Science.gov

Sample records for agricultural chemical applications

  1. AGRICULTURAL CHEMICAL USAGE DATA

    EPA Science Inventory

    This report, which summarizes the use of agricultural chemicals is issued by the National Agricultural Statistics Service (NASS) as part of its series on Agricultural Chemical Usage. Other publications in the series present statistics for on-farm agricultural chemical usage for f...

  2. A Framework for Identifying Selective Chemical Applications for IPM in Dryland Agriculture.

    PubMed

    Umina, Paul A; Jenkins, Sommer; McColl, Stuart; Arthur, Aston; Hoffmann, Ary A

    2015-01-01

    Shifts to Integrated Pest Management (IPM) in agriculture are assisted by the identification of chemical applications that provide effective control of pests relative to broad-spectrum pesticides but have fewer negative effects on natural enemy (beneficial) groups that assist in pest control. Here, we outline a framework for identifying such applications and apply this framework to field trials involving the crop establishment phase of Australian dryland cropping systems. Several chemicals, which are not presently available to farmers in Australia, were identified as providing moderate levels of pest control and seedling protection, with the potential to be less harmful to beneficial groups including predatory mites, predatory beetles and ants. This framework highlights the challenges involved in chemically controlling pests while maintaining non-target populations when pest species are present at damaging levels. PMID:26694469

  3. A Framework for Identifying Selective Chemical Applications for IPM in Dryland Agriculture

    PubMed Central

    Umina, Paul A.; Jenkins, Sommer; McColl, Stuart; Arthur, Aston; Hoffmann, Ary A.

    2015-01-01

    Shifts to Integrated Pest Management (IPM) in agriculture are assisted by the identification of chemical applications that provide effective control of pests relative to broad-spectrum pesticides but have fewer negative effects on natural enemy (beneficial) groups that assist in pest control. Here, we outline a framework for identifying such applications and apply this framework to field trials involving the crop establishment phase of Australian dryland cropping systems. Several chemicals, which are not presently available to farmers in Australia, were identified as providing moderate levels of pest control and seedling protection, with the potential to be less harmful to beneficial groups including predatory mites, predatory beetles and ants. This framework highlights the challenges involved in chemically controlling pests while maintaining non-target populations when pest species are present at damaging levels. PMID:26694469

  4. Microcomputer Applications in Agriculture.

    ERIC Educational Resources Information Center

    Hilgenberg, Gene; And Others

    This curriculum guide is intended to assist persons teaching a course in microcomputer applications in agriculture. (These applications are designed to be used on Apple IIe or TRS-80 microcomputers.) Addressed in the individual units of instruction are the following topics: microcomputer operating procedures; procedures for evaluating and…

  5. Environment and chemicals in agriculture

    SciTech Connect

    Winteringham, F.W.P.

    1985-01-01

    The Commission of the European Communities and the Irish Government jointly organized a symposium in Dublin in October 1984, from which the papers in this book are presented. Environmental concerns related to intensive agriculture provided the impetus for the symposium. More than half of the papers deal with economic or extension aspects of environmental protection. It is stressed that uniform standards and regulations are not reasonable, since soils, climate, and farming systems vary. With respect to pesticide use, emphasis is placed on integrated pest management through improved pest forecasting, more specific targeting of pesticide applications, and farmer education. The development of pesticide resistance is a serious concern that will require research into new techniques for pest control. The primary environmental problem with fertilizers is the leaching of NO/sub 3/ into ground water, with many ears exceeding the acceptable level of 50 mg/L. The Netherlands, in particular, has the highest average rate of N fertilizer use in the world, 240 kg/ha, with about 400 kg/ha of N applied in areas with intensive dairy (Bos sp.) farming. Nevertheless, areas in the Netherlands where the NO/sub 3/ concentration in ground water exceeds 50 mg/L are associated with large amounts of manure produced in intensive pig and poultry farming, rather than with fertilizer applications. There is a need to balance nutrients added with those removed in intensive agricultural systems.

  6. The Acquisition and Application of Absorption, Distribution, Metabolism, and Excretion (ADME) Data in Agricultural Chemical Safety Assessments

    SciTech Connect

    Barton, H. A.; Pastoor, Timothy P.; Baetcke, Karl; Chambers, Janice E.; Diliberto, Janet; Doerrer, Nancy G.; Driver, Jeffrey H.; Hastings, Charles E.; Iyengar, Seshadri; Krieger, Robert; Stahl, Bernhard; Timchalk, Chuck

    2006-01-01

    The ILSI Health and Environmental Sciences Institute (HESI) formed the Agricultural Chemical Safety Assessment (ACSA) Technical Committee in the year 2000 to design a toxicity testing scheme that would incorporate current understanding of pesticide toxicology and exposure and recognize the specificity of agricultural products. The purpose of and background for the ACSA project are described in detail in the companion paper by Carmichael et al. (2006). As the proposed tiered testing approach for agricultural chemical safety assessment evolved, the ACSA Technical Committee and its task forces (Carmichael et al., 2006; Cooper et al., 2006; Doe et al., 2006) worked toward the following objectives: (1) Provide information that can be applied to a range of relevant human exposure situations. (2) Characterize effects that have the potential to damage human health at exposure levels approximating those that might be encountered in the use of these compounds. (3) Avoid high doses that cause unnecessary public concern (e.g., safety assessments should focus on doses that are relevant to realistic human exposures while maintaining adequate power for the experimental studies to detect toxicity). (4) Use the minimum number of animals necessary to produce a thorough safety assessment of the chemicals of interest. (5) Inflict the minimum amount of distress on animals. (6) Minimize excessive and unnecessary use of resources by regulatory authorities and industry, which could be used to address other issues of concern. (7) Increase both the efficiency and relevance of the current safety assessment process.

  7. Agricultural land application of pulp and paper mill sludges in the Donnacona area, Quebec: Chemical evaluation and crop response

    SciTech Connect

    Veillette, A.X.; Tanguay, M.G.

    1997-12-31

    Primary paper mill sludges from a thermomechanical pulp (TMP) mill were land applied at the rate of 20 metric ton per hectare (t/ha) for agricultural purposes in the Donnacona area, Quebec, in May 1994 and May 1995. Eleven agricultural sites featuring various crops were tested over two seasons to measure the impact of TMP primary paper mill sludges on soil, plant tissue and crop yield. Cereal and potato crops showed a significant increase in yield. TMP Primary sludges were also applied at the rate of 225 t/ha for land reclamation purposes of one site at the end of 1994. Soils were tested every second month. Chemical crop analyses were also performed. The first year crop response was satisfactory. Combined (primary and secondary) TMP sludges were added at the rate of 200 t/ha in the beginning of 1996. Soil, vadose zone water and crop analysis are being investigated. Impressive crop responses were obtained in the 1996 season.

  8. LEACHING EVALUATION OF AGRICULTURAL CHEMICALS (LEACH) HANDBOOK

    EPA Science Inventory

    A methodology has been developed to assess potential pesticide leaching from the crop root zones in major (corn, soybean, wheat and cotton) crop growing areas of the United States. Use of the Leaching Evaluation of Agricultural Chemicals (LEACH) methodology provides an indication...

  9. Agricultural chemical export dynamics in a watershed

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-06-01

    chemicals filter through a catchment is important for managing water quality. Using a concept of the catchment as a physicochemical filter, Guan et al. examined nitrate, phosphate, and atrazine loads in the Little Vermillion River watershed, a tile-drained watershed in Illinois. They analyzed a 10-year data set using mathematical signal processing to investigate spatial and temporal patterns in chemical concentrations and discharge rate. They found that export of these chemicals had a linear relationship with streamflow at annual scales—the higher the streamflow, the more these chemicals were exported from the watershed. The researchers' approach helps identify the roles of different hydrological flow paths in controlling chemical export at different spatial and temporal scales and reveals that chemical inputs overwhelm normal biogeochemical processing in these agricultural systems, leading to high long-term average rates of export. (Water Resources Research, doi:10.1029/ 2010WR009997, 2011)

  10. Agricultural Chemicals and Radiation. Ag Ed Environmental Education Series.

    ERIC Educational Resources Information Center

    Tulloch, Rodney W.

    The document is designed to be used as a resource in teaching vocational agriculture high school students about the environment. Agricultural chemicals are the major focus, with some attention to radiation. The importance of safety in agricultural chemical use is stressed, with descriptions of the pesticide label; protective clothing; respiratory…

  11. Agricultural applications of dielectric spectroscopy.

    PubMed

    Nelson, Stuart O

    2004-01-01

    A brief account of interest in dielectric properties of agricultural materials is presented, and some examples of dielectric spectroscopy applied to agricultural problems are discussed. Included are wide frequency range (250 Hz to 12 GHz) permittivity, or dielectric properties, measurements on adult rice weevils and hard red winter wheat, for the purpose of assessing selective dielectric heating of the insects, and broadband (200 MHz to 20 GHz) permittivity measurements on tissues of fresh fruits and vegetables. Similar measurements are shown for tree-ripened peaches, which were obtained to assess possibilities for a permittivity-based maturity index. Broadband (10 MHz to 1.8 GHz) permittivity measurements are shown for several fruits and vegetables as a function of temperature from 5 to 95 degrees C. Measurements over the same frequency range and similar temperature ranges are presented for two other food products, whey protein gel and apple juice. A few comments are offered on likely future dielectric spectroscopy applications in agriculture. PMID:15719907

  12. Biofibers from agricultural byproducts for industrial applications.

    PubMed

    Reddy, Narendra; Yang, Yiqi

    2005-01-01

    Lignocellulosic agricultural byproducts are a copious and cheap source for cellulose fibers. Agro-based biofibers have the composition, properties and structure that make them suitable for uses such as composite, textile, pulp and paper manufacture. In addition, biofibers can also be used to produce fuel, chemicals, enzymes and food. Byproducts produced from the cultivation of corn, wheat, rice, sorghum, barley, sugarcane, pineapple, banana and coconut are the major sources of agro-based biofibers. This review analyses the production processes, structure, properties and suitability of these biofibers for various industrial applications. PMID:15629854

  13. Agricultural aviation application in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States has the most advanced equipment and applications in agricultural aviation. It also has a complete service system in agricultural aviation. This article introduces the current status of aerial application including service, equipment, and aerial application techniques. It has a c...

  14. Using GIS and logistic regression to estimate agricultural chemical concentrations in rivers of the midwestern USA

    USGS Publications Warehouse

    Battaglin, W.A.

    1996-01-01

    Agricultural chemicals (herbicides, insecticides, other pesticides and fertilizers) in surface water may constitute a human health risk. Recent research on unregulated rivers in the midwestern USA documents that elevated concentrations of herbicides occur for 1-4 months following application in spring and early summer. In contrast, nitrate concentrations in unregulated rivers are elevated during the fall, winter and spring. Natural and anthropogenic variables of river drainage basins, such as soil permeability, the amount of agricultural chemicals applied or percentage of land planted in corn, affect agricultural chemical concentrations in rivers. Logistic regression (LGR) models are used to investigate relations between various drainage basin variables and the concentration of selected agricultural chemicals in rivers. The method is successful in contributing to the understanding of agricultural chemical concentration in rivers. Overall accuracies of the best LGR models, defined as the number of correct classifications divided by the number of attempted classifications, averaged about 66%.

  15. Nastran's Application in Agricultural Engineering

    NASA Technical Reports Server (NTRS)

    Vanwicklen, G. L.

    1985-01-01

    Finite element analysis has been recognized as a valuable solution method by agricultural engineers. NASTRAN has been obtained by the Agricultural Engineering Department at the University of Georgia. The NASTRAN Thermal Analyzer has been used in the teaching program for an undergraduate course in heat transfer and will be used for a new graduate course in finite element analysis. The NASTRAN Thermal Analyzer has also been applied to several research problems in the Agricultural Engineering Department.

  16. Commercial Pesticides Applicator Manual: Agriculture - Plant.

    ERIC Educational Resources Information Center

    Fitzwater, W. D.; And Others

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the agriculture-plant pest control category. The text discusses identification and control of insects, diseases, nematodes, and weeds of agricultural crops. Proper use of application equipment and safety…

  17. Soil chemical sensor and precision agricultural chemical delivery system and method

    DOEpatents

    Colburn, Jr., John W.

    1991-01-01

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken.

  18. Soil chemical sensor and precision agricultural chemical delivery system and method

    DOEpatents

    Colburn, J.W. Jr.

    1991-07-23

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken. 5 figures.

  19. Sensor needs for agricultural applications

    NASA Technical Reports Server (NTRS)

    Golden, H.; Neiers, J. W.

    1978-01-01

    The peculiarities of agricultural remotely sensed data requirements evoke special sensor requirements. Vegetative species do not possess significantly different spectral signature at given phases of their development cycle. Hence, the key to their discriminability is the phasing of the phenologic cycle of the subject species. Significant improvements in classification can be obtained by consistently employing multi-temporal observations taken at specific times during the year. The present approach to agricultural data processing results in extracted data equal to approximately .05% of the acquired data. This paper discusses the derivation of agricultural peculiar requirements and the benefits to the end-to-end processing system by judicial utilization and placement of key editing functions such as sample segment extraction, cloudy image removal, sample registration and the elimination of redundant data.

  20. Monodisperse atomizers for agricultural aviation applications

    NASA Technical Reports Server (NTRS)

    Christensen, L. S.; Steely, S. L.

    1980-01-01

    Conceptual designs of two monodisperse spray nozzles are described and the rationale used in each design is discussed. The nozzles were designed to eliminate present problems in agricultural aviation applications, such as ineffective plant coverage, drift due to small droplets present in the spray being dispersed, and nonuniform swath coverages. Monodisperse atomization techniques are reviewed and a synopsis of the information obtained concerning agricultural aviation spray applications is presented.

  1. Data Collection Satellite Application in Precision Agriculture

    NASA Astrophysics Data System (ADS)

    Durào, O.

    2002-01-01

    's over Brazilian territory. There were 25 platforms when SCD-1 was launched. However this number is growing rapidly to 400 platforms, at first for measurements of water reservoir levels as well as other hydrology applications (The Brazilian Electricity Regulatory Agency - ANEEL is the customer), and for many other different applications such as meteorology, oceanography, environmental monitoring sciences, and people and animal tracking. The clear feeling is that users are discovering a satellite system whose benefits were not previously well understood when launched and being able to propose and come up with different and useful applications. A new field in the country that has a great potential to benefit from this system is agriculture. Per se, this is a very important sector of the Brazilian economy and its international trade. Combining it with space technology may justify the investment of new and low cost dedicated satellites. This paper describes a new proposal for use of the SCD-1,2,CBERS-1 satellite system for precision agriculture. New PCD's would be developed for measurements of chemical content of the soil, such as, for example, Nitrogen and others, beyond humidity and solar incidence. This can lead to a more efficient fertilization, harvesting and even the spray of chemical defensives, with the consequence of environment protection. The PCD's ground network so established, along with the information network already available, combined with the space segment of such a system may, as previously said, be able to justify the investment in low cost satellites with this sole purpose.

  2. THE USE OF CHEMICALS AS SOIL ADDITIVES. AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 3.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    THE PURPOSE OF THIS GUIDE IS TO ASSIST TEACHERS IN PREPARING POST-SECONDARY STUDENTS FOR AGRICULTURAL CHEMICAL OCCUPATIONS. IT IS ONE OF A SERIES OF MODULES DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF STATE STUDY DATA. SECTIONS ARE (1) PHYSICAL AND CHEMICAL ALTERATION OF SOIL WITH CHEMICAL ADDITIVES, (2) TERMINOLOGY AND COMPUTATIONS, (3)…

  3. USING REVERSE OSMOSIS TO REMOVE AGRICULTURAL CHEMICALS FROM GROUNDWATER

    EPA Science Inventory

    Suffolk County, N.Y., has examined its groundwater for agricultural and organic contaminants since 1978. Recent discoveries of specific chemicals in private wells increased the concern over contamination and spurred a study to determine a cost-effective system for removing agricu...

  4. Factors affecting leaching in agricultural areas and an assessment of agricultural chemicals in the ground water of Kansas

    USGS Publications Warehouse

    Perry, C.A.; Robbins, F.V.; Barnes, P.L.

    1988-01-01

    As assessment of hydrologic factors and agricultural practices that may affect the leaching of agricultural chemicals to groundwater was conducted to evaluate the extent and severity of chemical contamination of groundwater resources in Kansas. The climate of a particular area determines the length of the growing season and the availability of water, at the surface and in the ground, for the growth of plants. Climate, together with surficial geology, soil, and principal aquifers, determines the types of crops to be planted,types of tillage, conservation and irrigation practices, and affects the quantity and method of application of agricultural chemicals. Examination of groundwater nitrate-nitrogen data collected from 766 wells throughout Kansas during 1976-81 indicated that 13 of 14 geohydrologic regions had wells producing samples that exceeded the 10-mg/L drinking water standard determined by the U.S. Environmental Protection Agency. One or more herbicides were detected in water samples from 11 of 56 wells during 1985-86 located in areas susceptible to agricultural leaching. Atrazine was the most common herbicide that was detected; it was detected in water at 9 of 11 wells. Cyanazine was detected in water at three wells; metolachlor at two wells; and metribuzin, alachlor, simazine, and propazine were detected at one well each. (USGS)

  5. Applications for Dielectric Properties of Agricultural Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of dielectric properties of agricultural products for sensing moisture in grain and seed and their application in radio-frequency and microwave dielectric heating are discussed briefly. Values for the dielectric properties of a number of products, including grain, fruit, and poultry products...

  6. Dielectric properties of agricultural products and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of dielectric properties of agricultural products for sensing moisture in grain and seed and their application in radio-frequency and microwave dielectric heating is discussed briefly. Values for the dielectric properties of a number of products, including grain and seed, fruits and vegetab...

  7. JPL Robotics Technology Applicable to Agriculture

    NASA Technical Reports Server (NTRS)

    Udomkesmalee, Suraphol Gabriel; Kyte, L.

    2008-01-01

    This slide presentation describes several technologies that are developed for robotics that are applicable for agriculture. The technologies discussed are detection of humans to allow safe operations of autonomous vehicles, and vision guided robotic techniques for shoot selection, separation and transfer to growth media,

  8. Application of Remote Sensing in Agriculture

    NASA Astrophysics Data System (ADS)

    Piekarczyk, Jan

    2014-12-01

    With increasing intensity of agricultural crop production increases the need to obtain information about environmental conditions in which this production takes place. Remote sensing methods, including satellite images, airborne photographs and ground-based spectral measurements can greatly simplify the monitoring of crop development and decision-making to optimize inputs on agricultural production and reduce its harmful effects on the environment. One of the earliest uses of remote sensing in agriculture is crop identification and their acreage estimation. Satellite data acquired for this purpose are necessary to ensure food security and the proper functioning of agricultural markets at national and global scales. Due to strong relationship between plant bio-physical parameters and the amount of electromagnetic radiation reflected (in certain ranges of the spectrum) from plants and then registered by sensors it is possible to predict crop yields. Other applications of remote sensing are intensively developed in the framework of so-called precision agriculture, in small spatial scales including individual fields. Data from ground-based measurements as well as from airborne or satellite images are used to develop yield and soil maps which can be used to determine the doses of irrigation and fertilization and to take decisions on the use of pesticides.

  9. THE USE OF CHEMICALS AS FERTILIZERS. AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 1.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    THE PURPOSE OF THIS GUIDE IS TO ASSIST TEACHERS IN PREPARING POST-SECONDARY STUDENTS FOR AGRICULTURAL CHEMICAL OCCUPATIONS. ONE OF A SERIES OF EIGHT MODULES, IT WAS DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF DATA FROM STATE STUDIES. SUBJECT MATTER AREAS ARE (1) CHEMICAL NUTRITION OF PLANTS, (2) PLANT GROWTH, (3) TERMINOLOGY,…

  10. THE USE OF CHEMICALS AS HERBICIDES. AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 6.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF STATE STUDIES, THIS MODULE IS ONE OF A SERIES DESIGNED TO ASSIST TEACHERS IN PREPARING POST-SECONDARY STUDENTS FOR ENTRY AND ADVANCEMENT IN AGRICULTURAL CHEMICAL OCCUPATIONS. THE SPECIFIC OBJECTIVES OF THIS MODULE ARE TO DEVELOP ABILITIES NECESSARY FOR OCCUPATIONS CONCERNED WITH CHEMICAL WEED…

  11. THE USE OF CHEMICALS TO CONTROL FIELD RODENTS AND OTHER PREDATORS. AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 5.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    THE PURPOSE OF THIS GUIDE IS TO ASSIST TEACHERS IN PREPARING POST-SECONDARY STUDENTS FOR AGRICULTURAL CHEMICAL OCCUPATIONS. IT IS ONE OF A SERIES OF MODULES DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF DATA FROM STATE STUDIES. SECTIONS ARE (1) USE OF CHEMICALS FOR RODENT CONTROL AND ERADICATION, (2) TERMINOLOGY AND COMPUTATIONS, (3) RODENT…

  12. Agricultural and hydrological applications of radar

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.

    1976-01-01

    Program objectives, covering a wide range of disciplines and activities in radar remote sensing, include radar systems development and analysis, data processing and display, and data interpretation in geology, geography and oceanography. Research was focused on the evaluation of radar remote sensing applications in hydrology and agriculture based on data acquired with the Microwave Active Spectrometer (MAS) system. The title, author(s) and abstract of each of the 62 technical reports generated under this contract are appended.

  13. Microbiological Production of Surfactant from Agricultural Residuals for IOR Application

    SciTech Connect

    Bala, Greg Alan; Bruhn, Debby Fox; Fox, Sandra Lynn; Noah, Karl Scott; Thompson, David Neal

    2002-04-01

    Utilization of surfactants for improved oil recovery (IOR) is an accepted technique with high potential. However, technology application is frequently limited by cost. Biosurfactants (surface-active molecules produced by microorganisms) are not widely utilized in the petroleum industry due to high production costs associated with use of expensive substrates and inefficient product recovery methods. The economics of biosurfactant production could be significantly impacted through use of media optimization and application of inexpensive carbon substrates such as agricultural process residuals. Utilization of biosurfactants produced from agricultural residuals may 1) result in an economic advantage for surfactant production and technology application, and 2) convert a substantial agricultural waste stream to a value-added product for IOR. A biosurfactant with high potential for use is surfactin, a lipopeptide biosurfactant, produced by Bacillus subtilis. Reported here is the production and potential IOR utilization of surfactin produced by Bacillus subtilis (American Type Culture Collection (ATCC) 21332) from starch-based media. Production of surfactants from microbiological growth media based on simple sugars, chemically pure starch medium, simulated liquid and solid potato-process effluent media, a commercially prepared potato starch in mineral salts, and process effluent from a potato processor is discussed. Additionally, the effect of chemical and physical pretreatments on starchy feedstocks is discussed.

  14. Chemical and Microbiological Water Quality of Subsurface Agricultural Drains during a Field Trial of Liquid Dairy Manure Effluent Application Rate and Varying Tillage Practices, Upper Tiffin Watershed, Southeastern Michigan

    USGS Publications Warehouse

    Haack, Sheridan Kidd; Duris, Joseph W.

    2008-01-01

    A field trial was done in the Upper Tiffin River Watershed, in southeastern Michigan, to determine the influence of liquid dairy manure effluent (LDME) management practices on the quality of agricultural subsurface-drain water. Samples from subsurface drains were analyzed for nutrients, fecal-coliform and Escherichia coli (E. coli) bacteria, antibiotics, chemicals typically detected in wastewater, and the occurrence of genes indicating the presence of shiga-toxin-producing E. coli, or of bovine-specific Bacteroidetes bacteria. Samples were collected from November 2, 2006, to March 20, 2007, from eight subsurface drains under field plots that received no LDME and no tillage (controls) or received 4,000 or 8,000 gallons per acre (gal/acre) of LDME and either no tillage or two different types of tillage. The two types of tillage tested were (1) ground-driven, rotary, subsurface cultivation and (2) rolling-tine aeration. Samples were collected before LDME application and at 4 hours, and 1, 2, 6, 7, and 14 days post-application. Nutrient concentrations were high in subsurface-drain water throughout the field-trial period and could not be attributed to the field-trial LDME application. Of the 59 drain-water samples, including those collected before LDME application and control samples for each date, 56 had concentrations greater than the U.S. Environmental Protection Agency (USEPA), Ecoregion VI recommended surface-water criterion for total phosphorus, and all samples had concentrations greater than the recommended total nitrogen criterion. Nitrate + nitrite nitrogen concentration exceeded 20 milligrams per liter for every sample and contributed most to the total nitrogen concentrations. Substantial increases in drain-water concentrations of organic and ammonia nitrogen and total phosphorus were found for all treatments, including controls, at 14 days post-application after 0.84 inch of rainfall over 2 days. E. coli concentrations exceeded the USEPA recreational

  15. An Obstacle Alerting System for Agricultural Application

    NASA Technical Reports Server (NTRS)

    DeMaio, Joe

    2003-01-01

    Wire strikes are a significant cause of helicopter accidents. The aircraft most at risk are aerial applicators. The present study examines the effectiveness of a wire alert delivered by way of the lightbar, a GPS-based guidance system for aerial application. The alert lead-time needed to avoid an invisible wire is compared with that to avoid a visible wire. A flight simulator was configured to simulate an agricultural application helicopter. Two pilots flew simulated spray runs in fields with visible wires, invisible wires, and no wires. The wire alert was effective in reducing wire strikes. A lead-time of 3.5 sec was required for the alert to be effective. The lead- time required was the same whether the pilot could see the wire or not.

  16. Hygroscopic, Morphological, and Chemical Properties of Agricultural Aerosols

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Brooks, S. D.; Cheek, L.; Thornton, D. C.; Auvermann, B. W.; Littleton, R.

    2007-12-01

    Agricultural fugitive dust is a significant source of localized air pollution in the semi-arid southern Great Plains. In the Texas Panhandle, daily episodes of ground-level fugitive dust emissions from the cattle feedlots are routinely observed in conjunction with increased cattle activity in the late afternoons and early evenings. We conducted a field study to characterize size-selected agricultural aerosols with respect to hygroscopic, morphological, and chemical properties and to attempt to identify any correlations between these properties. To explore the hygroscopic nature of agricultural particles, we have collected size-resolved aerosol samples using a cascade impactor system at a cattle feedlot in the Texas Panhandle and have used the Environmental Scanning Electron Microscope (ESEM) to determine the water uptake by individual particles in those samples as a function of relative humidity. To characterize the size distribution of agricultural aerosols as a function of time, A GRIMM aerosol spectrometer and Sequential Mobility Particle Sizer and Counter (SMPS) measurements were simultaneously performed in an overall size range of 11 nm to 20 µm diameters at a cattle feedlot. Complementary determination of the elemental composition of individual particles was performed using Energy Dispersive X-ray Spectroscopy (EDS). In addition to the EDS analysis, an ammonia scrubber was used to collect ammonia and ammonium in the gas and particulate phases, respectively. The concentration of these species was quantified offline via UV spectrophotometry at 640 nanometers. The results of this study will provide important particulate emission data from a feedyard, needed to improve our understanding of the role of agricultural particulates in local and regional air quality.

  17. United States Department of Agriculture-Agricultural Research Service research in application technology for pest management.

    PubMed

    Smith, L A; Thomson, S J

    2003-01-01

    A research summary is presented that emphasizes ARS achievements in application technology over the past 2-3 years. Research focused on the improvement of agricultural pesticide application is important from the standpoint of crop protection as well as environmental safety. Application technology research is being actively pursued within the ARS, with a primary focus on application system development, drift management, efficacy enhancement and remote sensing. Research on application systems has included sensor-controlled hooded sprayers, new approaches to direct chemical injection, and aerial electrostatic sprayers. For aerial application, great improvements in on-board flow controllers permit accurate field application of chemicals. Aircraft parameters such as boom position and spray release height are being altered to determine their effect on drift. Other drift management research has focused on testing of low-drift nozzles, evaluation of pulsed spray technologies and evaluation of drift control adjuvants. Research on the use of air curtain sprayers in orchards, air-assist sprayers for row crops and vegetables, and air deflectors on aircraft has documented improvements in application efficacy. Research has shown that the fate of applied chemicals is influenced by soil properties, and this has implications for herbicide efficacy and dissipation in the environment. Remote sensing systems are being used to target areas in the field where pests are present so that spray can be directed to only those areas. Soil and crop conditions influence propensity for weeds and insects to proliferate in any given field area. Research has indicated distinct field patterns favorable for weed growth and insect concentration, which can provide further assistance for targeted spraying. PMID:12846320

  18. Practical application of remote sensing in agriculture

    NASA Technical Reports Server (NTRS)

    Phelps, R. A.

    1975-01-01

    Remote sensing program imagery from several types of platforms, from light aircraft to the LANDSAT (ERTS) satellites, have been utilized during the past few years, with preference for inexpensive imagery over expensive magnetic tapes. Emphasis has been on practical application of remote sensing data to increase crop yield by decreasing plant stress, disease, weeds and undesirable insects and by improving irrigation. Imagery obtained from low altitudes via aircraft provides the necessary resolution and complements but does not replace data from high altitude aircraft, Gemini and Apollo spacecraft, Skylab space station and LANDSAT satellites. Federal government centers are now able to supply imagery within about thirty days from data of order. Nevertheless, if the full potential of space imagery in practical agricultural operations is to be realized, the time span from date of imaging to user application needs to be shortened from the current several months to not more than two weeks.

  19. MICROWAVE TECHNOLOGY CHEMICAL SYNTHESIS APPLICATIONS

    EPA Science Inventory

    Microwave-accelerated chemical syntheses in various solvents as well as under solvent-free conditions have witnessed an explosive growth. The technique has found widespread application predominantly exploiting the inexpensive unmodified household microwave (MW) ovens although th...

  20. THE USE OF CHEMICALS AS FUNGICIDES, BACTERICIDES AND NEMATOCIDES. AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 4.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    THE PURPOSE OF THIS GUIDE IS TO ASSIST TEACHERS IN PREPARING POST-SECONDARY EDUCATION STUDENTS FOR AGRICULTURAL CHEMICAL OCCUPATIONS. ONE OF A SERIES FOR THESE OCCUPATIONS, THIS MODULE WAS DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF DATA FROM STATE STUDIES. SECTIONS ARE (1) PLANT DISEASE AND NEMATODE PREVENTION, CONTROL, OR ERADICATION WITH…

  1. THE USE OF CHEMICALS AS INSECTICIDES--PLANTS. AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 2.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    THIS GUIDE IS ONE OF A SERIES DESIGNED TO PROVIDE GROUP INSTRUCTION AND INDIVIDUAL OCCUPATIONAL EXPERIENCE FOR POST-SECONDARY STUDENTS PREPARING FOR EMPLOYMENT AS AGRICULTURAL CHEMICAL TECHNICIANS. IT WAS DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF STATE STUDY DATA. THE OBJECTIVES ARE TO DEVELOP (1) INTEREST, APPRECIATION, AND UNDERSTANDING…

  2. Holistic Watershed-Scale Approach for Studying Agricultural Chemicals

    NASA Astrophysics Data System (ADS)

    Capel, P. D.; Domagalski, J. L.

    2006-05-01

    The USGS National Water-Quality Assessment (NAWQA) Program studied the water quality of 51 areas across the United States during its first decade (1991-2001). Analyses of results from that phase of the NAWQA Program indicated that detailed studies of the processes affecting water quality could aid in the interpretation of these data, help to determine the direction and scope of future monitoring studies, and add to the understanding of the sources, transport and fate of non-point source chemicals, such as from agriculture. Now in the second decade of investigations, the NAWQA Program has initiated new process-based detailed studies to increase our understanding at the scale of a small watershed (about 3-15 square kilometers), nested within the larger basins studied during the first decade. The holistic, mass-budget approach for small agricultural watersheds that was adopted includes processes, and measures water and chemicals in the atmosphere, surface water, tile drains, overland flow, and within various sub-surface environments including the vadose, saturated, and hyporheic zones. The primary chemicals of interest were nutrients (nitrogen and phosphorous), the triazine and acetanilide herbicides, and the organophosphorus insecticides. Extensive field observations were made, and numerical models were developed to simulate important environmental compartments and interfaces associated with the transport and fate of agricultural chemicals. It is well recognized that these field measurements and simulations cannot fully achieve a full mass budget at this scale, but the approach provides a useful means for comparisons of various processes in different environmental settings. The results gained using this approach will add to the general knowledge of environmental transport and fate processes, and have transfer value to unstudied areas and different scales of investigation. The five initial study areas started in 2002, included watersheds in California, Indiana

  3. Precision visual guidance for agricultural applicator aircraft

    NASA Astrophysics Data System (ADS)

    Hartt, Joseph R.; Bletzacker, Frank R.; Forgette, T. J.; Vetter, Alan A.

    1992-07-01

    The in-cockpit swath centerline identifier (SCI) for aerial applicators uses differentially corrected global positioning system (GPS) signals to determine precise ground track of an aircraft and provide guidance to the pilot for flying patterns for aerial application of materials such as pesticides, herbicides, and fertilizers. Cross track distance from the swath centerline is provided by a heads up light bar display while detailed navigation, position, and status information is provided on an alphanumeric display on a panel mounted console. This system provides straight line guidance when executing a swath and turn-in guidance when proceeding from one swath to the next. It provides a record of the swaths which were sprayed and logs all of the associated navigation and operational data, including time. In addition, it provides navigation information from base to the fields, between fields, and return. The SCI eliminates the need for flaggers while providing improved accuracy of application. Reduced exposure to liability and improved quality control results as the position, altitude, time, and spray status are logged for post flight analysis. The SCI has been used in commercial agricultural applications. Demonstrations of the SCI showed better precision than anticipated.

  4. Radiological Impact of Phosphogypsum Application in Agriculture

    SciTech Connect

    Dias, Nivea M. P.; Caires, Eduardo F.; Pires, Luiz F.; Bacchi, Marcio A.; Fernandes, Elisabete A. N.

    2010-08-04

    Phosphogypsum (PG) contains radionuclides from {sup 238}U and {sup 232}Th decay series. Due to the presence of these radionuclides, many countries restricted the use of PG in agriculture, however there is not such restriction in Brazil. The main objective of this work was to evaluate the impact of PG application on {sup 226}Ra ({sup 238}U) and {sup 228}Ra ({sup 232}Th) concentrations in soil. Gamma-spectrometry was carried out using HPGe detector. No increment of {sup 226}Ra and {sup 228}Ra was observed for increasing PG doses. Average values found for {sup 226}Ra and {sup 228}Ra were respectively 37 Bq kg{sup -1} and 57 Bq kg{sup -1}. The results showed that the increasing PG doses in the specific conditions of the experiment did not cause a significant increment of radionuclides.

  5. Agricultural applications of insect ecological genomics.

    PubMed

    Poelchau, Monica F; Coates, Brad S; Childers, Christopher P; Peréz de León, Adalberto A; Evans, Jay D; Hackett, Kevin; Shoemaker, DeWayne

    2016-02-01

    Agricultural entomology is poised to benefit from the application of ecological genomics, particularly the fields of biofuels generation and pest control. Metagenomic methods can characterize microbial communities of termites, wood-boring beetles and livestock pests, and transcriptomic approaches reveal molecular bases behind wood-digesting capabilities of these insects, leading to potential mechanisms for biofuel generation. Genome sequences are being exploited to develop new pest control methods, identify candidate antigens to vaccinate livestock, and discover RNAi target sequences and potential non-target effects in other insects. Gene content analyses of pest genome sequences and their endosymbionts suggest metabolic interdependencies between organisms, exposing potential gene targets for insect control. Finally, genome-wide association studies and genotyping by high-throughput sequencing promise to improve management of pesticide resistance. PMID:27436554

  6. Studies by the U.S. Geological Survey on sources, transport, and fate of agricultural chemicals

    USGS Publications Warehouse

    Capel, Paul D.; Hamilton, Pixie A.; Erwin, Martha L.

    2004-01-01

    Information from these studies will help with decision-making related to chemical use, conservation, and other farming practices that are used to reduce runoff of agricultural chemicals and sediment from fields. This information also will benefit the U.S. Environmental Protection Agency, the Department of Agriculture, local and regional water managers, and agricultural chemical manufacturers who are involved in managing chemical use and pesticide registration.

  7. Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications.

    PubMed

    Sabir, Sidra; Arshad, Muhammad; Chaudhari, Sunbal Khalil

    2014-01-01

    Nanotechnology is the most innovative field of 21st century. Extensive research is going on for commercializing nanoproducts throughout the world. Due to their unique properties, nanoparticles have gained considerable importance compared to bulk counterparts. Among other metal nanoparticles, zinc oxide nanoparticles are very much important due to their utilization in gas sensors, biosensors, cosmetics, drug-delivery systems, and so forth. Zinc oxide nanoparticles (ZnO NPs) also have remarkable optical, physical, and antimicrobial properties and therefore have great potential to enhance agriculture. As far as method of formation is concerned, ZnO NPs can be synthesized by several chemical methods such as precipitation method, vapor transport method, and hydrothermal process. The biogenic synthesis of ZnO NPs by using different plant extracts is also common nowadays. This green synthesis is quite safe and ecofriendly compared to chemical synthesis. This paper elaborates the synthesis, properties, and applications of zinc oxide nanoparticles. PMID:25436235

  8. Zinc Oxide Nanoparticles for Revolutionizing Agriculture: Synthesis and Applications

    PubMed Central

    Sabir, Sidra; Arshad, Muhammad

    2014-01-01

    Nanotechnology is the most innovative field of 21st century. Extensive research is going on for commercializing nanoproducts throughout the world. Due to their unique properties, nanoparticles have gained considerable importance compared to bulk counterparts. Among other metal nanoparticles, zinc oxide nanoparticles are very much important due to their utilization in gas sensors, biosensors, cosmetics, drug-delivery systems, and so forth. Zinc oxide nanoparticles (ZnO NPs) also have remarkable optical, physical, and antimicrobial properties and therefore have great potential to enhance agriculture. As far as method of formation is concerned, ZnO NPs can be synthesized by several chemical methods such as precipitation method, vapor transport method, and hydrothermal process. The biogenic synthesis of ZnO NPs by using different plant extracts is also common nowadays. This green synthesis is quite safe and ecofriendly compared to chemical synthesis. This paper elaborates the synthesis, properties, and applications of zinc oxide nanoparticles. PMID:25436235

  9. Theme: Teaching Physical Science Applications in Agriculture.

    ERIC Educational Resources Information Center

    Osborne, Edward W.; And Others

    1996-01-01

    Includes "Preparing Teachers to Teach Agriscience" (Osborne); "Physical Sciences and Agriculture" (Buriak); "Using Experiments to Teach Agriculture" (Miller); "Oooh-Ahhh: So That's How It Works!" (Loschen); "Keeping Agriculture in Agriscience" (Moss); "Sharpening Twist Drills" (McHargue, Hood); and "Safety in the Agriscience Laboratory"…

  10. Recent advances in radar applications to agriculture

    NASA Technical Reports Server (NTRS)

    Morain, S. A.

    1970-01-01

    A series of remote radar sensing studies are summarized. These efforts comprise geoscience interpretations of such complex phenomena as those manifested in agricultural patterns. Considered are basic remote sensing needs in agriculture and the design and implementation of radar keys in the active microwave region as well as fine resolution radar imagery techniques for agriculture determinations and soil mapping.

  11. Practical Remote Sensing Application for Agriculture

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Aerial surveys of plant health in row crops are converted into crucial farm management information plots for each field. These plots are delivered overnight to subscribing farmers. After review, the plots are converted to machinery control discs and installed on farm equipment to manage the appropriate applications of seed, chemicals and water when and where needed. The process is repeated throughout the crop planting, growing and harvesting season. This entire operation has been installed and tested on four Mississippi Delta farms. Its use demonstrated operational cost savings of more than fifty dollars per acre and increased cotton production by ten percent on average.

  12. Basic principles, methodology, and applications of remote sensing in agriculture

    NASA Technical Reports Server (NTRS)

    Moreira, M. A. (Principal Investigator); Deassuncao, G. V.

    1984-01-01

    The basic principles of remote sensing applied to agriculture and the methods used in data analysis are described. Emphasis is placed on the importance of developing a methodology that may help crop forecast, basic concepts of spectral signatures of vegetation, the methodology of the LANDSAT data utilization in agriculture, and the remote sensing program application of INPE (Institute for Space Research) in agriculture.

  13. AN INNOVATIVE SYSTEM FOR BIOREMEDIATION OF AGRICULTURAL CHEMICALS FOR ENVIRONMENTAL SUSTAINABILITY

    EPA Science Inventory

    Agricultural chemicals (both inorganic and organic) in drainage discharge from watersheds have raised concerns about the quality of surface water resources. For example, hypoxia in the Gulf of Mexico has been related to the nutrients discharging from agricultural watersheds...

  14. Progress and needs in agricultural research, development, and applications programs

    NASA Technical Reports Server (NTRS)

    Moore, D. G.; Myers, V. I.

    1977-01-01

    The dynamic nature of agriculture requires repetitive resource assessments such as those from remote sensing. Until recently, the use of remote sensing in agriculture has been limited primarily to site specific investigations without large-scale evaluations. Examples of successful applications at various user levels are provided. The stage of development for applying remote sensing to many agricultural problems is assessed, and goals for planning future data characteristics for increased use in agriculture are suggested.

  15. Applications of Remote Sensing to Precision Agriculture

    NASA Astrophysics Data System (ADS)

    Seielstad, G. A.; Laguette, S.; Seelan, S.; Lawrence, R.; Henry, M.; Maynard, C.; Dalsted, K.; Rattling Leaf, J.

    2001-05-01

    The Upper Midwest Aerospace Consortium (UMAC) has changed agricultural practices in the following ways: (1) farmers and ranchers have become partners with, not clients of, researchers; (2) experiments are carried out in the field rather than on small experimental plots; (3) the field is considered an agro-ecosystem, with all the complexities of multiple interactions, rather than attempting to isolate certain parameters and vary only a few; (4) both economic benefit to the producer and sound environmental stewardship for society are achievable. This approach has revealed that information is as significant an input to farm or ranch management as seeds, fertilizers, irrigation, and tillage. Accurate, timely information equips producers with the ability to make decisions during a growing season that optimize the yield at harvest time. An invaluable source of in-season information is imagery acquired from sensors on satellites or aircraft. In addition to sensing reflected sunlight in wavebands outside the visible, remote sensing's overview also reveals anomalous patterns in the vegetation cover that are difficult to spot on the ground. Anomalies can be caused by weeds, disease, water stress, inadequate nutrients, or other causes. Often, anomalies must be detected early or they spread too quickly to be addressed. The paper will demonstrate how remote sensing has been applied to (1) define management zones in farm fields, (2) prescribe variable rate applications of fertilizer, (3) detect pest infestations, and (4) manage cattle grazing according to forage available. The applications were possible because data were processed within 4-5 days of acquisition by the satellite, and then delivered by high-bandwidth satellite links to farmers, ranchers, and tribal government officials in minimal transit time. The applications research described was part of NASA's Synergy Program.

  16. Towards personalized agriculture: what chemical genomics can bring to plant biotechnology

    PubMed Central

    Stokes, Michael E.; McCourt, Peter

    2014-01-01

    In contrast to the dominant drug paradigm in which compounds were developed to “fit all,” new models focused around personalized medicine are appearing in which treatments are developed and customized for individual patients. The agricultural biotechnology industry (Ag-biotech) should also think about these new personalized models. For example, most common herbicides are generic in action, which led to the development of genetically modified crops to add specificity. The ease and accessibility of modern genomic analysis, when wedded to accessible large chemical space, should facilitate the discovery of chemicals that are more selective in their utility. Is it possible to develop species-selective herbicides and growth regulators? More generally put, is plant research at a stage where chemicals can be developed that streamline plant development and growth to various environments? We believe the advent of chemical genomics now opens up these and other opportunities to “personalize” agriculture. Furthermore, chemical genomics does not necessarily require genetically tractable plant models, which in principle should allow quick translation to practical applications. For this to happen, however, will require collaboration between the Ag-biotech industry and academic labs for early stage research and development, a situation that has proven very fruitful for Big Pharma. PMID:25183965

  17. Sustainability of Agricultural Systems: Concept to Application

    EPA Science Inventory

    Agriculture not only feeds the planet, it also is the biggest overall factor affecting the environment. Thus, innovative sustainable farming systems that produce healthy food and protect the environment at the same time are very much needed. We, as agricultural engineers, need ...

  18. DIELECTRIC PROPERTIES OF MATERIALS AND RELATED AGRICULTURAL APPLICATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potential Agricultural applications for RF and microwave energy include selective dielectric heating of insects in grain, treatment of seed to improve germination, and conditioning of products to improve nutritional value and shelf life. Measurement applications include permittivity-density relatio...

  19. Biotechnology: Applications in Agriculture. Instructor Guide [and] Student Reference.

    ERIC Educational Resources Information Center

    Nevils, Aaron

    This curriculum guide incorporates the needed components to aid agriculture teachers in the implementation of the Vocational Instructional Management System in biotechnology: applications in agriculture. The guide begins with a list of the competencies/objectives found in the six units; list of references and materials; list of materials and…

  20. Application of geophysical methods to agriculture: An overview

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Geophysical methods are becoming an increasingly valuable tool for agricultural applications. Agricultural geophysics investigations are commonly (although certainly not always) focused on delineating small- and/or large-scale objects/features within the soil profile (~ 0 to 2 m depth) over very lar...

  1. Evaluation of Agricultural Land Suitability: Application of Fuzzy Indicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The problem of evaluation of agricultural land suitability is considered as a fuzzy modeling task. The application of individual fuzzy indicators provides an opportunity for assessment of lsand suitability of lands as degree or grade of performance when the lands are used for agricultural purposes....

  2. Performance Objectives, Task Analysis, Learning Content, Content Limits, and Domain Referenced Tests for the Agricultural Chemicals Catalog. Final Report.

    ERIC Educational Resources Information Center

    Hamilton, William; And Others

    This document contains Indiana agricultural chemicals curriculum materials based on the Vocational-Technical Education Consortium of States (VTECS) Agricultural Chemicals Catalog. It is intended to improve preparation of high school and adult students for handling and using agricultural chemicals and for jobs as chemical salespersons or chemical…

  3. Symposium introduction: the first joint American Chemical Society Agricultural and Food Chemistry Division and the American Chemical Society International Chemical Sciences Chapter in Thailand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The American Chemical Society (ACS) Agricultural and Food Chemistry Division (AGFD) and the ACS International Chemical Sciences Chapter in Thailand (ICSCT) worked together to stage the “1st Joint ACS AGFD - ACS ICSCT Symposium on Agricultural and Food Chemistry,” which was held in Bangkok, Thailand ...

  4. Agricultural Applications and Requirements for Thermal Infrared Scanners

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.

    1971-01-01

    Some of the applications of thermal scanner data in agriculture are presented along with illustrations of some of the factors affecting the temperature of plants, soil, and water. Examples of thermal imagery are included.

  5. Agricultural and environmental applications of biochar: Advances and barriers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This summary chapter highlights the achieved advances in biochar research and the existing barriers to biochar application. Substantial research over the past decade on biochar production, characterization, and utilization has indicated that biochar serves as a promising agricultural and environment...

  6. Agricultural applications of ERTS-1 data

    NASA Technical Reports Server (NTRS)

    Draeger, W. C.

    1973-01-01

    In an attempt to evaluate the usefulness of ERTS imagery for the production of land use stratifications as a preliminary step in the crop inventory process, all land within San Joaquin County was delineated into broad land use and crop category classes based on their appearance on the ERTS-1 Color composite image. The stratification of the agricultural land use categories proved to be a relatively simple task, taking each of three interpreters approximately 30 minutes to complete. The three interpretations were quite similar requiring only minor revisions to produce a consensus stratification. A total of 13 different agricultural strata were recognized, differing both in general field size and relative proportions of crop types and degree of irrigation. Upon comparing these interpretations, it was concluded that nearly all boundaries were truly representative of differing cropping practices. In a number of cases, the stratifications agreed almost exactly with soil type boundaries as drawn by earlier soils surveys.

  7. An Evaluation Tool for Agricultural Health and Safety Mobile Applications.

    PubMed

    Reyes, Iris; Ellis, Tammy; Yoder, Aaron; Keifer, Matthew C

    2016-01-01

    As the use of mobile devices and their software applications, or apps, becomes ubiquitous, use amongst agricultural working populations is expanding as well. The smart device paired with a well-designed app has potential for improving workplace health and safety in the hands of those who can act upon the information provided. Many apps designed to assess workplace hazards and implementation of worker protections already exist. However, the abundance and diversity of such applications also presents challenges regarding evaluation practices and assignation of value. This is particularly true in the agricultural workspace, as there is currently little information on the value of these apps for agricultural safety and health. This project proposes a framework for developing and evaluating apps that have potential usefulness in agricultural health and safety. The evaluation framework is easily transferable, with little modification for evaluation of apps in several agriculture-specific areas. PMID:27494309

  8. Agricultural applications of remote sensing: A true life adventure

    NASA Technical Reports Server (NTRS)

    Schaller, E. S.

    1975-01-01

    A study of agricultural applications of remote sensing with a major US agricultural firm was undertaken in mid-1973. The study continued for eighteen months, and covered the areas of crop monitoring and management as well as large scale crop inventories. Pilot programs in the application of aircraft remote sensing and LANDSAT data were conducted. An operational aircraft survey program for ranch management has subsequently been implemented by the agricultural firm. LANDSAT data was successfully used to produce a ninety-seven percent accurate inventory of cotton over 4.8 million acres of California's San Joaquin Valley.

  9. THE USE OF CHEMICALS IN THE FIELD OF FARM ANIMAL HEALTH (NUTRITION, ENTOMOLOGY, PATHOLOGY). AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 7.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF STATE STUDIES, THIS MODULE IS ONE OF A SERIES DESIGNED TO ASSIST TEACHERS IN PREPARING POST-SECONDARY STUDENTS FOR AGRICULTURAL CHEMICAL OCCUPATIONS. THE SPECIFIC OBJECTIVE OF THIS MODULE IS TO PREPARE TECHNICIANS IN THE FIELD OF THE USE OF CHEMICALS FOR ANIMAL HEALTH. SECTIONS INCLUDE -- (1)…

  10. Effect of widespread agricultural chemical use on butterfly diversity across Turkish provinces.

    PubMed

    Pekin, Burak K

    2013-12-01

    Although agricultural intensification is thought to pose a significant threat to species, little is known about its role in driving biodiversity loss at regional scales. I assessed the effects of a major component of agricultural intensification, agricultural chemical use, and land-cover and climatic variables on butterfly diversity across 81 provinces in Turkey, where agriculture is practiced extensively but with varying degrees of intensity. I determined butterfly species presence in each province from data on known butterfly distributions and calculated agricultural chemical use as the proportion of agricultural households that use chemical fertilizers and pesticides. I used constrained correspondence analyses and regression-based multimodel inference to determine the effect of environmental variables on species composition and richness, respectively. The variation in butterfly species composition across the provinces was largely explained (78%) by the combination of agricultural chemical use, particularly pesticides, and climatic and land-cover variables. Although overall butterfly richness was primarily explained by climatic and land-cover variables, such as the area of natural vegetation cover, threatened butterfly richness and the relative number of threatened butterfly species decreased substantially as the proportion of agricultural households using pesticides increased. These findings suggest that widespread use of agricultural chemicals, or other components of agricultural intensification that may be collinear with pesticide use, pose an imminent threat to the biodiversity of Turkey. Accordingly, policies that mitigate agricultural intensification and promote low-input farming practices are crucial for protecting threatened species from extinction in rapidly industrializing nations such as Turkey. Efectos del Uso Extensivo de Agroquímicos sobre la Diversidad de Mariposas en Provincias Turcas. PMID:23869856

  11. CHEMICALS, RUNOFF, AND EROSION FROM AGRICULTURAL MANAGEMENT SYSTEMS - CREAMS

    EPA Science Inventory

    The CREAMS model can simulate pollutant movement on and from a field site, including such constituents as fertilizers (N and P), pesticides, and sediment. The effects of various agricultural practices can be assessed by simulation of the potential water, soil, nutrient, and pesti...

  12. AGRICULTURAL CHEMICAL SAFETY ASSESSMENT: A MULTISECTOR APPROACH TO THE MODERNIZATION OF HUMAN SAFETY REQUIREMENTS.

    EPA Science Inventory

    Better understanding of toxicological mechanisms, enhanced testing capabilities, and demands for more sophisticated data for safety and health risk assessment have generated international interest in improving the current testing paradigm for agricultural chemicals. To address th...

  13. Effects of topography on the transport of agricultural chemicals to groundwater in a sand-plain setting

    USGS Publications Warehouse

    Delin, G.N.; Landon, M.K.

    2002-01-01

    Geochemical data were collected to investigate the effects of topography and focused recharge on the transport of agricultural chemicals to groundwater through sandy soils. The research was done at a topographically high (upland) site and a depressional (lowland) site within a corn field. Agricultural chemicals that move readily with water were most directly affected by focused recharge to the lowland site. Surface runoff of water to the lowland site was the primary cause for the generally greater flux of chloride, nitrate nitrogen, and sulfate compared with the upland site. Based on data from the unsaturated zone, for example, the average annual fluxes of these chemicals in 1992–1993 were 5.1, 3.4, and 1.7 times greater, respectively, at the lowland site. Study results indicate that consideration should be given to modifying site-specific management farming technology to account for varying recharge rates in different topographic settings. By reducing chemical application rates in topographic depressions, where focused recharge of chemicals occurs because of surface runoff, farmers could improve ground-water quality as well as reduce expenditures for agricultural chemicals.

  14. Use of material dielectric properties for agricultural applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of dielectric properties of materials for applications in agriculture are reviewed, and research findings on use of dielectric heating of materials and on sensing of product moisture content and other quality factors are discussed. Dielectric heating applications, include treatment of seed...

  15. Landsat image registration for agricultural applications

    NASA Technical Reports Server (NTRS)

    Wolfe, R. H., Jr.; Juday, R. D.; Wacker, A. G.; Kaneko, T.

    1982-01-01

    An image registration system has been developed at the NASA Johnson Space Center (JSC) to spatially align multi-temporal Landsat acquisitions for use in agriculture and forestry research. Working in conjunction with the Master Data Processor (MDP) at the Goddard Space Flight Center, it functionally replaces the long-standing LACIE Registration Processor as JSC's data supplier. The system represents an expansion of the techniques developed for the MDP and LACIE Registration Processor, and it utilizes the experience gained in an IBM/JSC effort evaluating the performance of the latter. These techniques are discussed in detail. Several tests were developed to evaluate the registration performance of the system. The results indicate that 1/15-pixel accuracy (about 4m for Landsat MSS) is achievable in ideal circumstances, sub-pixel accuracy (often to 0.2 pixel or better) was attained on a representative set of U.S. acquisitions, and a success rate commensurate with the LACIE Registration Processor was realized. The system has been employed in a production mode on U.S. and foreign data, and a performance similar to the earlier tests has been noted.

  16. Impacts of sand and dust storms on agriculture and potential agricultural applications of a SDSWS

    NASA Astrophysics Data System (ADS)

    Stefanski, R.; Sivakumar, M. V. K.

    2009-03-01

    This paper will give an overview of the various impacts of sand and dust storms on agriculture and then address the potential applications of a Sand and Dust Storm Warning System (SDSWS) for agricultural users. Sand and dust storms have many negative impacts on the agricultural sector including: reducing crop yields by burial of seedlings under sand deposits, the loss of plant tissue and reduced photosynthetic activity as a result of sandblasting, delaying plant development, increasing end-of-season drought risk, causing injury and reduced productivity of livestock, increasing soil erosion and accelerating the process of land degradation and desertification, filling up irrigation canals with sediments, covering transportation routes, affecting water quality of rivers and streams, and affecting air quality. One positive impact is the fertilization of soil minerals to terrestrial ecosystems. There are several potential agricultural applications of a SDSWS. The first is to alert agricultural communities farmers to take preventive action in the near-term such as harvesting maturing crops (vegetables, grain), sheltering livestock, and strengthening infrastructure (houses, roads, grain storage) for the storm. Also, the products of a SDSWS could be used in for monitoring potential locust movement and post-storm crop damage assessments. An archive of SDSWS products (movement, amount of sand and dust) could be used in researching plant and animal pathogen movement and the relationship of sand and dust storms to disease outbreaks and in developing improved soil erosion and land degradation models.

  17. Occurrence and Transport of Agricultural Chemicals in Leary Weber Ditch Basin, Hancock County, Indiana, 2003-04

    USGS Publications Warehouse

    Baker, Nancy T.; Stone, Wesley W.; Wilson, John T.; Meyer, Michael T.

    2006-01-01

    Leary Weber Ditch Basin, Hancock County, Indiana, is one of seven first-order basins selected from across the United States as part of the Agricultural Chemicals: Source, Transport, and Fate study conducted by the National Water-Quality Assessment Program of the U.S. Geological Survey. The nationwide study was designed to increase the understanding of the links between the sources of water and agricultural chemicals (nutrients and pesticides) and the transport and fate of these chemicals through the environment. Agricultural chemicals were detected in Leary Weber Ditch and in every associated hydrologic compartment sampled during 2003 and 2004. Pesticides were detected more frequently in samples collected from overland flow and from the ditch itself and less frequently in ground-water samples. The lowest concentrations of pesticides and nutrients were detected in samples of rain, soil water, and ground water. The highest concentrations of pesticides and nutrients were detected in samples of tile-drain water, overland flow, and water from Leary Weber Ditch. Samples collected from the tile drain, overland flow and Leary Weber Ditch soon after chemical applications to the fields and coincident with rainfall and increased streamflow had higher concentrations of pesticides and nutrients than samples collected a longer time after the chemicals were applied. A mass-balance mixing analysis based on potassium concentrations indicated that tile drains are the primary contributor of water to Leary Weber Ditch, but overland flow is also an important contributor during periods of high-intensity rainfall. When maximum rainfall intensity was 0.5 inches per hour or lower, overland flow contributed about 10 percent and tile drains contributed about 90 percent of the flow to Leary Weber Ditch. When maximum rainfall intensity was 0.75 inches per hour or greater, overland flow contributed about 40 percent and tile drains contributed about 60 percent of the flow to the ditch. Ground

  18. Proceedings of the frst joint american chemical society agricultural and food chemistry division – american chemical society international chemical sciences chapter in Thailand symposium on agricultural and food chemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This Proceedings is a compilation of papers from contributed oral and poster presentations presented at the first joint symposium organized by the American Chemical Society Agricultural and Food Chemistry Division and the American Chemical Society International Chemical Sciences Chapter in Thailand ...

  19. DETERMINANTS OF PERCEIVED AGRICULTURAL CHEMICAL RISK IN THREE WATERSHEDS IN THE MIDWESTERN UNITED STATES. (R825761)

    EPA Science Inventory

    Abstract

    Recent epidemiologic research on the relationship between agricultural chemical use and human health has focused on possible risks to both farmers and nonfarm publics through such avenues as airborne chemical drift and contamination of drinking water. While ag...

  20. Agricultural Chemical and Pesticide Hazards. Module SH-50. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on agricultural chemical and pesticide hazards is one of 50 modules concerned with job safety and health. This module contains information concerning the safe handling, use, and storage of many chemicals that are frequently used in the control of pests. Following the introduction, 10 objectives (each keyed to a page in the…

  1. A TIERED APPROACH TO LIFE STAGES TESTING FOR AGRICULTURAL CHEMICAL SAFERY ASSESSMENT

    EPA Science Inventory

    A proposal has been developed by the Agricultural Chemical Safety Assessment (ACSA) Technical Committee of the ILSI Health and Environmental Sciences Institute (HESI) for an improved approach to assessing the safety of crop protection chemicals. The goal is to ensure that studie...

  2. A TIERED APPROACH TO LIFE STAGES TESTING FOR AGRICULTURAL CHEMICAL SAFETY ASSESSMENT

    EPA Science Inventory

    A proposal has been developed by the Agricultural Chemical Safety Assessment (ACSA) Technical Committee of the ILSI Health and Environmental Sciences Institute (HESI) for an improved approach to assessing the safety of crop protection chemicals. The goal is to ensure that studie...

  3. Pesticide regulations for agriculture: Chemically flawed regulatory practice.

    PubMed

    Gamble, Donald S; Bruccoleri, Aldo G

    2016-08-01

    Two categories of pesticide soil models now exist. Government regulatory agencies use pesticide fate and transport hydrology models, including versions of PRZM.gw. They have good descriptions of pesticide transport by water flow. Their descriptions of chemical mechanisms are unrealistic, having been postulated using the universally accepted but incorrect pesticide soil science. The objective of this work is to report experimental tests of a pesticide soil model in use by regulatory agencies and to suggest possible improvements. Tests with experimentally based data explain why PRZM.gw predictions can be wrong by orders of magnitude. Predictive spreadsheet models are the other category. They are experimentally based, with chemical stoichiometry applied to integral kinetic rate laws for sorption, desorption, intra-particle diffusion, and chemical reactions. They do not account for pesticide transport through soils. Each category of models therefore lacks what the other could provide. They need to be either harmonized or replaced. Some preliminary tests indicate that an experimental mismatch between the categories of models will have to be resolved. Reports of pesticides in the environment and the medical problems that overlap geographically indicate that government regulatory practice needs to account for chemical kinetics and mechanisms. Questions about possible cause and effect links could then be investigated. PMID:27166991

  4. A Whole-System Approach to Understanding Agricultural Chemicals in the Environment

    USGS Publications Warehouse

    U.S. Geological Survey

    2009-01-01

    The effects of the use of agricultural chemicals and other practices associated with agriculture on the quality of streams and groundwater is well known; however, less is known about how those effects may vary across different geographic regions of the Nation. Scientists at the U.S. Geological Survey (USGS) are conducting studies on the transport and fate of agricultural chemicals in diverse agricultural settings across the country using comparable and consistent methodology and study designs (fig. 1; Capel and others, 2004; Capel and others, 2008). Assessments in five study areas have been completed, and the results highlight how environmental processes and agricultural practices interact to affect the movement and transformation of agricultural chemicals in the environment. The studies address major environmental compartments, including surface water, groundwater, the unsaturated zone, the streambed, and the atmosphere, as well as the pathways that interconnect these compartments. The study areas represent major agricultural settings, such as irrigated diverse cropping in the West and corn and soybean row cropping in the Midwest and, therefore, findings are relevant throughout much of the Nation.

  5. Solar Energy Applications for Agriculture. A Curriculum Guide.

    ERIC Educational Resources Information Center

    Nebraska Univ., Lincoln. Dept. of Agricultural Education.

    This curriculum guide contains five units for a course in solar energy applications for vocational agriculture. Each unit is organized in a format containing some or all of the following materials: unit objective, specific objectives, suggested instructor and student activities, list of instructional materials, assignment sheets, answers to…

  6. Dielectric Properties of Agricultural Products and Some Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract: The use of dielectric properties of agricultural products for sensing moisture in grain and seed and their application in radio-frequency and microwave dielectric heating is discussed briefly. Values for the dielectric properties of a number of products, including grain and seed, fruits ...

  7. A selected bibliography: Remote sensing applications in agriculture

    USGS Publications Warehouse

    Draeger, William C.; McClelland, David T.

    1977-01-01

    The bibliography contains nearly 300 citations of selected publications and technical reports dealing with the application of remote-sensing techniques to the collection and analysis of agricultural information. Most of the items included were published between January 1968 and December 1975, although some earlier works of continuing interest are included.

  8. Application of terrestrial microwave remote sensing to agricultural drought monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root-zone soil moisture information is a valuable diagnostic for detecting the onset and severity of agricultural drought. Current attempts to globally monitor root-zone soil moisture are generally based on the application of soil water balance models driven by observed meteorological variables. Suc...

  9. Remote sensing with unmanned aircraft systems for precision agriculture applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Federal Aviation Administration is revising regulations for using unmanned aircraft systems (UAS) in the national airspace. An important potential application of UAS may be as a remote-sensing platform for precision agriculture, but simply down-scaling remote sensing methodologies developed usi...

  10. Biopolymers in controlled release devices for agricultural applications.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of biopolymers such as starch for agricultural applications including controlled release devices is growing due the environmental benefits. Recently, concerns have grown about the worldwide spread of parasitic mites (Varroa destructor) that infect colonies of honey bees (Apis mellifera L.). ...

  11. Dielectric properties of agricultural materials and their application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book is prepared as a comprehensive source of information on dielectric properties of agricultural materials for scientific researchers and engineers involved in practical application of radio-frequency and microwave energy for potential problem solutions. Dielectric properties of materials det...

  12. Automatic information extraction for land use and agricultural applications

    NASA Technical Reports Server (NTRS)

    Bond, A. D.; Thomas, D. T.

    1973-01-01

    Description of some current work in interpretation technique development for automatic computer-aided image information extraction related to various application areas, including land use mapping and agricultural survey and monitoring. In particular, the application of a fast template matching algorithm, employing the sequential similarity detection principle, to image registration, linear feature detection, and the extraction and enumeration of scene objects is discussed and illustrated.

  13. Modelling effects of chemical exposure on birds wintering in agricultural landscapes: The western burrowing owl (Athene cunicularia hypugaea) as a case study

    USGS Publications Warehouse

    Engelman, C.A.; Grant, W.E.; Mora, M.A.; Woodin, M.

    2012-01-01

    We describe an ecotoxicological model that simulates the sublethal and lethal effects of chronic, low-level, chemical exposure on birds wintering in agricultural landscapes. Previous models estimating the impact on wildlife of chemicals used in agro-ecosystems typically have not included the variety of pathways, including both dermal and oral, by which individuals are exposed. The present model contains four submodels simulating (1) foraging behavior of individual birds, (2) chemical applications to crops, (3) transfers of chemicals among soil, insects, and small mammals, and (4) transfers of chemicals to birds via ingestion and dermal exposure. We demonstrate use of the model by simulating the impacts of a variety of commonly used herbicides, insecticides, growth regulators, and defoliants on western burrowing owls (Athene cunicularia hypugaea) that winter in agricultural landscapes in southern Texas, United States. The model generated reasonable movement patterns for each chemical through soil, water, insects, and rodents, as well as into the owl via consumption and dermal absorption. Sensitivity analysis suggested model predictions were sensitive to uncertainty associated with estimates of chemical half-lives in birds, soil, and prey, sensitive to parameters associated with estimating dermal exposure, and relatively insensitive to uncertainty associated with details of chemical application procedures (timing of application, amount of drift). Nonetheless, the general trends in chemical accumulations and the relative impacts of the various chemicals were robust to these parameter changes. Simulation results suggested that insecticides posed a greater potential risk to owls of both sublethal and lethal effects than do herbicides, defoliants, and growth regulators under crop scenarios typical of southern Texas, and that use of multiple indicators, or endpoints provided a more accurate assessment of risk due to agricultural chemical exposure. The model should prove

  14. Modelling effects of chemical exposure on birds wintering in agricultural landscapes: The western burrowing owl (Athene cunicularia hypugaea) as a case study

    USGS Publications Warehouse

    Engelman, Catherine A.; Grant, William E.; Mora, Miguel A.; Woodin, Marc

    2012-01-01

    We describe an ecotoxicological model that simulates the sublethal and lethal effects of chronic, low-level, chemical exposure on birds wintering in agricultural landscapes. Previous models estimating the impact on wildlife of chemicals used in agro-ecosystems typically have not included the variety of pathways, including both dermal and oral, by which individuals are exposed. The present model contains four submodels simulating (1) foraging behavior of individual birds, (2) chemical applications to crops, (3) transfers of chemicals among soil, insects, and small mammals, and (4) transfers of chemicals to birds via ingestion and dermal exposure. We demonstrate use of the model by simulating the impacts of a variety of commonly used herbicides, insecticides, growth regulators, and defoliants on western burrowing owls (Athene cunicularia hypugaea) that winter in agricultural landscapes in southern Texas, United States. The model generated reasonable movement patterns for each chemical through soil, water, insects, and rodents, as well as into the owl via consumption and dermal absorption. Sensitivity analysis suggested model predictions were sensitive to uncertainty associated with estimates of chemical half-lives in birds, soil, and prey, sensitive to parameters associated with estimating dermal exposure, and relatively insensitive to uncertainty associated with details of chemical application procedures (timing of application, amount of drift). Nonetheless, the general trends in chemical accumulations and the relative impacts of the various chemicals were robust to these parameter changes. Simulation results suggested that insecticides posed a greater potential risk to owls of both sublethal and lethal effects than do herbicides, defoliants, and growth regulators under crop scenarios typical of southern Texas, and that use of multiple indicators, or endpoints provided a more accurate assessment of risk due to agricultural chemical exposure. The model should prove

  15. Agricultural Chemicals in Leary Weber Ditch Basin, Hancock County, Indiana, 2003-04

    USGS Publications Warehouse

    Baker, Nancy T.; Lathrop, Timothy R.

    2006-01-01

    Leary Weber Ditch Basin, Hancock County, Indiana, is part of an Agricultural Chemicals: Source, Transport, and Fate study conducted by the National Water-Quality Assessment Program of the U.S. Geological Survey. Water-quality samples were collected in Leary Weber Ditch and in the major hydrologic compartments of the Leary Weber Ditch Basin during 2003 and 2004. Hydrologic compartments that contribute water and agricultural chemicals to Leary Weber Ditch are rain water, overland-flow water, soil water, tile-drain water, and ground water. Samples were analyzed for selected pesticides, nutrients, and major ions.

  16. Agricultural chemicals at the outlet of a shallow carbonate aquifer

    USGS Publications Warehouse

    Felton, G.K.

    1996-01-01

    A groundwater catchment, located in Woodford and Jessamine Counties in the Inner Bluegrass of Kentucky, was instrumented to develop long- term flow and water quality data. The land uses on this 1 620-ha catchment consist of approximately 59% in grasses consisting of beef farms, horse farms, and a golf course; 16% row crops; 6% orchard: 13% forest; and 6% residential. Water samples were analyzed twice a week for, Ca++, Mg++, Na+, Cl-, HCO3-, O4=, NO3-, total solids, suspended solids, fecal coliforms, fecal streptococci, and triazines. Flow rate and average ambient temperature were also recorded. No strong linear relationship was developed between chemical concentrations and other parameters. The transient nature of the system was emphasized by one event that drastically deviated from others. Pesticide data were summarized and the 'flushing' phenomena accredited to karst systems was discussed. The total solids content in the spring was consistent at approximately 2.06 mg/L. Fecal bacteria contamination was well above drinking water limits (fecal coliform and fetal streptococci averages were I 700 and 4 300 colony-forming-units/100 mL, respectively) and the temporal variation in bacterial contamination was not linked to any other variable.

  17. [Application of THz technology to nondestructive detection of agricultural product quality].

    PubMed

    Jiang, Yu-ying; Ge, Hong-yi; Lian, Fei-yu; Zhang, Yuan; Xia, Shan-hong

    2014-08-01

    With recent development of THz sources and detector, applications of THz radiation to nondestructive testing and quality control have expanded in many fields, such as agriculture, safety inspection and quality control, medicine, biochemistry, communication etc. Compared with other detection technique, being a new kind of technique, THz radiation has low energy, good perspectivity, and high signal-to-noise ratio, and thus can obtain physical, chemical and biological information. This paper first introduces the basic concept of THz radiation and the major properties, then gives an extensive review of recent research progress in detection of the quality of agricultural products via THz technique, analyzes the existing shortcomings of THz detection and discusses the outlook of potential application, finally proposes the new application of THz technique to detection of quality of stored grain. PMID:25474932

  18. [Application of THz technology to nondestructive detection of agricultural product quality].

    PubMed

    Jiang, Yu-ying; Ge, Hong-yi; Lian, Fei-yu; Zhang, Yuan; Xia, Shan-hong

    2014-08-01

    With recent development of THz sources and detector, applications of THz radiation to nondestructive testing and quality control have expanded in many fields, such as agriculture, safety inspection and quality control, medicine, biochemistry, communication etc. Compared with other detection technique, being a new kind of technique, THz radiation has low energy, good perspectivity, and high signal-to-noise ratio, and thus can obtain physical, chemical and biological information. This paper first introduces the basic concept of THz radiation and the major properties, then gives an extensive review of recent research progress in detection of the quality of agricultural products via THz technique, analyzes the existing shortcomings of THz detection and discusses the outlook of potential application, finally proposes the new application of THz technique to detection of quality of stored grain. PMID:25508711

  19. Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture within the United States is varied and produces a large value ($200 billion in 2002) of production across a wide range of plant and animal production systems. Because of this diversity, changes in climate will likely impact agriculture throughout the United States. Climate affects crop, ...

  20. Crop residue stabilization and application to agricultural and degraded soils: A review.

    PubMed

    Medina, Jorge; Monreal, Carlos; Barea, José Miguel; Arriagada, César; Borie, Fernando; Cornejo, Pablo

    2015-08-01

    Agricultural activities produce vast amounts of organic residues including straw, unmarketable or culled fruit and vegetables, post-harvest or post-processing wastes, clippings and residuals from forestry or pruning operations, and animal manure. Improper disposal of these materials may produce undesirable environmental (e.g. odors or insect refuges) and health impacts. On the other hand, agricultural residues are of interest to various industries and sectors of the economy due to their energy content (i.e., for combustion), their potential use as feedstock to produce biofuels and/or fine chemicals, or as a soil amendments for polluted or degraded soils when composted. Our objective is review new biotechnologies that could be used to manage these residues for land application and remediation of contaminated and eroded soils. Bibliographic information is complemented through a comprehensive review of the physico-chemical fundamental mechanisms involved in the transformation and stabilization of organic matter by biotic and abiotic soil components. PMID:25936555

  1. Cyclotides: macrocyclic peptides with applications in drug design and agriculture.

    PubMed

    Craik, David J; Mylne, Joshua S; Daly, Norelle L

    2010-01-01

    Cyclotides are disulfide-rich peptides from plants that are exceptionally stable as a result of their unique cyclic cystine knot structural motif. Their natural role is thought to be as plant defence agents, most notably against insect pests, but they also have potential applications in drug design and agriculture. This article identifies gaps in current knowledge on cyclotides and suggests future directions for research into this fascinating family of ultra-stable mini-proteins. PMID:19795188

  2. Preventing Agricultural Chemical Exposure: A Safety Program Manual. Participatory Education with Farmworkers in Pesticide Safety.

    ERIC Educational Resources Information Center

    Wake Forest Univ., Winston-Salem, NC. Dept. of Family and Community Medicine.

    Preventing Agricultural Chemical Exposure among North Carolina Farmworkers (PACE) is a project designed to describe farmworker pesticide exposure and to develop an educational intervention to reduce farmworker pesticide exposure. The PACE project used a community participation framework to ensure that the community played a significant role in…

  3. Agricultural Chemical Use and White Male Cancer Mortality in Selected Rural Farm Counties.

    ERIC Educational Resources Information Center

    Stokes, C. Shannon; Brace, Kathy D.

    A study of 1,497 nonmetropolitan counties was conducted to test the possible contribution of agricultural chemical use to cancer mortality rates in rural counties. The dependent variables were 20-year age-adjusted mortality rates for 1950 to 1969 for five categories of cancer: genital, urinary, lymphatic, respiratory, and digestive. Because sex…

  4. VOCATIONAL COMPETENCIES NEEDED FOR EMPLOYMENT IN THE AGRICULTURAL-CHEMICAL INDUSTRY IN MICHIGAN.

    ERIC Educational Resources Information Center

    CHRISTENSEN, MAYNARD; CLARK, RAYMOND M.

    THIS STUDY WAS CONDUCTED TO DETERMINE THE VOCATIONAL COMPETENCIES NEEDED FOR EMPLOYMENT BELOW THE MANUFACTURING LEVEL IN THE AGRICULTURAL-CHEMICAL INDUSTRY IN MICHIGAN. NINE FUNCTIONS PERFORMED IN THE INDUSTRY WERE LISTED--RESEARCH, TRANSPORTATION, PROCESSING, PUBLIC RELATIONS, SALES, SERVICE, OFFICE RECORDS AND MANAGEMENT, MAINTENANCE, AND…

  5. OPEN BURNING OF AGRICULTURAL BIOMASS: PHYSICAL AND CHEMICAL PROPERTIES OF PARTICLE-PHASE EMISSIONS

    EPA Science Inventory

    This effort presents the physical and chemical characterization of PM2.5 emissions from simulated agricultural fires of surface residuals of two major grain crops, rice (Oryza sativa) and wheat (Triticum aestivum L). The O2 levels and CO/CO

  6. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture.

    PubMed

    Nicolopoulou-Stamati, Polyxeni; Maipas, Sotirios; Kotampasi, Chrysanthi; Stamatis, Panagiotis; Hens, Luc

    2016-01-01

    The industrialization of the agricultural sector has increased the chemical burden on natural ecosystems. Pesticides are agrochemicals used in agricultural lands, public health programs, and urban green areas in order to protect plants and humans from various diseases. However, due to their known ability to cause a large number of negative health and environmental effects, their side effects can be an important environmental health risk factor. The urgent need for a more sustainable and ecological approach has produced many innovative ideas, among them agriculture reforms and food production implementing sustainable practice evolving to food sovereignty. It is more obvious than ever that the society needs the implementation of a new agricultural concept regarding food production, which is safer for man and the environment, and to this end, steps such as the declaration of Nyéléni have been taken. PMID:27486573

  7. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture

    PubMed Central

    Nicolopoulou-Stamati, Polyxeni; Maipas, Sotirios; Kotampasi, Chrysanthi; Stamatis, Panagiotis; Hens, Luc

    2016-01-01

    The industrialization of the agricultural sector has increased the chemical burden on natural ecosystems. Pesticides are agrochemicals used in agricultural lands, public health programs, and urban green areas in order to protect plants and humans from various diseases. However, due to their known ability to cause a large number of negative health and environmental effects, their side effects can be an important environmental health risk factor. The urgent need for a more sustainable and ecological approach has produced many innovative ideas, among them agriculture reforms and food production implementing sustainable practice evolving to food sovereignty. It is more obvious than ever that the society needs the implementation of a new agricultural concept regarding food production, which is safer for man and the environment, and to this end, steps such as the declaration of Nyéléni have been taken. PMID:27486573

  8. Uav for Geodata Acquisition in Agricultureal and Forestal Applications

    NASA Astrophysics Data System (ADS)

    Reidelstürz, P.; Schrenk, L.; Littmann, W.

    2011-09-01

    In the field of precision-farming research, solutions are worked out to combine ecological and economical requirements in a harmonic way. Integrating hightech in agricultural machinery, natural differences in the fields (biodiversity) can be detected and considered to economize agricultural resources and to give respect to natural ecological variability at the same time. Using precision farming resources, machining - and labour time can be economized, productivness can be improved, environmental burden can be discharged and documentation of production processes can be improved. To realize precision farming it is essential to make contemporary large scale data of the biodiversity in the field available. In the last years effectual traktor based equipment for real time precision farming applications was developed. Using remote sensing, biomass diversity of the field can be considered while applicating operating ressources economicly. Because these large scale data aquisition depends on expensive tractor based inspections, capable Unmanned Aerial Vehicles (UAVs) could complement or in special situations even replace such tractor based data aquisition needed for the realization of precision farming strategies. The specific advantages and application slots of UAVs seems to be ideal for the usage in the field of precision farming. For example the size of even large agricultural fields in germany can be managed even by smaller UAVs. Data can be captured spontaneously, promptly, in large scale, with less respect of weather conditions. In agricultural regions UAV flights can be arranged in visual range as actually the legislator requires in germany, especially because the use of autopilotsystems in fact is nessecary to assure regular area-wide data without gaps but not to fly in non-visible regions. Also a minimized risk of hazard is given, flying UAVs over deserted agricultural areas. In a first stage CIS GmbH cooperated with "Institute For Flightsystems" of the University

  9. 3-D Imaging Systems for Agricultural Applications-A Review.

    PubMed

    Vázquez-Arellano, Manuel; Griepentrog, Hans W; Reiser, David; Paraforos, Dimitris S

    2016-01-01

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture. PMID:27136560

  10. CHEMICAL AND BIOLOGICAL CHARACTERIZATION OF PRODUCTS OF INCOMPLETE COMBUSTION FROM THE SIMULATED FIELD BURNING OF AGRICULTURAL PLASTIC

    EPA Science Inventory

    The article describes chemical and biological analyses performed to characterize products of incomplete combustion emitted during the simulated open field burning of agricultural plastic. The study highlights the benefits of a combined chemical/biological approach to characteizin...

  11. Airborne Remote Sensing (ARS) for Agricultural Research and Commercialization Applications

    NASA Technical Reports Server (NTRS)

    Narayanan, Ram; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    Tremendous advances in remote sensing technology and computing power over the last few decades are now providing scientists with the opportunity to investigate, measure, and model environmental patterns and processes with increasing confidence. Such advances are being pursued by the Nebraska Remote Sensing Facility, which consists of approximately 30 faculty members and is very competitive with other institutions in the depth of the work that is accomplished. The development of this facility targeted at applications, commercialization, and education programs in the area of precision agriculture provides a unique opportunity. This critical area is within the scope of NASA goals and objectives of NASA s Applications, Technology Transfer, Commercialization, and Education Division and the Earth Science Enterprise. This innovative integration of Aerospace (Aeronautics) Technology Enterprise applications with other NASA enterprises serves as a model of cross-enterprise transfer of science with specific commercial applications.

  12. Chemical Microsensor Development for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C.; Hunter, Gary W.; Lukco, Dorothy; Chen, Liangyu; Biaggi-Labiosa, Azlin M.

    2013-01-01

    Numerous aerospace applications, including low-false-alarm fire detection, environmental monitoring, fuel leak detection, and engine emission monitoring, would benefit greatly from robust and low weight, cost, and power consumption chemical microsensors. NASA Glenn Research Center has been working to develop a variety of chemical microsensors with these attributes to address the aforementioned applications. Chemical microsensors using different material platforms and sensing mechanisms have been produced. Approaches using electrochemical cells, resistors, and Schottky diode platforms, combined with nano-based materials, high temperature solid electrolytes, and room temperature polymer electrolytes have been realized to enable different types of microsensors. By understanding the application needs and chemical gas species to be detected, sensing materials and unique microfabrication processes were selected and applied. The chemical microsensors were designed utilizing simple structures and the least number of microfabrication processes possible, while maintaining high yield and low cost. In this presentation, an overview of carbon dioxide (CO2), oxygen (O2), and hydrogen/hydrocarbons (H2/CxHy) microsensors and their fabrication, testing results, and applications will be described. Particular challenges associated with improving the H2/CxHy microsensor contact wire-bonding pad will be discussed. These microsensors represent our research approach and serve as major tools as we expand our sensor development toolbox. Our ultimate goal is to develop robust chemical microsensor systems for aerospace and commercial applications.

  13. Application of nitrogen and phosphorus criteria for streams in agricultural landscapes.

    PubMed

    Chambers, P A; Benoy, G A; Brua, R B; Culp, J M

    2011-01-01

    Efforts to control eutrophication of water resources in agriculturally dominated ecosystems have focused on managing on-farm activities to reduce nutrient loss; however, another management measure for improving water quality is adoption of environmental performance criteria (or 'outcome-based standards'). Here, we review approaches for setting environmental quality criteria for nutrients, summarize approaches developed in Canada for setting 'ideal' and 'achievable' nutrient criteria for streams in agricultural watersheds, and consider how such criteria could be applied. As part of a 'National Agri-Environmental Standards Initiative', the Government of Canada committed to the development of non-regulatory environmental performance standards that establish total P (TP) and total N (TN) concentrations to protect ecological condition of agricultural streams. Application of four approaches for defining ideal standards using only chemistry data resulted in values for TP and TN spanning a relatively narrow range of concentrations within a given ecoregion. Cross-calibration of these chemically derived standards with information on biological condition resulted in recommendations for TP and TN that would likely protect aquatic life from adverse effects of eutrophication. Non-point source water quality modelling was then conducted in a specific watershed to estimate achievable standards, i.e. chemical conditions that could be attained using currently available and recommended management practices. Our research showed that, taken together, short-term achievable standards and ultimate ideal standards could be used to set policy targets that should, if realized, lower N and P concentrations in Canadian agricultural streams and improve biotic condition. PMID:22156121

  14. Chemical Gas Sensors for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Liu, C. C.

    1998-01-01

    Chemical sensors often need to be specifically designed (or tailored) to operate in a given environment. It is often the case that a chemical sensor that meets the needs of one application will not function adequately in another application. The more demanding the environment and specialized the requirement, the greater the need to adapt exiting sensor technologies to meet these requirements or, as necessary, develop new sensor technologies. Aerospace (aeronautic and space) applications are particularly challenging since often these applications have specifications which have not previously been the emphasis of commercial suppliers. Further, the chemical sensing needs of aerospace applications have changed over the years to reflect the changing emphasis of society. Three chemical sensing applications of particular interest to the National Aeronautics and Space Administration (NASA) which illustrate these trends are launch vehicle leak detection, emission monitoring, and fire detection. Each of these applications reflects efforts ongoing throughout NASA. As described in NASA's "Three Pillars for Success", a document which outlines NASA's long term response to achieve the nation's priorities in aerospace transportation, agency wide objectives include: improving safety and decreasing the cost of space travel, significantly decreasing the amount of emissions produced by aeronautic engines, and improving the safety of commercial airline travel. As will be discussed below, chemical sensing in leak detection, emission monitoring, and fire detection will help enable the agency to meet these objectives. Each application has vastly different problems associated with the measurement of chemical species. Nonetheless, the development of a common base technology can address the measurement needs of a number of applications.

  15. Biotechnology and Agriculture.

    ERIC Educational Resources Information Center

    Kenney, Martin

    Even at this early date in the application of biotechnology to agriculture, it is clear that agriculture may provide the largest market for new or less expensive biotechnologically manufactured products. The chemical and pharmaceutical industries that hold important positions in agricultural inputs are consolidating their positions by purchasing…

  16. Market assessment of photovoltaic power systems for agricultural applications worldwide

    NASA Astrophysics Data System (ADS)

    Cabraal, A.; Delasanta, D.; Rosen, J.; Nolfi, J.; Ulmer, R.

    1981-11-01

    Agricultural sector PV market assessments conducted in the Phillippines, Nigeria, Mexico, Morocco, and Colombia are extrapolated worldwide. The types of applications evaluated are those requiring less than 15 kW of power and operate in a stand alone mode. The major conclusions were as follows: PV will be competitive in applications requiring 2 to 3 kW of power prior to 1983; by 1986 PV system competitiveness will extend to applications requiring 4 to 6 kW of power, due to capital constraints, the private sector market may be restricted to applications requiring less than about 2 kW of power; the ultimate purchase of larger systems will be governments, either through direct purchase or loans from development banks. Though fragmented, a significant agriculture sector market for PV exists; however, the market for PV in telecommunications, signalling, rural services, and TV will be larger. Major market related factors influencing the potential for U.S. PV Sales are: lack of awareness; high first costs; shortage of long term capital; competition from German, French and Japanese companies who have government support; and low fuel prices in capital surplus countries. Strategies that may aid in overcoming some of these problems are: setting up of a trade association aimed at overcoming problems due to lack of awareness, innovative financing schemes such as lease arrangements, and designing products to match current user needs as opposed to attempting to change consumer behavior.

  17. Market assessment of photovoltaic power systems for agricultural applications worldwide

    NASA Technical Reports Server (NTRS)

    Cabraal, A.; Delasanta, D.; Rosen, J.; Nolfi, J.; Ulmer, R.

    1981-01-01

    Agricultural sector PV market assessments conducted in the Phillippines, Nigeria, Mexico, Morocco, and Colombia are extrapolated worldwide. The types of applications evaluated are those requiring less than 15 kW of power and operate in a stand alone mode. The major conclusions were as follows: PV will be competitive in applications requiring 2 to 3 kW of power prior to 1983; by 1986 PV system competitiveness will extend to applications requiring 4 to 6 kW of power, due to capital constraints, the private sector market may be restricted to applications requiring less than about 2 kW of power; the ultimate purchase of larger systems will be governments, either through direct purchase or loans from development banks. Though fragmented, a significant agriculture sector market for PV exists; however, the market for PV in telecommunications, signalling, rural services, and TV will be larger. Major market related factors influencing the potential for U.S. PV Sales are: lack of awareness; high first costs; shortage of long term capital; competition from German, French and Japanese companies who have government support; and low fuel prices in capital surplus countries. Strategies that may aid in overcoming some of these problems are: setting up of a trade association aimed at overcoming problems due to lack of awareness, innovative financing schemes such as lease arrangements, and designing products to match current user needs as opposed to attempting to change consumer behavior.

  18. Physical and chemical characterizations of biochars derived from different agricultural residues

    NASA Astrophysics Data System (ADS)

    Jindo, K.; Mizumoto, H.; Sawada, Y.; Sanchez-Monedero, M. A.; Sonoki, T.

    2014-08-01

    Biochar has received large attention as a strategy to tackle against carbon emission. Not only carbon fixation has been carried out but also other merits for agricultural application due to unique physical and chemical character such as absorption of contaminated compounds in soil, trapping ammonia and methane emission from compost, and enhancement of fertilizer quality. In our study, different local waste feed stocks (rice husk, rice straw, wood chips of apple tree (Malus Pumila) and oak tree (Quercus serrata)), in Aomori, Japan, were utilized for creating biochar with different temperature (400-800 °C). Concerning to the biochar production, the pyrolysis of lower temperature had more biochar yield than higher temperature pyrolysis process. On the contrary, surface areas and adsorption characters have been increased as increasing temperature. The proportions of carbon content in the biochars also increased together with increased temperatures. Infrared-Fourier spectra (FT-IR) and 13C-NMR were used to understand carbon chemical compositions in our biochars, and it was observed that the numbers of the shoulders representing aromatic groups, considered as stable carbon structure appeared as the temperature came closer to 600 °C, as well as in FT-IR. In rice materials, the peak assigned to SiO2, was observed in all biochars (400-800 °C) in FT-IR. We suppose that the pyrolysis at 600 °C creates the most recalcitrant character for carbon sequestration, meanwhile the pyrolysis at 400 °C produces the superior properties as a fertilizer by retaining volatile and easily labile compounds which promotes soil microbial activities.

  19. Draft standards and guidelines for the land application of mechanical pulp mill sludge to agricultural land

    SciTech Connect

    1998-09-01

    Mechanical pulp mill sludge consists primarily of water, wood fiber, biomass, and residual chemicals. Research has shown that application of sludge to land improves the nutrient status and physical properties of soil, resulting in enhanced plant growth. This report presents guidelines for operations involving the application of mechanical pulp mill sludge on agricultural land in Alberta. It lists the regulatory requirements for sludge generators, restrictions on land application, and record-keeping and reporting requirements; provides general information on sludge properties and parameters of interest, suitability of receiving soils and areas, and sludge application rates and frequencies. Research studies conducted in Alberta on the benefits of land application of mechanical pulp mill sludge are also summarized.

  20. Agricultural chemicals in alluvial aquifers in Missouri after the 1993 flood

    USGS Publications Warehouse

    Heimann, D.C.; Richards, J.M.; Wilkison, D.H.

    1997-01-01

    Intense rains produced flooding during the spring and summer of 1993 over much of the midwestern USA including many agricultural areas of Missouri. Because of potential contamination from floodwater, an investigation was conducted to determine the changes in concentrations of agricultural chemicals in water samples from alluvial wells in Missouri after the flood. Water samples from 80 alluvial wells with historical data were collected in March, July, and November 1994, and analyzed for dissolved herbicides, herbicide metabolites, and nitrate (NO3). There were no statistically significant differences in the distribution of alachlor ((2,chloro-2'-6'-diethyl-N-[methoxymethyl]acetanilide), atrazine (2-chloro- 4-ethylamino-6-isopropylamino-1, 3, 5 triazine), and nitrate concentrations between pre- and postflood samples (?? = 0.05). The detection frequency of alachlor and atrazine in postflood samples was generally lower than the frequency in preflood samples. Analyses of agricultural chemicals in water samples from an intensely sampled well field indicate significant differences between the distribution of dissolved P concentrations in pre- and postflood samples (?? = 0.05). However, no significant differences were detected between the pre- and postflood distributions of NO3 or ammonia concentrations. Because of the numerous sources of temporal variability and the relatively short record of water-quality data for the study wells, a cause-and-effect relation between changes in agricultural chemical concentrations and a single factor of the 1993 flood is difficult to determine. Based on the results of this study, the 1993 flood did not cause widespread or long-term significant changes in concentrations of agricultural chemicals in water from alluvial aquifers in Missouri.

  1. Development of hazard analysis by critical control points (HACCP) procedures to control organic chemical hazards in the agricultural production of raw food commodities.

    PubMed

    Ropkins, Karl; Ferguson, Andrew; Beck, Angus J

    2003-01-01

    Hazard Analysis by Critical Control Points (HACCP) is a systematic approach to the identification, assessment, and control of hazards in the food chain. Effective HACCP requires the consideration of all chemical microbiological, and physical hazards. However, current procedures focus primarily on microbiological and physical hazards, while chemical aspects of HACCP have received relatively little attention. In this article we discuss the application of HACCP to organic chemical contaminants and the problems that are likely to be encountered in agriculture. We also present generic templates for the development of organic chemical contaminant HACCP procedures for selected raw food commodities, that is, cereal crops,raw meats, and milk. PMID:12822674

  2. Application of Terrestrial Microwave Remote Sensing to Agricultural Drought Monitoring

    NASA Astrophysics Data System (ADS)

    Crow, W. T.; Bolten, J. D.

    2014-12-01

    Root-zone soil moisture information is a valuable diagnostic for detecting the onset and severity of agricultural drought. Current attempts to globally monitor root-zone soil moisture are generally based on the application of soil water balance models driven by observed meteorological variables. Such systems, however, are prone to random error associated with: incorrect process model physics, poor parameter choices and noisy meteorological inputs. The presentation will describe attempts to remediate these sources of error via the assimilation of remotely-sensed surface soil moisture retrievals from satellite-based passive microwave sensors into a global soil water balance model. Results demonstrate the ability of satellite-based soil moisture retrieval products to significantly improve the global characterization of root-zone soil moisture - particularly in data-poor regions lacking adequate ground-based rain gage instrumentation. This success has lead to an on-going effort to implement an operational land data assimilation system at the United States Department of Agriculture's Foreign Agricultural Service (USDA FAS) to globally monitor variations in root-zone soil moisture availability via the integration of satellite-based precipitation and soil moisture information. Prospects for improving the performance of the USDA FAS system via the simultaneous assimilation of both passive and active-based soil moisture retrievals derived from the upcoming NASA Soil Moisture Active/Passive mission will also be discussed.

  3. Light polarization by vegetation cover - Possible agricultural applications

    NASA Technical Reports Server (NTRS)

    Rondeaux, Genevieve; Guyot, Gerard

    1990-01-01

    A review of the physical mechanisms involved in light polarization by reflecting surfaces is presented and experimental results for single leaf, bare soil, and plant canopies are analyzed. It is shown that light polarization can be employed to identify different plant canopies and to estimate their standing biomass. For bare soils, light polarization can be used to monitor the surface soil moisture and the state of the surface. Thus light polarization may be considered as a new remote sensing technique for potential agricultural application.

  4. Remote sensing applied to agriculture: Basic principles, methodology, and applications

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Mendonca, F. J.

    1981-01-01

    The general principles of remote sensing techniques as applied to agriculture and the methods of data analysis are described. the theoretical spectral responses of crops; reflectance, transmittance, and absorbtance of plants; interactions of plants and soils with reflectance energy; leaf morphology; and factors which affect the reflectance of vegetation cover are dicussed. The methodologies of visual and computer-aided analyses of LANDSAT data are presented. Finally, a case study wherein infrared film was used to detect crop anomalies and other data applications are described.

  5. Application of excilamps in agriculture and animal breeding (review)

    NASA Astrophysics Data System (ADS)

    Sosnin, Eduard A.; Chudinova, Yulia V.; Victorova, Irina A.; Volotko, Ivan I.

    2015-12-01

    The paper provides a review of research data on applications of XeCl excilamps in agriculture and animal breeding. The data demonstrate a favorable effect of radiation produced by the excilamps on the fertility of animals (outbred mice and pigs) and on the growth of plants (flaxes, potatoes, carrots, cucumbers, conifers). Excilamp models adapted specially for use in stock-raising and grain storage complexes are now available. The research data obtained in 2012-2015 suggest that XeCl excilamps hold promise for prevention of diseases in indoor-housed pigs and for pre-sowing seed preparation.

  6. Off-farm applications of solar energy in agriculture

    SciTech Connect

    Berry, R.E.

    1980-01-01

    Food processing applications make up almost all present off-farm studies of solar energy in agriculture. Research, development and demonstration projects on solar food processing have shown significant progress over the past 3 years. Projects have included computer simulation and mathematical models, hardware and process development for removing moisture from horticultural or animal products, integration of energy conservation with solar energy augmentation in conventional processes, and commercial scale demonstrations. The demonstration projects include solar heated air for drying prunes and raisins, soy beans and onions/garlic; and solar generated steam for orange juice pasteurization. Several new and planned projects hold considerable promise for commerical exploitation in future food processes.

  7. Chemically Modifying Viruses for Diverse Applications.

    PubMed

    Mohan, Kritika; Weiss, Gregory A

    2016-05-20

    Long fascinating to biologists, viruses offer nanometer-scale benchtops for building molecular-scale devices and materials. Viruses tolerate a wide range of chemical modifications including reaction conditions, pH values, and temperatures. Recent examples of nongenetic manipulation of viral surfaces have extended viruses into applications ranging from biomedical imaging, drug delivery, tissue regeneration, and biosensors to materials for catalysis and energy generation. Chemical reactions on the phage surface include both covalent and noncovalent modifications, including some applied in conjunction with genetic modifications. Here, we survey viruses chemically augmented with capabilities limited only by imagination. PMID:26930417

  8. Chemical Sniffing Instrumentation for Security Applications.

    PubMed

    Giannoukos, Stamatios; Brkić, Boris; Taylor, Stephen; Marshall, Alan; Verbeck, Guido F

    2016-07-27

    Border control for homeland security faces major challenges worldwide due to chemical threats from national and/or international terrorism as well as organized crime. A wide range of technologies and systems with threat detection and monitoring capabilities has emerged to identify the chemical footprint associated with these illegal activities. This review paper investigates artificial sniffing technologies used as chemical sensors for point-of-use chemical analysis, especially during border security applications. This article presents an overview of (a) the existing available technologies reported in the scientific literature for threat screening, (b) commercially available, portable (hand-held and stand-off) chemical detection systems, and (c) their underlying functional and operational principles. Emphasis is given to technologies that have been developed for in-field security operations, but laboratory developed techniques are also summarized as emerging technologies. The chemical analytes of interest in this review are (a) volatile organic compounds (VOCs) associated with security applications (e.g., illegal, hazardous, and terrorist events), (b) chemical "signatures" associated with human presence, and PMID:27388215

  9. Review of anthraquinone applications for pest management and agricultural crop protection.

    PubMed

    DeLiberto, Shelagh T; Werner, Scott J

    2016-10-01

    We have reviewed published anthraquinone applications for international pest management and agricultural crop protection from 1943 to 2016. Anthraquinone (AQ) is commonly found in dyes, pigments and many plants and organisms. Avian repellent research with AQ began in the 1940s. In the context of pest management, AQ is currently used as a chemical repellent, perch deterrent, insecticide and feeding deterrent in many wild birds, and in some mammals, insects and fishes. Criteria for evaluation of effective chemical repellents include efficacy, potential for wildlife hazards, phytotoxicity and environmental persistence. As a biopesticide, AQ often meets these criteria of efficacy for the non-lethal management of agricultural depredation caused by wildlife. We summarize published applications of AQ for the protection of newly planted and maturing crops from pest birds. Conventional applications of AQ-based repellents include preplant seed treatments [e.g. corn (Zea mays L.), rice (Oryza sativa L.), sunflower (Helianthus annuus L.), wheat (Triticum spp.), millet (Panicum spp.), sorghum (Sorghum bicolor L.), pelletized feed and forest tree species] and foliar applications for rice, sunflower, lettuce (Lactuca sativa L.), turf, sugar beets (Beta vulgaris L.), soybean (Glycine max L.), sweet corn and nursery, fruit and nut crops. In addition to agricultural repellent applications, AQ has also been used to treat toxicants for the protection of non-target birds. Few studies have demonstrated AQ repellency in mammals, including wild boar (Sus scrofa, L.), thirteen-lined ground squirrels (Ictidomys tridecemlineatus, Mitchill), black-tailed prairie dogs (Cyomys ludovicainus, Ord.), common voles (Microtus arvalis, Pallas), house mice (Mus musculus, L.), Tristram's jirds (Meriones tristrami, Thomas) and black rats (Rattus rattus L.). Natural sources of AQ and its derivatives have also been identified as insecticides and insect repellents. As a natural or synthetic biopesticide, AQ

  10. Properties and applications of chemically functionalized graphene

    NASA Astrophysics Data System (ADS)

    Craciun, M. F.; Khrapach, I.; Barnes, M. D.; Russo, S.

    2013-10-01

    The vast and yet largely unexplored family of graphene materials has great potential for future electronic devices with novel functionalities. The ability to engineer the electrical and optical properties in graphene by chemically functionalizing it with a molecule or adatom is widening considerably the potential applications targeted by graphene. Indeed, functionalized graphene has been found to be the best known transparent conductor or a wide gap semiconductor. At the same time, understanding the mechanisms driving the functionalization of graphene with hydrogen is proving to be of fundamental interest for energy storage devices. Here we discuss recent advances on the properties and applications of chemically functionalized graphene.

  11. Movement of agricultural chemicals between surface water and ground water, lower Cedar River basin, Iowa

    USGS Publications Warehouse

    Squillace, Paul J.; Caldwell, J.P.; Schulmeyer, P.M.; Harvey, C.A.

    1996-01-01

    Bank storage is probably an important source of agricultural chemicals discharged from the alluvial aquifer but becomes depleted with time after surface runoff. Herbicides discharged from the alluvial aquifer during periods of extended base flow entered the alluvial aquifer with ground-water recharge at some distance from the river. The movement of nitrate between surface water and ground water is minor, when compared to the herbicides, even though nitrite was detected in the Cedar River during runoff.

  12. Applications of CELSS technology to controlled environment agriculture

    NASA Technical Reports Server (NTRS)

    Bates, Maynard E.; Bubenheim, David L.

    1991-01-01

    Controlled environment agriculture (CEA) is defined as the use of environmental manipulation for the commercial production of organisms, whether plants or animals. While many of the technologies necessary for aquaculture systems in North America is nevertheless doubling approximately every five years. Economic, cultural, and environmental pressures all favor CEA over field production for many non-commodity agricultural crops. Many countries around the world are already dependent on CEA for much of their fresh food. Controlled ecological life support systems (CELSS), under development at ARC, KSC, and JSC expand the concept of CEA to the extent that all human requirements for food, oxygen, and water will be provided regenerated by processing of waste streams to supply plant inputs. The CELSS will likely contain plants, humans, possibly other animals, microorganisms and physically and chemical processors. In effect, NASA will create engineered ecosystems. In the process of developing the technology for CELSS, NASA will develop information and technology which will be applied to improving the efficiency, reliability, and cost effectiveness for CEA, improving its resources recycling capabilities, and lessening its environmental impact to negligible levels.

  13. 21 CFR 1310.13 - Exemption of chemical mixtures; application.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Exemption of chemical mixtures; application. 1310... REPORTS OF LISTED CHEMICALS AND CERTAIN MACHINES § 1310.13 Exemption of chemical mixtures; application. (a... application of all or any part of the Act a chemical mixture consisting of two or more chemical components,...

  14. Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications

    NASA Astrophysics Data System (ADS)

    Raafat, Amany I.; Eid, Mona; El-Arnaouty, Magda B.

    2012-07-01

    A series of superabsorbent hydrogel based on carboxymethylcellulose (CMC) and polyvinylpyrrolidone (PVP) crosslinked with gamma irradiation have been proposed for agriculture application. The effect of preparation conditions such as feed solution composition and absorbed irradiation dose on the gelation and swelling degree was evaluated. The structure and the morphology of the superabsorbent CMC/PVP hydrogel were characterized using Fourier transform infrared spectroscopy technique (FTIR), and scanning electron microscope (SEM). Effect of ionic strength and cationic and anionic kinds on the swelling behavior of the obtained hydrogel was investigated. Urea as an agrochemical model was loaded onto the obtained hydrogel to provide nitrogen (N) nutrients. The water retention capability and the urea release behavior of the CMC/PVP hydrogels were investigated. It was found that, the obtained CMC/PVP hydrogels have good swelling degree that greatly affected by its composition and absorbed dose. The swelling was also extremely sensitive to the ionic strength and cationic kind. Owing to its considerable slow urea release, good water retention capacity, being economical, and environment-friendly, it might be useful for its application in agriculture field.

  15. Volumetric and selective heating in agriculture and chemistry applications

    NASA Astrophysics Data System (ADS)

    Raghavan, Vijaya G.; Dai, Jianming; Sunjka, Predrag S.

    2004-04-01

    Microwaves of 2450 MHz have been attracting attention from researchers of various fields. The most distinguished characteristics of microwave from conventional heating are volumetric and selectivity. Due to these characteristics, when combined with convective air, microwave-assisted drying can greatly reduce drying time and energy usage to achieve certain moisture content. These characteristics also make it possible to combine this highly efficient heating method with vacuum drying by passing the energy through a microwave-transparent vacuum chamber. Microwaves also have various applications in chemistry such as extraction of natural products from plant materials and microwave-assisted synthesis. In this paper, the work conducted in our lab on the applications of microwave energy in agriculture and chemistry is briefly reviewed.

  16. Ground-water flow and effects of agricultural application of sewage sludge and other fertilizers on the chemical quality of sediments in the unsaturated zone and ground water near Platteville, Colorado, 1985-89

    USGS Publications Warehouse

    Gaggiani, N.G.

    1995-01-01

    From fall 1985 through 1989, 6,431 dry tons of anaerobic, digested, sewage sludge were applied as a fertilizer on about 1 square mile of sandy farm- land near Platteville, Colorado. Mean nitrite plus nitrate as nitrogen concentrations in the surficial aquifer increased during the period of sewage- sludge application. However, the effects of municipal sewage sludge applied to the soil in section 16 are difficult to ascertain because anhydrous ammonia and cattle and chicken manure were applied to section 16 prior to sewage-sludge application and anhydrous ammonia was applied during the period of sewage-sludge application. Mostly ammonia plus organic nitrogen was detected in the unsaturated zone while nitrite plus nitrate as nitrogen predominated in the surficial aquifer. The areas of largest concentrations of nitrite plus nitrate as nitrogen were in the northeastern and southwestern quarter sections os section 16. Changes in nitrite plus nitrate as nitrogen concentrations with depth and time were detected in water samples from the multilevel ground-water sampling devices in the surficial aquifer. Nitrogen probably entered the saturated zone in the irrigated areas and low temporarily ponded areas and moved to the northeast with water in the surficial aquifer.

  17. Market assessment of photovoltaic power systems for agricultural applications worldwide

    SciTech Connect

    Cabraal, A.; Delasanta, D.; Rosen, J.; Nolfi, J.; Ulmer, R.

    1981-11-01

    This report integrates and extrapolates worldwide the results of the agricultural sector PV market assessments conducted in the Philippines, Nigeria, Mexico, Morocco, and Colombia. The types of applications evaluated are those requiring less than 15 kW of power and operate in a stand-alone mode. The study focused on the needs of low- and middle-income countries. The major conclusions derived from the studies were as follows: PV will be competitive in applications requiring 2 - 3 kW of power prior to 1983; by 1986 PV system competitiveness will extend to applications requiring 4 - 6 kW of power, due to capital constraints, the private sector market may be restricted to applications requiring less than about 2 kW of power; the ultimate purchase of larger systems will be governments, either through direct purchase or loans from development banks. Though fragmented, significant agriculture sector market for PV exists; however the market for PV in telecommunications, signalling, rural services, and TV will be larger. Major market-related factors influencing the potential for US PV sales are: lack of awareness; high first costs; shortage of long-term capital; competition from German, French and Japanese companies who have their governments support; and low fuel prices in capital surplus countries. Strategies that may aid in overcoming some of these problems are: setting up of a trade association aimed at overcoming problems due to lack of awareness, innovative financing schemes such as lease arrangements, and designing products to match current user needs as opposed to attempting to change consumer behavior.

  18. Market assessment of photovoltaic power systems for agricultural applications in the Philippines

    SciTech Connect

    Cabraal, R.A.; Delasanta, D.; Burrill, G.

    1981-04-01

    The following subjects are included: demographic overview;Philippine development plans; financing of energy, agriculture and development projects; potential photovoltaic applications in Philippine agriculture; market assessment; and business environment. The applications cover fish/prawn hatchery operations, irrigation, maintenance facilities, grinding and milling, fish cultivation, salt production, ice manufacture, and agricultural extension services. (MHR)

  19. Agricultural Literacy: Clarifying a Vision for Practical Application

    ERIC Educational Resources Information Center

    Powell, David; Agnew, David; Trexler, Cary

    2008-01-01

    "Agricultural literacy" is a working concept with considerable range in meaning and impact. An overview of agricultural literacy curricula shows complementary deductive and inductive approaches to the systematic incorporation of agricultural education in K-12 classrooms. Based on positions discussed at the 2005 Agricultural Literacy Special…

  20. Applications of remote sensing to precision agriculture with dual economic and environmental benefits

    NASA Astrophysics Data System (ADS)

    Seielstad, George; Laguette, Soizik; Seelan, Santhosh K.; Lawrence, Rick; Nielsen, Gerald A.; Clay, David; Dalsted, Kevin

    2002-01-01

    In the U.S. Northern Great Plains, growing seasons are short but extremely productive. Farms and ranches are large, so many of precision agriculture's early adopters reside in the region. Crop yield maps at season's end reveal sizable variations across fields. Farm management relying upon uniform chemical applications is ineffective and wasteful. We provided information about crop and range status in near- real-time, so that in-season decisions could be made to optimize final yields and minimize environmental degradation. We created learning communities, in which information is shared among scientists, farmers, ranchers, and data providers. The new information for agricultural producers was satellite and aerial imagery. Value-added information was derived from ETM+, AVHRR, IKONOS, and MIDOS sensors. The emphasis was on reducing the time between acquisition of data by a satellite and delivery of value-added products to farmers and ranchers. To distribute large spatial data sets in short times to rural users we relied upon satellite transmission (Direct PC). Results include: (1) management zone delineation, (2) variable-rate fertilizer applications, (3) weed detection, (4) irrigation efficiency determination, (5) detection of insect infestation, (6) specification of crop damage due to inadvertent chemical application, and (7) determination of livestock carrying capabilities on rangelands.

  1. Pesticide Use and Cutaneous Melanoma in Pesticide Applicators in the Agricultural Heath Study

    PubMed Central

    Dennis, Leslie K.; Lynch, Charles F.; Sandler, Dale P.; Alavanja, Michael C.R.

    2010-01-01

    Background Melanoma rates continue to increase; however, few risk factors other than sun sensitivity and ultraviolet radiation (including sun exposure) have been identified. Although studies of farmers have shown an excess risk of melanoma and other skin cancers, it is unclear how much of this is related to sun exposure compared with other agricultural exposures. Methods We examined dose–response relationships for 50 agricultural pesticides and cutaneous melanoma incidence in the Agricultural Health Study cohort of licensed pesticide applicators, along with ever use of older pesticides that contain arsenic. Logistic regression was used to examine odds ratios (ORs) and 95% confidence intervals (CIs) associated with pesticide exposure adjusted for age, sex, and other potential confounders. Results We found significant associations between cutaneous melanoma and maneb/mancozeb (63 exposure days: OR = 2.4; 95% CI, 1.2–4.9; trend p = 0.006), parathion (≥ 56 exposure days: OR = 2.4; 95% CI, 1.3–4.4; trend p = 0.003), and carbaryl (≥ 56 exposure days: OR = 1.7; 95% CI, 1.1–2.5; trend p = 0.013). Other associations with benomyl and ever use of arsenical pesticides were also suggested. Conclusions Most previous melanoma literature has focused on host factors and sun exposure. Our research shows an association between several pesticides and melanoma, providing support for the hypotheses that agricultural chemicals may be another important source of melanoma risk. PMID:20164001

  2. Mechanical properties and potential commercial applications of agricultural composites

    SciTech Connect

    Asadi, M.; Farokhi, S.; McCabe, S.L.

    1995-11-01

    This paper reveals information on the mechanical properties of the agricultural composites and their commercial potential as a substitute for plastics and woods leading to a lower cost for these products. Chopped and particulate agricultural co-products (hereafter referred to agro-fibers) such as wheat, brome hay, switchgrass, and corn were mixed at a ratio of 66:34 fiber/epoxy by volume to manufacture agricultural composites (hereafter referred to agrocomposites) using the hand lay-up molding technique. The manufactured composite samples were tested for their mechanical properties such as tensile stress, compressive stress, moisture absorption, and thermal expansion. According to results, chopped switchgrass agro-composite samples showed the highest tensile strength, yet less than that of soft woods and slightly higher than that of plastics (high density polyethylene known as HDPE). As a result, a second set of agro-composite samples using only chopped switchgrass was manufactured at 10%, 20%, 30%, 40%, and 50% agro-fiber content to obtain the optimal fiber/epoxy ratio for which agro-composite samples show the maximum tensile stress. The same procedure was followed for comprehensive strength, thermal expansion, and moisture absorption measurements. According to the obtained results, at 50:50, agro-composite samples showed the highest tensile stress at 2,925 psi compared to that of plastic at 2,000 psi and of soft wood at 6,600 psi. At 10:90 agro-fiber/epoxy, compressive strength of the agro-composite samples were 60% higher than that of plastic and 80% higher than that of soft woods. Thermal expansion and moisture absorption of the manufactured agro-composite samples showed better performances than both woods and plastics. Optimized agro-composite samples, due to their cost competitiveness and low weight, could replace woods and plastics in some applications. A small fraction of plastic and wood market wood lead to new source of revenues for farmers.

  3. Compact chemical energy system for seismic applications

    DOEpatents

    Engelke, Raymond P.; Hedges, Robert O.; Kammerman, Alan B.; Albright, James N.

    1998-01-01

    A chemical energy system is formed for producing detonations in a confined environment. An explosive mixture is formed from nitromethane (NM) and diethylenetriamine (DETA). A slapper detonator is arranged adjacent to the explosive mixture to initiate detonation of the mixture. NM and DETA are not classified as explosives when handled separately and can be safely transported and handled by workers in the field. In one aspect of the present invention, the chemicals are mixed at a location where an explosion is to occur. For application in a confined environment, the chemicals are mixed in an inflatable container to minimize storage space until it is desired to initiate an explosion. To enable an inflatable container to be used, at least 2.5 wt % DETA is used in the explosive mixture. A barrier is utilized that is formed of a carbon composite material to provide the appropriate barrel geometry and energy transmission to the explosive mixture from the slapper detonator system.

  4. Raman chemical imaging: Development and applications

    NASA Astrophysics Data System (ADS)

    Schaeberle, Michael D.

    Recent advances in electronically tunable filters, such as acousto-optic tunable filters (AOTF) and liquid crystal tunable filters (LCTF), combined with multispectral image processing strategies make Raman chemical imaging a powerful technique for the routine analysis of material chemical architecture. Raman chemical imaging combines Raman spectroscopy and digital imaging technology to assess material molecular composition and structure. Raman spectroscopy probes molecular composition and structure without being destructive to the sample. The spectrum for an analyte within even a complex host matrix is harnessed to generate unique contrast intrinsic to the analyte species without the use of stains, dyes, or contrast agents. This thesis provides a brief introduction to the field of Raman chemical imaging by describing the major methods employed. The research presented here focuses on wide field Raman imaging in conjunction with electronically tunable filters, and therefore a general methodology for performing Raman chemical imaging analysis of unknown samples is described. The AOTF and LCTF Raman chemical imaging microscopes developed during this research are also presented. The general operating principles of the AOTF and the LCTF are briefly discussed along with their specific implementation within the microscope based imaging systems. Raman chemical imaging represents an efficient, widely applicable approach for understanding the relationship between material molecular architecture and material function, which is central to the engineering of advanced materials. AOTF Raman chemical imaging has been employed in the visualization of the architecture of polypropylene and polyurethane blended polymers. High fidelity Raman images were and domains in the 3-5 mum ranges were differentiated. The AOTF Raman chemical imaging microscope has also been applied to the histopathological characterization of human breast tissue. A foreign polymer inclusion in the tissue was

  5. Agricultural chemicals in groundwater of the midwestern United States: Relations to land use

    USGS Publications Warehouse

    Kolpin, D.W.

    1997-01-01

    To determine the relations between land use and concentrations of selected agricultural chemicals (nitrate, atrazine residue [atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) + deethylatrazinc (2-amino-4-chloro-6-isopropylamino-s-triazine) + deisopropylatrazine (2-amino-4-chloro-6-ethylamino-s-triazine)], and alachlor residue [alachlor, [2-chloro-2′,6′-diethyl-N-(methoxymethyl) acetanilide] + alachlor ethanesulfonic acid (alachlor-ESA; 2-[(2,6-diethylphenyl)(methoxymethyl)amino]-2-oxoethanesulfonic acid)] in groundwater, detailed land use information based on accurate measurements from aerial photographs for the 1991 growing season was obtained within a 2-km radius surrounding 100 wells completed in near-surface unconsolidated aquifers in the midwestern USA. The most significant land use factors to the agricultural chemicals examined were: nitrate (amount of irrigated crop production, positive relation), atrazine residue (amount of irrigated crop production, positive relation), and alachlor residue (amount of highly erodible land, inverse relation). The investigation of smaller buffer sizes (size of circular area around sampled wells) proved insightful for this study. Additional land use factors having significant relations to all three agricultural chemicals were identified using these smaller buffer radii. The most significant correlations (correlation maxima) generally occurred at ≤500-m for nitrate and ≥1000-m for atrazine residue and alachlor residue. An attempt to improve the statistical relations to land use by taking hydrologic considerations into account (removing land outside the estimated most probable recharge area from the statistical analysis) was not as successful as anticipated. Only 45% of the nitrate, 32% of the atrazine residue, and 20% of the alachlor residue correlations were improved by a consideration of the estimated most probable recharge area.

  6. 20 CFR 655.1301 - Applications for temporary employment certification in agriculture.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false Applications for temporary employment certification in agriculture. 655.1301 Section 655.1301 Employees' Benefits EMPLOYMENT AND TRAINING... Applications for temporary employment certification in agriculture. (a) Application filing requirements. (1)...

  7. 20 CFR 655.1301 - Applications for temporary employment certification in agriculture.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 3 2014-04-01 2014-04-01 false Applications for temporary employment certification in agriculture. 655.1301 Section 655.1301 Employees' Benefits EMPLOYMENT AND TRAINING... Applications for temporary employment certification in agriculture. (a) Application filing requirements. (1)...

  8. 20 CFR 655.1301 - Applications for temporary employment certification in agriculture.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Applications for temporary employment certification in agriculture. 655.1301 Section 655.1301 Employees' Benefits EMPLOYMENT AND TRAINING... Applications for temporary employment certification in agriculture. (a) Application filing requirements. (1)...

  9. 20 CFR 655.1301 - Applications for temporary employment certification in agriculture.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 3 2013-04-01 2013-04-01 false Applications for temporary employment certification in agriculture. 655.1301 Section 655.1301 Employees' Benefits EMPLOYMENT AND TRAINING... Applications for temporary employment certification in agriculture. (a) Application filing requirements. (1)...

  10. Acute Pesticide Illnesses Associated with Off-Target Pesticide Drift from Agricultural Applications: 11 States, 1998–2006

    PubMed Central

    Lee, Soo-Jeong; Mehler, Louise; Beckman, John; Diebolt-Brown, Brienne; Prado, Joanne; Lackovic, Michelle; Waltz, Justin; Mulay, Prakash; Schwartz, Abby; Mitchell, Yvette; Moraga-McHaley, Stephanie; Gergely, Rita

    2011-01-01

    Background: Pesticides are widely used in agriculture, and off-target pesticide drift exposes workers and the public to harmful chemicals. Objective: We estimated the incidence of acute illnesses from pesticide drift from outdoor agricultural applications and characterized drift exposure and illnesses. Methods: Data were obtained from the National Institute for Occupational Safety and Health’s Sentinel Event Notification System for Occupational Risks–Pesticides program and the California Department of Pesticide Regulation. Drift included off-target movement of pesticide spray, volatiles, and contaminated dust. Acute illness cases were characterized by demographics, pesticide and application variables, health effects, and contributing factors. Results: From 1998 through 2006, we identified 2,945 cases associated with agricultural pesticide drift from 11 states. Our findings indicate that 47% were exposed at work, 92% experienced low-severity illness, and 14% were children (< 15 years). The annual incidence ranged from 1.39 to 5.32 per million persons over the 9-year period. The overall incidence (in million person-years) was 114.3 for agricultural workers, 0.79 for other workers, 1.56 for nonoccupational cases, and 42.2 for residents in five agriculture-intensive counties in California. Soil applications with fumigants were responsible for the largest percentage (45%) of cases. Aerial applications accounted for 24% of cases. Common factors contributing to drift cases included weather conditions, improper seal of the fumigation site, and applicator carelessness near nontarget areas. Conclusions: Agricultural workers and residents in agricultural regions had the highest rate of pesticide poisoning from drift exposure, and soil fumigations were a major hazard, causing large drift incidents. Our findings highlight areas where interventions to reduce off-target drift could be focused. PMID:21642048

  11. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    PubMed Central

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A. C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review. PMID:25356733

  12. Chemical compounds toxic to invertebrates isolated from marine cyanobacteria of potential relevance to the agricultural industry.

    PubMed

    Essack, Magbubah; Alzubaidy, Hanin S; Bajic, Vladimir B; Archer, John A C

    2014-11-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review. PMID:25356733

  13. The application of data mining technology in the quality and security of agricultural products

    NASA Astrophysics Data System (ADS)

    Li, Huaqin; Luo, Ying

    The quality and security of agricultural products is the hot issue with public attention in China and also one of the issues that Chinese government attaches great importance to. This paper describes the principle of data mining technology and based on the environmental information data of agricultural production and the quality-security testing data of agricultural products, analyses the application of data mining technology in the quality and security of agricultural products.

  14. Spills of Hydraulic Fracturing Chemicals on Agricultural Topsoil: Biodegradation, Sorption, and Co-contaminant Interactions.

    PubMed

    McLaughlin, Molly C; Borch, Thomas; Blotevogel, Jens

    2016-06-01

    Hydraulic fracturing frequently occurs on agricultural land. Yet the extent of sorption, transformation, and interactions among the numerous organic frac fluid and oil and gas wastewater constituents upon environmental release is hardly known. Thus, this study aims to advance our current understanding of processes that control the environmental fate and toxicity of commonly used hydraulic fracturing chemicals. Poly(ethylene glycol) surfactants were completely biodegraded in agricultural topsoil within 42-71 days, but their transformation was impeded in the presence of the biocide glutaraldehyde and was completely inhibited by salt at concentrations typical for oil and gas wastewater. At the same time, aqueous glutaraldehyde concentrations decreased due to sorption to soil and were completely biodegraded within 33-57 days. While no aqueous removal of polyacrylamide friction reducer was observed over a period of 6 months, it cross-linked with glutaraldehyde, further lowering the biocide's aqueous concentration. These findings highlight the necessity to consider co-contaminant effects when we evaluate the risk of frac fluid additives and oil and gas wastewater constituents in agricultural soils in order to fully understand their human health impacts, likelihood for crop uptake, and potential for groundwater contamination. PMID:27171137

  15. Open burning of agricultural biomass: Physical and chemical properties of particle-phase emissions

    NASA Astrophysics Data System (ADS)

    Hays, Michael D.; Fine, Philip M.; Geron, Christopher D.; Kleeman, Michael J.; Gullett, Brian K.

    We present the physical and chemical characterization of particulate matter (PM 2.5) emissions from simulated agricultural fires (AFs) of surface residuals of two major grain crops, rice ( Oryza sativa) and wheat ( Triticum aestivum L.). The O 2 levels and CO/CO 2 ratios of the open burn simulations are typical of the field fires of agricultural residues. In the AF plumes, we observe predominantly accumulation mode (100-1000 nm) aerosols. The mean PM 2.5 mass emission factors from replicate burns of the wheat and rice residuals are 4.7±0.04 and 13.0±0.3 g kg -1 of dry biomass, respectively. The combustion-derived PM emissions from wheat are enriched in K (31% weight/weight, w/w) and Cl (36% w/w), whereas the PM emissions from rice are largely carbonaceous (84% w/w). Molecular level gas chromatography/mass spectrometry analysis of PM 2.5 solvent extracts identifies organic matter that accounts for as much as 18% of the PM mass emissions. A scarcity of detailed PM-phase chemical emissions data from AFs required that comparisons among other biomass combustion groups (wildfire, woodstove, and fireplace) be made. Statistical tests for equal variance among these groups indicate that the degree to which molecular emissions vary is compound dependent. Analysis of variance testing shows significant differences in the mean values of certain n-alkane, polycyclic aromatic hydrocarbon (PAH), oxy-PAH, and sugar marker compounds common to the biomass combustion types. Individual pairwise comparisons of means at the combustion group level confirm this result but suggest that apportioning airborne PM to these sources may require a more comprehensive use of the chemical emissions fingerprints. Hierarchical clustering of source test observations using molecular markers indicates agricultural fuels as distinct from other types of biomass combustion or biomass species. Rough approximations of the total potential PM 2.5 emissions outputs from the combustion of the wheat and rice

  16. CFD applications in chemical propulsion engines

    NASA Technical Reports Server (NTRS)

    Merkle, Charles L.

    1991-01-01

    The present research is aimed at developing analytical procedures for predicting the performance and stability characteristics of chemical propulsion engines. Specific emphasis is being placed on understanding the physical and chemical processes in the small engines that are used for applications such as spacecraft attitude control and drag make-up. The small thrust sizes of these engines lead to low nozzle Reynolds numbers with thick boundary layers which may even meet at the nozzle centerline. For this reason, the classical high Reynolds number procedures that are commonly used in the industry are inaccurate and of questionable utility for design. A complete analysis capability for the combined viscous and inviscid regions as well as for the subsonic, transonic, and supersonic portions of the flowfield is necessary to estimate performance levels and to enable tradeoff studies during design procedures.

  17. Graphene Chemical Sensor for Heliophysics Applications

    NASA Technical Reports Server (NTRS)

    Sultana, Mahmooda; Herrero, Fred; Khazanov, George

    2013-01-01

    Graphene is a single layer of carbon atoms that offer a unique set of advantages as a chemical sensor due to a number of its inherent properties. Graphene has been explored as a gas sensor for a variety of gases, and molecular sensitivity has been demonstrated by measuring the change in electrical properties due to the adsorption of target species. In this paper, we discuss the development of an array of chemical sensors based on graphene and its relevance to plasma physics due to its sensitivity to radical species such as oxonium, hydron and the corresponding neutrals. We briefly discuss the great impact such sensors will have on a number of heliophysics applications such as ground-based manifestations of space weather.

  18. Chemical application of diffusion quantum Monte Carlo

    NASA Technical Reports Server (NTRS)

    Reynolds, P. J.; Lester, W. A., Jr.

    1984-01-01

    The diffusion quantum Monte Carlo (QMC) method gives a stochastic solution to the Schroedinger equation. This approach is receiving increasing attention in chemical applications as a result of its high accuracy. However, reducing statistical uncertainty remains a priority because chemical effects are often obtained as small differences of large numbers. As an example, the single-triplet splitting of the energy of the methylene molecule CH sub 2 is given. The QMC algorithm was implemented on the CYBER 205, first as a direct transcription of the algorithm running on the VAX 11/780, and second by explicitly writing vector code for all loops longer than a crossover length C. The speed of the codes relative to one another as a function of C, and relative to the VAX, are discussed. The computational time dependence obtained versus the number of basis functions is discussed and this is compared with that obtained from traditional quantum chemistry codes and that obtained from traditional computer architectures.

  19. Graphene chemical sensors for heliophysics applications

    NASA Astrophysics Data System (ADS)

    Sultana, Mahmooda; Herrero, Fred; Khazanov, George

    2013-10-01

    Graphene is a single layer of carbon atoms that offer a unique set of advantages as a chemical sensor due to a number of its inherent properties. Graphene has been explored as a gas sensor for a variety of gases, and molecular sensitivity has been demonstrated by measuring the change in electrical properties due to the adsorption of target species (Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Nat. Mater 2007, 6, 652-655. doi:10.1038/nmat1967). In this paper, we discuss the development of an array of chemical sensors based on graphene and its relevance to plasma physics due to its sensitivity to radical species such as O+, H+ and the corresponding neutrals. We briefly discuss the great impact such sensors will have on a number of heliophysics applications such as ground-based manifestations of space weather.

  20. 21 CFR 1310.13 - Exemption of chemical mixtures; application.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... any change in the quantitative or qualitative composition of a chemical mixture that has been granted... 21 Food and Drugs 9 2013-04-01 2013-04-01 false Exemption of chemical mixtures; application. 1310... REPORTS OF LISTED CHEMICALS AND CERTAIN MACHINES § 1310.13 Exemption of chemical mixtures; application....

  1. 21 CFR 1310.13 - Exemption of chemical mixtures; application.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... any change in the quantitative or qualitative composition of a chemical mixture that has been granted... 21 Food and Drugs 9 2014-04-01 2014-04-01 false Exemption of chemical mixtures; application. 1310... REPORTS OF LISTED CHEMICALS AND CERTAIN MACHINES § 1310.13 Exemption of chemical mixtures; application....

  2. 21 CFR 1310.13 - Exemption of chemical mixtures; application.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... any change in the quantitative or qualitative composition of a chemical mixture that has been granted... 21 Food and Drugs 9 2012-04-01 2012-04-01 false Exemption of chemical mixtures; application. 1310... REPORTS OF LISTED CHEMICALS AND CERTAIN MACHINES § 1310.13 Exemption of chemical mixtures; application....

  3. Agricultural Application of Higher Plants for Their Antimicrobial Potentials in China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes published research into Chinese medicinal and aromatic plants as sources of new crop protectants. Literature was reviewed based on our personal experience, reported antimicrobial activity against plant pathogens, novel chemical structures, and potential for agricultural utiliz...

  4. 40 CFR 455.60 - Applicability; description of repackaging of agricultural pesticides performed by refilling...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or custom blending, as defined in 40 CFR 167.3. (c) The provisions of this subpart do not apply to... repackaging of agricultural pesticides performed by refilling establishments subcategory. 455.60 Section 455... STANDARDS (CONTINUED) PESTICIDE CHEMICALS Repackaging of Agricultural Pesticides Performed at...

  5. 40 CFR 455.60 - Applicability; description of repackaging of agricultural pesticides performed by refilling...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or custom blending, as defined in 40 CFR 167.3. (c) The provisions of this subpart do not apply to... repackaging of agricultural pesticides performed by refilling establishments subcategory. 455.60 Section 455... STANDARDS (CONTINUED) PESTICIDE CHEMICALS Repackaging of Agricultural Pesticides Performed at...

  6. 40 CFR 455.60 - Applicability; description of repackaging of agricultural pesticides performed by refilling...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or custom blending, as defined in 40 CFR 167.3. (c) The provisions of this subpart do not apply to... repackaging of agricultural pesticides performed by refilling establishments subcategory. 455.60 Section 455... STANDARDS (CONTINUED) PESTICIDE CHEMICALS Repackaging of Agricultural Pesticides Performed at...

  7. 40 CFR 455.60 - Applicability; description of repackaging of agricultural pesticides performed by refilling...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... defined in 40 CFR 167.3. (c) The provisions of this subpart do not apply to wastewater discharges from... repackaging of agricultural pesticides performed by refilling establishments subcategory. 455.60 Section 455... STANDARDS PESTICIDE CHEMICALS Repackaging of Agricultural Pesticides Performed at Refilling...

  8. 40 CFR 455.60 - Applicability; description of repackaging of agricultural pesticides performed by refilling...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... defined in 40 CFR 167.3. (c) The provisions of this subpart do not apply to wastewater discharges from... repackaging of agricultural pesticides performed by refilling establishments subcategory. 455.60 Section 455... STANDARDS PESTICIDE CHEMICALS Repackaging of Agricultural Pesticides Performed at Refilling...

  9. New oilseed crops for fuels and chemicals: ecological and agricultural considerations

    SciTech Connect

    Draper, H.M. III

    1982-01-01

    A new approach to agriculture involving oilseed crops for fuels and chemicals is proposed. Such an approach to biomass energy would be designed to benefit the limited-resource farmer in the United States and the Third World, while at the same time not aggravating global ecological problems such as deforestation and desertification. Since food versus fuel conflicts arise when plants are grown for industrial uses on good lands, productivity questions are examined, with the conclusion that fundamental biological constraints will limit yields on marginal lands. Conventional vegetable oil crops are limited in their climatic requirements or are not well adapted to limited-resource farming; therefore, new oilseeds more adaptable to small farming are proposed. Such plants would be for specialty chemicals or to meet local energy needs. Chemicals produced would be low-volume, labor-intensive, and possibly high-priced. A list of 281 potential new oilseeds is provided, and each is classified according to potential, multiple product potential, and vegetative characteristics. Using climatic data which are available for most areas, a method of making rough productivity estimates for unconventional wild plant oilseeds is proposed, and example resource estimates are provided for the southeastern United States.

  10. Fly ash application in nutrient poor agriculture soils: impact on methanotrophs population dynamics and paddy yields.

    PubMed

    Singh, Jay Shankar; Pandey, Vimal Chandra

    2013-03-01

    There are reports that the application of fly ash, compost and press mud or a combination thereof, improves plant growth, soil microbial communities etc. Also, fly ash in combination with farmyard manure or other organic amendments improves soil physico-chemical characteristics, rice yield and microbial processes in paddy fields. However, the knowledge about the impact of fly ash inputs alone or in combination with other organic amendments on soil methanotrophs number in paddy soils is almost lacking. We hypothesized that fly ash application at lower doses in paddy agriculture soil could be a potential amendment to elevate the paddy yields and methanotrophs number. Here we demonstrate the impact of fly ash and press mud inputs on number of methanotrophs, antioxidants, antioxidative enzymatic activities and paddy yields at agriculture farm. The impact of amendments was significant for methanotrophs number, heavy metal concentration, antioxidant contents, antioxidant enzymatic activities and paddy yields. A negative correlation was existed between higher doses of fly ash-treatments and methanotrophs number (R(2)=0.833). The content of antioxidants and enzymatic activities in leaves of higher doses fly ash-treated rice plants increased in response to stresses due to heavy metal toxicity, which was negatively correlated with rice grain yield (R(2)=0.944) and paddy straw yield (R(2)=0.934). A positive correlation was noted between heavy metals concentrations and different antioxidant and enzymatic activities across different fly ash treated plots.The data of this study indicate that heavy metal toxicity of fly ash may cause oxidative stress in the paddy crop and the antioxidants and related enzymes could play a defensive role against phytotoxic damages. We concluded that fly ash at lower doses with press mud seems to offer the potential amendments to improving soil methanotrophs population and paddy crop yields for the nutrient poor agriculture soils. PMID:23260239

  11. Chemical changes in agricultural soils of Korea: data review and suggested countermeasures.

    PubMed

    Jo, I S; Koh, M H

    2004-01-01

    The monitoring of chemical properties, including heavy metals, in soils is necessary if better management and remediation practices are to be established for polluted soils. The National Institute of Agricultural Science and Technology initiated a monitoring study that investigated fertility and heavy metal contents of the benchmarked soils. The study covered paddy soils, upland soils, and horticultural soils in the plastic film houses, and orchard soils throughout the Korea from 1990 to 1998. Likewise, 4047 samples of paddy and 2534 samples of plastic house in 1999 and 2000 were analyzed through the Soil Environment Conservation Act. Soil chemical properties such as pH, organic matter, available phosphate and extractable calcium, magnesium and potassium contents, and heavy metal contents such as cadmium, copper, lead, zinc, arsenic, mercury, and cobalt contents were analyzed. The study showed that the average contents of organic matter, available phosphate, and extractable potassium rapidly increased in plastic house soils than in upland or paddy soils. Two kinds of fertilizer recommendation systems were established for the study: the standard levels by national soil average data for 77 crops and the recommendation by soil test for 70 crops. Standard nitrogen fertilizer application levels for cereal crops changed from 94 kg/ha in 1960s, 99 kg/ha in 1970s, 110 kg/ha in 1980s to 90 kg/ha in 1990s. The K2O-fertilizer also changed from 67 kg/ha in 1960s, 76 kg/ha in 1970s, 92 kg/ha in 1980s, and only 44 kg/ha in 1990s. In rice paddy fields, the average contents of Cd, Cu, Pb, and Zn in surface soils (0-15 cm depth) were 0.11 mg kg(-1) (ranged from 0 to 1.01), 4.70 mg kg(-1) (0-41.59), 4.84 mg kg(-1) (0-66.44), and 4.47 mg kg(-1) (0-96.70), respectively. In the uplands, the average contents of Cd, Cu, Pb, Zn, and As in surface soils (0-15 cm depth) were 0.135 mg kg(-1) (ranged from 0 to 0.660), 2.77 mg kg(-1) (0.07-78.24), 3.47 mg kg(-1) (0-43.00), 10.70 mg kg(-1) (0

  12. A comparison of forest and agricultural shallow groundwater chemical status a century after land use change.

    PubMed

    Kellner, Elliott; Hubbart, Jason A; Ikem, Abua

    2015-10-01

    Considering the increasing pace of global land use change and the importance of groundwater quality to humans and aquatic ecosystems, studies are needed that relate land use types to patterns of groundwater chemical composition. Piezometer grids were installed in a remnant bottomland hardwood forest (BHF) and a historic agricultural field (Ag) to compare groundwater chemical composition between sites with contrasting land use histories. Groundwater was sampled monthly from June 2011 to June 2013, and analyzed for 50 physiochemical metrics. Statistical tests indicated significant differences (p<0.05) between the study sites for 32 out of 50 parameters. Compared to the Ag site, BHF groundwater was characterized by significantly (p<0.05) lower pH, higher electrical conductivity, and higher concentrations of total dissolved solids and inorganic carbon. BHF groundwater contained significantly (p<0.05) higher concentrations of all nitrogen species except nitrate, which was higher in Ag groundwater. BHF groundwater contained significantly (p<0.05) higher concentrations of nutrients such as sulfur, potassium, magnesium, calcium, and sodium, relative to the Ag site. Ag groundwater was characterized by significantly (p<0.05) higher concentrations of trace elements such as arsenic, cadmium, cobalt, copper, molybdenum, nickel, and titanium. Comparison of shallow groundwater chemical composition with that of nearby receiving water suggests that subsurface concentration patterns are the result of contrasting site hydrology and vegetation. Results detail impacts of surface vegetation alteration on subsurface chemistry and groundwater quality, thereby illustrating land use impacts on the lithosphere and hydrosphere. This study is among the first to comprehensively characterize and compare shallow groundwater chemical composition at sites with contrasting land use histories. PMID:26005752

  13. Agricultural chemical interchange between ground water and surface water, Cedar River basin, Iowa and Minnesota; a study description

    USGS Publications Warehouse

    Squillace, P.J.; Liszewski, M.J.; Thurman, E.M.

    1993-01-01

    A review of the data collected in the Cedar River basin, Iowa and Minnesota, indicates that atrazine is consistently detected in the main-stem river at concentrations greater than 0.10 microgram per liter even during periods of extended base flow. The primary source of atrazine in the river during these periods of base flow is not known. This study is designed to determine how atrazine and other agricultural chemicals move between ground water and surface water in an alluvial aquifer adjacent to a river. A site has been selected in an unfarmed area adjacent to the Cedar River near Bertram, Iowa, to determine how the concentrations of agricultural chemicals in the alluvial aquifer change as a result of bank storage of surface water. Research also is planned to determine the contribution of agricultural chemicals discharged by the alluvial aquifer into the river during base flow.

  14. Agricultural chemicals in ground and surface water in a small watershed in Clayton County, Iowa, 1988-91

    USGS Publications Warehouse

    Kalkhoff, S.J.; Schaap, B.D.

    1995-01-01

    Nitrogen was present in all water samples from Deer Creek. Nitrate concentrations ranged from 0.70 to 17 mg/L. Alachlor was detected in 11 percent of the samples, atrazine in 69 percent, cyanazine in 19 percent, and metolachlor in 33 percent. Alachlor concentrations ranged from less than 0.10 to 0.53 ug/L, atrazine ranged from less than 0.10 to 55 ug/L, cyanazine ranged from less than 0.10 to 12 ug/L, and metolachlor ranged from less than 0.10 to 69 ug/L. Herbicide detections occurred most frequently in late spring and early summer during or just following chemical application. Overland flow is an important source of nitrogen and herbicides to Deer Creek. Substantial amounts of agricultural chemicals are transported from the watershed. As much as 4,700 pounds, or 6.7 pounds per acre, of nitrogen were estimated to be transported from the watershed in 1 year. Nitrogen loads transported from the Deer Creek watershed were less during dry years than during years with average or greater than average rainfall.

  15. What is needed to understand feedback mechanisms from agricultural and climate changes that can alter the hydrological system and the transport of sediments and agricultural chemicals?

    NASA Astrophysics Data System (ADS)

    Coupe, Richard; Payraudeau, Sylvain; Babcsányi, Izabella; Imfeld, Gwenaël

    2015-04-01

    Modern agriculture activities are constantly changing as producers try to produce a crop, keep their soils fertile, control pests, and prevent contamination of air and water resources. Because most of the world's arable land is already in production we must become more efficient if we are to feed and clothe the world's growing population as well as do this in a sustainable manner; leaving a legacy of fertile soil and clean water resources for our descendants. The objective of this paper is to demonstrate the importance of historical datasets and of developing new strategies to understand the effects of changing agricultural systems on the environment. Scientists who study agriculture and its effects on water must constantly adapt their strategies and evaluate how changing agricultural activities impact the environment. As well as understand from historical datasets on hydrology and agriculture how a changing climate or agricultural activity such as a change in tillage method might impact the processes that determine the movement of agricultural chemicals off of the target site. The 42.7 ha Hohrain (Rouffach, Alsace, France) vineyard experimental catchment offers several examples of how scientists have used historical data from this catchment to understand how the transport of agricultural chemicals may change due to a changing climate as well as how new strategies are developed for understanding the transport of agricultural chemicals. Runoff is a major process of pesticide transport from agricultural land to downstream aquatic ecosystems. The impact of rainfall characteristics on the transport of runoff-related pesticides is crucial to understanding how to prevent or minimize their movement now, but also in understanding how climate change might affect runoff. If we understand how rainfall characteristics affect the transport of pesticides, we can use climate change models to predict how those characteristics might change in the future and be better prepared for

  16. Chemical applications of synchrotron radiation: Workshop report

    SciTech Connect

    Not Available

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.

  17. Application of ultrasonics to chemical analysis

    SciTech Connect

    Chmilenko, F.A.; Baklanov, A.N.; Sidorova, L.P.; Piskun, Yu.M.

    1994-06-01

    Ultrasonics has found a wide utility in chemistry, making available energy densities of the order of 10{sup 3} to 10{sup 6} W/cm{sup 3}, which is 3-5 orders of magnitude greater than the energy densities used in some physical methods like radiolysis and photolysis. The paper overviews several techniques of ultrasound to chemical analysis with the greatest effect obtained by using a wide range of ultrasound frequencies. The methods described include: using different ultrasound properties like velocity of propagation, decay rate, acoustic resistance, and relaxational absorption as analytical signals; the use of sonoluminescence; applications for oxidation, coagulating, and dispersion by ultrasound methods; use of ultrasound for sample preparation; and the use of ultrasound for widening the scope of the atomic spectroscopy and electrochemcial methods of analysis.

  18. 21 CFR 1310.13 - Exemption of chemical mixtures; application.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Exemption of chemical mixtures; application. 1310.13 Section 1310.13 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE RECORDS AND REPORTS OF LISTED CHEMICALS AND CERTAIN MACHINES § 1310.13 Exemption of chemical mixtures; application. (a) The Administrator may, by publication...

  19. Alternative control technology document: Control of VOC emissions from the application of agricultural pesticides

    SciTech Connect

    Not Available

    1993-03-01

    In many States, some of the ozone nonattainment areas are comprised primarily of agricultural counties where a potentially significant contribution to the ozone may result from area sources of volatile organic compounds (VOC's) emissions. A potential source of VOC emissions in agricultural counties is the release of organic compounds from the application of agricultural pesticides. The report provides technical information that State and local agencies can consider while developing strategies for reducing VOC emissions.

  20. Application Of Colored Petri Net In Modeling Ofan Agricultural Enterprise Informationmanagement System

    NASA Astrophysics Data System (ADS)

    Zhang, Fangtian; Wang, Kaiyi; Sui, Jin; Liu, Chang; Liu, Zhongqiang

    Business system modeling of an agricultural enterprise is one of the difficulties in developing and researching an agricultural enterprise management information system. Given the inadequate description of concurrent and synchronal events in the traditional modeling methods, this paper presents a modeling method, which uses Colored Petri Net. The paper discusses the application of Colored Petri Net in system modeling with the example of an agricultural enterprise production management system model, and analyzes the feasibility and effectiveness of that model.

  1. Effect of Agricultural Amendments on Cajanus cajan (Pigeon Pea) and Its Rhizospheric Microbial Communities--A Comparison between Chemical Fertilizers and Bioinoculants.

    PubMed

    Gupta, Rashi; Bisaria, V S; Sharma, Shilpi

    2015-01-01

    Inoculation of leguminous seeds with bioinoculants has been practiced in agriculture for decades to ameliorate grain yield by enhanced growth parameters and soil fertility. However, effective enhancement of plant growth parameters results not only from the direct effects these bioinoculants impose on them but also from their non-target effects. The ability of bioinoculants to reduce the application of chemicals for obtaining optimum yield of legume appears to be of great ecological and economic importance. In the present study, we compared the influence of seed inoculation of Cajanus cajan with a microbial consortium, comprising Bacillus megaterium, Pseudomonas fluorescens and Trichoderma harzianum, with that of application of chemical fertilizers on plant's growth parameters and its rhizospheric microbial communities. Real-time PCR assay was carried out to target the structure (16S rRNA) and function (nitrogen cycle) of rhizospheric microbiota, using both DNA and RNA as markers. The results showed that the microbial consortium was the most efficient in increasing grain yield (2.5-fold), even better than the recommended dose of chemical fertilizers (by 1.2-fold) and showed enhancement in nifH and amoA transcripts by 2.7- and 2.0-fold, respectively. No adverse effects of bioinoculants' application were observed over the rhizospheric microbial community, rendering the consortium to be safe for release in agricultural fields. PMID:26231030

  2. Effect of Agricultural Amendments on Cajanus cajan (Pigeon Pea) and Its Rhizospheric Microbial Communities – A Comparison between Chemical Fertilizers and Bioinoculants

    PubMed Central

    Gupta, Rashi; Bisaria, V. S.; Sharma, Shilpi

    2015-01-01

    Inoculation of leguminous seeds with bioinoculants has been practiced in agriculture for decades to ameliorate grain yield by enhanced growth parameters and soil fertility. However, effective enhancement of plant growth parameters results not only from the direct effects these bioinoculants impose on them but also from their non-target effects. The ability of bioinoculants to reduce the application of chemicals for obtaining optimum yield of legume appears to be of great ecological and economic importance. In the present study, we compared the influence of seed inoculation of Cajanus cajan with a microbial consortium, comprising Bacillus megaterium, Pseudomonas fluorescens and Trichoderma harzianum, with that of application of chemical fertilizers on plant’s growth parameters and its rhizospheric microbial communities. Real-time PCR assay was carried out to target the structure (16S rRNA) and function (nitrogen cycle) of rhizospheric microbiota, using both DNA and RNA as markers. The results showed that the microbial consortium was the most efficient in increasing grain yield (2.5-fold), even better than the recommended dose of chemical fertilizers (by 1.2-fold) and showed enhancement in nifH and amoA transcripts by 2.7- and 2.0-fold, respectively. No adverse effects of bioinoculants' application were observed over the rhizospheric microbial community, rendering the consortium to be safe for release in agricultural fields. PMID:26231030

  3. Fate of triclosan in agricultural soils after biosolid applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triclosan (5-chloro-2-[2,4-dichloro-phenoxy]-phenol (TCS) is a bactericidal compound that is added to a wide variety of household and personal care products. The consumer use of these products releases TCS into urban wastewater and this compound ends up in the environment when agricultural land is ...

  4. Application of Geo-refrenced Geophysical Measurements to Precision Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop yield varies within a field because conventional farming manages fields uniformly with no consideration for spatial variability. Site-specific management units (SSMUs), a key component of precision agriculture, have been proposed as a means of handling the spatial variability of various factor...

  5. Applications of WEPS and SWEEP to non-agricultural lands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion by wind is a serious problem on agricultural lands throughout the United States and the world. Dust from wind erosion obscures visibility and pollutes the air. It fills road ditches where it can impact water quality, causes automobile accidents, fouls machinery, and imperils animal an...

  6. Single application of Sewage Sludge to an Alluvial Agricultural Soil - impacts on Soil Quality

    NASA Astrophysics Data System (ADS)

    Suhadolc, M.; Graham, D. B.; Hagn, A.; Doerfler, U.; Schloter, M.; Schroll, R.; Munch, J. C.; Lobnik, F.

    2009-04-01

    Limited information exists on the effects of sewage sludge on soil quality with regard to their ability to maintain soil functions. We studied effects of sewage sludge amendment on soil chemical properties, microbial community structure and microbial degradation of the herbicide glyphosate. Three months soil column leaching experiment has been conducted using alluvial soils (Eutric Fluvisol) with no prior history of sludge application. The soil was loamy with pH 7,4 and organic matter content of 3,5%. Soil material in the upper 2 cm of columns was mixed with dehydrated sewage sludge which was applied in amounts corresponding to the standards governing the use of sewage sludge for agricultural land. Sludge did increase some nutrients (total N, NH4+, available P and K, organic carbon) and some heavy metals contents (Zn, Cu, Pb) in soil. However, upper limits for heavy metals in agricultural soils were not exceeded. Results of heavy metal availability in soil determined by sequential extraction will be also presented. Restriction fragment length polymorphism (RFLP) analyses of 16s/18s rDNA, using universal fungal and bacterial primers, revealed clear shifts in bacterial and fungal community structure in the upper 2 cm of soils after amendment. Fungal fingerprints showed greater short term effects of sewage sludge, whereas sewage sludge seems to have prolonged effects on soil bacteria. Furthermore, sewage sludge amendment significantly increased glyphosate degradation from 21.6±1% to 33.6±1% over a 2 months period. The most probable reasons for shifts in microbial community structure and increased degradation of glyphosate are beneficial alterations to the physical-chemical characteristics of the soil. Negative effects of potentially toxic substances present in the sewage sludge on soil microbial community functioning were not observed with the methods used in our study.

  7. Using Chemical Tracers to Estimate Pesticide Mass Discharge in an Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Simmons, A. N.; Allen-King, R. M.; Van Biersel, T. P.; Keller, C. K.; Smith, J. L.

    2001-12-01

    The goal of this research is to use environmental tracers to quantify the contributions of subsurface and surface runoff to predict the mass discharge of non-point source agricultural pollutants to rivers at multiple scales of study. Easily measured chemical tracers, such as electrical conductivity (EC), are used to distinguish ground and surface water contributions to the river system. The study area is the Missouri Flat Creek watershed, a 14,400 ha semi-arid dryland agricultural setting located near Pullman, WA. Ground and surface water samples are collected at approximately two-week intervals from an ephemeral stream and a tile drain located in actively farmed and topographically constrained fields ( ~20 ha), and from seven stream-gaging stations. Surface water discharge is monitored continuously. Samples are routinely analyzed for two pesticides (the insecticide lindane or gamma-hexachlorocyclohexane (HCH) and the herbicide triallate, S-(2,3,3-trichloroallyl) diisopropylthiocarbamate), a nutrient (nitrate), and the tracers EC and silica. Lindane is applied as a seed coating on most spring and fall crops in the region. Observed lindane concentrations in the different hydrologic reservoirs ranged over approximately two orders of magnitude, from typically less than the detection limit ( ~0.005 μ g/L) in most soil pore water and groundwater samples to a weighted mean of 0.25 μ g/L in field (ephemeral stream) surface runoff. A two-component, ground and surface water, hydrograph separation was performed using tile drain and ephemeral stream tracer concentrations from field plots to represent groundwater and surface runoff end-members. The hydrograph separation was used to predict lindane discharge. Reasonable agreement between model and observed lindane discharge timing and trend supports the hypothesis that in-stream pesticide is derived from annual surface runoff. During the high flow winter months, the model predictions are two to five times greater than

  8. Agricultural chemicals and the quality of prairie-pothole wetlands for adult and juvenile waterfowl -- what are the concerns?

    USGS Publications Warehouse

    Grue, C.E.; Tome, M.W.; Swanson, G.A.; Borthwick, S.M.; DeWeese, L.R.

    1988-01-01

    A review of the literature and results of ongoing studies indicates that the potential for agricultural chemicals, particularly aerially-applied insecticides, to enter prairie potholes and reduce the quality of these wetlands for waterfowl is great, and that a coordinated effort by farmers, wildlife managers, and regulatory agencies is needed to minimize these impacts

  9. Agricultural chemicals and the quality of prairie-pothole wetlands for adult and juvenile waterfowl - what are the concerns?

    USGS Publications Warehouse

    Grue, C.E.; Tome, M.W.; Swanson, G.A.; Borthwick, S.

    1988-01-01

    A review of the literature and results of ongoing studies indicates that the potential for agricultural chemicals, particularly aerially-applied insecticides, to enter prairie potholes and reduce the quality of these wetlands for waterfowl is great, and that a coordinated effort by farmers, wildlife managers, and regulatory agencies is needed to minimize these impacts.

  10. Market assessment of photovoltaic power systems for agricultural applications in Nigeria

    NASA Astrophysics Data System (ADS)

    Staples, D.; Steingass, H.; Nolfi, J.

    1981-10-01

    The market potential for stand-alone photovoltaic systems in agriculture was studied. Information is presented on technical and economically feasible applications, and assessments of the business, government and financial climate for photovoltaic sales. It is concluded that the market for stand-alone systems will be large because of the availability of captial and the high premium placed on high reliability, low maintenance power systems. Various specific applications are described, mostly related to agriculture.

  11. Market assessment of photovoltaic power systems for agricultural applications in Nigeria

    NASA Technical Reports Server (NTRS)

    Staples, D.; Steingass, H.; Nolfi, J.

    1981-01-01

    The market potential for stand-alone photovoltaic systems in agriculture was studied. Information is presented on technical and economically feasible applications, and assessments of the business, government and financial climate for photovoltaic sales. It is concluded that the market for stand-alone systems will be large because of the availability of captial and the high premium placed on high reliability, low maintenance power systems. Various specific applications are described, mostly related to agriculture.

  12. Chemical Composition of Wildland and Agricultural Biomass Burning Particles Measured Downwind During BBOP Study

    NASA Astrophysics Data System (ADS)

    Fortner, E.; Onasch, T. B.; Shilling, J.; Pekour, M. S.; Kleinman, L. I.; Sedlacek, A. J., III; Worsnop, D. R.

    2014-12-01

    The Biomass Burning Observation Project (BBOP), a Department of Energy (DOE) sponsored study, measured wildland fires in the Pacific Northwest and prescribed agricultural burns in the Central Southeastern US from the DOE Gulfstream-1 (G-1) aircraft platform over a four month period in 2013. The chemical composition of the emitted particulate emissions were characterized using an Aerodyne Soot Particle Aerosol Mass Spectrometer (SP-AMS) and will be presented in the context of the fire location and source. The SP-AMS was operated with both laser and resistively heated tungsten vaporizers, alternatively turning the laser vaporizer on and off. With the laser vaporizer off, the instrument operated as a standard HR-AMS. Under these sampling conditions, the non-refractory chemical composition of the biomass burning particles will be characterized as a function of the fuel type burned and the observed modified combustion efficiency and observed changes during downwind transport. Specific attention will focus on the level of oxidation (i.e., O:C, H:C, and OM:OC ratios), anhydrosugar, and aromatic content. With the laser vaporizer on, the SP-AMS was also sensitive to the refractory black carbon content, in addition to the non-refractory components, and will be presented within the context of technique-specific collection efficiencies. Under these sampling conditions, addition information on the mass of black carbon, the OM/BC ratio, and the RBC(coat-to-core) ratio will be examined, with a focus on correlating with the simultaneous optical measurements.

  13. Sewage sludge composting: quality assessment for agricultural application.

    PubMed

    Nafez, Amir Hossein; Nikaeen, Mahnaz; Kadkhodaie, Safora; Hatamzadeh, Maryam; Moghim, Sharareh

    2015-11-01

    In order to use sewage sludge (SS) composts in agriculture, it is extremely important to estimate the quality of compost products. The aim of this study was to investigate the quality of composted SS as a fertilizer and soil amendment especially in semi-arid areas. To determine the quality and agronomic value of the SS compost products, analyses on pH, electrical conductivity, organic matter content, C/N ratio, phytotoxicity, microbial load, and heavy metal content of composted anaerobically digested SS, with different proportions (1:1, 1:2, and 1:3 v/v) of green and dry plant waste, as bulking agents, were performed. The 1:2 and 1:3 mixtures of SS and green/dry plant waste were the most beneficial for composting, with final composts attaining high organic matter degradation and exhibiting low amounts of heavy metals, a relatively high germination index, and significant reduction of pathogens, suggesting the agricultural relevance of composted SS and green/dry plant waste at 1:2 and 1:3 (v/v) proportions. pH and electrical conductivity were also within the permissible limits. With respect to international standards, it appears that composted SS and green/dry plant waste at 1:2 and 1:3 proportions pose no threat to soil or plant quality if used in agriculture or land restoration. PMID:26508019

  14. Current status and future directions of precision agriculture for aerial application in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision aerial application in the USA is less than a decade old since the development of the first variable-rate aerial application system. Many areas of the United States rely on readily available agricultural airplanes or helicopters for pest management. Variable-rate aerial application provides...

  15. Unplanned releases and injuries associated with aerial application of chemicals, 1995-2002.

    PubMed

    Rice, Nancy; Messing, Rita; Souther, Larry; Berkowitz, Zahava

    2005-11-01

    For this article, records of the Hazardous Substances Emergency Events Surveillance (HSEES) system were reviewed to identify and describe acute, unplanned releases of agricultural chemicals and associated injuries related to aerial application during 1995-2002. Records of aerial-application accidents from the National Transportation Safety Board were also reviewed. Of the 54,090 events in the HSEES system for 1995-2002, 91 were identified as aerial-application events. The most commonly released substance was malathion. There were 56 victims; 12 died, and 34 required treatment at a hospital. A higher percentage of HSEES aerial-applicator events involved injury and death than did other HSEES transportation events. The relatively high number of injuries and fatalities underscores the need for precautions such as monitoring and limiting pilot cumulative exposures to pesticides, and using appropriate personal protective equipment and decontamination equipment. Emergency responders should be educated about the hazards associated with chemicals at aerial-application crash sites. PMID:16334093

  16. Streptococcus suis sorption on agricultural soils: role of soil physico-chemical properties.

    PubMed

    Zhao, Wenqiang; Liu, Xing; Huang, Qiaoyun; Cai, Peng

    2015-01-01

    Understanding pathogen sorption on natural soil particles is crucial to protect public health from soilborne and waterborne diseases. Sorption of pathogen Streptococcus suis on 10 agricultural soils was examined, and its correlations with soil physico-chemical properties were also elucidated. S. suis sorption isotherms conformed to the linear equation, with partition coefficients (Ks) ranging from 12.7 mL g(-1) to 100.1 mL g(-1). Bacteria were observed to sorb on the external surfaces of soil aggregates by scanning electron microscopy. Using Pearson correlation and linear regression analysis, solution pH was found to have significant negative correlations with Ks. Stepwise multiple regression and path analysis revealed that pH and cation exchange capacity (CEC) were the main factors influencing sorption behaviors. The obtained overall model (Ks=389.6-45.9×pH-1.3×CEC, R(2)=0.943, P<0.001) can accurately predict Ks values. However, the variability in Ks was less dependent on soil organic matter, specific surface area, soil texture and zeta potential, probably due to the internal-surface shielding phenomenon of soil aggregates. Additionally, the sorption trends cannot be interpreted by interaction energy barriers calculated using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, suggesting the limits of DLVO theory in describing pathogen sorption on natural soils. Our results also indicated soil pH and CEC should be preferentially considered when modeling S. suis sorption process. PMID:24968305

  17. Effect of application rate on fumigant degradation in five agricultural soils.

    PubMed

    Qin, Ruijun; Gao, Suduan; Ajwa, Husein; Hanson, Bradley D

    2016-01-15

    Soil fumigation is an important pest management tool for many high value crops. To address the knowledge gap of how fumigant concentration in soil impacts dissipation, and thereby efficacy, this research determined the degradation characteristics of four fumigants as affected by application rate. Laboratory incubation experiments were conducted to determine degradation rates of 1,3-dichloropropene (both cis- and trans isomers), chloropicrin (CP), dimethyl disulfide (DMDS), and methyl iodide (MeI) in five agricultural soils. Fitted to pseudo first-order kinetics, the degradation rate constant (k) of CP, DMDS, and MeI decreased significantly as application rate increased while the 1,3-D isomers were the least affected by rate. Half-lives increased 12, 17, and 6-fold for CP, DMDS, and MeI, respectively, from the lowest to the highest application rate. At low application rates, the degradation rate of all fumigants in the Hueneme sandy loam soil was reduced by 50-95% in sterilized soil compared to the biologically active controls. However, this difference became much smaller or disappeared at high application rates indicating that biodegradation dominates at low concentrations but chemical degradation is more important at high concentrations. When co-applied, CP degradation was enhanced with biodegradation remained above 50%, while 1,3-D degradation was either reduced or not changed. Among the fumigants tested, the relative importance of biodegradation was DMDS>CP>MeI>1,3-D. These results are useful for determining effective fumigation rates and for informing regulatory decisions on emission controls under different fumigation scenarios. PMID:26439645

  18. Physical and chemical characterization of biochars derived from different agricultural residues

    NASA Astrophysics Data System (ADS)

    Jindo, K.; Mizumoto, H.; Sawada, Y.; Sanchez-Monedero, M. A.; Sonoki, T.

    2014-12-01

    Biochar is widely recognized as an efficient tool for carbon sequestration and soil fertility. The understanding of its chemical and physical properties, which are strongly related to the type of the initial material used and pyrolysis conditions, is crucial to identify the most suitable application of biochar in soil. A selection of organic wastes with different characteristics (e.g., rice husk (RH), rice straw (RS), wood chips of apple tree (Malus pumila) (AB), and oak tree (Quercus serrata) (OB)) were pyrolyzed at different temperatures (400, 500, 600, 700, and 800 °C) in order to optimize the physicochemical properties of biochar as a soil amendment. Low-temperature pyrolysis produced high biochar yields; in contrast, high-temperature pyrolysis led to biochars with a high C content, large surface area, and high adsorption characteristics. Biochar obtained at 600 °C leads to a high recalcitrant character, whereas that obtained at 400 °C retains volatile and easily labile compounds. The biochar obtained from rice materials (RH and RS) showed a high yield and unique chemical properties because of the incorporation of silica elements into its chemical structure. The biochar obtained from wood materials (AB and OB) showed high carbon content and a high absorption character.

  19. Nutritional Applications of the Chemical Senses.

    ERIC Educational Resources Information Center

    Naim, Michael; Kare, Morley R.

    1984-01-01

    Discusses the relationship of taste and smell to ingestion, digestion, and metabolism. Indicates that the response of these physiological systems can be chemical specific and that chemical senses may play different roles in regulating diet during nutrient deficiency and during nutrient surplus situations. (JN)

  20. Application of capillary electrophoresis in agricultural and soil chemistry research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a modern analytical technique, capillary electrophoresis (CE) has become an attractive method for characterizing molecules wit high structural complexity and a wide range of molecular weights. CE can be used to analyze many natural chemical components such as acids, biogenic amines, peptides, pro...

  1. Chemical and microbiological hazards associated with recycling of anaerobic digested residue intended for agricultural use

    SciTech Connect

    Govasmark, Espen; Staeb, Jessica; Holen, Borge; Hoornstra, Douwe; Nesbakk, Tommy; Salkinoja-Salonen, Mirja

    2011-12-15

    In the present study, three full-scale biogas plants (BGP) were investigated for the concentration of heavy metals, organic pollutants, pesticides and the pathogenic bacteria Bacillus cereus and Escherichia coli in the anaerobically digested residues (ADR). The BGPs mainly utilize source-separated organic wastes and industrial food waste as energy sources and separate the ADR into an ADR-liquid and an ADR-solid fraction by centrifugation at the BGP. According to the Norwegian standard for organic fertilizers, the ADR were classified as quality 1 mainly because of high zinc (132-422 mg kg{sup -1} DM) and copper (23-93 mg kg{sup -1} DM) concentrations, but also because of high cadmium (0.21-0.60 mg kg{sup -1} DM) concentrations in the liquid-ADR. In the screening of organic pollutants, only DEHP (9.7-62.1 mg kg{sup -1}) and {Sigma} PAH 16 (0.2-1.98 mg kg{sup -1} DM) were detected in high concentrations according to international regulations. Of the 250 pesticides analyzed, 11 were detected, but only imazalil (<0.30-5.77 mg kg{sup -1} DM) and thiabendazol (<0.14-0.73 mg kg{sup -1} DM) were frequently detected in the ADR-fiber. Concentrations of imazalil and thiabendazol were highest during the winter months, due to a high consumption of citrus fruits in Norway in this period. Ten percent of the ADR-liquid samples contained cereulide-producing B. cereus, whereas no verotoxigenic E. coli was detected. The authors conclude that the risk of chemical and bacterial contamination of the food chain or the environment from agricultural use of ADR seems low.

  2. Physical and Chemical Properties of Bench Sediments in Self-Formed Agricultural Drainage Channels

    NASA Astrophysics Data System (ADS)

    Brooker, M.; Witter, J.; Islam, K. R.; Mouser, P. J.

    2014-12-01

    Two-stage ditches are a novel approach to managing agricultural drainage and are designed with floodplain benches set within the banks of a standard, trapezoidal channel. The floodplain bench serves to attenuate pollutant loads in surface waters through (1) capture of sediments, (2) nutrient assimilation by vegetation, and (3) transformation of C and residual N and P by indigenous microorganisms. Two-stage channels have been constructed in the tri-state region of Ohio-Michigan-Indiana over the last decade with initial results indicating C and P sequestration and enhanced N removal via denitrification. However, the sustainability and the net ecosystem services provided by these designs are relatively unknown beyond this timeframe. To better characterize the properties of two-stage ditches aged more than a decade, we examined the physical and chemical properties of sediments in unplanned, self-formed floodplain benches across 5 distinct Midwest ecoregions. Established benches were selected from 3 locations within each ecoregion and sampled along depth and bench-positional gradients from geo-referenced sites. The sediment-bound C, N, and P concentrations were quantified along with soil texture and channel geomorphology. Nutrient concentrations did not differ across bench position (upstream, downstream, near bank, or near channel); however, significant differences were observed between ecoregions. Steeper slopes and higher benches were associated with higher sand content than surrounding soils and promoted greater storage of C and N. Gradual slopes, on the other hand, were associated with higher clay and silt content. Across these specific ecoregions, P storage declined with increasing depth. However, this was unexplained by the particle size distribution at these depths. Further research is therefore needed to investigate whether P is released from waterlogged sediments or there is biological redistribution of this nutrient across the column depth.

  3. Study of guidance techniques for aerial application of agricultural compounds

    NASA Technical Reports Server (NTRS)

    Caldwell, J. D.; Dimmock, P. B. A.; Watkins, R. H.

    1980-01-01

    Candidate systems were identified for evaluation of suitability in meeting specified accuracy requirements for a swath guidance system in an agriculture aircraft. Further examination reduced the list of potential candidates to a single category, i.e., transponder type systems, for detailed evaluation. Within this category three systems were found which met the basic accuracy requirements of the work statement. The Flying Flagman, the Electronic Flagging and the Raydist Director System. In addition to evaluating the systems against the specified requirements, each system was compared with the other two systems on a relative basis. The conclusions supported by the analyses show the Flying Flagman system to be the most suitable system currently available to meet the requirements.

  4. A preliminary evaluation of volcanic rock powder for application in agriculture as soil a remineralizer.

    PubMed

    Ramos, Claudete G; Querol, Xavier; Oliveira, Marcos L S; Pires, Karen; Kautzmann, Rubens M; Oliveira, Luis F S

    2015-04-15

    Mineralogical and geochemical characteristics of volcanic rock residue, from a crushing plant in the Nova Prata Mining District, State of Rio Grande do Sul (RS), Brazil, in this work named rock powder, were investigated in view of its potential application as soil ammendment in agriculture. Abaut 52,400 m(3) of mining waste is generated annually in the city of Nova Prata without a proper disposal. The nutrients potentially available to plants were evaluated through leaching laboratory tests. Nutrient leaching tests were performed in Milli-Q water; citric acid solution 1% and 2% (AC); and oxalic acid solution 1% and 5% (AO). The bulk and leachable contents of 57 elements were determined by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). Mining waste were made up by CaO, K2O, SiO2, Al2O3, Fe2O3, and P2O5. The analysis by X-ray diffraction (XRD) showed the major occurence of quartz, anorthite, cristobalite, sanidine, and augite. The water leachable concentrations of all elements studied were lower than 1.0mg/kg, indicating their low solubility. Leaching tests in acidic media yield larger leachable fractions for all elements being studied are in the leachate of the AO 1%. These date usefulness of volcanic rock powder as potential natural fertilizer in agriculture in the mining district in Nova Prata, Rio Grande do Sul, Brazil to reduce the use of chemical fertilizers. PMID:25638652

  5. Real-time Detection of Particulate Chemical Composition Near Agricultural Facilities Using Mass Spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural facilities are the source of many types of particles and gases that can exhibit an influence on air quality. Emissions potentially impacting air quality from agricultural sources have become a concern for various state and federal regulatory agencies. Particle mass concentration influe...

  6. A selected bibliography: Application of Landsat digital multispectral scanner data to agriculture, forestry, and range management

    USGS Publications Warehouse

    Rohde, Wayne G.

    1977-01-01

    This bibliography contains citations of selected publications and technical reports dealing with the application of Landsat digital data analysis techniques to agriculture, forestry, and range management problems. All of the citations were published between 1973 and 1977. The citations reference publications and reports which discuss specific analysis techniques and specific resource applications.

  7. Pesticide Applicator Certification Training, Manual No. 1a: Agricultural Pest Control. a. Plant.

    ERIC Educational Resources Information Center

    Allen, W. A.; And Others

    This manual provides information needed to meet the minimum standards for certification as an applicator of pesticides in the agricultural plant pest control category. Adapted for the State of Virginia, the text discusses: (1) the basics of insecticides; (2) insect pests; (3) selection and calibration of applicator equipment; and (4) the proper…

  8. Computational Toxicology: Application in Environmental Chemicals

    EPA Science Inventory

    This chapter provides an overview of computational models that describe various aspects of the source-to-health effect continuum. Fate and transport models describe the release, transportation, and transformation of chemicals from sources of emission throughout the general envir...

  9. Application of methane fermentation technology into organic wastes in closed agricultural system

    NASA Astrophysics Data System (ADS)

    Endo, Ryosuke; Kitaya, Yoshiaki

    Sustainable and recycling-based systems are required in space agriculture which takes place in an enclosed environment. Methane fermentation is one of the most major biomass conversion technologies, because (1) it provides a renewable energy source as biogas including methane, suitable for energy production, (2) the nutrient-rich solids left after digestion can be used as compost for agriculture. In this study, the effect of the application of methane fermentation technology into space agriculture on the material and energy cycle was investigated.

  10. Applications of TIMS data in agricultural areas and related atmospheric considerations

    NASA Technical Reports Server (NTRS)

    Pelletier, R. E.; Ochoa, M. C.

    1986-01-01

    While much of traditional remote sensing in agricultural research was limited to the visible and reflective infrared, advances in thermal infrared remote sensing technology are adding a dimension to digital image analysis of agricultural areas. The Thermal Infrared Multispectral Scanner (TIMS) an airborne sensor having six bands over the nominal 8.2 to 12.2 m range, offers the ability to calculate land surface emissivities unlike most previous singular broadband sensors. Preliminary findings on the utility of the TIMS for several agricultural applications and related atmospheric considerations are discussed.

  11. Tribological Consideration in Roller Mill Machines for Agriculture Applications

    NASA Astrophysics Data System (ADS)

    Al-Sandooq, J. M.; Yousif, B. F.; Jensen, T. A.

    2012-12-01

    Roller mill is an important part of machines for preparation of agricultural food stuffs. Tribological loading is the main type of load that should be considered when investigating the design failure of roller mills or of the low quality of grinding products. In the current work a comprehensive analysis of the roller design to withstand tribological was undertaken. Three-body abrasive loading (3BA) was found to be the key element to be considered in designing the roller. High stress three-body abrasion experiments were conducted on polyester and epoxy polymers to measure the wear and frictional characteristics of the selected material, different loads, durations and sand grain sizes were tested. Scanning electron microscopy and optical microscopy were used to categorize the damage on the worn surface of the materials and the causes of failure. The current results are compared with the performance of mild steel results based on the literature. The results revealed that polyester had relatively poor wear performance compared to epoxy and steel especially when large sand grains were used. The wear mechanisms on the polyester surface were macro-pitting, fracture, ploughing and defragmentation; while epoxy showed micro-pitting and defragmentation. Epoxy material performance indicates that it has potential for replacing metal rollers in the milling machine.

  12. Potential impacts of agricultural chemicals on waterfowl and other wildlife inhabiting prairie wetlands: An evaluation of research needs and approaches

    USGS Publications Warehouse

    Grue, C.E.; DeWeese, L.R.; Mineau, P.; Swanson, G.A.; Foster, J.R.; Arnold, P.M.; Huckins, J.N.; Sheenan, P.J.; Marshall, W.K.; Ludden, A.P.

    1986-01-01

    The potential for agricultural chemicals to enter prairie-pothole wetlands and impact wildlife dependent on these wetlands for survival and reproduction appears to be great. However, the actual risk to wetland wildlife from the inputs of these chemicals cannot be adequately assessed at this time, because of insufficient data. Available data on the use of pesticides in the prairie-pothole region and the toxicity of these pesticides suggest that insecticides pose the greatest hazard to wetland wildlife, particularly birds. The majority of the most widely used insecticides within the region are very toxic to aquatic invertebrates and birds. Of particular concern are the impacts of agricultural chemicals on the quality of the remaining wetlands in the region and whether or not these impacts have contributed to observed declines in waterfowl populations. Although existing data suggest that adult and juvenile waterfowl may not be more sensitive to these chemicals than are other wetland wildlife, their food habits and feeding behaviors may make them more vulnerable to direct toxic effects or chemical-induced changes in the abundance of aquatic invertebrates. Laboratory and field studies in the United States and Canada are critically needed to assess these potential impacts.

  13. Potato pulp: microbiological characterization, physical modification, and application of this agricultural waste product.

    PubMed

    Mayer, F; Hillebrandt, J O

    1997-10-01

    Potato pulp, one of the agricultural waste products obtained in high quantities during starch production, contains starch, cellulose, hemicelluloses, pectin, proteins, free amino acids and salts. It exhibits physical and physicochemical properties of a typical colloid. It is mainly used, in a dried and pelleted form, as cattle feed. Its autochthonic microbial flora (bacteria, fungi) was identified and studied with a view towards the degradative potential of the microorganisms and ways of conserving the pulp for subsequent technical applications; 33 isolates (28 bacteria, 4 fungi, 1 yeast), belonging to 15 genera were characterized. Biological conservation was possible at very low oxygen pressure, brought about by the autochthonic anaerobic microorganisms causing acidification. Chemical conservation was achieved with sorbic acid. By treatment with hot water vapour under pressure (autoclaving), followed by a pressure release procedure, intact cells in the pulp (both potato cells and microorganisms, not spores) were destroyed, and their contents and wall fragments were set free. This process resulted in low drying costs and was a prerequisite for the production of a powder that can be used as glue or as animal feed. PMID:9390450

  14. A Review: Controlled release systems for agricultural and food applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Controlled release systems are widely used in numerous applications. Polymers from natural resources, such as pectin, starch, zein and poly(lactic acid) have been used to construct carriers of bioactive substances and deliver them in a designed manner. The retention and release of volatile fragrance...

  15. Agricultural Waste as Sources for Mercury Adsorbents in Gas Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased emphasis on reduction of mercury emissions from coal fired electric power plants have resulted in environmental regulations that may in the future require application of activated carbons as mercury sorbents. The sorbents could be injected into the flue gas stream where it adsorbs the mer...

  16. Agricultural By-products as Mercury Adsorbents in Gas Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased emphasis on reduction of mercury emissions from coal fired electric power plans have resulted in environmental regulations that may in the future require application of activated carbons as mercury sorbents. The sorbents could be injected into the flue gas stream where is adsorbs the merc...

  17. Applicator Training Manual for: Agricultural Animal Pest Control.

    ERIC Educational Resources Information Center

    Christensen, Christian M.

    This manual discusses pesticide safety and environmental considerations, pesticide toxicity, residue potential, pesticide formulations, and application techniques. In addition, descriptions of, and methods for controlling insects and related pests that attack cattle, sheep and goats, swine, horses and other equines, and poultry are given. These…

  18. An airborne four-camera imaging system for agricultural applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the design and testing of an airborne multispectral digital imaging system for remote sensing applications. The system consists of four high resolution charge coupled device (CCD) digital cameras and a ruggedized PC equipped with a frame grabber and image acquisition software. T...

  19. Pesticide Exposures and Body Mass Index (BMI) of Pesticide Applicators From the Agricultural Health Study.

    PubMed

    LaVerda, Nancy L; Goldsmith, David F; Alavanja, Michael C R; Hunting, Katherine L

    2015-01-01

    Endocrine-disrupting chemicals, including pesticides, may be associated with weight gain. This is the first longitudinal study to examine a potential association between weight gain and pesticides using data on 8,365 male pesticide applicators from the Agricultural Health Study (AHS) cohort established in 1993. The relationship between total cumulative days of exposure to pesticide functional/chemical classes and to the four most frequently used individual pesticides was studied in relation to body mass index (BMI) at the time of 5-yr follow-up (beginning in 1998) with the length of the exposure period dating back to age 20 yr. Multiple regression, Spearman correlation, ordinal logistic regression, and logistic regression models all utilized a Bonferroni-adjusted p value, were adjusted for relevant covariates, and were stratified by state of residence (Iowa/North Carolina) and presence/absence of weight-related health conditions. Adjusted multiple regression yielded statistically significant positive parameter estimates for the study sample and Iowa subgroups with consistent findings for triazine herbicides and atrazine: Change in BMI per 100 cumulative pesticide exposure days ranged from 0.07 to 0.11 for triazine herbicides and from 0.10 to 0.19 for atrazine. Ordinal logistic regression compared normal weight with overweight and with obese using the zero exposure category as referent. Statistically significant adjusted odds ratios identified for the study sample and both state subgroups for the highest level of atrazine exposure ranged from 1.4 to 1.7. Further investigation is warranted to evaluate the associations identified here. PMID:26479458

  20. Diverse Applications of Electronic-Nose Technologies in Agriculture and Forestry

    PubMed Central

    Wilson, Alphus D.

    2013-01-01

    Electronic-nose (e-nose) instruments, derived from numerous types of aroma-sensor technologies, have been developed for a diversity of applications in the broad fields of agriculture and forestry. Recent advances in e-nose technologies within the plant sciences, including improvements in gas-sensor designs, innovations in data analysis and pattern-recognition algorithms, and progress in material science and systems integration methods, have led to significant benefits to both industries. Electronic noses have been used in a variety of commercial agricultural-related industries, including the agricultural sectors of agronomy, biochemical processing, botany, cell culture, plant cultivar selections, environmental monitoring, horticulture, pesticide detection, plant physiology and pathology. Applications in forestry include uses in chemotaxonomy, log tracking, wood and paper processing, forest management, forest health protection, and waste management. These aroma-detection applications have improved plant-based product attributes, quality, uniformity, and consistency in ways that have increased the efficiency and effectiveness of production and manufacturing processes. This paper provides a comprehensive review and summary of a broad range of electronic-nose technologies and applications, developed specifically for the agriculture and forestry industries over the past thirty years, which have offered solutions that have greatly improved worldwide agricultural and agroforestry production systems. PMID:23396191

  1. Computer Applications in Balancing Chemical Equations.

    ERIC Educational Resources Information Center

    Kumar, David D.

    2001-01-01

    Discusses computer-based approaches to balancing chemical equations. Surveys 13 methods, 6 based on matrix, 2 interactive programs, 1 stand-alone system, 1 developed in algorithm in Basic, 1 based on design engineering, 1 written in HyperCard, and 1 prepared for the World Wide Web. (Contains 17 references.) (Author/YDS)

  2. Microwave Technology--Applications in Chemical Synthesis

    EPA Science Inventory

    Microwave heating, being specific and instantaneous, is unique and has found a place for expeditious chemical syntheses. Specifically, the solvent-free reactions are convenient to perform and have advantages over the conventional heating protocols as summarized in the previous se...

  3. Real cases study through computer applications for futures Agricultural Engineers

    NASA Astrophysics Data System (ADS)

    Moratiel, R.; Durán, J. M.; Tarquis, A. M.

    2010-05-01

    One of the huge concerns on the higher engineer education is the lag of real cases study that the future professionals need in the work and corporation market. This concern was reflected in Bologna higher education system including recommendations in this respect. The knowhow as why this or other methodology is one of the keys to resolve this problem. In the last courses given in Department of Crop Production, at the Agronomy Engineer School of Madrid (Escuela Técnica Superior de Ingenieros Agrónomos, UPM) we have developed more than one hundred applications in Microsoft Excel®. Our aim was to show different real scenarios which the future Agronomic Engineers can be found in their professional life and with items related to crop production field. In order to achieve our target, each application in Excel presents a file text in which is explained the theoretical concepts and the objectives, as well as some resources used from Excel syntax. In this way, the student can understand and use of such application, even they can modify and customize it for a real case presented in their context and/or master project. This electronic monograph gives an answer to the need to manage data in several real scenarios showed in lectures, calculus resolution, information analysis and manage worksheets in a professional and student level.

  4. Aerial applications dispersal systems control requirements study. [agriculture

    NASA Technical Reports Server (NTRS)

    Bauchspies, J. S.; Cleary, W. L.; Rogers, W. F.; Simpson, W.; Sanders, G. S.

    1980-01-01

    Performance deficiencies in aerial liquid and dry dispersal systems are identified. Five control system concepts are explored: (1) end of field on/off control; (2) manual control of particle size and application rate from the aircraft; (3) manual control of deposit rate on the field; (4) automatic alarm and shut-off control; and (5) fully automatic control. Operational aspects of the concepts and specifications for improved control configurations are discussed in detail. A research plan to provide the technology needed to develop the proposed improvements is presented along with a flight program to verify the benefits achieved.

  5. Fundamentals of dielectric properties measurements and agricultural applications.

    PubMed

    Nelson, Stuart O

    2010-01-01

    Dielectrics and dielectric properties are defined generally and dielectric measurement methods and equipment are described for various frequency ranges from audio frequencies through microwave frequencies. These include impedance and admittance bridges, resonant frequency, transmission-line, and free-space methods in the frequency domain and time-domain and broadband techniques. Many references are cited describing methods in detail and giving sources of dielectric properties data. Finally a few applications for such data are presented and sources of tabulated and dielectric properties data bases are identified. PMID:21721322

  6. Effects of recharge on the transport of agricultural chemicals at the Princeton, Minn. Management Systems Evaluation Area (MSEA), 1991-92

    USGS Publications Warehouse

    Delin, G.N.; Landon, M.K.

    1993-01-01

    Rates of water movement through the unsaturated zone greatly affect the amount and concentrations of agricultural chemicals that may reach the water table. For example, recharge can flush to the water table chemicals that have accumulated In the unsaturated zone during dry periods. A better understanding of how topography influences recharge and the movement of agricultural chemicals is needed. In 1991, the U.S. Geological Survey (USGS), with funding from the USGS Toxic Substances Hydrology Program, began studying the movement of water and agricultural chemicals to the water table at the Management Systems Evaluation Area (MSEA) near Princeton, Minnesota. Instruments were installed to measure the movement of moisture through the soil beneath a corn field. Samples of the recharge water were analyzed for concentrations of agricultural chemicals and tracers. Field recharge and tracer tests were simulated In the laboratory.

  7. APPLICATIONS OF AGRICULTURAL SYSTEM MODELS IN ASSESSING AND MANAGING CONTAMINATION OF THE SOIL-WATER-ATMOSPHERE CONTINUUM IN AGRICULTURE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the last three decades, there has been a growing public concern about the adverse effects of modern agriculture on environmental quality and soil-water resources. In the mid-1980's, the USDA, Agricultural Research Service (ARS) identified the need for models of whole agricultural systems that wi...

  8. Application of Agricultural System Models in Assessing and Managing Contamination of Soil-Water-Atmosphere Continuum in Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the last three decades, there has been a growing public concern about the adverse effects of modern agriculture on environmental quality and soil-water resources. In the mid-1980s, the USDA, Agricultural Research Service (ARS) identified the need for models of whole agricultural systems th...

  9. Chemicals from western hardwoods and agricultural residues. Appendix volume (manuscript copies). Semiannual report

    SciTech Connect

    Not Available

    1980-04-01

    This appendix volume contains papers on the following topics: the associative effects among organosolv lignin components; the effect of heating and quenching rates on volatiles produced from combustion-level-heat-flux pyrolysis of biomass; and the effect of particle size on volatiles produced from plasma pyrolysis of lignin. Organosolv lignins isolated under relatively mild conditions from angiosperms are composed of entities having low molecular weights. The extent to which an individual component may participate in association depends appreciably upon the relative proportions of the other species present. A simple conduction model is used to adequately predict the devolatilization rate of lignin pellets. The data reported has application to processes in which densified biomass is a fuel or feedstock and the heat transfer rate appears to limit the reaction rate. Models of biomass pyrolysis presented in the literature are reviewed for effect of particle size on product distribution. Compressed lignin pellets of varying sizes are pyrolyzed in a microwave plasma and char and volatile yields are reported as functions of particle size. Chemical analyses of noncondensible and condensible volatiles are presented and possible formation mechanisms are discussed.

  10. A Nontoxic Polypeptide Oligomer with a Fungicide Potency under Agricultural Conditions Which Is Equal or Greater than That of Their Chemical Counterparts

    PubMed Central

    Monteiro, Sara; Carreira, Alexandra; Freitas, Regina; Pinheiro, Ana Margarida; Ferreira, Ricardo Boavida

    2015-01-01

    There are literally hundreds of polypeptides described in the literature which exhibit fungicide activity. Tens of them have had attempted protection by patent applications but none, as far as we are aware, have found application under real agricultural conditions. The reasons behind may be multiple where the sensitivity to the Sun UV radiation can come in first place. Here we describe a multifunctional glyco-oligomer with 210 kDa which is mainly composed by a 20 kDa polypeptide termed Blad that has been previously shown to be a stable intermediary product of β-conglutin catabolism. This oligomer accumulates exclusively in the cotyledons of Lupinus species, between days 4 and 12 after the onset of germination. Blad-oligomer reveals a plethora of biochemical properties, like lectin and catalytic activities, which are not unusual per si, but are remarkable when found to coexist in the same protein molecule. With this vast range of chemical characteristics, antifungal activity arises almost as a natural consequence. The biological significance and potential technological applications of Blad-oligomer as a plant fungicide to agriculture, its uniqueness stems from being of polypeptidic in nature, and with efficacies which are either equal or greater than the top fungicides currently in the market are addressed. PMID:25849076

  11. Market assessment of photovoltaic power systems for agricultural applications in the Philippines

    NASA Technical Reports Server (NTRS)

    Cabraal, R. A.; Delasanta, D.; Burrill, G.

    1981-01-01

    The market potential in the Philippines for stand alone photovoltaic (P/V) systems in agriculture was assessed. Applications include: irrigation, postharvest operation, food and fiber processing and storage, and livestock and fisheries operations. Power and energy use profiles for many applications as well as assessments of business, government and financial climate for P/V sales are described. Many characteristics of the Philippine agriculture and energy sector favorably influence the use of P/V systems. However, serious and significant barriers prevent achieving the technically feasible, cost competitive market for P/V systems in the agricultural sector. The reason for the small market is the limited availability capital for financing P/V systems. It is suggested that innovative financing schemes and promotional campaigns should be devised.

  12. Photovoltaic applications definition and photovoltaic system definition study in the agricultural sector. Volume 2: Technical results

    NASA Astrophysics Data System (ADS)

    Mengel, R. W.; Nadolski, T. P.; Sparks, D. C.; Young, S. K.; Yingst, A.

    1980-05-01

    This volume describes the technical results of the study of potential photovoltaic (P/V) applications in US agriculture. The results presented address all technical aspects of the program and include a summary of agricultural energy consumption. The objectives of the technical effort reported were to: (1) identify and characterize agricultural energy demands that can effectively use P/V power systems; (2) develop effective P/V system designs for the four most promising applications; (3) determine performance and cost estimates for the designs; and (4) recommend systems for early test and demonstration and critical issues requiring further systems studies. The farms chosen for conceptual design include; (1) poultry layer farm, (2) hog production farm, (3) beef feedlot, and (4) year round vegetable farm.

  13. Market assessment of photovoltaic power systems for agricultural applications in the Philippines

    NASA Astrophysics Data System (ADS)

    Cabraal, R. A.; Delasanta, D.; Burrill, G.

    1981-04-01

    The market potential in the Philippines for stand alone photovoltaic (P/V) systems in agriculture was assessed. Applications include: irrigation, postharvest operation, food and fiber processing and storage, and livestock and fisheries operations. Power and energy use profiles for many applications as well as assessments of business, government and financial climate for P/V sales are described. Many characteristics of the Philippine agriculture and energy sector favorably influence the use of P/V systems. However, serious and significant barriers prevent achieving the technically feasible, cost competitive market for P/V systems in the agricultural sector. The reason for the small market is the limited availability capital for financing P/V systems. It is suggested that innovative financing schemes and promotional campaigns should be devised.

  14. Oxidative stress and endocrine endpoints in white sucker (Catostomus commersoni) from a river impacted by agricultural chemicals.

    PubMed

    Dorval, Jocelyn; Leblond, Vincent; Deblois, Christian; Hontela, Alice

    2005-05-01

    The effects of agricultural chemicals on cortisol secretion, antioxidants, and lipid peroxidation were investigated in hepatic and adrenal tissue of white sucker (Catostomus commersoni) from a river (Yamaska) that drains an agricultural region in Québec (Canada). Plasma cholinesterase (ChE) activity, used as a biomarker of exposure to pesticides, was elevated in fish from the reference site compared to fish from the contaminated sites. Plasma concentrations of cortisol and thyroid hormones (T3 and T4) were higher in fish from the reference site compared to contaminated sites; reduced glutathione (GSH) levels, catalase (CAT), and glutathione peroxidase (GPx) activities were higher and lipid peroxidation (LPO) was lower. Levels of antioxidants (CAT, Gpx, and GSH) were higher (10-90%) and LPO levels were lower (50%) in the liver than in the adrenal tissue. The present in situ study provided evidence that antioxidants, lipid peroxidation, and plasma hormones were altered in fish sampled in areas impacted by agricultural chemicals. Endocrine-disrupting effects were associated with oxidative stress. The results suggest that antioxidants and lipid peroxidation could be used as markers of contaminant exposure in fish. PMID:16111011

  15. Chemical and biological characterization of products of incomplete combustion from the simulated field burning of agricultural plastic

    SciTech Connect

    Ryan, J.V.; Perry, E.; Linak, W.P.; DeMarini, D.M.; Williams, R.W.

    1989-01-01

    Chemical and biological analyses were performed to characterize products of incomplete combustion emitted during the simulated open-field burning of agricultural plastic. A small utility shed equipped with an air delivery system was used to simulate pile burning and forced-air-curtain incineration of a nonhalogenated agricultural plastic that reportedly consisted of polyethylene and carbon black. Emissions were analyzed for combustion gases; volatile, semi-volatile, and particulate organics; and toxic and mutagenic properties. Emission samples, as well as samples of the used (possibly pesticide-contaminated) plastic, were analyzed for the presence of several pesticides to which the plastic may have been exposed. When mutagenicity was evaluated by exposing Salmonella bacteria (Ames assay) to whole vapor and vapor/particulate emissions, no toxic or mutagenic effects were observed. However, organic extracts of the particulate samples were moderately mutagenic. The study highlights the benefits of a combined chemical/biological approach to the characterization of complex, multi-component combustion emissions. These results may not reflect those of other types of plastic that may be used for agricultural purposes, especially those containing halogens.

  16. Integrated Microreactor for Chemical and Biochemical Applications

    NASA Technical Reports Server (NTRS)

    Schwesinger, N.; Dressler, L.; Frank, Th.; Wurmus, H.

    1995-01-01

    A completely integrated microreactor was developed that allows for the processing of very small amounts of chemical solutions. The entire system comprises several pumps and valves arranged in different branches as well as a mixing unit and a reaction chamber. The streaming path of each branch contains two valves and one pump each. The pumps are driven by piezoelectric elements mounted on thin glass membranes. Each pump is about 3.5 mm x 3.5 mm x 0.7 mm. A pumping rate up to 25 microliters per hour can be achieved. The operational voltage ranges between 40 and 200 V. A volume stroke up to 1.5 millimeter is achievable from the membrane structures. The valves are designed as passive valves. Sealing is by thin metal films. The dimension of a valve unit is 0.8 x 0.8. 07 mm. The ends of the separate streaming branches are arranged to meet in one point. This point acts as the beginning of a mixer unit which contains several fork-shaped channels. The arrangement of these channels allows for the division of the whole liquid stream into partial streams and their reuniting. A homogeneous mixing of solutions and/or gases can be observed after having passed about 10 of the fork elements. A reaction chamber is arranged behind the mixing unit to support the chemical reaction of special fluids. This unit contains heating elements placed outside of the chamber. The complete system is arranged in a modular structure and is built up of silicon. It comprises three silicon wafers bonded together by applying the silicon direct bonding technology. The silicon structures are made only by wet chemical etching processes. The fluid connections to the outside are realized using standard injection needles glued into v-shaped structures on the silicon wafers. It is possible to integrate other components, like sensors or electronic circuits using silicon as the basic material.

  17. Application of synchrotron radiation in chemical dynamics

    SciTech Connect

    Heimann, P.; Koike, M.; Kung, A.H.; Ng, C.Y.; White, M.G.; Wodtke, A.

    1993-05-01

    In October 1992, funding was approved to begin construction of a beamline and two end stations to support chemical dynamics experiments at LBL`s Advanced Light Source (ALS). This workshop was organized to develop specifications and plans and to select a working team to design and supervise the construction project. Target date for starting the experiments is January 1995. Conclusions of the workshop and representative experiments proposed in earlier workshops to form the basis for beamline plans and end-station designs are summarized in this report. 6 figs.

  18. Application of synchrotron radiation in chemical dynamics

    SciTech Connect

    Heimann, P.; Koike, M.; Kung, A.H.; Ng, C.Y.; White, M.G.; Wodtke, A.

    1993-05-01

    In October 1992, funding was approved to begin construction of a beamline and two end stations to support chemical dynamics experiments at LBL's Advanced Light Source (ALS). This workshop was organized to develop specifications and plans and to select a working team to design and supervise the construction project. Target date for starting the experiments is January 1995. Conclusions of the workshop and representative experiments proposed in earlier workshops to form the basis for beamline plans and end-station designs are summarized in this report. 6 figs.

  19. Assessment of rural ground-water contamination by agricultural chemicals in sensitive areas of Michigan

    SciTech Connect

    Ervin, J.L.; Kittleson, K.M.

    1988-04-01

    The vulnerability of drinking-water supplies to agricultural contamination in three Michigan counties is discussed. The results of nitrate and atrazine analysis of drinking water from 38 wells in those 3 counties is described. Widespread nitrate contamination was demonstrated in agricultural areas with vulnerable aquifers. In addition, atrazine, a widely used herbicide was found in 11 of the 38 wells samples, with concentrations and patterns not conforming to findings in other mid-western states. The need for a comprehensive inventory of the ground-water quality in rural areas of Michigan is emphasized in the report, which describes results from the first year of a 2-year study.

  20. Lifetime Organophosphorous Insecticide Used among Private Pesticide Applicators in the Agricultural Health Study

    EPA Science Inventory

    Organophosphorous insecticides (OPs) are the most commonly used insecticides in US agriculture, but little information is available regarding specific OP use by individual farmers. We describe OP use for licensed private pesticide applicators from Iowa and North Carolina in the Ag...

  1. Development and application of modern agricultural biotechnology in Botswana: the potentials, opportunities and challenges.

    PubMed

    Batlang, Utlwang; Tsurupe, Gorata; Segwagwe, Amogelang; Obopile, Motshwari

    2014-07-01

    In Botswana, approximately 40% of the population live in rural areas and derive most of their livelihood from agriculture by keeping livestock and practising arable farming. Due to the nature of their farming practises livestock and crops are exposed to diseases and environmental stresses. These challenges offer opportunities for application of biotechnology to develop adaptable materials to the country's environment. On the other hand, the perceived risk of genetically modified organisms (GMOs) has dimmed the promise of the technology for its application in agriculture. This calls for a holistic approach to the application of biotechnology to address issues of biosafety of GMOs. We have therefore assessed the potentials, challenges and opportunities to apply biotechnology with specific emphasis on agriculture, taking cognisance of requirement for its research, development and application in research and teaching institutions. In order to achieve this, resource availability, infrastructure, human and laboratory requirements were analyzed. The analysis revealed that the country has the capacity to carry out research in biotechnology in the development and production of genetically modified crops for food and fodder crops. These will include gene discovery, genetic transformation and development of systems to comply with the world regulatory framework on biosafety. In view of the challenges facing the country in agriculture, first generation biotech crops could be released for production. Novel GM products for development may include disease diagnosis kits, animal disease vaccines, and nutrient use efficiency, drought, and pest and disease resistant food and fodder crops. PMID:25437237

  2. WASTE MINIMIZATION FOR NON-AGRICULTURAL PESTICIDE APPLICATORS: EPA'S POLLUTION PREVENTION GUIDE

    EPA Science Inventory

    U.S. EPA's Office of Research and Development is preparing a guide to be published later this year for non-agricultural pesticide applicators which will provide specific information about waste minimization for pesticide users in industries such as commercial lawn care, structura...

  3. 20 CFR 655.1301 - Applications for temporary employment certification in agriculture.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Applications for temporary employment certification in agriculture. 655.1301 Section 655.1301 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR TEMPORARY EMPLOYMENT OF FOREIGN WORKERS IN THE UNITED STATES Labor Certification Process for Temporary...

  4. An Approach to Determining the Market for Academic Positions: Application to the Discipline of Agricultural Economics

    ERIC Educational Resources Information Center

    Farrell, Terence; Casavant, Ken; Jessup, Eric

    2007-01-01

    The purpose of this paper is to present issues that are relevant to pursuing an academic career in the chosen discipline of each student. The application will be a general case study of agricultural economics. The analytical model will be used to evaluate options for Ph.D. graduates in a supply and demand context. The first issue presented is a…

  5. Application of the Doppler lidar system to agricultural burning and air-sea interactions

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, D.

    1980-01-01

    The Doppler lidar system is potentially a very powerful measurement system. Three areas concerning the system are discussed: (1) error analysis of the system to verify the results; (2) application of the system to agricultural burning in California central valley; and (3) oceanographic possibilities of the system.

  6. Apply Pesticides Correctly, A Guide for Commercial Applicators: Agricultural Pest Control -- Animal.

    ERIC Educational Resources Information Center

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    This guide contains basic information to meet specific standards for pesticide applicators. The text is concerned with the common pests of agricultural animals such as flies, ticks, bots, lice and mites. Methods for controlling these pests and appropriate pesticides are discussed. (CS)

  7. Remote sensing with simulated unmanned aircraft systems for precision agriculture applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important application of unmanned aircraft systems (UAS) may be remote-sensing for precision agriculture, because of its ability to acquire images with very small pixel sizes from low altitude flights. The objective of this study was to compare pixel sampling with plot-scale metrics for the remo...

  8. APPROACHES FOR MEASURING APPLICATOR EXPOSURE IN THE AGRICULTURAL HEALTH STUDY/PESTICIDE EXPOSURE STUDY

    EPA Science Inventory

    The Agricultural Health Study (AHS) is a prospective epidemiologic study of a large cohort of pesticide applicators and their spouses in Iowa and North Carolina. The Pesticide Exposure Study is a sub-study to evaluate exposure factors and to provide data to assess exposure cla...

  9. A Half Century of Research on Agricultural Applications for RF and Microwave Dielectric Heating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Basic principles of radio-frequency and microwave dielectric heating are presented, and research reports and reviews published over the past 50 or 60 years are identified for various dielectric heating applications that have been explored for potential use in the field of agriculture. Included are ...

  10. The use of LANDSAT digital data and computer-implemented techniques for an agricultural application

    NASA Technical Reports Server (NTRS)

    Joyce, A. T.; Griffin, R. H., II

    1978-01-01

    Agricultural applications procedures are described for use of LANDSAT digital data and other digitalized data (e.g., soils). The results of having followed these procedures are shown in production estimates for cotton and soybeans in Washington County, Mississippi. Examples of output products in both line printer and map formats are included, and a product adequacy assessment is made.

  11. Chemical Modification of Cotton for Industrial Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton (cellulose) is a known favorite in the textile industry and is the most used natural fiber-cloth to date. As we move to use more biodegradable, renewable and sustainable resources, cellulose, a natural polymer, is attracting attention and finding application in oil recovery, cosmetics, surfac...

  12. Chemical structure representations and applications in computational toxicity.

    PubMed

    Karthikeyan, Muthukumarasamy; Vyas, Renu

    2012-01-01

    Efficient storage and retrieval of chemical structures is one of the most important prerequisite for solving any computational-based problem in life sciences. Several resources including research publications, text books, and articles are available on chemical structure representation. Chemical substances that have same molecular formula but several structural formulae, conformations, and skeleton framework/scaffold/functional groups of the molecule convey various characteristics of the molecule. Today with the aid of sophisticated mathematical models and informatics tools, it is possible to design a molecule of interest with specified characteristics based on their applications in pharmaceuticals, agrochemicals, biotechnology, nanomaterials, petrochemicals, and polymers. This chapter discusses both traditional and current state of art representation of chemical structures and their applications in chemical information management, bioactivity- and toxicity-based predictive studies. PMID:23007430

  13. Chemical Status Of Selenium In Evaporation Basins For Disposal Of Agricultural Drainage.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaporation basins (or ponds) are the most commonly used facilities to dispose selenium (Se)-laden agricultural drainage in the closed hydrologic basin portion of the San Joaquin Valley in California. However, there is a continuous concern on potential risk of Se in evaporation basin waters to water...

  14. [Effects of composting with earthworm on the chemical and biological properties of agricultural organic wastes: a principal component analysis].

    PubMed

    Liu, Ting; Ren, Zong-Ling; Zhang, Chi; Chen, Xu-Fei; Zhou, Bo; Dai, Jun

    2012-03-01

    Taking mixed agricultural organic wastes cattle manure and rice straw (C:N = 28.7:1) as the substrate of earthworm Eisenia foetida, an experiment was conducted to study the effects of earthworm on the changes of the chemical and biological properties of wastes during vermi-composting. After 30 days of vermi-composting, the substrate' s pH and C/N decreased while the total P content increased significantly, and the total N, available N, dissolved organic carbon, available P content, microbial biomass-C, respiration rate, and microbial quotient increased by 8.5% , 2.6%, 1.8%, 6.3%, 21.2%, 4.4%, and 30.0% whereas the organic matter content and metabolic quotient decreased by 5.0% and 21.9%, respectively, as compared with natural composting. Vermi-composting made the substrate have higher invertase, acid phosphatase, and alkaline phosphatase activities but lower catalase and urease activities. Principal component analysis and discriminant analysis confirmed the significant differences in the substrate' s chemical and biological properties between vermi-composting and natural composting. This study indicated that vermi-composting was superior to natural composting, which could obviously improve the chemical and biological properties of composted organic materials, being a high efficient technology for the management of agricultural organic wastes. PMID:22720625

  15. Effects of surface run-off on the transport of agricultural chemicals to ground water in a sandplain setting

    USGS Publications Warehouse

    Delin, G.N.; Landon, M.K.

    2002-01-01

    An experiment was conducted at a depressional (lowland) and an upland site in sandy soils to evaluate the effects of surface run-off on the transport of agricultural chemicals to ground water. Approximately 16.5 cm of water was applied to both sites during the experiment, representing a natural precipitation event with a recurrence interval of approximately 100 years. Run-off was quantified at the lowland site and was not detected at the upland site during the experiment. Run-off of water to the lowland site was the most important factor affecting differences in the concentrations and fluxes of the agricultural chemicals between the two sites. Run-off of water to the lowland site appears to have played a dual role by diluting chemical concentrations in the unsaturated zone as well as increasing the concentrations at the water table, compared to the upland site. Concentrations of chloride, nitrate and atrazine plus metabolites were noticeably greater at the water table than in the unsaturated zone at both sites. The estimated mass flux of chloride and nitrate to the water table during the test were 5-2 times greater, respectively, at the lowland site compared to the upland site, whereas the flux of sulfate and atrazine plus metabolites was slightly greater at the upland site. Results indicate that matrix flow of water and chemicals was the primary process causing the observed differences between the two sites. Results of the experiment illustrate the effects of heterogeneity and the complexity of evaluating chemical transport through the unsaturated zone. Copyright ?? 2002 Elsevier Science B.V.

  16. Effects of surface run-off on the transport of agricultural chemicals to ground water in a sandplain setting

    USGS Publications Warehouse

    Delin, Geoffrey N.; Landon, Matthew K.

    2002-01-01

    An experiment was conducted at a depressional (lowland) and an upland site in sandy soils to evaluate the effects of surface run-off on the transport of agricultural chemicals to ground water. Approximately 16.5 cm of water was applied to both sites during the experiment, representing a natural precipitation event with a recurrence interval of approximately 100 years. Run-off was quantified at the lowland site and was not detected at the upland site during the experiment. Run-off of water to the lowland site was the most important factor affecting differences in the concentrations and fluxes of the agricultural chemicals between the two sites. Run-off of water to the lowland site appears to have played a dual role by diluting chemical concentrations in the unsaturated zone as well as increasing the concentrations at the water table, compared to the upland site. Concentrations of chloride, nitrate and atrazine plus metabolites were noticeably greater at the water table than in the unsaturated zone at both sites. The estimated mass flux of chloride and nitrate to the water table during the test were 5–2 times greater, respectively, at the lowland site compared to the upland site, whereas the flux of sulfate and atrazine plus metabolites was slightly greater at the upland site. Results indicate that matrix flow of water and chemicals was the primary process causing the observed differences between the two sites. Results of the experiment illustrate the effects of heterogeneity and the complexity of evaluating chemical transport through the unsaturated zone.

  17. Identification of high payoff research for more efficient applicator helicopters in agriculture and forestry

    NASA Technical Reports Server (NTRS)

    Waters, K. T.

    1979-01-01

    The results of a study of the uses of helicopters in agriculture and forestry in the United States are discussed. Comparisons with agricultural airplanes are made in terms of costs of aerial application to the growers. An analysis of cost drivers and potential improvements to helicopters that will lower costs is presented. Future trends are discussed, and recommendations for research are outlined. Operational safety hazards and accident records are examined, and problem areas are identified. Areas where research and development are needed to provide opportunities for lowering costs while increasing productivity are analyzed.

  18. Agricultural chemicals and prairie pothole wetlands: Meeting the needs of the resource and the farmer -- U.S. perspective

    USGS Publications Warehouse

    Grue, C.E.; Tome, M.W.; Messmer, T.A.; Henry, D.B.; Swanson, G.A.; DeWeese, L.R.

    1989-01-01

    Included are the reasons for concern over the effects of agrichemicals (pesticides and fertilizers) on prairie-pothole wetlands in the United States. Summarized are the results of studies conducted to date on this topic. Identified is additional research needed to assess the impacts of agrichemicals on these wetlands. Included is a discussion of management strategies and initiatives which we believe may minimize inputs of these chemicals and their impacts on wetlands and waterfowl within this portion of the prairie pothole region, while still meeting the needs of the agricultural community.

  19. Bee Pollen: Chemical Composition and Therapeutic Application

    PubMed Central

    Komosinska-Vassev, Katarzyna; Olczyk, Pawel; Kaźmierczak, Justyna; Olczyk, Krystyna

    2015-01-01

    Bee pollen is a valuable apitherapeutic product greatly appreciated by the natural medicine because of its potential medical and nutritional applications. It demonstrates a series of actions such as antifungal, antimicrobial, antiviral, anti-inflammatory, hepatoprotective, anticancer immunostimulating, and local analgesic. Its radical scavenging potential has also been reported. Beneficial properties of bee pollen and the validity for their therapeutic use in various pathological condition have been discussed in this study and with the currently known mechanisms, by which bee pollen modulates burn wound healing process. PMID:25861358

  20. High Temperature Materials for Chemical Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Elam, Sandra; Hickman, Robert; O'Dell, Scott

    2007-01-01

    Radiation or passively cooled thrust chambers are used for a variety of chemical propulsion functions including apogee insertion, reaction control for launch vehicles, and primary propulsion for planetary spacecraft. The performance of these thrust chambers is limited by the operating temperature of available materials. Improved oxidation resistance and increased operating temperatures can be achieved with the use of thermal barrier coatings such as zirconium oxide (ZrO2) and hafnium oxide (HfO2). However, previous attempts to include these materials showed cracking and spalling of the oxide layer due to poor bonding. Current research at NASA's Marshall Space Flight Center (MSFC) has generated unique, high temperature material options for in-space thruster designs that are capable of up to 2500 C operating temperatures. The research is focused on fabrication technologies to form low cost Iridium,qF_.henium (Ir/Re) components with a ceramic hot wall created as an integral, functionally graded material (FGM). The goal of this effort is to further de?celop proven technologies for embedding a protective ceramic coating within the Ir/Re liner to form a robust functional gradient material. Current work includes the fabrication and testing of subscale samples to evaluate tensile, creep, thermal cyclic/oxidation, and thermophysical material properties. Larger test articles have also being fabricated and hot-fire tested to demonstrate the materials in prototype thrusters at 1O0 lbf thrust levels.

  1. Chemical tracers illustrate pathways of solute discharge from artificially drained agricultural watersheds

    NASA Astrophysics Data System (ADS)

    Bowen, G. J.; Kennedy, C. D.; Bataille, C. P.; Liu, Z.; Ale, S.; VanDeVelde, J. H.; Roswell, C.; Bowling, L. C.

    2012-12-01

    Drainage tiles buried beneath many naturally poorly drained agricultural fields in the Midwestern U.S. are believed to "short circuit" pools of nitrate-laden soil water and shallow groundwater directly into streams that eventually discharge to the Mississippi River. Although much is known about the mechanisms controlling this regionally pervasive practice of artificial drainage at the field-plot scale, an integrative assessment of the effect of drainage density (i.e., the number of tile drains per unit area) on the transport of nutrients and solutes in streams at the catchment scale is lacking. To address this gap, we coupled hydrological pathway data from stable isotopes and conservative solute tracers with measurements of the flux of agricultural nitrate and road-salt chloride from two catchments lying within the Wabash River Basin, a major source of nitrate to the Mississippi River. The paired catchments differ primarily in drainage density (70% vs. 31%, by catchment area), with essentially all other agricultural management, land use, and soil drainage characteristics remaining equal. Our study revealed two significant hydrological responses to increased drainage density: (1) more near-surface storm event water (dilute in both nitrate and chloride) was transported early in the storm and (2) higher transport of chloride-laden pre-event soil water relative to shallow groundwater elevated in nitrate occurred later in the storm. These patterns are consistent with a proposed conceptual model in which increased drainage density results in (1) greater transport of soil water to streams and (2) a delayed rise in the water table. With respect to nutrient management implications, these results indicate that increased drainage density impacts subsurface pools of chloride and nitrate differently, a finding that we propose is linked to soil/ground water dynamics in artificially drained agricultural catchments.

  2. RETINAL DEGENERATION AND OTHER EYE DISORDERS IN WIVES OF FARMER PESTICIDE APPLICATORS ENROLLED IN THE AGRICULTURAL HEALTH STUDY.

    EPA Science Inventory

    This manuscript describes an epidemiological investigation of the wives of licensed pesticide applicators who are enrolled in the Agricultural Health Study, a large ongoing epidemiological study of pesticide applicators and their families in North Carolina and Iowa. The Agricult...

  3. Cellulose nanocrystals in nanocomposite approach: Green and high-performance materials for industrial, biomedical and agricultural applications

    NASA Astrophysics Data System (ADS)

    Fortunati, E.; Torre, L.

    2016-05-01

    The need to both avoid wastes and find new renewable resources has led to a new and promising research based on the possibility to revalorize the biomass producing sustainable chemicals and/or materials which may play a major role in replacing systems traditionally obtained from non-renewable sources. Most of the low-value biomass is termed lignocellulosic, referring to its main constituent biopolymers: cellulose, hemicelluloses and lignin. In this context, nanocellulose, and in particular cellulose nanocrystals (CNC), have gain considerable attention as nanoreinforcement for polymer matrices, mainly biodegradable. Derived from the most abundant polymeric resource in nature and with inherent biodegradability, nanocellulose is an interesting nanofiller for the development of nanocomposites for industrial, biomedical and agricultural applications. Due to the high amount of hydroxyl groups on their surface, cellulose nanocrystals are easy to functionalize. Well dispersed CNC are able, in fact, to enhance several properties of polymers, i.e.: thermal, mechanical, barrier, surface wettability, controlled of active compound and/or drug release. The main objective here is to give a general overview of CNC applications, summarizing our recent developments of bio-based nanocomposite formulations reinforced with cellulose nanocrystals extracted from different natural sources and/or wastes for food packaging, medical and agricultural sectors.

  4. Agriculture, summary

    NASA Technical Reports Server (NTRS)

    Baldwin, R.

    1975-01-01

    Applications of remotely sensed data in agriculture are enumerated. These include: predictions of forage for range animal consumption, forest management, soil mapping, and crop inventory and management.

  5. Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture

    PubMed Central

    Ferrández-Pastor, Francisco Javier; García-Chamizo, Juan Manuel; Nieto-Hidalgo, Mario; Mora-Pascual, Jerónimo; Mora-Martínez, José

    2016-01-01

    The application of Information Technologies into Precision Agriculture methods has clear benefits. Precision Agriculture optimises production efficiency, increases quality, minimises environmental impact and reduces the use of resources (energy, water); however, there are different barriers that have delayed its wide development. Some of these main barriers are expensive equipment, the difficulty to operate and maintain and the standard for sensor networks are still under development. Nowadays, new technological development in embedded devices (hardware and communication protocols), the evolution of Internet technologies (Internet of Things) and ubiquitous computing (Ubiquitous Sensor Networks) allow developing less expensive systems, easier to control, install and maintain, using standard protocols with low-power consumption. This work develops and test a low-cost sensor/actuator network platform, based in Internet of Things, integrating machine-to-machine and human-machine-interface protocols. Edge computing uses this multi-protocol approach to develop control processes on Precision Agriculture scenarios. A greenhouse with hydroponic crop production was developed and tested using Ubiquitous Sensor Network monitoring and edge control on Internet of Things paradigm. The experimental results showed that the Internet technologies and Smart Object Communication Patterns can be combined to encourage development of Precision Agriculture. They demonstrated added benefits (cost, energy, smart developing, acceptance by agricultural specialists) when a project is launched. PMID:27455265

  6. Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture.

    PubMed

    Ferrández-Pastor, Francisco Javier; García-Chamizo, Juan Manuel; Nieto-Hidalgo, Mario; Mora-Pascual, Jerónimo; Mora-Martínez, José

    2016-01-01

    The application of Information Technologies into Precision Agriculture methods has clear benefits. Precision Agriculture optimises production efficiency, increases quality, minimises environmental impact and reduces the use of resources (energy, water); however, there are different barriers that have delayed its wide development. Some of these main barriers are expensive equipment, the difficulty to operate and maintain and the standard for sensor networks are still under development. Nowadays, new technological development in embedded devices (hardware and communication protocols), the evolution of Internet technologies (Internet of Things) and ubiquitous computing (Ubiquitous Sensor Networks) allow developing less expensive systems, easier to control, install and maintain, using standard protocols with low-power consumption. This work develops and test a low-cost sensor/actuator network platform, based in Internet of Things, integrating machine-to-machine and human-machine-interface protocols. Edge computing uses this multi-protocol approach to develop control processes on Precision Agriculture scenarios. A greenhouse with hydroponic crop production was developed and tested using Ubiquitous Sensor Network monitoring and edge control on Internet of Things paradigm. The experimental results showed that the Internet technologies and Smart Object Communication Patterns can be combined to encourage development of Precision Agriculture. They demonstrated added benefits (cost, energy, smart developing, acceptance by agricultural specialists) when a project is launched. PMID:27455265

  7. Waste ashes for use in agricultural production: I. Liming effect, contents of plant nutrients and chemical characteristics of some metals.

    PubMed

    Zhang, Fu-Shen; Yamasaki, S; Nanzyo, M

    2002-02-01

    The chemical characteristics of 89 municipal waste ashes, including food scrap ash (FSA), animal waste ash (AWA), horticulture waste ash (HWA), sewage sludge ash (SSA) and incinerator bottom ash (IBA), from various locations in Japan were examined with the aim of evaluating their suitability for use in agriculture. Although the waste ashes came from different sources and consisted of various materials, the gross elemental composition was similar. Acid neutralization capacity (liming effect) for the waste ashes was equivalent to 10-30% of CaO and followed the sequence SSA > IBA > AWA > FSA > HWA. Average P concentrations for the five types of waste ashes ranged from 10 to 29 g kg(-1) and average K concentrations ranged from 14 to 63 g kg(-1), respectively. Metal contents in the waste ashes were compared with levels in Japanese agricultural soils. K in the waste ashes was 1.3-6 times higher and Ca was 3-12 times higher; contents of the other metals in FSA, AWA and HWA were generally less than five times higher, but Ni, Cu, Zn, Cd, Sn, Pb in SSA or IBA were approximately 10-200 times higher than those in soils. Moreover, the ceiling amounts of waste ashes that may be applied to main Japanese agricultural soils were calculated by using soil contamination standards for Cu. Water solubility of P and metals in the waste ashes were also examined. PMID:11846166

  8. Applications of direct chemical oxidation to demilitarization

    SciTech Connect

    Cooper, J.F., LLNL

    1998-06-01

    Research is reported concerning an aqueous process for oxidative destruction of solid- and liquid organic wastes, including ongoing work relevant to demilitarization This process uses acidified ammonium- or sodium peroxydisulfate and operates at ambient pressure and at temperatures of 80- 100 C The oxidant may be regenerated by electrolysis of the sulfate by- product at Pt anodes at roughly 80% coulombic efficiency, even in the presence of inorganic contaminants (e g , nitrate, phosphate or chloride) found in the original waste and entrained in the recycle stream Integral rate constants have been determined for the oxidation of diverse organic compounds at low concentrations (50 ppm, C), with rate constants (based on equivalents) of 0 004-O 02 miri Higher concentrations generally react at a 2-4X higher rate. The process has been carried through full- scale laboratory tests and initial pilot plant tests on chlorinated solvents, using a hydrolysis pretreatment Integral rate data indicate throughput rates of about 200 kg- C/m3-day The process may benefit the demilitarization efforts in various specialized applications destruction of solvents; destruction of trace propellants and explosives in shell casings remaining after bulk removal, destruction of red and pink waters, in situ remediation of soils at open pit burning/detonation sites; and as a regenerative filter for offgas carrying toxic or explosive substances.

  9. Chemical application of diffusion quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Reynolds, P. J.; Lester, W. A., Jr.

    1983-10-01

    The diffusion quantum Monte Carlo (QMC) method gives a stochastic solution to the Schroedinger equation. As an example the singlet-triplet splitting of the energy of the methylene molecule CH2 is given. The QMC algorithm was implemented on the CYBER 205, first as a direct transcription of the algorithm running on our VAX 11/780, and second by explicitly writing vector code for all loops longer than a crossover length C. The speed of the codes relative to one another as a function of C, and relative to the VAX is discussed. Since CH2 has only eight electrons, most of the loops in this application are fairly short. The longest inner loops run over the set of atomic basis functions. The CPU time dependence obtained versus the number of basis functions is discussed and compared with that obtained from traditional quantum chemistry codes and that obtained from traditional computer architectures. Finally, preliminary work on restructuring the algorithm to compute the separate Monte Carlo realizations in parallel is discussed.

  10. The applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.

    1990-01-01

    A review of the applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research during the past four decades is presented with an emphasis on chemical equilibrium models and thermochemical kinetics. Several current problems in planetary atmospheres research such as the origin of the atmospheres of the terrestrial planets, atmosphere-surface interactions on Venus and Mars, deep mixing in the atmospheres of the gas giant planets, and the origin of the atmospheres of outer planet satellites all require laboratory data on the kinetics of thermochemical reactions for their solution.

  11. A regional monitoring network to investigate the occurrence of agricultural chemicals in near-surface aquifers of the midcontinental USA

    USGS Publications Warehouse

    Kolpin, D.W.; Goolsby, D.A.

    1995-01-01

    Previous state and national surveys conducted in the mid-continental USA have produced a wide range in results regarding the occurrence of agricultural chemicals in groundwater. At least some of these differences can be attributed to inconsistencies between the surveys, such as different analytical reporting limits. The US Geological Survey has designed a sampling network that is geographically and hydrogeologically representative of near-surface aquifers in the corn- and soybean-producing region of the midcontinental USA. More than 800 water quality samples have been collected from the network since 1991. Six of the seven most frequently detected compounds from this study were herbicide metabolites. A direct relation was determined between tritium content to herbicide and nitrate contamination. The unconsolidated aquifers sampled were found to be more susceptible to herbicide and nitrate contamination than the bedrock aquifers. Knowledge of the regional occurrence and distribution of agricultural chemicals acquired through the study of data collected at network sites will assist policy makers and planners with decisions regarding the protection of drinking-water supplies.

  12. MHD augmented chemical rocket propulsion for space applications

    NASA Astrophysics Data System (ADS)

    Schulz, R. J.; Chapman, J. N.; Rhodes, R. P.

    1992-07-01

    A performance analysis is carried out of a magnetohydrodynamic (MHD) augmented chemical thruster (based on a gaseous hydrogen-oxygen system) for space applications such as orbit transfer. The mathematical model used in the analysis is a one-dimensional flow model using equilibrium chemistry for the combustor, choked nozzle, and MHD channel portions of the system, and chemical nonequilibrium kinetics for the high area-ratio gas dynamic nozzle portion of the system. The performance of the chemical-MHD-augmented thruster is compared with that of a pure electric thruster of the same specific impulse level.

  13. Applications of color machine vision in the agricultural and food industries

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Ludas, Laszlo I.; Morgan, Mark T.; Krutz, Gary W.; Precetti, Cyrille J.

    1999-01-01

    Color is an important factor in Agricultural and the Food Industry. Agricultural or prepared food products are often grade by producers and consumers using color parameters. Color is used to estimate maturity, sort produce for defects, but also perform genetic screenings or make an aesthetic judgement. The task of sorting produce following a color scale is very complex, requires special illumination and training. Also, this task cannot be performed for long durations without fatigue and loss of accuracy. This paper describes a machine vision system designed to perform color classification in real-time. Applications for sorting a variety of agricultural products are included: e.g. seeds, meat, baked goods, plant and wood.FIrst the theory of color classification of agricultural and biological materials is introduced. Then, some tools for classifier development are presented. Finally, the implementation of the algorithm on real-time image processing hardware and example applications for industry is described. This paper also presented an image analysis algorithm and a prototype machine vision system which was developed for industry. This system will automatically locate the surface of some plants using digital camera and predict information such as size, potential value and type of this plant. The algorithm developed will be feasible for real-time identification in an industrial environment.

  14. Application of Medium and Seasonal Flood Forecasts for Agriculture Damage Assessment

    NASA Astrophysics Data System (ADS)

    Fakhruddin, Shamsul; Ballio, Francesco; Menoni, Scira

    2015-04-01

    Early warning is a key element for disaster risk reduction. In recent decades, major advancements have been made in medium range and seasonal flood forecasting. This progress provides a great opportunity to reduce agriculture damage and improve advisories for early action and planning for flood hazards. This approach can facilitate proactive rather than reactive management of the adverse consequences of floods. In the agricultural sector, for instance, farmers can take a diversity of options such as changing cropping patterns, applying fertilizer, irrigating and changing planting timing. An experimental medium range (1-10 day) and seasonal (20-25 days) flood forecasting model has been developed for Thailand and Bangladesh. It provides 51 sets of discharge ensemble forecasts of 1-10 days with significant persistence and high certainty and qualitative outlooks for 20-25 days. This type of forecast could assist farmers and other stakeholders for differential preparedness activities. These ensembles probabilistic flood forecasts have been customized based on user-needs for community-level application focused on agriculture system. The vulnerabilities of agriculture system were calculated based on exposure, sensitivity and adaptive capacity. Indicators for risk and vulnerability assessment were conducted through community consultations. The forecast lead time requirement, user-needs, impacts and management options for crops were identified through focus group discussions, informal interviews and community surveys. This paper illustrates potential applications of such ensembles for probabilistic medium range and seasonal flood forecasts in a way that is not commonly practiced globally today.

  15. Harmonisation of food consumption data format for dietary exposure assessments of chemicals analysed in raw agricultural commodities.

    PubMed

    Boon, Polly E; Ruprich, Jiri; Petersen, Annette; Moussavian, Shahnaz; Debegnach, Francesca; van Klaveren, Jacob D

    2009-12-01

    In this paper, we present an approach to format national food consumption data at raw agricultural commodity (RAC) level. In this way, the data is both formatted in a harmonised way given the comparability of RACs between countries, and suitable to assess the dietary exposure to chemicals analysed in RACs at a European level. In this approach, consumption data needs to be converted to edible part of RAC (e-RAC) level using a RAC conversion database. To subsequently use this data in exposure assessments, both e-RACs and RACs analysed in chemical control programmes should be classified via a uniform system. Furthermore, chemical concentrations in RACs may need to be converted to e-RAC level using processing factors. To illustrate the use of this approach, we describe how the Dutch RAC conversion database was used to convert consumption data of four national consumption surveys to e-RAC level, and the use of the FAO/WHO Codex Classification system of Foods and Animal Feeds to harmonise the classification. We demonstrate that this approach works well for pesticides and glycoalkaloids, and is an essential step forward in the harmonisation of risk assessment procedures within Europe when addressing chemicals analysed in RACs by all national food control systems. PMID:19682531

  16. Development of test methods for scale model simulation of aerial applications in the NASA Langley Vortex Research Facility. [agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.

    1980-01-01

    As part of basic research to improve aerial applications technology, methods were developed at the Langley Vortex Research Facility to simulate and measure deposition patterns of aerially-applied sprays and granular materials by means of tests with small-scale models of agricultural aircraft and dynamically-scaled test particles. Interactions between the aircraft wake and the dispersed particles are being studied with the objective of modifying wake characteristics and dispersal techniques to increase swath width, improve deposition pattern uniformity, and minimize drift. The particle scaling analysis, test methods for particle dispersal from the model aircraft, visualization of particle trajectories, and measurement and computer analysis of test deposition patterns are described. An experimental validation of the scaling analysis and test results that indicate improved control of chemical drift by use of winglets are presented to demonstrate test methods.

  17. Study on ozone treatment of soil for agricultural application of surface dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Nagatomo, Takuya; Abiru, Tomoya; Mitsugi, Fumiaki; Ebihara, Kenji; Nagahama, Kazuhiro

    2016-01-01

    Recently, application of plasma technologies to the agricultural field has attracted much interest because residual pesticides and excessive nitrogen oxides contained in plants, soil, and groundwater have become a serious issue worldwide. Since almost all of the atmospheric discharge plasma generates ozone, the effects of ozone are among the key factors for their agricultural applications. We have proposed the use of ozone generated using surface barrier discharge plasma for soil disinfection or sterilization. In this work, the ozone consumption coefficient and diffusion coefficient in soil were measured by the ultraviolet absorption method. The pH(H2O) and amount of nitrogen nutrient in soil after ozone diffusion treatment were studied and plant growth was observed simultaneously. The effect of ozone treatment on the amount of DNA in soil was also investigated and compared with that determined from the obtained ozone consumption coefficient.

  18. Advances in the development of remote sensing technology for agricultural applications

    NASA Technical Reports Server (NTRS)

    Powers, J. E.; Erb, R. B.; Hall, F. G.; Macdonald, R. B.

    1979-01-01

    The application of remote sensing technology to crop forecasting is discussed. The importance of crop forecasts to the world economy and agricultural management is explained, and the development of aerial and spaceborne remote sensing for global crop forecasting by the United States is outlined. The structure, goals and technical aspects of the Large Area Crop Inventory Experiment (LACIE) are presented, and main findings on the accuracy, efficiency, applicability and areas for further study of the LACIE procedure are reviewed. The current status of NASA crop forecasting activities in the United States and worldwide is discussed, and the objectives and organization of the newly created Agriculture and Resources Inventory Surveys through Aerospace Remote Sensing (AgRISTARS) program are presented.

  19. Exchange-coupled nanocomposites: chemical synthesis, characterization and applications.

    PubMed

    Liu, Fei; Hou, Yanglong; Gao, Song

    2014-12-01

    Nanocomposites containing soft and hard magnetic phases have attracted immense attention for energy-related and biomedical applications. With exchange coupling between nanoscale grains in the composites, magnetization of the soft magnetic phase can rotate coherently with that of the hard magnetic phase. In particular, good control of the soft and hard phases at the nanoscale in the composites is of great importance for effective exchange coupling, allowing us to make the best of the strengths of soft and hard magnetic phases and to optimize the magnetic properties for targeted applications. In this review, we present the recent progress in the chemical synthesis and applications of exchange-coupled nanocomposites. Firstly, the principle of nanomagnetism and exchange coupling is introduced. Secondly, the characterization of exchange-coupled nanocomposites is summarized. Thirdly, the chemical methods for the production of different exchange-coupled nanocomposites are presented. Finally, applications of exchange-coupled nanocomposites in magnetic energy storage and biomedicine are addressed. PMID:25130706

  20. Application, chemistry, and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality.

    PubMed

    Udeigwe, Theophilus K; Eze, Peter N; Teboh, Jasper M; Stietiya, Mohammed H

    2011-01-01

    Contaminants such as nitrogen (N), phosphorus (P), dissolved organic carbon (DOC), arsenic (As), heavy metals, and infectious pathogens are often associated with agricultural systems. Various soil and water remediation techniques including the use of chemical amendments have been employed to reduce the risks associated with these contaminants. This paper reviews the use of chemical amendments for immobilizing principal agricultural contaminants, the chemistry of contaminant immobilization, and the environmental consequences associated with the use of these chemical products. The commonly used chemical amendments were grouped into aluminum-, calcium-, and iron-containing products. Other products of interest include phosphorus-containing compounds and silicate clays. Mechanisms of contaminant immobilization could include one or a combination of the following: surface precipitation, adsorption to mineral surfaces (ion exchange and formation of stable complexes), precipitation as salts, and co-precipitation. The reaction pH, redox potential, clay minerals, and organic matter are potential factors that could control contaminant-immobilization processes. Reviews of potential environmental implications revealed that undesirable substances such as trace elements, fluoride, sulfate, total dissolved solids, as well as radioactive materials associated with some industrial wastes used as amendment could be leached to ground water or lost through runoff to receiving water bodies. The acidity or alkalinity associated with some of the industrial-waste amendments could also constitute a substantial environmental hazard. Chemical amendments could introduce elements capable of inducing or affecting the activities of certain lithotrophic microbes that could influence vital geochemical processes such as mineral dissolution and formation, weathering, and organic matter mineralization. PMID:20832118

  1. Physico-chemical characteristics affect the spatial distribution of pesticide and transformation product loss to an agricultural brook.

    PubMed

    Gassmann, M; Olsson, O; Stamm, C; Weiler, M; Kümmerer, K

    2015-11-01

    Diffuse entry of pesticide residues from agriculture into rivers is spatially unevenly distributed. Therefore, the identification of critical source areas (CSAs) may support water quality management in agricultural catchments. In contrast to former studies, we followed the hypothesis that not only hydrological and topographical characteristics but also physico-chemical properties of pesticide residues have a major influence on their loss to rivers and on corresponding formation of CSAs. We designed a virtual experiment, i.e. a numerical experiment as close as possible to environmental conditions, in a headwater catchment where pronounced spatial differences in hydrological transport processes were identified in the past. 144 scenarios with different combinations of adsorption coefficients (KOC = 10-1000 ml/g) and transformation half-lives (DT50 = 3-60 days) for pesticide parent compounds (PCs) and their transformation products (TPs) were simulated using the catchment-scale spatially distributed reactive transport model ZIN-AgriTra. Export fractions of substances in the virtual experiment ranged from 0.001-15% for pesticides and 0.001-1.8% for TPs. The results of the scenario investigations suggest that more of the calculated export mass variability could be attributed to KOC than to DT50 for both PCs and TPs. CSAs for TPs were spatially more equally distributed in the catchment than for PC export which was likely an effect of changing physico-chemical properties during transformation. The ranking of highest export fields was different between PCs and TPs for most of the investigated scenarios but six fields appeared among the top ten export fields in 95% of the scenarios, which shows the influence of site characteristics such as tile drains or soil properties in the catchment. Thus, the highest export fields were determined by a combination of site characteristics and substance characteristics. Therefore, despite the challenge of widely differing physico-chemical

  2. Market assessment of photovoltaic power systems for agricultural applications in Morocco

    SciTech Connect

    Steingass, H.; Asmon, I.

    1981-09-01

    A month-long study in Morocco was aimed at assessing the market potential for stand-alone photovoltaic systems in agriculture and rural service applications. The types of applications considered are those requiring less than 15 kw of power. The applications include irrigation, cattle watering, refrigeration, crop processing, potable water and educational TV. Telecommunications and transportation signalling applications were also considered in the course of the study. Power and energy use profiles are described for many applications as well assessments of business environment, government and private sector attitudes towards photovoltaics, and financing. The Moroccan market presents both advantages and disadvantages for American PV manufacturers. The principle advantages are a limited grid, interest in and present use of PV in communications applications, attractive investment incentives and a stated policy favoring American investment. Major disadvantages include lack of government incentives for PV use, general unfamiliarity with PV technology, high first cost of PV, a well-established market network for diesel generators, and difficulty with financing. Given these parameters the market for PV in Morocco during the period of 1981 to 1986, will be relatively small, about 340 kwp. Sectors where the market for PV is likely to be more favorable than for agriculture include: telecommunications, transport signalling and some rural services. The primary market appears to be in the public (i.e., government) rather than private sector, due to financial constraints and the high price of PV relative to conventional power sector.

  3. Developing a new wireless sensor network platform and its application in precision agriculture.

    PubMed

    Aquino-Santos, Raúl; González-Potes, Apolinar; Edwards-Block, Arthur; Virgen-Ortiz, Raúl Alejandro

    2011-01-01

    Wireless sensor networks are gaining greater attention from the research community and industrial professionals because these small pieces of "smart dust" offer great advantages due to their small size, low power consumption, easy integration and support for "green" applications. Green applications are considered a hot topic in intelligent environments, ubiquitous and pervasive computing. This work evaluates a new wireless sensor network platform and its application in precision agriculture, including its embedded operating system and its routing algorithm. To validate the technological platform and the embedded operating system, two different routing strategies were compared: hierarchical and flat. Both of these routing algorithms were tested in a small-scale network applied to a watermelon field. However, we strongly believe that this technological platform can be also applied to precision agriculture because it incorporates a modified version of LORA-CBF, a wireless location-based routing algorithm that uses cluster-based flooding. Cluster-based flooding addresses the scalability concerns of wireless sensor networks, while the modified LORA-CBF routing algorithm includes a metric to monitor residual battery energy. Furthermore, results show that the modified version of LORA-CBF functions well with both the flat and hierarchical algorithms, although it functions better with the flat algorithm in a small-scale agricultural network. PMID:22346622

  4. Developing a New Wireless Sensor Network Platform and Its Application in Precision Agriculture

    PubMed Central

    Aquino-Santos, Raúl; González-Potes, Apolinar; Edwards-Block, Arthur; Virgen-Ortiz, Raúl Alejandro

    2011-01-01

    Wireless sensor networks are gaining greater attention from the research community and industrial professionals because these small pieces of “smart dust” offer great advantages due to their small size, low power consumption, easy integration and support for “green” applications. Green applications are considered a hot topic in intelligent environments, ubiquitous and pervasive computing. This work evaluates a new wireless sensor network platform and its application in precision agriculture, including its embedded operating system and its routing algorithm. To validate the technological platform and the embedded operating system, two different routing strategies were compared: hierarchical and flat. Both of these routing algorithms were tested in a small-scale network applied to a watermelon field. However, we strongly believe that this technological platform can be also applied to precision agriculture because it incorporates a modified version of LORA-CBF, a wireless location-based routing algorithm that uses cluster-based flooding. Cluster-based flooding addresses the scalability concerns of wireless sensor networks, while the modified LORA-CBF routing algorithm includes a metric to monitor residual battery energy. Furthermore, results show that the modified version of LORA-CBF functions well with both the flat and hierarchical algorithms, although it functions better with the flat algorithm in a small-scale agricultural network. PMID:22346622

  5. Fabrication of Scalable Indoor Light Energy Harvester and Study for Agricultural IoT Applications

    NASA Astrophysics Data System (ADS)

    Watanabe, M.; Nakamura, A.; Kunii, A.; Kusano, K.; Futagawa, M.

    2015-12-01

    A scalable indoor light energy harvester was fabricated by microelectromechanical system (MEMS) and printing hybrid technology and evaluated for agricultural IoT applications under different environmental input power density conditions, such as outdoor farming under the sun, greenhouse farming under scattered lighting, and a plant factory under LEDs. We fabricated and evaluated a dye- sensitized-type solar cell (DSC) as a low cost and “scalable” optical harvester device. We developed a transparent conductive oxide (TCO)-less process with a honeycomb metal mesh substrate fabricated by MEMS technology. In terms of the electrical and optical properties, we achieved scalable harvester output power by cell area sizing. Second, we evaluated the dependence of the input power scalable characteristics on the input light intensity, spectrum distribution, and light inlet direction angle, because harvested environmental input power is unstable. The TiO2 fabrication relied on nanoimprint technology, which was designed for optical optimization and fabrication, and we confirmed that the harvesters are robust to a variety of environments. Finally, we studied optical energy harvesting applications for agricultural IoT systems. These scalable indoor light harvesters could be used in many applications and situations in smart agriculture.

  6. Market assessment of photovoltaic power systems for agricultural applications in Mexico

    SciTech Connect

    Steigelman, W.; Asmon, I.

    1981-07-01

    A month-long study in Mexico was aimed at assessing the market potential for stand-alone photovoltaic systems in agriculture. The types of applications considered are those requiring less than 15 kw of power. The applications include irrigation, cattle watering, refrigeration, crop processing and animal raising. Descriptions are provided of power and energy use profiles for many applications as well as assessments of business environment, government and private sector attitudes towards photovoltaics, and financing. The Mexican market presents both advantages and disadvantages for American PV manufacturers. The principal advantages are recognition of the technical superiority of American photovoltaics and the favorable reputation of several American PV firms already active in the Mexican market. Major disadvantages include lack of government incentives for PV use, cheap domestic energy sources, extensive electric grid, high first cost of PV, competition from Mexican and other non-US PV companies, and lack of financing. Given these parameters the market for PV in the Mexican agricultural sector during the period 1981 to 1986, will be relatively small, about 605 kwp. However, other sectors where the market for PV is likely to be more favorable than for agriculture include: rural services, telecommunications and cathodic protection. The primary market appears to be in the public (i.e., government) rather than private sector, due to financing constraints and the high price of PV relative to conventional power sources available to the private sector.

  7. 40 CFR 430.60 - Applicability; description of the semi-chemical subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-chemical subcategory. 430.60 Section 430.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Chemical Subcategory § 430.60 Applicability; description of the semi-chemical subcategory. The provisions... paper at semi-chemical mills....

  8. 40 CFR 430.60 - Applicability; description of the semi-chemical subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-chemical subcategory. 430.60 Section 430.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Chemical Subcategory § 430.60 Applicability; description of the semi-chemical subcategory. The provisions... paper at semi-chemical mills....

  9. Application of Plagiarism Screening Software in the Chemical Engineering Curriculum

    ERIC Educational Resources Information Center

    Cooper, Matthew E.; Bullard, Lisa G.

    2014-01-01

    Plagiarism is an area of increasing concern for written ChE assignments, such as laboratory and design reports, due to ease of access to text and other materials via the internet. This study examines the application of plagiarism screening software to four courses in a university chemical engineering curriculum. The effectiveness of plagiarism…

  10. Wastewater for agriculture: A reuse-oriented planning model and its application in peri-urban China.

    PubMed

    Murray, Ashley; Ray, Isha

    2010-03-01

    The benefits of Integrated Water Resources Management (IWRM) are widely known but its recommendations remain thinly implemented. Designing wastewater treatment plants for reuse in irrigation is a particularly underutilized IWRM opportunity that could potentially increase agricultural yields, conserve surface water, offset chemical fertilizer demand, and reduce the costs of wastewater treatment by eliminating nutrient removal processes. This paper presents a novel planning model, consisting of a reuse-centric performance assessment and optimization model to help design wastewater treatment plants for reuse in agriculture. The performance assessment and optimization model are described, and their coupled application is demonstrated in the peri-urban district of Pixian, China. Based on the results of the performance assessment, two reuse scenarios are evaluated: wastewater to supplement business as usual (BAU) irrigation, and wastewater to replace BAU irrigation. The results indicate that wastewater supplementation could increase profits by $20 million (M) annually; alternatively, wastewater replacement could conserve 35Mm(3) of water in local rivers each year. PMID:20022350

  11. Mapping Crop Status from AN Unmanned Aerial Vehicle for Precision Agriculture Applications

    NASA Astrophysics Data System (ADS)

    Guo, T.; Kujirai, T.; Watanabe, T.

    2012-07-01

    Remote sensing system mounted on unmanned aerial vehicle (UAV) could provide a complementary means to the conventional satellite and aerial remote sensing solutions especially for the applications of precision agriculture. UAV remote sensing offers a great flexibility to quickly acquire field data in sufficient spatial and spectral resolution at low cost. However a major problem of UAV is the high instability due to the low-end equipments and difficult environment situation, and this leads to image sensor being mostly operated under a highly uncertain configuration. Thus UAV images exhibit considerable derivation in spatial orientation, large geometric and spectral distortion, and low signal-to-noise ratio (SNR). To achieve the objectives of agricultural mapping from UAV, we apply a micro-helicopter UAV with a multiple spectral camera mounted and develop a framework to process UAV images. A very important processing is to generate mosaic image which can be aligned with maps for later GIS integration. With appropriate geometric calibration applied, we first decompose a homography of consecutive image pairs into a rotational component and a simple perspective component, and apply a linear interpolation to the angle of the rotational component, followed by a linear matrix interpolation operator to the perspective component, and this results in an equivalent transformation but ensures a smooth evolution between two images. Lastly to demonstrate the potential of UAV images to precision agriculture application, we perform spectral processing to derive vegetation indices (VIs) maps of crop, and also show the comparison with satellite imagery. Through this paper, we demonstrate that it is highly feasible to generate quantitative mapping products such as crop stress maps from UAV images, and suggest that UAV remote sensing is very valuable for the applications of precision agriculture.

  12. Agricultural and Food Processing Applications of Pulsed Power and Plasma Technologies

    NASA Astrophysics Data System (ADS)

    Takaki, Koichi

    Agricultural and food processing applications of pulsed power and plasma technologies are described in this paper. Repetitively operated compact pulsed power generators with a moderate peak power are developed for the agricultural and the food processing applications. These applications are mainly based on biological effects and can be categorized as germination control of plants such as Basidiomycota and arabidopsis inactivation of bacteria in soil and liquid medium of hydroponics; extraction of juice from fruits and vegetables; decontamination of air and liquid, etc. Types of pulsed power that have biological effects are caused with gas discharges, water discharges, and electromagnetic fields. The discharges yield free radicals, UV radiation, intense electric field, and shock waves. Biologically based applications of pulsed power and plasma are performed by selecting the type that gives the target objects the adequate result from among these agents or byproducts. For instance, intense electric fields form pores on the cell membrane, which is called electroporation, or influence the nuclei. This paper mainly describes the application of the pulsed power for the germination control of Basidiomycota i.e. mushroom, inactivation of fungi in the soil and the liquid medium in hydroponics, and extraction of polyphenol from skins of grape.

  13. Agricultural chemicals in Iowa's ground water, 1982-95: What are the trends?

    USGS Publications Warehouse

    Koplin, Dana W.; Hallberg, George; Sneck-Fahrer, D. A.; Libra, Robert

    1997-01-01

    The Iowa Department of Natural Resources. Geological Survey Bureau: the University of Iowa Hygienic Laboratory; and the U.S. Geological Survey (USGS) have been working together to address this question. As part of the Iowa Ground-Water Monitoring Program (IGWM). water samples have been collected from selected Iowa municipal wells since 1982. An examination of this data identified two trends: (1) concentrations of atrazine in Iowa's ground water generally were decreasing over time, and (2) concentrations of metolachlor generally were increasing. Continuing ground-water sampling can determine if these trends represent long-term changes in chemical concentrations.

  14. Standards and guidelines for the land application of mechanical pulp mill sludge to agricultural land

    SciTech Connect

    1999-11-01

    These standards and guidelines are intended for operations involving the application of pulp mill sludge on agricultural land in Alberta, with the rationale that the applied material is a good soil amendment. The objectives of the standards and guidelines are to ensure that the land application is conducted in a manner that protects human health and the environment, and to guide sludge generators and users by outlining the basis for application reviews and approval requirements pursuant to the Environmental Protection and Enhancement Act. The standards and guidelines cover such matters as definitions, sludge assessments, record keeping and reporting, soil suitability, and land application methods and procedures. The document also includes a summary of research studies and related reports on the benefits of sludge utilization on land.

  15. Application of Sludges and Wastewaters on Agricultural Land: A Planning and Educational Guide, MCD-35. Research Bulletin 1090.

    ERIC Educational Resources Information Center

    Knezek, Bernard D., Ed.; Miller, Robert H., Ed.

    This report addresses the application of agricultural processing wastes, industrial and municipal wastes on agricultural land as both a waste management and resource recovery and reuse practice. The document emphasizes the treatment and beneficial utilization of sludge and wastewater as opposed to waste disposal. These objectives are achieved…

  16. DYNAMIC TESTING OF GPS RECEIVERS ON AGRICULTURAL AIRCRAFT FOR REMOTE SENSING AND VARIABLE-RATE AERIAL APPLICATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global Positioning System (GPS) receivers and GPS-based swath guidance systems are used on agricultural aircraft for remote sensing, airplane guidance, and to support variable-rate aerial application of crop inputs such as insecticides, cotton growth regulators, and defoliants. Agricultural aircraf...

  17. Not all GMOs are crop plants: non-plant GMO applications in agriculture.

    PubMed

    Hokanson, K E; Dawson, W O; Handler, A M; Schetelig, M F; St Leger, R J

    2014-12-01

    Since tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteria, fungi, insects, and viruses. Many of these organisms, as with crop plants, are being engineered for applications in agriculture, to control plant insect pests or diseases. This paper reviews the genetically modified non-plant organisms that have been the subject of permit approvals for environmental release by the United States Department of Agriculture/Animal and Plant Health Inspection Service since the US began regulating genetically modified organisms. This is an indication of the breadth and progress of research in the area of non-plant genetically modified organisms. This review includes three examples of promising research on non-plant genetically modified organisms for application in agriculture: (1) insects for insect pest control using improved vector systems; (2) fungal pathogens of insects to control insect pests; and (3) virus for use as transient-expression vectors for disease control in plants. PMID:24242193

  18. Residential Proximity to Agricultural Pesticide Applications and Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Rull, Rudolph P.; Gunier, Robert; Von Behren, Julie; Hertz, Andrew; Crouse, Vonda; Buffler, Patricia A.; Reynolds, Peggy

    2009-01-01

    Ambient exposure from residential proximity to applications of agricultural pesticides may contribute to the risk of childhood acute lymphoblastic leukemia (ALL). Using residential histories collected from the families of 213 ALL cases and 268 matched controls enrolled in the Northern California Childhood Leukemia Study, the authors assessed residential proximity within a half-mile (804.5 meters) of pesticide applications by linking address histories with reports of agricultural pesticide use. Proximity was ascertained during different time windows of exposure, including the first year of life and the child’s lifetime through the date of diagnosis for cases or reference for controls. Agricultural pesticides were categorized a priori into groups based on similarities in toxicological effects, physicochemical properties, and target pests or uses. The effects of moderate and high exposure for each group of pesticides were estimated using conditional logistic regression. Elevated ALL risk was associated with lifetime moderate exposure, but not high exposure, to certain physicochemical categories of pesticides, including organophosphates, cholorinated phenols, and triazines, and with pesticides classified as insecticides or fumigants. A similar pattern was also observed for several toxicological groups of pesticides. These findings suggest future directions for the identification of specific pesticides that may play a role in the etiology of childhood leukemia. PMID:19700145

  19. Methane in groundwater used for Japanese agriculture: Its relationship to other physico-chemical properties and possible tropospheric source strength

    NASA Astrophysics Data System (ADS)

    Watanabe, A.; Kimura, M.; Kasuya, M.; Kotake, M.; Katoh, T.

    1994-01-01

    The concentration of CH4 in 131 groundwater samples used for agriculture in Aichi Prefecture, central Japan, averaged 1.58 mgC l-1 for those water samples above detection (>0.006 mgC l-1), with the highest value of 18.4 mgC l-1. Methane was detected in more than half of the groundwater samples. The amount of CH4 released to the atmosphere because of agricultural groundwater use was estimated to be 2.00 × 107 gC yr-1 for a cultivated area of 8.61 × 104 ha, or about 1.4% of the CH4 production in paddy fields derived from soil organic matter in the same geographic area. Distribution of measurements of redox potential (Eh), chemical oxygen demand (COD), Fe, Mn, NH4-N, and NO3-N was clearly different between the CH4-detected and undetected samples; Eh values and NO3-N concentrations were lower while the other four factors were higher in the CH4-detected samples.

  20. Chemical hydrogen storage material property guidelines for automotive applications

    SciTech Connect

    Semelsberger, Troy; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 C), system gravimetric capacities (>0.05 kg H2/kg system), and system volumetric capacities (>0.05 kg H2/L system). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material propertiesdand most important, their implications on system mass, system volume and system performance.

  1. Chemical hydrogen storage material property guidelines for automotive applications

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 °C), system gravimetric capacities (>0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  2. Chemical and biological characterization of products of incomplete combustion from the simulated field burning of agricultural plastic

    SciTech Connect

    Linak, W.P.; Ryan, J.V.; Perry, E.; Williams, R.W.; DeMarini, D.M.

    1989-06-01

    Chemical and biological analyses were performed to characterize products of incomplete combustion emitted during the simulated open field burning of agricultural plastic. A small utility shed equipped with an air delivery system was used to simulate pile burning and forced-air-curtain incineration of a nonhalogenated agricultural plastic that reportedly consisted of polyethylene and carbon black. Emissions were analyzed for combustion gases; volatile, semi-volatile, and particulate organics; and toxic and mutagenic properties. Emission samples, as well as samples of the used (possibly pesticide-contaminated) plastic, were analyzed for the presence of several pesticides to which the plastic may have been exposed. Although a variety of alkanes, alkenes, and aromatic and polycyclic aromatic hydrocarbon (PAH) compounds were identified in the volatile, semi-volatile, and particulate fractions of these emissions, a substantial fraction of higher molecular weight organic material was not identified. No pesticides were identified in either combustion emission samples or dichloromethane washes of the used plastic. When mutagenicity was evaluated by exposing Salmonella bacteria (Ames assay) to whole vapor and vapor/particulate emissions, no toxic or mutagenic effects were observed. However, organic extracts of the particulate samples were moderately mutagenic. This mutagenicity compares approximately to that measured from residential wood heating on a revertant per unit heat release basis. Compared to pile burning, forced air slightly decreased the time necessary to burn a charge of plastic. There was not a substantial difference, however, in the variety or concentrations of organic compounds identified in samples from these two burn conditions. This study highlights the benefits of a combined chemical/biological approach to the characterization of complex, multi-component combustion emissions.

  3. Application of modern biotechnology to food and agriculture: food systems perspective.

    PubMed

    McCullum, Christine; Benbrook, Charles; Knowles, Lori; Roberts, Susan; Schryver, Tamara

    2003-01-01

    The purpose of this article is to provide nutrition educators with an introduction to a range of considerations and forces that are driving the application of modern biotechnology in the food and fiber sector based on a food systems perspective. In doing so, the following issues are critically assessed: (1) the global debate on how to regulate genetically engineered (GE) foods and crops, (2) cultural differences in public perceptions of GE foods, and (3) evaluation of selected GE traits against the principles of social, economic, and ecological sustainability, including the potential of modern agricultural biotechnology to enhance global food security. Where appropriate, we also review other agricultural technologies and the broader political, social, and economic contexts in which these technologies have been introduced. Finally, we offer recommendations for how multiple stakeholder groups, including policy makers, biotechnology advocates, and nutrition educators, can move toward a more informed dialogue and debate on this issue. PMID:14642218

  4. Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications

    SciTech Connect

    Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.; Holladay, Jamelyn D.

    2012-04-16

    Due to its high hydrogen storage capacity (up to 19.6% by weight for the release of 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions, ammonia borane (AB) is a promising material for chemical hydrogen storage for fuel cell applications in transportation sector. Several systems models for chemical hydride materials such as solid AB, liquid AB and alane were developed and evaluated at PNNL to determine an optimal configuration that would meet the 2010 and future DOE targets for hydrogen storage. This paper presents an overview of those systems models and discusses the simulation results for various transient drive cycle scenarios.

  5. Effects of focused recharge on the transport of agricultural chemicals at the Princeton, Minnesota Management Systems Evaluation Area, 1991-92

    USGS Publications Warehouse

    Delin, G.N.; Landon, M.K.

    1993-01-01

    The primary objective of this four-year research study is to evaluate the effects of transient recharge, topography, and subsurface heterogeneities on the flux of water and agricultural chemicals to ground water. To achieve this objective the approach was to (1) install instruments to sample and measure the movement of water through the unsaturated zone beneath topographically high and low areas of a corn field; (2) conduct recharge and tracer tests in the field to evaluate the movement of water and agricultural chemicals at both topographic settings; and (3) simulate the field recharge and tracer tests in the laboratory. The primary research hypothesis was that the vertical flux of water and agricultural chemicals is greater in topographically low areas than in topographically high areas.

  6. Nesting biology of laughing gulls in relation to agricultural chemicals in south Texas, 1978-81

    USGS Publications Warehouse

    White, D.H.; Mitchell, C.A.; Prouty, R.M.

    1983-01-01

    Laughing Gulls (Larus atricilla) were studied along the south Texas coast during 1978-1981 to determine productivity and to evaluate the effects of environmental pollutants on reproduction. The average clutch-size was 2.6, ranging from 2.3-2.8. Sixty-six percent of the eggs hatched and 82% of the pairs hatched at least one egg. Productivity (fledglings/total nests) averaged 1.0 fledgling per nest. DDE and other organochlorine residues were low in eggs (usually <3 ppm wet weight) and were not suspected of causing reproductive problems. However, organophosphate pesticides sprayed on crops near the study areas reduced productivity by as much as 33% during 3 of 4 years, implying that certain of these chemicals may pose serious threats to the population.

  7. Nanostructured conjugated polymers in chemical sensors: synthesis, properties and applications.

    PubMed

    Correa, D S; Medeiros, E S; Oliveira, J E; Paterno, L G; Mattoso, Luiz C

    2014-09-01

    Conjugated polymers are organic materials endowed with a π-electron conjugation along the polymer backbone that present appealing electrical and optical properties for technological applications. By using conjugated polymeric materials in the nanoscale, such properties can be further enhanced. In addition, the use of nanostructured materials makes possible miniaturize devices at the micro/nano scale. The applications of conjugated nanostructured polymers include sensors, actuators, flexible displays, discrete electronic devices, and smart fabric, to name a few. In particular, the use of conjugated polymers in chemical and biological sensors is made feasible owning to their sensitivity to the physicochemical conditions of its surrounding environment, such as chemical composition, pH, dielectric constant, humidity or even temperature. Subtle changes in these conditions bring about variations on the electrical (resistivity and capacitance), optical (absorptivity, luminescence, etc.), and mechanical properties of the conjugated polymer, which can be precisely measured by different experimental methods and ultimately associated with a specific analyte and its concentration. The present review article highlights the main features of conjugated polymers that make them suitable for chemical sensors. An especial emphasis is given to nanostructured sensors systems, which present high sensitivity and selectivity, and find application in beverage and food quality control, pharmaceutical industries, medical diagnosis, environmental monitoring, and homeland security, and other applications as discussed throughout this review. PMID:25924296

  8. Application of chemical biology in target identification and drug discovery.

    PubMed

    Zhu, Yue; Xiao, Ting; Lei, Saifei; Zhou, Fulai; Wang, Ming-Wei

    2015-09-01

    Drug discovery and development is vital to the well-being of mankind and sustainability of the pharmaceutical industry. Using chemical biology approaches to discover drug leads has become a widely accepted path partially because of the completion of the Human Genome Project. Chemical biology mainly solves biological problems through searching previously unknown targets for pharmacologically active small molecules or finding ligands for well-defined drug targets. It is a powerful tool to study how these small molecules interact with their respective targets, as well as their roles in signal transduction, molecular recognition and cell functions. There have been an increasing number of new therapeutic targets being identified and subsequently validated as a result of advances in functional genomics, which in turn led to the discovery of numerous active small molecules via a variety of high-throughput screening initiatives. In this review, we highlight some applications of chemical biology in the context of drug discovery. PMID:26242900

  9. Research advances of antimicrobial peptides and applications in food industry and agriculture.

    PubMed

    Meng, Shuo; Xu, Huanli; Wang, Fengshan

    2010-06-01

    Antimicrobial peptides (AMPs) are produced by a wide range of organisms and serve as their natural defenses against infection caused by bacteria, viruses and fungi. Because of the positively charge and amphipathic structure, AMPs kill target cells through diverse and complex mechanisms once in a target membrane and these special mechanisms are considered to be the critical factors for the less tendency of drug resistance development. Thus AMPs may become a new generation of promising antimicrobial agents in future anti-infection application. Additionally, AMPs can also be used in food industry and agriculture. On the basis of discussing the structural features, action mechanisms and sources, the applications of AMPs were reviewed in this paper, including in food industry, feedstuff, cultivation of disease-resistant transgenic plant, cultivation of transgenic animal, and aquaculture, especially the patented applications. PMID:20408795

  10. Metal adsorption by agricultural biosorbents: Adsorption isotherm, kinetic and biosorbents chemical structures.

    PubMed

    Sadeek, Sadeek A; Negm, Nabel A; Hefni, Hassan H H; Wahab, Mostafa M Abdel

    2015-11-01

    Biosorption of Cu(II), Co(II) and Fe(III) ions from aqueous solutions by rice husk, palm leaf and water hyacinth was investigated as a function of initial pH, initial heavy metal ions concentration and treatment time. The adsorption process was examined by two adsorption isotherms: Langmuir and Freundlich isotherms. The experimental data of biosorption process were analyzed using pseudo-first order, pseudo-second order kinetic models. The equilibrium biosorption isotherms showed that the three studied biosorbents possess high affinity and sorption capacity for Cu(II), Co(II) and Fe(III) ions. Rice husk showed more efficiency than palm leaf and water hyacinth. Adsorption of Cu(II) and Co(II) was more efficient in alkaline medium (pH 9) than neutral medium due to the high solubility of metal ion complexes. The metal removal efficiency of each biosorbent was correlated to its chemical structure. DTA studies showed formation of metal complex between the biosorbents and the metal ions. The obtained results showed that the tested biosorbents are efficient and alternate low-cost biosorbent for removal of heavy metal ions from aqueous media. PMID:26282929

  11. The effect of the 2011 flood on agricultural chemical and sediment movement in the lower Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Welch, H.; Coupe, R.; Aulenbach, B.

    2012-04-01

    Extreme hydrologic events, such as floods, can overwhelm a surface water system's ability to process chemicals and can move large amounts of material downstream to larger surface water bodies. The Mississippi River is the 3rd largest River in the world behind the Amazon in South America and the Congo in Africa. The Mississippi-Atchafalaya River basin grows much of the country's corn, soybean, rice, cotton, pigs, and chickens. This is large-scale modern day agriculture with large inputs of nutrients to increase yields and large applied amounts of crop protection chemicals, such as pesticides. The basin drains approximately 41% of the conterminous United States and is the largest contributor of nutrients to the Gulf of Mexico each spring. The amount of water and nutrients discharged from the Mississippi River has been related to the size of the low dissolved oxygen area that forms off of the coast of Louisiana and Texas each summer. From March through April 2011, the upper Mississippi River basin received more than five times more precipitation than normal, which combined with snow melt from the Missouri River basin, created a historic flood event that lasted from April through July. The U.S. Geological Survey, as part of the National Stream Quality Accounting Network (NASQAN), collected samples from six sites located in the lower Mississippi-Atchafalaya River basin, as well as, samples from the three flow-diversion structures or floodways: the Birds Point-New Madrid in Missouri and the Morganza and Bonnet Carré in Louisiana, from April through July. Samples were analyzed for nutrients, pesticides, suspended sediments, and particle size; results were used to determine the water quality of the river during the 2011 flood. Monthly loads for nitrate, phosphorus, pesticides (atrazine, glyphosate, fluometuron, and metolachlor), and sediment were calculated to quantify the movement of agricultural chemicals and sediment into the Gulf of Mexico. Nutrient loads were

  12. Distribution of uranium in soil components of agricultural fields after long-term application of phosphate fertilizers.

    PubMed

    Yamaguchi, N; Kawasaki, A; Iiyama, I

    2009-02-01

    Long-term application of phosphate fertilizers causes accumulation of U in the surface soil of agricultural fields. We investigated the soil constituents that contribute to the accumulation of U by using chemical extraction methods. Surface soil samples were obtained from upland fields, pastures, and paddy fields cultivated without any phosphate fertilizer (control site), with NPK fertilizer (NPK site), and with both NPK fertilizer and compost (NPK+compost site) for more than 20 years. In addition to the total U (Ut) concentration in soil, the concentrations of pyrophosphate- and acid oxalate-extractable U were determined as a measure of U associated with soil organic matter and poorly crystalline Fe/Al minerals in soil, respectively. The total, pyrophosphate-extractable, and acid oxalate-extractable U concentrations were higher in the soil obtained from the NPK and NPK+compost sites than in that obtained from the control site. The difference in the U concentrations between the NPK or NPK+compost site and the control site corresponded with the increased U concentration observed after the application of the phosphate fertilizer or both the fertilizer and compost. In the upland field and pasture soil, the increase in pyrophosphate-extractable U was 83-94% of that in Ut. On the other hand, the increase in acid oxalate-extractable U was 44-58% of that in Ut in the upland field and pasture soil, but it was almost equivalent to the increase in Ut in the paddy soil with NPK. In conclusion, most of the phosphate fertilizer-derived U was either incorporated into the soil organic matter or poorly crystalline Fe/Al minerals in the surface soil of agricultural fields. Thus, soil organic matter is an important pool of U in upland field and pasture soil, whereas poorly crystalline Fe/Al minerals are important pools of U in paddy soil experiencing alternating changes in redox conditions. PMID:19033080

  13. Application of repetitive pulsed power technology to chemical processing

    SciTech Connect

    Kaye, R.J.; Hamil, R.

    1995-12-31

    The numerous sites of soil and water contaminated with organic chemicals present an urgent environmental concern that continues to grow. Electron and x-ray irradiation have been shown to be effective methods to destroy a wide spectrum of organic chemicals, nitrates, nitrites, and cyanide in water by breaking molecules to non-toxic products or entirely mineralizing the by-products to gas, water, and salts. Sandia National Laboratories is developing Repetitive High Energy Pulsed Power (RHEPP) technology capable of producing high average power, broad area electron or x-ray beams. The 300 kW RHEPP-II facility accelerates electrons to 2.5 MeV at 25 kA over 1,000 cm{sup 2} in 60 ns pulses at repetition rates of over 100 Hz. Linking this modular treatment capability with the rapid optical-sensing diagnostics and neutral network characterization software algorithms will provide a Smart Waste Treatment (SWaT) system. Such a system would also be applicable for chemical manufacture and processing of industrial waste for reuse or disposal. This talk describes both the HREPP treatment capability and sensing technologies. Measurements of the propagated RHEPP-II beam and dose profiles are presented. Sensors and rapid detection software are discussed with application toward chemical treatment.

  14. The application of GMOs in agriculture and in food production for a better nutrition: two different scientific points of view.

    PubMed

    Buiatti, M; Christou, P; Pastore, G

    2013-05-01

    This commentary is a face-to-face debate between two almost opposite positions regarding the application of genetic engineering in agriculture and food production. Seven questions on the potential benefits of the application of genetic engineering in agriculture and on the potentially adverse impacts on the environment and human health were posed to two scientists: one who is sceptical about the use of GMOs in Agriculture, and one who views GMOs as an important tool for quantitatively and qualitatively improving food production. PMID:23076994

  15. Application of municipal sludge (biosolids) for agricultural purposes and groundwater nitrate concentrations

    SciTech Connect

    Welby, C.W. . Dept. of Marine, Earth and Atmospheric Sciences)

    1993-03-01

    One of the more popular means of handling sewage sludge from municipalities is its application to agricultural lands. A variety of crops are grown with the expectation that plants will utilize the nitrogen. However, a complex scenario allows some of the nitrate to move below root depth and eventually to the water table at depths of up to 30 ft. The City of Raleigh, NC injects sewage sludge ( residuals'', biosolids'') into soils derived largely from the Rolesville Granite in an area of typical rolling Piedmont topography. A 1975 background study of part of the site demonstrated differences in groundwater quality between areas farmed over a period of years and areas dominated by second-growth pine and harwood forests. Groundwater quality data collected semiannually between 1982 and 1988 show gradual buildup of nitrate in some fields; in others groundwater quality apparently remains unaffected by nitrate from the sludge. Monitoring well placement may play a role in these differences. Minimum time from the sludge application to an increase in groundwater nitrate is from 9 to 12 months. An ongoing study of a 12-acre field which lay fallow for a number of years prior to sludge application in 1990 demonstrates that some nitrate does move downward fairly rapidly, its movement being recorded in both the saprolite and groundwater. Comparison of nitrate content of groundwater from monitoring wells at a nearby dairy farm shows that normal agricultural practices may also increase the nitrate content of the shallow groundwater.

  16. Empirical analysis of dry spells for agricultural applications in west Africa

    SciTech Connect

    Sivakumar, M.V.K. )

    1992-05-01

    Recurring droughts and decreased agricultural productivity during the last two decades in West Africa point to the need for a clearer understanding of the length of dry spells, their frequencies, and their probabilities. The simplest calculations of dry spells for general applications involve computation of the probabilities of maximum and conditional dry spells exceeding a user-specified threshold value from a given calendar date. For more precise applications in agriculture, it is important to consider the different periods after sowing a crop, since sowing dates in the semiarid West African regions vary from year to year. Using the specific definition of onset of rains in each year as the sowing date, the length of dry spells was calculated from the historical rainfall data. Probability distribution of time to the next wet day and the percentage frequencies of dry spells were computed for successive days after sowing (DAS) a crop. Dry-spell analysis showed a pronounced drop in the drought risk for cereal crops from the panicle initiation phase (20 DAS) to the flowering phase (60 DAS). The relationships between mean annual rainfall and average frequency of dry spells for the selected locations in West Africa showed distinct patterns and permit the prediction of the frequency of dry spells from annual rainfall totals. Applications of the dry-spell analysis for the choice of a crop/variety, supplemental irrigation, and crop water requirements have been described with examples.

  17. Chemical Gas Sensors for Aeronautic and Space Applications 2

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Chen, Liong-Yu; Neudeck, Phil G.; Knight, Dale; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, Darby; Liu, M.; Rauch, W. A.

    1998-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.

  18. Chemical Gas Sensors for Aeronautic and Space Applications 2

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Chen, L. Y.; Neudeck, P. G.; Knight, D.; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, D.; Liu, M.; Rauch, W. A.

    1998-01-01

    Aeronautic and Space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of most interest include launch vehicle safety monitoring emission monitoring and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensor is based on progress two types of technology: 1) Micro-machining and micro-fabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this micro-fabricated gas sensor technology make this area of sensor development a field of significant interest.

  19. Chemical Gas Sensors for Aeronautics and Space Applications III

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Chen, L. Y.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, Z.; Hammond, J.; Makel, D.; Liu, M.; Rauch, W. A.; Hall, G.

    1999-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.

  20. Microfabricated Chemical Sensors for Safety and Emission Control Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Chen, L.-Y.; Knight, D.; Liu, C. C.; Wu, Q. H.

    1998-01-01

    Chemical sensor technology is being developed for leak detection, emission monitoring, and fire safety applications. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication (MicroElectroMechanical Systems (MEMS)-based) technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Using these technologies, sensors to measure hydrogen, hydrocarbons, nitrogen oxides, carbon monoxide, oxygen, and carbon dioxide are being developed. A description is given of each sensor type and its present stage of development. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  1. Applications of neural networks in chemical engineering: Hybrid systems

    SciTech Connect

    Ferrada, J.J.; Osborne-Lee, I.W. ); Grizzaffi, P.A. )

    1990-01-01

    Expert systems are known to be useful in capturing expertise and applying knowledge to chemical engineering problems such as diagnosis, process control, process simulation, and process advisory. However, expert system applications are traditionally limited to knowledge domains that are heuristic and involve only simple mathematics. Neural networks, on the other hand, represent an emerging technology capable of rapid recognition of patterned behavior without regard to mathematical complexity. Although useful in problem identification, neural networks are not very efficient in providing in-depth solutions and typically do not promote full understanding of the problem or the reasoning behind its solutions. Hence, applications of neural networks have certain limitations. This paper explores the potential for expanding the scope of chemical engineering areas where neural networks might be utilized by incorporating expert systems and neural networks into the same application, a process called hybridization. In addition, hybrid applications are compared with those using more traditional approaches, the results of the different applications are analyzed, and the feasibility of converting the preliminary prototypes described herein into useful final products is evaluated. 12 refs., 8 figs.

  2. [An improved method and its application for agricultural drought monitoring based on remote sensing].

    PubMed

    Zheng, You-Fei; Cheng, Jin-Xin; Wu, Rong-Jun; Guan, Fu-Lai; Yao, Shu-Ran

    2013-09-01

    From the viewpoint of land surface evapotranspiration, and by using the semi-empirical evapotranspiration model based on the Priestley-Taylor equation and the land surface temperature-vegetation index (LST-VI) triangle algorithm, the current monitoring technology of agricultural drought based on remote sensing was improved, and a simplified Evapotranspiration Stress Index (SESI) was derived. With the application of the MODIS land products from March to November in 2008 and 2009, the triangle algorithm modeling with three different schemes was constructed to calculate the SESI to monitor the agricultural drought in the plain areas of Beijing, Tianjin, and Hebei, in comparison with the Temperature Vegetation Dryness Index (TVDI). The results showed that SESI could effectively simplify the remote sensing drought monitoring method, and there was a good agreement between SESI and surface soil (10 and 20 cm depth) moisture content. Moreover, the performance of SESI was better in spring and autumn than in summer, and the SESI during different periods was more comparable than TVDI. It was feasible to apply the SESI to the continuous monitoring of a large area of agricultural drought. PMID:24417121

  3. Organic polymer-metal nano-composites for opto-electronic sensing of chemicals in agriculture

    NASA Astrophysics Data System (ADS)

    Sarkisov, Sergey S.; Czarick, Michael; Fairchild, Brian D.; Liang, Yi; Kukhtareva, Tatiana; Curley, Michael J.

    2013-03-01

    Recent research findings led the team to conclude that a long lasting and inexpensive colorimetric sensor for monitoring ammonia emission from manure in confined animal feeding operations could eventually become feasible. The sensor uses robust method of opto-electronic spectroscopic measurement of the reversible change of the color of a sensitive nano-composite reagent film in response to ammonia. The film is made of a metal (gold, platinum, or palladium) nano-colloid in a polymer matrix with an ammonia-sensitive indicator dye additive. The response of the indicator dye (increase of the optical absorption in the region 550 to 650 nm) is enhanced by the nano-particles (~10 nm in size) in two ways: (a) concentration of the optical field near the nano-particle due to the plasmon resonance; and (b) catalytic acceleration of the chemical reaction of deprotonization of the indicator dye in the presence of ammonia and water vapor. This enhancement helps to make a miniature and rugged sensing element without compromising its sensitivity of less than 1 ppm for the range 0 to 100 ppm. The sensor underwent field tests in commercial broiler farms in Georgia, Alabama, and Arkansas and was compared against a commercial photoacoustic gas analyzer. The sensor output correlated well with the data from the photoacoustic analyzer (correlation coefficient not less than 0.9 and the linear regression slope after calibration close to 1.0) for several weeks of continuous operation. The sources of errors were analyzed and the conclusions on the necessary improvements and the potential use of the proposed device were made.

  4. Applications of the Cambridge Structural Database in chemical education1

    PubMed Central

    Battle, Gary M.; Ferrence, Gregory M.; Allen, Frank H.

    2010-01-01

    The Cambridge Structural Database (CSD) is a vast and ever growing compendium of accurate three-dimensional structures that has massive chemical diversity across organic and metal–organic compounds. For these reasons, the CSD is finding significant uses in chemical education, and these applications are reviewed. As part of the teaching initiative of the Cambridge Crystallographic Data Centre (CCDC), a teaching subset of more than 500 CSD structures has been created that illustrate key chemical concepts, and a number of teaching modules have been devised that make use of this subset in a teaching environment. All of this material is freely available from the CCDC website, and the subset can be freely viewed and interrogated using WebCSD, an internet application for searching and displaying CSD information content. In some cases, however, the complete CSD System is required for specific educational applications, and some examples of these more extensive teaching modules are also discussed. The educational value of visualizing real three-dimensional structures, and of handling real experimental results, is stressed throughout. PMID:20877495

  5. Release mitigation spray safety systems for chemical demilitarization applications.

    SciTech Connect

    Leonard, Jonathan; Tezak, Matthew Stephen; Brockmann, John E.; Servantes, Brandon; Sanchez, Andres L.; Tucker, Mark David; Allen, Ashley N.; Wilson, Mollye C.; Lucero, Daniel A.; Betty, Rita G.

    2010-06-01

    Sandia National Laboratories has conducted proof-of-concept experiments demonstrating effective knockdown and neutralization of aerosolized CBW simulants using charged DF-200 decontaminant sprays. DF-200 is an aqueous decontaminant, developed by Sandia National Laboratories, and procured and fielded by the US Military. Of significance is the potential application of this fundamental technology to numerous applications including mitigation and neutralization of releases arising during chemical demilitarization operations. A release mitigation spray safety system will remove airborne contaminants from an accidental release during operations, to protect personnel and limit contamination. Sandia National Laboratories recently (November, 2008) secured funding from the US Army's Program Manager for Non-Stockpile Chemical Materials Agency (PMNSCMA) to investigate use of mitigation spray systems for chemical demilitarization applications. For non-stockpile processes, mitigation spray systems co-located with the current Explosive Destruction System (EDS) will provide security both as an operational protective measure and in the event of an accidental release. Additionally, 'tented' mitigation spray systems for native or foreign remediation and recovery operations will contain accidental releases arising from removal of underground, unstable CBW munitions. A mitigation spray system for highly controlled stockpile operations will provide defense from accidental spills or leaks during routine procedures.

  6. Applications of the Cambridge Structural Database in chemical education.

    PubMed

    Battle, Gary M; Ferrence, Gregory M; Allen, Frank H

    2010-10-01

    The Cambridge Structural Database (CSD) is a vast and ever growing compendium of accurate three-dimensional structures that has massive chemical diversity across organic and metal-organic compounds. For these reasons, the CSD is finding significant uses in chemical education, and these applications are reviewed. As part of the teaching initiative of the Cambridge Crystallographic Data Centre (CCDC), a teaching subset of more than 500 CSD structures has been created that illustrate key chemical concepts, and a number of teaching modules have been devised that make use of this subset in a teaching environment. All of this material is freely available from the CCDC website, and the subset can be freely viewed and interrogated using WebCSD, an internet application for searching and displaying CSD information content. In some cases, however, the complete CSD System is required for specific educational applications, and some examples of these more extensive teaching modules are also discussed. The educational value of visualizing real three-dimensional structures, and of handling real experimental results, is stressed throughout. PMID:20877495

  7. Application of principles of integrated agricultural systems: results from farmer panels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Integrated Agricultural Systems working group comprised of USDA-ARS scientists is examining different agricultural systems from various geographic regions of the United States to determine fundamental principles that underlie successful integrated agricultural systems. Our hypothesis is that prin...

  8. An Empirical Determination of Tasks Essential to Successful Performance as a Chemical Applicator. Determination of a Common Core of Basic Skills in Agribusiness and Natural Resources.

    ERIC Educational Resources Information Center

    Miller, Daniel R.; And Others

    To improve vocational educational programs in agriculture, occupational information on a common core of basic skills within the occupational area of the chemical applicator is presented in the revised task inventory survey. The purpose of the occupational survey was to identify a common core of basic skills which are performed and are essential…

  9. Climatological to Near Real Time Global Meteorological Data for Agricultural, Range, and Forestry Applications

    NASA Astrophysics Data System (ADS)

    Hoell, J. M.; Stackhouse, P. W.; Westberg, D. J.; Chandler, W. S.; Whitlock, C. H.; Zhang, T.

    2007-12-01

    Application of Decision Support Systems (DSS) software often requires accurate environmental data on time scales ranging from daily forecasts to long-range climate outlooks. The NASA Science Mission Directorate's Applied Science Energy Management Program provides estimates of many of the required meteorological and solar parameters from a combination of assimilation models and satellite observations. However these data holdings are often in large archives and/or in formats unfamiliar to many potential users. NASA, through its Applications Program, has recognized that many potential data users are either unwilling or lack the resources required to investigate the applicability of these data to their particular application. NASA's Prediction of Worldwide Energy Resource (POWER) is one of NASA's Applications Project that has as one of its objectives the development of user-friendly data products for agricultural applications and to make these products readily accessible to the user community. The POWER project has adapted and reformatted data parameters from NASA Science Directorate sponsored research programs such as the International Satellite Cloud Climatology Project (ISCCP), the Surface Radiation Budget Project (SRB), the Global Precipitation Climatology Project (GPCP), the Tropical Rain Measuring Mission (TRMM) and the meteorological assimilation projects from the Global Modeling and Assimilation Office (GMAO). The POWER project currently provides a database of meteorological parameters and surface solar energy fluxes on a global 1-degree latitude/longitude grid. The agricultural data products currently available through a prototype web based information interface (http://power.larc.nasa.gov), consist of daily integrated surface solar radiation, daily averaged dew point temperature, daily maximum and minimum temperatures, and daily precipitation. The solar data has been inferred from satellite observations that cover the time period from July 1, 1983 through

  10. Design and testing of an agricultural implement for underground application of rodenticide bait.

    PubMed

    Malón, Hugo; Aguirre, A Javier; Boné, Antonio; Vidal, Mariano; García-Ramos, F Javier

    2015-01-01

    An agricultural implement for underground application of rodenticide bait to control the Mediterranean pocket gopher (Microtus Duodecimcostatus) in fruit orchards has been designed and tested. The main objective of this research was to design and test the implement by using the finite element method (FEM) and considering a range of loads generated on most commonly used furrow openers in agricultural implements. As a second step, the prototype was tested in the field by analysing the effects of forward speed and application depth on the mechanical behaviour of the implement structure. The FEM was used in the design phase and a prototype was manufactured. The structural strains on the prototype chassis under working conditions were tested by using strain gauges to validate the design phase. Three forward speeds (4.5, 5.5, and 7.0 km/h), three application depths (0.12, 0.15, and 0.17 m), and two types of soil (clayey-silty-loam and clayey-silty-sandy) were considered. The prototype was validated successfully by analysing the information obtained from the strain gauges. The Von Mises stresses indicated a safety coefficient of 1.9 for the most critical load case. Although both forward speed and application depth had a significant effect on the stresses generated on the chassis, the latter parameter critically affected the structural behaviour of the implement. The effects of the application depth on the strains were linear such that strains increased with depth. In contrast, strains remained roughly constant regardless of variation in the forward speed. PMID:25602272

  11. Design and Testing of an Agricultural Implement for Underground Application of Rodenticide Bait

    PubMed Central

    Malón, Hugo; Aguirre, A. Javier; Boné, Antonio; Vidal, Mariano; García-Ramos, F. Javier

    2015-01-01

    An agricultural implement for underground application of rodenticide bait to control the Mediterranean pocket gopher (Microtus Duodecimcostatus) in fruit orchards has been designed and tested. The main objective of this research was to design and test the implement by using the finite element method (FEM) and considering a range of loads generated on most commonly used furrow openers in agricultural implements. As a second step, the prototype was tested in the field by analysing the effects of forward speed and application depth on the mechanical behaviour of the implement structure. The FEM was used in the design phase and a prototype was manufactured. The structural strains on the prototype chassis under working conditions were tested by using strain gauges to validate the design phase. Three forward speeds (4.5, 5.5, and 7.0 km/h), three application depths (0.12, 0.15, and 0.17 m), and two types of soil (clayey-silty-loam and clayey-silty-sandy) were considered. The prototype was validated successfully by analysing the information obtained from the strain gauges. The Von Mises stresses indicated a safety coefficient of 1.9 for the most critical load case. Although both forward speed and application depth had a significant effect on the stresses generated on the chassis, the latter parameter critically affected the structural behaviour of the implement. The effects of the application depth on the strains were linear such that strains increased with depth. In contrast, strains remained roughly constant regardless of variation in the forward speed. PMID:25602272

  12. Temporal variability of atmospheric particulate matter and chemical composition during a growing season at an agricultural site in northeastern China.

    PubMed

    Chen, Weiwei; Tong, Daniel; Zhang, Shichun; Dan, Mo; Zhang, Xuelei; Zhao, Hongmei

    2015-12-01

    This study presents the observations of PM10 and PM2.5 concentrations at an agricultural site from April to October 2012 in Dehui city, China. Ambient air was sampled by filter-based samplers and online PM monitors. The filter samples were analyzed to determine the abundance of ionic/inorganic elements, organic carbon (OC) and elemental carbon (EC). The daily PM10 concentrations varied significantly over the monitoring period, with an average of 168±63 (in the range of 52-277)μg/m(3) during the land preparation/planting period (26 April-15 June), 85±65 (36-228)μg/m(3) during the growing season (16 June-25 September), and 207±88 (103-310)μg/m(3) during the harvest period (26 September-31 October). PM2.5 accounted for 44%, 56% and 66% of atmospheric PM10 during these periods, respectively. The PM10 diurnal variation showed a distinct peak from 16:00 to 21:00 (LST) during the growing and harvesting seasons, while a gradual increase throughout the daytime until 17:00 was observed during tilling season. Mineral dust elements (Al, Ca, Fe, and Mg) dominated the PM10 chemical composition during the tilling season; OC, NO3(-), SO4(2-) and NH4(+) during the growing season; and carbonaceous species (i.e., OC and EC) during the harvesting season. Our results indicate that the soil particles emitted by farm tillage and organic matter released from straw burning are the two most significant sources of PM10 emissions contributing to the recurring high pollution events in this region. Therefore, development of agricultural PM inventories from soil tillage and straw burning is prioritized to support air quality modeling. PMID:26702977

  13. Application and further development of diffusion based 2D chemical imaging techniques in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Hoefer, Christoph; Santner, Jakob; Borisov, Sergey; Kreuzeder, Andreas; Wenzel, Walter; Puschenreiter, Markus

    2015-04-01

    Two dimensional chemical imaging of root processes refers to novel in situ methods to investigate and map solutes at a high spatial resolution (sub-mm). The visualization of these solutes reveals new insights in soil biogeochemistry and root processes. We derive chemical images by using data from DGT-LA-ICP-MS (Diffusive Gradients in Thin Films and Laser Ablation Inductively Coupled Plasma Mass Spectrometry) and POS (Planar Optode Sensors). Both technologies have shown promising results when applied in aqueous environment but need to be refined and improved for imaging at the soil-plant interface. Co-localized mapping using combined DGT and POS technologies and the development of new gel combinations are in our focus. DGTs are smart and thin (<0.4 mm) hydrogels; containing a binding resin for the targeted analytes (e.g. trace metals, phosphate, sulphide or radionuclides). The measurement principle is passive and diffusion based. The present analytes are diffusing into the gel and are bound by the resin. Thereby, the resin acts as zero sink. After application, DGTs are retrieved, dried, and analysed using LA-ICP-MS. The data is then normalized by an internal standard (e.g. 13C), calibrated using in-house standards and chemical images of the target area are plotted using imaging software. POS are, similar to DGT, thin sensor foils containing a fluorophore coating depending on the target analyte. The measurement principle is based on excitation of the flourophore by a specific wavelength and emission of the fluorophore depending on the presence of the analyte. The emitted signal is captured using optical filters and a DSLR camera. While DGT analysis is destructive, POS measurements can be performed continuously during the application. Both semi-quantitative techniques allow an in situ application to visualize chemical processes directly at the soil-plant interface. Here, we present a summary of results from rhizotron experiments with different plants in metal

  14. Application of step-drawdown test for planning agricultural groundwater well maintenance in S. Korea

    NASA Astrophysics Data System (ADS)

    Song, Sung-Ho; Lee, Byung-Sun

    2015-04-01

    Well efficiency decreases with time after development and the pumping rate is reduced sharply at a certain point. However, the rapid decrease of the efficiency definitely depends upon the physical characteristics of the aquifer, chemical properties of groundwater, pore clogging by adsorptive/precipitable materials, and use of groundwater well. In general, it is expected that an adequate and ongoing maintenance for the well is effective in extension of operating periods because major maintenance frequency requirement at municipal wells placed in the crystalline rock aquifer is known to be relatively longer. The proportion of agricultural wells (583,748) against the total groundwater ones (1,380,715) is 42.3% in 2011, S. Korea. Groundwater use accounts for 1.9 billion m3/year which indicates 48.9% of total amount available groundwater resources. Approximate 69% of the total agricultural public wells placed in crystalline rock aquifer have passed more than 10 years after development. In this study, the increase of well efficiency before and after the well disinfection/cleaning for agricultural groundwater wells in the mountains, plains, and coastal aquifer with the data of step-drawdown test was evaluated, respectively. With the concept of critical yield, the increase of available amount of groundwater was quantitatively analyzed after treatment. From the results, well efficiency increased approximately 1.5 to 4 times depending on pumping rate when the proper disinfection/cleaning methods to the wells were applied. In addition, it showed that the pumping rate of approximate 4-8% with the critical yield from step-drawdown test increased and these effects were the highest in wells which are more than 10 years elapsed. Therefore, it would be concluded that the well disinfection/cleaning methods for the purpose of increasing the efficiency are more effective for the wells that are older than 10 years.

  15. Biochar application to sandy and loamy soils for agricultural nutrient management

    NASA Astrophysics Data System (ADS)

    Gronwald, Marco; Don, Axel; Tiemeyer, Baerbel; Helfrich, Mirjam

    2014-05-01

    Soil fertility of agricultural soils is challenged by nutrients losses and increasing soil acidification. Furthermore, leached nutrients negatively affect the quality of ground and surface water 1]. In addition to the possible soil carbon sequestration by applying biochars, many positive soil-improving properties are attributed to biochars. The application of biochars to agricultural - especially sandy - soils could reduce leaching of nutrients and may improve their availability 1,2]. Thus, biochar application to agricultural fields could be an ecologically and economically viable option to improve soils' fertility. However, biochar properties strongly depend on their feedstock and production process 3]. Various types of biochars (pyrolysis char, hydrochar (produced at 200 and 250° C); feedstocks: digestate, Miscanthus and wood chips) were used to determine sorption kinetics and sorption isotherms for the major nutrients Ca, Mg, K, NH4 and NO3 as a function of biochar types in different soil substrates (sand, loess). In addition, the biochars were washed to create free binding sites on the chars' surface that simulate aged char. We compared the simulated aged char with biochars that was aged in-situ at a field experiment for seven months. The first results showed that pyrochars have the largest retention potential for NO3 and hydrochars have retention potential for NH4. Washing of biochars turned them from a PO4 and NH4 source into an adsorber, especially for hydrochars. Highest leaching was observed for biochars from digestates likely due to the high nutrient content of digestates. But the different ions may lead to pH-dependent interactions between each other and the chars' surface that override the adsoption effects. In this context, cation-bridge and ligand bindings 4,5] need to be further investigated. Most of the fresh, unwashed biochars were a source of nutrients with hardly any detectable nutrient retention. Pyrochars showed the highest potential for anion

  16. Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater.

    PubMed

    Nguyen, T A H; Ngo, H H; Guo, W S; Zhang, J; Liang, S; Yue, Q Y; Li, Q; Nguyen, T V

    2013-11-01

    This critical review discusses the potential use of agricultural waste based biosorbents (AWBs) for sequestering heavy metals in terms of their adsorption capacities, binding mechanisms, operating factors and pretreatment methods. The literature survey indicates that AWBs have shown equal or even greater adsorption capacities compared to conventional adsorbents. Thanks to modern molecular biotechnologies, the roles of functional groups in biosorption process are better understood. Of process factors, pH appears to be the most influential. In most cases, chemical pretreatments bring about an obvious improvement in metal uptake capacity. However, there are still several gaps, which require further investigation, such as (i) searching for novel, multi-function AWBs, (ii) developing cost-effective modification methods and (iii) assessing AWBs under multi-metal and real wastewater systems. Once these challenges are settled, the replacement of traditional adsorbents by AWBs in decontaminating heavy metals from wastewater can be expected in the future. PMID:24045220

  17. Market assessment of photovoltaic power systems for agricultural applications in Nigeria

    SciTech Connect

    Staples, D.; Steingass, H.; Nolfi, J.

    1981-10-01

    The results of a month-long study in Nigeria conducted in February 1981 are detailed. The study was aimed at assessing in the 1981 to 1986 market potential for stand-alone photovoltaic systems in agriculture. Information on technically and economically feasible applications, and assessments of business, government and financial climate for photovoltaic sales are provided. The study concluded that the market for stand-alone photovoltaic power systems will be large, the primary reasons being the availability of capital and the high premium placed on high reliability, low maintenance power systems. A market exists for such agricultural/rural applications as: micro-irrigation, veterinary units, grain grinding, dryers, produce coolers, ice makers, water/boreholes, and health, education and extension services. Other markets with high PV sales potential include: remote local government centers, public and private communication systems, TV battery chargers, domestic power supply and cathodic protection. The potential market for photovoltaics in the 1981 to 1986 time frame is estimated at about 1.9 to 4.7 MW. The major purchaser in the near-term would be the federal and state governments.

  18. Optics applications of chemical vapor deposited beta-SiC

    NASA Astrophysics Data System (ADS)

    Goela, Jitendra S.; Pickering, Michael A.

    1997-09-01

    The fabrication process, properties and optics applications of transparent and opaque chemical vapor deposited (CVD) (beta) -SiC are reviewed. CVD-SiC is produced by the pyrolysis of methyltrichlorosilane, in excess H2, in a low-pressure CVD reactor. The CVD process has been successfully scaled to produce monolithic SiC parts of diameter up to 1.5-m and thickness 2.5-cm. The characterization of CVD-SiC for important physical, optical, mechanical and thermal properties indicates that it is a superior material for optics applications. Important properties of CVD-SiC are compared with those of the other candidate mirror and window materials. The applications of CVD-SiC for lightweight optics, x-ray telescopes, optical buffers, lens molds, optical standards and windows and domes are discussed in detail.

  19. Chemical vapour deposition synthetic diamond: materials, technology and applications

    NASA Astrophysics Data System (ADS)

    Balmer, R. S.; Brandon, J. R.; Clewes, S. L.; Dhillon, H. K.; Dodson, J. M.; Friel, I.; Inglis, P. N.; Madgwick, T. D.; Markham, M. L.; Mollart, T. P.; Perkins, N.; Scarsbrook, G. A.; Twitchen, D. J.; Whitehead, A. J.; Wilman, J. J.; Woollard, S. M.

    2009-09-01

    Substantial developments have been achieved in the synthesis of chemical vapour deposition (CVD) diamond in recent years, providing engineers and designers with access to a large range of new diamond materials. CVD diamond has a number of outstanding material properties that can enable exceptional performance in applications as diverse as medical diagnostics, water treatment, radiation detection, high power electronics, consumer audio, magnetometry and novel lasers. Often the material is synthesized in planar form; however, non-planar geometries are also possible and enable a number of key applications. This paper reviews the material properties and characteristics of single crystal and polycrystalline CVD diamond, and how these can be utilized, focusing particularly on optics, electronics and electrochemistry. It also summarizes how CVD diamond can be tailored for specific applications, on the basis of the ability to synthesize a consistent and engineered high performance product.

  20. Chemical vapour deposition synthetic diamond: materials, technology and applications.

    PubMed

    Balmer, R S; Brandon, J R; Clewes, S L; Dhillon, H K; Dodson, J M; Friel, I; Inglis, P N; Madgwick, T D; Markham, M L; Mollart, T P; Perkins, N; Scarsbrook, G A; Twitchen, D J; Whitehead, A J; Wilman, J J; Woollard, S M

    2009-09-01

    Substantial developments have been achieved in the synthesis of chemical vapour deposition (CVD) diamond in recent years, providing engineers and designers with access to a large range of new diamond materials. CVD diamond has a number of outstanding material properties that can enable exceptional performance in applications as diverse as medical diagnostics, water treatment, radiation detection, high power electronics, consumer audio, magnetometry and novel lasers. Often the material is synthesized in planar form; however, non-planar geometries are also possible and enable a number of key applications. This paper reviews the material properties and characteristics of single crystal and polycrystalline CVD diamond, and how these can be utilized, focusing particularly on optics, electronics and electrochemistry. It also summarizes how CVD diamond can be tailored for specific applications, on the basis of the ability to synthesize a consistent and engineered high performance product. PMID:21832327

  1. Chemical Gas Sensors for Aeronautic and Space Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Two areas of particular interest are safety monitoring and emission monitoring. In safety monitoring, detection of low concentrations of hydrogen at potentially low temperatures is important while for emission monitoring the detection of nitrogen oxides, hydrogen, hydrocarbons and oxygen is of interest. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: (1) Micromachining and microfabrication technology to fabricate miniaturized sensors. (2) The development of high temperature semiconductors, especially silicon carbide. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this general area of sensor development a field of significant interest.

  2. Lipids: From Chemical Structures, Biosynthesis, and Analyses to Industrial Applications.

    PubMed

    Li-Beisson, Yonghua; Nakamura, Yuki; Harwood, John

    2016-01-01

    Lipids are one of the major subcellular components, and play numerous essential functions. As well as their physiological roles, oils stored in biomass are useful commodities for a variety of biotechnological applications including food, chemical feedstocks, and fuel. Due to their agronomic as well as economic and societal importance, lipids have historically been subjected to intensive studies. Major current efforts are to increase the energy density of cell biomass, and/or create designer oils suitable for specific applications. This chapter covers some basic aspects of what one needs to know about lipids: definition, structure, function, metabolism and focus is also given on the development of modern lipid analytical tools and major current engineering approaches for biotechnological applications. This introductory chapter is intended to serve as a primer for all subsequent chapters in this book outlining current development in specific areas of lipids and their metabolism. PMID:27023229

  3. Study of interfacial phenomena for bio/chemical sensing applications

    NASA Astrophysics Data System (ADS)

    Min, Hwall

    This work presents the fundamental study of biological and chemical interfacial phenomena and (bio)chemical sensing applications using high frequency resonator arrays. To realize a versatile (bio)chemical sensing system for the fundamental study as well as their practical applications, the following three distinct components were studied and developed: i) detection platforms with high sensitivity, ii) novel innovative sensing materials with high selectivity, iii) analytical model for data interpretation. 8-pixel micromachined quartz crystal resonator (muQCR) arrays with a fundamental resonance frequency of 60 ¡V 90 MHz have been used to provide a reliable detection platform with high sensitivity. Room temperature ionic liquid (RTIL) has been explored and integrated into the sensing system as a smart chemical sensing material. The use of nanoporous gold (np-Au) enables the combination of the resonator and surface-enhanced Raman spectroscopy for both quantitative and qualitative measurement. A statistical model for the characterization of resonator behavior to study the protein adsorption kinetics is developed by random sequential adsorption (RSA) approach with the integration of an effective surface depletion theory. The investigation of the adsorption kinetics of blood proteins is reported as the fundamental study of biological phenomena using the proposed sensing system. The aim of this work is to study different aspects of protein adsorption and kinetics of adsorption process with blood proteins on different surfaces. We specifically focus on surface depletion effect in conjunction with the RSA model to explain the observed adsorption isotherm characteristics. A number of case studies on protein adsorption conducted using the proposed sensing system has been discussed. Effort is specifically made to understand adsorption kinetics, and the effect of surface on the adsorption process as well as the properties of the adsorbed protein layer. The second half of the

  4. MATHEMATICAL MODEL OF PLANT UPTAKE AND TRANSLOCATION OF ORGANIC CHEMICALS: APPLICATION TO EXPERIMENTS

    EPA Science Inventory

    Uptake, transport, and accumulation of organic chemicals by plants are influenced by characteristics of the plant and properties of the chemical, soil, and environmental conditions. athematical model for uptake of organic chemicals by plants was calibrated by application to data ...

  5. Transition of fertilizer application and agricultural pollution loads: a case study in the Nhue-Day River basin.

    PubMed

    Giang, P H; Harada, H; Fujii, S; Lien, N P H; Hai, H T; Anh, P N; Tanaka, S

    2015-01-01

    Rapid socio-economic development in suburban areas of developing countries has induced changes in agricultural waste and nutrient management, resulting in water pollution. The study aimed at estimating agricultural nutrient cycles and their contribution to the water environment. A material flow model of nitrogen (N) and phosphorus (P) was developed focusing on agricultural activities from 1980 to 2010 in Trai hamlet, an agricultural watershed in Nhue-Day River basin, Vietnam. The model focused on the change in household management of human excreta and livestock excreta, and chemical fertilizer consumption. The results showed that the proportion of nutrients from compost/manure applied to paddy fields decreased from 85 to 41% for both N and P between 1980 and 2010. The nutrient inputs derived from chemical fertilizer decreased 6% between 1980 and 2000 for both N and P. Then, these nutrients increased 1.4 times for N and 1.2 times for P from 2000 to 2010. As of 2010, the total inputs to paddy fields have amounted to 435 kg-N/ha/year and 90 kg-P/ha/year. Of these nutrient inputs, 40% of N and 65% of P were derived from chemical fertilizer. Thirty per cent (30%) of total N input was discharged to the water bodies through agricultural runoff and 47% of total P input accumulated in soil. PMID:26398021

  6. Miniaturised wireless smart tag for optical chemical analysis applications.

    PubMed

    Steinberg, Matthew D; Kassal, Petar; Tkalčec, Biserka; Murković Steinberg, Ivana

    2014-01-01

    A novel miniaturised photometer has been developed as an ultra-portable and mobile analytical chemical instrument. The low-cost photometer presents a paradigm shift in mobile chemical sensor instrumentation because it is built around a contactless smart card format. The photometer tag is based on the radio-frequency identification (RFID) smart card system, which provides short-range wireless data and power transfer between the photometer and a proximal reader, and which allows the reader to also energise the photometer by near field electromagnetic induction. RFID is set to become a key enabling technology of the Internet-of-Things (IoT), hence devices such as the photometer described here will enable numerous mobile, wearable and vanguard chemical sensing applications in the emerging connected world. In the work presented here, we demonstrate the characterisation of a low-power RFID wireless sensor tag with an LED/photodiode-based photometric input. The performance of the wireless photometer has been tested through two different model analytical applications. The first is photometry in solution, where colour intensity as a function of dye concentration was measured. The second is an ion-selective optode system in which potassium ion concentrations were determined by using previously well characterised bulk optode membranes. The analytical performance of the wireless photometer smart tag is clearly demonstrated by these optical absorption-based analytical experiments, with excellent data agreement to a reference laboratory instrument. PMID:24274311

  7. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    SciTech Connect

    Not Available

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis.

  8. A Simple and Effective Cleavable Linker for Chemical Proteomics Applications*

    PubMed Central

    Yang, Yinliang; Hahne, Hannes; Kuster, Bernhard; Verhelst, Steven H. L.

    2013-01-01

    The study of metabolically labeled or probe-modified proteins is an important area in chemical proteomics. Isolation and purification of the protein targets is a necessary step before MS identification. The biotin-streptavidin system is widely used in this process, but the harsh denaturing conditions also release natively biotinylated proteins and non-selectively bound proteins. A cleavable linker strategy is a promising approach for solving this problem. Though several cleavable linkers have been developed and tested, an efficient, easily synthesized, and inexpensive cleavable linker is a desirable addition to the proteomics toolbox. Here, we describe the chemical proteomics application of a vicinal diol cleavable linker. Through easy-to-handle chemistry we incorporate this linker into an activity-based probe and a biotin alkyne tag amenable for bioorthogonal ligation. With these reagents, background protein identifications are significantly reduced relative to standard on-bead digestion. PMID:23028061

  9. Graphene oxide as a chemically tunable platform for optical applications

    NASA Astrophysics Data System (ADS)

    Loh, Kian Ping; Bao, Qiaoliang; Eda, Goki; Chhowalla, Manish

    2010-12-01

    Chemically derived graphene oxide (GO) is an atomically thin sheet of graphite that has traditionally served as a precursor for graphene, but is increasingly attracting chemists for its own characteristics. It is covalently decorated with oxygen-containing functional groups - either on the basal plane or at the edges - so that it contains a mixture of sp2- and sp3-hybridized carbon atoms. In particular, manipulation of the size, shape and relative fraction of the sp2-hybridized domains of GO by reduction chemistry provides opportunities for tailoring its optoelectronic properties. For example, as-synthesized GO is insulating but controlled deoxidation leads to an electrically and optically active material that is transparent and conducting. Furthermore, in contrast to pure graphene, GO is fluorescent over a broad range of wavelengths, owing to its heterogeneous electronic structure. In this Review, we highlight the recent advances in optical properties of chemically derived GO, as well as new physical and biological applications.

  10. The Application of Metal Oxide Nanomaterials for Chemical Sensor Development

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C.; Hunter, Gary W.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.

    2007-01-01

    NASA Glenn Research Center (GRC) has been developing miniature chemical sensors for a variety of applications including fire detection, emissions monitoring, fuel leak detection, and environmental monitoring. Smart Lick and Stick sensor technology which integrates a sensor array, electronics, telemetry, and power into one microsystem are being developed. These microsystems require low power consumption for long-term aerospace applications. One approach to decreasing power consumption is the use of nanotechnology. Nanocrystalline tin oxide (SnO2) carbon monoxide (CO) sensors developed previously by this group have been successfully used for fire detection and emissions monitoring. This presentation will briefly review the overall NASA GRC chemical sensor program and discuss our further effort in nanotechnology applications. New carbon dioxide (CO2) sensing material using doped nanocrystalline SnO2 will be discussed. Nanocrystalline SnO2 coated solid electrolyte CO2 sensors and SnO2 nanorod and nanofiber hydrogen (H2) sensors operated at reduced or room temperatures will also be discussed.

  11. Chemical modification of graphene aerogels for electrochemical capacitor applications.

    PubMed

    Hong, Jin-Yong; Wie, Jeong Jae; Xu, Yu; Park, Ho Seok

    2015-12-14

    Graphene aerogel is a relatively new type of aerogel that is ideal for energy storage applications because of its large surface area, high electrical conductivity and good chemical stability. Also, three dimensional interconnected macropores offer many advantages such as low density, fast ion and mass transfer, and easy access to storage sites. Such features allow graphene aerogels to be intensively applied for electrochemical capacitor applications. Despite the growing interest in graphene aerogel-based electrochemical capacitors, however, the graphene aerogels still suffer from their low capacitive performances and high fragility. Both relatively low capacitance and brittleness of physically crosslinked graphene aerogels remain a critical challenge. Until now, a number of alternative attempts have been devoted to overcome these shortcomings. In this perspective, we summarize the recent research progress towards the development of advanced graphene aerogel-based electrochemical capacitors according to the different approaches (e.g. porosity, composition and structure controls). Then, the recently proposed chemical strategies to improve the capacitive performances and mechanical durability of graphene aerogels for practical applications are highlighted. Finally, the current challenges and perspectives in this emerging material are also discussed. PMID:26536234

  12. Peptide protected gold clusters: chemical synthesis and biomedical applications

    NASA Astrophysics Data System (ADS)

    Yuan, Qing; Wang, Yaling; Zhao, Lina; Liu, Ru; Gao, Fuping; Gao, Liang; Gao, Xueyun

    2016-06-01

    Bridging the gap between atoms and nanoparticles, noble metal clusters with atomic precision continue to attract considerable attention due to their important applications in catalysis, energy transformation, biosensing and biomedicine. Greatly different to common chemical synthesis, a one-step biomimetic synthesis of peptide-conjugated metal clusters has been developed to meet the demand of emerging bioapplications. Under mild conditions, multifunctional peptides containing metal capturing, reactive and targeting groups are rationally designed and elaborately synthesized to fabricate atomically precise peptide protected metal clusters. Among them, peptide-protected Au Cs (peptide-Au Cs) possess a great deal of exceptional advantages such as nanometer dimensions, high photostability, good biocompatibility, accurate chemical formula and specific protein targeting capacity. In this review article, we focus on the recent advances in potential theranostic fields by introducing the rising progress of peptide-Au Cs for biological imaging, biological analysis and therapeutic applications. The interactions between Au Cs and biological systems as well as potential mechanisms are also our concerned theme. We expect that the rapidly growing interest in Au Cs-based theranostic applications will attract broader concerns across various disciplines.

  13. 75 FR 8652 - Foreign-Trade Zone 59-Lincoln, NE Application for Subzone CNH America, LLC (Agricultural...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Foreign-Trade Zone 59--Lincoln, NE Application for Subzone CNH America, LLC (Agricultural Machinery Manufacturing) Grand Island, NE An application has been submitted to the Foreign-Trade Zones Board (the Board) by the...

  14. Development and application of an agricultural intensity index to invertebrate and algal metrics from streams at two scales

    USGS Publications Warehouse

    Waite, Ian R.

    2013-01-01

    Research was conducted at 28-30 sites within eight study areas across the United States along a gradient of nutrient enrichment/agricultural land use between 2003 and 2007. Objectives were to test the application of an agricultural intensity index (AG-Index) and compare among various invertebrate and algal metrics to determine indicators of nutrient enrichment nationally and within three regions. The agricultural index was based on total nitrogen and phosphorus input to the watershed, percent watershed agriculture, and percent riparian agriculture. Among data sources, agriculture within riparian zone showed significant differences among values generated from remote sensing or from higher resolution orthophotography; median values dropped significantly when estimated by orthophotography. Percent agriculture in the watershed consistently had lower correlations to invertebrate and algal metrics than the developed AG-Index across all regions. Percent agriculture showed fewer pairwise comparisons that were significant than the same comparisons using the AG-Index. Highest correlations to the AG-Index regionally were −0.75 for Ephemeroptera, Plecoptera, and Trichoptera richness (EPTR) and −0.70 for algae Observed/Expected (O/E), nationally the highest was −0.43 for EPTR vs. total nitrogen and −0.62 for algae O/E vs. AG-Index. Results suggest that analysis of metrics at national scale can often detect large differences in disturbance, but more detail and specificity is obtained by analyzing data at regional scales.

  15. Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2005-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors; 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity; 3) The development of high temperature semiconductors, especially silicon carbide. This presentation discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  16. Chemical vapor deposited silicon carbide mirrors for extreme ultraviolet applications

    NASA Astrophysics Data System (ADS)

    Keski-Kuha, Ritva A.; Osantowski, John F.; Leviton, Douglas B.; Saha, Timo T.; Wright, Geraldine A.; Boucarut, Rene A.; Fleetwood, Charles M.; Madison, Timothy J.

    1997-01-01

    Advances in optical coating and materials technology have made possible the development of instruments with substantially improved efficiency in the extreme ultraviolet (EUV). For example, the development of the chemical vapor deposition (CVD) SiC mirrors provides an opportunity to extend the range of normal-incidence instruments dow to 60 nm. CVD SiC is a highly polishable material yielding low- scattering surfaces. High UV reflectivity and desirable mechanical and thermal properties make CVD SiC an attractive mirror and/or coating material for EUV applications. The EUV performance of SiC mirrors, as well as some strengths and problem areas, is discussed.

  17. Application of food industry waste to agricultural soils mitigates green house gas emissions.

    PubMed

    Rashid, M T; Voroney, R P; Khalid, M

    2010-01-01

    Application of organic waste materials such as food processing and serving industry cooking oil waste (OFW) can recycle soil nitrate nitrogen (NO(3)-N), which is otherwise prone to leaching after the harvest of crop. Nitrogen (N) recycling will not only reduce the amount of N fertilizer application for corn crop production but is also expected to mitigate green house gas (GHG) emissions by saving energy to be used for the production of the same amount of industrial fertilizer N required for the growth of corn crop. Application of OFW at 10Mg solid ha(-1)y(-1) conserved 68 kg N ha(-1)y(-1) which ultimately saved 134 L diesel ha(-1)y(-1), which would otherwise be used for the production of fertilizer N as urea. Average fossil energy substitution value (FESV) of N conserved/recycled was calculated to be 93 US$ ha(-1)y(-1), which is about 13 million US$y(-1). Potential amount of GHG mitigation through the application of OFW to agricultural soils in Canada is estimated to be 57 Gg CO(2)Eq y(-1). PMID:19765979

  18. Application of sewage sludge to non-agricultural ecosystems: Impacts of nitrogen on forests

    SciTech Connect

    Efroymson, R.A.; Tharp, M.L.; Luxmoore, R.J.; Sample, B.E.; Barnthouse, L.W.; Daniel, F.B.

    1995-12-31

    The Clean Water Act (CWA) of 1977 directed EPA to establish standards for use and disposal of sewage sludge (biosolids). This report is part of a larger study evaluating nutrient and contaminant impacts associated with the land application of biosolids in non-agricultural ecosystems. Ecological risk assessments rarely focus on nutrients as stressors. The nutrient components of municipal sewage sludge may impact tree community composition, growth and production, habitat and forage quality for wildlife, and nutrient cycling. The focus here is on three forest ecosystems: northwestern Douglas-fir forest (Pack Forest, WA), southeastern loblolly pine plantation (Athens, GA), and eastern deciduous forest (Hubbard Brook, NH). A model called LINKAGES has been developed at ORNL to examine the relationships between nitrogen cycling and long-term forest stand dynamics, limited by climate and soil water status. Plant-available nitrogen from biosolids is added in several application scenarios and compared to the no-amendment case. All changes are noted, even if they may be viewed as benefits rather than risks. Model outputs include: above-ground biomass, individual species biomass, net above-ground production, leaf litter, evapotranspiration, available nitrogen, and dead trunks. The changes in plant community composition and production are dependent on the rate, frequency, and duration of sludge application and on the age of the stand at the time of application. Model outputs are compared to empirical studies of forests where biosolids have been applied.

  19. Market assessment of photovoltaic power systems for agricultural applications in Morocco

    NASA Technical Reports Server (NTRS)

    Steingass, H.; Asmon, I.

    1981-01-01

    Results of a month-long study in Morocco aimed at assessing the market potential for stand-alone photovoltaic systems in agriculture and rural service applications are presented. The following applications, requiring less than 15 kW of power, are described: irrigation, cattle watering, refrigeration, crop processing, potable water and educational TV. Telecommunications and transportation signalling applications, descriptions of power and energy use profiles, assessments of business environment, government and private sector attitudes towards photovoltaics, and financing were also considered. The Moroccan market presents both advantages and disadvantages for American PV manufacturers. The principle advantages of the Moroccan market are: a limited grid, interest in and present use of PV in communications applications, attractive investment incentives, and a stated policy favoring American investment. Disadvantages include: lack of government incentives for PV use, general unfamiliarity with PV technology, high first cost of PV, a well-established market network for diesel generators, and difficulty with financing. The market for PV in Morocco (1981-1986), will be relatively small, about 340 kwp. The market for PV is likely to be more favorable in telecommunications, transport signalling and some rural services. The primary market appears to be in the public (i.e., government) rather than private sector, due to financial constraints and the high price of PV relative to conventional power sector.

  20. Market assessment of photovoltaic power systems for agricultural applications in Morocco

    NASA Astrophysics Data System (ADS)

    Steingass, H.; Asmon, I.

    1981-09-01

    Results of a month-long study in Morocco aimed at assessing the market potential for stand-alone photovoltaic systems in agriculture and rural service applications are presented. The following applications, requiring less than 15 kW of power, are described: irrigation, cattle watering, refrigeration, crop processing, potable water and educational TV. Telecommunications and transportation signalling applications, descriptions of power and energy use profiles, assessments of business environment, government and private sector attitudes towards photovoltaics, and financing were also considered. The Moroccan market presents both advantages and disadvantages for American PV manufacturers. The principle advantages of the Moroccan market are: a limited grid, interest in and present use of PV in communications applications, attractive investment incentives, and a stated policy favoring American investment. Disadvantages include: lack of government incentives for PV use, general unfamiliarity with PV technology, high first cost of PV, a well-established market network for diesel generators, and difficulty with financing. The market for PV in Morocco (1981-1986), will be relatively small, about 340 kwp. The market for PV is likely to be more favorable in telecommunications, transport signalling and some rural services. The primary market appears to be in the public (i.e., government) rather than private sector, due to financial constraints and the high price of PV relative to conventional power sector.

  1. Chemical vapor deposited {beta}-SiC for optics applications

    SciTech Connect

    Goela, J.S.; Pikcering, M.A.; Taylor, R.L.

    1995-08-01

    The fabrication, properties and optics applications of transparent and opaque Chemical Vapor Deposited (CVD) {beta}-SiC are reviewed. CVD-SiC is fabricated by the pyrolysis of methyltrichlorosilane, in excess H{sub 2}, in a low-pressure CVD reactor. The CVD process has been successfully scaled to produce monolithic SiC parts of diameter up to 1.5 m and thickness 2.5 cm. The characterization of CVD-SiC for important physical, optical, mechanical and thermal properties indicate that it is a superior material for optics applications. CVD-SiC properties are compared with those of the other candidate mirror and window materials. SiC process/property relationships are discussed, emphasizing the differences in process conditions, microstructure, and properties between transparent and opaque CVD-SiC.

  2. Near-field fiber optic chemical sensors and biological applications

    NASA Astrophysics Data System (ADS)

    Tan, Weihong; Shi, Zhong-You; Thorsrud, Bjorn A.; Harris, C.; Kopelman, Raoul

    1994-03-01

    Near-field optics has been applied in the nanofabrication of subwavelength optical fiber chemical and biological sensors and their operation in chemical and biological analysis. A thousandfold miniaturization of immobilized optical fiber sensors has been achieved by a near- field photo-nanofabrication technique, which is based on nanofabricated optical fiber tips and near-field photopolymerization. This technique has been further developed by multistep near- field nanofabrication and multidye probe fabrication. Multistep nanofabrication can further miniaturize optical fiber sensors, while multidye fabrication results in multifunctional optic and excitonic probes with extremely small size. These probes emit multiwavelength photons or produce excitons of different energy levels, and may have multiple chemical or biological sensitivities. The nondestructive submicrometer sensor has demonstrated its ability to carry out static and dynamic determinations of pH in intact rat conceptuses of varying gestational ages. The ability of the sensors to measure pH changes, in real time, in the intact rat conceptus, demonstrates their potential applications for dynamic analysis in multicellular organisms and single cells. The near-field interaction of photons with matter is discussed.

  3. Microfabricated Chemical Sensors for Aerospace Fire Detection Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Neudeck, Philip G.; Fralick, Gustave; Thomas, Valarie; Makel, D.; Liu, C. C.; Ward, B.; Wu, Q. H.

    2001-01-01

    The detection of fires on-board commercial aircraft is extremely important for safety reasons. Although dependable fire detection equipment presently exists within the cabin, detection of fire within the cargo hold has been less reliable and susceptible to false alarms. A second, independent method of fire detection to complement the conventional smoke detection techniques, such as the measurement of chemical species indicative of a fire, will help reduce false alarms and improve aircraft safety. Although many chemical species are indicative of a fire, two species of particular interest are CO and CO2. This paper discusses microfabricated chemical sensor development tailored to meet the needs of fire safety applications. This development is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. The individual sensor being developed and their level of maturity will be presented.

  4. LWIR hyperspectral imaging application and detection of chemical precursors

    NASA Astrophysics Data System (ADS)

    Lavoie, Hugo; Thériault, Jean-Marc; Bouffard, François; Puckrin, Eldon; Dubé, Denis

    2012-10-01

    Detection and identification of Toxic industrial chemicals (TICs) represent a major challenge to protect and sustain first responder and public security. In this context, passive Hyperspectral Imaging (HSI) is a promising technology for the standoff detection and identification of chemical vapors emanating from a distant location. To investigate this method, the Department of National Defense and Public Safety Canada have mandated Defense Research and Development Canada (DRDC) - Valcartier to develop and test Very Long Wave Infrared (VLWIR) HSI sensors for standoff detection. The initial effort was focused to address the standoff detection and identification of toxic industrial chemicals (TICs), surrogates and precursors. Sensors such as the Improved Compact ATmospheric Sounding Interferometer (iCATSI) and the Multi-option Differential Detection and Imaging Fourier Spectrometer (MoDDIFS) were developed for this application. This paper presents the sensor developments and preliminary results of standoff detection and identification of TICs and precursors. The iCATSI and MoDDIFS sensors are based on the optical differential Fourier-transform infrared (FTIR) radiometric technology and are able to detect, spectrally resolve and identify small leak at ranges in excess of 1 km. Results from a series of trials in asymmetric threat type scenarios are reported. These results serve to establish the potential of passive standoff HSI detection of TICs, precursors and surrogates.

  5. Pesticide Exposure and Depression among Male Private Pesticide Applicators in the Agricultural Health Study

    PubMed Central

    Beard, John D.; Umbach, David M.; Hoppin, Jane A.; Richards, Marie; Alavanja, Michael C.R.; Blair, Aaron; Sandler, Dale P.

    2014-01-01

    Background: Pesticide exposure may be positively associated with depression. Few previous studies have considered the episodic nature of depression or examined individual pesticides. Objective: We evaluated associations between pesticide exposure and depression among male private pesticide applicators in the Agricultural Health Study. Methods: We analyzed data for 10 pesticide classes and 50 specific pesticides used by 21,208 applicators enrolled in 1993–1997 who completed a follow-up telephone interview in 2005–2010. We divided applicators who reported a physician diagnosis of depression (n = 1,702; 8%) into those who reported a previous diagnosis of depression at enrollment but not follow-up (n = 474; 28%), at both enrollment and follow-up (n = 540; 32%), and at follow-up but not enrollment (n = 688; 40%) and used polytomous logistic regression to estimate odds ratios (ORs) and 95% CIs. We used inverse probability weighting to adjust for potential confounders and to account for the exclusion of 3,315 applicators with missing covariate data and 24,619 who did not complete the follow-up interview. Results: After weighting for potential confounders, missing covariate data, and dropout, ever-use of two pesticide classes, fumigants and organochlorine insecticides, and seven individual pesticides—the fumigants aluminum phosphide and ethylene dibromide; the phenoxy herbicide (2,4,5-trichlorophenoxy)acetic acid (2,4,5-T); the organochlorine insecticide dieldrin; and the organophosphate insecticides diazinon, malathion, and parathion—were all positively associated with depression in each case group, with ORs between 1.1 and 1.9. Conclusions: Our study supports a positive association between pesticide exposure and depression, including associations with several specific pesticides. Citation: Beard JD, Umbach DM, Hoppin JA, Richards M, Alavanja MCR, Blair A, Sandler DP, Kamel F. 2014. Pesticide exposure and depression among male private pesticide applicators in the

  6. Downstream approaches to phosphorus management in agricultural landscapes: regional applicability and use.

    PubMed

    Kröger, R; Dunne, E J; Novak, J; King, K W; McLellan, E; Smith, D R; Strock, J; Boomer, K; Tomer, M; Noe, G B

    2013-01-01

    This review provides a critical overview of conservation practices that are aimed at improving water quality by retaining phosphorus (P) downstream of runoff genesis. The review is structured around specific downstream practices that are prevalent in various parts of the United States. Specific practices that we discuss include the use of controlled drainage, chemical treatment of waters and soils, receiving ditch management, and wetlands. The review also focuses on the specific hydrology and biogeochemistry associated with each of those practices. The practices are structured sequentially along flowpaths as you move through the landscape, from the edge-of-field, to adjacent aquatic systems, and ultimately to downstream P retention. Often practices are region specific based on geology, cropping practices, and specific P related problems and thus require a right practice, and right place mentality to management. Each practice has fundamental P transport and retention processes by systems that can be optimized by management with the goal of reducing downstream P loading after P has left agricultural fields. The management of P requires a system-wide assessment of the stability of P in different biogeochemical forms (particulate vs. dissolved, organic vs. inorganic), in different storage pools (soil, sediment, streams etc.), and under varying biogeochemical and hydrological conditions that act to convert P from one form to another and promote its retention in or transport out of different landscape components. There is significant potential of hierarchically placing practices in the agricultural landscape and enhancing the associated P mitigation. But an understanding is needed of short- and long-term P retention mechanisms within a certain practice and incorporating maintenance schedules if necessary to improve P retention times and minimize exceeding retention capacity. PMID:23178830

  7. A background to nuclear transfer and its applications in agriculture and human therapeutic medicine*

    PubMed Central

    Campbell, Keith HS

    2002-01-01

    The development of a single celled fertilized zygote to an animal capable of reproduction involves not only cell division but the differentiation or specialization to numerous cell types forming each tissue and organ of the adult animal. The technique of nuclear transfer allows the reconstruction of an embryo by the transfer of genetic material from a single donor cell, to an unfertilized egg from which the genetic material has been removed. Successful development of live offspring from such embryos demonstrates that the differentiated state of the donor nucleus is not fixed and can be reprogrammed by the egg cytoplasm to control embryo and fetal development. Nuclear transfer has many applications in agriculture and human medicine. This article will review some of the factors associated with the success of embryo development following nuclear transfer and outline the potential uses of the technology. PMID:12033731

  8. A GIS-based approach for spatial analysis of agricultural nitrogen pollution and its application

    NASA Astrophysics Data System (ADS)

    Lu, Liping; Liu, Weidong; Sun, Lin; Qin, Zhihao

    2009-10-01

    Agricultural pollution, which has a direct impact on the water, soil and air quality, is a common but increasingly serious environmental problem nowadays. The misusage of fertilizer, high application fertilizer and low utilization rate, are the major factors of the pollution. Therefore, the pollution caused by nitrate nitrogen has posed a very serious problem to the ecological environment. Combined with the GIS technology, this paper takes Majiang County in Guizhou province that is at southwest of China as a case, to carry out the research on the calculation of the nitrogen surplus in paddy field and the dry land based on the farmland nutrient balance model using the fertilizer amount. This paper reveals the spatial distribution characteristic of the nitrogen pollution, which can help to find a reasonable crop cultivation and fertilization methods to increase the effective utilization fertilization and therefore reduce the pollution.

  9. State waste discharge permit application, 200-E chemical drain field

    SciTech Connect

    Not Available

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect ground would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE 91NM-177, (Ecology and DOE-RL 1991). The Consent Order No. DE 91NM-177 requires a series of permitting activities for liquid effluent discharges. This document presents the State Waste Discharge Permit (SWDP) application for the 200-E Chemical Drain Field. Waste water from the 272-E Building enters the process sewer line directly through a floor drain, while waste water from the 2703-E Building is collected in two floor drains, (north and south) that act as sumps and are discharged periodically. The 272-E and 2703-E Buildings constitute the only discharges to the process sewer line and the 200-E Chemical Drain Field.

  10. Interfacial characterization and analytical applications of chemically-modified surfaces

    SciTech Connect

    Wang, J.

    1998-02-23

    The goal of this work is to explore several new strategies and approaches to the surface modification and the microscopic characterization of interfaces in the areas mainly targeting sensor technologies that are of interest to environmental control or monitoring, and scanning probe microscopies techniques that can monitor interfacial chemical reactions in real time. Centered on the main theme, four specific topics are presented as four chapters in this dissertation following the general introduction. Chapter 1 describes the development of two immobilization schemes for covalently immobilizing fluoresceinamine at cellulose acetate and its application as a pH sensing film. Chapter 2 investigates the applicability of SFM to following the base-hydrolysis of a dithio-bis(succinimidylundecanoate) monolayer at gold in situ. Chapter 3 studies the mechanism for the accelerated rate of hydrolysis of the dithio-bis(succinimidylundecanoate) monolayer at Au(111) surface. Chapter 4 focuses on the development of an electrochemical approach to the elimination of chloride interference in Chemical Oxygen Demand (COD) analysis of waste water. The procedures, results and conclusions are described in each chapter. This report contains the introduction, references, and general conclusions. Chapters have been processed separately for inclusion on the data base. 95 refs.

  11. Remote sensing with simulated unmanned aircraft imagery for precision agriculture applications

    USGS Publications Warehouse

    Hunt, E. Raymond, Jr.; Daughtry, Craig S.T.; Mirsky, Steven B.; Hively, W. Dean

    2014-01-01

    An important application of unmanned aircraft systems (UAS) may be remote-sensing for precision agriculture, because of its ability to acquire images with very small pixel sizes from low altitude flights. The objective of this study was to compare information obtained from two different pixel sizes, one about a meter (the size of a small vegetation plot) and one about a millimeter. Cereal rye (Secale cereale) was planted at the Beltsville Agricultural Research Center for a winter cover crop with fall and spring fertilizer applications, which produced differences in biomass and leaf chlorophyll content. UAS imagery was simulated by placing a Fuji IS-Pro UVIR digital camera at 3-m height looking nadir. An external UV-IR cut filter was used to acquire true-color images; an external red cut filter was used to obtain color-infrared-like images with bands at near-infrared, green, and blue wavelengths. Plot-scale Green Normalized Difference Vegetation Index was correlated with dry aboveground biomass ( ${mbi {r}} = 0.58$ ), whereas the Triangular Greenness Index (TGI) was not correlated with chlorophyll content. We used the SamplePoint program to select 100 pixels systematically; we visually identified the cover type and acquired the digital numbers. The number of rye pixels in each image was better correlated with biomass ( ${mbi {r}} = 0.73$ ), and the average TGI from only leaf pixels was negatively correlated with chlorophyll content ( ${mbi {r}} = -0.72$ ). Thus, better information for crop requirements may be obtained using very small pixel sizes, but new algorithms based on computer vision are needed for analysis. It may not be necessary to geospatially register large numbers of photographs with very small pixel sizes. Instead, images could be analyzed as single plots along field transects.

  12. Automated genomic DNA purification options in agricultural applications using MagneSil paramagnetic particles

    NASA Astrophysics Data System (ADS)

    Bitner, Rex M.; Koller, Susan C.

    2002-06-01

    The automated high throughput purification of genomic DNA form plant materials can be performed using MagneSil paramagnetic particles on the Beckman-Coulter FX, BioMek 2000, and the Tecan Genesis robot. Similar automated methods are available for DNA purifications from animal blood. These methods eliminate organic extractions, lengthy incubations and cumbersome filter plates. The DNA is suitable for applications such as PCR and RAPD analysis. Methods are described for processing traditionally difficult samples such as those containing large amounts of polyphenolics or oils, while still maintaining a high level of DNA purity. The robotic protocols have ben optimized for agricultural applications such as marker assisted breeding, seed-quality testing, and SNP discovery and scoring. In addition to high yield purification of DNA from plant samples or animal blood, the use of Promega's DNA-IQ purification system is also described. This method allows for the purification of a narrow range of DNA regardless of the amount of additional DNA that is present in the initial sample. This simultaneous Isolation and Quantification of DNA allows the DNA to be used directly in applications such as PCR, SNP analysis, and RAPD, without the need for separate quantitation of the DNA.

  13. HYPOTHYROIDISM AND PESTICIDE USE AMONG MALE PRIVATE PESTICIDE APPLICATORS IN THE AGRICULTURAL HEALTH STUDY

    PubMed Central

    Goldner, Whitney S.; Sandler, Dale P.; Yu, Fang; Shostrom, Valerie; Hoppin, Jane A.; Kamel, Freya; LeVan, Tricia D.

    2013-01-01

    Objective Evaluate the association between thyroid disease and use of insecticides, herbicides, fumigants/fungicides in male applicators in the Agricultural Health Study. Methods We examined the association between use of 50 specific pesticides and self-reported hypothyroidism, hyperthyroidism, and ‘other’ thyroid disease among 22,246 male pesticide applicators. Results There was increased odds of hypothyroidism with ever-use of the herbicides 2,4-D, 2,4,5-T, 2,4,5-TP, alachlor, dicamba, and petroleum oil. Hypothyroidism was also associated with ever-use of eight insecticides: organochlorines chlordane, DDT, heptachlor, lindane, and toxaphene; organophosphates diazinon and malathion; and the carbamate carbofuran. Exposure-response analysis showed increasing odds with increasing level of exposure for the herbicides alachlor and 2,4-D, and the insecticides aldrin, chlordane, DDT, lindane, and parathion. Conclusions There is an association between hypothyroidism and specific herbicides and insecticides in male applicators, similar to previous results for spouses. PMID:24064777

  14. Economical and environmental implications of solid waste compost applications to agricultural fields in Punjab, Pakistan.

    PubMed

    Qazi, M Akram; Akram, M; Ahmad, N; Artiola, Janick F; Tuller, M

    2009-09-01

    Application of municipal solid waste compost (MSWC) to agricultural soils is becoming an increasingly important global practice to enhance and sustain soil organic matter (SOM) and fertility levels. Potential risks associated with heavy metals and phosphorus accumulations in surface soils may be minimized with integrated nutrient management strategies that utilize MSWC together with mineral fertilizers. To explore the economic feasibility of MSWC applications, nutrient management plans were developed for rice-wheat and cotton-wheat cropping systems within the Punjab region of Pakistan. Three-year field trials were conducted to measure yields and to determine the economic benefits using three management strategies and two nutrient doses. Management strategies included the application of mineral fertilizers as the sole nutrient source and application of mineral fertilizers in combination with MSWC with and without pesticide/herbicide treatments. Fertilizer doses were either based on standard N, P and K recommendations or on measured site-specific soil plant available phosphorus (PAP) levels. It was found that combining MSWC and mineral fertilizer applications based on site-specific PAP levels with the use of pesticides and herbicides is an economically and environmentally viable management strategy. Results show that incorporation of MSWC improved soil physical properties such as bulk density and penetration resistance. The PAP levels in the surface layer increased by the end of the trials relative to the initial status. No potential risks of heavy metal (Zn, Cd, Cr, Pb and Ni) accumulation were observed. Treatments comprised of MSWC and mineral fertilizer adjusted to site-specific PAP levels and with common pest management showed highest cumulative yields. A basic economic analysis revealed a significantly higher cumulative net profit and value-to-cost ratio (VCR) for all site-specific doses. PMID:19501499

  15. Effects of carbon-based nanoparticles (CNPs) on the fate of endocrine disrupting chemicals (EDCs) in different agricultural soils.

    NASA Astrophysics Data System (ADS)

    Stumpe, Britta; Wolski, Sabrina; Marschner, Bernd

    2013-04-01

    Nanotechnology is a major innovative scientific and economic growth area. To date there is a lack about possible adverse effects that may be associated with manufactured nanomaterial in terrestrial environments. Since it is known that on the one hand carbon-based nanoparticles (CNPs) and endocrine disrupting chemicals (EDCs) strongly interact in wastewater and that on the other hand CNPs and EDCs are released together via wastewater irrigation to agricultural soils, knowledge of CNP effects on the EDC fate in the soil environment is needed for further risk assessments. The overall goal of this project is to gain a better understanding of interaction of CNPs with EDCs within the soil system. Three different soil samples were applied with different CNPs, EDCs and CNP-EDC complexes and incubated over a period of 6 weeks. The EDC mineralization as well as their uptake by soil microorganisms was monitored to describe impacts of the nanomaterial on the EDC fate. As quality control for the biological soil activity soil respiration, enzyme activities and the soil microbial biomass were monitored in all incubated soil samples. Clearly, EDCs bound in CNP complexes showed a decrease in mineralization. While the free EDCs showed a total mineralization of 34 to 45 %, the nano complexed EDCs were only mineralized to 12 to 15 %. Since no effects of the nanomaterial on the biological soil activity were observed, we conclude that the reduced EDC mineralization is directly linked to their interaction with the CNPs. Since additionally the EDC adsorption to CNPs reduced the EDC uptake by soil microorganism, we assume that CNPs generally form more or less recalcitrant aggregates which likely protect the associated EDCs from degradation.

  16. A review of theoretical frameworks applicable for designing agricultural watershed restoration projects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural watershed restoration is the process of assisting the recovery of ecosystem structure and/or function within watersheds that have been degraded and damaged by agriculture. Unfortunately, agricultural watershed restoration is the rare exception within the Midwestern United States despit...

  17. Agricultural Knowledge in Urban and Resettled Communities: Applications to Social-Ecological Resilience and Environmental Education

    ERIC Educational Resources Information Center

    Shava, Soul; Krasny, Marianne E.; Tidball, Keith G.; Zazu, Cryton

    2010-01-01

    In light of globalising trends toward urbanisation and resettlement, we explore how agricultural knowledges may be adapted and applied among relocated people. Although indigenous and related forms of practice-based knowledge may be temporarily lost as people adopt commercial agricultural practices and switch to non-agricultural livelihoods, they…

  18. Development and application of fuzzy indicator for assessment of agricultural land resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With ever increasing demands on agriculture, it is essential that we be able to adequately evaluate agriculture land resources. Recently, efforts have been undertaken to develop methods and tools for the purpose of evaluating agricultural land resources. However, to be successful, assessments need...

  19. Runoff of pharmaceuticals and personal care products following application of biosolids to an agricultural field.

    PubMed

    Topp, Edward; Monteiro, Sara C; Beck, Andrew; Coelho, Bonnie Ball; Boxall, Alistair B A; Duenk, Peter W; Kleywegt, Sonya; Lapen, David R; Payne, Michael; Sabourin, Lyne; Li, Hongxia; Metcalfe, Chris D

    2008-06-15

    Municipal biosolids are a source of nutrients for crop production. Beneficial Management Practices (BMPs) can be used to minimize the risk of contamination of adjacent water resources with chemical or microbial agents that are of public or environmental health concern. In this field study, we applied biosolids slurry at a commercial rate using either subsurface injection or broadcast application followed by incorporation. Precipitation was simulated at 1, 3, 7, 22, 36 and 266 days post-application on 2 m(2) microplots to evaluate surface runoff of 9 model pharmaceuticals and personal care products (PPCPs), atenolol, carbamazepine, cotinine, gemfibrozil, naproxen, ibuprofen, acetaminophen, sulfamethoxazole and triclosan. In runoff from the injected plots, concentrations of the model PPCPs were generally below the limits of quantitation. In contrast, in the broadcast application treatment, the concentrations of atenolol, carbamazepine, cotinine, gemfibrozil, naproxen, sulfamethoxazole and triclosan on the day following application ranged from 70-1477 ng L(-1) in runoff and generally declined thereafter with first order kinetics. The total mass of PPCPs mobilized in surface runoff per m(2) of the field ranged from 0.63 microg for atenolol to 21.1 microg for ibuprofen. For ibuprofen and acetaminophen, concentrations in runoff first decreased and then increased, suggesting that these drugs were initially chemically or physically sequestered in the biosolids slurry, and subsequently released in the soil. Carbamazepine and triclosan were detected at low concentrations in a runoff event 266 days after broadcast application. Overall, this study showed that injection of biosolids slurry below the soil surface could effectively eliminate surface runoff of PPCPs. PMID:18377955

  20. [Sustainable production of bulk chemicals by application of "white biotechnology"].

    PubMed

    Patel, M K; Dornburg, V; Hermann, B G; Shen, Li; van Overbeek, Leo

    2008-12-01

    Practically all organic chemicals and plastics are nowadays produced from crude oil and natural gas. However, it is possible to produce a wide range of bulk chemicals from renewable resources by application of biotechnology. This paper focuses on White Biotechnology, which makes use of bacteria (or yeasts) or enzymes for the conversion of the fermentable sugar to the target product. It is shown that White Biotechnology offers substantial savings of non-renewable energy use and greenhouse gas emissions for nearly all of the products studied. Under favorable boundary conditions up to two thirds (67%) of the current non-renewable energy use for the production of the selected chemicals can be saved by 2050 if substantial technological progress is made and if the use of lignocellulosic feedstocks is successfully developed. The analysis for Europe (E.U. 25 countries) shows that land requirements related to White Biotechnology chemicals are not likely to become a critical issue in the next few decades, especially considering the large unused and underutilized resources in Eastern Europe. Substantial macroeconomic savings can be achieved under favourable boundary conditions. In principle, natural bacteria and enzymes can be used for White Biotechnology but, according to many experts in the fields, Genetically Modified Organisms (GMO) will be necessary in order to achieve the high yields, concentrations and productivities that are required to reach economic viability. Safe containment and inactivation of GMOs after release is very important because not all possible implications caused by the interaction of recombinant genes with other populations can be foreseen. If adequate precautionary measures are taken, the risks related to the use of genetically modified organisms in White Biotechnology are manageable. We conclude that the core requirements to be fulfilled in order to make clear steps towards a bio-based chemical industry are substantial technological progress in the

  1. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application.

    PubMed

    Ho, Adrian; Reim, Andreas; Kim, Sang Yoon; Meima-Franke, Marion; Termorshuizen, Aad; de Boer, Wietse; van der Putten, Wim H; Bodelier, Paul L E

    2015-10-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing, and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over 2 months. Unexpectedly, after amendments with specific residues, we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotroph population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus may facilitate methane oxidation in the agricultural soils. While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that methane oxidation rate can be stimulated, leading to higher soil methane uptake. Hence, even if agriculture exerts an adverse impact on soil methane uptake, implementing carefully designed management strategies (e.g. repeated application of specific residues) may

  2. Runoff of pharmaceuticals and personal care products following application of dewatered municipal biosolids to an agricultural field.

    PubMed

    Sabourin, Lyne; Beck, Andrew; Duenk, Peter W; Kleywegt, Sonya; Lapen, David R; Li, Hongxia; Metcalfe, Chris D; Payne, Michael; Topp, Edward

    2009-08-01

    Municipal biosolids are a useful source of nutrients for crop production, and commonly used in agriculture. In this field study, we applied dewatered municipal biosolids at a commercial rate using broadcast application followed by incorporation. Precipitation was simulated at 1, 3, 7, 21 and 34 days following the application on 2 m(2) microplots to evaluate surface runoff of various pharmaceuticals and personal care products (PPCPs), namely atenolol, carbamazepine, cotinine, caffeine, gemfibrozil, naproxen, ibuprofen, acetaminophen, sulfamethoxazole, triclosan and triclocarban. There was little temporal coherence in the detection of PPCPs in runoff, various compounds being detected maximally on days 1, 3, 7 or 36. Maximum concentrations in runoff ranged from below detection limit (gemfibrozil) to 109.7 ng L(-1) (triclosan). Expressing the total mass exported as a percentage of that applied, some analytes revealed little transport potential (<1% exported; triclocarban, triclosan, sulfamethoxazole, ibuprofen, naproxen and gemfibrozil) whereas others were readily exported (>1% exported; acetaminophen, carbamazepine, caffeine, cotinine, atenolol). Those compounds with little transport potential had log K(ow) values of 3.18 or greater, whereas those that were readily mobilized had K(ow) values of 2.45 or less. Maximal concentrations of all analytes were below toxic concentrations using a variety of endpoints available in the literature. In summary, this study has quantified the transport potential in surface runoff of PPCPs from land receiving biosolids, identified that log K(ow) may be a determinant of runoff transport potential of these analytes, and found maximal concentrations of all chemicals tested to be below toxic concentrations using a variety of endpoints. PMID:19464726

  3. Interactive Web-Mapping System for Satellite Based Agricultural Applications in Bulgaria and Romania

    NASA Astrophysics Data System (ADS)

    Craciunescu, Vasile; Stancalie, Gheorghe; Roumenina, Eugenia; Kazandjiev, Valentin; Jelev, Georgi; Filchev, Lachezar; Savin, Elena; Catana, Simona; Mihailescu, Denis

    2012-06-01

    The interactive web-mapping system for satellite based agricultural application in Bulgaria and Romania was developed in the frame if the PROA GROB URO project. To achieve the project objectives a large amount of geospatial data was collected in the form of satellite images, maps and vector layers. Furthermore, the field measurements and descriptions were linked with the exact location where they have been made. There was a strong need to be able to analyse the data in an integrated way. Thus, a geodatabase was necessary with corresponding web-interface and applications providing data access to each of the partners. Using the newest Internet technologies a set of tools for creating and online publishing of geospatial data was successfully implemented The system components were developed entirely with standard compliant free and open source software like GDAL/OGR. GeoServer, OpenLayers and PostgreSQL+PostGIS. GMES recommendations and INSPIRE directive were taken into account when designing and implementing the system.

  4. Application of sewage sludge to non-agricultural ecosystems: Assessment of contaminant risks to wildlife

    SciTech Connect

    Sample, B.E.; Efroymson, R.A.; Barnthouse, L.W.; Daniel, F.B.

    1995-12-31

    This report is part of a larger study evaluating nutrient and contaminant impacts associated with the land application of biosolids in four non-agricultural ecosystems: Pacific Northwest forests, semi-arid rangelands, eastern deciduous forests, and southeasternpine plantations. Because contaminants in biosolids may be taken up by biota and transferred through the food web, they may present a risk to wildlife. Biosolids application scenarios that reflect actual practices in each ecosystem were developed. Concentrations of contaminants in biosolids were obtained from the US EPA`s 1988 National Sewage Sludge Survey. Soil-biota uptake factors for contaminants in sludge were developed from contaminant studies performed in each ecosystem type. Where ecosystem-specific data were unavailable, more generalized factors were used. Endpoints were selected that reflected species expected to be present in each ecosystem. Four trophic groups were considered: herbivores (e.g., deer) vermivores (earthworm-consumers; e.g., shrews), insectivores (e.g., songbirds), and carnivores (e.g., fox). Contaminant concentrations in wildlife foods were estimated using the uptake factors. These estimates were then incorporated into models to estimate the contaminant exposure for endpoints in each trophic group in each ecosystem. Exposure estimates were then compared to NOAELs and LOAELs to determine the nature and magnitude of risks that biosolids may present to wildlife.

  5. A summary of the history of the development of automated remote sensing for agricultural applications

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.

    1983-01-01

    The research conducted in the United States for the past 20 years with the objective of developing automated satellite remote sensing for monitoring the earth's major food crops is reviewed. The highlights of this research include a National Academy of Science study on the applicability of remote sensing monitoring given impetus by the introduction in the mid-1960's of the first airborne multispectral scanner (MSS); design simulations for the first earth resource satellite in 1969; and the use of the airborne MSS in the Corn Blight Watch, the first large application of remote sensing in agriculture, in 1970. Other programs discussed include the CITAR research project in 1972 which established the feasibility of automating digital classification to process high volumes of Landsat MSS data; the Large Area Crop Inventory Experiment (LACIE) in 1974-78, which demonstrated automated processing of Landsat MSS data in estimating wheat crop production on a global basis; and AgRISTARS, a program designed to address the technical issues defined by LACIE.

  6. Market assessment of photovoltaic power systems for agricultural applications in Colombia

    NASA Technical Reports Server (NTRS)

    Steigelmann, W.; Neyeloff, S.

    1981-01-01

    The market potential for photovoltaic systems in the agricultural sector of Colombia is assessed. Consideration was given to over twenty specific livestock production, crop production, and rural services applications requiring less than 15 kW of power without backup power. Analysis revealed that near-term potential exists for photovoltaic technology in applications in coffee depulging, cattle watering, rural domestic users, rural water supply and small irrigation, rural telephones, rural health posts, and vaccine refrigeration. Market size would be in the 1200 to 2500 kWp range in the 1981 to 86 timeframe. Positive factors influencing the market size include a lack of electrical services, potential for developing the Llanos Orientales Territory, high fuel costs in remote areas, balance of system availability, the presence of wealthy land owners, and a large government-sponsored contract for photovoltaic (PV)-powered rural telephone systems. The anticipated eligibility of photovoltaic equipment for loans would be a further positive factor in market potential. Important negative factors include relatively inexpensive energy in developed locations, reliance on hydropower, lack of familiarity with PV equipment, a lack of financing, and established foreign competition in PV technology. Recommendations to American PV manufacturers attempting to develop the Colombian market are given.

  7. Market assessment of photovoltaic power systems for agricultural applications in Colombia

    SciTech Connect

    Steigelmann, W.; Neyeloff, S.

    1981-11-01

    An assessment is made of the market potential for photovoltaic systems in the agricultural sector of Colombia. Consideration was given to over twenty specific livestock production, crop production, and rural services applications requiring less than 15 KW of power without backup power. Analysis revealed that near-term potential exists for photovoltaic technology in applications in coffee depulging, cattle watering, rural domestic users, rural water supply and small irrigation, rural telephones, rural health posts, and vaccine refrigeration. Market size would be in the 1200 to 2500 KWp range in the 1981-86 timeframe. Positive factors influencing the market size include a lack of electrical services, potential for developing the Llanos Orientales Territory, high fuel costs in remote areas, balance of system availability, the presence of wealthy land owners, and a large government-sponsored contract for PV-powered rural telephone systems. The anticipated eligibility of photovoltaic equipment for loans under the Fifth Law would be a further positive factor in market potential. Important negative factors include relatively inexpensive energy in developed locations, reliance on hydropower, lack of familarity with PV equipment, a lack of financing, and established foreign competition in PV technology. Recommendations to American PV manufacturers attempting to develop the Colombian market are to offer complete systems, perform as much production and assembly of systems as possible in Colombia or another Andean Pact country to avoid higher tariffs, and consider forming corporations with majority Colombian participation in light or trade advantages.

  8. Market assessment of photovoltaic power systems for agricultural applications in Colombia

    NASA Astrophysics Data System (ADS)

    Steigelmann, W.; Neyeloff, S.

    1981-11-01

    The market potential for photovoltaic systems in the agricultural sector of Colombia is assessed. Consideration was given to over twenty specific livestock production, crop production, and rural services applications requiring less than 15 kW of power without backup power. Analysis revealed that near-term potential exists for photovoltaic technology in applications in coffee depulging, cattle watering, rural domestic users, rural water supply and small irrigation, rural telephones, rural health posts, and vaccine refrigeration. Market size would be in the 1200 to 2500 kWp range in the 1981 to 86 timeframe. Positive factors influencing the market size include a lack of electrical services, potential for developing the Llanos Orientales Territory, high fuel costs in remote areas, balance of system availability, the presence of wealthy land owners, and a large government-sponsored contract for photovoltaic (PV)-powered rural telephone systems. The anticipated eligibility of photovoltaic equipment for loans would be a further positive factor in market potential. Important negative factors include relatively inexpensive energy in developed locations, reliance on hydropower, lack of familiarity with PV equipment, a lack of financing, and established foreign competition in PV technology. Recommendations to American PV manufacturers attempting to develop the Colombian market are given.

  9. Proposal of a defense application for a chemical oxygen laser

    NASA Astrophysics Data System (ADS)

    Takehisa, K.

    2015-05-01

    Defense application for a chemical oxygen laser (COL) is explained. Although a COL has not yet been successful in lasing, the oscillator was estimated to produce a giant pulse with the full width at half maximum (FWHM) of ~0.05ms which makes the damage threshold for the mirrors several-order higher than that for a typical solid-state laser with a ~10ns pulse width. Therefore it has a potential to produce MJ class output considering the simple scalability of being a chemical laser. Since within 0.05ms a supersonic aircraft can move only a few centimeters which is roughly equal to the spot size of the focused beam at ~10km away using a large-diameter focusing mirror, a COL has a potential to make a damage to an enemy aircraft by a single shot without beam tracking. But since the extracted beam can propagate up to a few kilometers due to the absorption in the air, it may be suitable to use in space. While a chemical oxygen-iodine laser (COIL) can give a pulsed output with a width of ~2 ms using a high-pressure singlet oxygen generator (SOG). Therefore a pulsed COIL may also not require beam tracking if a target aircraft is approaching. Another advantage for these pulsed high-energy lasers (HELs) is that, in case of propagating in cloud or fog, much less energy is required for a laser for aerosol vaporization (LAV) than that of a LAV for a CW HEL. Considerations to use a COL as a directed energy weapon (DEW) in a point defense system are shown.

  10. Application of soil quality indices to assess the status of agricultural soils irrigated with treated wastewaters

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, A.; Arcenegui, V.; García-Orenes, F.; Mataix-Solera, J.; Mataix-Beneyto, J.

    2012-12-01

    The supply of water is limited in some parts of the Mediterranean region, such as southeastern Spain. The use of treated wastewater for the irrigation of agricultural soils is an alternative to using better-quality water, especially in semi-arid regions. On the other hand, this practice can modify some soil properties, change their relationships, the equilibrium reached and influence soil quality. In this work two soil quality indices were used to evaluate the effects of irrigation with treated wastewater in soils. The indices were developed studying different soil properties in undisturbed soils in SE Spain, and the relationships between soil parameters were established using multiple linear regressions. This study was carried out in three areas of Alicante Province (SE Spain) irrigated with wastewater, including four study sites. The results showed slight changes in some soil properties as a consequence of irrigation with wastewater, the obtained levels not being dangerous for agricultural soils, and in some cases they could be considered as positive from an agronomical point of view. In one of the study sites, and as a consequence of the low quality wastewater used, a relevant increase in soil organic matter content was observed, as well as modifications in most of the soil properties. The application of soil quality indices indicated that all the soils of study sites are in a state of disequilibrium regarding the relationships between properties independent of the type of water used. However, there were no relevant differences in the soil quality indices between soils irrigated with wastewater with respect to their control sites for all except one of the sites, which corresponds to the site where low quality wastewater was used.

  11. Unmanned Aerial Vehicle (UAV) operated spectral camera system for forest and agriculture applications

    NASA Astrophysics Data System (ADS)

    Saari, Heikki; Pellikka, Ismo; Pesonen, Liisa; Tuominen, Sakari; Heikkilä, Jan; Holmlund, Christer; Mäkynen, Jussi; Ojala, Kai; Antila, Tapani

    2011-11-01

    VTT Technical Research Centre of Finland has developed a Fabry-Perot Interferometer (FPI) based hyperspectral imager compatible with the light weight UAV platforms. The concept of the hyperspectral imager has been published in the SPIE Proc. 7474 and 7668. In forest and agriculture applications the recording of multispectral images at a few wavelength bands is in most cases adequate. The possibility to calculate a digital elevation model of the forest area and crop fields provides means to estimate the biomass and perform forest inventory. The full UAS multispectral imaging system will consist of a high resolution false color imager and a FPI based hyperspectral imager which can be used at resolutions from VGA (480 x 640 pixels) up to 5 Mpix at wavelength range 500 - 900 nm at user selectable spectral resolutions in the range 10...40 nm @ FWHM. The resolution is determined by the order at which the Fabry- Perot interferometer is used. The overlap between successive images of the false color camera is 70...80% which makes it possible to calculate the digital elevation model of the target area. The field of view of the false color camera is typically 80 degrees and the ground pixel size at 150 m flying altitude is around 5 cm. The field of view of the hyperspectral imager is presently is 26 x 36 degrees and ground pixel size at 150 m flying altitude is around 3.5 cm. The UAS system has been tried in summer 2011 in Southern Finland for the forest and agricultural areas. During the first test campaigns the false color camera and hyperspectral imager were flown over the target areas at separate flights. The design and calibration of the hyperspectral imager will be shortly explained. The test flight campaigns on forest and crop fields and their preliminary results are also presented in this paper.

  12. Application of soil quality indices to assess the status of agricultural soils irrigated with treated wastewaters

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, A.; Arcenegui, V.; García-Orenes, F.; Mataix-Solera, J.; Mataix-Beneyto, J.

    2013-03-01

    The supply of water is limited in some parts of the Mediterranean region, such as southeastern Spain. The use of treated wastewater for the irrigation of agricultural soils is an alternative to using better-quality water, especially in semi-arid regions. On the other hand, this practice can modify some soil properties, change their relationships and influence soil quality. In this work two soil quality indices were used to evaluate the effects of irrigation with treated wastewater in soils. The indices were developed studying different soil properties in undisturbed soils in SE Spain, and the relationships between soil parameters were established using multiple linear regressions. These indices represent the balance reached among properties in "steady state" soils. This study was carried out in four study sites from SE Spain irrigated with wastewater, including four study sites. The results showed slight changes in some soil properties as a consequence of irrigation with wastewater, the obtained levels not being dangerous for agricultural soils, and in some cases they could be considered as positive from an agronomical point of view. In one of the study sites, and as a consequence of the low quality wastewater used, a relevant increase in soil organic matter content was observed, as well as modifications in most of the soil properties. The application of soil quality indices indicated that all the soils of study sites are in a state of disequilibrium regarding the relationships between properties independent of the type of water used. However, there were no relevant differences in the soil quality indices between soils irrigated with wastewater with respect to their control sites for all except one of the sites, which corresponds to the site where low quality wastewater was used.

  13. Chemical functionalization of hyaluronic acid for drug delivery applications.

    PubMed

    Vasi, Ana-Maria; Popa, Marcel Ionel; Butnaru, Maria; Dodi, Gianina; Verestiuc, Liliana

    2014-05-01

    Functionalized hyaluronic acid (HA) derivatives were obtained by ring opening mechanism of maleic anhydride (MA). FTIR and H(1) NMR spectroscopy were used to confirm the chemical linkage of MA on the hyaluronic acid chains. Thermal analysis (TG-DTG and DSC) and GPC data for the new products revealed the formation of new functional groups, without significant changes in molecular weight and thermal stability. New gels based on hyaluronic acid modified derivatives were obtained by acrylic acid copolymerization in the presence of a redox initiation system. The resulted circular and interconnected pores of the gels were visualized by SEM. The release profiles of an ophthalmic model drug, pilocarpine from tested gels were studied in simulated media. Evaluation of the cytotoxicity and cell proliferation properties indicates the potential of the new systems to be used in contact with biological media in drug delivery applications. PMID:24656366

  14. Application of Metabolomics to Multiple Chemical Sensitivity Research.

    PubMed

    Katoh, Takahiko; Fujiwara, Yuki; Nakashita, Chihiro; Lu, Xi; Hisada, Aya; Miyazaki, Wataru; Azuma, Kenichi; Tanigawa, Mari; Uchiyama, Iwao; Kunugita, Naoki

    2016-01-01

    Multiple chemical sensitivity (MCS) is an acquired chronic disorder characterized by nonspecific symptoms in multiple organ systems associated with exposure to low-level chemicals. Diagnosis of MCS can be difficult because of the inability to assess the causal relationship between exposure and symptoms. No standardized objective measures for the identification of MCS and no precise definition of this disorder have been established. Recent technological advances in mass spectrometry have significantly improved our capacity to obtain more data from each biological sample. Metabolomics comprises the methods and techniques that are used to determine the small-level molecules in biofluids and tissues. The metabolomic profile-the metabolome-has multiple applications in many biological sciences, including the development of new diagnostic tools for medicine. We performed metabolomics to detect the difference between 9 patients with MCS and 9 controls. We identified 183 substances whose levels were beyond the normal detection limit. The most prominent differences included significant increases in the levels of both hexanoic acid and pelargonic acid, and also a significant decrease in the level of acetylcarnitine in patients with MCS. In conclusion, using metabolomics analysis, we uncovered a hitherto unrecognized alteration in the levels of metabolites in MCS. These changes may have important biological implications and may have a significant potential for use as biomarkers. PMID:26832623

  15. Carbon Nanotube Based Chemical Sensors for Space and Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Li, Jing; Lu, Yijiang

    2009-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs), on a pair of interdigitated electrodes (IDE) processed with a silicon-based microfabrication and micromachining technique. The IDE fingers were fabricated using photolithography and thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to nitrogen dioxide, acetone, benzene, nitrotoluene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing of carbon nanotubes in our sensor platform can be understood by intra- and inter-tube electron modulation in terms of charge transfer mechanisms. As a result of the charge transfer, the conductance of p-type or hole-richer SWNTs in air will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost. Additionally, a wireless capability of such a sensor chip can be used for networked mobile and fixed-site detection and warning systems for military bases, facilities and battlefield areas.

  16. Nanotechnologies in agriculture and food - an overview of different fields of application, risk assessment and public perception.

    PubMed

    Grobe, Antje; Rissanen, Mikko E

    2012-12-01

    Nanomaterials in agriculture and food are key issues of public and regulatory interest. Over the past ten years, patents for nanotechnological applications in the field of food and agriculture have become abundant. Uncertainty prevails however regarding their current development status and presence in the consumer market. Thus, the discussion on nanotechnologies in the food sector with its specific public perception of benefits and risks and the patterns of communication are becoming similar to the debate on genetically modified organisms. The food industry's silence in communication increased mistrust of consumer organisations and policy makers. The article discusses the background of the current regulatory debates, starting with the EU recommendation for defining nanomaterials, provides an overview of possible fields of application in agriculture and food industries and discusses risk assessment and the public debate on benefits and risks. Communicative recommendations are directed at researchers, the food industry and regulators in order to increase trust both in stakeholders, risk management and regulatory processes. PMID:23013411

  17. 21 CFR 1308.23 - Exemption of certain chemical preparations; application.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Exemption of certain chemical preparations; application. 1308.23 Section 1308.23 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE SCHEDULES OF CONTROLLED SUBSTANCES Exempt Chemical Preparations § 1308.23 Exemption of certain chemical preparations; application. (a)...

  18. 40 CFR 430.80 - Applicability; description of the non-wood chemical pulp subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-wood chemical pulp subcategory. 430.80 Section 430.80 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Non-Wood Chemical Pulp Subcategory § 430.80 Applicability; description of the non-wood chemical pulp subcategory. The provisions of this subpart are applicable to discharges...

  19. 40 CFR 430.80 - Applicability; description of the non-wood chemical pulp subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-wood chemical pulp subcategory. 430.80 Section 430.80 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Non-Wood Chemical Pulp Subcategory § 430.80 Applicability; description of the non-wood chemical pulp subcategory. The provisions of this subpart are applicable to discharges...

  20. 40 CFR 430.80 - Applicability; description of the non-wood chemical pulp subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-wood chemical pulp subcategory. 430.80 Section 430.80 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Non-Wood Chemical Pulp Subcategory § 430.80 Applicability; description of the non-wood chemical pulp subcategory. The provisions of this subpart are applicable to discharges...

  1. 40 CFR 430.60 - Applicability; description of the semi-chemical subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORY Semi-Chemical Subcategory § 430.60 Applicability; description of the semi-chemical subcategory... of pulp and paper at semi-chemical mills. ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the...

  2. 40 CFR 430.60 - Applicability; description of the semi-chemical subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORY Semi-Chemical Subcategory § 430.60 Applicability; description of the semi-chemical subcategory... of pulp and paper at semi-chemical mills. ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the...

  3. 40 CFR 455.30 - Applicability; description of the metallo-organic pesticide chemicals manufacturing subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metallo-organic pesticide chemicals manufacturing subcategory. 455.30 Section 455.30 Protection of...) PESTICIDE CHEMICALS Metallo-Organic Pesticide Chemicals Manufacturing Subcategory § 455.30 Applicability; description of the metallo-organic pesticide chemicals manufacturing subcategory. The provisions of...

  4. 40 CFR 455.30 - Applicability; description of the metallo-organic pesticide chemicals manufacturing subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metallo-organic pesticide chemicals manufacturing subcategory. 455.30 Section 455.30 Protection of...) PESTICIDE CHEMICALS Metallo-Organic Pesticide Chemicals Manufacturing Subcategory § 455.30 Applicability; description of the metallo-organic pesticide chemicals manufacturing subcategory. The provisions of...

  5. 40 CFR 455.30 - Applicability; description of the metallo-organic pesticide chemicals manufacturing subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... metallo-organic pesticide chemicals manufacturing subcategory. 455.30 Section 455.30 Protection of...) PESTICIDE CHEMICALS Metallo-Organic Pesticide Chemicals Manufacturing Subcategory § 455.30 Applicability; description of the metallo-organic pesticide chemicals manufacturing subcategory. The provisions of...

  6. 40 CFR 721.11 - Applicability determination when the specific chemical identity is confidential.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... specific chemical identity is confidential. 721.11 Section 721.11 Protection of Environment ENVIRONMENTAL... General Provisions § 721.11 Applicability determination when the specific chemical identity is...: SNUR Bonafide submissions. (1) The specific chemical identity of the chemical substance that the...

  7. 40 CFR 430.80 - Applicability; description of the non-wood chemical pulp subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-wood chemical pulp subcategory. 430.80 Section 430.80 Protection of Environment ENVIRONMENTAL... CATEGORY Non-Wood Chemical Pulp Subcategory § 430.80 Applicability; description of the non-wood chemical... production of pulp and paper at non-wood chemical pulp mills. This subcategory includes, but is not...

  8. 40 CFR 430.80 - Applicability; description of the non-wood chemical pulp subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-wood chemical pulp subcategory. 430.80 Section 430.80 Protection of Environment ENVIRONMENTAL... CATEGORY Non-Wood Chemical Pulp Subcategory § 430.80 Applicability; description of the non-wood chemical... production of pulp and paper at non-wood chemical pulp mills. This subcategory includes, but is not...

  9. 40 CFR 430.60 - Applicability; description of the semi-chemical subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-chemical subcategory. 430.60 Section 430.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORY Semi-Chemical Subcategory § 430.60 Applicability; description of the semi-chemical subcategory... of pulp and paper at semi-chemical mills....

  10. Ecological risks associated with the application of sewage sludge to non-agricultural ecosystems

    SciTech Connect

    Efroymson, R.A.; Sample, B.E.; Luxmoore, R.J.; Tharp, M.L.; Barnthouse, L.W.; Daniel, F.B.

    1995-12-31

    The Clean Water Act of 1977 directed EPA to establish standards for use and disposal of sewage sludge (biosolids). The application of biosolids to non-agricultural lands is becoming increasingly important as a method of waste disposal. Ecological endpoints at the population, community, and/or ecosystem level have not previously been emphasized in the development of regulatory standards for municipal sewage sludge. This risk assessment focuses on terrestrial endpoints in four ecosystem types to which substantial quantities of sludge have been applied or are expected to be applied in the future: northwest Douglas-fir forest, southeastern loblolly pine plantation, eastern deciduous forest, and semi-arid rangeland. Conceptual models suitable for all ecosystems were developed that depict the links among assessment endpoints. Estimates of risks to wildlife from contaminants and simulations of impacts of nitrogen in sewage sludge on the structure and function of forest communities are presented in detail elsewhere at this conference. This project overview integrates these two assessment components and adds contaminant risks to plants, soil invertebrates, and microbial processes and risk of leaching and erosion altered by biosolids application. Management practices and empirical measures of bioavailability are considered for each ecosystem. Concentrations of constitutents of sewage sludge used for the analyses have been obtained from the 1988 USEPA National Sewage Sludge Survey. Existing regulatory standards that are primarily human health-based are also evaluated for the adequacy of protection of ecological systems and populations. Predicted impacts of sewage sludge applications are presented, even if they may be regarded as benefits rather than risks.

  11. Neurobehavioral function and organophosphate insecticide use among pesticide applicators in the Agricultural Health Study.

    PubMed

    Starks, Sarah E; Gerr, Fred; Kamel, Freya; Lynch, Charles F; Jones, Michael P; Alavanja, Michael C; Sandler, Dale P; Hoppin, Jane A

    2012-01-01

    Although persistent decrements in cognitive function have been observed among persons who have recovered from clinically overt organophosphate (OP) pesticide poisoning, little is known about the cognitive effects of chronic OP exposures that do not result in acute poisoning. To examine associations between long-term pesticide use and neurobehavioral (NB) function, NB tests were administered to licensed pesticide applicators enrolled in the Agricultural Health Study (AHS) in Iowa and North Carolina. Between 2006 and 2008, 701 male participants completed nine NB tests to assess memory, motor speed and coordination, sustained attention, verbal learning and visual scanning and processing. Data on ever-use and lifetime days of use of 16 OP pesticides were obtained from AHS interviews conducted before testing between 1993 and 2007 and during the NB visit. The mean age of participants was 61 years (SD=12). Associations between pesticide use and NB test performance were estimated with linear regression controlling for age and outcome-specific covariates. NB test performance was associated with lifetime days of use of some pesticides. Ethoprop was significantly associated with reduced performance on a test of motor speed and visual scanning. Malathion was significantly associated with poor performance on a test of visual scanning and processing. Conversely, we observed significantly better test performance for five OP pesticides. Specifically, chlorpyrifos, coumaphos, parathion, phorate, and tetrachlorvinphos were associated with better verbal learning and memory; coumaphos was associated with better performance on a test of motor speed and visual scanning; and parathion was associated with better performance on a test of sustained attention. Several associations varied by state. Overall, we found no consistent evidence of an association between OP pesticide use and adverse NB test performance among this older sample of pesticide applicators. Potential reasons for these

  12. Selected veterinary pharmaceuticals in agricultural water and soil from land application of animal manure.

    PubMed

    Song, Wenlu; Ding, Yunjie; Chiou, Cary T; Li, Hui

    2010-01-01

    Veterinary pharmaceuticals are commonly administered to animals for disease control, and added into feeds at subtherapeutic levels to improve feeding efficiency. As a result of these practices, a certain fraction of the pharmaceuticals are excreted into animal manures. Land application of these manures contaminates soils with the veterinary pharmaceuticals, which can subsequently lead to contamination of surface and groundwaters. Information on the occurrence and fate of pharmaceuticals in soil and water is needed to assess the potential for exposure of at-risk populations and the impacts on agricultural ecosystems. In this study, we investigated the occurrence and fate of four commonly used veterinary pharmaceuticals (amprolium, carbadox, monensin, and tylosin) in a farm in Michigan. Amprolium and monensin were frequently detected in nearby surface water, with concentrations ranging from several to hundreds of nanograms per liter, whereas tylosin or carbadox was rarely found. These pharmaceuticals were more frequently detected in surface runoff during nongrowing season (October to April) than during growing season (May to September). Pharmaceuticals resulting from postharvest manure application appeared to be more persistent than those from spring application. High concentrations of pharmaceuticals in soils were generally observed at the sites where the respective concentrations in surface water were also high. For monensin, the ratios of soil-sorbed to aqueous concentrations obtained from field samples were within the order of the distribution coefficients obtained from laboratory studies. These results suggest that soil is a reservoir for veterinary pharmaceuticals that can be disseminated to nearby surface water via desorption from soil, surface runoff, and soil erosion. PMID:20830908

  13. 7 CFR 305.5 - Chemical treatment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Chemical treatment requirements. 305.5 Section 305.5... SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS § 305.5 Chemical treatment requirements. (a... kill the pest, all chemical applications must be administered in accordance with an...

  14. Hearing Loss among Licensed Pesticide Applicators in the Agricultural Health Study Running title: Hearing Loss among Licensed Pesticide Applicators

    PubMed Central

    Mac Crawford, J.; Hoppin, Jane A.; Alavanja, Michael C. R.; Blair, Aaron; Sandler, Dale P.; Kamel, Freya

    2009-01-01

    Objective We evaluated self-reported hearing loss and pesticide exposure in licensed private pesticide applicators enrolled in the Agricultural Health Study in 1993–1997 in Iowa and North Carolina. Methods Among 14,229 white male applicators in 1999–2003, 4,926 reported hearing loss (35%). Logistic regression was performed with adjustment for state, age, and noise, solvents, and metals. We classified pesticides by lifetime days of use. Results Compared to no exposure, the odds ratio (95% confidence interval) for the highest quartile of exposure was 1.19 (1.04–1.35) for insecticides and 1.17 (1.03–1.31) for organophosphate insecticides. Odds of hearing loss were elevated for high pesticide exposure events (1.38, 1.25–1.54), pesticide-related doctor visits (1.38, 1.17–1.62) or hospitalization (1.81, 1.25–2.62), and diagnosed pesticide poisoning (1.75, 1.36–2.26). Conclusions Although control for exposure to noise or other neurotoxicants was limited, this study extends previous reports suggesting that organophosphate exposure increases risk of hearing loss. PMID:18617838

  15. Assessing the fate of an aromatic hydrocarbon fluid in agricultural spray applications using the three-stage ADVOCATE model framework

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Components of emulsifiable concentrates (ECs) used in pesticide formulations may be emitted to air following application in agricultural use and contribute to ozone formation. A key consideration is the fraction of the ECs that is volatilized. This study is designed to provide a mechanistic model fr...

  16. Chemical characteristics and source apportionment of PM2.5 during the harvest season in eastern China's agricultural regions

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Song, Yu; Mao, Yi; Mao, Zhichun; Wu, Yusheng; Li, Mengmeng; Huang, Xin; He, Qichao; Hu, Min

    2014-08-01

    To determine the contribution of the open burning of wheat straw residues to local PM2.5 during the harvest season of June 2013, PM2.5 was sampled in an agricultural region in eastern China. The sampling site was approximately 1 km from the nearest wheat field. Chemical compositions were analyzed, and source apportionment was undertaken using the positive matrix factorization model. The average PM2.5 concentration was 110.7 μg/m3, containing 36.4 μg/m3 organics, 7.3 μg/m3 EC, 6.0 μg/m3 potassium (K) and 4.9 μg/m3 chloride ion (Cl-). The sampling period was divided into three phases: the pre-local-burning phase (Phase 1), the local-burning phase (Phase 2) and the post-local-burning phase (Phase 3). In Phase 2, the concentrations of PM2.5 and the organics, EC, K and Cl- in PM2.5 were 163.6 μg/m3, 59.0 μg/m3, 12.2 μg/m3, 11.0 μg/m3 and 10.8 μg/m3, respectively, which were all remarkably higher than in both Phase 1 and Phase 3. Eight sources of PM2.5 were determined, including two types of wheat residue burning sources, which showed a significant difference in Cl- content. The atmospheric relative humidity (RH) and the aging process of PM2.5 might be the causes: only fresh particulate emissions from wheat residue burning could feature high-concentration Cl- under high RH conditions. In Phase 2, wheat residue burning contributed 51.3% of PM2.5, 75.8% of OC, 74.5% of EC, 90.1% of K and 104.1% of Cl-. These percentages were lower in Phases 1 and 3 than in Phase 2. Wheat residue burning caused such severe air pollution that it's necessary to prohibit the open burning of crop residues in order to protect public health and the environment.

  17. Nonpoint-source agricultural chemicals in ground water in Nebraska; preliminary results for six areas of the High Plains Aquifer

    USGS Publications Warehouse

    Chen, Hsiu-Hsiung; Druliner, A.D.

    1987-01-01

    The reconnaissance phase of a study to determine the occurrence of agricultural chemicals from nonpoint sources in groundwater in six areas, which represented the major provinces of the High Plains aquifer in Nebraska is described. In 1984, water from 82 wells in the 6 study areas was analyzed for nitrate, and water from 57 of the 82 wells was analyzed for triazine herbicides. Data for 9 of the 21 independent variables suspected of affecting concentrations of nitrate and triazine herbicides in groundwater were compiled from the 82 well sites. The variables and their ranges are: hydraulic gradient (XI), 0.006-0.0053; hydraulic conductivity (X2), 5-149 ft/day; specific discharge (X3), 0.0128-0.2998 ft/day; depth to water (X4), 3-239 ft; well depth (X5), 40-550 ft; annual precipitation (X6), 12.0-39.3 inches; soil permeability (X7), 0.76-9.0 inches; irrigation well density (X8), 0-8 irrigation wells/ sq mi; and annual nitrogen fertilizer use (X9), 0-260 lbs of nitrogen/acre. Nitrate concentrations ranged from < 0.1 to 45 mg/L as nitrogen. Triazine herbicide concentrations were detected in samples from five of the six study areas in concentrations ranging from < 0.1 to 2.3 mg/L. Statistical tests indicated that there were significant differences in nitrate concentrations among the six study areas, while no significant differences in triazine herbicide concentrations were found. Concentrations of nitrate and triazine herbicide were significantly larger in more intensively irrigated areas. Preliminary correlations with the independent variables and nitrate concentrations indicated significant relations at the 95% confidence level with variables X2, X5, and X8. Correlations with triazine herbicide concentrations indicated significant relations with variables X2 , X3, X5, X6, and X8, and with nitrate concentrations (X10). By using a simple multiple regression technique, variables X5, X8, and X9 explained about 51% of the variation in nitrate concentrations. Variables X3

  18. Arbuscular mycorrhizal fungi are an alternative to the application of chemical fertilizer in the production of the medicinal and aromatic plant Coriandrum sativum L.

    PubMed

    Oliveira, Rui S; Ma, Ying; Rocha, Inês; Carvalho, Maria F; Vosátka, Miroslav; Freitas, Helena

    2016-01-01

    The widespread use of agrochemicals is detrimental to the environment and may exert harmful effects on human health. The consumer demand for organic food plants has been increasing. There is thus a rising need for alternatives to agrochemicals that can foster sustainable plant production. The aim of this study was to evaluate the potential use of an arbuscular mycorrhizal (AM) fungus as an alternative to application of chemical fertilizer for improving growth performance of the medicinal and aromatic plant Coriandrum sativum. Plants were inoculated with the AM fungus Rhizophagus irregularis BEG163 and/or supplemented with a commercial chemical fertilizer (Plant Marvel, Nutriculture Bent Special) in agricultural soil. Plant growth, nutrition, and development of AM fungus were assessed. Plants inoculated with R. irregularis and those supplemented with chemical fertilizer displayed significantly improved growth performances when compared with controls. There were no significant differences in total fresh weight between plants inoculated with R. irregularis or those supplemented with chemical fertilizer. Leaf chlorophyll a + b (82%), shoot nitrogen (44%), phosphorus (254%), and potassium (27%) concentrations increased in plants inoculated with R. irregularis compared to controls. Application of chemical fertilizer inhibited root mycorrhizal colonization and the length of the extraradical mycelium of R. irregularis. Inoculation with R. irregularis was equally or more efficient than application of chemical fertilizer in promoting growth and nutrition of C. sativum. AM fungi may thus contribute to improve biologically based production of food plants and reduce the dependence on agrochemicals in agriculture. PMID:27077563

  19. Application of chemical mechanical polishing process on titanium based implants.

    PubMed

    Ozdemir, Z; Ozdemir, A; Basim, G B

    2016-11-01

    Modification of the implantable biomaterial surfaces is known to improve the biocompatibility of metallic implants. Particularly, treatments such as etching, sand-blasting or laser treatment are commonly studied to understand the impact of nano/micro roughness on cell attachment. Although, the currently utilized surface modification techniques are known to improve the amount of cell attachment, it is critical to control the level of attachment due to the fact that promotion of bioactivity is needed for prosthetic implants while the cardiac valves, which are also made of titanium, need demotion of cells attachment to be able to function. In this study, a new alternative is proposed to treat the implantable titanium surfaces by chemical mechanical polishing (CMP) technique. It is demonstrated that the application of CMP on the titanium surface helps in modifying the surface roughness of the implant in a controlled manner (inducing nano-scale smoothness or controlled nano/micro roughness). Simultaneously, it is observed that the application of CMP limits the bacteria growth by forming a protective thin surface oxide layer on titanium implants. It is further shown that there is an optimal level of surface roughness where the cell attachment reaches a maximum and the level of roughness is controllable through CMP. PMID:27524033

  20. Bioinspired greigite magnetic nanocrystals: chemical synthesis and biomedicine applications

    NASA Astrophysics Data System (ADS)

    Feng, Mei; Lu, Yang; Yang, Yuan; Zhang, Meng; Xu, Yun-Jun; Gao, Huai-Ling; Dong, Liang; Xu, Wei-Ping; Yu, Shu-Hong

    2013-10-01

    Large scale greigite with uniform dimensions has stimulated significant demands for applications such as hyperthermia, photovoltaics, medicine and cell separation, etc. However, the inhomogeneity and hydrophobicity for most of the as prepared greigite crystals has limited their applications in biomedicine. Herein, we report a green chemical method utilizing β-cyclodextrin (β-CD) and polyethylene glycol (PEG) to synthesize bioinspired greigite (Fe3S4) magnetic nanocrystals (GMNCs) with similar structure and magnetic property of magnetosome in a large scale. β-CD and PEG is responsible to control the crystal phase and morphology, as well as to bound onto the surface of nanocrystals and form polymer layers. The GMNCs exhibit a transverse relaxivity of 94.8 mM-1s-1 which is as high as iron oxide nanocrystals, and an entrapment efficiency of 58.7% for magnetic guided delivery of chemotherapeutic drug doxorubicin. Moreover, enhanced chemotherapeutic treatment of mice tumor was obtained via intravenous injection of doxorubicin loaded GMNCs.

  1. Bioinspired greigite magnetic nanocrystals: chemical synthesis and biomedicine applications.

    PubMed

    Feng, Mei; Lu, Yang; Yang, Yuan; Zhang, Meng; Xu, Yun-Jun; Gao, Huai-Ling; Dong, Liang; Xu, Wei-Ping; Yu, Shu-Hong

    2013-01-01

    Large scale greigite with uniform dimensions has stimulated significant demands for applications such as hyperthermia, photovoltaics, medicine and cell separation, etc. However, the inhomogeneity and hydrophobicity for most of the as prepared greigite crystals has limited their applications in biomedicine. Herein, we report a green chemical method utilizing β-cyclodextrin (β-CD) and polyethylene glycol (PEG) to synthesize bioinspired greigite (Fe₃S₄) magnetic nanocrystals (GMNCs) with similar structure and magnetic property of magnetosome in a large scale. β-CD and PEG is responsible to control the crystal phase and morphology, as well as to bound onto the surface of nanocrystals and form polymer layers. The GMNCs exhibit a transverse relaxivity of 94.8 mM⁻¹ s⁻¹ which is as high as iron oxide nanocrystals, and an entrapment efficiency of 58.7% for magnetic guided delivery of chemotherapeutic drug doxorubicin. Moreover, enhanced chemotherapeutic treatment of mice tumor was obtained via intravenous injection of doxorubicin loaded GMNCs. PMID:24141204

  2. Bioinspired greigite magnetic nanocrystals: chemical synthesis and biomedicine applications

    PubMed Central

    Feng, Mei; Lu, Yang; Yang, Yuan; Zhang, Meng; Xu, Yun-Jun; Gao, Huai-Ling; Dong, Liang; Xu, Wei-Ping; Yu, Shu-Hong

    2013-01-01

    Large scale greigite with uniform dimensions has stimulated significant demands for applications such as hyperthermia, photovoltaics, medicine and cell separation, etc. However, the inhomogeneity and hydrophobicity for most of the as prepared greigite crystals has limited their applications in biomedicine. Herein, we report a green chemical method utilizing β-cyclodextrin (β-CD) and polyethylene glycol (PEG) to synthesize bioinspired greigite (Fe3S4) magnetic nanocrystals (GMNCs) with similar structure and magnetic property of magnetosome in a large scale. β-CD and PEG is responsible to control the crystal phase and morphology, as well as to bound onto the surface of nanocrystals and form polymer layers. The GMNCs exhibit a transverse relaxivity of 94.8 mM−1s−1 which is as high as iron oxide nanocrystals, and an entrapment efficiency of 58.7% for magnetic guided delivery of chemotherapeutic drug doxorubicin. Moreover, enhanced chemotherapeutic treatment of mice tumor was obtained via intravenous injection of doxorubicin loaded GMNCs. PMID:24141204

  3. Applications of Chemical Shift Imaging to Marine Sciences

    PubMed Central

    Lee, Haakil; Tikunov, Andrey; Stoskopf, Michael K.; Macdonald, Jeffrey M.

    2010-01-01

    The successful applications of magnetic resonance imaging (MRI) in medicine are mostly due to the non-invasive and non-destructive nature of MRI techniques. Longitudinal studies of humans and animals are easily accomplished, taking advantage of the fact that MRI does not use harmful radiation that would be needed for plain film radiographic, computerized tomography (CT) or positron emission (PET) scans. Routine anatomic and functional studies using the strong signal from the most abundant magnetic nucleus, the proton, can also provide metabolic information when combined with in vivo magnetic resonance spectroscopy (MRS). MRS can be performed using either protons or hetero-nuclei (meaning any magnetic nuclei other than protons or 1H) including carbon (13C) or phosphorus (31P). In vivo MR spectra can be obtained from single region of interest (ROI or voxel) or multiple ROIs simultaneously using the technique typically called chemical shift imaging (CSI). Here we report applications of CSI to marine samples and describe a technique to study in vivo glycine metabolism in oysters using 13C MRS 12 h after immersion in a sea water chamber dosed with [2-13C]-glycine. This is the first report of 13C CSI in a marine organism. PMID:20948912

  4. Chemically directed assembly of nanoparticles for material and biological applications

    NASA Astrophysics Data System (ADS)

    Park, Myoung-Hwan

    The unique electronic, magnetic, and optical properties of nanoparticles (NPs) make them useful building blocks for nanodevices and biofabrication. Site-selective immobilization/deposition of NPs on surfaces at desired positions is an important fabrication step in realizing the potential of nanomaterials in these applications. In this thesis, my research has focused on developing new strategies for mono- and multilayered-NP deposition on surfaces, increasing the stability of NP-assembles upon various surfaces for practical use of NP-based devices. Chemically directed dithiocarbamate binding of amine groups to NPs in the presence of CS2 was used for enhancing the robustness of NP assembles. Such patterning methodologies have allowed me to use site-directed NP immobilization in applications as diverse as microcontact printing, nanomolding in capillaries, nanoimprint lithography, and photolithography. Also, I have developed a simple and reliable one-step technique to form robust dendrimer-NP nanocomposites using dithiocarbamate-based chemistry. These composites are able to encapsulate and release various therapeutics, providing controllable sustained release and to separate small molecules and biomacromolecules.

  5. Intelligent Chemical Sensor Systems for In-space Safety Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Xu, J. C.; Neudeck, P. G.; Makel, D. B.; Ward, B.; Liu, C. C.

    2006-01-01

    Future in-space and lunar operations will require significantly improved monitoring and Integrated System Health Management (ISHM) throughout the mission. In particular, the monitoring of chemical species is an important component of an overall monitoring system for space vehicles and operations. For example, in leak monitoring of propulsion systems during launch, inspace, and on lunar surfaces, detection of low concentrations of hydrogen and other fuels is important to avoid explosive conditions that could harm personnel and damage the vehicle. Dependable vehicle operation also depends on the timely and accurate measurement of these leaks. Thus, the development of a sensor array to determine the concentration of fuels such as hydrogen, hydrocarbons, or hydrazine as well as oxygen is necessary. Work has been on-going to develop an integrated smart leak detection system based on miniaturized sensors to detect hydrogen, hydrocarbons, or hydrazine, and oxygen. The approach is to implement Microelectromechanical Systems (MEMS) based sensors incorporated with signal conditioning electronics, power, data storage, and telemetry enabling intelligent systems. The final sensor system will be self-contained with a surface area comparable to a postage stamp. This paper discusses the development of this "Lick and Stick" leak detection system and it s application to In-Space Transportation and other Exploration applications.

  6. [Cumulative risk assessment for consumers of agricultural crops polluted with one chemical class pesticide residues (case of triazole fungicides)].

    PubMed

    Koval'chuk, N M; Omel'chuk, S T

    2011-01-01

    Different indices of cumulative risk assessment of combination of residues of pesticides which may simultaneously be present in raw agricultural crops, based on toxic evaluation of such combination have been presented. Risk for population health due to consumption of raw agricultural crops with triazole residues is acceptable on hazard index, point of departure index and cumulative risk index, exceeds allowable level on criterion "total margin of exposure". PMID:22768736

  7. Process heat in California: Applications and potential for solar energy in the industrial, agricultural and commercial sectors

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Bartera, R. E.; Davis, E. S.; Hlavka, G. E.; Pivirotto, D. S.; Yanow, G.

    1978-01-01

    A summary of the results of a survey of potential applications of solar energy for supplying process heat requirements in the industrial, agricultural, and commercial sectors of California is presented. Technical, economic, and institutional characteristics of the three sectors are examined. Specific applications for solar energy are then discussed. Finally, implications for California energy policy are discussed along with recommendations for possible actions by the State of California.

  8. 77 FR 38086 - Manufacturer of Controlled Substances; Notice of Application; Chattem Chemicals Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Drug Enforcement Administration Manufacturer of Controlled Substances; Notice of Application; Chattem Chemicals Inc... 16, 2012, Chattem Chemicals Inc., 3801 St. Elmo Avenue, Chattanooga, Tennessee 37409,...

  9. 77 FR 60144 - Manufacturer of Controlled Substances; Notice of Application; Chemic Laboratories, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Drug Enforcement Administration Manufacturer of Controlled Substances; Notice of Application; Chemic Laboratories... July 26, 2012, Chemic Laboratories, Inc., 480 Neponset Street, Building 7, Canton, Massachusetts...

  10. Review of chemical vapor deposition of graphene and related applications.

    PubMed

    Zhang, Yi; Zhang, Luyao; Zhou, Chongwu

    2013-10-15

    Since its debut in 2004, graphene has attracted enormous interest because of its unique properties. Chemical vapor deposition (CVD) has emerged as an important method for the preparation and production of graphene for various applications since the method was first reported in 2008/2009. In this Account, we review graphene CVD on various metal substrates with an emphasis on Ni and Cu. In addition, we discuss important and representative applications of graphene formed by CVD, including as flexible transparent conductors for organic photovoltaic cells and in field effect transistors. Growth on polycrystalline Ni films leads to both monolayer and few-layer graphene with multiple layers because of the grain boundaries on Ni films. We can greatly increase the percentage of monolayer graphene by using single-crystalline Ni(111) substrates, which have smooth surface and no grain boundaries. Due to the extremely low solubility of carbon in Cu, Cu has emerged as an even better catalyst for the growth of monolayer graphene with a high percentage of single layers. The growth of graphene on Cu is a surface reaction. As a result, only one layer of graphene can form on a Cu surface, in contrast with Ni, where more than one layer can form through carbon segregation and precipitation. We also describe a method for transferring graphene sheets from the metal using polymethyl methacrylate (PMMA). CVD graphene has electronic properties that are potentially valuable in a number of applications. For example, few-layer graphene grown on Ni can function as flexible transparent conductive electrodes for organic photovoltaic cells. In addition, because we can synthesize large-grain graphene on Cu foil, such large-grain graphene has electronic properties suitable for use in field effect transistors. PMID:23480816

  11. Application of isotopic and geochemical tools for the evaluation of nitrogen cycling in an agricultural basin, the Fucino Plain, Central Italy

    NASA Astrophysics Data System (ADS)

    Petitta, Marco; Fracchiolla, Domenico; Aravena, Ramon; Barbieri, Maurizio

    2009-06-01

    SummaryGeochemical and isotope data collected in the agricultural area of Fucino Plain, Central Italy provided information about the relationship between the nitrate cycle and agricultural practices and seasonal changes in hydrology, in particular concerning the interaction between groundwater and surface water. The nitrate cycle of the alluvial aquifer of the Plain has been summarized in a seasonal-dependent conceptual model, where the shallow alluvial aquifer plays a fundamental role contributing to contamination of irrigation channels during periods of no manure application. Based on isotopic fingerprinting, chemical characterization and agricultural practices, the main nitrate source involved in the nitrate cycle in the study area is manure that is applied during the fall and winter periods. A nitrogen contribution from the deep alluvial-lacustrine aquifer was also documented in this study. The isotope data also showed the occurrence of denitrification occurring in nitrate pools in the shallow aquifer, which is characterized by low-permeability layers. The nitrate pool in the shallow aquifer is related to infiltration after the application of manure. The isotope and concentration data showed that the increase of nitrate in the irrigation channels under non-runoff conditions is controlled by seepage from the shallow aquifer. The cycle ends with a new application of manure, generating considerable increases of "fresh" nitrate concentration in the channels. The historical trend of decreasing water table conditions and increasing nitrate content in the shallow aquifer threatens the deep aquifer, used for drinking purposes, since heavy pumping can induce the transport of nitrate from the shallow aquifer toward the capture zone of the deep wells.

  12. Quantitative Assessment of Agricultural Runoff and Soil Erosion Using Mathematical Modeling: Applications in the Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Arhonditsis, G.; Giourga, C.; Loumou, A.; Koulouri, M.

    2002-09-01

    Three mathematical models, the runoff curve number equation, the universal soil loss equation, and the mass response functions, were evaluated for predicting nonpoint source nutrient loading from agricultural watersheds of the Mediterranean region. These methodologies were applied to a catchment, the gulf of Gera Basin, that is a typical terrestrial ecosystem of the islands of the Aegean archipelago. The calibration of the model parameters was based on data from experimental plots from which edge-of-field losses of sediment, water runoff, and nutrients were measured. Special emphasis was given to the transport of dissolved and solid-phase nutrients from their sources in the farmers' fields to the outlet of the watershed in order to estimate respective attenuation rates. It was found that nonpoint nutrient loading due to surface losses was high during winter, the contribution being between 50% and 80% of the total annual nutrient losses from the terrestrial ecosystem. The good fit between simulated and experimental data supports the view that these modeling procedures should be considered as reliable and effective methodological tools in Mediterranean areas for evaluating potential control measures, such as management practices for soil and water conservation and changes in land uses, aimed at diminishing soil loss and nutrient delivery to surface waters. Furthermore, the modifications of the general mathematical formulations and the experimental values of the model parameters provided by the study can be used in further application of these methodologies in watersheds with similar characteristics.

  13. Fate of Ag-NPs in Sewage Sludge after Application on Agricultural Soils.

    PubMed

    Pradas del Real, Ana E; Castillo-Michel, Hiram; Kaegi, Ralf; Sinnet, Brian; Magnin, Valérie; Findling, Nathaniel; Villanova, Julie; Carrière, Marie; Santaella, Catherine; Fernández-Martínez, Alejandro; Levard, Clément; Sarret, Géraldine

    2016-02-16

    The objective of this work was to investigate the fate of silver nanoparticles (Ag-NPs) in a sludge-amended soil cultivated with monocot (Wheat) and dicot (Rape) crop species. A pot experiment was performed with sludges produced in a pilot wastewater treatment plant containing realistic Ag concentrations (18 and 400 mg kg(-1), 14 mg kg(-1) for the control). Investigations focused on the highest dose treatment. X-ray absorption spectroscopy (XAS) showed that Ag2S was the main species in the sludge and amended soil before and after plant culture. The second most abundant species was an organic and/or amorphous Ag-S phase whose proportion slightly varied (from 24% to 36%) depending on the conditions. Micro and nano X-ray fluorescence (XRF) showed that Ag was preferentially associated with S-rich particles, including organic fragments, of the sludge and amended soils. Ag was distributed as heteroaggregates with soil components (size ranging from ≤0.5 to 1-3 μm) and as diffused zones likely corresponding to sorbed/complexed Ag species. Nano-XRF evidenced the presence of mixed metallic sulfides. Ag was weakly exchangeable and labile. However, micronutrient mobilization by plant roots and organic matter turnover may induce Ag species interconversion eventually leading to Ag release on longer time scales. Together, these data provide valuable information for risk assessment of sewage sludge application on agricultural soils. PMID:26756906

  14. Chemical kinetic modeling of H{sub 2} applications

    SciTech Connect

    Marinov, N.M.; Westbrook, C.K.; Cloutman, L.D.

    1995-09-01

    Work being carried out at LLNL has concentrated on studies of the role of chemical kinetics in a variety of problems related to hydrogen combustion in practical combustion systems, with an emphasis on vehicle propulsion. Use of hydrogen offers significant advantages over fossil fuels, and computer modeling provides advantages when used in concert with experimental studies. Many numerical {open_quotes}experiments{close_quotes} can be carried out quickly and efficiently, reducing the cost and time of system development, and many new and speculative concepts can be screened to identify those with sufficient promise to pursue experimentally. This project uses chemical kinetic and fluid dynamic computational modeling to examine the combustion characteristics of systems burning hydrogen, either as the only fuel or mixed with natural gas. Oxidation kinetics are combined with pollutant formation kinetics, including formation of oxides of nitrogen but also including air toxics in natural gas combustion. We have refined many of the elementary kinetic reaction steps in the detailed reaction mechanism for hydrogen oxidation. To extend the model to pressures characteristic of internal combustion engines, it was necessary to apply theoretical pressure falloff formalisms for several key steps in the reaction mechanism. We have continued development of simplified reaction mechanisms for hydrogen oxidation, we have implemented those mechanisms into multidimensional computational fluid dynamics models, and we have used models of chemistry and fluid dynamics to address selected application problems. At the present time, we are using computed high pressure flame, and auto-ignition data to further refine the simplified kinetics models that are then to be used in multidimensional fluid mechanics models. Detailed kinetics studies have investigated hydrogen flames and ignition of hydrogen behind shock waves, intended to refine the detailed reactions mechanisms.

  15. A review of wireless sensor technologies and applications in agriculture and food industry: state of the art and current trends.

    PubMed

    Ruiz-Garcia, Luis; Lunadei, Loredana; Barreiro, Pilar; Robla, Jose Ignacio

    2009-01-01

    The aim of the present paper is to review the technical and scientific state of the art of wireless sensor technologies and standards for wireless communications in the Agri-Food sector. These technologies are very promising in several fields such as environmental monitoring, precision agriculture, cold chain control or traceability. The paper focuses on WSN (Wireless Sensor Networks) and RFID (Radio Frequency Identification), presenting the different systems available, recent developments and examples of applications, including ZigBee based WSN and passive, semi-passive and active RFID. Future trends of wireless communications in agriculture and food industry are also discussed. PMID:22408551

  16. A Review of Wireless Sensor Technologies and Applications in Agriculture and Food Industry: State of the Art and Current Trends

    PubMed Central

    Ruiz-Garcia, Luis; Lunadei, Loredana; Barreiro, Pilar; Robla, Jose Ignacio

    2009-01-01

    The aim of the present paper is to review the technical and scientific state of the art of wireless sensor technologies and standards for wireless communications in the Agri-Food sector. These technologies are very promising in several fields such as environmental monitoring, precision agriculture, cold chain control or traceability. The paper focuses on WSN (Wireless Sensor Networks) and RFID (Radio Frequency Identification), presenting the different systems available, recent developments and examples of applications, including ZigBee based WSN and passive, semi-passive and active RFID. Future trends of wireless communications in agriculture and food industry are also discussed. PMID:22408551

  17. Depression and Pesticide Exposures among Private Pesticide Applicators Enrolled in the Agricultural Health Study

    PubMed Central

    Beseler, Cheryl L.; Stallones, Lorann; Hoppin, Jane A.; Alavanja, Michael C.R.; Blair, Aaron; Keefe, Thomas; Kamel, Freya

    2008-01-01

    Background We evaluated the relationship between diagnosed depression and pesticide exposure using information from private pesticide applicators enrolled in the Agricultural Health Study between 1993 and 1997 in Iowa and North Carolina. Methods There were 534 cases who self-reported a physician-diagnosed depression and 17,051 controls who reported never having been diagnosed with depression and did not feel depressed more than once a week in the past year. Lifetime pesticide exposure was categorized in three mutually exclusive groups: low (< 226 days, the reference group), intermediate (226–752 days), and high (> 752 days). Two additional measures represented acute high-intensity pesticide exposures: an unusually high pesticide exposure event (HPEE) and physician-diagnosed pesticide poisoning. Logistic regression analyses were performed relating pesticide exposure to depression. Results After adjusting for state, age, education, marital status, doctor visits, alcohol use, smoking, solvent exposure, not currently having crops or animals, and ever working a job off the farm, pesticide poisoning was more strongly associated with depression [odds ratio (OR) = 2.57; 95% confidence interval (CI), 1.74–3.79] than intermediate (OR = 1.07; 95% CI, 0.87–1.31) or high (OR = 1.11; 95% CI, 0.87–1.42) cumulative exposure or an HPEE (OR = 1.65; 95% CI, 1.33–2.05). In analysis of a subgroup without a history of acute poisoning, high cumulative exposure was significantly associated with depression (OR = 1.54; 95% CI, 1.16–2.04). Conclusion These findings suggest that both acute high-intensity and cumulative pesticide exposure may contribute to depression in pesticide applicators. Our study is unique in reporting that depression is also associated with chronic pesticide exposure in the absence of a physician-diagnosed poisoning. PMID:19079725

  18. Atrazine and Cancer Incidence Among Pesticide Applicators in the Agricultural Health Study (1994–2007)

    PubMed Central

    Rusiecki, Jennifer A.; Hoppin, Jane A.; Lubin, Jay H.; Koutros, Stella; Andreotti, Gabriella; Zahm, Shelia Hoar; Hines, Cynthia J.; Coble, Joseph B.; Barone-Adesi, Francesco; Sloan, Jennifer; Sandler, Dale P.; Blair, Aaron; Alavanja, Michael C.R.

    2011-01-01

    Background: Atrazine is a triazine herbicide used widely in the United States. Although it is an animal carcinogen, the mechanism in rodents does not appear to operate in humans. Few epidemiologic studies have provided evidence for an association. Methods: The Agricultural Health Study (AHS) is a prospective cohort that includes 57,310 licensed pesticide applicators. In this report, we extend a previous AHS analysis of cancer risk associated with self-reported atrazine use with six additional years of follow-up and more than twice as many cancer cases. Using Poisson regression, we calculated relative risk estimates and 95% confidence intervals for lifetime use of atrazine and intensity-weighted lifetime days, which accounts for factors that impact exposure. Results: Overall, 36,357 (68%) of applicators reported using atrazine, among whom there were 3,146 cancer cases. There was no increase among atrazine users in overall cancer risk or at most cancer sites in the higher exposure categories compared with the lowest. Based on 29 exposed cases of thyroid cancer, there was a statistically significant risk in the second and fourth quartiles of intensity-weighted lifetime days. There was a similar pattern for lifetime days, but neither the risk estimates nor the trend were statistically significant and for neither metric was the trend monotonic. Conclusions: Overall, there was no consistent evidence of an association between atrazine use and any cancer site. There was a suggestion of increased risk of thyroid cancer, but these results are based on relatively small numbers and minimal supporting evidence. PMID:21622085

  19. Estimation of soil water content for engineering and agricultural applications using ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Grote, Katherine Rose

    2003-10-01

    Near-surface water content is important for a variety of applications in engineering, agriculture, ecology, and environmental monitoring and is an essential input parameter for hydrological and atmospheric models. Water content is both spatially and temporally variable and is difficult to characterize using conventional measurement techniques, which are invasive, time-consuming to collect, and provide only a limited number of point measurements. The purpose of this study is to investigate ground penetrating radar (GPR) techniques for improved estimation of water content. GPR techniques have potential for providing accurate, high-resolution estimates of water content quickly and non-invasively, but the efficacy of these techniques for field-scale applications has not been previously determined. This study begins with a literature review of the application of GPR techniques for water content estimation, followed by a description of the principles employed in GPR surveying and the general methodology for converting electromagnetic GPR measurements to water content estimates. Next, a pilot experiment using GPR techniques for water content estimation is described; this experiment was performed under very controlled conditions and used common-offset GPR reflections to estimate the water content in sandy test pits. This experiment showed that GPR techniques can estimate water content very accurately (within 0.017 cm3/cm3 of the volumetric water content estimates obtained gravimetrically) and provided motivation for the second, less-controlled experiment. The second study used common-offset GPR reflections to estimate water content in a transportation engineering application, where the GPR data were used to monitor the water content in sub-asphalt aggregate layers and to estimate deformation under dynamic loading. This experiment showed that GPR data could be used to accurately monitor changes in the horizontal and vertical distributions of sub-asphalt water content with

  20. Co-production of bioethanol and probiotic yeast biomass from agricultural feedstock: application of the rural biorefinery concept

    PubMed Central

    2014-01-01

    Microbial biotechnology and biotransformations promise to diversify the scope of the biorefinery approach for the production of high-value products and biofuels from industrial, rural and municipal waste feedstocks. In addition to bio-based chemicals and metabolites, microbial biomass itself constitutes an obvious but overlooked by-product of existing biofermentation systems which warrants fuller attention. The probiotic yeast Saccharomyces boulardii is used to treat gastrointestinal disorders and marketed as a human health supplement. Despite its relatedness to S. cerevisiae that is employed widely in biotechnology, food and biofuel industries, the alternative applications of S. boulardii are not well studied. Using a biorefinery approach, we compared the bioethanol and biomass yields attainable from agriculturally-sourced grass juice using probiotic S. boulardii (strain MYA-769) and a commercial S. cerevisiae brewing strain (Turbo yeast). Maximum product yields for MYA-769 (39.18 [±2.42] mg ethanol mL−1 and 4.96 [±0.15] g dry weight L−1) compared closely to those of Turbo (37.43 [±1.99] mg mL−1 and 4.78 [±0.10] g L−1, respectively). Co-production, marketing and/or on-site utilisation of probiotic yeast biomass as a direct-fed microbial to improve livestock health represents a novel and viable prospect for rural biorefineries. Given emergent evidence to suggest that dietary yeast supplementations might also mitigate ruminant enteric methane emissions, the administration of probiotic yeast biomass could also offer an economically feasible way of reducing atmospheric CH4. PMID:25401067

  1. Synthesis and chemical modification of carbon nanostructures for materials applications

    NASA Astrophysics Data System (ADS)

    Higginbotham, Amanda Lynn

    This dissertation explores the structure, chemical reactivities, electromagnetic response, and materials properties of various carbon nanostructures, including single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), graphite, and graphene nanoribbons (GNRs). Efficient production and modification of these unique structures, each with their own distinct properties, will make them more accessible for applications in electronics, materials, and biology. A method is reported for controlling the permittivity from 1--1000 MHz of SWCNT-polymer composites (0.5 wt%) for radio frequency applications including passive RF antenna structures and EMI shielding. The magnitude of the real permittivity varied between 20 and 3.3, decreasing as higher fractions of functionalized-SWCNTs were added. The microwave absorbing properties and subsequent heating of carbon nanotubes were used to rapidly cure ceramic composites. With less than 1 wt% carbon nanotube additives and 30--40 W of directed microwave power (2.45 GHz), bulk composite samples reached temperatures above 500°C within 1 min. Graphite oxide (GO) polymer nanocomposites were developed at 1, 5, and 10 wt% for the purpose of evaluating the flammability reduction and materials properties of the resulting systems. Microscale oxygen consumption calorimetry revealed that addition of GO reduced the total heat release in all systems, and GO-polycarbonate composites demonstrated very fast self-extinguishing times in vertical open flame tests. A simple solution-based oxidative process using potassium permanganate in sulfuric acid was developed for producing nearly 100% yield of graphene nanoribbons (GNRs) by lengthwise cutting and unraveling of MWCNT sidewalls. Subsequent chemical reduction of the GNRs resulted in restoration of electrical conductivity. The GNR synthetic conditions were investigated in further depth, and an improved method which utilized a two-acid reaction medium was found to produce GNRs with

  2. An application of artificial neural networks to the prediction of agricultural losses during typhoon periods

    NASA Astrophysics Data System (ADS)

    Chiang, Y.; Cheng, W.; Chang, F.

    2009-12-01

    Taiwan is located within the subtropical area and the main typhoon track of the Northwestern Pacific Ocean where typhoons form frequently. On average, typhoons hit the island more than three times per year. The yearly agricultural losses caused by typhoons are about US$ 250 millions Due to the supply and demand of agricultural products and their prices are highly affected by the climate, the goal of this study is to investigate the influence of typhoons on the agricultural losses. Nevertheless, the characteristic of typhoon includes uncertainty, complexity and nonlinearity which result in the difficulty in the establishment of models. In order to overcome above-mentioned difficulties, two types of artificial neural network (ANN): backpropagation neural network and self-organizing feature map network are applied in this study to simulate the nonlinear weather system and to estimate the agricultural losses. First, different meteorological variables are analyzed to find out their relation to agricultural losses and then important variables are selected as model inputs for predicting the event-based agricultural losses. Our preliminary results show that the ANN is capable of constructing reliable agricultural loss prediction. The results are also expected to assess the level of damage to agriculture and to provide the information for decision support.

  3. Handbook of Agricultural Geophysics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Geophysical methods continue to show great promise for use in agriculture. The term “agricultural geophysics” denotes a subdiscipline of geophysics that is focused only on agricultural applications. The Handbook of Agricultural Geophysics was compiled to include a comprehensive overview of the geoph...

  4. CdTe and CdSe quantum dots: synthesis, characterizations and applications in agriculture

    NASA Astrophysics Data System (ADS)

    Dieu Thuy Ung, Thi; Tran, Thi Kim Chi; Nga Pham, Thu; Nghia Nguyen, Duc; Khang Dinh, Duy; Liem Nguyen, Quang

    2012-12-01

    This paper highlights the results of the whole work including the synthesis of highly luminescent quantum dots (QDs), characterizations and testing applications of them in different kinds of sensors. Concretely, it presents: (i) the successful synthesis of colloidal CdTe and CdSe QDs, their core/shell structures with single- and/or double-shell made by CdS, ZnS or ZnSe/ZnS; (ii) morphology, structural and optical characterizations of the synthesized QDs; and (iii) testing examples of QDs as the fluorescence labels for agricultural-bio-medical objects (for tracing residual pesticide in agricultural products, residual clenbuterol in meat/milk and for detection of H5N1 avian influenza virus in breeding farms). Overall, the results show that the synthesized QDs have very good crystallinity, spherical shape and strongly emit at the desired wavelengths between ∼500 and 700 nm with the luminescence quantum yield (LQY) of 30–85%. These synthesized QDs were used in fabrication of the three testing fluorescence QD-based sensors for the detection of residual pesticides, clenbuterol and H5N1 avian influenza virus. The specific detection of parathion methyl (PM) pesticide at a content as low as 0.05 ppm has been realized with the biosensors made from CdTe/CdS and CdSe/ZnSe/ZnS QDs and the acetylcholinesterase (AChE) enzymes. Fluorescence resonance energy transfer (FRET)-based nanosensors using CdTe/CdS QDs conjugated with 2-amino-8-naphthol-6-sulfonic acid were fabricated that enable detection of diazotized clenbuterol at a content as low as 10 pg ml‑1. For detection of H5N1 avian influenza virus, fluorescence biosensors using CdTe/CdS QDs bound on the surface of chromatophores extracted and purified from bacteria Rhodospirillum rubrum were prepared and characterized. The specific detection of H5N1 avian influenza virus in the range of 3–50 ng μl‑1 with a detection limit of 3 ng μL‑1 has been performed based on the antibody-antigen recognition.

  5. URINARY LEVELS OF 2,4-D AND 3,5,6-TRICHLORO-2-PYRIDINOL FOR SPOUSES AND CHILDREN OF PESTICIDE APPLICATORS IN THE AGRICULTURAL HEALTH STUDY

    EPA Science Inventory

    The Agricultural Health Study (AHS) is a prospective epidemiologic study of pesticide applicators and their spouses in Iowa and North Carolina. Exposure to targeted pesticides, 2,4-D or chlorpyrifos, was measured in conjunction with agricultural applications for a subset of appl...

  6. The utility of ERTS-1 data for applications in agriculture and forestry. [Montana, Nebraska, Iowa, Georgia, California, and Texas

    NASA Technical Reports Server (NTRS)

    Erb, R. B.

    1974-01-01

    A comprehensive study has been undertaken to determine the extent to which ERTS-1 data could be used to detect, identify (classify), locate and measure features of applications interest in the disciplines of Agriculture and Forestry. The study areas included: six counties in five states in which were located examples of the most important crops and practices of American agriculture; and a portion of the Sam Houston National Forest, a typical Gulf coastal plain pine forest. The investigation utilized conventional image interpretation and computer-aided (spectral pattern recognition) analysis using both image products and computer compatible tapes. The emphasis was generally upon the computer-aided techniques. It was concluded that ERTS-1 data can be used to detect, identify, locate and measure a wide array of features of interest in agriculture and forestry.

  7. Responses of physical, chemical, and biological indicators of water quality to a gradient of agricultural land use in the Yakima River Basin, Washington

    USGS Publications Warehouse

    Cuffney, T.F.; Meador, M.R.; Porter, S.D.; Gurtz, M.E.

    2000-01-01

    The condition of 25 stream sites in the Yakima River Basin, Washington, were assessed by the U.S. Geological Survey's National Water-Quality Assessment Program. Multimetric condition indices were developed and used to rank sites on the basis of physical, chemical, and biological characteristics. These indices showed that sites in the Cascades and Eastern Cascades ecoregions were largely unimpaired. In contrast, all but two sites in the Columbia Basin ecoregion were impaired, some severely. Agriculture (nutrients and pesticides) was the primary factor associated with impairment and all impaired sites were characterized by multiple indicators of impairment. All indices of biological condition (fish, invertebrates, and algae) declined as agricultural intensity increased. The response exhibited by invertebrates and algae suggested a threshold response with conditions declining precipitously at relatively low levels of agricultural intensity and little response at moderate to high levels of agricultural intensity. This pattern of response suggests that the success of mitigation will vary depending upon where on the response curve the mitigation is undertaken. Because the form of the community condition response is critical to effective water-quality management, the National Water-Quality Assessment Program is conducting studies to examine the response of biota to gradients of land-use intensity and the relevance of these responses to water-quality management. These land-use gradient pilot studies will be conducted in several urban areas starting in 1999.

  8. The Agricultural Health Study.

    PubMed Central

    Alavanja, M C; Sandler, D P; McMaster, S B; Zahm, S H; McDonnell, C J; Lynch, C F; Pennybacker, M; Rothman, N; Dosemeci, M; Bond, A E; Blair, A

    1996-01-01

    The Agricultural Health Study, a large prospective cohort study has been initiated in North Carolina and Iowa. The objectives of this study are to: 1) identify and quantify cancer risks among men, women, whites, and minorities associated with direct exposure to pesticides and other agricultural agents; 2) evaluate noncancer health risks including neurotoxicity reproductive effects, immunologic effects, nonmalignant respiratory disease, kidney disease, and growth and development among children; 3) evaluate disease risks among spouses and children of farmers that may arise from direct contact with pesticides and agricultural chemicals used in the home lawns and gardens, and from indirect contact, such as spray drift, laundering work clothes, or contaminated food or water; 4) assess current and past occupational and nonoccupational agricultural exposures using periodic interviews and environmental and biologic monitoring; 5) study the relationship between agricultural exposures, biomarkers of exposure, biologic effect, and genetic susceptibility factors relevant to carcinogenesis; and 6) identify and quantify cancer and other disease risks associated with lifestyle factors such as diet, cooking practices, physical activity, smoking and alcohol consumption, and hair dye use. In the first year of a 3-year enrollment period, 26,235 people have been enrolled in the study, including 19,776 registered pesticide applicators and 6,459 spouses of registered farmer applicators. It is estimated that when the total cohort is assembled in 1997 it will include approximately 75,000 adult study subjects. Farmers, the largest group of registered pesticide applicators comprise 77% of the target population enrolled in the study. This experience compares favorably with enrollment rates of previous prospective studies. Images Figure 1. Figure 2. Figure 3. Figure 4. PMID:8732939

  9. Development and Application of Microfabricated Chemical Gas Sensors For Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, A.; Hammond, J.; Makel, D.; Hall, G.

    1990-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring and control, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. This paper discusses the needs of space applications and the point-contact sensor technology being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (Nox, carbon monoxide, oxygen, and carbon dioxide are being developed. A description is given of each sensor type and its present stage of development. Demonstration and application these sensor technologies will be described. The demonstrations range from use of a microsystem based hydrogen sensor on the Shuttle to engine demonstration of a nanocrystalline based sensor for NO, detection. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  10. A summary of the history of the development of automated remote sensing for agricultural applications

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.

    1984-01-01

    An historical account is given of the development of technology for the processing of satellite-acquired multispectral data aimed at the identification of the type, condition, and ontogenic stages of agricultural areas. During 1972 and 1973, research established the feasibility of automating digital classification for the processing of large volumes of Landsat MSS data. This capability was successfully demonstrated during the Large Area Crop Inventory Experiment, which estimated wheat crop production on a global basis. This achievement in turn led to the Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing, which investigated other portions of the electromagnetic spectrum and expanded the study of key commercial crops in important agricultural areas.

  11. Impact Assessment and Participant Profiles of Extension's Education Programs for Agricultural Chemical/Seed Retailers and Crop Advisors.

    ERIC Educational Resources Information Center

    Schmitt, Michael A.; Durgan, Beverly R.; Iverson, Sarah M.

    2000-01-01

    Responses from 698 agriculture professionals indicate that extension programs have positive agronomic and environmental impact and attendance was influenced more by topics and speakers than cost. Greater impact can be achieved through partnerships with companies, associations, and agencies to target professionals who will be able to use or…

  12. Ceres model application for increasing preparedness to climate variability in agricultural planning

    NASA Astrophysics Data System (ADS)

    Popova, Z.; Kercheva, M.

    2003-04-01

    The paper should demonstrate how knowledge of climate variability and simulation analyses over 30 years could be used to study the vulnerability of maize and wheat ecosystems in the region of Sofia. The procedure of stepwise calibration and validation of agricultural simulation CERES-maize and CERES-wheat models was used at two fields of contrastive soil conditions (Chromic Luvisol and Vertisol). Lysimeters observations under "Chromic Luvisol-maize" combination enabled to test integrally the prediction capacity of CERES-maize, including water and nitrogen fluxes at the boundaries of this vulnerable system over "1.05.1997-1.10.1999" period. The role of soil, crop, climate and irrigation scheduling (under maize only) on drought consequences and groundwater pollution was quantified for four "soil-crop" combinations by CERES models. Four water supply treatments of maize were considered on both soils: one under rainfed conditions and three with varied irrigation application. Water application in initial, development, and mid season growth stages was scheduled by CROPWAT model at any day that soil matrix suction fell to 3.0-3.2 pF with one irrigation scenario and 2.4-2.6 pF with another one. The third drainage-controlling scenario was developed on the basis of 50-75% of the required irrigation depth by satisfying most sensible phases of maize. It was established that "Chromic Luvisol -maize - dry land" combination was associated with the greatest coefficient of variability of yields (Cv=42%) and drought frequency (75% of the years with yield losses more than 20%). Average yield losses in dry vegetation seasons were 60% of the productivity potential under sufficient soil moisture. As a consequence maize cultivation under these conditions was inefficient in 20% of the years when production expenses were greater than losses. Any irrigation practice, even the drainage controlling scenario, mitigated drought consequences on risky soils as Chromic Luvisol by reducing year

  13. Application of Satellite Data for Early Season Assessment of Fallowed Agricultural Lands for Drought Impact Reporting

    NASA Astrophysics Data System (ADS)

    Rosevelt, C.; Melton, F. S.; Johnson, L.; Verdin, J. P.; Thenkabail, P. S.; mueller, R.; Zakzeski, A.; Jones, J.

    2013-12-01

    Rapid assessment of drought impacts can aid water managers in assessing mitigation options, and guide decision making with respect to requests for local water transfers, county drought disaster designations, or state emergency proclamations. Satellite remote sensing offers an efficient way to provide quantitative assessments of drought impacts on agricultural production and land fallowing associated with reductions in water supply. A key advantage of satellite-based assessments is that they can provide a measure of land fallowing that is consistent across both space and time. Here we describe an approach for monthly mapping of land fallowing developed as part of a joint effort by USGS, USDA, and NASA to provide timely assessments of land fallowing during drought events. This effort has used the Central Valley of California as a pilot region for development and testing of an operational approach. To provide quantitative measures of fallowed land from satellite data early in the season, we developed a decision tree algorithm and applied it to timeseries of normalized difference vegetation index (NDVI) data from Landsat TM, ETM+, and MODIS. Our effort has been focused on development of leading indicators of drought impacts in the March - June timeframe based on measures of crop development patterns relative to a reference period with average or above average rainfall. This capability complements ongoing work by USDA to produce and publicly release within-season estimates of fallowed acreage from the USDA Cropland Data Layer. To assess the accuracy of the algorithms, monthly ground validation surveys were conducted along transects across the Central Valley at more than 200 fields per month from March - June, 2013. Here we present the algorithm for mapping fallowed acreage early in the season along with results from the accuracy assessment, and discuss potential applications to other regions.

  14. Satellite surface soil moisture from SMOS and Aquarius: Assessment for applications in agricultural landscapes

    NASA Astrophysics Data System (ADS)

    Champagne, Catherine; Rowlandson, Tracy; Berg, Aaron; Burns, Travis; L'Heureux, Jessika; Tetlock, Erica; Adams, Justin R.; McNairn, Heather; Toth, Brenda; Itenfisu, Daniel

    2016-03-01

    Satellite surface soil moisture has become more widely available in the past five years, with several missions designed specifically for soil moisture measurement now available, including the Soil Moisture and Ocean Salinity (SMOS) mission and the Soil Moisture Active/Passive (SMAP) mission. With a wealth of data now available, the challenge is to understand the skill and limitations of the data so they can be used routinely to support monitoring applications and to better understand environmental change. This paper examined two satellite surface soil moisture data sets from the SMOS and Aquarius missions against in situ networks in largely agricultural regions of Canada. The data from both sensors was compared to ground measurements on both an absolute and relative basis. Overall, the root mean squared errors for SMOS were less than 0.10 m3 m-3 at most sites, and less where the in situ soil moisture was measured at multiple sites within the radiometer footprint (sites in Saskatchewan, Manitoba and Ontario). At many sites, SMOS overestimates soil moisture shortly after rainfall events compared to the in situ data; however this was not consistent for each site and each time period. SMOS was found to underestimate drying events compared to the in situ data, however this observation was not consistent from site to site. The Aquarius soil moisture data showed higher root mean squared errors in areas where there were more frequent wetting and drying cycles. Overall, both data sets, and SMOS in particular, showed a stable and consistent pattern of capturing surface soil moisture over time.

  15. Non-Hodgkin Lymphoma and Occupational Exposure to Agricultural Pesticide Chemical Groups and Active Ingredients: A Systematic Review and Meta-Analysis

    PubMed Central

    Schinasi, Leah; Leon, Maria E.

    2014-01-01

    This paper describes results from a systematic review and a series of meta-analyses of nearly three decades worth of epidemiologic research on the relationship between non-Hodgkin lymphoma (NHL) and occupational exposure to agricultural pesticide active ingredients and chemical groups. Estimates of associations of NHL with 21 pesticide chemical groups and 80 active ingredients were extracted from 44 papers, all of which reported results from analyses of studies conducted in high-income countries. Random effects meta-analyses showed that phenoxy herbicides, carbamate insecticides, organophosphorus insecticides and the active ingredient lindane, an organochlorine insecticide, were positively associated with NHL. In a handful of papers, associations between pesticides and NHL subtypes were reported; B cell lymphoma was positively associated with phenoxy herbicides and the organophosphorus herbicide glyphosate. Diffuse large B-cell lymphoma was positively associated with phenoxy herbicide exposure. Despite compelling evidence that NHL is associated with certain chemicals, this review indicates the need for investigations of a larger variety of pesticides in more geographic areas, especially in low- and middle-income countries, which, despite producing a large portion of the world’s agriculture, were missing in the literature that were reviewed. PMID:24762670

  16. Application of ground-based LIDAR for gully investigation in agricultural landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detailed scientific investigation of gullies in agricultural fields requires accurate topographic information with adequate temporal and spatial resolution. New technologies, such as ground-based LIDAR systems, are capable of generating datasets with high temporal and spatial resolutions. The spatia...

  17. Municipal biosolid applications: Improving ecosystem services across urban, agricultural, and wildlife interfaces in Austin, Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our project encompasses emerging contaminants, ecosystem services, and urban-agriculture-wildlife interfaces. This seminal research collaboration between USDA-ARS Grassland, Soil, and Water Research Laboratory, The City of Austin Water Utility, and Texas Parks and Wildlife Environmental Contaminant...

  18. PESTICIDE LEACHING ANALYTICAL MODEL AND GIS-BASED APPLICATION IN AGRICULTURAL WATERSHEDS

    EPA Science Inventory

    Groundwater contamination by pesticides and other organic pollutants has been detected across agricultural areas and is on the increase. Because groundwater monitoring is too costly to define the geographic extent of contamination at such large scales, indirect methods are needed...

  19. Development of an unmanned agricultural robotics system for measuring crop conditions for precision aerial application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Unmanned Agricultural Robotics System (UARS) is acquired, rebuilt with desired hardware, and operated in both classrooms and field. The UARS includes crop height sensor, crop canopy analyzer, normalized difference vegetative index (NDVI) sensor, multispectral camera, and hyperspectral radiometer...

  20. Application of Landsat data to map and monitor agricultural land cover

    NASA Astrophysics Data System (ADS)

    Erdenee, B.; Tana, Gegen; Tateishi, Ryutaro

    2010-11-01

    Agriculture is one of the major economic sectors of Mongolia and the country's economy is very much dependent on the development of agricultural production. Being the rural and poorest conditions of Mongolia, 60-90% of its labor force employed in agriculture and agricultural sector has a prominent economic role. Mongolian agriculture has been successful in increasing food grains production in the past, guided by the goals of self-sufficiency in the country. The satellite imagery has been effectively utilized for classifying land cover types and detecting land cover conditions. Satellite image classification involves designing and developing efficient image classifiers. With satellite image data and image analysis methods multiplying rapidly, selecting the right mix of data sources and data analysis approaches has become critical to the generation of quality land-use maps. Objective of this study to monitor in the agricultural land cover changes in the Tov aimag, as there is important agricultural producing area in Mongolia. We have developed approaches to map and monitor land cover and land use change across in the Tov aimag using multi-spectral image data. In this study, maximum likelihood supervised classification was applied to Landsat TM and ETM images acquired in 1989 and 2000, respectively, to map cropland area cover changes in the Tov aimag of Mongolia. A supervised classification was carried out on the six reflective bands (bands 1-5 and band 7) for the two images individually with the aid of ground based agricultural monitoring data. Results were then tested using ground check data.

  1. Application of Landsat data to map and monitor agricultural land cover

    NASA Astrophysics Data System (ADS)

    Erdenee, B.; Tana, Gegen; Tateishi, Ryutaro

    2009-09-01

    Agriculture is one of the major economic sectors of Mongolia and the country's economy is very much dependent on the development of agricultural production. Being the rural and poorest conditions of Mongolia, 60-90% of its labor force employed in agriculture and agricultural sector has a prominent economic role. Mongolian agriculture has been successful in increasing food grains production in the past, guided by the goals of self-sufficiency in the country. The satellite imagery has been effectively utilized for classifying land cover types and detecting land cover conditions. Satellite image classification involves designing and developing efficient image classifiers. With satellite image data and image analysis methods multiplying rapidly, selecting the right mix of data sources and data analysis approaches has become critical to the generation of quality land-use maps. Objective of this study to monitor in the agricultural land cover changes in the Tov aimag, as there is important agricultural producing area in Mongolia. We have developed approaches to map and monitor land cover and land use change across in the Tov aimag using multi-spectral image data. In this study, maximum likelihood supervised classification was applied to Landsat TM and ETM images acquired in 1989 and 2000, respectively, to map cropland area cover changes in the Tov aimag of Mongolia. A supervised classification was carried out on the six reflective bands (bands 1-5 and band 7) for the two images individually with the aid of ground based agricultural monitoring data. Results were then tested using ground check data.

  2. Selected reading in agricultural applications of small-format aerial photography

    USGS Publications Warehouse

    1980-01-01

    This collection of material has been assembled in response to a growing.interest in the use of low-cost, small-format aerial photography in the management of agricultural resources. Together, these articles serve to document the prevailing level of interest in the subject and provide an insight as to what can reasonably be expected from the use of this powerful agricultural management tool. 

  3. 40 CFR 455.30 - Applicability; description of the metallo-organic pesticide chemicals manufacturing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metallo-organic pesticide chemicals manufacturing subcategory. 455.30 Section 455.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PESTICIDE CHEMICALS Metallo-Organic Pesticide Chemicals Manufacturing Subcategory § 455.30 Applicability; description of...

  4. 40 CFR 414.60 - Applicability; description of the commodity organic chemicals subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the commodity organic chemicals subcategory. 414.60 Section 414.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals §...

  5. 40 CFR 413.60 - Applicability: Description of the chemical etching and milling subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chemical etching and milling subcategory. 413.60 Section 413.60 Protection of Environment ENVIRONMENTAL... Etching and Milling Subcategory § 413.60 Applicability: Description of the chemical etching and milling... chemical milling or etching of ferrous or nonferrous materials....

  6. 40 CFR 413.60 - Applicability: Description of the chemical etching and milling subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... chemical etching and milling subcategory. 413.60 Section 413.60 Protection of Environment ENVIRONMENTAL... Etching and Milling Subcategory § 413.60 Applicability: Description of the chemical etching and milling... chemical milling or etching of ferrous or nonferrous materials....

  7. 40 CFR 413.60 - Applicability: Description of the chemical etching and milling subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... chemical etching and milling subcategory. 413.60 Section 413.60 Protection of Environment ENVIRONMENTAL... Etching and Milling Subcategory § 413.60 Applicability: Description of the chemical etching and milling... chemical milling or etching of ferrous or nonferrous materials....

  8. 40 CFR 413.60 - Applicability: Description of the chemical etching and milling subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chemical etching and milling subcategory. 413.60 Section 413.60 Protection of Environment ENVIRONMENTAL... Etching and Milling Subcategory § 413.60 Applicability: Description of the chemical etching and milling... chemical milling or etching of ferrous or nonferrous materials....

  9. 40 CFR 413.60 - Applicability: Description of the chemical etching and milling subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chemical etching and milling subcategory. 413.60 Section 413.60 Protection of Environment ENVIRONMENTAL... Etching and Milling Subcategory § 413.60 Applicability: Description of the chemical etching and milling... chemical milling or etching of ferrous or nonferrous materials....

  10. 40 CFR 455.30 - Applicability; description of the metallo-organic pesticide chemicals manufacturing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... metallo-organic pesticide chemicals manufacturing subcategory. 455.30 Section 455.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PESTICIDE CHEMICALS Metallo-Organic Pesticide Chemicals Manufacturing Subcategory § 455.30 Applicability; description of...

  11. 40 CFR 414.80 - Applicability; description of the specialty organic chemicals subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... specialty organic chemicals subcategory. 414.80 Section 414.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.80 Applicability; description of the specialty organic...

  12. Nanomaterials: biological effects and some aspects of applications in ecology and agriculture

    NASA Astrophysics Data System (ADS)

    Starodub, Nickolaj F.; Shavanova, Kateryna E.; Taran, Marina V.; Katsev, Andrey M.; Safronyuk, Sergey L.; Son'ko, Roman V.; Bisio, Chiara; Guidotti, Matteo

    2014-10-01

    Nanosized materials have shown a relevant potential for practical application in a broad number of research fields, in industrial production and in everyday life. However, these substances acquire new properties and therefore may be biologically very active. This raise questions their potential toxic effects on living organisms. In some cases the nanosized materials or nano-composites possess distinct positive properties in enhancing the adaptation of plants in unfavorable conditions and in decreasing the negative effect of some chemical substances. The information about the positive and negative effects of nano-materials as well as the data concerned to the innovative approaches used by authors for the rapid assessment of the total toxicity with the exploitation of bacteria, Daphnia and plants are given. In last case a special attention is paid to the control of natural bioluminescence and chemoluminescence of living medium of organisms, the energy of the seed germination and the efficiency of the photosynthetic apparatus in growing plants by the estimation of chlorophyll fluorescence by the special "Floratest" biosensor. Three specific clases of nano-materials are analysed: a) nano-particles ZnO, Ag2O, FeOx, TiO2 and others, b) colloidal suspension of the same compounds, and c) nanostructured layered clay materials (acid saponites and Nb-containing saponite clays). The next features are analyzed: the biocidal activity (for nanoparticles), the improvement of the nutrition of plants on calcareous soils (for colloidal structures), the activity and performances as heterogeneous catalysts (for Nb-containing saponites, as selective oxidation catalysts for toxic organosulfur compounds into non-noxious products). The chemical and physical characterization of the nanosized materials described here was studied by different spectrophotometric and microscopic techniques, including AFM and SEM.

  13. Characterization of ammonia borane for chemical propulsion applications

    NASA Astrophysics Data System (ADS)

    Weismiller, Michael

    Ammonia borane (NH3BH3; AB), which has a hydrogen content of 19.6% by weight, has been studied recently as a potential means of hydrogen storage for use in fuel cell applications. Its gaseous decomposition products have a very low molecular weight, which makes AB attractive in a propulsion application, since specific impulse is inversely related to the molecular weight of the products. AB also contains boron, which is a fuel of interest for solid propellants because of its high energy density per unit volume. Although boron particles are difficult to ignite due to their passivation layer, the boron molecularly bound in AB may react more readily. The concept of fuel depots in low-earth orbit has been proposed for use in deep space exploration. These would require propellants that are easily storable for long periods of time. AB is a solid at standard temperature and pressure and would not suffer from mass loss due to boil-off like cryogenic hydrogen. The goal of this work is to evaluate AB as a viable fuel in chemical propulsion. Many studies have examined AB decomposition at slow heating rates, but in a propellant, AB will experience rapid heating. Since heating rate has been shown to affect the thermolysis pathways in energetic materials, AB thermolysis was studied at high heating rates using molecular dynamics simulations with a ReaxFF reactive force field and experimental studies with a confined rapid thermolysis set-up using time-of-flight mass spectrometry and FTIR absorption spectroscopy diagnostics. Experimental results showed the formation of NH3, H2NBH2, H2, and at later times, c-(N3B3H6) in the gas phase, while polymer formation was observed in the condensed phase. Molecular dynamics simulations provided an atomistic description of the reactions which likely form these compounds. Another subject which required investigation was the reaction of AB in oxidizing environments, as there were no previous studies in the literature. Oxygen bond descriptions were

  14. A threshold area ratio of organic to conventional agriculture causes recurrent pathogen outbreaks in organic agriculture.

    PubMed

    Adl, S; Iron, D; Kolokolnikov, T

    2011-05-01

    Conventional agriculture uses herbicides, pesticides, and chemical fertilizers that have the potential to pollute the surrounding land, air and water. Organic agriculture tries to avoid using these and promotes an environmentally friendly approach to agriculture. Instead of relying on herbicides, pesticides and chemical fertilizers, organic agriculture promotes a whole system approach to managing weeds, pests and nutrients, while regulating permitted amendments. In this paper, we consider the effect of increasing the total area of agricultural land under organic practices, against a background of conventional agriculture. We hypothesized that at a regional scale, organic agriculture plots benefit from existing in a background of conventional agriculture, that maintains low levels of pathogens through pesticide applications. We model pathogen dispersal with a diffusive logistic equation in which the growth/death rate is spatially heterogeneous. We find that if the ratio of the organic plots to conventional plots remains below a certain threshold l(c), the pest population is kept small. Above this threshold, the pest population in the organic plots grows rapidly. In this case, the area in organic agriculture will act as a source of pest to the surrounding region, and will always infect organic plots as they become more closely spaced. Repeated localized epidemics of pest outbreaks threaten global food security by reducing crop yields and increasing price volatility. We recommend that regional estimates of this threshold are necessary to manage the growth of organic agriculture region by region. PMID:21420722

  15. Cars applications in chemical reactors, combustion and heat transfer

    NASA Astrophysics Data System (ADS)

    Greenhalgh, D. A.; Porter, F. M.

    1986-08-01

    This paper illustrates the use of the CARS technique in the fields of Chemical Reactor engineering, combustion and Heat Transfer. Examples of recent results from a catalytic chemical reactor, an operating production petrol engine and an oil spray furnace are given. The experimentally determined accuracy of CARS nitrogen thermometry for both mean and single pulse measurements is presented.

  16. Chemical-Help Application for Classification and Identification of Stormwater Constituents

    USGS Publications Warehouse

    Granato, Gregory E.; Driskell, Timothy R.; Nunes, Catherine

    2000-01-01

    A computer application called Chemical Help was developed to facilitate review of reports for the National Highway Runoff Water-Quality Data and Methodology Synthesis (NDAMS). The application provides a tool to quickly find a proper classification for any constituent in the NDAMS review sheets. Chemical Help contents include the name of each water-quality property, constituent, or parameter, the section number within the NDAMS review sheet, the organizational levels within a classification hierarchy, the database number, and where appropriate, the chemical formula, the Chemical Abstract Service number, and a list of synonyms (for the organic chemicals). Therefore, Chemical Help provides information necessary to research available reference data for the water-quality properties and constituents of potential interest in stormwater studies. Chemical Help is implemented in the Microsoft help-system interface. (Computer files for the use and documentation of Chemical Help are included on an accompanying diskette.)

  17. Spray nozzle designs for agricultural aviation applications. [relation of drop size to spray characteristics and nozzle efficiency

    NASA Technical Reports Server (NTRS)

    Lee, K. W.; Putnam, A. A.; Gieseke, J. A.; Golovin, M. N.; Hale, J. A.

    1979-01-01

    Techniques of generating monodisperse sprays and information concerning chemical liquids used in agricultural aviation are surveyed. The periodic dispersion of liquid jet, the spinning disk method, and ultrasonic atomization are the techniques discussed. Conceptually designed spray nozzles for generating monodisperse sprays are assessed. These are based on the classification of the drops using centrifugal force, on using two opposing liquid laden air jets, and on operating a spinning disk at an overloaded flow. Performance requirements for the designs are described and estimates of the operational characteristics are presented.

  18. Portable chemical protective clothing test method: application at a chemical plant

    SciTech Connect

    Berardinelli, S.P.; Rusczek, R.A.; Mickelsen, R.L.

    1987-10-01

    The National Institute for Occupational Safety and Health (NIOSH), in cooperation with Monsanto Chemical Company, conducted an on-site evaluation of chemical protective clothing at Monsanto's Nitro, West Virginia plant. The Monsanto plant manufactures additives for the rubber industry including antioxidants, pre-vulcanization inhibitors, accelerators, etc. This survey evaluated six raw materials that have a potential for skin absorption: aniline, cyclohexylamine, diisorpropylamine, tertiary butylamine, morpholine and carbon disulfide. Five generic glove materials were tested against these chemicals; nitrile, neoprene, polyvinylchloride, natural latex and natural rubber. The NIOSH chemical permeation portable test system was used to generate breakthrough time data. The results were compared to permeation data reported in the literature that were obtained by using the ASTM F739-85 test method. The test data demonstrated that aniline has too low a vapor pressure for reliable analysis on the portable direct reading detectors used. The chemical permeation test system, however provided comparable, reliable permeation data for the other tested chemicals. Monsanto has used this data to better select chemical protective clothing for its intended use.

  19. A portable chemical protective clothing test method: application at a chemical plant.

    PubMed

    Berardinelli, S P; Rusczek, R A; Mickelsen, R L

    1987-09-01

    The National Institute for Occupational Safety and Health (NIOSH), in cooperation with Monsanto Chemical Company, conducted an on-site evaluation of chemical protective clothing at Monsanto's Nitro, West Virginia plant. The Monsanto plant manufactures additives for the rubber industry including antioxidants, pre-vulcanization inhibitors, accelerators, etc. This survey evaluated six raw materials that have a potential for skin absorption: aniline, cyclohexylamine, diisopropylamine, tertiary butylamine, morpholine and carbon disulfide. Five generic glove materials were tested against these chemicals: nitrile, neoprene, polyvinylchloride, natural latex and natural rubber. The NIOSH chemical permeation portable test system was used to generate breakthrough time data. The results were compared to permeation data reported in the literature that were obtained by using the ASTM F739-85 test method. The test data demonstrated that aniline has too low a vapor pressure for reliable analysis on the portable direct reading detectors used. The chemical permeation test system, however, provided comparable, reliable permeation data for the other tested chemicals. Monsanto has used this data to better select chemical protection clothing for its intended use. PMID:3687741

  20. Using landscape typologies to model socioecological systems: Application to agriculture of the United States Gulf Coast

    DOE PAGESBeta

    Preston, Benjamin L.; King, Anthony Wayne; Mei, Rui; Nair, Sujithkumar Surendran

    2016-02-11

    Agricultural enterprises are vulnerable to the effects of climate variability and change. Improved understanding of the determinants of vulnerability and adaptive capacity in agricultural systems is important for projecting and managing future climate risk. At present, three analytical tools dominate methodological approaches to understanding agroecological vulnerability to climate: process-based crop models, empirical crop models, and integrated assessment models. A common weakness of these approaches is their limited treatment of socio-economic conditions and human agency in modeling agroecological processes and outcomes. This study proposes a framework that uses spatial cluster analysis to generate regional socioecological typologies that capture geographic variance inmore » regional agricultural production and enable attribution of that variance to climatic, topographic, edaphic, and socioeconomic components. This framework was applied to historical corn production (1986-2010) in the U.S. Gulf of Mexico region as a testbed. The results demonstrate that regional socioeconomic heterogeneity is an important driving force in human dominated ecosystems, which we hypothesize, is a function of the link between socioeconomic conditions and the adaptive capacity of agricultural systems. Meaningful representation of future agricultural responses to climate variability and change is contingent upon understanding interactions among biophysical conditions, socioeconomic conditions, and human agency their incorporation in predictive models.« less

  1. Agricultural Aircraft for Site-Specific Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural aircraft provide a convenient platform to aid in precision agriculture, in which pesticide, fertilizer or other field inputs are applied only where they are needed. This saves on chemical and farm resources, and reduces environmental loading. Remote sensing is used to spot areas of the ...

  2. Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises.

    PubMed

    de Oliveira, Jhones Luiz; Campos, Estefânia Vangelie Ramos; Bakshi, Mansi; Abhilash, P C; Fraceto, Leonardo Fernandes

    2014-12-01

    This review article discusses the use of nanotechnology in combination with botanical insecticides in order to develop systems for pest control in agriculture. The main types of botanical insecticides are described, together with different carrier systems and their potential uses. The botanical insecticides include those based on active principles isolated from plant extracts, as well as essential oils derived from certain plants. The advantages offered by the systems are highlighted, together with the main technological challenges that must be resolved prior to future implementation of the systems for agricultural pest control. The use of botanical insecticides associated with nanotechnology offers considerable potential for increasing agricultural productivity, while at the same time reducing impacts on the environment and human health. PMID:25447424

  3. Chemically functionalized gold nanoparticles: Synthesis, characterization, and applications

    NASA Astrophysics Data System (ADS)

    Daniel, Weston Lewis

    This thesis focuses on the development and application of gold nanoparticle based detection systems and biomimetic structures. Each class of modified nanoparticle has properties that are defined by its chemical moieties that interface with solution and the gold nanoparticle core. In Chapter 2, a comparison of the biomolecular composition and binding properties of various preparations of antibody oligonucleotide gold nanoparticle conjugates is presented. These constructs differed significantly in terms of their structure and binding properties. Chapter 3 reports the use of electroless gold deposition as a light scattering signal enhancer in a multiplexed, microarray-based scanometric immunoassay using the gold nanoparticle probes evaluated in Chapter 2. The use of gold development results in greater signal enhancement than the typical silver development, and multiple rounds of metal development were found to increase the resulting signal compared to one development. Chapter 4 describes an amplified scanometric detection method for human telomerase activity. Gold nanoparticles functionalized with specific oligonucleotide sequences can efficiently capture telomerase enzymes and subsequently be elongated. Both the elongated and unmodified oligonucleotide sequences are simultaneously measured. At low telomerase concentrations, elongated strands cannot be detected, but the unmodified sequences, which come from the same probe particles, can be detected because their concentration is higher, providing a novel form of amplification. Chapter 5 reports the development of a novel colorimetric nitrite and nitrate ion assay based upon gold nanoparticle probes functionalized with Griess reaction reagents. This assay takes advantage of the distance-dependent plasmonic properties of the gold nanoparticles and the ability of nitrite ion to facilitate the cross coupling of novel nanoparticle probes. The assay works on the concept of a kinetic end point and can be triggered at the EPA

  4. FIELD APPLICATIONS OF CHEMICAL TIME-SERIES SAMPLING

    EPA Science Inventory

    Two municipal supply wells in Lakewood, Washington, were found to be contaminated with trichloroethylene, transdichloroethylene, and tetrachloroethylene. Sequential samples were taken for chemical analyses, in conjunction with drawdown measurement during aquifer (pump) tests desi...

  5. Development of Nested, Heterogeneous Ground-Water Flow Models for Study of Transport and Fate of Agricultural Chemicals, Merced County, California

    NASA Astrophysics Data System (ADS)

    Phillips, S. P.; Green, C. T.; Zamora, C.

    2006-05-01

    Multi-scale models of ground-water flow were developed as part of a study of the transport and fate of agricultural chemicals by the National Water-Quality Assessment (NAWQA) Program of the US Geological Survey. Agricultural chemicals of interest included forms of nitrogen and selected pesticides A three- dimensional local-scale model (17 square km) surrounds a well-instrumented, 1-km transect near the Merced River within a principally agricultural land-use setting. This model is nested within a regional-scale model (2,700 square km) of northeastern San Joaquin Valley, California, which provides hydrologically reasonable boundary conditions for the local model. Boundary fluxes were passed from the regional to local model using a hydraulic-conductivity-weighted distribution. The heterogeneity of aquifer materials was incorporated explicitly into the regional and local models. Three-dimensional kriging was used to interpolate sediment texture data from about 3,500 drillers' logs in the regional model area. The resulting distribution of sediment texture was used to estimate hydraulic parameters for each cell in the 16-layer regional model. A subset of these data was used to generate multiple transition-probability-based realizations of hydrofacies distributions for the 110-layer local model. Explicit depiction of heterogeneity in hydraulic conductivity and porosity in the local model incorporates macro-scale hydrodynamic dispersion into the flow model, allowing more direct comparison of particle-tracking results to tracer-derived estimates of ground-water age. Water levels measured in multi-depth wells along the 1-km transect were used to calibrate the local model (median error 0.12 m). Two-dimensional heat-flow models calibrated using continuous multi-depth temperature data from below the bed of the Merced River suggest an annual range of ground-water inflow of about 0-2.4 cm/d for water year 2005. This estimate compares reasonably well to the 4 cm/d simulated in the

  6. Hydrogeologic and agricultural-chemical data for the South Skunk River alluvial aquifer at a site in Story County, Iowa, 1992-93

    USGS Publications Warehouse

    Buchmiller, R.C.

    1995-01-01

    A reconnaissance study was conducted during 1992-93 to collect background hydrogeologic and agricultural-chemical data for the South Skunk River alluvial aquifer near Ames, Iowa. Observation wells were drilled to characterize the surficial geologic materials of a field-scale study site and to provide locations for collecting waterlevel and agricultural-chemical data. Walnut Creek, a tributary to the South Skunk River, forms a lateral boundary on the northern edge of the field site. Water-level measurements showed a hydraulic-head gradient towards the South Skunk River under both wet and dry conditions at the study site. Walnut Creek appears to be losing water to the aquifer during most hydrologic conditions. More than 20 milligrams per liter of nitrate as nitrogen were present consistently in water from the southeastern part of the study site. Nitrate-as-nitrogen concentrations in water samples from other locations routinely did not exceed 10 milligrams per liter. The herbicide atrazine was detected most often, 36 of 38 times, in water samples collected from observation wells adjacent to Walnut Creek. Atrazine was not used on the study site during 1992-93 but was found frequently in water samples from Walnut Creek. Therefore, Walnut Creek appears to be a source of herbicide contamination to the alluvial aquifer.

  7. Urinary Biomarker, Dermal, and Air Measurement Results for 2,4-D and Chlorpyrifos Farm Applicators in the Agricultural Health Study

    EPA Science Inventory

    A subset of private pesticide applicators in the Agricultural Health Study (AHS) epidemiological cohort was monitored around the time of their agricultural use of 2,4-D and chlorpyrifos to assess exposure levels and potential determinants of exposure. Measurements included pre- a...

  8. Environmental attitudes and drift reduction behavior among commercial pesticide applicators in a U.S. agricultural landscape.

    PubMed

    Reimer, Adam P; Prokopy, Linda S

    2012-12-30

    Pesticide drift is a significant environmental problem in rural regions, and can result in losses to certain non-target crops and livestock, water and air pollution, and threats to human health. While state agencies seek to control the harmful effects of pesticides through licensing and certificate programs, the adoption rates of drift-reducing practices by commercial applicators remain highly variable. In order to effectively target outreach efforts to commercial applicators, managers need to better understand current use patterns and the motivations behind the adoption and non-adoption of preferred practices. Using a web and mail survey, this study explored environmental attitudes, awareness and concern for pesticide drift, and current practice adoption for drift reduction by commercial pesticide applicators in Indiana. Researchers surveyed three distinct applicator types: industrial weed management (utility right-of-way), agriculture, and aerial (which are mostly spraying in an agricultural setting). Overall, applicators exhibited positive environmental attitudes, but low concern for pesticide drift in the geographic areas where they operate. Adoption rates for several drift reduction technologies were high, particularly for equipment and spray modifications such as low-drift spray nozzles (88%) and increased spray droplet size (92%). Applicators were less familiar with specialty equipment (such as band sprayers, 13% adoption rate) and methods for identifying sensitive sites such as bee colonies and organic crops. Among the three groups, industrial weed management applicators had the lowest adoption rates. Applicators were motivated to adopt drift-reduction practices by the desire to be a good neighbor and a desire to be a good land steward. There is potential for use of more innovative, voluntary approaches to raise awareness of sites sensitive to pesticide drift in rural landscapes. PMID:23062271

  9. Application of the precision agricultural landscape modeling system in semiarid environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Precision Agricultural Landscape Modeling System (PALMS) is a terrain and weather driven, distributed parameter hydrological-biophysical model primarily used in the Midwestern United States. Recently, research was started to evaluate the effectiveness of PALMS on irrigated and on dryland croppin...

  10. Application of GPS and Near-Surface Geophysical Methods to Evaluate Differences Between Agricultural Test Plots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field research facility with two pairs of replicated agricultural test plots (four total) was established at a location in northwest Ohio during 2005 for the purpose of studying water table management strategies. Initial efforts at this field research facility were devoted to evaluating difference...

  11. Semiparametric Geographically Weighted Response Curves with Application to Site Specific Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lack of basic knowledge about spatial and treatment varying crop response to irrigation hinders irrigation management and economic analysis for site-specific agriculture. One model that has been postulated for relating crop-specific economic quantities to irrigation is a quadratic response curve of...

  12. Photonics engineering: snapshot applications in healthcare, homeland security, agriculture, and industry

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun

    2015-01-01

    Throughout my experience in photonics engineering, this article shows that photonics is indeed a key technology enabler for enhancing our competitiveness. In particular, I snapshot the achievements of NECTEC research teams in implementing devices and systems suitable for healthcare, homeland security, agriculture, and industry.

  13. OPTIMAL MANAGEMENT OF NON-POINT SOURCE POLLUTION FROM AGRICULTURE: AN APPLICATION OF DYNAMIC PROGRAMMING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural non-point source pollution is a major source of water quality impairment. When considering responses to non-point source pollution, several policy options have been considered historically, including reducing inputs (e.g. fertilizers) altering technologies on the landscape (e.g. conserv...

  14. Applications of UAV imagery for agricultural and environmental research at the USDA Southeast Watershed Research Lab

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ARS is the USDA's in-house scientific research agency, whose mission is to conduct research to "develop and transfer solutions to agricultural problems of high national priority..." This includes enhancing the natural resource base and the environment, a dimension of particular relevance to the ...

  15. Application of GPS and Near-Surface Geophysical Methods to Evaluate Agricultural Test Plot Differences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field research facility with two pairs of replicated agricultural test plots (four total) was established at a location in northwest Ohio during 2005 for the purpose of studying water table management strategies. Initial efforts at this field research facility were devoted to evaluating difference...

  16. Soil Incubation Study to Assess the Impacts of Manure Application and Climate Change on Greenhouse Gas Emissions from Agricultural Soil

    NASA Astrophysics Data System (ADS)

    Schiavone, K.; Barbieri, L.; Adair, C.

    2015-12-01

    Agricultural fields in Vermont's Lake Champlain Basin have problems with the loss of nutrients due to runoff which creates eutrophic conditions in the lakes, ponds and rivers. In efforts to retain nitrogen and other nutrients in the soil farmers have started to inject manure rather than spraying it. Our understanding of the effects this might have on the volatilization of nitrogen into nitrous oxide is limited. Already, agriculture produces 69% of the total nitrous oxide emissions in the US. Understanding that climate change will affect the future of agriculture in Vermont, we set up a soil core incubation test to monitor the emissions of CO₂ and N₂O using a Photoacoustic Gas Sensor (PAS). Four 10 cm soil cores were taken from nine different fertilizer management plots in a No Till corn field; Three Injected plots, three Broadcast plots, and three Plow plots. Frozen soil cores were extracted in early April, and remained frozen before beginning the incubation experiment to most closely emulate three potential spring environmental conditions. The headspace was monitored over one week to get emission rates. This study shows that environmental and fertilizer treatments together do not have a direct correlation to the amount of CO₂ and N₂O emissions from agricultural soil. However, production of CO₂ was 26% more in warmer environmental conditions than in variable(freeze/thaw) environmental conditions. The injected fertilizer produced the most emissions, both CO₂ and N₂O. The total N₂O emissions from Injected soil cores were 2.2x more than from traditional broadcast manure cores. We believe this is likely due to the addition of rich organic matter under anaerobic soil conditions. Although, injected fertilizer is a better application method for reducing nutrient runoff, the global warming potential of N₂O is 298 times that of CO₂. With climate change imminent, assessing the harmful effects and benefits of injected fertilizer is a crucial next step in

  17. Application of the Raven UAV for chemical and biological detection

    NASA Astrophysics Data System (ADS)

    Altenbaugh, Ryan; Barton, Jeff; Chiu, Christopher; Fidler, Ken; Hiatt, Dan; Hawthorne, Chad; Marshall, Steven; Mohos, Joe; McHugh, Vince; Nicoloff, Bill

    2010-04-01

    This paper presents the plume tracking algorithms developed for a series of outdoor chemical-stimulant testing conducted at Dugway Proving Ground in 2008 and 2009 employing a Raven UAV equipped with a real-time chemical sensor. The flights were conducted as part of the a program under the sponsorship of the Army JPM NBC Contamination Avoidance and in conjunction with the Army PM-Unmanned Aircraft Systems, the Defense Threat Reduction Agency, and Edgewood Chemical Biological Center. This test demonstrated the Raven's ability to autonomously detect and track a chemical plume during a variety of atmospheric conditions. During the testing, the Raven conducted over a dozen flights, tracking outdoor releases of simulated chemical weapons over significant distances. The Raven was cued to the releases with standoff detection systems through Cursor on Target messages. Upon reaching the plume, the Raven used on-board sensors and on-board meteorological data to track the plume autonomously and determine the extent of the plume. Results were provided in real-time to the UAV operator.

  18. Agriculture Education. Agriculture Structures.

    ERIC Educational Resources Information Center

    Stuttgart Public Schools, AR.

    This curriculum guide is designed for group instruction of secondary agricultural education students enrolled in one or two semester-long courses in agriculture structures. The guide presents units of study in the following areas: (1) shop safety, (2) identification and general use of hand tools, (3) power tools, (4) carpentry, (5) blueprint…

  19. Utilization of biosensors and chemical sensors for space applications

    NASA Technical Reports Server (NTRS)

    Bonting, S. L.

    1992-01-01

    There will be a need for a wide array of chemical sensors for biomedical experimentation and for the monitoring of water and air recycling processes on Space Station Freedom. The infrequent logistics flights of the Space Shuttle will necessitate onboard analysis. The advantages of biosensors and chemical sensors over conventional analysis onboard spacecraft are manifold. They require less crew time, space, and power. Sample treatment is not needed. Real time or near-real time monitoring is possible, in some cases on a continuous basis. Sensor signals in digitized form can be transmitted to the ground. Types and requirements for chemical sensors to be used in biomedical experimentation and monitoring of water recycling during long-term space missions are discussed.

  20. The Role of Aerospace Technology in Agriculture. The 1977 Summer Faculty Fellowship Program in Engineering Systems Design

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Possibilities were examined for improving agricultural productivity through the application of aerospace technology. An overview of agriculture and of the problems of feeding a growing world population are presented. The present state of agriculture, of plant and animal culture, and agri-business are reviewed. Also analyzed are the various systems for remote sensing, particularly applications to agriculture. The report recommends additional research and technology in the areas of aerial application of chemicals, of remote sensing systems, of weather and climate investigations, and of air vehicle design. Also considered in detail are the social, legal, economic, and political results of intensification of technical applications to agriculture.