP) concentrations and loads is complex due to episodic delivery associated with storms and management activities often missed by infrequent sampling. Surrogate measurements such as turbidity can improve understanding of pollutant behaviour, providing calibrations can be made cost-effectively and with quantified uncertainties. Here, we compared fortnightly and storm intensive water quality sampling with semi-continuous turbidity monitoring calibrated against spot samples as three potential methods for determining SS and PP concentrations and loads in an agricultural catchment over two-years. In the second year of sampling we evaluated the transferability of turbidity calibration relationships to an adjacent catchment with similar soils and land cover. When data from nine storm events were pooled, both SS and PP concentrations (all in log space) were better related to turbidity than they were to discharge. Developing separate calibration relationship for the rising and falling limbs of the hydrograph provided further improvement. However, the ability to transfer calibrations between adjacent catchments was not evident as the relationships of both SS and PP with turbidity differed both in gradient and intercept on the rising limb of the hydrograph between the two catchments. We conclude that the reduced uncertainty in load estimation derived from the use of turbidity as a proxy for specific water quality parameters in long-term regulatory monitoring programmes, must be considered alongside the increased capital and maintenance costs of turbidity equipment, potentially noisy turbidity data and the need for site-specific prolonged storm calibration periods. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Assessing the Impact of Agricultural Pressures on N and P Loads and Potential Eutrophication Risk at Regional Scales

    NASA Astrophysics Data System (ADS)

    Dupas, R.; Gascuel-odoux, C.; Delmas, M.; Moatar, F.

    2014-12-01

    Excessive nutrient loading of freshwater bodies results in increased eutrophication risk worldwide. The processes controlling N/P transfer in agricultural landscapes are well documented through scientific studies conducted in intensively monitored catchments. However, managers need tools to assess water quality and evaluate the contribution of agriculture to eutrophication at regional scales, including unmonitored or poorly monitored areas. To this end, we present an assessment framework which includes: i) a mass-balance model to estimate diffuse N/P transfer and retention and ii) indicators based on N:P:Si molar ratios to assess potential eutrophication risk from external loads. The model, called Nutting (Dupas et al., 2013), integrates variables for both detailed description of agricultural pressures (N surplus, soil P content) and characterisation of physical attributes of catchments (including spatial attributes). It was calibrated on 160 catchments, and applied to 2210 unmonitored headwater bodies in France (Dupas et al., under review). N and P retention represented 53% and 95% of soil N and P surplus, respectively, and was mainly controlled by runoff and an index characterising infiltration/runoff properties. According to our estimates, diffuse agricultural sources represented a mean of 97% of N loads and N exceeded Si in 93% of the catchments, whilst they represented 46% of P loads and P exceeded Si in 26-65% of the catchments. Estimated eutrophication risk was highly sensitive to assumptions about P bioavailability, hence the range of headwaters potentially at risk spanned 26-63% of the catchments, depending on assumptions. To reduce this uncertainty, we recommend introducing P bioavailability tests in water monitoring programs, especially in sensitive areas. Dupas R et al. Assessing N emissions in surface water at the national level: comparison of country-wide vs. regionalized models. Sci Total Environ 2013; 443: 152-62. Dupas R et al. Assessing the impact

  19. Effects of lakes and reservoirs on annual river nitrogen, phosphorus, and sediment export in agricultural and forested landscapes

    USGS Publications Warehouse

    Powers, Stephen M.; Robertson, Dale M.; Stanley, Emily H.

    2014-01-01

    Recently, effects of lakes and reservoirs on river nutrient export have been incorporated into landscape biogeochemical models. Because annual export varies with precipitation, there is a need to examine the biogeochemical role of lakes and reservoirs over time frames that incorporate interannual variability in precipitation. We examined long-term (~20 years) time series of river export (annual mass yield, Y, and flow-weighted mean annual concentration, C) for total nitrogen (TN), total phosphorus (TP), and total suspended sediment (TSS) from 54 catchments in Wisconsin, USA. Catchments were classified as small agricultural, large agricultural, and forested by use of a cluster analysis, and these varied in lentic coverage (percentage of catchment lake or reservoir water that was connected to river network). Mean annual export and interannual variability (CV) of export (for both Y and C) were higher in agricultural catchments relative to forested catchments for TP, TN, and TSS. In both agricultural and forested settings, mean and maximum annual TN yields were lower in the presence of lakes and reservoirs, suggesting lentic denitrification or N burial. There was also evidence of long-term lentic TP and TSS retention, especially when viewed in terms of maximum annual yield, suggesting sedimentation during high loading years. Lentic catchments had lower interannual variability in export. For TP and TSS, interannual variability in mass yield was often >50% higher than interannual variability in water yield, whereas TN variability more closely followed water (discharge) variability. Our results indicate that long-term mass export through rivers depends on interacting terrestrial, aquatic, and meteorological factors in which the presence of lakes and reservoirs can reduce the magnitude of export, stabilize interannual variability in export, as well as introduce export time lags.

  20. Catchment-scale herbicides transport: Theory and application

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Thomet, M.; Botter, G.; Rinaldo, A.

    2013-02-01

    This paper proposes and tests a model which couples the description of hydrologic flow and transport of herbicides at catchment scales. The model accounts for streamflow components' age to characterize short and long term fluctuations of herbicide flux concentrations in stream waters, whose peaks exceeding a toxic threshold are key to exposure risk of aquatic ecosystems. The model is based on a travel time formulation of transport embedding a source zone that describes near surface herbicide dynamics. To this aim we generalize a recently proposed scheme for the analytical derivation of travel time distributions to the case of solutes that can be partially taken up by transpiration and undergo chemical degradation. The framework developed is evaluated by comparing modeled hydrographs and atrazine chemographs with those measured in the Aabach agricultural catchment (Switzerland). The model proves reliable in defining complex transport features shaped by the interplay of long term processes, related to the persistence of solute components in soils, and short term dynamics related to storm inter-arrivals. The effects of stochasticity in rainfall patterns and application dates on concentrations and loads in runoff are assessed via Monte Carlo simulations, highlighting the crucial role played by the first rainfall event occurring after herbicide application. A probabilistic framework for critical determinants of exposure risk to aquatic communities is defined. Modeling of herbicides circulation at catchment scale thus emerges as essential tools for ecological risk assessment.

  1. An approach to predict water quality in data-sparse catchments using hydrological catchment similarity

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Glendell, Miriam; Stutter, Marc I.; Helliwell, Rachel C.

    2017-04-01

    An understanding of catchment response to climate and land use change at a regional scale is necessary for the assessment of mitigation and adaptation options addressing diffuse nutrient pollution. It is well documented that the physicochemical properties of a river ecosystem respond to change in a non-linear fashion. This is particularly important when threshold water concentrations, relevant to national and EU legislation, are exceeded. Large scale (regional) model assessments required for regulatory purposes must represent the key processes and mechanisms that are more readily understood in catchments with water quantity and water quality data monitored at high spatial and temporal resolution. While daily discharge data are available for most catchments in Scotland, nitrate and phosphorus are mostly available on a monthly basis only, as typified by regulatory monitoring. However, high resolution (hourly to daily) water quantity and water quality data exist for a limited number of research catchments. To successfully implement adaptation measures across Scotland, an upscaling from data-rich to data-sparse catchments is required. In addition, the widespread availability of spatial datasets affecting hydrological and biogeochemical responses (e.g. soils, topography/geomorphology, land use, vegetation etc.) provide an opportunity to transfer predictions between data-rich and data-sparse areas by linking processes and responses to catchment attributes. Here, we develop a framework of catchment typologies as a prerequisite for transferring information from data-rich to data-sparse catchments by focusing on how hydrological catchment similarity can be used as an indicator of grouped behaviours in water quality response. As indicators of hydrological catchment similarity we use flow indices derived from observed discharge data across Scotland as well as hydrological model parameters. For the latter, we calibrated the lumped rainfall-runoff model TUWModel using multiple

  2. Quantifying the impacts of vegetation changes on catchment storage-discharge dynamics using paired-catchment data

    NASA Astrophysics Data System (ADS)

    Cheng, Lei; Zhang, Lu; Chiew, Francis H. S.; Canadell, Josep G.; Zhao, Fangfang; Wang, Ying-Ping; Hu, Xianqun; Lin, Kairong

    2017-07-01

    It is widely recognized that vegetation changes can significantly affect the local water availability. Methods have been developed to predict the effects of vegetation change on water yield or total streamflow. However, it is still a challenge to predict changes in base flow following vegetation change due to limited understanding of catchment storage-discharge dynamics. In this study, the power law relationship for describing catchment storage-discharge dynamics is reformulated to quantify the changes in storage-discharge relationship resulting from vegetation changes using streamflow data from six paired-catchment experiments, of which two are deforestation catchments and four are afforestation catchments. Streamflow observations from the paired-catchment experiments clearly demonstrate that vegetation changes have led to significant changes in catchment storage-discharge relationships, accounting for about 83-128% of the changes in groundwater discharge in the treated catchments. Deforestation has led to increases in groundwater discharge (or base flow) but afforestation has resulted in decreases in groundwater discharge. Further analysis shows that the contribution of changes in groundwater discharge to the total changes in streamflow varies greatly among experimental catchments ranging from 12% to 80% with a mean of 38 ± 22% (μ ± σ). This study proposed a new method to quantify the effects of vegetation changes on groundwater discharge from catchment storage and will improve our predictability about the impacts of vegetation changes on catchment water yields.

  3. Estimating sedimentation rates and sources in a partially urbanized catchment using caesium-137

    NASA Astrophysics Data System (ADS)

    Ormerod, L. M.

    1998-06-01

    While there has been increased interest in determining sedimentation rates and sources in agricultural and forested catchments in recent years, there have been few studies dealing with urbanized catchments. A study of sedimentation rates and sources within channel and floodplain deposits of a partially urbanized catchment has been undertaken using the 137Cs technique. Results for sedimentation rates showed no particular downstream pattern. This may be partially explained by underestimation of sedimentation rates at some sites by failure to sample the full 137Cs profile, floodplain erosion and deliberate removal of sediment. Evidence of lateral increases in net sedimentation rates with distance from the channel may be explained by increased floodplain erosion at sites closer to the channel and floodplain formation by lateral deposition. Potential sediment sources for the catchment were considered to be forest topsoil, subsurface material and sediments derived from urban areas, which were found to be predominantly subsurface material. Tracing techniques showed an increase in subsurface material for downstream sites, confirming expectations that subsurface material would increase in the downstream direction in response to the direct and indirect effects of urbanization.

  4. Natural flood risk management in flashy headwater catchments: managing runoff peaks, timing, water quality and sediment regimes

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark; Addy, Steve; Ghimire, Sohan; Kenyon, Wendy; Nicholson, Alex; Quinn, Paul; Stutter, Marc; Watson, Helen

    2013-04-01

    Over the past decade many European catchments have experienced an unusually high number of flood events. A large number of these events are the result of intense rainfall in small headwater catchments which are dominated by surface runoff generation, resulting in flash flooding of local communities. Soil erosion and related water quality issues, among others, are typically associated with such rapid runoff generation. The hazard of flooding is increasing owing to impacts of changing climatic patterns (including more intense summer storms), intensification of agriculture within rural catchments and continued pressure to build on floodplains. Concurrently, the cost of constructing and maintaining traditional flood defences in small communities outweigh the potential benefits. Hence, there is a growing interest in more cost effective natural approaches that also have multipurpose benefits in terms of sediment, water quality, and habitat creation. Many catchments in Europe are intensively farmed and there is great potential for agriculture to be part of the solution to flood risk management. Natural flood management (NFM) is the alteration, restoration or use of landscape features with the aim of reducing flood risk by slowing down, storing (and filtering) rapid surface runoff. NFM includes measures such as temporarily storing water in ponds/wetlands, increasing soil infiltration, planting trees on floodplains and within catchments, re-meandering and wood placements in streams/ditches. In this presentation we highlight case studies from densely instrumented research sites across the UK (which could be typical of many European catchments) where NFM measures have been installed in small scale flashy catchments. The presentation will give an overview of the function of these measures in these catchments and how other multiple benefits are being accrued. Study catchments include the headwater catchments of the Bowmont (3 to 8 km2) and Belford Burn (6 km2) catchments. These

  5. Effects of land use on greenhouse gas fluxes and soil properties of wetland catchments in the Prairie Pothole Region of North America

    USGS Publications Warehouse

    Tangen, Brian A.; Finocchiaro, Raymond G.; Gleason, Robert A.

    2015-01-01

    Results suggest that soil organic carbon is lost when relatively undisturbed catchments are converted for agriculture, and that when non-drained cropland catchments are restored, CH4 fluxes generally are not different than the pre-restoration baseline. Conversely, when drained cropland catchments are restored, CH4 fluxes are noticeably higher. Consequently, it is important to consider the type of wetland restoration (drained, non-drained) when assessing restoration benefits. Results also suggest that elevated N2O fluxes from cropland catchments likely would be reduced through restoration. The overall variability demonstrated by this study was consistent with findings of other wetland investigations and underscores the difficulty in quantifying the GHG balance of wetland systems.

  6. Stormflow influence on nutrient dynamics in micro-catchments under contrasting land use in the Cerrado and Amazon Biomes, Brazil

    NASA Astrophysics Data System (ADS)

    Edelmann, Katharina; Nóbrega, Rodolfo L. B.; Gerold, Gerhard

    2017-04-01

    The Amazon and Cerrado biomes in Brazil have been under intense land-use change during the past few decades. The conversion of native vegetation to pastures and croplands has caused impacts on hydrological processes in these biomes, resulting in increased streamflow and nutrient fluxes. Our aim was to compare the nutrient dynamics during stormflow events in two pairs of adjacent micro-catchments with similar physical characteristics under contrasting land use, i.e. native vegetation (rainforest or cerrado) and pasture. One pair of catchments was located in the Amazon and the other in the Cerrado, both on the Amazon Agricultural Frontier in the Brazilian states of Mato Grosso and Pará. We collected hydrological and hydrochemical data on 50 stormflow events on a sub-hourly resolution during the wet seasons of 2013 and 2014. We compared the dynamics of total inorganic carbon (TIC), total organic carbon (TOC), dissolved organic carbon (DOC), nitrate (NO3), calcium (Ca), potassium (K), and magnesium (Mg) in different hydrograph parts, i.e. rising limb, peak and recession limb, between the catchments within the same biome. For the Cerrado biome, our findings show that the nutrient concentrations in the stormflows were higher in the pasture catchment than in the cerrado catchment. In the Amazon biome, we found an inverse relationship with higher concentrations in the forest catchment than in the pasture catchment, except for TIC and K. Most nutrients in the cerrado catchment had the highest concentrations in the rising limb. Mg, however, reached highest concentrations during peak discharge, and lowest in the recession limb. In the adjacent pasture catchment, in contrast, the highest nutrient concentrations were observed during the peak discharge (TIC, TOC, Ca) or the recession limb (DOC, NO3, K, Mg) with lowest in the rising limb, except for NO3, which showed the lowest concentrations during peak discharge. In the Amazon forest catchment, the peak discharge showed the

  7. Avoiding Implementation Failure in Catchment Landscapes: A Case Study in Governance of the Great Barrier Reef.

    PubMed

    Dale, Allan P; Vella, Karen; Gooch, Margaret; Potts, Ruth; Pressey, Robert L; Brodie, Jon; Eberhard, Rachel

    2017-10-04

    Water quality outcomes affecting Australia's Great Barrier Reef (GBR) are governed by multi-level and multi-party decision-making that influences forested and agricultural landscapes. With international concern about the GBR's declining ecological health, this paper identifies and focuses on implementation failure (primarily at catchment scale) as a systemic risk within the overall GBR governance system. There has been limited integrated analysis of the full suite of governance subdomains that often envelop defined policies, programs and delivery activities that influence water quality in the GBR. We consider how the implementation of separate purpose-specific policies and programs at catchment scale operate against well-known, robust design concepts for integrated catchment governance. We find design concerns within ten important governance subdomains that operate within GBR catchments. At a whole-of-GBR scale, we find a weak policy focus on strengthening these delivery-oriented subdomains and on effort integration across these subdomains within catchments. These governance problems when combined may contribute to failure in the implementation of major national, state and local government policies focused on improving water quality in the GBR, a lesson relevant to landscapes globally.

  8. Tracing catchment fine sediment sources using the new SIFT (SedIment Fingerprinting Tool) open source software.

    PubMed

    Pulley, S; Collins, A L

    2018-09-01

    The mitigation of diffuse sediment pollution requires reliable provenance information so that measures can be targeted. Sediment source fingerprinting represents one approach for supporting these needs, but recent methodological developments have resulted in an increasing complexity of data processing methods rendering the approach less accessible to non-specialists. A comprehensive new software programme (SIFT; SedIment Fingerprinting Tool) has therefore been developed which guides the user through critical data analysis decisions and automates all calculations. Multiple source group configurations and composite fingerprints are identified and tested using multiple methods of uncertainty analysis. This aims to explore the sediment provenance information provided by the tracers more comprehensively than a single model, and allows for model configurations with high uncertainties to be rejected. This paper provides an overview of its application to an agricultural catchment in the UK to determine if the approach used can provide a reduction in uncertainty and increase in precision. Five source group classifications were used; three formed using a k-means cluster analysis containing 2, 3 and 4 clusters, and two a-priori groups based upon catchment geology. Three different composite fingerprints were used for each classification and bi-plots, range tests, tracer variability ratios and virtual mixtures tested the reliability of each model configuration. Some model configurations performed poorly when apportioning the composition of virtual mixtures, and different model configurations could produce different sediment provenance results despite using composite fingerprints able to discriminate robustly between the source groups. Despite this uncertainty, dominant sediment sources were identified, and those in close proximity to each sediment sampling location were found to be of greatest importance. This new software, by integrating recent methodological developments in

  9. A plot tree structure to represent surface flow connectivity in rural catchments: definition and application for mining critical source areas and temporal conditions

    NASA Astrophysics Data System (ADS)

    Gascuel-Odoux, Chantal; Cordier, Marie-Odile; Grimaldi, Catherine; Salmon-Monviola, Jordy; Masson, Veronique; Squividant, Herve; Trepos, Ronan

    2013-04-01

    Agricultural landscapes are structured by a mosaic of farmers'fields whose boundaries and land use change over time, and by linear elements such as hedgerows, ditches and roads, which are more or less connected to each other. Such man-made features are now well known to have an effect on catchment hydrology, erosion and water quality. In such agricultural landscapes, it is crucial to have an adequate functional representation of the flow pathways and define relevant indicators of surface flow connectivity over the catchment towards the stream, as a necessary step for improving landscape design and water protection. A new conceptual object oriented approach has been proposed by building the drainage network on the identification of the inlets and outlets for surface water flow on each farmers' field and surrounding landscape elements (Aurousseau et al., 2009 ; Gascuel-Odoux et al., 2011), then on delineating a set of elementary plot outlet trees labelled by attributes which feed the stream. This drainage network is therefore represented as a global plot outlet tree which conceptualizes the connectivity of the surface flow patterns over the catchment. This approach has been applied to different catchment areas, integrated in modelling (Gascuel-Odoux et al., 2009) and decision support tools. It provides a functional display of data for decision support which can highlight the plots of potential risk regarding the surface runoff, areas which are often shortly extended over catchments (suspended sediment application). Integrated in modelling and mining tools, it allows to catch typologies of the most spatial pattern involved in water quality degradation (herbicides transport model) (Trepos et al., 2012) and test their permanency in time regarding the variations of climate conditions and agricultural practices (Salmon-Monviola et al., 2011). This set of works joins skills in hydrology, agronomy and computer sciences. Aurousseau P., Gascuel-Odoux C., Squividant H

  10. Acceleration of chemical weathering related to intensive agriculture: evidence from groundwater dating

    NASA Astrophysics Data System (ADS)

    Aquilina, Luc; Marçais, Jean; de Dreuzy, Jean-Raynald; Labasque, Thierry; Abbott, Ben; Vergnaud, Virginie; Walter, Christian; Viville, Daniel; Chabaux, François; Pinay, Gilles

    2017-04-01

    Agricultural pollution is a matter of political and scientific concern throughout the world. Intensive agriculture can cause nutrient contamination of groundwater and surface water. Nutrient pollution causes eutrophication in freshwater and estuarine ecosystems. A secondary effect of agricultural intensification is river acidification. Oxidation of chemical fertilizers such as ammonium (NH4+) to nitrate (NO3-) produces H+ ions that cause leaching of cations from soil and deeper material to maintain charge balance. Monitoring of various rivers in Brittany (western France) revealed that agriculture intensification has led to increased cation export starting in the 1980s. From the cation ratios, we deduced that cation increase comes approximately equally from dissolution of carbonate added to soil (liming practices) and silicate dissolution. Cation export represented about 30% of the soil cation exchange potential. If compensated by liming, it may constitute a non-negligible source to atmospheric CO2 (Aquilina et al., 2012). We further investigated the potential for silicate dissolution through the use of groundwater dating in various sites of Brittany. Coupling chemical analyses to groundwater ages in a large range of aquifers and a large range of depths (down to 110m) allowed us to reconstruct a chronicle for the last 50 yrs of the cation concentrations of groundwater. It clearly shows a contemporaneous increase in sodium and nitrate and a decrease in calcium, with the most dramatic changes occurring during the 70s and 80s. Using groundwater dating, we were also able to determine a silica production geochronometer. A tight and linear relationship between silica concentration and groundwater age (Figure) was observed and allowed a production rate in groundwater to be determined. Except for short residence-times (Kerrien), the silica production rate for different granitic catchments was consistent, ranging from 0.3 to 0.4 mg.L-1.yr-1. To assess the role of

  11. Tackling agricultural diffuse pollution: What might uptake of farmer-preferred measures deliver for emissions to water and air?

    PubMed

    Collins, A L; Zhang, Y S; Winter, M; Inman, A; Jones, J I; Johnes, P J; Cleasby, W; Vrain, E; Lovett, A; Noble, L

    2016-03-15

    Mitigation of agricultural diffuse pollution poses a significant policy challenge across Europe and particularly in the UK. Existing combined regulatory and voluntary approaches applied in the UK continue to fail to deliver the necessary environmental outcomes for a variety of reasons including failure to achieve high adoption rates. It is therefore logical to identify specific on-farm mitigation measures towards which farmers express positive attitudes for higher future uptake rates. Accordingly, a farmer attitudinal survey was undertaken during phase one of the Demonstration Test Catchment programme in England to understand those measures towards which surveyed farmers are most receptive to increasing implementation in the future. A total of 29 on-farm measures were shortlisted by this baseline farm survey. This shortlist comprised many low cost or cost-neutral measures suggesting that costs continue to represent a principal selection criterion for many farmers. The 29 measures were mapped onto relevant major farm types and input, assuming 95% uptake, to a national scale multi-pollutant modelling framework to predict the technically feasible impact on annual agricultural emissions to water and air, relative to business as usual. Simulated median emission reductions, relative to current practise, for water management catchments across England and Wales, were estimated to be in the order sediment (20%)>ammonia (16%)>total phosphorus (15%) ≫ nitrate/methane (11%)>nitrous oxide (7%). The corresponding median annual total cost of the modelled scenario to farmers was £3 ha(-1)yr(-1), with a corresponding range of -£84 ha(-1)yr(-1) (i.e. a net saving) to £33 ha(-1)yr(-1). The results suggest that those mitigation measures which surveyed farmers are most inclined to implement in the future would improve the environmental performance of agriculture in England and Wales at minimum to low cost per hectare. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Bioavailability of riverine dissolved organic matter in three Baltic Sea estuaries and the effect of catchment land-use

    NASA Astrophysics Data System (ADS)

    Asmala, E.; Autio, R.; Kaartokallio, H.; Pitkänen, L.; Stedmon, C. A.; Thomas, D. N.

    2013-06-01

    The microbial degradation of dissolved organic carbon and nitrogen (DOC, DON) was studied in three boreal estuaries with contrasting land use patterns (Kiiminkijoki - natural forest and peatland; Kyrönjoki - agricultural; Karjaanjoki - mixed/urban). Bioassays conducted for 12-18 days were used in 3 seasons at in situ temperatures. Besides the bulk parameters, a suite of dissolved organic matter (DOM) quality parameters were investigated, including colored DOM (CDOM), fluorescent DOM and the molecular weight of DOM. Bioavailable DOC and DON pools varied significantly between the estuaries, from 7.9% in Kiiminkijoki to 10.6% in Karjaanjoki and from 5.5% in Kiiminkijoki to 21.9% in Kyrönjoki, respectively. DOM originating from catchment dominated by natural forests and peatlands had the lowest DOC and DON degradation rates, as well as the lowest proportions of biodegradable DOC and DON. A greater proportion of agricultural land in the catchment increased the bioavailability of DON, but not the bioavailability of DOC. Also DOM quality varied significantly between the estuaries, and DOM originating from the agricultural Kyrönjoki catchment sustained higher DOC and DON degradation rates and higher bacterial growth efficiency (BGE) compared to those of the natural forest and peat dominated Kiiminkijoki catchment. The quality of DOM, indicated by differences in CDOM, fluorescent DOM and molecular weight, varied between estuaries with differing land use and was concluded to be major driver of BGE of these systems and thereafter to the microbial CO2 fluxes from the estuaries. The differences in BGE resulted in a 5-fold differences in the calculated daily bacterial CO2-emissions between the study estuaries due to bacterial activity, ranging from 40 kg C d-1 in Karjaanjoki estuary to 200 kg C d-1 in Kyrönjoki estuary. Two of the study systems (Karjaanjoki, mixed land use; Kyrönjoki, intensive agriculture) in which the DOM pool had lower DOC : DON ratio, smaller molecular

  13. A catchment-scale model to predict spatial and temporal burden of E. coli on pasture from grazing livestock.

    PubMed

    Oliver, David M; Bartie, Phil J; Louise Heathwaite, A; Reaney, Sim M; Parnell, Jared A Q; Quilliam, Richard S

    2018-03-01

    Effective management of diffuse microbial water pollution from agriculture requires a fundamental understanding of how spatial patterns of microbial pollutants, e.g. E. coli, vary over time at the landscape scale. The aim of this study was to apply the Visualising Pathogen &Environmental Risk (ViPER) model, developed to predict E. coli burden on agricultural land, in a spatially distributed manner to two contrasting catchments in order to map and understand changes in E. coli burden contributed to land from grazing livestock. The model was applied to the River Ayr and Lunan Water catchments, with significant correlations observed between area of improved grassland and the maximum total E. coli per 1km 2 grid cell (Ayr: r=0.57; p<0.001, Lunan: r=0.32; p<0.001). There was a significant difference in the predicted maximum E. coli burden between seasons in both catchments, with summer and autumn predicted to accrue higher E. coli contributions relative to spring and winter (P<0.001), driven largely by livestock presence. The ViPER model thus describes, at the landscape scale, spatial nuances in the vulnerability of E. coli loading to land as driven by stocking density and livestock grazing regimes. Resulting risk maps therefore provide the underpinning evidence to inform spatially-targeted decision-making with respect to managing sources of E. coli in agricultural environments. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  14. Multivariate analysis of water quality and environmental variables in the Great Barrier Reef catchments

    NASA Astrophysics Data System (ADS)

    Ryu, D.; Liu, S.; Western, A. W.; Webb, J. A.; Lintern, A.; Leahy, P.; Wilson, P.; Watson, M.; Waters, D.; Bende-Michl, U.

    2016-12-01

    The Great Barrier Reef (GBR) lagoon has been experiencing significant water quality deterioration due in part to agricultural intensification and urban settlement in adjacent catchments. The degradation of water quality in rivers is caused by land-derived pollutants (i.e. sediment, nutrient and pesticide). A better understanding of dynamics of water quality is essential for land management to improve the GBR ecosystem. However, water quality is also greatly influenced by natural hydrological processes. To assess influencing factors and predict the water quality accurately, selection of the most important predictors of water quality is necessary. In this work, multivariate statistical techniques - cluster analysis (CA), principal component analysis (PCA) and factor analysis (FA) - are used to reduce the complexity derived from the multidimensional water quality monitoring data. Seventeen stations are selected across the GBR catchments, and the event-based measurements of 12 variables monitored during 9 years (2006 - 2014) were analysed by means of CA and PCA/FA. The key findings are: (1) 17 stations can be grouped into two clusters according to the hierarchical CA, and the spatial dissimilarity between these sites is characterised by the different climatic and land use in the GBR catchments. (2) PCA results indicate that the first 3 PCs explain 85% of the total variance, and FA on the entire data set shows that the varifactor (VF) loadings can be used to interpret the sources of spatial variation in water quality on the GBR catchments level. The impact of soil erosion and non-point source of pollutants from agriculture contribution to VF1 and the variability in hydrological conditions and biogeochemical processes can explain the loadings in VF2. (3) FA is also performed on two groups of sites identified in CA individually, to evaluate the underlying sources that are responsible for spatial variability in water quality in the two groups. For the Cluster 1 sites

  15. River-groundwater connectivity and nutrient dynamics in a mesoscale catchment

    NASA Astrophysics Data System (ADS)

    Fleckenstein, Jan H.; Musolff, Andreas; Gilfedder, Benjamin; Frei, Sven; Wankmüller, Fabian; Trauth, Nico

    2017-04-01

    Diffuse solute exports from catchments are governed by many interrelated factors such as land use, climate, geological-/ hydrogeological setup and morphology. Those factors create spatial variations in solute concentrations and turnover rates in the subsurface as well as in the stream network. River-groundwater connectivity is a crucial control in this context: On the one hand groundwater is a main pathway for nitrate inputs to the stream. On the other hand, groundwater connectivity with the stream affects the magnitude of hyporheic exchange of stream water with the stream bed. We present results of a longitudinal sampling campaign along the Selke river, a 67 km long third-order stream in the Harz mountains in central Germany. Water quality at the catchment outlet is strongly impacted by agriculture with high concentrations of nitrate and a chemostatic nitrate export regime. However, the specific nitrate pathways to the stream are not fully understood as there is arable land distributed throughout the catchment. While the sparsely distributed arable land in the mountainous upper catchment receives much higher amounts of precipitation, the downstream alluvial plains are drier, but more intensively used. The three-day campaign was conducted in June 2016 under constant low flow conditions. Stream water samples were taken every 2 km along the main stem of the river and at its major tributaries. Samples were analyzed for field parameters, major cations and anions, N-O isotopes, nutrients and Radon-222 (Rn) concentrations. Additionally, at each sampling location, river discharge was manually measured using current meters. Groundwater influxes to each sampled river section were quantified from the Rn measurements using the code FINIFLUX, (Frei and Gilfedder 2015). Rn and ion concentrations showed an increase from the spring to the mouth, indicating a growing impact of groundwater flux to the river. However, increases in groundwater gains were not gradual. The strongest

  16. Occurrence and potential health risk of Cryptosporidium and Giardia in different water catchments in Belgium.

    PubMed

    Ehsan, Amimul; Geurden, Thomas; Casaert, Stijn; Paulussen, Jef; De Coster, Lut; Schoemaker, Toon; Chalmers, Rachel; Grit, Grietje; Vercruysse, Jozef; Claerebout, Edwin

    2015-02-01

    Human wastewater and livestock can contribute to contamination of surface water with Cryptosporidium and Giardia. In countries where a substantial proportion of drinking water is produced from surface water, e.g., Belgium, this poses a constant threat on drinking water safety. Our objective was to monitor the presence of Cryptosporidium and Giardia in different water catchment sites in Belgium and to discriminate between (oo)cysts from human or animal origin using genotyping. Monthly samples were collected from raw water and purified drinking water at four catchment sites. Cryptosporidium and Giardia were detected using USEPA method 1623 and positive samples were genotyped. No contamination was found in purified water at any site. In three catchments, only low numbers of (oo)cysts were recovered from raw water samples (<1/liter), but raw water samples from one catchment site were frequently contaminated with Giardia (92 %) and Cryptosporidium (96 %), especially in winter and spring. Genotyping of Giardia in 38 water samples identified the presence of Giardia duodenalis assemblage AI, AII, BIV, BIV-like, and E. Cryptosporidium andersoni, Cryptosporidium suis, Cryptosporidium horse genotype, Cryptosporidium parvum, and Cryptosporidium hominis were detected. The genotyping results suggest that agriculture may be a more important source of surface water contamination than human waste in this catchment. In catchment sites with contaminated surface water, such as the Blankaart, continuous monitoring of treated water for the presence of Cryptosporidium and Giardia would be justified and (point) sources of surface water contamination should be identified.

  17. Distributed modelling of hydrologic regime at three subcatchments of Kopaninský tok catchment

    NASA Astrophysics Data System (ADS)

    Žlábek, Pavel; Tachecí, Pavel; Kaplická, Markéta; Bystřický, Václav

    2010-05-01

    Kopaninský tok catchment is situated in crystalline area of Bohemo-Moravian highland hilly region, with cambisol cover and prevailing agricultural land use. It is a subject of long term (since 1980's) observation. Time series (discharge, precipitation, climatic parameters...) are nowadays available in 10 min. time step, water quality average daily composit samples plus samples during events are available. Soil survey resulting in reference soil hydraulic properties for horizons and vegetation cover survey incl. LAI measurement has been done. All parameters were analysed and used for establishing of distributed mathematical models of P6, P52 and P53 subcatchments, using MIKE SHE 2009 WM deterministic hydrologic modelling system. The aim is to simulate long-term hydrologic regime as well as rainfall-runoff events, serving the base for modelling of nitrate regime and agricultural management influence in the next step. Mentioned subcatchments differs in ratio of artificial drainage area, soil types, land use and slope angle. The models are set-up in a regular computational grid of 2 m size. Basic time step was set to 2 hrs, total simulated period covers 3 years. Runoff response and moisture regime is compared using spatially distributed simulation results. Sensitivity analysis revealed most important parameters influencing model response. Importance of spatial distribution of initial conditions was underlined. Further on, different runoff components in terms of their origin, flow paths and travel time were separated using a combination of two runoff separation techniques (a digital filter and a simple conceptual model GROUND) in 12 subcatchments of Kopaninský tok catchment. These two methods were chosen based on a number of methods testing. Ordinations diagrams performed with Canoco software were used to evaluate influence of different catchment parameters on different runoff components. A canonical ordination method analyses (RDA) was used to explain one data set

  18. Long-Term Water Quality Studies in a Eutrophic Lake Catchment: Slapton Ley, SW England

    NASA Astrophysics Data System (ADS)

    Burt, T. P.; Worrall, F.; Howden, N. J. K.

    2014-12-01

    Monitoring is the process by which we keep the behaviour of the environment in view, an essential way of discovering whether there are significant undesirable changes taking place. Long-term datasets reveal important patterns for scientists to explain and are essential for testing hypotheses undreamt of at the time monitoring scheme was set up. Many environmental processes take place over relatively long periods of time; very often, subtle processes are embedded within highly variable systems so that their weak signal cannot be extracted without a long record. Slapton Ley is a freshwater coastal lagoon in SW England. The Ley is part of a National Nature Reserve, wetland 116 ha in area which is divided into two basins: the Higher Ley (39 ha) is mainly reed swamp; the Lower Ley (77 ha) is open water. In the 1960s it became apparent that the Ley was becoming increasingly eutrophic. In order to gauge water, sediment and nutrient inputs into the lake, measurements began on the main catchments in late 1969. Continuous monitoring of discharge and a weekly water-sampling programme have been maintained by the Slapton Ley Field Centre ever since. The monitoring programme has been supplemented by a number of research projects which have sought to identify the salient hydrological processes operating within the Slapton catchments and to relate these to the delivery of sediment and solute to the stream system. The nitrate issue has been of particular interest at Slapton; although many longer series exist for large rivers like the Thames, the long record of nitrate data for the Slapton catchments is unique in Britain for small rural basins. Other issues to be explored will be the phosphorus legacy in lake sediments and a long-term decline in lake pH. The Slapton water quality record has confirmed that undesirable changes are taking place, revealed evidence of important patterns to be explained, allowed testing of new hypotheses (e.g. links with land-use change) and helped

  19. Identifying fine sediment sources to alleviate flood risk caused by fine sediments through catchment connectivity analysis

    NASA Astrophysics Data System (ADS)

    Twohig, Sarah; Pattison, Ian; Sander, Graham

    2017-04-01

    Fine sediment poses a significant threat to UK river systems in terms of vegetation, aquatic habitats and morphology. Deposition of fine sediment onto the river bed reduces channel capacity resulting in decreased volume to contain high flow events. Once the in channel problem has been identified managers are under pressure to sustainably mitigate flood risk. With climate change and land use adaptations increasing future pressures on river catchments it is important to consider the connectivity of fine sediment throughout the river catchment and its influence on channel capacity, particularly in systems experiencing long term aggradation. Fine sediment erosion is a continuing concern in the River Eye, Leicestershire. The predominately rural catchment has a history of flooding within the town of Melton Mowbray. Fine sediment from agricultural fields has been identified as a major contributor of sediment delivery into the channel. Current mitigation measures are not sustainable or successful in preventing the continuum of sediment throughout the catchment. Identifying the potential sources and connections of fine sediment would provide insight into targeted catchment management. 'Sensitive Catchment Integrated Modelling Analysis Platforms' (SCIMAP) is a tool often used by UK catchment managers to identify potential sources and routes of sediment within a catchment. SCIMAP is a risk based model that combines hydrological (rainfall) and geomorphic controls (slope, land cover) to identify the risk of fine sediment being transported from source into the channel. A desktop version of SCIMAP was run for the River Eye at a catchment scale using 5m terrain, rainfall and land cover data. A series of SCIMAP model runs were conducted changing individual parameters to determine the sensitivity of the model. Climate Change prediction data for the catchment was used to identify potential areas of future connectivity and erosion risk for catchment managers. The results have been

  20. A framework for managing runoff and pollution in the rural landscape using a Catchment Systems Engineering approach.

    PubMed

    Wilkinson, M E; Quinn, P F; Barber, N J; Jonczyk, J

    2014-01-15

    Intense farming plays a key role in increasing local scale runoff and erosion rates, resulting in water quality issues and flooding problems. There is potential for agricultural management to become a major part of improved strategies for controlling runoff. Here, a Catchment Systems Engineering (CSE) approach has been explored to solve the above problem. CSE is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. By targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, a significant component of the runoff generation can be managed in turn reducing soil nutrient losses. The Belford catchment (5.7 km(2)) is a catchment scale study for which a CSE approach has been used to tackle a number of environmental issues. A variety of Runoff Attenuation Features (RAFs) have been implemented throughout the catchment to address diffuse pollution and flooding issues. The RAFs include bunds disconnecting flow pathways, diversion structures in ditches to spill and store high flows, large wood debris structure within the channel, and riparian zone management. Here a framework for applying a CSE approach to the catchment is shown in a step by step guide to implementing mitigation measures in the Belford Burn catchment. The framework is based around engagement with catchment stakeholders and uses evidence arising from field science. Using the framework, the flooding issue has been addressed at the catchment scale by altering the runoff regime. Initial findings suggest that RAFs have functioned as designed to reduce/attenuate runoff locally. However, evidence suggested that some RAFs needed modification and new RAFs be created to address diffuse pollution issues during storm events. Initial findings from these modified RAFs are showing improvements in sediment trapping capacities and reductions in phosphorus, nitrate and suspended

  1. Investigating the temporal dynamics of suspended sediment during flood events with 7Be and 210Pbxs measurements in a drained lowland catchment

    PubMed Central

    Le Gall, Marion; Evrard, Olivier; Foucher, Anthony; Laceby, J. Patrick; Salvador-Blanes, Sébastien; Manière, Louis; Lefèvre, Irène; Cerdan, Olivier; Ayrault, Sophie

    2017-01-01

    Soil erosion is recognized as one of the main processes of land degradation in agricultural areas. High suspended sediment loads, often generated from eroding agricultural landscapes, are known to degrade downstream environments. Accordingly, there is a need to understand soil erosion dynamics during flood events. Suspended sediment was therefore sampled in the river network and at tile drain outlets during five flood events in a lowland drained catchment in France. Source and sediment fallout radionuclide concentrations (7Be, 210Pbxs) were measured to quantify both the fraction of recently eroded particles transported during flood events and their residence time. Results indicate that the mean fraction of recently eroded sediment, estimated for the entire Louroux catchment, increased from 45 ± 20% to 80 ± 20% between December 2013 and February 2014, and from 65 ± 20% to 80 ± 20% in January 2016. These results demonstrate an initial flush of sediment previously accumulated in the river channel before the increasing supply of sediment recently eroded from the hillslopes during subsequent events. This research highlights the utility of coupling continuous river monitoring and fallout radionuclide measurements to increase our understanding of sediment dynamics and improve the management of soil and water resources in agricultural catchments. PMID:28169335

  2. Evaluating the critical source area concept of phosphorus loss from soils to water-bodies in agricultural catchments.

    PubMed

    Shore, M; Jordan, P; Mellander, P-E; Kelly-Quinn, M; Wall, D P; Murphy, P N C; Melland, A R

    2014-08-15

    Using data collected from six basins located across two hydrologically contrasting agricultural catchments, this study investigated whether transport metrics alone provide better estimates of storm phosphorus (P) loss from basins than critical source area (CSA) metrics which combine source factors as well. Concentrations and loads of P in quickflow (QF) were measured at basin outlets during four storm events and were compared with dynamic (QF magnitude) and static (extent of highly-connected, poorly-drained soils) transport metrics and a CSA metric (extent of highly-connected, poorly-drained soils with excess plant-available P). Pairwise comparisons between basins with similar CSA risks but contrasting QF magnitudes showed that QF flow-weighted mean TRP (total molybdate-reactive P) concentrations and loads were frequently (at least 11 of 14 comparisons) more than 40% higher in basins with the highest QF magnitudes. Furthermore, static transport metrics reliably discerned relative QF magnitudes between these basins. However, particulate P (PP) concentrations were often (6 of 14 comparisons) higher in basins with the lowest QF magnitudes, most likely due to soil-management activities (e.g. ploughing), in these predominantly arable basins at these times. Pairwise comparisons between basins with contrasting CSA risks and similar QF magnitudes showed that TRP and PP concentrations and loads did not reflect trends in CSA risk or QF magnitude. Static transport metrics did not discern relative QF magnitudes between these basins. In basins with contrasting transport risks, storm TRP concentrations and loads were well differentiated by dynamic or static transport metrics alone, regardless of differences in soil P. In basins with similar transport risks, dynamic transport metrics and P source information additional to soil P may be required to predict relative storm TRP concentrations and loads. Regardless of differences in transport risk, information on land use and

  3. Restoring Landform Geodiversity in Modified Rivers and Catchments

    NASA Astrophysics Data System (ADS)

    Smith, Ben; Clifford, Nicholas

    2014-05-01

    Extensive human modification and exploitation has created degraded and simplified systems lacking many of the landforms which would characterise healthy, geodiverse rivers. As awareness of geodiversity grows we must look to ways not only to conserve geodiversity but to also restore or create landforms which contribute to geodiverse environments. River restoration, with lessons learned over the last 30 years and across multiple continents, has much to offer as an exemplar of how to understand, restore or create geodiversity. Although not mentioned explicitly, there is an implicit emphasis in the Water Framework Directive on the importance of landforms and geodiversity, with landform units and assemblages at the reach scale assumed to provide the physical template for a healthy aquatic ecosystem. The focus on hydromorphology has increased the importance of geomorphology within river restoration programmes. The dominant paradigm is to restore landforms in order to increase habitat heterogeneity and improve biodiversity within rivers. However, the process of landform restoration is also a goal in its own right in the context of geodiversity, and extensive compilations of restoration experiences allow an inventory and pattern of landform (re-) creation to be assembled, and an assessment of landform function as well as landform presence/absence to be made. Accordingly, this paper outlines three principal research questions: Which landforms are commonly reinstated in river restoration activities? How do these landforms function compared to natural equivalents and thus contribute to 'functional' geodiversity as compared to the 'aesthetic' geodiversity? How does landform diversity scale from reach to catchment and contribute to larger-scale geodiversity? Data from the UK National River Restoration Inventory and the RHS are combined to assess the frequency and spatial distribution of commonly created landforms in relation to catchment type and more local context. Analysis is

  4. Bioavailability of riverine dissolved organic matter in three Baltic Sea estuaries and the effect of catchment land use

    NASA Astrophysics Data System (ADS)

    Asmala, E.; Autio, R.; Kaartokallio, H.; Pitkänen, L.; Stedmon, C. A.; Thomas, D. N.

    2013-11-01

    The microbial degradation of dissolved organic carbon and nitrogen (DOC, DON) was studied in three Finnish boreal estuaries with contrasting land use patterns (Kiiminkijoki - natural forest and peatland; Kyrönjoki - agricultural; Karjaanjoki - mixed/urban). Bioassays of 12-18 d long durations were used in 3 seasons at in situ temperatures. Besides the bulk parameters, a suite of dissolved organic matter (DOM) quality parameters were also investigated, including colored DOM (CDOM), fluorescent DOM and the molecular weight of DOM. Bioavailable DOC and DON pools varied significantly between the estuaries, from 7.9 to 10.6% and from 5.5 to 21.9%, respectively. DOM originating from the catchment dominated by natural forests and peatlands (Kiiminkijoki) had the lowest DOC and DON degradation rates, as well as the lowest proportions of biodegradable DOC and DON. A greater proportion of agricultural land in the catchment increased the bioavailability of DON, but not the bioavailability of DOC (Kyrönjoki). Additionally, DOM quality varied significantly between the estuaries, and DOM originating from the agricultural Kyrönjoki catchment sustained higher DOC and DON degradation rates and higher bacterial growth efficiency (BGE) compared to those of the natural forest and peat dominated Kiiminkijoki catchment. The quality of DOM, indicated by differences in CDOM, fluorescent DOM and molecular weight, varied between estuaries with differing land use and was concluded to be major driver of BGE of these systems and thereafter to the microbial CO2 fluxes from the estuaries. The differences in BGE resulted in a 5-fold difference in the calculated daily bacterial CO2 emissions between the study's estuaries due to bacterial activity, ranging from 40 kg C d-1 in the Karjaanjoki estuary to 200 kg C d-1 in the Kyrönjoki estuary. Lower DOC:DON ratios, smaller molecular weight and higher CDOM absorption spectral slope values of DOM resulted in higher proportion of the initial DOC and

  5. Impact of land-use on water pollution in a rapidly urbanizing catchment in China

    NASA Astrophysics Data System (ADS)

    Khu, Soon-Thiam; Qin, Huapeng

    2010-05-01

    Many catchments in developing countries are undergoing fast urbanization which is usually characterized by population increase, economic growth as well as drastic changes of land-use from natural/rural to urban area. During the urbanization process, some catchments experience water quality deterioration due to rapid increase of pollution loads. Nonpoint source pollution resulting from storm water runoff has been recognized as one of the major causes of pollutants in many cities in developing countries. The composition of land-use for a rapidly urbanizing catchment is usually heterogeneous, and this may result in significant spatial variations of storm runoff pollution and increase the difficulties of water quality management in the catchment. The Shiyan Reservoir catchment, a typical rapidly urbanizing area in China, is chosen as the study area, and temporary monitoring sites were set at the outlets of its 6 sub-catchments to synchronously measured rainfall, runoff and water quality during 4 storm events. Three indicators, event pollutant loads per unit area (EPL), event mean concentration (EMC) and pollutant loads transported by the first 50% of runoff volume (FF50), were used to describe the runoff pollution for different pollutants (such as COD, BOD, NH3-N, TN, TP and SS) in each sub-catchment during the storm events; and the correlations between runoff pollution spatial variations and land-use patterns were tested by Spearman's rank correlation analysis. The results indicated that similar spatial variation trends were found for different pollutants (EPL or EMC) in light storm events, which strongly correlate with the proportion of residential land-use; however, they have different trends in heavy storm events, which correlate with the different proportional combination of residential, industrial, agricultural and bare land-use. It is also shown that it is necessary to consider some pervious land-use types in runoff pollution monitoring or management for a

  6. The application of GEOtop for catchment scale hydrology in Ireland

    NASA Astrophysics Data System (ADS)

    Lewis, C.; Xu, X.; Albertson, J.; Kiely, G.

    2009-04-01

    GEOtop represents the new generation of distributed hydrological model driven by geospatial data (e.g. topography, soils, vegetation, land cover). It estimates rainfall-runoff, evapotranspiration and provides spatially distributed outputs as well as routing water and sediment flows through stream and river networks. The original version of GEOtop designed in Italy, includes a rigorous treatment of the core hydrological processes (e.g. unsaturated and saturated flow and transport, surface energy balances, and streamflow generation/routing). Recently GEOtop was extended to include treatment of shallow landslides. The GEOtop model is built on an open-source programming framework, which makes it well suited for adaptation and extension. GEOtop has been run very successfully in a number of alpine catchments (such as Brenta) but has not been used on Irish catchments before. The cell size used for the spatially distributed inputs varies from catchment to catchment. In smaller catchments (less than 2000ha) 50 by 50m cells have been used and 200 by 200 for larger catchments. Smaller cell sizes have been found to significantly increase the computational time so a larger cell size is used providing it does not significantly affect the performance of the model. Digital elevation model, drainage direction, landuse and soil type maps are the minimum spatial requirements with precipitation, radiation, temperature, atmospheric pressure and wind speed been the minimum meteorological requirements for a successful run. The soil type maps must also contain information regarding texture and hydraulic conductivity. The first trial of GEOtop in Ireland was on a small 1524 ha catchment in the south of Ireland. The catchment ranges from 50 to just over 200m, the land use is predominately agricultural grassland and it receives on average 1400mm of rain per year. Within this catchment there is a meteorological tower which provides the meteorological inputs, soil moisture is also recorded at

  7. Can spatial study of hydrological connectivity explain some behaviors of catchments?

    NASA Astrophysics Data System (ADS)

    Cantreul, Vincent

    2015-04-01

    Erosion is a major threat to European soil. Consequences can be very important both on-site and off-site. Belgian loamy soils are highly vulnerable to this threat because of their natural sensitivity to erosion on the one hand, and because the land is mainly used for intensive agricultural practices on the other hand. Over the last few decades, rising erosion has even been observed in our regions. This shows the importance of a deeper understanding of the coupled phenomena of runoff and erosion in order to manage soils at catchment scale. Plenty of research have already studied this but all agree to say that it seems to have a non-linear relationship between rainfall and discharge, as well as between rainfall and erosion. For that reason, a new concept has been developed a few years ago: the hydrological connectivity. Several research have focused on connectivity but up to now, each there are as much definition as papers. In this thesis, it will be important firstly to resume all these definitions to clarify this concept. Secondly, a methodology using various transects on the watershed and some pertinent field measurements will be used. These measurements include spatial distribution of particle size, surface states and soil moisture. A new approach of photogrammetry using an UAV will be used to observe erosion and deposition zones on the watershed. In this framework, several time scales will be studied from the event scale to the annual scale passing by monthly and seasonal scales. All this will serve to progress toward a better understanding of the concept of hydrological connectivity in order to study erosion at catchment scale. The final goal of this study is to describe hydrologically each different part of the catchment and to generalize these behaviors to other catchments with similar properties if possible. Afterwards, this research will be integrated in an existing (or not) model to improve the modelling of discharge and erosion in the catchment. Thanks to

  8. A 125 year record of fluvial calcium flux from a temperate catchment: Interplay of climate, land-use change and atmospheric deposition

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Howden, N. J. K.; Burt, T. P.

    2012-10-01

    SummaryThis paper analyses the world's longest fluvial record of water hardness and calcium (Ca) concentration. We used records of permanent and temporary hardness and river flow for the UK's River Thames (catchment area 9998 km2) to estimate annual Ca flux from the river since 1883. The Thames catchment has a mix of agricultural and urban land use; it is dominated by mineral soils with groundwater contributing around 60% of river flow. Since the late 1800s, the catchment has undergone widespread urbanisation and climate warming, but has also been subjected to large-scale land-use change, especially during World War II and agricultural intensification in the 1960s. Here, we use a range of time series methods to explore the relative importance of these drivers in determining catchment-scale biogeochemical response. Ca concentrations in the Thames rose to a peak in the late 1980s (106 mg Ca/l). The flux of Ca peaked in 1916 at 385 ktonnes Ca/yr; the minimum was in 1888 at 34 ktonnes Ca/yr. For both the annual average Ca concentration and the annual flux of Ca, there were significant increases with time; a significant positive memory effect relative to the previous year; and significant correlation with annual water yield. No significant correlation was found with either temperature or land use, but sulphate deposition was found to be significant. It was also possible, for a shorter time series, to show a significant relationship with inorganic nitrogen inputs into the catchment. We suggest that ionic inputs did not acidify the mineral soils of the catchment but did cause the leaching of metals, so we conclude that the decline in river Ca concentrations is caused by the decline in both S and N inputs.

  9. Describing Ecosystem Complexity through Integrated Catchment Modeling

    NASA Astrophysics Data System (ADS)

    Shope, C. L.; Tenhunen, J. D.; Peiffer, S.

    2011-12-01

    Land use and climate change have been implicated in reduced ecosystem services (ie: high quality water yield, biodiversity, and agricultural yield. The prediction of ecosystem services expected under future land use decisions and changing climate conditions has become increasingly important. Complex policy and management decisions require the integration of physical, economic, and social data over several scales to assess effects on water resources and ecology. Field-based meteorology, hydrology, soil physics, plant production, solute and sediment transport, economic, and social behavior data were measured in a South Korean catchment. A variety of models are being used to simulate plot and field scale experiments within the catchment. Results from each of the local-scale models provide identification of sensitive, local-scale parameters which are then used as inputs into a large-scale watershed model. We used the spatially distributed SWAT model to synthesize the experimental field data throughout the catchment. The approach of our study was that the range in local-scale model parameter results can be used to define the sensitivity and uncertainty in the large-scale watershed model. Further, this example shows how research can be structured for scientific results describing complex ecosystems and landscapes where cross-disciplinary linkages benefit the end result. The field-based and modeling framework described is being used to develop scenarios to examine spatial and temporal changes in land use practices and climatic effects on water quantity, water quality, and sediment transport. Development of accurate modeling scenarios requires understanding the social relationship between individual and policy driven land management practices and the value of sustainable resources to all shareholders.

  10. Water and chemical recharge in subsurface catchment: observations and consequences for modeling

    NASA Astrophysics Data System (ADS)

    Gascuel-odoux, C.; Aquilina, L.; Faucheux, M.; Merot, P.; Molenat, J.; de Monteti, V.; Sebilo, M.; Rouxel, M.; Ruiz, L.

    2011-12-01

    Shallow groundwater that develops on hillslopes is the main compartment in headwater catchments for flow and solute transport to rivers. Although spatial and temporal variations in its chemical composition are reported in the literature, there is no coherent description of the way these variations are organized, nor is there an accepted conceptual model for the recharge mechanisms and flows in the groundwater involved. We instrumented an intensive farming and subsurface dominant catchment located in Oceanic Western Europe (France), included in AgrHyS catchments (for Agro-Hydro-SyStem) and a part of the French network of catchments for environmental research (SOERE RBV dedicated to the Critical Zone). It is strongly constrained by anthropogenic pressures (agriculture) and is characterized by a clear non-equilibrium status. A network of 42 nested piezometers was installed along a 200 m hillslope allowing water sampling in the permanent water table as well as in what we call the fluctuating zone, characterized by seasonal alternance of saturated and unsaturated conditions. Water composition was monitored at high frequency (weekly) over a 3-year period for major anion composition and over a one year period for detailed 15N, CFC, SF6 and other dissolved gases composition. The results demonstrated that (i) the anionic composition in water table fluctuation zone varied significantly compared to deeper portions of the aquifer on the hillslope, confirming that this layer constitutes a main compartment for the mixing of new recharge water and old groundwater, (ii) seasonally, the variations of 15N and CFC are much higher during the recharge period than during the recession period, confirming the preferential flow during early recharge events, iii) variations of nitrate 15N and O18 composition was suggesting any significant denitrification process in the fluctuating zone, confirming the dominance of the mixing processes in the fluctuating zone, iv) deeper parts of the aquifer

  11. Simulating land use changes in the Upper Narew catchment using the RegCM model

    NASA Astrophysics Data System (ADS)

    Liszewska, Malgorzata; Osuch, Marzena; Romanowicz, Renata

    2010-05-01

    dataset and the Corine Land Cover programme (http://dataservice.eea.europa.eu/, GIOS, Poland). Simulations taking into account land use modifications in the catchment are compared with the reference simulations under no change in land use in the region. In the second part of the paper we discuss the application of the RegCM3 model in two climate change scenarios (SRES A2 and B1). The study is a contribution to the LUWR programme (http://luwr.igf.edu.pl).

  12. Hydrologic controls on the export dynamics of dissolved and particulate phosphorus in a lowland, headwater agricultural catchment

    NASA Astrophysics Data System (ADS)

    Dupas, Rémi; Grimaldi, Catherine; Gruau, Gérard; Gascuel-Odoux, Chantal

    2014-05-01

    Phosphorus (P) availability controls eutrophication in freshwater ecosystems, since P is generally the limiting nutrient to algal development. The contribution of diffuse P emission to surface waters is significant in intensively livestock farmed catchments as a result of high application rates of P-rich animal waste and subsequent enrichment of soils. This study investigates the transport dynamics of particulate phosphorus (PP), suspended sediments (SS), and dissolved phosphorus (DP) with the aim of elucidating the relationship between PP and DP transport mechanisms and water dynamics in lowland, headwater catchments. The selected catchment (Kervidy-Naizin catchment, France) is particularly suitable for this purpose as it benefits of a 5 years, high-frequency monitoring of PP and DP concentrations at its outlet, including data recovered both during base flow and storm periods, with the monitoring of more than 50 storm flow events. The data analysis includes interpretation of concentration-discharge relationships at the annual time scale and on an event basis, seasonal analysis of flood characteristics and empirical modeling. Annual DP and PP concentration-discharge relationships of interflood samples display a hysteretic pattern, with higher concentrations during the autumn and spring periods, and progressive decrease during winter. No hysteretic pattern is visible for interflood SS concentration, which follows a classical C=a*Qb relationship. During floods, the dynamic of PP export is similar to that of SS during most of the events: the concentration peak occurs during the rising limb of the hydrogram (clockwise hysteresis), suggesting a source close to or within the stream. The amplitude and the hysteresis' loop size for SS and PP are a function of maximum discharge and rate of change in discharge. On the contrary, there is a strong decoupling between DP and SS (and thus PP) during most of the floods (no significant correlation), with DP concentration peaks

  13. The water quality of the LOCAR Pang and Lambourn catchments

    NASA Astrophysics Data System (ADS)

    Neal, C.; Jarvie, H. P.; Wade, A. J.; Neal, M.; Wyatt, R.; Wickham, H.; Hill, L.; Hewitt, N.

    The water quality of the Pang and Lambourn, tributaries of the River Thames, in south-eastern England, is described in relation to spatial and temporal dimensions. The river waters are supplied mainly from Chalk-fed aquifer sources and are, therefore, of a calcium-bicarbonate type. The major, minor and trace element chemistry of the rivers is controlled by a combination of atmospheric and pollutant inputs from agriculture and sewage sources superimposed on a background water quality signal linked to geological sources. Water quality does not vary greatly over time or space. However, in detail, there are differences in water quality between the Pang and Lambourn and between sites along the Pang and the Lambourn. These differences reflect hydrological processes, water flow pathways and water quality input fluxes. The Pang’s pattern of water quality change is more variable than that of the Lambourn. The flow hydrograph also shows both a cyclical and "uniform pattern" characteristic of aquifer drainage with, superimposed, a series of "flashier" spiked responses characteristic of karstic systems. The Lambourn, in contrast, shows simpler features without the "flashier" responses. The results are discussed in relation to the newly developed UK community programme LOCAR dealing with Lowland Catchment Research. A descriptive and box model structure is provided to describe the key features of water quality variations in relation to soil, unsaturated and groundwater flows and storage both away from and close to the river.

  14. Fungicides transport in runoff from vineyard plot and catchment: contribution of non-target areas.

    PubMed

    Lefrancq, Marie; Payraudeau, Sylvain; García Verdú, Antonio Joaquín; Maillard, Elodie; Millet, Maurice; Imfeld, Gwenaël

    2014-04-01

    Surface runoff and erosion during the course of rainfall events are major processes of pesticides transport from agricultural land to aquatic ecosystem. These processes are generally evaluated either at the plot or the catchment scale. Here, we compared at both scales the transport and partitioning in runoff water of two widely used fungicides, i.e., kresoxim-methyl (KM) and cyazofamid (CY). The objective was to evaluate the relationship between fungicides runoff from the plot and from the vineyard catchment. The results show that seasonal exports for KM and CY at the catchment were larger than those obtained at the plot. This underlines that non-target areas within the catchment largely contribute to the overall load of runoff-associated fungicides. Estimations show that 85 and 62 % of the loads observed for KM and CY at the catchment outlet cannot be explained by the vineyard plots. However, the partitioning of KM and CY between three fractions, i.e., the suspended solids (>0.7 μm) and two dissolved fractions (i.e., between 0.22 and 0.7 µm and <0.22 µm) in runoff water was similar at both scales. KM was predominantly detected below 0.22 μm, whereas CY was mainly detected in the fraction between 0.22 and 0.7 μm. Although KM and CY have similar physicochemical properties and are expected to behave similarly, our results show that their partitioning between two fractions of the dissolved phase differs largely. It is concluded that combined observations of pesticide runoff at both the catchment and the plot scales enable to evaluate the sources areas of pesticide off-site transport.

  15. Catchment virtual observatory for sharing flow and transport models outputs: using residence time distribution to compare contrasting catchments

    NASA Astrophysics Data System (ADS)

    Thomas, Zahra; Rousseau-Gueutin, Pauline; Kolbe, Tamara; Abbott, Ben; Marcais, Jean; Peiffer, Stefan; Frei, Sven; Bishop, Kevin; Le Henaff, Geneviève; Squividant, Hervé; Pichelin, Pascal; Pinay, Gilles; de Dreuzy, Jean-Raynald

    2017-04-01

    The distribution of groundwater residence time in a catchment provides synoptic information about catchment functioning (e.g. nutrient retention and removal, hydrograph flashiness). In contrast with interpreted model results, which are often not directly comparable between studies, residence time distribution is a general output that could be used to compare catchment behaviors and test hypotheses about landscape controls on catchment functioning. In this goal, we created a virtual observatory platform called Catchment Virtual Observatory for Sharing Flow and Transport Model Outputs (COnSOrT). The main goal of COnSOrT is to collect outputs from calibrated groundwater models from a wide range of environments. By comparing a wide variety of catchments from different climatic, topographic and hydrogeological contexts, we expect to enhance understanding of catchment connectivity, resilience to anthropogenic disturbance, and overall functioning. The web-based observatory will also provide software tools to analyze model outputs. The observatory will enable modelers to test their models in a wide range of catchment environments to evaluate the generality of their findings and robustness of their post-processing methods. Researchers with calibrated numerical models can benefit from observatory by using the post-processing methods to implement a new approach to analyzing their data. Field scientists interested in contributing data could invite modelers associated with the observatory to test their models against observed catchment behavior. COnSOrT will allow meta-analyses with community contributions to generate new understanding and identify promising pathways forward to moving beyond single catchment ecohydrology. Keywords: Residence time distribution, Models outputs, Catchment hydrology, Inter-catchment comparison

  16. Role of river bank erosion in sediment budgets of catchments within the Loire river basin (France)

    NASA Astrophysics Data System (ADS)

    Gay, Aurore; Cerdan, Olivier; Poisvert, Cecile; Landemaine, Valentin

    2014-05-01

    Quantifying volumes of sediments produced on hillslopes or in channels and transported or stored within river systems is necessary to establish sediment budgets. If research efforts on hillslope erosion processes have led to a relatively good understanding and quantification of local sources, in-channel processes remain poorly understood and quasi inexistent in global budgets. However, profound landuse changes and agricultural practices have altered river functioning, caused river bank instability and stream incision. During the past decades in France, river channelization has been perfomed extensively to allow for new agricultural practices to take place. Starting from a recent study on the quantification of sediment fluxes for catchments within the Loire river basin (Gay et al. 2013), our aim is to complete sediment budgets by taking into account various sources and sinks both on hillslope and within channel. The emphasis of this study is on river bank erosion and how bank erosion contributes to global budgets. A model of bank retreat is developed for the entire Loire river basin. In general, our results show that bank retreat is on average quite low with approximately 1 cm.yr-1. However, a strong variability exists within the study area with channels displaying values of bank retreat up to ~10 cm.yr-1. Our results corroborate those found by Landemaine et al. in 2013 on a small agricultural catchment. From this first step, quantification of volumes of sediment eroded from banks and available for transport should be calculated and integrated in sediment budgets to allow for a better understanding of basin functioning. Gay A., Cerdan O., Delmas M., Desmet M., Variability of sediment yields in the Loire river basin (France): the role of small scale catchments (under review). Landemaine V., Gay A., Cerdan O., Salvador-Blanes S., Rodriguez S. Recent morphological evolution of a headwater stream in agricultural context after channelization in the Ligoire river (France

  17. Sediment sources in a small agricultural catchment: A composite fingerprinting approach based on the selection of potential sources

    NASA Astrophysics Data System (ADS)

    Zhou, Huiping; Chang, Weina; Zhang, Longjiang

    2016-08-01

    Fingerprinting techniques have been widely used as a reasonable and reliable means for investigating sediment sources, especially in relatively large catchments in which there are significant differences in surface materials. However, the discrimination power of fingerprint properties for small catchments, in which the surface materials are relatively homogeneous and human interference is marked, may be affected by fragmentary or confused source information. Using fingerprinting techniques can be difficult, and there is still a need for further studies to verify the effectiveness of such techniques in these small catchments. A composite fingerprinting approach was used in this study to investigate the main sources of sediment output, as well as their relative contributions, from a small catchment (30 km2) with high levels of farming and mining activities. The impact of the selection of different potential sediment sources on the derivation of composite fingerprints and its discrimination power were also investigated by comparing the results from different combinations of potential source types. The initial source types and several samples that could cause confusion were adjusted. These adjustments improved the discrimination power of the composite fingerprints. The results showed that the composite fingerprinting approach used in this study had a discriminatory efficiency of 89.2% for different sediment sources and that the model had a mean goodness of fit of 0.90. Cultivated lands were the main sediment source. The sediment contribution of the studied cultivated lands ranged from 39.9% to 87.8%, with a mean of 76.6%, for multiple deposited sediment samples. The mean contribution of woodlands was 21.7%. Overall, the sediment contribution from mining and road areas was relatively low. The selection of potential sources is an important factor in the application of fingerprinting techniques and warrants more attention in future studies, as is the case with other

  18. Farmers' perception and adaptation practice to climate variability and change: a case study of the Vea catchment in Ghana.

    PubMed

    Limantol, Andrew Manoba; Keith, Bruce Edward; Azabre, Bismark Atiayure; Lennartz, Bernd

    2016-01-01

    Rain-fed agriculture remains the source of employment for a majority of Ghana's population, particularly in northern Ghana where annual rainfall is low. The purpose of this study is to examine farmers' perceptions and adaptation practices to climate change and variability in accordance with actual recorded weather data of the Vea catchment in Upper East Region of northern Ghana during the time interval from 1972 to 2012. Climatic data over 41-years (1972-2012) from four stations in vicinity of the catchment was evaluated to identify actual weather outcomes. A survey questionnaire targeting farmers with at least 30-years of farming experience in the area was administered in six of the eleven agricultural enumeration areas in the catchment covering 305 km(2). Of the 466 farmers interviewed, 79 % utilized rain-fed practices while 21 % utilized some form of irrigation. Results indicate that nearly 90 % of the farmers interviewed believe that temperature increased over the past 30-years, while over 94 % of the farmers believe that amount of rainfall, duration, intensity and rainy days has decreased. Nearly 96 % of the farmers believe that their farms are extremely vulnerable to decreased rainfall, droughts and changed timing of rainfall events. Climatic data of the catchment indicates a rising trend in temperature but no long-term changes in annual and monthly rainfall, thereby possibly increasing levels of evapotranspiration. While no statistical differences were found between rain-fed and irrigation agricultural types regarding receipt of external support, their approaches to climatic change adaptation do differ. Patently, 94 and 90 % of farmers relying on rain-fed and irrigation strategies respectively receive some form of support, primarily via extension services. Farmers using rain-fed practices adjust to climate variability by varying crop types via rotation without fertilizer while farmers employing irrigation practices are more likely to offset climate

  19. The hydrological response of a small catchment after the abandonment of terrace cultivation. A study case in northwestern Spain

    NASA Astrophysics Data System (ADS)

    Llorente-Adán, Jose A.; Lana-Renault, Noemí; Galilea, Ianire; Ruiz-Flaño, Purificacion

    2015-04-01

    Terrace construction for cultivation results in a complete transformation of the hillslopes to a series of flat sectors and almost vertical steps. This strategy, which involves a redistribution of soils and a re-organization of the drainage network, provides fertile soil over steep slopes, improves infiltration and controls overland flow under conditions of intense rainstorms. In Camero Viejo (north-western Iberian ranges) most of the hillslopes are occupied by terraced fields. During the XXth century, rural population declined and agricultural practices were abandoned. In this area, a small catchment (1.9 km2) was monitored in 2012 for studying how the abandonment of agricultural terraces affect water and sediment transfer from the hillslopes to the channels. Terraces occupy 40% of the catchment and are covered by sparse grass and shrubs. The equipment installed in the catchment registers continuously meteorological data, discharge and water table fluctuations. Data on suspended sediment transport is obtained by means of a rising-stage sampler. Here we present the hydrological results corresponding to the years 2012-13 and 2013-14. The hydrological response of the catchment was moderate (annual runoff coefficient < 0.20), which could be in part explained by the high evapotranspiration rates reported in the area. Lows flows were recorded in summer and autumn, when the water reserves of the catchment were dry, and high flows occurred from January, when the catchment became wetter. The shape of the hydrographs, with slow response times, moderate peakflows and long recession limbs suggested a large contribution of subsurface flow, probably favored by deep and well structured soils in the bench terraces. Soil saturation areas were not observed during the study period, suggesting that soil infiltration processes and subsurface flow are important, and that the drainage system of the terraces is probably well maintained. No suspended sediment has been collected so far

  20. Moments of catchment storm area

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.; Wang, Q.

    1985-01-01

    The portion of a catchment covered by a stationary rainstorm is modeled by the common area of two overlapping circles. Given that rain occurs within the catchment and conditioned by fixed storm and catchment sizes, the first two moments of the distribution of the common area are derived from purely geometrical considerations. The variance of the wetted fraction is shown to peak when the catchment size is equal to the size of the predominant storm. The conditioning on storm size is removed by assuming a probability distribution based upon the observed fractal behavior of cloud and rainstorm areas.

  1. Watershed scale spatial variability in dissolved and total organic and inorganic carbon in contrasting UK catchments

    NASA Astrophysics Data System (ADS)

    Cumberland, S.; Baker, A.; Hudson, N. J.

    2006-12-01

    Approximately 800 organic and inorganic carbon analyses have been undertaken from watershed scale and regional scale spatial surveys in various British catchments. These include (1) a small (<100 sq-km) urban catchment (Ouseburn, N England); (2) a headwater, lowland agricultural catchment (River Tern, C England) (3) a large UK catchment (River Tyne, ~3000 sq-km) and (4) a spatial survey of ~300 analyses from rivers from SW England (~1700 sq-km). Results demonstrate that: (1) the majority of organic and inorganic carbon is in the dissolved (DOC and DIC) fractions; (2) that with the exception of peat rich headwaters, DIC concentration is always greater than DOC; (3) In the rural River Tern, riverine DOC and DIC are shown to follow a simple end- member mixing between DIC (DOC) rich (poor) ground waters and DOC (DIC) rich (poor) riparian wetlands for all sample sites. (4) In the urbanized Ouseburn catchment, although many sample sites also show this same mixing trend, some tributaries follow a pollutant trend of simultaneous increases in both DOC and DIC. The Ouseburn is part of the larger Tyne catchment: this larger catchment follows the simple groundwater DIC- soil water DOC end member mixing model, with the exception of the urban catchments which exhibit an elevated DIC compared to rural sites. (5) Urbanization is demonstrated to increase DIC compared to equivalent rural catchments; this DIC has potential sources including diffuse source inputs from the dissolution of concrete, point sources such as trade effluents and landfill leachates, and bedrock derived carbonates relocated to the soil dissolution zone by urban development. (6) DIC in rural SW England demonstrates that spatial variability in DIC can be attributed to variations in geology; but that DIC concentrations in the SW England rivers dataset are typically lower than the urbanized Tyne catchments despite the presence of carbonate bedrock in many of the sample catchments in the SW England dataset. (7

  2. Spatio-temporal dynamics of surface water quality in a Portuguese peri-urban catchment

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla; Walsh, Rory; Coelho, Celeste; Ferreira, António

    2016-04-01

    Urban development poses great pressure on water resources, but the impact of different land-uses on streamwater quality in partly urbanized catchments is not well understood. Focussing on a Portuguese peri-urban catchment, this paper explores the impact of a mosaic of different urban and non-urban land-uses on streamwater quality, and the influence of a seasonal Mediterranean climate on pollutant dynamics. The catchment has a 40% urban cover, dispersed amongst patches of woodland (56%) and agricultural fields (4%). Apart from the catchment outlet, streamwater quality was assessed at three sub-catchment sites: (i) Porto Bordalo, encompassing a 39% urban area with a new major road; (ii) Espírito Santo, draining a sub-catchment with 49% urban cover, mostly comprising detached houses surrounded by gardens; and (iii) Quinta, with a 25% urban cover. The Porto Bordalo sub-catchment is underlain by limestone, whereas the Espírito Santo and Quinta sub-catchments overlie sandstone. Water quality variables (notably nutrients, heavy metals and COD) were assessed for samples collected at different stages in the storm hydrograph responses to ten rainfall events occurring between October 2011 and March 2013. Urban areas had great impacts on COD, with highest median concentrations in Espírito Santo (18.0 mg L-1) and lowest in Quinta (9.5 mgL-1). In Espírito Santo, the management of gardens triggered greatest median concentrations of N-NO3 (1.46 mgL-1, p<0.05). Porto Bordalo exhibited the highest median concentrations of Zn (0.14 mgL-1), possibly derived from the major road, and dissolved phosphorus (0.07 mgL-1). The latter may be linked to human activities, such as terrace and car washing, as overland flow from impervious surfaces was observed to discharge directly into the stream, whereas in other sub-catchments it mostly disperses into pervious soils. Pastoral activities in agricultural fields adjacent to the stream led to highest median concentrations of N-Nk and N-NH4

  3. Approaches to the implementation of the Water Framework Directive: targeting mitigation measures at critical source areas of diffuse phosphorus in Irish catchments.

    PubMed

    Doody, D G; Archbold, M; Foy, R H; Flynn, R

    2012-01-01

    The Water Framework Directive (WFD) has initiated a shift towards a targeted approach to implementation through its focus on river basin districts as management units and the natural ecological characteristics of waterbodies. Due to its role in eutrophication, phosphorus (P) has received considerable attention, resulting in a significant body of research, which now forms the evidence base for the programme of measures (POMs) adopted in WFD River Basin Management Plans (RBMP). Targeting POMs at critical sources areas (CSAs) of P could significantly improve environmental efficiency and cost effectiveness of proposed mitigation strategies. This paper summarises the progress made towards targeting mitigation measures at CSAs in Irish catchments. A review of current research highlights that knowledge related to P export at field scale is relatively comprehensive however; the availability of site-specific data and tools limits widespread identification of CSA at this scale. Increasing complexity of hydrological processes at larger scales limits accurate identification of CSA at catchment scale. Implementation of a tiered approach, using catchment scale tools in conjunction with field-by-field surveys could decrease uncertainty and provide a more practical and cost effective method of delineating CSA in a range of catchments. Despite scientific and practical uncertainties, development of a tiered CSA-based approach to assist in the development of supplementary measures would provide a means of developing catchment-specific and cost-effective programmes of measures for diffuse P. The paper presents a conceptual framework for such an approach, which would have particular relevance for the development of supplementary measures in High Status Waterbodies (HSW). The cost and resources necessary for implementation are justified based on HSWs' value as undisturbed reference condition ecosystems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Landscape dynamics in the Otterbach catchment (Bavarian Forest, Southern Germany)

    NASA Astrophysics Data System (ADS)

    Schwindt, Daniel; Scheck, Sebastian; Scholz, Emanuel; Waltl, Peter; Völkel, Jörg

    2017-04-01

    As part of the TUM-CZO (TU-Munich Critical Zone Observatory), the Otterbach Valley has been focus of numerous research approaches, focusing on soil carbon dynamics, hydrological processes as well as landscape dynamics. Aim of this contribution is the reconstruction of the landscape evolution of the Otterbach catchment in context with anthropogenic land use and natural process dynamics. Therefore, studies focus on alluvial and colluvial sediments which are usually regarded as correlated with anthropogenically induced erosion. Located in the western Bavarian Forest the Otterbach is a creek of 2nd stream order and runs directly into the Danube River. Geologically, most parts of the catchment are composed of granitic rocks, mylonites and saprolites. While agricultural land use is dominant in the upper and lower reaches of the Otterbach, the steep middle reaches are forested, floodplains are used as grasslands. Settlement history points out that the forest of the so-called "Thiergarten", covering large parts of the catchment, has been used invariably for forestry, makes this study site valuable for the reconstruction of anthropogenic impact on landscape evolution. Characterization of the shallow subsurface is based on the analysis of soil pits (up to 2 m depth), core samples (up to 18 m depth) and geophysical measurements (electrical resistivity tomography, seismic refraction tomography). Temporal contextualization of sediments is achieved using radiocarbon dating. As a result of illuvial processes, clay curtains are observed almost continuously up to 18 m depth within the slope sediments, suggesting a genesis during Pleistocene warm stages. Radiocarbon dating in the alluvial floodplain point to pronounced sedimentary relocation processes between around 2.400 and 1.000 BP. This emphasizes the importance of naturally caused process dynamics as population density in the surroundings of the Otterbach catchment was low during this period and the area was mostly forested

  5. Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France).

    PubMed

    Vernier, Françoise; Leccia-Phelpin, Odile; Lescot, Jean-Marie; Minette, Sébastien; Miralles, André; Barberis, Delphine; Scordia, Charlotte; Kuentz-Simonet, Vanessa; Tonneau, Jean-Philippe

    2017-03-01

    Non-point source pollution is a cause of major concern within the European Union. This is reflected in increasing public and political focus on a more sustainable use of pesticides, as well as a reduction in diffuse pollution. Climate change will likely to lead to an even more intensive use of pesticides in the future, affecting agriculture in many ways. At the same time, the Water Framework Directive (WFD) and associated EU policies called for a "good" ecological and chemical status to be achieved for water bodies by the end of 2015, currently delayed to 2021-2027 due to a lack of efficiency in policies and timescale of resilience for hydrosystems, especially groundwater systems. Water managers need appropriate and user-friendly tools to design agro-environmental policies. These tools should help them to evaluate the potential impacts of mitigation measures on water resources, more clearly define protected areas, and more efficiently distribute financial incentives to farmers who agree to implement alternative practices. At present, a number of reports point out that water managers do not use appropriate information from monitoring or models to make decisions and set environmental action plans. In this paper, we propose an integrated and collaborative approach to analyzing changes in land use, farming systems, and practices and to assess their effects on agricultural pressure and pesticide transfers to waters. The integrated modeling of agricultural scenario (IMAS) framework draws on a range of data and expert knowledge available within areas where a pesticide action plan can be defined to restore the water quality, French "Grenelle law" catchment areas, French Water Development and Management Plan areas, etc. A so-called "reference scenario" represents the actual soil occupation and pesticide-spraying practices used in both conventional and organic farming. A number of alternative scenarios are then defined in cooperation with stakeholders, including socio

  6. Modeling of storm runoff and pollutant wash off processes during storm event in rapidly urbanizing catchment

    NASA Astrophysics Data System (ADS)

    Qin, H. P.; Yu, X. Y.; Khu, S. T.

    2009-04-01

    Many urban catchments in developing countries are undergoing fast economic growth, population expansion and land use/cover change. Due to the mixture of agricultural/industrial/residential land use or different urbanization level as well as lack of historical monitoring data in the developing area, storm-water runoff pollution modeling is faced with challenges of considerable spatial variations and data insufficiency. Shiyan Reservoir catchment is located in the rapidly urbanizing coastal region of Southeast China. It has six sub-catchments with largely different land use patterns and urbanization levels. A simple semi-distributed model was used to simulate the storm-water runoff pollution process during storm event in the catchment. The model adopted modified IHACRES model and exponential wash-off functions to describe storm-runoff and pollutant wash-off processes, respectively, in each of six sub-catchments. Temporary hydrological and water quality monitoring sites were set at the downstream section of each sub-catchment in Feb-May 2007, spanning non-rain and rain seasons. And the model was calibrated for storm-runoff and water quality data during two typical storm events with rainfall amount of 10mm/4hr and 73mm/5hr, respectively. The results indicated that the Nash-Sutcliffe (NS) coefficients are greater than 0.65 and 0.55 respectively for storm-runoff model calibration and validation. However although NS coefficients can reach 0.7~0.9 for pollutant wash-off model calibration based on measured data in each storm event, the simulation data can not fit well with the measured data in model validation. According to field survey observation, many litters and residuals were found to distribute in disorder in some sub-catchments or their drainage systems and to instantaneously wash off into the surface water when the rainfall amount and intensity are large enough. In order to improve storm-water runoff pollution simulation in the catchment, the variations of pollutant

  7. Simulation of irrigation effect on water cycle in Yellow River catchment, China

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Watanabe, M.

    2006-12-01

    The Yellow River is 5,464 km long with a catchment area of 794,712 km2 if the Erdos inner flow area is included. This river catchment is divided between the upper region (length: 3472 km, area: 428,235 km2) from the headwater to Lanzhou in Gansu province, the middle region (length: 1,206 km, area: 343,751 km2) from Lanzhou to Huayuankou in Henan province, and the lower region (length: 786 km, area: 22,726 km2) from Huayuankou to the estuary. This river is well known for high sand content, frequent floods, unique channel characteristics in the lower reach (the river bed is higher than the land outside the banks), and the limited water resources. Since the competition of a large-scale irrigation project in 1969, noticeable river drying has been observed in the Yellow River. This flow dry-up phenomena, i.e., zero-flow in sections of the river channel, resulting from the intense competition between water supply and water demand, has occurred more and more often during the last 30 years. It is very important for decision making to ensure sustainable water resource utilization whether human activities were the only cause of the water shortage, the climate has changed during the last several decades in this catchment, and the water shortage has anything to do with climatic warming. The present research focuses on simulating the groundwater/river irrigation-effects on the water/heat dynamics in the Yellow River catchment. We combined the NIES Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama and Watanabe, 2004, 2006; Nakayama et al., 2006) with the agricultural model in order to evaluate river drying in the Yellow River (NICE-DRY). We simulated the water/heat dynamics in the entire catchment with a resolution of 10 km mesh by using the NICE-DRY. The model reproduced excellently the river discharge, soil moisture, evapotranspiration, groundwater level, crop water use, crop productivity, et al. Furthermore, we evaluated the role of irrigation on the water

  8. Catchment-scale evaluation of pollution potential of urban snow at two residential catchments in southern Finland.

    PubMed

    Sillanpää, Nora; Koivusalo, Harri

    2013-01-01

    Despite the crucial role of snow in the hydrological cycle in cold climate conditions, monitoring studies of urban snow quality often lack discussions about the relevance of snow in the catchment-scale runoff management. In this study, measurements of snow quality were conducted at two residential catchments in Espoo, Finland, simultaneously with continuous runoff measurements. The results of the snow quality were used to produce catchment-scale estimates of areal snow mass loads (SML). Based on the results, urbanization reduced areal snow water equivalent but increased pollutant accumulation in snow: SMLs in a medium-density residential catchment were two- to four-fold higher in comparison with a low-density residential catchment. The main sources of pollutants were related to vehicular traffic and road maintenance, but also pet excrement increased concentrations to a high level. Ploughed snow can contain 50% of the areal pollutant mass stored in snow despite its small surface area within a catchment.

  9. Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research

    NASA Astrophysics Data System (ADS)

    Rogger, M.; Agnoletti, M.; Alaoui, A.; Bathurst, J. C.; Bodner, G.; Borga, M.; Chaplot, V.; Gallart, F.; Glatzel, G.; Hall, J.; Holden, J.; Holko, L.; Horn, R.; Kiss, A.; Kohnová, S.; Leitinger, G.; Lennartz, B.; Parajka, J.; Perdigão, R.; Peth, S.; Plavcová, L.; Quinton, J. N.; Robinson, M.; Salinas, J. L.; Santoro, A.; Szolgay, J.; Tron, S.; van den Akker, J. J. H.; Viglione, A.; Blöschl, G.

    2017-07-01

    Research gaps in understanding flood changes at the catchment scale caused by changes in forest management, agricultural practices, artificial drainage, and terracing are identified. Potential strategies in addressing these gaps are proposed, such as complex systems approaches to link processes across time scales, long-term experiments on physical-chemical-biological process interactions, and a focus on connectivity and patterns across spatial scales. It is suggested that these strategies will stimulate new research that coherently addresses the issues across hydrology, soil and agricultural sciences, forest engineering, forest ecology, and geomorphology.

  10. Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research

    PubMed Central

    Agnoletti, M.; Alaoui, A.; Bathurst, J. C.; Bodner, G.; Borga, M.; Chaplot, V.; Gallart, F.; Glatzel, G.; Hall, J.; Holden, J.; Holko, L.; Horn, R.; Kiss, A.; Kohnová, S.; Leitinger, G.; Lennartz, B.; Parajka, J.; Perdigão, R.; Peth, S.; Plavcová, L.; Quinton, J. N.; Robinson, M.; Salinas, J. L.; Santoro, A.; Szolgay, J.; Tron, S.; van den Akker, J. J. H.; Viglione, A.; Blöschl, G.

    2017-01-01

    Abstract Research gaps in understanding flood changes at the catchment scale caused by changes in forest management, agricultural practices, artificial drainage, and terracing are identified. Potential strategies in addressing these gaps are proposed, such as complex systems approaches to link processes across time scales, long‐term experiments on physical‐chemical‐biological process interactions, and a focus on connectivity and patterns across spatial scales. It is suggested that these strategies will stimulate new research that coherently addresses the issues across hydrology, soil and agricultural sciences, forest engineering, forest ecology, and geomorphology. PMID:28919651

  11. Controls on the chemistry of runoff from an upland peat catchment

    NASA Astrophysics Data System (ADS)

    Worrall, Fred; Burt, Tim; Adamson, John

    2003-07-01

    This study uses 2 years of data from a detailed weekly water sampling programme in a 11·4 km2 upland peat catchment in the Northern Pennines, UK. The sampling comprised precipitation, soil-water samples and a number of streams, including the basin outlet. Samples were analysed for: pH, conductivity, alkalinity, Na, K, Ca, Mg, Fe, Al, Total N, SO4, Cl and colour. Principal component analysis (PCA) was used to identify end-members and compositional trends in order to identify controls on the development of water composition. The study showed that the direct use of PCA had several advantages over the use of end-member mixing analysis (EMMA) as it combines an analysis of mixing and evolving waters without the assumption of having to know the compositional sources of the water. In its application to an upland peat catchment, the study supports the view that shallow throughflow at the catotelm/acrotelm boundary is responsible for storm runoff generation and shows that baseflow is controlled by cation exchange in the catotelm and mixing with a base-rich groundwater.

  12. Before and After Integrated Catchment Management in a Headwater Catchment: Changes in Water Quality

    NASA Astrophysics Data System (ADS)

    Hughes, Andrew O.; Quinn, John M.

    2014-12-01

    Few studies have comprehensively measured the effect on water quality of catchment rehabilitation measures in comparison with baseline conditions. Here we have analyzed water clarity and nutrient concentrations and loads for a 13-year period in a headwater catchment within the western Waikato region, New Zealand. For the first 6 years, the entire catchment was used for hill-country cattle and sheep grazing. An integrated catchment management plan was implemented whereby cattle were excluded from riparian areas, the most degraded land was planted in Pinus radiata, channel banks were planted with poplar trees and the beef cattle enterprise was modified. The removal of cattle from riparian areas without additional riparian planting had a positive and rapid effect on stream water clarity. In contrast, the water clarity decreased in those sub-catchments where livestock was excluded but riparian areas were planted with trees and shrubs. We attribute the decrease in water clarity to a reduction in groundcover vegetation that armors stream banks against preparatory erosion processes. Increases in concentrations of forms of P and N were recorded. These increases were attributed to: (i) the reduction of instream nutrient uptake by macrophytes and periphyton due to increased riparian shading; (ii) uncontrolled growth of a nitrogen fixing weed (gorse) in some parts of the catchment, and (iii) the reduction in the nutrient attenuation capacity of seepage wetlands due to the decrease in their areal coverage in response to afforestation. Our findings highlight the complex nature of the water quality response to catchment rehabilitation measures.

  13. Critical level of water recharges in the catchment areas of Manna watershed Bengkulu Province Indonesia

    NASA Astrophysics Data System (ADS)

    Amri, Khairul; Nugraha, Loparedo; Barchia, Muhammad Faiz

    2017-11-01

    Land use changes in Manna watershed are caused degradation in the watershed functions. When water infiltration goes down, some water runs off flowing to Manna River cause submerged on the downstream. The aim of this study is to analyze how the Manna watershed overcoming environmentally degraded conditions. The critical level of the Manna catchment areas was determined by overlaying some digital maps based on procedure applying in the Ministry of Forestry, Republic of Indonesia (P.32/MENHUT-II/2009). Measuring the critical level of the catchment also needed natural and actual infiltrations map, and the interpretation process of the analysis used ArcGIS 10.1 software. Based on the spatial data analysis by overlaying maps of slope, soils, and rainfall, the natural infiltration rate in the Manna watershed categorized high level (44.1%). While, the critical level of the catchment areas of the Manna watershed classified in good condition cover about 64,5 % of the areas, and starting to degraded state cover about 35,5 % of the watershed areas. The environment degradation conditions indicated the land use changes in the Manna watershed could deteriorate infiltration rates. The cultivated agricultural activities neglected conservation rule could accelerate the critical catchment areas in the Manna watershed.

  14. Validation of catchment models for predicting land-use and climate change impacts. 2. Case study for a Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Parkin, G.; O'Donnell, G.; Ewen, J.; Bathurst, J. C.; O'Connell, P. E.; Lavabre, J.

    1996-02-01

    Validation methods commonly used to test catchment models are not capable of demonstrating a model's fitness for making predictions for catchments where the catchment response is not known (including hypothetical catchments, and future conditions of existing catchments which are subject to land-use or climate change). This paper describes the first use of a new method of validation (Ewen and Parkin, 1996. J. Hydrol., 175: 583-594) designed to address these types of application; the method involves making 'blind' predictions of selected hydrological responses which are considered important for a particular application. SHETRAN (a physically based, distributed catchment modelling system) is tested on a small Mediterranean catchment. The test involves quantification of the uncertainty in four predicted features of the catchment response (continuous hydrograph, peak discharge rates, monthly runoff, and total runoff), and comparison of observations with the predicted ranges for these features. The results of this test are considered encouraging.

  15. Applying A Multi-Objective Based Procedure to SWAT Modelling in Alpine Catchments

    NASA Astrophysics Data System (ADS)

    Tuo, Y.; Disse, M.; Chiogna, G.

    2017-12-01

    In alpine catchments, water management practices can lead to conflicts between upstream and downstream stakeholders, like in the Adige river basin (Italy). A correct prediction of available water resources plays an important part, for example, in defining how much water can be stored for hydropower production in upstream reservoirs without affecting agricultural activities downstream. Snow is a crucial hydrological component that highly affects seasonal behavior of streamflow. Therefore, a realistic representation of snow dynamics is fundamental for water management operations in alpine catchments. The Soil and Water Assessment Tool (SWAT) model has been applied in alpine catchments worldwide. However, during model calibration of catchment scale applications, snow parameters were generally estimated based on streamflow records rather than on snow measurements. This may lead to streamflow predictions with wrong snow melt contribution. This work highlights the importance of considering snow measurements in the calibration of the SWAT model for alpine hydrology and compares various calibration methodologies. In addition to discharge records, snow water equivalent time series of both subbasin scale and monitoring station were also utilized to evaluate the model performance by comparing with the SWAT subbasin and elevation band snow outputs. Comparing model results obtained calibrating the model using discharge data only and discharge data along with snow water equivalent data, we show that the latter approach allows us to improve the reliability of snow simulations while maintaining good estimations of streamflow. With a more reliable representation of snow dynamics, the hydrological model can provide more accurate references for proposing adequate water management solutions. This study offers to the wide SWAT user community an effective approach to improve streamflow predictions in alpine catchments and hence support decision makers in water allocation.

  16. Anatomy of extraordinary rainfall and flash flood in a Dutch lowland catchment

    NASA Astrophysics Data System (ADS)

    Brauer, C. C.; Teuling, A. J.; Overeem, A.; van der Velde, Y.; Hazenberg, P.; Warmerdam, P. M. M.; Uijlenhoet, R.

    2011-06-01

    On 26 August 2010 the eastern part of The Netherlands and the bordering part of Germany were struck by a series of rainfall events lasting for more than a day. Over an area of 740 km2 more than 120 mm of rainfall were observed in 24 h. This extreme event resulted in local flooding of city centres, highways and agricultural fields, and considerable financial loss. In this paper we report on the unprecedented flash flood triggered by this exceptionally heavy rainfall event in the 6.5 km2 Hupsel Brook catchment, which has been the experimental watershed employed by Wageningen University since the 1960s. This study aims to improve our understanding of the dynamics of such lowland flash floods. We present a detailed hydrometeorological analysis of this extreme event, focusing on its synoptic meteorological characteristics, its space-time rainfall dynamics as observed with rain gauges, weather radar and a microwave link, as well as the measured soil moisture, groundwater and discharge response of the catchment. At the Hupsel Brook catchment 160 mm of rainfall was observed in 24 h, corresponding to an estimated return period of well over 1000 years. As a result, discharge at the catchment outlet increased from 4.4 × 10-3 to nearly 5 m3 s-1. Within 7 h discharge rose from 5 × 10-2 to 4.5 m3 s-1. The catchment response can be divided into four phases: (1) soil moisture reservoir filling, (2) groundwater response, (3) surface depression filling and surface runoff and (4) backwater feedback. The first 35 mm of rainfall were stored in the soil without a significant increase in discharge. Relatively dry initial conditions (in comparison to those for past discharge extremes) prevented an even faster and more extreme hydrological response.

  17. What is needed to understand feedback mechanisms from agricultural and climate changes that can alter the hydrological system and the transport of sediments and agricultural chemicals?

    NASA Astrophysics Data System (ADS)

    Coupe, Richard; Payraudeau, Sylvain; Babcsányi, Izabella; Imfeld, Gwenaël

    2015-04-01

    Modern agriculture activities are constantly changing as producers try to produce a crop, keep their soils fertile, control pests, and prevent contamination of air and water resources. Because most of the world's arable land is already in production we must become more efficient if we are to feed and clothe the world's growing population as well as do this in a sustainable manner; leaving a legacy of fertile soil and clean water resources for our descendants. The objective of this paper is to demonstrate the importance of historical datasets and of developing new strategies to understand the effects of changing agricultural systems on the environment. Scientists who study agriculture and its effects on water must constantly adapt their strategies and evaluate how changing agricultural activities impact the environment. As well as understand from historical datasets on hydrology and agriculture how a changing climate or agricultural activity such as a change in tillage method might impact the processes that determine the movement of agricultural chemicals off of the target site. The 42.7 ha Hohrain (Rouffach, Alsace, France) vineyard experimental catchment offers several examples of how scientists have used historical data from this catchment to understand how the transport of agricultural chemicals may change due to a changing climate as well as how new strategies are developed for understanding the transport of agricultural chemicals. Runoff is a major process of pesticide transport from agricultural land to downstream aquatic ecosystems. The impact of rainfall characteristics on the transport of runoff-related pesticides is crucial to understanding how to prevent or minimize their movement now, but also in understanding how climate change might affect runoff. If we understand how rainfall characteristics affect the transport of pesticides, we can use climate change models to predict how those characteristics might change in the future and be better prepared for

  18. Effects of model structure and catchment discretization on discharge simulation in a small forest catchment

    NASA Astrophysics Data System (ADS)

    Spieler, Diana; Schwarze, Robert; Schütze, Niels

    2017-04-01

    In the past a variety of different modeling approaches has been developed in catchment hydrology. Even though there is no argument on the relevant processes taking place, there is no unified theory on how best to represent them computationally. Thus a vast number of models has been developed, varying from lumped models to physically based models. Most of them have a more or less fixed model structure and follow the "one fits all" paradigm. However, a more flexible approach could improve model realism by designing catchment specific model structures based on data availability. This study focuses on applying the flexible hydrological modelling framework RAVEN (Craig et al., 2013), to systematically test several conceptual model structures on the 19 km2 Große Ohe Catchment in the Bavarian Forest (Germany). By combining RAVEN with the DREAM algorithm (Vrugt et al., 2009), the relationship between catchment characteristics, model structure, parameter uncertainty and data availability are analyzed. The model structure is progressively developed based on the available data of the well observed forested catchment area. In a second step, the impact of the catchment discretization is analyzed by testing different spatial resolutions of topographic input data.

  19. Compounding Effects of Agricultural Land Use and Water Use in Free-Flowing Rivers: Confounding Issues for Environmental Flows

    NASA Astrophysics Data System (ADS)

    Hardie, Scott A.; Bobbi, Chris J.

    2018-03-01

    Defining the ecological impacts of water extraction from free-flowing river systems in altered landscapes is challenging as multiple stressors (e.g., flow regime alteration, increased sedimentation) may have simultaneous effects and attributing causality is problematic. This multiple-stressor context has been acknowledged in environmental flows science, but is often neglected when it comes to examining flow-ecology relationships, and setting and implementing environmental flows. We examined the impacts of land and water use on rivers in the upper Ringarooma River catchment in Tasmania (south-east Australia), which contains intensively irrigated agriculture, to support implementation of a water management plan. Temporal and spatial and trends in river condition were assessed using benthic macroinvertebrates as bioindicators. Relationships between macroinvertebrate community structure and environmental variables were examined using univariate and multivariate analyses, focusing on the impacts of agricultural land use and water use. Structural changes in macroinvertebrate communities in rivers in the catchment indicated temporal and spatial declines in the ecological condition of some stretches of river associated with agricultural land and water use. Moreover, water extraction appeared to exacerbate impairment associated with agricultural land use (e.g., reduced macroinvertebrate density, more flow-avoiding taxa). The findings of our catchment-specific bioassessments will underpin decision-making during the implementation of the Ringarooma water management plan, and highlight the need to consider compounding impacts of land and water use in environmental flows and water planning in agricultural landscapes.

  20. Compounding Effects of Agricultural Land Use and Water Use in Free-Flowing Rivers: Confounding Issues for Environmental Flows.

    PubMed

    Hardie, Scott A; Bobbi, Chris J

    2018-03-01

    Defining the ecological impacts of water extraction from free-flowing river systems in altered landscapes is challenging as multiple stressors (e.g., flow regime alteration, increased sedimentation) may have simultaneous effects and attributing causality is problematic. This multiple-stressor context has been acknowledged in environmental flows science, but is often neglected when it comes to examining flow-ecology relationships, and setting and implementing environmental flows. We examined the impacts of land and water use on rivers in the upper Ringarooma River catchment in Tasmania (south-east Australia), which contains intensively irrigated agriculture, to support implementation of a water management plan. Temporal and spatial and trends in river condition were assessed using benthic macroinvertebrates as bioindicators. Relationships between macroinvertebrate community structure and environmental variables were examined using univariate and multivariate analyses, focusing on the impacts of agricultural land use and water use. Structural changes in macroinvertebrate communities in rivers in the catchment indicated temporal and spatial declines in the ecological condition of some stretches of river associated with agricultural land and water use. Moreover, water extraction appeared to exacerbate impairment associated with agricultural land use (e.g., reduced macroinvertebrate density, more flow-avoiding taxa). The findings of our catchment-specific bioassessments will underpin decision-making during the implementation of the Ringarooma water management plan, and highlight the need to consider compounding impacts of land and water use in environmental flows and water planning in agricultural landscapes.

  1. National-Scale Hydrologic Classification & Agricultural Decision Support: A Multi-Scale Approach

    NASA Astrophysics Data System (ADS)

    Coopersmith, E. J.; Minsker, B.; Sivapalan, M.

    2012-12-01

    Classification frameworks can help organize catchments exhibiting similarity in hydrologic and climatic terms. Focusing this assessment of "similarity" upon specific hydrologic signatures, in this case the annual regime curve, can facilitate the prediction of hydrologic responses. Agricultural decision-support over a diverse set of catchments throughout the United States depends upon successful modeling of the wetting/drying process without necessitating separate model calibration at every site where such insights are required. To this end, a holistic classification framework is developed to describe both climatic variability (humid vs. arid, winter rainfall vs. summer rainfall) and the draining, storing, and filtering behavior of any catchment, including ungauged or minimally gauged basins. At the national scale, over 400 catchments from the MOPEX database are analyzed to construct the classification system, with over 77% of these catchments ultimately falling into only six clusters. At individual locations, soil moisture models, receiving only rainfall as input, produce correlation values in excess of 0.9 with respect to observed soil moisture measurements. By deploying physical models for predicting soil moisture exclusively from precipitation that are calibrated at gauged locations, overlaying machine learning techniques to improve these estimates, then generalizing the calibration parameters for catchments in a given class, agronomic decision-support becomes available where it is needed rather than only where sensing data are located.lassifications of 428 U.S. catchments on the basis of hydrologic regime data, Coopersmith et al, 2012.

  2. Assessing catchment connectivity using hysteretic loops

    NASA Astrophysics Data System (ADS)

    Keesstra, Saskia; Masselink, Rens; Goni, Mikel; Campo, Miguel Angel; Gimenez, Rafael; Casali, Javier; Seeger, Manuel

    2015-04-01

    Sediment connectivity is a concept which can explain the origin, pathways and sinks of sediments within landscapes. This information is valuable for land managers to be able to take appropriate action at the correct place. Hysteresis between sediment and water discharge can give important information about the sources , pathways and conditions of sediment that arrives at the outlet of a catchment. "Hysteresis" happens when the sediment concentration associated with a certain flow rate is different depending on the direction in which the analysis is performed -towards the increase or towards the diminution of the flow. This phenomenon to some extent reflects the way in which the runoff generation processes are conjugated with those of the production and transport of sediments, hence the usefulness of hysteresis as a diagnostic hydrological parameter. However, the complexity of the phenomena and factors which determine hysteresis make its interpretation uncertain or, at the very least, problematic. Many types of hysteretic loops have been described as well as the cause for the shape of the loop, mainly describing the origin of the sediments. In this study, several measures to objectively classify hysteretic loops in an automated way were developed. These were consecutively used to classify several hundreds of loops from several agricultural catchments in Northern Spain. The data set for this study comes from four experimental watersheds in Navarre (Spain), owned and maintained by the Government of Navarre. These experimental watersheds have been monitored and studied since 1996 (La Tejería and Latxaga) and 2001 (Oskotz "principal", Op, and Oskotz "woodland", Ow). La Tejería and Latxaga watersheds, located in the Central Western part of Navarre, are roughly similar to each other regarding size (approximately 200 ha), geology (marls and sandstones), soils (fine texture topsoil), climate (humid sub Mediterranean) and land use (80-90% cultivated with winter grain crops

  3. Spatio-temporal variability of streamwater chemistry within a Peri-urban Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla S. S.; Walsh, Rory P. D.; Ferreira, António J. D.; Coelho, Celeste O. A.

    2015-04-01

    The complex landscape of peri-urban areas, characterized by a mosaic of land-uses and urban fabric, provides different sources of runoff and pollutants which affect stream ecosystems. This study investigates the impact of land-uses and their location within catchments on streamwater quality in a peri-urban Mediterranean catchment, including temporal variations driven by antecedent weather and rainstorm characteristics. The study is based in Ribeira dos Covões, a small (6 km2) catchment in the city of Coimbra, central Portugal. Land-use is dominated by woodland (56%) and urban cover (40%), with a small agriculture area (4%). Streamwater was monitored at the catchment outlet (ESAC) and three upstream locations: Espírito Santo and Porto Bordalo, with similar urban cover (42% and 49%) but different imperviousness (27% and 15%) and lithologies (sandstone versus limestone), and Quinta with lower urban extent (25%) but including a construction site covering 10% of the area. Samples collected throughout ten rainfall events between October 2011 and March 2013 were analysed for natural water chemistry and major pollutants (notably ammonium, nitrates, total phosphorus, COD and metals). In the paper, temporal variations in water quality are explored via hysteresis loop and correlation analysis. Hydrological regime exerted a major influence on water quality. Major nutrients declined within and after the dry summer than in winter events, because of limited dilution by the low stream baseflow. Through the wet season, increasing baseflow led to increased concentrations of major cations (Na, Mg and Ca) because of reduced dilution by solute-poor stormflow. Espírito Santo, the most urbanized sub-catchment, displayed higher concentrations of COD and NO3 (tended to peak with stormflow), but the latter was thought to result from agricultural fields located adjacent the tributary. At the catchment outlet (ESAC), the high Nk and NH4 concentrations exceeded water quality standards (2 mg

  4. Prediction uncertainty and data worth assessment for groundwater transport times in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Zell, Wesley O.; Culver, Teresa B.; Sanford, Ward E.

    2018-06-01

    Uncertainties about the age of base-flow discharge can have serious implications for the management of degraded environmental systems where subsurface pathways, and the ongoing release of pollutants that accumulated in the subsurface during past decades, dominate the water quality signal. Numerical groundwater models may be used to estimate groundwater return times and base-flow ages and thus predict the time required for stakeholders to see the results of improved agricultural management practices. However, the uncertainty inherent in the relationship between (i) the observations of atmospherically-derived tracers that are required to calibrate such models and (ii) the predictions of system age that the observations inform have not been investigated. For example, few if any studies have assessed the uncertainty of numerically-simulated system ages or evaluated the uncertainty reductions that may result from the expense of collecting additional subsurface tracer data. In this study we combine numerical flow and transport modeling of atmospherically-derived tracers with prediction uncertainty methods to accomplish four objectives. First, we show the relative importance of head, discharge, and tracer information for characterizing response times in a uniquely data rich catchment that includes 266 age-tracer measurements (SF6, CFCs, and 3H) in addition to long term monitoring of water levels and stream discharge. Second, we calculate uncertainty intervals for model-simulated base-flow ages using both linear and non-linear methods, and find that the prediction sensitivity vector used by linear first-order second-moment methods results in much larger uncertainties than non-linear Monte Carlo methods operating on the same parameter uncertainty. Third, by combining prediction uncertainty analysis with multiple models of the system, we show that data-worth calculations and monitoring network design are sensitive to variations in the amount of water leaving the system via

  5. Women and agricultural productivity: Reframing the Issues.

    PubMed

    Doss, Cheryl R

    2018-01-01

    Should agricultural development programmes target women in order to increase productivity? This article analyzes the challenges in distinguishing women's agricultural productivity from that of men. Most of the literature compares productivity on plots managed by women with those managed by men, ignoring the majority of agricultural households in which men and women are both involved in management and production. The empirical studies which have been carried out provide scant evidence for where the returns to projects may be highest, in terms of who to target. Yet, programmes that do not consider gendered responsibilities, resources and constraints, are unlikely to succeed, either in terms of increasing productivity or benefitting men and women smallholder farmers.

  6. Baseflow and stormflow metal fluxes from two small agricultural catchments in the Coastal Plain of the Chesapeake Bay Basin, United States

    USGS Publications Warehouse

    Miller, C.V.; Foster, G.D.; Majedi, B.F.

    2003-01-01

    Annual yields (fluxes per unit area) of Al, Mn, Fe, Ni, Cd, Pb, Zn, Cu, Cr, Co, As and Se were estimated for two small non-tidal stream catchments on the Eastern Shore of the Chesapeake Bay, United States - a poorly drained dissected-upland watershed in the Nanticoke River Basin, and a well-drained feeder tributary in the lower reaches of the Chester River Basin. Both watersheds are dominated by agriculture. A hydrograph-separation technique was used to determine the baseflow and stormflow components of metal yields, thus providing important insights into the effects of hydrology and climate on the transport of metals. Concentrations of suspended-sediment were used as a less-costly proxy of metal concentrations which are generally associated with particles. Results were compared to other studies in Chesapeake Bay and to general trends in metal concentrations across the United States. The study documented a larger than background yield of Zn and Co from the upper Nanticoke River Basin and possibly enriched concentrations of As, Cd and Se from both the upper Nanticoke River and the Chesterville Branch (a tributary of the lower Chester River). The annual yield of total Zn from the Nanticoke River Basin in 1998 was 18,000 g/km2/a, and was two to three times higher than yields reported from comparable river basins in the region. Concentrations of Cd also were high in both basins when compared to crustal concentrations and to other national data, but were within reasonable agreement with other Chesapeake Bay studies. Thus, Cd may be enriched locally either in natural materials or from agriculture.

  7. Spatio-temporal dynamics of sediment sources in a peri-urban Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla; Walsh, Rory; Blake, William; Kikuchi, Ryunosuke; Ferreira, António

    2017-04-01

    Sediment fluxes driven by hydrological processes lead to natural soil losses, but human activities, such as urbanization, influence hydrology and promote erosion, altering the landscape and sediment fluxes. In peri-urban areas, comprising a mixture of semi-natural and man-made land-uses, understanding sediment fluxes is still a research challenge. This study investigates spatial and temporal dynamics of fluvial sediments in a rapidly urbanizing catchment. Specific objectives are to understand the main sources of sediments relating to different types of urban land disturbance, and their variability driven by (i) weather, season and land-use changes through time, and (ii) sediment particle size. The study was carried out Ribeira dos Covões, a peri-urban catchment (6.2km2) in central Portugal. The climate is humid Mediterranean, with mean annual temperature and rainfall of 15˚ C and 892 mm, respectively. The geology comprises sandstone (56%), limestone (41%) and alluvial deposits (3%). The catchment has an average slope of 9˚ , but includes steep slopes of up to 46˚ . The land-use is a complex mosaic of woodland (56%), urban (40%) and agricultural (4%) land parcels, resulting from urbanization occurring progressively since 1973. Urbanization since 2010 has mainly comprised the building of a major road, covering 1% of the catchment area, and the ongoing construction of an enterprise park, occupying 5% of the catchment. This study uses a multi-proxy sediment fingerprinting approach, based on X-Ray Fluorescence (XRF) analyses to characterize the elemental geochemistry of sediments collected within the stream network after three storm events in 2012 and 2015. A range of statistical techniques, including hierarchical cluster analysis, was used to identify discriminant sediment properties and similarities between fine bed-sediment samples of tributaries and downstream sites. Quantification of sediment supply from upstream sub-catchments was undertaken using a Bayesian

  8. Relationships between Rainy Days, Mean Daily Intensity, and Seasonal Rainfall over the Koyna Catchment during 1961–2005

    PubMed Central

    Nandargi, S.; Mulye, S. S.

    2012-01-01

    There are limitations in using monthly rainfall totals in studies of rainfall climatology as well as in hydrological and agricultural investigations. Variations in rainfall may be considered to result from frequency changes in the daily rainfall of the respective regime. In the present study, daily rainfall data of the stations inside the Koyna catchment has been analysed for the period of 1961–2005 to understand the relationship between the rain and rainy days, mean daily intensity (MDI) and seasonal rainfall over the catchment on monthly as well as seasonal scale. Considering the topographical location of the catchment, analysis of seasonal rainfall data of 8 stations suggests that a linear relationship fits better than the logarithmic relationship in the case of seasonal rainfall versus mean daily intensity. So far as seasonal rainfall versus number of rainy days is considered, the logarithmic relationship is found to be better. PMID:22654646

  9. A catchment scale evaluation of multiple stressor effects in headwater streams.

    PubMed

    Rasmussen, Jes J; McKnight, Ursula S; Loinaz, Maria C; Thomsen, Nanna I; Olsson, Mikael E; Bjerg, Poul L; Binning, Philip J; Kronvang, Brian

    2013-01-01

    Mitigation activities to improve water quality and quantity in streams as well as stream management and restoration efforts are conducted in the European Union aiming to improve the chemical, physical and ecological status of streams. Headwater streams are often characterised by impairment of hydromorphological, chemical, and ecological conditions due to multiple anthropogenic impacts. However, they are generally disregarded as water bodies for mitigation activities in the European Water Framework Directive despite their importance for supporting a higher ecological quality in higher order streams. We studied 11 headwater streams in the Hove catchment in the Copenhagen region. All sites had substantial physical habitat and water quality impairments due to anthropogenic influence (intensive agriculture, urban settlements, contaminated sites and low base-flow due to water abstraction activities in the catchment). We aimed to identify the dominating anthropogenic stressors at the catchment scale causing ecological impairment of benthic macroinvertebrate communities and provide a rank-order of importance that could help in prioritising mitigation activities. We identified numerous chemical and hydromorphological impacts of which several were probably causing major ecological impairments, but we were unable to provide a robust rank-ordering of importance suggesting that targeted mitigation efforts on single anthropogenic stressors in the catchment are unlikely to have substantial effects on the ecological quality in these streams. The SPEcies At Risk (SPEAR) index explained most of the variability in the macroinvertebrate community structure, and notably, SPEAR index scores were often very low (<10% SPEAR abundance). An extensive re-sampling of a subset of the streams provided evidence that especially insecticides were probably essential contributors to the overall ecological impairment of these streams. Our results suggest that headwater streams should be considered in

  10. CNMM: a Catchment Environmental Model for Managing Water Quality and Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Li, Y.

    2015-12-01

    Mitigating agricultural diffuse pollution and greenhouse gas emissions is a complicated task due to tempo-spatial lags between the field practices and the watershed responses. Spatially-distributed modeling is essential to the implementation of cost-effective and best management practices (BMPs) to optimize land uses and nutrient applications as well as to project the impact of climate change on the watershed service functions. CNMM (the Catchment Nutrients Management Model) is a 3D spatially-distributed, grid-based and process-oriented biophysical model comprehensively developed to simulate energy balance, hydrology, plant/crop growth, biogeochemistry of life elements (e.g., C, N and P), waste treatment, waterway vegetation/purification, stream water quality and land management in agricultural watersheds as affected by land utilization strategies such as BMPs and by climate change. The CNMM is driven by a number of spatially-distributed data such as weather, topography (including DEM and shading), stream network, stream water, soil, vegetation and land management (including waste treatments), and runs at an hourly time step. It represents a catchment as a matrix of square uniformly-sized cells, where each cell is defined as a homogeneous hydrological response unit with all the hydrologically-significant parameters the same but varied at soil depths in fine intervals. Therefore, spatial variability is represented by allowing parameters to vary horizontally and vertically in space. A four-direction flux routing algorithm is applied to route water and nutrients across soils of cells governed by the gradients of either water head or elevation. A linear channel reservoir scheme is deployed to route water and nutrients in stream networks. The model is capable of computing CO2, CH4, NH3, NO, N2O and N2 emissions from soils and stream waters. The CNMM can serve as an idea modelling tool to investigate the overwhelming critical zone research at various catchment scales.

  11. Assessing pesticide exposure of the aquatic environment in tropical catchments

    NASA Astrophysics Data System (ADS)

    Weiss, Frederik; Zurbrügg, Christian; Eggen, Rik; Castillo, Luisa; Ruepert, Clemens; Stamm, Christian

    2015-04-01

    Today, pesticides are intensively used in agriculture across the globe. Worldwide about 2.4×106 tons of pesticides are used annually on 1.6×109 ha of arable land. This yields a global average use of pesticides of 1.53 kg ha-1 year-1. Available data suggest that the use in the agricultural sector will continue to grow. Recently it was estimated that within the last decade, the world pesticide market increased by 93% and the Brazilian market alone by 190%. Though pesticides are intensively used in many low and middle income countries (LAMICs), scientifically sound data of amounts and types of pesticide use and the resulting impact on water quality are lacking in many of these countries. Therefore it is highly relevant to: i) identify risk areas where pesticides affect environmental health, ii) understand the environmental behavior of pesticides in vulnerable tropical ecosystems; and iii) develop possible mitigation options to reduce their exposure to ecosystems and humans. Here we present a project that will focus on assessing pesticide exposure of the aquatic environment and humans in tropical catchments of LAMICs. A catchment in the Zarcero province in Costa Rica will be the test case. Pesticide exposure will be assessed by passive sampling. In order to cover a broad range of compounds of possible use, two sampling devices will be used: SDB membranes for collecting polar compounds and silicon sheets for accumulating apolar pesticides. Extracts will be subsequently analysed by GC-MSMS and LC-HRMS.

  12. Storage as a Metric of Catchment Comparison

    USGS Publications Warehouse

    McNamara, J.P.; Tetzlaff, D.; Bishop, K.; Soulsby, C.; Seyfried, M.; Peters, N.E.; Aulenbach, Brent T.; Hooper, R.

    2011-01-01

    The volume of water stored within a catchment, and its partitioning among groundwater, soil moisture, snowpack, vegetation, and surface water are the variables that ultimately characterize the state of the hydrologic system. Accordingly, storage may provide useful metrics for catchment comparison. Unfortunately, measuring and predicting the amount of water present in a catchment is seldom done; tracking the dynamics of these stores is even rarer. Storage moderates fluxes and exerts critical controls on a wide range of hydrologic and biologic functions of a catchment. While understanding runoff generation and other processes by which catchments release water will always be central to hydrologic science, it is equally essential to understand how catchments retain water. We have initiated a catchment comparison exercise to begin assessing the value of viewing catchments from the storage perspective. The exercise is based on existing data from five watersheds, no common experimental design, and no integrated modelling efforts. Rather, storage was estimated independently for each site. This briefing presents some initial results of the exercise, poses questions about the definitions and importance of storage and the storage perspective, and suggests future directions for ongoing activities. ?? 2011 John Wiley & Sons, Ltd.

  13. High natural erosion rates are the backdrop for present-day soil erosion in the agricultural Middle Hills of Nepal

    NASA Astrophysics Data System (ADS)

    West, A. J.; Arnold, M.; AumaItre, G.; Bourles, D. L.; Keddadouche, K.; Bickle, M.; Ojha, T.

    2015-07-01

    Although agriculturally accelerated soil erosion is implicated in the unsustainable environmental degradation of mountain environments, such as in the Himalaya, the effects of land use can be challenging to quantify in many mountain settings because of the high and variable natural background rates of erosion. In this study, we present new long-term denudation rates, derived from cosmogenic 10Be analysis of quartz in river sediment from the Likhu Khola, a small agricultural river basin in the Middle Hills of central Nepal. Calculated long-term denudation rates, which reflect background natural erosion processes over 1000+ years prior to agricultural intensification, are similar to present-day sediment yields and to soil loss rates from terraces that are well maintained. Similarity in short- and long-term catchment-wide erosion rates for the Likhu is consistent with data from elsewhere in the Nepal Middle Hills but contrasts with the very large increases in short-term erosion rates seen in agricultural catchments in other steep mountain settings. Our results suggest that the large sediment fluxes exported from the Likhu and other Middle Hills rivers in the Himalaya are derived in large part from natural processes, rather than from soil erosion as a result of agricultural activity. Catchment-scale erosional fluxes may be similar over short and long timescales if both are dominated by mass wasting sources such as gullies, landslides, and debris flows (e.g., as is evident in the landslide-dominated Khudi Khola of the Nepal High Himalaya, based on compiled data). As a consequence, simple comparison of catchment-scale fluxes will not necessarily pinpoint land use effects on soils where these are only a small part of the total erosion budget, unless rates of mass wasting are also considered. Estimates of the mass wasting contribution to erosion in the Likhu imply catchment-averaged soil production rates on the order of ~ 0.25-0.35 mm yr-1, though rates of mass wasting are

  14. Development and validation of a runoff and erosion model for lowland drained catchments

    NASA Astrophysics Data System (ADS)

    Grangeon, Thomas; Cerdan, Olivier; Vandromme, Rosalie; Landemaine, Valentin; Manière, Louis; Salvador-Blanes, Sébastien; Foucher, Anthony; Evrard, Olivier

    2017-04-01

    occurring on dry soils in spring). The model was able to reproduce the runoff volumes for these different situations, and performed well, especially in winter (the relationship between observed and modeled values has R2=0.72) when most of the sediment are transferred. Therefore, future work will evaluate the model ability to reproduce the erosion and sediment dynamics in this catchment in order to provide a tool for sediment management in these lowland environments draining agricultural land where river siltation is problematic.

  15. Identifying dominant controls on hydrologic parameter transfer from gauged to ungauged catchments: a comparative hydrology approach

    USGS Publications Warehouse

    Singh, R.; Archfield, S.A.; Wagener, T.

    2014-01-01

    Daily streamflow information is critical for solving various hydrologic problems, though observations of continuous streamflow for model calibration are available at only a small fraction of the world’s rivers. One approach to estimate daily streamflow at an ungauged location is to transfer rainfall–runoff model parameters calibrated at a gauged (donor) catchment to an ungauged (receiver) catchment of interest. Central to this approach is the selection of a hydrologically similar donor. No single metric or set of metrics of hydrologic similarity have been demonstrated to consistently select a suitable donor catchment. We design an experiment to diagnose the dominant controls on successful hydrologic model parameter transfer. We calibrate a lumped rainfall–runoff model to 83 stream gauges across the United States. All locations are USGS reference gauges with minimal human influence. Parameter sets from the calibrated models are then transferred to each of the other catchments and the performance of the transferred parameters is assessed. This transfer experiment is carried out both at the scale of the entire US and then for six geographic regions. We use classification and regression tree (CART) analysis to determine the relationship between catchment similarity and performance of transferred parameters. Similarity is defined using physical/climatic catchment characteristics, as well as streamflow response characteristics (signatures such as baseflow index and runoff ratio). Across the entire US, successful parameter transfer is governed by similarity in elevation and climate, and high similarity in streamflow signatures. Controls vary for different geographic regions though. Geology followed by drainage, topography and climate constitute the dominant similarity metrics in forested eastern mountains and plateaus, whereas agricultural land use relates most strongly with successful parameter transfer in the humid plains.

  16. Characterising DOC, DON and DOP flux in two contrasting lowland UK catchments: impacts of contrasting source character and connectivity on reach scale DOM signature

    NASA Astrophysics Data System (ADS)

    Yates, C. A.; Johnes, P.; Spencer, R. G.

    2012-12-01

    Riverine DOM is a significant component of C, N and P transport from source to sea. Research to date has focused on characterising DOC in upland and boreal moorland and forested catchments. Here we present the results of an investigation of DOM character and DOC, DON and DOP flux relative to C, N and P flux in two contrasting lowland UK catchments: the Wylye and Millersford Brook. Both were sampled at daily frequency at 3 sites over a 2 year period, (2010-11 WY, 2011-12 WY) with fluorescence EEMs and UV-Vis determined weekly. The Wylye is a Chalk catchment, underlain by a major aquifer. It has predominantly calcareous brown earth soils, intensive arable agriculture, scattered farms and riparian villages with a major settlement in the lower reaches of the river. There are few natural organic sources in the catchment and flows are baseflow dominated with a BFI of 0.93. DOC (NPOC) concentrations averaged 2.59 mg C/l in water year 2011-12, while Total N concentrations averaged 10.0 mg N/l, with DON averaging 0.9 mg N/l, and Total P concentrations averaged 0.18 mg/l with DOP averaging 0.026 mg/l. Millersford Brook drains peaty soils over glacial sands and clays, with moorland and forestry as the dominant land uses. Flows are dominated by overland and subsurface quick flow through with a BFI of 0.34. There is some low intensity grazing, no fertiliser use and no dwellings in the headwaters of the catchment. As a result nutrient concentrations are lower, but C flux is higher, with mean annual concentrations in WY 2011-12 of 0.93 mg TN/l, 0.051 mg TP/l, 8.83 mg DOC/l, 0.55 mg DON/l and 0.029 mg DOP/l. DOM character in Millersford Brook is comparable for that observed in other catchments with peaty soils and low acid neutralising capacity. The character of DOM varies along the length of the river, with HMW compounds dominating the signal in the headwaters, and LMW fluorescence intensities added to the signal in the lower reaches of the river, where septic tank effluent

  17. "Upstream Thinking": the catchment management approach of a water provider

    NASA Astrophysics Data System (ADS)

    Grand-Clement, E.; Ross, M.; Smith, D.; Anderson, K.; Luscombe, D.; Le Feuvre, N.; Brazier, R. E.

    2012-04-01

    Human activities have large impacts on water quality and provision. Water companies throughout the UK are faced with the consequences of poor land management and need to find appropriate solutions to decreasing water quality. This is particularly true in the South West of England, where 93% of the drinking water is sourced from rivers and reservoirs: large areas of drained peatlands (i.e. Exmoor and Dartmoor National Parks) are responsible for a significant input of dissolved organic carbon (DOC) discolouring the water, whilst poorly managed farming activities can lead to diffuse pollution. Alongside the direct environmental implications, poor water quality is partly increasing water treatment costs and will drive significant future investment in additional water treatment, with further repercussions on customers. This highlights the need for water companies throughout the UK, and further afield, to be more involved in catchment management. "Upstream Thinking" is South West Water's (SWW) approach to catchment management, where working with stakeholders to improve water quality upstream aims to avoid increasingly costly solutions downstream. This approach has led the company to invest in two major areas of work: (1) The Farmland programme where problematic farm management practices and potential solutions are identified, typically 40% of the required investment is then offered in exchange for a legal undertaking to maintain the new farm assets in good condition for 25 years; (2) The Mires programme which involves heavy investment in peatland restoration through the blocking of open ditches in order to improve water storage and quality in the long term. From these two projects, it has been clear that stakeholder involvement of groups such as local farmers, the Westcountry Rivers Trust, the Exmoor National Park Authority, the Environment Agency, Natural England and the Exmoor Society is essential, first because it draws in catchment improvement expertise which is not

  18. Assessing the impact of scaling-up bednet coverage through agricultural loan programmes: evidence from a cluster randomised controlled trial in Katete, Zambia.

    PubMed

    Fink, Günther; Masiye, Felix

    2012-11-01

    To investigate the effectiveness of scaling-up existing bednet distribution campaigns, a randomised controlled trial with 516 farming households in Katete District, a rural area with highly endemic malaria in Zambia's Eastern Province, was evaluated. In the trial, selected farmers were assigned to bednet programmes that allowed them to obtain additional bednets for free or at subsidised prices through agricultural loan programmes. On average, 2.4 nets were distributed in the free distribution group and 0.9 in the net loan group. The marginal health impact of additional nets appears large, reducing the odds of self-reported all-cause morbidity by 40-42% and the odds of self-reported confirmed malaria by 53-60%. Copyright © 2012 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  19. Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA

    USGS Publications Warehouse

    Shanley, J.B.; Kendall, C.; Smith, T.E.; Wolock, D.M.; McDonnell, Jeffery J.

    2002-01-01

    Factors controlling the partitioning of old and new water contributions to stream flow were investigated for three events in four catchments (three of which were nested) at Sleepers River Research Watershed in Danville, Vermont. In the 1993 snowmelt period, two-component isotopic hydrograph separations showed that new water (meltwater) inputs to the stream ranged widely from 41 to 74%, and increased with catchment size (41 to 11 125 ha) (with one exception) and with open land cover (0-73%). Peak dissolved organic carbon concentrations and relative alkalinity dilution in stream water ranked in the same order among catchments as the new water fractions, suggesting that new water followed shallow flow paths. During the 1994 snowmelt, despite similar timing and magnitude of melt inputs, the new-water contribution to stream flow ranged only from 30 to 36% in the four catchments. We conclude that the uncommonly high and variable new water fractions in streamwater during the 1993 melt were caused by direct runoff of meltwater over frozen ground, which was prevalent in open land areas during the 1993 winter. In a high-intensity summer rainstorm in 1993, new water fractions were smaller relative to the 1993 snowmelt, ranging from 28 to 46%, but they ranked in the identical catchment order. Reconciliation of the contrasting patterns of new-old water partitioning in the three events appears to require an explanation that invokes multiple processes and effects, including: 1 topographically controlled increase in surface-saturated area with increasing catchment size; 2 direct runoff over frozen ground; 3 low infiltration in agriculturally compacted soils; 4 differences in soil transmissivity, which may be more relevant under dry antecedent conditions. These data highlight some of the difficulties faced by catchment hydrologists in formulating a theory of runoff generation at varying basin scales. Copyright ?? 2002 John Wiley and Sons, Ltd.

  20. Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA

    NASA Astrophysics Data System (ADS)

    Shanley, James B.; Kendall, Carol; Smith, Thor E.; Wolock, David M.; McDonnell, Jeffrey J.

    2002-02-01

    Factors controlling the partitioning of old and new water contributions to stream flow were investigated for three events in four catchments (three of which were nested) at Sleepers River Research Watershed in Danville, Vermont. In the 1993 snowmelt period, two-component isotopic hydrograph separations showed that new water (meltwater) inputs to the stream ranged widely from 41 to 74%, and increased with catchment size (41 to 11 125 ha) (with one exception) and with open land cover (0-73%). Peak dissolved organic carbon concentrations and relative alkalinity dilution in stream water ranked in the same order among catchments as the new water fractions, suggesting that new water followed shallow flow paths. During the 1994 snowmelt, despite similar timing and magnitude of melt inputs, the new-water contribution to stream flow ranged only from 30 to 36% in the four catchments. We conclude that the uncommonly high and variable new water fractions in streamwater during the 1993 melt were caused by direct runoff of meltwater over frozen ground, which was prevalent in open land areas during the 1993 winter. In a high-intensity summer rainstorm in 1993, new water fractions were smaller relative to the 1993 snowmelt, ranging from 28 to 46%, but they ranked in the identical catchment order. Reconciliation of the contrasting patterns of new-old water partitioning in the three events appears to require an explanation that invokes multiple processes and effects, including: 1.topographically controlled increase in surface-saturated area with increasing catchment size;2.direct runoff over frozen ground;3.low infiltration in agriculturally compacted soils;4.differences in soil transmissivity, which may be more relevant under dry antecedent conditions. These data highlight some of the difficulties faced by catchment hydrologists in formulating a theory of runoff generation at varying basin scales.

  1. The use of GIS and multi-criteria evaluation (MCE) to identify agricultural land management practices which cause surface water pollution in drinking water supply catchments.

    PubMed

    Grayson, Richard; Kay, Paul; Foulger, Miles

    2008-01-01

    Diffuse pollution poses a threat to water quality and results in the need for treatment for potable water supplies which can prove costly. Within the Yorkshire region, UK, nitrates, pesticides and water colour present particular treatment problems. Catchment management techniques offer an alternative to 'end of pipe' solutions and allow resources to be targeted to the most polluting areas. This project has attempted to identify such areas using GIS based modelling approaches in catchments where water quality data were available. As no model exists to predict water colour a model was created using an MCE method which is capable of predicting colour concentrations at the catchment scale. CatchIS was used to predict pesticide and nitrate N concentrations and was found to be generally capable of reliably predicting nitrate N loads at the catchment scale. The pesticides results did not match the historic data possibly due to problems with the historic pesticide data and temporal and spatially variability in pesticide usage. The use of these models can be extended to predict water quality problems in catchments where water quality data are unavailable and highlight areas of concern. IWA Publishing 2008.

  2. Flood-related contamination in catchments affected by historical metal mining: an unexpected and emerging hazard of climate change.

    PubMed

    Foulds, S A; Brewer, P A; Macklin, M G; Haresign, W; Betson, R E; Rassner, S M E

    2014-04-01

    Floods in catchments affected by historical metal mining result in the remobilisation of large quantities of contaminated sediment from floodplain soils and old mine workings. This poses a significant threat to agricultural production and is preventing many European river catchments achieving a 'good chemical and ecological status', as demanded by the Water Framework Directive. Analysis of overbank sediment following widespread flooding in west Wales in June 2012 showed that flood sediments were contaminated above guideline pollution thresholds, in some samples by a factor of 82. Most significantly, silage produced from flood affected fields was found to contain up to 1900 mg kg(-1) of sediment associated Pb, which caused cattle poisoning and mortality. As a consequence of climate related increases in flooding this problem is likely to continue and intensify. Management of contaminated catchments requires a geomorphological approach to understand the spatial and temporal cycling of metals through the fluvial system. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Catchment Engineering: A New Paradigm in Water Management

    NASA Astrophysics Data System (ADS)

    Quinn, P. F.; Burke, S.; O'Donnell, G. M.; Wilkinson, M.; Jonczyk, J.; Barber, N.; Nicholson, A.; Proactive Team

    2011-12-01

    Recent catchment initiatives have highlighted the need for new holistic approaches to sustainable water management. Here, a catchment engineering approach seeks to describe catchment 'function' (or role) as the principal driver for evaluating how it should be managed in the future. Catchment engineering does not seek to re-establish a natural system but seeks to work with natural processes in order to engineer landscapes so that multiple benefits accrue. This approach involves quantifying and assessing catchment change and impacts but most importantly suggests an urgent and proactive agenda for future planning. In particular, an interventionist approach to managing hydrological flow pathways across scale is proposed. It is already accepted that future management will require a range of scientific expertise and full engagement with stakeholders, namely the general public and policy makers. This inclusive concept under a catchment engineering agenda forces any consortia to commit to actively changing and perturbing the catchment system and thus learn, in situ, how to manage the environment for collective benefits. The shared cost, the design, the implementation, the evaluation and any subsequent modifications should involve all relevant parties in the consortia. This joint ownership of a 'hands on' interventionist agenda to catchment change is at the core of catchment engineering. In this paper we show a range of catchment engineering projects from the UK that have addressed multi-disciplinary approaches to flooding, pollution and ecosystem management whilst maintaining economic food production. Local scale demonstration activities, led by local champions, have proven to be an effective means of encouraging wider uptake. Catchment engineering is a concept that relies on all relevant parties within a catchment to take responsibility for the water quantity and quality that arises from the catchment. Further, any holistic solution requires a bottom up, problem solving

  4. Catchment sediment flux: a lake sediment perspective on the onset of the Anthropocene?

    NASA Astrophysics Data System (ADS)

    Chiverrell, Richard

    2014-05-01

    Definitions of the Anthropocene are varied but from a geomorphological perspective broadly can be described as the interval of recent Earth history during which 'humans have had an 'overwhelming' effect on the Earth system' (Brown et al., 2013). Identifying the switch to a human-dominated geomorphic process regime is actually a challenging process, with in the 'Old World' ramping up of human populations and impacts on earth surface processes since the Neolithic/Mesolithic transition and the onset of agriculture. In the terrestrial realm lakes offer a unique window on changes in human forcing of earth surface processes from a sedimentary flux perspective, because unlike alluvial and hill-slope systems sedimentation is broadly continuous and uninterrupted. Dearing and Jones (2003) showed for a global dataset of lakes a 5-10 fold increase in sediment delivery comparing pre- and post-anthropogenic disturbance. Here sediment records from several lakes in lowland agricultural landscapes are presented to examine the changes in the flux and composition of materials delivered from their catchments. By definition the lakes record the switch to a human dominated system, but not necessary in accelerated sediment accumulation rates with changes in sediment composition equally important. Data from Crose, Hatch and Peckforton Meres, in lowland northwest England are interrogated producing quantitative land-cover reconstructions from pollen spectra calculated using the REVEALS model (Sugita, 2007), geochemical evidence for changes sediment provenance and flux, and 14C and stable Pb pollutant based chronological models detecting changes in sediment accumulation rate. The lake sediment geochemistry points to several phases of heightened human impact within these small agricultural catchments. Following small-in-scale forest cover reductions and limited impacts in terms of sediment flux during the Neolithic, the Bronze to Iron Age saw the first substantial reductions in forest cover

  5. Recent advances in catchment hydrology

    NASA Astrophysics Data System (ADS)

    van Meerveld, I. H. J.

    2017-12-01

    Despite the consensus that field observations and catchment studies are imperative to understand hydrological processes, to determine the impacts of global change, to quantify the spatial and temporal variability in hydrological fluxes, and to refine and test hydrological models, there is a decline in the number of field studies. This decline and the importance of fieldwork for catchment hydrology have been described in several recent opinion papers. This presentation will summarize these commentaries, describe how catchment studies have evolved over time, and highlight the findings from selected recent studies published in Water Resources Research.

  6. Developing a vulnerability index for assessing riverbank erosion in large catchments

    NASA Astrophysics Data System (ADS)

    Regan, Siôn; Smith, Hugh

    2017-04-01

    Riverbank erosion is a natural process involved in floodplain development, but can have negative impacts such as excessive sediment supply to the river channel, undermining infrastructure and eroding valuable agricultural land. Catchment managers often work with limited budgets and for remediation efforts to be the most effective they should be targeted in areas that are at the highest risk of suffering excessive riverbank erosion. Recent developments in high resolution spatial data capture, such as aerial LiDAR have allowed for much more detailed representation of the riparian area, including the channel location and riparian vegetation. This presentation will propose a new dimensionless index that has been developed to identify and rank sections of river channel according to erosion vulnerability. The index combines information on channel position, slope and curvature extracted from LiDAR-derived DEMs with riparian vegetation cover. It also accounts for the extent of lateral confinement limiting erosion and bank silt-clay composition influencing erodibility. The index is designed to be applied to alluvial channels across large catchments (>500 km2) to support the identification riverbank erosion 'hotspots' at the reach scale (approximating 50-200 m intervals). The performance of the vulnerability index in discriminating actively eroding and non-eroding channel reaches was assessed in the River Lugg catchment, UK. Historic mapping and aerial photographs were used to determine the channel position, slope and riparian vegetation coverage in the 1960s. The index was then calculated for the historic river channel position and compared with ranked metrics of lateral channel change that occurred between the 1960s and present. This approach provides a basis for evaluating the utility of a simple vulnerability index that could be used for prioritising the location of future investments to reduce excessive riverbank erosion in large catchments.

  7. Development of catchment research, with particular attention to Plynlimon and its forerunner, the East African catchments

    NASA Astrophysics Data System (ADS)

    Blackie, J. R.; Robinson, M.

    2007-01-01

    Dr J.S.G. McCulloch was deeply involved in the establishment of research catchments in East Africa and subsequently in the UK to investigate the hydrological consequences of changes in land use. Comparison of these studies provides an insight into how influential his inputs and direction have been in the progressive development of the philosophy, the instrumentation and the analytical techniques now employed in catchment research. There were great contrasts in the environments: tropical highland (high radiation, intense rainfall) vs. temperate maritime (low radiation and frontal storms), contrasting soils and vegetation types, as well as the differing social and economic pressures in developing and developed nations. Nevertheless, the underlying scientific philosophy was common to both, although techniques had to be modified according to local conditions. As specialised instrumentation and analytical techniques were developed for the UK catchments many were also integrated into the East African studies. Many lessons were learned in the course of these studies and from the experiences of other studies around the world. Overall, a rigorous scientific approach was developed with widespread applicability. Beyond the basics of catchment selection and the quantification of the main components of the catchment water balance, this involved initiating parallel process studies to provide information on specific aspects of catchment behaviour. This information could then form the basis for models capable of extrapolation from the observed time series to other periods/hydrological events and, ultimately, the capability of predicting the consequences of changes in catchment land management to other areas in a range of climates.

  8. The role of land use/land cover dependent preferential flow paths in hydrologic response of steep and seasonal tropical catchments

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Ogden, F. L.; Zhu, J.

    2017-12-01

    The hydrologic behavior of steep catchments with saprolitic soils in the humid seasonal tropics varies with land use and cover, even when they have identical topographic index and slope distributions, underlying geology and soils textures. Forested catchments can produce more baseflow during the dry season compared to catchments containing substantial amount of pasture, the so-called "sponge effect". During rainfall events, forested catchments can also exhibit lower peak runoff rates and runoff efficiencies compared to pasture catchments. We hypothesize that hydrologic effects of land use arise from differences in preferential flow paths (PFPs) formed by biotic and abiotic factors in the upper one to two meters of soil and that land use effects on hydrological response are described by the relative amounts of forest and pasture within a catchment. Furthermore, we hypothesize that infiltration measurements at different scales allow estimation of PFP-related parameters. These hypotheses are tested by a model that explicitly simulates PFPs using distinct input parameter sets for forest and pasture. Runoff observations from three catchments with pasture, forest, and a mosaic of subsistence agricultural land covers allow model evaluation. Multiple objective criteria indicate that field measurements of infiltration enable PFP-relevant parameter identification and that pasture and forest end member parameter sets describe much of the observed difference. Analysis of water balance components and comparison between average transient water table depth and vertical PFP flow capacity demonstrate that the interplay of lateral and vertical PFPs contribute to the sponge-effect and can explain differences in peak runoff and runoff efficiency.

  9. Influence of land use on hyporheos in catchment of the Jarama River (central Spain)

    NASA Astrophysics Data System (ADS)

    Iepure, S.; Martínez-Hernández, V.; Herrera, S.; de Bustamante, I.; Rasines, R.

    2012-04-01

    The Water Framework Directive (2000) requires integrated assessment of water bodies based on water resources but also the evaluation of land-use catchment effect on chemical and ecological conditions of aquatic ecosystems. The hyporheic zone (HZ) supporting obligate subterranean species are particularly vulnerable in river ecosystems when environmental stress occurs at surface and require management strategies to protect both the stream catchment and the aquifer that feed the stream channel. The influence of catchment land-use in the Jarama basin (central Spain) on river geomorphology and hyporheic zone granulometry, chemical and biological variables inferred from crustacean community biodiversity (species richness, taxonomic distinctness) and ecology was assessed. The study was conducted in four streams from the Madrid metropolitan area under distinct local land-use and water resource protection: i) a preserved forested natural sites where critical river ecosystem processes were unaltered or less altered by human activities, and ii) different degree of anthropogenic impact sites from agriculture, urban industrial and mining activities. The river bed permeability reduction and the increase of low sediment size input associated with changes in geomorphology of the stream channels are greatly affected by land-use changes in the Jarama watershed. Water chemical parameters linked to land-use increase from the natural stream to the urban industrial and agricultural dominated catchment. Principal coordinate analysis (PCO) and multidimensional scaling (MDS) clearly discriminate the pristine sites from forested areas by those under anthropogenic stressors. In streams draining forested areas, groundwater discharge and regular exchange between groundwater and surface water occur due to relatively high permeability of the sediments. Consequently, forested land-use produce sites of high water quality and crustacean richness (both groundwater dwellers and surface

  10. Using geomorphological variables to predict the spatial distribution of plant species in agricultural drainage networks.

    PubMed

    Rudi, Gabrielle; Bailly, Jean-Stéphane; Vinatier, Fabrice

    2018-01-01

    To optimize ecosystem services provided by agricultural drainage networks (ditches) in headwater catchments, we need to manage the spatial distribution of plant species living in these networks. Geomorphological variables have been shown to be important predictors of plant distribution in other ecosystems because they control the water regime, the sediment deposition rates and the sun exposure in the ditches. Whether such variables may be used to predict plant distribution in agricultural drainage networks is unknown. We collected presence and absence data for 10 herbaceous plant species in a subset of a network of drainage ditches (35 km long) within a Mediterranean agricultural catchment. We simulated their spatial distribution with GLM and Maxent model using geomorphological variables and distance to natural lands and roads. Models were validated using k-fold cross-validation. We then compared the mean Area Under the Curve (AUC) values obtained for each model and other metrics issued from the confusion matrices between observed and predicted variables. Based on the results of all metrics, the models were efficient at predicting the distribution of seven species out of ten, confirming the relevance of geomorphological variables and distance to natural lands and roads to explain the occurrence of plant species in this Mediterranean catchment. In particular, the importance of the landscape geomorphological variables, ie the importance of the geomorphological features encompassing a broad environment around the ditch, has been highlighted. This suggests that agro-ecological measures for managing ecosystem services provided by ditch plants should focus on the control of the hydrological and sedimentological connectivity at the catchment scale. For example, the density of the ditch network could be modified or the spatial distribution of vegetative filter strips used for sediment trapping could be optimized. In addition, the vegetative filter strips could constitute

  11. Modelling soil erosion in a head catchment of Jemma Basin on the Ethiopian highlands

    NASA Astrophysics Data System (ADS)

    Cama, Mariaelena; Schillaci, Calogero; Kropáček, Jan; Hochschild, Volker; Maerker, Michael

    2017-04-01

    Soil erosion represents one of the most important global issues with serious effects on agriculture and water quality especially in developing countries such as Ethiopia where rapid population growth and climatic changes affect wide mountainous areas. The catchment of Andit-Tid is a head catchment of Jemma Basin draining to the Blue Nile (Central Ethiopia). It is located in an extremely variable topographical environment and it is exposed to high degradation dynamics especially in the lower part of the catchment. The increasing agricultural activity and grazing, lead to an intense use of the steep slopes which altered the soil structure. As a consequence, water erosion processes accelerated leading to the evolution of sheet erosion, gullies and badlands. This study is aimed at a geomorphological assessment of soil erosion susceptibility. First, a geomorphological map is generated using high resolution digital elevation model (DEM) derived from high resolution stereoscopic satellite data, multispectral imagery from Rapid Eye satellite system . The map was then validated by a detailed field survey. The final maps contains three inventories of landforms: i) sheet, ii) gully erosion and iii) badlands. The water erosion susceptibility is calculated with a Maximum Entropy approach. In particular, three different models are built using the three inventories as dependent variables and a set of spatial attributes describing the lithology, terrain, vegetation and land cover from remote sensing data and DEMs as independent variables. The single susceptibility maps for sheet, gully erosion as well as badlands showed good to excellent predictive performances. Moreover, we reveal and discuss the importance of different sets of variables among the three models. In order to explore the mutual overlap of the three susceptibility maps we generated a combined map as color composite whereas each color represents one component of water erosion. The latter map yield a useful information

  12. Land degradation trends in upper catchments and morphological developments of braided rivers in drylands: the case of a marginal graben of the Ethiopian Rift Valley

    NASA Astrophysics Data System (ADS)

    Demissie, Biadgilgn; Frankl, Amaury; Haile, Mitiku; Nyssen, Jan

    2014-05-01

    Braided rivers have received relatively little attention in research and development activities in drylands. However, they strongly impact agroecology and agricultural activities and thereby local livelihoods. The Raya Graben (3750 km² including the escarpment) is a marginal graben of the Ethiopian Rift Valley located in North Ethiopia. In order to study the dynamics of braided rivers and the relationship with biophysical controls, 20 representative catchments were selected, ranging between 15 and 311 km². First, the 2005 morphology (length, area) of the braided rivers was related to biophysical controls (vegetation cover, catchment area and slope gradient in the steep upper catchments and gradient in the graben bottom). Second, the changes in length of the braided rivers were related to vegetation cover changes in the upper catchments since 1972. Landsat imagery was used to calculate the Normalized Difference Vegetation Index (NDVI), and to map vegetation cover and the total length of the braided rivers. Spot CNES imagery available from Google Earth was used to identify the total area of the braided rivers in 2005. A linear regression analysis revealed that the length of braided rivers was positively related to the catchment area (R²=0.32, p<0.01), but insignificantly related to vegetation cover in the upper catchments. However, there is an indication that it is an important factor in the relationship calculated for 2005 (R²=0.2, p=0.064). Similarly, the area occupied by the braided rivers was related to NDVI (R²=0.24, p<0.05) and upper catchment area (R²=0.447, p<0.01). Slope gradient is not an important explanatory factor. This is related to the fact that slope gradients are steep (average of 38.1%) in all upper and gentle (average of 3.4%) in graben bottom catchments. The vegetation cover in the upper catchments shows a statistically insignificant increasing trend (R²=0.73, p=0.067) over the last 40 years, whereas length of rivers in the graben bottom

  13. The response of sediment source and transfer dynamics to land use (change) in the Lake Manyara catchment

    NASA Astrophysics Data System (ADS)

    Wynants, Maarten; Munishi, Linus; Solomon, Henok; Grenfell, Michael; Taylor, Alex; Millward, Geoff; Boeckx, Pascal; Ndakidemi, Patrick; Gilvear, David; Blake, William

    2017-04-01

    The Lake Manyara basin in the East African Rift Region of Tanzania is considered to be an important driver for sustainable development in northern Tanzania in terms of biodiversity conservation, ecotourism, fisheries, pastoralism and (irrigation) agriculture. Besides local conservation, Lake Manyara National Park and its surroundings also have a vital function as a wildlife corridor connecting the Tarangire and Maasai steppe ecosystem with the entire northern Tanzania and Southern Kenya collective of national parks and ecosystems. However, driven by population pressure, increasing number of farmers are establishing agricultural operations in the catchment, causing a shift of the natural vegetation towards agricultural land. Furthermore, pastoralists with ever growing cattle stocks are roaming the grasslands, causing a decrease in soil structure due to overgrazing and compaction of the soil. We hypothesize that these processes increase the vulnerability to erosion, which presents a credible threat to ecosystem service provision, on the one hand the agricultural- and rangelands where loss of this finite resource threatens food security and people's livelihoods and on the other hand the water bodies, where siltation and eutrophication threatens the water quality and biodiversity. Knowledge of sediment source and transfer dynamics in the main tributaries of Lake Manyara and the response of these dynamics to land use (change) is critical to inform sustainable management policy decisions to maintain and enhance future food and water security. Using geochemical tracing techniques and Bayesian unmixing models we were able to attribute the lake sediment proportionally to its contributing tributaries. Furthermore, we were able to identify differences in erosion processes in different tributary systems using gamma spectrometry measurements of surface-elevated fallout radionuclides (137Cs and 210Pb). In our results we found that almost half of the sediment in the lake could be

  14. Transport and potential attenuation of nitrogen in shallow groundwaters in the lower Rangitikei catchment, New Zealand.

    PubMed

    Collins, S; Singh, R; Rivas, A; Palmer, A; Horne, D; Manderson, A; Roygard, J; Matthews, A

    2017-11-01

    Intensive agricultural activities are generally associated with nitrogen leaching from agricultural soils, and this nitrogen has the potential to percolate and contaminate groundwater and surface waters. We assessed surface water and groundwater interactions, and nitrogen leaching and its potential attenuation in shallow groundwater in the lower Rangitikei River catchment (832km 2 ), New Zealand. We combined regional- and local-scale field surveys and experiments, nutrient budget modelling, and hydraulic and geochemical methods, to gain an insight into leaching, transformation and transport of nitrogen via groundwaters to the river in the study area. Concurrent river flow gaugings (in January 2015) and a piezometric map, developed from measured depths to groundwater in 110 bores (in October 2014), suggest groundwater discharges to the Rangitikei River in the upper parts of the study area, while there is groundwater recharge near the coast. The groundwater redox characterisation, based on sampling and analysis of 15 mostly shallow bores (<30m below ground level (bgl)), suggests groundwater across the lower Rangitikei catchment in general is under anoxic/reduced conditions. The groundwater typically has low dissolved oxygen (DO) concentrations (<1mg/L), suggesting the subsurface environment is conducive to potential attenuation by 'denitrification' of NO 3 -N in groundwater. We further measured NO 3 -N attenuation in shallow groundwater piezometers (3-6mbgl) using single-well push-pull tests. We found generally low levels (<0.5mg/L) of NO 3 -N in shallow groundwater piezometers (>5mbgl), despite being installed under intensive land uses, such as dairying and cropping. Our in-field push-pull tests showed NO 3 -N reduction at four shallow groundwater piezometers, with the rates of reduction varying from 0.04mgNL -1 h - 1 to 1.57mgNL -1 h - 1 . This highlights the importance of a sound understanding of not only the sources, but also transport and transformation, or fate

  15. Transport and potential attenuation of nitrogen in shallow groundwaters in the lower Rangitikei catchment, New Zealand

    NASA Astrophysics Data System (ADS)

    Collins, S.; Singh, R.; Rivas, A.; Palmer, A.; Horne, D.; Manderson, A.; Roygard, J.; Matthews, A.

    2017-11-01

    Intensive agricultural activities are generally associated with nitrogen leaching from agricultural soils, and this nitrogen has the potential to percolate and contaminate groundwater and surface waters. We assessed surface water and groundwater interactions, and nitrogen leaching and its potential attenuation in shallow groundwater in the lower Rangitikei River catchment (832 km2), New Zealand. We combined regional- and local-scale field surveys and experiments, nutrient budget modelling, and hydraulic and geochemical methods, to gain an insight into leaching, transformation and transport of nitrogen via groundwaters to the river in the study area. Concurrent river flow gaugings (in January 2015) and a piezometric map, developed from measured depths to groundwater in 110 bores (in October 2014), suggest groundwater discharges to the Rangitikei River in the upper parts of the study area, while there is groundwater recharge near the coast. The groundwater redox characterisation, based on sampling and analysis of 15 mostly shallow bores (< 30 m below ground level (bgl)), suggests groundwater across the lower Rangitikei catchment in general is under anoxic/reduced conditions. The groundwater typically has low dissolved oxygen (DO) concentrations (< 1 mg/L), suggesting the subsurface environment is conducive to potential attenuation by 'denitrification' of NO3-N in groundwater. We further measured NO3-N attenuation in shallow groundwater piezometers (3-6 m bgl) using single-well push-pull tests. We found generally low levels (< 0.5 mg/L) of NO3-N in shallow groundwater piezometers (> 5 m bgl), despite being installed under intensive land uses, such as dairying and cropping. Our in-field push-pull tests showed NO3-N reduction at four shallow groundwater piezometers, with the rates of reduction varying from 0.04 mg N L- 1 h-1 to 1.57 mg N L- 1 h-1. This highlights the importance of a sound understanding of not only the sources, but also transport and transformation, or

  16. High temporal resolution water chemistry information for catchment understanding and management

    NASA Astrophysics Data System (ADS)

    Reaney, S. M.; Deasy, C.; Ockenden, M.; Perks, M.; Quinton, J.

    2013-12-01

    Many rivers and lakes are currently not meeting their full ecological potential due to environmental pressures including non-point source pollution from the catchment. These pressures include sediment, nitrogen and phosphorus from agriculture and other sources. Each of these pollutants is transferred through the landscape with different hydrological processes and along different pathways. Therefore, to effectively select and spatially target mitigation actions in the landscape, an understanding of the dominant hydrological processes and dynamics which are causing the transfer of material is required. Recent advances in environmental monitoring have enabled the collection of new rich datasets with a high temporal sampling frequency. In the UK, these techniques have been implemented in the Defra Demonstration Test Catchments project and with Natural England for targeted site investigations. Measurements include weather, hydrological flows, sediment, oxygen isotopes, nitrogen and phosphorus from a combination of in-field labs, water chemistry sondes and storm samplers. The detailed time series data can then be analysed to give insights into catchment processes through the analysis of the measured process dynamics. For example, evidence of the transfer of material along surface (or pipe) flow paths can be found from the co-incident timing of the sediment and flow record, or the timing of temperature variations after a storm event can give insight into the contribution of shallow groundwater. Given this evidence of catchment hydrological dynamics it is possible to determine the probable pathways which are transferring pollutants and hence it is possible to select suitable mitigation options in the landscape to improve the river or lake. For example, evidence of a pollutant transfer occurring as shallow soil flows suggests that buffer strips would not be an effective solution since these measures intercept surface pathways. Information on catchment residence time not

  17. Catchment classification by runoff behaviour with self-organizing maps (SOM)

    NASA Astrophysics Data System (ADS)

    Ley, R.; Casper, M. C.; Hellebrand, H.; Merz, R.

    2011-09-01

    Catchments show a wide range of response behaviour, even if they are adjacent. For many purposes it is necessary to characterise and classify them, e.g. for regionalisation, prediction in ungauged catchments, model parameterisation. In this study, we investigate hydrological similarity of catchments with respect to their response behaviour. We analyse more than 8200 event runoff coefficients (ERCs) and flow duration curves of 53 gauged catchments in Rhineland-Palatinate, Germany, for the period from 1993 to 2008, covering a huge variability of weather and runoff conditions. The spatio-temporal variability of event-runoff coefficients and flow duration curves are assumed to represent how different catchments "transform" rainfall into runoff. From the runoff coefficients and flow duration curves we derive 12 signature indices describing various aspects of catchment response behaviour to characterise each catchment. Hydrological similarity of catchments is defined by high similarities of their indices. We identify, analyse and describe hydrologically similar catchments by cluster analysis using Self-Organizing Maps (SOM). As a result of the cluster analysis we get five clusters of similarly behaving catchments where each cluster represents one differentiated class of catchments. As catchment response behaviour is supposed to be dependent on its physiographic and climatic characteristics, we compare groups of catchments clustered by response behaviour with clusters of catchments based on catchment properties. Results show an overlap of 67% between these two pools of clustered catchments which can be improved using the topologic correctness of SOMs.

  18. Catchment classification by runoff behaviour with self-organizing maps (SOM)

    NASA Astrophysics Data System (ADS)

    Ley, R.; Casper, M. C.; Hellebrand, H.; Merz, R.

    2011-03-01

    Catchments show a wide range of response behaviour, even if they are adjacent. For many purposes it is necessary to characterise and classify them, e.g. for regionalisation, prediction in ungauged catchments, model parameterisation. In this study, we investigate hydrological similarity of catchments with respect to their response behaviour. We analyse more than 8200 event runoff coefficients (ERCs) and flow duration curves of 53 gauged catchments in Rhineland-Palatinate, Germany, for the period from 1993 to 2008, covering a huge variability of weather and runoff conditions. The spatio-temporal variability of event-runoff coefficients and flow duration curves are assumed to represent how different catchments "transform" rainfall into runoff. From the runoff coefficients and flow duration curves we derive 12 signature indices describing various aspects of catchment response behaviour to characterise each catchment. Hydrological similarity of catchments is defined by high similarities of their indices. We identify, analyse and describe hydrologically similar catchments by cluster analysis using Self-Organizing Maps (SOM). As a result of the cluster analysis we get five clusters of similarly behaving catchments where each cluster represents one differentiated class of catchments. As catchment response behaviour is supposed to be dependent on its physiographic and climatic characteristics, we compare groups of catchments clustered by response behaviour with clusters of catchments based on catchment properties. Results show an overlap of 67% between these two pools of clustered catchments which can be improved using the topologic correctness of SOMs.

  19. Emergent structures and understanding from a comparative uncertainty analysis of the FUSE rainfall-runoff modelling platform for >1,100 catchments

    NASA Astrophysics Data System (ADS)

    Freer, J. E.; Odoni, N. A.; Coxon, G.; Bloomfield, J.; Clark, M. P.; Greene, S.; Johnes, P.; Macleod, C.; Reaney, S. M.

    2013-12-01

    If we are to learn about catchments and their hydrological function then a range of analysis techniques can be proposed from analysing observations to building complex physically based models using detailed attributes of catchment characteristics. Decisions regarding which technique is fit for a specific purpose will depend on the data available, computing resources, and the underlying reasons for the study. Here we explore defining catchment function in a relatively general sense expressed via a comparison of multiple model structures within an uncertainty analysis framework. We use the FUSE (Framework for Understanding Structural Errors - Clark et al., 2008) rainfall-runoff modelling platform and the GLUE (Generalised Likelihood Uncertainty Estimation - Beven and Freer, 2001) uncertainty analysis framework. Using these techniques we assess two main outcomes: 1) Benchmarking our predictive capability using discharge performance metrics for a diverse range of catchments across the UK 2) evaluating emergent behaviour for each catchment and/or region expressed as ';best performing' model structures that may be equally plausible representations of catchment behaviour. We shall show how such comparative hydrological modelling studies show patterns of emergent behaviour linked both to seasonal responses and to different geoclimatic regions. These results have implications for the hydrological community regarding how models can help us learn about places as hypothesis testing tools. Furthermore we explore what the limits are to such an analysis when dealing with differing data quality and information content from ';pristine' to less well characterised and highly modified catchment domains. This research has been piloted in the UK as part of the Environmental Virtual Observatory programme (EVOp), funded by NERC to demonstrate the use of cyber-infrastructure and cloud computing resources to develop better methods of linking data and models and to support scenario analysis

  20. Diffuse nutrient losses and the impact factors determining their regional differences in four catchments from North to South China

    NASA Astrophysics Data System (ADS)

    Zhang, Yongyong; Zhou, Yujian; Shao, Quanxi; Liu, Hongbin; Lei, Qiuliang; Zhai, Xiaoyan; Wang, Xuelei

    2016-12-01

    Diffuse nutrient loss mechanism is complicated and shows remarkably regional differences due to spatial heterogeneities of underlying surface conditions, climate and agricultural practices. Moreover, current available observations are still hard to support the identification of impact factors due to different time or space steps. In this study, an integrated water system model (HEQM) was adopted to obtain the simulated loads of diffuse components (carriers: runoff and sediment; nutrient: total nitrogen (TN) and total phosphorous (TP)) with synchronous scales. Multivariable statistical analysis approaches (Analysis of Similarity and redundancy analysis) were used to assess the regional differences, and to identify impact factors as well as their contributions. Four catchments were selected as our study areas, i.e., Xiahui and Zhangjiafen Catchments of Miyun Basin in North China, Yuliang and Tunxi Catchments of Xin'anjiang Basin in South China. Results showed that the model performances of monthly processes were very good for runoff and good for sediment, TN and TP. The annual average coefficients of all the diffuse components in Xin'anjiang Basin were much greater than those in Miyun Basin, and showed significantly regional differences. All the selected impact factors interpreted 72.87-82.16% of the regional differences of carriers, and 62.72-71.62% of those of nutrient coefficients, respectively. For individual impact factor categories, the critical category was geography, followed by land-use/cover, carriers, climate, as well as soil and agricultural practices in Miyun Basin, or agricultural practices and soil in Xin'anjiang Basin. For individual factors, the critical factors were locations for the carrier regional differences, and carriers or chemical fertilizer for the nutrient regional differences. This study is expected to promote further applications of integrated water system model and multivariable statistical analysis in the diffuse nutrient studies, and

  1. Phosphorus retention in a newly constructed wetland receiving agricultural tile drainage water.

    PubMed

    Kynkäänniemi, Pia; Ulén, Barbro; Torstensson, Gunnar; Tonderski, Karin S

    2013-01-01

    One measure used in Sweden to mitigate eutrophication of waters is the construction of small wetlands (free water surface wetland for phosphorus retention [P wetlands]) to trap particulate phosphorus (PP) transported in ditches and streams. This study evaluated P retention dynamics in a newly constructed P wetland serving a 26-ha agricultural catchment with clay soil. Flow-proportional composite water samples were collected at the wetland inlet and outlet over 2 yr (2010-2011) and analyzed for total P (TP), dissolved P (DP), particulate P (PP), and total suspended solids (TSS). Both winters had unusually long periods of snow accumulation, and additional time-proportional water samples were frequently collected during snowmelt. Inflow TP and DP concentrations varied greatly (0.02-1.09 mg L) during the sampling period. During snowmelt in 2010, there was a daily oscillation in P concentration and water flow in line with air temperature variations. Outflow P concentrations were generally lower than inflow concentrations, with net P losses observed only in August and December 2010. On an annual basis, the wetland acted as a net P sink, with mean specific retention of 69 kg TP, 17 kg DP, and 30 t TSS ha yr, corresponding to a reduction in losses of 0.22 kg TP ha yr from the agricultural catchment. Relative retention was high (36% TP, 9% DP, and 36% TSS), indicating that small constructed wetlands (0.3% of catchment area) can substantially reduce P loads from agricultural clay soils with moderately undulating topography. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Rainwater harvesting in catchments for agro-forestry uses: A study focused on the balance between sustainability values and storage capacity.

    PubMed

    Terêncio, D P S; Sanches Fernandes, L F; Cortes, R M V; Moura, J P; Pacheco, F A L

    2018-02-01

    Rainwater harvesting (RWH) is used to support small-scale agriculture and handle seasonal water availability, especially in regions where populations are scattered or the costs to develop surface or groundwater resources are high. However, questions may arise as whether this technique can support larger-scale irrigation projects and in complement help the struggle against wildfires in agro-forested watersheds. The issue is relevant because harvested rainwater in catchments is usually accumulated in small-capacity reservoirs created by small-height dams. In this study, a RWH site allocation method was improved from a previous model, by introducing the dam wall height as evaluation parameter. The studied watershed (Sabor River basin) is mostly located in the Northeast of Portugal. This is a rural watershed where agriculture and forestry uses are dominant and where ecologically relevant regions (e.g., Montezinho natural park) need to be protected from wildfires. The study aimed at ranking 384 rainfall collection sub-catchments as regards installation of RWH sites for crop irrigation and forest fire combat. The height parameter was set to 3m because this value is a reference to detention basins that hold sustainability values (e.g., landscape integration, environmental protection), but the irrigation capacity under these settings was smaller than 10ha in 50% of cases, while continuous arable lands in the Sabor basin cover on average 222ha. Besides, the number of sub-catchments capable to irrigate the average arable land was solely 7. When the dam wall height increased to 6 and 12m, the irrigation capacity increased to 46 and 124 sub-catchments, respectively, meaning that more engineered dams may not always ensure all sustainability values but warrant much better storage. The limiting parameter was the dam wall height because 217 sub-catchments were found to drain enough water for irrigation and capable to store it if proper dam wall heights were used. Copyright © 2017

  3. Modelling the impacts of agricultural management practices on river water quality in Eastern England.

    PubMed

    Taylor, Sam D; He, Yi; Hiscock, Kevin M

    2016-09-15

    Agricultural diffuse water pollution remains a notable global pressure on water quality, posing risks to aquatic ecosystems, human health and water resources and as a result legislation has been introduced in many parts of the world to protect water bodies. Due to their efficiency and cost-effectiveness, water quality models have been increasingly applied to catchments as Decision Support Tools (DSTs) to identify mitigation options that can be introduced to reduce agricultural diffuse water pollution and improve water quality. In this study, the Soil and Water Assessment Tool (SWAT) was applied to the River Wensum catchment in eastern England with the aim of quantifying the long-term impacts of potential changes to agricultural management practices on river water quality. Calibration and validation were successfully performed at a daily time-step against observations of discharge, nitrate and total phosphorus obtained from high-frequency water quality monitoring within the Blackwater sub-catchment, covering an area of 19.6 km(2). A variety of mitigation options were identified and modelled, both singly and in combination, and their long-term effects on nitrate and total phosphorus losses were quantified together with the 95% uncertainty range of model predictions. Results showed that introducing a red clover cover crop to the crop rotation scheme applied within the catchment reduced nitrate losses by 19.6%. Buffer strips of 2 m and 6 m width represented the most effective options to reduce total phosphorus losses, achieving reductions of 12.2% and 16.9%, respectively. This is one of the first studies to quantify the impacts of agricultural mitigation options on long-term water quality for nitrate and total phosphorus at a daily resolution, in addition to providing an estimate of the uncertainties of those impacts. The results highlighted the need to consider multiple pollutants, the degree of uncertainty associated with model predictions and the risk of

  4. Assessing the effect of land use change on catchment runoff by combined use of statistical tests and hydrological modelling: Case studies from Zimbabwe

    NASA Astrophysics Data System (ADS)

    Lørup, Jens Kristian; Refsgaard, Jens Christian; Mazvimavi, Dominic

    1998-03-01

    The purpose of this study was to identify and assess long-term impacts of land use change on catchment runoff in semi-arid Zimbabwe, based on analyses of long hydrological time series (25-50 years) from six medium-sized (200-1000 km 2) non-experimental rural catchments. A methodology combining common statistical methods with hydrological modelling was adopted in order to distinguish between the effects of climate variability and the effects of land use change. The hydrological model (NAM) was in general able to simulate the observed hydrographs very well during the reference period, thus providing a means to account for the effects of climate variability and hence strengthening the power of the subsequent statistical tests. In the test period the validated model was used to provide the runoff record which would have occurred in the absence of land use change. The analyses indicated a decrease in the annual runoff for most of the six catchments, with the largest changes occurring for catchments located within communal land, where large increases in population and agricultural intensity have taken place. However, the decrease was only statistically significant at the 5% level for one of the catchments.

  5. Influence of catchment-scale military land use on stream physical and organic matter variables in small Southeaster Plains Catchments (USA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloney, Kelly

    2005-01-01

    We conducted a 3-year study designed to examine the relationship between disturbance from military land use and stream physical and organic matter variables within 12 small (<5.5 km2) Southeastern Plains catchments at the Fort Benning Military Installation, Georgia, USA. Primary land-use categories were based on percentages of bare ground and road cover and nonforested land (grasslands, sparse vegetation, shrublands, fields) in catchments and natural catchments features, including soils (% sandy soils) and catchment size (area). We quantified stream flashiness (determined by slope of recession limbs of storm hydrographs), streambed instability (measured by relative changes in bed height over time), organicmore » matter storage [coarse wood debris (CWD) relative abundance, benthic particulate organic matter (BPOM)] and stream-water dissolved organic carbon concentration (DOC). Stream flashiness was positively correlated with average storm magnitude and percent of the catchment with sandy soil, whereas streambed instability was related to percent of the catchment containing nonforested (disturbed) land. The proportions of in-stream CWD and sediment BPOM, and stream-water DOC were negatively related to the percent of bare ground and road cover in catchments. Collectively, our results suggest that the amount of catchment disturbance causing denuded vegetation and exposed, mobile soil is (1) a key terrestrial influence on stream geomorphology and hydrology and (2) a greater determinant of in-stream organic matter conditions than is natural geomorphic or topographic variation (catchment size, soil type) in these systems.« less

  6. Application of a Three-Dimensional Water Quality Model as a Decision Support Tool for the Management of Land-Use Changes in the Catchment of an Oligotrophic Lake

    NASA Astrophysics Data System (ADS)

    Trolle, Dennis; Spigel, Bob; Hamilton, David P.; Norton, Ned; Sutherland, Donna; Plew, David; Allan, Mathew G.

    2014-09-01

    While expansion of agricultural land area and intensification of agricultural practices through irrigation and fertilizer use can bring many benefits to communities, intensifying land use also causes more contaminants, such as nutrients and pesticides, to enter rivers, lakes, and groundwater. For lakes such as Benmore in the Waitaki catchment, South Island, New Zealand, an area which is currently undergoing agricultural intensification, this could potentially lead to marked degradation of water clarity as well as effects on ecological, recreational, commercial, and tourism values. We undertook a modeling study to demonstrate science-based options for consideration of agricultural intensification in the catchment of Lake Benmore. Based on model simulations of a range of potential future nutrient loadings, it is clear that different areas within Lake Benmore may respond differently to increased nutrient loadings. A western arm (Ahuriri) could be most severely affected by land-use changes and associated increases in nutrient loadings. Lake-wide annual averages of an eutrophication indicator, the trophic level index (TLI) were derived from simulated chlorophyll a, total nitrogen, and total phosphorus concentrations. Results suggest that the lake will shift from oligotrophic (TLI = 2-3) to eutrophic (TLI = 4-5) as external loadings are increased eightfold over current baseline loads, corresponding to the potential land-use intensification in the catchment. This study provides a basis for use of model results in a decision-making process by outlining the environmental consequences of a series of land-use management options, and quantifying nutrient load limits needed to achieve defined trophic state objectives.

  7. Water and salt balance modelling to predict the effects of land-use changes in forested catchments. 3. The large catchment model

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu; Viney, Neil R.; Jeevaraj, Charles G.

    1996-03-01

    This paper presents an application of a long-term, large catchment-scale, water balance model developed to predict the effects of forest clearing in the south-west of Western Australia. The conceptual model simulates the basic daily water balance fluxes in forested catchments before and after clearing. The large catchment is divided into a number of sub-catchments (1-5 km2 in area), which are taken as the fundamental building blocks of the large catchment model. The responses of the individual subcatchments to rainfall and pan evaporation are conceptualized in terms of three inter-dependent subsurface stores A, B and F, which are considered to represent the moisture states of the subcatchments. Details of the subcatchment-scale water balance model have been presented earlier in Part 1 of this series of papers. The response of any subcatchment is a function of its local moisture state, as measured by the local values of the stores. The variations of the initial values of the stores among the subcatchments are described in the large catchment model through simple, linear equations involving a number of similarity indices representing topography, mean annual rainfall and level of forest clearing.The model is applied to the Conjurunup catchment, a medium-sized (39·6 km2) catchment in the south-west of Western Australia. The catchment has been heterogeneously (in space and time) cleared for bauxite mining and subsequently rehabilitated. For this application, the catchment is divided into 11 subcatchments. The model parameters are estimated by calibration, by comparing observed and predicted runoff values, over a 18 year period, for the large catchment and two of the subcatchments. Excellent fits are obtained.

  8. Rainwater harvesting and management in rainfed agricultural systems in sub-Saharan Africa - A review

    NASA Astrophysics Data System (ADS)

    Biazin, Birhanu; Sterk, Geert; Temesgen, Melesse; Abdulkedir, Abdu; Stroosnijder, Leo

    Agricultural water scarcity in the predominantly rainfed agricultural system of sub-Saharan Africa (SSA) is more related to the variability of rainfall and excessive non-productive losses, than the total annual precipitation in the growing season. Less than 15% of the terrestrial precipitation takes the form of productive ‘green’ transpiration. Hence, rainwater harvesting and management (RWHM) technologies hold a significant potential for improving rainwater-use efficiency and sustaining rainfed agriculture in the region. This paper outlines the various RWHM techniques being practiced in SSA, and reviews recent research results on the performance of selected practices. So far, micro-catchment and in situ rainwater harvesting techniques are more common than rainwater irrigation techniques from macro-catchment systems. Depending on rainfall patterns and local soil characteristics, appropriate application of in situ and micro-catchment techniques could improve the soil water content of the rooting zone by up to 30%. Up to sixfold crop yields have been obtained through combinations of rainwater harvesting and fertiliser use, as compared to traditional practices. Supplemental irrigation of rainfed agriculture through rainwater harvesting not only reduces the risk of total crop failure due to dry spells, but also substantially improves water and crop productivity. Depending on the type of crop and the seasonal rainfall pattern, the application of RWHM techniques makes net profits more possible, compared to the meagre profit or net loss of existing systems. Implementation of rainwater harvesting may allow cereal-based smallholder farmers to shift to diversified crops, hence improving household food security, dietary status, and economic return. The much needed green revolution and adaptations to climate change in SSA should blend rainwater harvesting ideals with agronomic principles. More efforts are needed to improve the indigenous practices, and to disseminate best

  9. Phosphorus Fate and Transport across Fields and Catchments: Addressing the Paradoxical Dilemma

    NASA Astrophysics Data System (ADS)

    Sharpley, Andrew; Jarvie, Helen; Johnson, Laura; Smith, Doug

    2017-04-01

    Awareness and scrutiny of agriculture's role in contributing phosphorus (P) to surface water impairment has increased due to recent high profile harmful algal bloom outbreaks. In addition, an inability to meet target P-load reductions in large catchments in the USA, such as Chesapeake Bay, Lake Erie, and Mississippi River, has brought into question the effectiveness of current and future conservation strategies designed to mitigate such loads. This has led many to question the efficacy of these measures and to call for stricter land and P-management strategies and the recognition of several paradoxes related to the management of agricultural P. "The Finite Resource and Environmental Abundance Paradox" While P is a finite resource, with an expected life of 300 years using modern mining technologies, less than 20% of mined fertilizer P reaches the food products consumed, only 10% of the P in human wastes is recycled back onto agricultural land, yet P deficits occur across 30% of global cropland. "The Blue - Green Paradox" An increasingly affluent population is becoming more demanding of cheap, reliable food sources and wanting inexpensive clean, safe water for many essential and recreational uses. We now face many challenges in balancing competing demands for protecting and restoring water quality and aquatic ecology, with sustainable and efficient agricultural production. After the low hanging fruit of remedial measures are adopted, remaining conservation practices become increasingly less cost-beneficial and raises the old conundrum of "who benefits and who pays?" "The Conservation Legacy P Paradox" Many conservation practices have been implemented to retain (e.g., no-tillage, cover crops, contour plowing, ridge tillage) and trap P (e.g., buffer strips, riparian zones, wetlands) on the landscape rather than enter waterways. Yet, the capacity of those practices to retain is finite and there are more and more examples of conservation practices transitioning from P

  10. Distinguishing spatiotemporal variability of sediment sources in small urbanized catchment as a response to urban expansion

    NASA Astrophysics Data System (ADS)

    Belyaev, Vladimir; Feoktistov, Artem; Huygens, Dries; Shamshurina, Eugenia; Golosov, Valentin

    2014-05-01

    for distinguishing contributions of different sediment sources into catchment sediment budgets on a reliable quantitative basis. In combination with microstratigraphic differentiation and dating of sediment in continuous deposition zones by 137Cs depth distribution curves and available land use records, spatial and temporal variability of sediment sources and sinks can be reconstructed for the last several decades. That is especially important for catchments which experienced profound land use changes such as transition from pristine or agriculture-dominated to urbanized environment. The example presented here describes the results of reconstruction of changing sediment source types, contributions and spatial patterns for small reservoir catchment within the city of Kursk (Sredenerusskaya Upland, Central European Russia). Combination of compound specific stable isotopes, 137Cs, sediment grain size composition, land use information for several time intervals and daily rainfall record for the Kursk meteorological station (conveniently located within the study catchment) have been employed in order to evaluate major sediment sources within the catchment, their spatial pattern and temporal changes and compare those to history of reservoir sedimentation. The reservoir is situated on the Kur River - small river which gave its name to the city itself. The dam and reservoir were constructed and put into operation in 1969, thus the beginning of its infill is located stratigraphically later than the main peak of the global 137Cs fallout. It has been found that transition from dominantly agricultural land use to urbanized conditions caused decrease of contribution of soil erosion from cultivated land and increase of that of the active gullies into reservoir sedimentation. However, it is important to note that during extreme runoff events contribution of sediment originated from soil erosion on arable land still remains dominant, even though its area within the catchment recently

  11. A bottom up approach to implementing multi-purpose mitigation measures for reducing flood risk and improving water quality in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Wilkinson, M. E.; Quinn, P. F.; Jonczyk, J.; Burke, S.; Nicholson, A.; Barber, N.; Owen, G.; Palmer, M.

    2012-04-01

    A number of studies have suggested that there is evidence that modern land-use management practices have increased surface runoff at the local scale. There is an urgent need for interventions to reduce the risk of flooding whilst also delivering multiple benefits (doing more for less). There are many settlements, which regularly suffer from flooding, which would benefit from upstream mitigation measures. Interventions at the source of runoff generation can have a positive impact on the flood hydrograph downstream. An integrated approach to managing runoff can also have multiple benefits on pollution and ecology, which could lead to beneficial impacts at the catchment scale. Belford, a small community in Northumberland, UK has suffered from an increased number of flood events over the past ten years. There is currently support within the English and Welsh Environment Agency for sustainable flood management solutions such as storage ponds, wetlands, beaver dams and willow riparian features which are being trialled at Belford. These runoff attenuation features (RAFs) also have benefits to water quality, capture sediment and create new ecological zones. Although the process by which numerous RAFs were deployed in Belford proved initially difficult to achieve within the existing regulatory framework, an efficient uptake process is now supported by local regulators including several branches of the Environment Agency. The Belford runoff management framework provides a step by step guide to implementing mitigation measures in the Belford burn catchment and could be easily applied to other catchments at a similar scale. The approach is based on implementing mitigation measures through engaging with catchment stakeholders and using solid field science and management protocols.

  12. Interdisciplinary methods and practices for integrating social sciences into studies on catchment evolution

    NASA Astrophysics Data System (ADS)

    Carr, G.

    2017-12-01

    Real world problems rarely regard disciplinary boundaries. This is particularly apparent in catchments, where knowledge and understanding from many different research disciplines is essential to address the water resource challenges facing society. People are an integral part of any catchment. Therefore a comprehensive understanding of catchment evolution needs to include the social system. Socio-hydrological models that can simulate the co-evolution of human-water systems, for example, with regards to floods and droughts, show great promise in their capacity to capture and understand such systems. Yet, to develop socio-hydrological models into more comprehensive analysis tools that adequately capture the social components of the system, researchers need to embrace interdisciplinary working and multi-disciplinary research teams. By exploring the development of interdisciplinary research in a water programme, several key practices have been identified that support interdisciplinary collaboration. These include clarification where researchers discuss and re-explain their research or position to expose all the assumptions being made until all involved understand it; harnessing differences where different opinions and types of knowledge are treated respectfully to minimise tensions and disputes; and boundary setting where defensible limits to the research enquiry are set with consideration for the restrictions (funds, skills, resources) through negotiation and discussion between the research team members. Focussing on these research practices while conducting interdisciplinary collaborative research into the human-water system, is anticipated to support the development of more integrated approaches and models.

  13. Integrated Modelling on Flow and Water Quality Under the Impacts of Climate Change and Agricultural Activities

    NASA Astrophysics Data System (ADS)

    SHI, J.

    2014-12-01

    Climate change is expected to have a significant impact on flooding in the UK, inducing more intense and prolonged storms. Frequent flooding due to climate change already exacerbates catchment water quality. Land use is another contributing factor to poor water quality. For example, the move to intensive farming could cause an increase in faecal coliforms entering the water courses. In an effort to understand better the effects on water quality from land use and climate change, the hydrological and estuarine processes are being modelled using SWAT (Soil and Water Assessment Tool), linked to a 2-D hydrodynamic model DIVAST(Depth Integrated Velocity and Solute Transport). The coupled model is able to quantify how much of each pollutant from the catchment reaches the harbour and the impact on water quality within the harbour. The work is focused on the transportation and decay of faecal coliforms from agricultural runoff into the rivers Frome and Piddle in the UK. The impact from the agricultural land use and activities on the catchment river hydrology and water quality are evaluated. The coupled model calibration and validation showed the good model performance on flow and faecal coliform in the watershed and estuary.

  14. Linking catchment characteristics and water chemistry with the ecological status of Irish rivers.

    PubMed

    Donohue, Ian; McGarrigle, Martin L; Mills, Paul

    2006-01-01

    Requirements of the EU Water Framework Directive for the introduction of ecological quality objectives for surface waters and the stipulation that all surface waters in the EU must be of 'good' ecological status by 2015 necessitate a quantitative understanding of the linkages among catchment attributes, water chemistry and the ecological status of aquatic ecosystems. Analysis of lotic ecological status, as indicated by an established biotic index based primarily on benthic macroinvertebrate community structure, of 797 hydrologically independent river sites located throughout Ireland showed highly significant inverse associations between the ecological status of rivers and measures of catchment urbanisation and agricultural intensity, densities of humans and cattle and chemical indicators of water quality. Stepwise logistic regression suggested that urbanisation, arable farming and extent of pasturelands are the principal factors impacting on the ecological status of streams and rivers in Ireland and that the likelihood of a river site complying with the demands of the EU Water Framework Directive, and be of 'good' ecological status, can be predicted with reasonable accuracy using simple models that utilise either widely available landcover data or chemical monitoring data. Non-linear landcover and chemical 'thresholds' derived from these models provide a useful tool in the management of risk in catchments, and suggest strongly that more careful planning of land use in Ireland is essential in order to restore and maintain water quality as required by the Directive.

  15. Impact of climate change and climate anomalies on hydrologic and biogeochemical processes in an agricultural catchment of the Chesapeake Bay watershed, USA.

    PubMed

    Wagena, Moges B; Collick, Amy S; Ross, Andrew C; Najjar, Raymond G; Rau, Benjamin; Sommerlot, Andrew R; Fuka, Daniel R; Kleinman, Peter J A; Easton, Zachary M

    2018-05-16

    Nutrient export from agricultural landscapes is a water quality concern and the cause of mitigation activities worldwide. Climate change impacts hydrology and nutrient cycling by changing soil moisture, stoichiometric nutrient ratios, and soil temperature, potentially complicating mitigation measures. This research quantifies the impact of climate change and climate anomalies on hydrology, nutrient cycling, and greenhouse gas emissions in an agricultural catchment of the Chesapeake Bay watershed. We force a calibrated model with seven downscaled and bias-corrected regional climate models and derived climate anomalies to assess their impact on hydrology and the export of nitrate (NO 3 -), phosphorus (P), and sediment, and emissions of nitrous oxide (N 2 O) and di-nitrogen (N 2 ). Model-average (±standard deviation) results indicate that climate change, through an increase in precipitation and temperature, will result in substantial increases in winter/spring flow (10.6 ± 12.3%), NO 3 - (17.3 ± 6.4%), dissolved P (32.3 ± 18.4%), total P (24.8 ± 16.9%), and sediment (25.2 ± 16.6%) export, and a slight increases in N 2 O (0.3 ± 4.8%) and N 2 (0.2 ± 11.8%) emissions. Conversely, decreases in summer flow (-29.1 ± 24.6%) and the export of dissolved P (-15.5 ± 26.4%), total P (-16.3 ± 20.7%), sediment (-20.7 ± 18.3%), and NO 3 - (-29.1 ± 27.8%) are driven by greater evapotranspiration from increasing summer temperatures. Decreases in N 2 O (-26.9 ± 15.7%) and N 2 (-36.6 ± 22.9%) are predicted in the summer and driven by drier soils. While the changes in flow are related directly to changes in precipitation and temperature, the changes in nutrient and sediment export are, to some extent, driven by changes in agricultural management that climate change induces, such as earlier spring tillage and altered nutrient application timing and by alterations to nutrient cycling in the soil. Copyright © 2018

  16. Framework for measuring sustainable development in catchment systems.

    PubMed

    Walmsley, Jay J

    2002-02-01

    Integrated catchment management represents an approach to managing the resources of a catchment by integrating environmental, economic, and social issues. It is aimed at deriving sustainable benefits for future generations, while protecting natural resources, particularly water, and minimizing possible adverse social, economic, and environmental consequences. Indicators of sustainable development, which summarize information for use in decision-making, are invaluable when trying to assess the diverse, interacting components of catchment processes and resource management actions. The Driving-Forces--Pressure--State--Impact--Response (DPSIR) indicator framework is useful for identifying and developing indicators of sustainable development for catchment management. Driving forces have been identified as the natural conditions occurring in a catchment and the level of development and economic activity. Pressures include the natural and anthropogenic supply of water, water demand, and water pollution. State indicators can be split into those of quantity and those of quality. Impacts include those that affect the ecosystems directly and those that impact the use value of the resource. It core indicators are identified within each of the categories given in the framework, most major catchment-based management issues can be evaluated. This framework is applied to identify key issues in catchment management in South Africa, and develop a set of indicators for evaluating catchments throughout the country.

  17. Typecasting catchments: Classification, directionality, and the pursuit of universality

    NASA Astrophysics Data System (ADS)

    Smith, Tyler; Marshall, Lucy; McGlynn, Brian

    2018-02-01

    Catchment classification poses a significant challenge to hydrology and hydrologic modeling, restricting widespread transfer of knowledge from well-studied sites. The identification of important physical, climatological, or hydrologic attributes (to varying degrees depending on application/data availability) has traditionally been the focus for catchment classification. Classification approaches are regularly assessed with regard to their ability to provide suitable hydrologic predictions - commonly by transferring fitted hydrologic parameters at a data-rich catchment to a data-poor catchment deemed similar by the classification. While such approaches to hydrology's grand challenges are intuitive, they often ignore the most uncertain aspect of the process - the model itself. We explore catchment classification and parameter transferability and the concept of universal donor/acceptor catchments. We identify the implications of the assumption that the transfer of parameters between "similar" catchments is reciprocal (i.e., non-directional). These concepts are considered through three case studies situated across multiple gradients that include model complexity, process description, and site characteristics. Case study results highlight that some catchments are more successfully used as donor catchments and others are better suited as acceptor catchments. These results were observed for both black-box and process consistent hydrologic models, as well as for differing levels of catchment similarity. Therefore, we suggest that similarity does not adequately satisfy the underlying assumptions being made in parameter regionalization approaches regardless of model appropriateness. Furthermore, we suggest that the directionality of parameter transfer is an important factor in determining the success of parameter regionalization approaches.

  18. Catchment Systems Engineering: A New Paradigm in Water Management

    NASA Astrophysics Data System (ADS)

    Quinn, P. F.; Wilkinson, M. E.; Burke, S.; O'Donnell, G. M.; Jonczyk, J.; Barber, N.; Nicholson, A.

    2012-04-01

    Recent catchment initiatives have highlighted the need for new holistic approaches to sustainable water management. Catchment Systems Engineering seeks to describe catchment the function (or role) as the principal driver for evaluating how it should be managed in the future. Catchment Systems Engineering does not seek to re-establish a natural system but rather works with natural processes in order to engineer landscapes to accrue multiple benefits. The approach involves quantifying and assessing catchment change, impacts and most importantly, suggests an urgent and proactive agenda for future planning. In particular, an interventionist approach to managing hydrological flow pathways across scale is proposed. It is already accepted that future management will require a range of scientific expertise and full engagement with stakeholders. This inclusive concept under a Catchment Systems Engineering agenda forces any consortia to commit to actively changing and perturbing the catchment system and thus learn, in situ, how to manage the environment for collective benefits. The shared cost, the design, the implementation, the evaluation and any subsequent modifications should involve all relevant parties in the consortia. This joint ownership of a 'hands on' interventionist agenda to catchment change is at the core of Catchment Systems Engineering. In this paper we show a range of catchment engineering projects from the UK that have addressed multi-disciplinary approaches to flooding, pollution and ecosystem management, whilst maintaining economic food production. Examples using soft engineered features such as wetlands, ponds, woody debris dams and infiltration zones will be shown. Local scale demonstration activities, led by local champions, have proven to be an effective means of encouraging wider uptake. Evidence that impacts can be achieved at local catchment scale will be introduced. Catchment Systems Engineering is a concept that relies on all relevant parties

  19. Shaping the Future Landscape: Catchment Systems Engineering and the Decision Support Matrix Approach

    NASA Astrophysics Data System (ADS)

    Hewett, Caspar; Quinn, Paul; Wilkinson, Mark; Wainwright, John

    2017-04-01

    Land degradation is widely recognised as one of the great environmental challenges facing humanity today, much of which is directly associated with human activity. The negative impacts of climate change and of the way in which we have engineered the landscape through, for example, agriculture intensification and deforestation, need to be addressed. However, the answer is not a simple matter of doing the opposite of current practice. Nor is non-intervention a viable option. There is a need to bring together approaches from the natural and social sciences both to understand the issues and to act to solve real problems. We propose combining a Catchment Systems Engineering (CSE) approach that builds on existing approaches such as Natural Water Retention Measures, Green infrastructure and Nature-Based Solutions with a multi-scale framework for decision support that has been successfully applied to diffuse pollution and flood risk management. The CSE philosophy follows that of Earth Systems Engineering and Management, which aims to engineer and manage complex coupled human-natural systems in a highly integrated, rational manner. CSE is multi-disciplinary, and necessarily involves a wide range of subject areas including anthropology, engineering, environmental science, ethics and philosophy. It offers a rational approach which accepts the fact that we need to engineer and act to improve the functioning of the existing catchment entity on which we rely. The decision support framework proposed draws on physical and mathematical modelling; Participatory Action Research; and demonstration sites at which practical interventions are implemented. It is predicated on the need to work with stakeholders to co-produce knowledge that leads to proactive interventions to reverse the land degradation we observe today while sustaining the agriculture humanity needs. The philosophy behind CSE and examples of where it has been applied successfully are presented. The Decision Support Matrix

  20. Mapping environmental land use conflict potentials and ecosystem services in agricultural watersheds.

    PubMed

    Kim, Ilkwon; Arnhold, Sebastian

    2018-07-15

    In mountainous watersheds, agricultural land use cause changes in ecosystem services, with trade-offs between crop production and erosion regulation. Management of these watersheds can generate environmental land use conflicts among regional stakeholders with different interests. Although several researches have made a start in mapping land use conflicts between human activities and conservation, spatial assessment of land use conflicts on environmental issues and ecosystem service trade-offs within agricultural areas has not been fully considered. In this study, we went further to map land use conflicts between agricultural preferences for crop production and environmental emphasis on erosion regulation. We applied an agricultural land suitability index, based on multi-criteria analysis, to estimate the spatial preference of agricultural activities, while applying the Revised Universal Soil Loss Equation (RUSLE) to reflect the environmental importance of soil erosion. Then, we classified the agricultural catchment into four levels of land use conflicts (lowest, low, high and highest) according to preference and importance of farmland areas, and we compared the classes by crop type. Soil loss in agricultural areas was estimated as 45.1thayr, and agricultural suitability as 0.873; this indicated that land use conflicts in the catchment could arise between severe soil erosion (environmental importance) and agricultural suitability (land preferences). Dry-field farms are mainly located in areas of low land use conflict level, where land preference outweighs environmental importance. When we applied farmland management scenarios with consideration of services, conversion to highest-conflict areas (Scenario 1) as 7.5% of the total area could reduce soil loss by 24.6%, while fallow land management (Scenario 2) could decrease soil loss 19.4% more than the current scenario (Business as usual). The result could maximize land management plans by extracting issues of spatial

  1. Post-fire mulching for runoff and erosion mitigation; Part II: Effectiveness in reducing runoff and sediment yields from small catchments

    Treesearch

    Peter R. Robichaud; Joseph W. Wagenbrenner; Sarah A. Lewis; Louise E. Ashmun; Robert E. Brown; Peter M. Wohlgemuth

    2013-01-01

    Agricultural straw, hydromulch, and wood shred or wood strand mulches increasingly are being used as post-fire hillslope treatments, but the differences in effectiveness among these mulch treatments are not fully understood. Following the 2002 Hayman fire in central Colorado and the 2003 Cedar fire in southern California, matched catchments were monitored for five to...

  2. Water Catchment and Storage Monitoring

    NASA Astrophysics Data System (ADS)

    Bruenig, Michael; Dunbabin, Matt; Moore, Darren

    2010-05-01

    Sensors and Sensor Networks technologies provide the means for comprehensive understanding of natural processes in the environment by radically increasing the availability of empirical data about the natural world. This step change is achieved through a dramatic reduction in the cost of data acquisition and many orders of magnitude increase in the spatial and temporal granularity of measurements. Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) is undertaking a strategic research program developing wireless sensor network technology for environmental monitoring. As part of this research initiative, we are engaging with government agencies to densely monitor water catchments and storages, thereby enhancing understanding of the environmental processes that affect water quality. In the Gold Coast hinterland in Queensland, Australia, we are building sensor networks to monitor restoration of rainforest within the catchment, and to monitor methane flux release and water quality in the water storages. This poster will present our ongoing work in this region of eastern Australia. The Springbrook plateau in the Gold Coast hinterland lies within a World Heritage listed area, has uniquely high rainfall, hosts a wide range of environmental gradients, and forms part of the catchment for Gold Coast's water storages. Parts of the plateau are being restored from agricultural grassland to native rainforest vegetation. Since April 2008, we have had a 10-node, multi-hop sensor network deployed there to monitor microclimate variables. This network will be expanded to 50-nodes in February 2010, and to around 200-nodes and 1000 sensors by mid-2011, spread over an area of approximately 0.8 square kilometers. The extremely dense microclimate sensing will enhance knowledge of the environmental factors that enhance or inhibit the regeneration of native rainforest. The final network will also include nodes with acoustic and image sensing capability for

  3. Isotopic investigation of the discharge driven nitrogen dynamics in a mesoscale river catchment

    NASA Astrophysics Data System (ADS)

    Mueller, Christin; Zink, Matthias; Krieg, Ronald; Rode, Michael; Merz, Ralf; Knöller, Kay

    2016-04-01

    Nitrate in surface and groundwater has increased in the last decades due to landuse change, the application of different fertilizer for agricultural landuse and industrial dust in the atmospheric deposition. Increasing nitrate concentrations have a major impact on eutrophication, especially for coastal ecosystems. Therefore it is important to quantify potential nitrate sources and determine nitrate process dynamics with its drivers. The Bode River catchment (total size of 3200 m2) in the Harz Mountains in Germany was intensively investigated by a monitoring approach with 133 sampling points representing the same number of sub-catchments for a period of two years. The area is characterized by a strong anthropogenic gradient, with forest conservation areas in the mountain region, grassland, and intensively mixed farming in the lowlands. Consecutive discharge simulations by a mesoscale hydrological model (mhM) allow a quantitative analysis of nitrate fluxes for all observed tributaries. The investigation of nitrate isotopic signatures for characteristic landscape types allows the delineation of dominant NO3- sources: coniferous forests are characterized by recycled nitrified soil nitrogen; grassland is mainly impacted by organic fertilizer (manure) and nitrified soil-N; in agricultural land use areas nitrate predominantly derives from synthetic fertilizer application. Besides source delineation, the relationship between runoff and nitrate dynamics was analyzed for the entire Bode river catchment and, more detailed, for one major tributary with minor artificial reservoirs (Selke River). Thereby, it becomes apparent that nitrate isotopic variations increase with decreasing discharge. This effect might be due to a local, more intense impact of bacterial denitrification under low discharge conditions (higher residence time) in the anoxic soil zone, in the groundwater that discharges into the river and in the hyporheic zone. Generally, δ15N and δ18Oof nitrate decrease

  4. Downscaling catchment scale flood risk to contributing sub-catchments to determine the optimum location for flood management.

    NASA Astrophysics Data System (ADS)

    Pattison, Ian; Lane, Stuart; Hardy, Richard; Reaney, Sim

    2010-05-01

    The recent increase in flood frequency and magnitude has been hypothesised to have been caused by either climate change or land management. Field scale studies have found that changing land management practices does affect local runoff and streamflow, but upscaling these effects to the catchment scale continues to be problematic, both conceptually and more importantly methodologically. The impact on downstream flood risk is highly dependent upon where the changes are in the catchment, indicating that some areas of the catchment are more important in determining downstream flood risk than others. This is a major flaw in the traditional approach to studying the effect of land use on downstream flood risk: catchment scale hydrological models, which treat every cell in the model equally. We are proposing an alternative ideological approach for doing flood management research, which is underpinned by downscaling the downstream effect (problem i.e. flooding) to the upstream causes (contributing sub-catchments). It is hoped that this approach could have several benefits over the traditional upscaling approach. Firstly, it provides an efficient method to prioritise areas for land use management changes to be implemented to reduce downstream flood risk. Secondly, targets for sub-catchment hydrograph change can be determined which will deliver the required downstream effect. Thirdly, it may be possible to detect the effect of land use changes in upstream areas on downstream flood risk, by weighting the areas of most importance in hydrological models. Two methods for doing this downscaling are proposed; 1) data-based statistical analysis; and 2) hydraulic modelling-based downscaling. These will be outlined using the case study of the River Eden, Cumbria, NW England. The data-based methodology uses the timing and magnitude of floods for each sub-catchment. Principal components analysis (PCA) is used to simplify sub-catchment interactions and optimising stepwise regression is

  5. An interdisciplinary swat ecohydrological model to define catchment-scale hydrologic partitioning

    NASA Astrophysics Data System (ADS)

    Shope, C. L.; Maharjan, G. R.; Tenhunen, J.; Seo, B.; Kim, K.; Riley, J.; Arnhold, S.; Koellner, T.; Ok, Y. S.; Peiffer, S.; Kim, B.; Park, J.-H.; Huwe, B.

    2013-06-01

    Land use and climate change have long been implicated in modifying ecosystem services, such as water quality and water yield, biodiversity, and agricultural production. To account for future effects on ecosystem services, the integration of physical, biological, economic, and social data over several scales must be implemented to assess the effects on natural resource availability and use. Our objective is to assess the capability of the SWAT model to capture short-duration monsoonal rainfall-runoff processes in complex mountainous terrain under rapid, event-driven processes in a monsoonal environment. To accomplish this, we developed a unique quality-control gap-filling algorithm for interpolation of high frequency meteorological data. We used a novel multi-location, multi-optimization calibration technique to improve estimations of catchment-wide hydrologic partitioning. We calibrated the interdisciplinary model to a combination of statistical, hydrologic, and plant growth metrics. In addition, we used multiple locations of different drainage area, aspect, elevation, and geologic substrata distributed throughout the catchment. Results indicate scale-dependent sensitivity of hydrologic partitioning and substantial influence of engineered features. While our model accurately reproduced observed discharge variability, the addition of hydrologic and plant growth objective functions identified the importance of culverts in catchment-wide flow distribution. The results of this study provide a valuable resource to describe landscape controls and their implication on discharge, sediment transport, and nutrient loading. This study also shows the challenges of applying the SWAT model to complex terrain and extreme environments. By incorporating anthropogenic features into modeling scenarios, we can greatly enhance our understanding of the hydroecological impacts on ecosystem services.

  6. Engaging farmers to inform future diffuse pollution policy in England

    NASA Astrophysics Data System (ADS)

    Vrain, Emilie; Lovett, Andrew; Nobel, Lister; Grant, Fiona; Blundell, Paul; Cleasby, Will

    2013-04-01

    Stakeholder knowledge and engagement is increasingly seen as a necessary ingredient for catchment management. Whilst many agricultural management options remain voluntary, the implementation of diffuse pollution mitigation measures will only be effective with the cooperation of stakeholders. Anthony et al. (2009) and Zhang et al. (2012) state the need for more information on the realistic farmer uptake of methods to enhance analyses of the potential for pollution mitigation. A study engaging farmers to understand current agricultural practices and their attitudes towards mitigation measures has formed part of the Demonstration Test Catchment (DTC) programme in England. Interviews with over seventy farmers were conducted during 2012 in three contrasting areas of the UK: the grassland dominated Eden catchment in the North West of England; the arable dominated Wensum catchment in East Anglia and the mixed farming of the Hampshire Avon catchment in southern England. Results from the farmer survey provide a baseline regarding current agricultural practices and give insight regarding attitudes to the adoption of other mitigation measures in the future. Opinions were obtained on eighty different measures taken from a recent guide to possible measures prepared for the UK government (Newell-Price et al., 2011). Analyses have been conducted examining how current use and attitudes towards future adoption of measures varies according to different characteristics of farm businesses. These findings will be of benefit to researchers, policy makers and farm advisers, particularly aiding decision making with respect to strategies for future implementation of programmes of measures. References. Anthony, S.G. et al., 2009. Quantitative assessment of scenarios for managing trade-off between the economic performance of agriculture and the environment and between different environmental media. Available at: http

  7. Nested Tracer Studies In Catchment Hydrology: Towards A Multiscale Understanding of Runoff Generation and Catchment Funtioning

    NASA Astrophysics Data System (ADS)

    Soulsby, C.; Rodgers, P.; Malcolm, I. A.; Dunn, S.

    Geochemical and isotopic tracers have been shown to have widespread utility in catch- ment hydrology in terms of identifying hydrological source areas and characterising residence time distributions. In many cases application of tracer techniques has pro- vided insights into catchment functioning that could not be obtained from hydromet- ric and/or modelling studies alone. This paper will show how the use of tracers has contributed to an evolving perceptual model of hydrological pathways and runoff gen- eration processes in catchments in the Scottish highlands. In particular the paper will focus on the different insights that are gained at three different scales of analysis; (a) nested sub-catchments within a mesoscale (ca. 200 square kilometers) experimen- tal catchment; (b) hillslope-riparian interactions and (c) stream bed fluxes. Nested hydrometric and hydrochemical monitoring within the mesoscale Feugh catchment identified three main hydrological response units: (i) plateau peatlands which gener- ated saturation overland flow in the catchment headwaters, (ii) steep valley hillslopes which drain from the plateaux into (iii) alluvial and drift aquifers in the valley bottoms. End Member Mixing Analysis (EMMA) in 8 nested sub-catchments indicated that that stream water tracer concentrations can be modelled in terms of 2 dominant runoff pro- cesses; overland flow from the peat and groundwater from the drift aquifers. Ground- water contributions generally increased with catchment size, though this was moder- ated by the characteristics of individual sub-basins, with drift cover being particularly important. Hillslope riparian interactions were also examined using tracers, hydromet- ric data and a semi-distributed hydrological model. This revealed that in the glaciated, drift covered terrain of the Scottish highlands, extensive valley bottom aquifers effec- tively de-couple hillslope waters from the river channel. Thus, riparian groundwater appears to significantly

  8. Effects of gully erosion on sediment connectivity in a small agrarian catchment: basis of an experimental proposal

    NASA Astrophysics Data System (ADS)

    Zubieta, Elena; Casalí, Javier; Masselink, Rens J. H.; Giménez, Rafael; Keesstra, Saskia D.

    2017-04-01

    Connectivity aims to explain the transit of substances in a certain (natural) area. Thereby, the connectivity of sediments from soil erosion involves complex factors determining the subsequent movement of detached matter across the land (for instance, a hydrographic catchment). Agricultural soil erosion in Navarre has been studied mainly by recording sediments at the outlets of experimental catchments. These studies have revealed a complex dynamics in the sediments. For example, a clear seasonality was noticed, with the highest records in winter and the beginning of spring, coinciding, however, with rainfall events of a relatively low erosion capacity. In fact, this dynamics was not only conditioned by the intensity and duration of precipitations, but also, for instance, by the soil's previous humidity, use and management, and by plant cover. Further, it was suspected that a key factor in sediment connectivity would be erosion due to concentrated flows (i.e. ephemeral gullies), which would act as a source and transport of sediments. The aim of this research is to monitor, long-term, the movement of sediments generated by erosion from ephemeral gullies within a typical agrarian catchment in Navarra, in order to clarify the role played by those gullies in sediment connectivity. The experiments will be performed in the experimental catchment of "La Tejería" (169 ha) located in the Central Area of Navarre, and which is frequently affected by concentrated flow erosion and with long-term records of sediments at its outlet. The climate is humid submediterranean, with an average annual precipitation of approximately 725 mm. The prevailing soil class is Vertic Haploxerept and cereal crops usually cover over 90% of the total area. Our previous experience in the study area would permit the prediction, with a high degree of certainty, of the appearance of ephemeral gullies at least in 4-5 watercourses selected. A specific tracer (a rare-earth oxide) will be sprinkled over

  9. Analysis of potential future droughts limiting maize production, in the Luvuvhu River catchment area, South Africa

    NASA Astrophysics Data System (ADS)

    Masupha, Teboho Elisa; Moeletsi, Mokhele Edmond

    2018-06-01

    Recurring droughts associated with global warming have raised major concern for the agricultural sector, particularly vulnerable small-scale farmers who rely on rain-fed farming such as in the Luvuvhu River catchment. The Standardized Precipitation Evapotranspiration Index (SPEI) and Water Requirement Satisfaction Index (WRSI) were calculated to assess drought on a 120-day maturing maize crop based on outputs of the CSIRO-Mk3.6.0 under RCP 4.5 emission scenario, for the period 1980/81-2089/90. Results by SPEI show that 40-54% of the agricultural seasons during the base period experienced mild drought conditions (SPEI 0 to -0.99), equivalent to a recurrence of once in two seasons. However, WRSI results clearly indicated that stations in the drier regions (annual rainfall <600 mm) of the catchment experienced mild drought (WRSI 70 - 79) corresponding to satisfactory crop performance every season. Results further showed overall mild to moderate droughts in the beginning of the near-future climate period (2020/21-2036/37) with SPEI values not decreasing below -1.5. These conditions are then expected to change during the far-future climate period (2055/56-2089/90), whereby results on the expected crop performance predicted significantly drier conditions (p < 0.05). This study provided information on how farmers in the area can prepare for future agricultural seasons, while there is sufficient time to implement strategies to reduce drought risk potential. Thus, integrated interventions could provide best options for improving livelihoods and building the capability of farmers to manage climate change-related stresses.

  10. Understanding sediment sources in a peri-urban Mediterranean catchment using geochemical tracers

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla; Walsh, Rory; Kikuchi, Ryunosuke; Blake, Will

    2016-04-01

    One of the main physical environmental impacts of urbanization is an increase in suspended sediment concentrations and loads, particularly in the constructional phase. Impacts in peri-urban catchments characterized by a mosaic of urban and non-urban landscape elements with varying roles in acting as sources and sinks of overland flow and slope wash have received little attention, particularly in Mediterranean environments. The present study uses a sediment 'fingerprinting' approach to determine the main sediment sources in the peri-urban Ribeira dos Covões catchment (6.2km2) in Portugal and how they change during storm events following contrasting antecedent weather. The catchment, rural until 1972, underwent discontinuous urbanization in 1973-1993, followed by an urban consolidation phase. Currently, its land-use is a complex mosaic of woodland (56%), urban (40%) and agricultural (4%) land parcels. Distinct urban patterns include some well-defined urban residential centres, but also areas of discontinuous urban sprawl. Since 2010, a major road was built and an enterprise park has been under construction, covering 1% and 5% of the catchment, respectively. The catchment has a Mediterranean climate. The geology comprises sandstone (56%), limestone (41%) and alluvial deposits (3%). Soils are generally deep (>3.0m), but shallow (<0.4m) on steeper limestone terrain. The catchment has an average slope of 9° , but includes steep slopes of up to 46° . The sediment fingerprinting methodology involved characterizing the chemical properties of sediments from individual upstream sub-catchments and comparing these to the properties of downstream transported fluvial material. Three fine bed-sediment sampling surveys were carried out after (i) a long dry period (21/09/2012), (ii) a winter storm of relatively high rainfall intensity (23.2mm day-1) (19/02/2015), and (iii) after several storms in Spring (22/04/2015). All samples were oven-dried (at 38° C) and sieved to obtain

  11. Quantitative Generalizations for Catchment Sediment Yield Following Plantation Logging

    NASA Astrophysics Data System (ADS)

    Bathurst, James; Iroume, Andres

    2014-05-01

    While there is a reasonably clear qualitative understanding of the impact of forest plantations on sediment yield, there is a lack of quantitative generalizations. Such generalizations would be helpful for estimating the impacts of proposed forestry operations and would aid the spread of knowledge amongst both relevant professionals and new students. This study therefore analyzed data from the literature to determine the extent to which quantitative statements can be established. The research was restricted to the impact of plantation logging on catchment sediment yield as a function of ground disturbance in the years immediately following logging, in temperate countries, and does not consider landslides consequent upon tree root decay. Twelve paired catchment studies incorporating pre- and post-logging measurements of sediment yield were identified, resulting in forty-three test catchments (including 14 control catchments). Analysis yielded the following principal conclusions: 1) Logging generally provokes maximum annual sediment yields of less than a few hundred t km-2 yr-1; best management practice can reduce this below 100 t km-2 yr-1. 2) At both the annual and event scales, the sediment yield excess of a logged catchment over a control catchment is within one order of magnitude, except with severe ground disturbance. 3) There is no apparent relationship between sediment yield impact and the proportion of catchment logged. The effect depends on which part of the catchment is altered and on its connectivity to the stream network. 4) The majority of catchments delivered their maximum sediment yield in the first two years after logging. The logging impacts were classified in terms of the absolute values of specific sediment yield, the values relative to those in the control catchments for the same period and the values relative both to the control catchment and the pre-logging period. Most studies have been for small catchments (< 10 km2) and temperate regions

  12. Water and salt balance modelling to predict the effects of land-use changes in forested catchments. 1. Small catchment water balance model

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu; Ruprecht, John K.; Viney, Neil R.

    1996-03-01

    A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers.The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.

  13. Assessment of surface water resources availability using catchment modelling and the results of tracer studies in the mesoscale Migina Catchment, Rwanda

    NASA Astrophysics Data System (ADS)

    Munyaneza, O.; Mukubwa, A.; Maskey, S.; Uhlenbrook, S.; Wenninger, J.

    2014-12-01

    In the present study, we developed a catchment hydrological model which can be used to inform water resources planning and decision making for better management of the Migina Catchment (257.4 km2). The semi-distributed hydrological model HEC-HMS (Hydrologic Engineering Center - the Hydrologic Modelling System) (version 3.5) was used with its soil moisture accounting, unit hydrograph, liner reservoir (for baseflow) and Muskingum-Cunge (river routing) methods. We used rainfall data from 12 stations and streamflow data from 5 stations, which were collected as part of this study over a period of 2 years (May 2009 and June 2011). The catchment was divided into five sub-catchments. The model parameters were calibrated separately for each sub-catchment using the observed streamflow data. Calibration results obtained were found acceptable at four stations with a Nash-Sutcliffe model efficiency index (NS) of 0.65 on daily runoff at the catchment outlet. Due to the lack of sufficient and reliable data for longer periods, a model validation was not undertaken. However, we used results from tracer-based hydrograph separation from a previous study to compare our model results in terms of the runoff components. The model performed reasonably well in simulating the total flow volume, peak flow and timing as well as the portion of direct runoff and baseflow. We observed considerable disparities in the parameters (e.g. groundwater storage) and runoff components across the five sub-catchments, which provided insights into the different hydrological processes on a sub-catchment scale. We conclude that such disparities justify the need to consider catchment subdivisions if such parameters and components of the water cycle are to form the base for decision making in water resources planning in the catchment.

  14. Catchment scale multi-objective flood management

    NASA Astrophysics Data System (ADS)

    Rose, Steve; Worrall, Peter; Rosolova, Zdenka; Hammond, Gene

    2010-05-01

    Rural land management is known to affect both the generation and propagation of flooding at the local scale, but there is still a general lack of good evidence that this impact is still significant at the larger catchment scale given the complexity of physical interactions and climatic variability taking place at this level. The National Trust, in partnership with the Environment Agency, are managing an innovative project on the Holnicote Estate in south west England to demonstrate the benefits of using good rural land management practices to reduce flood risk at the both the catchment and sub-catchment scales. The Holnicote Estate is owned by the National Trust and comprises about 5,000 hectares of land, from the uplands of Exmoor to the sea, incorporating most of the catchments of the river Horner and Aller Water. There are nearly 100 houses across three villages that are at risk from flooding which could potentially benefit from changes in land management practices in the surrounding catchment providing a more sustainable flood attenuation function. In addition to the contribution being made to flood risk management there are a range of other ecosystems services that will be enhanced through these targeted land management changes. Alterations in land management will create new opportunities for wildlife and habitats and help to improve the local surface water quality. Such improvements will not only create additional wildlife resources locally but also serve the landscape response to climate change effects by creating and enhancing wildlife networks within the region. Land management changes will also restore and sustain landscape heritage resources and provide opportunities for amenity, recreation and tourism. The project delivery team is working with the National Trust from source to sea across the entire Holnicote Estate, to identify and subsequently implement suitable land management techniques to manage local flood risk within the catchments. These

  15. Spatiotemporal dynamics of suspended sediment within an actively urbanizing peri-urban catchment in Portugal

    NASA Astrophysics Data System (ADS)

    Walsh, Rory; Ferreira, Carla; Ferreira, Antonio

    2016-04-01

    Suspended sediment levels tend to be enhanced in urban catchments, but vary considerably with (amongst many other factors) the degree of active urban development or redevelopment within the catchment and 'urbanization style'. Relatively little, however, is known about the relationship between suspended solids and urbanization style in peri-urban Mediterranean environments. This paper focuses on spatiotemporal suspended sediment dynamics within a typical Portuguese peri-urban catchment, Ribeira dos Covoes, that is undergoing rapid urbanization. The catchment currently has a 40% urban cover, with 17% impervious surfaces, dispersed between woodland (56%) and agricultural areas (4%). The study uses suspended sediment concentration measurements made at the catchment outlet (ESAC) and in three upstream tributaries: (i) Espírito Santo, with a largest urban area (49%); (ii) Porto Bordalo, 39% urbanized; and (iii) Quinta, 22% urbanized, most of which (18%) being an enterprise park under construction. Water sampling was carried out manually during 10 storm hydrographs between October 2011 and March 2013. Suspended sediment concentrations (SSC) were derived by laboratory analysis of the filtered samples using the gravimetric method. In addition total dissolved solids concentrations (TDS) were estimated using conductivity readings. Greatest SSCs were recorded in the Quinta sub-catchment and at the catchment outlet at ESAC (113-4320 mg L-1 and 200-1656 mg L-1, respectively) than in the Espírito Santo and Porto Bordalo sub-catchments (183-852 mg L-1 and 47-598 mg L-1 respectively, despite their greater impervious cover. The greatest SSCs for Quinta result from it containing the construction site, but it showed lower TDS (56-4010 mg L-1), perhaps due to the coarse sandy nature of the construction site. Higher TDS concentrations, however, were displayed in Porto Bordalo (27-5400 mg L-1), possibly due to the loamy soil. Espírito Santo, comprising sandy-loam soils, displayed 27

  16. Sediment budgets of mountain catchments: Scale dependence and the influence of land-use

    NASA Astrophysics Data System (ADS)

    Förster, Helga; Dotterweich, Markus; Wunderlich, Jürgen

    2010-05-01

    Long-term sediment budgets of forested mountain catchments are scarcely investigated today. This is because they are traditionally expected to show few erosion features and low sediment delivery. This opinion originates from process-based hydrological studies proving the runoff preventing properties of trees and forest soils. In addition mountain areas have been colonized later and only sporadically compared to the fruitful loess-covered lowlands. On the other hand steep hillslopes, narrow valleys and the availability of regolith cause a high erosion potential. And there is evidence that historical floods and yearly occurring storms initiate intensive but local and sporadic erosion events. Sediment budgets from zero-order catchments of the Palatinate Forest in the south-western sandstone escarpment in Rhineland-Palatinate show spatially varying intensities of land use impact and relief conditions. The budgets are based on field data and a soilscape model of an upper periglacial cover bed with a homogenous thickness. OSL- and 14C-dates of colluvial deposits allow relating erosion events to land-use changes derived from historical maps and written archives. The presented case studies from the Palatinate Forest are of special interest as the high proximity to the loess-covered and intensively cultivated Rhine Graben effected settlement and land-use intensity in the mountain catchments. Clear cuts for settlements were joined by deforestation for agriculture and stretched mainly along the Haardtrand and high order valleys. Off these areas the strength of interference in the forest ecosystem depended on transport possibilities and distance to the Rhine Graben. In the vicinity strong devastation and clear cutting occurred. With increasing distance the felling intensity decreased and some parts seem to be nearly undisturbed until the 18th century. The needs for wood were controlled by the economical development as well as political decisions on local to European scale. The

  17. Identification of groundwater nitrate sources in pre-alpine catchments: a multi-tracer approach

    NASA Astrophysics Data System (ADS)

    Stoewer, Myriam; Stumpp, Christine

    2014-05-01

    Porous aquifers in pre-alpine areas are often used as drinking water resources due to their good water quality status and water yield. Maintaining these resources requires knowledge about possible sources of pollutants and a sustainable management practice in groundwater catchment areas. Of particular interest in agricultural areas, like in pre-alpine regions, is limiting nitrate input as main groundwater pollutant. Therefore, the objective of the presented study is i) to identify main nitrate sources in a pre-alpine groundwater catchment with current low nitrate concentration using stable isotopes of nitrate (d18O and d15N) and ii) to investigate seasonal dynamics of nitrogen compounds. The groundwater catchment areas of four porous aquifers are located in Southern Germany. Most of the land use is organic grassland farming as well as forestry and residential area. Thus, potential sources of nitrate mainly are mineral fertilizer, manure/slurry, leaking sewage system and atmospheric deposition of nitrogen compounds. Monthly freshwater samples (precipitation, river water and groundwater) are analysed for stable isotope of water (d2H, d18O), the concentration of major anions and cations, electrical conductivity, water temperature, pH and oxygen. In addition, isotopic analysis of d18O-NO3- and d15N-NO3- for selected samples is carried out using the denitrifier method. In general, all groundwater samples were oxic (10.0±2.6mg/L) and nitrate concentrations were low (0.2 - 14.6mg/L). The observed nitrate isotope values in the observation area compared to values from local precipitation, sewage, manure and mineral fertilizer as well as to data from literature shows that the nitrate in freshwater samples is of microbial origin. Nitrate derived from ammonium in fertilizers and precipitation as well as from soil nitrogen. It is suggested that a major potential threat to the groundwater quality is ammonia and ammonium at a constant level mainly from agriculture activities as

  18. School Area Road Safety Assessment and Improvements (SARSAI) programme reduces road traffic injuries among children in Tanzania.

    PubMed

    Poswayo, Ayikai; Kalolo, Simon; Rabonovitz, Katheryn; Witte, Jeffrey; Guerrero, Alejandro

    2018-05-19

    To determine the impact of a paediatric road traffic injury (RTI) prevention programme in urban Sub-Saharan Africa. Dares Salaam, Republic of Tanzania. Household surveys were conducted in catchment areas around 18 primary schools in Dar es Salaam, Republic of Tanzania; the catchment areas were divided into control and intervention groups. Collected data included basic demographic information on all school-aged household members and whether or not they had been involved in an RTI in the previous 12 months, and, if so, what the characteristics of that RTI were. Based on these findings, a separate road safety engineering site analysis and consultation with the communities and other stakeholders, an injury-prevention programme was developed and implemented, consisting of infrastructure enhancements and a site-specific educational programme. The programme was initially implemented at the intervention schools. After 1 year, data were collected in the same manner. The control group received the same intervention after follow-up data were collected. Data were collected on 12 957 school-aged children in the baseline period and 13 555 school-aged children in the post-intervention period, in both the control and intervention communities. There was a statistically significant reduction in RTIs in the intervention group and a non-significant increase in RTI in the control group. The greatest reduction was in motorcycle-pedestrian RTI, private vehicle-pedestrian RTI and morning RTI. The programme demonstrated a significant reduction in paediatric RTI after its implementation, in very specific ways. This study demonstrates that for a reasonable investment, scientifically driven injury-prevention programmes are feasible in resource-limited settings with high paediatric RTI rates. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Large catchment area recharges Titan's Ontario Lacus

    NASA Astrophysics Data System (ADS)

    Dhingra, Rajani D.; Barnes, Jason W.; Yanites, Brian J.; Kirk, Randolph L.

    2018-01-01

    We seek to address the question of what processes are at work to fill Ontario Lacus while other, deeper south polar basins remain empty. Our hydrological analysis indicates that Ontario Lacus has a catchment area spanning 5.5% of Titan's surface and a large catchment area to lake surface area ratio. This large catchment area translates into large volumes of liquid making their way to Ontario Lacus after rainfall. The areal extent of the catchment extends to at least southern mid-latitudes (40°S). Mass conservation calculations indicate that runoff alone might completely fill Ontario Lacus within less than half a Titan year (1 Titan year = 29.5 Earth years) assuming no infiltration. Cassini Visual and Infrared Mapping Spectrometer (VIMS) observations of clouds over the southern mid and high-latitudes are consistent with precipitation feeding Ontario's large catchment area. This far-flung rain may be keeping Ontario Lacus filled, making it a liquid hydrocarbon oasis in the relatively dry south polar region.

  20. Exposure Time Distributions reveal Denitrification Rates along Groundwater Flow Path of an Agricultural Unconfined Aquifer

    NASA Astrophysics Data System (ADS)

    Kolbe, T.; Abbott, B. W.; Thomas, Z.; Labasque, T.; Aquilina, L.; Laverman, A.; Babey, T.; Marçais, J.; Fleckenstein, J. H.; Peiffer, S.; De Dreuzy, J. R.; Pinay, G.

    2016-12-01

    Groundwater contamination by nitrate is nearly ubiquitous in agricultural regions. Nitrate is highly mobile in groundwater and though it can be denitrified in the aquifer (reduced to inert N2 gas), this process requires the simultaneous occurrence of anoxia, an electron donor (e.g. organic carbon, pyrite), nitrate, and microorganisms capable of denitrification. In addition to this the ratio of the time groundwater spent in a denitrifying environment (exposure time) to the characteristic denitrification reaction time plays an important role, because denitrification can only occur if the exposure time is longer than the characteristic reaction time. Despite a long history of field studies and numerical models, it remains exceedingly difficult to measure or model exposure times in the subsurface at the catchment scale. To approach this problem, we developed a unified modelling approach combining measured environmental proxies with an exposure time based reactive transport model. We measured groundwater age, nitrogen and sulfur isotopes, and water chemistry from agricultural wells in an unconfined aquifer in Brittany, France, to quantify changes in nitrate concentration due to dilution and denitrification. Field data showed large differences in nitrate concentrations among wells, associated with differences in the exposure time distributions. By constraining a catchment-scale characteristic reaction time for denitrification with water chemistry proxies and exposure times, we were able to assess rates of denitrification along groundwater flow paths. This unified modeling approach is transferable to other catchments and could be further used to investigate how catchment structure and flow dynamics interact with biogeochemical processes such as denitrification.

  1. Identifying evidence of climate change impact on extreme events in permeable chalk catchments

    NASA Astrophysics Data System (ADS)

    Butler, A. P.; Nubert, S.

    2009-12-01

    The permeable chalk catchments of southern England are vital for the economy and well being of the UK. Not only important as a water resource, their freely draining soils support intensive agricultural production, and the rolling downs and chalk streams provide important habitants for many protected plant and animal species. Consequently, there are concerns about the potential impact of climate change on such catchments, particularly in relation to groundwater recharge. Of major concern are possible changes in extreme events, such as groundwater floods and droughts, as any increase in the frequency and/or severity of these has important consequences for water resources, ecological systems and local infrastructure. Studies of climate change impact on extreme events for such catchments have indicated that, under medium and high emissions scenarios, droughts are likely to become more severe whilst floods less so. However, given the uncertainties in such predictions and the inherent variability in historic data, producing definitive evidence of changes in flood/drought frequency/severity poses a significant challenge. Thus, there is a need for specific extreme event statistics that can be used as indicators of actual climate change in streamflow and groundwater level observations. Identifying such indicators that are sufficiently robust requires catchments with long historic time series data. One such catchment is the River Lavant, an intermittent chalk stream in West Sussex, UK. Located within this catchment is Chilgrove House, the site of the UK’s longest groundwater monitoring well (with a continuous record of water level observations of varying frequency dating back to 1836). Using a variety of meteorological datasets, the behaviour of the catchment has been modelled, from 1855 to present, using a 'leaky aquifer' conceptual model. Model calibration was based on observed daily streamflow, at a gauging station just outside the town of Chichester, from 1970. Long

  2. Spatiotemporal variability of hydrologic soil properties and the implications for overland flow and land management in a peri-urban Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Ferreira, C. S. S.; Walsh, R. P. D.; Steenhuis, T. S.; Shakesby, R. A.; Nunes, J. P. N.; Coelho, C. O. A.; Ferreira, A. J. D.

    2015-06-01

    Planning of semi-urban developments is often hindered by a lack of knowledge on how changes in land-use affect catchment hydrological response. The temporal and spatial patterns of overland flow source areas and their connectivity in the landscape, particularly in a seasonal climate, remain comparatively poorly understood. This study investigates seasonal variations in factors influencing runoff response to rainfall in a peri-urban catchment in Portugal characterized by a mosaic of landscape units and a humid Mediterranean climate. Variations in surface soil moisture, hydrophobicity and infiltration capacity were measured in six different landscape units (defined by land-use on either sandstone or limestone) in nine monitoring campaigns at key times over a one-year period. Spatiotemporal patterns in overland flow mechanisms were found. Infiltration-excess overland flow was generated in rainfalls during the dry summer season in woodland on both sandstone and limestone and on agricultural soils on limestone due probably in large part to soil hydrophobicity. In wet periods, saturation overland flow occurred on urban and agricultural soils located in valley bottoms and on shallow soils upslope. Topography, water table rise and soil depth determined the location and extent of saturated areas. Overland flow generated in upslope source areas potentially can infiltrate in other landscape units downslope where infiltration capacity exceeds rainfall intensity. Hydrophilic urban and agricultural-sandstone soils were characterized by increased infiltration capacity during dry periods, while forest soils provided potential sinks for overland flow when hydrophilic in the winter wet season. Identifying the spatial and temporal variability of overland flow sources and sinks is an important step in understanding and modeling flow connectivity and catchment hydrologic response. Such information is important for land managers in order to improve urban planning to minimize flood risk.

  3. The Demonstration Test Catchment Approach to Land and Water Management in the river Eden Watershed, UK. (Invited)

    NASA Astrophysics Data System (ADS)

    Jonczyk, J.; Quinn, P. F.; Haygarth, P.; Reaney, S.; Wilkinson, M.; Burke, S.; McGonigle, D.; Harris, B.

    2010-12-01

    The Demonstration Test Catchment (DTC) initiative is a five year project to address pollution issues in catchments. The initiative will study the wider environmental problems suffered by catchments which are under intense farming pressures and potential climate change impacts. The UK Department for Food, Agriculture and Rural Affairs (Defra) in partnership with the Environment Agency for England and Wales (EA) have funded this initiative to answer key policy concerns in catchments. The first key step has been the establishment of a ‘research platform’ at three catchments in the UK (The Eden, Wensum and Hampshire Avon) whereby funding of 9.3 million dollars has gone into funding new equipment and pollution sampling regimes have been established. Within each catchment between three and four, 8-10km2 sub-catchments have been established. The experimental design and thinking for DTCs will be explained fully in this paper. The next phase of the project will install an extensive suite of land management and pollution mitigation interventions. In parallel to this monitoring work, a full knowledge exchange package will seek to engage with farmers, the rural community and understand the governance regime at the broader catchment scale. There is also a need for a modelling component to upscale the findings to the whole of the UK. Whilst this is an ambitious goal, there is a very basic commitment of working with rural communities to come up with real solutions that will help underpin effective policy making for the future. The research platform covers a multi-scale approach to the monitoring strategy that will allow local grouping of mitigation measures to be studied local in terms of impact and propagated to the catchment scale. Even with high level of funding, the DTC can only fully instrument a catchment of 8-10km2. Beyond this scale, the EA and the standard catchment monitoring will continue as normal. The focus here is to prove that mitigation can be achieved within

  4. Can spatial statistical river temperature models be transferred between catchments?

    NASA Astrophysics Data System (ADS)

    Jackson, Faye L.; Fryer, Robert J.; Hannah, David M.; Malcolm, Iain A.

    2017-09-01

    There has been increasing use of spatial statistical models to understand and predict river temperature (Tw) from landscape covariates. However, it is not financially or logistically feasible to monitor all rivers and the transferability of such models has not been explored. This paper uses Tw data from four river catchments collected in August 2015 to assess how well spatial regression models predict the maximum 7-day rolling mean of daily maximum Tw (Twmax) within and between catchments. Models were fitted for each catchment separately using (1) landscape covariates only (LS models) and (2) landscape covariates and an air temperature (Ta) metric (LS_Ta models). All the LS models included upstream catchment area and three included a river network smoother (RNS) that accounted for unexplained spatial structure. The LS models transferred reasonably to other catchments, at least when predicting relative levels of Twmax. However, the predictions were biased when mean Twmax differed between catchments. The RNS was needed to characterise and predict finer-scale spatially correlated variation. Because the RNS was unique to each catchment and thus non-transferable, predictions were better within catchments than between catchments. A single model fitted to all catchments found no interactions between the landscape covariates and catchment, suggesting that the landscape relationships were transferable. The LS_Ta models transferred less well, with particularly poor performance when the relationship with the Ta metric was physically implausible or required extrapolation outside the range of the data. A single model fitted to all catchments found catchment-specific relationships between Twmax and the Ta metric, indicating that the Ta metric was not transferable. These findings improve our understanding of the transferability of spatial statistical river temperature models and provide a foundation for developing new approaches for predicting Tw at unmonitored locations across

  5. Catchment land use predicts benthic vegetation in small estuaries

    PubMed Central

    Warry, Fiona Y.; Reich, Paul; Mac Nally, Ralph; Woodland, Ryan J.

    2018-01-01

    Many estuaries are becoming increasingly eutrophic from human activities within their catchments. Nutrient loads often are used to assess risk of eutrophication to estuaries, but such data are expensive and time consuming to obtain. We compared the percent of fertilized land within a catchment, dissolved inorganic nitrogen loads, catchment to estuary area ratio and flushing time as predictors of the proportion of macroalgae to total vegetation within 14 estuaries in south-eastern Australia. The percent of fertilized land within the catchment was the best predictor of the proportion of macroalgae within the estuaries studied. There was a transition to a dominance of macroalgae once the proportion of fertilized land in the catchment exceeded 24%, highlighting the sensitivity of estuaries to catchment land use. PMID:29473004

  6. Hysteresis and parent-metabolite analyses unravel characteristic pesticide transport mechanisms in a mixed land use catchment.

    PubMed

    Tang, Ting; Stamm, Christian; van Griensven, Ann; Seuntjens, Piet; Bronders, Jan

    2017-11-01

    To properly estimate and manage pesticide occurrence in urban rivers, it is essential, but often highly challenging, to identify the key pesticide transport pathways in association to the main sources. This study examined the concentration-discharge hysteresis behaviour (hysteresis analysis) for three pesticides and the parent-metabolite concentration dynamics for two metabolites at sites with different levels of urban influence in a mixed land use catchment (25 km 2 ) within the Swiss Greifensee area, aiming to identify the dominant pesticide transport pathways. Combining an adapted hysteresis classification framework with prior knowledge of the field conditions and pesticide usage, we demonstrated the possibility of using hysteresis analysis to qualitatively infer the dominant pesticide transport pathway in mixed land-use catchments. The analysis showed that hysteresis types, and therefore the dominant transport pathway, vary among pesticides, sites and rainfall events. Hysteresis loops mostly correspond to dominant transport by flow components with intermediate response time, although pesticide sources indicate that fast transport pathways are responsible in most cases (e.g. urban runoff and combined sewer overflows). The discrepancy suggests the fast transport pathways can be slowed down due to catchment storages, such as topographic depressions in agricultural areas, a wastewater treatment plant (WWTP) and other artificial storage units (e.g. retention basins) in urban areas. Moreover, the WWTP was identified as an important factor modifying the parent-metabolite concentration dynamics during rainfall events. To properly predict and manage pesticide occurrence in catchments of mixed land uses, the hydrological delaying effect and chemical processes within the artificial structures need to be accounted for, in addition to the catchment hydrology and the diversity of pesticide sources. This study demonstrates that in catchments with diverse pesticide sources

  7. Predicting diffuse microbial pollution risk across catchments: The performance of SCIMAP and recommendations for future development.

    PubMed

    Porter, Kenneth D H; Reaney, Sim M; Quilliam, Richard S; Burgess, Chris; Oliver, David M

    2017-12-31

    Microbial pollution of surface waters in agricultural catchments can be a consequence of poor farm management practices, such as excessive stocking of livestock on vulnerable land or inappropriate handling of manures and slurries. Catchment interventions such as fencing of watercourses, streamside buffer strips and constructed wetlands have the potential to reduce faecal pollution of watercourses. However these interventions are expensive and occupy valuable productive land. There is, therefore, a requirement for tools to assist in the spatial targeting of such interventions to areas where they will have the biggest impact on water quality improvements whist occupying the minimal amount of productive land. SCIMAP is a risk-based model that has been developed for this purpose but with a focus on diffuse sediment and nutrient pollution. In this study we investigated the performance of SCIMAP in predicting microbial pollution of watercourses and assessed modelled outputs of E. coli, a common faecal indicator organism (FIO), against observed water quality information. SCIMAP was applied to two river catchments in the UK. SCIMAP uses land cover risk weightings, which are routed through the landscape based on hydrological connectivity to generate catchment scale maps of relative in-stream pollution risk. Assessment of the model's performance and derivation of optimum land cover risk weightings was achieved using a Monte-Carlo sampling approach. Performance of the SCIMAP framework for informing on FIO risk was variable with better performance in the Yealm catchment (r s =0.88; p<0.01) than the Wyre (r s =-0.36; p>0.05). Across both catchments much uncertainty was associated with the application of optimum risk weightings attributed to different land use classes. Overall, SCIMAP showed potential as a useful tool in the spatial targeting of FIO diffuse pollution management strategies; however, improvements are required to transition the existing SCIMAP framework to a robust

  8. Variability in source sediment contributions by applying different statistic test for a Pyrenean catchment.

    PubMed

    Palazón, L; Navas, A

    2017-06-01

    Information on sediment contribution and transport dynamics from the contributing catchments is needed to develop management plans to tackle environmental problems related with effects of fine sediment as reservoir siltation. In this respect, the fingerprinting technique is an indirect technique known to be valuable and effective for sediment source identification in river catchments. Large variability in sediment delivery was found in previous studies in the Barasona catchment (1509 km 2 , Central Spanish Pyrenees). Simulation results with SWAT and fingerprinting approaches identified badlands and agricultural uses as the main contributors to sediment supply in the reservoir. In this study the <63 μm sediment fraction from the surface reservoir sediments (2 cm) are investigated following the fingerprinting procedure to assess how the use of different statistical procedures affects the amounts of source contributions. Three optimum composite fingerprints were selected to discriminate between source contributions based in land uses/land covers from the same dataset by the application of (1) discriminant function analysis; and its combination (as second step) with (2) Kruskal-Wallis H-test and (3) principal components analysis. Source contribution results were different between assessed options with the greatest differences observed for option using #3, including the two step process: principal components analysis and discriminant function analysis. The characteristics of the solutions by the applied mixing model and the conceptual understanding of the catchment showed that the most reliable solution was achieved using #2, the two step process of Kruskal-Wallis H-test and discriminant function analysis. The assessment showed the importance of the statistical procedure used to define the optimum composite fingerprint for sediment fingerprinting applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Insights in nutrient sources and transport from high-frequency monitoring at the outlet pumping station of an agricultural lowland polder catchment

    NASA Astrophysics Data System (ADS)

    Rozemeijer, J.; Van der Grift, B.; Broers, H. P.; Berendrecht, W.; Oste, L.; Griffioen, J.

    2015-12-01

    In this study, we present new insights in nutrient sources and transport processes in an agricultural-dominated lowland water system based on high-frequency monitoring technology. Starting in October 2014, we have collected semi-continuous measurements of the TP and NO3 concentrations, conductivity and water temperature at a large scale pumping station at the outlet of a 576 km2 polder catchment. The semi-continuous measurements complement a water quality monitoring program at six locations within the drainage area based on conventional monthly or biweekly grab sampling. The NO3 and TP concentrations at the pumping station varied between 0.5 and 10 mgN/L and 0.1 and 0.5 mgP/L. The seasonal trends and short scale concentration dynamics clearly indicated that most of the NO3 loads at the pumping station originated from subsurface drain tubes that were active after intensive rainfall events during the winter months. A transfer function-noise model of hourly NO3 concentrations reveals that a large part of the dynamics in NO3 concentrations during the winter months can be predicted using rainfall data. In February however, NO3 concentrations were higher than predicted due to direct losses after the first manure application. The TP concentration almost doubled during operation of the pumping station. This highlights resuspension of particulate P from channel bed sediments induced by the higher flow velocities during pumping. Rainfall events that caused peaks in NO3 concentrations did not result in TP concentration peaks. Direct effects of run-off, with an association increase in the TP concentration and decrease of the NO3concentration, was only observed during rainfall event at the end of a freeze-thaw cycle. The high-frequency monitoring at the outlet of an agricultural-dominated lowland water system in combination with low-frequency monitoring within the area provided insight in nutrient sources and transport processes that are highly relevant for water quality

  10. Extended principle component analysis - a useful tool to understand processes governing water quality at catchment scales

    NASA Astrophysics Data System (ADS)

    Selle, B.; Schwientek, M.

    2012-04-01

    Water quality of ground and surface waters in catchments is typically driven by many complex and interacting processes. While small scale processes are often studied in great detail, their relevance and interplay at catchment scales remain often poorly understood. For many catchments, extensive monitoring data on water quality have been collected for different purposes. These heterogeneous data sets contain valuable information on catchment scale processes but are rarely analysed using integrated methods. Principle component analysis (PCA) has previously been applied to this kind of data sets. However, a detailed analysis of scores, which are an important result of a PCA, is often missing. Mathematically, PCA expresses measured variables on water quality, e.g. nitrate concentrations, as linear combination of independent, not directly observable key processes. These computed key processes are represented by principle components. Their scores are interpretable as process intensities which vary in space and time. Subsequently, scores can be correlated with other key variables and catchment characteristics, such as water travel times and land use that were not considered in PCA. This detailed analysis of scores represents an extension of the commonly applied PCA which could considerably improve the understanding of processes governing water quality at catchment scales. In this study, we investigated the 170 km2 Ammer catchment in SW Germany which is characterised by an above average proportion of agricultural (71%) and urban (17%) areas. The Ammer River is mainly fed by karstic springs. For PCA, we separately analysed concentrations from (a) surface waters of the Ammer River and its tributaries, (b) spring waters from the main aquifers and (c) deep groundwater from production wells. This analysis was extended by a detailed analysis of scores. We analysed measured concentrations on major ions and selected organic micropollutants. Additionally, redox-sensitive variables

  11. Catchment Models and Management Tools for diffuse Contaminants (Sediment, Phosphorus and Pesticides): DIFFUSE Project

    NASA Astrophysics Data System (ADS)

    Mockler, Eva; Reaney, Simeon; Mellander, Per-Erik; Wade, Andrew; Collins, Adrian; Arheimer, Berit; Bruen, Michael

    2017-04-01

    The agricultural sector is the most common suspected source of nutrient pollution in Irish rivers. However, it is also often the most difficult source to characterise due to its predominantly diffuse nature. Particulate phosphorus in surface water and dissolved phosphorus in groundwater are of particular concern in Irish water bodies. Hence the further development of models and indices to assess diffuse sources of contaminants are required for use by the Irish Environmental Protection Agency (EPA) to provide support for river basin planning. Understanding connectivity in the landscape is a vital component of characterising the source-pathway-receptor relationships for water-borne contaminants, and hence is a priority in this research. The DIFFUSE Project will focus on connectivity modelling and incorporation of connectivity into sediment, nutrient and pesticide risk mapping. The Irish approach to understanding and managing natural water bodies has developed substantially in recent years assisted by outputs from multiple research projects, including modelling and analysis tools developed during the Pathways and CatchmentTools projects. These include the Pollution Impact Potential (PIP) maps, which are an example of research output that is used by the EPA to support catchment management. The PIP maps integrate an understanding of the pollution pressures and mobilisation pathways and, using the source-pathways-receptor model, provide a scientific basis for evaluation of mitigation measures. These maps indicate the potential risk posed by nitrate and phosphate from diffuse agricultural sources to surface and groundwater receptors and delineate critical source areas (CSAs) as a means of facilitating the targeting of mitigation measures. Building on this previous research, the DIFFUSE Project will develop revised and new catchment managements tools focused on connectivity, sediment, phosphorus and pesticides. The DIFFUSE project will strive to identify the state

  12. Changing trends of rainfall and sediment fluxes in the Kinta River catchment, Malaysia

    NASA Astrophysics Data System (ADS)

    Ismail, W. R.; Hashim, M.

    2015-03-01

    The Kinta River, draining an area of 2566 km2, originates in the Korbu Mountain in Perak, Malaysia, and flows through heterogeneous, mixed land uses ranging from extensive forests to mining, rubber and oil palm plantations, and urban development. A land use change analysis of the Kinta River catchment was carried out together with assessment of the long-term trend in rainfall and sediment fluxes. The Mann-Kendall test was used to examine and assess the long-term trends in rainfall and its relationship with the sediment discharge trend. The land use analysis shows that forests, water bodies and mining land declined whilst built and agricultural land use increased significantly. This has influenced the sediment flux of the catchment. However, most of the rainfall stations and river gauging stations are experiencing an increasing trends, except at Kinta river at Tg. Rambutan. Sediment flux shows a net erosion for the period from 1961 to 1969. The total annual sediment discharge in the Kinta River catchment was low with an average rate of 1,757 t/km2/year. From 1970 to 1985, the annual sediment yield rose to an average rate of 4062 t/km2/year. Afterwards, from 1986 to 1993, the total annual sediment discharge decreased to an average rate of 1,306 t/km2/year and increased back during the period 1994 to 2000 to 2109 t/km2/year. From 2001 to 2006 the average sediment flux rate declined to 865 t/km2/year. The decline was almost 80% from the 1970s. High sediment flux in the early 1970s is partly associated with reduced tin mining activities in the area. This decreasing trend in sediment delivery leaving the Kinta River catchment is expected to continue dropping in the future.

  13. The Effect of Subsurface Parameterizations on Modeled Flows in the Catchment Land Surface Model, Fortuna 2.5

    NASA Astrophysics Data System (ADS)

    Roningen, J. M.; Eylander, J. B.

    2014-12-01

    Groundwater use and management is subject to economic, legal, technical, and informational constraints and incentives at a variety of spatial and temporal scales. Planned and de facto management practices influenced by tax structures, legal frameworks, and agricultural and trade policies that vary at the country scale may have medium- and long-term effects on the ability of a region to support current and projected agricultural and industrial development. USACE is working to explore and develop global-scale, physically-based frameworks to serve as a baseline for hydrologic policy comparisons and consequence assessment, and such frameworks must include a reasonable representation of groundwater systems. To this end, we demonstrate the effects of different subsurface parameterizations, scaling, and meteorological forcings on surface and subsurface components of the Catchment Land Surface Model Fortuna v2.5 (Koster et al. 2000). We use the Land Information System 7 (Kumar et al. 2006) to process model runs using meteorological components of the Air Force Weather Agency's AGRMET forcing data from 2006 through 2011. Seasonal patterns and trends are examined in areas of the Upper Nile basin, northern China, and the Mississippi Valley. We also discuss the relevance of the model's representation of the catchment deficit with respect to local hydrogeologic structures.

  14. Interaction between different groundwaters in brittany catchments (france): characterizing multiple sources through Sr- and S isotope tracing

    NASA Astrophysics Data System (ADS)

    Negrel, Ph; Pauwels, H.

    2003-04-01

    Water resources in hard-rocks commonly involve different hydrogeological compartments such as overlying sediments, weathered rock, the weathered-fissured zone, and fractured bedrock. Streams, lakes and wetlands that drain such environments can drain groundwater, recharge groundwater, or do both. Groundwater resources in many countries are increasingly threatened by growing demand, wasteful use, and contamination. Surface water and shallow groundwater are particularly vulnerable to pollution, while deeper resources are more protected from contamination. Sr- and S-isotope data as well as major ions, from shallow and deep groundwater in three granite and Brioverian "schist" areas of the Armorican Massif (NW France) with intensive agriculture covering large parts are presented. The stable-isotope signatures of the waters plot close to the general meteoric-water line, reflecting a meteoric origin and the lack of significant evaporation or water-rock interaction. The water chemistry from the different catchments shows large variation in the major-element contents. Plotting Na, Mg, NO_3, K, SO_4 and Sr vs. Cl contents concentrations reflect agricultural input from hog and livestock farming and fertilizer applications, with local sewage-effluent influence, although some water samples are clearly unpolluted. The δ34S(SO_4) is controlled by several potential sources (atmospheric sulphate, pyrite-derived sulphates, fertilizer sulphates). Some δ18O and δ34S values are expected to increase through sulphate reduction, with higher effect on δ34S for the dissimilatory processes and on δ18O for assimilatory processes. The range in Sr contents in groundwater from different catchments agrees with previous work on groundwater sampled from granites in France. The Sr content is well correlated with Mg and both are related to agricultural practises. As in granite-gneiss watersheds in France, 87Sr/86Sr ratios range from 0.71265 to 0.72009. The relationship between 87Sr/86Sr and Mg

  15. Using geomorphological variables to predict the spatial distribution of plant species in agricultural drainage networks

    PubMed Central

    Bailly, Jean-Stéphane; Vinatier, Fabrice

    2018-01-01

    To optimize ecosystem services provided by agricultural drainage networks (ditches) in headwater catchments, we need to manage the spatial distribution of plant species living in these networks. Geomorphological variables have been shown to be important predictors of plant distribution in other ecosystems because they control the water regime, the sediment deposition rates and the sun exposure in the ditches. Whether such variables may be used to predict plant distribution in agricultural drainage networks is unknown. We collected presence and absence data for 10 herbaceous plant species in a subset of a network of drainage ditches (35 km long) within a Mediterranean agricultural catchment. We simulated their spatial distribution with GLM and Maxent model using geomorphological variables and distance to natural lands and roads. Models were validated using k-fold cross-validation. We then compared the mean Area Under the Curve (AUC) values obtained for each model and other metrics issued from the confusion matrices between observed and predicted variables. Based on the results of all metrics, the models were efficient at predicting the distribution of seven species out of ten, confirming the relevance of geomorphological variables and distance to natural lands and roads to explain the occurrence of plant species in this Mediterranean catchment. In particular, the importance of the landscape geomorphological variables, ie the importance of the geomorphological features encompassing a broad environment around the ditch, has been highlighted. This suggests that agro-ecological measures for managing ecosystem services provided by ditch plants should focus on the control of the hydrological and sedimentological connectivity at the catchment scale. For example, the density of the ditch network could be modified or the spatial distribution of vegetative filter strips used for sediment trapping could be optimized. In addition, the vegetative filter strips could constitute

  16. Adapting Agriculture Platforms for Nutrition: A Case Study of a Participatory, Video-Based Agricultural Extension Platform in India.

    PubMed

    Kadiyala, Suneetha; Morgan, Emily H; Cyriac, Shruthi; Margolies, Amy; Roopnaraine, Terry

    2016-01-01

    Successful integration of nutrition interventions into large-scale development programmes from nutrition-relevant sectors, such as agriculture, can address critical underlying determinants of undernutrition and enhance the coverage and effectiveness of on-going nutrition-specific activities. However, evidence on how this can be done is limited. This study examines the feasibility of delivering maternal, infant, and young child nutrition behaviour change communication through an innovative agricultural extension programme serving nutritionally vulnerable groups in rural India. The existing agriculture programme involves participatory production of low-cost videos promoting best practices and broad dissemination through village-level women's self-help groups. For the nutrition intervention, 10 videos promoting specific maternal, infant, and young child nutrition practices were produced and disseminated in 30 villages. A range of methods was used to collect data, including in-depth interviews with project staff, frontline health workers, and self-help group members and their families; structured observations of mediated video dissemination sessions; nutrition knowledge tests with project staff and self-help group members; and a social network questionnaire to assess diffusion of promoted nutrition messages. We found the nutrition intervention to be well-received by rural communities and viewed as complementary to existing frontline health services. However, compared to agriculture, nutrition content required more time, creativity, and technical support to develop and deliver. Experimentation with promoted nutrition behaviours was high, but sharing of information from the videos with non-viewers was limited. Key lessons learned include the benefits of and need for collaboration with existing health services; continued technical support for implementing partners; engagement with local cultural norms and beliefs; empowerment of women's group members to champion nutrition

  17. What causes similarity in catchments?

    NASA Astrophysics Data System (ADS)

    Savenije, Hubert

    2014-05-01

    One of the biggest issues in hydrology is how to handle the heterogeneity of catchment properties at different scales. But is this really such a big issue? Is this problem not merely the consequence of how we conceptualise and how we model catchments? Is there not far more similarity than we observe. Maybe we are not looking at the right things or at the right scale to see the similarity. The identity of catchments is largely determined by: the landscape, the ecosystem living on the landscape, and the geology, in that order. Soils, which are often seen as a crucial aspect of hydrological behaviour, are far less important, as will be demonstrated. The main determinants of hydrological behaviour are: the landscape composition, the rooting depth and the phenology. These determinants are a consequence of landscape and ecosystem evolution, which, in turn, are the manifestations of entropy production. There are striking similarities between catchments. The different runoff processes from hillslopes are linked and similar in different environments (McDonnell, 2013). Wetlands behave similarly all over the world. The key is to classify landscapes and to link the ecosystems living on them to climate. The ecosystem then is the main controller of hydrological behaviour. Besides phenology, the rooting depth is key in determining runoff behaviour. Both are strongly linked to climate and much less to soil properties. An example is given of how rooting depth is determined by climate, and how rooting depth can be predicted without calibration, providing a strong constraints on the prediction of rainfall partitioning and catchment runoff.

  18. Assessment of surface water resources availability using catchment modeling and the results of tracer studies in the meso-scale Migina Catchment, Rwanda

    NASA Astrophysics Data System (ADS)

    Munyaneza, O.; Mukubwa, A.; Maskey, S.; Wenninger, J.; Uhlenbrook, S.

    2013-12-01

    In the last couple of years, different hydrological research projects were undertaken in the Migina catchment (243.2 km2), a tributary of the Kagera river in Southern Rwanda. These projects were aimed to understand hydrological processes of the catchment using analytical and experimental approaches and to build a pilot case whose experience can be extended to other catchments in Rwanda. In the present study, we developed a hydrological model of the catchment, which can be used to inform water resources planning and decision making. The semi-distributed hydrological model HEC-HMS (version 3.5) was used with its soil moisture accounting, unit hydrograph, liner reservoir (for base flow) and Muskingum-Cunge (river routing) methods. We used rainfall data from 12 stations and streamflow data from 5 stations, which were collected as part of this study over a period of two years (May 2009 and June 2011). The catchment was divided into five sub-catchments each represented by one of the five observed streamflow gauges. The model parameters were calibrated separately for each sub-catchment using the observed streamflow data. Calibration results obtained were found acceptable at four stations with a Nash-Sutcliffe Model Efficiency of 0.65 on daily runoff at the catchment outlet. Due to the lack of sufficient and reliable data for longer periods, a model validation (split sample test) was not undertaken. However, we used results from tracer based hydrograph separation from a previous study to compare our model results in terms of the runoff components. It was shown that the model performed well in simulating the total flow volume, peak flow and timing as well as the portion of direct runoff and base flow. We observed considerable disparities in the parameters (e.g. groundwater storage) and runoff components across the five sub-catchments, that provided insights into the different hydrological processes at sub-catchment scale. We conclude that such disparities justify the need

  19. Catchment scale afforestation for mitigating flooding

    NASA Astrophysics Data System (ADS)

    Barnes, Mhari; Quinn, Paul; Bathurst, James; Birkinshaw, Stephen

    2016-04-01

    After the 2013-14 floods in the UK there were calls to 'forest the uplands' as a solution to reducing flood risk across the nation. At present, 1 in 6 homes in Britain are at risk of flooding and current EU legislation demands a sustainable, 'nature-based solution'. However, the role of forests as a natural flood management technique remains highly controversial, due to a distinct lack of robust evidence into its effectiveness in reducing flood risk during extreme events. SHETRAN, physically-based spatially-distributed hydrological models of the Irthing catchment and Wark forest sub-catchments (northern England) have been developed in order to test the hypothesis of the effect trees have on flood magnitude. The advanced physically-based models have been designed to model scale-related responses from 1, through 10, to 100km2, a first study of the extent to which afforestation and woody debris runoff attenuation features (RAFs) may help to mitigate floods at the full catchment scale (100-1000 km2) and on a national basis. Furthermore, there is a need to analyse the extent to which land management practices, and the installation of nature-based RAFs, such as woody debris dams, in headwater catchments can attenuate flood-wave movement, and potentially reduce downstream flood risk. The impacts of riparian planting and the benefits of adding large woody debris of several designs and on differing sizes of channels has also been simulated using advanced hydrodynamic (HiPIMS) and hydrological modelling (SHETRAN). With the aim of determining the effect forestry may have on flood frequency, 1000 years of generated rainfall data representative of current conditions has been used to determine the difference between current land-cover, different distributions of forest cover and the defining scenarios - complete forest removal and complete afforestation of the catchment. The simulations show the percentage of forestry required to have a significant impact on mitigating

  20. Modeller's attitude in catchment modelling: a comparative study

    NASA Astrophysics Data System (ADS)

    Battista Chirico, Giovanni

    2010-05-01

    Ten modellers have been invited to predict, independently from each other, the discharge of the artificial Chicken Creek catchment in North-East Germany for simulation period of three years, providing them only soil texture, terrain and meteorological data. No data concerning the discharge or other sources of state variables and fluxes within the catchment have been provided. Modellers had however the opportunity to visit the experimental catchment and inspect areal photos of the catchments since its initial development stage. This study has been a unique comparative study focussing on how different modellers deal with the key issues in predicting the discharge in ungauged catchments: 1) choice of the model structure; 2) identification of model parameters; 3) identification of model initial and boundary conditions. The first general lesson learned during this study was that the modeller is just part of the entire modelling process and has a major bearing on the model results, particularly in ungauged catchments where there are more degrees of freedom in making modelling decisions. Modellers' attitudes during the stages of the model implementation and parameterisation have been deeply influenced by their own experience from previous modelling studies. A common outcome was that modellers have been mainly oriented to apply process-based models able to exploit the available data concerning the physical properties of the catchment and therefore could be more suitable to cope with the lack of data concerning state variables or fluxes. The second general lesson learned during this study was the role of dominant processes. We believed that the modelling task would have been much easier in an artificial catchment, where heterogeneity were expected to be negligible and processes simpler, than in catchments that have evolved over a longer time period. The results of the models were expected to converge, and this would have been a good starting point to proceed for a model

  1. Integrating isotopic tracer techniques with Bayesian modelling for improved assessment and management of sedimentation problems in the Gilgel-Gibe catchment, Ethiopia

    NASA Astrophysics Data System (ADS)

    Dume, Bayu; Amsalu, Nebiyu; Bode, Samuel; Mtei, Kelvin; Munishi, Linus; Navas, Ana; Semmens, Brice; Smith, Hugh; Stock, Brian; Blake, Will; Boeckx, Pascal

    2017-04-01

    Soil erosion and associated downstream siltation of dams and lakes is becoming serious threat to catchment ecosystem services supporting water, food and energy security in Ethiopia. Sediments originate on catchment hillslopes but mobilisation processes vary depending on land use and terrain. The Gilgel Gibe hydroelectric dam is one of a series of development projects launched by the Federal Government of Ethiopia. The catchment is characterised by erodible, deforested agricultural land which is also overgrazed. Siltation and nutrient enrichment are significant issues given 'hotspot' sheet erosion estimates of 2210 ton per square km. The annual contribution of sediment from the Gilgel Gibe River to the dam was estimated at 277 thousand tons per year leading to accumulations of 3.75 x 107 cubic metres per year of silt behind the dam. The primary driver for mobilisation and translocation to downstream is believed to be erosion on agricultural lands and collapse of steep banks, through landsliding into river channels in the highland headwaters. The relative importance of specific sources of siltation are unknown and sediment source apportionment has been identified as a first essential step before soil conservation measures can be implemented. Knowledge of sediment source and transfer dynamics is critical to inform management policy decisions to maintain and enhance future food, water and energy security To test the applicability of a new combination of Bayesian unmixing modelling with sediment fingerprinting in this terrain (IMIXSED approach) a demonstration sub-catchment was selected through field assessment in the upper Gilgel-Gibe water-supply catchments (Unta River) and sampling strategies designed. Accordingly, sources, i.e. soil samples from landslides (n=40), eroding channel bank (n = 5), cultivated land (n = 30), grasslands (n = 30), wooded areas (n = 10), homestead plots (n = 10) were collected alongside 10 spatially-integrated sediment deposits from the

  2. Establishment of a hydrological monitoring network in a tropical African catchment: An integrated participatory approach

    NASA Astrophysics Data System (ADS)

    Gomani, M. C.; Dietrich, O.; Lischeid, G.; Mahoo, H.; Mahay, F.; Mbilinyi, B.; Sarmett, J.

    Sound decision making for water resources management has to be based on good knowledge of the dominant hydrological processes of a catchment. This information can only be obtained through establishing suitable hydrological monitoring networks. Research catchments are typically established without involving the key stakeholders, which results in instruments being installed at inappropriate places as well as at high risk of theft and vandalism. This paper presents an integrated participatory approach for establishing a hydrological monitoring network. We propose a framework with six steps beginning with (i) inception of idea; (ii) stakeholder identification; (iii) defining the scope of the network; (iv) installation; (v) monitoring; and (vi) feedback mechanism integrated within the participatory framework. The approach is illustrated using an example of the Ngerengere catchment in Tanzania. In applying the approach, the concept of establishing the Ngerengere catchment monitoring network was initiated in 2008 within the Resilient Agro-landscapes to Climate Change in Tanzania (ReACCT) research program. The main stakeholders included: local communities; Sokoine University of Agriculture; Wami Ruvu Basin Water Office and the ReACCT Research team. The scope of the network was based on expert experience in similar projects and lessons learnt from literature review of similar projects from elsewhere integrated with local expert knowledge. The installations involved reconnaissance surveys, detailed surveys, and expert consultations to identify best sites. First, a Digital Elevation Model, land use, and soil maps were used to identify potential monitoring sites. Local and expert knowledge was collected on flow regimes, indicators of shallow groundwater plant species, precipitation pattern, vegetation, and soil types. This information was integrated and used to select sites for installation of an automatic weather station, automatic rain gauges, river flow gauging stations

  3. Catchment scale molecular composition of hydrologically mobilized dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Raeke, Julia; Lechtenfeld, Oliver J.; Oosterwoud, Marieke R.; Bornmann, Katrin; Tittel, Jörg; Reemtsma, Thorsten

    2016-04-01

    Increasing concentrations of dissolved organic matter (DOM) in rivers of temperate catchments in Europe and North Amerika impose new technical challenges for drinking water production. The driving factors for this decadal increase in DOM concentration are not conclusive and changes in annual temperatures, precipitation and atmospheric deposition are intensely discussed. It is known that the majority of DOM is released by few but large hydrologic events, mobilizing DOM from riparian wetlands for export by rivers and streams. The mechanisms of this mobilization and the resulting molecular composition of the released DOM may be used to infer long-term changes in the biogeochemistry of the respective catchment. Event-based samples collected over two years from streams in three temperate catchments in the German mid-range mountains were analyzed after solid-phase extraction of DOM for their molecular composition by ultra-high resolution mass spectrometry (FT-ICR MS). Hydrologic conditions, land use and water chemistry parameters were used to complement the molecular analysis. The molecular composition of the riverine DOM was strongly dependent on the magnitude of the hydrologic events, with unsaturated, oxygen-enriched compounds being preferentially mobilized by large events. This pattern is consistent with an increase in dissolved iron and aluminum concentrations. In contrast, the relative proportions of nitrogen and sulfur bearing compounds increased with an increased agricultural land use but were less affected by the mobilization events. Co-precipitation experiments with colloidal aluminum showed that unsaturated and oxygen-rich compounds are preferentially removed from the dissolved phase. The precipitated compounds thus had similar chemical characteristics as compared to the mobilized DOM from heavy rain events. Radiocarbon analyses also indicated that this precipitated fraction of DOM was of comparably young radiocarbon age. DOM radiocarbon from field samples

  4. Snow cover distribution over elevation zones in a mountainous catchment

    NASA Astrophysics Data System (ADS)

    Panagoulia, D.; Panagopoulos, Y.

    2009-04-01

    A good understanding of the elevetional distribution of snow cover is necessary to predict the timing and volume of runoff. In a complex mountainous terrain the snow cover distribution within a watershed is highly variable in time and space and is dependent on elevation, slope, aspect, vegetation type, surface roughness, radiation load, and energy exchange at the snow-air interface. Decreases in snowpack due to climate change could disrupt the downstream urban and agricultural water supplies, while increases could lead to seasonal flooding. Solar and longwave radiation are dominant energy inputs driving the ablation process. Turbulent energy exchange at the snow cover surface is important during the snow season. The evaporation of blowing and drifting snow is strongly dependent upon wind speed. Much of the spatial heterogeneity of snow cover is the result of snow redistribution by wind. Elevation is important in determining temperature and precipitation gradients along hillslopes, while the temperature gradients determine where precipitation falls as rain and snow and contribute to variable melt rates within the hillslope. Under these premises, the snow accumulation and ablation (SAA) model of the US National Weather Service (US NWS) was applied to implement the snow cover extent over elevation zones of a mountainous catchment (the Mesochora catchment in Western-Central Greece), taking also into account the indirectly included processes of sublimation, interception, and snow redistribution. The catchment hydrology is controlled by snowfall and snowmelt and the simulated discharge was computed from the soil moisture accounting (SMA) model of the US NWS and compared to the measured discharge. The elevationally distributed snow cover extent presented different patterns with different time of maximization, extinction and return during the year, producing different timing of discharge that is a crucial factor for the control and management of water resources systems.

  5. Catchment Classification: Connecting Climate, Structure and Function

    NASA Astrophysics Data System (ADS)

    Sawicz, K. A.; Wagener, T.; Sivapalan, M.; Troch, P. A.; Carrillo, G. A.

    2010-12-01

    Hydrology does not yet possess a generally accepted catchment classification framework. Such a classification framework needs to: [1] give names to things, i.e. the main classification step, [2] permit transfer of information, i.e. regionalization of information, [3] permit development of generalizations, i.e. to develop new theory, and [4] provide a first order environmental change impact assessment, i.e., the hydrologic implications of climate, land use and land cover change. One strategy is to create a catchment classification framework based on the notion of catchment functions (partitioning, storage, and release). Results of an empirical study presented here connects climate and structure to catchment function (in the form of select hydrologic signatures), based on analyzing over 300 US catchments. Initial results indicate a wide assortment of signature relationships with properties of climate, geology, and vegetation. The uncertainty in the different regionalized signatures varies widely, and therefore there is variability in the robustness of classifying ungauged basins. This research provides insight into the controls of hydrologic behavior of a catchment, and enables a classification framework applicable to gauged and ungauged across the study domain. This study sheds light on what we can expect to achieve in mapping climate, structure and function in a top-down manner. Results of this study complement work done using a bottom-up physically-based modeling framework to generalize this approach (Carrillo et al., this session).

  6. Human impact on the geomorphic evolution of the HOAL catchment, Lower Austria

    NASA Astrophysics Data System (ADS)

    Pöppl, Ronald; Kraushaar, Sabine; Strauss, Peter; Fuchs, Markus

    2016-04-01

    Since the beginning of human settlement extensive land cover and land use changes have induced significant geomorphic landscape changes as water and sediment dynamics have been transformed. The presented project focuses on the reconstruction of Holocene geomorphic landscape evolution and the assessment of recent geomorphic processes in the Northern foothills of the Eastern Alps in Austria - an area intensively agriculturally used since the middle ages and often overlooked in its geomorphic evolution. The study area is a small catchment (ca. 66 ha) which is located in the western part of Lower Austria comprising a land use history as well as environmental settings typical for wide regions across the Northern foothills of the Eastern Alps in Austria. The catchment elevation ranges from 268 to 323 m a.s.l. and has a mean slope angle of 8%. The climate in this region can be characterized as humid. The lithology mainly consists of Tertiary marly to sandy deposits which are superimposed by Quaternary sediments (e.g. loesses). Dominant soil types are Cambisols, Luvisols, and Planosols. Furthermore, the catchment is used as a Hydrological Open Air Laboratory (HOAL) implemented for the long-term research of water-related flow and transport processes in the landscape (http://hoal.hydrology.at). The main objective of this research project is to reconstruct Holocene landscape evolution by analyzing physical parameters of sediment cores taken from colluvial and alluvial sediment archives with additional 14C and OSL dating as well as by the measurement of truncated and covered standardized Luvisol profiles. First results will be presented at the EGU General Assembly 2016.

  7. Microbial Community-Level Physiological Profiles (CLPP) and herbicide mineralization potential in groundwater affected by agricultural land use

    NASA Astrophysics Data System (ADS)

    Janniche, Gry Sander; Spliid, Henrik; Albrechtsen, Hans-Jørgen

    2012-10-01

    Diffuse groundwater pollution from agricultural land use may impact the microbial groundwater community, which was investigated as Community-Level Physiological Profiles (CLPP) using EcoPlate™. Water was sampled from seven piezometers and a spring in a small agricultural catchment with diffuse herbicide and nitrate pollution. Based on the Shannon-Wiener and Simpson's diversity indices the diversity in the microbial communities was high. The response from the EcoPlates™ showed which substrates support groundwater bacteria, and all 31 carbon sources were utilized by organisms from at least one water sample. However, only nine carbon sources were utilized by all water samples: D-Mannitol, N-acetyl-D-glucosamine, putrescine, D-galacturonic acid, itaconic acid, 4-hydroxy benzoic acid, tween 40, tween 80, and L-asparagine. In all water samples the microorganisms preferred D-mannitol, D-galacturonic acid, tween 40, and 4-hydroxy benzoic acid as substrates, whereas none preferred 2-hydroxy benzoic acid, α-D-lactose, D,L-α-glycerol phosphate, α-ketobutyric acid, L-threonine and glycyl-L-glutamic acid. Principal Component Analysis of the CLPP's clustered the most agriculturally affected groundwater samples, indicating that the agricultural land use affects the groundwater microbial communities. Furthermore, the ability to mineralize atrazine and isoproturon, which have been used in the catchment, was also associated with this cluster.

  8. Using synoptic tracer surveys to assess runoff sources in an Andean headwater catchment in central Chile.

    PubMed

    Nauditt, A; Soulsby, C; Birkel, C; Rusman, A; Schüth, C; Ribbe, L; Álvarez, P; Kretschmer, N

    2017-09-01

    Headwater catchments in the Andes provide critical sources of water for downstream areas with large agricultural communities dependent upon irrigation. Data from such remote headwater catchments are sparse, and there is limited understanding of their hydrological function to guide sustainable water management. Here, we present the findings of repeat synoptic tracer surveys as rapid appraisal tools to understand dominant hydrological flow paths in the semi-arid Rio Grande basin, a 572-km 2 headwater tributary of the 11,696-km 2 Limarí basin in central Chile. Stable isotopes in stream water show a typical altitudinal effect, with downstream enrichment in δ 2 H and δ 18 O ratios. Seasonal signals are displayed in the isotopic composition of the springtime melting season water line with a steeper gradient, whilst evaporative effects are represented by lower seasonal gradients for autumn and summer. Concentrations of solutes indexed by electrical conductivity indicate that there are limited contributions of deeper mineralised groundwater to streamflow and that weathering rates vary in the different sub-catchments. Although simplistic, the insights gained from the study could be used to inform the structure and parameterisation of rainfall runoff models to provide seasonal discharge predictions as an evidence base for decision making in local water management.

  9. Future Proofing Water Policy and Catchment Management for a Changing Climate: A Case Study of Competing Demands and Water Scarcity in the River Thames and Catchment

    NASA Astrophysics Data System (ADS)

    Whitehead, P. G.; Crossman, J.; Jin, L.

    2011-12-01

    The River Thames Catchment is the major water supply system in Southern England and supplies all of London's water supply from either the River Lee (a tributary of the Thames) or the main river abstraction site at Teddington (see Figure 1) or from groundwater sources in London. There has been a measurable change in rainfall patterns over the past 250 years with reducing summer rainfall and, hence flows, over the past 40 years. In 1976, following 3 dry winters, the London Reservoirs were more or less empty and the river flow direction was reversed to ensure a supply of water for London. Recent climate change studies in the Thames catchments suggest an increasing threat to water supply and also damage to river water quality and ecology. In addition to a changing climate, population levels in London have risen in recent years and the catchment is increasingly vulnerable to land use change. Since the 1920s changes in land use have increased the levels of nitrogen and phosphorus in the catchment and this trend is predicted to be exacerbated as climate change reduces freshwater dilution. Also land use is predicted to change as agriculture becomes more intensive as farmers react to higher grain and food prices. At the same time rising water temperatures has exposed the river to the potential for toxic algal blooms, such as cyanobacteria. This doom and gloom story is being managed however using a range of policy instruments, led by central government and public and private organisations such as Thames Water and the Environment Agency. Measures such as new reservoirs, a water transfer scheme from Wales and water metering to reduce demand are all being actively pursued, as are land management measures to control diffuse pollution. In order to assess the effects of climate change on the Thames catchment a major modelling study has been undertaken. The Integrated Catchment Model (INCA) has been set up for the Thames to model flow, nitrogen, phosphorus and ecology. Climate

  10. Lessons learned for applying a paired-catchment approach in drought analysis

    NASA Astrophysics Data System (ADS)

    Van Loon, Anne; Rangecroft, Sally; Coxon, Gemma; Agustín Breña Naranjo, José; Van Ogtrop, Floris; Croghan, Danny; Van Lanen, Henny

    2017-04-01

    Ongoing research is looking to quantify the human impact on hydrological drought using observed data. One potentially suitable method is the paired-catchment approach. Paired catchments have been successfully used for quantifying the impact of human actions (e.g. forest treatment and wildfires) on various components of a catchment's water balance. However, it is unclear whether this method could successfully be applied to drought. In this study, we used a paired-catchment approach to quantify the effects of reservoirs, groundwater abstraction and urbanisation on hydrological drought in the UK, Mexico, and Australia. Following recommendations in literature, we undertook a thorough catchment selection and identified catchments of similar size, climate, geology, and topography. One catchment of the pair was affected by either reservoirs, groundwater abstraction or urbanisation. For the selected catchment pairs, we standardised streamflow time series to catchment area, calculated a drought threshold from the natural catchment and applied it to the human-influenced catchment. The underlying assumption being that the differences in drought severity between catchments can then be attributed to the anthropogenic activity. In some catchments we had local knowledge about human influences, and therefore we could compare our paired-catchment results with hydrological model scenarios. However, we experienced that detailed data on human influences usually are not well recorded. The results showed us that it is important to account for variation in average annual precipitation between the paired catchments to be able to transfer the drought threshold of the natural catchment to the human-influenced catchment. This can be achieved by scaling the discharge by the difference in annual average precipitation. We also found that the temporal distribution of precipitation is important, because if meteorological droughts differ between the paired catchments, this may mask changes caused

  11. Influence of landscape mosaic on streamflow of a peri-urban catchment under Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla; Walsh, Rory; Ferreira, António

    2017-04-01

    Peri-urban areas tend to be characterized by patchy landscape mosaics of different land-uses. Although the impact of land-use changes on catchment hydrology have been widely investigated, the impact of mixed land-use patterns on the streamflow of peri-urban areas is still poorly understood. This study aims to (i) explore and quantify streamflow delivery from sub-catchments characterized by distinct landscape mosaics; (ii) assess the impact of different urbanization styles on hydrograph properties; and (iii) explore the influence of urbanization type on flow connectivity and stream discharge. The study was carried out in Ribeira dos Covões, a small (6.2km2) peri-urban catchment in central Portugal. The climate is Mediterranean, with a mean annual rainfall of 892mm. Catchment geology comprises sandstone (56%), limestone (41%) and alluvial deposits (3%). Soils developed on sandstone are generally deep (>3m) Fluvisols and Podsols, whereas on limestone the Leptic Cambisols are typically shallow (<0.4m). Forest is the dominant land-use (56%), but urban areas cover an extensive area (40%), whereas agricultural land has declined to a very small area (4%). The urban area comprises contrasting urban styles, notably older discontinuous urban areas with buildings separated by gardens of low population density (<25 inhabitants km-2), and recent well-defined continuous urban cores dominated by apartment blocks and of high population density (9900 inhabitants km-2). The study uses hydrological data recorded over three hydrological years, starting in November 2010, in a monitoring network comprising eight streamflow gauging stations (instrumented with water level recorders) and five rainfall gauges. The gauging stations provide information on the discharge response to rainstorms of the catchment outlet and upstream sub-catchments of different size, urban pattern (in terms of percentage urban land-use and impervious area, distance to the stream network, and storm water management

  12. Influence of urbanization pattern on stream flow of a peri-urban catchment under Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla S. S.; Walsh, Rory P. D.; Ferreira, António J. D.; Steenhuis, Tammo S.; Coelho, Celeste A. O.

    2015-04-01

    The demand for better life quality and lower living costs created a great pressure on peri-urban areas, leading to significant land-use changes. The complexity of mixed land-use patterns, however, presents a challenge to understand the hydrological pathways and streamflow response involved in such changes. This study assesses the impact of a actively changing Portuguese peri-urban area on catchment hydrology. It focuses on quantifying streamflow delivery from contributing areas, of different land-use arrangement and the seasonal influence of the Mediterranean climate on stream discharge. The study focuses on Ribeira dos Covões a small (6 km2) peri-urban catchment on the outskirts of Coimbra, one of the main cities in central Portugal. Between 1958 and 2012 the urban area of the catchment expanded from 8% to 40%, mostly at the expense of agriculture (down from 48% to 4%), with woodland now accounting for the remaining 56% of the catchment area. The urban area comprises contrasting urban settings, associated with older discontinuous arrangement of buildings and urban structures and low population density (<25 inhabitants/km), and recent well-defined urban cores dominated by apartment blocks and high population density (9900 inhabitants/km). The hydrological response of the catchment has been monitored since 2007 by a flume installed at the outlet. In 2009, five rainfall gauges and eight additional water level recorders were installed upstream, to assess the hydrological response of different sub-catchments, characterized by distinct urban patterns and either limestone or sandstone lithologies. Annual runoff coefficients range between 14% and 22%. Changes in annual baseflow index (36-39% of annual rainfall) have been small with urbanization (from 34% to 40%) during the monitoring period itself. Annual runoff coefficients were lowest (14-7%) on catchments >80% woodland and highest (29% on sandstone; 18% on limestone) in the most urbanized (49-53% urban) sub-catchments

  13. Identification of nitrate sources and discharge-depending nitrate dynamics in a mesoscale catchment

    NASA Astrophysics Data System (ADS)

    Mueller, Christin; Strachauer, Ulrike; Brauns, Mario; Musolff, Andreas; Kunz, Julia Vanessa; Brase, Lisa; Tarasova, Larisa; Merz, Ralf; Knöller, Kay

    2017-04-01

    During the last decades, nitrate concentrations in surface and groundwater have increased due to land use change and accompanying application of fertilizer in agriculture as well as increased atmospheric deposition. To mitigate nutrient impacts on downstream aquatic ecosystems, it is important to quantify potential nitrate sources, instream nitrate processing and its controls in a river system. The objective of this project is to characterize and quantify (regional) scale dynamics and trends in water and nitrogen fluxes of the entire Holtemme river catchment in central Germany making use of isotopic fingerprinting methods. Here we compare two key date sampling campaigns in 2014 and 2015, with spatially highly resolved measurements of discharge at 23 sampling locations including 11 major tributaries and 12 locations at the main river. Additionally, we have data from continuous runoff measurements at 10 locations operated by the local water authorities. Two waste water treatment plants contribute nitrogen to the Holtemme stream. This contribution impacts nitrate loads and nitrate isotopic signatures depending on the prevailing hydrological conditions. Nitrogen isotopic signatures in the catchment are mainly controlled by different sources (nitrified soil nitrogen in the headwater and manure/ effluents from WWTPs in the lowlands) and increase with raising nitrate concentrations along the main river. Nitrate loads at the outlet of the catchment are extremely different between both sampling campaigns (2014: NO3- = 97 t a-1, 2015: NO3- = 5 t a-1) which is associated with various runoff (2014: 0.8 m3 s-1, 2015: 0.2 m3 s-1). In 2015, the inflow from WWTP's raises the NO3- loads and enriches δ18O-NO3 values. Generally, oxygen isotope signatures from nitrate are more variable and are controlled by biogeochemical processes in concert with the oxygen isotopic composition of the ambient water. Elevated δ18O-NO3 in 2015 are most likely due to higher temperatures and lower

  14. Tracing the origin and mobilization of Glyphosate and AMPA in a vineyard catchment

    NASA Astrophysics Data System (ADS)

    Gassmann, Matthias; Olsson, Oliver; Payraudeau, Sylvain; Imfeld, Gwenaël; Kümmerer, Klaus

    2014-05-01

    Pesticides residues are often found in storm-water runoff in agricultural areas. There are several pathways along which pesticides may be transported from their application point towards the river. Although the primary target of pesticide application is the agricultural area, wind drift transports pesticide droplets to non-target areas. Furthermore, miss-operation of application machines results in the deposition of pesticides at filter strips or roads from where they can be washed off. Therefore, it may be difficult to identify the origin of pesticides in storm-water runoff. However, management of water quality requires that critical source areas are clearly delineated in order to effectively reduce water pollution. In the Rouffach catchment, a 42.7 ha vineyard catchment in France, Glyphosate and its transformation product AMPA occurred frequently and in high concentrations in runoff water during rainfall-runoff events in 2008. In order to identify the source areas of Glyphosate residue pollution and its mobilization, we used here a combination of sampling data analysis techniques and distributed pollutant transfer modelling. Available sampling data allowed for an analysis by Normalized Cumulative Loads (NCL) at a high temporal resolution (10 min). The results imply that pollutant mobilization took place mainly at the beginning of an event. This First Flush suggests a wash off of substances from impervious surfaces such as roads. This assumption was confirmed by local hydrological knowledge about infiltration rates in the vineyard, which were not exceeded by rainfall intensities in most considered events. Additionally, the distributed process-based reactive transport model ZIN-AgriTra was used as a learning tool to evaluate the pesticide mobilization and export processes. The hydrological model was successfully calibrated and validated for long high-resolution time series of discharge data. Pesticide export modelling focused on the first rainfall-runoff event

  15. Temporal and Spatial Patterns of Preferential Flow Occurrence in the Shale Hills Catchment: From the Hillslope to the Catchment Scales

    NASA Astrophysics Data System (ADS)

    Liu, H.; Lin, H.

    2013-12-01

    Understanding temporal and spatial patterns of preferential flow (PF) occurrence is important in revealing hillslope and catchment hydrologic and biogeochemical processes. Quantitative assessment of the frequency and control of PF occurrence in the field, however, has been limited, especially at the landscape scale of hillslope and catchment. By using 5.5-years' (2007-2012) real-time soil moisture at 10 sites response to 323 precipitation events, we tested the temporal consistency of PF occurrence at the hillslope scale in the forested Shale Hills Catchment; and by using 25 additional sites with at least 1-year data (2011-2012), we evaluated the spatial patterns of PF occurrence across the catchment. To explore the potential effects of PF occurrence on catchment hydrology, wavelet analysis was performed on the recorded time series of hydrological signals (i.e., precipitation, soil moisture, catchment discharge). Considerable temporal consistence was observed in both the frequency and the main controls of PF occurrence at the hillslope scale, which was attributed largely to the statistical stability of precipitation pattern over the monitoring period and the relatively stable subsurface preferential pathways. Preferential flow tended to occur more often in response to intense rainfall events, and favored the conditions at dry hilltop or wet valley floor sites. When upscaling to the entire catchment, topographic control on the PF occurrence was amplified remarkably, leading to the identification of a subsurface PF network in the catchment. Higher frequency of PF occurrence was observed at the valley floor (average 48%), hilltop (average 46%), and swales/hillslopes near the stream (average 40%), while the hillslopes in the eastern part of the catchment were least likely to experience PF (0-20%). No clear relationship, however, was observed between terrain attributes and PF occurrence, because the initiation and persistency of PF in this catchment was controlled

  16. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    USGS Publications Warehouse

    Lee, Terrie Mackin

    2002-01-01

    amounts of ground-water inflow, and (2) the location of ground-water catchments that could be managed to safeguard lake water quality. Knowledge of how ground-water catchments are related to lakes could be used by water-resource managers to recommend setback distances for septic tank drain fields, agricultural land uses, and other land-use practices that contribute nutrients and major ions to lakes.

  17. Conditional flood frequency and catchment state: a simulation approach

    NASA Astrophysics Data System (ADS)

    Brettschneider, Marco; Bourgin, François; Merz, Bruno; Andreassian, Vazken; Blaquiere, Simon

    2017-04-01

    Catchments have memory and the conditional flood frequency distribution for a time period ahead can be seen as non-stationary: it varies with the catchment state and climatic factors. From a risk management perspective, understanding the link of conditional flood frequency to catchment state is a key to anticipate potential periods of higher flood risk. Here, we adopt a simulation approach to explore the link between flood frequency obtained by continuous rainfall-runoff simulation and the initial state of the catchment. The simulation chain is based on i) a three state rainfall generator applied at the catchment scale, whose parameters are estimated for each month, and ii) the GR4J lumped rainfall-runoff model, whose parameters are calibrated with all available data. For each month, a large number of stochastic realizations of the continuous rainfall generator for the next 12 months are used as inputs for the GR4J model in order to obtain a large number of stochastic realizations for the next 12 months. This process is then repeated for 50 different initial states of the soil moisture reservoir of the GR4J model and for all the catchments. Thus, 50 different conditional flood frequency curves are obtained for the 50 different initial catchment states. We will present an analysis of the link between the catchment states, the period of the year and the strength of the conditioning of the flood frequency compared to the unconditional flood frequency. A large sample of diverse catchments in France will be used.

  18. Uncertainty in hydrological signatures for gauged and ungauged catchments

    NASA Astrophysics Data System (ADS)

    Westerberg, Ida K.; Wagener, Thorsten; Coxon, Gemma; McMillan, Hilary K.; Castellarin, Attilio; Montanari, Alberto; Freer, Jim

    2016-03-01

    Reliable information about hydrological behavior is needed for water-resource management and scientific investigations. Hydrological signatures quantify catchment behavior as index values, and can be predicted for ungauged catchments using a regionalization procedure. The prediction reliability is affected by data uncertainties for the gauged catchments used in prediction and by uncertainties in the regionalization procedure. We quantified signature uncertainty stemming from discharge data uncertainty for 43 UK catchments and propagated these uncertainties in signature regionalization, while accounting for regionalization uncertainty with a weighted-pooling-group approach. Discharge uncertainty was estimated using Monte Carlo sampling of multiple feasible rating curves. For each sampled rating curve, a discharge time series was calculated and used in deriving the gauged signature uncertainty distribution. We found that the gauged uncertainty varied with signature type, local measurement conditions and catchment behavior, with the highest uncertainties (median relative uncertainty ±30-40% across all catchments) for signatures measuring high- and low-flow magnitude and dynamics. Our regionalization method allowed assessing the role and relative magnitudes of the gauged and regionalized uncertainty sources in shaping the signature uncertainty distributions predicted for catchments treated as ungauged. We found that (1) if the gauged uncertainties were neglected there was a clear risk of overconditioning the regionalization inference, e.g., by attributing catchment differences resulting from gauged uncertainty to differences in catchment behavior, and (2) uncertainty in the regionalization results was lower for signatures measuring flow distribution (e.g., mean flow) than flow dynamics (e.g., autocorrelation), and for average flows (and then high flows) compared to low flows.

  19. Catchments' hedging strategy on evapotranspiration for climatic variability

    NASA Astrophysics Data System (ADS)

    Ding, W.; Zhang, C.; Li, Y.; Tang, Y.; Wang, D.; Xu, B.

    2017-12-01

    Hydrologic responses to climate variability and change are important for human society. Here we test the hypothesis that natural catchments utilize hedging strategies for evapotranspiration and water storage carryover with uncertain future precipitation. The hedging strategy for evapotranspiration in catchments under different levels of water availability is analytically derived from the economic perspective. It is found that there exists hedging between evapotranspiration for current and future only with a portion of water availability. Observation data sets of 160 catchments in the United States covering the period from 1983 to 2003 demonstrate the existence of hedging in catchment hydrology and validate the proposed hedging strategies. We also find that more water is allocated to carryover storage for hedging against the future evapotranspiration risk in the catchments with larger aridity indexes or with larger uncertainty in future precipitation, i.e., long-term climate and precipitation variability control the degree of hedging.

  20. Six hundred years of agricultural activity in the Gorce Mountains (Polish Carpathians)

    NASA Astrophysics Data System (ADS)

    Bucała, Anna

    2016-04-01

    The role of human activity on agricultural land use were studied in the Ochotnica village (105 km2) with Jaszcze and Jamne catchments (the Gorce Mountains in Polish Carpathians) from the beginning of human settlement to present-day with special emphasise on the period 1846-2009. The visual interpretation of cadastral maps and air photos, combined with palynological and radiocarbon data as well as analysis of historical and census reports indicates more permanent conversion of land-cover of the Gorce Mountains were started by the expansion of Wallachian shepherds at the turn of the 14th and 15th centuries. In the years 1846-2009, there was an increase in the forest area of Ochotnica by 77%, and in the Jaszcze and Jamne catchment by 29% and 43%, respectively. The arable land decreased in that period by 94% in both catchments. The period of 163 years shows diverging trends and dynamics of land use, referring to the three stages of the socio-economic development observed in the Polish Carpathians. Until World War II, agriculture was the main source of income of the growing rural population. The contribution of the agricultural land was approximately 70% in the 1930s., reaching the highest level in the history of human activity in the Gorce Mountains. After World War II, because of a shortage of food in the communist economy, the pressure on land cultivation resulted in the keep of the land use structure inherited from the past. The transition from the communist economy to a free market after 1989 and the accession of Poland to the European Union, forced a rapid increase in forest area at the expense of the agricultural land. They were the most significant land use changes from the time of the Wallachians' colonization of the Gorce Mountains. The changes in land use contributed to a decrease in the intensity of soil erosion on the slopes and an increase of channel incision in the both streams and Ochotnica river, draining the area of 107.6 km2 of the Gorce Mountains

  1. Validation of catchment models for predicting land-use and climate change impacts. 1. Method

    NASA Astrophysics Data System (ADS)

    Ewen, J.; Parkin, G.

    1996-02-01

    Computer simulation models are increasingly being proposed as tools capable of giving water resource managers accurate predictions of the impact of changes in land-use and climate. Previous validation testing of catchment models is reviewed, and it is concluded that the methods used do not clearly test a model's fitness for such a purpose. A new generally applicable method is proposed. This involves the direct testing of fitness for purpose, uses established scientific techniques, and may be implemented within a quality assured programme of work. The new method is applied in Part 2 of this study (Parkin et al., J. Hydrol., 175:595-613, 1996).

  2. Using High-Resolution Data to Assess Land Use Impact on Nitrate Dynamics in East African Tropical Montane Catchments

    NASA Astrophysics Data System (ADS)

    Jacobs, Suzanne R.; Weeser, Björn; Guzha, Alphonce C.; Rufino, Mariana C.; Butterbach-Bahl, Klaus; Windhorst, David; Breuer, Lutz

    2018-03-01

    Land use change alters nitrate (NO3-N) dynamics in stream water by changing nitrogen cycling, nutrient inputs, uptake and hydrological flow paths. There is little empirical evidence of these processes for East Africa. We collected a unique 2 year high-resolution data set to assess the effects of land use (i.e., natural forest, smallholder agriculture and commercial tea plantations) on NO3-N dynamics in three subcatchments within a headwater catchment in the Mau Forest Complex, Kenya's largest tropical montane forest. The natural forest subcatchment had the lowest NO3-N concentrations (0.44 ± 0.043 mg N L-1) with no seasonal variation. NO3-N concentrations in the smallholder agriculture (1.09 ± 0.11 mg N L-1) and tea plantation (2.13 ± 0.19 mg N L-1) subcatchments closely followed discharge patterns, indicating mobilization of NO3-N during the rainy seasons. Hysteresis patterns of rainfall events indicate a shift from subsurface flow in the natural forest to surface runoff in agricultural subcatchments. Distinct peaks in NO3-N concentrations were observed during rainfall events after a longer dry period in the forest and tea subcatchments. The high-resolution data set enabled us to identify differences in NO3-N transport of catchments under different land use, such as enhanced NO3-N inputs to the stream during the rainy season and higher annual export in agricultural subcatchments (4.9 ± 0.3 to 12.0 ± 0.8 kg N ha-1 yr-1) than in natural forest (2.6 ± 0.2 kg N ha-1 yr-1). This emphasizes the usefulness of our monitoring approach to improve the understanding of land use effects on riverine N exports in tropical landscapes, but also the need to apply such methods in other regions.

  3. Identification of internal flow dynamics in two experimental catchments

    USGS Publications Warehouse

    Hansen, D.P.; Jakeman, A.J.; Kendall, C.; Weizu, G.

    1997-01-01

    Identification of the internal flow dynamics in catchments is difficult because of the lack of information in precipitation -stream discharge time series alone. Two experimental catchments, Hydrohill and Nandadish, near Nanjing in China, have been set up to monitor internal flows reaching the catchment stream at various depths, from the surface runoff to the bedrock. With analysis of the precipitation against these internal discharges, it is possible to quantify the time constants and volumes associated with various flowpaths in both catchments.

  4. Use of a geomorphological transfer function to model design floods in small hillside catchments in semiarid Tunisia

    NASA Astrophysics Data System (ADS)

    Nasri, S.; Cudennec, C.; Albergel, J.; Berndtsson, R.

    2004-02-01

    In the beginning of the 1990s, the Tunisian Ministry of Agriculture launched an ambitious program for constructing small hillside reservoirs in the northern and central region of the country. At present, more than 720 reservoirs have been created. They consist of small compacted earth dams supplied with a horizontal overflow weir. Due to lack of hydrological data and the area's extreme floods, however, it is very difficult to design the overflow weirs. Also, catchments are very sensitive to erosion and the reservoirs are rapidly silted up. Consequently, prediction of flood volumes for important rainfall events becomes crucial. Few hydrological observations, however, exist for the catchment areas. For this purpose a geomorphological model methodology is presented to predict shape and volume of hydrographs for important floods. This model is built around a production function that defines the net storm rainfall (portion of rainfall during a storm which reaches a stream channel as direct runoff) from the total rainfall (observed rainfall in the catchment) and a transfer function based on the most complete possible definition of the surface drainage system. Observed rainfall during 5-min time steps was used in the model. The model runoff generation is based on surface drainage characteristics which can be easily extracted from maps. The model was applied to two representative experimental catchments in central Tunisia. The conceptual rainfall-runoff model based on surface topography and drainage network was seen to reproduce observed runoff satisfactory. The calibrated model was used to estimate runoff from 5, 10, 20, and 50 year rainfall return periods regarding runoff volume, maximum runoff, as well as the general shape of the runoff hydrograph. Practical conclusions to design hill reservoirs and to extrapolate results using this model methodology for ungauged small catchments in semiarid Tunisia are made.

  5. Catchment Water-Energy Balance Model: Development and Applications

    NASA Astrophysics Data System (ADS)

    Yang, D.; Yang, H.

    2017-12-01

    International Hydrological community has widely recognized that the catchment water-energy balance exists, which can be expressed as a general form of E/P = f(E0/P, c), where P is precipitation, E0 is potential evaporation, and c is a parameter. Many empirical/rational formulations of the catchment water-energy balance have been proposed. Several analytical solutions of the water-energy balance equation E/P = f(E0/P, c) have been derived by using dimensional analysis and mathematic reasoning and introducing additional boundary conditions. This paper will summarize the catchment water-energy balance equations and discuss their advantages and limitations. Catchment hydrology has been greatly influenced by the intensive variability in land use/cover, precipitation and air temperature due to climate change and local human activities. The water-energy balance equation, which are usually called the Budyko framework is widely used to analyze the impacts of climate and landscape changes on regional hydrology especially the annual runoff change. In order to quantify impacts of climate change and landscape change on the catchment runoff, the climate elasticity and landscape elasticity are estimated theoretically from the catchment water-energy balance equation. The elasticity of runoff has less of a dependency on the aridity index when the climate is drier (larger aridity index). The precipitation elasticity of runoff was close to 1.0 and that of potential evaporation close to 0.0 in the extreme humid climate with no relation to the landscape conditions, which implies that catchment water balance under extremely wet condition is controlled mainly by the climate condition. We establishes a relationship between the change in the landscape parameter in the catchment water-energy balance equation and vegetation change represented by fPAR, the fraction of Photosynthetically Active Radiation absorbed by vegetation. The fPAR elasticity of runoff is introduced and estimated over

  6. Catchment Dispersion Mechanisms in an Urban Context

    NASA Astrophysics Data System (ADS)

    Gironas, J. A.; Mejia, A.; Rossel, F.; Rinaldo, A.; Rodriguez, F.

    2014-12-01

    Dispersion mechanisms have been examined in-depth in natural catchments in previous studies. However, these dispersion mechanisms have been studied little in urban catchments, where artificial transport elements and morphological arrangements are expected to modify travel times and mobilize excess rainfall from spatially distributed impervious sites. Thus, these features can modify the variance of the catchment's travel times and hence the total dispersion. This work quantifies the dispersion mechanisms in an urban catchment using the theory of transport by travel times as represented by the Urban Morpho-climatic Instantaneous Unit Hydrograph (U-McIUH) model. This model computes travel times based on kinematic wave theory and accounts explicitly for the path heterogeneities and altered connectivity patterns characteristic of an urban drainage network. The analysis is illustrated using the Aubinière urban catchment (France) as a case study. We found that kinematic dispersion is dominant for small rainfall intensities, whereas geomorphologic dispersion becomes more dominant for larger intensities. The total dispersion scales with the drainage area in a power law fashion. The kinematic dispersion is dominant across spatial scales up to a threshold of approximately 2-3 km2, after which the geomorphologic dispersion becomes more dominant. Overall, overland flow is responsible for most of the dispersion, while conduits tend to counteract the increase of the geomorphologic dispersion with a negative kinematic dispersion. Further studies with other catchments are needed to assess whether the latter is a general feature of urban drainage networks.

  7. Some thoughts on building, evaluating and constraining hydrologic models from catchment to continental scales

    NASA Astrophysics Data System (ADS)

    Wagener, Thorsten

    2017-04-01

    We increasingly build and apply hydrologic models that simulate systems beyond the catchment scale. Such models run at regional, national or even continental scales. They therefore offer opportunities for new scientific insights, for example by enabling comparative hydrology or connectivity studies, and for water management, where we might better understand changes to water resources from larger scale activities like agriculture or from hazards such as droughts. However, these models also require us to rethink how we build and evaluate them given that some of the unsolved problems from the catchment scale have not gone away. So what role should such models play in scientific advancement in hydrology? What problems do we still have to resolve before they can fulfill their role? What opportunities for solving these problems are there, but have not yet been utilized? I will provide some thoughts on these issues in the context of the IAHS Panta Rhei initiative and the scientific challenges it has set out for hydrology (Montanari et al., 2013, Hydrological Sciences Journal; McMillan et al., 2016, Hydrological Sciences Journal).

  8. Which catchment characteristics control the temporal dependence structure of daily river flows?

    NASA Astrophysics Data System (ADS)

    Chiverton, Andrew; Hannaford, Jamie; Holman, Ian; Corstanje, Ron; Prudhomme, Christel; Bloomfield, John; Hess, Tim

    2014-05-01

    A hydrological classification system would provide information about the dominant processes in the catchment enabling information to be transferred between catchments. Currently there is no widely-agreed upon system for classifying river catchments. This paper developed a novel approach to assess the influence that catchment characteristics have on the precipitation-to-flow relationship, using a catchment classification based on the average temporal dependence structure in daily river flow data over the period 1980 to 2010. Temporal dependence in river flow data is driven by the flow pathways, connectivity and storage within the catchment. Temporal dependence was analysed by creating temporally averaged semi-variograms for a set of 116 near-natural catchments (in order to prevent direct anthropogenic disturbances influencing the results) distributed throughout the UK. Cluster analysis, using the variogram, classified the catchments into four well defined clusters driven by the interaction of catchment characteristics, predominantly characteristics which influence the precipitation-to-flow relationship. Geology, depth to gleyed layer in soils, slope of the catchment and the percentage of arable land were significantly different between the clusters. These characteristics drive the temporal dependence structure by influencing the rate at which water moves through the catchment and / or the storage in the catchment. Arable land is correlated with several other variables, hence is a proxy indicating the residence time of the water in the catchment. Finally, quadratic discriminant analysis was used to show that a model with five catchment characteristics is able to predict the temporal dependence structure for un-gauged catchments. This work demonstrates that a variogram-based approach is a powerful and flexible methodology for grouping catchments based on the precipitation-to-flow relationship which could be applied to any set of catchments with a relatively complete

  9. Preliminary use of compound-specific stable isotope (CSSI) technique to identify and apportion sediment origin in a small Austrian catchment

    NASA Astrophysics Data System (ADS)

    Mabit, Lionel; Gibbs, Max; Chen, Xu; Meusburger, Katrin; Toloza, Arsenio; Resch, Christian; Klik, Andreas; Eder, Alexander; Strauss, Peter; Alewell, Christine

    2015-04-01

    The overall impacts of climate change on agriculture are expected to be negative, threatening global food security. In the agricultural areas of the European Union, water erosion risk is expected to increase by about 80% by the year 2050. Reducing soil erosion and sedimentation-related environmental problems represent a key requirement for mitigating the impact of climate change. A new forensic stable isotope technique, using the compound specific stable isotope (CSSI) signatures of inherent soil organic biomarkers, can discriminate and apportion the source soil contribution from different land uses. Plant communities label the soil where they grow by exuding organic biomarkers. Although all plants produce the same biomarkers, the stable isotopic signature of those biomarkers is different for each plant species. For agri-environmental investigation, the CSSI technique is based on the measurement of carbon-13 (13-C) natural abundance signatures of specific organic compounds such as natural fatty acids (FAs) in the soil. By linking fingerprints of land use to the sediment in deposition zones, this approach has been shown to be a useful technique for determining the source of eroded soil and thereby identifying areas prone to soil degradation. The authors have tested this innovative stable isotopic approach in a small Austrian agricultural catchment located 60 km north of Vienna. A previous fallout radionuclide (i.e. 137-Cs) based investigation established a sedimentation rate of 4 mm/yr in the lowest part of the study site. To gain knowledge about the origin of these sediments, the CSSI technique was then tested using representative samples from the different land-uses of the catchment as source material. Values of 13-C signatures of specific FAs (i.e. C22:0 = Behenic Acid ; C24:0 = Lignoceric Acid) and the bulk 13-C of the sediment mixture and potential landscape sources were analyzed with the mixing models IsoSource and CSSIAR v1.00. Using both mixing models

  10. Hydrological Footprints of Urban Developments in the Lake Simcoe Watershed, Canada: A Combined Paired-Catchment and Change Detection Modeling Approach

    NASA Astrophysics Data System (ADS)

    Oni, S. K.; Futter, M. N.; Buttle, J. M.; Dillon, P.

    2014-12-01

    Urban sprawl and regional climate variability are major stresses on surface water resources in many places. The Lake Simcoe watershed (LSW) Ontario, Canada, is no exception. The LSW is predominantly agricultural but is experiencing rapid population growth due to its proximity to the greater Toronto area. This has led to extensive land use changes which have impacted its water resources and altered runoff patterns in some rivers draining to the lake. Here, we use a paired-catchment approach, hydrological change detection modelling and remote sensing analysis of satellite images to evaluate the impacts of land use change on the hydrology of the LSW (1994 to 2008). Results show that urbanization increased up to 16% in Lovers Creek, the most-urban impacted catchment. Annual runoff from Lovers Creek increased from 239 to 442 mm/yr in contrast to the reference catchment (Black River at Washago) where runoff was relatively stable with an annual mean of 474 mm/yr. Increased annual runoff from Lovers Creek was not accompanied by an increase in annual precipitation. Discriminant function analysis suggests that early (1992-1997; pre-major development) and late (2004-2009; fully urbanized) periods for Lovers Creek separated mainly based on model parameter sets related to runoff flashiness and evapotranspiration. As a result, parameterization in either period cannot be used interchangeably to produce credible runoff simulations in Lovers Creek due to greater scatter between the parameters in canonical space. Separation of early and late period parameter sets for the reference catchment was based on climate and snowmelt related processes. This suggests that regional climatic variability could be influencing hydrologic change in the reference catchment whereas urbanization amplified the regional natural hydrologic changes in urbanizing catchments of the LSW.

  11. Assessment of environmental impacts following alternative agricultural policy scenarios.

    PubMed

    Bárlund, I; Lehtonen, H; Tattari, S

    2005-01-01

    Abstract Finnish agriculture is likely to undergo major changes in the near and intermediate future. The ifuture policy context can be examined at a general level by strategic scenario building. Computer-based modelling in combination with agricultural policy scenarios can in turn create a basis for the assessments of changes in environmental quality following possible changes in Finnish agriculture. The analysis of economic consequences is based on the DREMFIA model, which is applied to study effects of various agricultural policies on land use, animal production, and farmers' income. The model is suitable for an impact analysis covering an extended time span--here up to the year 2015. The changes in land use, obtained with the DREMFIA model assuming rational economic behaviour, form the basis when evaluating environmental impacts of different agricultural policies. The environmental impact assessment is performed using the field scale nutrient transport model ICECREAM. The modelled variables are nitrogen and phosphorus losses in surface runoff and percolation. In this paper the modelling strategy will be presented and highlighted using two case study catchments with varying environmental conditions and land use as an example. In addition, the paper identifies issues arising when connecting policy scenarios with impact modelling.

  12. Agrochemical fate models applied in agricultural areas from Colombia

    NASA Astrophysics Data System (ADS)

    Garcia-Santos, Glenda; Yang, Jing; Andreoli, Romano; Binder, Claudia

    2010-05-01

    The misuse application of pesticides in mainly agricultural catchments can lead to severe problems for humans and environment. Especially in developing countries where there is often found overuse of agrochemicals and incipient or lack of water quality monitoring at local and regional levels, models are needed for decision making and hot spots identification. However, the complexity of the water cycle contrasts strongly with the scarce data availability, limiting the number of analysis, techniques, and models available to researchers. Therefore there is a strong need for model simplification able to appropriate model complexity and still represent the processes. We have developed a new model so-called Westpa-Pest to improve water quality management of an agricultural catchment located in the highlands of Colombia. Westpa-Pest is based on the fully distributed hydrologic model Wetspa and a fate pesticide module. We have applied a multi-criteria analysis for model selection under the conditions and data availability found in the region and compared with the new developed Westpa-Pest model. Furthermore, both models were empirically calibrated and validated. The following questions were addressed i) what are the strengths and weaknesses of the models?, ii) which are the most sensitive parameters of each model?, iii) what happens with uncertainties in soil parameters?, and iv) how sensitive are the transfer coefficients?

  13. Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland.

    PubMed

    Lawniczak, Agnieszka Ewa; Zbierska, Janina; Nowak, Bogumił; Achtenberg, Krzysztof; Grześkowiak, Artur; Kanas, Krzysztof

    2016-03-01

    Protected areas due to their long-term protection are expected to be characterized by good water quality. However, in catchments where arable fields dominate, the impact of agriculture on water pollution is still problematic. In Poland, recently, the fertilization level has decreased, mostly for economic reasons. However, this applies primarily to phosphorus and potassium. In order to evaluate the impact of agriculture on water quality in a protected area with a high proportion of arable fields in the aspect of level and type of fertilization, complex monitoring has been applied. The present study was carried out in Wielkopolska National Park and its buffer zone, which are protected under Natura 2000 as Special Areas of Conservation and Special Protection Areas. The aim of the study were (1) to assess the impact of agriculture, with special attention on fertilization, on groundwater, and running water quality and (2) to designate priority areas for implementing nitrogen reduction measures in special attention on protected areas. In our study, high nitrogen concentrations in groundwater and surface waters were detected in the agricultural catchments. The results demonstrate that in the watersheds dominated by arable fields, high nitrogen concentrations in groundwater were measured in comparison to forestry catchments, where high ammonium concentrations were observed. The highest nitrogen concentrations were noted in spring after winter freezing, with a small cover of vegetation, and in the areas with a high level of nitrogen application. In the studied areas, both in the park and its buffer zone, unfavorable N:P and N:K ratios in supplied nutrients were detected. Severe shortage of phosphorus and potassium in applied fertilizers is one of the major factors causing leaching of nitrogen due to limited possibilities of its consumption by plants.

  14. Picturing and modelling catchments by representative hillslopes

    NASA Astrophysics Data System (ADS)

    Loritz, Ralf; Hassler, Sibylle; Jackisch, Conrad; Zehe, Erwin

    2016-04-01

    Hydrological modelling studies often start with a qualitative sketch of the hydrological processes of a catchment. These so-called perceptual models are often pictured as hillslopes and are generalizations displaying only the dominant and relevant processes of a catchment or hillslope. The problem with these models is that they are prone to become too much predetermined by the designer's background and experience. Moreover it is difficult to know if that picture is correct and contains enough complexity to represent the system under study. Nevertheless, because of their qualitative form, perceptual models are easy to understand and can be an excellent tool for multidisciplinary exchange between researchers with different backgrounds, helping to identify the dominant structures and processes in a catchment. In our study we explore whether a perceptual model built upon an intensive field campaign may serve as a blueprint for setting up representative hillslopes in a hydrological model to reproduce the functioning of two distinctly different catchments. We use a physically-based 2D hillslope model which has proven capable to be driven by measured soil-hydrological parameters. A key asset of our approach is that the model structure itself remains a picture of the perceptual model, which is benchmarked against a) geo-physical images of the subsurface and b) observed dynamics of discharge, distributed state variables and fluxes (soil moisture, matric potential and sap flow). Within this approach we are able to set up two behavioral model structures which allow the simulation of the most important hydrological fluxes and state variables in good accordance with available observations within the 19.4 km2 large Colpach catchment and the 4.5 km2 large Wollefsbach catchment in Luxembourg without the necessity of calibration. This corroborates, contrary to the widespread opinion, that a) lower mesoscale catchments may be modelled by representative hillslopes and b) physically

  15. Processes controlling the episodic streamwater transport of atrazine and other agrichemicals in an agricultural watershed

    USGS Publications Warehouse

    Hyer, Kenneth; Hornberger, George M.; Herman, Janet S.

    2001-01-01

    Episodic streamwater transport of atrazine (a common agricultural herbicide) and nutrients has been observed throughout agricultural watersheds in the United States and poses a serious threat to the quality of its water resources. Catchment-scale atrazine and nutrient transport processes after agricultural application are still poorly understood, and predicting episodic streamwater composition remains an elusive goal. We instrumented a 1.2-km2 agricultural catchment near Harrisonburg, Virginia, and examined streamwater, overland flow, soil water, groundwater, and rainfall during the summer of 1998. Storm chemographs demonstrated different patterns for constituents derived primarily from weathering (silica and calcium), compared to constituents derived primarily from early spring land applications (nitrate, atrazine, DOC, potassium, chloride, and sulfate). During storms, the concentrations of silica and calcium decreased, the atrazine response was variable, and the concentrations of nitrate, DOC, potassium, chloride, and sulfate increased; the elevated nitrate signal lagged several hours behind the other elevated constituents. Graphical and statistical analyses indicated a relatively stable spring-fed baseflow was modified by a mixture of overland flow and soil water. A rapid, short-duration overland-flow pulse dominated the streamflow early in the event and contributed most of the potassium, DOC, chloride, suspended sediment, and atrazine. A longer-duration soil–water pulse dominated the streamflow later in the event and contributed the nitrate as well as additional potassium, DOC, sulfate, and atrazine. The contributions to the episodic streamflow were quantified using a flushing model in which overland-flow and soil–water concentrations decreased exponentially with time during an episode. Flushing time constants for the overland-flow and soil–water reservoirs were calculated on a storm-by-storm basis using separate tracers for each time-variable reservoir

  16. Mediated Cross-Cultural Learning through Exchange in Higher Agricultural Education

    ERIC Educational Resources Information Center

    Wals, Arjen E. J.; Sriskandarajah, Nadarajah

    2010-01-01

    This article reports on the long-term impact of an intensive European Union-Australia student exchange programme that took place in 2004 and 2005. The programme, Learning through Exchange about Agriculture, Food Systems and Environment (LEAFSE), was designed to facilitate exchange of post-graduate students on a pilot scale between four…

  17. Advancing Land-Sea Conservation Planning: Integrating Modelling of Catchments, Land-Use Change, and River Plumes to Prioritise Catchment Management and Protection.

    PubMed

    Álvarez-Romero, Jorge G; Pressey, Robert L; Ban, Natalie C; Brodie, Jon

    2015-01-01

    Human-induced changes to river loads of nutrients and sediments pose a significant threat to marine ecosystems. Ongoing land-use change can further increase these loads, and amplify the impacts of land-based threats on vulnerable marine ecosystems. Consequently, there is a need to assess these threats and prioritise actions to mitigate their impacts. A key question regarding prioritisation is whether actions in catchments to maintain coastal-marine water quality can be spatially congruent with actions for other management objectives, such as conserving terrestrial biodiversity. In selected catchments draining into the Gulf of California, Mexico, we employed Land Change Modeller to assess the vulnerability of areas with native vegetation to conversion into crops, pasture, and urban areas. We then used SedNet, a catchment modelling tool, to map the sources and estimate pollutant loads delivered to the Gulf by these catchments. Following these analyses, we used modelled river plumes to identify marine areas likely influenced by land-based pollutants. Finally, we prioritised areas for catchment management based on objectives for conservation of terrestrial biodiversity and objectives for water quality that recognised links between pollutant sources and affected marine areas. Our objectives for coastal-marine water quality were to reduce sediment and nutrient discharges from anthropic areas, and minimise future increases in coastal sedimentation and eutrophication. Our objectives for protection of terrestrial biodiversity covered species of vertebrates. We used Marxan, a conservation planning tool, to prioritise interventions and explore spatial differences in priorities for both objectives. Notable differences in the distributions of land values for terrestrial biodiversity and coastal-marine water quality indicated the likely need for trade-offs between catchment management objectives. However, there were priority areas that contributed to both sets of objectives. Our

  18. Analysis of the Development of Available Soil Water Storage in the Nitra River Catchment

    NASA Astrophysics Data System (ADS)

    Tárník, Andrej; Leitmanová, Mária

    2017-10-01

    World is changing dramatically. Every sphere of our life is influenced by global climate changes, including agriculture sector. Rising air temperature and temporal variability of rainfall are crucial outcomes of climate changes for agricultural activities. Main impact of these outcomes on agriculture is the change of soil water amount. Soil water is an exclusive resource of water for plants. Changes of soil water storage are sensed very sensitively by farmers. Development of soil water storage was analysed in this paper. The Nitra River catchment is covered by nets of hydrological and meteorological stations of Department of Biometeorology and Hydrology, Slovak University of Agriculture in Nitra. Quantity of available soil water storage for plants was calculated every month in the years from 2013 to 2016. Calculations were done based on real measurements for soil horizon 0-30 cm. Ratio between a real available soil water storage and a potential available soil water storage was specified. Amount of potential available soil water storage was derived by retention curves of soil samples. Map of risk areas was created in GIS in pursuance of these calculations. We can see the negative trends of available soil water storage in years 2015 and 2016. Main addition of this paper is a selection of areas where soil moisture is a limiting factor of agriculture. In these areas, it is necessary to do the mitigation measures for sustainable development of agricultural activities.

  19. Catchments network on badlands around Mediterranean area (RESOBAM)

    NASA Astrophysics Data System (ADS)

    Copard, Yoann; Lebouteiller, Caroline; Regues-Munoz, David; Latron, Jerome; Solé-Benet, Albert; Canton, Yolanda; Nadal-Romero, Estela; Della Seta, Marta; Rossi, Mauro; Capolongo, Domenico; Maquaire, Olivier; Forey, Estelle; Di-Giovanni, Christian; Gallart, Francesc; Delmonte, Maurizio; Vergari, Francesca; Massei, Nicolas; Torri, Dino

    2016-04-01

    Between 2013 and 2014, a network funded by MISTRALS-ENVIMED institution, was born around some instrumented catchments developing a badland-type morphology. This network has grouped 3 countries (France, Spain and Italy) with 12 scientific labs. RESOBAM has concerned two sites in France (Draix-Bléone and Vaches Noires), three in Spain (Vallcebre, Araguas and El Cautivo) and some sites in Italy (Tuscany, Basilicata). Main goal of this network was to federate the research around badlands at the European scale, by proposing some scientific topics as: sediment and water transports / budget, (bio)geochemical cycles, agricultural (farming), education, restoration, cultural heritage, soil conservation / biodiversity, climatic change etc. Other main interests were also to propose some common scientific projects and the development of students exchanges. This communication presents the synthesis of our four meetings held at Draix, Zaragoza, Almeriá and Rouen and some perspectives to continue this network.

  20. Changing climate and nutrient transfers: Evidence from high temporal resolution concentration-flow dynamics in headwater catchments.

    PubMed

    Ockenden, M C; Deasy, C E; Benskin, C McW H; Beven, K J; Burke, S; Collins, A L; Evans, R; Falloon, P D; Forber, K J; Hiscock, K M; Hollaway, M J; Kahana, R; Macleod, C J A; Reaney, S M; Snell, M A; Villamizar, M L; Wearing, C; Withers, P J A; Zhou, J G; Haygarth, P M

    2016-04-01

    We hypothesise that climate change, together with intensive agricultural systems, will increase the transfer of pollutants from land to water and impact on stream health. This study builds, for the first time, an integrated assessment of nutrient transfers, bringing together a) high-frequency data from the outlets of two surface water-dominated, headwater (~10km(2)) agricultural catchments, b) event-by-event analysis of nutrient transfers, c) concentration duration curves for comparison with EU Water Framework Directive water quality targets, d) event analysis of location-specific, sub-daily rainfall projections (UKCP, 2009), and e) a linear model relating storm rainfall to phosphorus load. These components, in combination, bring innovation and new insight into the estimation of future phosphorus transfers, which was not available from individual components. The data demonstrated two features of particular concern for climate change impacts. Firstly, the bulk of the suspended sediment and total phosphorus (TP) load (greater than 90% and 80% respectively) was transferred during the highest discharge events. The linear model of rainfall-driven TP transfers estimated that, with the projected increase in winter rainfall (+8% to +17% in the catchments by 2050s), annual event loads might increase by around 9% on average, if agricultural practices remain unchanged. Secondly, events following dry periods of several weeks, particularly in summer, were responsible for high concentrations of phosphorus, but relatively low loads. The high concentrations, associated with low flow, could become more frequent or last longer in the future, with a corresponding increase in the length of time that threshold concentrations (e.g. for water quality status) are exceeded. The results suggest that in order to build resilience in stream health and help mitigate potential increases in diffuse agricultural water pollution due to climate change, land management practices should target

  1. Catchment-scale groundwater recharge and vegetation water use efficiency

    NASA Astrophysics Data System (ADS)

    Troch, P. A. A.; Dwivedi, R.; Liu, T.; Meira, A.; Roy, T.; Valdés-Pineda, R.; Durcik, M.; Arciniega, S.; Brena-Naranjo, J. A.

    2017-12-01

    Precipitation undergoes a two-step partitioning when it falls on the land surface. At the land surface and in the shallow subsurface, rainfall or snowmelt can either runoff as infiltration/saturation excess or quick subsurface flow. The rest will be stored temporarily in the root zone. From the root zone, water can leave the catchment as evapotranspiration or percolate further and recharge deep storage (e.g. fractured bedrock aquifer). Quantifying the average amount of water that recharges deep storage and sustains low flows is extremely challenging, as we lack reliable methods to quantify this flux at the catchment scale. It was recently shown, however, that for semi-arid catchments in Mexico, an index of vegetation water use efficiency, i.e. the Horton index (HI), could predict deep storage dynamics. Here we test this finding using 247 MOPEX catchments across the conterminous US, including energy-limited catchments. Our results show that the observed HI is indeed a reliable predictor of deep storage dynamics in space and time. We further investigate whether the HI can also predict average recharge rates across the conterminous US. We find that the HI can reliably predict the average recharge rate, estimated from the 50th percentile flow of the flow duration curve. Our results compare favorably with estimates of average recharge rates from the US Geological Survey. Previous research has shown that HI can be reliably estimated based on aridity index, mean slope and mean elevation of a catchment (Voepel et al., 2011). We recalibrated Voepel's model and used it to predict the HI for our 247 catchments. We then used these predicted values of the HI to estimate average recharge rates for our catchments, and compared them with those estimated from observed HI. We find that the accuracies of our predictions based on observed and predicted HI are similar. This provides an estimation method of catchment-scale average recharge rates based on easily derived catchment

  2. Role of antecedent conditions on nitrogen and phosphorus mobilisation observed in a lowland arable catchment in eastern England: insights from high-frequency monitoring

    NASA Astrophysics Data System (ADS)

    Outram, Faye; Hiscock, Kevin; Dugdale, Stephen; Lovett, Andrew

    2015-04-01

    In order to reduce annual riverine loadings of nutrients which are responsible for degradation of ecosystems downstream and in near coastal areas, it is important to first understand the mobilisation and pathways responsible for transporting them from source to river and how these pathways vary in space and time. The Blackwater tributary of the River Wensum in Norfolk, England, has been equipped with a sensor network as part of the Demonstration Test Catchments project, which has the aim of reducing pollution from agriculture to river systems whilst maintaining food security by the trial of mitigation measures on working farms at the sub-catchment level. The River Wensum is a lowland chalk catchment with intensive arable agriculture and high occurrence of tile drainage on heavier soils. Three hydrological years of high-frequency data have been gathered in the Blackwater since October 2011, including rainfall, half hourly measurements of discharge and groundwater level coupled with hydrochemical parameters including nitrate, total phosphorus (TP) and total reactive phosphorus (TRP). In the three years of data collection, there were distinct departures from long-term rainfall averages as the winter of 2011-12 was extremely dry following a drought from the previous hydrological year, followed by a summer which was unseasonably wet, which continued into the following winter. The relationship between rainfall, storage and discharge was found to be complex, which in turn had an impact on the dominant controls transporting nutrients from the landscape to the river network. Thirty three storms occurred throughout the three year period which have been analysed in the context of the range of hydrometeorological conditions observed throughout the dataset. Discharge-concentration hysteretic responses of nitrogen, TP and TRP have been used alongside statistical analysis of storm characteristics including antecedent hydrological conditions. The nitrate storm response showed

  3. Probability based hydrologic catchments of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Hudson, B. D.

    2015-12-01

    Greenland Ice Sheet melt water impacts ice sheet flow dynamics, fjord and coastal circulation, and sediment and biogeochemical fluxes. Melt water exiting the ice sheet also is a key term in its mass balance. Because of this, knowledge of the area of the ice sheet that contributes melt water to a given outlet (its hydrologic catchment) is important to many ice sheet studies and is especially critical to methods using river runoff to assess ice sheet mass balance. Yet uncertainty in delineating ice sheet hydrologic catchments is a problem that is rarely acknowledged. Ice sheet catchments are delineated as a function of both basal and surface topography. While surface topography is well known, basal topography is less certain because it is dependent on radar surveys. Here, I a present a Monte Carlo based approach to delineating ice sheet catchments that quantifies the impact of uncertain basal topography. In this scheme, over many iterations I randomly vary the ice sheet bed elevation within published error bounds (using Morlighem et al., 2014 bed and bed error datasets). For each iteration of ice sheet bed elevation, I calculate the hydraulic potentiometric surface and route water over its path of 'steepest' descent to delineate the catchment. I then use all realizations of the catchment to arrive at a probability map of all major melt water outlets in Greenland. I often find that catchment size is uncertain, with small, random perturbations in basal topography leading to large variations in catchments size. While some catchments are well defined, others can double or halve in size within published basal topography error bars. While some uncertainty will likely always remain, this work points to locations where studies of ice sheet hydrology would be the most successful, allows reinterpretation of past results, and points to where future radar surveys would be most advantageous.

  4. Using agricultural practices information for multiscale environmental assessment of phosphorus risk

    NASA Astrophysics Data System (ADS)

    Matos Moreira, Mariana; Lemercier, Blandine; Michot, Didier; Dupas, Rémi; Gascuel-Odoux, Chantal

    2015-04-01

    Phosphorus (P) is an essential nutrient for plant growth. In intensively farmed areas, excessive applications of animal manure and mineral P fertilizers to soils have raised both economic and ecological concerns. P accumulation in agricultural soils leads to increased P losses to surface waterbodies contributing to eutrophication. Increasing soil P content over time in agricultural soils is often correlated with agricultural practices; in Brittany (NW France), an intensive livestock farming region, soil P content is well correlated with animal density (Lemercier et al.,2008). Thus, a better understanding of the factors controlling P distribution is required to enable environmental assessment of P risk. The aim of this study was to understand spatial distribution of extractable (Olsen method) and total P contents and its controlling factors at the catchment scale in order to predict P contents at regional scale (Brittany). Data on soil morphology, soil tests (including P status, particles size, organic carbon…) for 198 punctual positions, crops succession since 20 years, agricultural systems, field and animal manure management were obtained on a well-characterized catchment (ORE Agrhys, 10 km²). A multivariate analysis with mixed quantitative variables and factors and a digital soil mapping approach were performed to identify variables playing a significant role in soil total and extractable P contents and distribution. Spatial analysis was performed by means of the Cubist model, a decision tree-based algorithm. Different scenarios were assessed, considering various panels of predictive variables: soil data, terrain attributes derived from digital elevation model, gamma-ray spectrometry (from airborne geophysical survey) and agricultural practices information. In the research catchment, mean extractable and total P content were 140.0 ± 63.4 mg/kg and 2862.7 ± 773.0 mg/kg, respectively. Organic and mineral P inputs, P balance, soil pH, and Al contents were

  5. Adapting Agriculture Platforms for Nutrition: A Case Study of a Participatory, Video-Based Agricultural Extension Platform in India

    PubMed Central

    Kadiyala, Suneetha; Morgan, Emily H.; Cyriac, Shruthi; Margolies, Amy; Roopnaraine, Terry

    2016-01-01

    Successful integration of nutrition interventions into large-scale development programmes from nutrition-relevant sectors, such as agriculture, can address critical underlying determinants of undernutrition and enhance the coverage and effectiveness of on-going nutrition-specific activities. However, evidence on how this can be done is limited. This study examines the feasibility of delivering maternal, infant, and young child nutrition behaviour change communication through an innovative agricultural extension programme serving nutritionally vulnerable groups in rural India. The existing agriculture programme involves participatory production of low-cost videos promoting best practices and broad dissemination through village-level women’s self-help groups. For the nutrition intervention, 10 videos promoting specific maternal, infant, and young child nutrition practices were produced and disseminated in 30 villages. A range of methods was used to collect data, including in-depth interviews with project staff, frontline health workers, and self-help group members and their families; structured observations of mediated video dissemination sessions; nutrition knowledge tests with project staff and self-help group members; and a social network questionnaire to assess diffusion of promoted nutrition messages. We found the nutrition intervention to be well-received by rural communities and viewed as complementary to existing frontline health services. However, compared to agriculture, nutrition content required more time, creativity, and technical support to develop and deliver. Experimentation with promoted nutrition behaviours was high, but sharing of information from the videos with non-viewers was limited. Key lessons learned include the benefits of and need for collaboration with existing health services; continued technical support for implementing partners; engagement with local cultural norms and beliefs; empowerment of women’s group members to champion

  6. Unusual seasonal patterns and inferred processes of nitrogen retention in forested headwater catchments of the Upper Susquehanna basin

    NASA Astrophysics Data System (ADS)

    Goodale, C. L.; Thomas, S. A.; Fredriksen, G.; Elliott, E. M.; Flinn, K. M.; Butler, T. J.

    2008-12-01

    The Susquehanna River provides two-thirds of the annual nitrogen (N) load to the Chesapeake Bay, and atmospheric deposition is a major contributor to the basin's N inputs. Yet, there are few measurements of the retention of atmospheric N in the Upper Susquehanna's forested headwaters. We characterized the amount, form (nitrate, ammonium, and dissolved organic nitrogen), isotopic composition (del18O- and del15N-nitrate), and seasonality of stream N over two years from 8-15 small forested headwater catchments of the Susquehanna Basin. We expected high rates of N retention and seasonal nitrate patterns typical of other seasonally snow-covered catchments: dormant season peaks and growing season minima. Annual nitrate exports were approximately 0.1-0.7 kg N ha-1 y-1, and correlated positively with the percent of catchment free from historical agriculture. DON export averaged 0.6 +/- 0.1 kg N ha-1 y-1. All catchments had high rates of N retention but with atypical seasonal nitrate patterns, consisting of summer peaks, fall crashes, and modest rebounds during the dormant season. The fall nitrate crash coincided with carbon inputs at leaffall, indicating in-stream heterotrophic uptake. Stream del18O-nitrate values indicated microbial nitrification as the dominant source of stream nitrate, with modest contributions directly from precipitation in early stages of snowmelt. Three hypothesized sources of summer nitrate peaks include: delayed release of nitrate flushed to groundwater at snowmelt, weathering of geologic N, and increased net nitrate production. Measurements of shale del15N as well as soil, well-, and springwater nitrate within one catchment point toward a summer increase in net nitrification in surface soils. Rather than plant demand, processes governing the production, retention, and hydrologic transport of nitrate in surface mineral soils may drive the unusual nitrate seasonality in this and other systems, and provide insights on N retention in general.

  7. Multiple runoff processes and multiple thresholds control agricultural runoff generation

    NASA Astrophysics Data System (ADS)

    Saffarpour, Shabnam; Western, Andrew W.; Adams, Russell; McDonnell, Jeffrey J.

    2016-11-01

    Thresholds and hydrologic connectivity associated with runoff processes are a critical concept for understanding catchment hydrologic response at the event timescale. To date, most attention has focused on single runoff response types, and the role of multiple thresholds and flow path connectivities has not been made explicit. Here we first summarise existing knowledge on the interplay between thresholds, connectivity and runoff processes at the hillslope-small catchment scale into a single figure and use it in examining how runoff response and the catchment threshold response to rainfall affect a suite of runoff generation mechanisms in a small agricultural catchment. A 1.37 ha catchment in the Lang Lang River catchment, Victoria, Australia, was instrumented and hourly data of rainfall, runoff, shallow groundwater level and isotope water samples were collected. The rainfall, runoff and antecedent soil moisture data together with water levels at several shallow piezometers are used to identify runoff processes in the study site. We use isotope and major ion results to further support the findings of the hydrometric data. We analyse 60 rainfall events that produced 38 runoff events over two runoff seasons. Our results show that the catchment hydrologic response was typically controlled by the Antecedent Soil Moisture Index and rainfall characteristics. There was a strong seasonal effect in the antecedent moisture conditions that led to marked seasonal-scale changes in runoff response. Analysis of shallow well data revealed that streamflows early in the runoff season were dominated primarily by saturation excess overland flow from the riparian area. As the runoff season progressed, the catchment soil water storage increased and the hillslopes connected to the riparian area. The hillslopes transferred a significant amount of water to the riparian zone during and following events. Then, during a particularly wet period, this connectivity to the riparian zone, and

  8. Using high-frequency sensors to identify hydroclimatological controls on storm-event variability in catchment nutrient fluxes and source zone activation

    NASA Astrophysics Data System (ADS)

    Blaen, Phillip; Khamis, Kieran; Lloyd, Charlotte; Krause, Stefan

    2017-04-01

    At the river catchment scale, storm events can drive highly variable behaviour in nutrient and water fluxes, yet short-term dynamics are frequently missed by low resolution sampling regimes. In addition, nutrient source contributions can vary significantly within and between storm events. Our inability to identify and characterise time dynamic source zone contributions severely hampers the adequate design of land use management practices in order to control nutrient exports from agricultural landscapes. Here, we utilise an 8-month high-frequency (hourly) time series of streamflow, nitrate concentration (NO3) and fluorescent dissolved organic matter concentration (FDOM) derived from optical in-situ sensors located in a headwater agricultural catchment. We characterised variability in flow and nutrient dynamics across 29 storm events. Storm events represented 31% of the time series and contributed disproportionately to nutrient loads (43% of NO3 and 36% of CDOM) relative to their duration. Principal components analysis of potential hydroclimatological controls on nutrient fluxes demonstrated that a small number of components, representing >90% of variance in the dataset, were highly significant model predictors of inter-event variability in catchment nutrient export. Hysteresis analysis of nutrient concentration-discharge relationships suggested spatially discrete source zones existed for NO3 and FDOM, and that activation of these zones varied on an event-specific basis. Our results highlight the benefits of high-frequency in-situ monitoring for characterising complex short-term nutrient dynamics and unravelling connections between hydroclimatological variability and river nutrient export and source zone activation under extreme flow conditions. These new process-based insights are fundamental to underpinning the development of targeted management measures to reduce nutrient loading of surface waters.

  9. A perspective on stream-catchment connections

    USGS Publications Warehouse

    Bencala, Kenneth E.

    1993-01-01

    Ecological study of the hyporheic zone is leading to recognition of a need for additional hydrologic understanding. Some of this understanding can be obtained by viewing the hyporheic zone as a succession of isolated boxes adjacent to the stream. Further understanding, particularly relevant to catchment-scale ecology, may come from studies focussed on the fluid mechanics of the flow-path connections between streams and their catchments.

  10. Nitrogen budgets on Appalachian forest catchments

    Treesearch

    David R. DeWalle

    1997-01-01

    Variations in nitrogen losses in streamflow on catchments in the Appalachians suggests that the level of nitrogen retention in hardwood forests varies widely. Stream losses of dissolved nitrate-N on several small experimental forested catchments range from about 0.2 to 8.5 kg ha-1 y-1. This wide range of losses is equivalent to less than 10% to nearly 100% of measured...

  11. Community managed forests dominate the catchment sediment cascade in the mid-hills of Nepal: A compound-specific stable isotope analysis.

    PubMed

    Upadhayay, Hari Ram; Smith, Hugh G; Griepentrog, Marco; Bodé, Samuel; Bajracharya, Roshan Man; Blake, William; Cornelis, Wim; Boeckx, Pascal

    2018-05-08

    Soil erosion by water is critical for soil, lake and reservoir degradation in the mid-hills of Nepal. Identification of the nature and relative contribution of sediment sources in rivers is important to mitigate water erosion within catchments and siltation problems in lakes and reservoirs. We estimated the relative contribution of land uses (i.e. sources) to suspended and streambed sediments in the Chitlang catchment using stable carbon isotope signature (δ 13 C) of long-chain fatty acids as a tracer input for MixSIAR, a Bayesian mixing model used to apportion sediment sources. Our findings reveal that the relative contribution of land uses varied between suspended and streambed sediment, but did not change over the monsoon period. Significant over- or under-prediction of source contributions could occur due to overlapping source tracer values, if source groups are classified on a catchment-wide basis. Therefore, we applied a novel deconvolutional framework of MixSIAR (D-MixSIAR) to improve source apportionment of suspended sediment collected at tributary confluences (i.e. sub-catchment level) and at the outlet of the entire catchment. The results indicated that the mixed forest was the dominant (41 ± 13%) contributor of sediment followed by broadleaf forest (15 ± 8%) at the catchment outlet during the pre-wet season, suggesting that forest disturbance as well as high rainfall and steep slopes interact for high sediment generation within the study catchment. Unpaved rural road tracks located on flat and steep slopes (11 ± 8 and 9 ± 7% respectively) almost equally contributed to the sediment. Importantly, agricultural terraces (upland and lowland) had minimal contribution (each <7%) confirming that proper terrace management and traditional irrigation systems played an important role in mitigating sediment generation and delivery. Source contributions had a small temporal, but large spatial, variation in the sediment cascade of Chitlang stream

  12. Human impacts on river water quality- comparative research in the catchment areas of the Tone River and the Mur River-

    NASA Astrophysics Data System (ADS)

    Kogure, K.

    2013-12-01

    Human activities in river basin affect river water quality as water discharges into river with pollutant after we use it. By detecting pollutants source, pathway, and influential factor of human activities, it will be possible to consider proper river basin management. In this study, material flow analysis was done first and then nutrient emission modeling by MONERIS was conducted. So as to clarify land use contribution and climate condition, comparison of Japanese and European river basin area has been made. The model MONERIS (MOdelling Nutrient Emissions in RIver Systems; Behrendt et al., 2000) was applied to estimate the nutrient emissions in the Danube river basin by point sources and various diffuse pathways. Work for the Mur River Basin in Austria was already carried out by the Institute of Water Quality, Resources and Waste Management at the Vienna University of Technology. This study treats data collection, modelling for the Tone River in Japan, and comparative analysis for these two river basins. The estimation of the nutrient emissions was carried out for 11 different sub catchment areas covering the Tone River Basin for the time period 2000 to 2006. TN emissions into the Tone river basin were 51 kt/y. 67% was via ground water and dominant for all sub catchments. Urban area was also important emission pathway. Human effect is observed in urban structure and agricultural activity. Water supply and sewer system make urban water cycle with pipeline structure. Excess evapotranspiration in arable land is also influential in water cycle. As share of arable land is 37% and there provides agricultural products, it is thought that N emission from agricultural activity is main pollution source. Assumption case of 10% N surplus was simulated and the result was 99% identical to the actual. Even though N surplus reduction does not show drastic impact on N emission, it is of importance to reduce excess of fertilization and to encourage effective agricultural activity

  13. THE HYDROLOGIC RESPONSE OF A SMALL CATCHMENT TO CLEAR-CUTTING

    EPA Science Inventory

    We simulated how a landscape disturbance (e.g., fire or clear-cutting) alters hillslope and catchment hydrologic processes. Specifically, we simulated how the pattern and magnitude of tree removal in a catchment increases downslope transport of water and alters catchment soil moi...

  14. Analysis of land use changes over the last 200 years in the catchment of Lake Czechowskie (Pomerania, northern Poland)

    NASA Astrophysics Data System (ADS)

    Tyszkowski, Sebastian; Kaczmarek, Halina

    2014-05-01

    Changes in land cover in the catchment area are, beside climate change, some of the major factors affecting sedimentation processes in lakes. With increasing human impact, changes in land cover no longer depend primarily on climate. In relation to research on sediments of Lake Czechowskie in Pomeranian Province in North Poland, land use changes over the last 200 years were analysed, with particular reference to deforestation or afforestation. The study area was the lake catchment, which covers nearly 20 km2. The analysis was based on archival and contemporary cartographic and photogrammetric materials, georeferenced and rectified using ArcGIS software. The following materials were used: Schrötter-Engelhart, Karte von Ost-Preussen nebst Preussisch Litthauen und West-Preussen nebst dem Netzdistrict, 1:50 000, section 92, 93, 1796-1802; Map Messtishchblatt, 1:25000, sheet Czarnen, (mapping conducted in 1874), 1932; Map WIG (Military Geographical Institute - Wojskowy Instytut Geograficzny), 1:25000, sheet Osowo, (mapping conducted in 1929-31), 1933; aerial photos 1:13000, 1964, 1969; 1:25000, 1987; 1:26000, 1997; aerial ortophotomap , 1:5000, 2010. Today, over 60% of the catchment of Lake Czechowskie is covered with forests, dominated by planted Scots pine (Pinus sylvestris), while the remaining areas are used for agricultural purposes or are built up. The first cartographic materials indicate that in the late 18th c., forest covered almost 50% of the catchment surface. By the year 1870, there was a significant reduction in the forested area, as its contribution fell to 40%. Deforestation took place mainly between the main villages. In the 1920s the forest cover increased to 44%. Today, almost the entire lake is surrounded by forest and a wetland belt (at least 0.5 km wide). Deforestation in the catchment should not be attributed solely to logging because the area of Tuchola Forests (Bory Tucholskie) was repeatedly affected by natural disasters. In the 19th c. these

  15. The Hydrological Response of Snowmelt Dominated Catchments to Climate Change

    NASA Astrophysics Data System (ADS)

    Arrigoni, A. S.; Moore, J. N.

    2007-12-01

    Hydrological systems dominated by snowmelt discharge contribute greater than half the freshwater resource available to the western United States. Globally, the contribution of mountain discharge to total runoff is twice the expected for their geographical coverage. Therefore, snowmelt dominated mountain catchments have proportionally a more prominent role than other systems to our freshwater resource. A changing climate, or even a more variable climate, could have a significant impact on these systems, and consequently on our freshwater resource. Ergo, a better understanding of how changes and variations in climate will influence mountain catchments is a necessity for improving future water management under predicted/proposed climate change. The research presented here is a first order analysis to improve our understanding of these systems by monitoring and analyzing high mountain catchments along the entirety of the Mission Mountain Front, Montana USA. The Mission Mountain Range is an ideal location for conducting this research as it runs directly north to south with elevations progressively increasing from 7600 feet in the northern section, to over 9700 feet at the southern end. The lower elevation catchments will be used as surrogates for variable climate change, while the high elevation catchments will be used as surrogates for a more stable, cooler, climate regime. We use a combination of USGS and Tribal stream gauges, as well as stage gauge loggers in the headwaters of the catchments, SNOTEL datasets, and weather station datasets. This information is used to determine if, how, and why the snowmelt hydrographs vary between catchments, within the catchments between the upper and lower segments, and the dominant driver or drivers of the hydrograph form in relation to changing climatic variables such as temperature and precipitation. This research will improve current comprehension of how mountain catchments respond to climatic variables, and additionally will

  16. A Flash Flood Study on the Small Montaneous River Catchments in Western Romania

    NASA Astrophysics Data System (ADS)

    Győri, Maria-Mihaela; Haidu, Ionel; Humbert, Joël

    2013-04-01

    interpolated in order to obtain the hydrograph of the historical flash floods. The two methodologies employed offer the hydrologist the opportunity of computing the historical hydrographs be it on a section of the river at choice, or for every affluent within the small river basins studied, the graphical data being easily accessed both in GIS and HEC-HMS. The peak discharge values of the main rivers as well as those of their tributaries are of great importance in establishing the hydrologic hazard under the form of floodplain maps that are inexistent for the studied watersheds. Key words: flash flood modeling, ungauged catchments, GIS, HEC-HMS rainfall-runoff model. Aknowledgements This work was possible with the financial support of the Sectoral Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project number POSDRU/107/1.5/S/76841 with the title "Modern Doctoral Studies: Internationalization and Interdisciplinarity".

  17. A catchment scale water balance model for FIFE

    NASA Technical Reports Server (NTRS)

    Famiglietti, J. S.; Wood, E. F.; Sivapalan, M.; Thongs, D. J.

    1992-01-01

    A catchment scale water balance model is presented and used to predict evaporation from the King's Creek catchment at the First ISLSCP Field Experiment site on the Konza Prairie, Kansas. The model incorporates spatial variability in topography, soils, and precipitation to compute the land surface hydrologic fluxes. A network of 20 rain gages was employed to measure rainfall across the catchment in the summer of 1987. These data were spatially interpolated and used to drive the model during storm periods. During interstorm periods the model was driven by the estimated potential evaporation, which was calculated using net radiation data collected at site 2. Model-computed evaporation is compared to that observed, both at site 2 (grid location 1916-BRS) and the catchment scale, for the simulation period from June 1 to October 9, 1987.

  18. Exploring innovative techniques for identifying geochemical elements as fingerprints of sediment sources in an agricultural catchment of Argentina affected by soil erosion.

    PubMed

    Torres Astorga, Romina; de Los Santos Villalobos, Sergio; Velasco, Hugo; Domínguez-Quintero, Olgioly; Pereira Cardoso, Renan; Meigikos Dos Anjos, Roberto; Diawara, Yacouba; Dercon, Gerd; Mabit, Lionel

    2018-05-15

    Identification of hot spots of land degradation is strongly related with the selection of soil tracers for sediment pathways. This research proposes the complementary and integrated application of two analytical techniques to select the most suitable fingerprint tracers for identifying the main sources of sediments in an agricultural catchment located in Central Argentina with erosive loess soils. Diffuse reflectance Fourier transformed in the mid-infrared range (DRIFT-MIR) spectroscopy and energy-dispersive X-ray fluorescence (EDXRF) were used for a suitable fingerprint selection. For using DRIFT-MIR spectroscopy as fingerprinting technique, calibration through quantitative parameters is needed to link and correlate DRIFT-MIR spectra with soil tracers. EDXRF was used in this context for determining the concentrations of geochemical elements in soil samples. The selected tracers were confirmed using two artificial mixtures composed of known proportions of soil collected in different sites with distinctive soil uses. These fingerprint elements were used as parameters to build a predictive model with the whole set of DRIFT-MIR spectra. Fingerprint elements such as phosphorus, iron, calcium, barium, and titanium were identified for obtaining a suitable reconstruction of the source proportions in the artificial mixtures. Mid-infrared spectra produced successful prediction models (R 2  = 0.91) for Fe content and moderate useful prediction (R 2  = 0.72) for Ti content. For Ca, P, and Ba, the R 2 were 0.44, 0.58, and 0.59 respectively.

  19. Long-term, high-frequency water quality monitoring in an agricultural catchment: insights from spectral analysis

    NASA Astrophysics Data System (ADS)

    Aubert, Alice; Kirchner, James; Faucheux, Mikael; Merot, Philippe; Gascuel-Odoux, Chantal

    2013-04-01

    The choice of sampling frequency is a key issue in the design and operation of environmental observatories. The choice of sampling frequency creates a spectral window (or temporal filter) that highlights some timescales and processes, and de-emphasizes others (1). New online measurement technologies can monitor surface water quality almost continuously, allowing the creation of very rich time series. The question of how best to analyze such detailed temporal datasets is an important issue in environmental monitoring. In the present work, we studied water quality data from the AgrHys long-term hydrological observatory (located at Kervidy-Naizin, Western France) sampled at daily and 20-minute time scales. Manual sampling has provided 12 years of daily measurements of nitrate, dissolved organic carbon (DOC), chloride and sulfate (2), and 3 years of daily measurements of about 30 other solutes. In addition, a UV-spectrometry probe (Spectrolyser) provides one year of 20-minute measurements for nitrate and DOC. Spectral analysis of the daily water quality time series reveals that our intensively farmed catchment exhibits universal 1/f scaling (power spectrum slope of -1) for a large number of solutes, confirming and extending the earlier discovery of universal 1/f scaling in the relatively pristine Plynlimon catchment (3). 1/f time series confound conventional methods for assessing the statistical significance of trends. Indeed, conventional methods assume that there is a clear separation of scales between the signal (the trend line) and the noise (the scatter around the line). This is not true for 1/f noise, since it overestimates the occurrence of significant trends. Our results raise the possibility that 1/f scaling is widespread in water quality time series, thus posing fundamental challenges to water quality trend analysis. Power spectra of the 20-minute nitrate and DOC time series show 1/f scaling at frequencies below 1/day, consistent with the longer-term daily

  20. Advancing Land-Sea Conservation Planning: Integrating Modelling of Catchments, Land-Use Change, and River Plumes to Prioritise Catchment Management and Protection

    PubMed Central

    Álvarez-Romero, Jorge G.; Pressey, Robert L.; Ban, Natalie C.; Brodie, Jon

    2015-01-01

    Human-induced changes to river loads of nutrients and sediments pose a significant threat to marine ecosystems. Ongoing land-use change can further increase these loads, and amplify the impacts of land-based threats on vulnerable marine ecosystems. Consequently, there is a need to assess these threats and prioritise actions to mitigate their impacts. A key question regarding prioritisation is whether actions in catchments to maintain coastal-marine water quality can be spatially congruent with actions for other management objectives, such as conserving terrestrial biodiversity. In selected catchments draining into the Gulf of California, Mexico, we employed Land Change Modeller to assess the vulnerability of areas with native vegetation to conversion into crops, pasture, and urban areas. We then used SedNet, a catchment modelling tool, to map the sources and estimate pollutant loads delivered to the Gulf by these catchments. Following these analyses, we used modelled river plumes to identify marine areas likely influenced by land-based pollutants. Finally, we prioritised areas for catchment management based on objectives for conservation of terrestrial biodiversity and objectives for water quality that recognised links between pollutant sources and affected marine areas. Our objectives for coastal-marine water quality were to reduce sediment and nutrient discharges from anthropic areas, and minimise future increases in coastal sedimentation and eutrophication. Our objectives for protection of terrestrial biodiversity covered species of vertebrates. We used Marxan, a conservation planning tool, to prioritise interventions and explore spatial differences in priorities for both objectives. Notable differences in the distributions of land values for terrestrial biodiversity and coastal-marine water quality indicated the likely need for trade-offs between catchment management objectives. However, there were priority areas that contributed to both sets of objectives. Our

  1. Representing macropore flow at the catchment scale: a comparative modeling study

    NASA Astrophysics Data System (ADS)

    Liu, D.; Li, H. Y.; Tian, F.; Leung, L. R.

    2017-12-01

    Macropore flow is an important hydrological process that generally enhances the soil infiltration capacity and velocity of subsurface water. Up till now, macropore flow is mostly simulated with high-resolution models. One possible drawback of this modeling approach is the difficulty to effectively represent the overall typology and connectivity of the macropore networks. We hypothesize that modeling macropore flow directly at the catchment scale may be complementary to the existing modeling strategy and offer some new insights. Tsinghua Representative Elementary Watershed model (THREW model) is a semi-distributed hydrology model, where the fundamental building blocks are representative elementary watersheds (REW) linked by the river channel network. In THREW, all the hydrological processes are described with constitutive relationships established directly at the REW level, i.e., catchment scale. In this study, the constitutive relationship of macropore flow drainage is established as part of THREW. The enhanced THREW model is then applied at two catchments with deep soils but distinct climates, the humid Asu catchment in the Amazon River basin, and the arid Wei catchment in the Yellow River basin. The Asu catchment has an area of 12.43km2 with mean annual precipitation of 2442mm. The larger Wei catchment has an area of 24800km2 but with mean annual precipitation of only 512mm. The rainfall-runoff processes are simulated at a hourly time step from 2002 to 2005 in the Asu catchment and from 2001 to 2012 in the Wei catchment. The role of macropore flow on the catchment hydrology will be analyzed comparatively over the Asu and Wei catchments against the observed streamflow, evapotranspiration and other auxiliary data.

  2. Stormflow generation: a meta-analysis of field studies and research catchments

    NASA Astrophysics Data System (ADS)

    Barthold, Frauke; Elsenbeer, Helmut

    2014-05-01

    Runoff characteristics are expressions of runoff generation mechanisms. In this study, we want to test the hypothesis if storm hydrographs of catchments with prevailing near-surface flow paths are dominated by new water. We aim to test this hypothesis using published data from the scientific literature. We developed a classification system based on three runoff characteristics: (1) hydrograph response (HR: slowly or quickly), (2) the temporal source of water that dominates the hydrograph (TS: pre-event vs. event water) and (3) the flow paths that the water takes until it is released to the stream (FP: subsurface vs. surface flow paths). We then performed a literature survey to collect information on these runoff characteristics for small, forested headwater catchments that served as study areas in runoff generation studies and assigned each study catchment to one of the 8 classes. For this purpose, we designed a procedure to objectively diagnose the predominant conceptual model of storm flow generation in each catchment and assess its temporal and spatial relevance for the catchment. Finally, we performed an explorative analysis of the classified research catchments and summarized field evidence. Our literature survey yielded a sample of 22 research catchments that fell within our defined criteria (small, naturally forested catchments which served as study areas in stormflow generation studies). We applied our classification procedure to all of these catchments. Among them were 14 catchments for which our meta-analysis yielded a complete set of stormflow characteristics resulting in one of the 8 model concepts and were assigned into our classification scheme. Of the 14 classified research catchments, 10 were dominated by subsurface flow paths while 4 were dominated by overland flow. The data also indicate that the spatial and temporal relevance is high for catchments with subsurface flow paths while often weak for surface flow paths dominated catchments. The

  3. Spatial variability of herbicide mobilisation and transport at catchment scale: insights from a field experiment

    NASA Astrophysics Data System (ADS)

    Doppler, T.; Camenzuli, L.; Hirzel, G.; Krauss, M.; Lück, A.; Stamm, C.

    2012-02-01

    During rain events, herbicides can be transported from their point of application to surface waters where they may harm aquatic organisms. Since the spatial pattern of mobilisation and transport is heterogeneous, the contributions of different fields to the herbicide load in the stream may differ considerably within one catchment. Therefore, the prediction of contributing areas could help to target mitigation measures efficiently to those locations where they reduce herbicide pollution the most. Such spatial predictions require sufficient insight into the underlying transport processes. To improve the understanding of the process chain of herbicide mobilisation on the field and the subsequent transport through the catchment to the stream, we performed a controlled herbicide application on corn fields in a small agricultural catchment (ca. 1 km2) with intensive crop production in the Swiss Plateau. For two months after application in 2009, water samples were taken at different locations in the catchment (overland flow, tile drains and open channel) with a high temporal resolution during rain events. We also analysed soil samples from the experimental fields and measured discharge, groundwater level, soil moisture and the occurrence of overland flow at several locations. Several rain events with varying intensities and magnitudes occurred during the study period. Overland flow and erosion were frequently observed in the entire catchment. Infiltration excess and saturation excess overland flow were both observed. However, the main herbicide loss event was dominated by infiltration excess. This is in contrast to earlier studies in the Swiss Plateau, demonstrating that saturation excess overland flow was the dominant process. Despite the frequent and wide-spread occurrence of overland flow, most of this water did not directly reach the channel. It mostly got retained in small sinks in the catchment. From there, it reached the stream via macropores and tile drains

  4. Spatial variability of herbicide mobilisation and transport at catchment scale: insights from a field experiment

    NASA Astrophysics Data System (ADS)

    Doppler, T.; Camenzuli, L.; Hirzel, G.; Krauss, M.; Lück, A.; Stamm, C.

    2012-07-01

    During rain events, herbicides can be transported from their point of application to surface waters, where they may harm aquatic organisms. Since the spatial pattern of mobilisation and transport is heterogeneous, the contributions of different fields to the herbicide load in the stream may vary considerably within one catchment. Therefore, the prediction of contributing areas could help to target mitigation measures efficiently to those locations where they reduce herbicide pollution the most. Such spatial predictions require sufficient insight into the underlying transport processes. To improve the understanding of the process chain of herbicide mobilisation on the field and the subsequent transport through the catchment to the stream, we performed a controlled herbicide application on corn fields in a small agricultural catchment (ca. 1 km2) with intensive crop production in the Swiss Plateau. Water samples were collected at different locations in the catchment (overland flow, tile drains and open channel) for two months after application in 2009, with a high temporal resolution during rain events. We also analysed soil samples from the experimental fields and measured discharge, groundwater level, soil moisture and the occurrence of overland flow at several locations. Several rain events with varying intensities and magnitudes occurred during the study period. Overland flow and erosion were frequently observed in the entire catchment. Infiltration excess and saturation excess overland flow were both observed. However, the main herbicide loss event was dominated by infiltration excess. Despite the frequent and wide-spread occurrence of overland flow, most of this water did not reach the channel directly, but was retained in small depressions in the catchment. From there, it reached the stream via macropores and tile drains. Manholes of the drainage system and storm drains for road and farmyard runoff acted as additional shortcuts to the stream. Although fast

  5. Streamflow variation of forest covered catchments

    NASA Astrophysics Data System (ADS)

    Gribovszki, Z.; Kalicz, P.; Kucsara, M.

    2003-04-01

    Rainfall concentration and runoff, otherwise rainfall-runoff processes, which cause river water discharge fluctuation, is one of the basic questions of hydrology. Several social-economy demands have a strong connection with small or bigger rivers from the point of view both quantity and quality of the water. Gratification or consideration of these demands is complicated substantially that we have still poor knowledge about our stream-flow regime. Water resources mainly stem from upper watersheds. These upper watersheds are the basis of the water concentration process; therefore we have to improve our knowledge about hydrological processes coming up in these territories. In this article we present runoff regime of two small catchments on the basis of one year data. Both catchments have a similar magnitude 0.6 and 0.9 km^2. We have been analyzed in detail some hydrological elements: features of rainfall, discharge, rainfall induced flooding waves and basic discharge in rainless periods. Variances of these parameters have been analyzed in relation to catchments surface, vegetation coverage and forest management. Result data set well enforce our knowledge about small catchments hydrological processes. On the basis of these fundamentals we can plan more established the management of these lands (forest practices, civil engineering works, and usage of natural water resources).

  6. Vulnerability of European freshwater catchments to climate change.

    PubMed

    Markovic, Danijela; Carrizo, Savrina F; Kärcher, Oskar; Walz, Ariane; David, Jonathan N W

    2017-09-01

    Climate change is expected to exacerbate the current threats to freshwater ecosystems, yet multifaceted studies on the potential impacts of climate change on freshwater biodiversity at scales that inform management planning are lacking. The aim of this study was to fill this void through the development of a novel framework for assessing climate change vulnerability tailored to freshwater ecosystems. The three dimensions of climate change vulnerability are as follows: (i) exposure to climate change, (ii) sensitivity to altered environmental conditions and (iii) resilience potential. Our vulnerability framework includes 1685 freshwater species of plants, fishes, molluscs, odonates, amphibians, crayfish and turtles alongside key features within and between catchments, such as topography and connectivity. Several methodologies were used to combine these dimensions across a variety of future climate change models and scenarios. The resulting indices were overlaid to assess the vulnerability of European freshwater ecosystems at the catchment scale (18 783 catchments). The Balkan Lakes Ohrid and Prespa and Mediterranean islands emerge as most vulnerable to climate change. For the 2030s, we showed a consensus among the applied methods whereby up to 573 lake and river catchments are highly vulnerable to climate change. The anthropogenic disruption of hydrological habitat connectivity by dams is the major factor reducing climate change resilience. A gap analysis demonstrated that the current European protected area network covers <25% of the most vulnerable catchments. Practical steps need to be taken to ensure the persistence of freshwater biodiversity under climate change. Priority should be placed on enhancing stakeholder cooperation at the major basin scale towards preventing further degradation of freshwater ecosystems and maintaining connectivity among catchments. The catchments identified as most vulnerable to climate change provide preliminary targets for

  7. Role of Sectoral Transformation in Evolution of Water Management in Agricultural Catchments: A Socio-hydrologic Analysis

    NASA Astrophysics Data System (ADS)

    Roobavannan, Mahendran; Kandasamy, Jaya; Pande, Saket; Vigneswaran, Saravanamuthu; Sivapalan, Murugesu

    2017-04-01

    Sustainable development in society depends on an understanding of how communities interact with the natural system and how they co-evolve in time. Increasingly the livelihood and future viability of agricultural communities are being threatened by competition for water between food production and the environment. This study focused on this water-agriculture-environment nexus as it played out in the Murrumbidgee River Basin, Australia, and how co-evolution of society and water management occurred. Over 100 years of agricultural development the Murrumbidgee Basin has experienced a "pendulum swing" in terms of water allocation entirely to agriculture production at the expense of the environment, and eventually to the reallocation of water back to the environment. This pendulum swing has been attributed to a combination of increased national wealth, reduced share of agriculture in the national GDP, and to increased environment awareness of environmental degradation. Environment awareness depends on the structure of the economy, education, and socio-politic structure. As the basin economy develops accompanied by sectoral transformation, basin production becomes increasingly dependent on the industry sector. A loss of economic dependence on agriculture leads to a lower emphasis on the need to allocate water to agriculture. Society's value and preference turns around and is motivated towards the protection of the ecosystem. We hypothesize that in the competition of water use between economic livelihood and environment well being of society, economic diversification pushed the balance in towards the environment. In order to test this hypothesis, we developed a coupled socio-hydrologic model, which explicitly considers bi-directional feedbacks between human and water systems to explore how the competition for water played out in the Murrumbidgee. We demonstrate this by linking the dynamics of the economy of the whole (agriculture and industry) to community sentiment for the

  8. Spatial variations of storm runoff pollution and their correlation with land-use in a rapidly urbanizing catchment in China.

    PubMed

    Qin, Hua-Peng; Khu, Soon-Thiam; Yu, Xiang-Ying

    2010-09-15

    The composition of land use for a rapidly urbanizing catchment is usually heterogeneous, and this may result in significant spatial variations of storm runoff pollution and increase the difficulties of water quality management. The Shiyan Reservoir catchment, a typical rapidly urbanizing area in China, is chosen as a study area, and temporary monitoring sites were set at the downstream of its 6 sub-catchments to synchronously measure rainfall, runoff and water quality during 4 storm events in 2007 and 2009. Due to relatively low frequency monitoring, the IHACRES and exponential pollutant wash-off simulation models are used to interpolate the measured data to compensate for data insufficiency. Three indicators, event pollutant loads per unit area (EPL), event mean concentration (EMC) and pollutant loads transported by the first 50% of runoff volume (FF50), were used to describe the runoff pollution for different pollutants in each sub-catchment during the storm events, and the correlations between runoff pollution spatial variations and land-use patterns were tested by Spearman's rank correlation analysis. The results indicated that similar spatial variation trends were found for different pollutants (EPL or EMC) in light storm events, which strongly correlate with the proportion of residential land use; however, they have different trends in heavy storm events, which correlate with not only the residential land use, but also agricultural and bare land use. And some pairs of pollutants (such as COD/BOD, NH(3)-N/TN) might have the similar source because they have strong or moderate positive spatial correlation. Moreover, the first flush intensity (FF50) varies with impervious land areas and different interception ratio of initial storm runoff volume should be adopted in different sub-catchments. Copyright 2010 Elsevier B.V. All rights reserved.

  9. A Global Classification System for Catchment Hydrology

    NASA Astrophysics Data System (ADS)

    Woods, R. A.

    2004-05-01

    It is a shocking state of affairs - there is no underpinning scientific taxonomy of catchments. There are widely used global classification systems for climate, river morphology, lakes and wetlands, but for river catchments there exists only a plethora of inconsistent, incomplete regional schemes. By proceeding without a common taxonomy for catchments, freshwater science has missed one of its key developmental stages, and has leapt from definition of phenomena to experiments, theories and models, without the theoretical framework of a classification. I propose the development of a global hierarchical classification system for physical aspects of river catchments, to help underpin physical science in the freshwater environment and provide a solid foundation for classification of river ecosystems. Such a classification scheme can open completely new vistas in hydrology: for example it will be possible to (i) rationally transfer experimental knowledge of hydrological processes between basins anywhere in the world, provided they belong to the same class; (ii) perform meaningful meta-analyses in order to reconcile studies that show inconsistent results (iii) generate new testable hypotheses which involve locations worldwide.

  10. The distribution of catchment coverage by stationary rainstorms

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.

    1984-01-01

    The occurrence of wetted rainstorm area within a catchment is modeled as a Poisson arrival process in which each storm is composed of stationary, nonoverlapping, independent random cell clusters whose centers are Poisson-distributed in space and whose areas are fractals. The two Poisson parameters and hence the first two moments of the wetted fraction are derived in terms of catchment average characteristics of the (observable) station precipitation. The model is used to estimate spatial properties of tropical air mass thunderstorms on six tropical catchments in the Sudan.

  11. Soil organic carbon - a large scale paired catchment assessment

    NASA Astrophysics Data System (ADS)

    Kunkel, V.; Hancock, G. R.; Wells, T.

    2016-12-01

    Soil organic carbon (SOC) concentration can vary both spatially and temporally driven by differences in soil properties, topography and climate. However most studies have focused on point scale data sets with a paucity of studies examining larger scale catchments. Here we examine the spatial and temporal distribution of SOC for two large catchments. The Krui (575 km2) and Merriwa River (675km2) catchments (New South Wales, Australia). Both have similar shape, soils, topography and orientation. We show that SOC distribution is very similar for both catchments and that elevation (and associated increase in soil moisture) is a major influence on SOC. We also show that there is little change in SOC from the initial assessment in 2006 to 2015 despite a major drought from 2003 to 2010 and extreme rainfall events in 2007 and 2010 -therefore SOC concentration appears robust. However, we found significant relationships between erosion and deposition patterns (as quantified using 137Cs) and SOC for both catchments again demonstrating a strong geomorphic relationship. Vegetation across the catchments was assessed using remote sensing (Landsat and MODIS). Vegetation patterns were temporally consistent with above ground biomass increasing with elevation. SOC could be predicted using both these low and high resolution remote sensing platforms. Results indicate that, although moderate resolution (250 m) allows for reasonable prediction of the spatial distribution of SOC, the higher resolution (30 m) improved the strength of the SOC-NDVI relationship. The relationship between SOC and 137Cs, as a surrogate for the erosion and deposition of SOC, suggested that sediment transport and deposition influences the distribution of SOC within the catchment. The findings demonstrate that over the large catchment scale and at the decadal time scale that SOC is relatively constant and can largely be predicted by topography.

  12. Emergent Archetype Hydrological-Biogeochemical Response Patterns in Heterogeneous Catchments

    NASA Astrophysics Data System (ADS)

    Jawitz, J. W.; Gall, H. E.; Rao, P.

    2013-12-01

    What can spatiotemporally integrated patterns observed in stream hydrologic and biogeochemical signals generated in response to transient hydro-climatic and anthropogenic forcing tell us about the interactions between spatially heterogeneous soil-mediated hydrological and biogeochemical processes? We seek to understand how the spatial structure of solute sources coupled with hydrologic responses affect observed concentration-discharge (C-Q) patterns. These patterns are expressions of the spatiotemporal structure of solute loads exported from managed catchments, and their likely ecological consequences manifested in receiving water bodies (e.g., wetlands, rivers, lakes, and coastal waters). We investigated the following broad questions: (1) How does the correlation between flow-generating areas and biogeochemical source areas across a catchment evolve under stochastic hydro-climatic forcing? (2) What are the feasible hydrologic and biogeochemical responses that lead to the emergence of the observed archetype C-Q patterns? and; (3) What implications do these coupled dynamics have for catchment monitoring and implementation of management practices? We categorize the observed temporal signals into three archetypical C-Q patterns: dilution; accretion, and constant concentration. We introduce a parsimonious stochastic model of heterogeneous catchments, which act as hydrologic and biogeochemical filters, to examine the relationship between spatial heterogeneity and temporal history of solute export signals. The core concept of the modeling framework is considering the types and degree of spatial correlation between solute source zones and flow generating zones, and activation of different portions of the catchments during rainfall events. Our overarching hypothesis is that each of the archetype C-Q patterns can be generated by explicitly linking landscape-scale hydrologic responses and spatial distributions of solute source properties within a catchment. The model

  13. Modelling remediation scenarios in historical mining catchments.

    PubMed

    Gamarra, Javier G P; Brewer, Paul A; Macklin, Mark G; Martin, Katherine

    2014-01-01

    Local remediation measures, particularly those undertaken in historical mining areas, can often be ineffective or even deleterious because erosion and sedimentation processes operate at spatial scales beyond those typically used in point-source remediation. Based on realistic simulations of a hybrid landscape evolution model combined with stochastic rainfall generation, we demonstrate that similar remediation strategies may result in differing effects across three contrasting European catchments depending on their topographic and hydrologic regimes. Based on these results, we propose a conceptual model of catchment-scale remediation effectiveness based on three basic catchment characteristics: the degree of contaminant source coupling, the ratio of contaminated to non-contaminated sediment delivery, and the frequency of sediment transport events.

  14. The relative influence of climate and catchment properties on hydrological drought

    NASA Astrophysics Data System (ADS)

    Van Loon, Anne; Laaha, Gregor; Koffler, Daniel

    2014-05-01

    Studying hydrological drought (a below-normal water availability in groundwater, lakes and streams) is important to society and the ecosystem, but can also reveal interesting information about catchment functioning. This information can later be used for predicting drought in ungauged basins and to inform water management decisions. In this study, we used an extensive Austrian dataset of discharge measurements in clusters of catchments and combine this dataset with thematic information on climate and catchment properties. Our aim was to study the relative effects of climate and catchment characteristics on drought duration and deficit and on hydrological drought typology. Because the climate of the region is roughly uniform, our hypothesis was that the effect of differences of catchment properties would stand out. From time series of precipitation and discharge we identified droughts with the widely-used threshold level approach, defining a drought when a variable falls below a pre-defined threshold representing the regime. Drought characteristics that were analysed are drought duration and deficit. We also applied the typology of Van Loon & Van Lanen (2012). To explain differences in drought characteristics between catchments we did a correlation analysis with climate and catchment characteristics, based on Pearson correlation. We found very interesting patterns in the correlations of drought characteristics with climate and catchment properties: 1) Droughts with long duration (mean and maximum) and composite droughts are related to catchments with a high BFI (high baseflow) and a high percentage of shallow groundwater tables. 2) The deficit (mean and maximum) of both meteorological droughts and hydrological droughts is strongly related to catchment humidity, in this case quantified by average annual precipitation. 3) The hydrological drought types that are related to snow, i.e. cold snow season drought and snow melt drought, occur in catchments that are have a

  15. Comparison of drought occurrence in selected Slovak and Czech catchments

    NASA Astrophysics Data System (ADS)

    Fendekova, Miriam; Fendek, Marian; Porubska, Diana; Hanel, Martin; Horacek, Stanislav; Martinkova, Marta; Vizina, Adam

    2014-05-01

    The presented study is focused on the analysis and comparison of hydrological drought occurrence, development and duration in six small to middle sized catchments in the Czech Republic (CZ) and Slovakia. The main questions to be answered are: (1) are there correlations between the physical conditions in the catchments and drought occurrence, and (2) does the spatial trend of drought occurrence exist. The Žitava catchment is located in the central western part of Slovakia having runoff dominated by rainfall with the contribution of snow melting during the spring period. The Belá River catchment is located on the contact of Západné and Vysoké Tatry Mts. in the north of Slovakia. The runoff is snow to snow-rain combined type. The Ľupčianka catchment is located on the northern slopes of the Nízke Tatry Mts. in the northern part of the central Slovakia. The runoff regime is snow-rain combined in the upper part of the catchment, and of rain-snow type in the rest of catchment. The Rakovnický potok brook (CZ) has its spring in Rakovnická pahorkatina hilly land. Runoff is dominated by rainfall, quite heavily influenced by water uptakes in the catchment. The Teplá River (CZ) originates in peat meadows in the western part of the Czech Republic. Runoff is dominated by rainfall. The Metuje catchment (CZ) is formed by Adršsbach-Teplické stěny Upland. The headwater part is typical by deeply incest valleys, table mountains and pseudokarst caves. The discharge is fed dominantly by groundwater. The streamflow drought was characterized using discharge data, the groundwater drought using the base flow values. The local minimum method was used for base flow separation. The threshold level method (Q80, BF80) and the sequent peak algorithm were used for calculation of drought duration in discharge and base flow time series. The data of the same three decades of the common period (1971 - 1980, 1981 - 1990 and 1991 - 2000) were used. The resulting base flow values along with

  16. Simulation of future land use change and climate change impacts on hydrological processes in a tropical catchment

    NASA Astrophysics Data System (ADS)

    Marhaento, H.; Booij, M. J.; Hoekstra, A. Y.

    2017-12-01

    Future hydrological processes in the Samin catchment (278 km2) in Java, Indonesia have been simulated using the Soil and Water Assessment Tool (SWAT) model using inputs from predicted land use distributions in the period 2030 - 2050, bias corrected Regional Climate Model (RCM) output and output of six Global Climate Models (GCMs) to include climate model uncertainty. Two land use change scenarios namely a business-as-usual (BAU) scenario, where no measures are taken to control land use change, and a controlled (CON) scenario, where the future land use follows the land use planning, were used in the simulations together with two climate change scenarios namely Representative Concentration Pathway (RCP) 4.5 and 8.5. It was predicted that in 2050 settlement and agriculture area of the study catchment will increase by 33.9% and 3.5%, respectively under the BAU scenario, whereas agriculture area and evergreen forest will increase by 15.2% and 10.2%, respectively under the CON scenario. In comparison to the baseline conditions (1983 - 2005), the predicted mean annual maximum and minimum temperature in 2030 - 2050 will increase by an average of +10C, while changes in the mean annual rainfall range from -20% to +19% under RCP 4.5 and from -25% to +15% under RCP 8.5. The results show that land use change and climate change individually will cause changes in the water balance components, but that more pronounced changes are expected if the drivers are combined, in particular for changes in annual stream flow and surface runoff. It was observed that combination of the RCP 4.5 climate scenario and BAU land use scenario resulted in an increase of the mean annual stream flow from -7% to +64% and surface runoff from +21% to +102%, which is 40% and 60% more than when land use change is acting alone. Furthermore, under the CON scenario the annual stream flow and surface runoff could be potentially reduced by up to 10% and 30%, respectively indicating the effectiveness of applied

  17. Impact of the rainfall pattern on synthetic pesticides and copper runoff from a vineyard catchment

    NASA Astrophysics Data System (ADS)

    Payraudeau, Sylvain; Meite, Fatima; Wiegert, Charline; Imfeld, Gwenaël

    2017-04-01

    Runoff is a major process of pesticide transport from agricultural land to downstream aquatic ecosystems. The impact of rainfall characteristics on the transport of runoff-related pesticide is rarely evaluated at the catchment scale. Here, we evaluate the influence of rainfall pattern on the mobilization of synthetic pesticides and copper fungicides in runoff from a small vineyard catchment, both at the plot and catchment scales. During two vineyard growing seasons in 2015 and 2016 (from March to October), we monitored rainfall, runoff, and concentrations of copper and 20 fungicides and herbicides applied by winegrowers at the Rouffach vineyard catchment (France, Alsace; 42.5 ha). Rainfall data were recorded within the catchment while runoff measurement and flow-proportional water sampling were carried out at the outlet of the plot (1486 m2; 87.5 × 17 m) and the catchment. In total, discharges of the 14 runoff events were continuously monitored between March and October 2015 using bubbler flow modules combined with Venturi channels. Detailed and distributed dataset on pesticide applications were extracted from survey (copper formulations and type of pesticides, amount and application dates). Pools of copper and synthetic pesticides were quantified weekly in the topsoil (0-3 cm) by systematic sampling across the catchment. The concentrations of copper (10 mg.kg-1 dried soil) and synthetic pesticides (close to the quantification limit, i.e. 0.05 µg.L-1) available in the top soil for off-site transport largely differed over time. Between March and October, an accumulation of copper of 10% was observed in the top-soil while pesticide concentration decreased below the quantification limits after a few days or weeks following application, depending of the compounds. The average runoff generated at the plot scale was very low (0.13% ± 0.30). The maximum runoff reached 1.37% during the storm of July 22, 2015. Synthetic pesticides exported by runoff was less than 1‰ of

  18. Seasonal isotope hydrology of Appalachian forest catchments

    Treesearch

    D. R. DeWalle; P. J. Edwards; B. R. Swistock; R. J. Drimmie; R. Aravena

    1995-01-01

    Seasonal hydrologic behavior of small forested catchments in the Appalachians was studied using oxygen-18 as a tracer. Oxygen-18 in samples of precipitation and streamflow were used to determine seasonal variations of subsurface water recharge and movement within two 30-40 ha forest catchments (Watershed 3 and 4) at the Fernow Experimental Forest in northcentral West...

  19. Gully erosion: A comparison of contributing factors in two catchments in South Africa

    NASA Astrophysics Data System (ADS)

    Mararakanye, Ndifelani; Sumner, Paul D.

    2017-07-01

    Gully erosion is an environmental, agricultural and social problem requiring extensive research and mitigation actions to control. This study assesses the influence of factors contributing to gully erosion using Geographic Information System (GIS) and Information Value (InfVal) statistics from two catchments coded X12 and W55 in the Mpumalanga province of South Africa. Existing spatial data representing contributing factors; soil, geology, vegetation and land use were analyzed. Topographic variables were extracted from a 10 m Digital Elevation Model (DEM) interpolated from map contours, and gullies were mapped from aerial photos with 0.5 m spatial resolution. A zonal approach was used to extract the proportion of gullies in each of the contributing factor classes using GIS software packages, and InfVal weighting was performed to determine the influence of each class. Comparison of the results shows the variation in the level of influence of factors contributing to gully erosion. The findings in catchment X12 support a commonly held assumption that gully formation is influenced by duplex soils underlain by colluvium and alluvial deposits on a lower slope position where overland flow converges and accumulates, resulting in high soil moisture. Gullies were also influenced by soils developed over weathered granite, gneiss and ultramafic rocks. The influence of a granite rock was further highlighted in catchment W55 where there is a variable thickness of very deep Hutton dominant soil form and shallow Lithosols with sandy texture, on an area of moderate to steep slopes where overland flow converges and accumulates, with high stream power in overgrazed grassland. An understanding of these factors will assist future modelling of the vulnerability to gully erosion over a wider geographical area.

  20. Hydrological regionalisation based on available hydrological information for runoff prediction at catchment scale

    NASA Astrophysics Data System (ADS)

    Li, Qiaoling; Li, Zhijia; Zhu, Yuelong; Deng, Yuanqian; Zhang, Ke; Yao, Cheng

    2018-06-01

    Regionalisation provides a way of transferring hydrological information from gauged to ungauged catchments. The past few decades has seen several kinds of regionalisation approaches for catchment classification and runoff predictions. The underlying assumption is that catchments having similar catchment properties are hydrological similar. This requires the appropriate selection of catchment properties, particularly the inclusion of observed hydrological information, to explain the similarity of hydrological behaviour. We selected observable catchments properties and flow duration curves to reflect the hydrological behaviour, and to regionalize rainfall-runoff response for runoff prediction. As a case study, we investigated 15 catchments located in the Yangtze and Yellow River under multiple hydro-climatic conditions. A clustering scheme was developed to separate the catchments into 4 homogeneous regions by employing catchment properties including hydro-climatic attributes, topographic attributes and land cover etc. We utilized daily flow duration curves as the indicator of hydrological response and interpreted hydrological similarity by root mean square errors. The combined analysis of similarity in catchment properties and hydrological response suggested that catchments in the same homogenous region were hydrological similar. A further validation was conducted by establishing a rainfall-runoff coaxial correlation diagram for each catchment. A common coaxial correlation diagram was generated for each homogenous region. The performances of most coaxial correlation diagrams met the national standard. The coaxial correlation diagram can be transferred within the homogeneous region for runoff prediction in ungauged catchments at an hourly time scale.

  1. Preferential flow and mixing process in the chemical recharge in subsurface catchments: observations and modeling

    NASA Astrophysics Data System (ADS)

    Gascuel-Odoux, C.; Rouxel, M.; Molenat, J.; Ruiz, L.; Aquilina, L.; Faucheux, M.; Labasque, T.; Sebilo, M.

    2012-04-01

    Shallow groundwater that develops on hillslopes is the main compartment in headwater catchments for flow and solute transport to rivers. Although spatial and temporal variations in its chemical composition are reported in the literature, there is no coherent description of the way these variations are organized, nor is there an accepted conceptual model for the recharge mechanisms and flows in the groundwater involved. We instrumented an intensive farming and subsurface dominant catchment located in Oceanic Western Europe (Kerbernez, Brittany, France), a headwater catchment included in the Observatory for Research on Environment AgrHyS (Agro-Hydro-System) and a part of the French Network of catchments for environmental research (SOERE RBV focused on the Critical Zone). These systems are strongly constrained by anthropogenic pressures (agriculture) and are characterized by a clear non-equilibrium status. A network of 42 nested piezometers was installed along a 200 m hillslope allowing water sampling along two transects in the permanent water table as well as in what we call the "fluctuating zone", characterized by seasonal alternance of saturated and unsaturated conditions. Water composition was monitored at high frequency (weekly) over a 3-year period for major anion composition and over a one year period for detailed 15N, CFC, SF6 and other dissolved gases. The results demonstrated that (i) the anionic composition in water table fluctuation zone varied significantly compared to deeper portions of the aquifer on the hillslope, confirming that this layer constitutes a main compartment for the mixing of new recharge water and old groundwater, (ii) seasonally, the variations of 15N and CFC are much higher during the recharge period than during the recession period, confirming the preferential flow during early recharge events, iii) variations of nitrate 15N and O18 composition was suggesting any significant denitrification process in the fluctuating zone, confirming

  2. Future trends in transport and fate of diffuse contaminants in catchments, with special emphasis on stable isotope applications

    USGS Publications Warehouse

    Turner, J.; Albrechtsen, H.-J.; Bonell, M.; Duguet, J.-P.; Harris, B.; Meckenstock, R.; McGuire, K.; Moussa, R.; Peters, N.; Richnow, H.H.; Sherwood-Lollar, B.; Uhlenbrook, S.; van, Lanen H.

    2006-01-01

    A summary is provided of the first of a series of proposed Integrated Science Initiative workshops supported by the UNESCO International Hydrological Programme. The workshop brought together hydrologists, environmental chemists, microbiologists, stable isotope specialists and natural resource managers with the purpose of communicating new ideas on ways to assess microbial degradation processes and reactive transport at catchment scales. The focus was on diffuse contamination at catchment scales and the application of compound-specific isotope analysis (CSIA) in the assessment of biological degradation processes of agrochemicals. Major outcomes were identifying the linkage between water residence time distribution and rates of contaminant degradation, identifying the need for better information on compound specific microbial degradation isotope fractionation factors and the potential of CSIA in identifying key degradative processes. In the natural resource management context, a framework was developed where CSIA techniques were identified as practically unique in their capacity to serve as distributed integrating indicators of process across a range of scales (micro to diffuse) of relevance to the problem of diffuse pollution assessment. Copyright ?? 2006 John Wiley & Sons, Ltd.

  3. Towards a robust framework for catchment classification

    NASA Astrophysics Data System (ADS)

    Deshmukh, A.; Samal, A.; Singh, R.

    2017-12-01

    Classification of catchments based on various measures of similarity has emerged as an important technique to understand regional scale hydrologic behavior. Classification of catchment characteristics and/or streamflow response has been used reveal which characteristics are more likely to explain the observed variability of hydrologic response. However, numerous algorithms for supervised or unsupervised classification are available, making it hard to identify the algorithm most suitable for the dataset at hand. Consequently, existing catchment classification studies vary significantly in the classification algorithms employed with no previous attempt at understanding the degree of uncertainty in classification due to this algorithmic choice. This hinders the generalizability of interpretations related to hydrologic behavior. Our goal is to develop a protocol that can be followed while classifying hydrologic datasets. We focus on a classification framework for unsupervised classification and provide a step-by-step classification procedure. The steps include testing the clusterabiltiy of original dataset prior to classification, feature selection, validation of clustered data, and quantification of similarity of two clusterings. We test several commonly available methods within this framework to understand the level of similarity of classification results across algorithms. We apply the proposed framework on recently developed datasets for India to analyze to what extent catchment properties can explain observed catchment response. Our testing dataset includes watershed characteristics for over 200 watersheds which comprise of both natural (physio-climatic) characteristics and socio-economic characteristics. This framework allows us to understand the controls on observed hydrologic variability across India.

  4. Lake sediment records on climate change and human activities in the Xingyun Lake catchment, SW China.

    PubMed

    Zhang, Wenxiang; Ming, Qingzhong; Shi, Zhengtao; Chen, Guangjie; Niu, Jie; Lei, Guoliang; Chang, Fengqin; Zhang, Hucai

    2014-01-01

    Sediments from Xinyun Lake in central Yunnan, southwest China, provide a record of environmental history since the Holocene. With the application of multi-proxy indicators (total organic carbon (TOC), total nitrogen (TN), δ13C and δ15N isotopes, C/N ratio, grain size, magnetic susceptibility (MS) and CaCO3 content), as well as accelerator mass spectrometry (AMS) 14C datings, four major climatic stages during the Holocene have been identified in Xingyun's catchment. A marked increase in lacustrine palaeoproductivity occurred from 11.06 to 9.98 cal. ka BP, which likely resulted from an enhanced Asian southwest monsoon and warm-humid climate. Between 9.98 and 5.93 cal. ka BP, a gradually increased lake level might have reached the optimum water depth, causing a marked decline in coverage by aquatic plants and lake productivity of the lake. This was caused by strong Asian southwest monsoon, and coincided with the global Holocene Optimum. During the period of 5.60-1.35 cal. ka BP, it resulted in a warm and dry climate at this stage, which is comparable to the aridification of India during the mid- and late Holocene. The intensifying human activity and land-use in the lake catchment since the early Tang Dynasty (∼1.35 cal. ka BP) were associated with the ancient Dian culture within Xingyun's catchment. The extensive deforestation and development of agriculture in the lake catchment caused heavy soil loss. Our study clearly shows that long-term human activities and land-use change have strongly impacted the evolution of the lake environment and therefore modulated the sediment records of the regional climate in central Yunnan for more than one thousand years.

  5. The combined effects of topography and vegetation on catchment connectivity

    NASA Astrophysics Data System (ADS)

    Nippgen, F.; McGlynn, B. L.; Emanuel, R. E.

    2012-12-01

    The deconvolution of whole catchment runoff response into its temporally dynamic source areas is a grand challenge in hydrology. The extent to which the intersection of static and dynamic catchment characteristics (e.g. topography and vegetation) influences water redistribution within a catchment and the hydrologic connectivity of hillslopes to the riparian and stream system is largely unknown. Over time, patterns of catchment storage shift and, because of threshold connectivity behavior, catchment areas become disconnected from the stream network. We developed a simple but spatially distributed modeling framework that explicitly incorporates static (topography) and dynamic (vegetation) catchment structure to document the evolution of catchment connectivity over the course of a water year. We employed directly measured eddy-covariance evapotranspiration data co-located within a highly instrumented (>150 recording groundwater wells) and gauged catchment to parse the effect of current and zero vegetation scenarios on the temporal evolution of hydrologic connectivity. In the absence of vegetation, and thus in the absence of evapotranspiration, modeled absolute connectivity was 4.5% greater during peak flow and 3.9% greater during late summer baseflow when compared to the actual vegetation scenario. The most significant differences in connected catchment area between current and zero vegetation (14.9%) occurred during the recession period in early July, when water and energy availability were at an optimum. However, the greatest relative difference in connected area occurs during the late summer baseflow period when the absence of evapotranspiration results in a connected area approximately 500% greater than when vegetation is present, while the relative increase during peak flow is just 6%. Changes in connected areas ultimately lead to propose a biologically modified geomorphic width function. This biogeomorphic width function is the result of lateral water

  6. Chemical Denudation and Cation Depletion in a Semi-Arid Catchment of the Long-Term Agroecological Research Observatory

    NASA Astrophysics Data System (ADS)

    Shaljian, M.; Keller, C. K.; Jones, K. B.; Brooks, E. S.; Huggins, D. R.

    2016-12-01

    The Long-Term Agroecosystem Research (LTAR) network of the USDA is a nationwide observatory and decadal-timescale field-experimental study of sustainable food production. The LTAR thus supports investigation of hydroecological and biogeochemical processes that could affect agricultural sustainability over the course of the 21st century. Mineral-derived nutrient cations are essential to fertility, and acidification of soils due to chemical fertilization may result in unsustainable chemical denudation of the soil exchange pool. Mineral weathering also contributes to base cation denudation. This study investigated base cation losses for one year in drainage from a semi-arid, rain-fed catchment at the Cook Agronomy Farm (CAF) LTAR site in southeastern Washington. We measured flows, analyzed drainage samples and estimated hydrologic effluxes of base cations from the catchment. The total dissolved base cation denudation rate at CAF-LTAR is about 40 kg ha-1 yr-1, which is comparable to other catchments on silicate terranes. The 2.1keq ha-1 yr-1 of denuded cationic charge is dominated by Ca2+ (61%) and Mg2+ (35%). Principal counter-ions are HCO3- (43%), NO3- (38%) and SO42- (16%), suggesting that both H2CO3 and HNO3 are important acids. Comparing 2008 soil pH and base saturation at CAF-LTAR to a nearby native prairie site, we preliminarily estimate a loss of 120 keq ha-1 of base cations from the upper 1.5m of the soil exchangeable cation pool. Dividing this depletion by the estimated denudation flux returns 60 years, which is approximately the interval of chemically intensive agriculture here. This may suggest that the source of exported base cations in drainage is primarily cation exchange rather than mineral weathering. The LTAR observatory will support ongoing monitoring and experimentation necessary to better understand base cation depletion and how it interacts with agroecological changes over the next several decades.

  7. Effects of conversion of native cerrado vegetation to pasture on soil hydro-physical properties, evapotranspiration and streamflow on the Amazonian agricultural frontier

    PubMed Central

    Guzha, Alphonce C.; Torres, Gilmar N.; Kovacs, Kristof; Lamparter, Gabriele; Amorim, Ricardo S. S.; Couto, Eduardo; Gerold, Gerhard

    2017-01-01

    Understanding the impacts of land-use change on landscape-hydrological dynamics is one of the main challenges in the Northern Brazilian Cerrado biome, where the Amazon agricultural frontier is located. Motivated by the gap in literature assessing these impacts, we characterized the soil hydro-physical properties and quantified surface water fluxes from catchments under contrasting land-use in this region. We used data from field measurements in two headwater micro-catchments with similar physical characteristics and different land use, i.e. cerrado sensu stricto vegetation and pasture for extensive cattle ranching. We determined hydraulic and physical properties of the soils, applied ground-based remote sensing techniques to estimate evapotranspiration, and monitored streamflow from October 2012 to September 2014. Our results show significant differences in soil hydro-physical properties between the catchments, with greater bulk density and smaller total porosity in the pasture catchment. We found that evapotranspiration is smaller in the pasture (639 ± 31% mm yr-1) than in the cerrado catchment (1,004 ± 24% mm yr-1), and that streamflow from the pasture catchment is greater with runoff coefficients of 0.40 for the pasture and 0.27 for the cerrado catchment. Overall, our results confirm that conversion of cerrado vegetation to pasture causes soil hydro-physical properties deterioration, reduction in evapotranspiration reduction, and increased streamflow. PMID:28609462

  8. Effects of conversion of native cerrado vegetation to pasture on soil hydro-physical properties, evapotranspiration and streamflow on the Amazonian agricultural frontier.

    PubMed

    Nóbrega, Rodolfo L B; Guzha, Alphonce C; Torres, Gilmar N; Kovacs, Kristof; Lamparter, Gabriele; Amorim, Ricardo S S; Couto, Eduardo; Gerold, Gerhard

    2017-01-01

    Understanding the impacts of land-use change on landscape-hydrological dynamics is one of the main challenges in the Northern Brazilian Cerrado biome, where the Amazon agricultural frontier is located. Motivated by the gap in literature assessing these impacts, we characterized the soil hydro-physical properties and quantified surface water fluxes from catchments under contrasting land-use in this region. We used data from field measurements in two headwater micro-catchments with similar physical characteristics and different land use, i.e. cerrado sensu stricto vegetation and pasture for extensive cattle ranching. We determined hydraulic and physical properties of the soils, applied ground-based remote sensing techniques to estimate evapotranspiration, and monitored streamflow from October 2012 to September 2014. Our results show significant differences in soil hydro-physical properties between the catchments, with greater bulk density and smaller total porosity in the pasture catchment. We found that evapotranspiration is smaller in the pasture (639 ± 31% mm yr-1) than in the cerrado catchment (1,004 ± 24% mm yr-1), and that streamflow from the pasture catchment is greater with runoff coefficients of 0.40 for the pasture and 0.27 for the cerrado catchment. Overall, our results confirm that conversion of cerrado vegetation to pasture causes soil hydro-physical properties deterioration, reduction in evapotranspiration reduction, and increased streamflow.

  9. Improved Environmental Life Cycle Assessment of Crop Production at the Catchment Scale via a Process-Based Nitrogen Simulation Model.

    PubMed

    Liao, Wenjie; van der Werf, Hayo M G; Salmon-Monviola, Jordy

    2015-09-15

    One of the major challenges in environmental life cycle assessment (LCA) of crop production is the nonlinearity between nitrogen (N) fertilizer inputs and on-site N emissions resulting from complex biogeochemical processes. A few studies have addressed this nonlinearity by combining process-based N simulation models with LCA, but none accounted for nitrate (NO3(-)) flows across fields. In this study, we present a new method, TNT2-LCA, that couples the topography-based simulation of nitrogen transfer and transformation (TNT2) model with LCA, and compare the new method with a current LCA method based on a French life cycle inventory database. Application of the two methods to a case study of crop production in a catchment in France showed that, compared to the current method, TNT2-LCA allows delineation of more appropriate temporal limits when developing data for on-site N emissions associated with specific crops in this catchment. It also improves estimates of NO3(-) emissions by better consideration of agricultural practices, soil-climatic conditions, and spatial interactions of NO3(-) flows across fields, and by providing predicted crop yield. The new method presented in this study provides improved LCA of crop production at the catchment scale.

  10. Carbon budget for a British upland peat catchment.

    PubMed

    Worrall, Fred; Reed, Mark; Warburton, Jeff; Burt, Tim

    2003-08-01

    This study describes the analysis of fluvial carbon flux from an upland peat catchment in the North Pennines. Dissolved organic carbon (DOC), pH, alkalinity and calcium were measured in weekly samples, with particulate organic carbon (POC) measured from the suspended sediment load from the stream outlet of an 11.4-km(2) catchment. For calendar year 1999, regular monitoring of the catchment was supplemented with detailed quasi-continuous measurements of flow and stream temperature, and DOC for the months September through November. The measurements were used to calculate the annual flux of dissolved CO(2), dissolved inorganic carbon, DOC and POC from the catchment and were combined with CO(2) and CH(4) gaseous exchanges calculated from previously published values and the observations of water table height within the peat. The study catchment represents a net sink of 15.4+/-11.9 gC/m(2)/yr. Carbon flows calculated for the study catchment are combined with values in the literature, using a Monte Carlo method, to estimate the carbon budget for British upland peat. For all British upland peat the calculation suggests a net carbon sink of between 0.15 and 0.29 MtC/yr. This is the first study to include a comprehensive study of the fluvial export of carbon within carbon budgets and shows the size of the peat carbon sink to be smaller than previous estimates, although sensitivity analysis shows that the primary productivity rather than fluvial carbon flux is a more important element in estimating the carbon budget in this regard.

  11. Quantifying catchment water balances and their uncertainties by expert elicitation

    NASA Astrophysics Data System (ADS)

    Sebok, Eva; Refsgaard, Jens Christian; Warmink, Jord J.; Stisen, Simon; Høgh Jensen, Karsten

    2017-04-01

    The increasing demand on water resources necessitates a more responsible and sustainable water management requiring a thorough understanding of hydrological processes both on small scale and on catchment scale. On catchment scale, the characterization of hydrological processes is often carried out by calculating a water balance based on the principle of mass conservation in hydrological fluxes. Assuming a perfect water balance closure and estimating one of these fluxes as a residual of the water balance is a common practice although this estimate will contain uncertainties related to uncertainties in the other components. Water balance closure on the catchment scale is also an issue in Denmark, thus, it was one of the research objectives of the HOBE hydrological observatory, that has been collecting data in the Skjern river catchment since 2008. Water balance components in the 1050 km2 Ahlergaarde catchment and the nested 120 km2 Holtum catchment, located in the glacial outwash plan of the Skjern catchment, were estimated using a multitude of methods. As the collected data enables the complex assessment of uncertainty of both the individual water balance components and catchment-scale water balances, the expert elicitation approach was chosen to integrate the results of the hydrological observatory. This approach relies on the subjective opinion of experts whose available knowledge and experience about the subject allows to integrate complex information from multiple sources. In this study 35 experts were involved in a multi-step elicitation process with the aim of (1) eliciting average annual values of water balance components for two nested catchments and quantifying the contribution of different sources of uncertainties to the total uncertainty in these average annual estimates; (2) calculating water balances for two catchments by reaching consensus among experts interacting in form of group discussions. To address the complex problem of water balance closure

  12. Seed Aid for Food Security? Some Lessons from Zimbabwe's Agricultural Recovery Programme

    ERIC Educational Resources Information Center

    Foti, Richard; Muringai, Violet; Mavunganidze, Zira

    2007-01-01

    Does agricultural input aid always lead to favourable food security outcomes? This paper describes Zimbabwe's agricultural recovery program for the 2003/2004 farming season and draws some lessons that can be used in the designing and implementation of future programs. Input aid was found to be most beneficial if it is packaged together with other…

  13. Identifying Hydrogeological Controls of Catchment Low-Flow Dynamics Using Physically Based Modelling

    NASA Astrophysics Data System (ADS)

    Cochand, F.; Carlier, C.; Staudinger, M.; Seibert, J.; Hunkeler, D.; Brunner, P.

    2017-12-01

    Identifying key catchment characteristics and processes which control the hydrological response under low-flow conditions is important to assess the catchments' vulnerability to dry periods. In the context of a Swiss Federal Office for the Environment (FOEN) project, the low-flow behaviours of two mountainous catchments were investigated. These neighboring catchments are characterized by the same meteorological conditions, but feature completely different river flow dynamics. The Roethenbach is characterized by high peak flows and low mean flows. Conversely, the Langete is characterized by relatively low peak flows and high mean flow rates. To understand the fundamentally different behaviour of the two catchments, a physically-based surface-subsurface flow HydroGeoSphere (HGS) model for each catchment was developed. The main advantage of a physically-based model is its ability to realistically reproduce processes which play a key role during low-flow periods such as surface-subsurface interactions or evapotranspiration. Both models were calibrated to reproduce measured groundwater heads and the surface flow dynamics. Subsequently, the calibrated models were used to explore the fundamental physics that control hydrological processes during low-flow periods. To achieve this, a comparative sensitivity analysis of model parameters of both catchments was carried out. Results show that the hydraulic conductivity of the bedrock (and weathered bedrock) controls the catchment water dynamics in both models. Conversely, the properties of other geological formations such as alluvial aquifer or soil layer hydraulic conductivity or porosity play a less important role. These results change significantly our perception of the streamflow catchment dynamics and more specifically the way to assess catchment vulnerability to dry period. This study suggests that by analysing catchment scale bedrock properties, the catchment dynamics and the vulnerability to dry period may be assessed.

  14. Selected Micropollutants as Indicators in a Karst Catchment

    NASA Astrophysics Data System (ADS)

    Zirlewagen, Johannes; Schiperski, Ferry; Hillebrand, Olav; Nödler, Karsten; Licha, Tobias; Scheytt, Traugott

    2015-04-01

    High flow dynamics and variations in water quality are typical for karst springs and reflect the complex interaction of different flow and storage components within a karst system. Event-based monitoring of mobile micropollutants in spring water combined with information on their input is used (1) to quantify the impact of certain contamination scenarios on spring water quality and (2) to gain additional information on the intrinsic characteristics of a karst system. We employ the artificial sweeteners acesulfame and cyclamate as source specific indicators for sewage along with the herbicides atrazine and isoproturon for agriculture. The study site is the 45 km² rural catchment of the perennial karst spring Gallusquelle in SW-Germany (mean discharge: 0.5 m³/s). Overflow events of a stormwater detention basin (SDB, combined sewer system) are known to impact water quality. Most of the sewer system is situated in the SW of the catchment. Most agricultural land is found in the NE. Neither atrazine nor significant amounts of isoproturon were detected in wastewater. Concentrations and mass fluxes of acesulfame and cyclamate in wastewater were determined. The combined evaluation of the persistent compound acesulfame with the rather degradable cyclamate allows for the distinction of long and short transit times and thus slow and fast flow components. The same applies for atrazine (persistent) and isoproturon (degradable). In Germany, acesulfame was licensed in 1990, atrazine was banned shortly after, in 1991. During low flow conditions only atrazine (max. 4 ng/L) and acesulfame (max. 20 ng/L) were detected in spring water. After a recharge event without SDB overflow concentrations as well as mass fluxes of both compounds decreased, reflecting an increasing portion of event water in spring discharge. A breakthrough of isoproturon (max. 9 ng/L) indicated the arrival of water from croplands. After a recharge event accompanied by a SDB overflow cyclamate was detected at max

  15. Modelling catchment areas for secondary care providers: a case study.

    PubMed

    Jones, Simon; Wardlaw, Jessica; Crouch, Susan; Carolan, Michelle

    2011-09-01

    Hospitals need to understand patient flows in an increasingly competitive health economy. New initiatives like Patient Choice and the Darzi Review further increase this demand. Essential to understanding patient flows are demographic and geographic profiles of health care service providers, known as 'catchment areas' and 'catchment populations'. This information helps Primary Care Trusts (PCTs) to review how their populations are accessing services, measure inequalities and commission services; likewise it assists Secondary Care Providers (SCPs) to measure and assess potential gains in market share, redesign services, evaluate admission thresholds and plan financial budgets. Unlike PCTs, SCPs do not operate within fixed geographic boundaries. Traditionally, SCPs have used administrative boundaries or arbitrary drive times to model catchment areas. Neither approach satisfactorily represents current patient flows. Furthermore, these techniques are time-consuming and can be challenging for healthcare managers to exploit. This paper presents three different approaches to define catchment areas, each more detailed than the previous method. The first approach 'First Past the Post' defines catchment areas by allocating a dominant SCP to each Census Output Area (OA). The SCP with the highest proportion of activity within each OA is considered the dominant SCP. The second approach 'Proportional Flow' allocates activity proportionally to each OA. This approach allows for cross-boundary flows to be captured in a catchment area. The third and final approach uses a gravity model to define a catchment area, which incorporates drive or travel time into the analysis. Comparing approaches helps healthcare providers to understand whether using more traditional and simplistic approaches to define catchment areas and populations achieves the same or similar results as complex mathematical modelling. This paper has demonstrated, using a case study of Manchester, that when estimating

  16. Conditional cash transfer schemes in Nigeria: potential gains for maternal and child health service uptake in a national pilot programme.

    PubMed

    Okoli, Ugo; Morris, Laura; Oshin, Adetokunbo; Pate, Muhammad A; Aigbe, Chidimma; Muhammad, Ado

    2014-12-12

    This paper describes use of a Conditional Cash Transfer (CCT) programme to encourage use of critical MNCH services among rural women in Nigeria. The CCT programme was first implemented as a pilot in 37 primary health care facilities (PHCs), in nine Nigerian states. The programme entitles women using these facilities up to N5,000 (approximately US$30) if they attend antenatal care (ANC), skilled delivery, and postnatal care. There are 88 other PHCs from these nine states included in this study, which implemented a standard package of supply upgrades without the CCT. Data on monthly service uptake throughout the continuum of care was collected at 124 facilities during quarterly monitoring visits. An interrupted time series using segmented linear regression was applied to estimate separately the effects of the CCT programme and supply package on service uptake. From April 2013-March 2014, 20,133 women enrolled in the CCT. Sixty-four percent of beneficiaries returned at least once after registration, and 80% of women delivering with skilled attendance returned after delivery. The CCT intervention is associated with a statistically significant increase in the monthly number of women attending four or more ANC visits (increase of 15.12 visits per 100,000 catchment population, p < 0.01; 95% confidence interval 7.38 to 22.85), despite a negative level effect immediately after the intervention began (-45.53/100,000 catchment population; p < 0.05; 95% CI -82.71 to -8.36). A statistically significant increase was also observed in the monthly number of women receiving two or more Tetanus toxoid doses during pregnancy (21.65/100,000 catchment population; p < 0.01; 95% CI 9.23 to 34.08). Changes for other outcomes with the CCT intervention (number of women attending first ANC visit; number of deliveries with skilled attendance; number of neonates receiving OPV at birth) were not found to be statistically significant. The results show that the CCT intervention is

  17. Runoff processes in catchments with a small scale topography

    NASA Astrophysics Data System (ADS)

    Feyen, H.; Leuenberger, J.; Papritz, A.; Gysi, M.; Flühler, H.; Schleppi, P.

    1996-05-01

    How do runoff processes influence nitrogen export from forested catchments? To support nitrogen balance studies for three experimental catchments (1500m 2) in the Northern Swiss prealps water flow processes in the two dominating soil types are monitored. Here we present the results for an experimental wetland catchment (1500m 2) and for a delineated sloped soil plot (10m 2), both with a muck humus topsoil. Runoff measurements on both the catchment and the soil plot showed fast reactions of surface and subsurface runoff to rainfall inputs, indicating the dominance of fast-flow paths such as cracks and fissures. Three quarters of the runoff from the soil plot can be attributed to water flow in the gleyic, clayey subsoil, 20% to flow in the humic A horizon and only 5% to surface runoff. The water balance for the wetland catchment was closed. The water balance of the soil plot did not close. Due to vertical upward flow from the saturated subsoil into the upper layers, the surface runoff plus subsurface runoff exceeded the input (precipitation) to the plot.

  18. Vulnerability of schools to floods in Nyando River catchment, Kenya.

    PubMed

    Ochola, Samuel O; Eitel, Bernhard; Olago, Daniel O

    2010-07-01

    This paper assesses the vulnerability of schools to floods in the Nyando River catchment (3,600 km(2)) in western Kenya and identifies measures needed to reduce this vulnerability. It surveys 130 schools in the lower reaches, where flooding is a recurrent phenomenon. Of the primary schools assessed, 40% were vulnerable, 48% were marginally vulnerable and 12% were not vulnerable. Of the secondary schools, 8% were vulnerable, 73% were marginally vulnerable and 19% were not vulnerable. Vulnerability to floods is due to a lack of funds, poor building standards, local topography, soil types and inadequate drainage. The Constituencies Development Fund (CDF), established in 2003, provides financial support to cover school construction and reconstruction costs; CDF Committees are expected to adopt school building standards. In an effort to promote safe and resilient construction and retrofitting to withstand floods, this paper presents vulnerability reduction strategies and recommendations for incorporating minimum standards in the on-going Primary School Infrastructure Programme Design.

  19. Quantifying hydrological responses of small Mediterranean catchments under climate change projections.

    PubMed

    Sellami, Haykel; Benabdallah, Sihem; La Jeunesse, Isabelle; Vanclooster, Marnik

    2016-02-01

    Catchment flow regimes alteration is likely to be a prominent consequence of climate change projections in the Mediterranean. Here we explore the potential effects of climatic change on the flow regime of the Thau and the Chiba catchments which are located in Southern France and Northeastern Tunisia, respectively. The Soil and Water Assessment Tool (SWAT) hydrological model is forced with projections from an ensemble of 4 climate model (CM) to assess changes and uncertainty in relevant hydrological indicators related to water balance, magnitude, frequency and timing of the flow between a reference (1971-2000) and future (2041-2071) periods. Results indicate that both catchments are likely to experience a decrease in precipitation and increase in temperature in the future. Consequently, runoff and soil water content are projected to decrease whereas potential evapotranspiration is likely to increase in both catchments. Yet uncertain, the projected magnitudes of these changes are higher in the wet period than in the dry period. Analyses of extreme flow show similar trend in both catchments, projecting a decrease in both high flow and low flow magnitudes for various time durations. Further, significant increase in low flow frequency as a proxy for hydrological droughts is projected for both catchments but with higher uncertainty in the wet period than in the dry period. Although no changes in the average timing of maximum and minimum flow events for different flow durations are projected, substantial uncertainty remains in the hydrological projections. While the results in both catchments show consistent trend of change for most of the hydrologic indicators, the overall degree of alteration on the flow regime of the Chiba catchment is projected to be higher than that of the Thau catchment. The projected magnitudes of alteration as well as their associated uncertainty vary depending on the catchment characteristics and flow seasonality. Copyright © 2015 Elsevier B

  20. Estimating retention potential of headwater catchment using Tritium time series

    NASA Astrophysics Data System (ADS)

    Hofmann, Harald; Cartwright, Ian; Morgenstern, Uwe

    2018-06-01

    Headwater catchments provide substantial streamflow to rivers even during long periods of drought. Documenting the mean transit times (MTT) of stream water in headwater catchments and therefore the retention capacities of these catchments is crucial for water management. This study uses time series of 3H activities in combination with major ion concentrations, stable isotope ratios and radon activities (222Rn) in the Lyrebird Creek catchment in Victoria, Australia to provide a unique insight into the mean transit time distributions and flow systems of this small temperate headwater catchment. At all streamflows, the stream has 3H activities (<2.4 TU) that are significantly below those of rainfall (∼3.2 TU), implying that most of the water in the stream is derived from stores with long transit times. If the water in the catchment can be represented by a single store with a continuum of ages, mean transit times of the stream water range from ∼6 up to 40 years, which indicates the large retention potential for this catchment. Alternatively, variations of 3H activities, stable isotopes and major ions can be explained by mixing between of young recent recharge and older water stored in the catchment. While surface runoff is negligible, the variation in stable isotope ratios, major ion concentrations and radon activities during most of the year is minimal (±12%) and only occurs during major storm events. This suggests that different subsurface water stores are activated during the storm events and that these cease to provide water to the stream within a few days or weeks after storm events. The stores comprise micro and macropore flow in the soils and saprolite as well as the boundary between the saprolite and the fractured bed rock. Hydrograph separations from three major storm events using Tritium, electrical conductivity and selected major ions as well a δ18O suggest a minimum of 50% baseflow at most flow conditions. We demonstrate that headwater catchments can

  1. Investigating the potential to reduce flood risk through catchment-based land management techniques and interventions in the River Roe catchment, Cumbria,UK

    NASA Astrophysics Data System (ADS)

    Pearson, Callum; Reaney, Sim; Bracken, Louise; Butler, Lucy

    2015-04-01

    Throughout the United Kingdom flood risk is a growing problem and a significant proportion of the population are at risk from flooding throughout the country. Across England and Wales over 5 million people are believed to be at risk from fluvial, pluvial or coastal flooding (DEFRA, 2013). Increasingly communities that have not dealt with flooding before have recently experienced significant flood events. The communities of Stockdalewath and Highbridge in the Roe catchment, a tributary of the River Eden in Cumbria, UK, are an excellent example. The River Roe has a normal flow of less than 5m3 sec-1 occurring 97 percent of the time however there have been two flash floods of 98.8m3 sec-1 in January 2005 and 86.9m3 sec-1 in May 2013. These two flash flood events resulted in the inundation of numerous properties within the catchment with the 2013 event prompting the creation of the Roe Catchment Community Water Management Group which aims are to deliver a sustainable approach to managing the flood risk. Due to the distributed rural population the community fails the cost-benefit analysis for a centrally funded flood risk mitigation scheme. Therefore the at-risk community within the Roe catchment have to look for cost-effective, sustainable techniques and interventions to reduce the potential negative impacts of future events; this has resulted in a focus on natural flood risk management. This research investigates the potential to reduce flood risk through natural catchment-based land management techniques and interventions within the Roe catchment; providing a scientific base from with further action can be enacted. These interventions include changes to land management and land use, such as soil aeration and targeted afforestation, the creation of runoff attenuation features and the construction of in channel features, such as debris dams. Natural flood management (NFM) application has been proven to be effective when reducing flood risk in smaller catchments and the

  2. Influence of vegetation on water isotope partitioning across different northern headwater catchments

    NASA Astrophysics Data System (ADS)

    Gabor, R. S.; Tetzlaff, D.; Buttle, J. M.; Carey, S. K.; Laudon, H.; Mitchell, C. P. J.; McNamara, J. P.; Soulsby, C.

    2014-12-01

    The hydrology of high latitude catchments is sensitive to small changes in temperature, and likely to be impacted by changes in climate. Vegetation water usage can play a large role in catchment hydrologic pathways, affecting how water is stored, released, and partitioned within a landscape. Thus a better understanding of how vegetation impacts water partitioning in northern catchments can help us understand how climate change will impact high-latitude hydrology. As part of the VeWa project, five catchments were chosen between 44oN and 64oN in Europe and North America, to compare the role of vegetation in the movement of water across northern landscapes. These catchments vary in aspect as well as extent of snowpack and their vegetative landscapes include heather moorland, coniferous and deciduous forests, mixed grass, and tundra landscapes. Importantly, all the catchments have records of stable isotopes in different waters of the system. An initial comparison of the water isotopes in these catchments demonstrates variation between the catchments, with the lower latitude sites showing more fractionation suggestive of evapotranspiration. While all catchments show a depletion of heavy isotopes in the spring, the depletion is most evident in catchments with a heavier snowpack. The vegetative growing season during the summer months shows the greatest impact of evapotranspiration on isotopes, indicating that an increased summer in a warmer climate would likely alter water partitioning and storage dynamics in these regions.

  3. Terrain representation impact on periurban catchment morphological properties

    NASA Astrophysics Data System (ADS)

    Rodriguez, F.; Bocher, E.; Chancibault, K.

    2013-04-01

    SummaryModelling the hydrological behaviour of suburban catchments requires an estimation of environmental features, including land use and hydrographic networks. Suburban areas display a highly heterogeneous composition and encompass many anthropogenic elements that affect water flow paths, such as ditches, sewers, culverts and embankments. The geographical data available, either raster or vector data, may be of various origins and resolutions. Urban databases often offer very detailed data for sewer networks and 3D streets, yet the data covering rural zones may be coarser. This study is intended to highlight the sensitivity of geographical data as well as the data discretisation method used on the essential features of a periurban catchment, i.e. the catchment border and the drainage network. Three methods are implemented for this purpose. The first is the DEM (for digital elevation model) treatment method, which has traditionally been applied in the field of catchment hydrology. The second is based on urban database analysis and focuses on vector data, i.e. polygons and segments. The third method is a TIN (or triangular irregular network), which provides a consistent description of flow directions from an accurate representation of slope. It is assumed herein that the width function is representative of the catchment's hydrological response. The periurban Chézine catchment, located within the Nantes metropolitan area in western France, serves as the case study. The determination of both the main morphological features and the hydrological response of a suburban catchment varies significantly according to the discretization method employed, especially on upstream rural areas. Vector- and TIN-based methods allow representing the higher drainage density of urban areas, and consequently reveal the impact of these areas on the width function, since the DEM method fails. TINs seem to be more appropriate to take streets into account, because it allows a finer

  4. Nutrition-sensitive interventions and programmes: how can they help to accelerate progress in improving maternal and child nutrition?

    PubMed

    Ruel, Marie T; Alderman, Harold

    2013-08-10

    Acceleration of progress in nutrition will require effective, large-scale nutrition-sensitive programmes that address key underlying determinants of nutrition and enhance the coverage and effectiveness of nutrition-specific interventions. We reviewed evidence of nutritional effects of programmes in four sectors--agriculture, social safety nets, early child development, and schooling. The need for investments to boost agricultural production, keep prices low, and increase incomes is undisputable; targeted agricultural programmes can complement these investments by supporting livelihoods, enhancing access to diverse diets in poor populations, and fostering women's empowerment. However, evidence of the nutritional effect of agricultural programmes is inconclusive--except for vitamin A from biofortification of orange sweet potatoes--largely because of poor quality evaluations. Social safety nets currently provide cash or food transfers to a billion poor people and victims of shocks (eg, natural disasters). Individual studies show some effects on younger children exposed for longer durations, but weaknesses in nutrition goals and actions, and poor service quality probably explain the scarcity of overall nutritional benefits. Combined early child development and nutrition interventions show promising additive or synergistic effects on child development--and in some cases nutrition--and could lead to substantial gains in cost, efficiency, and effectiveness, but these programmes have yet to be tested at scale. Parental schooling is strongly associated with child nutrition, and the effectiveness of emerging school nutrition education programmes needs to be tested. Many of the programmes reviewed were not originally designed to improve nutrition yet have great potential to do so. Ways to enhance programme nutrition-sensitivity include: improve targeting; use conditions to stimulate participation; strengthen nutrition goals and actions; and optimise women's nutrition, time

  5. Catchment Storage and Transport on Timescales from Minutes to Millennia

    NASA Astrophysics Data System (ADS)

    Kirchner, J. W.

    2017-12-01

    Landscapes are characterized by preferential flow and pervasive heterogeneity on all scales. They therefore store and transmit water and solutes over a wide spectrum of time scales, with important implications for contaminant transport, weathering rates, and runoff chemistry. Theoretical analyses predict, and syntheses of age tracer data confirm, that waters in aquifers are older - often by orders of magnitude - than in the rivers that flow from them, and that this disconnect between water ages arises from aquifer heterogeneity. Recent theoretical studies also suggest that catchment transit time distributions are nonstationary, reflecting temporal variability in precipitation forcing, structural heterogeneity in catchments themselves, and the nonlinearity of the mechanisms controlling storage and transport in the subsurface. The challenge of empirically estimating these nonstationary transit time distributions in real-world catchments, however, has only begun to be explored. In recent years, long-term isotope time series have been collected in many research catchments, and new technologies have emerged that allow quasi-continuous measurements of isotopes in precipitation and streamflow. These new data streams create new opportunities to study how rainfall becomes streamflow following the onset of precipitation. Here I present novel methods for quantifying the fraction of current rainfall in streamflow across ensembles of precipitation events. Benchmark tests with nonstationary catchment models demonstrate that this approach quantitatively measures the short tail of the transit time distribution for a wide range of catchment response characteristics. In combination with reactive tracer time series, this approach can potentially be extended to measure short-term chemical reaction rates at the catchment scale. Applications using high-frequency tracer time series from several experimental catchments demonstrate the utility of the new approach outlined here.

  6. Towards the assessment of climate change and human activities impacts on the water resources of the Ebro catchment (Spain)

    NASA Astrophysics Data System (ADS)

    Milano, M.; Ruelland, D.; Dezetter, A.; Ardoin-Bardin, S.; Thivet, G.; Servat, E.

    2012-04-01

    Worldwide studies modelling the hydrological response to global changes have proven the Mediterranean area as one of the most vulnerable region to water crisis. It is characterised by limited and unequally distributed water resources, as well as by important development of its human activities. Since the late 1950s, water demand in the Mediterranean basin has doubled due to a significant expansion of irrigated land and urban areas, and has maintained on a constant upward curve. The Ebro catchment, third largest Mediterranean basin, is very representative of this context. Since the late 1970s, a negative trend in mean rainfall has been observed as well as an increase in mean temperature. Meanwhile, the Ebro River discharge has decreased by about 40%. However, climate alone cannot explain this downward trend. Another factor is the increase in water consumption for agricultural and domestic uses. Indeed, the Ebro catchment is a key element in the Spanish agricultural production with respectively 30% and 60% of the meat and fruit production of the country. Moreover, population has increased by 20% over the catchment since 1970 and the number of inhabitant doubles each summer due to tourism attraction. Finally, more than 250 storage dams have been built over the Ebro River for hydropower production and irrigation water supply purposes, hence regulating river discharge. In order to better understand the respective influence of climatic and anthropogenic pressures on the Ebro hydrological regime, an integrated water resources modelling framework was developed. This model is driven by water supplies, generated by a conceptual rainfall-runoff model and by a storage dam module that accounts for water demands and environmental flow requirements. Water demands were evaluated for the most water-demanding sector, i.e. irrigated agriculture (5 670 Hm3/year), and the domestic sector (252 Hm3/year), often defined as being of prior importance for water supply. A water allocation

  7. River catchment responses to anthropogenic acidification in relationship with sewage effluent: An ecotoxicology screening application.

    PubMed

    Oberholster, P J; Botha, A-M; Hill, L; Strydom, W F

    2017-12-01

    Rising environmental pressures on water resources and resource quality associated with urbanisation, industrialisation, mining and agriculture are a global concern. In the current study the upper Olifants River catchment as case study was used, to show that acid mine drainage (AMD) and acid precipitation were the two most important drivers of possible acidification during a four-year study period. Over the study period 59% of the precipitation sampled was classified as acidic with a pH value below 5.6. Traces of acidification in the river system using aquatic organisms at different trophic levels were only evident in areas of AMD point sources. Data gathered from the ecotoxicology screening tools, revealed that discharge of untreated and partially treated domestic sewage from municipal sewage treatment works and informal housing partially mitigate any traces of acidification by AMD and acid precipitation in the main stem of the upper Olifants River. The outcome of the study using phytoplankton and macroinvertebrates as indicator organisms revealed that the high loads of sewage effluent might have played a major role in the neutralization of acidic surface water conditions caused by AMD and acid precipitation. Although previous multi-stage and microcosm studies confirmed the decrease in acidity and metals concentrations by municipal wastewater, the current study is the first to provide supportive evidence of this co-attenuation on catchment scale. These findings are important for integrated water resource management on catchment level, especially in river systems with a complex mixture of pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Simulating nitrogen budgets in complex farming systems using INCA: calibration and scenario analyses for the Kervidy catchment (W. France)

    NASA Astrophysics Data System (ADS)

    Durand, P.

    The integrated nitrogen model INCA (Integrated Nitrogen in Catchments) was used to analyse the nitrogen dynamics in a small rural catchment in Western France. The agrosystem studied is very complex, with: extensive use of different organic fertilisers, a variety of crop rotations, a structural excess of nitrogen (i.e. more animal N produced by the intensive farming than the N requirements of the crops and pastures), and nitrate retention in both hydrological stores and riparian zones. The original model features were adapted here to describe this complexity. The calibration results are satisfactory, although the daily variations in stream nitrate are not simulated in detail. Different climate scenarios, based on observed climate records, were tested; all produced a worsening of the pollution in the short term. Scenarios of alternative agricultural practices (reduced fertilisation and catch crops) were also analysed, suggesting that a reduction by 40% of the fertilisation combined with the introduction of catch crops would be necessary to stop the degradation of water quality.

  9. Memory of the Lake Rotorua catchment - time lag of the water in the catchment and delayed arrival of contaminants from past land use activities

    NASA Astrophysics Data System (ADS)

    Morgenstern, Uwe; Daughney, Christopher J.; Stewart, Michael K.; McDonnell, Jeffrey J.

    2013-04-01

    The transit time distribution of streamflow is a fundamental descriptor of the flowpaths of water through a catchment and the storage of water within it, controlling its response to landuse change, pollution, ecological degradation, and climate change. Significant time lags (catchment memory) in the responses of streams to these stressors and their amelioration or restoration have been observed. Lag time can be quantified via water transit time of the catchment discharge. Mean transit times can be in the order of years and decades (Stewart et al 2012, Morgenstern et al., 2010). If the water passes through large groundwater reservoirs, it is difficult to quantify and predict the lag time. A pulse shaped tracer that moves with the water can allow quantification of the mean transit time. Environmental tritium is the ideal tracer of the water cycle. Tritium is part of the water molecule, is not affected by chemical reactions in the aquifer, and the bomb tritium from the atmospheric nuclear weapons testing represents a pulse shaped tracer input that allows for very accurate measurement of the age distribution parameters of the water in the catchment discharge. Tritium time series data from all catchment discharges (streams and springs) into Lake Rotorua, New Zealand, allow for accurate determination of the age distribution parameters. The Lake Rotorua catchment tritium data from streams and springs are unique, with high-quality tritium data available over more than four decades, encompassing the time when the bomb-tritium moved through the groundwater system, and from a very high number of streams and springs. Together with the well-defined tritium input into the Rotorua catchment, this data set allows for the best understanding of the water dynamics through a large scale catchment, including validation of complicated water mixing models. Mean transit times of the main streams into the lake range between 27 and 170 years. With such old water discharging into the lake

  10. Remote sensing of surface water quality in relation to catchment condition in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Masocha, Mhosisi; Murwira, Amon; Magadza, Christopher H. D.; Hirji, Rafik; Dube, Timothy

    2017-08-01

    The degradation of river catchments is one of the most important contemporary environmental problems affecting water quality in tropical countries. In this study, we used remotely sensed Normalised Difference Vegetation Index (NDVI) to assess how catchment condition varies within and across river catchments in Zimbabwe. We then used non-linear regression to test whether catchment condition assessed using the NDVI is significantly (α = 0.05) related with levels of Total Suspended Solids (TSS) measured at different sampling points in thirty-two sub-catchments in Zimbabwe. The results showed a consistent negative curvilinear relationship between Landsat 8 derived NDVI and TSS measured across the catchments under study. In the drier catchments of the country, 98% of the variation in TSS is explained by NDVI, while in wetter catchments, 64% of the variation in TSS is explained by NDVI. Our results suggest that NDVI derived from free and readily available multispectral Landsat series data (Landsat 8) is a potential valuable tool for the rapid assessment of physical water quality in data poor catchments. Overall, the finding of this study underscores the usefulness of readily available satellite data for near-real time monitoring of the physical water quality at river catchment scale, especially in resource-constrained areas, such as the sub-Saharan Africa.

  11. Catchments of general practice in different countries– a literature review

    PubMed Central

    2014-01-01

    The purpose of this paper is to review the current research on catchment areas of private general practices in different developed countries because healthcare reform, including primary health care, has featured prominently as an important political issue in a number of developed countries. The debates around health reform have had a significant health geographic focus. Conceptually, GP catchments describe the distribution, composition and profile of patients who access a general practitioner or a general practice (i.e. a site or facility comprising one or more general practitioners). Therefore, GP catchments provide important information into the geographic variation of access rates, utilisation of services and health outcomes by all of the population or different population groups in a defined area or aggregated area. This review highlights a wide range of diversity in the literature as to how GP catchments can be described, the indicators and measures used to frame the scale of catchments. Patient access to general practice health care services should be considered from a range of locational concepts, and not necessarily constrained by their place of residence. An analysis of catchment patterns of general practitioners should be considered as dynamic and multi-perspective. Geographic information systems provide opportunities to contribute valuable methodologies to study these relationships. However, researchers acknowledge that a conceptual framework for the analysis of GP catchments requires access to real world data. Recent studies have shown promising developments in the use of real world data, especially from studies in the UK. Understanding the catchment profiles of individual GP surgeries is important if governments are serious about patient choice being a key part of proposed primary health reforms. Future health planning should incorporate models of GP catchments as planning tools, at the micro level as well as the macro level, to assist policies on the

  12. Hillslope versus riparian zone runoff contributions in headwater catchments: A multi-watershed comparison

    NASA Astrophysics Data System (ADS)

    McGlynn, B. L.; McGlynn, B. L.; McDonnell, J. J.; Hooper, R. P.; Shanley, J. B.; Hjerdt, K. N.; Hjerdt, K. N.

    2001-12-01

    It is often assumed that hillslope and riparian areas constitute the two most important and identifiable landscape units contributing to catchment runoff in upland humid catchments. Nevertheless, the relative amount and timing of hillslope versus riparian contributions to stormflow are poorly understood across different watersheds. We quantified the contributions of hillslopes and riparian zones to stormflow using physical, chemical, and isotopic techniques across 3 diverse ({ ~}15 ha) headwater catchments: a highly responsive steep wet watershed (Maimai, New Zealand), a moderately steep snowmelt dominated watershed (Sleepers, River, VT), and at a highly seasonal relatively low relief watershed (Panola Mt., Georgia). We monitored catchment runoff, internal hydrological response, and isotopic and solute dynamics for discrete riparian and hillslope zones within each catchment. Monitored catchment positions, including hillslope trenches at Maimai and Panola, were used to characterize directly, the hydrologic response and source water signatures for hillslope zones and riparian zones. We also examined the spatial and temporal source components of catchment stormflow using 3-component mass balance hydrograph separation techniques. At Maimai, NZ we found that hillslope runoff comprised 47-55% of total runoff during a 70 mm event. Despite the large amount of subsurface hillslope runoff in total catchment stormflow, riparian and channel zones accounted for 28% out of 29% of the total new water measured catchment runoff. Riparian water dominated the storm hydrograph composition early in the event, although hillslope water reached the catchment outlet soon after hillslope water tables were developed. Preliminary results for Sleepers River, VT and Panola Mountain, GA indicate that the timing and relative proportion of hillslope water in catchment runoff is later and smaller than at Maimai. Our multi-catchment comparison suggests that the ratio of the riparian reservoir to the

  13. Concentration-discharge relationships for variably sized streams in Florida: Patterns and drivers in long-term catchment studies

    NASA Astrophysics Data System (ADS)

    Diamond, J.; Cohen, M.

    2012-12-01

    Catchment-scale analyses can provide important insight into the processes governing solute sources, transport and storage. Understanding solute dynamics is vital for water management both for accurate predictions of chemical fluxes as well as ecosystem responses to them. This project synthesized long-term (>15 years) hydrochemical data from 80 variably sized (101-105 m2) watersheds in Florida. Our goal was to evaluate scaling effects on flow-solute relationships, and determine the factors that control observed inter-catchment variation. We obtained long term records of a variety of chemical parameters include color, nutrients (N and P), and geogenic solutes (Ca, Si, Mg, Na, Cl) from stations where chemistry and flow data were matched. Catchment attributes (land use, terrain, surface geology) were obtained for each stream as potential covariates. Concentration-discharge relationships were modeled as power functions, the exponents (b) of which were categorized into three end-member scenarios: (1) b>0, or chemodynamic conditions, where increased discharge increases concentration, (2) b=0, or chemostatic conditions, where concentration is independent of discharge, and (3) b<0, or dilution conditions, where increased discharge decreases concentrations. Color was strongly chemodynamic, while geogenic solutes tended to be chemostatic;nutrient-flow relationships varied substantially (from dilution to chemodynamic) suggesting important ancillary controls. To assess between-site variability, power function exponents were compared against land use and catchment area. These results indicate that watersheds dominated by urban land use exhibit stronger dilution effects for most solutes while watersheds dominated by agricultural land use were generally chemostatic particularly for nutrients. This synthesis approach to understanding controls on observed concentration-discharge relationships is crucial to understanding the dynamics and early-warning indicators of anthropogenically

  14. A bottom up approach for engineering catchments through sustainable runoff management

    NASA Astrophysics Data System (ADS)

    Wilkinson, M.; Quinn, P. F.; Jonczyk, J.; Burke, S.

    2010-12-01

    There is no doubt that our catchments are under great stress. There have been many accounts around the world of severe flood events and water quality issues within channels. As a result of these, ecological habitats in rivers are also under pressure. Within the United Kingdom, all these issues have been identified as key target areas for policy. Traditionally this has been managed by a policy driven top down approach which is usually ineffective. A one ‘size fits all’ attitude often does not work. This paper presents a case study in northern England whereby a bottom up approach is applied to multipurpose managing of catchments at the source (in the order of 1-10km2). This includes simultaneous tackling of water quality, flooding and ecological issues by creating sustainable runoff management solutions such as storage ponds, wetlands, beaver dams and willow riparian features. In order to identify the prevailing issues in a specific catchment, full and transparent stakeholder engagement is essential, with everybody who has a vested interest in the catchment being involved from the beginning. These problems can then be dealt with through the use of a novel catchment management toolkit, which is transferable to similar scale catchments. However, evidence collected on the ground also allows for upscaling of the toolkit. The process gathers the scientific evidence about the effectiveness of existing or new measures, which can really change the catchment functions. Still, we need to get better at communicating the science to policy makers and policy therefore must facilitate a bottom up approach to land and water management. We show a test site for this approach in the Belford burn catchment (6km2), northern England. This catchment has problems with flooding and water quality. Increased sediment loads are affecting the nearby estuary which is an important ecological zone and numerous floods have affected the local village. A catchment engineering toolkit has been

  15. SWAT-CS: Revision and testing of SWAT for Canadian Shield catchments

    NASA Astrophysics Data System (ADS)

    Fu, Congsheng; James, April L.; Yao, Huaxia

    2014-04-01

    Canadian Shield catchments are under increasing pressure from various types of development (e.g., mining and increased cottagers) and changing climate. Within the southern part of the Canadian Shield, catchments are generally characterized by shallow forested soils with high infiltration rates and low bedrock infiltration, generating little overland flow, and macropore and subsurface flow are important streamflow generation processes. Large numbers of wetlands and lakes are also key physiographic features, and snow-processes are critical to catchment modeling in this climate. We have revised the existing, publicly available SWAT (version 2009.10.1 Beta 3) to create SWAT-CS, a version representing hydrological processes dominating Canadian Shield catchments, where forest extends over Precambrian Shield bedrock. Prior to this study, very few studies applying SWAT to Canadian Shield catchments exist (we have found three). We tested SWAT-CS using the Harp Lake catchment dataset, an Ontario Ministry of Environment research station located in south-central Ontario. Simulations were evaluated against 30 years of observational data, including streamflow from six headwater sub-catchments (0.1-1.9 km2), outflow from Harp Lake (5.4 km2) and five years of weekly snow water equivalent (SWE). The best Nash-Sutcliffe efficiency (NSE) results for daily streamflow calibration, daily streamflow validation, and SWE were 0.60, 0.65, and 0.87, respectively, for sub-catchment HP4 (with detailed land use and soil data). For this range of catchment scales, land cover and soil properties were found to be transferable across sub-catchments with similar physiographic features, namely streamflow from the remaining five sub-catchments could be modeled well using sub-catchment HP4 parameterization. The Harp Lake outflow was well modeled using the existing reservoir-based target release method, generating NSEs of 0.72 and 0.67 for calibration and verification periods respectively. With

  16. Paradigm Shift in Transboundary Water Management Policy: Linking Water Environment Energy and Food (weef) to Catchment Hydropolitics - Needs, Scope and Benefits

    NASA Astrophysics Data System (ADS)

    RAI, S.; Wolf, A.; Sharma, N.; Tiwari, H.

    2015-12-01

    The incessant use of water due to rapid growth of population, enhanced agricultural and industrial activities, degraded environment and ecology will in the coming decades constrain the socioeconomic development of humans. To add on to the precarious situation, political boundaries rarely embrace hydrological boundaries of lakes, rivers, aquifers etc. Hydropolitics relate to the ability of geopolitical institutions to manage shared water resources in a politically sustainable manner, i.e., without tensions or conflict between political entities. Riparian hydropolitics caters to differing objectives, needs and requirements of states making it difficult to administer the catchment. The diverse riparian objectives can be merged to form a holistic catchment objective of sustainable water resources development and management. It can be proposed to make a paradigm shift in the present-day transboundary water policy from riparian hydropolitics (in which the focal point of water resources use is hinged on state's need) to catchment hydropolitics (in which the interest of the basin inhabitants are accorded primacy holistically over state interests) and specifically wherein the water, environment, energy and food (WEEF) demands of the catchment are a priority and not of the states in particular. The demands of the basin pertaining to water, food and energy have to be fulfilled, keeping the environment and ecology healthy in a cooperative political framework; the need for which is overwhelming. In the present scenario, the policy for water resources development of a basin is segmented into independent uncoordinated parts controlled by various riparians; whereas in catchment hydropolitics the whole basin should be considered as a unit. The riparians should compromise a part of national interest and work in collaboration on a joint objective which works on the principle of the whole as against the part. Catchment hydropolitics may find greater interest in the more than 250

  17. Drought propagation and its relation with catchment biophysical characteristics

    NASA Astrophysics Data System (ADS)

    Alvarez-Garreton, C. D.; Lara, A.; Garreaud, R. D.

    2016-12-01

    Droughts propagate in the hydrological cycle from meteorological to soil moisture to hydrological droughts. To understand the drivers of this process is of paramount importance since the economic and societal impacts in water resources are directly related with hydrological droughts (and not with meteorological droughts, which have been most studied). This research analyses drought characteristics over a large region and identify its main exogenous (climate forcing) and endogenous (biophysical characteristics such as land cover type and topography) explanatory factors. The study region is Chile, which covers seven major climatic subtypes according to Köppen system, it has unique geographic characteristics, very sharp topography and a wide range of landscapes and vegetation conditions. Meteorological and hydrological droughts (deficit in precipitation and streamflow, respectively) are characterized by their durations and standardized deficit volumes using a variable threshold method, over 300 representative catchments (located between 27°S and 50°S). To quantify the propagation from meteorological to hydrological drought, we propose a novel drought attenuation index (DAI), calculated as the ratio between the meteorological drought severity slope and the hydrological drought severity slope. DAI varies from zero (catchment that attenuates completely a meteorological drought) to one (the meteorological drought is fully propagated through the hydrological cycle). This novel index provides key (and comparable) information about drought propagation over a wide range of different catchments, which has been highlighted as a major research gap. Similar drought indicators across the wide range of catchments are then linked with catchment biophysical characteristics. A thorough compilation of land cover information (including the percentage of native forests, grass land, urban and industrial areas, glaciers, water bodies and no vegetated areas), catchment physical

  18. Runoff and Solute Mobilisation in a Semi-arid Headwater Catchment

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Khan, S.; Crosbie, R.; Helliwell, S.; Michalk, D.

    2006-12-01

    Runoff and solute transport processes contributing to stream flow were determined in a small headwater catchment in the eastern Murray-Darling Basin of Australia using hydrometric and tracer methods. Stream flow and electrical conductivity were monitored from two gauges draining a portion of upper catchment area (UCA), and a saline scalded area respectively. Results show that the bulk of catchment solute export, occurs via a small saline scald (< 2% of catchment area) where solutes are concentrated in the near surface zone (0-40 cm). Non-scalded areas of the catchment are likely to provide the bulk of catchment runoff, although the scalded area is a higher contributor on an areal basis. Runoff from the non-scalded area is about two orders of magnitude lower in electrical conductivity than the scalded area. This study shows that the scalded zone and non-scalded parts of the catchment can be managed separately since they are effectively de-coupled except over long time scales, and produce runoff of contrasting quality. Such differences are "averaged out" by investigations that operate at larger scales, illustrating that observations need to be conducted at a range of scales. EMMA modelling using six solutes shows that "event" or "new" water dominated the stream hydrograph from the scald. This information together with hydrometric data and soil physical properties indicate that saturated overland flow is the main form of runoff generation in both the scalded area and the UCA. Saturated areas make up a small proportion of the catchment, but are responsible for production of all run off in conditions experienced throughout the experimental period. The process of saturation and runoff bears some similarities to the VSA concept (Hewlett and Hibbert 1967).

  19. Developing Surveillance Methodology for Agricultural and Logging Injury in New Hampshire Using Electronic Administrative Data Sets.

    PubMed

    Scott, Erika E; Hirabayashi, Liane; Krupa, Nicole L; Sorensen, Julie A; Jenkins, Paul L

    2015-08-01

    Agriculture and logging rank among industries with the highest rates of occupational fatality and injury. Establishing a nonfatal injury surveillance system is a top priority in the National Occupational Research Agenda. Sources of data such as patient care reports (PCRs) and hospitalization data have recently transitioned to electronic databases. Using narrative and location codes from PCRs, along with International Classification of Diseases, 9th Revision, external cause of injury codes (E-codes) in hospital data, researchers are designing a surveillance system to track farm and logging injury. A total of 357 true agricultural or logging cases were identified. These data indicate that it is possible to identify agricultural and logging injury events in PCR and hospital data. Multiple data sources increase catchment; nevertheless, limitations in methods of identification of agricultural and logging injury contribute to the likely undercount of injury events.

  20. Understanding catchment scale sediment sources using geochemical tracers

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla S. S.; Walsh, Rory P. D.; Shakesby, Richard A.; Steenhuis, Tammo S.; Ferreira, António J. D.; Coelho, Celeste O. A.

    2013-04-01

    It is well-established that urbanization leads to increased erosion (at least locally) as well as enhanced overland flow and streamflow peaks. Less is known about how the spatial distribution of erosion sources and scale of increases in erosion vary with the nature of urbanization in different climatic and socio-economic settings. This is important in order to prevent or reduce adverse impacts of erosion on downstream sedimentation, channel siltation and shifting, and river pollution. This paper adopts a sediment fingerprinting approach to assess the impact of partial urbanization and associated land-use change on sediment sources within a peri-urban catchment (6 km2), Ribeira dos Covões on the outskirts of the city of Coimbra in central Portugal. Urban land-use has increased from just 6% in 1958 to 30% in 2009. The urban pattern includes some well-defined urban residential centres, but also areas of discontinuous urban sprawl, including educational, health and small industrial facilities, numerous new roads and an enterprise park is under construction on the upper part of the catchment. The catchment has a wet Mediterranean climate and the lithology comprises sandstone in the west and limestone in the east. Soil depth is generally >40cm. The average slope angle is 8° (maximum 47°). Altitude ranges from 30m to 205m. A sediment fingerprinting approach was adopted to help establish the relative importance of sediment inputs from different urban areas. During September 2012 current bed-sediment samples (0-3 cm depth) were collected from 11 channel sites along the main stream and in different tributaries. At sites where bed-sediment was deeper, additional samples were taken at 3cm intervals to a maximum depth of around 42cm. In addition, overbank sediment samples (0-3cm depth) were collected at 11 locations around the catchment. All samples were oven-dried (at 38°C) and different particle size fractions (0.125-2mm, 0.063-0.125mm and <0.063mm) obtained, where the <0